
Partial Array Token Petri Net
and P System

K. Sasikala1, F. Sweety1, T. Kalyani2(B), and D. G. Thomas3

1 Department of Mathematics, St. Joseph’s college of Engineering,
Chennai 600119, India

2 Department of Mathematics, St. Joseph’s Institute of Technology,
Chennai 600119, India

3 Department of Applied Mathematics, Saveetha School of Engineering, SIMATS,
Chennai 602105, India

Abstract. The innovative model of partial array languages generated
by basic puzzle partial array grammars is available in the literature. Here
we define Partial array Token Petri Net Structure (PATPNS) to gener-
ate partial array languages. Further we introduce Partial Array Token
Petri Net P System (PATPNPS) to generate partial array languages
and compared with basic puzzle partial array grammars for generative
power. PATPNS is also compared with local and recognizable partial
array languages.

Keywords: Partial array · Basic puzzle partial array grammar ·
Partial Array Token Petri Net

1 Introduction

In the context of a syntactic approach to pattern recognition, there have been
several studies in the last few decades on theoretical models for generating or
recognizing two-dimensional objects, pictures and picture languages [2]. Picture
languages generated by several array grammars, matrix grammars have been
advocated since the seventies and they have been applied in practical problems
such as character recognition, pattern recognition, kolam patterns and tiling
systems.

Petri nets are the models in mathematics proposed to model dynamic sys-
tems. To simulate the activity of the dynamic system tokens are used, repre-
sented by black dots. The tokens move when the transition fires. Array token
Petri nets [3–7,10] are proposed to generate array languages. The arrays over an
alphabet are used as tokens over an alphabet not the black dots. The transitions
are associated with catenation rules. Firing of transitions helps to catenate the
arrays to build bigger arrays.

The class of grammars with array rewriting methods is a dynamic device
to describe picture languages. The picture languages produced by such array

c© Springer Nature Switzerland AG 2021
R. Freund et al. (Eds.): CMC 2020, LNCS 12687, pp. 135–152, 2021.
https://doi.org/10.1007/978-3-030-77102-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77102-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-77102-7_8


136 K. Sasikala et al.

grammars, matrix grammars have been applied in practical problems. Nivat et
al. [8] proposed puzzle grammars to generate two-dimensional picture languages.

Partial words were introduced by Berstel and Boasson [1]. Later on, Par-
tial array languages were introduced in [14] and the combinatorial properties of
partial array languages were studied in [15]. Gh. Paun [9] introduced a compu-
tational model, called P system. The notion of P system related to arrays can
be seen in [12]. Partial array grammars and partial array rewriting - P system
were introduced in [11]. We have proposed Basic Puzzle Partial Array Gram-
mar (BPPAG) to generate Partial array languages and studied the generative
capacity of the resulting partial array P system with BPPAG [13]. Motivated by
these studies, in this paper, we introduce Partial Array Token Petri Net Struc-
ture (PATPNS) and Partial Array Token Petri Net P System (PATPNPS) to
generate partial array languages and we examine the generative capacity of both
systems and give some comparison results. PATPNS is compared with local and
recognizable partial array languages and we have proved that PATPNS has more
generative power.

2 Preliminaries

The basic concepts and definitions of Partial Word, Partial Array, Basic Puzzle
Partial Array Grammar and Petri Net are given here with examples.

Definition 1. [1] A partial word u of length n over Σ, is a partial function
u : N → Σ. For 1 ≤ i ≤ n, if u(i) is defined, then we say that i belongs to the
domain of u (denoted by i ∈ D(u)); Otherwise, we say that i belongs to the set of
holes of u (denoted by i ∈ H(u)). A word over Σ is a partial word over Σ with
an empty set of holes. H(u) is the set of positions in which the ‘do not know’
symbol ‘♦’ appears in u.

Definition 2. [1] If u is a partial word of length n over Σ, then the companion
of u (denoted by u♦) is the total function u♦ : N → Σ ∪ {♦} defined by

u♦(i) =
{

u(i), i ∈ D(u);
♦, otherwise. where ♦ �∈ Σ.

The symbol ‘♦’ is viewed as a ‘do not know’ symbol and not as a ‘do not care’
symbol as in pattern matching.

Definition 3. [14] A partial array A of size m × n over Σ is a partial function
A : Z2

+ → Σ, where Z is the set of all positive integers. For 1 ≤ i ≤ m,
1 ≤ j ≤ n, if A(i, j) is defined then we say that (i, j) belongs to the domain of
A (denoted by (i, j) ∈ D(A)); Otherwise, we say that (i,j) belongs to the set of
holes of A (denoted by (i, j) ∈ H(A)). An array over Σ is partial array over
Σ with an empty set of holes. H(A) is the set of positions in which the ‘do not
know’ symbol ‘♦’ appears in A.



Partial Array Token Petri Net and P System 137

Definition 4. [14] If A is a partial array of size m × n over Σ, then the com-
panion of A (denoted by A♦) is the total function A♦ : Z2

+ → Σ ∪ {♦} defined
by

A♦(i, j) =
{

A(i, j), (i, j) ∈ D(A);
♦, otherwise. where ♦ �∈ Σ.

Example 1. [14] The Partial array, A♦ =

⎛
⎝ a b a

♦ b a
a ♦ b

⎞
⎠ is a companion of a partial

array A of size (3, 3) where D(A) = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 1), (3, 3)}
and H(A) = {(2, 1), (3, 2)}
Definition 5. [14] If A and B are two partial arrays of equal size, then A is
contained in B, denoted by A ⊂ B if D(A) ⊆ D(B) and A(i, j) = B(i, j) for all
(i, j) ∈ D(A). The partial arrays A and B are said to be compatible, denoted by
A ↑ B if there exists a partial array C such that A ⊂ C and B ⊂ C.

A♦ =

⎛
⎝ a b a

♦ b a
a ♦ b

⎞
⎠ and B♦ =

⎛
⎝♦ b ♦

a b a
a ♦ b

⎞
⎠ are the companions of two partial

arrays A and B that are compatible.

The set of all partial arrays over Σ is denoted by Σ∗∗
p , where Σp = Σ ∪ {♦}.

We denote the empty array with no symbols by Λ and Σ++
p = Σ∗∗

p − {Λ}. The

set of all partial arrays over Σ of size (k, r), k ≤ m, r ≤ n is denoted by Σ
(k,r)
p .

Definition 6. [13] The structure of a Basic Puzzle Partial Array Grammar
(BPPAG) is BPGp = (A,B ∪ {♦}, P, S) where A is a finite non empty set of
non terminal symbols and B is a finite non empty set of terminal symbols. ‘♦’
is a ‘do not know’ symbol, where ♦ �∈ A ∪ B, S ∈ A is the axiom pattern and P
is a set of rules of the following forms:

(i) X → x Y (ii) X → ♦ Y (iii) X → Y x

(iv) X → Y ♦ (v) X → Y x (vi) X → Y ♦

(vii) X → x Y (viii) X → ♦ Y (ix) X → x

Y

(x) X → ♦
Y

(xi) X → Y

x
(xii) X → Y

♦

(xiii) X → Y
x

(xiv) X →
Y

♦ (xv) X → x

Y

(xvi) X → ♦
Y

(xvii) X → x (xviii) X → ♦

where X,Y ∈ A and x, y ∈ B.



138 K. Sasikala et al.

While processing the derivations in the production rule X → x Y , the non-
terminal X is replaced by the right-hand member whose left-hand side is X.

The replacement is possible only if the noncircled symbol of the production
rule consists of a blank symbol. The blank symbol is represented by the letter
‘#’, which is an unoccupied place where any symbol can be occupied as per the
derivation. The language generated by BPPAG is denoted by L(BPPAG).

Example 2. [13] Consider a BPPAG BPGp1 = (A,B ∪ {♦}, P, S) where A =
{X,Q,R, S1, T, U, V }, B = {z}, S = X and P consists of the following rules:

(i) X → z Q (ii) Q → z Q (iii) Q → R
z

(iv) R → S1 z (v) S1 → z (vi) S1 → S1 ♦
(vii) S1 → T

z
(viii) T → z T (ix) T → z

(x) T → ♦ T (xi) T → U
z

(xii) U → U z

(xiii) U → z (xiv) T → R
z

This grammar generates square partial arrays of size (m × m,m ≥ 2) with
(m − 2 × m − 2,m ≥ 2) square partial array in the center consisting of only {♦}
symbol bounded by the terminal alphabet ‘z’ on the boundary of the square, for

m = 2, the grammar generates 2 × 2 square array
z z
z z

.

The first three members of the language are given below:

z z
z z

z z z
z ♦ z
z z z

z z z z
z ♦ ♦ z
z ♦ ♦ z
z z z z

. . .

A Petri Net [10] is an abstract formal model of information flow. Petri nets
have been used for analyzing systems that are concurrent, asynchronous, dis-
tributed, parallel, non-deterministic and/or stochastic. Tokens are used in Petri
Nets to simulate dynamic and concurrent activities of the system. A language
can be associated with the execution of a Petri Net. By defining a labeling func-
tion for transitions over an alphabet, the set of all firing sequences, starting from
a specific initial marking leading to a finite set of terminal markings, generates
a language over the alphabet. Petri Net structure to generate rectangular arrays
are found in [3–5]. The two models have different firing rules and catenation
rules. In [6], Column Row Catenation Petri Net Structure (CRCPNS) has been
defined. Several input places having different arrays is associated with a catena-
tion rules label. The label of the transition decides the order in which the arrays
are joined (column wise or row wise) provided the condition for catenation is
satisfied. In CRCPNS a transition with a catenation rule as label and different
arrays in the input places is enabled to fire. In ATPNS [15] the catenation rule



Partial Array Token Petri Net and P System 139

involves an array language. All the input places of the transition with a catena-
tion rule as label, should have the same array as token, for the transition to be
enabled. The size of the array language to be joined to the array in the input
place, depends on the size of the array in the input place.

Definition 7. [5] A Petri Net structure is a four tuple C = (P, T, I,O) where
P = {p1, p2, . . . , pn} is a finite set of places, n > 0, T = {t1, t2, . . . , tm} is a
finite set of transitions, m > 0, P ∩ T = φ, I : T → P∞ is the input function
from transitions to bags of places and O : T → P∞ is the output function from
transitions to bags of places, where P∞ is the bags of places.

Definition 8. [5] A Petri Net marking is an assignment of tokens to the places
of Petri Net. The tokens are used to define the execution of a Petri Net. The
number and position of tokens may change during the execution of a Petri Net,
arrays over an alphabet are used as tokens.

3 Partial Array Token Petri Net Structure

In this section, we define Partial Array Token Petri Net Structure (PATPNS)
with an example and compare it with basic puzzle partial array languages.

Definition 9. If C = (P, T, I,O) is a Petri Net structure with partial arrays
over (Σ ∪ {♦})∗∗ as initial markings. μ0 : P → (Σ ∪{♦})∗∗ label of at least one
transition being catenation rule and a finite set of final places F ⊂ P , then the
Petri net structure C is defined as a Partial Array Token Petri Net Structure
(PATPNS).

Definition 10. If C is a PATPNS, then the Partial array language generated
by the Petri Net C is defined as

PL(C) = {A♦ ∈ (Σ ∪ {♦})∗∗ / A♦ is in p for some p in F}
with partial arrays over (Σ ∪ {♦})∗∗ in some places as initial marking when all
possible sequences of transitions are fired. The set of all partial arrays collected
in the final places F is called the partial array language generated by C. Let
L(PATPNS) = {PL(C)/C is a PATPNS}.

(Σ ∪ {♦})∗∗ denotes the partial arrays made up of elements of Σ ∪ {♦}. If
A and B are two partial arrays having same number of rows then A | B is the
column wise catenation of A and B. If two partial arrays have the same number
of columns then A − B is the row wise catenation of A and B. (x)n denotes a
horizontal sequence of n ‘x’ and (x)n denotes a vertical sequence of n ‘x’ where
x ∈ (Σ ∪ {♦})∗∗, (x)n+1 = (x)n | x and (x)n+1 = (x)n − x.

The Petri Net model defined here has places and transitions connected by
directed arcs. Rectangular partial arrays over an alphabet are taken as tokens
to be distributed in places. Variation in firing rules and labels of the transition
are listed out below.



140 K. Sasikala et al.

Firing Rules in PATPNS
We define three different types of enabled transition in PATPNS. The pre and
post condition for firing the transition in all the three cases are given below:

1. When all the input places of t1 (without label) have the same partial array
as token.

– Each input place should have at least the required number of partial
arrays.

– Firing t1 removes partial array from all the input places and moves the
partial array to all its output places.

The graph in Fig. 1 shows the position of the partial array before the transition
fires and Fig. 2 shows the position of the partial array after transition t1 fires.

P2

P1
P3

t1
A

A

Fig. 1. Position of partial array before firing

P2

P1
P3

t1

A

Fig. 2. Position of partial array after firing

2. When all the input places of t1 have different partial arrays as token
– The label of t1 designates one of its input places.
– The designated input place has sufficient number of partial arrays as

tokens.
– Firing t1 removes partial array from all the input places and moves the

partial array from the designated input place to all its output places.
The graph in Fig. 3 shows the position of the partial array before the transition
fires and Fig. 4 shows the position of the partial array after transition t1 fires.
Since the designated place is P1, the partial array in P1 is moved to the output
place.

3. When all the input places of t1 (with catenation rule as label) have the same
partial array as token

– Each input place should have at least the required number of partial
arrays.



Partial Array Token Petri Net and P System 141

– The condition for catenation should be satisfied.
– The designated input place has sufficient number of partial arrays as

tokens.
– Firing t1 removes partial array from all the input places P and the cate-

nation is carried out in all its output places.

P2

P1
P3

A 1

A 2

1     1t  (p )

Fig. 3. Transition with label before firing

P2

P1
P3

1     1t  (p )

A 1

Fig. 4. Transition with label after firing

Catenation Rule as Label for Transitions
Column catenation rule is in the form A | B. Here the partial array A denotes
the m × n partial array in the input place of the transition. B is a partial array
whose number of rows will depend on ‘m’, the number of rows of A. The number
of columns of B is fixed. For example A | (x x)m adds two columns of x

after the last column of the partial array A which is in the input place. But
(x x)m | A would add two columns of x before the first column of A. ‘m’
always denote the number of rows of the input partial array A. Row catenation
rule is in the form A − B. Here again the partial array A denotes the m × n

partial array in the input place of the transition. B is a partial array whose
number of columns will depend on ‘n’, the number of columns of A. The number

of rows of B is always fixed. For example A −
[

x
x

]n

adds two rows of x after

the last row of the array A which is in the input place. But
[

x
x

]n

− A would

add two rows of x before the first row of the partial array A. ‘n’ always denotes
the number of columns of the input partial array A.

An example to explain row catenation rule is given below. The position of
the partial array before the transition fires is shown in Fig. 5 and Fig. 6 shows



142 K. Sasikala et al.

Aθ(x)n−1y

P3

P1

P2

t1
A1

A1

Fig. 5. Transition with catenation rule before firing

P1

P2

t1

A1 = Aθ(x)n−1y, θ =

P3A1

Fig. 6. Transition with catenation rule after firing

the position of the partial array after transition t1 fires. Since the catenation
rule is associated with the transition, catenation takes place in P3.

In A♦ =
a a a
a ♦ a
a a a

, the number of columns of A is 3, n − 1 is 2, firing t1 adds

the row x x y as the last row. Hence A1♦ =

a a a
a ♦ a
a a a
x x y

Example 3. Let Σ = {a}, F = P1, where S♦ =
a a a
a ♦ a
a a a

, Q1 = (♦)m, Q2 = (♦)n

Q3 = (a)m, Q4 = (a)n

S is the initial partial array placed in P1. The PATPNS is shown in Fig. 7.
Derivations in PATPNS is given in the following tabular column.

Input place Transition Output place

S A | Q1

a a a ♦
a ♦ a ♦
a a a ♦

a a a ♦
a ♦ a ♦
a a a ♦

Q1 | A

♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦

♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦

A − Q2

♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦
♦ ♦ ♦ ♦ ♦



Partial Array Token Petri Net and P System 143

Input place Transition Output place

♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦
♦ ♦ ♦ ♦ ♦

Q2 − A

♦ ♦ ♦ ♦ ♦
♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦
♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦
♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦
♦ ♦ ♦ ♦ ♦

A | Q3

♦ ♦ ♦ ♦ ♦ a

♦ a a a ♦ a

♦ a ♦ a ♦ a

♦ a a a ♦ a

♦ ♦ ♦ ♦ ♦ a

♦ ♦ ♦ ♦ ♦ a

♦ a a a ♦ a

♦ a ♦ a ♦ a

♦ a a a ♦ a

♦ ♦ ♦ ♦ ♦ a

Q3 | A

a ♦ ♦ ♦ ♦ ♦ a

a ♦ a a a ♦ a

a ♦ a ♦ a ♦ a

a ♦ a a a ♦ a

a ♦ ♦ ♦ ♦ ♦ a

a ♦ ♦ ♦ ♦ ♦ a

a ♦ a a a ♦ a

a ♦ a ♦ a ♦ a

a ♦ a a a ♦ a

a ♦ ♦ ♦ ♦ ♦ a

A − Q4

a ♦ ♦ ♦ ♦ ♦ a

a ♦ a a a ♦ a

a ♦ a ♦ a ♦ a

a ♦ a a a ♦ a

a ♦ ♦ ♦ ♦ ♦ a

a a a a a a a

a ♦ ♦ ♦ ♦ ♦ a

a ♦ a a a ♦ a

a ♦ a ♦ a ♦ a

a ♦ a a a ♦ a

a ♦ ♦ ♦ ♦ ♦ a

a a a a a a a

Q4 − A

a a a a a a a

a ♦ ♦ ♦ ♦ ♦ a

a ♦ a a a ♦ a

a ♦ a ♦ a ♦ a

a ♦ a a a ♦ a

a ♦ ♦ ♦ ♦ ♦ a

a a a a a a a

The firing of sequence (t1t2t3t4t5t6t7t8)k, k ≥ 0 puts a square partial arrays
of size 4k + 3 in P1, where the boundaries of the squares are alternatively ♦’s
and a’s. The partial array language generated by the PATPNS is a square partial
array of size 4k+3, k ≥ 0 where the boundaries are alternatively ♦’s on the odd
numbered boundaries and a’s on the even numbered boundaries.

Theorem 1. The family of languages generated by PATPNS is properly con-
tained in the family of languages generated by Basic Puzzle Partial Array Gram-
mars.

Proof. The row catenation in PATPNS can be handled by the following Basic
Puzzle Partial Array Grammar rules:

(i) X → x

Y
(ii) X → ♦

Y
(iii) X → Y

♦ (iv) X → Y

x



144 K. Sasikala et al.

AQ4 AQ2

t1

P2

S

P1 P3
t2

P4
t3

Q1A Q1 A A Q2

t5t6t7
P5P6P7P8 A Q3Q3 AA Q4

t8 t4

Fig. 7. PATPNS generating square partial arrays of size 4k + 3, k ≥ 0

(v) X → Y
x

(vi) X →
Y

♦ (vii) X → x

Y
(viii) X → ♦

Y

(ix) X → x (x) X → ♦
The column catenation in PATPNS can be handled by the following Basic

Puzzle Partial Array Grammar rules:

(i) X → x Y (ii) X → ♦ Y (iii) X → Y x

(iv) X → Y ♦ (v) X → Y x (vi) X → Y ♦

(vii) X → ♦ Y (viii) X → x Y (ix) X → x (x) X → ♦
Hence L(PATPNS) is a subset of L(BPPAG), this is also evident from the

following example.
Consider a partial array language of square partial arrays of size 4k + 3,

k ≥ 0 whose boundaries are alternatively ♦’s on the odd numbered boundaries
and a’s on the even numbered boundaries given in Example 3. This partial array
language is generated by both systems PATPNS and BPPAG.

Now let us consider a BPPAG generating this partial array language.

BPGP2 = (A,B ∪ {♦}, P, S)

where A = {X,Q1, Q2, Q3, Q4, Q5, Q6}, B = {a}, S = X and P consists of the
following rules:

(i) X → a Q (ii) Q → a Q (iii) Q → Q1

a

(iv) Q1 → Q2 a (v) Q2 → Q3 ♦ (vi) Q3 → Q4

a



Partial Array Token Petri Net and P System 145

(vii) Q4 → a Q5 (viii) Q5 → a Q5 (ix) Q5 → a

(x) Q3 → ♦ Q3 (xi) Q5 → ♦ Q6 (xii) Q6 → a Q6

(xiii) Q6 → ♦ Q (xiv) Q3 → Q2 a (xv) Q3 → Q3 ♦

(xvi) Q → ♦ Q

The first member of the language generated is shown below:

X
(i)−→ a Q

(ii)−−→ a a Q
(iii)−−→ Q1

a a a
(iv)−−→ Q2 a

a a a

(v)−−→ Q3 ♦ a

a a a

(vi)−−→
Q4

a ♦ a
a a a

(vii)−−−→
a Q5

a ♦ a
a a a

(viii)−−−→
a a Q5

a ♦ a
a a a

(ix)−−→
a a a
a ♦ a
a a a

The partial array language given in Example 2 generated by BPPAG cannot

be generated by PATPNS, since the axiom array
z z
z z

can only be concatenated

either row wise or column wise, but ♦ cannot be inserted, which proves a proper
containment.

4 Partial Array Token Petri Net P System

In this section, Partial Array Token Petri Net P System (PATPNPS) is intro-
duced and it is compared with PATPNS and BPPAG.

Definition 11. A Partial Array Token Petri Net P System (PATPNPS) π =
(V, T ∪ {♦},#, μ, F1, F2, . . . , Fm, R1, R2, . . . , Rm, i0) where V is a finite set of
column partial arrays and row partial arrays of the form Q1 = (a)n and
Q2 = (a)m where a ∈ T ∪ {♦}. T is a finite set of terminal alphabets. ‘#’
is a blank symbol not in T ∪ {♦}. μ is a membrane structure with ‘m’ mem-
branes, F1, F2, . . . , Fm are finite set of partial arrays over T ∪ {♦} associated
with the ‘m’ regions. R1, R2, . . . , Rm are rules associated with the m regions of
the form

(
{A − Q,A | Q}, tar, P

)
, where tar ∈ {here, in, out} and P is the

output obtained after the catenation rule is applied.

If the target indication is ‘here’, the output partial array ‘P ’ remains in the
same region, if the target indication is ‘in’, ‘P ’ goes to the immediate inner
region and if the target indication is ‘out’ it goes to the outer membrane, i0 is
the elementary membrane of μ.

A computation in a partial array token petri net P system is defined in the
same way as in array rewriting P system. The set of all partial arrays computed
by π with ‘m’ membranes is denoted by PATPNPLm(π).



146 K. Sasikala et al.

Example 4. Consider the Partial Array Token Petri Net P System PATPNPS

π1 = ({Q1, Q2, Q3, Q4}, {a,♦},#, [1[2[3]2]1, F1♦, F2♦, F3♦, R1, R2, R3, 3)

where Q1 = (♦)m, Q2 = (♦)n, Q3 = (a)m, Q4 = (a)n, F1♦ =
a a a
a ♦ a
a a a

, F2♦ =

F3♦ = φ,

R1 =

{
(F1 | Q1, here, P1), (Q1 | P1, here, P1), (P1 − Q2, here, P1),

(Q2 − P1, in, P1), (P2 | Q1, here, P1)

}
;

R2 =

{
(P1 | Q3, here, P2), (Q3 | P2, here, P2), (P2 − Q4, here, P2),

(Q4 − P2, in, P2), (Q4 − P2, out, P2)

}

R3 = φ.

The content of region 1 is F1♦ =
a a a
a ♦ a
a a a

. The derivations in PATPNPS is

given in the following tabular column:
Region(i) Content(Fi♦) Rule(Ri) Target Resultant partial array (Pi)

1
a a a
a ♦ a
a a a

F1 | Q1 here
a a a ♦
a ♦ a ♦
a a a ♦

1
a a a ♦
a ♦ a ♦
a a a ♦

Q1 | P1 here
♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦

1
♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦

P1 − Q2 here

♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦
♦ ♦ ♦ ♦ ♦

1

♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦
♦ ♦ ♦ ♦ ♦

Q2 − P1 in

♦ ♦ ♦ ♦ ♦
♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦
♦ ♦ ♦ ♦ ♦

2

♦ ♦ ♦ ♦ ♦
♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦
♦ ♦ ♦ ♦ ♦

P1 | Q3 here

♦ ♦ ♦ ♦ ♦ a
♦ a a a ♦ a
♦ a ♦ a ♦ a
♦ a a a ♦ a
♦ ♦ ♦ ♦ ♦ a

2

♦ ♦ ♦ ♦ ♦ a
♦ a a a ♦ a
♦ a ♦ a ♦ a
♦ a a a ♦ a
♦ ♦ ♦ ♦ ♦ a

Q3 | P2 here

a ♦ ♦ ♦ ♦ ♦ a
a ♦ a a a ♦ a
a ♦ a ♦ a ♦ a
a ♦ a a a ♦ a
a ♦ ♦ ♦ ♦ ♦ a

2

a ♦ ♦ ♦ ♦ ♦ a
a ♦ a a a ♦ a
a ♦ a ♦ a ♦ a
a ♦ a a a ♦ a
a ♦ ♦ ♦ ♦ ♦ a

P2 − Q4 here

a ♦ ♦ ♦ ♦ ♦ a
a ♦ a a a ♦ a
a ♦ a ♦ a ♦ a
a ♦ a a a ♦ a
a ♦ ♦ ♦ ♦ ♦ a
a a a a a a a



Partial Array Token Petri Net and P System 147

Region(i) Content(Fi♦) Rule(Ri) Target Resultant partial array (Pi)

2

a ♦ ♦ ♦ ♦ ♦ a
a ♦ a a a ♦ a
a ♦ a ♦ a ♦ a
a ♦ a a a ♦ a
a ♦ ♦ ♦ ♦ ♦ a
a a a a a a a

Q4 − P2

in
or
out

a a a a a a a
a ♦ ♦ ♦ ♦ ♦ a
a ♦ a a a ♦ a
a ♦ a ♦ a ♦ a
a ♦ a a a ♦ a
a ♦ ♦ ♦ ♦ ♦ a
a a a a a a a

3
(If tar=in)

a a a a a a a
a ♦ ♦ ♦ ♦ ♦ a
a ♦ a a a ♦ a
a ♦ a ♦ a ♦ a
a ♦ a a a ♦ a
a ♦ ♦ ♦ ♦ ♦ a
a a a a a a a

φ -

a a a a a a a
a ♦ ♦ ♦ ♦ ♦ a
a ♦ a a a ♦ a
a ♦ a ♦ a ♦ a
a ♦ a a a ♦ a
a ♦ ♦ ♦ ♦ ♦ a
a a a a a a a
The output is
collected in the

elementary
membrane

1
(If tar=out)

a a a a a a a
a ♦ ♦ ♦ ♦ ♦ a
a ♦ a a a ♦ a
a ♦ a ♦ a ♦ a
a ♦ a a a ♦ a
a ♦ ♦ ♦ ♦ ♦ a
a a a a a a a

P2 | Q1 here
Procedure
continues

Thus the partial array language of square partial arrays of size 4k +3, k ≥ 0,
where the boundaries are alternatively ♦’s on the odd numbered boundaries and
a’s on the even numbered boundaries is generated by this PATPNPS π1.

Theorem 2. L(PATPNPLm(π)) ∩ L(PATPNS) �= φ.

Proof. The partial array language of square partial arrays of size 4k + 3, k ≥ 0
is generated by both systems. It is evident from Examples 3 and 4.

Theorem 3. L(PATPNPLm(π)) ∩ L(BPPAG) �= φ.

Proof. L(PATPNS) is a subclass of the family of Basic Puzzle Partial Array
Languages by Theorem 1. By Theorem 2, we get that L(PATPNPLm(π)) inter-
sects L(PATPNS). Thus the two families intersects.

5 Comparative Study with Local and Recognizable
Partial Array Languages

In this section, we recall Local and Recognizable Partial Array Languages and
compare with PATPNS.

Definition 12. [14] Let Γp = Γ ∪ {♦} be a finite alphabet. A two dimensional
partial array language PL ⊆ Γ ∗∗

p is local if there exists a finite set θ of tiles over
the alphabet Γp ∪ {#} such that PL = {A ∈ Γ ∗∗

p /B2,2(Â) ⊆ θ}, where Â is a
partial array surrounded by a special boundary symbol # �∈ Γ .

The partial array language PL is local if given such a set θ, we can exactly
retrieve the language PL. We call the set θ a representation by tiles for the
local language PL and write PL = L(θ). The family of all local partial array
languages is denoted by PAL-LOC.



148 K. Sasikala et al.

Example 5. [14] Let Γp = {a, b} ∪ {♦}, and θ be the following set of tiles over
Γp ∪ {#}.

θ =
{

# #
# b

,
# #
b b

,
# #
b #

,
# b
# a

,
b b
a ♦ ,

b b
♦ b

,
b #
b #

,
# a
# a

,
a ♦
a a

,
♦ b
a b

,

a a
# #

,
a b
# #

,
# a
# #

,
b #
# #

,
b b
♦ ♦ ,

a ♦
a ♦ ,

♦ ♦
♦ ♦ ,

♦ b
♦ b

,
♦ ♦
a a

}

Then L(θ) is a partial array language over Γp with equal sides of length, the
symbols along the top row (the last row) and right most column (the last column
are b’s, the symbols along the first row (the bottom row) and the left most column
(the first column) except the first and last elements of the principal diagonals
are a’s. The remaining elements of the array are holes.

The first two members of this language are given below:

b b b
a ♦ b
a a b

,

b b b b
a ♦ ♦ b
a ♦ ♦ b
a a a b

, . . .

Definition 13. [14] Let Σ be a finite alphabet. A partial array language PL ⊆
Σ∗∗

p is called recognizable if there exists a local partial array language PL′ over
Γp and a mapping π : Γp → Σp such that PL = π(PL′), where Σp = Σ ∪ {♦}.
The family of all recognizable partial array languages is denoted by PAL-REC.

Example 6. [14] The set of all partial array languages over one letter alphabet ‘a’
with all sides of equal length and the symbols along the first row, first column,
the last row and last column are holes is not a local partial array language,
but it is a recognizable partial array language. This language is obtained from
Example 5 by taking a mapping π : Γp → Σp where Γ = {a, b}, Σ = {a} such
that π(b) = π(a) = ♦ and π(♦) = a.

Theorem 4. PAL − LOC � PATPNS.

Every local partial language can be easily generated by some PATPNS. Let
PL be a partial array language over Γp in PAL-LOC with a finite set of tiles θ
such that PL = L(θ).

Consider the PATPNS, C = (P, T, I,O) with partial arrays over Γ ∗∗
p , S♦ =

# #
# a

, a ∈ Γp. T , the set of all transitions, they can be either row or column

catenations.

(i) For all
# #
# a

∈ θ, where a ∈ Γp we define t1 = A | Q1, where Q1 =
(

#
b

)
,

b ∈ Γp.



Partial Array Token Petri Net and P System 149

(ii) For all
# #
a b

∈ θ, a, b ∈ Γp, we define t2 = A | Q1, where Q1 =
(

#
b

)
,

b ∈ Γp. This transition is repeated till the tile of the form
# #
b #

∈ θ is

reached and let this process be repeated ‘r’ r ≥ 0, no. of times.

(iii) For all
# #
b #

∈ θ, b ∈ Γp, we define t3 = A | Q2, where Q2 =
(

#
#

)
.

(iv) For all
# a
# b

,
a c
b d

,
c #
d #

∈ θ, a, b, c, d ∈ Γp, we define t4 = A − Q3, where

Q3 =
(
# B #

)
, B ∈ Γ

(1×n)
p , where Γ

(1×n)
p is a partial array of size 1 × n.

(v) For all tiles of the form
# a
# #

,
a b
# #

,
b #
# #

∈ θ, a, b ∈ Γp, we define t5 =

A − Q4, Q4 = (#)m, m ≥ 2. Here, A represents the partial array collected
in the output place by the previous transition.

P = {P1, P2, P3, . . . Pk︸ ︷︷ ︸
t2

, Pk+1︸ ︷︷ ︸
t3

, Pk+2, Pk+3, . . . Pk+s+1︸ ︷︷ ︸
t4

, Pk+s+2︸ ︷︷ ︸
t5

},

where P is the set of places, S♦ is placed in P1 initially and then transition t1
is applied, the resultant partial array is stored in P2, and then transition t2 is
applied ‘r’ no. of times. After applying ‘r’ times the transition t2, the partial
array reaches the place Pk, where k = r + 2. After transition t3 is applied the
partial array reaches Pk+1. The transition t4 is repeated ‘s’ s ≥ 0 number of times

until the tile
# a
# #

is reached. After this transition, the partial array reaches the

place Pk+s+1. After transition t5 is applied the partial array reaches the final
place F = Pk+s+2.

The PATPNS generating the local language PL is given in Fig. 8.
Clearly PATPNS can generate any partial array language in PAL-LOC and

hence PAL − LOC ⊆ PATPNS.
Now, to prove the proper inclusion, we consider the partial array language

given in Example 3, the square partial arrays of size 4k+3, k ≥ 0. This language
is not local, since the θ set of this language can also generate any array over one
letter alphabet ‘a’ of size 1 × n, n ≥ 1, where θ is given as follows.

θ =
{

# #
# a

,
# #
a a

,
# #
a #

,
# a
# a

,
a a
a ♦ ,

a a
♦ ♦ ,

a a
♦ a

,
a #
a #

,
a ♦
a ♦ ,

♦ ♦
♦ a

,

♦ ♦
a a

,
♦ ♦
a ♦ ,

♦ a
♦ a

,
a ♦
a a

,
♦ a
a a

,
♦ a
♦ ♦ ,

a a
♦ ♦ ,

a ♦
♦ ♦ ,

a a
# #

,
a #
# #

}

Hence PAL-LOC is properly contained in PATPNS.



150 K. Sasikala et al.

. . . . . .

. . .
. . .

Q1A Q1A Q1A

Q2A

Q3A

Q4A

Q3A

t1

P2P1
t2

Pk

S♦

t3

Pk+1

Pk+s+1

Pk+s+2

t4

t5

Fig. 8. PATPNS generating any PAL-LOC

Example 7. Consider a PATPNS C = (P, T, I,O), generating a local partial
array language given in Example 5.

Let S♦ =
# #
# b

, Q1 =
[
#
b

]
, Q2 =

[
#
#

]
, Q3 =

[
# B #

]
, B ∈ Γ 1×n

p , where

B = a (♦)r b, Q4 = (#)m.
PATPNS generating the 2nd member of the partial array language namely

# # # # # #
# b b b b #
# a ♦ ♦ b #
# a ♦ ♦ b #
# a a a b #
# # # # # #

is given in Fig. 9 as an example.

Theorem 5. PATPNS is closed under projection.

We consider a partial array token Petri Net structure C = (P, T, I,O) gen-
erating the partial array language PL. Let π : Γp → Σp be a projetion such that
π(a) = α, a ∈ Γp, α ∈ Σp. Without loss of generality Γp ∩ Σp = φ. We can
construct a PATPNS C ′ = (P ′, T ′, I ′, O′) such that PL(C ′) = PL, where T ′ =
{t′1, t

′
2, . . . t

′
k}, t′i = {A′ | Q′

i, A
′ − Q′

i/A
′
ij = (π(A))ij , (Q′

i)rs = (π(Qi))rs},



Partial Array Token Petri Net and P System 151

Q1A Q1A Q1A

Q2A

Q3A

Q3AQ4A

P1

S♦

P2
t1 t2 t2

t3

P4P3

P5

P6P7P8

t4

t4t5

Fig. 9. PATPNS generating PAL-LOC given in Example 5

1 ≤ i ≤ k, A,Qi ∈ Γ ∗∗
p , A′, Q′

i ∈ Σ∗∗
p . I ′ and O′ are input and outplaces of the

transitions. P ′ is the set of places.
Hence we can clearly say that PATPNS is closed under projection.

Theorem 6. PAL − REC � PATPNS.

Proof. PAL − REC ⊆ PATPNS follows from Theorems 4 and 5, since every
recognizable partial array language is a projection of a local partial array lan-
guage.

Now the proper inclusion can be proved easily by giving an example of a
partial array language which is not in PAL-REC but in PATPNS.

6 Conclusion

In this paper we have proposed PATPNS and PATPNPS. PATPNS is compared
with PAL-LOC, PAL-REC and BPPAG. It is also compared with PATPNPS.
The properties of PATPNS and PATPNPS can be studied further by introducing
inhibitor arc to increase the generative capacity of PATPNS. This is our future
work.

References

1. Berstel, J., Boasson, L.: Partial words and a theorem of Fine and Wilf. Theor.
Comput. Sci. 218(1), 135–141 (1999)



152 K. Sasikala et al.

2. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salo-
maa, A. (eds.) Handbook of Formal Languages, pp. 215–267. Springer, Heidelberg
(1997). https://doi.org/10.1007/978-3-642-59126-6 4

3. Lalitha, D.: Rectangular array languages generated by a Colored Petri Net. In:
IEEE International Conference on Electrical Computer and Communication Tech-
nologies, pp. 1–5 (2015)

4. D., L.: Rectangular array languages generated by a Petri net. In: Sethi, I.K. (ed.)
Computational Vision and Robotics. AISC, vol. 332, pp. 17–27. Springer, New
Delhi (2015). https://doi.org/10.1007/978-81-322-2196-8 3

5. Lalitha, D., Rangarajan, K., Thomas, D.G.: Rectangular arrays and Petri nets. In:
Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) IWCIA 2012. LNCS, vol.
7655, pp. 166–180. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34732-0 13

6. Mary Metilda, M.I., Lalitha, D.: Kolam generated by color Petri nets. In: Tuba,
M., Akashe, S., Joshi, A. (eds.) Information and Communication Technology for
Sustainable Development. AISC, vol. 933, pp. 675–681. Springer, Singapore (2020).
https://doi.org/10.1007/978-981-13-7166-0 68

7. Mary Metilda, M.I., Lalitha, D.: Petri nets for pasting tiles. In: Solanki, V.K.,
Hoang, M.K., Lu, Z.J., Pattnaik, P.K. (eds.) Intelligent Computing in Engineering.
AISC, vol. 1125, pp. 701–708. Springer, Singapore (2020). https://doi.org/10.1007/
978-981-15-2780-7 76

8. Nivat, M., Saoudi, A., Subramanian, K.G., Siromoney, R., Dare, V.R.: Puzzle
grammar and context-free array grammars. Int. J. Pattern Recogn. Artif. Intell.
05(05), 663–676 (1991)

9. Paun, Gh.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143
(2000)

10. Peterson, J.L.: Petri Net Theory and Modeling of Systems. Prentice Hall Inc.,
Englewood Cliffs (1981)

11. Sasikala, K., Kalyani, T., Thomas, D.G.: Partial array grammars and partial array-
rewriting P systems. Math. Eng. Sci. Aerosp. 11(1), 227–236 (2020)

12. Subramanian, K.G., Saravanan, R., Geethalakshmi, M., Helen Chandra, P., Mar-
genstern, M.: P systems with array object and array rewriting rules. Prog. Nat.
Sci. 17(4), 479–485 (2007)

13. Sweety, F., Sasikala, K., Kalyani, T., Thomas, D.G.: Partial array-rewriting P
systems and basic puzzle partial array grammar. In: AIP Conference Proceedings,
vol. 2277, p. 030003 (2020)

14. Sweety, F., Thomas, D.G., Dare, V.R., Kalyani, T.: Recoginizability of partial
array languages. J. Comb. Math. Comb. Comput. 69, 237–249 (2009)

15. Vijaya Chitra, S., Sasikala, K.: Squares in partial arrays. In: AIP Conference Pro-
ceedings, vol. 2112, pp. 20–34 (2019)

https://doi.org/10.1007/978-3-642-59126-6_4
https://doi.org/10.1007/978-81-322-2196-8_3
https://doi.org/10.1007/978-3-642-34732-0_13
https://doi.org/10.1007/978-3-642-34732-0_13
https://doi.org/10.1007/978-981-13-7166-0_68
https://doi.org/10.1007/978-981-15-2780-7_76
https://doi.org/10.1007/978-981-15-2780-7_76

	Partial Array Token Petri Net and P System
	1 Introduction
	2 Preliminaries
	3 Partial Array Token Petri Net Structure
	4 Partial Array Token Petri Net P System
	5 Comparative Study with Local and Recognizable Partial Array Languages
	6 Conclusion
	References




