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Abstract. The interest in Explainable Artificial Intelligence (XAI)
research is dramatically grown during the last few years. The main reason
is the need of having systems that beyond being effective are also able to
describe how a certain output has been obtained and to present such a
description in a comprehensive manner with respect to the target users. A
promising research direction making black boxes more transparent is the
exploitation of semantic information. Such information can be exploited
from different perspectives in order to provide a more comprehensive and
interpretable representation of AI models. In this paper, we present the
first version of SeXAI, a semantic-based explainable framework aiming
to exploit semantic information for making black boxes more transpar-
ent. After a theoretical discussion, we show how this research direction
is suitable and worthy of investigation by showing its application to a
real-world use case.

Keywords: Explainable Artificial Intelligence · Ontologies ·
Knowledge bases · Artificial intelligence · Interpretability ·
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1 Introduction

Explainable Artificial Intelligence (XAI) aims at explaining the algorithmic deci-
sions of AI solutions with non-technical terms in order to make these decisions
trusted and easily comprehensible by humans [1]. If these AI solutions are based
on learning algorithms and perceived as black boxes due to their complexity, XAI
makes them more transparent and interpretable too. This is of great interest for
both logical reasoning in rule engines and Machine Learning (ML) methods.
The explanation of a reasoning process can be very difficult, especially when a
system is based on a set of complex logical axioms whose logical inferences are
performed with, for example, tableau algorithms [4]. Indeed, inconsistencies in
logical axioms may be not well understood by users if the system limits to just
report the violated axioms. Indeed, users are generally skilled to understand nei-
ther formal languages nor the behavior of a whole system. This is crucial for some
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applications, such as a power plant system where a warning message to the user
must be clear and concise to avoid catastrophic consequences. On the other hand,
ML methods are based on statistical models of the data where some explana-
tory variables (i.e., the features) of the data are leveraged in order to predict a
dependent variable (i.e., a class or a numeric value). Many statistical methods
(e.g., the principal component analysis) are able to detect what are the main
involved features in a ML task. These involved features can be used to explain to
user the reason of a particular decision. These features are usually handcrafted
by human experts and consequently present a shared semantics. Modern Deep
Neural Network (DNN) are able to learn these features with no need of human
effort. However, the semantics of these learnt features is nor explicit or shareable
with humans. Therefore, a human-comprehensible explanation about how and
why an AI system took a decision is necessary.

A shared and agreed definition on explainability has not been reached in the
AI community so far. Here we follow the definition of Adadi and Berrada [1]
that argue for a distinction between interpretability and explainability. The for-
mer regards the study of a mathematical mapping between the inputs and the
outputs of a black-box system. The latter regards a human comprehension of
the logic and/or semantics of such a system. Doran et al. [15] refine the notion
of explainability stating that an explainable (or comprehensible) system should
provide a reason or justification about its output instead of focusing solely on
the mathematical mapping. Moreover, they argue that truly explainable systems
have to adopt reasoning engines that run on knowledge bases containing an
explicit semantics in order to generate a human comprehensible explanation. In
addition, the explainability power depends also on the background knowledge of
the users.

To this extent, the logical reasoning associated to semantics is fundamen-
tal as it represents a bridge between the output machine and human concepts.
This differs from other XAI works that try to analyze the activations of the
hidden neurons (i.e., the learnt features) with respect to a given output with-
out attaching a shared semantics. However, logical reasoning on the back-box
output is not sufficient as it performs a post-hoc explanation of the black-box
guided only by the axioms of a knowledge base. Indeed, no explicit link from the
black-box learned features and the concepts in the knowledge base is used. The
contribution of the paper addresses this issue.

We propose a novel semantic-based XAI (SeXAI) framework that generates
explanations for a black-box output. Differently from Doran et al., such expla-
nations are First-Order logic formulas whose predicates are semantic features
connected to the classes of the black box output. Logic formulas are then easy
to translate in natural language for a better human comprehension. Moreover,
the semantic features are aligned with the neurons of the black box thus creating
a neural-symbolic model. This allows reasoning between the output and the fea-
tures and the improvement of both the knowledge base and the black box output.
In addition, the semantics in the knowledge base is aligned with the annotation
in the dataset. This is fundamental both for the neural-symbolic alignment and
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for the black box performance. The latter were tested with experiments on image
classification showing that a semantic aligned with the training set outperforms
a model whose semantics is deduced from the output with only logical reasoning.
The rest of the paper follows with Sect. 2 that provides a state-of-the-art of tech-
niques for generating explanations from logical formulas. Section 3 describes the
main concepts of the SeXAI framework whereas Sect. 4 shows a first application
and results of the framework in an image classification task. Section 5 concludes
the paper.

2 Related Work

The research on XAI has been widely explored in the last years [19], but most
of the contributions focused only on the analysis of how learning models (a.k.a.
black boxes) work. This is a limited view of the topic since there is a school
of thought arguing that an effective explainability of learning models cannot
be achieved without the use of domain knowledge since data analysis alone is
not enough for achieving a full-fledged explainable system [8]. This statement
has been further discussed recently by asserting that the key for designing a
completely explainable AI system is the integration of Semantic Web technolo-
gies [21,22,31]. Semantic Web technologies enabling the design of strategies for
providing explanations in natural language [2,28] where explanations are pro-
vided through textual rule-like notation. NLG strategies have been designed
also for generating natural language text from triples [38] and for translat-
ing SPARQL queries into a natural language form understandable by non-
experts [17]. Here, we focused on the integration of semantic information as
enabler for improving the comprehensiveness of XAI systems. Our aim is to
generate natural language explanations as result of the synergies between neu-
ral models and logic inferences for supporting end-users in understanding the
output provided by the systems.

The explanation of the logical reasoning in an ontology is implemented with
two orthogonal approaches: justifications and proofs. The former computes the
minimal subset of the ontology axioms that logically entails an axiom. The latter
computes also all the inference steps [27].

One of the first user studies dealing with explanations for entailments of
OWL ontologies was performed by [26]. The study investigated the effective-
ness of different types of explanation for explaining unsatisfiable classes in OWL
ontologies. The authors found that the subjects receiving full debugging support
performed best (i.e., fastest) on the task, and that users approved of the debug-
ging facilities. Similarly, [30] performed a user study to evaluate an explanation
tool, but did not carry out any detailed analysis of the difficulty users had with
understanding these explanations. While, [5] presents a user study evaluating a
model-exploration based approach to explanation in OWL ontologies. The study
revealed that the majority of participants could solve specific tasks with the help
of the developed model-exploration tool, however, there was no detailed analysis
of which aspects of the ontology the subjects struggled with and how they used
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the tool. The work [25] presents several algorithms for computing all the justifica-
tions of an entailment in a OWL-DL knowledge base. However, nor study or user
evaluation is performed to assess the capability of the computed justifications
of the logical entailments. The work in [20] focuses on the explanation, through
justifications, of the disclosure of personal data to users (patients and staff) of
hospitals. This is performed by translating SWRL rules inconsistencies into nat-
ural language utterances. Moreover, the SWRL rules translation is performed
axiom by axiom, thus generating a quite long sentence. This could require too
much time for reading and understanding. Whereas, our method returns only a
single utterance summarizing the whole justification.

Formal proofs are the other form of explanation for logical reasoning. In [33]
the authors present an approach to provide proof-based explanations for entail-
ments of the CLASSIC system. The system omits intermediate steps and pro-
vides further filtering strategies in order to generate short and simple expla-
nations. The work proposed in [7] first introduced a proof-based explanation
system for knowledge bases in the Description Logic ALC [4]. The system gen-
erates sequent calculus style proofs using an extension of a tableaux reasoning
algorithm, which are then enriched to create natural language explanations.
However, there exists no user studies to explore the effectiveness of these proofs.
In [29] the authors proposed several (tree, graphical, logical and hybrid) visual-
izations of defeasible logic proofs and present a user study in order to evaluate
the impact of the different approaches. These representations are hard to under-
stand for non-expert users. Indeed, the study is based on participants from a
postgraduate course (who have attended a Semantic Web course) and from the
research staff. In general, proof algorithms for Description Logic are based on
Tableau techniques [4] whereas proof algorithms for other logics are studied in
the field of Automated Reasoning [35].

This wide range of approaches to explanation of logical entailments is more
focused on the development of efficient algorithms than on effective algorithms
for common users. Indeed, all the computed explanations are sets of logical
axioms understandable only by expert users. The aim of our work is to provide
and effective representation to explanation for all users. This representation is
based on the verbalization of the explanation in natural language. This verbal-
ization can be performed by using methods that translate axioms of an OWL
ontology in Attempto Controlled English [23,24] or in standard English [3] with
the use of templates. This last work also presents some users’ studies on the
quality of the generated sentences. However, these works do not handle with the
reasoning results (justifications or proofs), indeed, no strategy for selecting and
rendering an explanation is studied.

3 The Framework

In the fields of Machine Learning and Pattern Recognition, a feature is a char-
acteristic or a measurable property of an object/phenomenon under observa-
tion [6]. Features can be numeric or structured and they are crucial in tasks
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such as pattern detection, classification or regression as they serve as explana-
tory variables. Indeed, informative and discriminating features are combined in
a simple or complex manner by the main ML algorithms. This also holds in our
everyday experience, a dish composed by pasta, bacon, eggs, pepper and aged
cheese (features) is recognized as pasta with Carbonara sauce (the class). Dis-
eases are recognized according to the symptoms (features), or some features of a
person (e.g., age, high meat consumption, obesity and sedentary life) can be the
cause of a certain disease. The price of the houses is computed according to the
features of, e.g., location, square meters and years of the real estate. However,
with the rise of Deep Neural Networks (DNN), features are learnt by the system
from the raw data without the necessity of handcrafting from domain experts.
This has improved the performance of such systems with the drawback of loosing
comprehensibility from users. Indeed, DNNs embed the data in a vector space
in the most discriminating way without any link to a formal semantics. The
aim of SeXAI is to link a DNN with a formal semantics in order to provide a
comprehensible explanation of the DNN output to everyday users.

Following the definitions of Doran et al. [15], we ground the notion of explain-
able system into the concept of a comprehensible system, that is a system that
computes its output along with symbols that allow users to understand what
are the main semantic features in the data that triggered that particular out-
put. Here, we refine the work of Doran et al. by introducing the concept of
semantic feature. These are features that can be expressed through predicates
of a First-Order Logic (FOL) language and represent the common and shared
attributes of an object/phenomenon that allow its recognition. Examples can
be ContainsBacon(x) or ContainsEggs(x) indicating the ingredients of a dish
in a picture. Semantic features in principle can be further explained by more
fine-grained semantic features. For example, the ChoppedBacon(x) feature can
be explained by the HasCubicShape(x) and HasPinkColor(x) features. How-
ever, in a nutritional domain, these latter features do not add further compre-
hension to users and can represent an overload of information. Therefore, the
knowledge engineering and/or domain expert have to select the right granular-
ity of the semantic features to present to users and therefore ensuring a sort
of atomic property of these features. Semantic features are different from the
learnt numeric (and not comprehensible) features of a DNN. The aim of a com-
prehensible system is to find an alignment between the learnt and the semantic
features.

The connection between a DNN output and its semantic features is formalized
through the definition of comprehension axiom.

Definition 1 (Comprehension axiom). Given a FOL language with P =
{O}n1 ∪ {A}m1 the set of its predicate symbols, a comprehension axiom is a for-
mula of the form

k∧

i=1

Oi(x) ↔
l∧

i=1

Ai(x)
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with {O}n1 the set of output symbols of a DNN and {A}m1 the corresponding
semantic features (or attributes).

A comprehension axiom formalizes the main tasks of a DNN:

Multiclass Classification: the predicate Oi(x) represents a class (e.g., pasta
with Carbonara sauce or sushi) for x and k = 1 as a softmax is applied in the
last layer of the DNN. The semantic features represent, for example, ingredients
contained in the recognized dish.
Multilabel Classification: Oi(x) is part of a list of predicates being computed
by the DNN (e.g., dinner and party) for x and k > 1 as a sigmoid is applied in
the last layer of the DNN. The semantic features represent, for example, objects
in the scene, such as, pizza, table, bottles, person and balloons.
Regression: Oi(x) can be part of a list of predicates being computed by the
DNN (e.g., the asked price and the real values of house) for x. Here k ≥ 1
with a sigmoid applied in the last layer of the DNN. The semantic features are
properties of interest for buying a house.

Once a set of comprehension axioms is returned by our comprehensible sys-
tem, the former can be easily transformed into a graph representation where the
nodes are the unary predicates Oi and Ai plus other information such as a pos-
sible neural network scores for these predicates. The edges are the logic relations
between these predicates, such as implications and n-ary predicates with n > 1.
A single comprehension axiom can be represented as a star-shape graph with
O in the center, Ai at the end of the branches and the biimplications as edges.
A graph representation can be easily rendered as an image or a natural lan-
guage sentence used in a dialogue with the user. All these kinds of rendering can
be performed with automatic tools. Moreover, the predicates Ai can be linked
with other predicates through logical relations. This would make the explana-
tion more structured with more information for the users. In addition, such a
structured representation can be easily queried with languages such as SPARQL.
Graph representations for explanations are proved to be effective for the users,
that is, more comprehensible, in persuasion systems for healthcare [12]. In this
case, explanations are attached to a user model in order to return a tailored
explanation according to the user obstacles and capacities.

We present the SeXAI framework for comprehensible systems in Fig. 1. The
knowledge base KB contains both the predicate symbols in P and the compre-
hension axioms for annotating the data. This annotation requires an effort that
depends on both the classification task (annotating a picture with bounding
boxes requires more effort than annotating the scene without bounding boxes)
and on the complexity of KB. Indeed, if the output is linked with many semantic
features this would make the annotation challenging. However, this effort can be
alleviate with the use of crowdsourcing and of emerging approaches and tools for
annotating documents [34]. Among those, Prodigy1 is one of the most promis-
ing and targeted at tasks typical for Artificial Intelligence, Machine Learning,

1 https://prodi.gy/.

https://prodi.gy/
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Fig. 1. In the SeXAI framework data are annotated with symbols of a knowledge base.
A symbolic system is aligned with a DNN in order to provide an output and a set of
semantic features consistent with the comprehension axioms in the knowledge base.

Natural Language Processing, and Computer Vision. Prodigy is also open to the
customisation of annotation tags linked with concepts coming from a domain
knowledge base. The comprehension axioms are passed to the symbolic system
that is in charge of i) analyzing the output of the DNN and the associated seman-
tic features; ii) reasoning about them according to the comprehension axioms;
iii) returning a, possibly refined, output along with the related semantic fea-
tures. This makes the proposed framework a local interpreter that provides a
reason (the semantic features) for a given output. This architecture extends the
one in [15], where a reasoner computes the explanation of the output, with a
semantic module that enables several tasks that improve the comprehension and
the transparency (i.e., the interpretation) of the DNN:

Output and semantic features refinement: The DNN is trained to return
both the output and the semantic features. Then, with the use of fuzzy reasoning
or neural-symbolic systems [9,11,13,14,32], both outputs can be refined accord-
ing to the comprehension axioms and to the evidence coming from the scores of
the DNN.
Feature Alignment: Once a DNN is trained, it is possible to analyze which
are the most activated neurons of the last hidden layer [18] for each semantic
feature. In this manner, we can align the high-level features of the DNN with the
semantic features in KB. Such an alignment can also be learnt with an additional
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supporting neural network [36]. In this way SeXAI would become a model-specific
interpretable model.
Causality: Once the features alignment is performed, the system can turn off the
neurons corresponding to a given semantic feature and check the performance
degradation with respect to the output. No degradation of the performance
means that the particular semantic feature has just a correlation with the out-
put and, therefore, it can be removed from the corresponding comprehension
axiom or stated as a simple correlation. On the other hand, a degradation of the
performance indicates a causality of the semantic features with respect to the
output. The more the performance degrades the higher the causality degree for
that feature is. This makes the proposed system a local interpretable model.
Knowledge base improvement: Once the importance degree of the semantic
features is computed it can be used as a prior weight in the comprehension
axioms and thus enriching KB.
Model improvement: Analyzing the semantic features returned by wrong out-
put predictions allows the system to detect the presence of some common seman-
tic features that alter some predictions. Therefore, the model can assign a lower
weight to the neurons aligned with that semantic features.

The comprehension axioms could in principle express different information
for an output O. For instance, in the pasta with Carbonara sauce recipe, some
axioms in KB state the standard food categories but other axioms could state a
slightly different version for Carbonara with different categories. This case can
be addressed by assigning different weights to each comprehension axiom. These
weights represent the trust of the system to each recipe and can be a-priori
defined or learnt from the data. Neural-symbolic systems [9] are able to deal
with these weighted axioms in order to return a reliable output along with the
more probable involved semantic features.

The symbolic system in SeXAI extends the framework of Doran et al. [15]
by computing the alignment of semantic and DNN features that enables the
improvement of both KB and of the model. Differently, in [15] the reasoner
module is able to only generate the output and the semantic features. In addition,
our work makes a step forward a more structured definition of explanation by
defining the explanation as a feature vector of semantic features. These can be
further linked with other predicates in KB enabling a more structured (and richer
in semantics) representation for the explanation.

4 SeXAI in Action

Section 3 provided the general description of the SeXAI framework that we pro-
posed for increasing the overall comprehensiveness of AI models. In this Section,
we show how the SeXAI framework can be instantiated within a real-world sce-
nario. In particular, we applied the SeXAI framework to image classification with
the aim of demonstrating how the integration of semantics into an AI-based clas-
sification systems triggers both the generation of explanations and, at the same
time, an improvement of the overall effectiveness of the classification model.
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As described in Sect. 3, the SeXAI framework is composed by different mod-
ules that, depending on the scenario in which the framework is deployed, can
be instantiated or not. Let us consider a running example of food recognition
from images. In this case, the output is the label of the food in the dish (e.g.,
pasta with Carbonara sauce) and the semantic features are the detected food
categories (aged cheese, cold cuts, pasta and eggs) that have high classification
scores. In this case a possible rendering of the system output and explanation
in natural language would be: “I recognized a pasta with Carbonara sauce dish
as I have a good confidence about its food categories: aged cheese, pasta, cold
cuts and eggs”. Information about food categories are particularly useful in sce-
nario where physicians are supported by information systems concerning the
diet monitoring of people affected by nutritional diseases (e.g., diabetes, hyper-
tension, obesity, etc.). However, as very first evaluation of this framework, we
focused on predicting only the semantic features in order to check whether the
semantics posed at dataset annotation level is more effective than the semantics
posed after a prediction applying simple logical rules. The aim of our experi-
ments is to check the right place for the semantics. This setting does not lose
generality as a multitasking neural network can be trained to jointly predict both
the food image classification and its semantic features (the contained food cate-
gories). The performance of a multitasking setting are the same on the semantic
features here presented (see Table 1) and good ones on the food image classifi-
cation (more than 70% of mean average precision). The aim of our evaluation is
expressed by the following research question:

RQ: Does the injection of knowledge at data-annotation level improve the
explainability of the SeXAI framework?

This involves to check whether the annotation of the dataset with the compre-
hension axioms improve the quality of the semantic features and therefore the
system explainability. We address the research question with a multi-label clas-
sification setting of the semantic features. Therefore, by starting from the SeXAI
architecture shown in Fig. 1, we instantiated the modules as follows.

– The “Data” module contains our dataset of food images we used for training
the classification model. A more detailed description of the dataset is provided
in Sect. 4.1.

– The “Knowledge Base” contains, beyond a taxonomy of recipes and food cat-
egories, the composition of each recipe in terms of its food categories. Recipes
compositions are described through object properties within the knowledge
base. More specifically, in our scenario we adopted the HeLiS ontology [16]
where we have the food category-based composition of more than 8,000
recipes2. Each food image is annotated with both the recipe label (pasta
with Carbonara sauce) and the corresponding food categories (pasta, cold
cuts, etc.).

2 In the remaining of the paper, we will refer to some concepts defined within the
HeLiS ontology. We leave to the reader the task of checking the meaning of each
concept within the reference paper.
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– As “Black-box model”, we implemented a DNN trained with recipe/food
images annotated with the list of related food categories. Given a food image
x, the recipe/food label represents the O(x) output neuron, while the food
categories represent the semantic features A(x) output neurons. As mentioned
above, we decided to not include the O(x) output neurons and to classify each
image by its semantic features A(x). Hence, each neuron of the DNN output
layer indicates if one of the food categories contained in the dataset has been
detected within the images or not.

– Finally, in our scenario the “Symbolic System” links together the “Knowledge
Base” and the output of the DNN for generating natural language explana-
tions of the classification results.

The evaluation of explanations quality is still an open topic within the AI
research area [21]. Moreover, in our scenario, explanations aim to provide a com-
prehensive description of the output rather than being a vehicle for improving
the model. Hence, the evaluation of their language content is not of interest.
Instead, the SeXAI framework evaluation, provided in this work, focuses on the
effectiveness of exploiting semantic features for both training and classification
purposes. As baseline, we used a post-hoc semantic-based strategy where images
used for training the DNN were annotated only with the corresponding recipe
label. In our running example, the baseline would automatically retrieve the cor-
responding food categories from HeLiS once the DNN classified the input image
with, e.g., pasta with Carbonara sauce. Here, the list of food categories has been
extracted after the classification of each images by exploiting the predicted recipe
label. Figure 2 shows the building blocks of the baseline. For readability, here-
after we will refer to the instantiation of the SeXAI framework as “multi-label
classifier”, while the baseline will be labeled as “single-label classifier”.

4.1 Quantitative Evaluation

In the considered scenario, a good performance on recognizing food categories
is important as the misclassification of images could trigger wrong behaviors of
the systems in which the classifier is integrated. For example, if the framework
would be integrated into a recommendation system, a misclassification of a food
image would lead to the generation of wrong messages or even no message to
the target user.

The Food and Food Categories (FFoCat) Dataset3. We leverage the food and
food category concepts in HeLiS for the multi-label classification. However, cur-
rent food image datasets are not built with these concepts as labels, so it was
necessary to build a new dataset (named FFoCat) with these concepts. We start
by sampling some of the most common recipes in Recipe and use them as food
labels. The food categories are then automatically retrieved from BasicFood with
a SPARQL query. Examples of food labels are Pasta with Carbonara Sauce and

3 The dataset, its comparison and the code are available at https://bit.ly/2Y7zSWZ.

https://bit.ly/2Y7zSWZ
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Fig. 2. The architecture of the baseline system we used for comparing the effectiveness
of the SeXAI framework concerning the food images classification task.

Baked Sea Bream. Their associated food categories are Pasta, AgedCheese, Veg-
etalOils, Eggs, ColdCuts and FreshFish, VegetalOils, respectively. We collect
156 labels for foods (Recipe concept) and 51 for food categories (BasicFood
concept). We scrape the Web, using Google Images as search engine, to auto-
matically download all the images related to the food labels. Then, we manually
clean the dataset by checking if the images are compliant with the related labels.
This results in 58,962 images with 47,108 images for the training set and 11,854
images for the test set (80–20 ratio of splitting). Then, we use the comprehen-
sion axioms to annotate the images with both the food label (the output O)
and the corresponding food categories labels (that are our semantic features
Ai). This has been obtained by leveraging HeLiS properties, we enrich the image
annotations with the corresponding food category labels to perform multi-label
classification. The dataset is affected by some natural imbalance, indeed the food
categories present a long-tail distribution: only few food categories labels have
the majority of the examples. On the contrary, many food categories labels have
few examples. This makes the food classification challenging.

Experimental Settings and Metrics. For both multi and single-label classification
we separately train the Inception-V3 network [37] from scratch on the FFoCat
training set to find the best set of weights. The fine tuning using pre-trained
ImageNet [10] weights did not perform sufficiently. This is probably due to the
fact that the learnt low-level features of the first layers of the network belong
to general domains and do not match properly with the specific Mediterranean
food domain. Indeed, many food images in ImageNet belong to oriental food.
For the multi-label classification, we use a sigmoid as activation function of the
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last fully-connected layer of the Inception-V3 and binary cross entropy as loss
function. This is the standard setting for multi-label classification. Regarding
the single-label classification, the activation function of the last fully-connected
layer is a softmax and the loss function is a categorical cross entropy. This is
the standard setting for multi-class classification. We run 100 epochs of training
with batch size of 16 and a learning rate of 10−6. At each epoch images are
resized to 299 × 299 pixels to fit the input format required by Inception-V3 and
are augmented by using rotations, width and height shifts, shearing, zooming
and horizontal flipping. This results in a training set 100 times bigger than
the initial one. We used early stopping (with a patience of 15 iterations) to
prevent overfitting. The training has been performed with the Keras framework
(TensorFlow as backend) on a PC equipped with a NVIDIA GeForce GTX 1080.
All these details can be checked in the link pointing at the source code.

As performance metric we use the mean average precision (MAP) that sum-
marizes the classifier precision-recall curve: MAP =

∑n
i=1(Rn − Rn−1)Pn, i.e.,

the weighted mean of precision Pn achieved at each threshold level n. The weight
is the increase of the recall in the previous threshold: Rn − Rn−1. The macro
AP is the average of the AP over the classes, the micro instead considers each
entry of the predictions as a label. We preferred MAP instead of accuracy as
the latter for sparse vectors can give misleading results: high results for output
vectors with all zeros.

Results. Given an (set of) input image(s) x, the computing of the precision-recall
curve requires the predicted vector(s) y of food category labels and a score asso-
ciated to each label in y. In the multi-label method this score is directly returned
by the Inception-V3 network (the final logits). In the single-label and inference
method this score needs to be computed. We test two strategies: (i) we per-
form exact inference of the food categories from HeLiS and assign the value 1 to
the scores of each yi ∈ y; (ii) the food categories labels inherit the uncertainty
returned the DNN: the score of each yi is the logit value si returned by DNN(x).
Results are in Table 1. The direct multi-label has very good performance (both in
micro and macro AP) in comparison with the single-label models. The micro-AP
is always better than the macro-AP as it is sensible to the mentioned imbalance
of the data. This means that errors in the single food classification propagate to
the majority of the food categories the given food contains. That is, the inferred
food categories will be wrong because the food classification is wrong. On the
other hand, errors in the direct multi-label classification will affect only few food
categories. We inspected in more detail some of the errors committed by the clas-
sifiers in order to have a better understanding of their behaviors. In some cases,
the single-label method misclassified an image with Backed Potatoes as Backed
Pumpkin thus missing the category of FreshStarchyVegetables. Another image
contains a Vegetable Pie but the single-label method infers the wrong category
of PizzaBread . In another image, this method mistakes Pasta with Garlic, Oil
and Chili Peppers with Pasta with Carbonara Sauce, thus inferring wrong Eggs
and ColdCuts. Here the multi-label method classifies all the categories correctly.
Therefore, the multi-label method allows a more fine grained classification of the
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Table 1. The multi-label classification of food categories outperforms in average pre-
cision (AP) the methods based on single-label classification and logical inference.

Method Micro-AP (%) Macro-AP (%)

Multi-label (SeXAI framework) 76.24 50.12

Single-class without uncertainty (baseline) 50.53 31.79

Single-class with uncertainty (baseline) 60.21 42.51

food categories with respect tto the single-label method. The latter has better
results if the score returned by the DNN is propagated to the food categories
labels withe respect to the exact inference.

4.2 Discussion

The experience of designing the SeXAI framework and the analysis of results
obtained from a preliminary validation within a real-world use case high-
lighted two important directions towards the long-term goal of achieving a fully-
explainable AI system.

First, the integration of semantic features with black-box models enabled
the generation of comprehensive explanations. SeXAI can be considered a neuro-
symbolic framework conjugating the effectiveness of black-box models (e.g.,
DNN) with the transparency of semantic knowledge that, where possible, can
support the generation of explanations describing the behavior of AI systems.
This aspect opens to a very interesting and innovative research direction cen-
tered on the content of the generated explanations. Indeed, the integration of
semantic features for generating explanations can be exploited for refining the
statistical model itself (as described in Sect. 3). For instance by analyzing correla-
tions between the presence of specific semantic features within explanations and
the performance of the black-box model. Future work will focus on strengthening
this liaison within the SeXAI framework in order to validate if an inference pro-
cess could improve the classification capability and, at the same time, to observe
how inference results could be exploited for refining the black-box model.

Second, the integration of semantic features can lead to better classification
performance. Results presented in Table 1 show that through the integration of
semantic features, it is possible to improve the overall effectiveness of the black-
box model. This is a very interesting finding since it confirms the importance
of a by-design integration of semantic features. Future activities will further
investigate this hypothesis within other scenarios with the aim of understanding
which are the boundaries and if there exist some constraints in the application
of this strategy. For instance, the granularity of semantic features with respect
to the entities that have to be classified could play an important role. Hence, a
trade-off has to be found in order to maintain the explainable capability of the
system and, at the same time, an acceptable effectiveness of the classification
model.
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5 Conclusions

The aim of Explainable Artificial Intelligence is to provide black-box algorithms
with strategies to produce a reason or justification for their outputs. This is
fundamental to make these algorithms trusted and easily comprehensible by
humans. A formal semantics, provided by knowledge bases, encoded in a logical
language allows the connection between the numeric features of a black box and
the human concepts. Indeed, a justification in a logical language format can be
easily translated in natural language sentences in an automatic way.

In this paper, we presented the first version of SeXAI, a semantic-based
explainable framework aiming at exploiting semantic information for making
black boxes more comprehensible. SeXAI is a neural-symbolic system that anal-
yses the output of a black box and creates a connection between the learnt
features and the semantic concepts of a knowledge base in order to generate an
explanation in a logical language. This allows reasoning on the black box and its
explanation, the improvement of the knowledge base and of the black box out-
put. The semantics in the knowledge base is aligned with the annotations in the
dataset. This improves the performance of SeXAI on a task of multi-label image
classification with respect to a system that performs solely logical reasoning on
the black box output. Therefore, we satisfied our research question about the
right place for the semantics: a semantics at data-annotation level improves the
explainability of the system.

As future work, we will perform some experiments on the quality of the
alignment between the learnt and the semantic features. In particular, we will
evaluate the degree of causality of the semantic features with respect to the
output and how the attention of a black box can be moved towards the semantic
features in order to improve the model performance.
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