
Chapter 9
Uncertainty in Structural Fire Design

Ruben Van Coile, Negar Elhami Khorasani, David Lange,
and Danny Hopkin

9.1 Introduction

9.1.1 Structural Design and Uncertainty

Probabilistic methods form the basis of verification of structural design under
ambient conditions in most structural engineering standards around the world. Safety
factors are specified based on statistical variations in load and resistance of a
structure, applying reliability goals as a benchmark for verification that a structure
provides an acceptable level of safety. Despite this fundamental principle, current
structural fire engineering approaches are intrinsically deterministic and incorporate
neither of the above two concepts of safety factors or reliability goals.

Instead, structural fire engineering analysis typically relies on the evaluation of
the response of a structure to a single or very few deterministic scenarios which
although often conservative do not normally account for uncertainties in the input,
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the modelling approach, or the output. This approach does not address in any
meaningful way the amount of conservativeness inherent in a design, or provide
any meaningful information about the actual level of safety. The evaluation is carried
out in one of a number of ways, with verification done in either the time, the
temperature, or the strength domain with the intent being simply to demonstrate
that for a given scenario the fire resistance of an element or a structure is greater than
or equal to the fire intensity. When verification is done in the temperature or the
strength domain, this is almost always done based on the analysis of the response of
the structure to one or a few design fires which represent a range of possible fires that
could occur inside of that building. However, while these fires may be identified and
elaborated using some risk-based technique, the analyses remain purely determinis-
tic and the actual level of safety, margin of safety, probability of failure, or reliability
is almost never calculated.

This deterministic demand/capacity evaluation in the strength or temperature
domain is often termed performance-based design since the performance criteria
may be set based on the unique features of the building in question and taking into
account input from the various stakeholders in the project. The basic elements of
performance-based design are defined in such a way as to allow the user freedom to
compose any solution to a given engineering problem, allowing also the freedom to
employ new techniques and technologies as they become available. The objectives
must be clearly stated at the outset of the project, and any design solution which fulfils
these objectives while still adhering to the performance targets of the design frame-
work should be permitted. The effect of this on the spectrum of possible solutions
available for any problem and the impact of this on verification requirements are
shown in Fig. 9.1. As the design process tends towards a performance-based
approach, the spectrum of possible solutions opens up, allowing more bespoke
solutions to a problem.

Performance-based design is a necessity where buildings fall outside of either the
classification afforded by prescriptive building codes around the world or where the
materials or methods of construction are such that they introduce new risks or
challenge the fire strategy of buildings in ways which were unforeseen in the
development of the current regulations. In such cases, the building design falls
outside of the bounds by which the fire engineering community can confidently
rely on the collective experience of the profession (see Sect. 9.2). It is therefore not

Fig. 9.1 Expanding spectrum of solutions and verification in performance-based design
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possible to ensure safety through the application of prescriptive codes based on the
nearest existent classification. Therefore, two lines of action are open to the engineer:
either the building design should be modified such that it falls within the scope of the
classifications available or engineering analysis has to be undertaken to demonstrate
that the level of safety provided by the building is consistent with the performance
that may be expected by the society.

This may result in the situation whereby although the targets in terms of life,
property, and business protection may remain similar to those in prescriptive design
codes, these targets should typically remain independent of the prescriptive building
code performance goals. Most legislative objectives are related to preventing loss of
life—either of the building occupants or of the first responders working inside of a
burning building [1]—and damage to neighbouring property. However, perfor-
mance-based design also opens the possibility for alternative objectives to be
considered such as limiting direct or indirect financial losses to a building’s owner,
limiting environmental impact, or preservation of historic structures [2].

Also, when applying performance-based design, the collective experience of the
profession in applying these techniques to the specific type of structure may be
insufficient to guarantee a sufficient level of safety. In those situations, an explicit
verification or quantification of the resulting safety level needs to be undertaken.
This is discussed in some detail elsewhere [3]. In summary, and as discussed further
in Sect. 9.2, this explicit verification of the safety level aims to ensure that the
uncertainties associated with the demand/capacity evaluation do not result in a too
high (unknown) likelihood of the structure not fulfilling the design objectives.

9.1.2 Importance of Considering Uncertainty

The basis of demand/capacity-based design in structural engineering is that the
resistance of a structure is greater than the load applied on the structure. Consider,
to illustrate the concept, an axially loaded element under ambient conditions
(Fig. 9.2). The linear elastic response of the system may be defined according to
several very simple relationships (see Table 9.1 for definitions):

σ ¼ P
A

ð9:1Þ

ε ¼ σ
E
¼ P

AE
ð9:2Þ

Fig. 9.2 Simple system
under axial load
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ΔL ¼ εL ¼ PL
AE

ð9:3Þ

Here, σ is the stress; P is an applied axial load; A is the cross-sectional area of the
element; ε is the strain; E is the modulus of elasticity of the material; and L is the
length of the element being analysed. Each of these relationships is related to the
material properties, an external condition or input to the system, or a feature of the
system.

Assuming some relationship between stress and strain which defines the modulus
of elasticity, as well as the yield and ultimate stresses and strains as per Fig. 9.3, the
failure of this system can be defined according to various different criteria, in
function of the performance objective: for example, an evaluation based on a
deformation criterion, i.e. ΔL > ΔL*, with ΔL* being a limiting deformation, or
according to criteria based on the material response, e.g. σ > σy; σ > σu; ε > εy; or
ε > εu.

Even for this simple system, the evaluation of such criteria incorporates, to some
degree or another, uncertainties. In the case of the input to the system, there are
uncertainties regarding the load which is applied. In the case of the system proper-
ties, there are uncertainties with regard to the material response as well as the
geometry of the system. When considering the model chosen to analyse this system,
there arise model uncertainties associated with the formulation of the material in the
model or any discretization or simplifications to the model made by the user.
Referring to the uncertainties inherent in the system, these may largely be attributed
to aleatoric uncertainties, or aleatory variability, arising from the natural randomness
in a process or in the input variables. This randomness can usually be measured and
quantified. For discrete variables the randomness can generally be parametrized by
different probability mass functions. Uncertainties related to the modelling of the
system are referred to as epistemic uncertainties. Different models inherently contain

Fig. 9.3 Example
relationship between stress
and strain at ambient

Table 9.1 Sources and summary of uncertainties in the simple model described

Input P

System properties E, A, L, σy, εy, σu, εu
Model Linearity, dimensionality, material model adopted, boundary conditions
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a different degree of epistemic uncertainty. With regard to these epistemic uncer-
tainties, the impact of this on structural design under ambient conditions is well
illustrated in the work by Fröderberg and Thelandersson [4]; the impact on structural
fire engineering is illustrated in the work by Lange and Boström [5].

At this point, it should be clear that the simple problem presented above contains
a multitude of uncertainties: aleatory uncertainty arising from the input to the model
in the form of the applied force or the different properties of the system and epistemic
uncertainty arising from the modelling approach adopted and any simplifications or
assumptions made. As a result of the combined effect of these uncertainties, we
cannot always be sure that the condition of capacity being greater than demand,
under any of the failure criteria identified above, is satisfied for a given design. The
implication is that some degree of risk is being adopted in the acceptance of any
model of this problem.

If temperature is introduced to this problem, the nature of the uncertainties
remains largely the same; however the complexity of the problem multiplies. The
stress-strain relationship of the material becomes a function of temperature, and
thermal expansion means that both the cross-sectional area and the length of the
element change. Each of the very simple relationships presented above now becomes
also a function of temperature:

σ Tð Þ ¼ P
A Tð Þ ð9:4Þ

ε Tð Þ ¼ P
A Tð ÞE Tð Þ ð9:5Þ

ΔL Tð Þ ¼ P
A Tð ÞE Tð Þ þ αΔTL ð9:6Þ

where α denotes the coefficient of thermal expansion, and ΔT denotes a change in
temperature.

Having introduced temperature to the problem, it becomes also necessary to
calculate temperature. As discussed in Chap. 5, the heat transfer inside the solid is
governed by Fourier’s law, while convective and radiative heat transfers are to be
taken into account at the surface. Each of these processes of heat transfer, conduc-
tion, convection, and radiation, now introduces additional variable uncertainties into
our system, including conductivity, convective heat transfer coefficient, and emis-
sivity required for calculation of heat transfer by radiation. The complexity of and
thus the overall uncertainty associated with this simple problem have now increased
dramatically, simply by the introduction of temperature. The certainty that the
capacity is always greater than the demand, for any of the criteria listed, is now
diminished.

As indicated in Sect. 9.1.1, the traditional means of addressing this uncertainty in
structural fire engineering has always been to overestimate the load and to underes-
timate the capacity, thus accounting for uncertainties by increasing the nominal
margin of safety. However, this indirect approach fails to acknowledge that engi-
neering failures occur where the distributions of demand and capacity overlap,
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i.e. where demand > capacity within the tails of the distributions of the demand and
capacity (see Fig. 9.6). Therefore, increasing the margin of safety by increasing the
distance between the average demand and the average capacity in an arbitrary way
cannot ensure that failure has a probability which is acceptably low to society. Thus,
when an explicit verification of the safety level is required, the uncertainties associ-
ated with the design need to be explicitly considered.

9.1.3 Sources of Uncertainty

In structural fire engineering, uncertainties arise from many sources. Referring to the
process of structural fire engineering described by Buchanan and Abu [6], Fig. 9.4,
sources of aleatoric uncertainty can be seen to be introduced at every stage, and
epistemic uncertainty arises depending on the models used at each stage. The nature
of the sources of uncertainties means that uncertainties propagate through any
analysis. The uncertain input variables are propagated through uncertain models
which results in uncertain outputs from models.

Fig. 9.4 Flow chart for calculating the strength of a structure exposed to fire, adopted from
Buchanan and Abu [6]
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When developing the fire model, uncertainties in the geometry of the fire com-
partment, fuel load, and fire characteristics arise. Arguably uncertainties associated
with room geometry are significantly smaller than uncertainties associated with the
fuel or the characteristics of the fire and can therefore be ignored. However, the fuel
load and the fire characteristics are arguably very significant uncertainties in the
entire process and generally cannot be ignored. In the Eurocode, uncertainties
associated with the fuel load are treated by adopting some high-percentile fuel
load from a distribution which varies with occupancy—increasing the demand for
the design, as described above. Other uncertainties related to the fire characteristics
however are not treated in any way satisfactorily; for example, the opening factor
upon which the burning behaviour is largely dependent is usually treated entirely
deterministically. Further uncertainty arises from the choice of fire model; as will be
discussed later, different representations of fire (standard fire, parametric fire, trav-
elling fire, zone models, field models) account for different factors related to the
overall fire behaviour. The uncertainty associated with the use of these different
models will be discussed later in this chapter.

Any uncertainties in the input variables to the fire model as well as uncertainties
inherent in the fire model itself are propagated into an uncertainty for the thermal
exposure which is an input to the heat transfer model, along with details of the
geometry, the thermal properties, and the heat transfer coefficients. Element geom-
etry is arguably similar to the room geometry in that the effects of uncertainties are
likely to be relatively inconsequential compared with the uncertainties of thermal
exposure, heat transfer coefficients, and material thermal properties. In this chapter,
there is a discussion of the variability in thermal properties as well as heat transfer
coefficients as input to the heat transfer model. Heat transfer is discussed in Chap. 5.
It should be noted that any uncertainties in inputs or resulting from the modelling
approach with respect to the fire model propagate through the analysis.

Uncertainties in the inputs to the heat transfer model are propagated, as well as
any uncertainties in the model itself, to the structural model where the geometry, the
applied loads, and the mechanical properties of the material all are subject to
uncertainty. The overall effect of this propagation of uncertainty is a multiplicity
of possible outcomes at every stage in the analysis process including in the final
determination of the load capacity.

The above gives an overview of the many uncertainties associated with each of
the steps in structural fire engineering analysis. These uncertainties can generally be
parametrized by different probability distributions. The ability to do this depends to a
large extent on the quality of information which is available about the specific
variables. This is often cited as one of the most significant obstacles to the use of
probabilistic methods in structural fire engineering that the rate of occurrence of
events is typically so low that the informativeness of any resulting distributions is
low. However, as will be shown in this chapter, many of the variables can be
satisfactorily parametrized for a number of different applications. Where variables
cannot be parametrized, or where epistemic uncertainties exist, then the sensitivity of
solutions can be probed and engineering judgement can be exercised to ensure that
design objectives are met.
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9.2 Reliability and Risk Acceptance

9.2.1 Risk Acceptance in Structural Fire Design

As indicated in Sect. 9.1, traditional performance-based (structural) fire safety design
is deterministic in nature, requiring the selection of design inputs, scenarios, and
performance criteria that are deemed appropriately conservative by the engineer. In
such a process, the safety level (or residual risk) associated with a given design is not
evaluated, and the full spectrum of consequences and their associated probabilities
are not interrogated. Instead, it is assumed that an adequate, but unquantified, level of
safety is attained based upon engineering judgement and considerations: (a) that real
fire events have occurred, with performance observed, and (b) that society has not
expressed dissatisfaction with the levels of performance witnessed. In other words,
the basis for acceptance of traditional performance-based design (or the safety
foundation) is the experience of the fire safety profession (see left-hand side of
Fig. 9.5) proposed in Hopkin et al. [7]. This safety foundation can only be justified
where there are sufficient real fire events to observe, guide design processes, and
offer society opportunities to express views on their dissatisfaction (or otherwise) of
the consequences witnessed.

Traditional (structural) fire safety design and its associated safety foundation
cannot, however, be extrapolated to exceptional structures, i.e. those with atypical
consequences of failure or adopting innovative materials, as it is likely that insuffi-
cient instances exist where fires have occurred and performance is witnessed. For
such complex cases, there is a need to explicitly evaluate the residual risk (see right-
hand side of Fig. 9.5).

Within the framework presented by Van Coile et al. [3], there is an expectation
that probabilistic risk assessment (PRA) methods be employed to demonstrate
adequate safety for cases where the collective experience of the profession cannot
be called upon to guide design approaches. In doing so, any design must be

Fig. 9.5 (Left) assumed basis of safe design, (right) demonstrated basis of safe design where
experience is not an adequate basis, Hopkin et al. [7]
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demonstrated to be tolerable to the society, and the residual risk as low as is
reasonably practicable (ALARP). In structural safety, the full cost-benefit analysis
implied by the ALARP evaluation is typically substituted by a reliability analysis,
allowing to determine design acceptance based on structural failure probabilities
only [3].

9.2.2 What Is Reliability?

ISO 2394:2015 [8] defines reliability as the ‘ability of a structure or structural
member to fulfill the specified requirements, during the working life, for which it
has been designed’. Reliability is expressed in terms of probability and can cover
safety, serviceability, and durability of a structure. In the Eurocodes, no in-depth
definition of reliability is given. However, in the fundamental requirements it is
currently stated: ‘a structure shall be designed and executed in such a way that it will,
during its intended life with appropriate degrees of reliability and in an economic
way:

• Remain fit for the use for which it is required; and.
• Sustain all actions and influences likely to occur during execution and use’.

In the latter bullet point, a fire condition falls within the definition of ‘all actions’.
To satisfy the above considerations in relation to reliability, Holicky [9] notes that
there should be four important elements requiring consideration:

• The definition of a failure, i.e. the limit state.
• The time (reference) period under consideration.
• The reliability level, i.e. an assessment of the failure probability.
• The conditions of use (and the associated impact on the input uncertainties).

Importantly, the concept of absolute reliability does not generally exist (apart from in
exceptional cases), i.e. few structures have a zero-failure probability and there must
be an acceptance that there is a certain, small probability that a failure may occur
within the intended lifespan of a structure [9]. This principle extends to structural
design for fire safety, where structural elements or systems must have an acceptable
failure probability that varies in function of the failure consequences. In the absence
of such an acceptable failure probability, the drive towards absolute reliability would
(sooner or later) result in grossly disproportionate costs to society, as more and more
resources need to be spent to further reduce the failure probability.

In the context of structural design for fire, many fire safety objectives may exist
(see Sect. 9.1.1), which are translated into functional requirements and performance
criteria; see ISO 24679-1:2019 [10]. For each of the performance criteria, a reliabil-
ity target can be specified, for example, a business continuity-driven performance
requirement of a high certainty (reliability) of limited permanent deflection post-fire.
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In most common structural fire design situations, maintaining structural stability
during fire is the primary functional requirement (relating, e.g., to a primary objec-
tive of life safety, possibly in conjunction with property protection). For this
functional requirement, reliability in consideration of fire can be defined as the
probability that the structure or structural member will maintain its load-bearing
function in the event of fire, i.e. reliability is the complement of the failure proba-
bility. This definition of reliability in structural (fire) engineering will be applied
herein.

Applying the above, the performance criterion can for example be specified as
(i) a maximum deflection vmax being smaller than a limiting value vlim or (ii) the load-
bearing capacity of the structure R being larger than the load on the structure
E (including self-weight). In the first illustrative case failure is defined by the
exceedance of a (possibly deterministic) limiting deflection, while in the second
case failure is defined as the exceedance of the resistance effect by the load effect.
For the latter example, the failure probability definition is thus specified by Eq. (9.7).
Thus, the limit defining the boundary between the failure domain and boundary of
the safe domain is given by Z ¼ R – E ¼ 0. This is commonly referred to as the limit
state corresponding with the performance criterion.

A limit state is a condition of a structure or component beyond which the structure
no longer fulfils certain criteria for design. Examples of limit states in structural
engineering include ultimate limit states beyond which it is expected that a structure
will no longer carry the applied load and serviceability limit states beyond which it is
expected that the level of comfort or confidence of the users of the building as a
result of, e.g., deflections or vibrations, is no longer adequate. Ultimate limit states
are of relevance for accidental actions such as fire whereas serviceability limit states
have little arguable application for accidental actions.

In structural fire design situations, performance (and thus failure) is commonly
evaluated given the occurrence of a fire. Consequently, the load reference period is
recommended to be taken as the instantaneous load situation, i.e. an arbitrary-point-
in-time load. Taking into account the specifics of the structure (i.e. the conditions of
use referenced by Holicky [9]), the load and resistance effects are thus defined. A
conceptual visualization of these is given in Fig. 9.6, showing the variation of the
resistance effect R and the load effect E, as well as the ‘safety margin’ defined here
by the difference in expected values μR and μE. As illustrated in Fig. 9.6, despite the
nominal safety margin, situations of E exceeding R occur in the tails of the distri-
bution. The acceptability of this observed failure probability now depends on the
(availability of) maximum allowable failure probabilities, or in other words: target
reliability levels.

P f ¼ P R� E < 0½ � ð9:7Þ
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9.2.3 Target Reliability Indices for Structural Design

Defining maximum allowable (target) failure probabilities is central to the applica-
tion of reliability methods. Relative to the full ALARP evaluation highlighted in
Sect. 9.2.1, specified target failure probabilities allow to omit cost evaluations from
the design, thus restricting the design problem to engineering considerations (and
not, e.g., discount rate assessments).

Commonly, a (target) failure probability is expressed in an alternative form as a
reliability index (β), with

β ¼ �Φ�1 P f

� � ¼ Φ�1 1� P f

� � ð9:8Þ

Φ�1 is the inverse standard normal cumulative distribution function, as applied
amongst others in EN 1990. For completeness, the relationship between (Pf) and
(β) is as shown in Fig. 9.7. In the following subsections, target reliability indices for
structural design are summarily presented both for ambient conditions and for fire.

9.2.3.1 Reliability Indices at Ambient Temperature

As noted in Sect. 9.1.1, reliability-based design has found wide application in
structural engineering. For example, as the basis of the partial safety factors applied
in the Structural Eurocodes, the target reliability index, β, governs everyday

Fig. 9.6 Concept visualization of load and resistance effects, including situations with failure
(R < E) given a nominal ‘safety margin’
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structural engineering practice. Different (recent) target values are, however, avail-
able from several sources [11].

Target failure probabilities (Pf, t) for ambient design have received much attention
in the literature, e.g. see Rackwitz [12] and Fischer et al. [13]. Target values have
even been included in international standards, which can be linked to the Eurocode
target reliability indices. ISO 2394:1998 [14] lists ‘example’ lifetime target reliabil-
ities as a function of the failure consequence and the relative costs of safety measures
(Table 9.2). Based on the formulation in ISO 2394:1998, these values have been
informed by cost optimization and calibrated against existing practice. The standard
further recommends the values 3.1, 3.8, and 4.3 to be used in ultimate limit state
design based on both consequence of failure and cost of safety measures. Consid-
ering the general content of the standard, these values are considered applicable at an
element level.

Target reliability indices specified in EN 1990 [15] as a function of the ‘reliability
class’ are given in Table 9.3. The reliability classes can be associated with the
consequence classes (i.e. high, medium, low). As also noted in ISO 2394:1998,
considerations such as brittle or ductile failure may influence the chosen target.

Fig. 9.7 Relationship between reliability index and failure probability

Table 9.2 Target β-values for elements (lifetime), ISO 2394:1998

Relative costs of safety measures

Consequences of failure

Small Some Moderate Great

High 0 1.5 2.3 3.1

Moderate 1.3 2.3 3.1 3.8

Low 2.3 3.1 3.8 4.3
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The Eurocode target reliability indices are specified both for a 1-year reference
period and a 50-year reference period (where 50 years equals the indicative design
working life for common structures). Both sets, however, correspond with the same
target reliability level, considering independence of yearly failure probabilities; that
is, irrespective of how long a structure has been standing, it is assumed that the per
annum failure likelihood is constant. There is thus close agreement between βt,50 in
Table 9.3 and lifetime targets in ISO 2394:1998.

The material-specific Eurocodes apply the 50-year reliability index of 3.8 on an
element basis for the definition of partial safety factors. In case of additional
redundancy in the system (e.g. due to robustness considerations), this will result in
a higher system reliability index.

Target values for a 1-year reference period are given in the Probabilistic Model
Code developed by the Joint Committee on Structural Safety [16]; see Table 9.4.
These recommended values were derived from a calibration process with respect to
the existing practice and are considered compatible with cost-benefit analyses, with
explicit reference to the analysis by Rackwitz [12], and can be considered to relate to
an updated recommendation relative to ISO2394:1998.

Table 9.4 is applicable to structural systems. In case of a single-element failure
mode dominating system failure, these targets are directly applicable to the structural
element. The target values are given as a function of the ratio ξ of the failure plus
reconstruction cost to the construction cost and an obsolescence rate on the order of
3% is considered. For very large consequences (ξ > 10) an explicit cost-benefit
analysis is recommended. The target reliabilities in Table 9.4 have been incorporated
into ISO 2394:2015.

It is noteworthy that the reliability targets presented previously are in some
manner linked to cost optimization, where the direct and indirect consequences
resulting from ‘loss of the structure’ are taken into account. Mindful of the need
for potential fatalities being tolerable, as is discussed by Van Coile et al. [3], this may

Table 9.3 Target reliability index for structural elements in accordance with EN 1990:2002

Reliability class Consequences

Target reliability index βt,tref
Examples of buildingstref ¼ 1 year tref ¼ 50 years

3: High High 5.2 4.3 Bridges, public buildings

2: Normal Medium 4.7 3.8 Residential, office

1: Low Low 4.2 3.3 Agricultural

Table 9.4 Target β-values for structural systems (1 year), JCSS, and adopted in ISO 2394:2015

Relative costs of safety measures

Consequences of failure

Minor (ξ < 2) Moderate (2 < ξ < 5) Large (5 < ξ < 10)

High 3.1 3.3 3.7

Moderate 3.7 4.2 4.4

Low 4.2 4.4 4.7
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be considered beyond the ambit of a direct life safety evaluation, which is generally
concerned only with averting fatalities. Fischer et al. [17] proposed an alternative
perspective, where (societal) life safety cost optimization is concerned solely with
the preservation of life through incorporation of the life quality index (LQI); that is,
safety investments are balanced directly against the reduction in risk to life. The
obtained acceptable failure probability is then considered an absolute lower bound
safety requirement for further reliability assessments and more general cost optimi-
zation considerations. This acceptable failure probability is given in Eq. (9.9) for
coefficients of variation in the resistance and action effects of 0.1–0.3:

P f ,acc ¼ 1
5
C1 γs þ ωð Þ
N fSCCR

ð9:9Þ

where C1 is the marginal safety cost, γs the discount rate, ω the obsolescence rate, Nf

the number of fatalities in case of failure, and SCCR the societal capacity to commit
resource metric.

By way of an example, taking a consequence class 3 structure from ISO
2394:2015, the expected number of fatalities in the event of structural failure is
less than 50 persons. If the building were in the UK, the SCCR for a 3% discount rate
is $3,665,000 ppp (purchasing power parity) according to ISO 2394:2015. For a
construction cost (C0) of $40,000,000 ppp and a normal marginal safety cost (C1/C0)
of 1%, the marginal safety cost is $400,000 ppp. Adopting an obsolescence rate of
2% and societal discount rate of 3%, the acceptable failure probability is 2 � 10�5

for a 1-year reference period. This would coincide with β ¼ 4.1, i.e. a significantly
less onerous reliability target when compared to the figures in EN 1990. This value
should however be considered as an absolute lower bound, as it is (implicitly)
assumed that there are no further benefits to society from the safety investment
apart from averting fatalities [18]. For example, the benefit of reducing the risk of
city conflagration or network resilience is not taken into account.

9.2.3.2 Reliability Targets and Fire

The application of the ambient reliability targets to structural fire design has received
considerable research attention. In the Natural Fire Safety Concept (NFSC) [19], the
Eurocode target reliability index of 3.8 (50-year reference), i.e. 4.7 for 1-year
reference, was adopted as a starting point. By further assuming that the yearly
probability of a fire-induced structural failure should be as unlikely as the yearly
probability of a ‘normal-design’ structural failure, and considering fire-induced
structural failures to be conditional on the occurrence of a ‘significant’ fire, the
NFSC derives a target reliability index, βt,fi, for structural fire design through
Eq. (9.10), with λfi being the annual occurrence rate of a structurally significant fire:
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Φ �βt,fi
� � ¼ P f ,t,fi ¼ P f ,t,EN1990

λfi
¼ Φ �βt,EN1990

� �
λfi

) λfiP f ,t,fi

¼ P f ,t,EN1990 ð9:10Þ

Nevertheless, the NFSC goes on to consider that an acceptable target failure
probability should be differentiated from that at ambient temperature in function of
the building evacuation mode, in consideration that at the time of fire occurrence, in
many buildings, occupants are actively encouraged to evacuate (reducing the poten-
tial number of fatalities), i.e.:

• Normal evacuation: 1.3 � 10�4 [y�1].
• Difficult evacuation: 1.3 � 10�5 [y�1].
• No evacuation: 1.3 � 10�6 [y�1].

This concept is explored by Hopkin et al. [20] where the time-dependent failure
probability of a steel structure is coupled with a stochastic evacuation timeline for a
series of reference office buildings in determining so-named risk indicators.

One difficulty noted with the NFSC approach is discussed by Van Coile et al. [11]
and Van Coile et al. [21]. There, it is highlighted that the Eurocode target reliability
levels for ambient design which form the basis of the NFSC can be considered
compatible with cost optimization considerations, as discussed above. The basic
assumptions underlying the cost optimizations for ambient design conditions are
however not necessarily applicable to structural fire design. Within Van Coile et al.
[21] target failure probabilities are expressed in an alternative general form, in
function of a damage to investment indicator (DII), expressed as

DII ¼ ξλ
b γ þ ωð Þ ð9:11Þ

where b is the relative marginal safety investment cost, i.e. normalized to the
construction cost (C0), as defined by Eq. (9.12); λ is the failure-instigating event
occurrence rate; and ξ is the relative failure costs, i.e. also normalized to the
construction cost. In the case of fire, λ would be the structurally significant fire
occurrence rate. For normal design conditions, lambda is expressed as one per
annum, and the corresponding reliability target is for a 1-year reference period.
This formulation is compatible with the traditional formulation underlying Rackwitz
[12]:

dC1

C0
¼ b

dP f

P f
ð9:12Þ

Figure 9.8 presents the optimal reliability indices and failure probabilities in
function of DII, as proposed by Van Coile et al. [21]. This formulation confirms
the scaling of the target failure probability by the occurrence rate λ as proposed
conceptually in the NFSC, under the condition however that the ratio of the other
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parameters in the DII (i.e. the costs of failure and the costs of further safety
investments) remains unchanged. Investigation into the costs and benefits of struc-
tural fire protection is an area of ongoing research. Target safety levels for structural
fire resistance have been derived, e.g. by Fischer [22] for steel structural elements
and by Van Coile et al. [23] for concrete slabs.

9.3 Uncertainty in Actions

Fire is an uncertain event. Depending upon building use, building size, fire strategy
measures, fire safety management, etc., fire occurrence rates differ and so does the
likelihood that a fire will develop to an extent that it is structurally significant. Once
of an intensity to be considered structurally significant, the manifestation of the fire is
uncertain and correspondingly the probability of a fire-induced structural failure.
Sections 9.3.1 and 9.3.2 discuss uncertainties that arise in both the fire’s occurrence
rate and development, alongside what uncertainty arises in mechanical action (load,
moment, etc.). Section 9.4 speaks to uncertainty in the response of materials at
elevated temperature.
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Fig. 9.8 Optimal failure probability and reliability index in function of the DII [21]
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9.3.1 Thermal Action

Uncertainty in the thermal action necessitates a separate consideration of the factors
leading to a fire’s occurrence and its ability to become fully developed (i.e. fire
occurrence rates and interventions), alongside those that influence the fire’s fully
developed manifestation (i.e. fire modelling inputs). These are discussed separately
in Sects. 9.3.1.1 and 9.3.1.2, respectively.

9.3.1.1 Fire Occurrence Rates and Interventions

Many events can occur between an ignition and a fire becoming fully developed.
Jurisdiction-specific statistics are available which, when contrasted to building stock,
give an indication of ignition rates. As fire statistics generally relate to reported fires,
the thus obtained ignition frequencies should be considered to relate to fires which
because of their severity, duration, or operational procedures warrant reporting.

However, subsequent to fire ignition, there will need to be a failure of numerous
intervention mechanisms for the fire to become structurally significant. These could
include (a) intervention of occupants via first-aid firefighting, (b) activation of
automatic fire suppression systems, or (c) fire service operations.

In contributing to the development of Eurocode 1, Part 1.2 [24], the natural fire
safety concept (NFSC) project [19] explored some of the probabilistic aspects of
structural fire design, with an emphasis on developing design methods that consid-
ered the relationships between early fire intervention measures and subsequent
demands of the structural fire design. Table 9.5 summarizes some probabilistic
factors for fire occurrence rate and differing intervention mechanisms. It should be
noted that the values given likely vary significantly between jurisdictions. For
sprinklers which are not installed according to standard, Schleich et al. indicate
that a lower success rate (below 0.95) may be appropriate.

The NFSC makes further generalizations which are subsequently adopted in EN
1991-1-2:2002, grouping building types into ‘Danger of fire activation’ classifica-
tions, ranging from low to ultra-high, as given in Table 9.6. In this table, the
probability of fire occurrence is again expressed per unit area but relates to proba-
bility of ignition and subsequent unsuccessful intervention by the occupants or fire
service. That is, there is no consideration of active systems, such as sprinklers.

Table 9.5 Fire occurrence rates and intervention factors from NFSC [19]

Input

Building use

Dwelling Office Industrial

Fire occurrence rate (1/m2∙y) 3 � 10�5 1 � 10�5 1 � 10�5

Probability of fire stopped by occupant (�) 0.75 0.60 0.45

Probability of fire stopped by sprinkler (�) 0.995–0.95

Probability of fire stopped by public fire brigade (�) 0.90–0.95 0.90–0.95 0.80–0.90
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9.3.1.2 Fire Modelling Inputs

Once the fire can develop to an extent that it can be considered structurally signif-
icant, a fire model will be required to idealize the fire’s development/behaviour.
Chapter 4 discusses the various fire models that can be employed. Generally, it is
found that the following key inputs need to be defined (not in all cases for all
models):

• Growth/spread rate.
• Fire load.
• Ventilation conditions.
• Near-field temperature.

Fire Growth Rate/Spread Rate

Studies on the variability in fire growth rates are limited in literature. In a residential
context, Holborn et al. [25] estimated fire growth rate based on fire investigation
data, with 1991 samples, gathered in the Greater London area. Fire damage area was
assumed to be consistent with the fire area, for a heat release rate density ( _Q

00
) of

250 kW/m2. Holborn et al. [25] proposed that the average fire growth parameter α
(kW/s2) could be estimated by assuming a t2 growth rate based on the area of fire
damage when the fire was discovered (A1) compared to when the fire brigade arrived
(A2), and the time intervals from ignition to discovery (t1) and ignition to fire brigade
arrival (t2). This can be summarised as

α ¼
_Q
00ðA1t12 þ A2t22Þ

t14 þ t24
ð9:13Þ

From this it was determined, using assumed log-normal distribution parameters,
that dwelling fires had a mean fire growth rate of 0.006 kW/s2, a standard deviation
of 0.039 kW/s2, and a 95th percentile of 0.024 kW/s2.

Table 9.6 Influence of danger of fire activation on structurally significant fire occurrence rate [19]

Type of building occupancy
Danger of fire
activation

Probability of fire occurring
(1/m2∙y)a

Museum, art gallery Low 0.4 � 10�7

Hotel, school, office Normal 4.0 � 10�7

Machine works High 40.0 � 10�7

Paint workshop, chemistry
laboratory

Very high 400.0 � 10�7

Paint factory, fireworks industry Ultra-high 4000.0 � 10�7

aProbability of severe fire including the effect of occupants and standard public fire brigade (per m2

of floor and per year)
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Baker et al. [26] determined a residential growth rate distribution using zone
modelling software B-RISK. A residential occupancy based on experiments under-
taken in Sweden was modelled using probabilistic inputs for the ‘design fire gener-
ator’ (DFG) and by applying the Monte Carlo method. The outcome of the
modelling indicated that a fire growth rate distribution could be approximated to a
triangular distribution, with a minimum of 0 kW/s2, a maximum of 0.412 kW/s2, and
a mode of 0.033 kW/s2.

In a commercial and public building context, Holborn et al. [25] also computed
log-normal distribution parameters for the fire growth rate. However, the sample
sizes were significantly reduced compared to the residential case. Results are given
in Table 9.7.

Nilsson et al. [27] computed fire growth rate distribution parameters for commer-
cial buildings based upon the data in the Swedish fire ‘Indicators, Data and Analysis’
(IDA). The IDA is a national database recording all rescue service responses. Given
2365 commercial fires, excluding arson, Nilsson et al. [27] like Holborn et al. [25]
propose a log-normal distribution for the fire growth rate, with mean 0.011 kW/s2

and 95th percentile of 0.105 kW/s2.
Fire spread rates have been subject to further review, albeit no commonly

accepted distributions are presented in the literature. Rackauskaite et al. [28] give
spread rates which are computed from a range of large-scale fire experiments or real
events. These are summarized in Table 9.8. Based upon operational experiences,
Grimwood [29] gives faster spread rates, particularly for large open plan offices, as
shown in Table 9.9. In the case of the LA Interstate Bank Fire, Grimwood notes that
the fire took 66 min to travel 142 m laterally. In comparison, the fire spread laterally
80 m in 46 min at Telstar House, London.

Table 9.7 Log-normal parameters characterizing the distribution of fire rates for non-residential
building fires, Holborn et al. [25]

Occupancy group

Estimated distribution parameters of fire growth rate (kW/s2)

Fires Standard deviation Mean 95th Percentile

Hotels 12 0.035 0.004 0.014

Offices 19 0.019 0.004 0.016

Schools 16 0.037 0.005 0.019

Retail 37 0.159 0.027 0.101

Table 9.8 Spread rates from Rackauskaite et al. [28]

Fire type/case Spread rate(s) in (mm/s)

Wood cribs in the open 0.1–2

Lateral or downward spread on thick solids 1

Experiments—natural fires in large-scale compartments 1.5–19.3

Reconstruction of World Trade Center fires (2001) 2.5–16.7

St. Lawrence Burns experiments (1958) 7.5–13

First Interstate Bank Fire (1988) 14.5
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Fire Load Density

Fire load density was subject to extensive surveys within CIB Working Group
14, led by Thomas [30]. Figures within CIB W14 influence the fire load densities
adopted within the NFSC [19] and subsequently recommended in EN 1991-1-
2:2002. Fire load density distributions within Eurocode 1, Part 1.2, universally
adopt a Gumbel type I distribution, with a coefficient of variation (COV) of 0.3.
For different occupancy types, corresponding fire load densities are given in
Table 9.10.

Zalok et al. [31] present a more contemporary review of fire loadings relative to
the NFSC within commercial premises. The study undertook surveys in 168 com-
mercial premises, concluding that fire load density generally followed a log-normal
distribution. A summary of findings is given in Table 9.11.

Elhami Khorasani et al. [32] summarize the results of four fire load surveys across
different countries. Data from the USA is then adopted to generate a new probabi-
listic model for fire load density, expressed in function of enclosure area. Equation
(9.14) describes a probabilistic model for lightweight occupancies (office and
clerical). Equation (9.15) gives a corresponding model for heavyweight occupancies
(library, storage, file rooms):

q ¼ exp 6:951� 0:0047 A f � 10:76
� �þ 0:5712ε

� � ð9:14Þ

Table 9.9 Spread rates after Grimwood [29]

Fire type/case Spread rate(s) in (m2/min) Spread rate(s) in (mm/s)

Interstate Bank Fire (1988) 24.6 36

CCAB 67 West Washington fire (2004) 15.3 27

Telstar House fire, London (2004) 24.3 29

Table 9.10 Fire load densities from EN 1991-1-2:2002

Occupancy type
Mean
(MJ/m2)

Standard
deviation
(MJ/m2)

80th
Percentile
(MJ/m2)

90th
Percentile
(MJ/m2)

95th
Percentile
(MJ/m2)

Dwelling 780 234 948 1085 1217

Hospital 230 69 280 320 359

Hotel (room) 310 93 377 431 484

Library 1500 450 1824 2087 2340

Office 420 126 511 584 655

School 285 86 347 397 445

Shopping centre 600 180 730 835 936

Theatre (cinema) 300 90 365 417 468

Transport hub
(public space)

100 30 122 139 156
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q ¼ exp 8:252� 0:0081 A f � 10:76
� �þ 0:5508ε

� � ð9:15Þ

where q is in units of MJ/m2; Af is the room size (m2); and ε is a random variable that
is in accordance with the standard normal distribution.

The proposals of Elhami Khorasani et al. [32] are further developed by Xie et al.
[33] who present a fire load density model for office and residential building types.
Distributions for both occupancies are said to be log-normal with mean (μqm –

MJ/m2) and standard deviation (σqm – MJ/m2) varying in function of enclosure
area (Af – m2), as given in Eqs. (9.16) and (9.17) for offices, and Eqs. (9.18) and
(9.19) for residential. The maximum enclosure sizes were c. 30 and 120 m2 for
residential and offices, respectively:

μqm ¼ 568
exp 0:00740A f

� � ð9:16Þ

σqm ¼ 268
exp 0:00740A f

� � ð9:17Þ

μqm ¼ 1254
exp 0:0441A f

� � ð9:18Þ

σqm ¼ 268
exp 0:0414A f

� � ð9:19Þ

Heat Release Rate

For fuel-controlled burning, the heat release rate density ( _Q
00
kW/m2) has impor-

tance. PD 7974–1:2019 [34], based on the work of Hopkin et al. [35], gives ranges
for different occupancies as summarized in Table 9.12.

Table 9.11 Fire load densities after Zalok et al. [31]

Occupancy
type

No. of
samples

Mean
(MJ/m2)

Standard deviation
(MJ/m2)

95th Percentile
(MJ/m2)

All stores 168 747 833 2050

Storage areas 43 1196 1208 4289

Fast-food
outlets

18 526 320 881

Clothing
stores

14 393 164 661

Restaurants 11 298 190 582

Kitchens 8 314 161 553
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For most cases, _Q00 corresponds with the maximum value estimated over the full
duration of a fire. For hotels and industrial buildings, _Q00 corresponds with the mean
value estimated over a defined period of burning.

Ventilation Conditions

The breakage of openings and associated probabilities has not been subject to
extensive research. Studies presented by Hopkin et al. [20] have adopted a uniform
distribution between a lower and upper bound of 12.5% and 100% of the total
opening area. This ventilation range has no basis other than to introduce some
sensitivity to ventilation conditions. Analyses underpinning British Standard BS
9999:2017 by Kirby et al. [36] also adopt a uniform distribution but expressed in
function of the opening size relative to the compartment floor area. These range from
5% to 40%, with opening heights varying from 30% to 100% of the compartment
height.

The Joint Committee on Structural Safety (JCSS) [37] provides a tentative
probabilistic distribution for opening factor (O ¼ Av√H/At), where

O ¼ Omax 1� ζð Þ ð9:20Þ

with Omax being the maximum opening factor (m0.5) assuming the failure of all non-
fire-resisting external wall construction and ζ a random parameter that is
log-normally distributed. The JCSS recommends that ζ have a mean of 0.2 and a
standard deviation of 0.2, with any values exceeding unity suppressed so as not to
generate negative opening factors.

Near-Field Temperature

Stern-Gottfried [38], in developing a travelling fire methodology, reviewed variabil-
ity in near-field temperature at different points in time from ‘flashover’ in a limited
number of large-scale fire experiments (Dalmarnock and Cardington fire tests). From
this, it was determined that spatially resolved near-field temperatures followed a
normal distribution. At different points in time, the mean near-field temperature
varies. As such, Stern-Gottfried [38] proposes a relationship between average near-

Table 9.12 Heat release rate

density ð _Q00Þ from PD
7974–1:2019 [34]

Occupancy _Q
00
(kW/m2)

Shops 270–1200 (maximum)

Offices 150–650 (maximum)

Hotel rooms 250 (average)

Residential 320–570 (maximum)

Industrial 90–620 (average)

Storage/stacked commodities 400–20,000 (maximum)
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field temperature rise (ΔTavg) and coefficient of variation (δ). The relationship is
defined by Eq. (9.21):

δ ¼ σ
ΔTavg

¼ 1:939� 0:266 ln ΔTavg

� � ð9:21Þ

Stern-Gottfried [38] notes that Eq. (9.21) could be used as a nominal expression
of the standard deviation for any temperature-time curve.

In the absence of alternative data, Hopkin et al. [20] used Eq. (9.21) to describe
variability in the near-field temperature of travelling fires as part of a probabilistic
framework. For travelling fires, Rackauskaite et al. [28] note temperatures of the near
field to be in the range of 800–1200 �C. For a conservative case, early applications of
the travelling fire method (e.g [39].) adopted a deterministic near-field temperature
of 1200 �C. However, structural response is highly sensitive to this input, and
therefore a treatment as a stochastic variable in some manner is advocated, e.g. a
uniform distribution between 800 and 1200 �C.

9.3.2 Mechanical Action

9.3.2.1 Introduction

The uncertainty in load and associated actions on structures is discussed widely in
the literature, e.g. JCSS [37], Ellingwood [40], and Holicky and Sykora [41]. The
study of Ellingwood is specifically focused on fire events. The mechanical actions
are traditionally subdivided into permanent actions and imposed (or variable)
actions, and their variability with time is an aspect of particular relevance for
structural fire engineering. Other mechanical loads include wind load, snow load,
and earthquake load. The joint consideration of fire and, for example, earthquake
loading may be necessary for exceptional building projects with high consequences
of failure, i.e. a requirement for a very high reliability. Ellingwood however adopts a
de minimis risk acceptance condition of the order of 10�6 for a 1-year reference
period, which is subsequently applied as a screening probability for considering
combinations of loads.

In design for normal conditions, the load variability is considered by a (charac-
teristic or design) load with a low probability of being exceeded during the lifetime
of the structure. Naturally, the day-to-day probability of occurrence of such high
(design) load value is low, just as for the day-to-day probability of occurrence of a
significant fire. Simultaneously taking into account both events would result in very
onerous fire design requirements. Hence, the reduced safety and combination factors
in the Eurocode (EN 1990) and in the ASCE design format (load and resistance
factor design) (ASCE 7–16) lessen the required load under consideration for struc-
tural fire design compared to normal design conditions.
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Thus, when directly taking into account the uncertainty in the permanent and
imposed load effects, an arbitrary point in time (APIT) load is to be considered. This
differs from the stochastic load models commonly considered for normal design
conditions, where distribution models for the maximum load in a long (e.g. 50 years)
reference period are applied.

A recent literature review by Jovanović et al. [42] of permanent and imposed load
models applied in probabilistic structural fire engineering (PSFE) studies has shown
that a large variation in models is commonly applied, notably for the imposed load
effect. In summary, two distinct families of probabilistic models were discerned.
These are revisited in the following Sect. 9.3.2.2, together with a discussion of
background studies and recommended distributions to be applied in PSFE
applications.

9.3.2.2 Permanent Load Model

Introduction

The permanent actions result from the self-weight of the structural elements and
finishes, and can be considered time invariant [37, 40]. Hence, for the stochastic
model of the permanent load, the models applied for normal design qualify as APIT
permanent loads. This neglects possible combustion of finishes or structure, as is a
standard and conservative approximation.

Background

Table 9.13 gives mean values and coefficient of variation for density γ for some
common structural framing materials, while Table 9.14 lists standard values for the
deviation of structural elements’ dimensions from their nominal values. Considering
these standard deviations, the mean volume of a structural element exceeds its
nominal value. The JCSS Probabilistic Model Code (PMC) however states in a
simplifying manner that the mean value of the volume can be calculated directly
from the mean value of the dimensions, and that the mean dimensions can be
considered equal to their nominal value [37].

With both γ and the volume V described by a normal distribution, the self-weight
l is in principle not normally distributed. However, when the coefficients of variation

Table 9.13 Mean and COV
for weight density of typical
materials [41]

Material Mean (kN/m3) δγ δl
Steel 77 <0.01 0.032

Concrete 24 0.04 0.045

Timber a 0.10 0.101
aListed in [37] for 12%moisture content: spruce: 4.4; fir: 4.4; pine:
5.1; larch: 6.6; beech: 6.8; oak: 6.5
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(COV) of the volume and density are small (which is generally the case), the
resulting self-weight loads can nevertheless be assumed to be described by a normal
distribution [43]. This has also been adopted in the JCSS PMC [37]. Considering
Taylor expansion, the mean value of the self-weight μl is given by μγ�μV. The
coefficient of variation δl can be estimated from Eq. (9.22), with standard values
listed in Table 9.13 [41]:

δl
2 ¼ δV

2 þ δγ
2 þ δV

2δγ
2 ð9:22Þ

When multiple materials or components contribute with their self-weight to the
permanent load effect, this corresponds with an addition of normally distributed
variables. When the constituent self-weights li can be considered independent (with
mean values μli and standard deviation σli), the overall permanent load is described
by a normal distribution as well, with mean values μG and standard deviation σG
given by

μG ¼
X
i

μli ð9:23Þ

σG ¼
ffiffiffiffiffiffiffiffiffiffiffiffiX
i

σ2li

s
ð9:24Þ

Commonly Applied Models in Probabilistic Structural Fire Engineering

When evaluating an existing building, evaluating the load effect through Eqs. (9.23)
and (9.24) can be considered reasonable, and may allow a precise assessment of the
appropriate probabilistic description of the permanent load. For general reliability
studies and code calibration purposes, however, generally applicable models are
preferred for generality (thus avoiding assumptions with respect to, e.g., floor build-
up and materials).

Table 9.14 Mean values and standard deviations for deviations of cross-section dimensions from
their nominal values [37]

Material Mean value Standard deviation

Rolled steel
Area of profiles, A 0.01 Anom 0.04 Anom

Thickness of plates, t 0.01 tnom 0.02 tnom
Concrete members
Nominal dimension a < 1000 mm 0.003 anom 4 mm + 0.006 anom
Nominal dimension a > 1000 mm 3 mm 10 mm

Structural timber
Sawn beam, a 0.05 anom 2 mm
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As elaborated by Jovanović et al. [42], two models are commonly applied for
describing the permanent load effect in PSFE. On the one hand, a series of studies
(e.g [44].) and Iqbal and Harichandran [45] model the permanent load effect as a
normal distribution with mean value equal to 1.05 Gnom, with Gnom as the nominal
permanent load, and a coefficient of variation of 0.10. These studies have the 2005
study by Ellingwood as a common point of reference. The other series of studies (e.g
[46, 47].) apply a normal distribution with mean value equal to Gnom, and a COV of
0.10. These studies do not propose a differentiation of permanent load distribution
by framing material.

Recommended Model for the Permanent Load

Considering the above, both commonly applied models agree on describing the
permanent load by a normal distribution with a COV of 0.10. The normal distribu-
tion is in agreement with the background models. Taking into account Table 9.13, a
COV of 0.10 can be considered a (practical) conservative assessment. Considering
the discussed background information, the mean permanent load slightly exceeds its
nominal value (in the order of 1% for concrete elements). It is considered preferable
to neglect a 1% (order of magnitude) exceedance in accordance with the JCSS PMC
recommendation than to set μG equal to 1.05 Gnom. This is considered to be
compensated by the practical choice for a COV of 0.10.

In conclusion, the permanent load effect G is recommended to be described by a
normal distribution, with mean equal to the nominal permanent load effect Gnom, and
COV of 0.10.

9.3.2.3 Live Load Model

Introduction

The live (or imposed) loads arise from a range of components, from building
occupants to their possessions and movable items, like furniture. The total live
load can be broken down into two components: (1) a sustained component and
(2) an intermittent or transient component [37, 40, 41].

While both vary with time, by definition, a component of the sustained load is
ever present—albeit its magnitude could vary. Figure 9.9 illustrates the difference
between the sustained and intermittent live load components, adapted from
Ellingwood [40].

Normal people occupancy is generally included in the sustained load, e.g. Chalk
and Corotis [48]. The intermittent live load on the other hand relates to exceptional
events, such as overcrowding [48] or stacking of objects during refurbishing [37].

For PSFE, the arbitrary point in time (APIT) live load is of interest, and as the
occurrence of the intermittent (transient) live load is by its conceptualization rare, it
generally does not need to be taken into account simultaneously with fire exposure
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[40]. Ellingwood notes occurrence rates of c. 1/y and a duration of 1 day for the
intermittent load. For a structurally significant fire occurrence rate of 10�6 per
annum and duration of 4 h, the coincidence rate of a fire and intermittent live load
is significantly below the proposed de minimis limit (10�6) leading Ellingwood to
propose that the intermittent component be disregarded. While this can be consid-
ered sufficient for the general floor area of most buildings (e.g. offices, residential
buildings), Jovanović et al. [42] state that care should be taken whenever the live
load profile of the building has specific occurrence patterns or particular likelihood
of overcrowding (e.g. sports stadia), or when considering buildings with high
reliability requirements (e.g. high-rise structures). Figure 9.10 shows the coincidence
rates of a 1-year returning intermittent live load and fire, for different compartment
sizes and danger of activation (as defined in Table 9.6).

In the following, the APIT model for the sustained live load is discussed.

Background

The commonly applied live load models have been derived from load surveys
conducted in the twentieth century.

Ellingwood and Culver [49] assessed an equivalent uniformly distributed APIT
load Q from a 1974–1975 survey of US office buildings. The mean loads and COV
are listed in Table 9.15 and include a nominal personnel load of 81 N/m2.
Ellingwood and Culver report that no significant difference with UK data published
in the early 1970s could be discerned, and list a gamma distribution as the appro-
priate distribution model.

Fig. 9.9 Components of live load—sustained and intermittent, adapted from Ellingwood [40]
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Chalk and Corotis [48] list APIT sustained live loads for different occupancy
types, taking into account data from multiple surveys (Table 9.16). Comparison with
the office data listed in Table 9.15 confirms the order of magnitude values. Also
Chalk and Corotis applied a gamma distribution in their calculations.

Fig. 9.10 Coincidence rate of intermittent live load (occurrence rate y�1) and fire in function of
compartment area and ‘danger of activation’

Table 9.15 Sustained live load in offices, US 1974–1975 survey, as reported by Ellingwood and
Culver [49]

Area [m2] μ [psf] μ [kN/m2] μ/Qnom
a [�] μ/Qnom

b [�] COV

18.6 11.6 0.56 0.19 0.23 0.85

37.2 11.6 0.56 0.19 0.23 0.68

92.9 11.6 0.56 0.19 0.23 0.55

185.8 11.6 0.56 0.19 0.23 0.50

464.5 11.6 0.56 0.19 0.23 0.47
aQnom evaluated as 3 kN/m2

bQnom evaluated as 2.4 kN/m2

Table 9.16 Sustained live load for different occupancies, as reported by Chalk and Corotis [48]

Occupancy μ [psf] μ [kN/m2] Qnom
a [kN/m2] μ/Qnom [�] COV

Office 10.9 0.52 3 0.17 0.70

Residential 6.0 0.29 2 0.14 0.57

Hotel (room) 4.5 0.22 2 0.11 0.33

Retail (first floor) 17.9 0.86 5 0.17 0.31

Retail (upper floors) 12.0 0.57 5 0.11 0.88

Classroom 12.0 0.57 3 0.19 0.25

Warehouse 71.5 3.42 7.5 0.46 0.90
aRecommended values in EN 1991-1-1:2002
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The JCSS PMC [37] tabulates live load distribution parameters as listed in
Table 9.17 and recommends a gamma distribution for the APIT load. Reference is
made to a limited number of documents, amongst which the 1989 CIB report [50] is
of particular relevance. This report was drafted by Corotis and Sentler, which can
reasonably be considered to imply a close relationship with the work presented in
Table 9.16. The CIB report lists multiple surveys dating from 1893 to 1976. Looking
into the PMC values for μ/Qnom, these are comparable to those listed in Table 9.16,
with all categories except warehouses resulting in a value between 0.15 and 0.20.

With respect to the COV, the PMC specifies Eq. (9.25) for the standard deviation
of the instantaneous imposed load. In this equation and Table 9.17, σV is the standard
deviation of the overall load intensity, σU the standard deviation associated with the
spatial variation of the load, A0 an occupancy-specific reference area, A the loaded
area, and κ an influence factor (commonly between 1 and 2.4; further taken as 2.2 for
agreement with Ellingwood and Culver [49]). The COV for very large loaded areas
is listed in Table 9.17 as COVinf, i.e. where the loaded area-dependent term in
Eq. (9.25) reduces to zero. With the exception of the first-floor retail space, these
COVs are smaller than those listed in Table 9.16. For small loaded areas, however,
the COV resulting from Eq. (9.25) exceeds those in Table 9.16:

σ2 ¼ σ2V þ σ2Uk � min
A0

A
; 1

n o
ð9:25Þ

Commonly Applied Models in Probabilistic Structural Fire Engineering

With respect to the live load model, a wide variety of distribution models have been
applied in PSFE. Not all studies however relate to APIT loads (for example using a
load model for the maximum realization in a 50-year reference period instead).
Limiting the discussion to APIT models, two families have been discerned in
Jovanović et al. [42]:

Table 9.17 Sustained live load parameters, as tabulated in the JCSS Probabilistic Model Code*
[37]

Occupancy A0 μ σV σu COVinf** μ/Qnom

Office 20 0.5 0.3 0.6 0.60 0.17

Residential 20 0.3 0.15 0.3 0.50 0.15

Hotel (room) 20 0.3 0.05 0.1 0.17 0.15

Retail (first floor) 100 0.9 0.6 1.6 0.67 0.18

Retail (upper floors) 100 0.9 0.6 1.6 0.67 0.18

Classroom 100 0.6 0.15 0.4 0.25 0.20

Warehouse (storage) 100 3.5 2.5 6.9 0.71 0.47

*Dimensions (m2), (kN/m2), (–); Qnom taken as recommended values EN 1991-1-1:2002, as listed
in Table 9.16
**COV corresponding with large loaded area A, for which the area-dependent term in (9.25)
reduces to zero
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1. Gamma distribution with mean value μ/Qnom equal to 0.24 and COV of 0.60.
2. Gumbel distribution with mean value μ/Qnom equal to 0.20 and COV of 1.10.

The first family has the 2005 Ellingwood study as a common point of reference.
In this study, Ellingwood specifies μ/Qnom as being in the range of 0.24–0.50. In
Ellingwood’s study (2005), reference is made to the data in Tables 9.15 and 9.16 and
the underlying studies.

The second family models the APIT live load by the distribution for the maxi-
mum load in a 5-year reference period (i.e. ‘5y Gumbel distribution’). In essence, it
is assumed that the imposed load can be modelled by a rectangular wave renewal
process with a 5-year return period [51]. The 5-year return period corresponds with
the expected time between renewals (changes in use and users [37]) for office
buildings [41]. The specific distribution parameters listed above apply for office
buildings designed in accordance with the Eurocode-recommended nominal (char-
acteristic) imposed load of 2–3 kN/m2, considering the PMC load values, but can be
used as a first approximation for other occupancies as well [41].

While both live load model families seem very distinct at first, the underlying data
can reasonably be considered to be comparable, with both families linked to research
by amongst others Corotis.

Recommended Model for the Imposed Load

The background documents agree on the use of a gamma distribution to describe the
instantaneous sustained live load. Thus, it is adopted here as a recommendation
based on precedent and considering the impossibility of negative values (note that
the Gumbel distribution assigns a non-zero probability to negative realizations).

With respect to the distribution parameters, the background documents agree
largely on the mean value μ for the sustained live load. Thus, for project-specific
evaluations it is recommendable to define the mean sustained live load directly from
listed data, such as the JCSS PMC [37]. The corresponding ratio μ/Qnom depends on
the guidance-specific definition of Qnom. When defining Qnom through EN 1991-1-
1:2002-recommended values, the ratio μ/Qnom is largely found to be in the range of
0.10–0.20. A value of 0.20 is considered reasonable for a first assessment for offices,
residential areas, retail, hotels, and classrooms. A similar result is obtained for office
buildings in accordance with ASCE 7–16, considering a Qnom recommendation of
65 psf.

The COV for the sustained live load can be considered dependent on the loaded
area. For large loaded areas, a COV of 0.60 is found reasonable (see Table 9.17). For
smaller loaded areas the COV is higher. Project-specific evaluations are again
recommended when applicable. For general reliability assessments, a COV of 0.95
is recommended. This corresponds with the COV for office areas and classrooms at
approximately 120 m2 loaded area. This value also results in a comparable ambient
design reliability index compared to the Gumbel model with COV of 1.1 (which was
used in the Eurocode background documents, i.e [47].).
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In summary, for non-project-specific evaluations, excluding warehouses, the
recommended model for the imposed load is given as follows:

• For a large loaded area: Gamma distribution with μ/Qnom ¼ 0.20, COV ¼ 0.60.
• For a small loaded area: Gamma distribution with μ/Qnom ¼ 0.20, COV ¼ 0.95.

9.3.2.4 Total Load Effect

Introduction and Commonly Applied Models

The models for the permanent load G and imposed load Q however do not convey
the full story on the probabilistic modelling of mechanical actions. Additional
stochastic factors are taken into account when combining the permanent and
imposed load effects. Again, two distinct formulations are commonly applied:
Eq. (9.26) with reference to Ravindra and Galambos [52] and Eq. (9.27) with
reference to the JCSS PMC. Standard values for the stochastic variables are listed
in Table 9.18:

w ¼ E AGþ BQð Þ ð9:26Þ
w ¼ KE Gþ Qð Þ ð9:27Þ

Ravindra and Galambos [52] refer to Eq. (9.26) as an assumption, and explain
that A and B are to be interpreted as characterizing the difference between computed
and actual internal forces in the structure, while E is intended to characterize
deviations introduced by characterizing a 3D structure into elements or subsystems
and other simplifying assumptions (such as boundary conditions). They however do
not mention a distribution type for these variables, and indicate that the mean values
and COVs (as listed in Table 9.18) were ‘chosen’ and ‘assumed’ as ‘reasonable
estimates based on data and judgements’, with further reference to a 1973
Washington University report.

The total load model of Eq. (9.27) is recommended in the JCSS PMC, where a
difference is made in the recommended COV for KE in function of the considered
load effect (axial load, moment). For frames, a COV of 0.1 is the higher value. Only
for moments in plates the recommended value is higher at 0.2 [37]. The PMC
provides no indication, however, as to the origin of these values. This formulation
is nevertheless commonly applied in structural reliability calculations, and has been
included in the background documents to the Eurocodes, e.g. Holicky and
Sleich [47].

Table 9.18 Load combina-
tion parameters as applied in
total load models [42]

Parameter Distribution μ δ

E Normal 1.0 0.05

A Normal 1.0 0.04

B Normal 1.0 0.20

KE Log-normal 1.0 0.10
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Recommended Model for the Total Load Effect

Neither of the above two models has extensive background available, and these are
commonly applied based on precedent. The model of Eq. (9.27) is considered to
have a greater authority considering its recommendation by the Joint Committee on
Structural Safety, which is the common expert group on structural reliability of five
international organizations (CEB, DIB, fib, IABSE, and RILEM).

Hence, the recommended total load model is given by Eq. (9.27) with KE being
the model uncertainty for the total load effect, described by a log-normal distribution
with mean 1.0 and COV 0.10.

Taking into account the recommended models for the permanent load G and the
imposed load Q as defined above, and defining the load ratio χ by Eq. (9.28) (with
nominal values corresponding with the characteristic values in the Eurocode design
format), the total load w is given in Fig. 9.11 relative to the nominal total load
Pnom ¼ Gnom + Qnom:

χ ¼ Qnom

Qnom þ Gnom
¼ Qnom

Pnom
ð9:28Þ

Fig. 9.11 Cumulative density function (CDF) and complementary CDF (cCDF) for the total
nominal load w according to the recommended load models, with COV Q ¼ 0.60 (black) and
0.95 (red), respectively
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9.4 Materials and Applications

As stated in Sect. 9.1, one of the uncertainties that need to be addressed during
structural analysis at high temperatures relates to properties of material during fire.
This section provides an overview of existing studies on the subject.

9.4.1 Concrete

Strength of concrete is one of the primary properties that are required when
analysing and quantifying performance of a concrete structural element (slabs,
columns, beams, and walls) at normal or elevated temperatures. This section dis-
cusses the available test data on concrete strength retention factor and related
temperature-dependent probabilistic models. When analysing reinforced concrete
structures, the strength of reinforcement can be modelled following the discussion in
the next section on steel material.

Qureshi et al. [53] compiled a database of existing tests on calcareous and
siliceous concrete strength at high temperatures, keeping the two concrete types
separate following a similar approach in the available deterministic Eurocode
(EC) models [54]. A total of 242 data points for siliceous and 162 data points for
calcareous concrete were collected. Concrete strength at high temperatures was
normalized with respect to the measured strength (or average of multiple measure-
ments) at 20 �C. A relatively large scatter in the data was observed across all
temperature ranges. Qureshi et al. [53] followed two approaches to develop proba-
bilistic models for the concrete compressive strength retention factor:

• In the first approach, the data set was divided over different temperature groups
with increments of 50 �C. Histograms for each temperature group were then
constructed and compared with a number of different probability density func-
tions (PDF) (e.g. log-normal, Weibull). The distribution that fits best over differ-
ent temperature ranges and has a closed-form solution that can be implemented in
computer codes was selected, and temperature-dependent functions for the
parameters that would characterize the distribution were proposed.

• In the second approach, the procedure by Elhami Khorasani et al. [55] was
followed where a continuous temperature-dependent logistic function is fit to
the data set using a Bayesian-based maximum likelihood calculation. In this
approach, the logistic function can be a function of any form or defined with an
existing deterministic function as the base (such as the EC model) with correction
terms added to improve the fit to the data.

One important issue to be considered in developing probabilistic models at
elevated temperatures is to ensure continuity and consistency in reliability appraisals
in transition between ambient and elevated temperatures; therefore, it is important to
note the existing assumptions that are applied at 20 �C. Holicky and Sykora [41]
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recommended the mean concrete strength at ambient temperature to be defined as the
characteristic concrete strength plus two standard deviations, following a log-normal
distribution with a coefficient of variation (COV) varying from 0.05 to 0.18
depending on the production procedure.

Using the approaches and considerations explained above, Qureshi et al. [53]
proposed a Weibull distribution with parameters λ and k for calcareous and siliceous
concrete strength retention factors, given that closed-form solutions of the Weibull
distribution PDF f(x; λ, k) and quantile (i.e. inverse cumulative density function) Q
( p; λ, k) are available, shown in Eqs. (9.29) and (9.30). In developing the model,
distribution parameters at 20 �C were constrained to closely follow Holicky and
Sykora’s recommendation. The size of data points above 700 �C was limited for
calcareous concrete; therefore, in order to extend the model beyond 700 �C, it was
assumed that the retention factor equals to zero at 1000 �C:

f x; λ, kð Þ ¼ k
λ

x
λ

� �k�1
e�

x
λð Þk ð9:29Þ

Q p; λ, kð Þ ¼ λ � ln 1� pð Þ½ �1=k ð9:30Þ

Figures 9.12 and 9.13 show the data set in comparison with the mean, and 5–95%
quantiles of the probabilistic models based on the Weibull distribution fit for both
calcareous and siliceous concrete. Eqs. (9.31)–(9.34) provide parameters of the
Weibull distribution λ and k as a function of temperature T in Celsius.

Fig. 9.12 Siliceous concrete strength retention factor vs. temperature based on Weibull
distribution fit
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For siliceous concrete:

λ Tð Þ ¼ �8:4340� 10�7 � T2 � 4:0887� 10�4 � T þ 1:0598 ð9:31Þ

K Tð Þ ¼ 9:7348
0:9231þ 1:9787� 10�3 � T

ð9:32Þ

For calcareous concrete:

λ Tð Þ ¼ �7:3849� 10�7 � T2 � 2:9879� 10�4 � T þ 1:0576 ð9:33Þ

K Tð Þ ¼ 27:7292
2:5894þ 7:6323� 10�3 � T

ð9:34Þ

Using the second approach explained above, Qureshi et al. [53] proposed con-
tinuous logistic functions as shown in Eqs. (9.35) and (9.36), where T is temperature
in Celsius and ε is the standard normal distribution. A value of zero for ε generates
the median of the function. Figures 9.14 and 9.15 show the data sets in comparison
with the median and two standard deviation envelopes of the logistic functions for
both calcareous and siliceous concrete.

For siliceous concrete:

Fig. 9.13 Calcareous concrete strength retention factor vs. temperature based on Weibull
distribution fit
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Fig. 9.14 Siliceous concrete strength retention factor vs. temperature based on logistic function

Fig. 9.15 Calcareous concrete strength retention factor vs. temperature based on logistic function
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f c
f c,20

¼ 1:4� exp 0:8892� 0:6319� 10�3 � T � 3:295� 10�6 � T2 þ 0:45� ε
� �

1þ exp 0:8892� 0:6319� 10�3 � T � 3:295� 10�6 � T2 þ 0:45� ε
� �

ð9:35Þ

For calcareous concrete:

f c
f c,20

¼ 1:3� exp 1:142� 0:0840� 10�3 � T � 3:735� 10�6 � T2 þ 0:57� ε
� �

1þ exp 1:142� 0:0840� 10�3 � T � 3:735� 10�6 � T2 þ 0:57� ε
� �

ð9:36Þ

Qureshi et al. [53] utilized the developed models from two approaches and
evaluated probability of failure of reinforced concrete column sections under axial
load. It was confirmed that the two models provide similar distribution of failure time
and the results are not critically sensitive to the model choice.

9.4.2 Steel

For structural steel elements, the primary uncertainties of interest are the material
properties and the variability in section profile. The former is discussed within this
section, while the latter, as discussed before, carries less uncertainty compared to
other random variables involved at elevated temperatures.

Elhami Khorasani et al. [55], Stephani et al. [56], and Qureshi et al. [53] presented
a review of yield strength retention factors and discussed different probabilistic
models for this parameter. The data set for the yield strength of steel used in the
three studies was based on the data collected by the National Institute of Standards
and Technology (NIST) [57]. The NIST study considered the sensitivity of stress-
strain behaviour of structural steel to strain rate. Therefore, the data only include tests
conducted with a strain rate that comply with the allowed strain rate in testing
standards.

Steel yield strength at ambient temperature is typically defined as the 0.2% offset.
However, the Eurocode (EC) retention factors at elevated temperatures [58] are
based on the strength at a strain equal to 2%, which includes strain-hardening effects
at lower temperatures. Such an effect is less significant at higher temperatures, where
failure of a steel structure is expected to occur. Therefore, the NIST data set and
existing studies, as listed above, considered measured data at both 0.2% offset and
2% strain. A total of 764 data points based on the 0.2% offset, covering a temper-
ature range of 20–1038 �C, and 387 data points based on strain at 2% with a
temperature range of 20–940 �C, were used to perform statistical analysis and
quantify uncertainty of steel yield strength at elevated temperatures.

As discussed in the previous section, continuity with reliability appraisals at
ambient temperature is important. Holicky and Sykora [41] recommended a
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log-normal distribution with mean equal to the characteristic yield strength plus two
standard deviations, and COV of 0.07 to quantify uncertainty at ambient tempera-
ture. In the collected database, the retention factors were normalized based on the
measured yield strength (or average strength in case of multiple measurements) at
20 �C. The majority of data points at 20 �C in the 0.2% data set are close to unity. It is
hypothesized that the obtained variability at 20 �C for the 0.2% offset results from
very limited intra-batch variability, together with limited inter-batch variability
resulting from the different measurement sources. On the other hand, the 2% data
set shows a scatter of data at 20 �C, reflecting uncertainty in material performance.

Stephani et al. [56] applied the first approach, based on a series of temperature
groups and their histograms (as explained for the case of concrete material in the
previous section) on the 0.2% data set. Two different statistical models, namely
log-normal and a beta distribution bound by three times the standard deviation on
both sides of the mean, were considered with varying means and COVs as a function
of temperature. Stephani et al. coupled the proposed models with recommended
statistics of steel yield strength at ambient temperature. Qureshi et al. [53] extended
the work of Stephani et al. [56] by proposing continuous functions for model
parameters varying with temperature where continuity at ambient temperature was
also incorporated within the model. Qureshi et al. [53] proposed a log-normal
distribution for 0.2% data. Equations (9.37) and (9.38) describe the model parame-
ters; Fig. 9.16 shows the measured data and the model. Qureshi et al. [53] applied the
same approach to the 2% data, except in this case the model reflects the scatter in
data at 20 �C rather than constraining the model to the recommended distributions
for reliability measures at ambient temperature for 0.2% strain offset. Equations

Fig. 9.16 0.2% Strain steel yield strength retention factor vs. temperature based on log-normal
distribution
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(9.39) and (9.40) describe the model parameters, and Fig. 9.17 shows the measured
data and the model. In addition, Elhami Khorasani et al. [55] proposed a continuous
logistic function for the 2% data. Figure 9.18 and Eq. (9.41) describe the model

Fig. 9.17 2% Strain steel yield strength retention factor vs. temperature based on log-normal
distribution

Fig. 9.18 2% Stain steel yield strength retention factor vs. temperature based on logistic function
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where T is temperature in Celsius, ky, θ is the EC steel retention factor, and ε is the
standard normal distribution.

Parameters of log-normal distribution for 0.2% data:

μln ¼ �1:45� 10�9T3 � 1:78� 10�6T2 � 2:50� 10�5T þ 1:19� 10�2 ð9:37Þ

σln ¼ �1:895� 10�7T2 þ 1:15� 10�4T þ 5:62� 10�2 ð9:38Þ

Parameters of log-normal distribution for 2% data:

μln ¼ �6:89� 10�9T3 þ 1:84� 10�6T2 � 8:39� 10�5T þ 0:148 ð9:39Þ

σln ¼ �2:41� 10�7T2 þ 1:07� 10�4T þ 9:77� 10�2 ð9:40Þ

Logistic function for 2% data:

FY ,2%

FY ,20
¼ 1:7� e rlogit þ 0:412� 0:81� 10�3 � T þ 0:58� 10�6 � T1:9 þ 0:43� ε

� �
1þ e rlogit þ 0:412� 0:81� 10�3 � T þ 0:58� 10�6 � T1:9 þ 0:43� ε

� �
ð9:41Þ

with rlogit ¼ ln
ky,θþ10�6ð Þ=1:7

1� ky,θþ10�6ð Þ=1:7.
The models discussed above, when applied to cases of isolated steel column

subject to ISO 834 heating, gave comparable distributions of failure temperature for
a particular loading condition. The logistic model (derived at 2% strain) implicitly
captures the effect of strain hardening at lower temperatures, meaning that the choice
of probabilistic model is important for cases where element failure could be expected
at low (less than 400 �C) temperatures.

Elhami Khorasani et al. [55] also proposed a logistic function to capture uncer-
tainty in the modulus of elasticity of steel, shown in Fig. 9.19 and Eq. (9.42) where
T is the temperature in Celsius and ε is the standard normal distribution. The
measured data set is from the National Institute of Standards and Technology
(NIST) collected database [57]. The NIST data set can be grouped into three
categories based on their measurement method: (1) static, (2) dynamic, and
(3) unknown. Elhami Khorasani et al. [55] noted that previous discussions on the
measurement method indicated that dynamic testing, in general, results in
unconservative predictions of steel modulus. In addition, the analysis of structures
under fire is equivalent to static thermal loading, and therefore, the data measured by
dynamic testing were disregarded:
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E
E20

¼ 1:1� exp 2:54� 2:69� 10�3 � T � 2:83� 10�6 � T2 þ 0:36� ε
� �

1þ exp 2:54� 2:69� 10�3 � T � 2:83� 10�6 � T2 þ 0:36� ε
� �

ð9:42Þ

9.4.3 Timber

Timber is a graded material with highly variable properties. The material properties
can be grouped into reference properties that are considered explicitly, while other
properties are only assessed implicitly. Bending strength Rm, bending modulus of
elasticity Em, and density ρ are referred to as the reference material properties. JCSS
[16] provides a list of expected values and coefficient of variation of timber
properties such as the tension strength parallel or perpendicular to the grain, com-
pression strength parallel or perpendicular to the grain, shear modulus, and shear
strength as a function of the reference properties. For European softwood, JCSS [16]
specifies a log-normal distribution for bending strength Rm and bending modulus of
elasticity Em with COVs of 0.25 and 0.13, respectively, and normal distribution with
COV of 0.1 for density ρ. For glue-laminated timber, Rm follows a log-normal
distribution with COV of 0.15, but Em and ρ have similar distributions as the
European softwood. More details can be found in JCSS (2006).

Three methods have been proposed in the literature on how to conduct structural
analysis of timber structures at elevated temperatures. Brandon [59] discussed details

Fig. 9.19 Modulus of elasticity of steel vs. temperature based on logistic function
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of these approaches. One of these methods takes into account the mechanical
properties of the material; the other two approaches calculate reduced capacity of a
member during fire by reducing the cross section of the element as a function of the
char layer. Charring rate is one of the basic quantities of assessment of fire resistance
of wooden structural members. Due to the inherent variabilities and uncertainties
involved in the fire exposure and the charring process, the charring rate is a factor
with substantial uncertainty, which should be taken into account in any assessment
of fire resistance of wooden members, in particular in the probabilistic approaches to
assess fire resistance. In addition to the reduced dimensions from charring, the
reduced cross-section method requires consideration of reduced material properties
in a layer ahead of the char front, where timber has lost some strength due to
increased temperature but has not charred. This layer is assumed to have zero
strength in calculations.

Lange et al. [60] and Lange et al. [61] conducted a total of 32 full-scale fire tests
on glulam timber beams and quantified variation in charring rate βn,par as well as
depth of zero-strength layer d0. The timber beams were exposed to different fire
curves including two parametric fire curves and a standard fire curve. The results
show that the charring rate and depth of zero-strength layer depend on the heating
rate. Following a similar approach to Annex A of EN 1995-1-2 on defining the
notional charring rate under parametric fire exposure βn,par, Lange et al. [61]
proposed a normal distribution with mean μ and standard deviation σ for βn,par as
shown in Eqs. (9.43) and (9.44) where βn is 0.72, O is the opening factor, and kρc is
the thermal inertia of the compartment lining. The mean μ and standard deviation σ
of the zero-strength layer depth are calculated as a function of the heating rate, Γ, of
the parametric fire, shown in Eqs. (9.45) and (9.46). These equations were originally
expressed as a function of the opening factor:

μ βn,par
� � ¼ 1:5� βn

0:2
ffiffiffiffi
Γ

p � 0:04

0:16
ffiffiffiffi
Γ

p þ 0:08
ð9:43Þ

with Γ ¼ O=
ffiffiffiffiffi
kρc

p� �2
0:04=1160ð Þ2.

σ βn,par
� � ¼ 0:06� 0:45

ffiffiffiffi
Γ

p � 0:2

0:16
ffiffiffiffi
Γ

p þ 0:08
ð9:44Þ

μ d0ð Þ ¼ �0:94� Γ þ 16 ð9:45Þ

σ d0ð Þ ¼ �0:04� Γ þ 1:07 ð9:46Þ
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In a separate study, Hietaniemi [62] proposed a model for wood charring rate β
(mm/min) exposed to time-dependent incident heat flux _q}e tð Þ, and as a function of
wood density ρ, wood moisture content w, and ambient oxygen concentration χo2 as

β ¼ f χo2,t
� �

:
C: _q}e

p
tð Þ

ρþ ρ0ð Þ Aþ Bþ wð Þ : exp � t
τ

� �
ð9:47Þ

where

f χ o2 , t
� � ¼ ξþ 1� ξð Þ ∙ χ o2 tð Þ

χ 0ð Þ
o2

 !0:737

χ 0ð Þ
o2 ¼ 21%

ξ / U 0:50; 0:65ð Þ average ¼ 0:575ð Þ
A / U 505; 1095ð Þ kJ=kg average ¼ 800ð Þ

B / U 2430; 2550ð Þ kJ=kg average ¼ 2490ð Þ
C / Δ 2:72; 5:45; 3:93ð Þ kW=m2

p / N 0:50; 0:40ð Þ
ρ0 / N 465; 93ð Þ kg m�3

τ / Δ 90; 110; 100ð Þ min

ϑ / Δ 1:026; 1:387; 1:162ð Þ kW=m2

In the above formulation, N(μ; σ) is the normal distribution with mean μ and
standard deviation σ; Δ(xmin; xmax; xpeak) is the triangular distribution with minimum
value xmin, maximum value xmax, and peak value xpeak; and U(xmin; xmax) is the
uniform distribution with minimum value xmin and maximum value xmax.

9.5 Uncertainty Quantification Techniques

The acceptance of a design through consideration of reliability or risk acceptance
entails explicitly taking into account the design uncertainties discussed in the above
sections. A wide range of techniques for uncertainty quantification exist. Uncertainty
quantification techniques can be combined as befits the situation. The methods
discussed further are:

1. Event trees: An intuitive and computationally inexpensive method for quantify-
ing the probability of scenarios.
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2. Analytical solutions: Exact uncertainty quantification, but only feasible in spe-
cific situations.

3. Monte Carlo techniques: Uncertainty quantification based on repeated evalua-
tion of the model, considering random sampling of input parameters. Computa-
tionally expensive, but easy to implement. Crude Monte Carlo simulations
(MCS) and Latin hypercube sampling (LHS) are discussed.

4. FORM: Approximate evaluation of the reliability index associated with a limit
state equation. Exact in specific cases. The basis of the partial factors applied for
Eurocode design in normal conditions.

5. Maximum entropy methods: Methodology for estimating the PDF of a scalar
model output variable. The ME-MDRM (MaxEnt) method is introduced as a
computationally efficient method in case of a limited number of stochastic
variables.

6. Fragility functions: Fragility functions are, in their general form, a way of
representing known probabilities of exceeding a performance threshold
(i.e. limit state) in function of one or more defining variables, i.e. not an uncer-
tainty quantification technique, but a useful way of representing uncertainty. With
reference to the earthquake engineering field, the concept is often applied with
respect to the probability of different ‘damage states’ being exceeded in function
of the magnitude of an ‘intensity measure’.

7. PEER PBEE: The Pacific Earthquake Engineering Research Center Performance
Based Earthquake Engineering framework, or PEER framework for short, is a
well-established methodology for quantifying the uncertainty in decision vari-
ables (e.g. damage cost) in function of a hazard specification. The methodology
applies fragility functions to move stepwise from intensity measures, over engi-
neering demand parameters and damage states, to the decision variables. The
framework thus requires uncertainty data (fragility functions) as input, and pro-
vides a framework for aggregating these basic uncertainties.

The discussion below starts with event trees as this method is the most intuitive
and easily understood. Mathematical rigor is introduced later in order not to hamper
the intuitive understanding.

9.5.1 Event Trees

An event tree is used to explore the probability of different scenarios, starting from a
single common initiating event, for example fire ignition. The scenarios diverge
every time an additional distinction is made between the scenarios, for example
[sprinklers control the fire, yes/no], or [fire load density qF � 300 MJ/m2, 300 MJ/
m2 < qF � 700 MJ/m2, or 700 MJ/m2 < qF]. This creates distinct branches of the
event tree. By considering the probabilities of the differentiating events, the proba-
bility of the overall scenario is calculated.
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The opposite of an event tree is a fault tree, where the different contributions
leading to a single final event are explored. This approach is most common in fire
investigation; see, e.g., Johansson et al. [63].

The application of an event tree is most easily introduced through an example.
Consider the event tree of Fig. 9.20, applied to assess the probability of fire-induced
failure of a structural element in an office building. Fire-induced failure requires a
prior fire ignition, and thus fire ignition has been chosen as the initiating event. The
probability pig of this initiating event can be determined based on fire statistics,
expert judgement, or detailed analysis (such as another event tree, or a fault tree).
Following the initiating event, the possibility of sprinklers controlling the fire is
considered. In case sprinklers control the fire, the steel beam is not in danger of
losing its load-bearing capacity (based on analyses or expert judgement). This results
in scenario A with a probability of pig�pss, with pss being the sprinkler success
probability. For this scenario A no further analysis is required, as the beam is not
in danger of losing its load-bearing capacity. Sprinkler success probabilities are
listed for example in BSI [64]. If sprinklers fail to control the fire, then the ability of
the steel beam to maintain its load-bearing capacity till burnout is a function of the
fire load density qF; see, e.g., the fragility curves by Hopkin et al. [65] for insulated
steel beams (reformatted in Fig. 9.21). Reference is made to the full paper by Hopkin
et al. for further details. Based on Fig. 9.21, the failure probability of a steel beam
with an intumescent paint thickness dp of 12 mm is approximately 0 for fire loads
less than 300 MJ/m2. Considering the fire load density distribution listed in
Table 9.10 in Sect. 9.3.1.2, the probability of actual fire load in the office compart-
ment exceeding 800 MJ/m2 is approximately 0.01. For this fire load of 800 MJ/m2

and a dp of 12 mm, Fig. 9.21 indicates a failure probability of 0.21. Combining this
information in the event tree, three additional scenarios (B, C, and D) are indicated.
The probabilities of the respective scenarios have been determined based on the
probability density function for the fire load and are listed in Table 9.19, and the
constituent probability values are listed in Table 9.20, indicating that—without

Fig. 9.20 Event tree example
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further evaluation of scenario C—the annual probability of fire-induced failure is
smaller than 9.3 � 10�7/year. As stated in Sect. 9.2.3.2, the maximum failure
probability postulated through the Natural Fire Safety Concept is, in case of no
evacuation, 1.3 � 10�6/year. The event tree analysis (using information from the

Fig. 9.21 Fragility curves for an insulated steel beam, denoting the probability of structural failure
Pf given a fully developed fire, in function of the intumescent paint thickness dp, for different fire
load densities qF

Table 9.19 Scenario description and probabilities

Scenario Ignition

Sprinklers
control the
fire

Fire load density
interval Scenario probability

Steel beam
failure
probability
given
scenario

A pig Yes: pss NA pig�pss ¼ 9.5� 10�5 /
year

0

B pig No:
1 � pss

qF � 300 MJ/m2 pig�(1 � pss)
pqF1 ¼ 7.5 � 10�7/
year

0

C pig No:
1 � pss

300 MJ/
m2 � qF � 800 MJ/
m2

pig�(1 � pss)
pqF2 ¼ 4.2 � 10–6/
year

<0.21

D pig No:
1 � pss

800 MJ/m2 � qF pig�(1 � pss)
pqF3 ¼ 5� 10�8/year

<1

Upper bound annual probability fire-induced structural
failure

9.3 � 10�7/year
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fragility curve of Fig. 9.21) thus indicates that a design with dp¼ 12 mmwould fulfil
this requirement.

An event tree thus allows to pinpoint whether the design or specific situations
may need to be considered in further detail. In the example above, a simple analysis
was sufficient. While intuitive and easy to use, the creation of an event tree should be
done with care. Special consideration should be given to:

– The choice of differentiating events: there is no use in adding distinctions which
do not influence the outcome (design decision).

– Probabilities of the differentiating events: these can be evaluated based on
statistical data, expert judgement, or a separate uncertainty quantification
exercise.

– The probabilities of the differentiating events are conditional probabilities: these
probabilities are conditional on the preceding differentiating events. For example,
when considering the event [occupants suppress the fire, yes/no], after the event
[sprinklers fail to suppress the fire], in general different probabilities will apply
then when considering [occupants suppress the fire, yes/no] before [sprinklers fail
to suppress the fire]. In the former situation, the probability of the occupants
suppressing the fire will be lower, taking into account that the fire is—for
example because of its excessive growth rate—not successfully suppressed by
sprinklers.

9.5.2 Analytical Solutions

In specific situations uncertainty quantification can be done through closed-form
solutions. Consider Eq. (9.48) where Y is the uncertain response of interest, X the
vector of stochastic input variables Xi, and h the modelled relationship. The proba-
bility of failure Pf is then given by the probability of Y being in the failure domainΩf,
i.e. Eq. (9.49), with fy the probability density function (PDF) of Y:

Table 9.20 Probabilities of
differentiating events

Symbol Event Probability

pig Fire ignition 10�4/year

pss Sprinklers control the fire 0.95

pqF Fire load density in range: a

qF � 300 MJ/m2 0.15

300 MJ/m2 � qF � 800 MJ/m2 0.84

800 MJ/m2 � qF 0.01
aProbabilities calculated considering a Gumbel distribution with a
coefficient of variation of 0.3, and mean (nominal) value of
420 MJ/m2; see Sect. 9.3.1.2

9 Uncertainty in Structural Fire Design 369



Y ¼ h Xð Þ ð9:48Þ

P f ¼
Z
Ω f

f y yð Þdy ð9:49Þ

If Y is a linear combination of independent variables Xi, i.e. Eq. (9.50), with ai
coefficients, then the mean value of Y is given by Eq. (9.51) and its standard
deviation by Eq. (9.52). Furthermore, if all Xi are normally distributed, then Y is
normally distributed as well. This follows from the central limit theorem:

Y ¼
X
i

aiXi ð9:50Þ

μY ¼
X
i

aiμXi
ð9:51Þ

σY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

a2i σ
2
Xi

s
ð9:52Þ

Similarly, if Y is a multiplicative combination, i.e. Eq. (9.53), with ai exponents,
of independent log-normally distributed variables Xi with parameters μlnXi and σlnXi
as specified by Eqs. (9.54) and (9.55), then Y is also log-normally distributed with
parameters given by Eqs. (9.56) and (9.57):

Y ¼
Y
i

Xai
i ð9:53Þ

μ lnXi
¼ ln μXi

� �� 1
2
σ2lnXi

ð9:54Þ

σ lnXi ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ln 1þ σ2Xi

μ2Xi

 !vuut ð9:55Þ

μ lnY ¼
X
i

aiμ lnXi
ð9:56Þ

σ lnY ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
i

a2i σ
2
lnXi

s
ð9:57Þ

The cases of the normal and log-normal distribution of Y are only two examples
out of a wide set of situations for which closed-form solutions exist. The cases above
are however the most common.

In cases where Y relates to an outcome defining the failure of the structure,
Eq. (9.49) is to be evaluated. Here Ωf can relate to a fixed limit value (performance
criterion). For example, when Y represents the standard fire resistance of a structural
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element tR, and the failure domain is given by a fixed (equivalent) standard fire
duration tE, then Eq. (9.49) can be specified to

P f ¼ P tR � tE½ � ¼
ZtE
0

f tR tRð ÞdtR ð9:58Þ

If tR is described by a normal distribution, Eq. (9.58) is directly evaluated as
Eq. (9.59), with Φ the standard cumulative normal distribution function, available in
common spreadsheet tools. When tR is described by a log-normal distribution,
Eq. (9.60) applies. Note that a normally distributed tR has a non-zero probability
of being negative. When this probability is not negligible, care should be taken with
using a normal distribution to describe strictly positive variables:

P f ¼ Φ
tE � μtR

σtR

	 

ð9:59Þ

P f ¼ Φ ln tEð Þ � μ ln tR

σ ln tR

	 

ð9:60Þ

Alternatively, Y can relate to the value of the limit state function as defined in
Sect. 9.2.2, and Ωf then corresponds with the limit state being negative. In these
situations where Y represents the limit state, Pf is given by Eq. (9.61). For
Y described by a normal distribution this specifies to Eq. (9.62). Considering the
definition of the reliability index β specified in Eq. (9.8), the ratio μY/σY directly
corresponds with the reliability index. A log-normal distribution on the other hand is
strictly positive, and is thus inappropriate for modelling the realization of a limit state
function (with failure defined by the limit state being negative):

P f ¼
Z0
�1

f Y yð Þdy ð9:61Þ

P f ¼ Φ � μY
σY

	 

¼ Φ �βð Þ ð9:62Þ
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9.5.3 Monte Carlo Techniques

Monte Carlo techniques rely on repeated evaluation of the model for different values
(realizations) of the input variables. Whereas analytical solutions are feasible in only
a limited number of cases, Monte Carlo techniques are generally applicable to any
problem. Their drawback is the computational expense of the repeated evaluations,
making these techniques infeasible for computationally demanding models.

The resolution of the obtained results in function of the number of model
evaluations N is governed by the input variables’ sampling scheme. The most simple
sampling scheme is known as crude Monte Carlo simulations (abbreviated MCS),
and considers a pure random sampling of the input space [66]. Thus, each model run
results in a single random realization of the output variable Y. The obtained MCS
realizations can be visualized in a histogram, revealing the shape of the PDF
describing Y. If sufficient simulations are made (technically if N!1), the full
PDF will be perfectly approximated. As an example, Fig. 9.22 represents the
histogram obtained from 104 MCS of the bending moment capacity MR,fi,t of a
concrete slab considering ISO 834 standard fire exposure, as well as log-normal
and mixed log-normal approximations. As indicated by the graph, assuming a

Fig. 9.22 Observed distribution density (MCS, 104 realizations), log-normal approximation (LN),
and mixed log-normal approximation (mixed LN), for concrete slab considering ISO 834 standard
fire exposure
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specific PDF shape may not always be appropriate. Further details are given in the
application example in Sect. 9.6.2.

MCS can also be used to directly evaluate the failure probability, i.e. Eq. (9.49).
Every random realization which contributes to failure adds to the count of the
number of observed failures Nf. The estimate of the failure probability is then
given by

P f≙
N f

N
ð9:63Þ

The estimate of Pf will only be reliable in case sufficient MCS are performed
(i.e. N sufficiently large). This can be clearly observed in Fig. 9.32 further, where the
estimated Pf in function of N is visualized for the fire-exposed concrete slab. As the
repeated observation of failure/no failure results in a binomial distribution, the
coefficient of variation of Pf is given by Eq. (9.64). The coefficient of variation
indicates the relative uncertainty in the estimate of Pf (explicitly: the ratio between
the standard deviation and the expected value). In order to obtain meaningful results,
VPf should be limited to Vlim, e.g. 0.10. This results in the guideline of Eq. (9.65) for
the required number of MCS realizations N. For a failure probability of 10�3,
Eq. (9.65) thus recommends 105 MCS realizations. Note that the number of samples
does not depend on the number of random input variables:

VPf ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� P f

� �
P f N

s
� V lim ð9:64Þ

N � 1� P f

� �
P f V2

lim

ð9:65Þ

A widely used alternative sampling scheme is known as Latin hypercube sam-
pling, or LHS [67]. Whereas in MCS the sampling is done randomly for all input
variables, the LHS scheme ensures a balanced sampling across the full input space.
Thus, reliable estimates for the moments or distribution parameters of Y (e.g. μY and
σY) can be obtained with a limited number of samples (order of magnitude: 50–200).
When using LHS to estimate the output parameters, the evaluation of Pf through
Eq. (9.49) will necessarily rely on an assumed shape of the PDF (e.g. normal, or
log-normal). Such an assumption of the distribution type of Y introduces a bias in the
assessment. LHS can however also be applied with a high number of model
evaluations, in which case the distinction with MCS diminishes. When using a
low number of samples in the LHS scheme, spurious correlation may be introduced
(i.e. the sampling scheme may exhibit unintended correlation between the input
variables). The sampling scheme can be corrected for the spurious correlation, using
the procedure described in, e.g., Olsson et al. [67]. Further information on sampling
schemes can be found, e.g., in Bucher [66].
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9.5.4 FORM

The first-order reliability method introduced by Hasofer and Lind [68], better known
as ‘FORM’, provides an efficient way of calculating (failure) probabilities associated
with a limit state. The method relies on a linearization of the limit state in standard
Gaussian space at the ‘expansion point’ u* Bucher [66]. This is the point on the limit
state where linearization maximizes the probability density mass in the failure
domain. Equivalently, this is the point on the limit state which is closest to the origin
in the standard Gaussian space (for standard situations where the realization with
mean values is not in the failure domain) [68], and thus the point on the limit state
with the highest probability density. The reliability index is then given by the
distance from this expansion point to the origin. In case the limit state is linear in
the standard Gaussian space, and the stochastic variables are independent and
normally distributed, the FORM assessment of the failure probability is exact. For
non-linear limit states, the linearization introduces an approximation. For stochastic
variables X described by an arbitrary distribution function, a transformation to a
standard Gaussian variable U is required, introducing further approximations. The
variable realization x* associated with the ‘expansion point’ u* is called the ‘design
point’. This is often referred to as the most probable failure point.

FORM analyses underlie the reliability formats of the Eurocode, see the Appen-
dices of EN 1990 [15], and have been implemented in many readily available
software tools. The method is appreciated for its calculation efficiency and its
repeatability. The fact that the FORM assessment is invariant to the formulation of
the limit state is now taken for granted, but was a major consideration at its
introduction [68].

To introduce FORM, and its underlying assumptions and limitations, reference
cases with increasing complexity are given in the following. For brevity, the space of
the stochastic variables will be denoted the X-space, and U-space refers to the
standard Gaussian space of the transformed variables.

9.5.4.1 Single Normally Distributed Variable and Failure Criterion of a
Deterministic Limiting Value

In the discussion on analytical solutions above, the example was given of a pre-
scribed (deterministic) standard fire duration tE and a normally distributed fire
resistance time tR, with mean μtR and standard deviation σtR. For a failure criterion
specified as tR � tE, i.e. a limit state Z ¼ tR – tE, the failure probability Pf was readily
calculated by Eq. (9.59). A graphical representation in the domain of the stochastic
fire resistance tR is given in Fig. 9.23a, for μtR¼ 40min, σtR¼ 5min, and tE¼ 30min.
In this figure, the shaded area corresponds with the failure probability Pf.

The same assessment can be performed in the U-space. The transformation of tR
to its equivalent utR in U-space is given by Eq. (9.66). The limit state equation can be
transformed accordingly as shown in Eq. (9.67), and the failure probability is then
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given by Eq. (9.68). The expansion point on the limit state (Z ¼ 0) is readily
determined as Eq. (9.69). Figure 9.23(b) visualizes this point as well as the failure
probability in the U-space. As stated in the general description of FORM above, the
distance between the origin and the expansion point now corresponds with the
reliability index β. For the considered case, β thus equals 2; see Fig. 9.23 (b) and
Eq. (9.70). Taking into account the definition of the reliability index as listed in
Eqs. (9.8) and (9.71) holds, demonstrating that the result obtained in accordance with
the FORM description is exactly the same as listed in 9.5.2 as an analytical solution.
For the values listed above, the failure probability is approximately 0.023; see also
Fig. 9.7 for the relationship between β and Pf:

utR ¼ tR � μtR
σtR

ð9:66Þ

Z ¼ tR � tE ¼ μtR þ utRσtR � tE ð9:67Þ

P f ¼ P Z < 0½ � ¼ P utR <
tE � μtR

σtR

� �
ð9:68Þ

u	tR ¼ tE � μtR
σtR

ð9:69Þ

β ¼ u	tR
  ¼ tE � μtR

σtR

  ¼ 30� 40
5

  ¼ 2 ð9:70Þ

P f ¼ Φ �βð Þ ¼ Φ � tE � μtR
σtR

 	 

¼ Φ tE � μtR

σtR

	 

¼ 0:023 ð9:71Þ
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Fig. 9.23 (left) Failure probability and design point in the X-space; (right) failure probability and
expansion point in the U-space
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9.5.4.2 Linear Limit State Equation with Two Normally Distributed
Variables

Expanding the previous example, also the (equivalent) standard fire duration tE is
now considered stochastic, with a mean value of 27 min and a standard deviation of
3 min. Both probability density functions and (in this case, a conceptual visualization
of) failure probability are illustrated in Fig. 9.24, as well as the design point values
tR
* and tE

* as determined below. Taking into account 9.5.2, the limit state output
variable Z is also described by a normal distribution with mean and standard
deviation as specified in Eq. (9.72). The failure probability is thus given by
Eq. (9.73) and equals 0.013 for this specific example case. Considering the definition
of the reliability index, β equals 2.23:

μZ ¼ μtR � μtE; σZ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2tR þ σ2tE

q
ð9:72Þ

P f ¼ P Z < 0½ � ¼ Φ
�μZ
σZ

	 

¼ Φ � μtR � μtEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2tR þ σ2tE
p !

¼ Φ �2:23ð Þ ¼ 0:013 ð9:73Þ

The joint probability density function of tR and tE can be visualized more
comprehensively alongside the limit state in a two-dimensional graph (Fig. 9.25
(a)). Note that the different standard deviations of tR and tE result in an ellipsoid joint
PDF in the X-space. The grey zone indicates the failure domain, and integration of
the joint PDF over this failure domain is the definition of Pf. Following the

Fig. 9.24 Probability density function (PDF) of tR and tE, and indication of the region associated
with failure
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specifications by Hasofer and Lind (see above), both variables as well as the limit
state can also be visualized in Gaussian space; see Fig. 9.25(b). The variables utR and
utE are given by Eq. (9.74), while the limit state equation is specified to Eq. (9.75).
Contrary to the formulation in the X-space, the considered limit state does not go
through the origin in the U-space; it is however still a linear limit state (considering a
linear transformation of the variables tR and tE). Note that the isoprobability contours
of the joint PDF are concentric circles around the origin in the U-space.

From geometric considerations, the expansion point u* is readily determined.
Consider, for example, that the point p on a line a � x + b � y + c ¼ 0 closest to the
origin (in x-y-coordinate space) has coordinates as specified in Eq. (9.76). Applied to
the limit state of Eq. (9.75) in the U-space, this results in the expansion point
coordinates of Eq. (9.77), as visualized in Fig. 9.25(b). Alternative procedures can
be thought of, for example using trigonometric considerations. The line connecting
the expansion point to the origin is—by the definition of distance—perpendicular to
the limit state. The distance from the identified expansion point to the origin is equal

to
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1:912 þ 1:152

p
¼ 2:23 , demonstrating that the distance from the expansion

point to the origin indeed equals the reliability index β as calculated above from
analytical considerations. Using trigonometry, it can be shown that the axis through
the origin and the expansion point is the axis uZ, i.e. the standard Gaussian trans-
formation of the limit state variable Z. In that case, the one-dimensional case
demonstrated above applies, thus proving that the distance between the expansion
point and the origin indeed equals the reliability index in this 2D case; see Eq. (9.78).
Using the inverse of Eq. (9.74), the design point x* in X-space is calculated and
visualized in Fig. 9.25(a). The direction nx perpendicular to the limit state is also
visualized. Note that in the X-space the line connecting the design point to the centre
of the joint PDF is not perpendicular to the limit state:

Fig. 9.25 (left) Isoprobability contours, limit state, and design point in the X-space; (right)
isoprobability contours, limit state, and expansion point in the U-space
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utR ¼ tR � μtR
σtR

; utE ¼ tE � μtE
σtE

ð9:74Þ

Z ¼ tR � tE ¼ σtRutR þ �σtEð ÞutE þ μtR � μtEð Þ ð9:75Þ

xp ¼ �ac

a2 þ b2
; yp ¼ �bc

a2 þ b2
ð9:76Þ

u	tR ¼ �σtR μtR � μtEð Þ
σ2tR þ σ2tE

¼ �1:91; u	tE ¼ σtE μtR � μtEð Þ
σ2tR þ σ2tE

¼ 1:15 ð9:77Þ

P f ¼ P Z < 0½ � ¼ P uZσZ þ μZ < 0½ � ¼ P uZ < � μZ
σZ

� �
¼ Φ � μZ

σZ

	 

¼ Φ �βð Þ ð9:78Þ

The above demonstrates how in the U-space the distance between the origin and
the (linear) limit state equation corresponds with the reliability index β in case of
normally distributed variables. A FORM calculation procedure has, however, not yet
been introduced. To this end, observe that:

(i) The expansion point u* is by definition situated on the limit state (Z ¼ 0).
(ii) The vector connecting the expansion point to the origin is by definition

perpendicular to the limit state (as u* is the point on the limit state closest to
the origin). This vector is further denoted as β. The direction of β is specified by
the vector NU of Eq. (9.79), which results in the normalized directional vector
nU of Eq. (9.80). For both these equations, the last equality is an application for
the considered case Z ¼ tR – tE only. The vector nU is the unit vector
perpendicular to the limit state, facing outward from the failure region. The
components of nU are the directional cosines of β and are commonly referred to
as the ‘sensitivity factors’ αXi as they indicate the relative importance of the
variability of the underlying variable Xi in the result for β. For resistance
variables, the sensitivity factor is positive, while for load variables the sensi-
tivity factor is negative.

(iii) The length of β is equal to the reliability index β, as specified by Hasofer and
Lind:

NU ¼
∂Z
∂utR
∂Z
∂utE

2664
3775 ¼ σtR

�σtE

� �
ð9:79Þ
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nU ¼ NU

NUj j ¼
αtR

αtE

� �
¼

σtRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2tR þ σ2tE

p
� σEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2tR þ σ2tE
p

2664
3775 ð9:80Þ

Considering the above, the vector β is given by β�nu and thus the expansion point
u* is defined by

u	 ¼ u	tR
u	tE

� �
¼ �β � nU ¼ �βαtR

�βαtE

� �
ð9:81Þ

The above allows to specify the following calculation procedure for a general
linear limit state of Gaussian variables (can be readily generalized to higher
dimensions):

1. Determine the unit vector normal to the limit state nU, i.e. through (the
multidimensional equivalent of) Eqs. (9.79) and (9.80).

2. Specify the expansion point u* as -β�nU.
3. Substitute u* in the limit state function Z. As u* is by definition located on the

limit state Z ¼ 0, this results in a linear equation which can be solved for β.

Applying the above for the example case Z ¼ tR – tE, nU has already been listed
above in Eq. (9.80), resulting in the expansion point of Eq. (9.82). Substituting utR

*

and utE
* in Eq. (9.75) gives Eq. (9.83), which is readily simplified to Eq. (9.84),

resulting in the same equation for β as derived from analytical considerations in
Eq. (9.73):

u	 ¼ u	tR
u	tE

� �
¼

�β
σtRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2tR þ σ2tE
p

β
σtEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2tR þ σ2tE
p

2664
3775 ð9:82Þ

Z u	ð Þ ¼ σtR �β
σtRffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2tR þ σ2tE
p !

þ �σtEð Þβ σEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2tR þ σ2tE

p þ μtR � μtEð Þ ¼ 0 ð9:83Þ

β ¼ μtR � μtE
σ2tRffiffiffiffiffiffiffiffiffiffiffi
σ2tRþσ2tE

p þ σ2tEffiffiffiffiffiffiffiffiffiffiffi
σ2tRþσ2tE

p
¼ μtR � μtEffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

σ2tR þ σ2tE
p ¼ 2:23 ð9:84Þ

9.5.4.3 Generalized Case of a Non-Linear Limit State

The above FORM evaluation of Eqs. (9.82)–(9.84) is very straightforward thanks to
the linearity of the limit state eq. Z. In case of a non-linear limit state, however, the
sensitivity factors αXi (i.e. the directional cosines of the unit vector nU) are not
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independent of the parameters Xi. In other words, the unit normal nU to the failure
domain is not constant. Consequently, a set of equations are obtained, constituted by
Eq. (9.85) for the sensitivity factors αXi as evaluated in the expansion point u* and
the limit state equation being zero in the expansion point, i.e. Eq. (9.86). Solving this
set of equations gives β. As nU is the normal vector to the limit state at the expansion
point, the obtained results correspond with the result for the limit state linearized in
the expansion point, and it is thus an approximation of the true failure probability:

αXi ¼
∂Z u	ð Þ
∂XiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i

∂Z u	ð Þ
∂Xi

� �2s for i ¼ 1::n ð9:85Þ

Z u	ð Þ ¼ Z �β � nUð Þ ¼ 0 ð9:86Þ

9.5.4.4 Generalized Case with Non-Gaussian Variables

In case of non-Gaussian variables, the transformation to the standard Gaussian space
introduces difficulties. A standard approach is the application of the Rackwitz-
Fiessler algorithm [69]. This algorithm transforms the distribution of Xi into a
Gaussian distribution with parameters μNXi and σNXi which at the design point has
the same PDF and CDF values, i.e. Eqs. (9.87) and (9.88). Adding these equations to
the set of equations listed above and solving (iteratively) result in an assessment for
the reliability index β:

FXi x
	
i

� � ¼ Φ
x	i � μNXi

σNXi

	 

ð9:87Þ

f Xi x
	
i

� � ¼ 1
σNXi

ϕ
x	i � μNXi

σNXi

	 

ð9:88Þ

9.5.5 Maximum Entropy, and the MaxEnt Method

The entropy associated with a random variable gives a measure of the level of
uncertainty associated with it [66]. For completeness, Eq. (9.89) gives the definition
of the entropy H associated with a continuous random variable Y, with ΩY being the
range in which Y is defined (e.g. from 0 to +1 in case Y is described by a log-normal
distribution); see Papoulis and Pillai [70]:
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H ¼ �
Z
ΩY

f Y yð Þ ln f Y yð Þð Þdy ð9:89Þ

The larger the entropy defined by Eq. (9.89), the larger the uncertainty associated
with Y. Uncertainty quantification methods based on maximum entropy concepts
state that, under constraints posed by available information, the PDF fY which
maximizes the entropy is the most appropriate, as it does not introduce any subjec-
tive information (i.e. it does not introduce a bias and thus results in an unbiased
estimate for fY).

Consider a positive variable Y (such as the load bearing capacity) for which a set
of m distribution moments μαj, j ¼ 1..m, are known. The formulation of fY which
maximizes the entropy is given by Novi Inverardi and Tagliani [71]

bf Y yð Þ ¼ exp �λ0 �
Xm
j¼1

λ jy
α j

 !
ð9:90Þ

with αj being the exponents specifying the distribution moments; λj Lagrange
multipliers, for j from 1 to m; and λ0 a normalization factor as specified by
Eq. (9.91) which ensures that the integral of the PDF over its domain equals unity.
The Lagrange multipliers are determined through the boundary conditions of the
known moments μαj. Evaluating the values of λj will often require numerical pro-
cedures [66]:

λ0 ¼ ln
Z
ΩY

exp �
Xm
j¼1

λ jy
α j

 !
dy

0B@
1CA ð9:91Þ

When the distribution moments μαj are assessed from a data sample through the
sample moments mαj, as calculated by Eq. (9.92), with N the number of samples and
yk the kth realization, Novi Inverardi and Tagliani [71] demonstrated that the
Lagrange multipliers λj are equivalently determined by the minimization of
Eq. (9.93):

mα j ¼ 1
N

XN
k¼1

y
α j

k ð9:92Þ

min
λ1::λ j::λm

λ0 þ
Xm
j¼1

λ jmα j

" #
ð9:93Þ
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When considering sample moments mαj, there is no reason why specific values
for the exponent αj should be preferred. On the other hand, the fact that estimation
errors increase with higher exponents introduces a preference for fractional moments
αj 2 (0,1). Thus the (fractional) sample moments themselves can be part of the
(bounded) optimization, resulting in [71]

min
α1::α j::αm

min
λ1::λ j::λm

λ0 þ
Xm
j¼1

λ jmα j

" #" #
ð9:94Þ

The procedure above is directly applicable in conjunction with MCS or LHS
procedures for the estimation of the sample moments in Eq. (9.92). Note that it is not
required to re-evaluate the model as part of the optimization of Eq. (9.94): within the
optimization, the model realizations yi are a given. Having determined the exponents
αj and coefficient λj, the PDF estimate of Eq. (9.90) allows to make an unbiased
extrapolation to low probability quantiles of Y, consistent with the observed
realizations.

Using MCS (or to a lesser degree LHS) for the estimation of the sample moments
mαj, however, still requires a large number of model evaluations. For situations with
the number of uncorrelated stochastic input variables n � 10 a more efficient
calculation scheme has been presented by Van Coile et al. [72], adapted from the
work by Zhang [73]. This methodology is denoted as the MaxEnt method, and relies
on two approximations: application of the multiplicative dimensional reduction
method (MDRM) and Gaussian interpolation.

The MDRM assumes that the model formulation h of Eq. (9.48), where X is a
multidimensional vector, can be approximated by the product of one-dimensional
functions hi which isolate the contribution of the different stochastic variables Xi:

Y ¼ h Xð Þ 
 h1�n
0

Yn
i¼1

hi Xið Þ ð9:95Þ

where the one-dimensional functions are defined by Eq. (9.96), i.e. the model
evaluation where all n � 1 remaining stochastic variables are set equal to their
median value μ_. h0 then equals the model evaluation where all stochastic variables
equal their median value:

hi xið Þ ¼ h bμ1, . . . ,bμi�1, xi,bμiþ1, . . . ,bμn� � ð9:96Þ

Under the above assumption, the αj
th moment of Y is approximated by
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μα j

 h

α j 1�nð Þ
0

Yn
i¼1

Z
ΩXi

hi xið Þð Þα j f Xi
xið Þdxi ð9:97Þ

with fXi the PDF of Xi.
Efficiently evaluating the integral of Eq. (9.97) is done through the approximation

of Gaussian integration. For each stochastic variable Xi, L Gauss points xi,l are
considered. Together with the associated Gauss weights wl, the distribution moment
is estimated from the sampled data as

μα j

 h

α j 1�nð Þ
0

Yn
i¼1

XL
i¼1

wihi xi,lð Þ ð9:98Þ

The obtained estimate for mαj can be substituted in the optimization of Eq. (9.94).
The above scheme requires Lmodel realizations per stochastic input variable, as well
as one model realization for h0. The total number of model realizations is thus
limited to n�L. When L is odd, one of the Gauss points corresponds with the median
value, and thus the number of model realizations is further limited to n�(L-1) + 1. For
a standard scheme with L¼ 5, 4n + 1 model realizations are thus required. As long as
n is limited (e.g. � 10), the total required number of model evaluations will be
smaller compared to common alternative sampling schemes such as MCS or LHS.
An example application for the fire resistance time of a composite column is
visualized in Fig. 9.26. See Gernay et al. [46] for further details and discussion.
The approximations introduced by the MDRM and Gaussian interpolation may

Fig. 9.26 MaxEnt estimate for the fire resistance time of a composite column, together with an
MCS validation and log-normal approximations [46]
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however introduce errors in the estimate. Further discussion and detailed worked
examples are provided by Van Coile et al. [72].

9.5.6 Fragility

The fragility of a component or a system is another way of indicating the probability
of exceedance of a limit state (i.e. performance threshold). Often this is applied to
give a reflection of how likely it is to be in or have exceeded a damage state. It is
typically expressed as a cumulative probability distribution, which is dependent on
the intensity of some design variable or perturbation. Such curves are widely known
as ‘fragility curves’. Seismic fragility, one of the most widely used applications, was
first introduced as a concept for the probabilistic assessment of nuclear structures in
the energy industry.

Limit states have been introduced in Sect. 9.2.2 and indicate the conditions
beyond which the structure no longer fulfils certain criteria for design. Similarly,
damage states quantify the damage to components or structures as a result of a
perturbation. Damage may take the form of, for example, cosmetic damage, irre-
versible structural damage, or collapse of the building. They can be considered
different from limit states in that they may be related to a description of the physical
damage to a component as opposed to a criterion for design verification and therefore
are often relatable to the effort required to repair the component and return it to its
original state; see Fig. 9.27.

The abbreviation DS is often used to denote damage state. A numerical index
associated with the DS may represent consecutively more severe damage states. For
example, in earthquake engineering damage state 1 (DS1) may represent the smallest
amount of damage, and the easiest to repair, requiring only for example taping and
repainting of any cracks in the plasterboard. With increasing damage state, the
complexity of repair increases. FEMA 273/274/356 defines damage states according
to different qualitative performance levels, with DS1 representing a condition that
would not prevent immediate occupancy of a building after an earthquake. DS2
represents a condition that could represent a risk to life. DS3 represents a condition
whereby the limit state for collapse of the structure is close to being exceeded and the
corresponding margin of safety is very low. Often-cited examples of damage states
in structural earthquake engineering include damage to beams, columns, or partition
walls as a result of inter-storey displacements or internal member forces induced by
the perturbation.

Commonly, fragility curves are applied to define the probability of a damage state
being exceeded conditional on an intensity measure exceeding a given value asso-
ciated to the perturbation. For each definition of fragility, the intensity measure,
abbreviated IM, is typically one of many possible quantifiable expressions of the
intensity of the perturbation. In earthquake engineering, many different intensity
measures are used, for example, permanent ground displacement or peak ground
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acceleration. The fragility, F, of a structure representing the probability of exceeding
a damage state is thus written as

F ¼ P DS � dsijIMð Þ ð9:99Þ

where P(.) is the probability operator. An illustrative example of fragility curves for
an element with four defined damage states (DS0–DS4) is shown in Fig. 9.28.

Different classes of methods for creating fragility curves exist [76]. They may be
either empirical, i.e. based on observations either from the real world or the lab;
analytical, i.e. based on analyses of structural models; or based on expert judgement.
The use of fragility curves in structural fire engineering is relatively uncommon,
examples including Gernay et al. [77], Van Coile et al. [78], Ioannou et al. [79], and
Hopkin et al. [65]. Evaluations for different damage states as in earthquake engi-
neering are however still rare. This can at least partially be attributed to a perceived

Damage state Description
Slight Small plaster cracks at corners of door and 

window opening and wall-ceiling intersec-
tions; small cracks in masonry chimneys 
and masonry veneers. Small cracks are as-
sumed to be visible with a maximum width 
of less than 1/8 inch (cracks wider than 1/8 
inch are referred to as “large” cracks).

Moderate Large plaster or gypsum board cracks at 
corners of door and window openings; 
small diagonal cracks across shear wall 
panels exhibited by small cracks in stucco 
and gypsum wall panels; large cracks in 
brick chimneys.

Extensive Large diagonal cracks across shear wall 
panels or large cracks at plywood joints; 
permanent lateral movement of floors and 
roof; toppling of most brick chimneys; 
cracks in foundations; splitting of wood sill 
plates and / or slippage of structure over 
foundations.

Complete Structure may have large permanent lateral 
displacement or be in imminent danger of 
collapse due to cripple wall failure or fail-
ure of the lateral load resisting system; 
some structures may slip and fall off the 
foundation; large foundation cracks. Three 
percent of the total area of buildings with 
complete damage is expected to be col-
lapsed, on average.

Fig. 9.27 Damage states in earthquake engineering (adapted from [75])
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lack of the required data to generate such curves, and so recent work by Ioannou
et al. [80] has relied on the use of expert elicitation, developing fragility curves for
concrete exposed to fire. Cooke’s method of expert elicitation was used [81], which
relies on expert judgement of the results of relatively unknown phenomenon
weighted by the same experts’ response to a number of questions with known
answers, accounting also for their certainty about the answer being given. This
study by Ioannou et al. is discussed further in the applications section.

9.5.7 The Pacific Earthquake Engineering Research Center
Performance Based Earthquake Engineering
Framework

The PEER (Pacific Earthquake Engineering Research Centre) PBEE (Performance
Based Earthquake Engineering) framework has seen application in several different
hazards, including fire [82–86]. It is a comprehensive methodology that, in its
original application, accounts for seismological, engineering, financial, and societal
considerations to the problem of performance-based seismic engineering. The PEER
framework disaggregates the problem of linking hazards to decision variables into
four models: the hazard model that predicts the intensity measure, the engineering
model that predicts the engineering response, the damage model that predicts the
damage resulting from the response, and then the loss model that predicts the
consequences of that damage from a societal or cost perspective. Each of these
models builds upon and is conditional on the previous.

The framework is therefore based across three calculation ‘domains’: the hazard
domain, the structural system domain, and the loss domain. These domains are
linked by what may be termed ‘pinch variables’, against which each of the

Fig. 9.28 Illustrative example of fragility curves
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subsequent domains is conditioned. The framework is expressed as a triple integral,
Eq. (9.100), where intensity measure is denoted as IM; the structural response to the
event, the engineering demand parameter, is denoted as EDP; the estimation of
damage, the damage measure, is denoted as DM; and resulting losses incurred,
decision variable, are denoted as DV. In Eq. (9.100) g denotes the annual rate of
exceeding a given value of one of the pinch variables, and P denotes the probability
of exceeding a given value of one of the pinch variables given a value of the
preceding variable:

gDV ¼
ZZZ

P DV jDM½ �dP DMjEDP½ �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Loss Domain

dP EDPjIM½ �
zfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflffl{Structural System Domain

dgIM|ffl{zffl}
Hazard Domain

ð9:100Þ

Calculation in the hazard domain may be seen as analogous to the development of
a ground motion hazard cover as part of a probabilistic seismic hazard analysis
(PSHA), with the seismic hazard replaced with a fire hazard, i.e. a PFHA. The output
of the PFHA will generally be a single parameter that defines the intensity of the fire
and quantifies the rate of exceeding a given value of that intensity, i.e. gIM ¼ g
(IM > imi) where imi is some value of the intensity measure. Extended frameworks
which use a combination of intensity measures are however possible, i.e. vector
forms of IM exist for earthquake engineering, but are not discussed here in the
application to fire engineering.

In PSHA, the intensity measure chosen to represent the hazard is related to the
selection of the engineering demand parameter (EDP), with common examples of
the former being peak ground acceleration or some spectral response value, and an
example of the latter being inter-storey drift. A good selection of the IM will have a
strong correlation with the EDP of interest; that is, it will have a high efficiency [87]
and therefore the uncertainty of EDP conditional on the IM will be low. Shrivastava
et al. [88] explored the efficiency of a range of IMs to structural fire engineering,
including maximum fire temperature; time to maximum temperature; the area under
the fire curve; the total duration of the fire including cooling phase; and the
cumulative incident radiation. They used maximum vertical displacement of an
element of structure and showed that cumulative incident radiation was the most
efficient IM in this application. Elsewhere, Devaney [82] compared both time to
peak compartment temperature and peak compartment temperature as IMs and
showed that for the same EDP for an uninsulated composite beam, peak compart-
ment temperature was the most efficient IM.

Ultimately, whichever IM is chosen, the facility definition as well as limitations in
either knowledge or model chosen to represent a fire will limit the number of
possible scenarios which can occur and which can be modelled. For example,
compartment geometry, fuel load composition and total calorific value, possible
ventilation conditions, and materials chosen for the compartment boundaries will all
influence the dynamics of a fire that can occur in any given volume. These fires could
be generated using, e.g., Monte Carlo simulation, as discussed in Sect. 9.5.3, and
used to carry out the analysis in the hazard domain.
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The analysis in the structural domain requires the generation of records of
structural response to a range of different fires that can occur. Additional uncer-
tainties can and should also be incorporated into this analysis, for example, material
property uncertainties and geometric uncertainties. As with the hazard analysis, the
output from the structural analysis is a probabilistic measure of the response of the
structure which will be related to the damage analysis which follows in subsequent
stages of the framework. For example, for typical examples of the framework
applied to earthquakes, the engineering demand parameter studied is the inter-
storey drift and the damage measure evaluated could for example be damage to
the non-structural walls. In structural fire engineering, a suitable damage measure
could be, e.g., residual deflection. The structural analysis should reflect the response
of the structure across the whole vector of the intensity measure.

The engineering demand parameter is expressed as a hazard curve, similar to the
intensity measure, which again permits the quantification of the rate of exceedance
given the intensity measure hazard curve, i.e. gEDP ¼ R

P(EDP > edpi|IM)dgIM.
The calculation in the loss domain requires first the definition of one or more

damage states and thus fragilities conditional on the engineering demand parameter.
These damage states are denoted DSi with i denoting a specific damage state. For
example, three possible damage states may be identified: undamaged (DS0), lightly
damaged requiring minor repair work (DS1), and major damage requiring demolition
and replacement of the section (DS2). P(DM|EDP) denotes the probability of a
damage measure conditional on the EDP, with the damage measure being the
damage states identified.

Finally, the decision variable requires to be conditioned on the damage state.
Examples of decision variables include cost to repair or downtime. Devaney in his
thesis [82] uses data from the literature to derive cost and downtime distributions for
different construction elements damaged by fire. In reference to the damage states
identified in the previous paragraph these are shown as normalized against initial
construction costs for a beam and for a column in Table 9.21.

The framework is shown schematically in Fig. 9.29. The framework starts with
the definition of the facility, including information about its design and location as
may be needed for a hazard analysis, and then finishes with a decision-making
process where a decision is taken as to whether or not the annual rate of exceedance
of one of the decision variables is acceptable.

Table 9.21 Examples of log-normal distributions of normalized cost consequence functions [82]

μ CoV

Monetary cost consequence function, DS1 beam 0.0764 0.414

Monetary cost consequence function, DS2 beam 1.2338 0.694

Monetary cost consequence function, column collapse 1.2918 0.661

Downtime cost consequence function, DS1 beam 1.44 0.2

Downtime cost consequence function, DS2 beam 4.63 0.2

Downtime cost consequence function, column collapse 5.63 0.2
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9.6 Applications

9.6.1 Event Tree

In the aftermath of an earthquake, the likelihood of fire ignition inside a building
increases due to ruptured gas lines, electric arcing, toppled furniture, etc. Meanwhile,
active and passive fire protections can be damaged due to earthquake shaking.
Historically, it is shown that sprinkler systems could be ineffective due to breakage
and leakage in the sprinkler piping. The fire compartments could be compromised
due to damaged or cracked walls, ceilings, fire doors, and fire-rated linings. Finally,
the passive fire protection, such as spray fire-resistant material that is used as fire
protection in steel structures, may dislodge during earthquake shaking.

Fig. 9.29 PEER analysis methodology (adapted from ref. [97])
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Figure 9.30 shows an event tree to identify post-earthquake fire scenarios inside a
building and quantify the corresponding probabilities. These fire scenarios and the
associated occurrence probabilities can be used by the structural engineer to evaluate
damage frequency to the structure due to post-earthquake fires.

The initial event, being the earthquake, may lead to a fire ignition. The probability
of ignition inside a building can be quantified using the procedure discussed by
Elhami Khorasani et al. [89], as a function of earthquake intensity, characteristics of
the community, and building construction type. The sprinklers after the earthquake
may not be functional leading to an uncontrolled fire. Some statistics of sprinkler
performance as a function of ground motion acceleration (earthquake intensity) can
be found in the study of LeGrone [90]. The fire can spread across and between floors
in a building once it is out of control and the fire compartments are compromised.
Historical data can be used to quantify damage to individual elements of fire safety
systems, such as fire doors, but the overall probability of damage to the fire
compartment is currently being researched and can be assigned by engineering
judgement at this time. The final line of defence would be the passive fire protection
on steel structural elements in a building. Severe damage to the building could be
expected in case of damage to the passive fire protection while an uncontrolled fire
spreads inside the building. It should be noted that taking the correlation of damage
to fire compartment and passive fire protection into account, the conditional prob-
ability of having passive fire protection compromised is assumed to be higher on
branches where the compartment is known to be compromised. The event tree

Fig. 9.30 Event tree for post-earthquake fire scenarios inside a building
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demonstrates the conditional probabilities at different stages within a branch and
finally the combined yearly occurrence probability at the end of each branch.

9.6.2 Bending Moment Capacity and Bending Failure
Probability of a Concrete Slab

Introduction and Motivation
Traditionally the fire resistance of solid concrete slabs is defined through tabulated
data. For example, EN 1992-1-2:2004 [54] lists minimum concrete cover and slab
thicknesses in function of the required (ISO 834) standard fire resistance. For the
one-way solid slab specified further in Table 9.22, the fire resistance time listed in
Table 5.8 of EN 1992-1-2:2004 is 120 min. The concrete cover realized during
construction is however uncertain, as is the realization of other design parameters
such as the concrete compressive strength and reinforcement yield stress. The same

Table 9.22 Model parameters and probabilistic models, as listed by Van Coile [51], based on
Holicky and Sykora [41]

Symbol Property Distribution μ CoV

fc,20 Concrete compressive strength at
20 �C

Log-normal 42.9 MPa
( fck ¼ 30 MPa)

0.15

fy,20 Reinforcement yield stress fy,20�C
at 20 �C

Log-normal 581.4 MPa
( fyk ¼ 500 MPa)

0.07

kfy(θ) Retention factor for the steel yield
stress at θ �C

Beta
[μ � 3σ]

θ dependent
conforming to EN
1992-1-2

θ dependent

c Concrete cover Beta
[μ � 3σ]

35 mm 0.14
(σ ¼ 5 mm)

h Slab thickness Normal 200 mm 0.025
(σ ¼ 5 mm)

As Area bottom reinforcement (for a
unit slab width)

Normal 1.02 As,nom mm2 0.02

Ø Reinforcement bar diameter Deterministic 10 mm –

b Unit slab width Deterministic 1000 mm –

KR Model uncertainty for the resis-
tance effect

Lognormal 1.1 0.1

MG Bending moment induced by the
permanent load effect

Normal MGk 0.1

MQk Bending moment induced by the
imposed load effect

Gumbel 0.2MQk 1.1

KE Model uncertainty for the load
effect

Log-normal 1.0 0.1

MRd Design value for the bending
moment capacity in normal design
conditions

Deterministic 50.9 kNm –
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applies to the loads acting on the slab during fire exposure. Consequently, there may
be situations where the slab bending resistance during fire exposure is insufficient to
resist the bending moment induced by the acting loads, and the structure is deemed
to ‘fail’ prematurely.

The above implies amongst others that (i) design solutions in accordance with the
tables of EN 1992-1-2 have an (unknown) probability of not meeting their specified
fire resistance; (ii) for structures with high requirements for structural integrity in
case of fire, the failure probability associated with the tabulated design solutions of
EN 1992-1-2 may be too high; (iii) for existing structures which are at first glance not
compliant with the tables of EN 1992-1-2, the achieved safety level may neverthe-
less exceed the safety level associated with the tabulated design solutions, allowing
to meet fire resistance requirements without (expensive) refurbishment; and (iv) for
designs where the consequences of fire-induced structural failure are low, a higher
failure probability may be allowable then as associated with the tabulated data, thus
allowing for a less onerous design requirement.

In the following, the failure probability of solid concrete slabs is explored
considering standard fire exposure. First the resistance and load models are intro-
duced, as well as the limit state function for bending. These allow a direct evaluation
of the failure probability through crude Monte Carlo simulations (MCS). More
insight is however obtained by studying the probability density function of the
bending moment capacity. This has the further benefit of reducing computational
expense when re-evaluating a given slab configuration for, e.g., a different load level
and allows the use of approximate and computationally efficient reliability methods
such as analytical evaluations or FORM.

Further discussions and background on the case presented here can be found in
the works of Van Coile et al. [91] and Thienpont et al. [92]. Applied probabilistic
models have been chosen for consistency with these references.

The structure of this section is as follows. First the considered limit state function
is introduced together with models for the resistance and load effect in Sect. 9.6.2.1.
Subsequently, the failure probability corresponding with the limit state function is
evaluated through crude Monte Carlo simulations (MCS) in Sect. 9.6.2.2. In Sect.
9.6.2.3, approximate distributions for the resistance are explored. These approximate
distributions allow to make a direct analytical estimate of the failure probability,
omitting the computational cost of MCS. This analytical failure probability estima-
tion is demonstrated in Sect. 9.6.2.4.

9.6.2.1 The Limit State Function, and Resistance and Load Models

Limit State Function
The bending limit state function is given by Eq. (9.101), with KR being the model
uncertainty for the resistance effect, MR,fi,t the bending moment capacity of the slab
at t minutes of fire exposure, KE the model uncertainty for the load effect, MG the
bending moment induced by the permanent load, and MQ the bending moment
induced by the imposed load:
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g ¼ R� E ¼ KRMR,fi,t � KE MG þMQð Þ ð9:101Þ

Model for the Resistance Effect
As models are a simplification of reality, the multiplicative model uncertainty KR has
been introduced in Eq. (9.101). The total resistance effect R thus equals KR�MR,fi,t.
The applied probabilistic description of KR is given in Table 9.22. While in theory
the model uncertainty could be calibrated by a systematic comparison of the model
for MR,fi,t against experimental test results, the difficulty of obtaining experimental
data for structural fire engineering implies that KR is based on subjective judgement
instead, informed by model uncertainties listed for normal design conditions.

In the following, uncertainties with respect to the thermal properties of the
reinforced concrete slab are not taken into consideration. This relates to a situation
where the performance is evaluated with respect to a standard fire exposure, both
regarding the design fire conditions and the concrete thermal properties. Considering
one-sided exposure to fire from below, the cross section of the slab is heated
non-linearly (see further Fig. 9.31), resulting in a non-linear distribution of free
thermal strains across slab depth. The temperature increase furthermore changes the
concrete and reinforcing steel mechanical models (stress-strain diagrams). A simpli-
fied numerical calculation tool has been applied by Van Coile et al. [91] which
evaluates the full moment-curvature diagram for a given slab cross section and fire
duration. From this diagram, the bending moment capacity MR,fi,t is defined as the
maximum attainable bending moment. Van Coile et al. [91] then demonstrated that
the numerical calculation can be substituted by Eq. (9.102), with parameters as listed
in Table 9.22. This equation is more generally applicable for situations where both
(i) the slab fails by reinforcement yielding (as is commonly the case in fire conditions
as the bottom reinforcement loses its strength) and (ii) the slab is sufficiently thick so
that the concrete compressive zone remains relatively cool.
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Fig. 9.31 Temperature distributions in a 200 mm solid concrete slab, exposed at the bottom side to
different ISO 834 standard fire durations. Comparison with data listed in EN 1992-1-2:2004 [92]
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In Eq. (9.102) only the reinforcement yield stress retention factor kfy is temper-
ature, and thus time, dependent. The reinforcement temperature depends on the
position of the reinforcement (and is thus dependent on the concrete cover realiza-
tion), and is evaluated through numerical 1D heat transfer analyses [92]. In the
absence of numerical evaluation, the temperatures can be directly taken from the
temperature distributions for concrete slabs listed in EN 1992-1-2. Both tempera-
tures are compared in Fig. 9.31 for specific ISO 834 standard fire durations.
Background and further references for the probabilistic models for the input param-
eters are listed by Van Coile [51]. Here suffice it to state that the models are based on
the review study by Holicky and Sykora [41], and preliminary assessments for the
retention factor. Updated models for the retention factor in accordance with Sect. 9.4
of this chapter can be taken into account:

MR,fi,t ¼ Askfy f y,20 h� c�∅
2

	 

� 0:5

Askfy f y,20
� �2

bf c,20
ð9:102Þ

Model for the Load Effect
The load effect consists of the bending moment induced by the permanent load and
the (equivalent) imposed load. The probabilistic description for both is listed in
Table 9.22 in function of their characteristic value. Note that the model for the
instantaneous imposed load effect is the model applied by Holicky and Sleich [47]
and Gernay et al. [46]; see Sect. 9.3. This has been done for consistency with the
results listed by Van Coile [51]. Defining the load ratio χ by Eq. (9.103), and
considering the Eurocode ambient design criterion of Eq. (9.104), with u being the
ambient design utilization �1 and other parameters as listed in Table 9.23, the
bending moments MG and MQ are fully defined by χ and u, for a given slab
configuration.

For a statically determinate slab, the model uncertainty for the load effect
included in Eq. (9.101), KE, can be considered the same as in normal design
conditions (see Table 9.22):

χ ¼ Qk

Qk þ Gk
¼ MQK

MQK þMGK
ð9:103Þ

Table 9.23 Eurocode ambient design parameters Eq. (32), EN 1990 [15]

Symbol Parameter description Value

γG Partial factor for the permanent load 1.35

ψ0 Combination factor 0.70

γQ Partial factor for the imposed load 1.50

ξ Reduction factor for unfavourable permanent load 0.85
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MRd ¼ uMGK max γG þ ψ0γQ
χ

1� χ
; ξγG þ γQ

χ
1� χ

� �
with u � 1 ð9:104Þ

9.6.2.2 Failure Probability Estimation Through MCS

For a given ISO 834 standard fire duration tE, the temperature distribution in the slab
is fully defined—as the uncertainty with respect to the thermal properties is not taken
into consideration (see Sect. 9.6.2.1). For each Monte Carlo realization, the rein-
forcement temperature is determined from Fig. 9.31, taking into account the specific
realization of the concrete cover.

In Fig. 9.32, the estimated failure probability and corresponding COV are visu-
alized in function of the number of MCS, for tE ¼ 120 min, u ¼ 0.90, and χ ¼ 0.40
(i.e. MGk ¼ 21.3 kNm and MQk ¼ 14.2 kNm). These results have been obtained
through a script, but a spreadsheet evaluation is possible as well (with memory
constraints posing a practical limit to the number of MCS in the spreadsheet).

The converged Pf estimate is 7.1 � 10�5 (for the specified fire exposure). This
corresponds with a reliability index β ¼ 3.8, in accordance with Eq. (9.8). This result
indicates that for this specific slab—and under the constraints imposed by the model,
such as no spalling—structural stability in the bending limit state will be maintained
for the 120 min tabulated in EN 1992-1-2:2004 with a very high reliability.

9.6.2.3 Probability Density Function Describing the Bending Moment
Capacity MR,fi,t

Introduction
While crude MCS allows to make an assessment of the failure probability, the
evaluation requires a large number of model evaluations and is thus no longer
feasible when applied with a computationally expensive model. Furthermore, a
pure MCS as in Fig. 9.32 requires a full recalculation whenever an aspect of the
evaluation is modified (e.g. the load ratio, utilization, or nominal concrete cover).

The difficulty in evaluating the limit state of Eq. (9.101) results first and foremost
from the unknown distribution of MR,fi,t. When the distribution type is known, the
parameters of the distribution can be assessed through a more limited number of
model evaluations or approximate methods. A commonly assumed distribution type
to represent material and cross-sectional strength is the log-normal distribution. As
illustrated below however, directly assuming a distribution type without further
analysis can result in an inappropriate model choice.
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Observed Density Function Through MCS and Mixed Log-Normal Model
Statistical tests can be applied to determine appropriate distribution choices; see,
e.g., Ang and Tang [93]. In structural engineering applications however, the appro-
priate description of low strength quantiles and high load quantiles is of great
importance, while less importance is assigned to the close description of other
quantiles (such as a very high resistance realization or exceptionally low load effect).
The Gumbel distribution commonly applied for the imposed load effect for example,
see Sect. 9.3.2.3 and Table 9.22, has a non-zero probability of returning a negative
load. Clearly this is an inappropriate model for the low quantiles of Q, but this is of
little importance as structural failure is—in reasonable situations—associated with
high quantiles of Q.

Considering the above, the engineer assessing the appropriateness of a distribu-
tion model cannot go without a visual comparison of the data against the model. In
case of a model for the concrete compressive strength or other experimentally
measured parameters, the term data should be understood literally. In the case
under consideration here, however, the ‘data’ is the result forMR,fi,t obtained through
MCS.

In Fig. 9.33, the histogram corresponding with 104 MCS realizations is visualized
together with a log-normal approximation for different ISO 834 standard fire dura-
tions tE, for the slab configuration listed in Table 9.22. Figure 9.34 visualizes similar
results for a concrete cover standard deviation of 10 mm (e.g. an existing building
with large uncertainty or limited quality control in production).

Fig. 9.32 Estimate for Pf and corresponding VPf in function of the number of MCS
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Figures 9.33 and 9.34 suggest that a log-normal distribution is not an appropriate
choice for describing MR,fi,t. Further study indicates that this non-standard PDF
shape is the result of the concrete cover variability, and the associated non-linear
change in reinforcement temperature, while for a fixed (deterministic) concrete cover
ci, MR,fi,t,ci is described by the traditional log-normal distribution [91]. Taking this
information into account, the distribution for slab bending moment capacityMR,fi,t is
described by a combination of constituent log-normal distributions, whereby each
constituent log-normal distributionMR,fi,t,ci is valid for a specific fixed concrete cover
ci, and the combination weights Pci correspond with the (lumped) occurrence
probabilities for the respective concrete covers:

MR,fi,t ¼
X
i

PciMR,fi,t,ci ð9:105Þ

Pci ¼
ZciþΔc=2

ci�Δc=2

f c cð Þdc ð9:106Þ

with fc being the PDF for the concrete cover, and Δc the lumping width for the
concrete cover realizations (here: 1 mm). In conclusion,MR,fi,t can be described by a

Fig. 9.33 Observed distribution density (MCS, 104 realizations), log-normal approximation (LN),
and mixed log-normal approximation (mixed LN), for the slab characteristics of Table 9.22, and
different ISO 834 standard fire durations tE
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mixed log-normal distribution. Note that the summation in Eq. (9.105) represents a
combination of log-normal distributions, not a direct summation.

As the constituent distributions MR,fi,t,ci are known to be described by a
log-normal distribution, their parameters can be evaluated using more efficient
sampling techniques (such as Latin hypercube sampling; see [67]). In the current
case however, the model for MR,fi,t is given by an equation, i.e. Eq. (9.102), and a
direct evaluation of the mean μ and standard deviation σ is here also possible through
Taylor approximations:

μMR,fi,t,ci
ffi y μð Þ ð9:107Þ

σ2MR,fi,t,ci
ffi
X
j

∂y μð Þ
∂Xi

	 
2

σ2Xi
ð9:108Þ

where μ indicates the vector of mean values for all stochastic variables Xj in
Eq. (9.1), and y(.) refers to Eq. (9.102) itself.

Fig. 9.34 Observed distribution density (MCS, 104 realizations), log-normal approximation (LN),
and mixed log-normal approximation (mixed LN), for the slab characteristics of Table 9.22, but
with a concrete cover standard deviation of 10 mm instead of 5 mm, and different ISO 834 standard
fire durations tE
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The evaluation of Eqs. (9.107) and (9.108) can readily be done in a spreadsheet,
and so the mixed log-normal distribution for MR,fi,t is fully specified. This mixed
log-normal distribution is compared to the observed MCS histogram in Figs. 9.33
and 9.34, confirming the excellent match.

9.6.2.4 Analytical Failure Probability Estimation

Having established the mixed log-normal distribution as an appropriate modelling
choice forMR,fi,t, the failure probability can be evaluated through Eq. (9.109), where
KT is the total model uncertainty combining both the model uncertainty effects for
the load and resistance effect, and the failure probability is separately evaluated for
each of the log-normal constituent distributions MR,fi,t,ci as Pf,i:

P f ¼ P g < 0½ � ¼ P MR,fi,t � KE

KR
MG þMQð Þ < 0

� �
¼
X
i

Pci:P MR,fi,t,ci � KT MG þMQð Þ < 0
� � ¼X

i

Pci:P f ,i

ð9:109Þ

As both KE and KR are described by a log-normal distribution, also KT is
log-normal. Furthermore, the total load effect E ¼ KT (MG + MQ) can be approxi-
mated by a log-normal distribution as well, for which the mean and standard
deviation can be assessed through Taylor approximations, i.e. Eqs. (9.110) and
(9.111).

The appropriateness of the approximation is visualized in Fig. 9.35 (result of 108

MCS), shown here for the generalized dimensionless case of the load effect divided
by the total characteristic load effect Pk ¼ Gk + Qk, for different load ratio χ. From
the figure it is clear that the log-normal approximation is very good for χ ¼ 0.3, and
becomes less appropriate for higher load ratios. For χ ¼ 0.40 as in this example,
some deviation can thus be expected. As indicated in Fig. 9.35, the log-normal
approximation underestimates the occurrence of large realizations of the total load
effect, and will thus (for low failure probabilities) underestimate the probability of
failure:

μE ffi μKT
μG þ μQ
� � ð9:110Þ

σ2E ffi σ2KT
μG þ μQ
� �2 þ μ2KT

σ2G þ σ2Q

� �
ð9:111Þ

The introduction of an approximate log-normal total load effect E allows to
evaluate Eq. (9.109) analytically. More specifically, Pf,i can be elaborated as
Eq. (9.112), where Z follows a log-normal distribution (considering log-normality
of both MR,fi,t,ci and E). The parameters of Z, i.e. μlnZ and σlnZ, are given by
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Eqs. (9.113) and (9.114), which are applications of Eqs. (9.56) and (9.57) in Sect.
9.5.2.

Thus, Eq. (9.115) holds and Pfi can be evaluated directly. Results for the mean
and standard deviation of the constituent log-normal distributions MR,fi,t,ci are given
in Table 9.24, together with their constituent probability Pi and failure probability Pf,

i (considering μE ¼ 22.2 kNm and VE ¼ 0.21, calculated from Sects. 9.6.2.1 and
9.6.2.2). Note that the COV of the constituent MR,fi,t,ci is quasi-constant at 0.09.

The resulting estimate for Pf is 4.9 � 10�5, which corresponds with a reliability
index β ¼ 3.9. Despite the approximations, this result gives a correct order of
magnitude evaluation of Pf, without requiring the application of specialized reliabil-
ity methods. The calculation can be done in a spreadsheet. Furthermore, Table 9.24
also clearly shows how the largest contribution to the failure probability comes from
the lower concrete cover realizations (i.e. the failure probability contributions of the
ci constituents up to 34.5 mm amount to 4.8 � 10�5). This example also illustrates
the benefit of communicating small failure probabilities through the reliability index
β, as this highlights the comparability of the approximate result with the MCS
evaluation:

Fig. 9.35 Comparison total load model KT�(G + Q) and log-normal approximation E (MCS, 108

realizations), for different load ratio χ
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P f ,i ¼ P MR,fi,t,ci � E < 0
� � ¼ P

MR,fi,t,ci

E
< 1

� �
¼ P Z < 1½ � ð9:112Þ

μ ln Z ¼ μlnMR,fi,t,ci � μ lnE ð9:113Þ

Table 9.24 Constituent models (log-normal MR,fi,t,ci: ci, Pi, mean, and standard deviation),
corresponding failure probability Pfi, and contribution to the overall failure probability Pi�Pf,i.
Calculation of the overall failure probability Pf ¼ 4.9 � 10�5

Concrete cover ci
[mm] Pi [�]

μmR,fi,t,ci
[kNm]

σmR,fi,t,ci
[kNm] Pf,i [�] Pi � Pfi [�]

20.5 4.0 � 10�5 35.17 3.31 1.9 � 10�2 7.4 � 10�7

21.5 5.5 � 10�4 37.28 3.51 9.7 � 10�3 5.3 � 10�6

22.5 2.1 � 10�3 39.91 3.75 4.2 � 10�3 8.9 � 10�6

23.5 5.2 � 10�3 42.50 3.99 1.8 � 10�3 9.3 � 10�6

24.5 9.7 � 10�3 44.98 4.23 7.9 � 10�4 7.7 � 10�6

25.5 1.6 � 10�2 47.37 4.45 3.5 � 10�4 5.6 � 10�6

26.5 2.3 � 10�2 49.67 4.66 1.6 � 10�4 3.7 � 10�6

27.5 3.1 � 10�2 51.88 4.87 7.7 � 10�5 2.4 � 10�6

28.5 3.9 � 10�2 54.00 5.07 3.8 � 10�5 1.5 � 10�6

29.5 4.7 � 10�2 56.03 5.25 1.9 � 10�5 8.9 � 10�7

30.5 5.5 � 10�2 57.99 5.44 9.8 � 10�6 5.4 � 10�7

31.5 6.2 � 10�2 58.89 5.49 7.1 � 10�6 4.3 � 10�7

32.5 6.7 � 10�2 59.65 5.53 5.4 � 10�6 3.6 � 10�7

33.5 7.1 � 10�2 60.36 5.57 4.1 � 10�6 2.9 � 10�7

34.5 7.3 � 10�2 61.04 5.60 3.2 � 10�6 2.3 � 10�7

35.5 7.3 � 10�2 61.68 5.63 2.5 � 10�6 1.8 � 10�7

36.5 7.1 � 10�2 62.29 5.66 2.0 � 10�6 1.4 � 10�7

37.5 6.7 � 10�2 62.86 5.68 1.6 � 10�6 1.1 � 10�7

38.5 6.2 � 10�2 63.40 5.71 1.3 � 10�6 8.3 � 10�8

39.5 5.5 � 10�2 63.91 5.73 1.1 � 10�6 6.1 � 10�8

40.5 4.7 � 10�2 64.39 5.75 9.4 � 10�7 4.4 � 10�8

41.5 3.9 � 10�2 64.83 5.76 7.9 � 10�7 3.1 � 10�8

42.5 3.1 � 10�2 64.80 5.74 7.9 � 10�7 2.4 � 10�8

43.5 2.3 � 10�2 64.67 5.71 8.2 � 10�7 1.9 � 10�8

44.5 1.6 � 10�2 64.53 5.68 8.5 � 10�7 1.3 � 10�8

45.5 9.7 � 10�3 64.38 5.65 8.8 � 10�7 8.6 � 10�9

46.5 5.2 � 10�3 64.22 5.62 9.2 � 10�7 4.8 � 10�9

47.5 2.1 � 10�3 64.05 5.59 9.6 � 10�7 2.1 � 10�9

48.5 5.5 � 10�4 63.88 5.56 1.0 � 10�6 5.6 � 10�10

49.5 4.0 � 10�5 63.69 5.53 1.1 � 10�6 4.3 � 10�11P
i
Pi ¼ 1

P
i
Pi � P f ,i ¼ 4:9 � 10�5

9 Uncertainty in Structural Fire Design 401



σ ln Z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ2lnMR,fi,t,ci

þ σ2lnE

q
ð9:114Þ

P f ,i ¼ P Z < 1½ � ¼ Φ
ln 1ð Þ � μ ln Z

σ ln Z

	 

¼ Φ � μ ln Z

σ ln Z

	 

ð9:115Þ

9.6.3 Application of LHS

A W14x53 steel column section is part of the gravity system in a multistorey frame.
Typical floor height is 3.962 m, with column ends constrained from rotation. The fire
protection is designed based on the International Building Code guidelines for 2-h
fire resistance, with a calculated mean fire protection thickness of 33.4 mm. The
column has a characteristic yield strength of 345 MPa.

The question is to evaluate the mean and standard deviation of the column
capacity (Pn) after exposure to 2 h of ASTM E119 (ISO 834), considering as single
stochastic variable the yield strength of steel, in accordance with the model by
Elhami Khorasani et al. [55] as presented in Sect. 9.4.2.

Solution
The problem is solved using both Monte Carlo simulations (MCS) and Latin
hypercube sampling (LHS). The effectiveness of LHS is demonstrated by running
both MCS and LHS with different number of samples and tracking the rate of
convergence. The final results for the mean and standard deviation of calculated
column capacity are presented in Table 9.25 using MCS and Table 9.26 using LHS.

Figure 9.36 shows the cumulative distribution function for the column capacity
calculated using MCS and LHS with 10,000 and 500 samplings, respectively.

Table 9.25 Mean and standard deviation of Pn using MCS

No. of iterations 50 100 500 1000 2000 3000 4000 5000 7000 10,000

Mean 2469 2505 2486 2482 2473 2470 2480 2476 2467 2475

Standard
deviation

295 319 328 339 341 342 336 341 342 340

Table 9.26 Mean and standard deviation of Pn using LHS

No. of iterations 10 20 30 40 50 100 150 200 250 500

Mean 2495 2475 2473 2478 2473 2475 2475 2475 2475 2475

Standard deviation 294 360 342 338 346 342 342 340 341 340
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9.6.4 Application of Fragility Curves

Fragility curves listing the probability of specified damage states in function of an
intensity measure, as applied in earthquake engineering, have not yet been exten-
sively developed for structural fire engineering applications. As noted in Sect. 9.5.6,
a notable exception is the work by Ioannou et al. [79, 80] where expert elicitation
was applied. Details of the procedure can be found in the full reference; the
following gives an overview of the damage states specified and results obtained in
order to clarify the concept of fragility curves.

Response measures including the presence and extent of spalling, residual capac-
ity, span/deflection ratio, and peak rebar temperature were compared by Ioannou
et al. [79, 80] with equivalent duration of standard fire exposure as an intensity
measure. These response measures were linked with damage states based on the
damage scale proposed by the concrete society [94], Table 9.27, resulting in the
development of fragility curves for concrete slabs and concrete columns.

As part of the expert elicitation, 13 experts in structural fire engineering were
asked to judge the relationship of these different response measures to the fire
intensity, i.e. P(RM ¼ y j IM ¼ x), for the fifth percentile, the mean, and the 95th
percentile of the distribution. The intensity measure against which the response was
conditioned was the time equivalence based on Ingberg’s work [95]. As part of the

Fig. 9.36 CDF for column capacity calculated using MCS and LHS

9 Uncertainty in Structural Fire Design 403



same exercise, the same experts were asked to judge the relationship between
response thresholds and the different damage states defined in Table 9.27, i.e. P
(DS � dsi j RM ¼ y), for the fifth, mean, and 95th percentiles of the distributions.
Based on P(DS� dsi j RM¼ y) a quantified damage scale for slabs and columns was
created as shown in Table 9.28, accounting also for the uncertainty of the experts’
judgement.

Fragility functions were then created through a random sampling technique which
couples the relationships of response measure (RM) to intensity measure (IM) and
damage state (DS) to response measure (RM). The procedure for this is described in
both Ioannou et al. [80] and in more detail in Porter and Kiremidjian [96]. In
summary however this involves drawing a random sample from the unit interval,
which is used to select a value of RM conditioned on IM that has cumulative
probability equal to this random number. Then the probability that each damage
state will be reached or exceeded is determined by drawing another random sample
on the unit interval to select a value of DS conditional on the RM. A large number of
iterations of this is then performed to determine the probability that a building or
component will sustain a damage level DS � dsi. Figure 9.37 shows the resulting
fragility curves derived using this method by Ioannou et al. [80].

This same technique can be used to derive fragility functions based on relation-
ships of DS, RM, and IM which are obtained through other means.

Acknowledgement The support of Inzienge Inerhunwa in reviewing the text is gratefully
acknowledged.

Table 9.27 Visual damage state classification table for reinforced concrete elements [80]

DS

Surface appearance of concrete

Description
Condition of
finish Colour Crazing

ds0 Unaffected or
beyond the extent
of fire

ds1 Some peeling Normal Slight Damage primarily cosmetic in nature, which
does not impact the design or repair of the
structural fabric of RC buildings

ds3 Total loss Pink/red Extensive The element has experienced a significant,
but not catastrophic, amount of damage to the
effect that, with significant remedial action, it
can be reinstated to perform its structural
functions

Whitish
grey

ds4 Destroyed Whitish
grey

Surface
lost

The damage caused by the fire is so extensive
that it is no longer viable to repair and reuse
the element and replacing the element with a
new element is the only option. The building
has not suffered a disproportionate collapse
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