
Rudolf Freund · Tseren-Onolt Ishdorj ·
Grzegorz Rozenberg · Arto Salomaa ·
Claudio Zandron (Eds.)

LN
CS

 1
26

87

Membrane Computing
21st International Conference, CMC 2020
Virtual Event, September 14–18, 2020
Revised Selected Papers

Lecture Notes in Computer Science 12687

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0002-4029-7051
https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Rudolf Freund · Tseren-Onolt Ishdorj ·
Grzegorz Rozenberg · Arto Salomaa ·
Claudio Zandron (Eds.)

Membrane Computing
21st International Conference, CMC 2020
Virtual Event, September 14–18, 2020
Revised Selected Papers

Editors
Rudolf Freund
TU Wien
Vienna, Austria

Grzegorz Rozenberg
Leiden University
Leiden, The Netherlands

Claudio Zandron
University of Milano-Bicocca
Milan, Italy

Tseren-Onolt Ishdorj
Mongolian University of Science
and Technology
Ulaanbaatar, Mongolia

Arto Salomaa
Turku Center for Computer Science
Turku, Finland

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-77101-0 ISBN 978-3-030-77102-7 (eBook)
https://doi.org/10.1007/978-3-030-77102-7

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0003-1255-1953
https://orcid.org/0000-0002-2163-7639
https://orcid.org/0000-0002-9329-556X
https://doi.org/10.1007/978-3-030-77102-7

Preface

The present volume contains the invited contributions and a selection of papers presented
at the 21st International Conference on Membrane Computing (ICMC 2020), which
was held during September 14–18, 2020. Due to the pandemic situation related to the
COVID-19 virus, it was organized as an electronic conference, joining together the 9th
ACMC 2020, Asian Conference on Membrane Computing (ACMC 2020), originally
planned to be held inUlaanbaatar,Mongolia, and the 21st CMC2020, International Con-
ference onMembrane Computing (CMC 2020), originally planned to be held in Vienna,
Austria. Further information can be found on thewebsite at the following address: http://
2020.e-icmc.org/.

The CMC series started with three workshops organized in Curtea de Argeş,
Romania, in 2000, 2001, and 2002. The workshops were then held in Tarragona,
Spain (2003), Milan, Italy (2004), Vienna, Austria (2005), Leiden, Netherlands (2006),
Thessaloniki, Greece (2007), and Edinburgh, UK (2008).

The tenth edition was organized again in Curtea de Argeş, Romania, in 2009, where
it was decided to continue the series as the Conference on Membrane Computing
(CMC). The following editions were held in Jena, Germany (2010), Fontainebleau,
France (2011), Budapest, Hungary (2012), Chişinău, Moldova (2013), Prague, Czech
Republic (2014), Valencia, Spain (2015), Milan, Italy (2016), Bradford, UK (2017), and
Jena, Germany (2018).

To celebrate the 20th edition, the conference was organized once again in Curtea de
Argeş, Romania, in 2019.

A regional version ofCMC, theAsianConference onMembraneComputing,ACMC,
started in 2012 inWuhan, China, and continued in Chengdu, China (2013), Coimbatore,
India (2014), Hefei, China (2015), Bangi, Malaysia (2016), Chengdu, China (2017),
Auckland, New Zealand (2018), and Xiamen, China (2019).

The invited lectures were given by Henry N. Adorna (Department of Com-
puter Science, UP Diliman, Philippines), Artiom Alhazov (Vladimir Andrunachievici
Institute of Mathematics and Computer Science, Moldova), Lucie Ciencialova
(Silesian University in Opava, Czech Republic), Gheorghe Păun (The Romanian
Academy, Romania), Mario J. Pérez--Jiménez (Universidad de Sevilla, Spain), and
Fan-Gang Tseng (National Tsing-Hua University, Taiwan).

The editors express their gratitude to the Program Committee, the invited speakers,
the authors of the papers, the reviewers, and all the participants for their contributions
to the success of ICMC 2020.

http://2020.e-icmc.org/

vi Preface

The support of the University of Vienna and of the Mongolian University of Science
and Technology are gratefully acknowledged.

March 2021 Rudolf Freund
Tseren-Onolt Ishdorj
Grzegorz Rozenberg

Arto Salomaa
Claudio Zandron

Organization

Steering Committee of CMC and ACMC

Henry Adorna University of the Philippines Diliman, Philippines
Artiom Alhazov Vladimir Andrunachievici Institute of Mathematics

and Computer Science, Moldova
Bogdan Aman University of Iaşi, Romania
Matteo Cavaliere Manchester Metropolitan University, UK
Erzsébet Csuhaj-Varjú Eötvös Lorand University, Hungary
Giuditta Franco Universitá di Verona, Italy
Rudolf Freund Technische Universitat Wien, Austria
Marian Gheorghe

(Honorary Member)
University of Bradford, UK

Thomas Hinze Friedrich Schiller University of Jena, Germany
Florentin Ipate University of Bucharest, Romania
Shankara N. Krishna Indian Institute of Technology, India
Alberto Leporati Universitá di Milano-Bicocca, Italy
Taishin Y. Nishida Toyama Prefectural University, Japan
Linqiang Pan (Co-chair) Huazhong University of Science and Technology,

China
Gheorghe Păun

(Honorary Member)
The Romanian Academy and Academia Europaea,

Romania
Mario J. Pérez-Jiménez Universidad de Sevilla, Spain
Agustín Riscos-Núñez Universidad de Sevilla, Spain
Jose M. Sempere Universidad de Valencia, Spain
Petr Sosík Silesian University in Opava, Czech Republic
Kumbakonam Govindarajan

Subramanian
University Sains Malaysia, Malaysia

György Vaszil University of Debrecen, Hungary
Sergey Verlan University Paris Est Créteil, France
Claudio Zandron (Co-chair) Universitá di Milano-Bicocca, Italy

Gexiang Zhang Chengdu University of Information Technology,
China

Organizing Committee of ICMC 2020

Gordon Cichon Mongolian University of Science and Technology,
Mongolia

Rudolf Freund (Co-chair) Technische Universitat Wien, Austria

viii Organization

Franziska Gusel Technische Universitat Wien, Austria
Tseren-Onolt Ishdorj

(Co-chair)
Mongolian University of Science and Technology,

Mongolia
Sergiu Ivanov Université d’Evry, France
Zoljargal Jargalsaikhan Mongolian University of Science and Technology,

Mongolia
Javzansuren Jigjidsuren Mongolian University of Science and Technology,

Mongolia
Chuluunbandi

Naimannaran
Mongolian University of Science and Technology,

Mongolia
Marion Oswald Technische Universitat Wien, Austria
Namnan Tumur Mongolian University of Science and Technology,

Mongolia
Ewa Vesely Technische Universitat Wien, Austria

Program Committee of ICMC 2020

Henry Adorna University of the Philippines Diliman, Philippines
Artiom Alhazov VladimirAndrunachievici Institute ofMathematics and

Computer Science, Moldova
Bogdan Aman University of Iaşi, Romania
Altangerel Ayush Mongolian University of Science and Technology,

Mongolia
Catalin Buiu University of Bucharest, Romania
Francis George C. Cabarle University of the Philippines Diliman, Philippines

Matteo Cavaliere Manchester Metropolitan University, UK
Lucie Ciencialova Silesian University in Opava, Czech Republic
Erzsébet Csuhaj-Varjú Eötvös Lorand University, Hungary
Rudolf Freund (Co-chair) Technische Universitat Wien, Austria

Giuditta Franco Universitá di Verona, Italy
Xiaoju Dong Shanghai Jiao Tong University, China
Marian Gheorghe Bradford University, UK
Ping Guo Chongqing University, China
Juanjuan He Wuhan University of Science and Technology, China
Thomas Hinze Friedrich Schiller University of Jena, Germany
Florentin Ipate University of Bucharest, Romania
Sergiu Ivanov (Co-chair) Université d’Evry, France
Shankara N. Krishna Indian Institute of Technology, India
Tseren-Onolt Ishdorj

(Co-chair)
Mongolian University of Science and Technology,

Mongolia
Savas Konur Bradford University, UK
Alberto Leporati Universitá di Milano-Bicocca, Italy
Jia Li Chongqing University, China
Xiangrong Liu Xiamen University, China
Xiyu Liu Shangdon University, China

Organization ix

Ravie Chandren Muniyandi Universiti Kebangsaan Malaysia, Malaysia

Ferrante Neri University of Nottingham, UK
Radu Nicolescu University of Auckland, New Zealand
Taishin Nishida Toyama Prefectural University, Japan
David Orellana-Martín Norwegian University of Science and Technology,

Norway
Yunyun Niu China University of Geosciences, China
Linqiang Pan (Co-chair) Huazhong University of Science and Technology,

China
Andrei Pun University of Bucharest, Romania
Gheorghe Păun The Romanian Academy and Academia Europaea,

Romania
Hong Peng Xihua University, China
Mario Pérez-Jiménez Universidad de Sevilla, Spain
Agustín Riscos-Núñez Universidad de Sevilla, Spain
Haina Rong Southwest Jiaotong University, China
Jose M. Sempere Universidad de Valencia, Spain
Bosheng Song Hunan University, China
Tao Song China University of Petroleum, China
Petr Sosík Silesian University in Opava, Czech Republic
K. G. Subramanian University Sains Malaysia, Malaysia
D. G. Thomas Madras Christian College, India
György Vaszil University of Debrecen, Hungary
Sergey Verlan University Paris Est Créteil, France
Jun Wang Xihua University, China
Tingfang Wu Soochow University, China
Jianhua Xiao Nankai University, China
Jie Xue Shandong Normal University, China
Hsu-Chun Yen National Taiwan University, R.O.C
Jianying Yuan Xihua University, China
Claudio Zandron

(Co-chair)
Universitá di Milano-Bicocca, Italy

Xiangxiang Zeng Xiamen University, China
Gexiang Zhang (Co-chair) Xihua University, China

Xingyi Zhang Anhui University, China
Xue Zhang Tufts University, USA
Xuncai Zhang Zhengzhou University of Light Industry, China
Ming Zhu Xihua University, China

Contents

Transition Graphs of Reversible Reaction Systems . 1
Attila Bagossy and György Vaszil

Communicating Reaction Systems with Direct Communication 17
Erzsébet Csuhaj-Varjú and Pramod Kumar Sethy

Generalized Forbidding Matrix Grammars and Their Membrane
Computing Perspective . 31

Henning Fernau, Lakshmanan Kuppusamy, and Indhumathi Raman

Parallel Contextual Array Insertion Deletion P Systems and Tabled Matrix
Grammars . 46

S. James Immanuel, S. Jayasankar, D. Gnanaraj Thomas,
and Meenakshi Paramasivan

Triangular Array Token Petri Net and P System . 78
T. Kalyani, T. T. Raman, D. G. Thomas, K. Bhuvaneswari, and P. Ravichandran

P System as a Computing Tool for Embedded Feature Selection
and Classification Method for Microarray Cancer Data . 94

Ravie Chandren Muniyandi and Naeimeh Elkhani

Evolutionary P Systems: The Notion and an Example . 126
Taishin Y. Nishida

Partial Array Token Petri Net and P System . 135
K. Sasikala, F. Sweety, T. Kalyani, and D. G. Thomas

Certain State Sequences Defined by P Systems with Reactions 153
Sastha Sriram, Somnath Bera, and K. G. Subramanian

On Numerical 2D P Colonies with the Blackboard and the Gray Wolf
Algorithm . 161

Daniel Valenta, Miroslav Langer, Lucie Ciencialová, and Luděk Cienciala

Author Index . 179

Transition Graphs of Reversible Reaction
Systems

Attila Bagossy and György Vaszil(B)

Department of Computer Science, Faculty of Informatics, University of Debrecen,
Kassai út 26, Debrecen 4028, Hungary

{bagossy.attila,vaszil.gyorgy}@inf.unideb.hu

Abstract. We study the transition graphs, and thus, the possible com-
putational paths of reaction systems which are reversible according to dif-
ferent notions of reversibility. We show that systems which are reversible
in the sense of our earlier work produce very simple types of transition
graphs. A somewhat more complicated, but still quite simple class of
transition graphs is obtained if we consider so-called initialized reversible
systems. Finally we introduce the notion of reversibility with lookbehind,
and show that systems which are reversible in this sense produce the
same transition graphs (and thus, the same computations) as the state
transition diagrams of reversible finite transition systems.

1 Introduction

Reaction systems, introduced by Ehrenfeucht and Rozenberg in [6], aim to
capture biochemical processes occurring inside living cells. The main intuition
behind this model of computation is the interplay between facilitation and inhi-
bition as these mechanisms define which reactions can take place, and thus how
computations proceed. A reaction system is a set of reactions, each reaction
is represented by a triple of finite sets: the reactants, the inhibitors, and the
results. In each step, the system produces resulting elements according to the
set of reactants and the set of reactions that are not inhibited. This core idea is
further complemented by the model’s two distinctive characteristics. In contrast
to multiset-based frameworks, reaction systems present a qualitative approach
in which if an element (or reactant) is present, then it is assumed to be avail-
able in the necessary amount. As a consequence of this principle, reactions may
freely use the same resource and will not interfere with each other. The second
characteristic is the concept of no permanency which means that if there is no
reaction sustaining a particular element, then the element will vanish. Building
on these principles, reaction systems perform computations in so-called interac-
tive processes that combine the result of reactions with input from the enclosing
environment.

The work of Gy. Vaszil was supported by the National Research, Development and
Innovation Fund of Hungary through project no. K 120558, financed under the K 16
funding scheme.
c© Springer Nature Switzerland AG 2021
R. Freund et al. (Eds.): CMC 2020, LNCS 12687, pp. 1–16, 2021.
https://doi.org/10.1007/978-3-030-77102-7_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77102-7_1&domain=pdf
https://doi.org/10.1007/978-3-030-77102-7_1

2 A. Bagossy and G. Vaszil

Since its inception, the model of reaction systems received vast research inter-
est thanks to its unique properties and easy-to-extend nature. Research topics,
for example, include the study of the state transition function defined by a par-
ticular system (see [5] among others), the introduction of time (see [11]), or
modules (see [8]). For a more comprehensive enumeration, the reader is referred
to [4,7].

In this paper we are going to study the transition graphs of reversible reac-
tion systems. Transition graphs were introduced in [9] to represent the global
dynamics of these systems. Such a graph is a directed graph where each vertex
is a state of the system (represented as a set of elements present in the system
at a given step of the computation) and directed edges from a vertex lead to
the vertices representing the new states of the system which can be reached
after all reactions enabled at the origin, with possible additions from the outside
environment, are performed. The notion of reversibility was also studied in this
framework. Reversible processes which do not depend on input from the exter-
nal environment were considered in [1], and a somewhat more general notion of
reversibility when certain kinds of inputs are allowed was proposed in [3].

Starting with our previously established definitions regarding reversible reac-
tion systems in [3], we are going to study and compare the transition (or behav-
ior) graphs corresponding to different reversible system definitions. Instead of
examining the properties of individual interactive processes (that can be thought
of as computational paths), we take a graph that describes every possible process
in a given system and study how varying the underlying definitions (especially
the different possible notions of reversibility) affects the graphs. By exploring
these graphs, we infer the computational properties of the various definitions of
reversible systems. We will consider the following variations.

1. Reversible systems as defined in our previous work [3]. We will consider two
variants: First, we will use our notion of reversibility combined with the orig-
inal definitions given in [6] where the initial state of the system is defined by
the first environmental input, then we will use a slight modification which
allows for arbitrary elements in the initial states of interactive processes.

2. Systems which are reversible with lookbehind. This is a modified notion of
reversibility allowing interactive processes to examine not only the current
result set but the previous environmental input as well.

The rest of the paper is organized as follows. In Sect. 2 we provide a brief
introduction to the fundamental notions of reaction systems and the notion of
reversibility as introduced in [3]. Then in Sect. 3 and Sect. 4 we present the
transition graphs for the above mentioned systems as well as the comparison
between them. Finally, Sect. 5 closes the paper with some conclusions.

2 Preliminaries

In this section, we first briefly introduce the essential concepts of reaction sys-
tems. We refer the reader to [4,6] for a more comprehensive description. Concern-
ing reversibility, we only cover the most important definitions and requirements,

Transition Graphs of Reversible Reaction Systems 3

see [3] for detailed results and proofs. For more information on transition graphs,
refer to [11].

Reaction systems model biochemical reactions by the interplay of facilitation
and inhibition. Reactions are defined over a finite set of entities (usually denoted
by S) and every reaction a is a triplet of three finite sets a = (Ra, Ia, Pa)
(where each of these sets are subsets of S). The sets Ra, Ia and Pa contain the
reactants, inhibitors and products of the reaction, respectively, and they satisfy
the following constraints: First, the set of reactants and the set of inhibitors are
disjoint (Ra ∩ Ia = ∅), otherwise the reaction would never be applicable, as we
will see later. Second, the set of reactants and the set of products are non-empty
(Ra �= ∅ and Pa �= ∅). It is usually also assumed that the set of inhibitors is
non-empty, but for the sake of being as general as possible, we will drop this
additional assumption here. The set of all reactions over S is denoted by rac(S).

Remark 1. In what follows, if a is a reaction, then we will denote its components
as Ra, Ia and Pa without explicitly writing out the complete triplet form a =
(Ra, Ia, Pa).

Based on the core idea of the model, a reaction is applicable (or enabled) if
all of its reactants and none of its inhibitors are present. Applying a reaction
creates its products. These intuitions are formalized as follows.

Given a set of arbitrary symbols (or entities) S and a reaction a ∈ rac(S), a
is enabled by W ⊆ S if Ra ⊆ W and Ia ∩W = ∅. The result of a on W , denoted
by resa(W), is defined as resa(W) = Pa if a is enabled by W , or resa(W) = ∅ if
a is not enabled by W .

If A is a finite set of reactions over S, then enA(W) denotes the set of all reac-
tions in A enabled by W , thus enA(W) = {a ∈ A | a is enabled by W}, and the
result of A on W , denoted by resA(W), is defined as resA(W) =

⋃
a∈A resa(W).

With these definitions in mind, we can now see how the characteristics men-
tioned in the Introduction are implemented. Reactions with overlapping reactant
sets do not interfere as each one is allowed to create its products if enabled. This
non-interefering nature also applies to the products. Even if the same entity
is produced by multiple reactions, still there will be a single occurrence in the
result set as reaction systems are defined over sets instead of multisets.

Prior to defining reaction systems and how they perform computation, we
introduce further shorthand notations to ease our work with reactants and prod-
ucts of finite sets of reactions.

Notation 1. Let A be a finite set of reactions. Then, we denote by RA and PA

the union of the reactant sets and product sets, respectively: RA = ∪a∈ARa and
PA = ∪a∈APa.

If S is a finite set such that A ⊆ rac(S), then ENA(S) contains the sets of
reactions where the members of each set can be applied together for some subset
of S. Formally

ENA(S) = {E ⊆ A | there exists S′ ⊆ S, such that enA(S′) = E}.

4 A. Bagossy and G. Vaszil

Further, we denote by RESA(S) the set that contains the results of applying
every set of reactions in ENA(S) to the appropriate subsets of entities, or formally

RESA(S) = {resE(S′) | S′ ⊆ S,E ⊆ A, such that enA(S′) = E}.

Example 1. Let us consider the set of reactions A = {a, b, c} over S = {1, 2, 3},
where

a = ({1}, ∅, {2}), b = ({2}, ∅, {3}), c = ({3}, {1}, {1}).

Here, we have ENA(S) = { {a}, {b}, {c}, {a, b}, {b, c} }, since there is no set of
elements such that a and c are enabled together (as Ra ∩ Ic �= ∅), that is,
enA({1}) = enA({1, 3}) = {a}, enA({1, 2}) = enA({1, 2, 3}) = {a, b}, and we
also have enA({2}) = {b}, enA({3}) = {c}, enA({2, 3}) = {b, c} in addition.

The elements of RESA(S) are the product sets produced by the reactions in
the sets of ENA(S) applied to appropriate subsets of S

RESA(S) = { {2}, {3}, {1}, {2, 3}, {1, 3} }.

With the essential notions defined for reactions, we now recall the definition
of a reaction system, which is an ordered pair A = (S,A). The background set
S is a finite set of entities while A ⊆ rac(S) is the set of reactions.

Let A = (S,A) be a reaction system and let n ≥ 0 be an integer. An
interactive process in A is a pair π = (γ, δ) of finite sequences, such that

– γ is the context sequence of π, defined as γ = C0, C1, . . . Cn, where Ci ⊆ S
for all 0 ≤ i ≤ n, and

– δ is the result sequence of π, defined as δ = D0,D1, . . . Dn, where D0 = ∅ and
Di = resA(Di−1 ∪ Ci−1) for all 1 ≤ i ≤ n.

We also define sts(π) as the state sequence of π by

– sts(π) = W0,W1, . . . Wn, where Wi = Ci ∪ Di for all 0 ≤ i ≤ n.

The above notion of an interactive process is visualized in Fig. 1. Note that
the context and results sets are not required to be disjoint, although the figure
shows them as non-overlapping rectangles.

As a consequence of this definition, every interactive process is finite with
predetermined length. Therefore an interactive process can be thought of as a
finite sequence of states (the union of contexts and results). The idea of input
from the surrounding environment is formalized by the context sequence. A
process in which every context set is empty is said to be context-independent.

Interactive processes also encompass the concept of no permanency. Every
new state consists of the products of the previous state and the environmental
input. Hence, if an entity is not produced by any enabled reaction and is not
present in the context set, then it will disappear. This idea stems from abstract
biochemistry where an entity must be sustained by some active process. In the
absence of such a process, the entity will vanish. See [4,6] for motivations and
more details.

Transition Graphs of Reversible Reaction Systems 5

Fig. 1. An interactive process π in a reaction system.

Now we present a possible notion of reversibility for reaction systems which
we introduced and investigated in [3]. Generally, a sequential model of compu-
tation (such as the model of reaction systems) might be considered reversible
if it is “backward deterministic”, that is, if no “configuration” is accessible from
two different configurations (in a way which is “undistinguishable”), or in other
words, every configuration has a unique predecessor. The point is, that given
any “state” of the system, we should be able to determine the preceding compu-
tational step. Reaction systems perform computations via interactive processes,
thus we should interpret the concept of configuration (or “state”) and the concept
of unique predecessor for such interactive processes.

In [3] we have followed the natural idea to identify the configurations we
are interested in (from the point of view of reversibility) with the states of
interactive processes as defined above to be the union of the result sets and the
corresponding context sets.

Definition 1. ([3]) Let A = (S,A) be a reaction system and π = (γ, δ)
be an interactive process in A , such that γ = C0, C1, . . . Cn and sts(π) =
W0,W1, . . . Wn.

A state Wi, 1 ≤ i ≤ n, has multiple predecessors if there exists W ⊆ S such
that W �= Wi−1, but resA(W) ∪ Ci = Wi. If there is no such W , then Wi has a
unique predecessor.

The interactive process π is reversible if every state Wi, 1 ≤ i ≤ n, has a
unique predecessor.

After defining reversibility for individual processes, we would like to continue
by defining reversible reaction systems. As a first attempt, one might introduce
reversible reaction systems as ones with reversible interactive processes only.
This definition, however, needs some further refinement. To see this, consider
the following.

Since reaction systems are finite both in terms of reactions and entities,
regardless of which state we begin with, we eventually run out of enabled reac-
tions, or start to loop. In the former case, as there are no applicable reactions,
the produced result set is the empty set. According to the definition of reversible
interactive processes, no state is allowed to have multiple predecessors, therefore,
in order to be reversible, we need to ensure that there is a unique combination

6 A. Bagossy and G. Vaszil

of reactions producing the empty result set as well. This is greatly limiting, how-
ever, as loops not involving the empty result set are forbidden (since entering
and continuing the loop corresponds to two distinct predecessors), so the reac-
tion system may only perform a single, pre-determined computation from the
initial state to the empty result set. Reversible interactive processes in such a
case, could only contain a finite subsequence of states from this computation.

According to these considerations, it seems reasonable to not take into
account every interactive process in a reaction system when defining reversibil-
ity. Thus, in what follows, we simply sidestep the issue of no applicable reactions
by defining so-called non-restarting interactive processes.

Let A be a reaction system and π = (γ, δ) be an interactive process in
A such that δ = D0,D1, . . . Dn. The interactive process π is non-restarting if
Di �= ∅, 1 ≤ i ≤ n. If the opposite holds, then π is restarting.

Definition 2. ([3]) A reaction system A is reversible, if every non-restarting
interactive process in A is reversible.

Before we continue, we would like to present the requirements this definition
poses on reversible interactive processes. As simple as this notion of a reversible
process is, it has great consequences on the possible reactions and context entities
of the enclosing system. For a formal description of the necessary and sufficient
conditions reaction systems need to fulfill in order to be reversible, see Theorem
1 of [3]. Here we present the basic ideas without proofs in a less formal manner.

In the following discussion, we assume a finite background set S and a finite
set of reactions A ⊆ rac(S). In order for a reaction system to be reversible, it
must fulfill the following conditions.

1. If E1, E2 ⊆ A are different sets of reactions in ENA(S), they must produce
different result sets, or in other terms, E1, E2 ∈ ENA(S) with E1 �= E2 implies
PE1 �= PE2 . Clearly, if we had two different sets of reactions that produce the
same entities when applied, then the state formed by these entities would
have multiple predecessors.

2. If we take any two distinct subsets of S, then the reactions enabled by these
sets must be different as well. In other words, if T1, T2 ⊆ S with T1 �= T2 and
enA(T1) �= ∅, then enA(T1) �= enA(T2) must also hold. To see this, consider
that if two subsets would enable the same set of reactions, then the result set
of these reactions would be a state having at least two predecessors (the very
subsets T1, T2 we took from S).

3. Finally, consider the result sets of the reaction sets in ENA(S). If we are able
to transform one such result set R1 to another, say R2, by augmenting it with
entities which can also appear in the context (as part of a context set of some
interactive process), then the state W = R2 will have multiple predecessors.
To see this, let D = R2, C = ∅ and D′ = R1, C ′ = R2 \ R1, then consider
the state W = D ∪ C = D′ ∪ C ′. If R2 = D = resE2(W

′) and R1 = D′ =
resE1(W

′′), then W has at least two predecessors, W ′ and W ′′. (We can obtain
W from W ′ by applying the reactions in E2 and adding the context C, or we
can obtain W also from W ′′ by applying the reactions in E1 and adding the

Transition Graphs of Reversible Reaction Systems 7

context set C ′.) To formalize this condition, we “refine” the background set
as S = Σc ∪ Σp, the union of (not necessarily disjoint) alphabets of symbols
where Σc ⊆ S contains those entities which can appear as environmental
input in the context sets of interactive processes, and Σp ⊆ S containing
those which can appear as products of reactions. (This is similar to so-called
context-restricted reaction systems studied in [11].) Using this notation, we
can formalize the above idea by requiring that having R1, R2 ∈ RESA(S)
with R1 �= R2 should also imply that R1 \ Σc �= R2 \ Σc.

3 Transition Graphs of Reversible Systems

When introducing reversibility into a particular model of computation, the ques-
tion naturally arises, how this affects the computational properties of the model.
In the case of reaction systems, interactive processes are the only means of com-
putation, thus when examining the higher-level computational properties of a
specific system, we should start by looking at the contained processes. Since
any system may only contain a finite number of possible states, so-called tran-
sition graphs offer a concise way of depicting every possible interactive process
a particular system may enclose. In this section, we introduce the definition
of transition graphs and then explore the graphs generated by the reversible
systems of Sect. 2.

In what follows, we first introduce reachable result sets, that will eventually
form the vertices of the transition graphs. Assuming the standard definition of
interactive processes (see Sect. 2), D0 must be empty, hence there might be result
sets that cannot occur in any interactive process. By considering reachable result
sets only, we exclude these sets from the transition graphs.

Definition 3. Let A = (S,A) be a reversible reaction system with S = Σp ∪
Σc (where Σp and Σc are not necessarily disjoint). The result set D ⊆ Σp is
reachable if there exists a non-restarting interactive process π = (γ, δ) in A
with δ = D0,D1, . . . Dn such that D = Di for some 0 ≤ i ≤ n. The set of
reachable result sets in A is denoted by REACHA .

If D0 was allowed to be non-empty (thus, the reaction system can initiate
its computation from an arbitrary result set), then every result set is reachable
(since, we can freely choose the initial result set). By requiring D0 to be empty,
we restrict the possible result sets in interactive processes to the reachable sets
of Definition 3. The set of reachable results sets is, in turn, determined by the
reactions of the underlying reaction system.

Transition graphs were first introduced in [9] as vertices representing the sub-
sets of the background set (usually denoted as S) connected by directed edges
equivalent to the relation of “can be obtained from”. Formally, the edge set is
defined as E = {(W1,W2) | W1 ⊆ S, resA(W1) ⊆ W2}. Here, we would like to
underline the subset relationship between the underlying sets of the connected
vertices. This transition graph definition incorporates context sets (environmen-
tal input) by considering two states connected, if the result of the former can be
augmented with context to form the latter.

8 A. Bagossy and G. Vaszil

As we are exclusively interested in subsets of S that appear in interactive
processes, we will modify this notion to include only reachable results sets as
vertices. Furthermore, since we wanted to put more emphasis on the role of the
input, in our definition of transition graphs, edges are labeled with input sets
from the environment. Such a labeled edge is drawn between two vertices if
applying reactions to the union of the source vertex and the label produces the
destination vertex as a result.

Definition 4. Let A = (S,A) be reaction system, with S = Σc ∪ Σp as above.
The transition graph of A is the graph TGA = (V,E), where V = REACHA is
the set of vertices and

E = { (D,C,D′) |D,D′ ∈ V and C ⊆ Σc such that resA(D ∪ C) = D′ }
is the set of directed edges with D being the starting vertex, D′ the end vertex
and C the label.

Example 2. Let A be a reaction system in which Σp = {1, 3, 5} is the product
alphabet, Σc = {0, 2, 4} is the context alphabet and A = {a, b, c} is the set of
reactions, where

a = ({0}, {2, 4}, {1}), b = ({1, 2}, {0}, {3}), c = ({1, 4}, {0}, {5}).

Then, TGA consists of the vertices V = { ∅, {1}, {3}, {5}, {3, 5} } and edges

E = { (∅, {0}, {1}), ({1}, {2}, {3}), ({1}, {4}, {5}), ({1}, {2, 4}, {3, 5}) }.

Fig. 2. Transition graph of the reaction system from Example 2.

With all the necessary notions in place, we now continue by examining the
transition graphs of reversible reaction systems. In such systems, each result set
may be the result of exactly one other state. As a consequence, for example, loops
are forbidden (explained in more detail and proved in Theorem 1), which puts
a firm constraint on the complexity of the non-restarting interactive processes.
Therefore, the transition graphs of these systems are rather simple, they only
contain finite computational branches (Fig. 2).

Transition Graphs of Reversible Reaction Systems 9

Theorem 1. If A is a reversible reaction system, then the transition graph of
A is either a single vertex or a directed rooted tree with all the edges pointing
away from the root.

Proof. Let A = (S,A) be a reversible reaction system with S = Σp ∪ Σc (where
Σp and Σc are not necessarily disjoint), and let TGA be its transition graph.

By definition, TGA only includes an edge between two vertices if they are
subsequent result sets in some non-restarting interactive process. Thus, the ver-
tex for the empty result set does not have any incoming edges. Since the empty
set is the initial result set (D0) of every non-restarting interactive process in any
reaction system, it will always be included in the transition graph.

If there is no context set C such that enA(∅ ∪ C) �= ∅ then TGA consists of
a single vertex: the empty result set.

Now we show that TGA is a directed rooted tree if it has multiple vertices.
A graph is a directed rooted tree if there is exactly one path between the root
vertex and any other vertex. Since every vertex in the transition graph is a result
set in some non-restarting interactive process, there must be a path between the
root vertex and the vertex representing this set. Thus, we know that at least one
path must exist connecting the root vertex with every other vertex.

Since A is reversible, every state has a unique predecessor. Consequently,
every result set has a unique predecessor. As the vertices in the transition graph
represent result sets and edges represent predecessor/successor relations, this
means that every vertex other than the root has exactly one incoming edge.
Therefore, there must be at most one path going from the root vertex to every
other vertex. Because both the lower and the upper bound are equal to one, we
have that there is a single path from the root vertex to any other vertex. Thus, if
TGA has more than one vertex, it’s a directed rooted tree with all edges pointing
away from the root.
�

As a consequence of the above theorem, non-restarting interactive processes
in reversible systems (that are essentially computations) are just paths in a
finite tree. Since this is a rather strict limitation, we might start experimenting
with small relaxations in the underlying definitions to give rise to more complex
graphs (those with vertices having in-degree greater than one or even containing
cycles).

Such modification of particular interest is concerned with the definition of
interactive processes. In the standard setting, D0 (the initial result set) is empty
for every interactive process. If the context sets can incorporate arbitrary entities
from the background set, this does not pose any constraint on the initial state.
On the other hand, in the case when the context and the product alphabets
are different (as in the case of reversible systems), the product and the context
alphabet can be disjoint, some results sets may not even be reachable at all.
Similar ideas motivated the introduction of so-called initialized context-restricted
reaction systems in [11] where non-empty initial product sets D0 are also allowed.
Now, let us examine how non-empty D0 sets affect the transition graphs of
reversible reaction systems. Following [11], we call our model initialized reversible
reaction systems.

10 A. Bagossy and G. Vaszil

Theorem 2. If A is an initialized reversible reaction system, then every com-
ponent of the transition graph of A is either

– a single vertex,
– a directed rooted tree with edges pointing away from the root, or
– one directed cycle, such that each vertex of the cycle can also be the root of a

tree with edges pointing away from the cycle.

Proof. Let A = (S,A) be an initialized reversible reaction system with S =
Σp ∪ Σc (where Σp and Σc are not necessarily disjoint) and with interactive
processes that might start with a non-empty D0 set.

Since our definition for the transition graph is the same as in Theorem 1, the
reversibility of A results in a maximum of one for the in-degree of every vertex.

Now, let us consider the components of the transition graph. Given a result
set D ⊆ Σp, if there is no W ⊆ S such that resA(W) = D (in any of the
non-restarting interactive processes of A), then the in-degree of the vertex cor-
responding to D is equal to 0. In this case, this vertex is either a component
in itself or the root of a directed rooted tree. The former holds, if no result set
can be reached from D in any of the non-restarting interactive processes (thus,
the out-degree of the vertex is zero), while the latter is proved in the proof of
Theorem 1.

With the first two cases (single vertex and tree) covered, let us examine
components with exactly one cycle. We already know, that vertices with in-
degree equal to zero either form single-vertex components or act as tree roots.
Therefore, we only need to consider components in which the in-degree of every
vertex is equal to one (as we previously proved that no vertex has in-degree
greater than one). In this case, the component must include at least one cycle,
otherwise there could be vertices with no incoming edges. However, while a
component can include a single cycle when the in-degree of every vertex is one,
multiple cycles are not possible. Single cycle components can take the form of a
“branching ring”, where the component includes a ring (or cycle) at its core and
each member of this ring can additionally be the root of a tree branching out.
On the other hand, multiple cycles can only be realized by including at least
one vertex in each cycle with an edge coming from the cycle itself and an edge
coming from a vertex outside of the appropriate cycle. As such configurations are
forbidden for transition graphs of reversible systems, all remaining components
must form a branching ring.
�
Example 3. Let A = (S,A) be an initialized reversible reaction system with
S = Σp ∪ Σc where Σp = {1, 3, 5, 7, 9, 11, 13, 15} is the product alphabet, Σc =
{0, 2, 4, 6, 8, 10, 12} is the context alphabet and A = {a, b, c, d, e, f, g} is the set
of reactions, where

a = ({0, 1}, {6}, {3}), b = ({2, 3}, ∅, {5}), c = ({4, 5}, ∅, {1}),
d = ({1, 6}, {0}, {7}), e = ({7, 8}, {10}, {9}), f = ({7, 10}, {8}, {11}),
g = ({12, 13}, ∅, {15}).

Transition Graphs of Reversible Reaction Systems 11

The transition graph TGA consists of three components: a branching ring,
a tree, and a single vertex, as shown in Fig. 3.

Fig. 3. Transition graph of the reaction system from Example 3.

As stated by Theorem 2, with a slight modification in the definition of inter-
active processes, we can achieve more involved transition graphs: those with
multiple components and even a cycle per component. This allows for the occur-
rence of computations with loops, increasing the intuitive computational power
of the model. Nevertheless, examined solely from an informal perspective, even
with this change, we are unable to achieve the computational power of reversible
finite automata, for example. The lack of higher in-degrees and multiple cycles
places a severe constraint on the set of possible non-restarting interactive pro-
cesses.

4 Reaction Systems Which Are Reversible with
Lookbehind

As we have discussed in Sect. 2, we would like to look at the notion of reversibility
as a kind of backward determinism, that is, given any “state” or configuration of
the system, we should be able to determine the preceding computational step.
In the previous section, following our earlier work in [3], we have interpreted the
concept of configurations (or “states”) as the state sets (that is, as the unions
of product sets and context sets) of interactive processes. In this section we
follow a different approach, one that is similar to how reversibility of (finite)
automata is usually defined: The “state” of the machine is interpreted as the
internal state of the finite control, together with additional information regarding
the position of the reading head on the input tape, and the contents of the
corresponding tape cell. See [2] and [12] for more details, or [10] for some more
recent work regarding reversibility of finite automata. In such an interpretation,
the predecessor configurations in a computation should be unique with respect
to not only the internal state of the finite control, but also the input symbol that
the reading head has just left behind, that is, the symbol that was read from the
input tape in the previous computational step.

12 A. Bagossy and G. Vaszil

In this section we introduce the notion of reversibility with lookbehind by
interpreting the “state” (or configuration) of reaction systems (in a similar man-
ner as described above) as the current result set obtained in the previous com-
putational step, together with the context set that was input in the same (that
is, the previous) computational step. Thus, predecessor states of interactive pro-
cesses should be unique with respect to the current product set, and the context
set which was used to obtain the product, that is, the context set corresponding
to the previous state of the interactive process.

In other words, our notion of reversibility for reaction systems which we
recalled in Sect. 2 is based on the concept of unique predecessors. If a combination
of reaction results and context entities (together forming what is called a state)
has exactly one way to be produced, then it is said to have a unique predecessor.
Hence, this definition focuses on the current result set and context set when
determining which state occurred previously.

In this section, we introduce reversibility with lookbehind by taking a dif-
ferent approach to the definition of unique predecessors. Inspired by finite state
automata, which are considered backward deterministic (and thus, reversible) if
the current internal state and the previously consumed input symbol uniquely
determine the previous internal state, reaction systems which are reversible with
lookbehind can inspect both the current state and the previous context set. As a
consequence, multiple state sets can produce the very same result sets (without
losing the property of being reversible) given they include distinct context sets.

Definition 5. Let A = (S,A) be a reaction system and π = (γ, δ) be an
interactive process in A , such that γ = C0, C1, . . . Cn, δ = D0,D1, . . . Dn and
sts(π) = W0,W1, . . . Wn.

A state Wi, 1 ≤ i ≤ n, has multiple predecessors with lookbehind if there
exist D ⊆ S such that D �= Di−1, but resA(D ∪ Ci−1) = Di. If there is no such
D, then Wi has a unique predecessor with lookbehind.

The interactive process π is reversible with lookbehind if every state Wi,
1 ≤ i ≤ n, has a unique predecessor with lookbehind.

Now, we can define reversible systems using the above definition.

Definition 6. A reaction system A is reversible with lookbehind if every non-
restarting interactive process in A is reversible with lookbehind.

Regarding transition graphs, an immediate consequence of the new defini-
tion of reversibility is the possibility of in-degrees higher than one. As shown in
Fig. 4, despite the two incoming edges of the vertex {4}, when reversing the pre-
vious computation, we can now decide which one to take based on the preceding
context (the label of the edge).

Continuing our previous discussion, we now compare the state diagrams and
the transition graphs of reversible finite transition systems and reversible reac-
tion systems with lookbehind, respectively. A finite transition system is usually
denoted as a triplet F = (Q,Σ, δ), where Q is the set of states, Σ is the input
alphabet and δ is the state transition function, mapping the current state and

Transition Graphs of Reversible Reaction Systems 13

Fig. 4. Transition graph configuration that is not permitted for ordinary reversible
systems, but is allowed in the case of systems which are reversible with lookbehind.

an input symbol to a result state. Finite transition systems differ from finite
state automata by not having distinguished start and final states. Although the
following results can be stated for finite state automata as well, reaction systems
seem to be more closely related to transition systems, since interactive processes
in reaction systems lack the concept of final (or accepting) state. This is fur-
ther supported by [4], where a method is presented to convert finite transitions
systems to reaction systems.

In what follows, when constructing transition graphs, we assume the defini-
tion of interactive processes in which D0 (or, the initial result set) is empty. This
means that every interactive process must start from the empty result set which
makes it easier to create reaction systems from transition systems, as it allows
for more control over the reachable result sets. Example 4 explores this idea in
greater detail.

Example 4. Let F be a reversible finite transition system for which we want to
construct a corresponding reaction system. Starting with the background set,
we can create an entity for each input symbol of F as well as for each state
of F . The entities created from the input symbols comprise the input alphabet
Σc, while the entities representing the states belong to the product alphabet
Σp. Now, we have that the result sets of the reaction system (Di) represent the
actual state of the underlying transition system, and the context sets correspond
to the received input.

If the initial result set D0 was allowed to be non-empty, then any entity of
the product alphabet could be present in this set, even multiple entities. Since
each entity represents a distinct state of the underlying transition system, the
presence of multiple entities would mean that the transition system is in multiple
states at once. As this is not permitted, one should require D0 to be empty, since
that way, the facilitation and inhibition aspects of the reaction can prevent such
cases.

Theorem 3. For every reversible finite transition system, there is a reaction
system which is reversible with lookbehind and has the same states and transitions
(apart from a starting state and its corresponding transitions).

Proof. Let F = (Q,Σ, δ) be a reversible finite transition system. Then, the state
diagram of F , SDF = (VF , EF) is a directed graph, where VF = Q is the set of
vertices and EF = {(v, l, w) | δ(v, l) = w} is the set of directed, labeled edges.

14 A. Bagossy and G. Vaszil

Now, let us construct a reaction system A = (S,A) from F . Initially, we
choose the background set S to be the union of two disjoint sets (S = Σp ∪ Σc):
the product alphabet corresponds to the states of the transition system (thus,
Σp = Q), while the input alphabet is equivalent to the input alphabet of F (thus,
Σc = Σ). We can define a set of reactions using the transition function of F :

{({q, i},Σc \ {i}, {r}) | δ(q, i) = r, for q, r ∈ Q, i ∈ Σ}.

Finite trasition systems do not have a designated initial state, but may begin
their computation in an arbitrary state. In the case of reaction systems, however,
an interactive process must start with the empty result set (D0 = ∅). Since the
context and the product alphabets are, in this case, disjoint (Σp ∩ Σc = ∅), it
is not possible to put a symbol representing some state q ∈ Q in the initial
context set (C0). To overcome this issue and allow the reaction system to start
its computation by jumping to an arbitrary state q, we introduce a new entity,
αq for each state q ∈ Q and an appropriate reaction that lead from the empty
result set to the result set representing this state q of F .

With this in mind, let us redefine the background and the reaction set of A .
The background set S is now the union of the following two sets: Σp = Q and
Σc = Σ ∪ {αq | q ∈ Q}. The reaction set A is then defined as follows:

A ={({q, i},Σc \ {i}, {r}) | δ(q, i) = r for q, r ∈ Q, i ∈ Σ}∪
{({αq},Σp ∪ (Σc \ {αq}), {q}) | q ∈ Q}.

The transition graph of A is defined as a directed graph based on the result
sets and inputs of the non-restarting interactive processes in the system. Because
of the definition of the transition graph, given any vertex q in the state diagram
of F , we have a vertex in TGA corresponding to D = {q}. Additionally, for every
edge (v, l, w) in the state diagram of F , we have an appropriate edge pointing
from the vertex D1 = {v} to the vertex D2 = resA ({v, l}) = {w} (because of
the definition of A).

Consequently, apart from the vertex representing the empty state and its
outgoing edges, the transition graph of A and the state diagram of F are iso-
morphic.

What is left to prove is that the states in the non-restarting interactive pro-
cesses of A have unique predecessors with lookbehind (making A reversible with
lookbehind). Since F is a reversible transition system, there is no vertex in its
state diagram that has more than one incoming edge with the same label. As a
consequence, each vertex in the transition graph of A satisfies the same property.
Combining this fact with the disjointness of the product and input alphabets, we
have that no state can be reached with the same input (or label, in the transition
graph) from two different result sets. This is precisely the definition of having a
unique predecessor with lookbehind.
�
Theorem 4. For every reaction system which is reversible with lookbehind, there
is a reversible finite transition system with the same states and transitions.

Transition Graphs of Reversible Reaction Systems 15

Proof. Let A = (S,A) be a reversible lookbehind reaction system with S = Σp∪
Σc (where Σp and Σc are not necessarily disjoint). Also, let TGA = (VA , EA)
be the transition graph of A .

Now, let us construct a finite transition system F = (Q,Σ, δ) from A . Using
the transition graph of A , we can define the states of the transition system as
Q = VA . The input alphabet of F is going to contain the subsets of the input
alphabet of A , thus Σ = 2Σc . By considering the edges in TGA , we can define
the transition function as

δ(q, i) = r, if there is an edge in EA from q to r with label i.

Because of the above definition of F , given any vertex (representing a result
set) in the transition graph of A , we will have a corresponding vertex in the state
diagram of F . Furthermore, since the edges in the state diagram correspond to
the transition function δ, which in turn was defined via the edges of TGA , we
have that each edge in the state diagram of F will map to an edge in TGA .
Thus, we have that the state diagram of F and the transition graph of A are
isomorphic.

Analogous to the proof of Theorem 3, now we need to show that F is a
reversible transition system. Since A is reversible, no vertex in its transition
graph has more than one incoming edge with the same label. As the state diagram
of F is isomorphic to TGA and each edge has the same label as its counterpart
in TGA , the same is true for each vertex in the state diagram. Thus, because the
edges represent the state transitions induced by δ, we have that F is reversible.
�

Based on the previous two theorems, we can state the following.

Proposition 1. The state transition graphs of reversible finite transition sys-
tems correspond to the transition graphs of reaction systems which are reversible
with lookbehind, apart from the special initial vertex corresponding to the ini-
tial empty result set of the reaction system. Vice-versa, the transition graph of
any reaction system which is reversible with lookbehind corresponds to the state
transition graph of a reversible finite transition system.

5 Conclusion

In this paper, we have studied the possible computations of reversible reaction
systems by examining their transition graphs. First, we considered reaction sys-
tems which are reversible according to our definition of reversibility given in
[3] and concluded that the computational graphs (and so the possible compu-
tations) are very simple. Then we examined the same notion of reversibility for
initialized reaction systems (see [11]) and obtained transition graphs which are
somewhat more complicated, but still quite simple. Finally, motivated by the
reversibility of (finite) automata, we introduced the notion of reversibility with
lookbehind, which finally is able to produce functioning corresponding to the
same types of transition graphs (and thus, the same possible computations) as
the state transition diagrams of reversible finite transition systems.

16 A. Bagossy and G. Vaszil

To study other aspects of reaction systems which are reversible with lookbe-
hind is a research topic that we would like to investigate in more detail in the
future.

References

1. Aman, B., Ciobanu, G.: Controlled reversibility in reaction systems. In: Gheorghe,
M., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) CMC 2017. LNCS, vol. 10725,
pp. 40–53. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-73359-3_3

2. Angluin, D.: Inference of reversible languages. J. ACM 29(3), 741–765 (1982)
3. Bagossy, A., Vaszil, G.: Simulating reversible computation with reaction systems.

J. Membr. Comput. 2(3), 179–193 (2020). https://doi.org/10.1007/s41965-020-
00049-9

4. Brijder, R., Ehrenfeucht, A., Main, M., Rozenberg, G.: A tour of reaction systems.
Int. J. Found. Comput. Sci. 22, 1499–1517 (2011)

5. Dennunzio, A., Formenti, E., Manzoni, L., Porreca, A.E.: Reachability in resource-
bounded reaction systems. In: Dediu, A.-H., Janoušek, J., Martín-Vide, C., Truthe,
B. (eds.) LATA 2016. LNCS, vol. 9618, pp. 592–602. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-30000-9_45

6. Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundam. Inf. 75(1–4), 263–280
(2007)

7. Ehrenfeucht, A., Kleijn, J., Koutny, M., Rozenberg, G.: Minimal reaction systems.
In: Priami, C., Petre, I., de Vink, E. (eds.) Transactions on Computational Systems
Biology XIV. LNCS, vol. 7625, pp. 102–122. Springer, Heidelberg (2012). https://
doi.org/10.1007/978-3-642-35524-0_5

8. Ehrenfeucht, A., Rozenberg, G.: Events and modules in reaction systems. Theor.
Comput. Sci. 376, 3–16 (2007)

9. Genova, D., Hoogeboom, H.J., Jonoska, N.: A graph isomorphism condition and
equivalence of reaction systems. Theor. Comput. Sci. 701, 109–119 (2017)

10. Holzer, M., Kutrib, M.: Reversible nondeterministic finite automata. In: Phillips,
I., Rahaman, H. (eds.) RC 2017. LNCS, vol. 10301, pp. 35–51. Springer, Cham
(2017). https://doi.org/10.1007/978-3-319-59936-6_3

11. Męski, A., Penczek, W., Rozenberg, G.: Model checking temporal properties of
reaction systems. Inf. Sci. 313, 22–42 (2015)

12. Pin, J.-E.: On reversible automata. In: Simon, I. (ed.) LATIN 1992. LNCS, vol. 583,
pp. 401–416. Springer, Heidelberg (1992). https://doi.org/10.1007/BFb0023844.
https://hal.archives-ouvertes.fr/hal-00019977

https://doi.org/10.1007/978-3-319-73359-3_3
https://doi.org/10.1007/s41965-020-00049-9
https://doi.org/10.1007/s41965-020-00049-9
https://doi.org/10.1007/978-3-319-30000-9_45
https://doi.org/10.1007/978-3-642-35524-0_5
https://doi.org/10.1007/978-3-642-35524-0_5
https://doi.org/10.1007/978-3-319-59936-6_3
https://doi.org/10.1007/BFb0023844
https://hal.archives-ouvertes.fr/hal-00019977

Communicating Reaction Systems
with Direct Communication

Erzsébet Csuhaj-Varjú(B) and Pramod Kumar Sethy

Department of Algorithms and Their Applications, Faculty of Informatics,
Eötvös Loránd University ELTE, Budapest, Hungary

{csuhaj,pksethy}@inf.elte.hu

Abstract. We introduce and examine two variants of networks of reac-
tion systems, called communicating reaction systems with direct com-
munication, where the reaction systems send products or reactions to
each other. We show that these types of networks of reaction systems
can be obtained by simple mappings from single reaction systems. We
also discuss some aspects of communication within these networks, and
suggest open problems for future research.

1 Introduction

The theory of reaction systems has been a vivid research area recently. The
concept of a reaction system was introduced by A. Ehrenfeucht and G. Rozenberg
as a formal model of interactions between biochemical reactions. The interested
reader is referred to [8] for the original motivation. The main idea of the authors
was to model the behavior of biological systems in which a large number of
individual reactions interact with each other.

A reaction system consists of a finite set of objects that represent chemicals
and a finite set of triplets that represent chemical reactions. Each reaction con-
sists of three nonempty finite sets: the set of reactants, the set of inhibitors, and
the set of products. The set of reactants and the set of inhibitors are disjoint.
Let T be a set of reactants. A reaction is enabled for T and it can be performed
if all of its reactants are present in T and none of its inhibitors is in T . When the
reaction is performed, then the set of its reactants is replaced by the set of its
products. All enabled reactions are applied in parallel. The final set of products
is the union of all sets of products that were obtained by the reactions that were
enabled for T . For further details on reaction systems consult [9].

Reaction systems (R systems) are qualitative models, opposed to P systems
(membrane systems) that are quantitative ones. The model of reaction systems
focuses only on the presence or absence of the chemical species, and does not
consider their amounts. Multiple reactions that have common reactants do not
interfere. All of the reactions that are enabled at a certain step are performed
simultaneously. Another feature of reaction systems which makes them different
from other bio-inspired computational models, as for example, P systems, is the
lack of permanency: the state of the system consists of only products of those
c© Springer Nature Switzerland AG 2021
R. Freund et al. (Eds.): CMC 2020, LNCS 12687, pp. 17–30, 2021.
https://doi.org/10.1007/978-3-030-77102-7_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77102-7_2&domain=pdf
http://orcid.org/0000-0002-2773-2944
https://doi.org/10.1007/978-3-030-77102-7_2

18 E. Csuhaj-Varjú and P. K. Sethy

reactions that took place in the last step. Those reactants that were not involved
in any reaction disappear from the system. This property is widely used in the
theory.

R systems have been studied in detail over the last 16 years. One interesting
topic of their study is the theory of networks of reaction systems [4]. Such a
construct is a virtual graph with a reaction system in each node. The reaction
systems are defined over the same background set and work in a synchronized
manner, governed by the same clock. After performing the reactions enabled for
the current set of reactants at a node, certain products from other nodes can be
added to the set of products at the node. The nodes, thus the reaction systems
interact with each other using distribution and communication protocols. The
set of products of each reaction system in the network forms a part of the
environment of the network. Important ideas and results on these constructs
can be found in [3,4].

In this paper we introduce the concept of communicating R systems with two
variants of direct communication (cdcR systems, for short). These constructs are
particular variants of networks of reaction systems [4]. Such a system consists of
a finite set of extended versions of reactions defined over the same background
set. These extended reaction systems (the components of the cdcR system),
in addition to performing standard reactions, communicate either products or
reactions to certain predefined target components. In the case of product com-
munication, the products are associated with targets, i.e. labels of components
which the product is sent to. In the case of reaction communication, each reac-
tion is associated with a set of targets, labels of components. In this case, after
performing the reaction, it is communicated to the target component. We note
that the sender component can also be the target component. In both cases,
after performing the reactions and the communication, the system performs a
new transition. Communication is direct in these systems since the target of the
product or the reaction to be communicated is explicitly given together with the
cdcR system. We prove that for every cdcR system using any of the two types
of direct communication (product or reaction), a reaction system can be con-
structed which simulates, up to some simple mapping(s), the given cdcR system.
That is, these reaction systems provide representations of cdcR systems. We also
discuss communication within the network, define static and active communi-
cation links, graphs, and describe how to represent active communication links
and graphs of the cdcR systems under operation. We also compare the two com-
munication variants. Finally, we provide conclusions and suggestions for future
research.

2 Preliminaries

For basic notions of formal language and computation theory, the reader is
referred to [11].

The set of all strings over an alphabet V is denoted by V ∗, the set of non-
empty strings by V +. The empty string is denoted by λ and |w| denotes the
length of string w. A language L is a subset of V ∗.

Communicating Reaction Systems with Direct Communication 19

We recall the notions concerning reaction systems; most of them are taken
from [8,9]. Some notations slightly differ from the standard ones; these changes
are for technical reasons.

Definition 1. Let S be a finite nonempty set; S is called the background set. A
reaction ρ over S is a triplet (Rρ, Iρ, Pρ) where Rρ, Iρ, Pρ are nonempty subsets
of S such that Rρ ∩ Iρ = ∅.
Sets Rρ, Iρ, Pρ are called the sets of reactants, inhibitors, and products of ρ,
respectively.

For convenience, reaction ρ will be given in the form ρ : (Rρ, Iρ, Pρ) in the
sequel.

We consider now the effect of a reaction in a specific state of a reaction
system; states are finite sets of entities.

Definition 2. A reaction system is an ordered pair A = (S,A), where S is a
background set and A is a finite nonempty set of reactions over S.

Thus, a reaction system A is simply a set of reactions. In specifying A, we also
give its background set S.

Definition 3. Let S be a background set, T ⊆ S, ρ : (Rρ, Iρ, Pρ) be a reaction
over S, and let A be a finite set of reactions over S. Then

1. ρ is enabled for T if Rρ ⊆ T and Iρ ∩ T = ∅;
2. the result of applying ρ to T , denoted by resρ(T), equals Pρ if ρ is enabled for

T and ∅ otherwise;
3. the result of applying A to T , denoted by resA(T), is

⋃
ρ∈A resρ(T).

Thus, reaction ρ is enabled for T if T contains all of the reactants of ρ and none
of its inhibitors. If ρ is enabled for T , then its product will be a subset of the
successor set of reactants. For T ⊆ S, enA(T) denotes the set of reactions of
A that are enabled for T . Notice that resA defines a function on 2S , called the
result function.

Definition 4. The state sequence of a reaction system A with initial state T is
given by successive iterations of the result function:

(resn
A(T))n∈N = (T, resA(T), res2A(T), ...).

Since the background set of a reaction system is finite, the state space is also
finite; thus, every state sequence is either finite or ultimately periodic.

3 Communicating Reaction Systems with Direct
Communication

We introduce the concept of communicating R systems (cdcR systems) with two
variants of direct communication. The concept is strongly related to the notion

20 E. Csuhaj-Varjú and P. K. Sethy

of a network of R systems [4] and it has been inspired by several variants of bio-
inspired networks of language generating devices [5–7]. A cdcR system consists
of a finite number of components, each component is a finite set of extended
variants of reactions. Every component is defined over the same background set.
The components, in addition to performing standard reactions, communicate
products or reactions, according to the used protocol, to certain predefined tar-
get components. The components of the cdcR system work in a synchronized
manner, governed by the same clock. In the case of product communication, the
products are associated with targets, i.e. with the label of the component which
the product is sent to. In the case of reaction communication, each reaction is
associated with a set of targets, labels of a component. In this case, after per-
forming the reaction, it is sent to the target components. We note that the target
component can also be the sender component. In both cases, after performing
the reactions and the communication, the system performs a new transition,
i.e. the procedure is repeated. The reader may easily see that the targets define
direct communication between the components. We show that for every cdcR
system using any of the two types of communication a standard R system can
be constructed which provides a representation of the given cdcR system; the
operation of the two systems correspond to each other.

3.1 Communication by Products

We first define the notion of a cdcR system communicating by products.

Definition 5. A cdcR system communicating by products (a cdcR(p) system,
for short), of degree n, n ≥ 1, is an (n + 1)-tuple Δ = (S,A1, . . . , An), where

– S is a finite nonempty set, the background set of Δ;
– Ai, 1 ≤ i ≤ n, is the ith component of Δ, where

• Ai is a finite nonempty set of extended reactions of type pc (pc-reactions,
for short).

• Each pc-reaction ρ of Ai is of the form ρ : (Rρ, Iρ,Πρ), where Rρ and
Iρ are nonempty subsets of S, Rρ ∩ Iρ = ∅, and Πρ ⊆ Pρ × {1, . . . , n}
is a nonempty set with Pρ being a nonempty subset of S. Rρ, Iρ, Πρ are
called the set of reactants, the set of inhibitors, and the set of products
with targets. A pair (b, j), 1 ≤ j ≤ n in Πρ means that product b ∈ S is
communicated to component Aj.

The term pc-reaction means that the reaction communicates products.
We extend notions and notations concerning reaction systems to cdcR(p)

systems. If it is clear from the context, for singleton sets {ρ} we use notation ρ.
A pc-reaction ρ : (Rρ, Iρ,Πρ) is enabled for the set U ⊆ S if Rρ ⊆ U and

Iρ∩U = ∅ as in case of standard reaction systems; this fact is denoted by enρ(U).
Let U ⊆ S be a set of reactants and let ρ be a pc-reaction at component Ai.
Then we define resρ(U) = {b | (b, i) ∈ Πρ} if enρ(U) and resρ(U) = ∅ otherwise.

Communicating Reaction Systems with Direct Communication 21

Let Δ = (S,A1, . . . , An) be a cdcR(p) system and let U ⊆ S. We define
resAi

(U) = {b | (b, i) ∈ Πρ, ρ ∈ Ai, enρ(U)} if at least one pc-reaction in Ai is
enabled for U and resAi

(U) = ∅ otherwise.
cdcR(p) systems operate by transitions, i.e. by changing their states. A state

of a cdcR(p) systems Δ = (S,A1, . . . , An) is an n-tuple (D1, . . . , Dn) where
Di ⊆ S, 1 ≤ i ≤ n; Di is called the state of component Ai, 1 ≤ i ≤ n. Notice
that Di can be the empty set.

A transition in Δ means that every component of the cdcR(p) system per-
forms all of its enabled pc-reactions on the current set of reactants and then
communicates the obtained products to their target components, indicated in
the corresponding pc-reaction. It is important to note that the same object
(product) can be communicated to a component from several components and
by several pc-reactions.

The sequence of transitions starting with an initial state forms a state
sequence of Δ. Notice that by the definition of the pc-reactions, for a given
initial state there is only one state sequence of Δ, i.e. for a given initial state,
the sequence of transitions is deterministic.

Definition 6. Let Δ = (S,A1, . . . , An), n ≥ 1, be a cdcR(p) system.
The sequence D̄0, . . . , D̄j , . . . is called the state sequence of Δ starting with

initial state D̄0 if the following conditions are met:
For every D̄j, j ≥ 0 where D̄j = (D1,j . . . , Di,j , . . . , Dn,j), 1 ≤ i ≤ n it holds
that D̄j+1 = (D1,j+1 . . . , Di,j+1, . . . , Dn,j+1) with
Di,j+1 = ∪1≤k≤nComk→i(resAk

(Dk,j)) where Comk→i(resAk
(Dk,j)) = {b |

(b, i) ∈ Πρ, ρ : (Rρ, Iρ,Πρ) ∈ enAk
(Dk,j)}.

Sequence Di,0,Di,1, . . . is said to be the state sequence of component Ai of
Δ, 1 ≤ i ≤ n.

Notice that the state sequence does not end if resAi
(Di,j) is the empty set,

since products can be communicated to the component in some later step.
Let Δ = (S,A1, . . . , An), n ≥ 1, be a cdcR(p) system and let D̄0, D̄1 . . . be

the state sequence of Δ starting with D̄0. Then every pair (D̄i, D̄i+1), i ≥ 0 is
said to be a transition in Δ and is denoted by D̄i =⇒ D̄i+1.

We give an example for cdcR(p) systems.

Example 1. Let Δ = (S,A1, A2, A3) be a cdcR(p) system where S = {a, b, c, d}
and components A1, A2 and A3 are defined as follows. Let

A1 = {ρ1 : ({a, b}, {d}, {(a, 2)}), ρ2 : ({b}, {d}, {(b, 2)})},

A2 = {ρ3 : ({a, b}, {c}, {(c, 3)}), ρ4 : ({a}, {c}, {(a, 3)})},

A3 = {ρ5 : ({a, c}, {b}, {(a, 1)}), ρ6 : ({a}, {d}, {(b, 1)})}.

Let D̄0, the initial state of Δ be given as D̄0 = ({a, b}, {a, b}, {a, c}). Then
component A1 performs both of its pc-reactions, ρ1 and ρ2, and communicates
products a and b to component A2. Similarly, A2 performs both of its pc-
reactions, ρ3 and ρ4, and communicates products c and a to component A3.

22 E. Csuhaj-Varjú and P. K. Sethy

As in the previous two cases, A3 also performs both of its pc-reactions, ρ5 and
ρ6. It communicates products a and b to component A1. Thus, the new state of
Δ will be D̄1 = ({a, b}, {a, b}, {a, c}), the same as D̄0.

If we change pc-reaction ρ3 to ρ′
3, where ρ′

3 : ({c}, {a, b}, {(c, 3)}), then
only pc-reaction ρ4 is enabled on {a, b}. Thus, after performing ρ4 only prod-
uct a is communicated to A3. Thus, the new state of Δ in this case will be
({a, b}, {a, b}, {a}).

Next we show that every cdcR(p) system can be represented by an R system
which provides a simulation as well in the following sense: the state sequences
of the components of the cdcR(p) system can be obtained by simple mappings
from the state sequence of the R system.

Theorem 1. Let Δ = (S,A1, . . . , An), n ≥ 1, be a cdcR(p) system and let
D̄0 = (D1,0, . . . , Dn,0) be initial state of Δ. We can give a reaction system A =
(S′, A′), initial state W0 of A, and mappings hi : 2S′ → 2S such that for each
i, 1 ≤ i ≤ n, the state sequence Di,0,Di,1, . . . of component Ai of Δ is equal
to the sequence hi(W0), hi(W1), . . ., where W0,W1, . . . is the state sequence of A
starting from initial state W0.

Proof. To prove the statement, we first define the components of A. Let S′ =
{[x, i] | x ∈ S, 1 ≤ i ≤ n} be the background set of A. For every i, 1 ≤ i ≤ n let
S′

i = {[x, i] | x ∈ S}.
For any pc-reaction ρ : (Rρ, Iρ,Πρ) of component Ai, 1 ≤ i ≤ n, we define

reaction ρ′ : (Rρ′ , Iρ′ , Pρ′) of A as follows: Rρ′ = {[x, i] | x ∈ Rρ}, Iρ′ = {[y, i] |
x ∈ Iρ}, Pρ′ = {[x, k] | (x, k) ∈ Πρ, 1 ≤ k ≤ n}. A has no more reactions. It can
immediately be seen that every reactant [x, i] of A represents a reactant x in S
that can be found at component Ai, and reversely. Thus, Δ and A correspond
to each other, since by definition any reaction ρ′ : (Rρ′ , Iρ′ , Pρ′) of A where each
element of Rρ′ , Iρ′ is of the form [x, i] corresponds to a pc-reaction ρ : (Rρ, Iρ,Πρ)
of component Ai, and reversely.

Let W0 = {[x, i] | x ∈ Di,0, 1 ≤ i ≤ n} be the initial state of A. It is easy
to see that elements of W0 correspond to elements of the initial states of the
components of Δ.

Let us define for i, 1 ≤ i ≤ n, mapping hi : 2S′ → 2S as follows. Let U ⊆ S′.
If U ∩ S′

i �= ∅, then let hi(U) = {x | [x, i] ∈ U}, otherwise let hi(U) = ∅.
We prove that the state sequence of component Ai of Δ starting from initial

state Di,0 corresponds to the state sequence of A starting from W0. For j = 0 and
for any fixed i, i ∈ {1, . . . , n}, Di,0 = hi(W0), thus the statement for j = 0 holds.
Suppose now that the statement holds for l, where l ≥ 1, i.e. Di,l = hi(Wl). We
show that Di,l+1 = hi(Wl+1) holds as well. The set of reactants Di,l+1 is the
union of two sets of reactants Ui,l+1 and Vi,l+1. Ui,l+1 consists of all products
that are obtained by all enabled reactions of Ai performed on Di,l and which
products do not leave the component Ai, i.e. which should be communicated to
Ai. Vi,l+1 consists of all products of all enabled reactions performed on some Dk,l

which products leave component Ak, k �= i. (Notice that the two sets Ul+1 and
Vi,l+1 can have joint elements.) Since Di,l+1 = ∪1≤k≤nComk→i(resAk

(Dk,l))

Communicating Reaction Systems with Direct Communication 23

where Comk→i(resAk
(Dk,l)) = {b | (b, i) ∈ Pρ × {1, . . . , n}, ρ = (Rρ, Iρ,Πρ) ∈

enAk
(Dk,l)} and each pc-reaction ρ = (Rρ, Iρ,Πρ) of component Ai corresponds

to exactly one reaction ρ′ : (Rρ′ , Iρ′ , Pρ′) of A and reversely, where Rρ′ = {[x, i] |
x ∈ Rρ}, Iρ′ = {[y, i] | x ∈ Iρ}, Pρ′ = {[x, k] | (x, k) ∈ Πρ, 1 ≤ k ≤ n}, it can
be seen that Di,l+1 = hi(Wl+1) holds. This implies that the statement of the
theorem holds.

In the sequel, we also call reaction system A the flattened reaction system of
Δ or a flattened version of Δ. Notice that a cdcR(p) system is allowed to have
only one component, thus the use of the term flattened version is justified.

Definition 7. Let Δ = (S,A1, . . . , An), n ≥ 1, be a cdcR(p) system. Let reac-
tion system A = (S′, A′) be defined as follows. Let S′ = {[x, i] | x ∈ S, 1 ≤ i ≤
n} be the background set of A. For any pc-reaction ρ : (Rρ, Iρ,Πρ) of compo-
nent Ai, we define reaction ρ′ : (Rρ′ , Iρ′ , Pρ′) of A with Rρ′ = {[x, i] | x ∈ Rρ},
Iρ′ = {[y, i] | x ∈ Iρ}, Pρ′ = {[x, k] | (x, k) ∈ Πρ, 1 ≤ k ≤ n}. No other reaction
is in A′. Then A is called the flattened reaction system of Δ.

Based on the proof of Theorem1 some observations can be made. We present
the next statement without proof, since it is a direct consequence of Theorem1
and its proof.

Corollary 1. Let Δ = (S,A1, . . . , An), n ≥ 1, be a cdcR(p) system and let
A = (S′, A′) be an R system given as in Theorem1. Furthermore, let D̄0 be the
initial state of Δ and let W0 be the initial state of A given as in the proof of
Theorem 1. Then, for m ≥ 0, a reactant b ∈ S occurs at component Ai in the
mth element of the state sequence of Δ starting with initial state D̄0 if and only
if reactant [b, i] ∈ S′ occurs in the mth element of state sequence of A starting
with initial state W0.

In [10,12] the following problem was discussed: For a given reaction system
A = (S,A), a reactant a ∈ S and m ≥ 2 the decision problem whether a appears
at the mth step of at least one state sequence of A is called the occurrence
problem. Note that any nonempty subset of S can be considered as initial state
of A, thus the reaction system may have more than one state sequences. For
some fixed values of the parameter m, the occurrence problem was shown to be
NP-complete [12] and when m is given as input it is a PSPACE-problem [10].

We can formulate the occurrence problem for cdcR(p) systems as well. For
a given cdcR(p) system Δ = (S,A1, . . . , An), n ≥ 1, the problem whether a
reactant a ∈ S occurs at some component Ai at the mth element of the state
sequence of Δ starting with some initial state D̄0 is called the occurrence problem
of cdcR(p) systems. By Theorem 1, Corollary 1 and because to any reaction
system we can construct a cdcR(p) system with only one component, we may
state that the occurrence problem of cdcR(p) systems for some fixed values of
m is NP-complete and it is a PSPACE-problem when m is given as input.

Next we deal with the communication of products within the cdcR(p) system
under operation.

24 E. Csuhaj-Varjú and P. K. Sethy

Definition 8. Let Δ = (S,A1, . . . , An), n ≥ 1, be a cdcR(p) system. The static
communication graph of Δ is a directed graph Γ = (V,E), where V is the set of
vertices (nodes) labeled with Aj, 1 ≤ j ≤ n, and the set of edges E is defined by
E ⊆ Ā × Ā, where Ā = {A1, . . . , An} and (Ai, Aj) ∈ E if and only if there is a
pc-reaction ρ : (Rρ, Iρ,Πρ) in Ai such that Πρ contains an element (b, j).

That is, from node Ai there is a directed edge to node Aj if and only if
component Ai of Δ has at least one pc-reaction that communicates at least one
product to component Aj .

Definition 9. Let Δ = (S,A1, . . . , An), n ≥ 1, be a cdcR(p) system. Let D̄0

be an initial state of Δ and let trl : D̄l =⇒ D̄l+1, l ≥ 0 be a transition in the
state sequence σ : D̄0, D̄1, . . . , D̄l, . . . of Δ. If under transition trl, at component
Ai at least one reaction is performed that communicates at least one product to
component Aj, 1 ≤ i, j ≤ n, then we say that there is an active communication
link from component Ai to component Aj under transition trl : D̄l =⇒ D̄l+1 in
state sequence σ.

The active communication graph Γtrl
= (V,Etrl

) of Δ under transition trl

in σ is defined as follows: V is given as for Γ and Etrl
consists of all edges

(Ai, Aj), 1 ≤ i, j ≤ n in E such that there is an active communication link from
component Ai to component Aj under transition trl : D̄l =⇒ D̄l+1.

Notice that the active communication graph is associated to a transition.
Thus, if σ : D̄0, D̄1, . . . of Δ is the state sequence of Δ starting from initial state
D̄0, then σ defines a sequence of graphs Γtri

, i ≥ 1, where Γtri
is the active

communication graph associated to transition tri, tri : D̄i−1 =⇒ D̄i.
In the following we provide a representation of communication graphs (static

and active) of cdcR(p) systems. In the proof of Theorem 1, we assigned to each
product b of cdcR(p) system Δ a location, i.e. the number (label) of the compo-
nent where the reactant is currently located. Thus, we used products of the form
[b, i] instead of b. This idea is extended in the following manner. In addition to
the current place, the symbol describing the product will also code its previous
location, the component from which it was communicated to its recent location.
Thus, we will use symbols of the form [b, i, j] meaning that a product b from
component Ai is/was sent to component Aj . Using this variant of flattening
the cdcR(p) system, we find a method for tracking active communication links
associated to transitions in every given state sequence in Δ.

Theorem 2. Let Δ = (S,A1, . . . , An), n ≥ 1 be a cdcR(p) system and let D̄0

be initial state of Δ. Let A = (S′, A′) be a reaction system and let W0 be initial
state of A where

– S′ = {[x, i], [x, i, k]′ | x ∈ S, 1 ≤ i, k ≤ n}, and
– A′ consists of the following reactions.

• For any pc-reaction ρ : (Rρ, Iρ,Πρ) of component Ai, there is reaction
ρ′ : (Rρ′ , Iρ′ , Pρ′) in A′ with Rρ′ = {[x, i] | x ∈ Rρ}, Iρ′ = {[y, i] | y ∈ Iρ},
Pρ′ = {[x, i, k]′ | (x, k) ∈ Πρ, 1 ≤ k ≤ n}.

Communicating Reaction Systems with Direct Communication 25

• For every x ∈ S and 1 ≤ i, k ≤ n there is a reaction
ρ[x,i,k]′ : ({[x, i, k]′}, {[x, k]}, {[x, k]}) in A′.

– W0 consists of all reactants [x, h] where x ∈ S and [x, h] is an element of
Dh,0, 1 ≤ h ≤ n.

Then for any j, j ≥ 0, under transition tr : D̄j =⇒ D̄j+1 in the state
sequence D̄0, D̄1, . . . , D̄j , D̄j+1, . . . of Δ there is an active communication link
from component Ai to component Ak of Δ if and only if for some x ∈ S there is
a reactant [x, i, k]′ ∈ S′ which is a product of an enabled reaction of A on W2j

in transition W2j =⇒ W2j+1 of the state sequence W0,W1, . . . of A.

This statement can be proven by modifying the proof of Theorem1, we leave
the details to the reader.

3.2 Communication by Reactions

Under operation, the architecture of the cdcR(p) system remains unchanged in
the sense that the set of reactions of the component does not change. An inter-
esting question is the following: What can we say about communicating reaction
systems where the current sets of reactions of the components are allowed to
change from state to state. One possible variant of this model is where the (suc-
cessfully) performed reactions can be communicated to the other components
and if a reaction is available at some component in some state then it had to be
performed at some component in the previous state (except the case of the initial
state). This type of cdcR systems can be considered as a dynamically evolving
system and represents a communication model where rules and not data are
communicated.

Definition 10. A cdcR system communicating by reactions (a cdcR(r) system,
for short) of degree n, n ≥ 1, is a triplet Δ = (n, S,R) where

– n is the number of components,
– S is a finite nonempty set, called the background set of Δ,
– R is a finite nonempty set of extended reactions of type rc (rc-reactions, for

short), where
• each rc-reaction is of the form ρ : (Rρ, Iρ, Pρ); target(ρ),
• Rρ, Iρ, Pρ are nonempty subsets of S, the set of reactants, the set of
inhibitors, and the set of products of the rc-reaction, respectively,

• target(ρ) ⊆ {1, . . . , n} is a nonempty set, the set of indices (labels) of the
target components to which the rc-reaction is communicated.

The components are labeled by numbers i, 1 ≤ i ≤ n.
For an rc-reaction ρ = (Rρ, Iρ, Pρ); target(ρ), triplet (Rρ, Iρ, Pρ) is called its

core and is denoted by core(ρ). For a nonempty set R′ ⊆ R we define core(R′) =
{core(ρ) | ρ ∈ R′}. An rc-reaction ρ is enabled for a nonempty subset U of S
if core(ρ) is enabled for U ; the result of performing ρ on U means the result
of performing core(ρ) on U . Notations enρ(U), resρ(U), and enR′(U), resR′(U)

26 E. Csuhaj-Varjú and P. K. Sethy

where ρ is an rc-reaction and R′ is a set of rc-reaction systems are used in the
usual manner.

If no confusion arises, from now on ρ will be called the label of reaction ρ as
well.

Next we define the operation of cdcR(r) systems. These systems work with
changing their configurations, i.e. changing the current reaction sets and the
current sets of reactants that are at the disposal of the components. While the
behavior of cdcR(p) systems can be represented by the state sequences, in case
of cdcR(r) systems we speak of configuration sequences, since reaction sets are
allowed to be changed as well.

Definition 11. Let Δ = (n, S,R), n ≥ 1, be a cdcR(r) system with
n components. Let C̄0 be the initial configuration of Δ where C̄0 =
((A1,0,D1,0) . . . , (An,0,Dn,0)) with Ai,0 ⊆ R (the initial rc-reaction set of com-
ponent i) and Di,0 ⊆ S (the initial reactant set of component i), 1 ≤ i ≤ n. The
pair (Ai,0,Di,0) is called the initial configuration of component i.

The configuration sequence C̄0, C̄1, . . . of Δ, where C̄j = ((A1,j ,D1,j) . . . ,
(An,j ,Dn,j)), j ≥ 0, is defined as follows:

For each component i, 1 ≤ i ≤ n, for each j, j ≥ 0 and for every subsequent
configurations (Ai,j ,Di,j), (Ai,j+1,Di,j+1) of component i the following hold:

– Ai,j+1 = {ρ ∈ R | i ∈ target(ρ), ρ ∈ Ak,j , encore(ρ)(Dk,j), 1 ≤ k ≤ n} and
– Di,j+1 = rescore(Ai,j)(Di,j)

That is, after performing the reactions that are enabled for the current reac-
tant sets at the components, the products stay with the components and those
reactions that were enabled for the reactant set are communicated. This means
that these reactions are added to the reaction sets of their target components.
(Notice that the sender component can be a target component as well). The new
set of reactions of the component consists of all reactions that were obtained by
communication. (Thus, those reactions that were not enabled for the reactant
set are erased from the set of reactions of the component.)

We give an example for a cdcR(r) system.

Example 2. Let Δ = (3, S,R) be a cdcR(r) system where S = {a, b, c, d} and R
is defined as follows. Let

R = {ρ1 : ({a, b}, {d}, {a}); {1, 2},
ρ2 : ({b}, {d}, {b}); {1, 2},
ρ3 : ({a, b}, {c}, {c}); {2, 3},
ρ4 : ({a}, {c}, {a}); {2, 3},
ρ5 : ({a, c}, {b}, {a}); {3, 1},
ρ6 : ({a}, {d}, {b}); {3, 1}}.

Let the initial configuration of Δ, C̄0 = ((A1,0,D1,0), (A2,0,D2,0), (A3,0,
D3,0)) be given as follows. Let A1,0 = {ρ1, ρ2}, A2,0 = {ρ3, ρ4}, and A3,0 =
{ρ5, ρ6}. Let D1,0 = {a, b}, D2,0 = {a, b}, D3,0 = {a, c}, i.e. the same initial
states and sets of reactants as in Example 1.

Communicating Reaction Systems with Direct Communication 27

The new configuration C̄1 of Δ will be the following. It can easily be seen that
each reaction can be performed at each component, thus the new rc-reaction sets
will be the following. The first component will have rc-reactions ρ1, ρ2, ρ5, ρ6, the
second component will have rc-reactions ρ3, ρ4, ρ1, ρ2, and the third component
will have rc-reactions ρ5, ρ6, ρ3, ρ4. The new states will be {a, b}, {a, c}, {a, b},
respectively. Repeating the procedure, the state of the first component will be
{a, b}, the state of the second component will be {a, b}, and the third component
will have state {a, b} as well.

As with cdcR(p) systems, to every cdcR(r) system Δ we can construct an R
system A which represents Δ.

Theorem 3. Let Δ = (n, S,R), n ≥ 1 be a cdcR(r) system of degree n, and let
LabR = {lρ | ρ ∈ R} be the set of labels associated to the elements of R; LabR

and S are disjoint sets.
Let σ = C̄0, C̄1, . . . be the configuration sequence of Δ starting from initial

configuration C̄0, where C̄j = ((A1,j ,D1,j) . . . , (An,j ,Dn,j)), j ≥ 0.
We can construct a reaction system A = (S′, A′), give initial state W0 of A

and mappings hi, gi, 1 ≤ i ≤ n such that for every pair (Ai,j ,Di,j), j ≥ 0, in
the configuration sequence σ it holds that hi(Wj) = Di,j and gi(Wj) = LabAi,j

where LabAi,j
denotes the set of labels of rc-reactions that are elements of Ai,j

and W0,W1, . . . is the state sequence of A starting from W0.

Proof. Let us define A = (S′, A′) as follows. Let S′ = {[a, i] | a ∈ (S∪LabR), 1 ≤
i ≤ n}. To each rc-reaction ρ : (Rρ, Iρ, Pρ); target(ρ) in R and for each i, 1 ≤ i ≤
n, we define a reaction (ρ′, i) : ({[lρ, i]}∪{[a, i] | a ∈ Rρ}, {[b, i] | b ∈ Iρ}, {[c, i] |∈
Pρ} ∪ {[lρ, k] | k ∈ target(ρ)}).

Let W0 =
⋃n

i=1({[lρ, i] | lρ ∈ LabR, ρ : (Rρ, Iρ, Pρ); target(ρ) ∈ Ai,0} ∪ {[b, i] |
b ∈ Di,0}).

Let us define mapping hi : 2S′ → 2S , 1 ≤ i ≤ n as follows. For U ⊆ S′

with U ∩ S′ �= ∅, let hi(U) = {x | [x, i] ∈ U}, otherwise let hi(U) = ∅. (Notice
that if U = {[x, i], [y, j]} where j �= i, then hi(U) = {x}.) Let mapping gi :
2S′ → 2LabR , 1 ≤ i ≤ n be defined as follows. For V ⊆ S′ and V ∩ S′ �= ∅ let
gi(V) = {lρ | [lρ, i] ∈ V, V ⊆ LabR}, otherwise let gi(V) = ∅.

By definition, it is obvious that hi(W0) = Di,0 and gi(W0) = LabAi,0 , where
LabAi,0 denotes the labels of reactions in Ai,0.

Suppose now that for any fixed i, and up to certain j, j ≥ 1 for (Ai,j ,Di,j)
in the configuration sequence of Δ it holds that hi(Wj) = Di,j and gi(Wj) =
LabAi,j

where LabAi,j
denotes the set of labels of reactions that are elements of

Ai,j , and Wj is the jth element in the state sequence of δ starting from its initial
state W0. We show now that the statement holds for j + 1 as well.

Notice that due to the form of the reactions of A, for any j, where j ≥ 1,
[lρ, i] appears in Wj if and only if it was obtained as a product in the previous
step by some reaction of A. By the reactions of A this is possible if and only if
(Rρ, Iρ, Pρ) was performed at some component of Δ and ρ was communicated
to component i. Thus, reactants of the form [lρ, i] in Wj and reactions in Ai,j

correspond to each other. Analogously, any reactant of the form [b, i] occurs in

28 E. Csuhaj-Varjú and P. K. Sethy

Wj if and only if it is an element of Di,j . Applying reactions of A to Wj , elements
of Wj+1 will be of the form [γ, i] and [c, i] where γ ∈ LabAi,j+1 and c ∈ S meet
the previously listed conditions. Notice that labels of reactions of Δ are reactants
of A that indicate the simulation of a reaction in Δ with a reaction of A. Thus,
that the statement of the theorem holds.

Analogously to Theorem 1, the previous statement has a direct consequence.
So the proof is left to the reader.

Corollary 2. Let Δ be a cdcR(r) system of degree n, n ≥ 1, and let A be an R
system given as in Theorem3. Let C̄0 be the initial configuration of Δ and let
W0 be the initial state of A given as in Theorem3. Then rc-reaction ρ occurs at
component i in the mth element of state sequence of Δ starting from C̄0 if and
only if reactant [lρ, i] occurs in the mth element of state sequence of A starting
from W0, where m ≥ 1.

As for cdcR(p) systems, the reaction system A constructed to cdcR(r) system
Δ in Theorem 3 can be called the flattened reaction system of Δ and we can
formulate an occurrence problem to cdcR(r) systems as follows. For a given
cdcR(r) system Δ = (n, S,R), n ≥ 1, the problem whether an rc-reaction ρ ∈ R
occurs at the ith component at the mth element of the state sequence of Δ
starting with some initial configuration C̄0 is called the occurrence problem of
cdcR(r) systems. By Theorem 3 and Corollary 2, and by [10,12] we may state
that the occurrence problem of cdcR(r) systems for some fixed values of m is
NP-complete and it is a PSPACE-problem when m is given as input.

Analogously to cdcR(p) systems, we define the flattened reaction system of
cdcR(r) systems Δ.

Definition 12. Let Δ = (n, S,R), n ≥ 1 be a cdcR(r) system of degree n, and
let LabR = {lρ | ρ ∈ R} be a set of labels associated to the elements of R.
Let LabR and S be disjoint sets. Let us define reaction system A = (S′, A′)
as follows. Let S′ = {[a, i] | a ∈ (S ∪ LabR), 1 ≤ i ≤ n}. To each rc-reaction
ρ : (Rρ, Iρ, Pρ); target(ρ) in R and for each i, 1 ≤ i ≤ n, we define a reaction
(ρ′, i) : ({[lρ, i]} ∪ {[a, i] | a ∈ Rρ}, {[b, i] | b ∈ Iρ}, {[c, i] |∈ Pρ} ∪ {[lρ, k] | k ∈
target(ρ)}). A has no more reactions. Then A is called the flattened reaction
system of cdcR(r) system Δ.

We have shown that both cdcR(p) systems and cdcR(r) systems can be flat-
tened, i.e. we can construct simulating reaction systems to both types of cdcR
systems. To obtain the simulating reaction system, either we indicated the loca-
tion of the reactant or we indicated both the location of the reactant and the
location of the reaction in the set of new reactants. In the case of cdcR(r) sys-
tems, we added the labels of rc-reactions to the reactant set of the reactions.
Studying the proofs, the reader may notice that the simulating reaction systems
are similar. Based on this observation, we show that to any cdcR(r) system we
can construct a cdcR(p) system such that there exists a reaction system which
is the flattened version of both.

Communicating Reaction Systems with Direct Communication 29

Theorem 4. Let Δ = (n, S,R), n ≥ 1 be a cdcR(r) system of degree n and let
A be the flattened reaction system of Δ given as in Definition 12. Then there
exists a cdcR(p) system Δ′ such that for its flattened reaction system A′, given
as in Definition 7, A = A′ holds.

Proof. Let us consider Δ = (n, S,R), n ≥ 1 and let LabR = {lρ | ρ ∈ R}
be a set of labels associated to the elements of R. Let LabR and S be disjoint
sets. By Definition 12 the flattened reaction system A of Δ is defined as follows:
A = (S′, A′) where S′ = {[a, i] | a ∈ (S ∪ LabR), 1 ≤ i ≤ n}. To each rc-reaction
ρ : (Rρ, Iρ, Pρ); target(ρ) in R and for each i, 1 ≤ i ≤ n, there is a reaction
(ρ′, i) : ({[lρ, i]} ∪ {[a, i] | a ∈ Rρ}, {[b, i] | b ∈ Iρ}, {[c, i] |∈ Pρ} ∪ {[lρ, k] | k ∈
target(ρ)}). A has no more reactions.

Let us define cdcR(p) system Δ′ as follows. Let Δ′ = (S′, A′
1, . . . , A

′
n), n ≥ 1,

where S′ = {[a, i] | a ∈ S, 1 ≤ i ≤ n} ∪ {[lρ, i] | ρ ∈ R, 1 ≤ i ≤ n}. Let A′
i

be defined as follows: for ρ : (Rρ, Iρ, Pρ); target(ρ) in R we define pc-reaction
ρ′ : ({lρ} ∪ Rρ, Iρ, {[c, i] | c ∈ Pρ} ∪ {lρ(j) | j ∈ target(ρ)}).

It is easy to see that after performing the pc-reaction ρ′, elements of S that are
products in ρ stay with the component, while the label of ρ, lρ, is communicated
to those components that are given as targets of ρ in Δ.

Now let us construct the flattened version of Δ′, given in Definition 7, denoted
by A′. Then for each reaction ρ′ of Δ′, see above, we obtain reaction (ρ′′, i) :
({[lρ, i]} ∪ {[a, i] | a ∈ Rρ}, {[b, i] | b ∈ Iρ}, {[c, i] | c ∈ Pρ} ∪ {[lρ, k] | k ∈
target(ρ)}). Then it is easy to see that A′ = A holds.

4 Conclusions

In this paper we introduced new variants of networks of reaction systems where
the components communicate with each other by sending products or reactions.
We proved that these networks can be represented by single reaction systems
(flattened reaction systems), and discussed some aspects of communication in
these networks. We pointed out a connection between the occurrence of a reac-
tant (a reaction) at some component of the cdcR(p) system (cdcR(r) system) at
some step of the operation and the occurrence of the corresponding reactant in
the same step of the operation of the corresponding flattened reaction system.
Occurrence problems and their complexity for reaction systems have been stud-
ied in [10,12] and were shown to be NP-complete (or PSPACE-complete) prob-
lems, depending on how the problem is formulated. These studies and results can
be interpreted in terms of cdcR(p) systems (cdcR(r)) systems. In the future, we
plan to study the connections between R systems and P systems (see, for exam-
ple [1,2]). Further types of direct communication protocols, dynamic behavior
would also be of interest to investigate.

Acknowledgment. The authors thank the reviewers for their valuable comments.
The work of Erzsébet Csuhaj-Varjú was supported by the National Research, Devel-
opment, and Innovation Office - NKFIH, Hungary, Grant no. K 120558. The work of
Pramod Kumar Sethy was supported by project “Integrált kutatói utánpótlás-képzési

30 E. Csuhaj-Varjú and P. K. Sethy

program az informatika és számı́tástudomány diszciplináris területein”, EFOP 3.6.3-
VEKOP-16-2017-00002, a project supported by the European Union and co-funded by
the European Social Fund.

References

1. Alhazov, A.: P systems without multiplicities of symbol-objects. Inf. Process. Lett.
100(3), 124–129 (2006)

2. Alhazov, A., Aman, B., Freund, R., Ivanov, S.: Simulating R Systems by P Systems.
In: Leporati, A., Rozenberg, G., Salomaa, A., Zandron, C. (eds.) CMC 2016. LNCS,
vol. 10105, pp. 51–66. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-
54072-6 4

3. Bottoni, P., Labella, A., Rozenberg, G.: Reaction systems with influence on envi-
ronment. J. Membr. Comput. 1(1), 3–19 (2019). https://doi.org/10.1007/s41965-
018-00005-8

4. Bottoni, P., Labella, A., Rozenberg, G.: Networks of reaction systems. Int. J.
Found. Comput. Sci. 31(1), 53–71 (2020)

5. Castellanos, J., Mart́ın-Vide, C., Mitrana, V., Sempere, J.M.: Solving NP-complete
problems with networks of evolutionary processors. In: Mira, J., Prieto, A. (eds.)
IWANN 2001. LNCS, vol. 2084, pp. 621–628. Springer, Heidelberg (2001). https://
doi.org/10.1007/3-540-45720-8 74

6. Csuhaj-Varjú, E., Kelemen, J., Păun, G.: Grammar systems with wave-like com-
munication. Comput. Artif. Intell. 15(5), 419–436 (1996)

7. Csuhaj-Varjú, E., Salomaa, A.: Networks of parallel language processors. In: Păun,
G., Salomaa, A. (eds.) New Trends in Formal Languages. LNCS, vol. 1218, pp.
299–318. Springer, Heidelberg (1997). https://doi.org/10.1007/3-540-62844-4 22

8. Ehrenfeucht, A., Rozenberg, G.: Basic notions of reaction systems. In: Calude,
C.S., Calude, E., Dinneen, M.J. (eds.) DLT 2004. LNCS, vol. 3340, pp. 27–29.
Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-30550-7 3

9. Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundam. Informaticae 75(1–4),
263–280 (2007)

10. Formenti, E., Manzoni, L., Porreca, A.E.: On the complexity of occurrence and
convergence problems in reaction systems. Nat. Comput. 14(1), 185–191 (2014).
https://doi.org/10.1007/s11047-014-9456-3

11. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation, 3rd edn. Addison-Wesley, Pearson International Edition
(2007)

12. Salomaa, A.: Functional constructions between reaction systems and propositional
logic. Int. J. Found. Comput. Sci. 24(1), 147–160 (2013)

https://doi.org/10.1007/978-3-319-54072-6_4
https://doi.org/10.1007/978-3-319-54072-6_4
https://doi.org/10.1007/s41965-018-00005-8
https://doi.org/10.1007/s41965-018-00005-8
https://doi.org/10.1007/3-540-45720-8_74
https://doi.org/10.1007/3-540-45720-8_74
https://doi.org/10.1007/3-540-62844-4_22
https://doi.org/10.1007/978-3-540-30550-7_3
https://doi.org/10.1007/s11047-014-9456-3

Generalized Forbidding Matrix
Grammars and Their Membrane

Computing Perspective

Henning Fernau1(B) , Lakshmanan Kuppusamy2 ,
and Indhumathi Raman3

1 Fachbereich 4 – Abteilung Informatikwissenschaften, Universität Trier,
54286 Trier, Germany
fernau@uni-trier.de

2 School of Computer Science and Engineering, VIT University,
Vellore 632 014, India
klakshma@vit.ac.in

3 Department of Applied Mathematics and Computational Sciences,
PSG College of Technology, Coimbatore 641 004, India

ind.amcs@psgtech.ac.in

Abstract. Matrix grammars are one of the first approaches ever pro-
posed in regulated rewriting, prescribing that rules have to be applied in
a certain order. In traditional regulated rewriting, the most interesting
case shows up when all rules are context-free. Typical descriptional com-
plexity measures incorporate the number of nonterminals or the length,
i.e., the number of rules per matrix. When viewing matrices as program
fragments, it becomes natural to consider additional applicability condi-
tions for such matrices. Here, we focus on forbidding sets, i.e., a matrix
is applicable to a sentential form w only if none of the words in its for-
bidding set occurs as a subword in w. This gives rise to further natural
descriptional complexity measures: How long could words in forbidding
sets be? How many words could be in any forbidding set? How many
matrices contain non-empty forbidding contexts? As context-free gram-
mars with forbidding sets are known as generalized forbidding grammars,
we call this variant of matrix grammars also generalized forbidding. In
this paper, we attempt to answer the above four questions while studying
the computational completeness of generalized forbidding matrix gram-
mars. We also link our research to processing strings with membrane
computing and discuss appropriate variations of P systems.

Keywords: Generalized forbidding grammars · Matrix grammars ·
Computational completeness · Descriptional complexity · P systems

1 Introduction

Matrix Grammars. If rules of a context-free grammar are grouped into finite
sequences called matrices, we arrive at matrix grammars (originally introduced
c© Springer Nature Switzerland AG 2021
R. Freund et al. (Eds.): CMC 2020, LNCS 12687, pp. 31–45, 2021.
https://doi.org/10.1007/978-3-030-77102-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77102-7_3&domain=pdf
http://orcid.org/0000-0002-4444-3220
http://orcid.org/0000-0003-2358-905X
http://orcid.org/0000-0002-0981-9165
https://doi.org/10.1007/978-3-030-77102-7_3

32 H. Fernau et al.

by S. Ábrahám [1] on linguistic grounds); when a matrix is chosen to be applied
to a sentential form, all rules in the sequence are applied in the given order.
Matrix grammars with appearance checking, having three nonterminals, are
computationally complete, i.e., they characterize RE [6]. However, the lengths
of the matrices are unbounded. It is not clear how to restrict the length while
still bounding the number of nonterminals. Note that matrix grammars with-
out appearance checking (abbreviated as MAT) are not computationally com-
plete [14].

Semi-conditional Grammars. In 1985, Gh. Păun introduced another variant of
regulated rewriting, so-called semi-conditional grammars [22]. To each (context-
free) rule, a permitting and a forbidden string are associated that govern the
applicability of said rule. In [22], also combinations with other regulation mech-
anisms were investigated. For our studies, in particular the variation leading to
the language classes KMλ(i, j) is of special interest where to each matrix (con-
taining sequences of possibly erasing context-free rules), a permitting string w1

of length at most i and a forbidden string w2 of length at most j are associated.
Such a matrix is only applicable to the sentential form w if w1 is a substring of
w and if w2 does not occur as a substring of w. We have integrated the result
KMλ(0, 2) = RE of Theorem 4.4 in [22] into our survey Table 1.

Generalized Forbidding Grammars. In 1990, A. Meduna [19] introduced the fol-
lowing modification of semi-conditional grammars: disallowing permitting strings
but allowing a number of forbidden ones. If in a context-free grammar, each rule
is associated with a set F of strings (called the forbidding set), then such a gram-
mar is called a generalized forbidding (GF) grammar. A rule can be applied to a
sentential form w if none of the strings in the associated forbidding sets occur as
a substring in w. There are four main parameters that describe the size of a GF
grammar, namely, (1) d, the maximum length of strings in the forbidding sets,
(2) i, the maximum cardinality of the forbidding sets, (3) n, the number of non-
terminals used in the grammar, and (4) c, the number of rules with nonempty
forbidding set. The family of languages described by a GF grammar of size (at
most) (d, i, n, c) is denoted by GF(d, i, n, c).

Generalized Forbidding Matrix Grammars. In this paper, we combine the studies
of KM- and GF-grammars by introducing generalized forbidding matrix (GFM)
grammars. Here, forbidding sets are associated to matrices of context-free rules.
Apart from the parameters d, i, n discussed for GF-grammars, we consider the
number m of conditional matrices (ignoring matrices that have empty forbidding
sets) and an upper bound l on the length of the matrices. This leads to language
families like GFM(d, i, n;m, l). Notice that GFM(d, i, n;m, 1) = GF(d, i, n,m).

Survey of Main Results. We review known and new descriptional complexity
results on computational complete GFM(d, i, n;m, l) in Table 1. A star indi-
cates that the corresponding construction does not allow for any bounds on
this parameter. We have grouped our results according to general constructions

GFM Grammars and Their Membrane Computing Perspective 33

Table 1. Computational completeness results for GFM grammars

Degree Index # Nontermin # Matrices Matrix length Reference

d i n m l

1 2 ∗ ∗ 1 [22]

∗ 2 3 ∗ ∗ Thm. 1

1 1 ∗ ∗ 2 Thm. 2

2 6 8 6 1 [7,8]

2 5 9 7 1 [8]

2 4 7 8 1 [8]

2 3 20 18 1 [7,8]

2 3 7 2 3 Thm. 6

2 5 6 3 2 Thm. 7

2 5 6 2 3 Thm. 8

2 3 7 4 2 Thm. 9

2 3 8 3 2 Thm. 10

2 2 8 6 2 Thm. 11

(where some parameters are not bounded), followed by descriptional complexity
results on GF grammars,1 interpreted as results on GFM grammars as described
above, and finally we obtain a number of (new) descriptional complexity results
on GFM grammars. Let us mention a couple of special features here:

– With GF grammars (i.e., GFM grammars with l = 1), we are not aware of
any computational completeness results with six or less nonterminals. With
matrix length two, we do get this type of results for GFM grammars.

– The number of conditional matrices is significantly higher with matrix length
one compared to allowing longer matrices.

– At first glance, it might look unfair to compare the number of conditional rules
in GF grammars with the number of conditional matrices in GFM grammars;
however, observe that the forbidding sets are attached to matrices within
GFM grammars which means, in a sense, that they are associated to the first
rule in the matrices and are not used for the other rules of the matrices. In
this interpretation, the number of conditional matrices equals the number of
conditional rules.

Connections to Membrane Computing. Some of our results concern matrix length
two. In particular, this concerns Theorems 2, 7, 9, 10, and 11. Such systems

1 Notice that computational completeness results have quite some history in the liter-
ature of GF grammars; we only refer to [7,17–20] in some historical order. In the long
version of [7] which is appearing in Discrete Applied Mathematics [8], we obtained
some further improved results of the conference version [7].

34 H. Fernau et al.

could be easily interpreted as a special form of membrane computing, an area
of research started by Gh. Păun two decades ago with the ground-breaking arti-
cle [23]. The resulting membrane computing systems have quite a particular
structure: there is only one outer membrane that contains several inner mem-
branes. No inner membrane contains (recursively) further inner membranes, i.e.,
the underlying tree structure has a very limited depth. For each matrix of length
two, there is an inner membrane. The first rules of all matrices are processed in
the outer membrane. In particular, this means that all matrices of length one
(typically, these are corresponding to the unconditional context-free rules) are
worked in the outer membrane, where also the processing starts with a single
start symbol. Most of our simulations start out with some form of Geffert normal
form. This means that all rules that correspond to the phase one of the Geffert
normal form grammar are simulated within the outer membrane alone. In the
simulation of the second phase, the inner membranes will come into play. The
forbidding sets are then kind of filters attached to rules that could send sentential
forms to an inner membrane. This correlates to the universality results obtained
in P systems with forbidding contexts having a membrane structure of depth
two [11]. Yet, the numbers of nonterminals or production rules are unbounded
there [2,11]. Also in P systems with promoters and inhibitors (see [3,15]), the
reaction of chemicals (a multiset of objects) can happen in the presence and
absence of certain chemicals with or without catalysts (i.e., enzymatic proteins).

2 Generalized Forbidding Matrix Grammars

Let us now formally introduce the main subject of our study. A generalized
forbidding matrix (GFM) grammar is a quadruple G = (V, T,M, S); V is the
total alphabet, T ⊂ V is the terminal alphabet, S ∈ V \ T is the start symbol
and M is a set of matrices of the form m = [(A1 → x1), . . . , (A� → xlm), Fm] ,
where Ai ∈ V \ T , xi ∈ V ∗, Fm ⊆ V +; |⋃m∈M Fm|, |M | < ∞. Fm is the
forbidding set of m and lm is its length. If Fm = ∅, we may omit F and call
such a matrix unconditional, and if in addition lm = 1, we identify the matrix
[(A → x)] with the context-free rule A → x.

Next, we define the semantics of the GFM grammar G = (V, T,M, S), i.e., the
language L(G) that G generates. Let m = [(A1 → x1), . . . , (A� → xlm), Fm] ∈
M . If x, y ∈ V ∗, then x ⇒m y holds if

– no string from Fm is a substring of x;
– there exist m + 1 strings zi ∈ V ∗, with i = 0, . . . , m, such that

• z0 = x, zm = y;
• for i = 1, . . . , m: zi is obtained from zi−1 by applying the context-free rule

Ai → xi, which means that there are strings ζi, ηi such that zi−1 = ζiAiηi

and zi = ζixiηi.

From all relations ⇒m⊆ V ∗ ×V ∗, we build the one-step derivation relation ⇒G

of G as ⇒G:=
⋃

m∈M ⇒m. If ⇒∗
G denotes the reflexive transitive closure, we

can now define L(G) := {w ∈ T ∗ | S ⇒∗
G w} .

GFM Grammars and Their Membrane Computing Perspective 35

We are interested in the following descriptional complexity parameters of a
GFM grammar G = (V, T,M, S):

1. d(G) = maxm∈M maxw∈Fm
|w|, i.e., the maximum length of forbidden strings;

this parameter is also known as the degree of G.
2. i(G) = maxm∈M |Fm|, i.e., the maximum cardinality of a forbidding set; this

parameter is also known as the index of G.
3. n(G) = |V \ T |, i.e., the number of nonterminals;
4. m(G) = |{m ∈ M | Fm 	= ∅}|, i.e., the number of conditional matrices;
5. l(G) = maxm∈M lm, i.e., the maximum length of a matrix.

This allows us to define the language families that we are studying in this
paper under aspects of computational completeness:

GFM(d, i, n;m, l) := {L(G) | d(G) ≤ d, i(G) ≤ i, n(G) ≤ n,m(G) ≤ m, l(G) ≤ l}.

Of course, we are considering GFM grammars only in this definition. Notice
that we put a semi-colon after the first three parameters in order to separate
the parameters that are identical with forbidding context-free grammars [7] and
those that are specific to matrix grammars.

3 Results for Unbounded Context Lengths

We start with some results from [6] where it has been shown that any recursively
enumerable language can be generated by some graph-controlled grammar with
only two nonterminals, improving on earlier works as [5,12,21] (in some chrono-
logical order). We can now adapt the construction of Corollary 6 in [6] to obtain:

Theorem 1. RE = GFM(∗, 2, 3; ∗, ∗).

In other words, only the number of forbidden strings per set and the number
of nonterminals is bounded. With an alternative interpretation, we can also
get a computational completeness result where the number of nonterminals is
unbounded, while the maximum length of a matrix is now at most two.

Theorem 2. RE = GFM(1, 1, ∗; ∗, 2).

We think that both results are interesting, because they give a sort of lower
bound on what can be achieved if we delimit all the parameters.

Interestingly enough, the second theorem closes a gap in the theory of KM-
grammars, cf. [22, Theorem 4.4], as we can conclude:
Corollary 1. CF = KMλ(0, 0) � KMλ(0, 1) = RE.

Our proofs follow rather traditional ways how to simulate graph-controlled
(or programmed) grammars by matrix grammars, as can be also found in the
textbook [4]. Therefore, we omit further proof details here. The main difference
between the proofs of both theorems is that for the first proof, we use (long)
sequences of the same symbol, say, C in order to encode the current state (graph
node), while for the second proof, we use special symbols. Hence, the first proof
allows to delimit the number of nonterminals to three, at the expense of matrices
of unbounded length, while the second one allows to delimit the length of the
matrices to two, but there is no bound anymore on the number of nonterminals.

36 H. Fernau et al.

4 Normal Forms of Phrase Structure Grammars

All of our more refined constructions start with a phrase structure grammar
in a certain normal form. In fact, all of these normal forms originate from the
seminal work of V. Geffert [13]. The best known of these normal forms, often
referred to as Geffert normal form (GNF), uses five non-terminals S,A,B,C,D
and two erasing non-context-free rules AB → λ and CD → λ. We will call this
normal form as (5, 2)-GNF, highlighting the number of nonterminals and the
number of non-context-free rules in this way, because they are characteristic for
the normal forms that Geffert found. The derivation of a type-0 grammar in
(5, 2)-GNF proceeds in two phases, where the first phase splits into two stages.
In phase one, stage one, rules of the form S → uSa are used, with u ∈ {A,C}+,
a ∈ T . In stage two of phase one, rules of the form S → uSv are used, with
u ∈ {A,C}+ and v ∈ {B,D}∗.2 Also, rules of the form S → uv are available
(see [13]) that prepare the transition into phase two, where the two erasing non-
context-free rules AB → λ and CD → λ are used exclusively until a terminal
string is derived.

Accordingly, a type-0 grammar is said to be in (4, 1)-GNF if it has exactly
four nonterminals S,A,B,C and a single non-context-free erasing rule of the
form ABC → λ. Geffert has shown in [13] that this normal form is obtained
from (5, 2)-GNF by applying the morphism A �→ AB, B �→ C, C �→ A and
D �→ BC to all context-free rules.

T. Masopust and A. Meduna [17] came up with the following modification
of (5, 2)-GNF that we suggested calling MMNF in [7]: Let G̃ = (Ñ , T, P̃ , S̃) be
a grammar in (5, 2)-GNF with Ñ = {S̃, A,B,C,D}. Then, there is a grammar
G = ({S, 0, 1, $}, T, Pu ∪{0$0 → $, 1$1 → $, $ → λ}, S), with Pu containing only
unconditional rules of the form

– S → h(u)Sa if S → uSa ∈ P̃ ,
– S → h(u)Sh(v) if S → uSv ∈ P̃ ,
– S → h(u)$h(v) if S → uv ∈ P̃ ,

where h : {A,B,C,D}∗ → {0, 1}∗ is a homomorphism defined by h(A) = h(B) =
00, h(C) = 01, and h(D) = 10, such that L(G) = L(G̃).

In our present applications, it is useful to use yet another normal form, which
we call modified Masopust-Meduna normal form, or MMMNF for short. This
normal form starts out again with (5, 2)-GNF but uses (instead of h) the coding
h′ with h′(A) = 00, h′(B) = 11, h′(C) = h′(D) = 01, and as non-context-free
erasing rules, we have 0$1 → $ and 1$0 → $. We inherit the nice properties of
MMNF, including having only four nonterminals, namely, S, 0, 1, $. Let us make
this normal form more prominent in the following theorem.

Theorem 3. For each language L ∈ RE with L ⊆ T ∗, there exists a type-0
grammar G = ({S, 0, 1, $}, T, P, S) in MMMNF with L(G) = L such that G only
has the following types of rules:
2 For the subtle distinction between possibly allowing or disallowing the empty word

for v or u, respectively, we refer to the discussions in [7].

GFM Grammars and Their Membrane Computing Perspective 37

– S → uSa, with u ∈ {00, 01}+ and a ∈ T ;
– S → uSv and S → u$v, with u ∈ {00, 01}+ and v ∈ {11, 01}∗,
– 0$1 → $, 1$0 → $, $ → λ.

There is one technicality with all these normal forms. We cannot rely on rules
from stage one and stage two of phase one being used in order (as intended). In
fact, Geffert’s correctness proof for his normal forms needed to show that such
mixed applications do not lead to unwanted terminal strings. When using these
normal forms in proofs of computational completeness, we have to take care of
this, as well. One way of achieving this goal is to make sure that no terminal
symbol is ever followed by a nonterminal symbol. In particular when simulating
derivations of this kind of normal form with grammars that rely on forbidding
strings, this test does not work out. The easiest way to resolve this problem is
to explicitly split the first two stages by using a new additional start symbol S′

as discussed in the following theorem. As we somewhat artificially introduce
another nonterminal, we call this variation (4 + 1, 1)-GNF.

Theorem 4. For each language L ∈ RE with L ⊆ T ∗, there exists a type-0
grammar G = ({S′, S,A,B,C}, T, P, S′) in (4 + 1, 1)-GNF with L(G) = L such
that G only has the following types of rules:

– S′ → uS′a, u ∈ {A,AB}+, a ∈ T ,
– S′ → uSv, S → uSv, S′ → uv, S → uv, u ∈ {A,AB}+, v ∈ {BC,C}∗,
– ABC → λ.

Similarly, we introduce the variation MMMNF+1 that uses an additional
nonterminal S′ as the new start symbol. This idea leads to the next result.

Theorem 5. For each language L ∈ RE with L ⊆ T ∗, there exists a type-0
grammar G = ({S′, S, 0, 1, $}, T, P, S′) in MMMNF+1 with L(G) = L such that
G only has the following types of rules:

– S′ → uS′a, with u ∈ {00, 01}+ and a ∈ T ;
– S′ → uSv, S → uSv, S′ → u$v and S → u$v, with u ∈ {00, 01}+ and

v ∈ {11, 01}∗,
– 0$1 → $, 1$0 → $, $ → λ.

5 When All Parameters Are Bounded

In this section, we make quite some use of the (4+1, 1)-GNF and the MMMNF+1
as described in Theorems 4 and 5. This allows us to prove quite a number
of computational completeness results for GFM grammars that bound all the
parameters.

Theorem 6. GFM(2, 3, 7; 2, 3) = RE.

38 H. Fernau et al.

m1 = [(B → λ), (A → $), (C → #), {S, AC,#}]
m2 = [($ λ), (# λ), $A, $B, $C]

Fig. 1. Simulating ABC → λ, using rules of type GFM(2, 3; 7; 2, 3)

Proof. We start with a type-0 grammar G in (4 + 1, 1)-GNF, see Thm. 4. The
GFM grammar G′ = (V, T,M, S) that we are going to construct inherits the ter-
minal alphabet T from G. Moreover, V \T = {S′, S,A,B,C,#, $} are the seven
nonterminals. The context-free rules of G are simply viewed as unconditional
matrices of length one and hence incorporated into G′.

Figure 1 explains how the only non-context-free rule ABC → λ is simulated
with the help of two conditional matrices of length three. The forbidding sets
of these matrices contain at most three strings of length at most two each. This
proves the claimed parameter sizes. For the formal correctness of the construc-
tion, we refer to the long version of this paper. ��
We are now following a different simulation idea, based on MMMNF+1.

Theorem 7. GFM(2, 5, 6; 3, 2) = RE.

Proof. We start out with a type-0 grammar G in MMMNF+1. Hence, this gram-
mar operates with the nonterminal alphabet N = {S′, S, 0, 1, $}. The context-
free rules readily translate to unconditional short matrices of the simulating
GFM grammar G′, which has one additional nonterminal only, which is #.

How the non-context-free rules of G are simulated, is explained in Fig. 2.
Observe the trick that matrix m1 can be applied both to strings α0$1β and
α1$0β, leading to the same string α#$#β; correctness of this application (in
particular, choosing the two symbols next to $ for replacement when applying
matrix m1) is checked with matrix m2.

For further details concerning the correctness of our construction, we refer
to the long version of this paper. ��

In the previous simulation, the last matrix only checks for the absence of
several symbols, because we want to guarantee that it is applied last. If we could
not guarantee this, there is the danger that matrices m1 and m2 are applied
in an uncontrolled way. Alternatively, we could check the presence of $ in these
matrices, so that the deletion $ → λ can happen unconditionally. This idea is
implemented in the next result; the simulating matrices are shown in Fig. 3.

m1 = [(0 → #), (1 → #), {S, S′,#}]
m2 = [(# → λ), (# → λ), {$0, 0$, $1, 1$,##}]
m3 = [($ λ), 0, 1,#]

Fig. 2. Simulating 0$1 → $, 1$0 → $, $ → λ, using rules of type GFM(2, 5, 6; 3, 2)

GFM Grammars and Their Membrane Computing Perspective 39

m1 = [($ → $), (0 → #), (1 → #), {S, S′,#}]
m2 = [($ $), (# λ), (# λ), $0, 0$, $1, 1$,##]

Fig. 3. Simulating 0$1 → $ and 1$0 → $, using rules of type GFM(2, 5, 6; 2, 3)

Theorem 8. GFM(2, 5, 6; 2, 3) = RE.

For the next theorem, we again apply the (modified) (4 + 1, 1)-GNF.

Theorem 9. GFM(2, 3, 7; 4, 2) = RE.

Instead of giving a full proof here, we only display the matrices simulating
ABC → λ in Fig. 4 and show the intended use of these matrices in the following.

w = αABCβt ⇒m1 αA$$##βt ⇒m2 α#$#$##βt

⇒m3 α#$##βt ⇒m3 α##βt ⇒m4 αβt

Further details are to be found in the long version of this paper. ��
We present two more constructions that start out with a (4 + 1, 1)-GNF

grammar. In each case, we only show the matrices simulating ABC → λ and
how this should actually work in a simulation. The formal correctness proofs are
contained in the long version of this paper.

Theorem 10. GFM(2, 3, 8; 3, 2) = RE.

The simulation of ABC → λ by the matrices shown in Fig. 5a is as follows:

w = αABCβt ⇒m1 αA$#βt ⇒m2 α † $βt ⇒m3 αβt

The reader is encouraged to check how the forbidden strings disable unintended
derivations. ��

Finally, we show how we can bring down both degree and index to two, as
well as the matrix length, at the expense of having eight nonterminals and six
conditional matrices.

m1 = [(B → $$), (C → ##), {S, BB,#}]
m2 = [($ → λ), (A → #$#), {$C, C$,#$}]
m3 = [($ → λ), (# → λ), {A, A, $$}]
m4 = [(# λ), (# λ), $]

Fig. 4. Simulating ABC → λ, using rules of type GFM(2, 3, 7; 4, 2)

40 H. Fernau et al.

m1 = [(B → $), (C → #), {S, BB, $}]
m2 = [(# → λ), (A → †), {C$, $C, †}]
m3 = [($ → λ), († → λ), {A, A}]

(a) with rules of type GFM(2, 3, 8; 3, 2)

m1 = [(B → $), (C → C), {S, $}]
m2 = [($ → $), (C → #), {AC,#}]
m3 = [(# → #†), ($ → λ), {B#, †}]
m4 = [(† → λ), (A → $$†), {C#, $}]
m5 = [(# → λ), († → λ), {†A,#†}]
m6 = [($ → λ), ($ → λ), {†, $B}]

(b) with rules of type GFM(2, 2, 8; 6, 2)

Fig. 5. Simulating ABC → λ

Theorem 11. GFM(2, 2, 8; 6, 2) = RE.

The simulation of ABC → λ by the matrices shown in Fig. 5 is as follows:

w = αABCβt ⇒m1 αA$Cβt ⇒m2 αA$#βt ⇒m3 αA# † βt
⇒m4 α$$ † #βt ⇒m5 α$$βt ⇒m6 αβt

In this case, proving that unintended derivations are impossible requires some
work, as contained in the long version of this paper. ��

6 Connection to Membrane Computing

In this section, we explain in detail the connections of generalized forbidding
matrix grammars to membrane computing which was already sketched in the
introduction in a brief manner. We show how the results obtained in this paper,
whenever the maximum length of matrices is 2, correspond to P systems with
a membrane structure of depth 2 under the assumption that matrices of length
one are processed in the outer (skin) membrane.

To explain the correspondence in a better and more formal way, we recall the
definition of an extended rewriting P (ERP) system according to [11] as follows.

Definition 1. [11] An extended rewriting P system with forbidding rules and of
degree m ≥ 1, denoted as ERPm(forb) system, is a construct

Π = (V, T, μ,M1, . . . , Mm, R1, . . . , Rm)

where:

1. V is the alphabet of the system;
2. T ⊆ V is the terminal alphabet;
3. μ is a membrane structure with m membranes injectively labeled by 1, . . . , m;
4. M1, . . . , Mm are finite languages over V , representing the strings initially

present in the regions 1, 2, . . . ,m of the system;
5. R1, . . . , Rm are finite sets of rules of the form X → (u, tar);F , with X ∈

V, u ∈ V ∗, tar ∈ {here, out, in}, associated with the regions of μ and F ⊆ V .

GFM Grammars and Their Membrane Computing Perspective 41

The rule X → x can be applied only to the strings which do not contain any
symbol from F that is associated with the rule (when F = ∅ this means that
the rule is applied without any restriction, in the free mode). A sequence of
transitions forms a computation and the result of a halting computation (where
no further transition is possible) is the set of strings over T sent out of the system
during the computation. A computation which never halts yields no result. A
string which contains symbols not in T does not contribute to the generated
language. We denote by Lforb(Π) the language generated by a P system Π
using such rules, and we denote by ERPm(forb), m ≥ 1, the family of all such
languages, generated by systems with at most m membranes.

To establish connection between generalized forbidding grammars and ERP
system with forbidding rules, we consider a new variant of ERPm(forb) called
generalized ERP system with forbidding set, denoted by GERPm(forb), where
instead set of forbidden symbols (of ERPm(forb)), we consider a set of forbidden
strings and the output is not the environment, rather it is the skin membrane. We
now define the new variant formally. A generalized ERP system with forbidding
sets Π ′ having m ≥ 1 membranes, n nonterminals, degree d and index i is a
construct

(V, T, μ,M1, . . . , Mm, R1, . . . , Rm; 1)

where:

– V is the alphabet; T ⊆ V is terminal alphabet; with n = |V \ T |
– μ is a membrane structure [1 [2]2 [3]3 . . . [m]m] 1 with m membranes where

membrane 1 is the skin membrane as well as the output membrane;
– M1, . . . , Mm are strings (over V) in regions 1, 2, . . . ,m;
– R1, . . . , Rm are finite set of rules present in regions 1, 2, . . . ,m;
– Rule form in Rk: [X → (x, tar);Fk] where 1 ≤ k ≤ m and

– X ∈ V \ T ; x ∈ V ∗; tar ∈ {inj , out, here}; 2 ≤ j ≤ m.
– Fk ⊆ V ∗ (with strings of length ≤ d) with |Fk| ≤ i for all 1 ≤ k ≤ m.

We denote by LGforb(Π ′) the language generated by a P system Π ′ using such
rules, and we denote by GERPm(forbd; i, n), m, n ≥ 1 and d, n ≥ 0, the family
of all such languages, generated by systems with m membranes, n nonterminals,
degree d and index i.

Having defined GERPm(forbd; i, n), we are now ready to establish a relation-
ship between GFM and GERP. If a matrix m of a GFM system with length two
is chosen for application, then the first rule of the matrix is applied in the skin
membrane labelled as 1, thus implying that all the first rules of matrices are
present in skin membrane. The second rule of the matrix m is applied in some
inner membrane (say, membrane j > 1). From the inner membrane, the resultant
string goes back to the skin membrane. Every time before a rule m is applied
in the skin membrane, the forbidding set corresponding to m acts as a filtration
check to move to the inner membrane specified in m. This helps obtain com-
putational completeness results for GERP systems with forbidding sets having
bounded resources in nonterminals and rewriting rules.

42 H. Fernau et al.

4

3

2

1

S′ Skin membrane

m2.1 = (B → $, in2); {S, BB, $}

m3.1 = (# → λ, in3); {C$, $C, δ}

m4.1 = ($ → λ, in4); {A$, $A}

m2.2 = (C → #, out); ∅

m3.2 = (A → , out); ∅

m4.2 = (→ λ, out); ∅

CF unconditional rules

(a) GERP4(forb2; 3, 8) built from:

[(S′ → uS′a), ∅]
[(S′ → uSv), ∅], [(S′ → uv), ∅]
[(S → uSv), ∅], [(S → uv), ∅]

m2 = [(B → $), (C → #), {S, BB, $}]
m3 = [(# → λ), (A →), {C$, $C, }]

m4 = [($ → λ), (→ λ), {A, A}]
(b) GFM(2, 3, 8; 3, 2)

Fig. 6. Correspondence between GERP4(forb2; 3, 8) and GFM(2, 3, 8; 3, 2)

We relate the GFM grammar G = (V, T,M, S) corresponding to the language
family GFM(d, i, n;m − 1, 2), where the m − 1 matrices are denoted by mp =
[mp,1,mp,2, Fp](2 ≤ p ≤ m), with the generalized ERP system Π ′, coming from
GERPm(forbd; i, n), as follows:

– Π ′ = (V, T, μ,M1, . . . , Mm, R1, . . . , Rm; 1);
– μ = [1 [2]2 [3]3 . . . [m]m]1;
– M1 = S, Mk = ∅ for all 2 ≤ k ≤ m;
– R1 = C ∪ D, where

– C = {X → (x, here); ∅ | [(X → x), ∅] ∈ M}
– D =

m⋃

p=2

{(mp,1, inp);Fp} where mp,1 is the first rule of matrix mp ∈ M .

– For all 2 ≤ k ≤ m, Rk = (mk,2, out); ∅. Informally, the inner membrane k
contains only one rule Rk which is the second rule in matrix mk of G.

Figure 6 illustrates the correspondence between GFM(2, 3, 8; 3, 2) and the gener-
alized ERP system GERP4(forb2; 3, 8) as discussed above.

With this correspondence, our results of this paper correspond to the fol-
lowing results for GERP systems (for the first case in the list, we refer to [11]).

Corollary 2. The following GERP systems are computational complete:
GERP2(forb1; ∗, ∗), GERP∗(forb1; 1, ∗), GERP4(forb2; 5, 6), GERP4(forb2; 3, 8),
GERP5(forb2; 3, 7), GERP7(forb2; 2, 8). �

GFM Grammars and Their Membrane Computing Perspective 43

7 Discussions

We have introduced generalized forbidding matrix grammars as a further vari-
ant of regulated rewriting grammar systems and established connections with
membrane computing. Let us point to several open problems in this area.

– We have proven that GFM grammars of degree one and index one are compu-
tationally complete, but we do not have such results if all (other) parameters
are also bounded by some constant. This is also the case for larger values of
degree or index.

– We have shown that three nonterminals are sufficient for arriving at compu-
tational completeness in general for GFM grammars (Theorem 1), but again
then most other parameters are unbounded. This should be compared to
the best we could do for GFM grammars with bounded parameters, which is
getting down to six nonterminals, the index (five) being relatively high.

– It would be also interesting to obtain computational incompleteness results.
For instance, are there any recursively enumerable languages that cannot
be generated by a GFM grammar with two nonterminals? More such open
problems show up if all parameters are bounded.

– Whether the results and ideas used in this paper or in [7] are useful to improve
the computational completeness results of P systems with inhibitors is left
open, connecting to multiset rewriting.

– As can be seen in Fig. 6, the inner membranes have no filtration tests attached
to them. We could change this by allowing (in the original matrix grammar
model) tests attached to single rules, not to matrices. This would give some
additional flexibility, so it would be interesting to compare such grammars
with the GFM grammars studied here.

– In the context of insertion-deletion systems, we described the interpretation of
certain graph-control mechanisms (similar to matrix grammars) to P systems
to some detail in [9]. Hence, similar ideas, interpreting generalized forbidding
insertion-deletion systems [10] to P systems, could be applied here.

– As a final remark, let us mention that we are not aware on any studies on
the nonterminal complexity of P systems; only the work of Madhu [16] goes
in this direction. This would be an interesting topic of future research.

Acknowledgement. Without the numerous contributions of Gheorghe Păun to the
theory of Formal Languages, the present paper could hardly be written, as it is based in
particular on [12,22,23]. Also, the second author profusely thanks Gheorghe Păun for
being his source of inspiration since from his Ph.D. days. Happy birthday, Gheorghe!

References

1. Ábrahám, S.: Some questions of phrase-structure grammars. I. Comput. Linguist.
4, 61–70 (1965)

2. Bottoni, P., Labella, A., Mart́ın-Vide, C., PĂun, G.: Rewriting P systems with
conditional communication. In: Brauer, W., Ehrig, H., Karhumäki, J., Salomaa,
A. (eds.) Formal and Natural Computing. LNCS, vol. 2300, pp. 325–353. Springer,
Heidelberg (2002). https://doi.org/10.1007/3-540-45711-9 18

https://doi.org/10.1007/3-540-45711-9_18

44 H. Fernau et al.

3. Bottoni, P., Mart́ın-Vide, C., Păun, Gh, Rozenberg, G.: Membrane systems with
promoters/inhibitors. Acta Informatica 38(10), 695–720 (2002)

4. Dassow, J., Păun, Gh: Regulated Rewriting in Formal Language Theory, EATCS
Monographs in Theoretical Computer Science, vol. 18. Springer (1989)

5. Fernau, H.: Nonterminal complexity of programmed grammars. Theor. Comput.
Sci. 296, 225–251 (2003)

6. Fernau, H., Freund, R., Oswald, M., Reinhardt, K.: Refining the nonterminal
complexity of graph-controlled, programmed, and matrix grammars. J. Automata
Lang. Comb. 12(1/2), 117–138 (2007)

7. Fernau, H., Kuppusamy, L., Oladele, R.O., Raman, I.: Improved descriptional com-
plexity results on generalized forbidding grammars. In: Pal, S.P., Vijayakumar, A.
(eds.) CALDAM 2019. LNCS, vol. 11394, pp. 174–188. Springer, Cham (2019).
https://doi.org/10.1007/978-3-030-11509-8 15

8. Fernau, H., Kuppusamy, L., Oladele, R.O., Raman, I.: Improved descriptional
complexity results on generalized forbidding grammars. Disc. Appl. Math. (2021).
https://doi.org/10.1016/j.dam.2020.12.027

9. Fernau, H., Kuppusamy, L., Raman, I.: On path-controlled insertion-deletion sys-
tems. Acta Informatica 56(1), 35–59 (2019)

10. Fernau, H., Kuppusamy, L., Raman, I.: On the power of generalized forbidding
insertion-deletion systems. In: Jirásková, G., Pighizzini, G. (eds.) DCFS 2020.
LNCS, vol. 12442, pp. 52–63. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-62536-8 5

11. Ferretti, C., Mauri, G., Paun, Gh, Zandron, C.: On three variants of rewriting P
systems. Theor. Comput. Sci. 1–3(301), 201–215 (2003)

12. Freund, R., Păun, G.: On the number of non-terminal symbols in graph-controlled,
programmed and matrix grammars. In: Margenstern, M., Rogozhin, Y. (eds.) MCU
2001. LNCS, vol. 2055, pp. 214–225. Springer, Heidelberg (2001). https://doi.org/
10.1007/3-540-45132-3 14

13. Geffert, V.: Normal forms for phrase-structure grammars. RAIRO Informatique
théorique et Appl./Theor. Inform. Appl. 25, 473–498 (1991)

14. Hauschildt, D., Jantzen, M.: Petri net algorithms in the theory of matrix grammars.
Acta Informatica 31, 719–728 (1994)

15. Ionescu, M., Sburlan, D.: On P systems with promoters/inhibitors. J. Universal
Comput. Sci. 10(5), 581–599 (2004)

16. Madhu, M.: Descriptional complexity of rewriting P systems. J. Automata, Lang.
Comb. 9(2–3), 311–316 (2004)

17. Masopust, T., Meduna, A.: Descriptional complexity of generalized forbidding
grammars. In: Geffert, V., Pighizzini, G. (eds.) 9th International Workshop on
Descriptional Complexity of Formal Systems - DCFS, pp. 170–177. University of
Kosice, Slovakia (2007)

18. Masopust, T., Meduna, A.: Descriptional complexity of grammars regulated by
context conditions. In: Loos, R., Fazekas, S.Z., Mart́ın-Vide, C. (eds.) LATA 2007.
Proceedings of the 1st International Conference on Language and Automata The-
ory and Applications. vol. Report 35/07, pp. 403–412. Research Group on Mathe-
matical Linguistics, Universitat Rovira i Virgili, Tarragona (2007)

19. Meduna, A.: Generalized forbidding grammars. Int. J. Comput. Math. 36, 31–39
(1990)

20. Meduna, A., Svec, M.: Descriptional complexity of generalized forbidding gram-
mars. Int. J. Comput. Math. 80(1), 11–17 (2003)

https://doi.org/10.1007/978-3-030-11509-8_15
https://doi.org/10.1016/j.dam.2020.12.027
https://doi.org/10.1007/978-3-030-62536-8_5
https://doi.org/10.1007/978-3-030-62536-8_5
https://doi.org/10.1007/3-540-45132-3_14
https://doi.org/10.1007/3-540-45132-3_14

GFM Grammars and Their Membrane Computing Perspective 45

21. Păun, Gh: Six nonterminals are enough for generating each r.e. language by a
matrix grammar. Int. J. Comput. Math. 15(1–4), 23–37 (1984)

22. Păun, Gh: A variant of random context grammars: semi-conditional grammars.
Theor. Comput. Sci. 41, 1–17 (1985)

23. Păun, Gh: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143
(2000)

Parallel Contextual Array Insertion
Deletion P Systems and Tabled Matrix

Grammars

S. James Immanuel1 , S. Jayasankar2(B) , D. Gnanaraj Thomas3 ,
and Meenakshi Paramasivan4

1 Department of Mathematics, Sri Sairam Institute of Technology,
Chennai 600044, India

2 Department of Mathematics, Ramakrishna Mission Vivekananda College,
Chennai 600004, India

3 Department of Applied Mathematics, Saveetha School of Engineering, SIMATS,
Chennai 602105, India

4 FB IV - Informatikwissenschaften, Universität Trier, 54286 Trier, Germany

Abstract. Siromoney et al. introduced a parallel/sequential genera-
tive model called Tabled Matrix Grammars (TMGs) by generalising
phrase structure matrix grammars generating abstract families of lan-
guages (AFLs). James et al. introduced Parallel Contextual Array Inser-
tion Deletion P Systems (PCAIDPSs) to generate two-dimensional array
languages using insertion and deletion operations through parallel con-
textual mappings. In this paper, we compare the generative powers of
PCAIDPSs and TMGs. We prove that the family of languages gener-
ated by PCAIDPS with two membranes properly includes the family
of languages generated by Tabled Context-sensitive Matrix Grammars
(TCSMGs).

Keywords: Parallel contextual array grammars · Tabled matrix
grammars · Insertion deletion P systems

1 Introduction

Siromoney et al. [30] introduced a parallel/ sequential grammar model called
tabled matrix model more general than Phrase Structure Matrix Grammar
(PSMG) [29]. In this model, the production rules for the vertical generation
were given in the form of tables comprising of a finite set of right linear rules.
They studied closure properties and compared with other array generating mod-
els with respect to their generative capacities. The effect of control on the tables
was studied and it was shown that the regular control does not increase the gen-
erative capacity while context-free (CF) and context-sensitive (CS) controls do.
Different kinds of control may be imposed on any type of grammar. The effects
of “string control” and “array control” on the matrix models were studied in
[24]. Still yet a third kind of control is introduced in [28] for parallel grammars
c© Springer Nature Switzerland AG 2021
R. Freund et al. (Eds.): CMC 2020, LNCS 12687, pp. 46–77, 2021.
https://doi.org/10.1007/978-3-030-77102-7_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77102-7_4&domain=pdf
http://orcid.org/0000-0003-0653-4882
http://orcid.org/0000-0001-9896-0779
http://orcid.org/0000-0001-6327-8446
http://orcid.org/0000-0002-1509-6557
https://doi.org/10.1007/978-3-030-77102-7_4

PCAIDPSs and TMGs 47

and Siromoney et al. [30] found that this kind of control imposed on the matrix
models [29] yielded the tabled matrix models which generalized the results of
[28].

In 1969 Marcus [25] came out with an entirely different class of grammars
different from Chomsky grammars called contextual grammars. A contextual
grammar produces a language by starting from a given finite set of strings and
adding repetitively, pairs of strings (called as contexts), associated to sets of
words (called selectors) to the string already obtained. Both Freund et al and
Helen Chandra et al. [4,9] extended these grammars to two-dimensional arrays
respectively in their own style. Freund et al generalised the concept of contextual
grammars and adopted a new and simple approach in [9]. Both row and column
contexts are allowed and contextual rules are finite in parallel contextual array
grammars [4].

D. Haussler [12] was the first to conceive context-free insertion systems as
a generalisation of concatenation. L. Kari [20] studied the role of insertion and
deletion operations in formal language theory in 1991. Domaratzki and Okhotin
[7] and Ito, Kari, Thierrin and Yu [18,21] investigated different variations of
insertion and deletion systems.

A P system (membrane system) introduced by Păun [26] is a distributed
theoretical model with maximal parallelism based on the membrane structure
and function of the living cells. In a P system, at each step, all objects which
can evolve should evolve in parallel. Computation of a P system starts from
its initial configuration guided by the structure of a membrane, objects it con-
tains and evolution rules of that membrane and terminates when the rules of
the membrane are exhausted. P systems have proved to be a rich theoretical
framework to study many computational problems besides giving a new impe-
tus to formal language theory. Various types of P systems were introduced in
the literature and their properties, computing power, normal forms and basic
decision problems were studied [26,27]. S. N. Krishna et al. [22] introduced a
new variant of P system with string objects having insertion-deletion rules to
control the production of strings. A. Alhazov [1] et al have considered insertion-
deletion P systems with priority over insertion and showed that these P systems
with one-symbol together with context-free insertion rules were able to generate
Parikh sets of all recursively enumerable languages (PsRE). The contextual way
of handling string objects in P systems has been considered by Madhu et al.
[23] and the contextual P systems are found to be more powerful than ordinary
string contextual grammars and their variants. Ceterchi et al. [2] introduced
array P systems of the isometric variety, extending the string rewriting P sys-
tems to arrays using context-free type of rules. In [8], a P system model called
contextual array P system with array objects and array contextual rules has been
introduced based on the contextual style of array generation considered in [9],
and its generative power in the description of picture arrays was examined. In
[5], P system models namely, external and internal array contextual P systems
were introduced. Influenced by the works on contextual style of external and
internal parallel contextual array grammars [4,31], James et al. [17] introduced

48 S. J. Immanuel et al.

a new P system model called external and internal parallel contextual array P
systems and parallel contextual array P systems by shuffling contexts on trajec-
tories and studied some properties of the family of languages generated by these
P systems and compared their generative capacity with other array generating
P systems. James et al also have introduced another new contextual array P
system subsequently called parallel contextual array insertion deletion P system
(PCAIDPS) in [15], based on internal parallel contextual array grammars in [4]
and proved that the families of local (LOC) and recognizable picture languages
(REC) [10,11] of Giammaresi and Resitivo and context-sensitive matrix lan-
guages (CSML) [29] of Siromoney et al are properly contained in the family of
languages generated by the parallel contextual array insertion deletion P systems
with 2 membranes (L (PCAIDPS2)) [15]. Jayasankar et al [13,19] proved that
L (PCAIDPS2) properly contains the family of array languages generated by
(Context-free : Right-linear Indexed Right-linear) Siromoney matrix grammars
(L (CF : RIR)).

In this paper, we take a step forward to find a hierarchy among the two-
dimensional picture languages by comparing the generative powers of the mod-
els Parallel Contextual Array Insertion Deletion Grammars (PCAIDGs) [16],
PCAIDPSs [15] with that of Tabled Matrix Grammars (TMGs) [30]. We show
that L (TCSMG) � L (PCAIDPS2).

The paper is organised as follows: In Sect. 2, some basic definitions per-
taining to Tabled Matrix Grammars and languages with examples are recalled.
In Sect. 3, definitions of PCAIDGs and PCAIDPSs are given along with inter-
esting examples. In Sect. 4, main results: L (TCSMG) � L (PCAIDG) and
L (TCSMG) � L (PCAIDPS2) are proved. In Sect. 5, some open problems
are suggested along with the conclusion.

2 Preliminaries

In this section, we recall some definitions pertaining to tabled matrix grammar
(TMG) as in [30].

Let V be a finite alphabet, V ∗, the set of words over V including the empty
word λ. V + = V ∗ − {λ}. An array consists of finitely many symbols from V

arranged in rows and columns and is written in the form, A =

⎡
⎢⎣

a11 · · · a1n

...
. . .

...
am1 · · · amn

⎤
⎥⎦ or

a11 · · · a1n

...
. . .

...
am1 · · · amn

or in short A = [aij]m×n, aij ∈ V , i = 1, 2, . . . ,m and j = 1, 2, . . . , n.

The set of all arrays over V is denoted by V ∗∗ which also includes the empty array
Λ (zero rows and zero columns). V ++ = V ∗∗ − {Λ}. The column concatenation

PCAIDPSs and TMGs 49

of A =

⎡
⎢⎣

a11 · · · a1p

...
. . .

...
am1 · · · amp

⎤
⎥⎦ and B =

⎡
⎢⎣

b11 · · · b1q

...
. . .

...
bn1 · · · bnq

⎤
⎥⎦, defined only when m = n, is

given by A � B =

⎡
⎢⎣

a11 · · · a1p b11 · · · b1q

...
. . .

...
...

. . .
...

am1 · · · amp bn1 · · · bnq

⎤
⎥⎦.

As 1 × n arrays can be easily interpreted as words of length n (and vice
versa), we will then write their column concatenation by juxtaposition (as usual).
Similarly, the row concatenation of A and B, defined only when p = q, is given

by A � B =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 · · · a1p

...
. . .

...
am1 · · · amp

b11 · · · b1q

...
. . .

...
bn1 · · · bnq

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

. The empty array acts as the identity for column

and row concatenation of arrays of arbitrary dimensions.

Definition 1. A Tabled Context-sensitive Matrix Grammar (TCSMG) (Tabled
Context-free Matrix Grammar (TCFMG), Tabled Regular Matrix Grammar
(TRMG)) is a two-tuple G = (GH , GV) where GH = (NH , I, PH , S) is a
Context-sensitive Grammar (CSG) (Context-free Grammar (CFG), Regular
Grammar (RG)) with

– NH is a finite set of horizontal non-terminals;
– I = {S1, . . . , Sk} is a finite set of intermediates and NH ∩ I = ∅;
– PH is a finite set of context-sensitive horizontal rules;
– S ∈ NH is the start symbol; and
– GV =

(⋃k
i=1 Gi,P

)
where each Gi = (Ni, T, Pi, Si) is a right-linear gram-

mar with
• Ni is a finite set of vertical non-terminals; Ni ∩ Nj = ∅ if i �= j;
• T is a finite set of terminals;
• Pi = PNi

∪ PTi
;

• PNi
is a finite set of right-linear non-terminal production rules of the

form A → aB;
• PTi

is a finite set of right-linear terminal production rules of the form
A → a, where A,B ∈ Ni, a ∈ T ∪ {λ};

• Si ∈ Ni is the start symbol of Gi;
• P is a finite set of tables containing production rules.

Each non-terminal table t ∈ P is a non-empty subset of
⋃k

i=1 PNi
and each

terminal table t ∈ P is a non-empty subset of
⋃k

i=1 PTi
. The rules of each

grammar Gi are defined in such a way that the rectangular structure is preserved
during vertical derivation.

The derivations in a TCSMG proceed as follows: First a string Si1 . . . Sin ∈
I∗, ij ∈ {1, . . . k} is generated by the horizontal rules in PH . Vertical derivations

50 S. J. Immanuel et al.

take place in parallel restricted by tables of P. We write M1 ⇓GV
M2 if and

only if either

i) M1 =

a11 . . . a1n

...
. . .

...
a(m−1)1 . . . a(m−1)n

A1 . . . An

, M2 =

a11 . . . a1n

...
. . .

...
a(m−1)1 . . . a(m−1)n

am1 . . . amn

B1 . . . Bn

and t is a non-terminal table of P such that Ai → amiBi, i = 1, . . . , n are
rules in t or

ii) M1 =

a11 . . . a1n

...
. . .

...
a(m−1)1 . . . a(m−1)n

A1 . . . An

, M2 =

a11 . . . a1n

...
. . .

...
a(m−1)1 . . . a(m−1)n

am1 . . . amn

and t is a terminal table of P such that Ai → ami, i = 1, . . . , n are rules in
t. ⇓∗ is the transitive closure of ⇓.

Definition 2. The set of all matrices generated by G is defined as,

L(G) =

{
[aij] | S ⇒∗

GH
Si1 . . . Sin ⇓∗

GV
[aij]

}
.

L(G) is called as a Tabled Context-sensitive Matrix Language (TCSML),
Tabled Context-free Matrix Language (TCFML), Tabled Regular Matrix Lan-
guage (TRML), if G is a TCSMG, TCFMG, TRMG respectively. The corre-
sponding families of languages are denoted by L (TCSMG), L (TCFMG) and
L (TRMG) respectively.

Example 1. Let us consider the language L1 ∈ L (TRMG) consisting of arrays
describing H tokens of different sizes with varied proportions i.e.,

L1 =

⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x • x
x x x
x • x

,

x • x
x • x
x x x
x • x

,

x • x
x x x
x • x
x • x

,
x • • x
x x x x
x • • x

,

x • x
x • x
x x x
x • x
x • x

,

x • x
x x x
x • x
x • x
x • x

,

x • x
x • x
x • x
x x x
x • x

, · · ·

⎫
⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

L1 is generated by the TRMG G1 = (GH , GV) where GH = (NH , I, PH , S) with,

� NH = {S,A,B},
� I = {S1, S2},
� PH = {S → S1A,A → S2B, B → S2B, B → S1}.

The language generated by GH with intermediates {S1, S2} is

L(GH) = {S1S
n
2 S1 | n ≥ 1} .

The tables of GV are t1 = {S1 → xS1, S2 → •S2}, t2 = {S1 → xS1, S2 → •A},
t3 = {S1 → xS1, A → xB}, t4 = {S1 → xS1, B → •B}, t5 = {S1 → x,B → •}.

PCAIDPSs and TMGs 51

A sample derivation of a picture of size 7 × 5 in L1 is given below:

S ⇒∗
GH

S1S
3
2S1 = S1S2S2S2S1 ⇒t1

x • • • x
S1 S2 S2 S2 S1

⇒t1

x • • • x
x • • • x
S1 S2 S2 S2 S1

⇒t2

x • • • x
x • • • x
x • • • x
S1 A A A S1

⇒t3

x • • • x
x • • • x
x • • • x
x x x x x
S1 B B B S1

⇒t4

x • • • x
x • • • x
x • • • x
x x x x x
x • • • x
S1 B B B S1

⇒t4

x • • • x
x • • • x
x • • • x
x x x x x
x • • • x
x • • • x
S1 B B B S1

⇒t5

x • • • x
x • • • x
x • • • x
x x x x x
x • • • x
x • • • x
x • • • x

.

Example 2. Consider the TCSMG G2 = (GH , GV), where GH = (NH , I, PH , S)
with

� NH = {S,C},
� I = {S1, S2},
� PH = {S → S1SCS1, S → S1S2S1S2S1, S1C → CS1, S2C → S1S2}.

Two sample derivations of GH are given below:

S ⇒ S1SCS1 ⇒ S1(S1S2S1S2S1)CS1 =

S1S1S2S1S2(S1C)S1 ⇒ S2
1S2S1S2(CS1)S1 = S2

1S2S1(S2C)S2
1 ⇒

S2
1S2S1(S1S2)S2

1 = S2
1S2S

2
1S2S

2
1 .

S ⇒ S1SCS1 ⇒ S1(S1SCS1)CS1 ⇒ S1S1(S1S2S1S2S1)CS1CS1 ⇒

S3
1S2S1S2S1C(CS1)S1 ⇒ S3

1S2S1S2(CS1)CS2
1 ⇒

S3
1S2S1S2C(CS1)S2

1 ⇒ S3
1S2S1(S1S2)CS3

1 ⇒ S3
1S2S

2
1(S1S2)S3

1 =

S3
1S2S

3
1S2S

3
1 .

52 S. J. Immanuel et al.

The language generated by GH is

L(GH) = {Sn
1 S2S

n
1 S2S

n
1 | n ≥ 1} .

The tables of GV are the same as in Example 1. L(G2) is the set of all matrices
over {x, •} with following properties. Each matrix in L(G2)

(i) contains one row full of x′s.
(ii) has 3n + 2, n ≥ 1 columns.
(iii) has 3n identical columns with each column full of x′s.
(iv) has two identical columns having x′s neither at the top nor at the bottom

of the column.
(v) has m rows with m ≥ 3.

L(G2) is a TCSML but not a CSML [30]. Few sample derivations are as follows:

S1S2S1S2S1 ⇒t2
x • x • x
S1 A S1 A S1

⇒t3

x • x • x
x x x x x
S1 B S1 B S1

⇒t5

x • x • x
x x x x x
x • x • x

.

S1S2S1S2S1 ⇒t2
x • x • x
S1 A S1 A S1

⇒t3

x • x • x
x x x x x
S1 B S1 B S1

⇒t4

x • x • x
x x x x x
x • x • x
S1 B S1 B S1

⇒t5

x • x • x
x x x x x
x • x • x
x • x • x

.

S2
1S2S

2
1S2S

2
1 ⇒t2

x x • x x • x x
S1 S1 A S1 S1 A S1 S1

⇒t3

x x • x x • x x
x x x x x x x x
S1 S1 B S1 S1 B S1 S1

⇒t5

x x • x x • x x
x x x x x x x x
x x • x x • x x

.

3 Parallel Contextual Array Insertion Deletion Grammar
and Associated P System

In this section, we recall some notions of parallel contextual array insertion
deletion grammar and associated P system. For further details we can refer to
[15,16].

PCAIDPSs and TMGs 53

Definition 3. Let V be a finite alphabet. A column array context over V is of

the form c =
[
u1

u2

]
∈ V ∗∗, u1, u2 are of size 1 × p, p ≥ 1. A row array context

over V is of the form r =
[
u1 u2

] ∈ V ∗∗, u1, u2 are of size p × 1, p ≥ 1.

Definition 4. The parallel column contextual insertion operation is defined as
follows: Let V be an alphabet, C be a finite subset of V ∗∗ whose elements are the
column array contexts and ϕi

c : V ∗∗ × V ∗∗ → 2C be a choice mapping.
We define ϕi

c : V ∗∗ × V ∗∗ → 2V ∗∗
such that, for arrays

A =

⎡
⎣

a1j · · · a1(k−1)
...

. . .
...

amj · · · am(k−1)

⎤
⎦ , B =

⎡
⎣

a1k · · · a1(l−1)
...

. . .
...

amk · · · am(l−1)

⎤
⎦ , j < k < l, aij ∈ V ,

Ic ∈ ϕi
c(A,B), Ic =

⎡
⎢⎢⎣

u1

u2
...

um

⎤
⎥⎥⎦ ,

if ci =
[

ui

ui+1

]
∈ ϕi

c

(
aij · · · ai(k−1)

a(i+1)j · · · a(i+1)(k−1)
,

aik · · · ai(l−1)

a(i+1)k · · · a(i+1)(l−1)

)
,

ci ∈ C, 1 ≤ i ≤ m − 1, not all need to be distinct.
Given an array X = [aij]m×n, aij ∈ V , X = X1 � A � B � X2 with

X1 =

⎡
⎣

a11 · · · a1(j−1)
...

. . .
...

am1 · · · am(j−1)

⎤
⎦ , A =

⎡
⎣

a1j · · · a1(k−1)
...

. . .
...

amj · · · am(k−1)

⎤
⎦ ,

B =

⎡
⎣

a1k · · · a1(l−1)
...

. . .
...

amk · · · am(l−1)

⎤
⎦ ,X2 =

⎡
⎣

a1l · · · a1n
...

. . .
...

aml · · · amn

⎤
⎦,

1 ≤ j ≤ k < l ≤ n + 1 (or) 1 ≤ j < k ≤ l ≤ n + 1, we write X ⇒coli Y if
Y = X1 � A � Ic � B � X2, such that Ic ∈ ϕi

c(A,B). Ic is called the inserted
column context. We say that Y is obtained from X by parallel column contextual
insertion operation. Note that ϕi

c is column insertion partial function.
The following 4 special cases for X = X1 � A � B � X2 are also considered,

1. For j = 1, we have X1 = Λ.
2. For j = k, we have A = Λ. If j = k = 1 then X1 = Λ and A = Λ.
3. For k = l (for k + p = l), we have B = Λ.
4. For l = n + 1, we have X2 = Λ. If k = l = n + 1 (If (k + p) = l = n + 1),

then B = Λ and X2 = Λ.

The case j = k = l is not considered for parallel column contextual insertion
operation.

Similarly, we can define parallel row contextual insertion operation by inserting
row context Ir in between two sub-arrays A and B with the help of row operation
�, set of row array contexts R and row insertion partial function ϕi

r. We have
X ⇒rowi Y if X = X1 � A � B � X2 and Y = X1 � A � Ir � B � X2.

54 S. J. Immanuel et al.

Example 3. Consider the following array

Z =

a a b b
a a b b
b b a a
b b a a

along with the sets of column and row contexts (to be inserted)

represented by C =
{

a b
b a

,
a b
a b

,
b a
b a

,
b b
a a

}
and R =

{
a b
b a

,
a a
b b

}
respectively.

We now define column and row insertion rules (using partial functions ϕi
c

and ϕi
r) as follows:

IR1 =
{

ϕi
c

[
a
a

,
b
b

]
=
[

a b
a b

]
, ϕi

c

[
a
b
,

b
a

]
=
[

a b
b a

]
, ϕi

c

[
b
b
,

a
a

]
=
[

b a
b a

]}
.

IR2 =
{

ϕi
r

[
a b , b a

]
=
[

a b
b a

]
, ϕi

r

[
a a , b b

]
=
[

a a
b b

]}
.

Now using column contexts and column insertion rules, a sample horizontal
growth of the picture Z is given below:

Z =

a a b b
a a b b
b b a a
b b a a

⇒coli
IR1

a a a b b b
a a a b b b
b b b a a a
b b b a a a

=

a a a b b b
a a a b b b
b b b a a a
b b b a a a

, where coli stands for col-

umn insertion and IRk stands for the k-th insertion rule set from which the
corresponding insertion rule (rules) is (are) taken.

Now we apply row insertion rules for the vertical growth of the previous
picture as follows:

a a a b b b
a a a b b b
b b b a a a
b b b a a a

⇒rowi

IR2

a a a b b b
a a a b b b
a a a b b b
b b b a a a
b b b a a a
b b b a a a

=

a a a b b b
a a a b b b
a a a b b b
b b b a a a
b b b a a a
b b b a a a

.

Definition 5. The parallel column contextual deletion operation is defined as
follows: Let V be an alphabet, C be a finite subset of V ∗∗ whose elements are
the column array contexts and ϕd

c : V ∗∗ × V ∗∗ → 2C be a choice mapping. We

define ϕd
c : V ∗∗ × V ∗∗ → 2V ∗∗

such that, for arrays A =

⎡
⎣

a1j · · · a1(k−1)
...

. . .
...

amj · · · am(k−1)

⎤
⎦ ,

B =

⎡
⎣

a1(k−p) · · · a1(l−1)
...

. . .
...

am(k−p) · · · am(l−1)

⎤
⎦ , j < k < l, aij ∈ V , Dc ∈ ϕd

c(A,B),Dc =

⎡
⎢⎢⎣

u1

u2
...

um

⎤
⎥⎥⎦ , if

ci =
[

ui

ui+1

]
∈ ϕd

c

(
aij · · · ai(k−1)

a(i+1)j · · · a(i+1)(k−1)
,

ai(k+p) · · · ai(l−1)

a(i+1)(k+p) · · · a(i+1)(l−1)

)
, ci ∈

C, 1 ≤ i ≤ m − 1, not all need to be distinct.

PCAIDPSs and TMGs 55

Given an array X = [aij]m×n, aij ∈ V , X = X1 � A � Dc � B � X2,

X1 =

⎡
⎣

a11 · · · a1(j−1)
...

. . .
...

am1 · · · am(j−1)

⎤
⎦ , A =

⎡
⎣

a1j · · · a1(k−1)
...

. . .
...

amj · · · am(k−1)

⎤
⎦ ,

B =

⎡
⎣

a1k · · · a1(l−1)
...

. . .
...

amk · · · am(l−1)

⎤
⎦ ,X2 =

⎡
⎣

a1l · · · a1n
...

. . .
...

aml · · · amn

⎤
⎦, 1 ≤ j ≤ k < l ≤ n + 1 (or)

1 ≤ j < k ≤ l ≤ n + 1, we write X ⇒cold Y if Y = X1 � A � B � X2, such that
Dc ∈ ϕd

c(A,B). Dc is called the column context to be deleted. We say that Y
is obtained from X by parallel column contextual insertion (deletion) operation.
The following 4 special cases for X = X1 � A � B � X2 are also considered,

1. For j = 1 we have X1 = Λ.
2. For j = k, we have A = Λ. If j = k = 1, then X1 = Λ and A = Λ.
3. For k = l (for k + p = l), we have B = Λ.
4. For l = n + 1, we have X2 = Λ. If k = l = n + 1 (If (k + p) = l = n + 1),

then B = Λ and X2 = Λ.

The case j = k = l is not considered for parallel column contextual deletion
operation.

Similarly, we can define parallel row contextual deletion operation by deleting row
context Dr in between two sub-arrays A and B with the help of row operation �
and set of row array contexts R. We have X ⇒rowd Y if X = X1�A�Dr�B�X2

and Y = X1 � A � B � X2.

Example 4. Consider the following picture M =

a a Y b b
a a Y b b
X X Y X X
b b Y a a
b b Y a a

along with the

column and row contexts (to be deleted) represented by C =
{

Y
Y

}
and R =

{
X X

}
respectively. We now define column and row deletion rules (using partial

functions ϕd
c and ϕd

r) as follows:

DR1 =
{

ϕd
c

[
a
a

,
b
b

]
=
[

Y
Y

]
, ϕd

c

[
a
X

,
b
X

]
=
[

Y
Y

]
, ϕd

c

[
X
b

,
X
a

]
=
[

Y
Y

]}
.

DR2 =

{
ϕd

r

[
a a , b b

]
=
[
X X

]
, ϕd

r

[
a b , b a

]
=
[
X X

]
,

ϕd
r

[
b b , a a

]
=
[
X X

]
}

.

Now using column contexts and column deletion rules, to get rid of the
symbols Y from the picture M is given as follows:

56 S. J. Immanuel et al.

M =

a a Y b b
a a Y b b
X X Y X X
b b Y a a
b b Y a a

⇒cold
DR1

a a b b
a a b b
X X X X
b b a a
b b a a

=

a a b b
a a b b
X X X X
b b a a
b b a a

, where cold stands for

column deletion and DRk stands for the k-th deletion rule set from which the
corresponding deletion rule (rules) is (are) taken.

Now using row context and row deletion rules, to get rid of the symbols X
from the previous picture as follows:

a a b b
a a b b
X X X X
b b a a
b b a a

⇒rowd

DR2

a a b b
a a b b
b b a a
b b a a

.

Definition 6. A parallel contextual array insertion deletion grammar is defined
as G = (V, T,M,C,R, ϕi

c, ϕ
i
r, ϕ

d
c , ϕ

d
r), where V is an alphabet, T ⊆ V is a termi-

nal alphabet, M is a finite subset of V ∗∗ called the base of G, C is a finite subset
of V ∗∗ called column array contexts, R is a finite subset of V ∗∗ called row array
contexts, ϕi

c : V ∗∗ × V ∗∗ → 2C , ϕi
r : V ∗∗ × V ∗∗ → 2R, ϕd

c : V ∗∗ × V ∗∗ → 2C ,
ϕd

r : V ∗∗×V ∗∗ → 2R, are the choice mappings which perform the parallel column
contextual insertion, parallel row contextual insertion, parallel column contextual
deletion and parallel row contextual deletion operations, respectively.

The one-step insertion derivation with respect to G is a binary relation ⇒i on
V ∗∗ and is defined by X ⇒i Y , where X, Y ∈ V ∗∗ if and only if X = X1�A�B�

X2, Y = X1�A�Ic�B�X2 or X = X3�A�B�X4, Y = X3�A�Ir �B�X4

for some X1, X2, X3, X4 ∈ V ∗∗ and Ic, Ir are inserted column and row contexts
obtained by the parallel column or row contextual insertion operations according
to the choice mappings.

The one-step deletion derivation with respect to G is a binary relation ⇒d

on V ∗∗ and is defined by X ⇒d Y , where X, Y ∈ V ∗∗ if and only if X =
X1 � A � Dc � B � X2, Y = X1 � A � B � X2 or X = X3 � A � Dr � B � X4,
Y = X3�A�B�X4 for some X1, X2, X3, X4 ∈ V ∗∗ and Dc, Dr are column and
row contexts to be deleted with respect to the parallel column or row contextual
deletion operations according to the choice mappings.

The direct derivation with respect to G is a binary relation ⇒i,d on V ∗∗ which
is either ⇒i or ⇒d. The reflexive transitive closure of ⇒i,d is denoted by ⇒∗

i,d.

Definition 7. Let G = (V, T,M,C,R, ϕi
c, ϕ

d
r , ϕ

d
c , ϕ

d
r) be a parallel contextual

array insertion deletion grammar (PCAIDG). The language generated by G is
defined by,

L(G) = {Y ∈ T ∗∗|∃X ∈ M with X ⇒∗
i,d Y }.

The family of all array languages generated by PCAIDGs is denoted by
L (PCAIDG). We give two PCAIDGs to generate the language L1 given in
Example 1 and the language L4 which is not generated by any TCSMG (see
Example 6 below).

PCAIDPSs and TMGs 57

Example 5. Let G3 =

(
V, T,M,C,R, ϕi

c, ϕ
i
r, ϕ

d
c , ϕ

d
r

)
, where

- V = {x, •},
- T = {x, •},

- M =

{x • x
x x x
x • x

}
,

- C =

{
•
x

,
•
• ,

x
•

}
,

- R =

{
• x , • • , x •

}
,

- Sets of column and row insertion rules are given by

IR1 =

{
ϕi

c

[
x
x

,
•
x

]
=
[•
x

]
, ϕi

c

[
x
x

,
•
•

]
=
[•
•
]

, ϕi
c

[
x
x

,
x
•

]
=
[
x
•
]}

.

IR2 =

{
ϕi

r

[
x • , x x

]
=
[
x •] , ϕi

r

[
• • , x x

]
=
[• •] ,

ϕi
r

[
• x , x x

]
=
[• x

]
, ϕi

r

[
x x , x •

]
=
[
x •] ,

ϕi
r

[
x x , • •

]
=
[• •] , ϕi

r

[
x x , • x

]
=
[• x

]
}

.

Here L(G3) = L1 =

{x • x
x x x
x • x

,

x • x
x • x
x x x
x • x

,

x • x
x x x
x • x
x • x

,
x • • x
x x x x
x • • x

,

x • x
x • x
x x x
x • x
x • x

,

x • x
x x x
x • x
x • x
x • x

, · · ·
}

.

A sample derivation of a picture of size 7 × 5 in L1 is given below: Here
P ⇒αi

IRk Q stands for P ⇒i Q, where α ∈ {row, col}, the subscript i denotes
insertion operation and IRk is the k-th insertion rules set. Similarly, P ⇒βd

DRk Q
stands for P ⇒d Q, where β ∈ {row, col}, the subscript d denotes deletion
operation and DRk is the k-th deletion rule set.

58 S. J. Immanuel et al.

- is the (row or column) context inserted

x • x
x x x
x • x

⇒coli
IR1

x • • x
x x x x
x • • x

⇒coli
IR1

x • • • x
x x x x x
x • • • x

⇒rowi

IR2

x • • • x
x • • • x
x x x x x
x • • • x

⇒rowi

IR2

x • • • x
x • • • x
x • • • x
x x x x x
x • • • x

⇒rowi

IR2

x • • • x
x • • • x
x • • • x
x x x x x
x • • • x
x • • • x

⇒rowi

IR2

x • • • x
x • • • x
x • • • x
x x x x x
x • • • x
x • • • x
x • • • x

=

x • • • x
x • • • x
x • • • x
x x x x x
x • • • x
x • • • x
x • • • x

.

Example 6. The language L4 of H tokens of same proportion but of different

sizes given by

⎧
⎨
⎩

(
x (•)2n−1 x

)
2n−2(

x (x)2n−1 x
)

(
x (•)2n−1 x

)
2n−2

∣∣∣∣∣ n ≥ 2

⎫
⎬
⎭ ∪

⎧
⎨
⎩

x • x
x x x
x • x

⎫
⎬
⎭

can neither be generated by a TCSMG [30] nor a CSMG [29]. We give a PCAIDG
G4 to generate the language L4.

G4 =

(
V, T,M,C,R, ϕi

c, ϕ
i
r, ϕ

d
c , ϕ

d
r

)
, where

- V = {x, Y, •};
- T = {x, •};

- M =

{
x • x
x x x
x • x

}
;

- C =

{
Y •
Y x

,
Y •
Y • ,

Y x
Y • ,

• Y
x Y

,
• Y
• Y

,
x Y
• Y

}
;

- R =

{
x Y
Y Y

,
Y •
Y Y

,
• •
Y Y

,
• Y
Y Y

,
Y x
Y Y

,
Y Y
x Y

,
Y Y
Y • ,

Y Y
• • ,

Y Y
• Y

,
Y Y
Y x

}
;

- Sets of column and row insertion rules are given by

IR1 =

{
ϕi

c

[
x
x

,
•
x

]
=
[
Y •
Y x

]
, ϕi

c

[
x
x

,
•
•

]
=
[
Y •
Y •

]
,

ϕi
c

[
x
x

,
x
•

]
=
[
Y x
Y •

]
, ϕi

c

[
•
x

,
x
x

]
=
[• Y
x Y

]
, ϕi

c

[
•
x

,
•
x

]
=
[• Y
• Y

]
,

ϕi
c

[
x
x

,
•
x

]
=
[
x Y
• Y

]}
.

IR2 =

{
ϕi

r

[
x Y , x Y

]
=
[
x Y
Y Y

]
, ϕi

r

[
Y • , Y x

]
=
[
Y •
Y Y

]
,

PCAIDPSs and TMGs 59

ϕi
r

[
• • , x x

]
=
[• •
Y Y

]
, ϕi

r

[
• Y , x Y

]
=
[• Y
Y Y

]
,

ϕi
r

[
Y x , Y x

]
=
[
Y x
Y Y

]
, ϕi

r

[
x Y , x Y

]
=
[
Y Y
x Y

]
,

ϕi
r

[
Y x , Y •

]
=
[
Y Y
Y •

]
, ϕi

r

[
x x , • •

]
=
[
Y Y
• •

]
,

ϕi
r

[
x Y , • Y

]
=
[
Y Y
• Y

]
, ϕi

r

[
Y x , Y x

]
=
[
Y Y
Y x

]}
.

DR1 =

{
ϕd

c

[
x
x

,
•
•

]
=
[
Y
Y

]
, ϕd

c

[
x
Y

,
•
Y

]
=
[
Y
Y

]
,

ϕd
c

[
Y
x

,
Y
x

]
=
[
Y
Y

]
, ϕd

c

[
x
Y

,
x
Y

]
=
[
Y
Y

]
, ϕd

c

[
Y
x

,
Y
•

]
=
[
Y
Y

]
,

ϕd
c

[
•
• ,

x
x

]
=
[
Y
Y

]
, ϕd

c

[
•
Y

,
x
Y

]
=
[
Y
Y

]
, ϕd

c

[
Y
x

,
Y
x

]
=
[
Y
Y

]
,

ϕd
c

[
x
Y

,
x
Y

]
=
[
Y
Y

]
, ϕd

c

[
Y
• ,

Y
x

]
=
[
Y
Y

]}
.

DR2 =

{
ϕd

r

[
x • , x x

]
=
[
Y Y

]
, ϕd

r

[
• • , x x

]
=
[
Y Y

]
,

ϕd
r

[
• x , x x

]
=
[
Y Y

]
, ϕd

r

[
x x , x •

]
=
[
Y Y

]
,

ϕd
r

[
x x , • •

]
=
[
Y Y

]
, ϕd

r

[
x x , • x

]
=
[
Y Y

]
}

.

Starting from the element of the axiom set M , a sample derivation of a picture
in L4 is given below:

- is the (row or column) context inserted

- is the (row or column) context to be deleted

x • x
x x x
x • x

⇒coli
IR1

x Y • • x
x Y x x x
x Y • • x

=
x Y • • x
x Y x x x
x Y • • x

⇒coli
IR1

x Y • • • Y x
x Y x x x Y x
x Y • • • Y x

=
x Y • • • Y x
x Y x x x Y x
x Y • • • Y x

⇒rowi

IR2

x Y • • • Y x
x Y • • • Y x
Y Y Y Y Y Y Y
x Y x x x Y x
x Y • • • Y x

=

60 S. J. Immanuel et al.

x Y • • • Y x
x Y • • • Y x
Y Y Y Y Y Y Y
x Y x x x Y x
x Y • • • Y x

⇒rowi

IR2

x Y • • • Y x
x Y • • • Y x
Y Y Y Y Y Y Y
x Y x x x Y x
Y Y Y Y Y Y Y
x Y • • • Y x
x Y • • • Y x

=

x Y • • • Y x
x Y • • • Y x
Y Y Y Y Y Y Y
x Y x x x Y x
Y Y Y Y Y Y Y
x Y • • • Y x
x Y • • • Y x

⇒cold
DR1

x • • • Y x
x • • • Y x
Y Y Y Y Y Y
x x x x Y x
Y Y Y Y Y Y
x • • • Y x
x • • • Y x

⇒cold
DR1

x • • • x
x • • • x
Y Y Y Y Y
x x x x x
Y Y Y Y Y
x • • • x
x • • • x

⇒rowd

DR2

x • • • x
x • • • x
x x x x x
Y Y Y Y Y
x • • • x
x • • • x

⇒rowd

DR2

x • • • x
x • • • x
x x x x x
x • • • x
x • • • x

.

Definition 8. A parallel contextual array insertion deletion P system with h
membranes (PCAIDPSh) is a construct,

∏
= (V, T, μ, C,R, (M1, I1,D1), . . . , (Mh, Ih,Dh), ϕi

c, ϕ
i
r, ϕ

d
c , ϕ

d
r , i0)

where,

– V is the finite nonempty set of symbols called alphabet;
– T ⊆ V is the output alphabet;
– μ is the membrane structure with h membranes or regions;
– C is the finite subset of V ∗∗ called set of column array contexts;
– R is the finite subset of V ∗∗ called set of row array contexts;
– Mi is the finite set of arrays over V called as axioms associated with

the region μi of μ;
– ϕi

c : V ∗∗ × V ∗∗ → 2C is the partial mapping performing parallel column
contextual insertion operations;

– ϕi
r : V ∗∗×V ∗∗ → 2R is the partial mapping performing parallel row contextual

insertion operations;
– ϕd

c : V ∗∗ × V ∗∗ → 2C is the partial mapping performing parallel column
contextual deletion operations;

– ϕd
r : V ∗∗×V ∗∗ → 2R is the partial mapping performing parallel row contextual

deletion operations;

PCAIDPSs and TMGs 61

– Ii = ∅ (or)
{({

ϕi
c(Ai, Bi) =

[
ui

ui+1

] ∣∣∣i = 1, 2, . . . ,m − 1
}

, α

)}
where

Ai =
[

aij · · · ai(k−1)

a(i+1)j · · · a(i+1)(k−1)

]
, Bi =

[
aik · · · ai(l−1)

a(i+1)k · · · a(i+1)(l−1)

]
, 1 ≤ j ≤ k <

l ≤ n + 1 (or)
1 ≤ j < k ≤ l ≤ n + 1, α ∈ {here, out, int}, ui and ui+1 are arrays of size
1 × p with p ≥ 1.
(or){({

ϕi
r(Ci, Ei) =

[
ui ui+1

] ∣∣∣i = 1, 2, . . . , n − 1
}
, α
)}

where

Ci =

⎡
⎣

aji aj(i+1)
...

...
a(k−1)i a(k−1)(i+1)

⎤
⎦ , Ei =

⎡
⎣

aki ak(i+1)
...

...
a(l−1)i a(l−1)(i+1)

⎤
⎦ , 1 ≤ j ≤ k < l ≤

m + 1 (or) 1 ≤ j < k ≤ l ≤ m + 1, α ∈ {here, out, int}, where ‘here’ stands
for the current membrane where the actions are being performed, ‘out’ stands
for immediate outer membrane of the current membrane and ‘int’ stands for
the specified membrane t to which the controls are to be transferred to. Here
ui and ui+1 are arrays of size p × 1 with p ≥ 1.

– Di = ∅ (or)
{({

ϕd
c(Ai, Bi) =

[
ui

ui+1

] ∣∣∣i = 1, 2, . . . ,m − 1
}

, α

)}
where

Ai =
[

aij · · · ai(k−1)

a(i+1)j · · · a(i+1)(k−1)

]
, Bi =

[
ai(k+p) · · · ai(l−1)

a(i+1)(k+p) · · · a(i+1)(l−1)

]
, 1 ≤ j ≤

k < l ≤ n + 1, α ∈ {here, out, int}, ui and ui+1 are arrays of size 1 × p with
p ≥ 1.
(or){({

ϕd
r(Ci, Ei) =

[
ui ui+1

] ∣∣∣i = 1, 2, . . . , n − 1
}
, α
)}

where

Ci =

⎡
⎣

aji aj(i+1)
...

...
a(k−1)i a(k−1)(i+1)

⎤
⎦ , Ei =

⎡
⎣

a(k+p)i a(k+p)(i+1)
...

...
a(l−1)i a(l−1)(i+1)

⎤
⎦ , 1 ≤ j ≤ k < l ≤

m + 1, α ∈ {here, out, int}, ui and ui+1 are arrays of size p × 1 with p ≥ 1.

– i0 is the output membrane.

The array language generated by
∏

is denoted by L(
∏

) and the family
of array languages generated by PCAIDPS with h membranes is denoted by
L (PCAIDPSh). We give two PCAIDPS2 to generate the array language L1

given in Example 1 and the language L4 given in Example 6.

Example 7.
∏

1 =

(
V, T, μ, C,R, (M1, I1,D1), (M2, I2,D2), ϕi

c, ϕ
i
r, ϕ

d
c , ϕ

d
r , i0

)
,

where

– V = {x, •};
– T = {x, •};
– μ = [2[1]1]2;

– C =

{
•
x

,
•
• ,

x
•

}
;

62 S. J. Immanuel et al.

– R =

{
• x , • • , x •

}
;

– M1 = ∅; M2 =

{x • x
x x x
x • x

}
;

– I1 = ∅;
– I2 = {IR1, IR2, IR3, IR4} with

� IR1 =

{
ϕi

c

[
x
x

,
•
x

]
=

{
•
x

}
, ϕi

c

[
x
x

,
•
•

]
=

{
•
•

}
, ϕi

c

[
x
x

,
x
•

]
=

{
x
•

}}
, here

}
.

� IR2 =

{
ϕi

r

[
x • , x x

]
=

{
x •

}
, ϕi

r

[
• • , x x

]
=

{
• •

}
,

ϕi
r

[
• x , x x

]
=

{
• x

}}
, here

}
.

� IR3 =

{
ϕi

r

[
x x , x •

]
=

{
x •

}
, ϕi

r

[
x x , • •

]
=

{
• •

}
,

ϕi
r

[
x x , • x

]
=

{
• x

}}
, here

}
.

� IR4 =

{
ϕi

c

[
x
x

,
•
x

]
=

{
λ
λ

}
, ϕi

c

[
x
x

,
•
•

]
=

{
λ
λ

}
, ϕi

c

[
x
x

,
x
•

]
=

{
λ
λ

}}
, out

}
.

– D1 = ∅;
– D2 = ∅;
– i0 is the membrane 1.

A sample derivation of a picture of size 7 × 5 in L1 is given as follows:

- is the (row or column) context inserted

x • x
x x x
x • x

⇒coli
(2,IR1)

x • • • x
x x x x x
x • • • x

⇒rowi

(2,IR2)

x • • • x
x • • • x
x x x x x
x • • • x

⇒rowi

(2,IR2)

PCAIDPSs and TMGs 63

x • • • x
x • • • x
x • • • x
x x x x x
x • • • x

⇒rowi

(2,IR2)

x • • • x
x • • • x
x • • • x
x x x x x
x • • • x
x • • • x

⇒rowi

(2,IR2)

x • • • x
x • • • x
x • • • x
x x x x x
x • • • x
x • • • x
x • • • x

⇒coli
(2,IR4)

x • • • x
x • • • x
x • • • x
x x x x x
x • • • x
x • • • x
x • • • x

.

Note 1. Here P ⇒αi

(n,IRk) Q stands for P ⇒i Q, where α ∈ {row, col}, sub-
script i denotes insertion operation , n is the nth membrane in which insertion
operation is being performed and IRk is the k-th insertion rules set. Similarly,
P ⇒βd

(n,DRk) Q stands for P ⇒d Q, where β ∈ {row, col}, subscript d denotes
deletion operation, n is the nth membrane in which the deletion operation is
being performed and DRk is the k-th deletion rules set.

Example 8. We give a PCAIDPS2

∏
2 to generate the array language

L4 =

⎧
⎪⎪⎨
⎪⎪⎩

(
x (•)2n−1 x

)
2n−2

x (x)2n−1 x(
x (•)2n−1 x

)
2n−2

∣∣∣∣∣ n ≥ 2

⎫
⎪⎪⎬
⎪⎪⎭

∪
⎧
⎨
⎩

x • x
x x x
x • x

⎫
⎬
⎭ .

Let
∏

2 =

(
V, T, μ, C,R, (M1, I1,D1), (M2, I2,D2), ϕi

c, ϕ
i
r, ϕ

d
c , ϕ

d
r , i0

)
, where

- V = {x, Y, •}; T = {x, •}; μ = [1[2]2]1; M2 =

{
x • x
x x x
x • x

}
; M1 = ∅;

- C =

{
Y •
Y x

,
Y •
Y • ,

Y x
Y • ,

• Y
x Y

,
• Y
• Y

,
x Y
• Y

}
;

- R =

{
x Y
Y Y

,
Y •
Y Y

,
• •
Y Y

,
• Y
Y Y

,
Y x
Y Y

,
Y Y
x Y

,
Y Y
Y • ,

Y Y
• • ,

Y Y
• Y

,
Y Y
Y x

}
;

Sets of column and row insertion rules of I2 in membrane 2 are defined by

IR1 =

{{
ϕi

c

[
x
x

,
•
x

]
=
[
Y •
Y x

]
, ϕi

c

[
x
x

,
•
•

]
=
[
Y •
Y •

]
,

ϕi
c

[
x
x

,
x
•

]
=
[
Y x
Y •

]}
, here

}
.

IR2 =

{{
ϕi

c

[
•
x

,
x
x

]
=
[• Y
x Y

]
, ϕi

c

[
•
• ,

x
x

]
=
[• Y
• Y

]
,

ϕi
c

[
x
• ,

x
x

]
=
[
x Y
• Y

]}
, here

}
.

64 S. J. Immanuel et al.

IR3 =

{{
ϕi

r

[
x Y , x Y

]
=
[
x Y
Y Y

]
, ϕi

r

[
Y • , Y x

]
=
[
Y •
Y Y

]
,

ϕi
r

[
• • , x x

]
=
[• •
Y Y

]
, ϕi

r

[
• Y , x Y

]
=
[• Y
Y Y

]
,

ϕi
r

[
Y x , Y x

]
=
[
Y x
Y Y

]}
, here

}
.

IR4 =

{{
ϕi

r

[
x Y , x Y

]
=
[
Y Y
x Y

]
, ϕi

r

[
Y x , Y •

]
=
[
Y Y
Y •

]
,

ϕi
r

[
x x , • •

]
=
[
Y Y
• •

]
, ϕi

r

[
x Y , • Y

]
=
[
Y Y
• Y

]
,

ϕi
r

[
Y x , Y x

]
=
[
Y Y
Y x

]}
, here

}
.

Sets of column and row deletion rules of D2 in membrane 2 are defined by

DR1 =

{{
ϕd

c

[
x
x

,
•
•

]
=
[
Y
Y

]
, ϕd

c

[
x
Y

,
•
Y

]
=
[
Y
Y

]
, ϕd

c

[
Y
x

,
Y
x

]
=
[
Y
Y

]
,

ϕd
c

[
x
Y

,
x
Y

]
=
[
Y
Y

]
, ϕd

c

[
Y
x

,
Y
•

]
=
[
Y
Y

]}
, here

}
.

DR2 =

{{
ϕd

c

[
•
• ,

x
x

]
=
[
Y
Y

]
, ϕd

c

[
•
Y

,
x
Y

]
=
[
Y
Y

]
, ϕd

c

[
Y
x

,
Y
x

]
=
[
Y
Y

]
,

ϕd
c

[
x
Y

,
x
Y

]
=
[
Y
Y

]
, ϕd

c

[
Y
• ,

Y
x

]
=
[
Y
Y

]}
, here

}
.

DR3 =

{{
ϕd

r

[
x • , x x

]
=
[
Y Y

]
, ϕd

r

[
• • , x x

]
=
[
Y Y

]
,

ϕd
r

[
• x , x x

]
=
[
Y Y

]
}

, α

}
, where α ∈ {here, out}.

DR4 =

{
ϕd

r

[
x x , x •

]
=
[
Y Y

]
, ϕd

r

[
x x , • •

]
=
[
Y Y

]
,

ϕd
r

[
x x , • x

]
=
[
Y Y

]
}

, α

}
, where α ∈ {here, out}.

Set of deletion rules of I1 in membrane M1 is given by

DR5 =

{{
ϕd

r

[
x • , x x

]
=
[
Y Y

]
, ϕd

r

[
• • , x x

]
=
[
Y Y

]
,

ϕd
r

[
• x , x x

]
=
[
Y Y

]
, ϕd

r

[
x x , x •

]
=
[
Y Y

]
,

ϕd
r

[
x x , • •

]
=
[
Y Y

]
, ϕd

r

[
x x , • x

]
=
[
Y Y

]
}

, here

}
.

PCAIDPSs and TMGs 65

Starting from the array in axiom set M2, a sample computation of a picture of
size 7 × 5 in L4 is given below:

- is the (row or column) context inserted

- is the (row or column) context to be deleted

x • x
x x x
x • x

⇒coli
(2,IR1)

x Y • • x
x Y x x x
x Y • • x

=
x Y • • x
x Y x x x
x Y • • x

⇒coli
(2,IR1)

x Y • • • Y x
x Y x x x Y x
x Y • • • Y x

=
x Y • • • Y x
x Y x x x Y x
x Y • • • Y x

⇒rowi

(2,IR1)

x Y • • • Y x
x Y • • • Y x
Y Y Y Y Y Y Y
x Y x x x Y x
x Y • • • Y x

=

x Y • • • Y x
x Y • • • Y x
Y Y Y Y Y Y Y
x Y x x x Y x
x Y • • • Y x

⇒rowi

(2,IR1)

x Y • • • Y x
x Y • • • Y x
Y Y Y Y Y Y Y
x Y x x x Y x
Y Y Y Y Y Y Y
x Y • • • Y x
x Y • • • Y x

=

x Y • • • Y x
x Y • • • Y x
Y Y Y Y Y Y Y
x Y x x x Y x
Y Y Y Y Y Y Y
x Y • • • Y x
x Y • • • Y x

⇒cold
(2,DR1)

x • • • Y x
x • • • Y x
Y Y Y Y Y Y
x x x x Y x
Y Y Y Y Y Y
x • • • Y x
x • • • Y x

⇒cold
(2,DR1)

x • • • x
x • • • x
Y Y Y Y Y
x x x x x
Y Y Y Y Y
x • • • x
x • • • x

=

x • • • x
x • • • x
Y Y Y Y Y
x x x x x
Y Y Y Y Y
x • • • x
x • • • x

⇒rowd

(2,DR1)

x • • • x
x • • • x
x x x x x
Y Y Y Y Y
x • • • x
x • • • x

=

x • • • x
x • • • x
x x x x x
Y Y Y Y Y
x • • • x
x • • • x

⇒rowd

(2,DR2)

x • • • x
x • • • x
x x x x x
x • • • x
x • • • x

.

4 Results

In this section, we compare the generative powers of PCAIDG and PCAIDPSh

with TCSMG.

66 S. J. Immanuel et al.

Theorem 1. L (TCSMG) � L (PCAIDG)

The idea of the proof is as follows:
We show that for every TCSMG generating a language L we can construct a
corresponding PCAIDG to generate the same language L. In the PCAIDG that

we construct, we start with an axiom
#
S # corresponding to the start symbol

S in the TCSMG. For each horizontal rule in the TCSMG we define one insertion
rule and one deletion rule in the PCAIDG which have the same effect as that
of the rule considered. Similarly, for each vertical rule in an arbitrary table of
TCSMG we accordingly define sets of insertion and deletion rules in PCAIDG
having the same effect as the vertical rule considered. Finally we define deletion
rules in PCAIDG to delete all the remaining #’s in the pictures generated.

Proof. We prove the theorem using the construction given below: Consider an
arbitrary TCSMG GT = (GH , GV) where GH = (NH , I, PH , S) is a context-
sensitive grammar with

– NH , a finite set of horizontal non-terminals
– I = {S1, . . . , Sk}, a finite set of intermediates, NH ∩ I = ∅
– PH , a finite set of context-sensitive horizontal rules
– S ∈ NH is the start symbol and
– GV =

(⋃k
i=1 Gi,P

)
where Gi = (Ni, T

′, Pi, Si), i = 1, . . . , k are right-linear
grammars with

• Ni, a finite set of vertical non-terminals; Ni ∩ Nj = ∅ if i �= j
• T ′, a finite set of terminals
• Pi = PNi

∪ PTi

• PNi
, a finite set of right linear non-terminal production rules of the form

A → aB;
• PTi

, a finite set of right linear production rules of the form A → a; A,B ∈
Ni, a ∈ T ∪ {λ}

• Si ∈ Ni, the start symbol of Gi

• P = {t1, t2, . . . tn}, a finte set of tables.

We construct a PCAIDG G =

(
V, T,M,C,R, ϕi

c, ϕ
i
r, ϕ

d
c , ϕ

d
r

)
generating L

such that L = L(GT) as follows:

– V = NH ∪
(⋃k

i=1 Ni

)
∪ T ′ ∪ {#};

– T = T ′;

– M =

{
#
S

∣∣∣∣∣S ∈ NH is the start symbol

}
;

– C =

{
#
α

∣∣∣∣∣S → α ∈ PH , α ∈ (
NH ∪ I

)+
}
⋃
{

#
S

∣∣∣∣∣S → α ∈ PH

}
⋃

{
#
γ

∣∣∣∣∣β → γ ∈ PH , |β| ≤ |γ|
}
⋃
{

#
β

∣∣∣∣∣β → γ ∈ PH , |β| ≤ |γ|
}

;

PCAIDPSs and TMGs 67

– R =

{
b
B′

∣∣∣∣∣B → bB′ ∈ PNi
, B′ ∈ Ni

}
⋃
{

b
#

∣∣∣∣∣B → b ∈ PTi

}
⋃

{
b c
B′ C ′

∣∣∣∣∣B → bB′, C → cC ′ ∈ tj ⊂ ⋃k
i=1 PNi

}
⋃

{
b c
#

∣∣∣∣∣B → b, C → c ∈ tj ⊂ ⋃k
i=1 PTi

}
⋃
{

b #
B′ #

∣∣∣∣∣B → bB′ ∈ PNi

}
⋃

{
b #
#

∣∣∣∣∣B → b ∈ PTi

}
⋃
{

B

∣∣∣∣∣B → bB′ ∈ PNi

}
⋃

{
B

∣∣∣∣∣B → b ∈ PTi

}
⋃
{

B C

∣∣∣∣∣B → bB′, C → cC ′ ∈ tj ⊂ ⋃k
i=1 PNi

}
⋃

{
B #

∣∣∣∣∣B → bB′ ∈ PNi

}
⋃
{

B #

∣∣∣∣∣B → b ∈ PTi

}
(1 ≤ j ≤ n).

We define sets of column and row insertion rules of PCAIDG G corresponding
to the rules of TCSMG GT .

IR1 =

{
ϕi

c

[
#
,

#
S

]
=
{

#
α

∣∣∣∣S → α ∈ PH , α ∈ (
NH ∪ I

)+}
}

DR1 =

{
ϕd

c

[
#
α

,
#
#

]
=

{
#
S

∣∣∣∣∣S → α ∈ PH

}}

IR2 =

{
ϕi

c

[
#
,

#
β

]
=

{
#
γ

∣∣∣∣∣β → γ ∈ PH , |β| ≤ |γ|
}}

.

Recall if α = α1α2 . . . αl, then
#
α

=
. . .
α1 α2 . . . αl

where |αi| = 1

DR2 = ϕd
c

[
#
γ

,
#
#

]
=

{
#
β

∣∣∣∣∣β → γ ∈ PH , |β| ≤ |γ|
}}

.

For all A ∈ NH ∪ I, we have

IR3 =

{
ϕi

c

[
#
A

,
#
β

]
=
{

#
γ

∣∣∣∣β → γ ∈ PH , |β| ≤ |γ|
}}

.

DR3 =

{
ϕd

c

[
#
γ

,
#
A

]
=

{
#
β

∣∣∣∣∣β → γ ∈ PH , |β| ≤ |γ|
}}

.

For every rule of the form B → bB′ in an arbitrary non-terminal table tj ⊂⋃k
i=1 PNi

of GT , we define corresponding sets of insertion and deletion
rules of PCAIDG as follows:

IR4 =

{
ϕi

r

[
, # B

]
=
{

b
B′

∣∣∣∣B → bB′
}

,

ϕi
r

[
, B C

]
=
{

b c
B′ C ′

∣∣∣∣B → bB′, C → cC ′ ∈ tj

}
,

ϕi
r

[
, B

]
=
{

b #
B′ #

∣∣∣∣B → bB′
}}

.

68 S. J. Immanuel et al.

DR4 =

{
ϕd

r

[
b
B′ , λ λ

]
=
{

B

∣∣∣∣B → bB′
}

,

ϕd
r

[
b c
B′ C ′ , λ λ

]
=
{

B C

∣∣∣∣B → bB′, C → cC ′ ∈ tj

}
,

ϕd
r

[
b #
B′ # , λ λ

]
=
{

B #
∣∣∣∣B → bB′

}}
.

For d, e ∈ T ′ we have

IR5 =

{
ϕi

r

[
d , # B

]
=
{

b
B′

∣∣∣∣B → bB′
}

,

ϕi
r

[
d e , B C

]
=
{

b c
B′ C ′

∣∣∣∣B → bB′, C → cC ′ ∈ tj

}
,

ϕi
r

[
d # , B #

]
=
{

b #
B′ #

∣∣∣∣B → bB′
}}

.

DR5 = DR4.
For each rule of the form B → b in an arbitrary terminal table tj ⊂⋃k

i=1 PTi
of GT , we define the corresponding sets insertion and deletion

rules of PCAIDG G as follows:

IR6 =

{
ϕi

r

[
, # B

]
=
{

b
#

∣∣∣∣B → b

}
,

ϕi
r

[
, B C

]
=
{

b c
#

∣∣∣∣B → b, C → c ∈ tj

}
,

ϕi
r

[
, B

]
=
{

b #
#

∣∣∣∣B → b

}}
.

DR6 =

{
ϕd

r

[
b
, λ λ

]
=
{

B

∣∣∣∣B → b

}
,

ϕd
r

[
b c
, λ λ

]
=
{

B C

∣∣∣∣B → b, C → c ∈ tj

}
,

ϕd
r

[
b #
, λ λ

]
=
{

B #
∣∣∣∣B → b

}}
.

For d, e ∈ T ′, we have

IR7 =

{
ϕi

r

[
d , # B

]
=
{

b
#

∣∣∣∣B → b

}
,

ϕi
r

[
d e , B C

]
=
{

b c
#

∣∣∣∣B → b, C → c ∈ tj

}
,

ϕi
r

[
d # , B #

]
=
{

b #
#

∣∣∣∣B → b

}}
.

DR7 = DR6.
For all a, b ∈ T ′, we have

DR8 =

{
ϕd

c

[
λ
λ

,
#
a

]
=
[
#
#

]
, ϕd

c

[
λ
λ

,
a
b

]
=
[
#
#

]
, ϕd

c

[
λ
λ

,
a
#

]
=
[
#
#

]}
,

PCAIDPSs and TMGs 69

DR9 =

{
ϕd

c

[
#
a

,
λ
λ

]
=
[
#
#

]
, ϕd

c

[
a
b
,
λ
λ

]
=
[
#
#

]
, ϕd

c

[
a
,

λ
λ

]
=
[
#
#

]}
.

DR10 =
{

ϕd
r

[
λ λ , a b

]
=
[
#

]}
.

DR11 =
{

ϕd
r

[
a b , λ λ

]
=
[
#

]}
.

��
It is to be noted that sometimes during vertical derivations, rules involving

different terminals and non-terminals may end up with same effect and this is
attributed to the following reasons:

(i) To simulate the effect of any vertical derivation rule of TCSMG GT , corre-
sponding contextual rules of PCAIDG G are to be applied more than once
depending upon the contexts and

(ii) There are some vertical derivation rules of TCSMG GT which may get
repeated in different tables.

Theorem 2. L (TCSMG) � L (PCAIDPS2).

The idea of the proof is as follows:
We show that for every TCSMG generating a language L we can construct a
PCAIDPS with 2 membranes generating the same language L. In the PCAIDPS2

that we construct, the skin membrane is the output membrane. We start with

the axiom
#
S # in membrane 2 which corresponds to the start symbol S in

the TCSMG. For each horizontal rule in the TCSMG we define one insertion rule
and one deletion rule in membrane 2 of PCAIDPS which have the same effect
of the rule considered. Similarly, for each vertical rule in an arbitrary table of
TCSMG we accordingly define sets of insertion and deletion rules in membrane
2 of PCAIDPS having the same effect as the vertical rule considered. Finally
we define deletion rules in PCAIDPS in both membrane 1 and membrane 2 to
delete all the remaining #’s in the pictures generated.

Proof. For every TCSMG GT = (GH , GV) with GH = (NH , I, PH , S) and
GV =

(⋃k
i=1 Gi,P

)
where Gi = (Ni, T

′, Pi, Si), i = 1, . . . , k are the right-linear
grammars and Ni ∩ Nj = ∅ if i �= j, we construct a PCAIDPS2∏

= (V, T, [1[2]2]1, C,R, (M1, I1,D1), (M2, I2,D2), ϕi
c, ϕ

i
r, ϕ

d
c , ϕ

d
r , i0) such

that L (
∏

) = L(G) where

– V = NH

⋃k
i=1 Ni

⋃
T ′ ⋃{#};

– T = T ′;
– M1 = ∅;

– M2 =
{

#
S

}
;

70 S. J. Immanuel et al.

– C =

{
#
α

∣∣∣∣∣S → α ∈ PH , α ∈ (
NH ∪ I

)+
}
⋃
{

#
S

∣∣∣∣∣S → α ∈ PH

}
⋃

{
#
γ

∣∣∣∣∣β → γ ∈ PH , |β| ≤ |γ|
}
⋃
{

#
β

∣∣∣∣∣β → γ ∈ PH , |β| ≤ |γ|
}

;

– R =

{
b
B′

∣∣∣∣∣B → bB′ ∈ PNi
, B′ ∈ Ni

}
⋃
{

b
#

∣∣∣∣∣B → b ∈ PTi

}
⋃

{
b c
B′ C ′

∣∣∣∣∣B → bB′, C → cC ′ ∈ tj ⊂ ⋃k
i=1 PNi

}
⋃

{
b c
#

∣∣∣∣∣B → b, C → c ∈ tj ⊂ ⋃k
i=1 PTi

}
⋃
{

b #
B′ #

∣∣∣∣∣B → bB′ ∈ PNi

}
⋃

{
b #
#

∣∣∣∣∣B → b ∈ PTi

}
⋃
{

B

∣∣∣∣∣B → bB′ ∈ PNi

}
⋃

{
B

∣∣∣∣∣B → b ∈ PTi

}
⋃
{

B C

∣∣∣∣∣B → bB′, C → cC ′ ∈ tj ⊂ ⋃k
i=1 PNi

}
⋃

{
B #

∣∣∣∣∣B → bB′ ∈ PNi

}
⋃
{

B #

∣∣∣∣∣B → b ∈ PTi

}
;

– I1 = ∅;

Set of deletion rules of D1 is as follows:

For all a, b ∈ T , we have

DR9 =
{{

ϕd
r

[
a b , λ λ

]
=
[
#

]}
, here

}
.

Sets of insertion rules of I2 are defined as follows:

IR1 =

{{
ϕi

c

[
#
,

#
S

]
=
{

#
α

∣∣∣∣S → α ∈ PH , α ∈ (
NH ∪ I

)+}
}

, here

}

IR2 =

{{
ϕi

c

[
#
,

#
β

]
=

{
#
γ

∣∣∣∣∣β → γ ∈ PH , |β| ≤ |γ|
}}

, here

}
.

For all A ∈ (
NH ∪ I

)
, we have

IR3 =

{{
ϕi

c

[
#
A

,
#
β

]
=
{

#
γ

∣∣∣∣β → γ ∈ PH , |β| ≤ |γ|
}}

, here

}
.

For each non-terminal rule of the form B → bB′ in an arbitrary table
tj ⊂ ⋃k

i=1 PNi
of GT , we define corresponding sets of insertion rules of

∏
as follows:

PCAIDPSs and TMGs 71

IR4 =

{{
ϕi

r

[
, # B

]
=
{

b
B′

∣∣∣∣B → bB

}
,

ϕi
r

[
, B C

]
=
{

b c
B′ C ′

∣∣∣∣B → bB′, C → cC ′ ∈ tj

}
,

ϕi
r

[
, B

]
=
{

b #
B′ #

∣∣∣∣B → bB′
}}

, here

}
.

For d, e ∈ T , we have

IR5 =

{{
ϕi

r

[
d , # B

]
=
{

b
B′

∣∣∣∣B → bB′
}

,

ϕi
r

[
d e , B C

]
=
{

b c
B′ C ′

∣∣∣∣B → bB′, C → cC ′ ∈ tj

}
,

ϕi
r

[
d # , B #

]
=
{

b #
B′ #

∣∣∣∣B → bB′
}}

, here

}
.

For each rule of the form B → b in an arbitrary terminal table tj ⊂⋃k
i=1 PTi

of GT , we define the corresponding sets of insertion rules of
∏

as
follows:

IR6 =

{{
ϕi

r

[
, # B

]
=
{

b
#

∣∣∣∣B → b

}
,

ϕi
r

[
, B C

]
=
{

b c
#

∣∣∣∣B → b, C → c ∈ tj

}
,

ϕi
r

[
, B

]
=
{

b #
#

∣∣∣∣B → b

}}
, here

}
.

For d, e ∈ T , we have

IR7 =

{{
ϕi

r

[
d , # B

]
=
{

b
#

∣∣∣∣B → b

}
,

ϕi
r

[
d e , B C

]
=
{

b c
#

∣∣∣∣B → b, C → c ∈ tj

}
,

ϕi
r

[
d # , B #

]
=
{

b #
#

∣∣∣∣B → b

}}
, here

}
.

Sets of deletion rules of the membrane M2 are defined in D2 as follows:

DR1 =

{{
ϕd

c

[
#
α

,
#
#

]
=

{
#
S

∣∣∣∣∣S → α ∈ PH

}}
, here

}

DR2 =

{{
ϕd

c

[
#
γ

,
#
#

]
=

{
#
β

∣∣∣∣∣β → γ ∈ PH , |β| ≤ |γ|
}}

, here

}
.

72 S. J. Immanuel et al.

For all A ∈ (
NH ∪ I

)
, we have

DR3 =

{{
ϕd

c

[
#
γ

,
#
A

]
=

{
#
β

∣∣∣∣∣β → γ ∈ PH , |β| ≤ |γ|
}}

, here

}
.

For each rule of the form B → bB′ in an arbitrary non-terminal table
tj ⊂ ⋃k

i=1 PNi
of GT , we define the corresponding sets of deletion rules of∏

as follows:

DR4 =

{{
ϕd

r

[
b
B′ , λ λ

]
=
{

B

∣∣∣∣B → bB′
}

,

ϕd
r

[
b c
B′ C ′ , λ λ

]
=
{

B C

∣∣∣∣B → bB′, C → cC ′ ∈ tj

}
,

ϕd
r

[
b #
B′ # , λ λ

]
=
{

B #
∣∣∣∣B → bB′

}}
, here

}
.

For each rule of the form B → b in an arbitrary terminal table
tj ⊂ ⋃k

i=1 PTi
of GT , we define the corresponding sets of deletion rules in∏

as follows:

DR5 =

{{
ϕd

r

[
b
, λ λ

]
=
{

B

∣∣∣∣B → b

}
,

ϕd
r

[
b c
, λ λ

]
=
{

B C

∣∣∣∣B → b, C → c ∈ tj

}
,

ϕd
r

[
b #
, λ λ

]
=
{

B #
∣∣∣∣B → b

}}
, here

}
.

For all a, b ∈ T , we have

DR6 =

{{
ϕd

c

[
λ
λ

,
#
a

]
=
[
#
#

]
, ϕd

c

[
λ
λ

,
a
b

]
=
[
#
#

]
,

ϕd
c

[
λ
λ

,
a
#

]
=
[
#
#

]}
, here

}
.

For all a, b ∈ T , we have

DR7 =

{{
ϕd

c

[
#
a

,
λ
λ

]
=
[
#
#

]
, ϕd

c

[
a
b
,
λ
λ

]
=
[
#
#

]
,

ϕd
c

[
a
,

λ
λ

]
=
[
#
#

]}
, here

}
.

DR8 =
{{

ϕd
r

[
λ λ , a b

]
=
[
#

]}
, out

}

Working Procedure of P System: In membrane 2, there are seven sets of
column and row insertion rules of I2 grouped according to the rules of GH and
GV respectively of the grammar GT .

PCAIDPSs and TMGs 73

For every rule S → α ∈ P in GH , column insertion rules to insert the context
#
α between #

and
S

are defined.
For every rule of the form β → γ ∈ P in GH , the corresponding column

insertion rules are defined to insert the context #
γ between #

and
β (or) #

A

and #
β .

In membrane 2, there are eight sets of column and row deletion rules defined
in D2 based on the rules of GH and GV respectively of the grammar GT .

For every rule S → α ∈ P in GH , deletion rules to delete the contexts #
S

between #
α and #

are defined.
For every rule of the form β → γ ∈ P in GH , the corresponding column

deletion rules are defined to delete the context #
β between #

α and #
(or)

γ and
#
.

Using these column insertion and deletion rules of the P system, the results
effected by horizontal derivation of the horizontal grammar GH of GT can be
achieved. It is to be noted that the rules for the horizontal growth in I2 and
D2 of the P system are defined in such a manner that the column insertion and
deletion rules are applied alternatively.

To simulate the vertical derivation of GT , row insertion and deletion rules
are defined based on the rules of the vertical grammars of GV .

For each non-terminal rule of the form B → bB′ in an arbitrary table
tj ⊂ ⋃k

i=1 PNi
of GT , the corresponding row insertion and row deletion rules

are defined in I2 and D2 respectively to replicate the vertical derivation of the
vertical grammars GV .

It is again to be noted that the rules for vertical growth in I2 and D2 of the
P system are defined in such a manner that the row insertion and row deletion
rules are applied alternatively. A row insertion rule in I2 is defined to send the
generated picture to the skin membrane which is the output membrane.

The working of the P system in membrane 2 is as follows: The axiom set

consists of the array
#
S # based on the starting symbol S of any TCSMG G.

We consider the rules in I2 and D2 to perform the parallel contextual column
insertion and column deletion operations and these operations are performed
alternatively to simulate the generation of horizontal strings of intermediates
based on GH . Now we consider the rules in I2 and D2 to perform the parallel
contextual row insertion operation and row deletion operation. Parallel contex-
tual row insertion and deletion operations are performed alternatively to simu-
late the vertical generation of the picture based on GV . Then using the parallel
contextual column deletion rules in D2, the #’s along the borders of the columns
are deleted. By using the parallel contextual row deletion rule in D2, the #’s
along the top border of the arrays are deleted and the resulting arrays are sent
out of the membrane 2.

Finally, using the parallel contextual row deletion rules in D1, the #’s along
the bottom border of the arrays are deleted and the resulting pictures belonging
to L(GT) are collected in membrane 1, the output membrane. ��

74 S. J. Immanuel et al.

A Sample Computation:
We now exhibit a sample computation of a picture of size 3 × 8 of L(G2) of
Example 2 using the PCAIDPS2

∏
3 that can be constructed as per Theorem 2

from G2 as follows:

#
S # ⇒coli

(2,IR1)

#
S1 S C S1 S #=

#
S1 S C S1 S # ⇒cold

(2,DR1)

#
S1 S C S1 # ⇒coli

(2,IR2)

#
S1 S1 S2 S1 S2 S1 S C S1 # =

#
S1 S1 S2 S1 S2 S1 S C S1 # ⇒cold

(2,DR2)

#
S1 S1 S2 S1 S2 S1 C S1 # ⇒coli

(2,IR2)

#
S1 S1 S2 S1 S2 C S1 S1 C S1 # =

#
S1 S1 S2 S1 S2 C S1 S1 C S1 # ⇒cold

(2,DR2)

#
S1 S1 S2 S1 S2 C S1 S1 # ⇒coli

(2,IR2)

#
S1 S1 S2 S1 S1 S2 S2 C S1 S1 #=

#
S1 S1 S2 S1 S1 S2 S2 C S1 S1 # ⇒cold

(2,DR2)

#
S1 S1 S2 S1 S1 S2 S1 S1 # ⇒rowi

(2,IR3)

#
x x • x x • x x
S1 S1 A S1 S1 A S1 S1
S1 S1 S2 S1 S1 S2 S1 S1

=

#
x x • x x • x x
S1 S1 A S1 S1 A S1 S1
S1 S1 S2 S1 S1 S2 S1 S1

⇒rowd

(2,DR4)

PCAIDPSs and TMGs 75

#
x x • x x • x x
S1 S1 A S1 S1 A S1 S1

⇒rowi

(2,IR4)

#
x x • x x • x x
x x x x x x x x
S1 S1 B S1 S1 B S1 S1
S1 S1 A S1 S1 A S1 S1

=

#
x x • x x • x x
x x x x x x x x
S1 S1 B S1 S1 B S1 S1
S1 S1 A S1 S1 A S1 S1

⇒rowd

(2,DR4)

#
x x • x x • x x
x x x x x x x x
S1 S1 B S1 S1 B S1 S1

⇒rowi

(2,IR5)

#
x x • x x • x x
x x x x x x x x
x x • x x • x x
#
S1 S1 B S1 S1 B S1 S1

=

#
x x • x x • x x
x x x x x x x x
x x • x x • x x
#
S1 S1 B S1 S1 B S1 S1

⇒rowd

(2,DR4)

#
x x • x x • x x
x x x x x x x x
x x • x x • x x
#

⇒cold
(2,DR5)

#
x x • x x • x x #
x x x x x x x x #
x x • x x • x x #
#

⇒cold
(2,DR6)

#
x x • x x • x x
x x x x x x x x
x x • x x • x x
#

⇒rowd

(1,DR7)

x x • x x • x x
x x x x x x x x
x x • x x • x x
#

⇒rowd

(1,DR8)

x x • x x • x x
x x x x x x x x
x x • x x • x x

.

In the above derivation, we have not used all the rules of
∏

3 but only the
rules necessary for the derivation of the picture were used. It is to be noted that
we have not listed other rules of the computation owing to space constraint.

5 Conclusion

This paper is a step forward in the attempt/journey to bring in a hierarchy
among two-dimensional picture languages. Still there are other well known fami-

76 S. J. Immanuel et al.

lies of two-dimensional picture languages to be compared with the family of lan-
guages generated by PCAIDPS and thereby the generative power of PCAIDPS
is revealed further and will be taken up in our future work. Some classes of P
systems to be compared imminently with PCAIDPS in terms of their generative
powers are:

(i) Parallel Contextual Array P Systems of James et al. [14].
(ii) Contextual Array Grammars and Array P Systems of Henning Fernau et

al. [8].
(iii) Array rewriting P systems of Rodica Ceterchi et al. [2].

Daniel Dı́az-Pernil et al. [6] surveyed applications of P systems in image
processing. Rodica Ceterchi et al. [3] have constructed P systems to generate
the approximations of geometric patterns of space filling curves such as Peano’s
curve, Hilbert’s curves and others. In this paper, we deal with applications of P
systems in terms of rectangular arrays of letters yielding pictures or images by
replacing letters by primitive symbols. The role of PCAIDPS in image analysis
can be explored further.

References

1. Alhazov, A., Krassovitskiy, A., Rogozhin, Y., Verlan, S.: P systems with minimal
insertion and deletion. Theoret. Comput. Sci. 412(1), 136–144 (2011)

2. Ceterchi, R., Mutyam, M., Paun, G., Subramanian, K.G.: Array-rewriting P sys-
tems. Nat. Comput. 2(3), 229–249 (2003)

3. Ceterchi, R., Subramanian, K.G.: Generating pictures in string representation with
P systems: the case of space-filling curves. J. Membrane Comput. 2(4), 369–379
(2020). https://doi.org/10.1007/s41965-020-00061-z

4. Helen Chandra, P., Subramanian, K.G., Thomas, D.G.: Parallel contextual array
grammars and languages. Electron. Notes Discret. Math. 12, 106–117 (2003)

5. Dersanambika, K.S., Krithivasan, K.: Contextual array P systems. Int. J. Comput.
Math. 81(8), 955–969 (2004)

6. Dı́az-Pernil, D., Gutiérrez-Naranjo, M.A., Peng, H.: Membrane computing and
image processing: a short survey. J. Membrane Comput. 1(1), 58–73 (2019).
https://doi.org/10.1007/s41965-018-00002-x

7. Domaratzki, M., Okhotin, A.: Representing recursively enumerable languages by
iterated deletion. Theor. Comput. Sci. 314(3), 451–457 (2004)

8. Fernau, H., Freund, R., Schmid, M.L., Subramanian, K.G., Wiederhold, P.: Con-
textual array grammars and array P systems. Ann. Math. Artif. Intell. (1), 5–26
(2013). https://doi.org/10.1007/s10472-013-9388-0

9. Rudolf, F., Gheorghe, P., Rozenberg, G.: Contextual array grammars. In: Formal
Models, Languages and Applications, volume 66 of Series in Machine Perception
and Artificial Intelligence, pp. 112–136. World Scientific (2007)

10. Giammarresi, D., Restivo, A.: Recognizable picture languages. Int. J. Pattern
Recognit. Artif. Intell. 6(2&3), 241–256 (1992)

11. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salo-
maa, A. (eds.) Handbook of Formal Languages, pp. 215–267. Springer, Heidelberg
(1997). https://doi.org/10.1007/978-3-642-59126-6 4

https://doi.org/10.1007/s41965-020-00061-z
https://doi.org/10.1007/s41965-018-00002-x
https://doi.org/10.1007/s10472-013-9388-0
https://doi.org/10.1007/978-3-642-59126-6_4

PCAIDPSs and TMGs 77

12. Haussler, D.H.: Insertion and iterated insertion as operations on formal languages.
Ph.D. thesis, University of Colorado (1982)

13. Immanuel, S.J., Jayasankar, S., Gnanaraj Thomas, D., Paramasivan, M., Tham-
buraj, R., Nagar, A.K.: Parallel contextual array insertion deletion P systems and
Siromoney matrix grammars. Int. J. Parallel Emergent Distrib. Syst. 36 (2021)

14. Bera, S., Pan, L., Song, B., Subramanian, K.G., Zhang, G.: Parallel contextual
array P systems. Int. J. Adv. Eng. Sci. Appl. Math. 10(3), 203–212 (2018). https://
doi.org/10.1007/s12572-018-0226-9

15. James Immanuel, S., Thomas, D.G., Thamburaj, R., Nagar, A.K.: Parallel con-
textual array insertion deletion P system. In: Brimkov, V.E., Barneva, R.P. (eds.)
IWCIA 2017. LNCS, vol. 10256, pp. 170–183. Springer, Cham (2017). https://doi.
org/10.1007/978-3-319-59108-7 14

16. Thomas, D.G., Immanuel, S.J., Nagar, A.K., Thamburaj, R.: Parallel contex-
tual array insertion deletion grammar. In: Barneva, R.P., Brimkov, V.E., Tavares,
J.M.R.S. (eds.) IWCIA 2018. LNCS, vol. 11255, pp. 28–42. Springer, Cham (2018).
https://doi.org/10.1007/978-3-030-05288-1 3

17. Immanuel, S.J., Thomas, D.G.: Parallel contextual array P system with contexts
shuffled on trajectories. In: Proceedings of National Conference on Mathematics
and Computer Applications, NCMCA 2015, pp. 214–222 (2015)

18. Ito, M., Kari, L., Thierrin, G.: Insertion and deletion closure of languages. Theor.
Comput. Sci. 183(1), 3–19 (1997)

19. Immanuel, S.J., Jayasankar, S., Gnanaraj Thomas, D., Paramasivan, M., Tham-
buraj, R., Nagar, A.K.: Parallel contextual array insertion deletion P systems and
Siromoney matrix grammars. In: Pre-Proceedings of the 8th Asian Conference on
Membrane Computing, pp. 134–151 (2019)

20. Lila, K.: On insertion and deletion in formal languages. Ph.D. thesis, University of
Turku (1991)

21. Kari, L., Thierrin, G.: Contextual insertions/deletions and computability. Inf.
Comput. 131(1), 47–61 (1996)

22. Krishna, S.N., Rama, R.: Insertion-deletion P systems. In: Jonoska, N., Seeman,
N.C. (eds.) DNA 2001. LNCS, vol. 2340, pp. 360–370. Springer, Heidelberg (2002).
https://doi.org/10.1007/3-540-48017-X 34

23. Krithivasan, K., Mutyam, M.: Contextual P systems. Fundam. Informaticae 49(1–
3), 179–189 (2002)

24. Krithivasan, K., Siromoney, R.: Characterizations of regular and context-free
matrices. Int. J. Comput. Math. 4(1–4), 229–245 (1974)

25. Marcus, S.: Contextual grammars. Rev. Roum. Math. Pures Appl. 14, 1525–1534
(1969)

26. Paun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)
27. Paun, Gheorghe: Membrane Computing: An Introduction. Natural Computing

Series. Springer, Heidelberg (2002). https://doi.org/10.1007/978-3-642-56196-2
28. Rosebrugh, R.D., Wood, D.: Restricted parallelism and right linear grammars.

Utilitas Mathematica 7, 151–186 (1975)
29. Siromoney, G., Siromoney, R., Krithivasan, K.: Abstract families of matrices and

picture languages. Comput. Graph. Image Process. 1(3), 284–307 (1972)
30. Siromoney, R., Subramanian, K.G., Rangarajan, K.: Parallel/Sequential rectangu-

lar arrays with tables. Int. J. Comput. Math. 6(2), 143–158 (1977)
31. Subramanian, K.G., Van, D.L., Chandra, P.H., Quyen, N.D.: Array grammars with

contextual operations. Fundam. Informaticae 83(4), 411–428 (2008)

https://doi.org/10.1007/s12572-018-0226-9
https://doi.org/10.1007/s12572-018-0226-9
https://doi.org/10.1007/978-3-319-59108-7_14
https://doi.org/10.1007/978-3-319-59108-7_14
https://doi.org/10.1007/978-3-030-05288-1_3
https://doi.org/10.1007/3-540-48017-X_34
https://doi.org/10.1007/978-3-642-56196-2

Triangular Array Token Petri Net and P
System

T. Kalyani1(B), T. T. Raman1, D. G. Thomas2, K. Bhuvaneswari3,
and P. Ravichandran4

1 Department of Mathematics, St. Joseph’s Institute of Technology, Chennai 119,
Tamilnadu, India

2 Department of Applied Mathematics, Saveetha School of Engineering, SIMATS,
Chennai 602 105, Tamilnadu, India

3 Department of Mathematics, Sathyabama Institute of Science and Technology,
Chennai 119, Tamilnadu, India

4 Department of Mechanical Engineering, St. Joseph’s Institute of Technology,
Chennai 119, Tamilnadu, India

Abstract. A Petri Net is a mathematical model used to generate string
languages, which is useful in data analysis, pattern matchings, simu-
lations etc. Array Token Petri Nets were introduced to generate two-
dimensional and three-dimensional picture languages. In this paper, we
introduce Triangular Array Token Petri Net (TATPN) to generate cer-
tain interesting patterns of triangular picture languages using Elemen-
tary Evolution Rules (EER) and Parallel Evolution Rules (PER). We also
introduce Triangular Array Token Petri Net P System and compared it
with TATPN and TTPPS for generative power.

Keywords: Petri Net · Array-Token Petri Net · Triangular Picture
languages · P system

1 Introduction

Petri Nets are mathematical models introduced to model dynamic systems [4,
13]. It is a bipartite graph which has directed arcs connecting place nodes and
transition nodes. Input place is a place from which the directed arc starts and
the place to which an arc enters from a transition is called the output place of
transition. Places may hold any number of tokens. Distribution of tokens over
the places of net is called a marking. A transition triggers whenever there is
at least one token in all the input places. When a transition fires, tokens are
removed from its input places and added to all output places of the transition.

Array-Token Petri Nets are introduced in [5,8,11,14] to generate
two-dimensional picture languages. Array-token petri nets to generate hexago-
nal, Octagonal and triangular picture languages were introduced in [1,7,9]. 3D-
Array Token Petri nets generating Tetrahedral Picture Languages is introduced

c© Springer Nature Switzerland AG 2021
R. Freund et al. (Eds.): CMC 2020, LNCS 12687, pp. 78–93, 2021.
https://doi.org/10.1007/978-3-030-77102-7_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77102-7_5&domain=pdf
https://doi.org/10.1007/978-3-030-77102-7_5

Triangular Array Token Petri Net and P System 79

in [6]. Petri Net model to generate tiling and kolam patterns were introduced in
[10,15].

On the other hand P system or membrane computing, which was introduced
by Gh. Paun [12] inspired by the functioning of living cells has applications
in different areas, with the area of picture generation being one among these
application areas. P system is a distributed, highly parallel theoretical computing
model, based on the membrane structure and the behaviour of the living cells.
The basic model processes multi-sets of objects in the region that are defined
by a hierarchical arrangement of membranes by evolution rules associated with
the regions. Several P system models have been proposed in the literature for
picture generation [3,16,17]. Among a variety of applications of the P system
model, the problem of handling array languages using P systems was considered
by Ceterchi et al. [3] by introducing array-rewriting P systems and thus linking
the two areas of membrane computing and picture grammars. Triangular tile
pasting P system (TTPPS) is introduced in [2].

In this paper, we propose Triangular Array Token Petri Net (TATPN) to
generate some interesting triangular picture patterns. Triangular Array Token
Petri Net P System (TATPNPS) is also introduced and is compared with TATPN
and TTPPS for generative power.

2 Preliminaries

In this section, we recall the definitions of isosceles right angled triangular tiles,
catenation rules and Array Token Petri Net Structure.

Definition 1. [1] Let be a finite set of

labeled isosceles right angled triangular tiles of dimensions 1√
2
, 1√

2
and 1 unit

obtained by intersecting a unit square by its diagonals. Catenation rules of tile A
are as follows: Tiles which can be catenated with A are B, C and D by the rules
{(a1, b1), (a2, b2), (a3, b3)}, {(a3, c1)}, {(a1, d3)}. Similar catenation rules can be
defined for the remaining tiles.

Definition 2. Let be a finite set of

labeled isosceles right angled triangular tiles of dimensions 1, 1 and
√

2 unit
obtained by intersecting a unit square by its right diagonal to get tiles E
and F and by its left diagonal to get tiles G and H. Catenation rules are
as follows: Tile E can be catenated with tiles F, G and H by the rules
{(e1, f1), (e2, f2), (e3, f3)}, {(e1, g2)}, {(e2, h1)}. Similar catenation rules can be
defined for the remaining tiles.

Definition 3. The tiles of Σ can be catenated with the tiles of Γ by the following
rules:

80 T. Kalyani et al.

(i) Tile A can be catenated with tiles F and G by the rules {(a2, f1)} and
{(a2, g2)}.

(ii) Tile B can be catenated with tiles E and H by the rules {(b2, e1)} and
{(b2, h2)}.

(iii) Tile C can be catenated with tiles F and H by the rules {(c2, f2)} and
{(c2, h1)}.

(iv) Tile D can be catenated with tiles E and G by the rules {(d2, e2)} and
{(d2, g1)}.

Definition 4. Let ΣT = Σ ∪ Γ . A picture formed by catenating triangular tiles
of ΣT along their gluable edges is called a triangular picture or a triangular
array.

Example 1.

Let

A triangular picture formed by catenating these tiles along their gluable
edges by the catenation rules {(a3, c1), (c3, b1), (b1, d1), (b2, e1), (c2, h1), (a2, f1),
(d2, g1)} is given in Fig. 1.

Fig. 1. Triangular picture or triangular array

An Array Token Petri Net (ATPN) generating certain patterns was intro-
duced in [15] which uses Elementary Evolution Rule (EER) and Parallel Evo-
lution Rule (PER). The language, which is generated by ATPN with EER on
transition is denoted by AERL.

3 Triangular Array Token Petri Net

In this section, we introduce Triangular Array Token Petri Net (TATPN) with
Elementary Evolution Rule (EER) and Parallel Evolution Rule (PER) to gen-
erate some interesting triangular picture patterns.

Triangular Array Token Petri Net and P System 81

Definition 5. A Triangular Array Token Petri Net (TATPN) is a 6-tuple TN =
(P, T,C,A,R,M0) where P is a set of places, T is a set of transitions, C is a
set of symbols (colours) and CAY is the set of all triangular arrays over C, that
are associated with the tokens, A ⊆ (P × T) ∪ (T × P) is a set of arcs, R(t) is
the set of evolution rules associated with a transition t, M0 the initial marking
is a function defined on P such that for p ∈ P,M0(p) ∈ [CAY]MS.

Definition 6. An Elementary Evolution Rule over ΣT
AY where ΣT is a finite

alphabet of triangular tiles

is one of the following:

(i) Identity, which keeps the triangular array unaltered.
(ii) Horizontal insertion

(i) λ → A or B(u/d, according as it is up or down)
(ii) λ → E or F (u/d, according as it is up or down)
(iii) λ → H or G(u/d, according as it is up or down)

(iii) Vertical insertion
(i) λ → C or D(l/r, according as it is left or right)
(ii) λ → E or H(l/r, according as it is left or right)
(iii) λ → G or F (l/r, according as it is left or right)

(iv) Right up insertion λ → B or C(ru)
(v) Right down insertion λ → A or C(rd)
(vi) Left up insertion λ → B or D(lu)
(vii) Left down insertion λ → A or D(ld)
(viii) Right down diagonal insertion λ → E(rdd)
(ix) Right up diagonal insertion λ → G(rud)
(x) Left down diagonal insertion λ → H(ldd)
(xi) Left up diagonal insertion λ → F (lud).

The subnet in Fig. 2 illustrates how horizontal insertion rule is applied to up
or down of triangular tile A or B respectively. The rule λ → A(u), inserts the
triangular tile A above tile B.

B
t1

P1 P2λ → A(u)

Fig. 2. Subnet used for horizontal insertion

The resultant triangular picture is of the form . In a similar way, it can

be done for the other insertion rules.
The triangular picture language generated by TATPN with EER on transition

is denoted by TAERL.

82 T. Kalyani et al.

Definition 7. A Parallel Evolution Rule (PER) over ΣT
AY where ΣT is a finite

alphabet of triangular tiles is one of the following:

(i) The rule λ → q(u, d, r, l, lu, ld, ru, rd, rdd, rud, lud, ldd) inserts the triangu-
lar picture q simultaneously on up, down, right, left, left up, left down, right
up, right down, right down diagonal, right up diagonal, left up diagonal and
left down diagonal provided the triangular picture q is gluable with those
edges on the given directions.

(ii) The rule
λ → q1(u, d); q2(l, r); q3(ru, rd); q4(lu, ld); q5(ur, r); q6(rd, d); q7(lu, l); q8
(ld, l); inserts q1 on up and down provided the edges are gluable. In a similar
way, explanations can be given for the other rules.

(iii) Let c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11 and c12 denote up, right up, right,
right down, down, left down, left, left up, right up diagonal, right down
diagonal, left up diagonal and left down diagonal corners of a triangular
picture respectively.

The rule λ → q(c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12) inserts q up, right up,
right, right down, down, left down, left, left up, right up diagonal, right down
diagonal, left up diagonal and left down diagonal corners of a triangular picture
simultaneously provided the edges are gluable.

The subnet in Fig. 3 illustrates how insertion rule is applied on up, down,
left and right simultaneously of a triangular picture q.

q
t1

P1 λ → q(u) P2

Fig. 3. Subnet used for the following triangular picture representation

The output place will consists of the triangular picture in Fig. 4, where

Definition 8. The family of triangular picture languages generated by TATPN
with EER and PER on transition is denoted by L(TATPN).

Theorem 1. There exist TATPN with EER and PER on transitions which gen-
erate “honey comb pattern” and “swastik pattern” of triangular picture languages.

Proof. (i) We construct a TATPN which generates honeycomb patterns. Honey-
comb materials are widely used where flat or slightly curved surfaces are needed
and so they are widely used in the aerospace industry. Honeycomb tiles are used
in floor and wall designs.

Triangular Array Token Petri Net and P System 83

Fig. 4. Triangular picture of subnet in Fig. 3

Let . Using these tiles and Elementary Evolution Rule

(EER) and Parallel Evolution Rule (PER) on transitions of a TATPN we gen-
erate a honeycomb pattern. Construct the TATPN1 as in Fig. 5.

t1

P2λ → A(rd)

B

P1 P3
t2

λ → B(d) P4
t3

λ → A()

t5

t4

P5

λ → B()

P6

λ → A(u)

H
P8 P7

t7 t6

λ → H(c1, c2, c4, c5, c6, c8) λ → H()

Fig. 5. TATPN1 generating Honeycomb patterns

The derivation is shown in Fig. 6.

84 T. Kalyani et al.

Fig. 6. Honeycomb patterns

We can generate different sizes of this picture as the number of times t6 and
t7 fire.
(ii) We construct a TATPN which generates Swastik pattern. The swastika is a
geometrical figure and an ancient religious icon in the cultures of Eurasia.

Let . Using
these tiles, EER and PER on transitions of TATPN2 as in Fig. 7, we get the
swastik pattern.

In TATPN2, when the transitions t1t2t3 fires, we get the pattern in Fig.
8(a) and again when the transition t4 fires we get Fig. 8(c) and again when the
transition t5 fires, we get Fig. 8(d) and when the transition t6 fires, we get the
swastik pattern in Fig. 8(e) and when the transition t7 fires, we get the swastik
pattern in Fig. 8(f) and when t8 fires, it removes the token Q from P8 and it
uses the rule λ → Q(u, r, d, l) and deposits the pattern Fig. 9 in P9.

When t9 fires we get the swastik pattern as in Fig. 10. We can generate
different sizes of this pattern as the number of times t8 and t9 fires.

Triangular Array Token Petri Net and P System 85

Fig. 7. TATPN2 generating Swastik pattern

4 Triangular Array Token Petri Net P System

In this section, we develop a P system called Triangular Array Token Petri
Net P System (TATPNPS), which uses Elementary Evolution Rules (EER) and
Parallel Evolution Rules (PER) introduced in Sect. 3 as evolution rules in its
regions and has labeled triangular arrays as objects.

86 T. Kalyani et al.

Fig. 8. Patterns which generates Swastik pattern

Fig. 9. Pattern which generates Swastik pattern

Definition 9. A Triangular Array Token Petri Net P System (TATPNPS)
is π = (ΣT , μ, P1, P2, · · · Pm, (R1, T1), (R2, T2) · · · (Rm, Tm), i0) where ΣT is a
finite set of labeled triangular tiles; μ is a membrane structure with m mem-
branes, labeled in a one- to-one way with 1, 2, · · · m; P1, P2, · · · Pm are finite sets
of triangular picture patterns over ΣT associated with the m regions of μ, i0 is
the output membrane which is an elementary membrane and R1, R2, · · · Rm are
finite sets of evolution rules namely EER and PER associated with the m regions
of μ. The rules Ri are of the form (ri, tar), 1 ≤ i ≤ n, where ri ∈ EER ∪ PER

Triangular Array Token Petri Net and P System 87

Fig. 10. Swastik pattern using TATPN2

and tar ∈ {inj , out, here}. Ti, 1 ≤ i ≤ n are the resultant triangular picture
pattern obtained after the evolution rule Ri is applied in membrane i.

The computation process in TATPNPS is defined as to each triangular pic-
ture pattern present in the region of the system, the evolution rule associated
with respective region should be applied in parallel to the boundary edges of the
triangular tiles. Then the resultant triangular picture pattern is moved (remains)
to another region (in the same region) with respect to the target indicator inj

(here) associated with the evolution rule. If the target indicator is out, then the
resultant triangular picture pattern is sent immediately to the next outer region
of the membrane structure.

The computation is successful only if the evolution rules of each region is
applied. The computation stops if no further application of evolution rule is appli-
cable. The result of a halting computation consists of a triangular picture pat-
tern composed of triangular tiles from ΣT placed in the membrane with labeled
i0 in the halting configuration. The set of all such triangular picture patterns
generated by TATPNPS π is denoted by TPL (π). The family of all such lan-
guages TPL (π) generated by system π with at most m membranes, is denoted by
TPLm(TATPNPS).

Example 2. Consider the TATPNPS
π1 = (ΣT , μ = [1[2[3[4[5[6]6]5]4]3]2]1, P1, P2, P3, P4, P5, P6, (R1, T1), (R2, T2), (R3,
T3), (R4, T4), (R5, T5), (R6, T6), 6). μ indicates that the system has six regions
one within the other, i0 = 6 indicates that the region 6 is the output region.

88 T. Kalyani et al.

P1 = , P2 = P3 = P4 = P5 = P6 = φ

R1 = {(λ → C(rd), here), (λ → A(ld), here), (λ → D(lu), in)}
R2 = {(λ → [E(u);H(r);F (d);G(l)], here),

(λ → [F (lud);G(rud);E(rdd);H(ldd)], in)}
R3 = {(λ → (H(c2);F (c4);G(c6);E(c8)), in)}
R4 = {(λ → (G(rud);E(rdd);H(ldd);F (lud)), in))}
R5 = {(λ → T4(u, r, d, l), here), (λ → T4(c2, c4, c6, c8), here),

(λ → T4(c2, c4, c6, c8), out), (λ → T5(u, r, d, l), here),
(λ → T5(c2, c4, c6, c8), here), (λ → T5(c2, c4, c6, c8), out)}

R6 = φ.

The picture derivation is shown in the following table:

Region (i) Input Rule (Ri) Output (Ti)

1 (λ → C(rd), here)

1 (λ → A(ld), here) Fig. 8(b)
1 Fig. 8(b) (λ → D(lu), in) Fig. 8(a)
2 Fig. 8(a) (λ → E(u);H(r); Fig. 8(c)

F (d);G(l), here)
2 Fig. 8(c) (λ → F (lud);G(rud); Fig. 8(d)

E(rdd);H(ldd), in)
3 Fig. 8(d) (λ → H(c2);F (c4); Fig. 8(e)

G(c6);E(c8), in)
4 Fig. 8(c) (λ → G(rud);E(rdd); Fig. 8(f)

H(ldd);F (lud), in)
5 Fig. 8(f) (λ → T4(u, r, d, l), here) Fig. 9
5 Fig. 9 (λ → T4(c2, c4, c6, c8), here) Fig. 10
5 Fig. 10 (λ → T5(u, r, d, l), here) Fig. 10 is

(λ → T5(c2, c4, c6, c8), here) magnified
(λ → T4(u, r, d, l), here) Fig. 10 is

(λ → T4(c2, c4, c6, c8), out) magnified
(λ → T5(u, r, d, l), here) Fig. 10 is

(λ → T5(c2, c4, c6, c8), out) magnified
6 Magnified R6 = φ Magnified

Fig. 10 Fig. 10
swastik pattern

Thus TATPNPS Π1 generates a family of swastik patterns.

Theorem 2. TPLm(TATPNPS) ∩ L(TATPN) 	= φ.

Triangular Array Token Petri Net generates Swastik patterns as given in
Theorem 1. The same pattern is also generated by Triangular Array Token Petri
Net P System in Example 2. Thus the two families intersect.

Triangular Array Token Petri Net and P System 89

5 Comparative Study with TTPPS

In this section, TATPNPS and TATPN are compared with Triangular Tile Past-
ing P System (TTPPS) for generative powers.

Definition 10. [2] A Triangular Tile Pasting P System (TTPPS) is defined as
a five tupule π = (Σ,μ, F1, F2, . . . Fm, R1, R2, . . . Rm, i0), where Σ is a finite set
of iso-triangular tiles, μ is a membrane structure. In μ, the membranes are
labeled in a one-one manner and the labels are 1, 2, . . . m. F1, F2, . . . Fm are
finite sets of pictures over the iso-triangular tiles in Σ associated with the m
regions of the membranes. R1, R2, . . . Rm are finite sets of pasting rules of type
((xi, yi), tar), (1 ≤ i ≤ n) associated with m regions of μ and i0 is the out-
put membrane, which is an elementary membrane. An evolution in TTPPS is
defined in such a way that, to each picture pattern in each region of the sys-
tem, a pasting rule could be applied and should be applied. The picture pattern is
moved (remain) to another region (in the same region) with respect to the target
indication associated with the pasting rules.

A computation is successful only if all the pasting rules are applied. The
computation is stopped, if there is no possibility of applying the pasting rules.
The result of halting picture pattern is composed only by the pasting rules; the
pattern is halted in the output region of membrane, i0. The set of all picture
patterns computed with the pasting rules of TTPPS is denoted by TTPPL(π).
The set of all languages TTPPL(π) generated by the systems π is denoted by
TTPPLm.

Example 3. [2] The Triangular Tile Pasting P System

π1 = (Σ, [1[2]2[3]3]1, F1, F2, F3, R1, R2, R3, 1)

generates a class of two dimensional triangular picture language L1 with atmost
4 distinct labeled iso-triangular tiles.

Here Σ = {A,A1, B,B1}, F1 = φ, F2 = A1, F3 = φ.
R1 = {(A, (a3, b3), in2), (B1, (b11, a1), here},
R2 = {(B, (b2, a2), in3), (B, (b1, a11), in3), (A1, (a13, b13), in3)},
R3 = {(B, (b2, a2), in2), (B1, (b12, a12), out), (A1, (a13, b13), in2)},
and 1 is the output region.

The derivation starts in region 2, R2 is applied and depending on the target
indication, the resultant picture pattern moves to another region and finally the
resultant iso-triangular picture pattern is collected in the output membrane one.

90 T. Kalyani et al.

The first two members of the language L1 is shown below:

Theorem 3. The families of languages generated by TATPNPS and TTPPS
are incomparable but not disjoint.

Proof. The families of languages generated by TATPNPS and TTPPS are by
parallel mechanism. In TATPNPS the catenation rules namely EER and PER
generate the family of languages.

The language of two-dimensional iso-triangular picture pattern L1 with
atmost 4 distinct labeled iso-triangular tiles given in Example 3 cannot be gen-
erated by TATPNPS, since different labels cannot be used in catenation rules,
i.e. to which tile either A1 or A, the catenation rule has to be used cannot be
distinguished. The catenation rules are mainly along the directions.

The language of swastik patterns given in Example 2, cannot be generated
by TTPPS, since EER and PER rules are used. In TTPPS, the tiles are pasted
along the gluable edges, whereas in TATPNPS, the tiles are catenated in corners
as well as along the directions.

The language of iso-triangular picture pattern with two tiles namely
and can be generated by both systems.

Consider the TATPNPS π2 = (ΣT , μ = [1[2]2]1, P1, P2, (R1, T1), (R2, T2), 2),
μ indicates that the system has two regions one within the other, i0 = 2 indicates
that the region 2 is the output region.

ΣT = { , }, P1 = , P2 = φ.

R1 = {(λ → B(ru), here), (λ → A(u), here), (λ → A(rd), here),
(λ → A(rd), in)}

R2 = φ.

Beginning with the initial object P1 = in region 1, the evolution rule R1

is applied, once the rules (λ → B(ru), here) and (λ → A(u), here) are applied
we get a picture pattern as in Fig. 11(a) and when the rule (λ → A(rd), here)
is applied we get an iso-triangular picture as in Fig. 11(b) and then the rules in
R1 are applied again and the process continues. When the rule (λ → A(rd), in)

Triangular Array Token Petri Net and P System 91

Fig. 11. iso - triangular picture pattern

is applied we get the resultant iso-triangular picture pattern and this pattern
reaches region 2, which is the output membrane.

Now, consider the TTPPS π2 = (Σ, [1[2]2]1, F1, F2, R1, R2, 2) which generates
the language of iso-triangular picture pattern.

Σ = { , }, F1 = A, F2 = φ

R1 = {(A, (a3, b3), here), (B, (b2, a2), here), (B, (b1, a1), here), (B, (b1, a1), in)}
R2 = φ.

Beginning with the initial object F1 = , the rules of R1 are applied and
the iso-triangular picture pattern as given in Fig. 11(a) and 11(b) are generated,
which is a first member of the language and the process continues till the rule
(B, (b1, a1), in) is applied. Once this rule is applied the resultant picture is sent
to region 2, which is the output membrane.

Theorem 4. The families of languages generated by TATPN and TTPPS are
incomparable but not disjoint.

Proof. The language of two dimensional iso-triangular picture pattern L1 with
atmost 4 distinct labeled iso-triangular tiles given in Example 3 cannot be gen-
erated by TATPN. The language of swastik patterns given in Example 2, cannot
be generated by TTPPS since EER and PER rules are used in TATPN.

The language of iso-triangular picture pattern with two iso-triangular tiles
namely and can be generated by both systems. TTPPS generating
this language is given in Theorem 3. Now, consider the TATPN generating this
language.

Let Σ = { , }, using these tiles and EER rules on transitions of a

TATPN, we get the desired pattern. Construct TATPN3 as in Fig. 12.

92 T. Kalyani et al.

t1

P2λ → B(ru)

A

P1 P3
t2

λ → A(u)

λ → A(rd)

t3

P4

Fig. 12. TATPN3 generating iso-triangular picture pattern

6 Conclusion

In this paper, we have generated honeycomb and swastik patterns of triangular
picture languages using some evolution rules on transitions of TATPN. We have
also introduced TATPNPS and it is shown that the two families intersect. It is
worth examining the superiority between TATPN and TATPNPS with regard to
their generative powers. It is our future work. We compared TATPN and TATP-
NPS with TTPPS for their generative powers. Generation of other interesting
Kolam patterns using TATPNPS is another direction of study with applications
in image analysis.

References

1. Bhuvaneswari, K., Kalyani, T., Lalitha, D.: Triangular tile pasting P system and
array generating Petri nets. Int. J. Pure Appl. Math. 107(1), 111–128 (2016)

2. Bhuvaneswari, K., Kalyani, T., Thomas, D.G., Lalitha, D.: P systems on iso-
triangular arrays. Italian J. Pure Appl. Math. 45 (2021)

3. Ceterchi, R., Mutyam, M., Paun, G.: Array-rewriting P systems. Nat. Comput. 2,
229–249 (2003)

4. Immanuel, B., Rangarajan, K., Subramanian, K.G.: String token petri nets. In:
Proceedings of the European Conference on Artificial Intelligence, One Day Work-
shop on Symbolic Networks, at Vanlencia, Spain (2004)

5. Immanuel, B., Usha, P.: Array-token petri nets and 2D grammars. Int. J. Pure
Appl. Math. 101(5), 651–659 (2015)

6. Kalyani, T., Sasikala, K., Thomas, D.G., Robinson, T., Nagar, A.K., Paramasivan,
M.: 3D-array token petri nets generating tetrahedral picture languages. In: Lukić,
T., Barneva, R.P., Brimkov, V.E., Čomić, L., Sladoje, N. (eds.) IWCIA 2020.
LNCS, vol. 12148, pp. 88–105. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51002-2 7

7. Kamaraj, T., Lalitha, D., Thomas, D.G., Thamburaj, R., Nagar, A.K.: Adjunct
hexagonal array token petri nets and hexagonal picture languages. Math. Appl. 3,
45–59 (2014)

https://doi.org/10.1007/978-3-030-51002-2_7
https://doi.org/10.1007/978-3-030-51002-2_7

Triangular Array Token Petri Net and P System 93

8. Kannamma, S., Rangarajan, K., Thomas, D.G., David, N.G.: Array Token
Petrinets, Computing and Mathematical Modeling, pp. 299–306. Narosa Publish-
ing House, New Delhi (2006)

9. Kuberal, S., Kamaraj, T., Kalyani, T.: Octagonal arrays and petri nets: a compu-
tational ecology approach. Ekoloji 28, 743–751 (2019)

10. Lalitha, D., Rangarajan, K.: Petri nets generating Kolam patterns. Indian J. Com-
put. Sci. Eng. 3(1), 68–74 (2012)

11. Lalitha, D., Rangarajan, K., Thomas, D.G.: Rectangular arrays and petri nets. In:
Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) IWCIA 2012. LNCS, vol.
7655, pp. 166–180. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34732-0 13

12. Paun, Gh.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143
(2000)

13. Peterson, J.L.: Petri Net Theory and Modeling of Systems. Prentice Hall Inc.,
Englewood Cliffs (1981)

14. Rosenfeld, A., Siromoney, R.: Picture languages - a survey. Lang. Des. 1, 229–245
(1993)

15. Sharon Philomena, V., Usha, P., Santhiya, R.: Generation of certain patterns using
array-token petrinets. Int. J. Comput. Sci. Eng. 7(Special issue 5), 25–29 (2019)

16. Subramanian, K.G., Saravanan, R., Thamburaj, R.: P systems for array generation
and application to Kolam patterns. Forma 22, 47–54 (2006)

17. Subramanian, K.G., Bera, S., Song, B., Pan, L., Zhang, Z.: Array P systems for
array based on parallel rewriting with array contextual rules. In: Pre-Proceedings
of Asian Conference on Membrane Computing (ACMC 2017), pp. 403–415 (2017)

https://doi.org/10.1007/978-3-642-34732-0_13
https://doi.org/10.1007/978-3-642-34732-0_13

P System as a Computing Tool
for Embedded Feature Selection

and Classification Method
for Microarray Cancer Data

Ravie Chandren Muniyandi(B) and Naeimeh Elkhani

Research Center for Cyber Security, Faculty of Information Science and Technology,
Universiti Kebangsaan Malaysia, 43600 Bangi, Selangor, Malaysia

ravie@ukm.edu.my, naeimeh.elkhani@siswa.ukm.edu.my

Abstract. Selection of relevant genes is the crucial task for sample
classification in microarray data, where researchers try to identify the
smallest possible set of genes that can still achieve good predictive per-
formance. Due to the problem of higher risk of overfitting in wrapper
methods and sensitivity of the best embedded way to filter out factor
that leads to unstable model and significantly different gene subsets,
in this paper, we propose a novel model for evaluating and improving
techniques for selecting informative genes from microarray data. This
model inspired by membrane computing and used the kernel P system
(kP) as the variant of the P system to improve the performance of the
intelligent algorithm, multi-objective binary particle swarm optimization
(MObPSO). The proposed model consists of two main parts. First, kP-
MObPSO, which resembles a wrapper type feature selection, and the sec-
ond part that improves the results of the first part through an embedded
feature selection and classification idea based on the kP system. Division,
rewriting, and input/output rules are used to make interaction among the
genes inside and between the particles. The proposed model applied to
the colorectal and breast dataset contains 100 genes with six attributes.
The embedded part of the model extracts the marker gene sets indicate
more stability and reliability based on ROC measure as well as better
error rate in comparison to the wrapper part of the model. In the paper,
the lowest error rate by an embedded model is displayed as 0.1111 for
breast cancer and 0.0769 for colorectal data.

Keywords: Embedded feature selection · Classification · Microarray
cancer data · Kernel P system · Multi-objective binary particle swarm
optimization

1 Introduction

Membrane Computing (MC) is a bio-inspired computing model based on the pro-
cesses taking place in the compartmental structure of a living cell [1]. The devices
c© Springer Nature Switzerland AG 2021
R. Freund et al. (Eds.): CMC 2020, LNCS 12687, pp. 94–125, 2021.
https://doi.org/10.1007/978-3-030-77102-7_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77102-7_6&domain=pdf
https://doi.org/10.1007/978-3-030-77102-7_6

P Systems as a Computing Tool for Microarray Cancer 95

of this model are generically called P Systems. P systems evolve by repeatedly
applying rules and mimicking chemical reactions, such as transportation across
membranes, cellular division, or death processes, and halt when no more rules
can be applied. The essential features of the P system include communication
rule, parallelism, and non-determinism. The origins of P systems make it highly
suitable as formalism [2] for representing biological systems, especially multicel-
lular systems and molecular interactions taking place in different locations of
living cells. For example, membrane computing was applied to improve the effi-
ciency and effectiveness of optimization problems [3], HIV-infection simulations
[4], avascular tumor-growth modeling [5], modeling the epidermal growth factor
for receptor signaling network [6], quorum-sensing P systems [7], and converting
differential-equation models of biological systems to membrane computing [8].

Application of membrane computing to a cancer diagnosis is a new and worth-
while field, given that cancer is one of the leading health issues in many countries
all over the world due to the difficulties associated with early diagnosis, which
is required to begin the treatment at the initial stage. Although there was a
continuous decline in fatality rates related to cancer cases over the last 20 years,
from 215.1 deaths per 100,000 people in 1991 to 171.8 in 2010 [9], this was pri-
marily due to screening and early diagnosis rather than a capability to manage
and cure the disease effectively. Recently, new models of P systems have been
explored. A kernel P system (kP system) based on the tissue P system (graph-
based) has been defined. This consists of a low-level specification language that
uses established features of existing P-system variants and also includes some
new elements. Importantly, kP systems offer a coherent way of integrating these
elements into the same formalism [10].

Inspired by Artificial Intelligence algorithms for feature selection of can-
cer microarray data, here, we propose a membrane-inspired feature-selection
method to use the potentials of membrane computing, such as decentralization,
non-determinism, and maximal parallel computing, to address the limitations
of AI-feature selection. A kP system was used to model the MObPSO model
in sequential execution. Particle swarm optimization has been using to develop
feature selection methods in microarray gene expression studies [11–13]. Graph-
based MObPSO [14] was modeled for the following reasons: 1) its ability to
model genes (nodes) and define relationships between them (edges); 2) it has
a higher accuracy as compared with flat (filter and wrapper) methods, Sequen-
tial Backward Elimination (SBE), Correlation-based Feature Selection (CFS),
minimum Redundancy Maximum Relevance (mRMR), and Sequential Forward
Search (SFS); and 3) the time complexity of our method on CPUs was reasonable
and no higher than other comparable techniques. Then, the SVM classifier was
implemented by kP rules to evaluate the classification accuracy of the marker
genes resulted from the proposed.

From the perspective that defines how feature selection and classification
methods are combined, our proposed kP-MObPSO-SVM computation method
belongs to wrapper methods. The advantage of wrapper methods is that they
overcome the problem of ignoring feature dependencies that occur in filter meth-

96 R. C. Muniyandi and N. Elkhani

ods through several multivariate filter techniques. Filter methods do not incorpo-
rate learning. Wrapper methods use machine learning to measure the quality of
subsets of features without integrating knowledge about the specific structure of
the classification or regression function. They can, therefore, be combined with
any machine learning. Still, there is a third type in feature selection and clas-
sification methods known as the embedded method. Embedded methods differ
from other feature selection methods in the way feature selection, and learning
interact. In contrast to filter and wrapper approaches, in embedded methods,
the learning part and the feature selection part cannot be separated, the struc-
ture of the class of functions under consideration plays a crucial role. Particle
swarm optimization has been using in microarray cancer and to build wrapper
and filter feature selection methods [15–17].

One of the famous embedded methods in cancer classification is SVM-
Recursive Feature Elimination (SVM-RFE) [18]. According to Tang et al. [19],
SVM-RFE is unstable because it is highly sensitive to f (“filter out” factor), and
different f result in significantly different gene subsets, which in turn result in
SVM classifiers with significantly different testing accuracies. For example, when
the factor is 0.7, 0.3, or −1, the testing accuracy is 85.29% for 64 genes; however,
when the factor is 0.8, 0.5, or 0.1, the testing accuracy is 94.12% for 64 genes.
A careful exploration of reasons why the SVM-RFE algorithm is sensitive to f,
should be helpful to find a more reliable algorithm for gene selection and can-
cer classification. Here “reliable” means “accurate and stable”. Random forest
and multiple feature selection and classification are used to develop embedded
methods in microarray data [20,21].

In this paper, to improve the performance of the proposed wrapper kP-
MObPSO, we added a second part to our proposed model, which is inspired by
the embedded method. The marker gene sets resulting from the first part of the
proposed model (kP-MObPSO) will use for further evaluation to add the absent
genes to the groups of marker genes and consequently evaluate the classifica-
tion result. The classification uses a performance evaluation measure (accuracy
Eq. (1)), but it is not enough to decide for the crucial case, especially in medical
diagnosis. Therefore, it is also suggested another type of performance evaluation
tools such as the ROC (receiver operation characteristics) and F1-measure. This
study presents a comparison of the performances of the wrapper kP-MObPSO
and embedded kP-MObPSO using the open-source software WEKA in terms of
accuracy, specificity, sensitivity, F-measure, and ROC curve. Accuracy, defined in
Equation (1) (TN = True Negative, TP = True Positive, FN = False Negative,
FP = False Positive), is used as a metric for performance evaluation.

Accuracy = (TN + TP)/(TN + FN + FP + TP) (1)

If the newly added gene were able to improve the classification measures
like accuracy, error rate, and ROC, the absent gene would keep in the gene set;
otherwise, feature selection will continue to test the rest of the genes out of
the total number of genes those are absent in the marker gene sets. Within the
process of embedded part error rate calculation involves classification, which is
based on SVM written by KP system rules.

P Systems as a Computing Tool for Microarray Cancer 97

2 Previous Approaches

The proposed models in this study are based on the preliminary concepts and
algorithms in multi-objective binary particle swarm optimization, support vec-
tor machine, and kernel p system. MObPSO is already updated and improved
through the rules of the kernel p system so-called kP-MObPSO. To execute
SVM on the kP-MObPSO, kernel p system rules are used to define SVM on
kP-MObPSO. Correlation-based feature selection is used to analyze microarray
gene expression data.

2.1 Microarray Gene Expression Data Analysis for Cancer
Classification

The genetic information of cells is stored in deoxyribonucleic acid (DNA), and
all cells in an organism have the same genome. However, due to different tissue
types, different development stages, and even other environmental conditions,
genes from cells in the same organism can be expressed in various combinations
and/or different quantities during transcription from DNA to messenger ribonu-
cleic acid (mRNA). Other organisms have different genomes and distinct gene
expression patterns.

Recently, gene expression microarrays including the complementary DNA
microarray (cDNA) and the GeneChip have been developed as a powerful tech-
nology for functional genetics studies, which simultaneously measures the mRNA
expression levels of thousands to tens of thousands of genes. A typical microarray
expression experiment monitors the expression level of each gene multiple times
under different conditions or in different phenotypes. For example, a comparison
can be made between healthy tissue and cancerous tissue, or one kind of can-
cerous tissue versus another. By collecting such huge gene expression data sets,
it opens the possibility to distinguish phenotypes and to identify disease-related
genes whose expression patterns are excellent diagnostic indicators [22].

2.2 Correlation-Based Feature Ranking Algorithms for Gene
Selection

A common disadvantage of filter models is that they ignore the interaction with
the classifier (the search in the feature subset space is separated from the search
in the hypothesis space) and that most proposed techniques are univariate. This
means that each feature is considered separately, thereby ignoring feature depen-
dencies, which may lead to worse classification performance when compared to
other types of feature selection techniques. To overcome the problem of neglect-
ing feature dependencies, several multivariate filter techniques were introduced,
aiming at the incorporation of feature dependencies to some degree. These tech-
niques are elaborated by Hall, Koller et al. and Yu et al. [23–25].

Gene selection can be viewed as a feature selection or dimensionality reduc-
tion problem. Currently, there are mainly two kinds of algorithms for gene selec-
tion: correlation-based algorithms and back elimination algorithms. Correlation-
based feature ranking algorithms work in a forward selection way by ranking

98 R. C. Muniyandi and N. Elkhani

genes individually in terms of a correlation-based metric. Then some top-ranked
genes are selected to form the most informative gene subset [26]. One of the com-
mon matrices is signal to noise which will be used in our study - Signal-to-Noise
(S2N) [17]:

ωi = |μi(+) − μi(−)|/σi(+) + σi(−) (2)

In Eq. (2), μi(+) and μi(−) are the mean values of the ith gene’s expression
data over positive and negative samples in the training dataset, respectively.
σi(+) and σi(−) are the corresponding standard deviations. Correlation-based
algorithms are straightforward and work efficiently. The time complexity is O(d∗
log2 d) for ranking where d is the size of the original gene set. However, a common
drawback is that these algorithms implicitly assume that genes are orthogonal
to each other and thus can only detect relations between class labels and a single
gene.

2.3 The Kernel P System

According to Gheorghe et al. [10], A kP system of degree n is a tuple, kΠ =
(O,μ,C1, ..., Cn, i0), where O is a finite set of objects, called an alphabet; μ
defines the membrane structure, which is a graph, (V,E), where V represents
vertices indicating compartments, and E represents edges; Ci = (ti, i), 1 ≤ i ≤ n,
is a compartment of the system consisting of a compartment type from T and
an initial multiset, ωi, over O; i0 is the output compartment, where the result
is obtained (this will not be used in this study). kP systems use a graph-like
structure (similar to that of tissue P systems) and two types of rules:

1. Rules to process objects: these rules are used to transform objects or to move
objects inside compartments or between compartments. These types of rules
categorize to rewriting, communication, and input-output rules:
(a) Rewriting and communication rule: x → y {g}, where xεA+, yεA∗,

gεFE(A ∪ Ā); y at the right side defines as y = (a1, t1)...(ah, th), where
ajεA and tjεL, 1 ≤ j ≤ h, aj is an object, and tj is a target, respectively.

(b) The input-output rule: (x/y) {g}, where x, yεA∗, gεFE(A ∪ Ā), means
that x can be sent from the current compartment to the environment or
y can be brought from the environment to the target compartment.

2. System structure rules: these rules make a fundamental change in the topol-
ogy of the membranes, for example, with division rule on a compartment,
dissolution rule on a specific compartment, make a link between compart-
ments, or dissolve the link between them. These rules are described as follow:
(a) Division rule: []li → []1i1 , ..., []1in {g}, where gεFE(A ∪ Ā); means com-

partment li can be replaced with n number of compartments. All newly
created compartments inherit objects and links of li;

(b) Dissolution rule:[]1i → λ {g} means compartment li does not exist any-
more as well as all its links with other compartments.

(c) Link-creation rule: []1i; []1j → []1i-[]1j {cg} means a link will be created
between compartment li with compartment lj. If there is more than one
compartment with the label lj, one of them will have a link with lj non-
deterministically.

P Systems as a Computing Tool for Microarray Cancer 99

(d) Link-destruction rule: []1i-[]1j → []1i; []1j {cg} means the existence link
between li and lj will eliminate and there will not be any link between
them anymore. The same as link creation, if there is more than one com-
partment that has a link with li, then one of them will be selected non-
deterministically to apply this rule.

2.4 The MObPSO Approaches

Optimization problems with multiple goals or objectives are referred to as multi-
objective optimization (MOO) problems. Therefore, the objectives may estimate
different aspects of solutions, which are partially or wholly in conflict. MOO
can be defined as follows: optimize Z = (f1(x), f2(x), ..., fm(x)), where x =
(x1, x2, ..., xm)εX. A multi-objective searching concept is clearly described by
Yu et al. [27].

Graph Structure is one of the models of feature selection for classification. For
example, a graph-based MObPSO algorithm [14] proposed to optimize the aver-
age of node weights and edge weights at the same time through making different
subgraphs. This algorithm is a feature selection model to highlight relevant and
non-redundant genes in microarray datasets. The results of microarray datasets
indicated that graph-based MObPSO produces better performance compared to
SBE, CFS, mRMR, and SFS methods from a classification accuracy point of
view. Although execution time in such a technique, which is known as optimiza-
tion techniques, is not efficient, their time complexity is not much higher relative
to other comparable methods [14]. MObPSO is designed for maximizing the dis-
similarity (negative correlation) and signal-to-noise ratio (SNR), Eqs. (3) (cov
= co-variance, var= variance) and (4) (sd = standard deviation), respectively,
which are represented as edge weight and node weight, respectively. Arbitrarily
selected features initialize the population from the data matrix, and population-
fitness values are calculated using dissimilarity and SNR average values. The
archive, A, is initialized by the population value after nondominated sorting of
the primary population. Velocity and position are updated using Eqs. (5) and
(6). If we consider a D-dimensional space, the exact place of each particle will be
shown by xi = (xi1, xi2, ..., xiD). In the same way, for each particle their veloc-
ity can be written as a vector like vi = (vi1, vi2, ..., viD). The limitation for the
position and velocity of particles represent as [Xmin,Xmax]Dand[Vmin, Vmax]D,
respectively. The value called pbest will present the best position which have
met by the ith particle previously pi = (pi1, pi2, ..., piD). The ultimate best value
from all of the positions have been met so far will represent by gbest value as
g = (g1, g2, ..., gD). In every iteration, the pbest and gbest value for position and
velocity of ith particle will update in the swarm. Where w represents inertia
weight to control the effect of particle previous and new velocity, the variables
r1 and r2 represent any random numbers between (0, 1), and constant numbers
as c1 and c2 represent the acceleration. It means these constant numbers will
control the distance that a particle can travel far in every iteration. The variables
v(t+1) and v(t) indicate the velocities of the new and old particle, respectively.

100 R. C. Muniyandi and N. Elkhani

The local best P is updated after comparing the current and previous fitness val-
ues of a particle, and the global best G is updated according to randomly picking
a particle from the archive. These steps are repeated for a particular number of
iterations. A summary of the MObPSO algorithm is explained in Table 1.

dissimilarity =

(
1 − cov(x, y)√

var(x)var(y)

)
(3)

SNR =
∣∣∣∣mean(C1) − mean(C2)

sd(C1) − sd(C2)

∣∣∣∣ (4)

v(t + 1) = w ∗ v(t) + C1 ∗ r1 ∗ (pbest(t) − x(t)) + C2 ∗ r2 ∗ (gbest(t) − x(t)) (5)

x(t + 1) = x(t) + v(t + 1) (6)

2.5 Embedded Method

Embedded methods differ from other feature selection methods in the way fea-
ture selection, and learning interact. Filter methods do not incorporate learning.
Wrapper methods use a learning machine to measure the quality of subsets of
features without integrating knowledge about the specific structure of the clas-
sification or regression function. They can, therefore, be combined with any
learning machine. In contrast to filter and wrapper approaches, in embedded
methods, the learning part and the feature selection part cannot be separated,
the structure of the class of functions under consideration plays a crucial role
[28].

Feature selection can be understood as finding the feature subset of a specific
size that leads to the largest possible generalization or, equivalently to minimal
risk. A vector σε{0, 1}n model every subset of features of indicator variables,
σi = 1 indicating that a feature is present in a subset and σi = 0 indicating
that feature is absent (i = 1, ..., n). The function G measures the performance
of a trained classifier f∗(σ) for a given σ. It is vital to understand that although
we write G(f∗, ., ., .) to denote that G depends on the classifying or regression
function f∗, the function G does not depend on the structure of f∗; G can only
access f∗ as a black box, for example in a cross-validation scheme. Moreover,
G does not depend on the specific learner T̃ . In other words T̃ , could be any
off-the-shelf classification algorithm, and G guides the search through the space
of feature subsets. If we allow G to depend on the learner T̃ and on parameters
of f∗ we get the Eq. (7), as:

inf

σε{0, 1}n G(α∗, T̃ , σ,X, Y) s.t.

{
s(σ) ≤ σ0

α∗ = T̃ (σ,X, Y)
(7)

Some embedded methods do not make use of a model selection criterion to
evaluate a specific subset of features. Instead, they directly use the learner T̃ .

P Systems as a Computing Tool for Microarray Cancer 101

Assuming that many learning methods T̃ can be formulated as an optimization
problem, we will have Eq. (8) as:

α∗ =
argmin

αεΛ T (α, σ,X, Y) = T̃ (α,X, Y) (8)

We can rewrite the minimization problem for the particular case of G = T
as Eq. (9):

inf

αεΛ, σε{0, 1}n T (α, σ,X, Y) s.t. s(σ) ≤ σ0 (9)

Unfortunately, both minimization Eqs. (8) and (9) are hard to solve. They are
existing embedded methods approximate solutions of the minimization problem.
One of the ways that embedded methods solve the problem according to Eq. (8)
or Eq. (9) is the methods that iteratively add or remove features from the data to
greedily approximate a solution of minimization Eqs. (8) or (9). These methods
are known as Forward-Backward Methods and can be grouped into three cat-
egories. The first category is Forward selection methods, which these methods
start with one or a few features selected according to a method specific selection
criterion. More features are iteratively added until a stopping criterion is met.
The second category is Backward elimination methods that this type starts with
all features and iteratively remove one feature or bunches of features. The third
category is Nested methods that, during an iteration, features can be added as
well as removed from the data.

2.6 SVM for Cancer Classification

SVM is a classification algorithm based on statistical learning theory [29]. Due
to extreme sparseness of microarray gene expression data, the dimension of the
input space is already high enough so that the cancer classification is already
as simple as a linear separable task [30]. It is unnecessary and even useless to
transfer it to a higher implicit feature space with a non-linear kernel. As a result,
in this work, we adopt linear SVM [31] as the primary classifier as Eq. (10).

LinearkernelK(x, y) = <x, y> (10)

Where x and y are points in a d-dimensional Euclidean space. For a linear kernel
SVM, the margin width can be calculated by Eqs. (11) and (12)

w =
Ns∑
i=1

αiyixi (11)

marginwidth =
2

‖w‖ (12)

Where Ns is the number of support vectors, which are defined as the training
samples with 0 < αi ≤ C. SVM is believed to be a superior model for sparse
classification problems compared to other models [29,30]. However, the sparse-
ness of a microarray dataset is so extreme that even an SVM classifier is unable
to achieve satisfactory performance. A preprocessing step of gene selection is
necessary for more reliable cancer classification.

102 R. C. Muniyandi and N. Elkhani

3 Materials and Methods

The proposed model consists of two main parts. Both parts have feature selection
and classification components which are implemented through KP system rules.
In the first part, kP-MObPSO feature selection finds out the features, and then
an SVM based classification, which is implemented by KP rules, will be applied
to classify the features. In the second part, feature selection is embedded with
classification in a way that, after adding each absent gene to the set of marker
genes, came from the first part, the classification will apply immediately to
evaluate the difference that can make by the newly added gene. If the newly
added gene was able to improve the result of the error rate and ROC, then it
will be part of the solution. Otherwise, if it made the result worse, it should be
eliminated and embedded feature selection and classification in the second part
implemented by kP system rules. Classification also follows SVM through kP
rules to evaluate error rate and ROC.

3.1 Description of the Entire Model

The entire model includes two main parts, the first part, features selection based
on kP-MObPSO, and then classification based on KP-SVM and the second part,
KP-embedded feature selection/SVM Classification. The first part defines mod-
eling and implementing previous MObPSO based on kP system rules with some
improvements, which lead to the result consists of a different set of marker
genes, so-called kP-MObPSO feature selection. After that, an error rate calcu-
lator based on kP-SVM applied to measure the error rate of marker gene sets.

The latter part embedded feature selection of genes with a classification that
is based on the kP system and SVM classification. This part starts with the
different sets of marker genes that are already highlighted through the first part,
and then a mix of feature selection and SVM classification through KP rules on
marker genes leads to another set of marker genes, which is called marker genes
2 sets. For doing this, we have followed the third category of embedded methods,
which are Nested methods that during an iteration gene can be added as well
as removed from the data. Ultimately, new sets of marker genes are supposed to
present better error rates in comparison to error rates of marker genes resulted
from the first part of the model (features selection based on kP-MObPSO). These
two parts are explained in Fig. 1 as the flow chart of the proposed model.

3.2 First Part: Feature Selection Based on kP-MObPSO

The entire process of the proposed kP-MObPSO model is summarized in Table 1.
It consists of three main phases, including (i) initialization, (ii) division, (iii) select
the minimum gBestScore, and (iv) return back the process to the division part
again. Each phase is built based on defined objects and rules. Objects are defined
as: P : number of particles, Maxc: maximum number of genes inside particles,
position1, ..., positionn: n number of positions inside each particle, Reserve, a :

P Systems as a Computing Tool for Microarray Cancer 103

Fig. 1. The flowchart of the proposed model.

a1, ..., a100: data source of all genes, Maxc:maximum number of genes inside parti-
cles, NGENES,NewNGENES,Q, c, C, sumdiss, sumsnr, F IT,Q, pBestScore.
Q is a selected gene IDs. Rules are defines based on Table 2.

Table 1. The entire process of the proposed kP-MObPSO model.

Begin
t = 1
(i) Initialize

Run all the rules from r1 to r16 once
it = 1
(ii) Evolution

Run the rules r2 > r3 > r4 > r5 > r6 > r7 > r10 > r11 > r12 > r14 > r15 > r16 in order
till it = 100
(iii) gBestScore = min(Converge)
(iv) go the section (ii)
till t = 10

End

104 R. C. Muniyandi and N. Elkhani

Table 2. Rules kP-MObPSO.

Rules
r1: Rewriting
r1 ≡ [[p, maxc]position]0

pos−→
[[(position1, ..., positionn)1, ..., (position1, ..., positionn)position]position]0[[]1[]position]0

r2: Communication
r2 ≡ [[(position1, ..., positionn)1, ..., (position1, ..., positionn)position]position]0 −→

[[(position1, ..., positionn)1, ..., (position1, ..., positionn)position]1]0
r3: Communication
r3 ≡ [(position1, ..., positionn)1, ..., (position1, ..., positionn)p]1 −→

[[(position1, ..., positionn)1]p1, ..., [(position1, ..., positionn)p]pn]1
Rules inside each p : []P1, ..., []Pn : r4 > r5 > r6 > r7
r4: Rewriting

r4 ≡ [position, a, maxc, p]
p1

pn

subgraph1−→ [NGENES]
p1

pn
, [NGENES]

p1

pn

subgraph1−→ [NewNGENES, Q, c]
p1

pn

r5: Communication/rewriting

r5 ≡ [NewNGENES, c, p, a]
p1

pn

MyCost−→ [C]
p1

pn
, [C]

p1

pn

MyCost−→ [sumdiss]
p1

pn
,

[a]
p1

pn

MyCost−→ [snr]
p1

pn
, [snr]

p1

pn

MyCost−→ [sumsnr]
p1

pn
, [sumdiss, sumsnr]

p1

pn

MyCost−→ [FIT]
p1

pn

r6: Link creation

r6 ≡ []
p1

pn
- - -[]master

r7: Communication/rewriting

r7 ≡ [FITn]
p1

pn
−→ [pBestScoren]master, [Qn]

p1

pn
−→ [Qn]master

r8: Division
r8 ≡ [[[]P1...[]Pn[pBestScoren, Qn]master]1]0 −→ [[[]P1. . . []Pn[pBestScoren, gBestScore]master]11[[]P1...[]Pn

[fitness, pBest, gBest, V elocity, c1, c2, w, V max, s]master]12]0
r9: Membrane dissolution
r9 ≡ [[[]P1. . . []Pn[]master]1]0 −→ λ

r10: Link creation
r10 ≡ [[[]P1. . . []Pn[pBestScoren]master]11]0, [[[]P1. . . []Pn[fitnessn]master]12]0 −→
[[[]P1. . . []Pn[pBestScoren]master]11]0- - -[[[]P1. . . []Pn[fitnessn]master]12]0
r11: Communication/rewriting
r11 ≡ [[[pBestScoren]master]11]0 −→ [[fitnessn]master]11]0, [[[pBestn]master]12]0 −→ 1
{[[[fitnessn]master]12]0 < [[[pBestScoren]master]11]0, 1 ≤ n ≤ p}&
[[[gBestScore]master]11]0 −→ [[[pBestScoren]master]11]0, [[[gBestn]master]12]0 −→ 1
{[[[pBestScoren]master]11]0 < [[[gBestScore]master]11]0, 1 ≤ n ≤ p}&
[[[converge]master]11]0 −→ min[[[pBestScore]

p1

pn
]master]11]0

r12: Communication

r12 ≡ [[[position]
p1

pn
]12]0 −→ [[[position]

p1

pn
]master]12]0

r13: Communication/rewriting
[[[positionn, c1, c2, c, w, pBest, gBest, p, maxc, rand]master]12]0 −→ [[V elocity]master]12]0
[[[V elocity]master]12]0 −→ [V max]master]12 {V elocity > V max}
[[[V elocity]master]12]0 −→ [−V max]master]12 {V elocity < V max}
[[[[position]

p1

pn
]master]12]0 −→ 1 {rand ≤ 1/(1 + exp(−2 ∗ V elocity)}

[[[[position]
p1

pn
]master]12]0 −→ 0 {rand > 1/(1 + exp(−2 ∗ V elocity)}

P Systems as a Computing Tool for Microarray Cancer 105

Fig. 2. The results of feature selection by kP-MObPSO.

The results of feature selection by kP-MObPSO are shown in Fig. 2. The
division process will take steps as follow: the first compartment 1 will divide
into two compartments, namely compartment 11 and 12. Compartment 12 will

106 R. C. Muniyandi and N. Elkhani

divide into compartment 121 and 122. After that, compartment 121 will divide
into compartment 1211 and 1212, followed by dividing compartment 122 to com-
partments 1221 and 1222. In between dividing rules, the dissolving rule will
apply on compartment 1, 12, 121, and 122, respectively. Thus, as the draw-
ing of the compartment below shows it, compartments 11, 1211, 1212, 1221,
and 1222 will remain. The creation of compartments as a result of division
rule and dissolution of compartments, which does not have a further contri-
bution in the computation, will execute in parallel whit object processing rules.
Object processing rules are rewriting, communication, and input/output rules
that make a comparison between assumed gbestscore value and new pbestscore
value. This comparison is ultimately between compartment 11 and compart-
ments 1211, 1212, 1221, and 1222 respectively, to replace the better gbestscore
in compartment 11. In each step of comparison, for example, between com-
partment 11 and 1211, the minimum gbestscore represents a set of marker
genes. These sets of marker genes produce the final results, as is expected from
the kP-MObPSO feature selection model. Sets of marker genes are shown as
(markergenes, it = 1/markergenes, it = 2/.../markergenes, it = n) in the
figure drawn below. Classification error rate assigned to each set of marker
genes. A kP-system based classification consists of the SVM package in Mat-
lab will evaluate the error rate of the marker gene. The rules and objectives of
kP-classification will explain in the following.

r14:Output/link

[[[[position]
p1

pn

]master]12]0 −→ [[[position]
p1

pn

]12]0 [[]12]0, [[]position]0 −→ []12]0- - -[[]position]0

[[[position]
p1

pn

]12]0 −→ [[position]
p1

pn

]position]0

r15: Division rule

[[]p1...[]pn[]master]12[[]p1...[]pn[]master]121[[]p1...[]pn[]master]122

r16: Membrane dissolution

[[]p1...[]pn[]master]12 −→ λ

3.3 kP Rules to Find Out Marker Genes and kP-SVM Rules to
Calculate Error Rates

A kP-system based computation rules are proposed to find out marker genes and
kP-SVM rules used to calculate error rates of marker genes which are resulted
from kP-MObPSO. The objects and rules are defined in Tables 3 and 4.

P Systems as a Computing Tool for Microarray Cancer 107

Table 3. The objects to find out marker genes and to calculate error rates of marker
genes.

Objects Details

(a(i, j) Dataset of real data, Index of genes
from 1 to 100, 1 ≤ i ≤ 100 and j is
number of samples 1 ≤ j ≤ 6

Markergenes = zeros(100, n) Matrix marker genes will keep the
index of marker genes from 1 to 100,
1 ≤ i ≤ 100, n= number of particles

y = zeros(100, 1) Matrix will give the flag to marker
genes; for gene indexes, i ≤ 50 flag
will be +1, and for gene indexes
i > 50 flag will be −1. It means for
normal genes +1 and tumor genes
−1. In our data set, 50 first genes
are normal, and the second 50 genes
are tumor genes

Badgenes = zeros(250, 1) Matrix keeps the number of tumor
genes is selected for further process

maxj ,maxf Counter for the number of flags,
which are +1 and −1 by maxj and
maxf , respectively

Y = zeros((maxj + maxf) ∗ 3, 1) Dataset consists of 3 samples of
data; object Y distributes the flags
+1 and −1 for the indexes of normal
and cancerous genes in the dataset.
+1 will be distributed maxj times,
and −1 will distribute maxf times

Wholedata = zeros((maxj + maxf) ∗ 3, 1) Object whole data is a matrix of real
data consists of 3 samples datasets
for those genes that are selected as
marker genes by index i

ERR = zeros(150, 2) Keeps error rates

K = 1 Counter of real data when data adds
to Wholedata matrix or deduct from
Wholedata

M Matrix of genes

According to Table 4, rule number one, m1, calculates a histogram of marker
genes and keeps the number of genes repetition in the table(i) for each gene with
the index i. m2, rewrites the matrix of marker genes with those genes that are
already repeated more than the indication of iteration that is already executing.
It means if the code is running on the second iteration, the number of repletion
for gene index should be more than two to be considered as a marker gene and

108 R. C. Muniyandi and N. Elkhani

so on. The real dataset is built by 50 normal genes value in 6 samples at the
beginning followed by 50 cancerous genes value after. m3 and m4, give a flag to
index of genes based on the type of genes, whether they belong to normal genes or
cancerous genes as +1 and −1, respectively. The object maxj and maxf updates
the number of normal and cancerous genes. m5, is the rewriting rule to keep
the number of cancerous genes that are already contributing to evaluation. m6
reserve a place for the samples of gene indexes are selected as marker genes and
m7, inputs the real value of reserved samples inside a compartment called whole
data. The whole data compartment keeps real data samples for gene indexes
that are already highlighted as marker genes. m8, applies an SVM package in
MATLAB with rewriting rules to evaluate error rates. m9, keeps each set of
marker genes inside a compartment. Finally, m10, indicates how real dataset is
divided to n number of compartments called (particle2, it = 1/particle2, it =
2/.../particle2, it = n).

Table 4. The rules to find out marker genes and to calculate error rates of marker
genes.

No. Feature selection (FS): KP rules to get marker genes and calculate
error rates (priority based on the rules No.)

KP rules name

m1 s → find(M(:) == i), table(i) → lenght(s), {1 ≤ i ≤ 100} Rewriting

m2 markergenes(i, it + 1) → i{table(i) > it, 1 ≤ i ≤ 100, 1 ≤ it ≤ n} Rewriting

m3 y(i, 1) → +1 &maxj → maxj + 1, {1 ≤ i ≤ 50} Rewriting

m4 y(i, 1) → −1 &maxf → maxf + 1, {51 ≤ i ≤ 100} Rewriting

m5 BadGenes(it + 1, 1) → maxf Rewriting

m6 Y (j, 1) → +1, {1 ≤ j ≤ maxj ∗ 3} Y (j, 1) → −1, {maxj ∗ 3 + 1 ≤ j ≤
maxj ∗ 3 + maxf ∗ 3}

Rewriting

m7 wholedata(k, 1) → a(i, j), {1 ≤ i ≤ 100, table(i) > it, j = 1} k →
k + 1, wholedata(k, 1) → a(i, j), {1 ≤ i ≤ 100, table(i) > it, j =
3 or 5} wholedata(k, 2) → a(i, j), {1 ≤ i ≤ 100, table(i) > it, j =
2 or 4} wholedata(k, 2) → a(i, j), k → k + 1{1 ≤ i ≤ 100, table(i) >
it, j = 6}

Input

m8 {wholedata(k, 1), wholedata(k, 2)} → X{Y,Holdout = 0.10} →
P{cvpartition}{X(P.training), Y (P.training)} →
SVMStruct{svmtrain}{SVMStruct,X(P.test)} →
C{svmclassify}Sum(Y (P.test) ∼= C)/P.testsize →
errRateY (P.test), C → conMatERR(1, 1) →
errRate{first 100 times iteration, gBestScore =
inf}ERR(it + 1, 1) → errRate&Constant →
ERR(it + 1, 1){not first 100 times iteration, gBestScore �= inf}

Rewriting

m9 Particle2 → Markergenes(:, it + 1){1 ≤ it ≤ n, 0 < ERR(it + 1, 1) ≤
0.3}

Rewriting

m10 a(i, j) → {(Particle2, it = 1), (Particle2, it = 2), ..., (Particle2, it =
n)}

Division

3.4 Second Part: Embedded Feature Selection and Classification
kP Rules

According to the rules in Table 5, f1 is a flag which is an object with a default
value zero. f2, flag value will rewrite to 1 if it meets the guard values, including

P Systems as a Computing Tool for Microarray Cancer 109

an error rate between 0 and 0.3, as well as having at least two cancerous genes
indexes in marker genes. f3, q, and e are the counters of normal genes and
cancerous genes, respectively, which rewrite to a default value zero, and marker
genes 2 keep a backup of marker genes resulted from the first part of the model.
Marker genes 2 objects will be used for further procedure. For each gene number
from 1 to 100, rules number f4 to f10 will apply to see whether entering a new
gene can improve the error rate of that particle or no. f4 and r5 give a flag
to index of genes based on the type of genes, whether they belong to normal
genes or cancerous genes as +1 and −1, respectively. In parallel, q and e, which
are the counters of normal genes and cancerous genes, will be updated. f6, the
object maxj , and maxf updates the number of normal and cancerous genes. f7,
clear the value of q and e. f8 reserve a place for the samples of gene indexes are
selected as marker genes and f9, inputs the real value of reserved samples inside
a compartment called wholedata.

Wholedata compartment keeps actual data samples for gene indexes that are
already highlighted as marker genes. f10, applies an SVM package in Matlab
with rewriting rules to evaluate error rates. To decide whether adding a new gene
can improve the error rate or no, rule number f11 compares error rates after
adding each gene (from 1 to 100) with the constant error rate object resulted
in the first part of modeling for each set of marker genes. If adding a new can
improve the continuous error rate of that set of marker genes, the f11 will add
this gene index to the set of marker genes. Otherwise, if a gene value already
enters the particle cannot improve the error rate, it should be the exit from the
particle. Rules, f12 to f15 apply output and rewriting rules to eliminate gene
values inside the particle. After executing the computation model for n number
of iterations which each iteration represents one particle from it = 1 to it = n,
particles of marker genes will update by new genes and result in a new set of
particles as (particle3, it = 1/particle3, it = 2/.../particle3, it = n). It means by
the end of embedded feature selection and classification, the real data set will
divide into a new compartment.

4 Results

The process of calculating error rates from marker genes is explained in Fig. 3,
which is a real data example from the colorectal dataset. The method defines 5
sets of marker genes as it=1:5. To get marker genes of these 5 sets, kP-MObPSO
will execute 100 times for each set. After extracting marker genes for each set,
the error rate will be calculated to indicate which set of marker genes provides
a better error rate. An example of real data from colorectal datasets and the
procedure of embedded feature selection and classification is explained in Fig. 4.

110 R. C. Muniyandi and N. Elkhani

Table 5. Embedded feature selection and classification KP rules.

No. Embedded feature selection and classification KP rules to get marker
genes 2 and error rates (priority based on the rules No.)

KP rules name

f1 flag → 0 Rewriting

f2 flag → 1{0 < ERR(it + 1, 1) ≤ 0.3 &BadGenes(it + 1, 1) ≤ 2, 1 ≤
it ≤ n}

Rewriting

f3 q → 0 & e → 0 &markergenes2(:, it + 1) → markergenes(:
, it + 1){1 ≤ it ≤ n, 1 ≤ i ≤ 100}

Rewriting

f4 y(i, 1) → +1 & q → q + 1{1 ≤ i ≤ 50, 1 ≤ it ≤
n,markergenes(i, it + 1) = 0}

Rewriting

f5 y(i, 1) → +1 & e → e + 1{51 ≤ i ≤ 100, 1 ≤ it ≤
n,markergenes(i, it + 1) = 0}

Rewriting

f6 maxj → maxj + q, maxf → maxf + e Rewriting

f7 q → 0 & e → 0 Rewriting

f8 Y (j, 1) → +1{1 ≤ j ≤ maxj ∗ 3}Y (j, 1) → −1{maxj ∗ 3 + 1 ≤ j ≤
maxj ∗ 3 + maxf ∗ 3}

Rewriting

f9 wholedata(k, 1) → a(i, j){1 ≤ i ≤ 100, j = 1} k →
k + 1, wholedata(k, 1) → a(i, j){1 ≤ i ≤ 100, j =
3 or 5}wholedata(k, 2) → a(i, j){1 ≤ i ≤ 100, j =
2 or 4}wholedata(k, 2) → a(i, j), k → k + 1{1 ≤ i ≤ 100, j = 6}

Input

f10 {wholedata(k, 1), wholedata(k, 2)} → X{Y,Holdout = 0.10} →
P{cvpartition}{X(P.training), Y (P.training)} →
SVMStruct{svmtrain}{SVMStruct,X(P.test)} →
C{svmclassify}Sum(Y (P.test) ∼= C)/P.testsize →
errRateY (P.test), C → conMatERR(1, 1) →
errRate{first 100 times iteration, gBestScore =
inf}ERR(it + 1, 1) → errRate&Constant →
ERR(it + 1, 1){not first 100 times iteration, gBestScore �= inf}

Rewriting

f11 Markergenes2(i, it + 1) → i, {0 < errRate ≤ constant, for 1 ≤ i ≤
100}f4, f5, f6, f7, f8, f9, f10

Rewriting

f12 Y (j, 1) → 0 &maxj → maxj − 1{constant < errRate& i ≤
50}Y (j, 1) → 0 &maxf → maxf − 1{constant < errRate& i > 50}

Output

f13 Y (j, 1) → +1{1 ≤ j ≤ maxj ∗ 3}Y (j, 1) → −1{maxj ∗ 3 + 1 ≤ j ≤
maxj ∗ 3 + maxf ∗ 3}

Rewriting

f14 size(wholedata) → (M,N)A → wholedata(1 : M − 3, 1 :
N)wholedata(M − 3, N) → 0

Rewriting

f15 wholedata → A, k = k − 3 Rewriting

f16 a(i, j) → {(Particle3, it = 1), (Particle3, it = 2), ..., (Particle3, it =
n)}

Division

From a numeric point of view, let assume that particle 1 is created to hold all the
numeric value of dataset “a” for genes (Fig. 5). Executing the first part of the
model (FS) will create another type of particle called particle 2, which holds sets
of marker genes. The predefined “it” value indicates the number of particles type
2 to carry marker genes. Here we assumed “it” is 1. Executing the second part
of the model FS/CL will create a different kind of particle called particle type
3. The number of these particles depends on the number of particle type 2. It
means for each particle type 2, and there will be one counterpart as particle type
3. Particle type 3 keeps the updated genes resulted through executing FS/CL
on the gene sets of particle type 2.

Indeed, particle type 2 and particle type 3 are the result of implementing
division rule on particle type 1. It means that the whole dataset is divided into
particle type two, which is resulted by executing the first part of the model

P Systems as a Computing Tool for Microarray Cancer 111

Example of the colorectal dataset:

Marker genes: those genes repeated more than 0,1,2,3,

and 4 times in 5 iterations (it=5)

>0 >1 >2 >3 >4

Marker

genes

it=1

Marker

genes

it=2

Marker

genes

it=3

Marker

genes

it=4

Marker

genes

it=5

Error Rate

Marker genes

it=1

Marker genes

it=2

Marker genes it=3

Marker genes it=4

Marker genes it=5

max_iteration=100;

213- it=1:5

221-for L=1: max_iteration

263-end

Error Rate

Fig. 3. Real data example from the colorectal dataset for kP-MObPSO.

(feature selection by MObPSO) and particle type three as the result of running
the second part of computation (embedded feature selection and classification).
These two types of particles (2 and 3) represent a different set of marker genes
with varying rates of error, although particle type 3 is already updated based on
particle type 2. Particle type 3 has already improved particle 2 in terms of error
rate and ROC. This division rule itself can apply for any number of iterations.

112 R. C. Muniyandi and N. Elkhani

Example 1:

Example 2:

Fig. 4. Real data example from the colorectal dataset for embedded feature selection
and classification kP-SVM.

P Systems as a Computing Tool for Microarray Cancer 113

Fig. 5. Division rule applied on the initial dataset to divide genes into two type sets
of genes.

4.1 Performance Evaluation Measurements

Measurements predicting the performance of a machine learning method based
on inadequate data is difficult. Therefore, Cross-validation becomes the favorite
when the researcher got a small amount of data. When machine-learning algo-
rithms are used, decisions must be made on how to divide data for training
and testing. To calculate the performance of machine learning methods, the
entire data split training and testing sets, and 10-fold cross-validation, which is
a famous method for evaluation, is applied afterward. The classification of data
examined by a training set as forming a model, the verification of the model per-
formed by the test set. The number of true negatives (TN), false negatives (FN),
true positives (TP), and false positives (FP) are used to compute the efficiency
of the classifier. The sensitivity and specificity are statistical measurements of
checkout tests. Sensitivity states in the rate of the positive test result,

Sensitivity = TP/(TP + FN)100% (13)

114 R. C. Muniyandi and N. Elkhani

Which has the following formula Accuracy shows the overall measure, which
is: ROC represents the classifier performance without considering class distribu-
tion or error costs. For each algorithm, we also report the area under the ROC
curve (AUC) value, which can indicate a model’s balance ability between the
TP rate and FP rate as a function of varying a classification threshold. As a
result, we know if a model is biased to a particular class. An area of 1 represents
a perfect classification, while an area of 0.5 represents a worthless model. There
is another statistical measurement call F-measure; to evaluate characterization
of the performance, it has the following formula.

Specificity = TN/(TN + FP) ∗ 100% (14)

Accuracy = (TP + TN)/(TP + FP + TN + FN) ∗ 100% (15)

F − measure = 2TP/(2TP + FP + FN) (16)

4.2 Experimental Results

In this paper, a cell line dataset of colorectal cancer and breast cancer are down-
loaded from publicly available datasets in the Gene Expression Omnibus (GEO)
repository (http://www.ncbi.nlm.nih.gov/gds).

Procedures and Data. Six samples of colorectal cancer and six samples of
breast cancer are used according to Table 2 and 3, respectively that explains the
specification of samples. When samples of a microarray dataset represent normal
(benign) and cancer (malignant) tissue, classifying such samples is referred to
as binary classification. Otherwise, when samples represent various subtypes of
cancer, classification is referred to as multiclass cancer classification. In both
cases, genes with significantly different expression in the two different classes
(normal and tumor or two distinct subtypes of cancer) are labeled as differentially
expressed genes. In this paper, we aimed to find these indicator genes, or marker
genes, to distinguish normal and tumor genes (binary classification) in both the
colorectal dataset and breast dataset.

According to Table 6, samples were provided from two subtypes, includ-
ing subtype 1.1 and 2.1 with platform IDs: GPL570 (Affymetrix U133 Plus
2.0) and series GSE35896 to compare between 62 colorectal cancers. The first
three samples, including GSM877130, GSM877141, and GSM877142, were from
the subtype 1.1, and the latter three samples, GSM877127, GSM877138, and
GSM877140, were from subtype 2.1. Before evaluating the model, we prepro-
cessed the data. The number of genes in the raw data was 54676. A list of
significant genes, including normal and tumor genes, were highlighted accord-
ing to the results of a study [32] where the clinical, pathological, and biological
features of different subtypes of colorectal tumors were compared. As a result,
382 tumor genes were selected according to the subtypes 1.1 and 2.1 in the ini-
tial cell-line dataset. The SNR was calculated according to the Eq. 13 for both
normal and tumor genes. For each gene, the first three sets of samples were cat-
egorized as C1 (subtype 1.1), and the rest were classified as C2 (subtypes 2.1).

http://www.ncbi.nlm.nih.gov/gds

P Systems as a Computing Tool for Microarray Cancer 115

Table 6. Specification of colorectal cancer dataset.

Data Set Record

GDS4379

Title: Colorectal

cancer tumors

Summary:

Analysis of

primary

colorectal cancer

(CRC) tumors.

CRC is a

heterogeneous

disease. Results

provide insight

into stratifying

CRC tumor

samples into

subtypes and

tailoring

treatments for

the CRC

subtypes

Organism: Homo

sapiens

Platform: GPL570:

[HG−U133 Plus 2]

Affymetrix Human

Genome U133 Plus

2.0 Array

Citation:

Schlicker A,

Beran G,

Chresta CM,

McWalter G et

al.

Subtypes of

primary

colorectal

tumors correlate

with response to

targeted

treatment in

colorectal cell

lines

BMC Med

Genomics 2012

Dec 31; 5:66

PMID: 23272949 Platform ID:

GPL570 Series:

GSE35896, Gene

expression data

from 62 colorectal

cancer

Samples Cell line Tissue Disease state genotype/variation

Subtype: 1.1

GSM877130 CRC 42 Large Intestine Adenocarcinoma microsatellite.status:

MSS

GSM877141 CRC 45 Large Intestine Adenocarcinoma microsatellite.status:

MSS

GSM877142 CRC 61 Large Intestine Adenocarcinoma microsatellite.status:

MSS

Subtype: 2.1

GSM877127 CRC 01 Large Intestine Adenocarcinoma microsatellite.status:

MSI

GSM877138 CRC 02 Large Intestine Adenocarcinoma microsatellite.status:

MSI

GSM877140 CRC 19 Large Intestine Adenocarcinoma microsatellite.status:

MSI

The SNR values were sorted in descending order, and 100 maximum SNR values
(50 maximum SNR values for normal genes and 50 maximum SNR values for
tumor genes) were selected for further analysis. Then the Signal-to-Noise Ratio
(SNR) value (node weight) corresponding to each feature is calculated using
mean and standard deviation (s.d.) of class l (cl) and class 2 (c2).

According to Table 7, six samples of breast cancer were used, with three of
them related to papillary infiltrating ductal carcinoma and the rest belonging
to a carcinosarcoma state of disease. Table 4 explains the specification of sam-
ples. Both samples were provided with platform IDs: GPL570 (Affymetrix U133
Plus 2.0) and series GSE3247 to compare cell lines from nine different cancer

116 R. C. Muniyandi and N. Elkhani

Table 7. Specification of breast cancer dataset.

Age: 72 Sex: F Epithelial: yes Platform ID

GPL570

Series (1)

GSE32474

Comparison

between cell lines

from 9 different

cancer tissue

(NCI-60)

(Affymetrix U133

Plus 2.0)

Treatment

protocol

No treatment

Samples Cell line Tissue Disease state Title

GSM803621 BT 549 breast Papillary

infiltrating ductal

carcinoma

BR:BT 549

[113390hp133a11]

GSM803680 BT 549 breast Papillary

infiltrating ductal

carcinoma

BR:BT 549

[113449hp133a11]

GSM803739 BT 549 breast Papillary

infiltrating ductal

carcinoma

BR:BT 549

[118175hp133a11]

Age:74 Sex:F Epithelial:yes Source: Primary Platform ID

GPL570

Series (1)

GSE32474

Comparison

between cell lines

from 9 different

cancer tissue

(NCI-60)

(Affymetrix U133

Plus 2.0)

Treatment

protocol

No treatment

Samples Cell line Tissue Disease state Title

GSM803622 HS578T breast Carcinosarcoma BR:HS578T

[113391hp133a11]

GSM803681 HS578T breast Carcinosarcoma BR:HS578T

[113450hp133a11]

GSM803740 HS578T breast Carcinosarcoma BR:HS578T

[118176hp133a11]

tissues (NCI-60). First, three samples, including GSM803621, GSM803680, and
GSM803739, were from the cell line BT 549, and the latter three samples,
GSM803622, GSM803681, and GSM803740, were from cell line HS578T. Both
the BT 549 and HS578T cell lines were derived from the claudin-low subtype of
breast cancer, and classification aimed to distinguish between normal genes and
tumor genes. Therefore, we sought to find these indicator genes, or marker genes,
to determine normal and tumor genes (binary classification) in the claudin-low
subtype of breast cancer.

Before evaluating the model, we preprocessed the data. The number of genes
in the raw data was 4676. A list of significant genes, including normal and tumor
genes, were highlighted according to the results of a study [32] where the clinical,
pathological, and biological features of claudin-low tumors were compared to
other subtypes of breast cancer, including luminal A, luminal B, HER2-enriched,
and basal-like. As a result, 2329 tumor genes and 704 normal genes were selected
in the initial cell-line dataset. The SNR was calculated according to the Eq. 4
for 3033 genes (including both normal and tumor genes). For each gene, the
first three sets of samples were categorized as C1 (papillary infiltrating ductal

P Systems as a Computing Tool for Microarray Cancer 117

carcinoma), and the rest were classified as C2 (carcinosarcoma). The SNR values
were sorted in descending order, and 100 maximum SNR values (50 maximum
SNR values for normal genes and 50 maximum SNR values for tumor genes)
were selected for further analysis. During the final stage of preprocessing, the
100 genes were normalized according to Eq. 17. Therefore, all the values of the
dataset (100 rows of genes times six sets of samples) were transformed to a value
between 0 and 1 [0,1]. During the final stage of preprocessing, the 100 genes were
normalized according to Eq. 17. For normalization, the minimum and maximum
value of each gene (column) are calculated first. Then normalization is done.
Where gij presents gene expression value of the i-th sample of the j-th gene and
j presents gene expression values of j-th gene. Therefore, all the values of the
dataset (100 rows of genes times six sets of samples) were transformed to a value
between 0 and 1 [0,1].

Normalize(gij) =
gij − minimum(gij)

maximum(gij) − minimum(gij)
(17)

The prepared data for the colorectal dataset and breast dataset was evaluated by
the first part of our proposed model (kP-MObPSO) to search for gene markers.
Then the resulted sets of gene markers were used as input for the second part of
the proposed model (KP-Embedded feature selection and classification by SVM)
to improve the set of genes through error rate. MATLAB R2014a was used for
object-oriented coding of the entire proposed model. A KP rule-based SVM
classifier proposed to evaluate the error rate of marker gene sets resulting from
the first part of the proposed method (kP-MObPSO) and to evaluate the error
rate of marker gene sets resulting from the second part of the proposed method
(KP-Embedded feature selection and classification by SVM). The comparison
between the error rates of marker genes sets from the first part and the second
part of the proposed model indicates how the second part can find a better set of
marker genes. To prove how good the second part of the model works to improve
sets of marker genes, Weka 3.6.9 used to classify the marker genes resulted from
the first part of the proposed model and second part of the model. Classification
accuracy and ROC by Weka used to compare the first and second parts of
the model. Using the Weka software, SMO (Implements John Platt’s sequential
minimal optimization algorithm for training a support vector classifier) works
based on support vector machine theory. A linear SMO (K(x, y) = <x, y>),
works to find the largest margin for separating hyperplane. It defines according to
the aggregation of distances from hyperplane to the nearest positive or negative
points. It is projected that as much as the margin is larger, the classifier will
be more general. When the case is not detachable, the linear support vector
machine looks for a trade-off that maximizes the margin and, on the other hand,
minimizes errors.

5 Discussion

According to the results reported through the colorectal dataset, the comparison
was made between the error rates of marker gene sets of proposed kP-MObPSO

118 R. C. Muniyandi and N. Elkhani

and the proposed embedded feature selection and classification method. C1 refers
to normal gene sets, and C2 refers to cancerous gene sets. The threshold of error
rate is given by 0.2000. The results indicate the second part of the proposed
method to find a better group of marker genes due to better performance mea-
sures. For example, in one execution, the marker genes offered after feature
selection through proposed kP-MObPSO are 4, 5, 7, 8, 9, 11, 13, 14, 17, 18, 20,
23, 24, 27, 28, 31, 36, 37, 38, 39, 94, 97 (Table 8) with the error rate 0.1667
(though classifier kP-SVM). The classification result on this marker gene by
WEKA (Table 9) indicates this model is not reliable as the model just built on
class C1 and ROC Area rate much less than 1 (ROC Area = 0.5). Adding marker
genes as 77, 78, 80, 92 (Table 10) which have already found by the second part of
the model shows better error rate 0.1429 (though classifier kP-SVM) and 0.0769
(through WEKA, Table 11) as well. According to Table 11, it also shows much
more reliable modeling (accuracy = 92.30, ROC Area = 0.892, F-measure = 0.89
(Ave), recall = 0.89 (Ave), specificity = 0.833).

Table 8. Summary of the result for the colorectal dataset, kP-MObPSO feature selec-
tion/classifier kP-SVM.

Set no. Marker genes Error rate

1 4, 5, 7, 8, 9, 11, 13, 14, 17, 18, 20, 23, 24, 27, 28, 31, 36, 37,
38, 39, 94, 97

0.1667

2 4, 7, 8, 9, 11, 13, 14, 18, 23, 24, 27, 28, 31, 37, 38, 39, 94, 97 0.2000

3 3, 5, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23, 24, 25,
27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 45, 47,
87, 94, 95, 97, 98

0.2500

In the second example, the marker genes offered after feature selection
through proposed kP-MObPSO are 4, 7, 8, 9, 11, 13, 14, 18, 23, 24, 27, 28,
31, 37, 38, 39, 94, 97 (Table 8) with the error rate 0.2000 (Table 8). The classifi-
cation result on this marker gene by WEKA (Table 9) again indicates this model
is not reliable as the model just built on class C1 and ROC Area rate much less
than 1 (ROC Area = 0.5). Adding marker genes as 47, 67, 89, 91 (Table 10) to
the gene markers through the second part of the model improves the error rate
to 0.1000 (though classifier KP-SVM) and 0.1364 (through WEKA, Table 11) as
well. According to Table 11, it also shows much more reliable modeling (accu-
racy = 86.36%, ROC Area = 0.841, F-measure = 0.818(Ave), recall = 0.841(Ave),
specificity = 0.800.

In the third example, the marker genes offered after feature selection through
proposed kP-MObPSO are 3, 5, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 23,
24, 25, 26, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37, 39, 40, 41, 42, 43, 45, 47, 87, 94,
95, 97, 98 (Table 8) with the error rate 0.2500. This set shows a reliable model
as Table 9 through WEKA classifier (error rate = 0.1538, accuracy = 92.307,
ROC Area = 0.892, F-measure = 0.89 (Ave), recall = 0.89 (Ave), specificity=20).

P Systems as a Computing Tool for Microarray Cancer 119

Table 9. Summary of the result for the colorectal dataset, kP-MObPSO feature selec-
tion/classifier kP-SVM.

Set No. Error rate Accuracy ROC Area F-measure Sensitivity Specificity

1 0.0909 90.90 C1=0.5
C2=0.5

C1=0.952
C2=0

C1=1
C2=0

C1=0
C2=0

2 0.1111 88.88 C1=0.5
C2=0.5

C1=0.941
C2=0

C1=1
C2=0

C1=0
C2=0

3 0.1538 92.307 C1=0.892
C2=0.892

C1=0.950
C2=0.830

C1=0.950
C2=0.830

C1=20
C2=20

Table 10. Summary of the result for colorectal dataset, Embedded kP-MObPSO fea-
ture selection/classifier kP-SVM.

Set No. Marker genes Error rate

1 4, 5, 7, 8, 9, 11, 13, 14, 17, 18, 20, 23, 24, 27, 28,
31, 36, 37, 38, 39, 94, 97, 77, 78, 80 ,92

0.1429

2 4 , 7, 8, 9, 11, 13, 14, 18, 23, 24, 27, 28, 31, 37,
38, 39, 94, 97, 47, 67, 89, 91

0.1000

3 3, 5, 7, 8, 10, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21,
23, 24, 25, 27, 28, 29, 30, 32, 33, 34, 35, 36, 37,
39, 40, 41, 42, 43, 45, 47, 87, 94, 95, 97, 98, 44,
49, 52, 58, 59, 60, 61, 63, 64

0.0769

Table 11. Summary of the result for colorectal dataset, Embedded kP-MObPSO fea-
ture selection/classifier WEKA (SMO).

Set No. Error rate Accuracy ROC Area F-measure Sensitivity Specificity

1 0.0769 92.30% C1=0.892
C2=0.892

C1=0.950
C2=0.833

C1=0.950
C2=0.833

C1=0.833
C2=0.833

2 0.1364 86.36% C1=0.841
C2=0.841

C1=0.909
C2=0.727

C1=0.882
C2=0.800

C1=0.800
C2=0.800

3 0.0408 95.91% C1=0.973
C2=0.973

C1=0.972
C2=0.923

C1=0.946
C2=1

C1=1
C2=1

Adding marker genes as 44, 49, 52, 59, 61, 63, 64 (Table 10) to the gene markers
through the second part of the model improves the error rate to 0.0769 (though
classifier KP-SVM) and 0.0408 (through WEKA, Table 11) as well. According
to Table 11, it also shows much more reliable modeling (accuracy = 95.91, ROC
Area = 0.973, F-measure = 0.947(Ave), recall = 0.973(Ave), specificity = 1).

According to the result of the second part of the model, all three sets of
marker genes show good stability, so in terms of model reliability, all have the
same priority. As far as the error rate is considered, the lowest error rate (0.0408)
belongs to the set that consists of a higher number of genes as marker genes,
while the second good error rate (0.0769) consists of just 24 genes as marker

120 R. C. Muniyandi and N. Elkhani

genes. Thus, it can be a trade-off between the lowest error rate and the lowest
number of marker genes. When the lowest error rate is considered, the third
model can be chosen, and when the goal is to achieve the lowest number of
genes with a good error rate, the second model is the best choice.

According to the results reported through the h breast cancer dataset, the
comparison done between the performance measures of marker genes sets from
the first part and the second part of the proposed model. Again, C1 refers to
normal gene sets, and C2 refers to cancerous gene sets. The threshold of error
rate is given by 0.4000. The results indicate the second part of the proposed
model to find a better set of marker genes due to better and reliable performance
measures.

Table 12. Summary of the result for Breast dataset, kP-MObPSO feature selec-
tion/classifier kP-SVM.

Set No. Marker genes Error rate

1 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 22,
23, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39,
40, 41, 46, 49, 63, 69, 75, 77, 81, 82, 87, 88, 93,
94, 95, 97, 99, 100

0.3846

2 6, 8, 13, 14, 17, 19, 20, 22, 23, 29, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 42, 44, 45, 79, 81, 83, 84,
86, 92, 93, 96, 97, 98, 99, 100

0.2000

3 7, 8, 13, 14, 22, 23, 24, 27, 29, 31, 32, 35, 38, 44,
45, 46, 49, 74, 75, 76, 79, 80, 82, 87, 88, 91, 92,
94, 97, 99

0.1111

For example, in one execution, the marker genes offered after feature selection
through proposed kP-MObPSO are 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21,
22, 23, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39, 40, 41, 46, 49, 63, 69,
75, 77, 81, 82, 87, 88, 93, 94, 95, 97, 99, 100 (Table 12) with the error rate
0.3846 (though classifier KP-SVM) and 0.2000 (through WEKA, Table 13). The
classification result on this marker gene by WEKA (Table 13) indicates that
the model is reliable as (accuracy=80%, ROC Area = 0.816, F-measure = 0.784
(Ave), recall = 0.815 (Ave), specificity = 0.857). Adding marker genes as 5, 7,
18, 59, 66, and 96 (Table 14) which have already found by second part of the
model shows better error rate 0.3333 (though classifier KP-SVM) and 0.1923
(through WEKA, Table 15) respectively. Adding these all 6 genes also shows
much stronger model as Table 15 (accuracy = 80.76%, ROC Area= 0.827, F-
measure = 0.797 (Ave), recall = 0.826 (Ave), specificity = 0.882).

In another execution, the marker genes offered after feature selection through
proposed kP-MObPSO are 6, 8, 13, 14, 17, 19, 20, 22, 23, 29, 31, 32, 33, 34, 35,
36, 37, 38, 39, 40, 42, 44, 45, 79, 81, 83, 84, 86, 92, 93, 96, 97, 98, 99, 100
(Table 12) with the error rate 0.2000 (though classifier KP-SVM) and 0.3871

P Systems as a Computing Tool for Microarray Cancer 121

Table 13. Summary of the result for Breast dataset, kP-MObPSO feature selec-
tion/classifier WEKA (SMO).

Set No. Error rate Accuracy ROC Area F-measure Sensitivity Specificity

1 0.2000 80 C1=0.816
C2=0.816

C1=0.842
C2=0.727

C1=0.774
C2=0.857

C1=0.857
C2=0.857

2 0.3871 61.29 C1=0.413
C2=0.413

C1=0.76
C2=0

C1=0.826
C2=0

C1=0
C2=0

3 0.1667 83.33 C1=0.835
C2=0.835

C1=0.848
C2=0.815

C1=0.824
C2=0.846

C1=3.66
C2=3.66

(through WEKA, Table 13). According to Table 13, it doesn’t show a stable
model because the model just created on C1 genes due to ROC = 0.413. With
adding genes number 53 and 77 (Table 14) through the embedded part of the
model, error rate decreased to 0.1111 (though classifier KP-SVM) and 0.2162
(through WEKA, Table 15). Adding these 2 genes shows reliable and stronger
model as Table 15 (accuracy = 78.37%, ROC Area = 0.784, F-measure = 0.818
(Ave), recall = 0.784 (Ave), specificity = 0.785).

Table 14. Summary of the result for Breast dataset, Embedded kP-MObPSO feature
selection/classifier kP-SVM.

Set No. Marker genes Error rate

1 6, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 19, 21, 22,
23, 26, 27, 28, 30, 31, 32, 33, 34, 36, 37, 38, 39,
40, 41, 46, 49, 63, 69, 75, 77, 81, 82, 87, 88, 93,
94, 95, 97, 99, 100, 5, 7, 18, 59, 66, 96

0.3333

2 6, 8, 13, 14, 17, 19, 20, 22, 23, 29, 31, 32, 33, 34,
35, 36, 37, 38, 39, 40, 42, 44, 45, 79, 81, 83, 84,
86, 92, 93, 96, 97, 98, 99, 100, 53, 77

0.1111

3 same set of marker genes 0.1111

In the third execution, the marker genes offered after feature selection
through proposed kP-MObPSO are 7, 8, 13, 14, 22, 23, 24, 27, 29, 31, 32,
35, 38, 44, 45, 46, 49, 74, 75, 76, 79, 80, 82, 87, 88, 91, 92, 94, 97, 99 (Table
12) with the error rate 0.1111 (though classifier KP-SVM) and 0.1667 (through
WEKA, Table 13). According to the Table 13, this set makes a reliable model as
(accuracy = 83.33%, ROC Area = 0.835, F-measure = 0.831 (Ave), recall = 0.835
(Ave), specificity = 3.66). The embedded part of our proposed model couldn’t
find any gene that can improve this set of marker genes in terms of error rate
and stability.

The results of the second part of the model indicate the first marker gene set
with 51 genes (Table 14) with accuracy = 80.76 and ROC = 0.827 (Table 15) can
be a candidate set. Also, the third set of marker genes with 30 genes (Table 12)

122 R. C. Muniyandi and N. Elkhani

Table 15. Summary of the result for Breast dataset, Embedded kP-MObPSO feature
selection/classifier WEKA (SMO).

Set No. Error rate Accuracy ROC Area F-measure Sensitivity Specificity

1 0.1923 80.76 C1=0.827

C2=0.827

C1=0.844

C2=0.750

C1=0.771

C2=0.882

C1=0.882

C2=0.882

2 0.2162 78.37 C1=0.784

C2=0.784

C1=0.818

C2=0.818

C1=0.783

C2=0.786

C1=0.785

C2=0.785

3 No

improvement

found

No

improvement

found

No

improvement

found

No

improvement

found

No

improvement

found

No

improvement

found

with accuracy = 83.33 and ROC = 0.835 (Table 13) shows a quite reliable model.
It is clear that in comparison with the first marker gene set (Table 14), the
third set of marker genes (Table 12) is the best choice in terms of performance
measures unless there is a trade-off to have more marker genes as an indicator.

According to Table 16, implementing pure MObPSO on the colorectal dataset
and breast dataset leads to an accuracy of 87.50% and 78.57%, respectively. It
is while the proposed embedded feature selection and classification method got
the accuracy of 92.30%, 86.36%, and 95.91% (Table 11) in a colorectal dataset
in comparison to 87.50% in pure MObPSO. In the breast dataset, the proposed
embedded feature selection and classification method got an accuracy of 80.76%
and 78.37% (Table 15) in comparison to 78.57% in pure MObPSO.

Table 16. Specification of colorectal cancer dataset.

Colorectal dataset

Accuracy ROC Area F-measure Sensitivity Specificity

87.50% 0.90 0.877 0.875 0.906

Breast dataset

Accuracy ROC Area F-measure Sensitivity Specificity

78.57% 0.72 0.785 0.786 0.792

6 Conclusions

Feature selection is a commonly addressed problem in classification. In gene
expression-based cancer classification, a large number of genes, in conjunction
with a small number of samples, make the gene selection problem more critical
but also more challenging.

In this paper, we presented a method which, at a higher level, is the mix
of membrane computing with an intelligent algorithm to increase classification
performance with microarray data. The proposed model consists of two main
parts. First, kP-MObPSO, which resembles a wrapper type feature selection, and
the second part that improves the results of the first part through an embedded

P Systems as a Computing Tool for Microarray Cancer 123

feature selection and classification idea based on kP system. The experiment
aimed to evaluate the set of marker genes in terms of performance measures that
can interpret based on accuracy, ROC, error rate, recall, F-measure, specificity,
and the size of the marker gene set.

The proposed model generates genes with better performance measures.
The model based on the kP system resembles the interaction of genes between
and inside compartments. The most important feature of the kP computation
system has the computation rules as division, rewriting/ communication, and
input/output that has the nature of parallelism and non-determinism. In this
paper, the rules of the proposed model are implemented in a sequential type of
execution. We have also implemented the model in parallel through multi-cores
and GPU programming [33–35].

Acknowledgements. The efforts of grant for Development of Membrane Computing
Software (Universiti Kebangsaan Malaysia (UKM), UKM Grant Code: GGP-2019-
023) has been acknowledged, as this support has played a vital role in the successful
accomplishment of the research.

References

1. Păun, G.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143 (2000)
2. Zhang, G., Haina, R., Ferrante, R., Pérez-Jiménez, M.J.: An optimization spiking

neural P system for approximately solving combinatorial optimization problems.
Int. J. Neural Syst. 24(5), 1440006 (2014)

3. Huang, L., Wang, N.: An optimization algorithm inspired by membrane computing.
In: Jiao, L., Wang, L., Gao, X., Liu, J., Wu, F. (eds.) ICNC 2006. LNCS, vol. 4222,
pp. 49–52. Springer, Heidelberg (2006). https://doi.org/10.1007/11881223 7

4. Frisco, P., Corne, D.W.: Modeling the dynamics of HIV infection with Conformon-
P systems and cellular automata. In: Eleftherakis, G., Kefalas, P., Păun, G., Rozen-
berg, G., Salomaa, A. (eds.) WMC 2007. LNCS, vol. 4860, pp. 21–31. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-77312-2 2

5. Gutiérrez-Naranjo, M.A., Pérez-Jiménez, M.J., Romero-Campero, F.J.: Simulating
avascular tumors with membrane systems. In: Proceedings of the Third Brain-
storming Week on Membrane Computing, pp. 185–196. Fénix Editora, Sevilla
(Spain) (2005)

6. Pérez-Jiménez, M.J., Romero-Campero, F.J.: A study of the robustness of the
EGFR signalling cascade using continuous membrane systems. In: Mira, J.,
Álvarez, J.R. (eds.) IWINAC 2005. LNCS, vol. 3561, pp. 268–278. Springer, Hei-
delberg (2005). https://doi.org/10.1007/11499220 28

7. Bernardini, F., Gheorghe, M., Krasnogor, N.: Quorum sensing P systems. Theor.
Comput. Sci. 371(1), 20–33 (2007)

8. Muniyandi, R.C., Zin, A.M., Sanders, J.: Converting differential-equation models
of biological systems to membrane computing. BioSystems 114(3), 219–226 (2013)

9. Siegel, R., DeSantis, C., Jemal, A.: Colorectal cancer statistics. CA: Cancer J. Clin.
64(2), 104–117 (2014)

10. Gheorghe, M., Ipate, F., Dragomir, C., Mierla, L., Valencia-Cabrera, L., Garcia-
Quismondo, M., Pérez-Jiménez, M.J.: Kernel P Systems Version I. In: Proceedings
of the Eleventh Brainstorming Week on Membrane Computing, pp. 97–124. Fénix
Editora, Sevilla(Spain) (2013)

https://doi.org/10.1007/11881223_7
https://doi.org/10.1007/978-3-540-77312-2_2
https://doi.org/10.1007/11499220_28

124 R. C. Muniyandi and N. Elkhani

11. Mohapatra, P., Chakravarty, S.: Modified PSO based feature selection for microar-
ray data classification. In: Proceedings of the 2015 IEEE Power, Communication
and Information Technology Conference (PCITC). IEEE, Bhubaneswar (India)
(2015)

12. Kar, S., Sharma, K.D., Maitra, M.: Gene selection from microarray gene expression
data for classification of cancer subgroups employing PSO and adaptive K-nearest
neighborhood technique. Expert Syst. Appl. 42(1), 612–627 (2015)

13. Chinnaswamy, A., Srinivasan, R.: Hybrid feature selection using correlation coef-
ficient and particle swarm optimization on microarray gene expression data. In:
Snášel, V., Abraham, A., Krömer, P., Pant, M., Muda, A.K. (eds.) Innovations in
Bio-Inspired Computing and Applications. AISC, vol. 424, pp. 229–239. Springer,
Cham (2016). https://doi.org/10.1007/978-3-319-28031-8 20

14. Mandal, M., Mukhopadhyay, A.: A graph-theoretic approach for identifying non-
redundant and relevant gene markers from microarray data using multi-objective
binary PSO. PloS One 9(3), e90949 (2014)

15. Apolloni, J., Leguizamón, G., Alba, E.: Two-hybrid wrapper-filter feature selec-
tion algorithms applied to high-dimensional microarray experiments. Appl. Soft
Comput. 38, 922–932 (2016)

16. Elyasigomari, V., Mirjafari, M.S., Screen, H.R.C., Shaheed, M.H.: Cancer classifi-
cation using a novel gene selection approach by means of shuffling based on data
clustering with optimization. Appl. Soft Comput. 35, 43–51 (2015)

17. Sheikhpour, R., Sarram, M.A., Sheikhpour, R.: Particle swarm optimization for
bandwidth determination and feature selection of kernel density estimation-based
classifiers in diagnosis of breast cancer. Appl. Soft Comput. 40, 113–131 (2016)

18. Duan, K., Rajapakse, J.C.: A variant of SVM-RFE for gene selection in cancer
classification with expression data. In: Proceedings of the 2004 IEEE Sympo-
sium on Computational Intelligence in Bioinformatics and Computational Biology
(CIBCB). IEEE, La Jolla (USA) (2004)

19. Tang, Y., Zhang, Y.Q., Huang, Z.: Development of two-stage SVM-RFE gene selec-
tion strategy for microarray expression data analysis. IEEE/ACM Trans. Comput.
Biol. Bioinform. 4(3), 365–381 (2007)

20. Huerta, E.B., Montiel, A.H., Caporal, R.M., Lopez, M.A: Hybrid framework using
multiple-filters and an embedded approach for an efficient and robust selection
and classification of microarray data. IEEE/ACM Trans. Comput. Biol. Bioinform
13(1), 12–26 (2015)

21. Pashaei, E., Ozen, M., Aydin, N.: Gene selection and classification approach for
microarray data based on Random Forest Ranking and BBHA. In: Proceedings of
the 2016 IEEE-EMBS International Conference on Biomedical and Health Infor-
matics (BHI). IEEE, Las Vegas (USA) (2016)

22. Shapiro, G.P., Tamayo, P.: Microarray data mining: facing the challenges. ACM
SIGKDD Explor. Newslett. 5(2), 1–5 (2003)

23. Hall, M.A.: Correlation-based feature selection for machine learning. The Univer-
sity of Waikato, Hamilton (New Zealand) (1999). https://www.cs.waikato.ac.nz/
∼mhall/thesis.pdf. Accessed 20 July 2020

24. Koller, D., Sahami, M.: Toward optimal feature selection. In: Proceedings of
the Thirteenth International Conference on International Conference on Machine
Learning (ICML), pp. 284–292. Morgan Kaufmann Publishers Inc., San Francisco
(USA) (1996)

25. Yu, L., Liu, H.: Efficient feature selection via analysis of relevance and redundancy.
J. Mach. Learn. Res. 5, 1205–1224 (2004)

https://doi.org/10.1007/978-3-319-28031-8_20
https://www.cs.waikato.ac.nz/~mhall/thesis.pdf
https://www.cs.waikato.ac.nz/~mhall/thesis.pdf

P Systems as a Computing Tool for Microarray Cancer 125

26. Furey, T.S., Cristianini, N., Duffy, N., Bednarski, D.W., Schummer, M., Haussler,
D.: Support vector machine classification and validation of cancer tissue samples
using microarray expression data. Bioinformatics 16(10), 906–914 (2000)

27. Lin, S.W., Ying, K.C., Chen, S.C., Lee, Z.J.: Particle swarm optimization for
parameter determination and feature selection of support vector machines. Expert
Syst. Appl. 35(4), 1817–1824 (2008)

28. Rahman, M.A., Muniyandi, R.C.: An enhancement in cancer classification accuracy
using a two-step feature selection method based on artificial neural networks with
15 neurons. Symmetry 12, 271 (2020)

29. Scholkopf, B., Guyon, I., Weston, J.: Statistical Learning and Kernel Methods in
Bioinformatics. IOS Press, Amsterdam (2003)

30. Guyon, I., Weston, J., Barnhill, S., Vapnik, V.: Gene selection for cancer clas-
sification using support vector machines. Mach. Learn. 46(1–3), 389–422 (2002).
https://doi.org/10.1023/A:1012487302797

31. Burges, C.J.: A tutorial on support vector machines for pattern recognition. Data
Min. Knowl. Discov. 2(2), 121–167 (1998)

32. Schlicker, A., et al.: Subtypes of primary colorectal tumors correlate with response
to targeted treatment in colorectal cell lines. BMC Med. Genomics 5(1), 66 (2012).
https://doi.org/10.1186/1755-8794-5-66

33. Elkhani, N., Muniyandi, R.C., Zhang, G.: Multi-objective binary PSO with kernel
P system on GPU. Int. J. Comput. Commun. Control 13(3), 323–336 (2018)

34. Elkhani, N., Muniyandi, R.C.: A multiple core execution for multiobjective binary
particle swarm optimization feature selection method with the kernel P system
framework. J. Optimiz. 13, 1–14 (2017)

35. Muniyandi, R.C., Maroosi, A.: A representation of membrane computing with a
clustering algorithm on the graphical processing unit. Processes 8(9), 1199 (2020)

https://doi.org/10.1023/A:1012487302797
https://doi.org/10.1186/1755-8794-5-66

Evolutionary P Systems: The Notion
and an Example

Taishin Y. Nishida(B)

Department of Information Systems, Toyama Prefectural University,
5180 Kurokawa, Imizu, Toyama 939-0398, Japan

nishida@pu-toyama.ac.jp

Abstract. We set up the notion of evolutionary P systems as P sys-
tems with description of rules, or genomes, and translation, evaluation,
selection, and modification operators on genomes. The system has a pos-
sibility of evolving a desired function. We propose a tissue evolutionary
P system which evolves a context-free grammar generating a given tar-
get language, i.e., an evolutionary P system for grammatical inference.
Experiments show that the proposed systems can evolve some context-
free grammars generating the language {anbn |n > 0} and the Dyck
language over {a, b}.

1 Introduction

Since P systems are computational models incorporating various phenomena
from natural cells, there should be P systems which evolve and obtain some
functions. Some authors have noticed to the relation between P systems and
evolution or adaption [1,15]. This work is a continuation of [8]. First we set up
a general framework of evolutionary P systems, which consists of a P system
with genomes and evaluation, selection, and modification operators on genomes.
Like living organisms, a genome is a sequence of basic objects, which should be
symbols in the formal models. In evolution, a genome is translated to a collection
of rule sets of a P system, the P system computes some results using the rules,
and finally the results are scored to setup a fitness value for the genome. Selection
and modification operators can be borrowed from genetic algorithm.

Now one might think that evolutionary P systems are contained to the fam-
ily of membrane algorithms [3,6,9,16–18] because some type of membrane algo-
rithm is a mixture of genetic algorithm and P system. But it should be noted
that evolutionary P systems and membrane algorithms are different branches
of P systems. Membrane algorithms are frameworks for membrane systems to
be solvers of real problems, especially NP hard optimizing problems. Membrane
algorithms can use wide variety of algorithms for optimizing problems, in addi-
tion to genetic algorithms [7]. On the other hand, evolutionary P systems are,
as described above, P systems with evolution, in which rules are described in
strings (genomes) and change. Evolutionary P systems can model biological evo-
lution, evolution in artificial life, or function acquisition or automatic learning
for industrial applications.
c© Springer Nature Switzerland AG 2021
R. Freund et al. (Eds.): CMC 2020, LNCS 12687, pp. 126–134, 2021.
https://doi.org/10.1007/978-3-030-77102-7_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77102-7_7&domain=pdf
https://doi.org/10.1007/978-3-030-77102-7_7

Evolutionary P Systems: The Notion and an Example 127

Second, as an example of evolutionary P systems, we give an improved, com-
pared to the system given in [8], evolutionary P system for grammatical inference.
If the genomes are translated to string rewriting rules of context-free type and
evaluated under the criterion how similar language to a given target language
is generated, then the system evolve to a grammar which generates the target
language, i.e., it is a grammatical inference system. In this paper, we develop a
tissue evolutionary P system for grammatical inference.

Grammatical inference (GI) has a considerably long history. Some basic the-
oretical results go back to 1960’s [2]. But GI has contemporary meaning because
there are many applications of GI, including software engineering, domain-
specific languages, etc., [5,13]. Since there are no known effective and determin-
istic algorithms for inferring a context-free grammar, researchers are interested
in GI algorithms using meta-heuristics or soft computing [4,10,14]. Evolutionary
P system for GI might be a new algorithm of this class.

This paper organized as follows. In Sect. 2 formal framework of evolutionary
P systems is given. Tissue evolutionary P system for GI is described in Sect. 3.
The details of the experiments of the system are found in Sect. 4. The last section
contains discussions.

2 Definition of Evolutionary P Systems

As mentioned in Introduction, an evolutionary P system has a description of
rules, or a genome, a mechanism of translating the genome to its functionality,
an evaluating operator which scores the genome under some criteria to attach
a fitness value, a selection operator which selects the genome according to the
fitness values, and a modifying operator which modifies genomes. In this section
we give a formal framework of evolutionary P systems. The readers are assumed
to be familiar with basics of formal language theory and P systems [11,12].

First we give a unified notation of a cell-like, tissue, or neural “rule-fixed” P
system of degree k by the construction

Π = (O,μ,w1, . . . , wk, in, out,R)

where:

– O is an alphabet of objects.
– μ = (V,E) is the membrane structure with V = {1, . . . , k} and E ⊆ V × V −

{(i, i) | i ∈ V }.
– w1, . . . , wk are the initial multisets of regions 1, . . . , k, respectively.
– in, out ∈ {1, . . . , k} are the input and output regions, respectively.
– R is a collection of sets of rules.

Each variant of P system gives specific conditions on the above elements. For
example, μ is a tree and R = (R1, . . . , Rk) where Ri ⊆ O+ × (O × targets)∗

for a cell-like P system with multiset rewriting rules and μ is a graph and R
is a set of symport/antiport rules associated to each edge in μ for a tissue P

128 T. Y. Nishida

system with symport/antiport rules. It should be noted that this simple notation
cannot describe all variants of P systems. The notation is intended to describe
typical variants of rule-fixed P systems. We introduce a “rule-less” P system, or
membrane skeleton, by dropping R, that is,

Π0 = (O,μ,w1, . . . , wk, in, out)

is a membrane skeleton.
Now we move to evolutionary P systems. First we give the notation of a

genome P system of degree k which has genomes instead of rules

Π = (Π0, Γ, u
(0)
1 , . . . , u(0)

p , φ)

where:

– Π0 = (O,μ,w1, . . . , wk, in, out) is a membrane skeleton.
– Γ is the alphabet of genomes satisfying Γ ∩ O = ∅.
– u

(0)
1 , . . . , u

(0)
p ∈ Γ ∗ are the initial population of genomes, where p > 0 is the

population size.
– φ is a translating function which maps a genome and the membrane structure

to a collection of sets of rules, that is, φ(ui, μ) = Ri is a collection of rules
for i ∈ {1, . . . , p}.

Example: Let Γ = Ō ∪ {h, o} ∪ {ij | j ∈ {1, . . . , k}} ∪ {#} ∪ {ri | i ∈ {1, . . . , k}}
where Ō is a disjoint copy of O. Let D = {h, o} ∪ {ij | j ∈ {1, . . . , k}} and let f
be the mapping f : ŌD → O × targets defined by

f(āt) =

⎧
⎨

⎩

(a, here) if t = h
(a, out) if t = o
(a, inj) if t = ij

.

where ā ∈ Ō and t ∈ D. We note that f is bijective and that f can be extended to
a homomorphism from (ŌD)∗ to (O× targets)∗. A multiset rewriting rule x → y
in region i is coded by rix̄#f−1(y). The above coding defines the translation
function φ by

φ(u, μ) = R = (R1, . . . , Rk)

where Ri (i ∈ {1, . . . , k}) is the set

Ri = {x → y |u = αrix̄#f−1(y)β, α, β ∈ Γ ∗, β = λ or begin with rj}.

We note that in this example φ does not depend on the membrane structure μ
because the set of multiset rewriting rules is attached to a region. �

An evaluation operator will entirely depend on an interpretation of objects
and rules. For example, if the rules compute a solution of an optimization prob-
lem, then a goodness measure with respect to the optimizing criteria will be the
fitness value of the rules or the genome. If the set of rules reproduced the cell
from elementary material, then the efficiency of the reproduction would be the

Evolutionary P Systems: The Notion and an Example 129

fitness and then the system would be a model of artificial life. Anyway, evaluation
starts from a population of P systems

Πi = (Π0, φ(ui, μ))

for i ∈ {1, . . . , p}, where ui is the i-th genome in current generation. Every Πi

starts computation and gets some fitness value by the evaluation criteria.
Once evaluation operator is established, selection and modification operators

on genomes will be resemble to those operators from genetic algorithm. Selection
and modification make the population of genomes of the next generation. Eval-
uation, selection, and modification operators play the central roll in evolution
and we denote the triplet by ε.

Now the pair (Π, ε) forms an evolutionary P system, or EP system. An EP
system alternates an evaluation phase and a selection-modification phase when it
develops. In evaluation phase the system translates current genomes to a popula-
tion of P systems. Each P system proceeds normal computation and get a result.
Finally the result is evaluated to get a fitness value. In selection-modification
phase, genomes are selected by the fitness values and genomes are modified to
the next generation. As mentioned above, this phase resembles to genetic algo-
rithm.

3 Evolutionary P System for Grammatical Inference

In what follows we concentrate an EP system whose genomes are translated to
string rewriting rules. The rules have the form of context-free production rules,
that is, terminal symbols are discriminated from nonterminal symbols and every
left-hand side of a rule consists of one nonterminal. The initial string is the start
symbol. Thus each cell has a context-free grammar. If a set of sample words from
a target language Lt is given, the grammar in a cell is evaluated by the next
scheme:

– Every word in the sample set is parsed using the grammar.
– If the parsing is success, then a highest value is added to the fitness.
– If the parsing fails, then the “badness” of the parsing is measured (e.g., a

distance between the target word and the partial word generated) and a
corresponding value is added to the fitness.

The above evaluation scores the highest fitness to a trivial grammar generating
Σ∗ where Σ is the alphabet of Lt. To avoid this, the grammars must be evaluated
under a set of negative sample words from Σ∗ −Lt. An appropriate combination
of positive and negative evaluations, selections, and modifications may evolve
a grammar which generates the target language Lt. Now the total EP system
becomes a grammatical inference system.

In [8], a single cell-like P system with degree 3 was used as the membrane
skeleton of the EP system for grammatical inference. In this study, we introduce a
tissue P system which consists of a population of membrane skeletons developed

130 T. Y. Nishida

in [8]. We call a membrane skeleton a cell. The highest fitness value among
genomes in a cell is assumed to be the fitness of the cell.

There is a communication channel between every pair of different cells. The
cells in the tissue P system communicate in the next manner:

– Every cell but the best (w.r.t. fitness) cell get a randomly selected genome
from the best cell and the genome replaces with a randomly selected genome
in the cell.

– If a cell dies, i.e., if every genome in the cell has fitness 0, then a new cell
which consists of randomly selected genomes from other cells is created and
is replaced with the dead cell.

The communication rules are fixed throughout the computation, that is, the
communications are a part of selection-modification phase and should not be
coded in the genome. These communications are expected to keep variety of
genomes and to avoid falling in a local minima. It should be noted that the com-
munications are a natural consequence of P system because P system provides
a wide variety of phenomena of the biological cells, in this case, tissue structure
and communications among cells.

We use iteration steps as the terminate condition, that is, evolution ter-
minates after a given iteration steps. The initial genomes are set to random
sequences. The evolution in the P system proceeds as follows:

Initialization.
While step < max-iterations.

Evaluation.
Selection.
Crossover and mutation.
Migration.
step++.

4 Experiments

We select three target languages:

– L1 = {anbn |n ≥ 1}. We denote L1 by anbn.
– L2 = {wwR |w ∈ {a, b}+}, where wR is the inverse of w. We denote L2 by

wwR.
– L3 = (the Dyck language over {a, b}). We denote L3 by Dyck.

We use two nonterminal symbols A and S in which S is the start symbol. For
the genome sequence, we introduce the alphabet {Ã, S̃, Ā, S̄, ā, b̄}. A rule X → α
is represented by the string X̃ᾱ. A genome string consists of a concatenation of
the rule string of the form X̃ᾱ.

In the evaluation phase, every translated grammar tries to parse the (positive
or negative) target words by the LL(1) parsing. If the translated grammar is not
LL(1), then more than one rules are applicable for a pair of a terminal and a

Evolutionary P Systems: The Notion and an Example 131

nonterminal. In this case one rule is selected randomly. For a target word wt, the
parser generates some word wg even if it fails. The Hamming distance d(wt, wg)
is calculated by

d(wt, wg) =
s∑

i=1

δ((wt)i, (wg)i) +
1
2
||wt| − |wg||

where wi represents the i-th letter of a word w, s = min (|wt|, |wg|), and δ(x, y)
is given by

δ(x, y) =
{

0, x = y
1, x 	= y

.

A target word wt from the positive samples gives the fitness value

3
2
|wt| − d(wt, wg)

or 0 if 3
2 |wt| < d(wt, wg). If wg = wt, then the maximum value 3

2 |wt| is added
to the fitness. For a target from the negative samples, two types of evaluation
are examined. The first type (negative 1) adds the value d(wt, wg) to the fitness
value and genomes are selected in the same manner as the positive samples.
The other type (negative 2) does not compute fitness value for the negative
samples but a genome whose translated grammar generates a negative target
word (generates wg with d(wt, wg) = 0) is erased. This method was inspired
by the immune-system of animals. The killer T-cells, which kill virus infected
cells, suicide before they go to throughout body if they attack normal body cells.
Likewise, a grammar which generates a negative sample word suicides.

The negative 1 evaluation is performed once in p iteration steps. In a positive
evaluation, fitness value is the sum of 3

2 |wt| − d(wt, wg) for every wt in the set
of positive samples. After p − 1 steps with positive evaluation, an iteration step
performs negative evaluation in which the fitness value is the sum of d(wt, wg)
for every wt in the set of negative samples.

In the selection phase, roulette wheel selection is used in a cell. In addition
to this, above mentioned cell death is the selection in the tissue. A simple one
point crossover and one point mutation are done between genomes in a cell.
The genome migrations from the best cell are the modification using the tissue
structure.

We examine 4 types of EP systems:

– Tissue and negative 1 evaluation (tissue NE1).
– Tissue and negative 2 evaluation (or immune-like evaluation, tissue IM).
– Cell-like (using only one cell) and negative 1 evaluation (cell NE1).
– Cell-like and immune-like evaluation (cell IM).

Parameters of the P systems are determined by a number of preliminary
experiments. We set total number of genomes to 100. The cell-like P system has
100 genomes while in the tissue P system, one cell has 5 genomes and the whole
tissue consists of 20 cells. Thus 100 genomes evolve in both tissue and cell-like P

132 T. Y. Nishida

Table 1. Sample sets of the target languages

Positive Negative

Dyck aabb, abab, aaabbb, aababb,
aabbab, aaababbb, aabbaabb,
abaabbab

baba, bbaa, a, b, aaa, bbb, aabba,
bbba

anbn aabb, aaabbb, aaaabbbb,
aaaaabbbbb

bbbb, bbbaaa, abba, abab, baba,
abbbaa, bbaabb, a, b, aab, abb

wwR aaaa, abba, baab, bbbb, aaaaaa,
bbbbbb, abbbba, bbaabb

aaa, bba, bbbbb, baaa, aba, aaabbb,
ab, aabb, a, b, bbaa

systems. In the initialization, a genome is randomly made with having at most
5 rules of length of the right-hand side at most 4. The negative 1 evaluation
evaluates using negative samples once in 3 iterations in tissue P systems and
once in 10 iterations in cell-like P systems. For Dyck and anbn target languages,
100 iterations get some correct grammars in 20 trials. But the P systems of
all types cannot evolve correct grammars in 100 iterations for the target wwR,
then iteration steps 100, 200, 300, 400, and 500 are examined as the termination
conditions for this case. The positive and negative sample sets are shown in
Table 1.

Table 2. Results from Dyck target.

Type Correct Semi-correct Fake

Tissue IM 4 0 0

Tissue NE1 3 0 0

Cell IM 1 0 0

Cell NE1 1 0 2

If the evolved grammar generates the same language as the target language,
the trial of evolution is success and is said to be “correct”. If the grammar
generates all words in the target language but it generates finitely exceptional
words, too, then the trial is said to be “semi-correct”. If the language generated
by the grammar includes the target language but contains infinitely many other
words, then the trial is said to be “fake maximal” or “fake”. Using the production
rules obtained from the system, correct, semi-correct, and fake are classified
manually. The numbers of correct, semi-correct and fake grammars in 20 trials
are shown in Tables 2, 3, and 4.

5 Discussions

Most preceding genetic algorithms for grammatical inference use grammar spe-
cific operations, e.g., crossover points are selected only from end points of pro-

Evolutionary P Systems: The Notion and an Example 133

Table 3. Results from anbn target.

Type Correct Semi-correct Fake

Tissue IM 6 3 0

Tissue NE1 2 4 6

Cell IM 4 3 3

Cell NE1 5 1 4

Table 4. Results from wwR target.

Type Results

Tissue IM 1 correct (in 300 steps)

Tissue NE1 1 correct (in 500 steps), 2 fakes (1 in 200 steps, 1 in 400 steps)

Cell IM 1 fake (in 200 steps)

Cell NE1 2 corrects (in 300 steps), 9 fakes (2 in 100 steps, 1 in 200 steps, 3 in
300 steps, 1 in 400 steps, 2 in 500 steps)

duction rules, useless rules (do not generate terminal words or are not generated
from the start symbol) are removed from the genome, etc. The EP systems in
this paper do not use such grammar specific operators since we want to make
it clear whether evolution mechanisms of living organisms evolve context-free
grammars or not.

Tissue EP system can be seen as a model of cooperation and competition
among cells in a tissue. From Tables 2 and 3, tissue EP system infer grammars
generating anbn and Dyck better than cell-like EP systems. The migration mech-
anism seems to keep variety of genomes and to prevent from falling local minima.
Negative selection from immune method prevents fake grammars and, by sup-
pressing fake grammars, infers more correct (at least semi-correct) grammars.
From Table 4, the EP systems, especially tissue system, are not good at inferring
grammars generating wwR. Some grammar specific operators might be necessary
to infer the language. Further experiments using grammar specific operators will
make this clear.

References

1. Aman, B., Ciobanu, G.: Adaptive P systems. In: Hinze, T., Rozenberg, G., Salo-
maa, A., Zandron, C. (eds.) CMC 2018. LNCS, vol. 11399, pp. 57–72. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-12797-8 5

2. Gold, E.M.: Learning identification in the limit. Inf. Control 10, 447–474 (1967)
3. Andreu-Guzmán, J.A., Valencia-Cabrera, L.: A novel solution for GCP based on

an OLMS membrane algorithm with dynamic operators. J. Membr. Comput. 2,
1–13 (2020)

https://doi.org/10.1007/978-3-030-12797-8_5

134 T. Y. Nishida

4. Lankhorst, M.M.: A genetic algorithm for grammatical inference. In: Gentzsch,
W., Harms, U. (eds.) HPCN-Europe 1994. LNCS, vol. 796, pp. 418–419. Springer,
Heidelberg (1994). https://doi.org/10.1007/BFb0020409

5. C̆repins̆ek, M., Mernik, M., Bryant, B.R., Javed, F., Sprague, A.: Inferring context-
free grammars for domain-specific languages. Electron. Notes Theor. Comput. Sci.
141, 99–116 (2005)

6. Nishida, T.Y.: An application of P-systems: a new algorithm for NP-complete opti-
mization problems. In: Proceedings of the 8th World Multi-conference on Systems,
Cybernetics and Informatics, pp. 109–112 (2004)

7. Nishida, T.Y.: Membrane algorithm with Brownian subalgorithm and genetic sub-
algorithm. Int. J. Found. Comput. Sci. 18, 1353–1360 (2007)

8. Nishida, T.Y.: Evolutionary P systems (extended abstract). In: Pre-proceedings of
CMC 2019, pp. 183–187 (2019)

9. Nishida, T.Y., Shiotani, T., Takahashi, Y.: Membrane Algorithms, pp. 529–552.
Oxford University Press (2010)

10. Pandey, H.M.: Genetic algorithm for grammar induction and rules verification
through a PDA simulator. IAES Int. J. Artif. Intell. 6, 100–111 (2017)

11. Păun, G.: Membrane Computing. Springer, Heidelberg (2002). https://doi.org/10.
1007/978-3-642-56196-2

12. Păun, G., Rozenberg, G., Salomaa, A. (eds.): Handbook of Membrane Computing.
Oxford University Press, Oxford (2010)

13. Stevenson, A., Cordy, J.R.: Grammatical inference in software engineering: an
overview of the state of the art. In: Czarnecki, K., Hedin, G. (eds.) SLE 2012.
LNCS, vol. 7745, pp. 204–223. Springer, Heidelberg (2013). https://doi.org/10.
1007/978-3-642-36089-3 12

14. Wyard, P.: Representational issues for context free grammar induction using
genetic algorithms. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS, vol. 862,
pp. 222–235. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-58473-
0 151

15. Zhang, G., Gheorghe, M., Pan, L., Prez-Jiménez, M.J.: Evolutionary membrane
computing: a comprehensive survey and new results. Inf. Sci. 279, 528–551 (2014)

16. Zhang, G., Gheorghe, M., Wu, C.: A quantum-inspired evolutionary algorithm
based on P systems for knapsack problem. Fund. Inform. 87, 93–116 (2008)

17. Zhang, G., Liu, C., Rong, H.: Analyzing radar emitter signals with membrane
algorithms. Math. Comput. Model. 52, 1997–2010 (2010)

18. Zhang, G., Pérez-Jiménez, M.J., Gheorghe, M.: Membrane algorithms. In: Real-
Life Applications with Membrane Computing. ECC, vol. 25, pp. 33–115. Springer,
Cham (2017). https://doi.org/10.1007/978-3-319-55989-6 3

https://doi.org/10.1007/BFb0020409
https://doi.org/10.1007/978-3-642-56196-2
https://doi.org/10.1007/978-3-642-56196-2
https://doi.org/10.1007/978-3-642-36089-3_12
https://doi.org/10.1007/978-3-642-36089-3_12
https://doi.org/10.1007/3-540-58473-0_151
https://doi.org/10.1007/3-540-58473-0_151
https://doi.org/10.1007/978-3-319-55989-6_3

Partial Array Token Petri Net
and P System

K. Sasikala1, F. Sweety1, T. Kalyani2(B), and D. G. Thomas3

1 Department of Mathematics, St. Joseph’s college of Engineering,
Chennai 600119, India

2 Department of Mathematics, St. Joseph’s Institute of Technology,
Chennai 600119, India

3 Department of Applied Mathematics, Saveetha School of Engineering, SIMATS,
Chennai 602105, India

Abstract. The innovative model of partial array languages generated
by basic puzzle partial array grammars is available in the literature. Here
we define Partial array Token Petri Net Structure (PATPNS) to gener-
ate partial array languages. Further we introduce Partial Array Token
Petri Net P System (PATPNPS) to generate partial array languages
and compared with basic puzzle partial array grammars for generative
power. PATPNS is also compared with local and recognizable partial
array languages.

Keywords: Partial array · Basic puzzle partial array grammar ·
Partial Array Token Petri Net

1 Introduction

In the context of a syntactic approach to pattern recognition, there have been
several studies in the last few decades on theoretical models for generating or
recognizing two-dimensional objects, pictures and picture languages [2]. Picture
languages generated by several array grammars, matrix grammars have been
advocated since the seventies and they have been applied in practical problems
such as character recognition, pattern recognition, kolam patterns and tiling
systems.

Petri nets are the models in mathematics proposed to model dynamic sys-
tems. To simulate the activity of the dynamic system tokens are used, repre-
sented by black dots. The tokens move when the transition fires. Array token
Petri nets [3–7,10] are proposed to generate array languages. The arrays over an
alphabet are used as tokens over an alphabet not the black dots. The transitions
are associated with catenation rules. Firing of transitions helps to catenate the
arrays to build bigger arrays.

The class of grammars with array rewriting methods is a dynamic device
to describe picture languages. The picture languages produced by such array

c© Springer Nature Switzerland AG 2021
R. Freund et al. (Eds.): CMC 2020, LNCS 12687, pp. 135–152, 2021.
https://doi.org/10.1007/978-3-030-77102-7_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77102-7_8&domain=pdf
https://doi.org/10.1007/978-3-030-77102-7_8

136 K. Sasikala et al.

grammars, matrix grammars have been applied in practical problems. Nivat et
al. [8] proposed puzzle grammars to generate two-dimensional picture languages.

Partial words were introduced by Berstel and Boasson [1]. Later on, Par-
tial array languages were introduced in [14] and the combinatorial properties of
partial array languages were studied in [15]. Gh. Paun [9] introduced a compu-
tational model, called P system. The notion of P system related to arrays can
be seen in [12]. Partial array grammars and partial array rewriting - P system
were introduced in [11]. We have proposed Basic Puzzle Partial Array Gram-
mar (BPPAG) to generate Partial array languages and studied the generative
capacity of the resulting partial array P system with BPPAG [13]. Motivated by
these studies, in this paper, we introduce Partial Array Token Petri Net Struc-
ture (PATPNS) and Partial Array Token Petri Net P System (PATPNPS) to
generate partial array languages and we examine the generative capacity of both
systems and give some comparison results. PATPNS is compared with local and
recognizable partial array languages and we have proved that PATPNS has more
generative power.

2 Preliminaries

The basic concepts and definitions of Partial Word, Partial Array, Basic Puzzle
Partial Array Grammar and Petri Net are given here with examples.

Definition 1. [1] A partial word u of length n over Σ, is a partial function
u : N → Σ. For 1 ≤ i ≤ n, if u(i) is defined, then we say that i belongs to the
domain of u (denoted by i ∈ D(u)); Otherwise, we say that i belongs to the set of
holes of u (denoted by i ∈ H(u)). A word over Σ is a partial word over Σ with
an empty set of holes. H(u) is the set of positions in which the ‘do not know’
symbol ‘♦’ appears in u.

Definition 2. [1] If u is a partial word of length n over Σ, then the companion
of u (denoted by u♦) is the total function u♦ : N → Σ ∪ {♦} defined by

u♦(i) =
{

u(i), i ∈ D(u);
♦, otherwise. where ♦ �∈ Σ.

The symbol ‘♦’ is viewed as a ‘do not know’ symbol and not as a ‘do not care’
symbol as in pattern matching.

Definition 3. [14] A partial array A of size m × n over Σ is a partial function
A : Z2

+ → Σ, where Z is the set of all positive integers. For 1 ≤ i ≤ m,
1 ≤ j ≤ n, if A(i, j) is defined then we say that (i, j) belongs to the domain of
A (denoted by (i, j) ∈ D(A)); Otherwise, we say that (i,j) belongs to the set of
holes of A (denoted by (i, j) ∈ H(A)). An array over Σ is partial array over
Σ with an empty set of holes. H(A) is the set of positions in which the ‘do not
know’ symbol ‘♦’ appears in A.

Partial Array Token Petri Net and P System 137

Definition 4. [14] If A is a partial array of size m × n over Σ, then the com-
panion of A (denoted by A♦) is the total function A♦ : Z2

+ → Σ ∪ {♦} defined
by

A♦(i, j) =
{

A(i, j), (i, j) ∈ D(A);
♦, otherwise. where ♦ �∈ Σ.

Example 1. [14] The Partial array, A♦ =

⎛
⎝ a b a

♦ b a
a ♦ b

⎞
⎠ is a companion of a partial

array A of size (3, 3) where D(A) = {(1, 1), (1, 2), (1, 3), (2, 2), (2, 3), (3, 1), (3, 3)}
and H(A) = {(2, 1), (3, 2)}
Definition 5. [14] If A and B are two partial arrays of equal size, then A is
contained in B, denoted by A ⊂ B if D(A) ⊆ D(B) and A(i, j) = B(i, j) for all
(i, j) ∈ D(A). The partial arrays A and B are said to be compatible, denoted by
A ↑ B if there exists a partial array C such that A ⊂ C and B ⊂ C.

A♦ =

⎛
⎝ a b a

♦ b a
a ♦ b

⎞
⎠ and B♦ =

⎛
⎝♦ b ♦

a b a
a ♦ b

⎞
⎠ are the companions of two partial

arrays A and B that are compatible.

The set of all partial arrays over Σ is denoted by Σ∗∗
p , where Σp = Σ ∪ {♦}.

We denote the empty array with no symbols by Λ and Σ++
p = Σ∗∗

p − {Λ}. The

set of all partial arrays over Σ of size (k, r), k ≤ m, r ≤ n is denoted by Σ
(k,r)
p .

Definition 6. [13] The structure of a Basic Puzzle Partial Array Grammar
(BPPAG) is BPGp = (A,B ∪ {♦}, P, S) where A is a finite non empty set of
non terminal symbols and B is a finite non empty set of terminal symbols. ‘♦’
is a ‘do not know’ symbol, where ♦ �∈ A ∪ B, S ∈ A is the axiom pattern and P
is a set of rules of the following forms:

(i) X → x Y (ii) X → ♦ Y (iii) X → Y x

(iv) X → Y ♦ (v) X → Y x (vi) X → Y ♦

(vii) X → x Y (viii) X → ♦ Y (ix) X → x

Y

(x) X → ♦
Y

(xi) X → Y

x
(xii) X → Y

♦

(xiii) X → Y
x

(xiv) X →
Y

♦ (xv) X → x

Y

(xvi) X → ♦
Y

(xvii) X → x (xviii) X → ♦

where X,Y ∈ A and x, y ∈ B.

138 K. Sasikala et al.

While processing the derivations in the production rule X → x Y , the non-
terminal X is replaced by the right-hand member whose left-hand side is X.

The replacement is possible only if the noncircled symbol of the production
rule consists of a blank symbol. The blank symbol is represented by the letter
‘#’, which is an unoccupied place where any symbol can be occupied as per the
derivation. The language generated by BPPAG is denoted by L(BPPAG).

Example 2. [13] Consider a BPPAG BPGp1 = (A,B ∪ {♦}, P, S) where A =
{X,Q,R, S1, T, U, V }, B = {z}, S = X and P consists of the following rules:

(i) X → z Q (ii) Q → z Q (iii) Q → R
z

(iv) R → S1 z (v) S1 → z (vi) S1 → S1 ♦
(vii) S1 → T

z
(viii) T → z T (ix) T → z

(x) T → ♦ T (xi) T → U
z

(xii) U → U z

(xiii) U → z (xiv) T → R
z

This grammar generates square partial arrays of size (m × m,m ≥ 2) with
(m − 2 × m − 2,m ≥ 2) square partial array in the center consisting of only {♦}
symbol bounded by the terminal alphabet ‘z’ on the boundary of the square, for

m = 2, the grammar generates 2 × 2 square array
z z
z z

.

The first three members of the language are given below:

z z
z z

z z z
z ♦ z
z z z

z z z z
z ♦ ♦ z
z ♦ ♦ z
z z z z

. . .

A Petri Net [10] is an abstract formal model of information flow. Petri nets
have been used for analyzing systems that are concurrent, asynchronous, dis-
tributed, parallel, non-deterministic and/or stochastic. Tokens are used in Petri
Nets to simulate dynamic and concurrent activities of the system. A language
can be associated with the execution of a Petri Net. By defining a labeling func-
tion for transitions over an alphabet, the set of all firing sequences, starting from
a specific initial marking leading to a finite set of terminal markings, generates
a language over the alphabet. Petri Net structure to generate rectangular arrays
are found in [3–5]. The two models have different firing rules and catenation
rules. In [6], Column Row Catenation Petri Net Structure (CRCPNS) has been
defined. Several input places having different arrays is associated with a catena-
tion rules label. The label of the transition decides the order in which the arrays
are joined (column wise or row wise) provided the condition for catenation is
satisfied. In CRCPNS a transition with a catenation rule as label and different
arrays in the input places is enabled to fire. In ATPNS [15] the catenation rule

Partial Array Token Petri Net and P System 139

involves an array language. All the input places of the transition with a catena-
tion rule as label, should have the same array as token, for the transition to be
enabled. The size of the array language to be joined to the array in the input
place, depends on the size of the array in the input place.

Definition 7. [5] A Petri Net structure is a four tuple C = (P, T, I,O) where
P = {p1, p2, . . . , pn} is a finite set of places, n > 0, T = {t1, t2, . . . , tm} is a
finite set of transitions, m > 0, P ∩ T = φ, I : T → P∞ is the input function
from transitions to bags of places and O : T → P∞ is the output function from
transitions to bags of places, where P∞ is the bags of places.

Definition 8. [5] A Petri Net marking is an assignment of tokens to the places
of Petri Net. The tokens are used to define the execution of a Petri Net. The
number and position of tokens may change during the execution of a Petri Net,
arrays over an alphabet are used as tokens.

3 Partial Array Token Petri Net Structure

In this section, we define Partial Array Token Petri Net Structure (PATPNS)
with an example and compare it with basic puzzle partial array languages.

Definition 9. If C = (P, T, I,O) is a Petri Net structure with partial arrays
over (Σ ∪ {♦})∗∗ as initial markings. μ0 : P → (Σ ∪{♦})∗∗ label of at least one
transition being catenation rule and a finite set of final places F ⊂ P , then the
Petri net structure C is defined as a Partial Array Token Petri Net Structure
(PATPNS).

Definition 10. If C is a PATPNS, then the Partial array language generated
by the Petri Net C is defined as

PL(C) = {A♦ ∈ (Σ ∪ {♦})∗∗ / A♦ is in p for some p in F}
with partial arrays over (Σ ∪ {♦})∗∗ in some places as initial marking when all
possible sequences of transitions are fired. The set of all partial arrays collected
in the final places F is called the partial array language generated by C. Let
L(PATPNS) = {PL(C)/C is a PATPNS}.

(Σ ∪ {♦})∗∗ denotes the partial arrays made up of elements of Σ ∪ {♦}. If
A and B are two partial arrays having same number of rows then A | B is the
column wise catenation of A and B. If two partial arrays have the same number
of columns then A − B is the row wise catenation of A and B. (x)n denotes a
horizontal sequence of n ‘x’ and (x)n denotes a vertical sequence of n ‘x’ where
x ∈ (Σ ∪ {♦})∗∗, (x)n+1 = (x)n | x and (x)n+1 = (x)n − x.

The Petri Net model defined here has places and transitions connected by
directed arcs. Rectangular partial arrays over an alphabet are taken as tokens
to be distributed in places. Variation in firing rules and labels of the transition
are listed out below.

140 K. Sasikala et al.

Firing Rules in PATPNS
We define three different types of enabled transition in PATPNS. The pre and
post condition for firing the transition in all the three cases are given below:

1. When all the input places of t1 (without label) have the same partial array
as token.

– Each input place should have at least the required number of partial
arrays.

– Firing t1 removes partial array from all the input places and moves the
partial array to all its output places.

The graph in Fig. 1 shows the position of the partial array before the transition
fires and Fig. 2 shows the position of the partial array after transition t1 fires.

P2

P1
P3

t1
A

A

Fig. 1. Position of partial array before firing

P2

P1
P3

t1

A

Fig. 2. Position of partial array after firing

2. When all the input places of t1 have different partial arrays as token
– The label of t1 designates one of its input places.
– The designated input place has sufficient number of partial arrays as

tokens.
– Firing t1 removes partial array from all the input places and moves the

partial array from the designated input place to all its output places.
The graph in Fig. 3 shows the position of the partial array before the transition
fires and Fig. 4 shows the position of the partial array after transition t1 fires.
Since the designated place is P1, the partial array in P1 is moved to the output
place.

3. When all the input places of t1 (with catenation rule as label) have the same
partial array as token

– Each input place should have at least the required number of partial
arrays.

Partial Array Token Petri Net and P System 141

– The condition for catenation should be satisfied.
– The designated input place has sufficient number of partial arrays as

tokens.
– Firing t1 removes partial array from all the input places P and the cate-

nation is carried out in all its output places.

P2

P1
P3

A 1

A 2

1 1t (p)

Fig. 3. Transition with label before firing

P2

P1
P3

1 1t (p)

A 1

Fig. 4. Transition with label after firing

Catenation Rule as Label for Transitions
Column catenation rule is in the form A | B. Here the partial array A denotes
the m × n partial array in the input place of the transition. B is a partial array
whose number of rows will depend on ‘m’, the number of rows of A. The number
of columns of B is fixed. For example A | (x x)m adds two columns of x

after the last column of the partial array A which is in the input place. But
(x x)m | A would add two columns of x before the first column of A. ‘m’
always denote the number of rows of the input partial array A. Row catenation
rule is in the form A − B. Here again the partial array A denotes the m × n

partial array in the input place of the transition. B is a partial array whose
number of columns will depend on ‘n’, the number of columns of A. The number

of rows of B is always fixed. For example A −
[

x
x

]n

adds two rows of x after

the last row of the array A which is in the input place. But
[

x
x

]n

− A would

add two rows of x before the first row of the partial array A. ‘n’ always denotes
the number of columns of the input partial array A.

An example to explain row catenation rule is given below. The position of
the partial array before the transition fires is shown in Fig. 5 and Fig. 6 shows

142 K. Sasikala et al.

Aθ(x)n−1y

P3

P1

P2

t1
A1

A1

Fig. 5. Transition with catenation rule before firing

P1

P2

t1

A1 = Aθ(x)n−1y, θ =

P3A1

Fig. 6. Transition with catenation rule after firing

the position of the partial array after transition t1 fires. Since the catenation
rule is associated with the transition, catenation takes place in P3.

In A♦ =
a a a
a ♦ a
a a a

, the number of columns of A is 3, n − 1 is 2, firing t1 adds

the row x x y as the last row. Hence A1♦ =

a a a
a ♦ a
a a a
x x y

Example 3. Let Σ = {a}, F = P1, where S♦ =
a a a
a ♦ a
a a a

, Q1 = (♦)m, Q2 = (♦)n

Q3 = (a)m, Q4 = (a)n

S is the initial partial array placed in P1. The PATPNS is shown in Fig. 7.
Derivations in PATPNS is given in the following tabular column.

Input place Transition Output place

S A | Q1

a a a ♦
a ♦ a ♦
a a a ♦

a a a ♦
a ♦ a ♦
a a a ♦

Q1 | A

♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦

♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦

A − Q2

♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦
♦ ♦ ♦ ♦ ♦

Partial Array Token Petri Net and P System 143

Input place Transition Output place

♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦
♦ ♦ ♦ ♦ ♦

Q2 − A

♦ ♦ ♦ ♦ ♦
♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦
♦ ♦ ♦ ♦ ♦

♦ ♦ ♦ ♦ ♦
♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦
♦ ♦ ♦ ♦ ♦

A | Q3

♦ ♦ ♦ ♦ ♦ a

♦ a a a ♦ a

♦ a ♦ a ♦ a

♦ a a a ♦ a

♦ ♦ ♦ ♦ ♦ a

♦ ♦ ♦ ♦ ♦ a

♦ a a a ♦ a

♦ a ♦ a ♦ a

♦ a a a ♦ a

♦ ♦ ♦ ♦ ♦ a

Q3 | A

a ♦ ♦ ♦ ♦ ♦ a

a ♦ a a a ♦ a

a ♦ a ♦ a ♦ a

a ♦ a a a ♦ a

a ♦ ♦ ♦ ♦ ♦ a

a ♦ ♦ ♦ ♦ ♦ a

a ♦ a a a ♦ a

a ♦ a ♦ a ♦ a

a ♦ a a a ♦ a

a ♦ ♦ ♦ ♦ ♦ a

A − Q4

a ♦ ♦ ♦ ♦ ♦ a

a ♦ a a a ♦ a

a ♦ a ♦ a ♦ a

a ♦ a a a ♦ a

a ♦ ♦ ♦ ♦ ♦ a

a a a a a a a

a ♦ ♦ ♦ ♦ ♦ a

a ♦ a a a ♦ a

a ♦ a ♦ a ♦ a

a ♦ a a a ♦ a

a ♦ ♦ ♦ ♦ ♦ a

a a a a a a a

Q4 − A

a a a a a a a

a ♦ ♦ ♦ ♦ ♦ a

a ♦ a a a ♦ a

a ♦ a ♦ a ♦ a

a ♦ a a a ♦ a

a ♦ ♦ ♦ ♦ ♦ a

a a a a a a a

The firing of sequence (t1t2t3t4t5t6t7t8)k, k ≥ 0 puts a square partial arrays
of size 4k + 3 in P1, where the boundaries of the squares are alternatively ♦’s
and a’s. The partial array language generated by the PATPNS is a square partial
array of size 4k+3, k ≥ 0 where the boundaries are alternatively ♦’s on the odd
numbered boundaries and a’s on the even numbered boundaries.

Theorem 1. The family of languages generated by PATPNS is properly con-
tained in the family of languages generated by Basic Puzzle Partial Array Gram-
mars.

Proof. The row catenation in PATPNS can be handled by the following Basic
Puzzle Partial Array Grammar rules:

(i) X → x

Y
(ii) X → ♦

Y
(iii) X → Y

♦ (iv) X → Y

x

144 K. Sasikala et al.

AQ4 AQ2

t1

P2

S

P1 P3
t2

P4
t3

Q1A Q1 A A Q2

t5t6t7
P5P6P7P8 A Q3Q3 AA Q4

t8 t4

Fig. 7. PATPNS generating square partial arrays of size 4k + 3, k ≥ 0

(v) X → Y
x

(vi) X →
Y

♦ (vii) X → x

Y
(viii) X → ♦

Y

(ix) X → x (x) X → ♦
The column catenation in PATPNS can be handled by the following Basic

Puzzle Partial Array Grammar rules:

(i) X → x Y (ii) X → ♦ Y (iii) X → Y x

(iv) X → Y ♦ (v) X → Y x (vi) X → Y ♦

(vii) X → ♦ Y (viii) X → x Y (ix) X → x (x) X → ♦
Hence L(PATPNS) is a subset of L(BPPAG), this is also evident from the

following example.
Consider a partial array language of square partial arrays of size 4k + 3,

k ≥ 0 whose boundaries are alternatively ♦’s on the odd numbered boundaries
and a’s on the even numbered boundaries given in Example 3. This partial array
language is generated by both systems PATPNS and BPPAG.

Now let us consider a BPPAG generating this partial array language.

BPGP2 = (A,B ∪ {♦}, P, S)

where A = {X,Q1, Q2, Q3, Q4, Q5, Q6}, B = {a}, S = X and P consists of the
following rules:

(i) X → a Q (ii) Q → a Q (iii) Q → Q1

a

(iv) Q1 → Q2 a (v) Q2 → Q3 ♦ (vi) Q3 → Q4

a

Partial Array Token Petri Net and P System 145

(vii) Q4 → a Q5 (viii) Q5 → a Q5 (ix) Q5 → a

(x) Q3 → ♦ Q3 (xi) Q5 → ♦ Q6 (xii) Q6 → a Q6

(xiii) Q6 → ♦ Q (xiv) Q3 → Q2 a (xv) Q3 → Q3 ♦

(xvi) Q → ♦ Q

The first member of the language generated is shown below:

X
(i)−→ a Q

(ii)−−→ a a Q
(iii)−−→ Q1

a a a
(iv)−−→ Q2 a

a a a

(v)−−→ Q3 ♦ a

a a a

(vi)−−→
Q4

a ♦ a
a a a

(vii)−−−→
a Q5

a ♦ a
a a a

(viii)−−−→
a a Q5

a ♦ a
a a a

(ix)−−→
a a a
a ♦ a
a a a

The partial array language given in Example 2 generated by BPPAG cannot

be generated by PATPNS, since the axiom array
z z
z z

can only be concatenated

either row wise or column wise, but ♦ cannot be inserted, which proves a proper
containment.

4 Partial Array Token Petri Net P System

In this section, Partial Array Token Petri Net P System (PATPNPS) is intro-
duced and it is compared with PATPNS and BPPAG.

Definition 11. A Partial Array Token Petri Net P System (PATPNPS) π =
(V, T ∪ {♦},#, μ, F1, F2, . . . , Fm, R1, R2, . . . , Rm, i0) where V is a finite set of
column partial arrays and row partial arrays of the form Q1 = (a)n and
Q2 = (a)m where a ∈ T ∪ {♦}. T is a finite set of terminal alphabets. ‘#’
is a blank symbol not in T ∪ {♦}. μ is a membrane structure with ‘m’ mem-
branes, F1, F2, . . . , Fm are finite set of partial arrays over T ∪ {♦} associated
with the ‘m’ regions. R1, R2, . . . , Rm are rules associated with the m regions of
the form

(
{A − Q,A | Q}, tar, P

)
, where tar ∈ {here, in, out} and P is the

output obtained after the catenation rule is applied.

If the target indication is ‘here’, the output partial array ‘P ’ remains in the
same region, if the target indication is ‘in’, ‘P ’ goes to the immediate inner
region and if the target indication is ‘out’ it goes to the outer membrane, i0 is
the elementary membrane of μ.

A computation in a partial array token petri net P system is defined in the
same way as in array rewriting P system. The set of all partial arrays computed
by π with ‘m’ membranes is denoted by PATPNPLm(π).

146 K. Sasikala et al.

Example 4. Consider the Partial Array Token Petri Net P System PATPNPS

π1 = ({Q1, Q2, Q3, Q4}, {a,♦},#, [1[2[3]2]1, F1♦, F2♦, F3♦, R1, R2, R3, 3)

where Q1 = (♦)m, Q2 = (♦)n, Q3 = (a)m, Q4 = (a)n, F1♦ =
a a a
a ♦ a
a a a

, F2♦ =

F3♦ = φ,

R1 =

{
(F1 | Q1, here, P1), (Q1 | P1, here, P1), (P1 − Q2, here, P1),

(Q2 − P1, in, P1), (P2 | Q1, here, P1)

}
;

R2 =

{
(P1 | Q3, here, P2), (Q3 | P2, here, P2), (P2 − Q4, here, P2),

(Q4 − P2, in, P2), (Q4 − P2, out, P2)

}

R3 = φ.

The content of region 1 is F1♦ =
a a a
a ♦ a
a a a

. The derivations in PATPNPS is

given in the following tabular column:
Region(i) Content(Fi♦) Rule(Ri) Target Resultant partial array (Pi)

1
a a a
a ♦ a
a a a

F1 | Q1 here
a a a ♦
a ♦ a ♦
a a a ♦

1
a a a ♦
a ♦ a ♦
a a a ♦

Q1 | P1 here
♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦

1
♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦

P1 − Q2 here

♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦
♦ ♦ ♦ ♦ ♦

1

♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦
♦ ♦ ♦ ♦ ♦

Q2 − P1 in

♦ ♦ ♦ ♦ ♦
♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦
♦ ♦ ♦ ♦ ♦

2

♦ ♦ ♦ ♦ ♦
♦ a a a ♦
♦ a ♦ a ♦
♦ a a a ♦
♦ ♦ ♦ ♦ ♦

P1 | Q3 here

♦ ♦ ♦ ♦ ♦ a
♦ a a a ♦ a
♦ a ♦ a ♦ a
♦ a a a ♦ a
♦ ♦ ♦ ♦ ♦ a

2

♦ ♦ ♦ ♦ ♦ a
♦ a a a ♦ a
♦ a ♦ a ♦ a
♦ a a a ♦ a
♦ ♦ ♦ ♦ ♦ a

Q3 | P2 here

a ♦ ♦ ♦ ♦ ♦ a
a ♦ a a a ♦ a
a ♦ a ♦ a ♦ a
a ♦ a a a ♦ a
a ♦ ♦ ♦ ♦ ♦ a

2

a ♦ ♦ ♦ ♦ ♦ a
a ♦ a a a ♦ a
a ♦ a ♦ a ♦ a
a ♦ a a a ♦ a
a ♦ ♦ ♦ ♦ ♦ a

P2 − Q4 here

a ♦ ♦ ♦ ♦ ♦ a
a ♦ a a a ♦ a
a ♦ a ♦ a ♦ a
a ♦ a a a ♦ a
a ♦ ♦ ♦ ♦ ♦ a
a a a a a a a

Partial Array Token Petri Net and P System 147

Region(i) Content(Fi♦) Rule(Ri) Target Resultant partial array (Pi)

2

a ♦ ♦ ♦ ♦ ♦ a
a ♦ a a a ♦ a
a ♦ a ♦ a ♦ a
a ♦ a a a ♦ a
a ♦ ♦ ♦ ♦ ♦ a
a a a a a a a

Q4 − P2

in
or
out

a a a a a a a
a ♦ ♦ ♦ ♦ ♦ a
a ♦ a a a ♦ a
a ♦ a ♦ a ♦ a
a ♦ a a a ♦ a
a ♦ ♦ ♦ ♦ ♦ a
a a a a a a a

3
(If tar=in)

a a a a a a a
a ♦ ♦ ♦ ♦ ♦ a
a ♦ a a a ♦ a
a ♦ a ♦ a ♦ a
a ♦ a a a ♦ a
a ♦ ♦ ♦ ♦ ♦ a
a a a a a a a

φ -

a a a a a a a
a ♦ ♦ ♦ ♦ ♦ a
a ♦ a a a ♦ a
a ♦ a ♦ a ♦ a
a ♦ a a a ♦ a
a ♦ ♦ ♦ ♦ ♦ a
a a a a a a a
The output is
collected in the

elementary
membrane

1
(If tar=out)

a a a a a a a
a ♦ ♦ ♦ ♦ ♦ a
a ♦ a a a ♦ a
a ♦ a ♦ a ♦ a
a ♦ a a a ♦ a
a ♦ ♦ ♦ ♦ ♦ a
a a a a a a a

P2 | Q1 here
Procedure
continues

Thus the partial array language of square partial arrays of size 4k +3, k ≥ 0,
where the boundaries are alternatively ♦’s on the odd numbered boundaries and
a’s on the even numbered boundaries is generated by this PATPNPS π1.

Theorem 2. L(PATPNPLm(π)) ∩ L(PATPNS) �= φ.

Proof. The partial array language of square partial arrays of size 4k + 3, k ≥ 0
is generated by both systems. It is evident from Examples 3 and 4.

Theorem 3. L(PATPNPLm(π)) ∩ L(BPPAG) �= φ.

Proof. L(PATPNS) is a subclass of the family of Basic Puzzle Partial Array
Languages by Theorem 1. By Theorem 2, we get that L(PATPNPLm(π)) inter-
sects L(PATPNS). Thus the two families intersects.

5 Comparative Study with Local and Recognizable
Partial Array Languages

In this section, we recall Local and Recognizable Partial Array Languages and
compare with PATPNS.

Definition 12. [14] Let Γp = Γ ∪ {♦} be a finite alphabet. A two dimensional
partial array language PL ⊆ Γ ∗∗

p is local if there exists a finite set θ of tiles over
the alphabet Γp ∪ {#} such that PL = {A ∈ Γ ∗∗

p /B2,2(Â) ⊆ θ}, where Â is a
partial array surrounded by a special boundary symbol # �∈ Γ .

The partial array language PL is local if given such a set θ, we can exactly
retrieve the language PL. We call the set θ a representation by tiles for the
local language PL and write PL = L(θ). The family of all local partial array
languages is denoted by PAL-LOC.

148 K. Sasikala et al.

Example 5. [14] Let Γp = {a, b} ∪ {♦}, and θ be the following set of tiles over
Γp ∪ {#}.

θ =
{

#
b

,
#
b b

,
#
b #

,
b
a

,
b b
a ♦ ,

b b
♦ b

,
b #
b #

,
a
a

,
a ♦
a a

,
♦ b
a b

,

a a
#

,
a b
#

,
a
#

,
b #
#

,
b b
♦ ♦ ,

a ♦
a ♦ ,

♦ ♦
♦ ♦ ,

♦ b
♦ b

,
♦ ♦
a a

}

Then L(θ) is a partial array language over Γp with equal sides of length, the
symbols along the top row (the last row) and right most column (the last column
are b’s, the symbols along the first row (the bottom row) and the left most column
(the first column) except the first and last elements of the principal diagonals
are a’s. The remaining elements of the array are holes.

The first two members of this language are given below:

b b b
a ♦ b
a a b

,

b b b b
a ♦ ♦ b
a ♦ ♦ b
a a a b

, . . .

Definition 13. [14] Let Σ be a finite alphabet. A partial array language PL ⊆
Σ∗∗

p is called recognizable if there exists a local partial array language PL′ over
Γp and a mapping π : Γp → Σp such that PL = π(PL′), where Σp = Σ ∪ {♦}.
The family of all recognizable partial array languages is denoted by PAL-REC.

Example 6. [14] The set of all partial array languages over one letter alphabet ‘a’
with all sides of equal length and the symbols along the first row, first column,
the last row and last column are holes is not a local partial array language,
but it is a recognizable partial array language. This language is obtained from
Example 5 by taking a mapping π : Γp → Σp where Γ = {a, b}, Σ = {a} such
that π(b) = π(a) = ♦ and π(♦) = a.

Theorem 4. PAL − LOC � PATPNS.

Every local partial language can be easily generated by some PATPNS. Let
PL be a partial array language over Γp in PAL-LOC with a finite set of tiles θ
such that PL = L(θ).

Consider the PATPNS, C = (P, T, I,O) with partial arrays over Γ ∗∗
p , S♦ =

#
a

, a ∈ Γp. T , the set of all transitions, they can be either row or column

catenations.

(i) For all
#
a

∈ θ, where a ∈ Γp we define t1 = A | Q1, where Q1 =
(

#
b

)
,

b ∈ Γp.

Partial Array Token Petri Net and P System 149

(ii) For all
#
a b

∈ θ, a, b ∈ Γp, we define t2 = A | Q1, where Q1 =
(

#
b

)
,

b ∈ Γp. This transition is repeated till the tile of the form
#
b #

∈ θ is

reached and let this process be repeated ‘r’ r ≥ 0, no. of times.

(iii) For all
#
b #

∈ θ, b ∈ Γp, we define t3 = A | Q2, where Q2 =
(

#
#

)
.

(iv) For all
a
b

,
a c
b d

,
c #
d #

∈ θ, a, b, c, d ∈ Γp, we define t4 = A − Q3, where

Q3 =
(
B

)
, B ∈ Γ

(1×n)
p , where Γ

(1×n)
p is a partial array of size 1 × n.

(v) For all tiles of the form
a
#

,
a b
#

,
b #
#

∈ θ, a, b ∈ Γp, we define t5 =

A − Q4, Q4 = (#)m, m ≥ 2. Here, A represents the partial array collected
in the output place by the previous transition.

P = {P1, P2, P3, . . . Pk︸ ︷︷ ︸
t2

, Pk+1︸ ︷︷ ︸
t3

, Pk+2, Pk+3, . . . Pk+s+1︸ ︷︷ ︸
t4

, Pk+s+2︸ ︷︷ ︸
t5

},

where P is the set of places, S♦ is placed in P1 initially and then transition t1
is applied, the resultant partial array is stored in P2, and then transition t2 is
applied ‘r’ no. of times. After applying ‘r’ times the transition t2, the partial
array reaches the place Pk, where k = r + 2. After transition t3 is applied the
partial array reaches Pk+1. The transition t4 is repeated ‘s’ s ≥ 0 number of times

until the tile
a
#

is reached. After this transition, the partial array reaches the

place Pk+s+1. After transition t5 is applied the partial array reaches the final
place F = Pk+s+2.

The PATPNS generating the local language PL is given in Fig. 8.
Clearly PATPNS can generate any partial array language in PAL-LOC and

hence PAL − LOC ⊆ PATPNS.
Now, to prove the proper inclusion, we consider the partial array language

given in Example 3, the square partial arrays of size 4k+3, k ≥ 0. This language
is not local, since the θ set of this language can also generate any array over one
letter alphabet ‘a’ of size 1 × n, n ≥ 1, where θ is given as follows.

θ =
{

#
a

,
#
a a

,
#
a #

,
a
a

,
a a
a ♦ ,

a a
♦ ♦ ,

a a
♦ a

,
a #
a #

,
a ♦
a ♦ ,

♦ ♦
♦ a

,

♦ ♦
a a

,
♦ ♦
a ♦ ,

♦ a
♦ a

,
a ♦
a a

,
♦ a
a a

,
♦ a
♦ ♦ ,

a a
♦ ♦ ,

a ♦
♦ ♦ ,

a a
#

,
a #
#

}

Hence PAL-LOC is properly contained in PATPNS.

150 K. Sasikala et al.

.

. . .
. . .

Q1A Q1A Q1A

Q2A

Q3A

Q4A

Q3A

t1

P2P1
t2

Pk

S♦

t3

Pk+1

Pk+s+1

Pk+s+2

t4

t5

Fig. 8. PATPNS generating any PAL-LOC

Example 7. Consider a PATPNS C = (P, T, I,O), generating a local partial
array language given in Example 5.

Let S♦ =
#
b

, Q1 =
[
#
b

]
, Q2 =

[
#
#

]
, Q3 =

[
B

]
, B ∈ Γ 1×n

p , where

B = a (♦)r b, Q4 = (#)m.
PATPNS generating the 2nd member of the partial array language namely

#
b b b b
a ♦ ♦ b
a ♦ ♦ b
a a a b
#

is given in Fig. 9 as an example.

Theorem 5. PATPNS is closed under projection.

We consider a partial array token Petri Net structure C = (P, T, I,O) gen-
erating the partial array language PL. Let π : Γp → Σp be a projetion such that
π(a) = α, a ∈ Γp, α ∈ Σp. Without loss of generality Γp ∩ Σp = φ. We can
construct a PATPNS C ′ = (P ′, T ′, I ′, O′) such that PL(C ′) = PL, where T ′ =
{t′1, t

′
2, . . . t

′
k}, t′i = {A′ | Q′

i, A
′ − Q′

i/A
′
ij = (π(A))ij , (Q′

i)rs = (π(Qi))rs},

Partial Array Token Petri Net and P System 151

Q1A Q1A Q1A

Q2A

Q3A

Q3AQ4A

P1

S♦

P2
t1 t2 t2

t3

P4P3

P5

P6P7P8

t4

t4t5

Fig. 9. PATPNS generating PAL-LOC given in Example 5

1 ≤ i ≤ k, A,Qi ∈ Γ ∗∗
p , A′, Q′

i ∈ Σ∗∗
p . I ′ and O′ are input and outplaces of the

transitions. P ′ is the set of places.
Hence we can clearly say that PATPNS is closed under projection.

Theorem 6. PAL − REC � PATPNS.

Proof. PAL − REC ⊆ PATPNS follows from Theorems 4 and 5, since every
recognizable partial array language is a projection of a local partial array lan-
guage.

Now the proper inclusion can be proved easily by giving an example of a
partial array language which is not in PAL-REC but in PATPNS.

6 Conclusion

In this paper we have proposed PATPNS and PATPNPS. PATPNS is compared
with PAL-LOC, PAL-REC and BPPAG. It is also compared with PATPNPS.
The properties of PATPNS and PATPNPS can be studied further by introducing
inhibitor arc to increase the generative capacity of PATPNS. This is our future
work.

References

1. Berstel, J., Boasson, L.: Partial words and a theorem of Fine and Wilf. Theor.
Comput. Sci. 218(1), 135–141 (1999)

152 K. Sasikala et al.

2. Giammarresi, D., Restivo, A.: Two-dimensional languages. In: Rozenberg, G., Salo-
maa, A. (eds.) Handbook of Formal Languages, pp. 215–267. Springer, Heidelberg
(1997). https://doi.org/10.1007/978-3-642-59126-6 4

3. Lalitha, D.: Rectangular array languages generated by a Colored Petri Net. In:
IEEE International Conference on Electrical Computer and Communication Tech-
nologies, pp. 1–5 (2015)

4. D., L.: Rectangular array languages generated by a Petri net. In: Sethi, I.K. (ed.)
Computational Vision and Robotics. AISC, vol. 332, pp. 17–27. Springer, New
Delhi (2015). https://doi.org/10.1007/978-81-322-2196-8 3

5. Lalitha, D., Rangarajan, K., Thomas, D.G.: Rectangular arrays and Petri nets. In:
Barneva, R.P., Brimkov, V.E., Aggarwal, J.K. (eds.) IWCIA 2012. LNCS, vol.
7655, pp. 166–180. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-
642-34732-0 13

6. Mary Metilda, M.I., Lalitha, D.: Kolam generated by color Petri nets. In: Tuba,
M., Akashe, S., Joshi, A. (eds.) Information and Communication Technology for
Sustainable Development. AISC, vol. 933, pp. 675–681. Springer, Singapore (2020).
https://doi.org/10.1007/978-981-13-7166-0 68

7. Mary Metilda, M.I., Lalitha, D.: Petri nets for pasting tiles. In: Solanki, V.K.,
Hoang, M.K., Lu, Z.J., Pattnaik, P.K. (eds.) Intelligent Computing in Engineering.
AISC, vol. 1125, pp. 701–708. Springer, Singapore (2020). https://doi.org/10.1007/
978-981-15-2780-7 76

8. Nivat, M., Saoudi, A., Subramanian, K.G., Siromoney, R., Dare, V.R.: Puzzle
grammar and context-free array grammars. Int. J. Pattern Recogn. Artif. Intell.
05(05), 663–676 (1991)

9. Paun, Gh.: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143
(2000)

10. Peterson, J.L.: Petri Net Theory and Modeling of Systems. Prentice Hall Inc.,
Englewood Cliffs (1981)

11. Sasikala, K., Kalyani, T., Thomas, D.G.: Partial array grammars and partial array-
rewriting P systems. Math. Eng. Sci. Aerosp. 11(1), 227–236 (2020)

12. Subramanian, K.G., Saravanan, R., Geethalakshmi, M., Helen Chandra, P., Mar-
genstern, M.: P systems with array object and array rewriting rules. Prog. Nat.
Sci. 17(4), 479–485 (2007)

13. Sweety, F., Sasikala, K., Kalyani, T., Thomas, D.G.: Partial array-rewriting P
systems and basic puzzle partial array grammar. In: AIP Conference Proceedings,
vol. 2277, p. 030003 (2020)

14. Sweety, F., Thomas, D.G., Dare, V.R., Kalyani, T.: Recoginizability of partial
array languages. J. Comb. Math. Comb. Comput. 69, 237–249 (2009)

15. Vijaya Chitra, S., Sasikala, K.: Squares in partial arrays. In: AIP Conference Pro-
ceedings, vol. 2112, pp. 20–34 (2019)

https://doi.org/10.1007/978-3-642-59126-6_4
https://doi.org/10.1007/978-81-322-2196-8_3
https://doi.org/10.1007/978-3-642-34732-0_13
https://doi.org/10.1007/978-3-642-34732-0_13
https://doi.org/10.1007/978-981-13-7166-0_68
https://doi.org/10.1007/978-981-15-2780-7_76
https://doi.org/10.1007/978-981-15-2780-7_76

Certain State Sequences Defined by P
Systems with Reactions

Sastha Sriram1(B), Somnath Bera2, and K. G. Subramanian3

1 Department of Mathematics, School of Arts, Science and Humanities, SASTRA
Deemed University, Tanjore 613 401, Tamil Nadu, India

2 School of Advanced Sciences-Mathematics, Vellore Institute of Technology,
Chennai 600 127, Tamil Nadu, India

3 School of Mathematics, Computer Science and Engineering, Liverpool Hope
University, Hope Park L16 9JD, Liverpool, UK

Abstract. Reaction system was introduced by Ehrenfeucht and Rozen-
berg [2] as a model of interactions in biochemical reactions while the
seminal paper by Gh. Pǎun [5] introducing the bio-inspired model of
P system launched the field of membrane computing. An investigation
bridging these two models is done by Pǎun and Pérez-Jiménez [8]. Here
we introduce a variant of transition P system having a finite base set S,
called transition P system based on reactions (in short, (R)TPS) with
the regions of the system having reactions (playing the role of evolution
rules) as well as states (in the place of objects) that are subsets (that
can be empty) of S. Long terminating state sequences and cycles have
been generated in studies of reaction systems. Here we construct (R)TPS
generating such sequences with some improvements in the lengths of the
sequences.

Keywords: Reaction system · State sequences · Membrane
computing · P system

1 Introduction

Reaction system was introduced by Ehrenfeucht and Rozenberg [2] as an abstract
model formalizing the interactions among biochemical reactions in living cells
with the mathematical formulation taking into account the features of facilita-
tion and inhibition in a reaction. In fact the model has turned out as a gen-
eral framework for various investigations in different research themes (see, for
example, [1–3,9–11] and references therein). On the other hand, in the area of
membrane computing, a bio-inspired model, known by the generic name of P sys-
tem, was proposed by Pǎun [5]. The basic version of a P system and its several
variants have provided a rich platform for handling different kinds of problems
related to computing (see, for example, [6,7,12]).

K. G. Subramanian — Honorary Visiting Professor.

c© Springer Nature Switzerland AG 2021
R. Freund et al. (Eds.): CMC 2020, LNCS 12687, pp. 153–160, 2021.
https://doi.org/10.1007/978-3-030-77102-7_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77102-7_9&domain=pdf
https://doi.org/10.1007/978-3-030-77102-7_9

154 S. Sriram et al.

In [8], an investigation bridging the two models of P systems and reaction
systems, is done. Motivated by the study in [8], a variant of the basic model of
transition P system having a finite base set as in a reaction system, is introduced
here. The regions of the proposed variant of P system, referred to as P system
based on reactions ((R)TPS, in short), can have reactions (playing the role of
evolution rules) and also states (as in a reaction system) that are subsets of the
base set. Long terminating state sequences and long cycles have been generated
[3,9,10] in the context of reaction systems. Here we consider this problem and
construct (R)TPS generating such sequences with some improvements in the
lengths, corresponding to sequences generated by reaction systems.

2 Basic Definitions

For unexplained notions and notations relating to reaction systems, we refer to
[3,9,10] and for notions relating to P systems, we refer to [6]. We first recall
reaction system [2].

Definition 1. [2] Let S be a finite base set.

(i) A reaction over S is a triple ρ = (R, I, P), where R ⊆ S, called reactant
set of ρ, I ⊆ S, called inhibitor set of ρ, and P ⊆ S, called product set of
ρ, are nonempty sets such that R ∩ I = ∅;

(ii) Given a reaction ρ = (R, I, P) over S and a subset T of S, the set T is
enabled with respect to ρ, if R ⊆ T and I ∩ T = ∅. If T is enabled, then
we define the result by resρ(T) = P ; If T is not enabled, then we define
resρ(T) = ∅;

(iii) A reaction system AS over S (or simply, A when S is understood) is a finite
nonempty set {ρi/1 ≤ i ≤ m}, of reactions over S; For a reaction system
A = {ρi/1 ≤ i ≤ m}, we define the result by resA(T) =

⋃m
i=1 resρi

(T); We
also write T ⇒A T ′ (T ⇒ T ′ when A is understood) where T ′ = resA(T)
and T, T ′ are also referred to as states.

Remark 1. Adopting the notation used in [10], we denote the singleton set {x}
by x and also use the simplified way of writing the set {x, y, z} by xyz and
the set {x, y, z, u, v} by xyzuv and so on, whenever there is no confusion. The
cardinality of a set X is denoted by card(X). If, for every reaction ρ = (R, I, P)
in a reaction system A, card(R) ≤ r, card(I) ≤ i, then A is called a (r, i) reaction
system and the reactions are also called (r, i) reactions. A state sequence (also
called, simply, a sequence) T0 ⇒ T1 ⇒ · · · ⇒ Tm, Ti ⊆ S in a reaction system
with base set S, is either a sequence of length m terminating with Tm = ∅ or
has a cycle of length m − n, (i.e) Tm = Tn for some n, 1 ≤ n ≤ m − 1 since S is
finite.

Example 1. Let the base set S = {1, 2, 3, 4}.

(i) Let A1 be a (1, 1) reaction system consisting of (1, 1) reactions ρ1 = (1, 3, 4),
ρ2 = (4, 2, 2), ρ3 = (2, 3, 3), ρ4 = (3, 2, 123). Then T = 1 ⇒ 4, as the

Certain State Sequences Defined by P Systems with Reactions 155

reactant 1 of ρ1 is a subset of T, the inhibitor 3 of ρ1 satisfies 3 ∩ T = ∅
and the product of ρ1 is 4. Likewise 4 ⇒ 2 , 2 ⇒ 3, 3 ⇒ 123 and 123 ⇒ ∅
as 123 is not enabled with respect to any of the reactions. Hence we have a
sequence

1 ⇒ 4 ⇒ 2 ⇒ 3 ⇒ 123 ⇒ ∅
which is terminating and is of length 5. Note that we have used here the
simplified notation mentioned in Remark 1. For example, the reaction ρ1 =
(1, 3, 4) is in fact ρ1 = ({1}, {3}, {4}) and likewise T = 1 stands for T = {1}.

(ii) Let A2 be a (1, 1) reaction system consisting of (1, 1) reactions ρ1 = (1, 4, 4),
ρ2 = (4, 3, 2), ρ3 = (2, 1, 13), ρ4 = (3, 2, 4). Then we have the sequence
T0 = 1 ⇒ T1 = 4 ⇒ T2 = 2 ⇒ T3 = 13 ⇒ T1 = 4 having a cycle
T1 = 4 ⇒ T2 = 2 ⇒ T3 = 13 ⇒ T1 = 4 of length 3.

3 Transition P System Based on Reactions

The basic model of a transition P system was introduced by Pǎun [5]. Informally
described, a transition P system in its basic version has membranes, hierarchi-
cally arranged one within another. There is an outermost membrane, called the
skin membrane which contains all other membranes. The membrane having no
other membrane inside it, is called an elementary membrane. The regions of the
membranes can have objects and evolution rules. The minimal activity in a P
system involves processing the objects, if any, in all regions of the system, at the
same time. This is done by a nondeterministic and maximally parallel manner of
application of the rules to the objects. This allows the objects to evolve and the
evolved objects can continue to be in the same region or move to an immediate
neighbouring region, with the object communication being decided by a target
indication. A computation comes to a halt when no object in all the regions can
further evolve and the result of a computation is the number of objects in a
specified membrane.

Several modifications and variants of the basic model of a P system have
been proposed. We now introduce a variant of transition P system [5], called
transition P system based on (1, 1) reactions over a finite base set. Subsets of
the base set are the “objects” in the regions of the P system. The P system can
have in its regions “tables” of (1, 1) reactions which are sets of reactions.

Definition 2. A transition P system based on reactions ((R)TPS) is Π =
(S, μ,Q1, · · · , Qm, T1, · · · , Tm) where

(i) S is a finite nonempty set, called base set;
(ii) μ is the membrane structure with a cell-like hierarchical arrangement of

m, (m ≥ 1) membranes labelled 1, 2, · · · ,m in a one-to-one manner;
(iii) each Qi, 1 ≤ i ≤ m, consists of a finite number of tables, where a table

is a finite nonempty set having a finite number of (1, 1) reactions of the
form ρ = (R, I, P) as defined in Definition 1; each table t in a region has
a target tar ∈ {here, out, in} attached to it, indicated by t(tar), with the
usual meaning;

156 S. Sriram et al.

(iv) each Ti, 1 ≤ i ≤ m, called a state, is a distinct subset of S initially in
region i and can also be empty.

In any region, if a state T ⊆ S is enabled by reactions in a table t and if T ′ is the
result obtained (as in Definition 1), then we say that the state T ′ is specified by T
and we write T ⇒ T ′; Depending on tar attached to t, the result state T ′ remains
in the same region or is sent to the immediate outer region or the immediate
inner region according as tar is here or out or in; At a step, the states, if any,
in all the regions define corresponding states. If T0 ⇒ T1 ⇒ T2 ⇒ · · · ⇒ Tn is
a state sequence defined in a sequence of steps, then it will either terminate or
will have cycle. Note that in this sequence a Tj (1 ≤ j ≤ n) can be in the same
region in which T0 was there or might have moved to some other region.

We give an example.

Example 2. Consider the (R)TPS

Π1 = ({1, 2, 3, 4}, [1[2[3]3]2]1, Q1, Q2, Q3, T1, T2, T3)

where
Q1 = {t1(here), t2(in)}, Q2 = {t3(in)}, Q3 = {t4(out), t5(here), t6(here)};
T1 = 1, T2 = T3 = ∅. The tables are given by

t1 = {(1, 3, 2), (2, 3, 3), (3, 1, 4)}, t2 = {(4, 3, 14)},

t3 = {(1, 3, 12), (2, 4, 3), (3, 4, 4), (4, 3, 1)},

t4 = {(1, 3, 2), (2, 3, 3)}, t5 = {(3, 1, 1), (4, 2, 3)}, t6 = {(1, 2, 12), (3, 4, 34)}.

Starting with the state 1 in region 1, the state 1 is enabled by reactions in the
table t1 and so we have 1 ⇒ 2 ⇒ 3 ⇒ 4. The state 4 remains in region 1 itself
and is enabled by reaction in table t2 to give 4 ⇒ 14. The state 14 is sent to
region 2 due to target indication in for table t2. In region 2, 14 ⇒ 12 and the
state 12 is sent to region 3. In this region 3, 12 ⇒ 23 and the state 23 is sent
back to region 2 where 23 ⇒ 34 and the state 34 is sent to the inner region 3.
Here 34 ⇒ 13 ⇒ 1234 ⇒ ∅. The state sequence obtained is 1 ⇒ 2 ⇒ 3 ⇒ 4
⇒ 14 ⇒ 12 ⇒ 23 ⇒ 34 ⇒ 13 ⇒ 1234 ⇒ ∅ which is of length 10.

Long terminating sequences have been obtained in (1, 1) reaction systems
[3]. Improving the result on long terminating sequence established in [3, Lemma
14, Page 174], Salomaa [9, Lemma 5, Page 280] obtained the following result on
long terminating sequence.

Theorem 1. [9] Assume that the base set S of a (1, 1) reaction system A is of
cardinality n and that A has a terminating state sequence of length m ≥ 1. Then
there is another (1, 1) reaction system A1, with the base set of cardinality n + 4
and with a terminating state sequence of length 3m + 5.

Given a (1, 1) reaction system A over a base set of cardinality n and a terminating
sequence T0 ⇒ T1 ⇒ · · · ⇒ Tm of length m, here we construct a (R)TPS with a
base set of cardinality n + 4 and having five membranes, defining a terminating
sequence of length 5m + 9. The construction is based on the proof technique
used in [9, Lemma 5, Page 280].

Certain State Sequences Defined by P Systems with Reactions 157

Theorem 2. If there is a terminating sequence of length m in a (1, 1) reaction
system A with a set A of (1, 1) reactions over a base set S of cardinality n, then
there is a (R)TPS with a base set of cardinality n+4 and having five membranes
that defines a terminating sequence of length 5m + 9.

Proof. Let X0 ⇒ X1 ⇒ · · · ⇒ Xm = ∅,m ≥ 1, (Xi ⊆ S, 0 ≤ i ≤ m − 1) be a
terminating sequence in a reaction system A over a base set S of cardinality n.
Consider the (R)TPS

Π1 = (S∪{a, b, c, d}), [1[2[3[4[5]5]4]3]2]1, Q1, Q2, Q3, Q4, Q5,X0∪{a, b}, ∅, ∅, ∅, ∅)

where
Q1 = {t1(here), t2(in)}, Q2 = {t3(here), t4(in)},

Q3 = {t5(here), t6(in)}, Q4 = {t7(here), t8(in)}, Q5 = {t9(here)}.

The tables are given by

t1 = A ∪ {ρ1i = (i, d, b) | for all i ∈ S} ∪ {ρ3 = (b, c, a)},

t2 = {ρ4 = (a, b,X0 ∪ {b, c})},

t3 = A ∪ {ρ1i = (i, d, b) | for all i ∈ S} ∪ {ρ5 = (b, a, c)},

t4 = {ρ6 = (c, b,X0 ∪ {d, a})},

t5 = A ∪ {ρ2i = (i, b, d) | for all i ∈ S} ∪ {ρ7 = (d, c, a)},

t6 = {ρ8 = (a, d,X0 ∪ {d, c})},

t7 = A ∪ {ρ2i = (i, b, d) | for all i ∈ S} ∪ {ρ9 = (d, a, c)},

t8 = {ρ10 = (c, d,X0 ∪ {b})},

t9 = A ∪ {ρ1i = (i, d, b) | for all i ∈ S}
where A is the set of all reactions in A. We start with the initial state X0∪{a, b}
in region 1. There are no states in other regions initially. The state X0 ∪ {a, b}
is enabled by reactions in table t1 in region 1. Note that due to the reactions
in A and ρ1i in table t1 in region 1, X0 ⇒ X1 ∪ b while due to reaction ρ3 in
table t1 in region 1, b ⇒ a so that we obtain X0 ∪ {a, b} ⇒ X1 ∪ {a, b} which
is retained in region 1 itself as the target of t1 is here. Likewise in region 1,
X1 ∪ {a, b} ⇒ X2 ∪ {a, b} and so on. Thus

X0 ∪ {a, b} ⇒ X1 ∪ {a, b} ⇒ X2 ∪ {a, b} ⇒ · · ·
⇒ Xm−1 ∪ {a, b} ⇒ {a, b} ⇒ {a}

since Xm = ∅ and only due to reaction ρ3, we have {a, b} ⇒ {a}. The state {a}
in region 1 is now enabled by ρ4 in table t2 so that the state sequence is now

X0 ∪ {a, b} ⇒ X1 ∪ {a, b} ⇒ X2 ∪ {a, b} ⇒ · · ·
⇒ Xm−1 ∪ {a, b} ⇒ {a, b} ⇒ {a} ⇒ X0 ∪ {b, c}

158 S. Sriram et al.

which is of length m + 2. The state X0 ∪ {b, c} is sent to region 2 due to the
target in attached with table t2. In this region the reactions in table t3 followed
finally by t4 yield

X0 ∪ {b, c} ⇒ X1 ∪ {b, c} ⇒ X2 ∪ {b, c} ⇒ · · ·

⇒ Xm−1 ∪ {b, c} ⇒ {b, c} ⇒ {c} ⇒ X0 ∪ {a, d}
which is of length m + 2. The state X0 ∪ {a, d} is sent to region 3 due to the
target in attached with table t4. In this region the reactions in table t5 followed
finally by t6 yield

X0 ∪ {a, d} ⇒ X1 ∪ {a, d} ⇒ X2 ∪ {a, d} ⇒ · · ·

⇒ Xm−1 ∪ {a, d} ⇒ {a, d} ⇒ {a} ⇒ X0 ∪ {d, c}
which is of length m + 2. The state X0 ∪ {d, c} is sent to region 4 due to the
target in attached with table t6. In this region the reactions in table t7 followed
finally by t8 yield

X0 ∪ {d, c} ⇒ X1 ∪ {d, c} ⇒ X2 ∪ {d, c} ⇒ · · ·

⇒ Xm−1 ∪ {d, c} ⇒ {d, c} ⇒ {c} ⇒ X0 ∪ {b}
which is of length m+2. The state X0 ∪{b} is sent to region 5 due to the target
in attached with table t8. In this region the reactions in table t9 yield

X0 ∪ {b} ⇒ X1 ∪ {b} ⇒ X2 ∪ {b} ⇒ · · ·

⇒ Xm−1 ∪ {b} ⇒ {b} ⇒ ∅.

which is of length m + 1. The total length of the terminating state sequence is
5m + 9.

In [10, Lemma 8, Page 95], a long terminating sequence from a long cycle was
constructed which is recalled in the following result.

Theorem 3. [10] Assume that the (1, 1) reaction system A with the base set S
generates a cycle of length m ≥ 4. Then there is a (1, 1) reaction system A1 with
the base set S ∪ {a, b, c} generating a terminating sequence of length m + 4.

Given a (1, 1) reaction system A over a base set of cardinality n and a state
sequence having a cycle of length m, here we construct a (R)TPS with a base
set of cardinality n + 2, defining a terminating sequence of length m + 2. The
construction is based on the proof technique used in [10, Lemma 8, Page 95].

Theorem 4. If there is a state sequence having a cycle of length m in a (1, 1)
reaction system A with a set A of reactions over a base set S of cardinality
n, then there is a (R)TPS with a base set of cardinality n + 2 that defines a
terminating sequence of length m + 2.

Certain State Sequences Defined by P Systems with Reactions 159

Proof. Let Y1 ⇒ Y2 ⇒ · · · ⇒ Ym ⇒ Y1,m ≥ 1, (Yi ⊆ S, 1 ≤ i ≤ m) be a cycle
defined by a (1, 1) reaction system A over a base set S of cardinality n. Consider
the (R)TPS

Π2 = (S ∪ {a, b}, [1[2· · · [m+1]m+1 · · ·]2]1, Q1, Q2, · · · , Qm+1, Y1, ∅, ∅, · · · , ∅).

For 1 ≤ i ≤ m, Qi = {ti(in)} and Qm+1 = {tm+1(here)}. The tables are given
by t1 = A, t2 = A ∪ {(j, b, a)}, for j ranging over S − Y1, ti = t2, for 3 ≤ i ≤ m,
tm+1 = {(a, b, S)}.

Only the region 1 has initial state Y1 while other regions do not have any
initial state. The state Y1 in region 1 is enabled by reactions in A and Y1 ⇒ Y2

and the resulting state Y2 is sent to region 2. Here the additional reactions (j, b, a)
(j ranging over S −Y1) yield a and so Y2 ⇒ Y3 ∪{a} which is then sent to region
3. The process continues in regions 3 to m so that Y3 ∪ {a} ⇒ Y4 ∪ {a} ⇒ · · · ⇒
Ym∪{a} ⇒ Y1∪{a}, finally sending Y1∪{a} to the innermost region m+1 where
this state is enabled by the only reaction (a, b, S) so that Y1 ∪ {a} ⇒ S ⇒ ∅.
Thus we have

Y1 ⇒ Y2 ⇒ Y3 ∪ {a} · · · ⇒ Ym ∪ {a} ⇒ Y1 ∪ {a} ⇒ S ⇒ ∅
which is a terminating sequence of length m + 2.

It was shown in [3, Lemma 16, Page 176] that, by adding three elements
to the base set of a reaction system, we get a cycle of length m + 2 from a
terminating sequence of length m. Given a (1, 1) reaction system A over a base
set of cardinality n and a state sequence having a terminating sequence of length
m, here we construct a (R)TPS with a base set of cardinality n + 3, defining a
cycle of length m + 1.

Theorem 5. [3] If a (1, 1) reaction system generates a terminating sequence
of length m, one can construct another (1, 1) reaction system, with three more
elements in the base set, generating a cycle of length m + 2.

Theorem 6. If there is a terminating state sequence of length m in a (1, 1)
reaction system A with a set A of reactions over a base set S of cardinality n,
then there is a (R)TPS with a base set of cardinality n + 3 that defines a cycle
of length m + 1.

Proof. Let Z0 ⇒ Z1 ⇒ · · · ⇒ Zm = ∅,m ≥ 1, (Zi ⊆ S, 1 ≤ i ≤ m) be a
terminating sequence defined by a (1, 1) reaction system A over a base set S of
cardinality n. Consider the (R)TPS

Π3 = (S ∪ {a, b, c}, [1[2]2]1, Q1, Q2, Z0 ∪ {a, b}, ∅)

where Q1 = {t1(here), t2(in)} and Q2 = {t3(here), t4(out)}. The tables are given
by t1 = A∪{(a, c, b)}∪{(j, c, a) | j ∈ S}, t2 = {(b, c, Z0∪{a, b})}, t3 = t1, t4 = t2.
Only the region 1 has initial state Z0 ∪ {a, b} while region 2 does not have any
initial state. The state Z0 ∪ {a, b} in region 1 is enabled by reactions in t1 and
Z0 ∪ {a, b} ⇒ · · · ⇒ Zm−1 ∪ {a, b} ⇒ {b}. The state {b} is enabled by the

160 S. Sriram et al.

reaction in table t2 and the resulting state Z0 ∪ {a, b} is sent to region 2. Here
the reactions of t3 yield the state {b} and this state is enabled by the reaction in
t4 yielding Z0 ∪ {a, b} which is sent back to region 1. The process repeats. Thus
we have

Z0 ∪ {a, b} ⇒ Z1 ∪ {a, b} ⇒ · · · ⇒ Zm−1 ∪ {a, b} ⇒ {b} ⇒ Z0 ∪ {a, b}
which is a cycle of length m + 1.

4 Concluding Remarks

A general question that is considered in the area of membrane computing is the
following: Is it possible to reduce the number of membranes used in a P system
developed for solving a problem? Here again, one can consider this problem in
the P systems constructed in the results on long terminating sequences or on long
cycles. Graph-based reaction systems have been introduced and investigated in
[4]. It will be of interest, as pointed out in [4], to study sequences of graphs
defined by graph-based reaction systems, which will be our future work.

Acknowledgement. The authors are grateful to the reviewers for their very useful
comments.

References

1. Brijder, R., Ehrenfeucht, A., Main, M., Rozenberg, G.: A tour of reaction systems.
Int. J. Found. Comput. Sci. 22, 1499–1517 (2011)

2. Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundam. Inform. 75, 263–280
(2007)

3. Ehrenfeucht, A., Main, M., Rozenberg, G.: Functions defined by reaction systems.
Int. J. Found. Comput. Sci. 22, 167–178 (2011)

4. Kreowski, H.J., Rozenberg, G.: Graph transformation through graph surfing in
reaction systems. J. Log. Algebraic Methods Program. 109(100481), 1–22 (2019)

5. Pǎun, Gh: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143
(2000)

6. Păun, G.: Membrane computing. In: Lingas, A., Nilsson, B.J. (eds.) FCT 2003.
LNCS, vol. 2751, pp. 284–295. Springer, Heidelberg (2003). https://doi.org/10.
1007/978-3-540-45077-1 26

7. Pǎun, G., Rozenberg, G., Salomaa, A. (eds.): Handbook of Membrane Computing.
Oxford University Press, Oxford (2010)

8. Pǎun, Gh, Pérez-Jiménez, M.J.: Towards bridging two cell-inspired models: P sys-
tems and R systems. Theor. Comput. Sci. 429, 258–264 (2012)

9. Salomaa, A.: On state sequences defined by reaction systems. Lect. Notes Comput.
Sci. 7230, 271–282 (2012)

10. Salomaa, A.: Functions and sequences generated by reaction systems. Theor. Com-
put. Sci. 466, 87–96 (2012)

11. Teh, W.C., Womasuthan, N.: On irreducible reaction systems. Malaysian J. Math.
Sci. 12(1), 25–34 (2018)

12. Zhang, G., Pérez-Jiménez, M.J., Gheorghe, M.: Real-life applications with mem-
brane computing. ECC, vol. 25. Springer, Cham (2017). https://doi.org/10.1007/
978-3-319-55989-6

https://doi.org/10.1007/978-3-540-45077-1_26
https://doi.org/10.1007/978-3-540-45077-1_26
https://doi.org/10.1007/978-3-319-55989-6
https://doi.org/10.1007/978-3-319-55989-6

On Numerical 2D P Colonies with the
Blackboard and the Gray Wolf Algorithm

Daniel Valenta1, Miroslav Langer1,2 , Lucie Ciencialová1,2(B) ,
and Luděk Cienciala1,2

1 Institute of Computer Science, Silesian University in Opava, Opava, Czech Republic
{daniel.valenta,miroslav.langer,lucie.ciencialova,

ludek.cienciala}@fpf.slu.cz
2 Research Institute of the IT4Innovations Centre of Excellence, Silesian University

in Opava, Opava, Czech Republic

Abstract. The 2D P colonies (see [2]) were introduced as a theoreti-
cal model of the multi-agent system for observing the behavior of the
community of very simple agents living in the shared environment. Each
agent is equipped with a set of programs consisting of a small number of
simple rules. These programs allow the agent to act and move in the envi-
ronment. The 2D P colonies showed to be suitable for the simulations of
various (not only) multi-agent systems, and natural phenomena, like the
flash floods. The gray wolf algorithm (see [9]) is the optimization-based
algorithm inspired by social dynamics found in packs of gray wolves and
by their ability to create hierarchies, in which every member has a clearly
defined role, dynamically. The wolves’ primary goal is to find and hunt
down prey, which in our case equals finding the optimal solution to the
given problem. The gray wolf algorithm displays positive results thanks
to the principles of randomness and communication between wolves. In
this paper, we follow our previous research on the numerical 2D P colony
with the blackboard (see [12,13]). We present the results of the computer
simulation of numerical 2D P colonies and we compare these results with
original gray wolf algorithm.

Keywords: Pack algorithm · 2D P colony · Optimization ·
Multi-agent system · Blackboard

1 Introduction

The 2D P colonies (see [3,4,8]), as a version of the P colonies with a two-
dimensional environment, were designed for the purpose of simulating the behav-
ior of the community of very simple agents living in the shared two-dimensional
environment. Both these models origin from P systems - biologically motivated
theoretical model inspired by function and behavour of living cells (for more
details see [8]). 2D P colonies has shown to be suitable for simulating various
simple multi-agent systems, and natural phenomena, like the flash floods(see

c© Springer Nature Switzerland AG 2021
R. Freund et al. (Eds.): CMC 2020, LNCS 12687, pp. 161–177, 2021.
https://doi.org/10.1007/978-3-030-77102-7_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77102-7_10&domain=pdf
http://orcid.org/0000-0001-5990-7780
http://orcid.org/0000-0002-6026-5284
https://doi.org/10.1007/978-3-030-77102-7_10

162 D. Valenta et al.

[1]). The multi-agent systems suitable for simulating by the 2D P colonies have
to be very simple, like colonies of ants, etc. The only communication device the
agents of the 2D P colony can use is the environment, where the agent can leave
special symbols for the others. This form of communication corresponds to the
stigmergy. When the communication between the agents via the environment is
not sufficient, the 2D P colonies are not suitable for simulating such a system.

Also P systems were successfully used for solving optimization problems.
Recently, T. Y. Nishida designed membrane algorithms (see [10]) for solving
NP-complete optimization problems, namely the traveling salesman problem
(see [11]). G. Zhang, J. Cheng and M. Gheorghe proposed ACOPS, the com-
bination of the P systems with ant colony optimization for solving the traveling
salesman problems (see [15]). In [14] the similarities between distributed evolu-
tionary algorithms and membrane systems for solving continuous optimization
problems were studied.

Numerical P systems (see [7]), which have been used (as well as P colonies)
as a robotic controller (in [5]), also work on a similar principle as numerical 2D
P colonies.

The gray wolf optimization algorithm (GWO) (see [13]) is already well–estab-
lished meta-heuristic optimization technology. It is inspired by social dynamics
found in packs of gray wolves, and by their ability to create hierarchies, in which
every member has a clearly defined role, dynamically. The primary goal of the
wolves is to find and hunt down prey in their environment. The algorithm is
inspired by the hunting process. The environment is represented by a mathe-
matical fitness function characterizing the problem and the prey represents the
extreme.

The original model of the 2D P colony cannot successfully simulate the GWO,
while the agents are able to communicate only via the environment, they are
not able to share their po5sitions, hence, they are not able to form desired
hierarchy, and successfully hunt down the prey. Moreover, the environment of
the 2D P colony is a multiset of the objects. In [12], we have introduced the
numerical 2D P colony with the blackboard. The environment is represented by
the discrete values of the fitness function and the model is equipped with the
universal communication device, the blackboard.

We have organized the rest of this paper in the following way: In the second
section, we present the gray wolf algorithm. The third section is devoted to the
numerical 2D P colonies and the issue of simulation of gray wolf algorithm by
this type of 2D P colonies. The receivers are also presented in the last part of
the third section. The receivers aim to help estimate the location of each agent
in the environment. In the fourth section, we present the results of the computer
simulation and we compare the results with the original GWO algorithm. We
conclude the paper by the recapitulation of achieved results and discussion about
them.

On Numerical 2D P Colonies with the Blackboard and GWO 163

2 Gray Wolf Optimization Algorithm

The gray wolf optimization algorithm (GWO) (see [9]) is already well–established
meta-heuristic optimization technology. The gray wolves create a social hierarchy
in which every member has a clearly defined role. Each wolf can fulfill one of the
following roles:

– Alpha pair is the dominant pair and the pack follows their lead for example
during hunts or while locating a place to sleep.

– Beta wolves support and respect the Alpha pair during its decisions.
– Delta wolves are subservient to Alpha and Beta wolves, follow their orders,

and control Omega wolves. Delta wolves divide into scouts – they observe
the surrounding area and warn the pack if necessary, sentinels – they protect
the pack when endangered and caretakers – they provide aid to old and sick
wolves.

– Omega wolves help to filter the aggression of the pack and frustrations by
serving as scapegoats.

The primary goal of the wolves is to find and hunt down prey in their environ-
ment. The hunting technique of a wolf pack can be divided into 5 steps:

1. Search for the prey – wolves are attempting to find the most valuable prey
with respect to the effort required to hunt it successfully.

2. Exploitation of the prey – wolves are attempting to draw attention to them-
selves and to separate the prey from its herd.

3. Encircling prey – the attempt to push the prey into a situation from which
it cannot escape.

4. The prey is surrounded – it can no longer escape.
5. The attack – wolves attack the weak spots of the prey (belly, legs, snout)

until it succumbs to fatigue. Afterwards, they bring it down and crush its
windpipe.

The gray wolf optimization algorithm is inspired by this process and smoothly
transitions between scouting and hunting phases. The prey represents the opti-
mal solution to the given problem, and the environment is represented by a
mathematical fitness function characterizing this problem. The value of the func-
tion at the current position of the particular wolf represents the highest-quality
prey. The wolf with the best value is ranked as Alpha, the second one as Beta,
third as Delta, and all the others are Omegas.

In the scouting phase, the pack extensively scouts its environment through
many random movements so that the algorithm does not get stuck in a local
extreme, while in the hunting phase, the influence of random movements is slowly
reduced and pack members draw progressively closer to the discovered extreme.
To maintain the divergence between those phases, each wolf is assigned vectors
�A and �C.

�A is a vector with components rand (−1, 1) ∗ a,

164 D. Valenta et al.

where rand(−1, 1), generates a random number between −1 and 1 and where

a = 2 −
(

2i

imax

)
,

while i is the current iteration of the algorithm, and imax is the maximum number
of iterations. The vector �A is random value between −2 and 2. The impact of
the vector �A can be seen in the Fig. 1. With growing iterations, it is more likely
that the value of the vector will be between −1 and 1, and this increases the
probability of the wolf to be hunting.

Fig. 1. The vector �A and its impact in 1D

Another component supporting the scouting phase is the vector

�C = rand(0, 2),

where rand(0, 2), generates a random number between 0 and 2. Unlike the vec-
tor �A, the vector �C is not influenced by the iterations. This vector helps the
wolves behave more naturally. Analogously, in nature, wolves encounter various
obstacles that prevent them from approaching prey comfortably.

The vectors �A and �C encourage wolves to prefer scouting or hunting, and so
to avoid local optima regardless of the current iteration of the algorithm.

The position of the wolves in the environment are updated on the base of the
estimated location of the prey using Alpha, Beta, and Delta wolves as guides.

Let �Xj(i) be a position vector of wolf j in i-th iteration. The position vector
of wolf j is updated as follows:

�Xj (i + 1) =
�X1 + �X2 + �X3

3
,

where i is the current iteration of the algorithms, and �X1, �X2, �X3 are new poten-
tial position vectors of Alpha, Beta, and Delta wolves obtained from following
formulas:

�X1 = �Xα (i) − �A1 ∗ �Dα

�X2 = �Xβ (i) − �A2 ∗ �Dβ

�X3 = �Xδ (i) − �A3 ∗ �Dδ

On Numerical 2D P Colonies with the Blackboard and GWO 165

where �Xα(i), �Xβ(i), �Xδ(i) are the position vectors of Alpha, Beta, and Delta
wolves, they are representing the positions in the environment that are closest
to the optimum in i-th iteration. The vectors �A1, �A2, �A3 are calculated in the
same way as vector �A. The vectors �Dα, �Dβ , �Dδ are defining the distance of the
wolf j position from the prey as follows:

�Dα =
∣∣∣ �C1 ∗ �Xα (i) − �Xj (i)

∣∣∣
�Dβ =

∣∣∣ �C2 ∗ �Xβ (i) − �Xj (i)
∣∣∣

�Dδ =
∣∣∣ �C3 ∗ �Xδ (i) − �Xj (i)

∣∣∣
where | �X| is the vector whose components are the absolute values of the com-
ponents of �X.

The vectors �C1, �C2, �C3 are computed in the same way as vector �C, and they
influence the weight of the estimated position of the prey �Xα, �Xβ , �Xδ, increasing
or decreasing it.

This principle ensures, that the wolves have the tendency to approach the
prey from the different directions and encircle it (see Fig. 2).

Fig. 2. Update of the positions of the Omega wolves [9].

2.1 Algorithm Pseudo-code

In this subsection we describe the algorithm in pseudo-code.
The inputs of the algorithm are dimensions of the environment of the prob-

lem, the boundaries of the environment of the problem, fitness function charac-
terizing the problem, the size of the pack (number of wolves/agents), number
of iterations of the algorithm, termination criteria and criteria of the fitness
function.

The pseudo-code of the algorithms:

166 D. Valenta et al.

Fig. 3. The visualization of the steps of the algorithm

1. In the first step, agents (wolves) are randomly spread out across the environ-
ment.

2. In each iteration i:
(a) calculate the fitness value of each agent and determine its social hierarchy

– Fig. 3. part 1. The agent with the best value (closest to the optimum) is
Alpha, second best is Beta, third best is Delta, and all others are Omegas.

(b) calculate the best solution found so far by Alpha, Beta and Delta (�Xα(i),
�Xβ(i), �Xδ(i)) and average it – Fig. 3. part 2,

(c) update positions of all the wolves Xj(i + 1), while random vectors �A and
�C are updated for each one – Fig. 3. part 3,

(d) check the termination criterion – Fig. 3. part 4. Iterations terminate when
fitness function value reaches a preset value.

3 The Simulation of the Gray Wolf Optimization
Algorithm Using 2D P Colonies

To successfully simulate GWO by the 2D P colony, we need to solve 3 basic
problems stated in the Table 1. For more details see [12].

On Numerical 2D P Colonies with the Blackboard and GWO 167

Table 1. Differences between Gray wolf algorithm and 2D P colony

Difference / System Gray wolf
algorithm

P colony Solution

Environmental
problem

The environment is
represented by a
mathematical
fitness function

The environment is
represented by a
multiset of symbols

Include discretized
values of the
fitness functions
into the
environment

Communication
problem

The agents have
the knowledge of
their global
position in the
environment

They are
communities of
simple reactive
agents
independently
living and acting in
a joint shared
environment

The blackboard
was introduced

Randomness
problem

Random vectors �A
and �C influence the
movement of
wolves in the
environment

Each rule is
deterministic, the
only way to
implement
randomness is to
randomize the
choosing rule for
identical
configurations

Non-deterministic
choice between
several applicable
rules

3.1 Model of Numerical 2D P Colony with the Blackboard

Let us recall the definition of the numerical 2D P colony with the blackboard.

Definition 1. A numerical 2D P colony with blackboard is a construct
Π = (V, e, Env,A1, . . . , Ak, BB, f), k ≥ 1, where

– V is the alphabet of the colony. The elements of the alphabet are called objects.
b are special objects, that can contain an arbitrary number.

– e ∈ V is the basic environmental object of the numerical 2D P colony,
– Env is a triplet (m×n,wE , fE), where m×n,m, n ∈ N is the size of the envi-

ronment. wE is the initial contents of the environment, it is a matrix of size
m×n of multisets of objects over V −{e}∪{fE(x)}. fE is an environmental
function.

– Ai, 1 ≤ i ≤ k, are the agents. Each agent is a construct Ai = (oi, Pi, [o, p]) ,
0 ≤ o ≤ m, 0 ≤ p ≤ n, where

• oi is a multiset over V , it determines the initial state (contents) of the
agent, |oi| = 2,

• Pi = {pi,1, . . . , pi,li} , l ≥ 1, 1 ≤ i ≤ k is a finite set of programs, where
each program contains exactly 2 rules. Each rule is in the following form:

168 D. Valenta et al.

∗ a → b, the evolution rule, a, b ∈ V ,
∗ c ↔ d, the communication rule, c, d ∈ V ,
∗ [aq,r] → s, aq,r ∈ V, 0 ≤ q, r ≤ 2, s ∈ {⇐,⇒,⇑,⇓}, the motion rule,
∗ a � x , x ∈ R, a, x ∈ V, is the blackboard communication rule.

If the program contains evolution or communication rule r1, r2 that
each works with objects with numbers, it can be extended by a condition:
〈x > y : r1, r2〉 , 〈x ≥ y : r1, r2〉 ,

• [o, p], 1 ≤ o ≤ m, 1 ≤ p ≤ n, is an initial position of agent Ai in the 2D
environment,

– BB is the blackboard.
– f ∈ V is the final object of the colony.

A configuration of the numerical 2D P colony with the blackboard is given
by the state of the environment - matrix of type m × n with pairs - multiset of
objects over V − {e}, and a number - as its elements, and by the states of all
agents - pairs of objects from the alphabet V , and the coordinates of the agents.
An initial configuration is given by the definition of the numerical 2D P colony
with the blackboard.

A computational step consists of three steps. In the first step, the set of the
applicable programs is determined according to the current configuration of the
numerical 2D P colony with the blackboard. In the second step, one program
from the set is chosen for each agent, in such a way that there is no collision
between the communication rules belonging to different programs. In the third
step, chosen programs are executed, the values of the environment and on the
blackboard are updated. If more agents execute programs to update the same
part of blackboard, only one update information is non-deterministically chosen.
The agent has no information if his update attempt was successful or not.

A change of the configuration is triggered by the execution of programs, and
updating values by functions. It involves changing the state of the environment,
contents and placement of the agents.

A computation is non-deterministic and maximally parallel. The computation
ends by halting when there is no agent that has an applicable program.

The result of the computation is the number of copies of the final object
placed in the environment at the end of the computation.

3.2 Numerical 2D P Colony with the Blackboard for GWO

In this section, we present the numerical 2D P colony with the blackboard that
models GWO.

Pgw = (V, e, Env,A1, A2, . . . , Ak, BB, f), k ≥ 0, where:

– V =
{

b , b
′
, b

′′
, b

′′′
, b

iv
, b

v
, b

vi
, e, f, a′, b, c, d, h, h′, h′′,mOK

}
∪

∪{mKO,m′
KO,m′′

KO, n,A,B,D, } ∪ {
l, l′, l′′, l′′′, liv | Y ∈ {⇐,⇒,⇑,⇓}} ∪

∪{kz1z2z3z4 | zi ∈ {⇐,⇒,⇑,⇓} ∧ k, i ∈ {1, 2, 3, 4}},
– e ∈ V is the basic environmental object,

On Numerical 2D P Colonies with the Blackboard and GWO 169

– Env is a triplet (i × j, we, fE (x, y)), where i, j ∈ N, wE = |ar,s|, ar,s = ε, 1 ≥
r ≥ i, 1 ≥ s ≥ j,

– A1, A2, . . . , Ak are the agents, Ai = (Oi, Pi, [rx, ry]), where:
• |oi| = 2,
• P1 = P2 = · · · = Pk, Pi rules are defined below,
• [r, s] are the initial coordinates,

– BB is the blackboard. The blackboard is described in the separate subsection.
– f is the final object, f ∈ V .

The initial configuration of the agent is ee, and its position is [r, s].
The set of programs Pi is as follows:

1.
〈
e � x

′; e → Get(BB[alpha], x)
〉
, where x ∈ R is number placed in the

environmental cell [r, s], alpha is the address of current value y of the alpha
wolf on the blackboard. This program reads the number from the environ-
mental cell, and the value of current alpha wolf on blackboard. If more agents
decide to be Alpha (or Beta or Delta) in one computational step, The value
of only one of them is placed into Blackboard. The computational phase of
Alpha, Beta and Delta agents (from configuration ee to configuration ee) is
shorter than this phase for Omega agents and in following phase they check
the value of three leading wolves again.

2. The programs in the following subset of programs compares two numbers
stored inside the agent, and serves to set the role of the agent:
(a)

〈
x > y : x → x , y

′ → A
〉

– I am new Alpha,

(b)
〈
x ≥ y : x

′ → b, x → x
〉

(c)
〈

x → x , b ← Get(BB[beta], x ′′)
〉
,

(d)
〈
x > y : x → x , y

′′ → B
〉

– I am new Beta,

(e)
〈
x ≥ y : x

′′ → c, x → x
〉

(f)
〈

x → x , c ← Get(BB[delta], x ′′′)
〉
,

(g)
〈
x > y : x → x , y

′′′ → D
〉

– I am new Delta,

(h)
〈
x ≥ y : x

′′′ → d, x → x
iv

〉
– I am Omega,

3. If there is A,B or C inside the agent, then the agent updates the blackboard
using the following programs:
(a)

〈
Update(x , BB[alpha]),A → a ′〉,

(b)
〈
Update(x , BB[beta]),B → a ′〉,

(c)
〈
Update(x , BB[delta]),D → a ′〉,

(d)
〈

x → e, a′ → e
〉
,

4. If the agent is the omega wolf, it reads its distance from the prey (the distance
is computed by the function and placed on the blackboard), and it moves in
a random direction. The direction is generated in such a way, that the agent
creates the object 1 with a low index formed from four directions in random
order. 1 means that the agent will move in the first direction.
(a)

〈
d → 1w, x

iv → Get(BB[my dist. from prey], x v)
〉
, w = z1z2z3z4, zi ∈

{⇒,⇐,⇑,⇓}, z1 �= z2 �= z3 �= z4

170 D. Valenta et al.

(b)
〈
1w ↔ e, x

v → x
v
〉
,

(c)

〈⎡
⎣e e e

e Xz1z2z3z4 e
e e e

⎤
⎦ → zX , e → zX

〉
, X ∈ {1, 2, 3, 4}, zX ∈ {⇒,⇐,⇑,⇓}

Then the agent puts the object with movement sequence into environmental
cell and reads its distance from the prey.
(a)

〈
zX → z′

X , x
v ↔ e

〉
,

(b) 〈z′
X → z′′

X , e → h〉,
(c)

〈
z′′
X ↔ x

v, h → Get(BB[dist. from prey], x vi)
〉
,

5. If the new value is smaller than the value from the previous location, the
agent consumes the object corresponding to the direction, and the object
with movement sequence and rewrites its content to ee.

(a)
〈
x ≥ y : x

v → mOK , y
vi → h′

〉
,

(b)
〈
x > y : x

vi → mKO, y
v → h′

〉
,

(c) 〈mOK → mOK , h′ ↔ z′′
X〉,

(d)

〈⎡
⎣e e e

e e e
e e e

⎤
⎦ → zX , z′′

X → z′′′
X

〉
, zX is the opposite movement to zX ,

(e)
〈
mOK ↔ Xw, z′′′

X → ziv
X

〉
,

(f)

〈⎡
⎣e e e

e e e
e e e

⎤
⎦ → zX , ziv

X → h′′
〉

(g) 〈Xw → e, h′′ → e〉,
6. If the new distance is greater than the old one, then the agent consumes the

object corresponding to the direction, and moves to the original location, and
rewrites the object 1 with the movement sequence into the object 2 with the
same movement sequence, and the agent continues with the investigation. If
the agent moves back and there is object 4 with movement sequence, it did
not find a smaller distance to the prey and it stops working.
(a) 〈mKO → mKO, h′ ↔ z′′

X〉,
(b) 〈mKO → m′

KO, z′′′
X → e〉,

(c) 〈m′
KO → m′

KO, e ↔ Xw〉,
(d) 〈m′

KO → m′′
KO,Xw → (X + 1)w〉, X ∈ {1, 2, 3}

(e)
〈
m′′

KO → Get(BB[my dist. from prey], x v),Xw ↔ e
〉
, X ∈ {2, 3, 4},

(f) 〈m′
KO → f, e ↔ 4w〉,

The computation is possibly non-halting because three agents (alpha, beta, and
gamma) can always find an applicable program. The positions of these three
agents determine the position of the prey.

Blackboard. The blackboard for GWO is a structure defined as follows:

BB = (�fnc, [�v1, �v2]), where:

On Numerical 2D P Colonies with the Blackboard and GWO 171

– dimension of both vectors �v1, �v2 is j = max{7, k}, k ≥ 1 is the number of
agents. In this case, it is a matrix of type i×j, i, j ∈ N represented by a vector
of these vectors.

– �v1 is a vector with elements that can be named AlphaValue, BetaValue,
DeltaValue, AlphaPosition, BetaPosition, DeltaPosition, preyPosition.
If j > 7, then the elements with an index greater than 7 are without a name,
they are addressed by its position. The first three elements are serviced by
the agents, so the function of the blackboard for the first row is only to copy
their values if they are not updated by agents in the current step of the
computation.

• initial content of �v1 is 0 in each element.
– �v2 is a vector with elements named A0’s DistanceFromPrey, A1’s Distance-
FromPrey, . . . , Ak’s DistanceFromPrey, k is number of agents (wolves), the
elements without a name can be addressed only by its position in the black-
board matrix.

• initial content of �v2 is 0 in each element.
– fcn is a vector of functions (fnc1(i), fnc2(i)) for manipulating the vectors

�v1 and �v2, where fnc1(i) updates i − th element of vector �v1 and fnc2(i)
updates i − th element of vector �v2, 0 ≤ i ≤ j, j is a dimension of vectors �v1
and �v2:

i fnc1(i) =

⎧⎪⎨
⎪⎩

identity i = {0, 1, 2},
BPosition i = {3, 4, 5},

fnc1(3)+fnc1(4)+fnc1(4)
3 i = 6.

ii fnc2(i) = |fnc1(preyPosition) − BPosition|, for i = index of agent Ai.

Auxiliary function BPosition is described in the section Receivers.

3.3 Receivers - From Theoretical Model into Real Life

A communication between agents and blackboard is realized by receivers. We
equip our model with two receivers that are listening signals coming from the
agents. The abilities of receivers are crucial for functioning of the functions of the
blackboard, because they are providers of values of Bposition function. We can
assume, that receivers can ”see” the position of each agent but for wide areas, it

Fig. 4. The use of the blackboard

172 D. Valenta et al.

is not very realistic. For our model, we choose another approach. We introduce
time into our model - it takes some time to signal from agents to reach receivers.

– rcv - the blackboard has two receivers. Both receivers are located in the
environment. Their initial positions are on opposite sides of the boundary
points of the environment Env (positions [0, 0] and [m − 1, n − 1], where
m × n,m, n ∈ N, is the size of the environment).
The positions of the receivers are updated in each derivation step and receivers
circle around the environment as follows:

• x < 1, y < n : x = x, y = y + 1,
• x < m, y > n − 1 : x = x + 1, y = y,
• x > m − 1, y > 0 : x = x, y = y − 1,
• x > 0, y < n + 1 : x = x − 1, y = y.

The primary task of the rcv is to collect data (messages) from agents.
• The messages have a given structure:

msg : (contents, index of the agent, timestamp)

Contents is a request of the agent - function Get , Update or it is an empty
string, timestamp corresponds to the time, when request was sent.

Receivers are listening to agents’ signal. If both receivers receive the same
message from the agent, the received message is being processed in the fol-
lowing sequence: computation of auxiliary function BPosition, execution of
contents part of message.

• BPosition = x ∈ R1 ∩ R2, where R1, R2 are circles with center at the
positions of the receivers and radius r = now − sent, where now is the
time of receiving the message, and sent equals to the timestamp, x is
chosen randomly in the intersection area. The intersection shapes are
changing in the time due to the movements of the receivers.

At this point, it is important to focus on the use of the blackboard by the
agents.

If the agent concludes that it is the Alpha, it rewrites the field �v1[0] using the
communication program 3 (Fig. 4, left side). In the same way, Beta and Delta
wolves can rewrite field �v1[1] using the same function. On the right side of the
Fig. 4, the agent concludes that it is the Omega, and it will try to move with the
assistance of the blackboard, using communication program 1.

4 Computer Simulation

In this section, we present the results of the computer simulation and we compare
the results with the original GWO algorithm. We built the simulator based on
the analysis from the previous section.

The first version of the simulator was not acting as desired, but the complica-
tions were expected. In the first derivation steps, most of the wolves tried to be
the Alpha wolf, and they tried to write to the alpha position on the blackboard.

On Numerical 2D P Colonies with the Blackboard and GWO 173

This behavior of the simulator led to the situation when the Omega wolves
were without the lead and they reached the final configuration soon, and the
simulation stopped unsuccessfully very often, giving no result.

Considering these results, we decided to make a slight change in the behavior
of the wolves in the first steps of the derivation. Once the wolf tries to write
to the alpha position unsuccessfully, it is allowed to try to write to the beta
and delta position respectively. This modification is still in the scope of the
P colonies, and we were not forced to introduce some outer mechanism setting
the hierarchy of the pack. The wolves were able to set the hierarchy themselves,
and the simulation proceeded as expected.

The following figures show the simulator, the settings, the process of the
simulation, and the results.

Fig. 5. The instance of the environment

In the Fig. 5, there can be seen an instance of the environment. Source envi-
ronment file is displayed on the right. If we move the mouse cursor to some field,
we obtain the coordinates of it.

In the Fig. 7, the agents are initialized within the environment. The vec-
tors of the blackboard have all their values initialized to zero. The agents
are represented by the blue text color. By moving the mouse cursor to the
position of the agent, we obtain detailed information about it in the form:
Ai = ({obj1, obj2}, [posX, posY]), where i is the index of the agent, obj1 and
obj2 are the objects inside this agent, and posX and posY are the coordinates
of its position.

The Step button runs a predefined number of the steps of the simulation.
In the first step, each agent runs one rule of its program. The iteration is a
set of these steps. New iteration starts when each agent performed all the steps
that are needed before the synchronization. The Output console displays the
following information: Current iteration, the action of the agent in the form:

174 D. Valenta et al.

Fig. 6. The initial settings of the simulation

Fig. 7. The agents in the environment (Color figure online)

(index, (posX, posY), value, action) – for example: (1, (1, 5), 4449, ‘A’) = agent
1 at the position (1,5) updates Alpha on the blackboard with value 4449,
(4, (2, 6), ‘L’, ‘m’) = agent 4 at the position (2,6) is moving to position Left
(Fig. 8).

The simulation terminates when the termination criterion, the iteration
reaches the maximal value, or when no more delta agent can move. In the Fig. 9,

On Numerical 2D P Colonies with the Blackboard and GWO 175

Fig. 8. The simulation

Fig. 9. The last iteration

176 D. Valenta et al.

there can be seen that agent one has found the best solution – number 4449,
and that agent 5 is dead (it is in the final configuration).

4.1 Numerical 2D P Colony with Blackboard vs GWO

The simulation of the GWO algorithm by the numerical 2D P colony with the
blackboard works, and it gives the desired results, it finds the optimal solution
However, one must say that the original GWO algorithm works faster. The main
issue is, that the wolves in the GWO are “getting faster” as the number of the
iterations of the algorithm increases, but the agents of the P colony can move
only one step further in each derivation step. Yet, we have shown that our model
is able to simulate successfully the behavior of the GWO, using only simple rules
formed into the simple programs, and that even so simple theoretical model is
able to solve the optimization problems.

5 Conclusion

The gray wolf optimization algorithm is a well-established optimization method,
and the 2D P colonies are already well-established theoretical models. Both are
inspired by nature and both deal with a community of the agents acting in a
shared environment.

We have shown that by solving the communication problem of the 2D P
colony by introducing the blackboard into the model, we are able to simulate
successfully the behavior of the pack of wolves of the GWO, using only simple
rules formed into the simple programs. Even though the original GWO algorithm
works faster, due to the influence of the step of the iteration on the movement of
the wolves, our model consists of very simple agents, and still is able to solve the
optimization problems. In the simulation, we used the same number of agents
as it was used in the original GWO. For GWO, this number is optimal to solve
most optimization problems in good time. The open question remains how the
results would change if we used an order of magnitude more agents in a 2D P
colony and used massive parallelism.

Acknowledgments. This work was supported by The Ministry of Education,
Youth and Sports from the National Programme of Sustainability (NPU II) project
“IT4Innovations excellence in science - LQ1602”.

Research was also supported by the SGS/11/2019 Project of the Silesian University
in Opava.

References

1. Cienciala, L., Ciencialová, L., Langer, M.: Modelling of surface runoff using 2D P
colonies. In: Alhazov, A., Cojocaru, S., Gheorghe, M., Rogozhin, Y., Rozenberg, G.,
Salomaa, A. (eds.) CMC 2013. LNCS, vol. 8340, pp. 101–116. Springer, Heidelberg
(2014). https://doi.org/10.1007/978-3-642-54239-8 9

https://doi.org/10.1007/978-3-642-54239-8_9

On Numerical 2D P Colonies with the Blackboard and GWO 177

2. Cienciala, L., Ciencialová, L., Perdek, M.: 2D P colonies. In: Csuhaj-Varjú, E.,
Gheorghe, M., Rozenberg, G., Salomaa, A., Vaszil, G. (eds.) CMC 2012. LNCS,
vol. 7762, pp. 161–172. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-36751-9 12

3. Ciencialová, L., Csuhaj-Varjú, E., Cienciala, L., Sośık, P.: P colonies: survey. J.
Membr. Comput. 1(3), 178–197 (2019)

4. Kelemen, J., Kelemenová, A., Păun, Gh.: Preview of P colonies: a biochemically
inspired computing model. In: Workshop and Tutorial Proceedings. Ninth Inter-
national Conference on the Simulation and Synthesis of Living Systems (Alife IX),
Boston, Massachusetts, USA, pp. 82–86, 12–15 September 2004

5. Pavel, A.B., Buiu, C.: Using enzymatic numerical P systems for modeling mobile
robot controllers. Nat. Comput. 11, 387–393 (2012). https://doi.org/10.1007/
s11047-011-9286-5

6. Păun, Gh: Computing with membranes. J. Comput. Syst. Sci. 61(1), 108–143
(2000)

7. Păun, Gh, Păun, R.: Membrane computing and economics: numerical P systems.
Fundam. Inform. 73(1–2), 213–227 (2006)

8. Păun, G., Rozenberg, G., Salomaa, A.: The Oxford Handbook of Membrane Com-
puting. Oxford University Press Inc., Oxford (2010)

9. Mirjalilia, S., Mirjalilib, S.M., Lewisa, A.: Grey wolf optimizer. Adv. Eng. Softw.
69, 46–61 (2014)

10. Nishida, T.Y.: Membrane algorithms. In: Freund, R., Păun, G., Rozenberg, G.,
Salomaa, A. (eds.) WMC 2005. LNCS, vol. 3850, pp. 55–66. Springer, Heidelberg
(2006). https://doi.org/10.1007/11603047 4

11. Nishida, T.Y.: Membrane algorithms: approximate algorithms for NP-complete
optimization problems. In: Ciobanu G., Păun G., Pérez-Jiménez M.J. (eds)
Applications of Membrane Computing. Natural Computing Series, pp. 303–314.
Springer, Heidelberg (2006). https://doi.org/10.1007/3-540-29937-8 11

12. Valenta, D., Ciencialová, L., Langer, M., Cienciala, L.: Modelling of grey wolf
optimization algorithm using 2D P colonies. In: ITAT 2020, Information technolo-
gies - Applications and Theory 2020, ITAT 2020 Conference Proceedings, CEUR
Workshop Proceedings, vol. 2718, pp. 192–200 (2020)

13. Valenta, D., Langer, M.: On 2D P colonies and grey wolf algorithm. In: SGEM
2020, Sofia: 20th International Multidisciplinary Scientific GeoConference SGEM
2020, SGEM2020 Conference Proceedings, to appear, vol. 20, pp. 231–238 (2020)

14. Zaharie, D., Ciobanu, G.: Distributed Evolutionary Algorithms Inspired by Mem-
branes in Solving Continuous Optimization Problems. In: Hoogeboom, H.J., Păun,
G., Rozenberg, G., Salomaa, A. (eds.) WMC 2006. LNCS, vol. 4361, pp. 536–553.
Springer, Heidelberg (2006). https://doi.org/10.1007/11963516 34

15. Zhang, G., Cheng, J., Gheorhe, M.: A membrane-inspired approximatealgorithm
for traveling salesman problems. Rom. J. Inf. Sci. Technol. 14, 3–19 (2011)

https://doi.org/10.1007/978-3-642-36751-9_12
https://doi.org/10.1007/978-3-642-36751-9_12
https://doi.org/10.1007/s11047-011-9286-5
https://doi.org/10.1007/s11047-011-9286-5
https://doi.org/10.1007/11603047_4
https://doi.org/10.1007/3-540-29937-8_11
https://doi.org/10.1007/11963516_34

Author Index

Bagossy, Attila 1
Bera, Somnath 153
Bhuvaneswari, K. 78

Cienciala, Luděk 161
Ciencialová, Lucie 161
Csuhaj-Varjú, Erzsébet 17

Elkhani, Naeimeh 94

Fernau, Henning 31

Immanuel, S. James 46

Jayasankar, S. 46

Kalyani, T. 78, 135
Kuppusamy, Lakshmanan 31

Langer, Miroslav 161

Muniyandi, Ravie Chandren 94

Nishida, Taishin Y. 126

Paramasivan, Meenakshi 46

Raman, Indhumathi 31
Raman, T. T. 78
Ravichandran, P. 78

Sasikala, K. 135
Sethy, Pramod Kumar 17
Sriram, Sastha 153
Subramanian, K. G. 153
Sweety, F. 135

Thomas, D. G. 78, 135
Thomas, D. Gnanaraj 46

Valenta, Daniel 161
Vaszil, György 1

	 Preface
	 Organization
	 Contents
	Transition Graphs of Reversible Reaction Systems
	1 Introduction
	2 Preliminaries
	3 Transition Graphs of Reversible Systems
	4 Reaction Systems Which Are Reversible with Lookbehind
	5 Conclusion
	References

	Communicating Reaction Systems with Direct Communication
	1 Introduction
	2 Preliminaries
	3 Communicating Reaction Systems with Direct Communication
	3.1 Communication by Products
	3.2 Communication by Reactions

	4 Conclusions
	References

	Generalized Forbidding Matrix Grammars and Their Membrane Computing Perspective
	1 Introduction
	2 Generalized Forbidding Matrix Grammars
	3 Results for Unbounded Context Lengths
	4 Normal Forms of Phrase Structure Grammars
	5 When All Parameters Are Bounded
	6 Connection to Membrane Computing
	7 Discussions
	References

	Parallel Contextual Array Insertion Deletion P Systems and Tabled Matrix Grammars
	1 Introduction
	2 Preliminaries
	3 Parallel Contextual Array Insertion Deletion Grammar and Associated P System
	4 Results
	5 Conclusion
	References

	Triangular Array Token Petri Net and P System
	1 Introduction
	2 Preliminaries
	3 Triangular Array Token Petri Net
	4 Triangular Array Token Petri Net P System
	5 Comparative Study with TTPPS
	6 Conclusion
	References

	P System as a Computing Tool for Embedded Feature Selection and Classification Method for Microarray Cancer Data
	1 Introduction
	2 Previous Approaches
	2.1 Microarray Gene Expression Data Analysis for Cancer Classification
	2.2 Correlation-Based Feature Ranking Algorithms for Gene Selection
	2.3 The Kernel P System
	2.4 The MObPSO Approaches
	2.5 Embedded Method
	2.6 SVM for Cancer Classification

	3 Materials and Methods
	3.1 Description of the Entire Model
	3.2 First Part: Feature Selection Based on kP-MObPSO
	3.3 kP Rules to Find Out Marker Genes and kP-SVM Rules to Calculate Error Rates
	3.4 Second Part: Embedded Feature Selection and Classification kP Rules

	4 Results
	4.1 Performance Evaluation Measurements
	4.2 Experimental Results

	5 Discussion
	6 Conclusions
	References

	Evolutionary P Systems: The Notion and an Example
	1 Introduction
	2 Definition of Evolutionary P Systems
	3 Evolutionary P System for Grammatical Inference
	4 Experiments
	5 Discussions
	References

	Partial Array Token Petri Net and P System
	1 Introduction
	2 Preliminaries
	3 Partial Array Token Petri Net Structure
	4 Partial Array Token Petri Net P System
	5 Comparative Study with Local and Recognizable Partial Array Languages
	6 Conclusion
	References

	Certain State Sequences Defined by P Systems with Reactions
	1 Introduction
	2 Basic Definitions
	3 Transition P System Based on Reactions
	4 Concluding Remarks
	References

	On Numerical 2D P Colonies with the Blackboard and the Gray Wolf Algorithm
	1 Introduction
	2 Gray Wolf Optimization Algorithm
	2.1 Algorithm Pseudo-code

	3 The Simulation of the Gray Wolf Optimization Algorithm Using 2D P Colonies
	3.1 Model of Numerical 2D P Colony with the Blackboard
	3.2 Numerical 2D P Colony with the Blackboard for GWO
	3.3 Receivers - From Theoretical Model into Real Life

	4 Computer Simulation
	4.1 Numerical 2D P Colony with Blackboard vs GWO

	5 Conclusion
	References

	Author Index

