
Breaking Down High-Level Robot
Path-Finding Abstractions in Natural

Language Programming

Yue Zhan(B) and Michael S. Hsiao

Bradley Department of Electrical and Computer Engineering, Virginia Tech,
Blacksburg, VA 24060, USA

{zyue91,hsiao}@vt.edu

Abstract. Natural language programming (NLPr) allows people to pro-
gram in natural language (NL) for specific domains. It poses great poten-
tial since it gives non-experts the ability to develop projects without
exhaustive training. However, complex descriptions can sometimes have
multiple interpretations, making program synthesis difficult. Thus, if the
high-level abstractions can be broken down into a sequence of precise
low-level steps, existing natural language processing (NLP) and NLPr
techniques could be adaptable to handle the tasks. In this paper, we
present an algorithm for converting high-level task descriptions into low-
level specifications by parsing the sentences into sentence frames and
using generated low-level NL instructions to generate executable pro-
grams for pathfinding tasks in a LEGO Mindstorms EV3 robot. Our
analysis shows that breaking down the high-level pathfinding abstrac-
tions into a sequence of low-level NL instructions is effective for the
majority of collected sentences, and the generated NL texts are detailed,
readable, and can easily be processed by the existing NLPr system.

Keywords: Natural language processing · Natural language
programming · Program synthesis · LEGO Mindstorms EV3

1 Introduction

The field of robotics has made significant strides because of the growth of market
demands in recent years. However, despite the growing interest in educational
robots, the time-consuming learning process and the steep learning curve of
programming robots still challenge young robotics enthusiasts. Natural language
programming (NLPr) offers a potential way to lower the bar of entry by allowing
the users to “program” the robot using natural language (NL). The readability
and expressive nature of natural language make it an ideal way to simplify the
learning process. Though promising for this use case, NLPr has several challenges
of its own. First, NL texts used to give instructions are typically low-level (LL)
specifications to ensure precision and completeness. For example, the movement
specifications used in the NLPr system for LEGO Mindstorms EV3 robot in
c© Springer Nature Switzerland AG 2021
M. Baldoni and S. Bandini (Eds.): AIxIA 2020, LNAI 12414, pp. 280–297, 2021.
https://doi.org/10.1007/978-3-030-77091-4_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-77091-4_18&domain=pdf
https://doi.org/10.1007/978-3-030-77091-4_18


Breaking Down High-Level Robot Path-Finding Abstractions in NLPr 281

the work [24] are categorized as a controlled natural language (CNL) [7]. The
movement sentences used in the system are object-oriented sentences like “The
robot goes forward/backward/left/right ...”. The requirement to use such low-
level specifications makes the process of directing the robot more difficult for
novice users, as they would rather give a high-level instruction such as “The
robot moves from point A to point B” than to list out every individual step the
robot must take. Unconstrained NL texts are highly flexible and expressive but
can sometimes be ambiguous. Designing a language model for NLPr to cover all
of the language structures in NL is extremely difficult, if not impossible [2]. As
such, it would be a huge benefit for NLPr tasks if the information in a higher-
level abstraction can be effectively extracted and used to generate a sequence of
precise, unambiguous lower-level sentences that explain the intention and plans
the proper actions. Suppose the information related to the robot tasks can be
extracted. In that case, the language structures that need to be covered in the
domain-specific function library and lexicon can be simplified, and the existing
NLPr system can be directly adapted with fewer necessary modifications to
handle the high-level (HL) NL abstractions, as shown in Fig. 1.

Fig. 1. High-level NL to low-level NL transformation

The key challenge addressed in this paper is effectively extracting semantic
information from high-level sentences to synthesize low-level pathfinding NL
instructions. In order to demonstrate our proposed low-level text generation
process, we use a robot pathfinding task, in which a robot must find an optimal
path between two points while avoiding obstacles along the way. To succeed at
this task, our system must generate a sequence of low-level instructions that take
the robot to its goal while minimizing the time cost and the number of actions
taken by the robot. Once our system identifies a path based on the high-level
input, it outputs a sequence of low-level NL to an existing NLPr system [24],
which then generates the executable program for the LEGO Mindstorms EV3
robot.

2 Previous Work

Due to its promise of better ease of use and improved human-computer inter-
action, the foundations of NL based programming for robotics have been well
established. In [8,13], an NLPr system that navigates a vision-based robot with
an instruction-based learning method is presented. In these systems, robot-
understandable procedures are generated from command-like NL instructions



282 Y. Zhan and M. S. Hsiao

based on a set of pre-programmed sensory-motor action primitives and routes in
a miniature city map. Users can give instructions based on available primitives
to the robot when facing an unknown route with a human-robot interaction
interface. In the work [23], a Vision-language robot navigation (VLN) system
that combines the vision information and descriptive NL commands reason-
ing using a data-based model is proposed for in-home environments. When the
NL instructions are given, a sequence of actions is generated by the reasoning
navigator. Gathering sufficient data on various environments for model training
purposes could be costly. In the work [15], a probabilistic combinatory categorial
grammar (PCCG) based parser is used to translate procedural NL commands
into logic-based Robot Control Language (RCL) for robot navigation. In [24],
a grammar-based Object-Oriented Programming Controlled Natural Language
(OOP-CNL) model is used to translate NL sentences into executable code for
LEGO robots. In this work, the NLPr program synthesis system utilizes contex-
tual and grammatical information to derive desired robot functionalities with a
domain-specific function library and lexicon. While the language model used here
can process more complex sentence structures, such as conditional statements,
the sentences used for navigating the robot are still at a lower level.

There has been a significant amount of work done in the field of NLPr pro-
gram synthesis, and most of this work has been focused on solving domain-
specific problems. The work in [3] emphasizes the importance of NLP techniques
in analyzing textual contents in software programs. The authors propose a sys-
tem called Toradocu, which they developed using Stanford parser and a pattern
and lexical similarity matching that coverts Javadoc comments into assertions,
and a system called Tellina, which is trained with an RNN [10] to generate
bash commands and use these systems to illustrate the potential of program
synthesis with NL texts. The Metafor platform [11,18] is a descriptive NLPr
system that can convert NL components into class descriptions with associ-
ated objects and methods. This work takes advantage of the NL parsing toolkit
MontyLingua, mixed-initiative dialog, and programming by example techniques.
The authors state that modern parsing techniques and the integration of common
sense knowledge can help developers link humans’ narrative capacities with tra-
ditional programming languages. However, the programs generated by Metafor
are not directly executable. Another work, DeepCoder [1] extends the program-
ming by example framework Learning Inductive Program Synthesis (LIPS)[17]
into a big data problem. DeepCoder generates a sequence of SQL-like function
calls for given integer input-output examples by training a neural network to
predict possible mathematical properties. However, the generated function calls
are basic and low-level. In work [5], an NLPr video game design system translates
object-oriented English sentences into JavaScript game code. A hybrid context
and grammar analysis is used. Conditional statements also can be handled in
this system.

Text generation is a topic of interest in NLP research, and it is also receiving
attention in the domain of robotics. A number of systems have worked towards
explaining robot behavior, including verbalizing the robot’s navigation decisions



Breaking Down High-Level Robot Path-Finding Abstractions in NLPr 283

[19,21] and explaining robot policies by generating behavioral explanations in
NL [4]. The idea of generating low-level robot NL specifications based on robot
paths presented in this paper is similar to these works: breaking down abstracted
robot missions into sequential steps describing robot behaviors. However, instead
of being used to explain the navigation to humans, the generated low-level NL
texts are used for NLPr program synthesis.

3 Problem Formulation and System Design

3.1 High-Level to Low-Level (HL2LL) System Overview

Parsing and understanding the semantic meanings of high-level abstractions have
been a significant challenge in NLP and NLPr research due to their complex lin-
guistic nature. Just like explaining a complex concept to a child, one needs to
break the concept down to a sequence of discrete, straightforward, and action-
able steps for machines to understand. In this work, particularly, the HL2LL
mechanism is built upon a domain-specific library; in this case, the LEGO robot
functions. The OOP-CNL language model L [24] is used to extract the func-
tion information from NL inputs and to match a suitable combination of robot
functions in this work. In a nutshell, when the function information extracted
from the high-level abstraction contains motion language features that cannot be
translated into individual functions in the function library F , the system would
further search for identifying high-level abstractions, like color line tracking or
moving to specific mission regions. The high-level abstractions can be explained
using a set of low-level specifications. For example, “The robot moves forward
10 in.” is an example of a low-level specification, while “The robot walks to
M4 from M1.” is considered a high-level abstraction since it can be described
using a set of low-level instructions. The transformation process, shown in Fig. 2,
consists of four steps:

1. Parse the high-level abstraction: Identify the task details from given input
sentences.

2. High-level abstraction to path: Find a qualified path from the source to
the target based on the given high-level abstraction using the algorithm in
Sect. 3.3.

3. Path to low-level NL specifications: Generate a set of low-level NL specifica-
tions that describe the actions needed for the robot to follow the qualified
path.

4. Low-level NL specifications to code: Translate low-level NL specifications into
executable codes using the NLPr system.

3.2 Map Representation

We model our robot’s task after the First LEGO League (FLL)1 competition,
with an 88′′ × 44′′ Mission Map based on the FLL 2018/2019 official competition
1 https://www.firstlegoleague.org/.

https://www.firstlegoleague.org/


284 Y. Zhan and M. S. Hsiao

Fig. 2. System overview

arena serving as our robot’s environment, shown in Fig. 3a. The arena contains
eight mission regions, denoted using red blocks and several thick black lines
on the map, which can be recognized using the robot’s color sensor. The Base
located at the bottom left is the required starting point for each run. In this
paper, we focus on the task of planning a path for the robot between specified
mission regions. Some other actions involving motor and sensor usages can be
performed in addition to navigation, as described in the LEGO NLPr system
[24].

(a) The mission map (b) Virtual map in block representation

Fig. 3. Virtual game maps

In order to simplify pathfinding, we break the Mission Map into grid squares,
as shown in Fig. 3b. We denote this grid representation the Virtual Map. In the
Virtual Map asterisks denote the edge of the start region and mission regions are
represented by mission blocks. Mission blocks are shaded cells of the form Mn

where the n represents the mission index. Each grid block corresponds to a block
with size of 4′′ × 4′′ . The top left corner of the map is initialized with coordinate
(1, 1). If the mission regions are treated as block-like obstacles, and the robot is
restricted to movement in the cardinal directions, the task of pathfinding in the
Virtual Map can be treated as a 2D Manhattan pathfinding problem.

3.3 Lee’s Algorithm and Its Adaption

Lee’s Algorithm [9] is one of the most effective breadth-first search (BFS) based
single-layer routing methods for finding the shortest paths in a Manhattan graph.



Breaking Down High-Level Robot Path-Finding Abstractions in NLPr 285

Lee’s Algorithm searches for the target from the source using a wave-like prop-
agation. With a source block S and a target set of adjacent blocks T, there are
two main phases in Lee’s Algorithm:

1. Search: Begin by labelling block S as k, where k = 0. Fill the valid neighbors
of blocks labeled k (not already filled and not outside of the map) with label
k + 1. Proceed to step k + 1, repeating the previous process until either the
destination T is reached or there are no more valid neighbors.

2. Retrace: Once T has been reached, trace backward to build the path from
T to S by following the descend of k from k to 0. It is possible that multiple
equal-length paths exist between S and T .

Lee’s Algorithm can be modified to break ties between equal-length paths in
favor of the path with the fewest turns, as shown in Algorithm1 [16]. By mini-
mizing the number of turns that the robot makes, we reduce the number of NL
sentences our system must generate and the accumulation of navigation errors
that occur as the robot turns. In the Search process, the direction and coor-
dinates are recorded for the Retrace phase’s reference. An alternative method
approach would be to rank paths first by the number of turns taken and only
then consider the overall path length, effectively trading off reduced turning time
for potentially longer paths [25]. However, FLL players need to finish as many
tasks as possible within a given time limit, and as such, we prefer to rank by
path length first. Figure 4 shows an example of a grid’s state after Algorithm1
has been executed. Although there are multiple equal-length paths in the grid,
the path highlighted in green is chosen by the adapted Lee’s Algorithm because
it has the fewest turns among the eligible shortest paths.

Fig. 4. Finding a path from the Base to M2

3.4 Path Information Extraction for NLPr

Information extraction (IE) [6] in NLP is the process of converting raw text into
a form that can be easily processed by machines. A task-driven domain-specific
function library F is used to narrow down the space of function matching for
program synthesis in this study. The function library F includes actions that a
LEGO robot can perform with the supported sensors and motors. The key to



286 Y. Zhan and M. S. Hsiao

Algorithm 1 Shortest-and-fewest-turn path: Search and Retrace
1: procedure Search(current point, target point)
2: queue.push([source point, 0])
3: while queue do
4: current point, counter ← queue.popleft()
5: i, j ← current point.i, current point.j
6: emap[i][j] ← counter � label the current point
7: queue.push(neighborsOf(i, j), counter + 1) if valid
8: if any neighbor reaches the target point then
9: goal point ← (i, j), break � path found

10: if goal point = source point then
11: return � no such path exists
12: else
13: save current dir

1: procedure Retrace(current point, source point)
2: get dir ← current dir
3: while current point �= source point do
4: i, j, id ← current point.i, current point.j, emap[i][j]
5: L id, R id, U id, D id ← neighbors(emap[i][j]) if exists
6: if get dir ∈ [L, R, U, D] and (X id = id − 1) then � X: dir as id↓ along

get dir
7: update i, j
8: else
9: compare to neighbors in different dirs

10: update i, j, get dir

11: current point ← (i, j)
12: path.push(current point)

parsing a sentence’s semantic meaning is to split the sentence into sentence frame
components and identify the dependency relations in and between each frame.
A grammar-based OOP-CNL model L [24] is used to construct an intermediate
representation for pathfinding based on part-of-speech (POS) tags [22] and parse
information using NLTK toolkits [12], defined as:

L = (O,A, P,R) (1)

where O stands for the objects in the arena, A represents the robot actions, P
indicates the adjectives or adverbs affiliated with the objects and actions, and
R represents the requirements or conditions for the objects or the actions.

In order to provide sufficient information for program synthesis for the task-
driven robot NLPr system, the following sentence components must first be
identified: the object O, the action A, their corresponding properties P , and
the conditional rules R, if any exist. After an initial preprocessing step based
on lemmatization and tokenization, keywords from the lexicon, such as sensor
names, sensor and motor port numbers, and mission region names are identi-
fied. Then the sentence tokens are categorized based on grammatical tags and
dependency relations. For example, in the input sentence “A happy robot goes



Breaking Down High-Level Robot Path-Finding Abstractions in NLPr 287

to M2.” O is the robot; A is go to M2; P is a Boolean state happy, and the
R is that the expression happy==True must evaluate to true in order for the
object to perform the action, as shown in Fig. 5. In an ideal world, the com-
bination of OAPR extracted from a sentence would correspond to exactly one
function in the function library F . However, due to the ambiguous nature of NL,
there exist sentences for which OAPR either cannot be mapped to any function
in the library and there exist sentences for which OAPR can map to multiple
functions. These sentences pose a problem because if they are passed to the
downstream NLPr system, the system could generate a program that does not
perform the action the user intended. One way to prevent passing these sentences
downstream is to use a formal validation step, which can provide early detection
of such ambiguous sentences. The validation of input sentences is done with a
formal analysis engine powered by a context-sensitive hierarchical finite-state
machine (HFSM), which will be introduced in Sect. 3.7.

In a robot path finding task, when mission regions are detected in the
sentence, an error-checking step is invoked to detect any underlying errors
in the text, as described in Algorithm 2. The object and action pairs iden-
tified in this step continue to a function matching process in the function
library F . The object robot and action go match the pathfinding func-
tion find path(start,target) instead of the function move(dir,num,unit)
because of the presence of the target M2 in this example.

Fig. 5. Parsing a sentence and constructing the intermediate representation.

For our robot application, the number of object and action combinations is
finite. For sentences with no ambiguity or errors, each L should have only one
valid match in the finite function library F . If the system fails to identify such
a 1:1 match in the function library, the system will generate an error message
with diagnostic information to help users to debug their input. When multiple
objects, actions, or interpretations exist, the pre-defined higher priority functions
will be chosen to ensure a sample program can be generated. For example, the
sentence “The robot goes straight to M3.” maps to function move(forward,0,0)



288 Y. Zhan and M. S. Hsiao

and function find path(0,M3). As such, the system cannot determine the user’s
intention. The system responds to this situation by generating a warning mes-
sage, notifying users that “straight” is ignored for this conflict. Rather than not
produce any low-level output at all, the system produces an output based on the
find path function, as it is a higher priority action.

When multiple mission regions are present, the pathfinding process needs
to be split into steps. Each input sentence describing robot navigation may
contain one midpoint and one avoid-point. For example, in the sentence “If
the robot sees an obstacle in 20 in., it goes to M7 through M3 but avoids
M4”, the path is parsed into two steps with the midpoint (through (M3)),
the target (to (M7)), and the avoid-point (avoids (M4)), under the condition
(if ultrasound sensor()<20 inches).

Algorithm 2 Check for errors in the pathfinding sentence
1: procedure Check Errors(tokens)
2: tokens, unknowns = tokens.validate(lexicon)
3: if unknowns then
4: Warning: Skipping detected unknown tokens.

5: obj, act ← tokens.intersection(obj dict, act dict)
6: if obj �= robot or act �= find path then � mismatch
7: Error: not valid combination
8: missions ← tokens.intersection(emap) � get all mission regions in the

sentence
9: if len(missions) ≥ 4 then

10: Error: too many mission regions in one sentence. Consider re-write.

11: source, target, mid point ← dependency(tokens)
12: if !target or any mission ∈ missions unsigned then
13: Error: no valid target or dangling tokens
14: else
15: return [robot.find path(source, mid point, target)]

Multi-conditional statements can be handled in such a language model L by
processing each condition as a Boolean statement and each action separately.
For the example shown in Fig. 6, the sentence is processed into an if statement
with 2 conditions: condition 1 (NP (color sensor) VP (see black)), condition
2 (NP (robot) VP (is happy)), and action (NP (it) VP (move to M2)). The
reference relation between it and robot is done by contextual analysis on current
and previous contents combined with function library restrictions. e.g. robot is
chosen because of it matches with the action move behavior both contextually
and functionally.

While an action might have several interpretations, the functions implied in
a sentence are limited by the task-driven domain-specific function library. For
example, in the sentence “When the robot sees red at M1, it will speed up and go
through M2 to reach M3.”, the color subject indicates a color sensor is needed.



Breaking Down High-Level Robot Path-Finding Abstractions in NLPr 289

Fig. 6. Complex sentence example

Similarly, “see a wall” indicates the ultrasound sensor usage and “touch a wall”
indicates the touch sensor usage.

3.5 Path to Low-Level Sentence

Once a path between S and T is identified, a sequence of low-level NL sentences
describing the corresponding step-by-step actions needed to navigate the LEGO
robot is generated. A grammar-based formalization method is used to construct
the object-oriented low-level NL sentences. The generated NL texts will be fed to
an NLPr system for further translation, as opposed to being intended for humans
to read. Our proposed method does not require a large dataset for training and
can be adapted to other high-level abstractions when a suitable function library
is available.

Fig. 7. The robot moves from A to B.

If the robot starts off facing North/up, path 1 in Fig. 7 is described in low-
level NL specifications as:

Path 1: [4, 1] → ... → [1, 1] → ... → [1, 4] ⇒
The robot goes forward 12 inches. The
robot turns right 90 degrees. The robot
goes forward 12 inches.

The pseudocode in Algorithm 3 illustrates the above path-to-sentence conver-
sion. First, every two neighboring coordinates in the path array are compared to
detect turns and step numbers in each turn. The function compare((pre row,
pre col), (row, col)) returns state that determines if the robot needs to
turn. If not, it means the robot still follows the previous direction pre state. The
counter records the number of steps in the current direction. Once a turn occurs,
a set of NL sentences is generated based on the number of steps, recorded direc-
tion, and previous state, i.e., the function path2NL(pre state, dir, count)



290 Y. Zhan and M. S. Hsiao

generates the NL sentences for each turn. We then update the direction and
reset the counter for the next steps.

Algorithm 3 Path to NL Generation
1: procedure NL Text Generation(path, direct)
2: total step, (pre row, pre col) ← len(path), path[0] � total number of steps
3: counter, state, pre state ← 0, 0, 0
4: for i in range(1, total step ) do
5: row, col ← path[i]
6: state ←compare((pre row, pre col), (row, col))
7: if state = pre state then
8: counter += 1

9: if state �= pre state or i = total step − 1 then
10: NL text ←path2NL(pre state, dir, counter)
11: update(dir), counter ← 1
12: NL2Code(NL text) � NL texts to code

13: pre state, pre row, pre col ← state, row, col

3.6 Generating Code from NL Specifications Using the NLPr
System

The LEGO NLPr program synthesis system [24] generates executable text-based
programs directly from the NL input instead of the graph-based programs typ-
ical of LEGO robots. The input English Code (EC) is processed into interme-
diate representations using NLP techniques like, lemmatization, tokenization,
categorization, and a function matching procedure. Such intermediate represen-
tations contain information extracted from the input that indicate the desired
functions that need to be translated into formal program snippets. These inter-
mediate representations are used for program synthesis and producing feed-
back or error information for users. The NL-to-code program synthesis system,
NL2Code(NL text) in Algorithm 3, calls the functions that handle the conver-
sion of generated low-level NL specifications into executable programs. A set
of robot motion functions in F are combined to synthesize the output program
based on the intermediate representations. For example, the sentence “The robot
goes forward for 12 in.” can be represented by robot.move(forward,12,inch).
This representation is translated into 28 lines of code.

3.7 Formal Validation Using HFSM

Finite-state machines (FSMs) are a powerful formal validation technique widely
used in NLP applications such as IE and natural language parsing [14]. An FSM
is an automaton with a finite number of transition states and terminal states.
The transitions from one state to another are triggered with a predetermined



Breaking Down High-Level Robot Path-Finding Abstractions in NLPr 291

Fig. 8. Example HFSM

set of coded instructions [20]. At each state, the relevant FSM path to the next
state is determined by the next input token in the sequence. Accurate transla-
tions are critical for NL-based robot program synthesis as misunderstanding the
input’s intention might lead to physical damage to the robot. The deterministic
properties of FSMs help generate more trustworthy intermediate semantic rep-
resentations and also help detect errors in the input, both of which contribute
to less error-prone results for the NLPr system. In our LEGO NLPr system, the
validation process in Algorithm2, is powered by a context-sensitive hierarchical
FSM based formal validation engine. This formal validation engine helps us to
both validate input sentences and generate error messages whenever an error
state is reach.

The FSM’s hierarchical structure reduces the complexity of the system and
allows us to specify the system more in detail by breaking the state machine
into several superstates, denoted as SSi, where SSi ∈ SS, 1 ≤ i ≤ m, as shown
in Fig. 8. A superstate represents a cluster of one or more substates, as shown
in Fig. 8. As mentioned above, the LEGO NLPr system is capable of handling
conditional statements. To avoid mistranslation, the parsing process is split into
two separate HFSMs with one for the condition and one for the action in a sen-
tence. Take Boolean variable checking as an example: the conditional statement
if “the robot is happy” refers to an expression that checks to see if the vari-
able happy is True, while the action statement “the robot is happy” refers to a
variable assignment that assigns True to happy.

For the robot pathfinding task we focused on in this paper, the transition
from the robot superstate SS1 to the pathfinding superstate SS5 is triggered
when a valid mission region name Mx is identified, as shown in Fig. 9. Within
the pathfinding superstate SS5, the target, source, midpoint, and avoid-point are
identified. The formal validation within the superstate will check if any errors
exist, such as illegal mission region names that are not registered on the mission
map or having two target regions.



292 Y. Zhan and M. S. Hsiao

Fig. 9. Simplified robot action HFSM with some states omitted.

In order to guarantee the validity of the information extracted by the HFSM,
we include a context-sensitive semantic checking based case analysis prior to
transitioning to any terminal state, a step not present in conventional FSMs. For
example, the case analysis would report errors and leads to the error terminal
state if there are any conflicts between the target, source, midpoint, and avoid-
point.

4 Experimental Results

We evaluate our system’s performance on a set of 162 robot pathfinding related
descriptions. These descriptions were collected manually by the authors, and
they collectively describe movements between all eight mission regions. Each
description consists of one or more sentences.

Our system successfully translates all 36 descriptions with 2 or fewer mis-
sion regions, resulting in programs that navigate the robot on the shortest path
with the fewest turns between the source and the target. Of the 56 descriptions
that navigate between three mission regions, 91.1% of the generated programs
are correct. Our system performs worse on descriptions with more complicated
structures, namely those involving more than three mission regions, with only
68.6% of the 70 such descriptions being translated into programs that conform to
the original semantic meaning of the descriptions. Overall, our system correctly
translated 135 (83.3%) of the 162 collected descriptions. Some example descrip-
tions and their corresponding number of lines of code generated are shown in
Table 1.

These results show that our proposed high-level abstractions to low-level NL
instructions transformation system can successfully translate the large majority
of the collected high-level robot navigation task sentences into low-level instruc-
tions for producing executable programs. This supports our hypothesis that with
the POS tagging and a domain-specific function library and lexicon, the objects,
actions, and targets in L can be effectively identified and useful intermediate
representations for further program synthesis can then be generated.



Breaking Down High-Level Robot Path-Finding Abstractions in NLPr 293

However, despite our system’s strengths, it still struggles with more compli-
cated sentence structures due to the ambiguous and expressive nature of NL.
One such description that poses a challenge for our system is “The robot wan-
ders through M1 M2 and M3.” This description cannot be translated properly
because there is no clear indication of the robot’s source and target. As this
description would be difficult for a human to convert to low-level instructions,
it is understandable that the system fails to translate it correctly.

High-level robot navigation abstractions are translated into varying numbers
of lines of code depending on the complexity of the NL instructions. When an
NL description includes information that the system cannot handle, a best-guess
program skeleton and accompanying debugging feedback are generated.

Table 1. English code examples with corresponding number of lines of code generated

Eg# English Code Examples # of lines

1 The robot goes from M5 to M3 99

2 The robot starts with facing to the right 109

The robot goes to M8 from M1 but avoids M2

3 The robot goes to M1 without going through M2 via M3 81

4 If the robot is happy, it goes to M2 67

5 When robot does not see the red line, it goes straight to M3 105

Otherwise, it follows the red line

6 If the robot sees an obstacle in 20 in., it goes to M7 through M3
but avoids M4

108

7 If the ultrasound sensor sees a ball in 5 in., the robot is happy 112

A happy robot goes to M7 though M3 but avoids M4

4.1 Case Study

Example 1. 109 lines of code are generated for Example description #2 in
Table 1 for navigating from M5 to M3, shown in Fig. 10a.

Generated path [1, 2] → · · · → [7, 2] → · · · → [7, 8] → [6, 8] → · · · → [6, 17] →
[5, 17] · · · → [2, 17] · · · → [2, 19]

Generated low-level instructions “The robot turns right 90 degrees. The
robot goes forward 24 in. The robot stops. The robot turns left 90 degrees. The
robot goes forward 24 in. The robot stops. The robot turns left 90 degrees. The
robot goes forward 4 in. The robot stops. The robot turns right 90 degrees.
The robot goes forward 36 in. The robot stops. The robot turns left 90 degrees.
The robot goes forward 16 in. The robot stops. The robot turns right 90
degrees. The robot goes forward 8 in. The robot stops.”



294 Y. Zhan and M. S. Hsiao

Example 2. Paths for sample #7 in Table 1 are shown in Figs. 10b and 10c.
Sample #7 in Table 1 is a multiple-phase pathfinding task, and as such our
system must compute two paths. Note that when the robot reaches mission
region #3, the robot is pointing to the East/right. Therefore, the second path
starts with turning to the right only 90 degrees rather than turning 180 degrees.
The second sentence’s robot movements would only be performed when the state
happy is true from the last sentence.

Generated path 1 [11, 1] → · · · → [6, 1] → · · · → [6, 6]
Generated path 2 [6, 6] → · · · → [9, 6] → · · · → [9, 17]
Generated low-level instructions “The robot goes forward 20 in. The robot

stops. The robot turns right 90 degrees. The robot goes forward 20 in. The
robot stops. The robot turns right 90 degrees. The robot goes forward 12 in.
The robot stops. The robot turns left 90 degrees. The robot goes forward
44 in. The robot stops.”

(a) Path from M1 to M8

(b) Path to M3 (c) Path from M3 to M7

Fig. 10. Case study tasks

5 Future Work

There are two main directions in which we intend to extend this work. First,
we found that some input sentences may be invalid as they contain unclear



Breaking Down High-Level Robot Path-Finding Abstractions in NLPr 295

or unknown information, meaning that they cannot be translated into robot
functions even by a human, e.g. “The robot hates moving forward”. In order to
make the system more robust to invalid inputs, it will be necessary to validate
inputs with domain-specific formal reasoning and analysis. This will ensure the
correctness of the system’s understanding of the users’ intentions and the cor-
rectness of the generated programs. Second, the function space contains several
basic robot motions. As such, we intend to expand the function space with more
low-level and even middle-level NL texts to develop the high-level abstraction
self-explaining architecture further.

6 Conclusion

This work investigates the interdisciplinary NLP and robot path navigation
task of breaking down complex high-level robot pathfinding abstractions into
low-level NL instructions that can be processed directly by a LEGO NLPr sys-
tem. The system we propose utilizes an efficient information extraction method
with a OOP-CNL language model that analyzes and validates the sentence com-
ponents’ semantic meanings and relations. The system also contains an error-
checking component that evaluates the input sentences’ validity, and can also
serve as a starting point for developing formal analysis methods for NLPr. We
demonstrated how robot pathfinding problems for 2D Manhattan graphs could
be handled by transforming the complicated high-level robot abstractions into
a sequence of low-level NL instructions using NLP techniques and the domain-
specific function library. The experimental results show that existing NLPr sys-
tems can be adapted to produce executable code using generated low-level NL
specifications due to the simplicity, concreteness, and precise nature of the gen-
erated low-level sentences.

Although the study in this paper is limited in scope to pathfinding for LEGO
Mindstorms EV3 robots, it lays a foundation for the task-driven HL2LL NL text
self-explaining mechanism based on a domain-specific library. As complicated
robot procedures can be explained using detailed sequential steps in natural lan-
guage, we believe such a self-explaining mechanism could be a highly promising
avenue for future NLP research.

References

1. Balog, M., Gaunt, A.L., Brockschmidt, M., Nowozin, S., Tarlow, D.: Deepcoder:
learning to write programs. CoRR abs/1611.01989 (2016)

2. Dijkstra, E.W.: On the foolishness of “natural language programming”. In: Bauer,
F.L., et al. (eds.) Program Construction. LNCS, vol. 69, pp. 51–53. Springer, Hei-
delberg (1979). https://doi.org/10.1007/BFb0014656

3. Ernst, M.D.: Natural language is a programming language: applying natural lan-
guage processing to software development. In: The 2nd Summit on Advances in
Programming Languages, SNAPL 2017, CA, USA, pp. 4:1–4:14. Asilomar, May
2017

https://doi.org/10.1007/BFb0014656


296 Y. Zhan and M. S. Hsiao

4. Hayes, B., Shah, J.A.: Improving robot controller transparency through
autonomous policy explanation. In: Proceedings of the 2017 ACM/IEEE Interna-
tional Conference on Human-Robot Interaction, HRI 2017, New York, NY, USA,
pp. 303–312. Association for Computing Machinery (2017)

5. Hsiao, M.S.: Automated program synthesis from object-oriented natural lan-
guage for computer games. In: Controlled Natural Language - Proceedings of the
Sixth International Workshop, CNL 2018, Maynooth, Co., Kildare, Ireland, 27–28,
August 2018, pp. 71–74 (2018)

6. Jurafsky, D., Martin, J.H.: Speech and Language Processing, 2nd edn. Prentice-
Hall Inc., Hoboken (2009)

7. Kuhn, T.: A survey and classification of controlled natural languages. Comput.
Linguist. 40(1), 121–170 (2014)

8. Lauria, S., Bugmann, G., Kyriacou, T., Klein, E.: Mobile robot programming using
natural language. Robot. Auton. Syst. 38(3), 171–181 (2002). Advances in Robot
Skill Learning

9. Lee, C.Y.: An algorithm for path connections and its applications. IRE Trans.
Electron. Comput. EC-10(3), 346–365 (1961)

10. Lin, X.V., Wang, C., Pang, D., Vu, K., Zettlemoyer, L., Ernst, M.D.: Program
synthesis from natural language using recurrent neural networks. Technical report,
UW-CSE-17-03-01, University of Washington Department of Computer Science
and Engineering, Seattle, WA, USA, Mar 2017

11. Liu, H.: Metafor: visualizing stories as code. In: 10th International Conference on
Intelligent User Interfaces, pp. 305–307. ACM Press (2005)

12. Loper, E., Bird, S.: NLTK: the natural language toolkit. In: Proceedings of the
ACL-02 Workshop on Effective Tools and Methodologies for Teaching Natural
Language Processing and Computational Linguistics, ETMTNLP 2002, USA, vol.
1, pp. 63–70. Association for Computational Linguistics (2002)

13. Lopes, L.S., Teixeira, A.: Human-robot interaction through spoken language dia-
logue. In: Proceedings of the 2000 IEEE/RSJ International Conference on Intelli-
gent Robots and Systems (IROS 2000) (Cat. No. 00CH37113), vol. 1, pp. 528–534
(2000)

14. Manning, C.D., Schütze, H.: Foundations of Statistical Natural Language Process-
ing. MIT Press, Cambridge (1999)

15. Matuszek, C., Herbst, E., Zettlemoyer, L., Fox, D.: Learning to parse natural lan-
guage commands to a robot control system. In: Desai, J., Dudek, G., Khatib, O.,
Kumar, V. (eds.) Experimental Robotics, pp. 403–415. Springer, Heidelberg (2013).
https://doi.org/10.1007/978-3-319-00065-7 28

16. Maxemchuk, N.: Routing in the Manhattan street network. IEEE Trans. Commun.
35(5), 503–512 (1987)

17. Menon, A.K., Tamuz, O., Gulwani, S., Lampson, B., Kalai, A.T.: A machine learn-
ing framework for programming by example. In: Proceedings of the 30th Interna-
tional Conference on International Conference on Machine Learning, ICML 2013,
vol. 28, pp. I-187–I-195. JMLR.org (2013)

18. Mihalcea, R., Liu, H., Lieberman, H.: NLP (Natural Language Processing) for
NLP (Natural Language Programming). In: Gelbukh, A. (ed.) CICLing 2006.
LNCS, vol. 3878, pp. 319–330. Springer, Heidelberg (2006). https://doi.org/10.
1007/11671299 34

19. Perera, V., Selveraj, S.P., Rosenthal, S., Veloso, M.: Dynamic generation and
refinement of robot verbalization. In: 2016 25th IEEE International Symposium on
Robot and Human Interactive Communication (RO-MAN), pp. 212–218, August
2016

https://doi.org/10.1007/978-3-319-00065-7_28
https://doi.org/10.1007/11671299_34
https://doi.org/10.1007/11671299_34


Breaking Down High-Level Robot Path-Finding Abstractions in NLPr 297

20. Rangra, R., Madhusudan: Natural language parsing: using finite state automata.
In: 2016 3rd International Conference on Computing for Sustainable Global Devel-
opment (INDIACom), pp. 456–463 (2016)

21. Rosenthal, S., Selvaraj, S.P., Veloso, M.: Verbalization: narration of autonomous
robot experience. In: Proceedings of the Twenty-Fifth International Joint Con-
ference on Artificial Intelligence, IJCAI 2016, pp. 862–868. AAAI Press (2016).
http://dl.acm.org/citation.cfm?id=3060621.3060741

22. Toutanova, K., Klein, D., Manning, C.D., Singer, Y.: Feature-rich part-of-speech
tagging with a cyclic dependency network. In: Proceedings of the 2003 Human
Language Technology Conference of the North American Chapter of the Associa-
tion for Computational Linguistics, pp. 252–259 (2003). https://www.aclweb.org/
anthology/N03-1033

23. Wang, X., et al.: Reinforced cross-modal matching and self-supervised imitation
learning for vision-language navigation. CoRR abs/1811.10092 (2018)

24. Zhan, Y., Hsiao, M.S.: A natural language programming application for Lego Mind-
storms EV3. In: 2018 IEEE International Conference on Artificial Intelligence and
Virtual Reality (AIVR), pp. 27–34, December 2018

25. Zhou, Y., Wang, W., He, D., Wang, Z.: A fewest-turn-and-shortest path algorithm
based on breadth-first search. Geo-spatial Inf. Sci. 17(4), 201–207 (2014)

http://dl.acm.org/citation.cfm?id=3060621.3060741
https://www.aclweb.org/anthology/N03-1033
https://www.aclweb.org/anthology/N03-1033

	Breaking Down High-Level Robot Path-Finding Abstractions in Natural Language Programming
	1 Introduction
	2 Previous Work
	3 Problem Formulation and System Design
	3.1 High-Level to Low-Level (HL2LL) System Overview
	3.2 Map Representation
	3.3 Lee's Algorithm and Its Adaption
	3.4 Path Information Extraction for NLPr
	3.5 Path to Low-Level Sentence
	3.6 Generating Code from NL Specifications Using the NLPr System
	3.7 Formal Validation Using HFSM

	4 Experimental Results
	4.1 Case Study

	5 Future Work
	6 Conclusion
	References




