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Abstract A desire for informed decision-making regarding the operation and maintenance of structures provides motivation
for the development and implementation of structural health monitoring (SHM) systems. One approach to decision-making
in SHM is to adopt a risk-based framework in which failure events and decidable actions are attributed costs/utilities. Optimal
maintenance strategies may be pursued by considering the probability of occurrence of future failure events in conjunction
with associated costs. In order to forecast future failure events, a probabilistic model that describes the degradation of the
structure over time is required; in the state-space formulation of risk-based SHM, this model is equivalent to the transition
probabilities from possible current health-states of the structure to future health-states.

The current paper aims to demonstrate how such models may be determined using information gathered during the
operational evaluation stage of the structural health monitoring paradigm. This information may include knowledge of
the operational and environmental conditions under which the structure will operate, in addition to initial physics-based
modelling of the structure. A probabilistic transition model describing the degradation of a four-bay truss is developed
here, with finite element simulation used to yield knowledge of the load paths within the structure when it is in differing
health-states. The paper concludes with a discussion of the importance of probabilistic degradation models within SHM
decision-making. The discussion highlights the challenges that arise due to the lack of data available prior to the
implementation of an SHM system and suggests for how these may be overcome.
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1 Introduction

Structural health monitoring (SHM) is a field of engineering that is concerned with damage detection in structures and
infrastructure via the development and implementation of data acquisition and processing systems [1]. A key motivation
for the development and implementation of SHM systems is to facilitate the decision-making processes associated with
the operation and management of high-value or safety-critical assets. One approach to decision-making in the context of
SHM is by the use of a probabilistic risk-based framework based upon probabilistic graphical models (PGMs) [2], in which
actions on, and failure modes of the structure are assigned costs and optimal decisions are made through the maximisation
of expected utility gain, or the minimisation of expected utility loss.

An agent tasked with making decisions regarding the operation and management of a structure may utilise health-state
information inferred via an SHM system to make better informed and more optimal decisions. However, given solely
information regarding the structural health-state at the current instance in time, the agent may only make well-informed
decisions ad hoc. In order to make well-informed decisions on policies that include preventative actions, the agent requires
information about the future health-states of the structure. This information can be gained by developing transition models
that forecast future health-states given the current health-state and each decidable action. For the case that the decided action
is ‘do nothing’ the health-state transition model will forecast the degradation of a structure.

Degradation models of differing complexities have been used within the field of engineering for reliability assessment,
maintenance planning and prognosis [3]. In general, the models can be categorised in terms of a combination of the following
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criteria; physics-based or data-based, deterministic or probabilistic and continuous state or discrete state. A commonly used
degradation model is Paris’ law for crack growth given by the following equation,

da

dN
= C(�K)m (1)

where a is the crack length, N is the load cycle, �K is the stress intensity range and C and m are constants. After a little
thought one can reason that Eq. (1) is a deterministic, physics-based model of a continuous state. Different categories of
degradation model are applicable in different scenarios depending on the context. For example, in a situation where little
is known of the underlying physics governing the degradation, but data are readily available, one may opt for a data-based
model. Conversely, if the physics are known but data availability is low, a physics-based model may be more suitable.
Whether continuous or discrete states are modelled also depends on the nature of the application; considerations for this
include the required model fidelity and the computational cost/time. Without delving too far into metaphysics, it is reasonable
to assert that, in general, the future is inherently uncertain. For this reason, with regard to the use of deterministic versus
probabilistic models, the latter have a distinct advantage as they are capable of representing uncertainty. Fortunately, many
deterministic degradation models can be used to obtain probabilistic outputs via methods such as sequential Monte Carlo
sampling [4].

In the context of SHM and decision-making, a variety of health-state transition models have been employed. In [5], a
probabilistic interpretation of Paris’ law is used to develop a degradation model in a maintenance decision process for a
simulated wind turbine tower. In [6], a continuous health-state variable is given nonlinear Gaussian transition models in
a partially observable Markov decision process (POMDP) based on a normalised unscented Kalman filter; this approach
has the property that there is a non-zero probability that the health-state transitions to a less-damaged state, meaning that the
structural degradation is not strictly monotonic. In [7], qualitative data obtained from the inspection of mitre gate components
is used to derive a health-state transition matrix for a Markovian decision process for optimal maintenance decisions.

The current paper aims to present a general methodology for determining a health-state transition matrix for use in
a probabilistic risk-based decision paradigm for the operation and maintenance of structures as developed in [2]. The
methodology will be demonstrated using a case study of a four-bay truss. Finally, the importance of health-state transition
models within the risk-based decision framework will be discussed, and the challenges associated with their development
will be highlighted.

2 Probabilistic Risk-Based SHM

The approach proposed in [2] facilitates decision-making in the context of SHM by incorporating aspects of probabilistic risk
assessment into a probabilistic graphical model framework. For brevity, here, a short introduction to probabilistic graphical
models is provided, followed by a summary of the risk-based decision framework; for a more comprehensive explanation,
the reader is directed to the original paper.

2.1 Probabilistic Graphical Models

Probabilistic graphical models are graphical representations of factorisations of joint probability distributions and are a
powerful tool for reasoning and decision-making under uncertainty. For this reason, they are apt for representing and solving
decision problems in the context of SHM, where there is uncertainty in the health-states of structures. While there exist
multiple forms of probabilistic graphical model, the key types utilised for the risk-based decision frameworks are Bayesian
networks (BNs) and influence diagrams (IDs) [8].

Bayesian networks are directed acyclic graphs (DAGs) comprised of nodes and edges. Nodes represent random variables
and edges connecting nodes represent conditional dependencies between variables. In the case where the random variables
in a BN are discrete, the model is defined by a set of conditional probability tables (CPTs). For continuous random variables,
the model is defined by a set of conditional probability density functions (CPDFs).

Figure 1 shows a simple Bayesian network comprised of three random variables X, Y and Z. Y is conditionally dependent
on X and is said to be a child of X while X is said to be a parent of Y . Z is conditionally dependent on Y and can be said
to be a child of Y and a descendant of X while X is said to be an ancestor of Z. The factorisation described by the Bayesian
network shown in Fig. 1 is given by P(X, Y,Z) = P(X) · P(Y |X) · P(Z|Y ). Given observations on a subset of nodes
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Fig. 1 An example Bayesian
network X Y Z

Fig. 2 An example influence
diagram representing the decision
of whether to go outside or stay
in under uncertainty in the future
weather condition given an
observed forecast

WcWf

D U

in a BN, inference algorithms can be applied to compute posterior distributions over the remaining unobserved variables.
Observations of random variables are denoted in a BN via grey shading of the corresponding node, as is demonstrated for X

in Fig. 1.
Bayesian networks may be adapted into influence diagrams to model decision problems. This augmentation involves the

introduction of two additional types of node that are shown in Fig. 2: decision nodes, denoted as squares, and utility nodes,
denoted as rhombi. For influence diagrams, edges connecting random variables to utility nodes denote that the utility function
is dependent on the states of the random variables. Similarly, edges connecting decisions nodes to utility nodes denote that
the utility function is dependent on the decided actions. Edges from decision nodes to random variable nodes indicate that
the random variables are conditionally dependent on the decided actions. Edges from random variable or decision nodes to
other decision nodes do not imply a functional dependence but rather order, i.e. that the observations/decisions must be made
prior to the next decision being made.

To gain further understanding of IDs, one can consider Fig. 2. Figure 2 shows the ID for a simple binary decision; stay
home and watch TV or go out for a walk, i.e. domain(D) = {TV,walk}. Here, the agent tasked with making the decision has
access to the weather forecastWf which is conditionally dependent on the future weather conditionWc. The weather forecast
and future condition share the same possible states domain(Wf ) = domain(Wc) = {bad, good}. The utility achieved, U , is
then dependent on both the future weather condition and the decided action. For example, one might expect high utility gain
if the agent decides to go for a walk and the weather condition is good.

In general, a policy δ is a mapping from all possible observations to possible actions. The problem of inference in influence
diagrams is to determine an optimal strategy �∗ = {δ∗

1 , . . . , δ
∗
n} given a set of observations on random variables where δ∗

i

is the ith decision to be made in a strategy �∗ that yields the maximum expected utility (MEU). Defined as a product of
probability and utility, the expected utility can be considered as a quantity correspondent to risk.

2.2 Decision Framework

A probabilistic graphical model for a general SHM decision problem across a single time-slice is shown in Fig. 3. Here, a
maintenance decision d is shown for a simple fictitious structure S, comprised of two substructures s1 and s2, each of which
is comprised of two components; c1−2 and c3−4, respectively.

The overall decision process model shown in Fig. 3 is based upon a combination of three sub-models; a statistical classifier,
a failure-mode model and a transition model.

Within the decision framework, a random variable denoted H t is used to represent the latent global health-state of the
structure at time t . For this decision process, a posterior probability distribution over the latent health-state H t is inferred
via observations on a set of discriminative features νt . It is assumed that the generative conditional distribution P(ν|H ) is
learned implicitly or explicitly, depending on the choice of statistical classifier.

The failure condition of the structure FS is represented as a random variable within the PGM and is conditionally
dependent on the health-states of the substructures denoted by the nodes hs1 and hs2. The health-states of the substructures
are dependent on the local health-states of the constituent components denoted by the nodes hc1−4. The local health-states
of the components are summarised in the global health-state vector H = {hc1, hc2, hc3, hc4}. The conditional probability
tables defining the relationship between random variables correspond to the Boolean truth tables for each of the logic gates
in the fault tree defining the failure mode FS [9, 10]. This failure-mode model is repeated in each time-step. The failure states
associated with the variable FS are given utilities via the function represented by the node UF . As it is necessary to consider
the future risk of failure in the decision process, these utility functions are also repeated for each time-step.

Figure 4 shows the influence diagram of the transition sub-model. By interpretation of the graphical model shown in Fig. 4,
one can realise that the transition sub-model is solely formed of the conditional probability distribution P(H t+1|H t , dt )
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Fig. 3 An influence diagram
representing the partially
observable Markov decision
process over one time-slice for
determining the utility-optimal
maintenance strategy for a simple
structure comprised of four
components. The fault tree
failure-mode model for time
t + 1 has been represented as the
node F ′

t+1 for compactness

UFt

FS

hs2hs1

hc3 hc4hc1 hc2

UFt+1

F ′
t+1

Ht Ht+1

νt

dt

Udt

Fig. 4 An influence diagram
representing the transition
sub-model of the overall SHM
decision process

Ht Ht+1

dt

and that the future health-state H t+1 is dependent only on the current health-state and the action decided in the current
time-slice. An underlying assumption of the decision framework presented in [2], that facilitates the modelling process, is
that structures can be represented as a hierarchical combination of discrete substructures/regions. A consequence of this
assumption is that the health-states of interest are all represented as discrete random variables, hence, the transition models
required are matrices. For a given decided action a, and assuming a finite number N of possible discrete global health-
states, the conditional probability table P(H t+1|H t , dt = a) is given by an N × N square matrix whose i, j th entry is the
probability of transitioning from the ith to the j th health-state and i, j ∈ Z : 1 ≤ i, j ≤ N . Additionally, it is assumed that
the Markov decision process is stationary, i.e. P(H t+1|H t , dt = a) is invariant with respect to t . Because of this stationarity,
assuming no intervention is made (dt = ‘donothing′ ∀ t), the future global structural health-state is forecast as,

P(H t+n) = P(H t ) · P(H t+1|H t , dt = ‘do nothing’)n (2)



On Health-State Transition Models for Risk-Based Structural Health Monitoring 53

where n is the number of discrete time-slices forecast over, and P(H t ) and P(H t+n) are 1 × N multinomial probability
distributions over the global health-states at times t and t + n, respectively.

3 Developing Transition Models for Risk-Based SHM

As with the established paradigm for conducting an SHM campaign (detailed in [1]), the risk-based approach is formed
of several distinct stages. The risk-based approach consists of: operational evaluation, failure-mode modelling, decision
modelling, data acquisition, feature selection and statistical modelling. Most crucial to the development of transition models
is the operational evaluation stage. The current section outlines the information that must be obtained for the development
of transition models, provides discussion around the quantification of the uncertainty in operational conditions and offers an
explanation of how the quantified uncertainty may be used in conjunction with a physics-based model to develop transition
models.

3.1 Operational Evaluation

The operational evaluation stage, for both the traditional and probabilistic risk-based structural health monitoring paradigms,
seeks to assess the context in which a structural health monitoring campaign is to be conducted. It is during this stage that the
operational and environmental conditions for the structure of interest are considered. Furthermore, failure modes of interest
are determined and key health-states of the structure identified.

For the development of transition models in the probabilistic risk-based approach, during the operation evaluation stage,
it is necessary to identify factors that will influence the way in which the structure will degrade. Many of these factors may
be specific to the type of structure on which SHM is being conducted. Information regarding the operational conditions
that must be obtained includes the anticipated forcing amplitudes, locations and temporal variations. These operational
conditions will influence the fatigue life of the structure. Environmental conditions are also important to consider. Examples
of important environmental factors include operating temperatures and the presence/absence of water. The anticipated
operational temperature ranges are important to consider as these potentially introduce thermally induced stresses in addition
to other temperature effects on material properties such as fracture toughness. Furthermore, whether the structure will be
in the presence of water is a key factor as this may introduce structural degradation mechanisms such as corrosion and
erosion. An important consideration to make when considering operational and environmental conditions is that degradation
mechanisms may interact with one another. A notable example of this effect occurring is within the core of light-water
nuclear reactors where stainless steel structural components experience accelerated brittle fracturing as a result of interplay
between multi-physical phenomena in a process known as irradiation-assisted stress corrosion cracking (IASCC) [11].

With the operational and environmental conditions of the structure considered and potential degradation mechanisms
determined, the failure modes of interest for the structure and critical substructures, components and joints can be identified.
Subsequently, it is important to define damage for each critical substructure, component and joint, i.e. the possible
local health-states. Depending on factors such as materials and local operational and environmental conditions, different
components/joints may be susceptible to different types of damage; for example, composite components may experience
delamination, whereas metallic components may experience fatigue cracking. For each component, criteria for each of the
relevant failure mechanisms should be specified.

Irrespective of the type of damage associated with each component/joint, it is reasonable to assert that the discrete
random variables corresponding to the local health-states will have a cardinality of at least 2. In the most simple case,
each local health-state variable could possess states corresponding to ‘undamaged’ and ‘failed’, where the ‘failed’ state
represents the component being unfit-for-purpose. In some scenarios, it may also be desirable to consider extents of damage
and the functionality of the component/joint at varying damage extents. Some components/joints may possess health-states
associated with the presence of damage whilst continuing to function at their full, or partial capacity. Although these states
are not necessarily associated with any immediate risk with regard to the failure of the global structure, they may still be
important to consider as they may increase the propensity for transitioning to other more advanced damage states that do have
high risk associated. An example of a component that may require this consideration is a load-bearing structural member in
which partial thickness cracks may form.
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3.2 Handling Uncertainty

For most applications of structural health monitoring, perfect knowledge of the operational and environmental conditions
will not be available prior to the implementation of the system. It is for this reason, that uncertainties should be considered
and quantified where possible. While there exists a number of methodologies for the quantification of uncertainty, including
interval analysis and Dempster-Shafer theory [12, 13], here, it is considered reasonable to continue using probability theory
for consistency with the probabilistic risk-based decision framework.

For each of the key environmental and operation conditions, statistical distributions quantifying the ranges, likely values
and/or variance in the conditions should be elicited from an expert judgement, and where possible, observed data. In a
Bayesian setting, these distributions may be updated as measurements are collected, and the transition models re-estimated.

3.3 Generating Transition Models

To generate the degradation transition models, a physics-based model is required. The function of the model is to simulate
the structure and specifically its critical components in each of the global health-states and under specified operational and
environmental conditions. The simulated structure can then be evaluated with respect to the failure criteria identified in the
operational evaluation stage to determine whether state transitions occur.

With respect to modelling the degradation of a structure, the purpose of the physics-based model is to determine a
distribution over the quantities of interest in which the failure criteria are specified, conditioned on the uncertain operational
and environmental conditions. In the case that the physics-based model employed is inherently stochastic (such as a
probabilistic fracture mechanics model), this conditional distribution may be determined analytically. In the case that the
physics-based model employed is deterministic (such as a finite element model), this distribution may be determined by
applying sampling methods to the probability distributions for the operational and environmental conditions, and querying
the physics-based model accordingly.

Once a distribution over the quantities of interest has been determined, a distribution over local failure events can be
produced by executing the logical operations defining the failure criteria. Again, this distribution is conditioned on the
operational and environmental conditions. This conditional distribution over local failure events can then be mapped into
transitions in the global health-state by utilising the definition of H as a vector containing the local health-states of the
critical components, joints and substructures.

At this stage, it is necessary to marginalise out the variable operational and environmental conditions to obtain the
distribution P(H t+1|H t , d = 0). Additionally, to ensure a valid probability distribution is produced, normalisation should
be carried out.

Developing transition models for specific actions (such as repairs) is typically a problem that is highly dependent on the
context.

4 Case Study: Four-Bay Truss

To demonstrate how probability distributions quantifying uncertainty in operational conditions may be used in conjunction
with a physics-based model to generate a transition model for a risk-based SHM decision process, the methodology was
applied to a case study of a physical four-bay truss structure identical to that used in [14], and shown in Fig. 5. The truss was
composed of 20 aluminium members, each with a cross-sectional area of 177mm2. The horizontal and vertical members of
the truss possessed lengths of 250mm, resulting in the overall structure having a length of 1m and a height of 0.25m. The
members were pinned together using steel bolts in lubricated holes. For illustrative purposes, fictitious operational conditions
were assumed.

To avoid obfuscating the development of the transition model, it was elected to ignore the failure of joints and the
horizontal and vertical members and instead focus on the failures of the cross-members. Denoting the local health-states
of the eight cross-members as hm9 to hm16, the global health-state of the structure can be expressed as the vector
H = {hm9, . . . , hm16}. Additionally, for the purposes of demonstration, binary health-states for each of the 8 cross-members
were considered resulting in 256 possible global health-states. From hereon in, a convenient referencing scheme for the
global health-states is adopted where H is given a superscript corresponding to the decimal representation of the 8-bit
binary number (with ascending powers of two from left to right) specified by the vector H , i.e. the undamaged health state
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Fig. 5 A two-dimensional four-bay truss comprised of 20 members, eight of which are removable and denoted by a dashed line. Loads are applied
at points L, and a preload is applied at point P. Load positions are shown as blue dots. The bays are numbered left to right from 1 to 4

H = {0, 0, 0, 0, 0, 0, 0, 0} is denoted as H 0, and the health-state corresponding to the failure of the cross-members in the
first bay H = {1, 0, 0, 0, 1, 0, 0, 0} is denoted as H 17.

Finally, a binary decision d was considered for the structure, with possible courses of action ‘do nothing’ and ‘perform
maintenance’; for conciseness, these actions will be denoted with d = 0 and d = 1, respectively. In this case study, it
is assumed that the ‘perform maintenance’ action is equivalent to the replacement of all cross-members with the structure
consequently returned to its undamaged state.

4.1 Operational Conditions

Operational conditions were assumed for the structure such that the stress experienced in cross-members has a degree of
stochasticity. Specifically, it was assumed that there would be uncertainty in both the load and the location that the load
is applied to the structure at each time-step. In addition to the variable load, a constant preload of 5 kg was applied to the
structure at point P.

The magnitude of the load w was assumed to vary in accordance with the discrete uniform distribution,

w ∼ DU(0, wmax; n) (3)

where wmax was determined such that P(H 0
t+1|H 0

t , dt = 0) = 0.8 and each load magnitude had probability of P(w) = 1
n

with n = 100.
The position of the load was also assumed to vary according to a discrete uniform distribution over 8 candidate locations

labelled L1 to L8 in Fig. 5. This distribution may be formalised as:

L ∼ DU(1, 8) (4)

Hence, the operational conditions can be summarised as a vector co = {w,L}. In total, 800 possible operational conditions
were considered.

4.2 Failure Criteria

For each cross-member, three modes of failure were considered; yielding under tension, buckling under compression, and
supercritical crack growth.

A cross-member was considered to have failed by yielding, if the tensile stress in the member exceeded the ultimate
tensile stress of aluminium, where σUT S = 300MPa. The event of a cross-member mi failing via yielding is denoted as Yi .

A cross-member was considered to have failed by buckling when the compressive stress within a member exceeded the
buckling stress σb. The critical buckling stress for a slender beam is given by the following equation [15],
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σb = π2EI

A(KL)2
(5)

where E is the Young’s modulus, I is the cross-sectional second moment of area, A is the cross-sectional area, K is the
effective length factor and is dependent on the boundary conditions, and L is the length of the member. As the truss was
constructed in a way that allows in-plane rotation at the ends of each member, a pinned-pinned boundary condition was
assumed, resulting in an effective length factor of K = 1. Taking the Young’s modulus of aluminium to be E = 70GPa, the
critical buckling stress was found to be a compressive stress of σb = 270MPa. The event of a cross-member mi failing via
buckling is denoted as Bi .

The final failure method considered for the cross-members was supercritical crack growth. For this failure mechanism, it
was assumed that each member possessed a crack in the centre across the entire width of the member and at the midpoint
along the length with probability 0.1. The size of the crack in meters was assumed to be continuous uniformly distributed
according to,

2a ∼ U(0, b) (6)

where 2a is the crack size and b = 0.0125 and is the half width of the cross-members.
Assuming the cross-members can be modelled as a finite plate and with plane strain conditions, the mode I stress intensity

factor KI for a cracked member can be given by the following equation [16],

KI = Gσ
√

πa (7)

where σ is the applied stress, and G is a geometric factor given by,

G = 1 − a
2b + 0.326( a

b
)2√

1 − a
b

(8)

A cracked cross-member was considered to have failed when the stress intensity factor exceeded the critical stress intensity

factor Kc. For the aluminium members, it was taken that Kc = 24MPa · m1
2 . The event of a cross-member mi failing via

supercritical cracking is denoted as Ci .
The initial variable structural conditions can be summarised in a vector cs = {2a9, . . . , 2a16}, where 2ai is the crack

length present in cross-member mi . Here, it should be noted that the cs is considered independently of H .

4.3 Transition Modelling

To determine the stresses within the structure under the variable operational and structural conditions, a finite element model
of the truss was developed. The finite element model was validated with a set of strain measurements taken from the physical
truss in its undamaged condition.

A wrapper function was produced to iterate over the global health-states Ht . Additionally, the function was used to
generate random samples c∗ from the probability distributions specifying the uncertain operational and structural conditions
c = {co, cs}. Afterwards, the function queried the finite element model to obtain the stresses in the cross-members for the
given global health-state and a random sample of operational and structural conditions.

Asserting d = 0, for an initial global health-state H t and a randomly sampled set of conditions c∗, a health-state transition
was defined as H t+1 = H t + δH where δH = {δhm9, . . . , δhm16} is an 8-bit binary vector and,

δhmi = 1[(Yi ∨ Bi ∨ Ci)|H t , d = 0, c∗] (9)

where 1 denotes the indicator function and∨ denotes the inclusive-or logical operator. Here, Eq. (9) corresponds to evaluating
cross-member failures with respect to the previously discussed criteria for yielding, buckling and cracking. Subsequently,
the conditional probability of transitioning from H i

t to H
j

t+1 given c∗ was specified such that,
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P(H
j

t+1|H i
t , d = 0, c∗) =

{
1 if δH = H

j

t+1 − H i
t

0 otherwise.
(10)

To populate the transition matrix P(H t+1|H t , d = 0), the variability in the conditions c must be marginalised out and
the distribution normalised. This was achieved by calculating the i, j th entry of the transition matrix as,

P(H
j

t+1|H i
t , d = 0) =

∑Ns

1 P(H
j

t+1|H i
t , d = 0, c∗)

Ns

(11)

where Ns is the number of queries of the finite element model per H t .
The transition model for the action corresponding to ‘do nothing’ was estimated with the described procedure using

Ns = 104. The heatmap of the resulting transition matrix P(H t+1|H t , d = 0) is shown in Fig. 6. A dominant lighter colour
line can be seen along the diagonal in Fig. 6; this indicates that the structure has a tendency to remain in the same health-
state over a single time-step. Furthermore, it can be seen that the elements in the lower-right triangle of the graph (which
corresponds to the lower-left triangle of the transition matrix) consists entirely of zero elements; a result of the implicit
constraint imposed through Eqs. (9) and (10) that the structure monotonically degrades. Taking the log10 of the conditional
probability distribution (with an offset of +0.01 so that zero elements may be plotted with finite values) reveals further
structure in the transition matrix as lower probability transitions are made more visible, as can be seen in Fig. 7. Figure 7
shows that the transition matrix has fractal pattern akin to the Sierpiński triangle. Due to the fact that the global health-state is
represented as an 8-bit binary vector, the set of all allowable transitions assuming only monotonic degradation (i.e. once a bit
is ‘turned on’, it cannot be ‘turned off’), form a Sierpiński triangle [17]. The possible transitions shown in Fig. 7 are a subset
of the Sierpiński triangle with some elements missing due to physical effects disallowing some transitions; for example, if
the truss were to collapse due to the failure of the first bay, then the members in the other bays would no longer be able to
fail as the structure would cease to support the load.

For completeness, the transition matrix for the ‘perform maintenance’ action P(H t+1|H t , d = 1), was specified by
making the assumption that the replacement of all cross-members returns the structure to the undamaged health-states, as
shown by the following function:

Fig. 6 A heatmap showing the transition matrix P(H t+1|H t , d = 0)
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Fig. 7 A heatmap showing the log probability of the transition matrix with an offset, log10(P (H t+1|H t , d = 0) + 0.01)

P (H
j

t+1|H i
t , d = 1) =

{
1 for j = 0

0 otherwise.
(12)

The current section has demonstrated a sensible methodology for developing a health-state transition model for a structure
by means of a case study. The next steps would be to evaluate and test the transition model, though this is omitted here as it
is outside the scope of the current paper.

5 Discussion

The current sections aim to highlight and discuss the importance of health-state transition models in the context of risk-
based decision-making for SHM and for the specific problem of prognosis. Additionally, discussion will be made around the
challenges associated with the development of the transition models.

5.1 Importance of Transition Models

In general, when it comes to decision-making, possessing information or beliefs regarding future events/states is crucial. This
statement becomes most apparent when taking this notion ad absurdum. At one extreme, if one possesses no information
or belief regarding future events/states, then there is no reason for one to expect that any single course of action is better
than any other. At the other end, if one somehow becomes clairvoyant and possesses perfect information regarding future
events/states, then it follows that one would be able to make perfect decisions such that maximum rewards may be reaped.

As it happens, almost all decision problems, including those pertaining to SHM, fall somewhere between these two
extremes, where belief and partial knowledge regarding future events/states is possessed. Nonetheless, in the context of
SHM, increased expected utility gain provides a strong argument for striving towards improved knowledge regarding future
health-states by the development of transition models.

In addition to allowing closer to optimal decisions to be made within the risk-based framework, a good transition model
allows for a pseudo-prognosis for the structure to be made by utilising Eq. (2). By propagating the belief in the current health-
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state forward in time according to Eq. (2), and by evaluating the risk of failure associated with the predicted distribution over
future health-states, at each time-step until the risk exceeds the cost of one of the candidate courses of action, one can obtain
an estimate for the anticipated number of time-steps until an action should be taken. Whilst this result is not as powerful as a
true-prognosis that yields remaining useful life, this information is still beneficial as it provides the expected time available
to execute a course of action.

5.2 Challenges

There are numerous challenges associated with the development of transition models.
A primary challenge pertains to the validation of transition models. For many applications of SHM, the monitoring

campaign will be for a newly built structure from which data are yet to be acquired at the time that the transition model
must be developed. Without any observed state transitions to validate the model, one must rely solely on prior knowledge
of the underlying physics that govern the degradation. One possible option is to independently validate the physics-based
models used to develop the transition model via hybrid testing, or performing experiments on individual components or
substructures. Alternatively, in situations where an SHM system is being retrofitted to an existing structure there may be
historical data detailing health-state transitions that may be used to validate the degradation model.

The issue of validation is further complicated if the structure of interest is unique. For such a structure, even in a scenario
where one is able to update the transition model with observed state transitions, it is possible, and in many cases likely, that
only a small subset of the total possible state transitions will be observed throughout the operational lifetime; thereby leaving
potentially large portions of the transition model without validation. In the context of population-based SHM [18–20], a
single transition model may be applied to all members of a fleet of homogeneous structures and also updated with state
transitions observed from each instance of the structure. The process of continually validating transition models online may
be achieved through active learning [21].

Another challenge is the cost, both in terms of money and time, associated with the development of transition models.
The development cost of a transition model will depend highly on the complexity of the structure for which a model is being
developed, and the range of operational and environmental conditions that must be considered. For complex structures, the
high-fidelity models capable of the multi-physics that may be required to simulate all the necessary failure mechanisms to
develop a transition model are expensive and time-consuming to develop, often requiring teams of highly skilled engineers.
The financial argument for the development of such models should be constructed and evaluated during the operational
evaluation stage of the SHM process, taking into account whether the structure is of high-value, or safety-critical.

The computational cost of the development and implementation of the transitional model should also be considered.
During the development of the transition model, it is possible that a physics-based model is queried numerous times. For
complex structures, and high-fidelity models these simulations required large computing times. As the number of influential
operating and environmental conditions increases, the number of samples required to adequately cover the input space will
also increase. Taking this factor into account with the possibility that high-fidelity physics-based simulations may need to
be queried many times, the calculation of the transition models may have prohibitively long computation times. A possible
solution to this issue would be to use a surrogate model, where an interpolation function that is relatively cheap to query is
trained on a subset of the outputs of the physics-based model.

Finally, a challenge pertaining to maintenance action transition models is left as an open topic for research and discussion.
In a few limited cases, such as when repair corresponds to replacement of all failed components (as is assumed for the case
study in the current paper), it may be reasonable to assume that the structure returns to its original undamaged case. However,
in general, for less extreme and more realistic approaches to structural repair, this does not hold and, in fact, it is possible that
the state to which the structure transitions was not considered during the original development of the transition model [22].
Here, the challenge lies with determining reasonable assumptions that allow one to avoid redeveloping the transition model
after every intervention, or to conceive of methods for adapting the health-states considered within the risk-based decision
framework.

6 Summary

The aim of the current paper has been to present a general methodology for developing structural health-state transition
models for use in a probabilistic risk-based decision framework for SHM. Using a four-bay truss for a case study, a
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degradation model in the form of a probabilistic transition matrix was developed by considering uncertain operational
conditions in conjunction with a physics-based model. Finally, discussions were made focussing on the challenges with
developing health-state transition models but also on the importance of the models for both the risk-based decision
framework, and their application to the problem of prognosis in SHM.

Acknowledgments The authors would like to acknowledge the support of the UK EPSRC via the Programme Grant EP/R006768/1. KW would
also like to acknowledge support via the EPSRC Established Career Fellowship EP/R003625/1.

References

1. Farrar, C.R., Worden, K.: Structural Health Monitoring: A Machine Learning Perspective. Wiley, Chichester (2013)
2. Hughes, A.J., Barthorpe, R.J., Dervilis, N., Farrar, C.R., Worden, K.: A probabilistic risk-based decision framework for structural health

monitoring. Mech. Syst. Signal Process. 150, 107339 (2021)
3. Shahraki, A.F., Yadav, O.P., Liao, H.: A review on degradation modelling and its engineering applications. Int. J. Perform. Eng. 13, 299–314

(2017)
4. Corbetta, M., Sbarufatti, C., Manes, A., Giglio, M.: Real-time prognosis of crack growth evolution using sequential Monte Carlo methods and

statistical model parameters. IEEE Trans. Reliab. 64(2), 736–753 (2015)
5. Hovgaard, M.K., Brincker, R.: Limited memory influence diagrams for structural damage detection decision-making. J. Civil Struct. Health

Monit. 6(2), 205–215 (2016)
6. Schöbi, R., Chatzi, E.N.: Maintenance planning using continuous-state partially observable Markov decision processes and non-linear action

models processes and non-linear action models. Struct. Infrastruct. Eng. 12(8), 977–994 (2016)
7. Vega, M.A., Todd, M.D.: A variational Bayesian neural network for structural health monitoring and cost-informed decision-making in miter

gates. Struct. Health Monit. (2020). https://doi.org/10.1177/1475921720904543
8. Sucar, L.E.: Probabilistic Graphical Models: Principles and Applications. Springer, London (2015)
9. Bobbio, A., Portinale, L., Minichino, M., Ciancamerla, E.: Improving the analysis of dependable systems by mapping Fault Trees into Bayesian

Networks. Reliab. Eng. Syst. Saf. 71(3), 249–260 (2001)
10. Mahadevan, S., Zhang, R., Smith, N.: Bayesian networks for system reliability reassessment. Struct. Saf. 23(3), 231–251 (2001)
11. Bruemmer, S.M., Simonen, E.P., Scott, P.M., Andresen, P.L., Was, G.S., Nelson, J.L.: Radiation-induced material changes and susceptibility

to intergranular failure of light-water-reactor core internals. J. Nucl. Mater. 274(3), 299–314 (1999)
12. Dempster, A.P.: Upper and lower probabilities induced by a multivalued mapping. Ann. Math. Stat. 38(2), 325–339 (1967)
13. Shafer, G.: A Mathematical Theory of Evidence. Princeton University Press, Princeton, NJ (1976)
14. Worden, K., Ball, A.D., Tomlinson, G.R.: Fault location in a framework structure using neural networks. Smart Mater. Struct. 2(3), 189–200

(1993)
15. Yoo, C.H., Lee, S.C.: Stability of Structures: Principles and Applications. Elsevier, Oxford (2011)
16. Anderson, T.L.: Fracture Mechanics: Fundamentals and Applications. Taylor and Francis, Boca Raton (2005)
17. Sloane, N.J.A.: The On-Line Encyclopedia of Integer Sequences: A001317. https://oeis.org/A001317. Accessed 08-12-2020
18. Bull, L.A., Gardner, P., Gosliga, J., Rogers, T.J., Dervilis, N., Cross, E.J., Papatheou, E., Maguire, A.E., Campos, C., Worden, K.: Foundations

of population-based SHM, Part I: homogeneous populations and forms. Mech. Syst. Signal Process. 148, 107141 (2021)
19. Gosliga, J., Gardner, P.A., Bull, L.A., Dervilis, N., Worden, K.: Foundations of Population-based SHM, Part II: Heterogeneous populations –

graphs, networks, and communities. Mech. Syst. Signal Process. 148, 107144 (2021)
20. Gardner, P., Bull, L.A., Gosliga, J., Dervilis, N., Worden, K.: Foundations of population-based SHM, Part III: Heterogeneous populations –

mapping and transfer. Mech. Syst. Signal Process. 148, 107142 (2021)
21. Bull, L.A., Rogers, T.J., Wickramarachchi, C., Cross, E.J., Worden, K., Dervilis, N.: Probabilistic active learning: an online framework for

structural health monitoring. Mech. Syst. Signal Process. 134, 106294 (2019)
22. Gardner, P., Bull, L.A., Dervilis, N., Worden, K.: Overcoming the problem of repair in structural health monitoring: outlier-informed transfer

learning. J. Sound Vib., 116245 (2021)

https://doi.org/10.1177/1475921720904543
https://oeis.org/A001317

	On Health-State Transition Models for Risk-Based Structural Health Monitoring
	1 Introduction
	2 Probabilistic Risk-Based SHM
	2.1 Probabilistic Graphical Models
	2.2 Decision Framework

	3 Developing Transition Models for Risk-Based SHM
	3.1 Operational Evaluation
	3.2 Handling Uncertainty
	3.3 Generating Transition Models

	4 Case Study: Four-Bay Truss
	4.1 Operational Conditions
	4.2 Failure Criteria
	4.3 Transition Modelling

	5 Discussion
	5.1 Importance of Transition Models
	5.2 Challenges

	6 Summary
	References


