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Abstract. Populations around the world are rapidly ageing as the popu-
lation aged 65 and over is growing faster than all other age groups. Most
of the daily life actions of active elderly are related to walking activ-
ities, thus guaranteeing walking environments that are elderly-friendly
are nowadays a priority to ensure healthy aging. Measuring and recog-
nizing the affective state of people during walking activities contribute
to a better comprehension of their perception of the environment, and a
better definition of walkable urban area. With the aim of paving the way
for assessing walkability, introducing quantitative evaluation tools, this
work proposes to compare physiological responses of subjects of different
ages, in different walking conditions. To this end a proper experiment has
been designed in a controlled environment, considering both young adults
and elderly, and adopting wearable devices. In this paper the analysis of
the leg muscles activity acquired with Electromyography is presented.
The results of this preliminary study highlight age-related differences in
subjects facing both forced speed walks and collision avoidance tasks.

Keywords: Physiological signals · Active ageing · Walkability ·
Affective state · Collision avoidance · Electromyography

1 Introduction

In recent years, an increase of longevity in developed countries has been observed
[2,10,17]. Growth of social welfare, education, medical care are only few of the
possible reasons for this increase [11]. In a world where the number of elderly
people is expected to growth even more, the creation of an environment suitable
for active aging people is becoming a first priority problem [17]. In this situa-
tion, particular attention should be paid to walking activity. In fact most of the
daily life activities of the elderly, such as sports, consumer life and social inter-
actions, take place in the neighborhood and are mainly realized through walking
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activities [10]. Some studies underline that physical activity plays an important
role in aging people’s health as its practice allows to avoid physical or mental
illnesses [13]. A walking environment that is elderly-friendly is thus a priority
while planning the design of the cities of the future as well as to improve the
existing ones [5]. Measuring if and to which extent an environment is comfortable
and walkable for ageing people is the first step towards this direction [12]. One
way to obtain quantitative measures of walkability is to assess safety perception
while moving within an urban environment, in particular while walking, crossing
and in general trying to avoid collisions. The assessment of safety perception can
be performed with experiments and observations both through the design of the
experimental setting in a protected space (in-vitro experiments) and/or with
data collections in the real world setups (in-vivo experiments), relying on phys-
iological responses, through the introduction of what can be defined affective
walkability [1]. Physiological responses, can be considered honest indicators of
our emotions and mood, and are nowadays widely adopted to recognize affective
states [3]. Thanks to the development of the technology, several sensors can be
easily integrated into smartphones or wearable devices [18], making them more
comfortable and usable even in case of elderly people. So these signals could be
valid indicators to assess quantitatively the safety perception of the elderly while
interacting with the surrounding environment.

To this end, an experiment has been carried out in an indoor and controlled
environment. Two different populations have been involved in the experiment:
young adults and elderly people, in order to compare different perception of safe
walk, varying the age. Different walking conditions have been also investigated,
including dynamic collision avoidance. Physiological signals such as Plethysmo-
gram (PPG) and Galvanic Skin Response (GSR) have been acquired using a
wearable device. PPG and GSR are well indicated to detect emotional arousal,
related to sensory alertness, mobility, and readiness to respond, activated in the
interaction between subjects and the environment as a defensive reaction to pre-
serve safety. Moreover, dealing with a dynamic interaction, motion data both
physiological, measuring the muscle activity with Electromyogram (EMG) and
inertial (accelerometer and gyroscope data) have been acquired.

The study presented in this paper focuses only on the analysis of the EMG
physiological signals in order to reveal differences in pace and leg movements
between young adults and elderly, trying to detect patterns that characterize
their walking attitude in different walking environments. In Sect. 2, the experi-
ment in a controlled environment performed to assess walkability is introduced.
EMG signal processing is described in Sect. 3, while the results of the analy-
sis of different walking conditions and the comparison of the behaviour of the
two populations are detailed in Sect. 4. Finally conclusions and future works are
reported.
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Fig. 1. Wearable devices adopted.

2 Experimental Setup for Data Collection

A controlled experiment in a real laboratory environment at the University of
Tokyo has been performed to collect data for studying walkability. Three within
subject conditions (collision avoidance, forced speed walk and free walk) have
been administered in one experimental session, performed by two experimen-
tal groups: a population of young adults, composed of 14 Japanese master and
PhD students, (average age = 24.7 years, standard deviation = 3.3, 4 women),
and Japanese elderly people (retired), 20 subjects,(average age of 65.15, stan-
dard deviation = 2.7, 10 women). During the whole experiment, physiological
signals have been collected using wearable sensors produced by Shimmer1. Five
main signals have been acquired: i) Galvanic Skin Response (GSR), connected
to sweating and perspiration on the skin, ii) Photoplethysmography (PPG), that
measures the blood volume registered just under the skin, which can be used
to obtain the heart rate of the subject; iii) Electromyography (EMG), which
measures the muscle activity of the person by surface sensors. In particular,
activities related to the medial gastrocnemius muscle and to the anterior tibial
muscle have been acquired using the same device; and iv) inertial data, trough
Accelerometer and Gyroscope sensors. The adopted sensors are shown in Fig. 1.

The experiment lasted about 30 min and it was set up to acquire data from
the subjects in different walking environments. The protocol of the experiment
includes two tasks:

– Collision avoidance: two subjects at the same time walk with their own
pace along the path depicted in Fig. 2, top left, clockwise and counterclockwise
respectively. At about half of the path, they reach the collision avoidance zone
where they have to avoid the collisions with both the obstacles (swinging
pendulum) and the other subject. Then they complete the U path, with
their natural pace and go back in the opposite direction repeating the same
actions.

1 https://www.shimmersensing.com/.

https://www.shimmersensing.com/
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Fig. 2. Setting of the experiment. Top left: the plant of the indoor controlled environ-
ment, where a U path has been defined. The collision avoidance zone is identified by
a red rectangle and depicted also in the image at the top right. The two obstacles are
controlled by one of the experimenter and the two subjects have to avoid the collision
(figure bottom right). During the rest of the U path, subjects walk with their own
natural pace. (Color figure online)

– Forced speed walk. Participants walk with a forced speed based on the
metronome ticking, along the same U path. Three speeds are considered:
70 bpm (F1 ), 85 bpm (F2 ) and 100 bpm (F3 ). This task lasts about 2 min.
At the end, a questionnaire is provided to the participants to obtained infor-
mation about the preferred walking frequency among those constrained by
the metronome.

Only for the elderly there is a further task of Free walk, along the U path,
back and forth, for about 40 s. In this task, participants can walk freely without
obstacles or speed constraints.

All the tasks are separated by a period of resting time (Baseline acquisi-
tion) of about 1 min. The whole procedure is repeated three times.

GSR and PPG signals of all the subjects were collected, EMG signals were
acquired only on a subset of participants. In particular, in the first experimental
group EMG data were collected from 8 male subjects, while in the second group
from 10 subjects including 3 females and 7 males.

3 EMG Data Analysis

The work here presented, focuses only on the analysis of the EMG signals. The
two channel EMG have been acquired with a sampling frequency 512 Hz.

3.1 Subject Based Preprocessing

The two-channel EMG raw signals of each subject have been preprocessed by
applying a denoising strategy based on the wavelet multi-resolution analysis
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Fig. 3. Example of the applied preprocessing procedure on the EMG signal of a subject.
Top image: the raw signal. Middle image: the results of the denoising procedure on the
signal. Last image: Result of the normalization.

described in [16]. The signal is divided in frequency sub-bands using Maxi-
mal Overlap Discrete Transform (MODWT) with mother wavelet Daubeches-4
and with five levels of decomposition. To each sub-band, a Soft Thresholding is
applied to the detail coefficients. The Universal Threshold calculated by the for-
mula tk =

√
2log(Nj)) was adopted, where Nj is the length of the j-th wavelet

coefficient [4].
To compare signals of different individuals, permitting both inter and intra

subjects analysis, the signals were normalized. Several different normalization
strategies are reported in the literature, [6]. In this study each channel of the
denoised EMG signals have been normalized dividing by the maximum peak
activation level obtained from the signal under investigation. This value has
been selected after an empirical study, because it has been observed to be able
to decrease the variability between subjects. The normalization, as well as the
denoising operation, have been applied to the whole signal of each subject, before
segmenting the data into single tasks. An example of the preprocessing procedure
on a subject’s signal is showed in Fig. 3.

3.2 EMG Features Extraction

To compare different walking conditions and different behaviours of the two
considered populations, two features have been extracted from the denoised and
normalized EMG signals: walking frequency (known as Stride Frequency) and
the mean power of the signal.

The first feature describes the number of steps performed by a subject per
second and it is evaluated using a novel procedure described in this paper:

– Task based pre-processing. To further remove artifacts and noise, a task
based denoising has been performed. This is a multi-resolution denoising app-



428 F. Gasparini et al.

roach, based on a Stationary Wavelet Transform with Haar mother wavelet,
seven levels of decomposition and Universal Threshold.

– Envelope calculation. To preserve only the main structure of the signal,
root-mean-square upper envelope has been calculated. For that purpose win-
dows of 200 samples have been used.

– Mean value removal. The signal modified so far had only positive values.
In order to make its mean equal to zero, a mean value removal has been
applied.

– Extract frequency sub-band. Based on a priori knowledge [7,9], only enve-
lope signal frequencies in the band [0.2, 1.4] Hz have been considered. It was
observed that this range is the feasible interval for all possible stride frequen-
cies while walking. To evaluate the envelope frequencies, a filter bank analysis
using symlet wavelet with 13 levels of decomposition has been applied.

– Periodogram computation and max peak evaluation. The Peri-
odogram of the envelope so filtered has been calculated and the three max
peaks have been extracted.

The entire procedure is depicted in Fig. 4.
The second feature has been used to identify when subject slows down or

stops. During these events the EMG signal power decreases and becomes near
to zero when subject stops walking. The Root Mean Square of the signal has
been used as feature representative of the signal power [15]:

RMS =

√√√√ 1
N

N∑

n=1

x2
n (1)

Fig. 4. Procedure applied to extract the Stride Frequency feature
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4 Experimental Results

In this section the three different tasks of the experiment are analyzed using the
EMG features described and a comparison between young and elderly people
behavior is also performed.

Table 1. Accuracy reached by the Frequency Stride feature in evaluating the real pace
of the subjects during forced speed walk tasks. The columns refer to the two EMG
channels, while the two rows regard the two population groups analyzed.

Gastrocnemius muscle Tibial muscle

Elderly 98% 95%

Young adult 98% 98%

Table 2. Accordance in percentage between the computed Stride Frequencies and the
metronome frequencies, evaluated with respect to the two muscle activities (columns)
and the two considered populations (rows).

Gastrocnemius muscle Tibial muscle

F1 F2 F3 Total F1 F2 F3 Total

Young adult 95% 90% 90% 92% 95% 90% 85% 90%

Elderly 57% 52% 89% 66% 68% 58% 92% 72%

4.1 Forced Speed Walk

The novel feature here proposed to estimate the Frequency Stride has been
initially validated on EMG signals acquired during the forced speed task. During
this task, participants were forced to walk at three specific speeds, dictated by a
metronome. The subjects repeated these forced speed walks three times. Among
all the processed signals, four of them related to the first channel and two related
to the second channel have been removed due to low quality and absence of
valuable information.

The three metronome speeds were F1= 70, F2 = 85, and F3 = 100 bpm
(beats/minute), and correspond to 1.167, 1.417 and 1.667 steps/second respec-
tively, obtained dividing the metronome speed values by 60. Since the EMG
sensor measures the muscle activity of one leg, these frequency values need to be
halved to be compared with the values extracted by the proposed feature. The
new frequencies used as ground truth become 0.583 steps/second for 70 bpm,
0.708 steps/second for 85 bpm and 0.833 steps/second for 100 bpm.

Firstly the accuracy of the proposed feature in evaluating the real pace of
the subjects was assessed. It has been observed that hardly the subjects walked
exactly at the speed dictated by the metronome. For this reason, in the evaluation
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of the performance of the proposed feature, we define the ground-truth following
two steps: 1) the coherence between the activities of the two muscles; and 2)
visual inspection. The overall accuracy of the measure is 98% considering both
the experimental groups. In Table 1, the accuracy of the two population groups
obtained analyzing the activity of the two muscles are reported.

As a second analysis, the computed Stride Frequencies were compared with
the frequencies of the metronome, in order to compare the capability the two
subject groups of following forced paces. In Table 2 the accordance between the
subject paces and the three metronome frequencies has been reported, consider-
ing the two muscles, and comparing the two experimental groups of young adults
and elderly people.

In the case of young adults, the percentage of accordance appears high.
In details, considering all the metronome frequencies, 92% of accordance has
been obtained from the medial gastrocnemius muscle activity, while 90% from
the analysis of the tibial muscle one. In general, the forced frequency with the
highest accordance was F1 (95% in both the channels) while the worst one was
F3 (90% considering gastrocnemius muscle and 85% considering the tibial one).

Table 3. In this Table the mean and the standard deviation of the computed Frequency
Stride for both subject groups are reported and compared with the metronome frequen-
cies (F1, F2 and F3), considering both the EMG channels (gastrocnemius muscle and
tibial muscle).

Metronome frequency Young adults Elderly

Gastrocn. Tibial Gastrocn. Tibial

F1 0.583 Mean 0.59 0.59 0.66 0.64

Sd 0.02 0.02 0.10 0.09

F2 0.708 Mean 0.72 0.72 0.76 0.74

Sd 0.02 0.01 0.06 0.10

F3 0.833 Mean 0.85 0.85 0.85 0.85

Sd 0.02 0.02 0.03 0.02

A significantly lower accordance has been noticed in case of elderly people.
The overall frequency accordance, evaluated on the first channel was 66%, while
on the second one was 72%. The frequency more reproducible was F3, while the
worst one was F2. Moreover, as reported in Table 3, the mean and the standard
deviation of the Frequency Stride evaluated in case of elderly people appear
higher than the ones observed in case of young adults and, in general, the ones
dictated by metronome ticking. This may prove how the elderly struggle more
than young adults to respect the metronome forced speeds, especially the two
lower speeds F1 and F2, tending instead to walk at a faster cadence.

Finally a comparison between the values produced by the feature on the
two channels has been performed. In many cases the values produced on the
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(a) Medial gastrocnemius muscle (b) Tibial muscle

Fig. 5. Histograms of the Stride Frequencies computed for the free walk task, on the
two muscles.

two signals appeared very similar even if, sometimes, not the same. A distance
analysis, performed to compare the results quantitatively, showed that there is
not a significant difference between them (root mean square distance = 0.002).

4.2 Free Walk

The same feature was applied to study the free walk task. For the sake of clarity,
it is recalled that this task was performed only in the experiment with elderly.
For young adults, further experiments will be performed in the future.

In Fig. 5 the histograms of the walking frequencies computed on the two
channel signals in the free walk task are reported. Both the histograms high-
light that in most of the cases the detected walking frequency is around 0.90
steps/second. This value agrees with the metronome frequency indicated by the
participants as the most preferred one (F3) and with the normal pace speed
reported in the literature (between 0.90 and 1 steps/second [9]). The lower fre-
quencies in the histograms (0.35 and 0.54 steps/second) correspond to signals
where noise and artifacts made difficult to identify the correct one. Usually in
these cases a feasible value of human pace could be evaluated from the second
or third peak extracted by the proposed feature. Moreover, it has been noted
that the presence of other high peaks could be associated to changes in walking
pace during the task. An example of a speed change during the free walk task
is shown in Fig. 6, where the two different speeds are visible in both the EMG
signal and in its Periodogram.

4.3 Collision Avoidance

To analyse changes in EMG signals during the walking task related to collision
avoidance, the signal has been initially divided into five segments, using non-
overlapping windows. Segments 1, 3, and 5 refer to the free walking phases that
precede or follow the collision zone, while segments 2 and 4 refer to the effective
pendulum avoidance zone (see Fig. 2). The procedure has been applied to signals
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Fig. 6. Example of speed change of one subject during the free walk task. The two
different speeds, as well as the two corresponding Frequency Strides, are visible in the
EMG signal, (top row) where the two speeds are highlighted with two colors, and in
the Periodogram (bottom row), where the two paces are visible as two distinct peaks
with similar height. (Color figure online)

Table 4. Stride Frequencies in the five segments of the collision avoidance task,
reported in steps/second, evaluated for one subject of the elderly group.

Free Walk Obstacle Free Walk Obstacle Free Walk

0.94 0.37 0.94 0.5 0.94

from both experimental groups and the Stride Frequency of every segments has
been calculated. As an example, in Table 4 the Stride Frequencies (steps/second)
calculated for one subject of the elderly group, for the five segments, are reported.
The results of this analysis can be summarized as follow:

– For both experimental groups, during the free walking phases of the collision
avoidance task (segments 1, 3 and 5), Stride Frequency values similar to those
reported by the literature and, in case of elderly, also detected during the free
walk task, have been observed. The values related to these segments were
usually within the range [0.80–1] steps/second. To quantitatively evaluate the
similarity of the walking speeds between: i) the task of pure free walk and ii)
the segments of free walk in the collision avoidance task, a statistical similarity
analysis using Kruskal Wallis test has been performed. It is important to
recall that this analysis can be done only for the elderly, because the young
adults did not performed the free walk task. The Kruskal Wallis test on
the two distributions produces p-values greater than the significance level of
5% (p-value: 0.263 for Gastrocnemius Muscle and 0.349 for Tibial muscle),
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indicating that the two distributions can not be distinguished. These results
seem to confirm that the pace of walking is not significantly influenced by the
presence of an obstacle within the whole path.

– Analysing the values of the Stride Frequency during the free walk phases,
before and after the collision avoidance one, it has also been noticed that
subjects tend to change frequently their pace during the walking. Even if,
in general, they appeared similar in values, the Frequency Strides computed
during the walking, before and after passing the obstacle, present a greater
variance compared to the one detected during the pure Free Walk task (Sd:
0.22 for Walking with obstacle vs 0.15 for pure Free Walk).

Fig. 7. Analysis on a trial of the collision avoidance task for one young subject. The
signal has been divided into fourteen uniform windows (top row). Purple windows
correspond to the collision avoidance events. Bottom row reports the trend of the
energy values in different segments.

To better understand how does the walking pace change within the collision
avoidance zone, an analysis based on signal energy has been performed. This
study has been carried out with the idea of detecting stop points or deceleration
patterns during this task. The feature chosen for this purpose is the Root Mean
Square (RMS), described in Sect. 3.2. For this analysis, the EMG signal of each
trial of the collision avoidance task has been now further segmented obtaining
fourteen uniform windows.

The energy of the EMG signal has been evaluated for each window using the
RMS feature. From the analysis of these RMS values, the following observations
can be drawn:
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Fig. 8. Analysis on a trial of the collision avoidance task of one elderly subject. The
signal has been divided into fourteen uniform windows (Top row). Purple windows
correspond to the collision avoidance events. Bottom row reports the trend of the
energy values in the different segments. (Color figure online)

– When young adults were involved, it has been noticed in general an increase
of the signal power in correspondence to the collision avoiding events. Most of
the time this growth seems due to a strong muscle activation, probably caused
by the effort of the subject to accelerate and safely passing the obstacle, as
can be seen in Fig. 7, where one trial of a young subject has been reported.
Only in few cases (5 out of 42), participants decided to stop in front of the
obstacle. Finally in only one case the subject seemed to be able to pass the
obstacle without changing its speed. These results are coherent with what
visually observed during the experiment, in which the young adults seemed
less inclined to stop than the elderly.

– Analyzing the power of the EMG signals for the elderly, in many cases (29
out of 37), it has been observed a decreasing in signal power during collision
avoiding events, (see Fig. 8 as an example for one elderly subject). These
decreases are related to the observed evidence that, as already mentioned
above, the participants decelerated or even stopped, waiting for the pendulum
to pass, thus leading to a reduction in the electrical discharge produced by
the muscle.

This analysis proves that elderly people are used to keep a more careful behavior
than the young ones.

The different behaviour of young adults and elderly in facing up the obstacle
has been also investigated using a statistical similarity analysis based on the
Kruskal Wallis test, which has been already described in the previous chapter.
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This test has been used to compare the two populations (young and elderly) eval-
uating the energy changes (increase or decrease in percentage) before and after
crossing the collision avoidance zone. Two main analyses have been considered:

1. The analysis of the energy variation while crossing, which describes the change
in the muscle energy between the free walk phase before the crossing and the
crossing itself. The percentage of this variation has been calculated by the
formula:

RMScrossing −RMSbeforeCrossing

RMSbeforeCrossing
(2)

The segment corresponding to the crossing (RMScrossing) and the segment
before it (RMSbeforeCrossing) are considered in this calculation.

2. The analysis of the energy variation after the crossing, which instead rep-
resents the change of muscle energy between the crossing and the free walk
phase which follows it. The percentage of this variation has been calculated
by the formula:

RMSafterCrossing −RMScrossing

RMScrossing
(3)

In this case, the two segments involved were the segment after the crossing
(RMScrossing) and the one relating to the crossing itself (RMSbeforeCrossing).

For both the two formulas, a positive percentage corresponds to an energy
increment. On the other hand, a negative percentage refers to a decrease in
energy. From these data the following analyses have been performed:

Fig. 9. Boxplots concerning the percentage increase of muscle energy detected in the
two population analyzed (young adults and elderly) due to the crossing (Fig. 9a) and
after that (Fig. 9b). A positive value corresponds to an increase in muscular energy,
while a negative percentage represents a decrease in the energy value.
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– Energy variation while crossing: the Kruskal Wallis test has been used
to compare the two populations (young adults and elderly). A p-value lower
than 0.001 has been obtained, thus the two distributions of energy variations
are different. Moreover, as reported in the boxplot of Fig. 9a, in case of the
elderly, the energy in general decreases, while in the case of young adults
it increases, in agreement with what already described above, regarding the
different behaviour between young adults and elderly.

– Energy variation after crossing: In this case, the elderly tend to increase
their speed once passed the obstacle, unlike the young adults that tend to
decelerate to come back to their previous speed. This different behaviour is
once more visible from the comparison of the two populations applying the
Kruskal Wallis test. Even in this case, in fact, the test generates a p-value very
low (p-value < 0.001). The different values detected for the two populations
are visible in Fig. 9b.

A final observation regards the differences between the signals of the two
channels. The EMG signals acquired from the tibial muscle appeared in general
more affected by noise that the ones recorded from the medial gastrocnemius
muscle. Sometimes these artifacts negatively affected the power detected on the
signals considered. For this reason the analysis presented in this section has been
carried out considering only data collected from the first channel.

5 Conclusions

The analysis reported in this paper is part of an extensive study where physiolog-
ical signals are adopted to assess walkability, especially in case of elderly. These
studies are based on both in-vitro (i.e. in a controlled laboratory environment)
and in-vivo (i.e. in a real uncontrolled scenario) experiments. In particular, the
results obtained with the analysis of the EMG during different walking condi-
tions confirm that physiological responses can give significant hints in studying
pedestrian behaviour and their reactions and confidence within different envi-
ronments. Moreover, this analysis permits to underline the different behaviour
of the elderly with respect to young adults. In particular, the two population
groups would need a more specific and in-depth analysis to create ad-hoc envi-
ronments able to meet their needs. The results here reached, can be useful in
different analysis, for instance, they may be used to better understand the age-
related behaviour of subjects in real-world stressful urban environments like, for
example, busy street or uncomfortable and crowded sidewalks. Besides, the novel
methods of signal processing introduced in this paper (like, for example, the use
of the periodogram to identify the walking speed) may be used in future works to
analyse people gait in different situations or to predict the behaviour or subjects’
status on the basis of their physiological responses. In future work the analysis
on GSR and PPG as well as on inertial data will be performed and merged with
the analysis on EMG data. There are, indeed, different works, in the state of
art, that proves the goodness of these others signals in the research area of gait
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analysis. In particular, promising results have been reached using Inertial Motion
Units (IMUs) [8,14] and the combination of them and the EMG signals [19]. In
addiction, further experiments will be performed to collect more data that will
permit classification of the tasks, based both on traditional machine learning
techniques as well as deep learning approaches. In particular, the use of Neural
Networks like the Long Short Term Memory LSTM, looks very promising [14]
especially in distinguishing age-related differences in walking [8]. With respect
to this topic, our near-future work will be mainly related to adopt pre-trained
networks, fed with properly adapted data. For instance, converting monodimen-
sional physiological signals into 2-D time-frequency data will permit to consider
well-known CNNs.
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