
Transition Graphs of Reversible Reaction
Systems

Attila Bagossy and György Vaszil(B)

Department of Computer Science, Faculty of Informatics, University of Debrecen,
Kassai út 26, Debrecen 4028, Hungary

{bagossy.attila,vaszil.gyorgy}@inf.unideb.hu

Abstract. We study the transition graphs, and thus, the possible com-
putational paths of reaction systems which are reversible according to dif-
ferent notions of reversibility. We show that systems which are reversible
in the sense of our earlier work produce very simple types of transition
graphs. A somewhat more complicated, but still quite simple class of
transition graphs is obtained if we consider so-called initialized reversible
systems. Finally we introduce the notion of reversibility with lookbehind,
and show that systems which are reversible in this sense produce the
same transition graphs (and thus, the same computations) as the state
transition diagrams of reversible finite transition systems.

1 Introduction

Reaction systems, introduced by Ehrenfeucht and Rozenberg in [6], aim to
capture biochemical processes occurring inside living cells. The main intuition
behind this model of computation is the interplay between facilitation and inhi-
bition as these mechanisms define which reactions can take place, and thus how
computations proceed. A reaction system is a set of reactions, each reaction
is represented by a triple of finite sets: the reactants, the inhibitors, and the
results. In each step, the system produces resulting elements according to the
set of reactants and the set of reactions that are not inhibited. This core idea is
further complemented by the model’s two distinctive characteristics. In contrast
to multiset-based frameworks, reaction systems present a qualitative approach
in which if an element (or reactant) is present, then it is assumed to be avail-
able in the necessary amount. As a consequence of this principle, reactions may
freely use the same resource and will not interfere with each other. The second
characteristic is the concept of no permanency which means that if there is no
reaction sustaining a particular element, then the element will vanish. Building
on these principles, reaction systems perform computations in so-called interac-
tive processes that combine the result of reactions with input from the enclosing
environment.

The work of Gy. Vaszil was supported by the National Research, Development and
Innovation Fund of Hungary through project no. K 120558, financed under the K 16
funding scheme.
c© Springer Nature Switzerland AG 2021
R. Freund et al. (Eds.): CMC 2020, LNCS 12687, pp. 1–16, 2021.
https://doi.org/10.1007/978-3-030-77102-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77102-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-77102-7_1


2 A. Bagossy and G. Vaszil

Since its inception, the model of reaction systems received vast research inter-
est thanks to its unique properties and easy-to-extend nature. Research topics,
for example, include the study of the state transition function defined by a par-
ticular system (see [5] among others), the introduction of time (see [11]), or
modules (see [8]). For a more comprehensive enumeration, the reader is referred
to [4,7].

In this paper we are going to study the transition graphs of reversible reac-
tion systems. Transition graphs were introduced in [9] to represent the global
dynamics of these systems. Such a graph is a directed graph where each vertex
is a state of the system (represented as a set of elements present in the system
at a given step of the computation) and directed edges from a vertex lead to
the vertices representing the new states of the system which can be reached
after all reactions enabled at the origin, with possible additions from the outside
environment, are performed. The notion of reversibility was also studied in this
framework. Reversible processes which do not depend on input from the exter-
nal environment were considered in [1], and a somewhat more general notion of
reversibility when certain kinds of inputs are allowed was proposed in [3].

Starting with our previously established definitions regarding reversible reac-
tion systems in [3], we are going to study and compare the transition (or behav-
ior) graphs corresponding to different reversible system definitions. Instead of
examining the properties of individual interactive processes (that can be thought
of as computational paths), we take a graph that describes every possible process
in a given system and study how varying the underlying definitions (especially
the different possible notions of reversibility) affects the graphs. By exploring
these graphs, we infer the computational properties of the various definitions of
reversible systems. We will consider the following variations.

1. Reversible systems as defined in our previous work [3]. We will consider two
variants: First, we will use our notion of reversibility combined with the orig-
inal definitions given in [6] where the initial state of the system is defined by
the first environmental input, then we will use a slight modification which
allows for arbitrary elements in the initial states of interactive processes.

2. Systems which are reversible with lookbehind. This is a modified notion of
reversibility allowing interactive processes to examine not only the current
result set but the previous environmental input as well.

The rest of the paper is organized as follows. In Sect. 2 we provide a brief
introduction to the fundamental notions of reaction systems and the notion of
reversibility as introduced in [3]. Then in Sect. 3 and Sect. 4 we present the
transition graphs for the above mentioned systems as well as the comparison
between them. Finally, Sect. 5 closes the paper with some conclusions.

2 Preliminaries

In this section, we first briefly introduce the essential concepts of reaction sys-
tems. We refer the reader to [4,6] for a more comprehensive description. Concern-
ing reversibility, we only cover the most important definitions and requirements,



Transition Graphs of Reversible Reaction Systems 3

see [3] for detailed results and proofs. For more information on transition graphs,
refer to [11].

Reaction systems model biochemical reactions by the interplay of facilitation
and inhibition. Reactions are defined over a finite set of entities (usually denoted
by S) and every reaction a is a triplet of three finite sets a = (Ra, Ia, Pa)
(where each of these sets are subsets of S). The sets Ra, Ia and Pa contain the
reactants, inhibitors and products of the reaction, respectively, and they satisfy
the following constraints: First, the set of reactants and the set of inhibitors are
disjoint (Ra ∩ Ia = ∅), otherwise the reaction would never be applicable, as we
will see later. Second, the set of reactants and the set of products are non-empty
(Ra �= ∅ and Pa �= ∅). It is usually also assumed that the set of inhibitors is
non-empty, but for the sake of being as general as possible, we will drop this
additional assumption here. The set of all reactions over S is denoted by rac(S).

Remark 1. In what follows, if a is a reaction, then we will denote its components
as Ra, Ia and Pa without explicitly writing out the complete triplet form a =
(Ra, Ia, Pa).

Based on the core idea of the model, a reaction is applicable (or enabled) if
all of its reactants and none of its inhibitors are present. Applying a reaction
creates its products. These intuitions are formalized as follows.

Given a set of arbitrary symbols (or entities) S and a reaction a ∈ rac(S), a
is enabled by W ⊆ S if Ra ⊆ W and Ia ∩W = ∅. The result of a on W , denoted
by resa(W ), is defined as resa(W ) = Pa if a is enabled by W , or resa(W ) = ∅ if
a is not enabled by W .

If A is a finite set of reactions over S, then enA(W ) denotes the set of all reac-
tions in A enabled by W , thus enA(W ) = {a ∈ A | a is enabled by W}, and the
result of A on W , denoted by resA(W ), is defined as resA(W ) =

⋃
a∈A resa(W ).

With these definitions in mind, we can now see how the characteristics men-
tioned in the Introduction are implemented. Reactions with overlapping reactant
sets do not interfere as each one is allowed to create its products if enabled. This
non-interefering nature also applies to the products. Even if the same entity
is produced by multiple reactions, still there will be a single occurrence in the
result set as reaction systems are defined over sets instead of multisets.

Prior to defining reaction systems and how they perform computation, we
introduce further shorthand notations to ease our work with reactants and prod-
ucts of finite sets of reactions.

Notation 1. Let A be a finite set of reactions. Then, we denote by RA and PA

the union of the reactant sets and product sets, respectively: RA = ∪a∈ARa and
PA = ∪a∈APa.

If S is a finite set such that A ⊆ rac(S), then ENA(S) contains the sets of
reactions where the members of each set can be applied together for some subset
of S. Formally

ENA(S) = {E ⊆ A | there exists S′ ⊆ S, such that enA(S′) = E}.



4 A. Bagossy and G. Vaszil

Further, we denote by RESA(S) the set that contains the results of applying
every set of reactions in ENA(S) to the appropriate subsets of entities, or formally

RESA(S) = {resE(S′) | S′ ⊆ S,E ⊆ A, such that enA(S′) = E}.

Example 1. Let us consider the set of reactions A = {a, b, c} over S = {1, 2, 3},
where

a = ({1}, ∅, {2}), b = ({2}, ∅, {3}), c = ({3}, {1}, {1}).

Here, we have ENA(S) = { {a}, {b}, {c}, {a, b}, {b, c} }, since there is no set of
elements such that a and c are enabled together (as Ra ∩ Ic �= ∅), that is,
enA({1}) = enA({1, 3}) = {a}, enA({1, 2}) = enA({1, 2, 3}) = {a, b}, and we
also have enA({2}) = {b}, enA({3}) = {c}, enA({2, 3}) = {b, c} in addition.

The elements of RESA(S) are the product sets produced by the reactions in
the sets of ENA(S) applied to appropriate subsets of S

RESA(S) = { {2}, {3}, {1}, {2, 3}, {1, 3} }.

With the essential notions defined for reactions, we now recall the definition
of a reaction system, which is an ordered pair A = (S,A). The background set
S is a finite set of entities while A ⊆ rac(S) is the set of reactions.

Let A = (S,A) be a reaction system and let n ≥ 0 be an integer. An
interactive process in A is a pair π = (γ, δ) of finite sequences, such that

– γ is the context sequence of π, defined as γ = C0, C1, . . . Cn, where Ci ⊆ S
for all 0 ≤ i ≤ n, and

– δ is the result sequence of π, defined as δ = D0,D1, . . . Dn, where D0 = ∅ and
Di = resA(Di−1 ∪ Ci−1) for all 1 ≤ i ≤ n.

We also define sts(π) as the state sequence of π by

– sts(π) = W0,W1, . . . Wn, where Wi = Ci ∪ Di for all 0 ≤ i ≤ n.

The above notion of an interactive process is visualized in Fig. 1. Note that
the context and results sets are not required to be disjoint, although the figure
shows them as non-overlapping rectangles.

As a consequence of this definition, every interactive process is finite with
predetermined length. Therefore an interactive process can be thought of as a
finite sequence of states (the union of contexts and results). The idea of input
from the surrounding environment is formalized by the context sequence. A
process in which every context set is empty is said to be context-independent.

Interactive processes also encompass the concept of no permanency. Every
new state consists of the products of the previous state and the environmental
input. Hence, if an entity is not produced by any enabled reaction and is not
present in the context set, then it will disappear. This idea stems from abstract
biochemistry where an entity must be sustained by some active process. In the
absence of such a process, the entity will vanish. See [4,6] for motivations and
more details.



Transition Graphs of Reversible Reaction Systems 5

Fig. 1. An interactive process π in a reaction system.

Now we present a possible notion of reversibility for reaction systems which
we introduced and investigated in [3]. Generally, a sequential model of compu-
tation (such as the model of reaction systems) might be considered reversible
if it is “backward deterministic”, that is, if no “configuration” is accessible from
two different configurations (in a way which is “undistinguishable”), or in other
words, every configuration has a unique predecessor. The point is, that given
any “state” of the system, we should be able to determine the preceding compu-
tational step. Reaction systems perform computations via interactive processes,
thus we should interpret the concept of configuration (or “state”) and the concept
of unique predecessor for such interactive processes.

In [3] we have followed the natural idea to identify the configurations we
are interested in (from the point of view of reversibility) with the states of
interactive processes as defined above to be the union of the result sets and the
corresponding context sets.

Definition 1. ([3]) Let A = (S,A) be a reaction system and π = (γ, δ)
be an interactive process in A , such that γ = C0, C1, . . . Cn and sts(π) =
W0,W1, . . . Wn.

A state Wi, 1 ≤ i ≤ n, has multiple predecessors if there exists W ⊆ S such
that W �= Wi−1, but resA(W ) ∪ Ci = Wi. If there is no such W , then Wi has a
unique predecessor.

The interactive process π is reversible if every state Wi, 1 ≤ i ≤ n, has a
unique predecessor.

After defining reversibility for individual processes, we would like to continue
by defining reversible reaction systems. As a first attempt, one might introduce
reversible reaction systems as ones with reversible interactive processes only.
This definition, however, needs some further refinement. To see this, consider
the following.

Since reaction systems are finite both in terms of reactions and entities,
regardless of which state we begin with, we eventually run out of enabled reac-
tions, or start to loop. In the former case, as there are no applicable reactions,
the produced result set is the empty set. According to the definition of reversible
interactive processes, no state is allowed to have multiple predecessors, therefore,
in order to be reversible, we need to ensure that there is a unique combination



6 A. Bagossy and G. Vaszil

of reactions producing the empty result set as well. This is greatly limiting, how-
ever, as loops not involving the empty result set are forbidden (since entering
and continuing the loop corresponds to two distinct predecessors), so the reac-
tion system may only perform a single, pre-determined computation from the
initial state to the empty result set. Reversible interactive processes in such a
case, could only contain a finite subsequence of states from this computation.

According to these considerations, it seems reasonable to not take into
account every interactive process in a reaction system when defining reversibil-
ity. Thus, in what follows, we simply sidestep the issue of no applicable reactions
by defining so-called non-restarting interactive processes.

Let A be a reaction system and π = (γ, δ) be an interactive process in
A such that δ = D0,D1, . . . Dn. The interactive process π is non-restarting if
Di �= ∅, 1 ≤ i ≤ n. If the opposite holds, then π is restarting.

Definition 2. ([3]) A reaction system A is reversible, if every non-restarting
interactive process in A is reversible.

Before we continue, we would like to present the requirements this definition
poses on reversible interactive processes. As simple as this notion of a reversible
process is, it has great consequences on the possible reactions and context entities
of the enclosing system. For a formal description of the necessary and sufficient
conditions reaction systems need to fulfill in order to be reversible, see Theorem
1 of [3]. Here we present the basic ideas without proofs in a less formal manner.

In the following discussion, we assume a finite background set S and a finite
set of reactions A ⊆ rac(S). In order for a reaction system to be reversible, it
must fulfill the following conditions.

1. If E1, E2 ⊆ A are different sets of reactions in ENA(S), they must produce
different result sets, or in other terms, E1, E2 ∈ ENA(S) with E1 �= E2 implies
PE1 �= PE2 . Clearly, if we had two different sets of reactions that produce the
same entities when applied, then the state formed by these entities would
have multiple predecessors.

2. If we take any two distinct subsets of S, then the reactions enabled by these
sets must be different as well. In other words, if T1, T2 ⊆ S with T1 �= T2 and
enA(T1) �= ∅, then enA(T1) �= enA(T2) must also hold. To see this, consider
that if two subsets would enable the same set of reactions, then the result set
of these reactions would be a state having at least two predecessors (the very
subsets T1, T2 we took from S).

3. Finally, consider the result sets of the reaction sets in ENA(S). If we are able
to transform one such result set R1 to another, say R2, by augmenting it with
entities which can also appear in the context (as part of a context set of some
interactive process), then the state W = R2 will have multiple predecessors.
To see this, let D = R2, C = ∅ and D′ = R1, C ′ = R2 \ R1, then consider
the state W = D ∪ C = D′ ∪ C ′. If R2 = D = resE2(W

′) and R1 = D′ =
resE1(W

′′), then W has at least two predecessors, W ′ and W ′′. (We can obtain
W from W ′ by applying the reactions in E2 and adding the context C, or we
can obtain W also from W ′′ by applying the reactions in E1 and adding the



Transition Graphs of Reversible Reaction Systems 7

context set C ′.) To formalize this condition, we “refine” the background set
as S = Σc ∪ Σp, the union of (not necessarily disjoint) alphabets of symbols
where Σc ⊆ S contains those entities which can appear as environmental
input in the context sets of interactive processes, and Σp ⊆ S containing
those which can appear as products of reactions. (This is similar to so-called
context-restricted reaction systems studied in [11].) Using this notation, we
can formalize the above idea by requiring that having R1, R2 ∈ RESA(S)
with R1 �= R2 should also imply that R1 \ Σc �= R2 \ Σc.

3 Transition Graphs of Reversible Systems

When introducing reversibility into a particular model of computation, the ques-
tion naturally arises, how this affects the computational properties of the model.
In the case of reaction systems, interactive processes are the only means of com-
putation, thus when examining the higher-level computational properties of a
specific system, we should start by looking at the contained processes. Since
any system may only contain a finite number of possible states, so-called tran-
sition graphs offer a concise way of depicting every possible interactive process
a particular system may enclose. In this section, we introduce the definition
of transition graphs and then explore the graphs generated by the reversible
systems of Sect. 2.

In what follows, we first introduce reachable result sets, that will eventually
form the vertices of the transition graphs. Assuming the standard definition of
interactive processes (see Sect. 2), D0 must be empty, hence there might be result
sets that cannot occur in any interactive process. By considering reachable result
sets only, we exclude these sets from the transition graphs.

Definition 3. Let A = (S,A) be a reversible reaction system with S = Σp ∪
Σc (where Σp and Σc are not necessarily disjoint). The result set D ⊆ Σp is
reachable if there exists a non-restarting interactive process π = (γ, δ) in A
with δ = D0,D1, . . . Dn such that D = Di for some 0 ≤ i ≤ n. The set of
reachable result sets in A is denoted by REACHA .

If D0 was allowed to be non-empty (thus, the reaction system can initiate
its computation from an arbitrary result set), then every result set is reachable
(since, we can freely choose the initial result set). By requiring D0 to be empty,
we restrict the possible result sets in interactive processes to the reachable sets
of Definition 3. The set of reachable results sets is, in turn, determined by the
reactions of the underlying reaction system.

Transition graphs were first introduced in [9] as vertices representing the sub-
sets of the background set (usually denoted as S) connected by directed edges
equivalent to the relation of “can be obtained from”. Formally, the edge set is
defined as E = {(W1,W2) | W1 ⊆ S, resA(W1) ⊆ W2}. Here, we would like to
underline the subset relationship between the underlying sets of the connected
vertices. This transition graph definition incorporates context sets (environmen-
tal input) by considering two states connected, if the result of the former can be
augmented with context to form the latter.



8 A. Bagossy and G. Vaszil

As we are exclusively interested in subsets of S that appear in interactive
processes, we will modify this notion to include only reachable results sets as
vertices. Furthermore, since we wanted to put more emphasis on the role of the
input, in our definition of transition graphs, edges are labeled with input sets
from the environment. Such a labeled edge is drawn between two vertices if
applying reactions to the union of the source vertex and the label produces the
destination vertex as a result.

Definition 4. Let A = (S,A) be reaction system, with S = Σc ∪ Σp as above.
The transition graph of A is the graph TGA = (V,E), where V = REACHA is
the set of vertices and

E = { (D,C,D′) |D,D′ ∈ V and C ⊆ Σc such that resA(D ∪ C) = D′ }
is the set of directed edges with D being the starting vertex, D′ the end vertex
and C the label.

Example 2. Let A be a reaction system in which Σp = {1, 3, 5} is the product
alphabet, Σc = {0, 2, 4} is the context alphabet and A = {a, b, c} is the set of
reactions, where

a = ({0}, {2, 4}, {1}), b = ({1, 2}, {0}, {3}), c = ({1, 4}, {0}, {5}).

Then, TGA consists of the vertices V = { ∅, {1}, {3}, {5}, {3, 5} } and edges

E = { (∅, {0}, {1}), ({1}, {2}, {3}), ({1}, {4}, {5}), ({1}, {2, 4}, {3, 5}) }.

Fig. 2. Transition graph of the reaction system from Example 2.

With all the necessary notions in place, we now continue by examining the
transition graphs of reversible reaction systems. In such systems, each result set
may be the result of exactly one other state. As a consequence, for example, loops
are forbidden (explained in more detail and proved in Theorem 1), which puts
a firm constraint on the complexity of the non-restarting interactive processes.
Therefore, the transition graphs of these systems are rather simple, they only
contain finite computational branches (Fig. 2).



Transition Graphs of Reversible Reaction Systems 9

Theorem 1. If A is a reversible reaction system, then the transition graph of
A is either a single vertex or a directed rooted tree with all the edges pointing
away from the root.

Proof. Let A = (S,A) be a reversible reaction system with S = Σp ∪ Σc (where
Σp and Σc are not necessarily disjoint), and let TGA be its transition graph.

By definition, TGA only includes an edge between two vertices if they are
subsequent result sets in some non-restarting interactive process. Thus, the ver-
tex for the empty result set does not have any incoming edges. Since the empty
set is the initial result set (D0) of every non-restarting interactive process in any
reaction system, it will always be included in the transition graph.

If there is no context set C such that enA(∅ ∪ C) �= ∅ then TGA consists of
a single vertex: the empty result set.

Now we show that TGA is a directed rooted tree if it has multiple vertices.
A graph is a directed rooted tree if there is exactly one path between the root
vertex and any other vertex. Since every vertex in the transition graph is a result
set in some non-restarting interactive process, there must be a path between the
root vertex and the vertex representing this set. Thus, we know that at least one
path must exist connecting the root vertex with every other vertex.

Since A is reversible, every state has a unique predecessor. Consequently,
every result set has a unique predecessor. As the vertices in the transition graph
represent result sets and edges represent predecessor/successor relations, this
means that every vertex other than the root has exactly one incoming edge.
Therefore, there must be at most one path going from the root vertex to every
other vertex. Because both the lower and the upper bound are equal to one, we
have that there is a single path from the root vertex to any other vertex. Thus, if
TGA has more than one vertex, it’s a directed rooted tree with all edges pointing
away from the root. 
�

As a consequence of the above theorem, non-restarting interactive processes
in reversible systems (that are essentially computations) are just paths in a
finite tree. Since this is a rather strict limitation, we might start experimenting
with small relaxations in the underlying definitions to give rise to more complex
graphs (those with vertices having in-degree greater than one or even containing
cycles).

Such modification of particular interest is concerned with the definition of
interactive processes. In the standard setting, D0 (the initial result set) is empty
for every interactive process. If the context sets can incorporate arbitrary entities
from the background set, this does not pose any constraint on the initial state.
On the other hand, in the case when the context and the product alphabets
are different (as in the case of reversible systems), the product and the context
alphabet can be disjoint, some results sets may not even be reachable at all.
Similar ideas motivated the introduction of so-called initialized context-restricted
reaction systems in [11] where non-empty initial product sets D0 are also allowed.
Now, let us examine how non-empty D0 sets affect the transition graphs of
reversible reaction systems. Following [11], we call our model initialized reversible
reaction systems.



10 A. Bagossy and G. Vaszil

Theorem 2. If A is an initialized reversible reaction system, then every com-
ponent of the transition graph of A is either

– a single vertex,
– a directed rooted tree with edges pointing away from the root, or
– one directed cycle, such that each vertex of the cycle can also be the root of a

tree with edges pointing away from the cycle.

Proof. Let A = (S,A) be an initialized reversible reaction system with S =
Σp ∪ Σc (where Σp and Σc are not necessarily disjoint) and with interactive
processes that might start with a non-empty D0 set.

Since our definition for the transition graph is the same as in Theorem 1, the
reversibility of A results in a maximum of one for the in-degree of every vertex.

Now, let us consider the components of the transition graph. Given a result
set D ⊆ Σp, if there is no W ⊆ S such that resA(W ) = D (in any of the
non-restarting interactive processes of A ), then the in-degree of the vertex cor-
responding to D is equal to 0. In this case, this vertex is either a component
in itself or the root of a directed rooted tree. The former holds, if no result set
can be reached from D in any of the non-restarting interactive processes (thus,
the out-degree of the vertex is zero), while the latter is proved in the proof of
Theorem 1.

With the first two cases (single vertex and tree) covered, let us examine
components with exactly one cycle. We already know, that vertices with in-
degree equal to zero either form single-vertex components or act as tree roots.
Therefore, we only need to consider components in which the in-degree of every
vertex is equal to one (as we previously proved that no vertex has in-degree
greater than one). In this case, the component must include at least one cycle,
otherwise there could be vertices with no incoming edges. However, while a
component can include a single cycle when the in-degree of every vertex is one,
multiple cycles are not possible. Single cycle components can take the form of a
“branching ring”, where the component includes a ring (or cycle) at its core and
each member of this ring can additionally be the root of a tree branching out.
On the other hand, multiple cycles can only be realized by including at least
one vertex in each cycle with an edge coming from the cycle itself and an edge
coming from a vertex outside of the appropriate cycle. As such configurations are
forbidden for transition graphs of reversible systems, all remaining components
must form a branching ring. 
�
Example 3. Let A = (S,A) be an initialized reversible reaction system with
S = Σp ∪ Σc where Σp = {1, 3, 5, 7, 9, 11, 13, 15} is the product alphabet, Σc =
{0, 2, 4, 6, 8, 10, 12} is the context alphabet and A = {a, b, c, d, e, f, g} is the set
of reactions, where

a = ({0, 1}, {6}, {3}), b = ({2, 3}, ∅, {5}), c = ({4, 5}, ∅, {1}),
d = ({1, 6}, {0}, {7}), e = ({7, 8}, {10}, {9}), f = ({7, 10}, {8}, {11}),
g = ({12, 13}, ∅, {15}).



Transition Graphs of Reversible Reaction Systems 11

The transition graph TGA consists of three components: a branching ring,
a tree, and a single vertex, as shown in Fig. 3.

Fig. 3. Transition graph of the reaction system from Example 3.

As stated by Theorem 2, with a slight modification in the definition of inter-
active processes, we can achieve more involved transition graphs: those with
multiple components and even a cycle per component. This allows for the occur-
rence of computations with loops, increasing the intuitive computational power
of the model. Nevertheless, examined solely from an informal perspective, even
with this change, we are unable to achieve the computational power of reversible
finite automata, for example. The lack of higher in-degrees and multiple cycles
places a severe constraint on the set of possible non-restarting interactive pro-
cesses.

4 Reaction Systems Which Are Reversible with
Lookbehind

As we have discussed in Sect. 2, we would like to look at the notion of reversibility
as a kind of backward determinism, that is, given any “state” or configuration of
the system, we should be able to determine the preceding computational step.
In the previous section, following our earlier work in [3], we have interpreted the
concept of configurations (or “states”) as the state sets (that is, as the unions
of product sets and context sets) of interactive processes. In this section we
follow a different approach, one that is similar to how reversibility of (finite)
automata is usually defined: The “state” of the machine is interpreted as the
internal state of the finite control, together with additional information regarding
the position of the reading head on the input tape, and the contents of the
corresponding tape cell. See [2] and [12] for more details, or [10] for some more
recent work regarding reversibility of finite automata. In such an interpretation,
the predecessor configurations in a computation should be unique with respect
to not only the internal state of the finite control, but also the input symbol that
the reading head has just left behind, that is, the symbol that was read from the
input tape in the previous computational step.



12 A. Bagossy and G. Vaszil

In this section we introduce the notion of reversibility with lookbehind by
interpreting the “state” (or configuration) of reaction systems (in a similar man-
ner as described above) as the current result set obtained in the previous com-
putational step, together with the context set that was input in the same (that
is, the previous) computational step. Thus, predecessor states of interactive pro-
cesses should be unique with respect to the current product set, and the context
set which was used to obtain the product, that is, the context set corresponding
to the previous state of the interactive process.

In other words, our notion of reversibility for reaction systems which we
recalled in Sect. 2 is based on the concept of unique predecessors. If a combination
of reaction results and context entities (together forming what is called a state)
has exactly one way to be produced, then it is said to have a unique predecessor.
Hence, this definition focuses on the current result set and context set when
determining which state occurred previously.

In this section, we introduce reversibility with lookbehind by taking a dif-
ferent approach to the definition of unique predecessors. Inspired by finite state
automata, which are considered backward deterministic (and thus, reversible) if
the current internal state and the previously consumed input symbol uniquely
determine the previous internal state, reaction systems which are reversible with
lookbehind can inspect both the current state and the previous context set. As a
consequence, multiple state sets can produce the very same result sets (without
losing the property of being reversible) given they include distinct context sets.

Definition 5. Let A = (S,A) be a reaction system and π = (γ, δ) be an
interactive process in A , such that γ = C0, C1, . . . Cn, δ = D0,D1, . . . Dn and
sts(π) = W0,W1, . . . Wn.

A state Wi, 1 ≤ i ≤ n, has multiple predecessors with lookbehind if there
exist D ⊆ S such that D �= Di−1, but resA(D ∪ Ci−1) = Di. If there is no such
D, then Wi has a unique predecessor with lookbehind.

The interactive process π is reversible with lookbehind if every state Wi,
1 ≤ i ≤ n, has a unique predecessor with lookbehind.

Now, we can define reversible systems using the above definition.

Definition 6. A reaction system A is reversible with lookbehind if every non-
restarting interactive process in A is reversible with lookbehind.

Regarding transition graphs, an immediate consequence of the new defini-
tion of reversibility is the possibility of in-degrees higher than one. As shown in
Fig. 4, despite the two incoming edges of the vertex {4}, when reversing the pre-
vious computation, we can now decide which one to take based on the preceding
context (the label of the edge).

Continuing our previous discussion, we now compare the state diagrams and
the transition graphs of reversible finite transition systems and reversible reac-
tion systems with lookbehind, respectively. A finite transition system is usually
denoted as a triplet F = (Q,Σ, δ), where Q is the set of states, Σ is the input
alphabet and δ is the state transition function, mapping the current state and



Transition Graphs of Reversible Reaction Systems 13

Fig. 4. Transition graph configuration that is not permitted for ordinary reversible
systems, but is allowed in the case of systems which are reversible with lookbehind.

an input symbol to a result state. Finite transition systems differ from finite
state automata by not having distinguished start and final states. Although the
following results can be stated for finite state automata as well, reaction systems
seem to be more closely related to transition systems, since interactive processes
in reaction systems lack the concept of final (or accepting) state. This is fur-
ther supported by [4], where a method is presented to convert finite transitions
systems to reaction systems.

In what follows, when constructing transition graphs, we assume the defini-
tion of interactive processes in which D0 (or, the initial result set) is empty. This
means that every interactive process must start from the empty result set which
makes it easier to create reaction systems from transition systems, as it allows
for more control over the reachable result sets. Example 4 explores this idea in
greater detail.

Example 4. Let F be a reversible finite transition system for which we want to
construct a corresponding reaction system. Starting with the background set,
we can create an entity for each input symbol of F as well as for each state
of F . The entities created from the input symbols comprise the input alphabet
Σc, while the entities representing the states belong to the product alphabet
Σp. Now, we have that the result sets of the reaction system (Di) represent the
actual state of the underlying transition system, and the context sets correspond
to the received input.

If the initial result set D0 was allowed to be non-empty, then any entity of
the product alphabet could be present in this set, even multiple entities. Since
each entity represents a distinct state of the underlying transition system, the
presence of multiple entities would mean that the transition system is in multiple
states at once. As this is not permitted, one should require D0 to be empty, since
that way, the facilitation and inhibition aspects of the reaction can prevent such
cases.

Theorem 3. For every reversible finite transition system, there is a reaction
system which is reversible with lookbehind and has the same states and transitions
(apart from a starting state and its corresponding transitions).

Proof. Let F = (Q,Σ, δ) be a reversible finite transition system. Then, the state
diagram of F , SDF = (VF , EF ) is a directed graph, where VF = Q is the set of
vertices and EF = {(v, l, w) | δ(v, l) = w} is the set of directed, labeled edges.



14 A. Bagossy and G. Vaszil

Now, let us construct a reaction system A = (S,A) from F . Initially, we
choose the background set S to be the union of two disjoint sets (S = Σp ∪ Σc):
the product alphabet corresponds to the states of the transition system (thus,
Σp = Q), while the input alphabet is equivalent to the input alphabet of F (thus,
Σc = Σ). We can define a set of reactions using the transition function of F :

{({q, i},Σc \ {i}, {r}) | δ(q, i) = r, for q, r ∈ Q, i ∈ Σ}.

Finite trasition systems do not have a designated initial state, but may begin
their computation in an arbitrary state. In the case of reaction systems, however,
an interactive process must start with the empty result set (D0 = ∅). Since the
context and the product alphabets are, in this case, disjoint (Σp ∩ Σc = ∅), it
is not possible to put a symbol representing some state q ∈ Q in the initial
context set (C0). To overcome this issue and allow the reaction system to start
its computation by jumping to an arbitrary state q, we introduce a new entity,
αq for each state q ∈ Q and an appropriate reaction that lead from the empty
result set to the result set representing this state q of F .

With this in mind, let us redefine the background and the reaction set of A .
The background set S is now the union of the following two sets: Σp = Q and
Σc = Σ ∪ {αq | q ∈ Q}. The reaction set A is then defined as follows:

A ={({q, i},Σc \ {i}, {r}) | δ(q, i) = r for q, r ∈ Q, i ∈ Σ}∪
{({αq},Σp ∪ (Σc \ {αq}), {q}) | q ∈ Q}.

The transition graph of A is defined as a directed graph based on the result
sets and inputs of the non-restarting interactive processes in the system. Because
of the definition of the transition graph, given any vertex q in the state diagram
of F , we have a vertex in TGA corresponding to D = {q}. Additionally, for every
edge (v, l, w) in the state diagram of F , we have an appropriate edge pointing
from the vertex D1 = {v} to the vertex D2 = resA ({v, l}) = {w} (because of
the definition of A).

Consequently, apart from the vertex representing the empty state and its
outgoing edges, the transition graph of A and the state diagram of F are iso-
morphic.

What is left to prove is that the states in the non-restarting interactive pro-
cesses of A have unique predecessors with lookbehind (making A reversible with
lookbehind). Since F is a reversible transition system, there is no vertex in its
state diagram that has more than one incoming edge with the same label. As a
consequence, each vertex in the transition graph of A satisfies the same property.
Combining this fact with the disjointness of the product and input alphabets, we
have that no state can be reached with the same input (or label, in the transition
graph) from two different result sets. This is precisely the definition of having a
unique predecessor with lookbehind. 
�
Theorem 4. For every reaction system which is reversible with lookbehind, there
is a reversible finite transition system with the same states and transitions.



Transition Graphs of Reversible Reaction Systems 15

Proof. Let A = (S,A) be a reversible lookbehind reaction system with S = Σp∪
Σc (where Σp and Σc are not necessarily disjoint). Also, let TGA = (VA , EA )
be the transition graph of A .

Now, let us construct a finite transition system F = (Q,Σ, δ) from A . Using
the transition graph of A , we can define the states of the transition system as
Q = VA . The input alphabet of F is going to contain the subsets of the input
alphabet of A , thus Σ = 2Σc . By considering the edges in TGA , we can define
the transition function as

δ(q, i) = r, if there is an edge in EA from q to r with label i.

Because of the above definition of F , given any vertex (representing a result
set) in the transition graph of A , we will have a corresponding vertex in the state
diagram of F . Furthermore, since the edges in the state diagram correspond to
the transition function δ, which in turn was defined via the edges of TGA , we
have that each edge in the state diagram of F will map to an edge in TGA .
Thus, we have that the state diagram of F and the transition graph of A are
isomorphic.

Analogous to the proof of Theorem 3, now we need to show that F is a
reversible transition system. Since A is reversible, no vertex in its transition
graph has more than one incoming edge with the same label. As the state diagram
of F is isomorphic to TGA and each edge has the same label as its counterpart
in TGA , the same is true for each vertex in the state diagram. Thus, because the
edges represent the state transitions induced by δ, we have that F is reversible. 
�

Based on the previous two theorems, we can state the following.

Proposition 1. The state transition graphs of reversible finite transition sys-
tems correspond to the transition graphs of reaction systems which are reversible
with lookbehind, apart from the special initial vertex corresponding to the ini-
tial empty result set of the reaction system. Vice-versa, the transition graph of
any reaction system which is reversible with lookbehind corresponds to the state
transition graph of a reversible finite transition system.

5 Conclusion

In this paper, we have studied the possible computations of reversible reaction
systems by examining their transition graphs. First, we considered reaction sys-
tems which are reversible according to our definition of reversibility given in
[3] and concluded that the computational graphs (and so the possible compu-
tations) are very simple. Then we examined the same notion of reversibility for
initialized reaction systems (see [11]) and obtained transition graphs which are
somewhat more complicated, but still quite simple. Finally, motivated by the
reversibility of (finite) automata, we introduced the notion of reversibility with
lookbehind, which finally is able to produce functioning corresponding to the
same types of transition graphs (and thus, the same possible computations) as
the state transition diagrams of reversible finite transition systems.



16 A. Bagossy and G. Vaszil

To study other aspects of reaction systems which are reversible with lookbe-
hind is a research topic that we would like to investigate in more detail in the
future.

References

1. Aman, B., Ciobanu, G.: Controlled reversibility in reaction systems. In: Gheorghe,
M., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) CMC 2017. LNCS, vol. 10725,
pp. 40–53. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73359-3_3

2. Angluin, D.: Inference of reversible languages. J. ACM 29(3), 741–765 (1982)
3. Bagossy, A., Vaszil, G.: Simulating reversible computation with reaction systems.

J. Membr. Comput. 2(3), 179–193 (2020). https://doi.org/10.1007/s41965-020-
00049-9

4. Brijder, R., Ehrenfeucht, A., Main, M., Rozenberg, G.: A tour of reaction systems.
Int. J. Found. Comput. Sci. 22, 1499–1517 (2011)

5. Dennunzio, A., Formenti, E., Manzoni, L., Porreca, A.E.: Reachability in resource-
bounded reaction systems. In: Dediu, A.-H., Janoušek, J., Martín-Vide, C., Truthe,
B. (eds.) LATA 2016. LNCS, vol. 9618, pp. 592–602. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-30000-9_45

6. Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundam. Inf. 75(1–4), 263–280
(2007)

7. Ehrenfeucht, A., Kleijn, J., Koutny, M., Rozenberg, G.: Minimal reaction systems.
In: Priami, C., Petre, I., de Vink, E. (eds.) Transactions on Computational Systems
Biology XIV. LNCS, vol. 7625, pp. 102–122. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-35524-0_5

8. Ehrenfeucht, A., Rozenberg, G.: Events and modules in reaction systems. Theor.
Comput. Sci. 376, 3–16 (2007)

9. Genova, D., Hoogeboom, H.J., Jonoska, N.: A graph isomorphism condition and
equivalence of reaction systems. Theor. Comput. Sci. 701, 109–119 (2017)

10. Holzer, M., Kutrib, M.: Reversible nondeterministic finite automata. In: Phillips,
I., Rahaman, H. (eds.) RC 2017. LNCS, vol. 10301, pp. 35–51. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59936-6_3

11. Męski, A., Penczek, W., Rozenberg, G.: Model checking temporal properties of
reaction systems. Inf. Sci. 313, 22–42 (2015)

12. Pin, J.-E.: On reversible automata. In: Simon, I. (ed.) LATIN 1992. LNCS, vol. 583,
pp. 401–416. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0023844.
https://hal.archives-ouvertes.fr/hal-00019977

https://doi.org/10.1007/978-3-319-73359-3_3
https://doi.org/10.1007/s41965-020-00049-9
https://doi.org/10.1007/s41965-020-00049-9
https://doi.org/10.1007/978-3-319-30000-9_45
https://doi.org/10.1007/978-3-642-35524-0_5
https://doi.org/10.1007/978-3-642-35524-0_5
https://doi.org/10.1007/978-3-319-59936-6_3
https://doi.org/10.1007/BFb0023844
https://hal.archives-ouvertes.fr/hal-00019977

	Transition Graphs of Reversible Reaction Systems
	1 Introduction
	2 Preliminaries
	3 Transition Graphs of Reversible Systems
	4 Reaction Systems Which Are Reversible with Lookbehind
	5 Conclusion
	References




