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Abstract. We present theoretical and numerical results concerning the
problem to find the path that minimizes the time to navigate between two
given points in a complex fluid under realistic navigation constraints. We
contrast deterministic Optimal Navigation (ON) control with stochas-
tic policies obtained by Reinforcement Learning (RL) algorithms. We
show that Actor-Critic RL algorithms are able to find quasi-optimal solu-
tions in the presence of either time-independent or chaotically evolving
flow configurations. For our application, ON solutions develop unstable
behavior within the typical duration of the navigation process, and are
therefore not useful in practice. We first explore navigation of turbulent
flow using a constant propulsion speed. Based on a discretized phase-
space, the propulsion direction is adjusted with the aim to minimize the
time spent to reach the target. Further, we explore a case where addi-
tional control is obtained by allowing the engine to power off. Exploiting
advection of the underlying flow, allows the target to be reached with
less energy consumption. In this case, we optimize a linear combina-
tion between the total navigation time and the total time the engine is
switched off. Our approach can be generalized to other setups, for exam-
ple, navigation under imperfect environmental forecast or with different
models for the moving vessel.

1 Introduction

Controlling and planning paths of small autonomous marine vehicles [16] such
as wave and current gliders [10], active drifters [13], buoyant underwater explor-
ers, and small swimming drones is important for many geo-physical [11] and
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engineering [3] applications. In realistic open environments, these vessels are
affected by disturbances like wind, waves and ocean currents, characterized by
unpredictable (chaotic) trajectories. Furthermore, active control is also limited
by engineering and budget aspects as for the important case of unmanned drifters
for oceanic exploration [6,18]. The problem of (time) optimal point-to-point nav-
igation in a flow, known as Zermelo’s problem [24], is interesting per se in the
framework of Optimal Control Theory [5]. In this paper, we extend some of
the results from a recent theoretical and numerical study [4], tackling Zermelo’s
problem for navigation in a two-dimensional fully turbulent flow in the presence
of an inverse energy cascade, i.e. with chaotic, multi-scale and rough velocity
distributions [1], see Fig. 1 for a summary of the problem. In such a flow, even
for time-independent configurations, trivial or naive navigation policies can be
extremely inefficient and ineffective if the set of actions by the vessel are lim-
ited. We show that an approach based on semi-supervised AI algorithms using
actor-critic Reinforcement Learning (RL) [21] is able to find robust quasi-optimal
stochastic policies that accomplish the task. Furthermore, we compare RL with
solutions from Optimal Navigation (ON) theory [17] and show that the latter is
of almost no practical use for the case of navigation in turbulent flows due to
strong sensitivity to the initial (and final) conditions, in contrast to what hap-
pens for simpler advecting flows [20]. RL has shown to have promising potential
to similar problems, such as the training of smart inertial particles or swimming
objects navigating intense vortex regions [7–9].

We present here results from navigating one static snapshot of 2D turbulence
(for time-dependent flows see [4]). In Fig. 1 we show a sketch of the setup. Our
goal is to find trajectories (if they exist) that join the region close to xA with
a target close to xB in the shortest time, supposing that the vessels obey the
following equations of motion:{

Ẋt = u(Xt, t) + U ctrl(Xt)
U ctrl(Xt) = Vsn(Xt)

(1)

where u(Xt, t) is the velocity of the underlying 2D advecting flow, and
U ctrl(Xt) = Vsn(Xt) is the control slip velocity of the vessel with fixed intensity
Vs and varying steering direction: n(Xt) = (cos[θt], sin[θt]), where the angle is
evaluated along the trajectory, θt = θ(Xt). We introduce a dimensionless slip
velocity by normalizing with the maximum velocity umax of the underlying flow:
Ṽs = Vs/umax. Zermelo’s problem reduces to optimize the steering direction θ in
order to reach the target [24]. For time independent flows, optimal navigation
(ON) control theory gives a general solution [14,22]. Assuming that the angle
θ is controlled continuously in time, the optimal steering angle must satisfy the
following time-evolution:

θ̇t = A21 sin2 θt − A12 cos2 θt + (A11 − A22) cos θt sin θt, (2)

where Aij = ∂jui(Xt) is evaluated along the agent trajectory Xt obtained
from Eq. (1). The set of equations (1–2) may lead to chaotic dynamics even for
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Fig. 1. Left: Image of one turbulent snapshot used as the advecting flow, with the
starting, xA, and ending point, xB , of our problem. We also show an illustrative nav-
igation trajectory Xt. The flow is obtained from a spatially periodic snapshot of a 2D
turbulent configuration in the inverse energy cascade regime with a multi-scale power-
law Fourier spectrum, E(k) =

∑
k<k<k+1 |u(k)|2 ∼ k−5/3. For RL optimization, the

initial conditions are taken randomly inside a circle of radius dA centered around xA.
Similarly, the final target is the circle of radius dB centered around xB . The flow area
is covered by a grid-world with tiles si with i = 1, . . . , Ns and Ns = 900 of size δ × δ
which identify the state-space for the RL protocol. The large-scale periodicity of the
underlying flow is L, and we fixed δ = L/10. Every time interval Δt, the unmanned
vessel selects one of the 8 possible actions aj with j = 1 . . . 8 (the steering directions
θj depicted in left top inset) according to a policy π(a|s), where π is the probability
distribution of the action a given the current state s of the agent at that time. The pol-
icy is optimized during the learning to maximize the total reward, rtot, proportional to
minus the navigation time, rtot ∼ −TxA→xB , so that the maximal reward corresponds
to the fastest trajectory. For the policy to converge, the actor-critic method requires
to accumulate experience over a number of the order of 1000 different trajectories,
with small variations depending on the values of the slip velocity Ṽs and the specific
flow properties. In a second series of experiments we added an additional action, the
possibility to switch off the power, i.e. to let Vs = 0. This allows the vessel to fully take
advantage of the flow and save energy (see Sect. 3.2). Right: spatial concentrations of
trajectories for three values of Ṽs. The flow region is color coded proportionally to the
time the trajectories spend in each pixel area for both ON (red) and RL (blue). Light
colors refer to low occupation and bright to high occupation. The green-dashed line
shows the best ON out the 20000 trajectories. Right histograms: arrival time distri-
bution for ON (red) and RL (blue). Probability of not reaching the target within the
upper time limit is plotted in the Fail bar. (Color figure online)

time-independent flows in two spatial dimensions. Due to the sensitivity to small
perturbations in chaotic systems the ON approach becomes useless for many
practical applications.
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2 Methods

RL applications [21] are based on the idea that an optimal solution can be
obtained by learning from continuous interactions of an agent with its envi-
ronment. The agent interacts with the environment by sampling its states s,
performing actions a and collecting rewards r. In our case the vessel acts as the
agent and the two-dimensional flow as the environment. In the approach used
here, actions are chosen randomly with a probability that is given by the pol-
icy π(a|s), given the current flow-state s. The goal is to find the optimal policy
π∗(a|s) that maximizes the total reward, rtot =

∑
t rt, accumulated along one

episode. For the purpose to find the fastest trajectory we used rt composed of
three different terms;

rt = −Δt +
|xB − Xt−Δt|

Vs
− |xB − Xt|

Vs
. (3)

The first term accumulates a large penalty if it takes long for the agent to reach
the end point, while the second and third terms describe the change in free-
flight time to the target, i.e. the difference in time it would take, if the flow is
neglected, to reach the target from the locations at this and the previous state
change [2]. It follows the the total reward is proportional to minus the actual
time taken by the trajectory to reach the target,

rtot ∼ −TxA→xB
,

neglecting a constant term that does not depend on the training, see [4] and Fig. 1
for precise definition of flow-states and agent-actions. An episode is finalized
when the trajectory reaches the circle of radius dB around the target. In order
to converge to robust policies each episode is started with a uniformly random
position within a given radius, dA, from the starting point. To estimate the
expected total future reward we follow the one-step actor-critic method [21]
based on a gradient ascent in the policy parametrization. In the second part
of our work, we modify the navigation setup by allowing the unmanned vessel
to turn off its ‘engine’, to allow it to navigate just following the flow without
its own propulsion speed. In this framework, navigation can be optimal with
respect to minimal energy consumption rather than time, or to a tradeoff between
energy consumption and time. To repeat the training of the optimal policy taking
into account of both aspects, energy and time, we modified our RL scheme as
follows. First, we added the new action to turn off the vessel propulsion speed,
i.e. letting Vs = 0, in addition to the eight possible navigation angles considered
before. Second, we modified the reward function in order to weigh the relative
importance of navigation time and energy consumption. This was obtained by
adding a new term describing the time the vessel consumes energy, −λΔtpow, to
the instantaneous reward in Eq. (3) as follows

rt = −(Δt + λΔtpow) +
|xB − Xt−Δt|

Vs
− |xB − Xt|

Vs
. (4)
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The total reward becomes proportional to minus the sum of the two time con-
tributions,

rtot ∼ − (TxA→xB
+ λTpow) . (5)

The time Δtpow counts the time the vessel navigates with self propulsion, giving
a total time Tpow where energy is spent. The factor λ weighs the importance
of energy consumption time and total navigation time in the optimisation. We
have repeated the training of the RL optimal policy with the new time-energy
combined goals in the time-independent flow shown in Fig. 1, as well as in a more
realistic time-dependent 2D turbulent flow. The latter was obtained by solving
the incompressible Navier-Stokes equations on a periodic square domain with
side length L = 2π and N = 5122 number of collocation points, see [4] for more
details about the flow.

3 Results (Time-Independent Flows)

3.1 Shortest Time, No Energy Constraints

In the right part of Fig. 1 we show the main results comparing RL and ON
approaches [4]. The minimum time taken by the best trajectory to reach the
target is of the same order for the two methods. The most important difference
between RL and ON lies in their robustness as seen by plotting the spatial den-
sity of trajectories in the right part of Fig. 1 for the optimal policies of ON and
RL with three values of Ṽs. We observe that the RL trajectories (blue coloured
area) form a much more coherent cloud in space, while the ON trajectories (red
coloured area) fill space almost uniformly. Moreover, for small navigation veloc-
ities, many trajectories in the ON system approach regular attractors, as visible
by the high-concentration regions. The rightmost histograms in Fig. 1 show a
comparison between the probability of arrival times for the trajectories illus-
trated in the two-dimensional domain, providing a quantitative estimation of
the better robustness of RL compared to ON. Other RL algorithms, such as
Q-learning[21], could also be implemented and compared with other path search
algorithms such as A∗ which is often used in computer science [12,19].

3.2 Minimal Energy Consumption

In this section we present results on the simultaneous optimisation of minimal
travel time and energy consumption. To begin with, we consider the same time-
independent flow as in the previous section. In Fig. 2 we show three sets of
trajectories following three policies obtained by optimising the reward (5) for
λ = 0, 2 and 6. The trajectories are superposed on the flow velocity ampli-
tude |u(Xt, t)| (left panel) and the Okubo-Weiss parameter ΔOW [15,23] (right
panel), defined as;

ΔOW = (A11 − A22)2 + (A21 + A12)2 − (A21 − A12)2. (6)
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Fig. 2. Three sets of fifty trajectories going from point xA to point xB , following the
optimal policies for three values of λ with propulsion speed either turned on, Ṽs = 0.8
(color), or turned off, Vs = 0 (white). (Left panel) The trajectories are plotted on
top of the amplitude of the time-independent flow velocity, |u|. (Right panel) Same
trajectories plotted over the Okubo-Weiss parameter, ΔOW , see Eq. (6). (Color figure
online)

Here Aij is the fluid-gradient matrix as defined after Eq. (2). The decomposi-
tion in Eq. (6) is particularly useful to distinguish strain dominated (ΔOW > 0,
orange-red colors) from vortex dominated (ΔOW < 0, green-blue colors) regions
of the flow. Colored regions of the trajectories show where the action is to have
the propulsion on and white regions show where the propulsion is off. When
λ = 0, the energy consumption does not matter for the reward, and the only
difference compared to the case in the previous section is that the policy can now
choose one additional action: the zero self propulsion speed. However, as seen
from Fig. 2, this action is rarely chosen when λ = 0, and the vessel navigates
with a constant self-propelling velocity. On the other hand, when the energy-
dependent reward is activated, as in the case of λ = 2, we observe a difference
in the optimal path followed by the vessel. This is because it has to balance the
penalties from the total navigation time and the time with self-propulsion. When
λ becomes larger, this difference in the optimal path becomes more significant.
For λ = 6 we observe trajectories that are much longer and dominated by passive
navigation, just following the flow. To have a more accurate comparison of the
arrival time to the target, TxA→xB

, and the total active navigation time, Tpow,
for the different values of λ, we show in Fig. 3 the evolution of these two terms
as functions of the episode number during the training of the three different
policies. The total reward (5) is a linear combination of these two terms, where
Tpow is multiplied by the factor λ. We first observe that the training converges
after around 10k episodes. Second, we see that for λ = 0, both TxA→xB

and
Tpow lies close to each other for all episodes, suggesting that the optimal policy
never found a state where it is better to navigate with zero propulsion to reach
the target faster. For values of λ larger than zero, the found policies end up with
Tpow below the value of the λ = 0 case, with the consequence of saving energy
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Fig. 3. Total navigation time, TxA→xB (open symbols) and total power-on time, Tpow

(full symbols), measured for different trajectories obtained during the training as a
function of the episode number, and for three different values of λ.

even though the time to reach the target is longer. A final result for this case
of time-independent flow is shown in Fig. 4, where we present the Probability
Density Functions (PDFs) of the total navigation time, TxA→xB

(main panel)
and of the power-on navigation time Tpow (inset). The distributions are sampled
over 40k trajectories with initial conditions close to xA that follows the optimal
policies obtained for five values of λ. These PDFs show that for λ = 0, both
times are of the order of 1.2T free

A→B , where T free
A→B = |xB − xA|/Vs ∼ 6.4 is the

free-flight time to go from point A to point B with a fixed self propulsion speed
Vs and without flow. For larger λ, the total navigation time increases while the
power-on time decreases monotonically up to λ = 6. Increasing λ up to 10 we
do not observe further reduction of Tpow, the PDF only becomes more peaked
around the value ≈ 0.4T free

A→B as found for λ = 6. This result suggests that we
have found the minimal amount of propulsion required for the vessel to be able
to navigate to the target.
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Fig. 4. (Main panel) PDFs of the arrival time, TxA→xB normalized by the free-
flight time T free

A→B , and measured over 40k different trajectories evolving on a time-
independent flow. The different colors indicate different values of λ, from λ = 0 (no
extra cost for using power-on, green color) up to λ = 10 (yellow color). The failures bars
indicate the probability that a trajectory following a given policy does not reach the
final target. (Inset) PDFs of the power-on time, Tpow, normalized by T free

A→B , measured
along the same 40k trajectories shown in the main panel. (Color figure online)

4 Results (Time-Dependent Flow)

In this last section we consider the same optimal navigation problem as in the
previous section, but with a more realistic time-dependent flow. For this case we
adopted a small self-propulsion velocity, Ṽs = 0.2, i.e. only 20% of the maximal
flow velocity amplitude. In Fig. 5 we present, as in the previous section, the PDFs
of both TxA→xB

(solid lines full symbols) and Tpow (dashed lines empty symbols)
obtained over 60k different trajectories following the converged optimal policies
for λ = 0, and λ = 2. These results show that, as for the time-independent case,
when λ > 0 RL finds a solution that spends less energy at the cost of a longer
total navigation time compared to the solution when λ = 0. Let us stress that
with a probability of the order of 1 in 1000 we observed trajectories that were
not able to reach the final target, as indicated by the failure bars reported in
Fig. 5. Finally, Fig. 6 shows six different snapshots at different times during the
evolution of two different sets of trajectories that follows the optimal policies
obtained for λ = 0 and λ = 2. The trajectories are superposed on the time-
dependent flow velocity. Similar to Fig. 2, white regions on the trajectories show
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Fig. 5. PDFs of the arrival time, TxA→xB (solid lines, full symbols) and of the power-
on time, Tpow (dashed lines, open symbols) measured over 60k different trajectories
following the optimal policy in a time-dependent flow, both normalized by the free-
flight time T free

A→B . Colours distinguish the two values of λ used during the training. The
navigation speed used along these trajectories is Ṽs = 0.2, hence, 20% of the maximum
flow velocity amplitude. The failures bars indicate the probability of a trajectory to
not reach the target after a long navigation time. (Color figure online)

where the vessel is navigating with zero self propulsion speed. We remark that
even when λ = 0, the found optimal policy chooses the Vs = 0 action in the
region close to the target. As a result, the PDFs of the total navigation time and
the power-on time are not identical even for the case of λ = 0. This is a very
nice example of the fact that the resulting policy in RL benefits from the added
control when the set of allowed actions is enlarged and that, in our particular
application, passively moving with the flow can be better than navigating when
the flow blows you in the right direction, independently of the requirement to
minimize energy.
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Fig. 6. Six snapshots at different times taken during the evolution of two sets of tra-
jectories in a time-dependent flow, following the optimal policies for λ = 0 (green
color) and λ = 2 (blue color). The six times are normalized to the free flight time.
The flow streamlines are coloured proportionally to their amplitude, while the white
points along the navigation trajectories indicate locations where the selected action
was passive navigation, i.e. VS = 0. (Color figure online)

5 Conclusions

We have first discussed a systematic investigation of Zermelo’s time-optimal
navigation problem in a realistic 2D turbulent flow, comparing both RL and
ON approaches [4]. We showed that RL stochastic algorithms are key to bypass
unavoidable instability given by the chaoticity of the environment and/or by the
strong sensitivity of ON on the initial conditions in the presence of non-linear
flow configurations. RL methods offer also a wider flexibility, being applicable
to energy-minimization problems and in situations where the flow evolution is
known only in a statistical sense as in partially observable Markov processes. Let
us stress that, instead of starting from a completely random policy as we did
here, it is also possible to implement RL to improve a-priori policies designed
for a particular problem. For example, one can use an RL approach to optimize
an initial trivial policy, where the navigation angle is selected as the action
that points most directly toward the target. In the second part of this work,
we further analyzed the more complex problem where the optimization of the
total navigation time is balanced by the energy consumption required to reach
the target. Also in this case, we found that RL is able to converge to non-
trivial solutions where the vessel navigates most of the time as a passive object
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transported by the flow, with only a minimum number of corrections to its
trajectory required to reach the final target.
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