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Abstract. The optimization of daily operating room surgery schedule
can be problematic because of many constraints, like to determine the
starting time of different surgeries and allocating the required resources,
including the availability of surgical teams for complete surgical proce-
dures. Recently, Answer Set Programming (ASP) has been successfully
employed for addressing and solving real-life scheduling and planning
problems in the healthcare domain. In this paper we present an enhanced
solution using ASP for scheduling operating rooms taking explicitly into
consideration availability of surgical teams, that include a surgeon and an
anesthetist in different specialties for the entire duration of the surgery.
We tested our solution on different benchmarks with realistic parameters
for schedule’s length up to the target 5-days planning. The results of our
experiments show that ASP is a suitable methodology for solving also
such enhanced problem.

1 Introduction

Hospitals, whose production output is service, often come across issues of long
waiting times, surgeries cancellation for patients and even worst resource over-
load occur frequently. Within every Hospital, Operating Rooms (ORs) are an
important unit. As indicated in [30], the ORs account for approximately 33%
of the total hospital budget because it includes high staff costs (e.g., surgeons,
anaesthetists, nurses) and material cost. Nowadays, in most modern Hospitals,
long surgical waiting lists are present because of inefficient planning. Therefore,
it is extremely important to improve the efficiency of ORs to enhance the sur-
vival rate and satisfaction of patients, thereby improving the overall quality of
healthcare system. The Operating Room Scheduling (ORS) [1,6,29,30] problem
is the task of assigning patients to ORs by considering specialties, surgery dura-
tions, shift durations, beds availability and, most importantly the availability of
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surgical teams for the entire duration of the surgery. Further, the solution must
prioritise patients based on health urgency. In recent years a solution based on
Answer Set Programming (ASP) [8,21,22] was proposed and is used for solving
such problem [14,15], together with other similar scheduling problems in this con-
text, given its intuitive semantics [9] and the availability of efficient solvers put
forward by ASP Competitions (see, e.g., [10,18,19]). We have recently enhanced
the first solution by incorporating beds management [12]. However, the draw-
back with these solutions is that they do not consider availability of surgical
teams which are an important part of the surgical process.

In this paper we improve our basic solution [14,15] following another direc-
tion, and present an enhanced encoding that takes into explicit account the
availability of surgical teams for planning surgical procedures. The problem is
expressed in ASP as modular additions to previous, more limited, encoding of
ASP rules implementing the surgical teams, and then efficient solvers like clingo
[17] are used to solve the resulting ASP encoding. Results for planning horizons
up to the target 5-days planning, obtained on different benchmarks and scenario
with realistic parameters for a small-medium-sized Hospital, are positive and
inline with Hospital needs, and further confirm that ASP is a suitable method-
ology for solving scheduling problems in this context.

The paper is structured as follows. Section 2 presents needed preliminary
about ASP. Then, Sect. 3 describes the target problem in an informal way and
as a mathematical formulation, whose ASP encoding is presented in Sect. 4.
Section 5 shows the results of our experiments. The paper ends in Sect. 6 and 7
by discussing related work, and by showing conclusions and possible topics for
further research.

2 Answer Set Programming

Answer Set Programming (ASP) is a programming paradigm developed in the
field of non monotonic reasoning and logic programming. It is a form of declara-
tive programming oriented towards difficult primarily NP-hard search problems
and is based on the stable model (answer set) semantics. This section presents
in the first paragraph the syntax of the ASP language, for easy the readability
of the encoding, and then a widely used shortcut in the second paragraph. The
semantics is presented informally while describing the encoding, and details can
be found in [9].

Syntax. The syntax of ASP is similar to the one of Prolog. Variables are strings
starting with uppercase letter and constants are non-negative integers or strings
starting with lowercase letters. A term is either a variable or a constant. A
standard atom is an expression p(t1, . . . , tn), where p is a predicate of arity n and
t1, . . . , tn are terms. An atom p(t1, . . . , tn) is ground if t1, . . . , tn are constants.
A ground set is a set of pairs of the form 〈consts : conj〉, where consts is a list
of constants and conj is a conjunction of ground standard atoms. A symbolic set
is a set specified syntactically as {Terms1 : Conj1; · · · ;Termst : Conjt}, where
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t > 0, and for all i ∈ [1, t], each Termsi is a list of terms such that |Termsi| =
k > 0, and each Conji is a conjunction of standard atoms. A set term is either
a symbolic set or a ground set. Intuitively, a set term {X : a(X, c), p(X);Y :
b(Y,m)} stands for the union of two sets: the first one contains the X-values
making the conjunction a(X, c), p(X) true, and the second one contains the Y -
values making the conjunction b(Y,m) true. An aggregate function is of the form
f(S), where S is a set term, and f is an aggregate function symbol. Basically,
aggregate functions map multisets of constants to a constant. The most common
functions implemented in ASP systems are the following:

– #count , number of terms;
– #sum, sum of integers.

An aggregate atom is of the form f(S) ≺ T , where f(S) is an aggregate function,
≺ ∈ {<,≤, >,≥, �=,=} is a comparison operator, and T is a term called guard.
An aggregate atom f(S) ≺ T is ground if T is a constant and S is a ground
set. An atom is either a standard atom or an aggregate atom. A rule r has the
following form:

a1 ∨ . . . ∨ an :– b1, . . . , bk, not bk+1, . . . , not bm.

where a1, . . . , an are standard atoms, b1, . . . , bk are atoms, bk+1, . . . , bm are stan-
dard atoms, and n, k,m ≥ 0. A literal is either a standard atom a or its negation
not a. The disjunction a1 ∨ . . . ∨ an is the head of r, while the conjunction
b1, . . . , bk, not bk+1, . . . , not bm is its body. Rules with empty body are called
facts. Rules with empty head are called constraints. A variable that appears
uniquely in set terms of a rule r is said to be local in r, otherwise it is a global
variable of r. An ASP program is a set of safe rules, where a rule r is safe if
both the following conditions hold: (i) for each global variable X of r there is a
positive standard atom � in the body of r such that X appears in �; and (ii) each
local variable of r appearing in a symbolic set {Terms : Conj} also appears in
Conj .

A weak constraint ω is of the form:

:∼ b1, . . . , bk, not bk+1, . . . , not bm. [w@l]

where w and l are the weight and level of ω, respectively. (Intuitively, [w@l] is
read “as weight w at level l”, where weight is the “cost” of violating the condition
in the body of w, whereas levels can be specified for defining a priority among
preference criteria). An ASP program P is a finite set of rules. An ASP program
with weak constraints is Π = 〈P,W 〉, where P is a program and W is a set of
weak constraints.

A standard atom, a literal, a rule, a program or a weak constraint is ground
if no variables appear in it.

Syntactic Shortcuts. We will also use choice rules of the form {p}, where p is
an atom. Choice rules can be viewed as a syntactic shortcut for the rule p ∨ p′,
where p′ is a fresh new standard atom not appearing elsewhere in the program.
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3 Problem Description

This section provides the description and the requirements of our problem, both
informally and as a mathematical formulation, in two separate subsections.

3.1 Informal Description

The elements of the waiting list are called registrations. Moreover, registrations
are not all equal, as they can belong to different specialties and they can have
different priorities and duration. All ORs are available for a specialty according
to the Hospital Master Surgical Schedule (MSS), and for 5 consecutive hours
(300 min) in a single shift, while a full day consists of two shifts. Of course, the
assignments must guarantee that the sum of the predicted duration of surgeries
assigned to a particular OR shift does not exceed the length of the shift itself.
For each registration we consider three priority score P1, P2, and P3, where P1
is for high priority registrations or very urgent, P2 is for medium priority and P3
is for low priority. Since P1 gathers high priority registrations, they must be all
assigned to an OR, followed by P2 registrations over the P3. Additionally, in each
specialty (considered to be 5 as target in small-medium-sized Hospitals) surgical
teams are allocated with number of surgeons and anaesthetists every day as
shown in Table 1. Tables 2 and 3, instead, show how many surgeons/anesthetists
are available in each shift and for each specialty. However, surgeons assigned to
a shift in a day are different from the ones assigned for the other shift of the
same day, while the same anesthetists cover both shifts of the same day. Every
surgeon works specifically for a number of hours every day; also surgeons in each
specialty are assigned only to a single shift in a day, i.e., they either work in the
morning (represented as shift 1, 3, 5, 7 and 9) or in evening shift (represented as
shift 2, 4, 6, 8 and 10) as shown in Table 2. The anaesthetists are also linked to
specialty and they also work for a fixed number of hours every day, but they can
work together with surgeons during any shift of the day as shown in Table 3. In
our model, we also assume that once a surgery is started in an OR it cannot be
interrupted. Further, surgeons cannot operate on more than one patient at the
same time. The overall goal is to assign the maximum number of registrations
to the ORs, respecting the priorities, and taking into account the availability
of respective surgical teams in a particular specialty for the complete surgery
duration.

3.2 Mathematical Formulation

In this subsection we proceed by expressing our ORS problem in a more rigor-
ous mathematical formulation. The first step is to describe more rigorously the
elements we are dealing with. Let

– R be a set of registrations,
– SP be a set of specialties,
– O be a set of operating rooms,
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Table 1. Total number of surgeons and anaesthetists in each specialty.

Specialty Number of surgeons Number of anaesthetists

1 6 6

2 4 4

3 4 4

4 2 2

5 4 4

Total 20 20

Table 2. Surgeons availability for each specialty and in each day.

Days (D) 1 2 3 4 5

Shifts (s) 1 2 3 4 5 6 7 8 9 10

Specialty (SP) Surgeons

1 3 3 3 3 3 3 3 3 3 3

2 2 2 2 2 2 2 2 2 2 2

3 2 2 2 2 2 2 2 2 2 2

4 1 1 1 1 1 1 1 1 1 1

5 2 2 2 2 2 2 2 2 2 2

– SU be a set of surgeons,
– A be a set of anaesthetists,
– SH be a set of shifts,
– D be the set of days in the planning period,
– shift duration be a constant equal to 300 and representing the duration in

minutes of each shift,
– slot duration be a number in the set {10, 20, 40, 60} representing the duration

in minutes of each slot,
– ST = {0, 1, . . . , shift duration ÷ slot duration} be the set of time slots.

Table 3. Anaesthetists availability for each specialty and in each day.

Days (D) 1 2 3 4 5

Shifts (s) 1 2 3 4 5 6 7 8 9 10

Specialty (SP) Anaesthetists

1 6 6 6 6 6 6 6 6 6 6

2 4 4 4 4 4 4 4 4 4 4

3 4 4 4 4 4 4 4 4 4 4

4 2 2 2 2 2 2 2 2 2 2

5 4 4 4 4 4 4 4 4 4 4
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We are ready to define the functions that can help establish the relations
between the elements of the ORS problem.

Definition 1. (ORS problem) Let

– p : R �→ {1, 2, 3} be a function associating each registration to a priority;
– δ : R �→ [1, shift duration] be a function associating each registration to a

duration;
– σ : R �→ SP be a function associating each registration to a specialty;
– mss : O×SH ×SP ×D �→ {0, 1} be a function such that mss(o, sh, sp, d) = 1

if the OR o is reserved to the shift sh and the specialty sp during the day d,
and 0 otherwise;

– surg : SU × SP × SH �→ {0, 1} be a function such that surg(su, sp, sh) = 1
if the surgeon su is associated to the specialty sp during the shift sh, and 0
otherwise;

– an : A × SP × SH �→ {0, 1} be a function such that an(a, sp, sh) = 1 if
the anaesthetist a is associated to the specialty sp during the shift sh, and 0
otherwise;

– surgWT : SU × D �→ N be a function associating each surgeon and day to a
working time;

– anWT : A × D �→ N be a function associating each anaesthetist and day to a
working time.

Let x : R × SU × A × O × SH × D × ST �→ {0, 1} be a function such that
x(r, su, a, o, sh, d, st) = 1 if the registration r is assigned to the surgeon su,
the anaesthetist a and the operating room o during the shift sh of the day d
and the time slot st, and 0 otherwise. Moreover, for a scheduling x let Ax =
{(r, su, a, o, sh, d, st) | r ∈ R, su ∈ SU, a ∈ A, o ∈ O, sh ∈ SH, d ∈ D, st ∈
ST, x(r, su, a, o, sh, d, st) = 1} and R∗

x = {r | (r, su, a, o, sh, d, st) ∈ Ax}. Then,
given sets R, SP , O, SU , A, SH, D, ST and functions p, δ, σ, surg , an, surgWT ,
anWT , and shift duration = 300 and slot duration ∈ {10, 20, 40, 60}, the ORS
problem is defined as the problem of finding a schedule x, such that

(c1) st · slot duration + δ(r) ≤ shift duration ∀(r, su, a, o, sh, d, st) ∈ Ax;
(c2) mss(o, sh, σ(r), d) · surg(su, σ(r), sh) · an(a, σ(r), sh) = 1 ∀(r, su, a,

o, sh, d, st) ∈ Ax;
(c3) |{(su, a, o, sh, d, st) : (r, su, a, o, sh, d, st) ∈ Ax}| ≤ 1 ∀r ∈ R;
(c4) x(r1, su1, a1, o, sh, d, st) · x(r2, su2, a2, o, sh, d, st) = 0 ∀r1, r2 ∈ R : r1 �=

r2;
(c5) |{r : (r, su, a, o, sh, d, st) ∈ Ax, st ≤ t < st + δ(r) ÷ slot duration}| ≤

1 ∀o ∈ O, sh ∈ SH, t ∈ ST : mss(o, sh, sp, d) = 1;
(c6) |{r : (r, su, a, o, sh, d, st) ∈ Ax}| ≤ 1 ∀su ∈ SU : surg(su, sp, sh) =

1, sp ∈ SP ;
(c7) |{r : (r, su, a, o, sh, d, st) ∈ Ax, st ≤ t < st + δ(r) ÷ slot duration}| ≤

1 ∀su ∈ SU : surg(su, sp, sh) = 1, sp ∈ SP ;
(c8) |{r : (r, su, a, o, sh, d, st) ∈ Ax}| ≤ 1 ∀a ∈ A : an(a, sp, sh) = 1, sp ∈ SP ;
(c9) |{r : (r, su, a, o, sh, d, st) ∈ Ax, st ≤ t < st + δ(r) ÷ slot duration}| ≤

1 ∀a ∈ A : an(a, sp, sh) = 1, sp ∈ SP ;
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(c10)
∑

(r,su,a,o,sh,d,st)∈Ax
δ(r) ≤ surgWT (su, d) ∀su ∈ SU, d ∈ D;

(c11)
∑

(r,su,a,o,sh,d,st)∈Ax
δ(r) ≤ anWT (a, d) ∀a ∈ A, d ∈ D;

(c12) (c12) {r : r ∈ R, p(r) = 1} ⊆ R∗
x;

Condition (c1) ensures that each registration is assigned to a time slot only
if it does not exceed the shift duration.
Condition (c2) ensures that each registration is assigned to an OR, surgeon
and anaesthetist that are in the same specialty of the registration.
Condition (c3) ensures that each registration is scheduled at most once.
Condition (c4) ensures that two different registrations cannot be scheduled
in the same OR, shift and time slot.
Condition (c5) extends condition (c4) to take into account the duration of
each registration.
Condition (c6) ensures that a surgeon cannot work at the same time slot and
shift in different ORs.
Condition (c7) extends condition (c6) to take into account the duration of
each registration.
Conditions (c8) and (c9) are similar to (c6) and (c7), respectively, by consid-
ering anaesthetists instead of surgeons.
Condition (c10) (resp. (c11)) ensures that surgeons (resp. anaesthetists) do
not exceed their daily number of working hours.

Finally, condition (c12) imposes all priority 1 registrations to be assigned.

Definition 2. (Solution) A solution ψ is a schedule x that satisfies all condi-
tions from (c1) to (c12).

Definition 3. (Unassigned registrations) Given a solution ψ, let Rpr
ψ = {r |

r ∈ R, p(r) = pr, r �∈ R∗
ψ}. Intuitively, Rpr

ψ represents the set of registrations of
priority pr that were not assigned to any OR.

Definition 4. (Minimal scheduling solution) A solution ψ is said to domi-
nate solution ψ′ if |R2

ψ| < |R2
ψ′ |, or if |R2

ψ| = |R2
ψ′ | and |R3

ψ| < |R3
ψ′ |. A solution

is minimal, if it is not dominated by any other scheduling solutions.

4 ASP Encoding for ORS with Surgical Teams

In this section we present the input predicates and our ASP encoding for repre-
senting data and our solution, in two different subsections.

4.1 Data Model

The input data to our model is specified by means of the following atoms:

– Instances of time(S,ST) show the time slots (ST) for each shift (S), i.e., each
shift is divided it into a certain number of time slots, say n. In our case, we
have exactly n instances of time(S,ST) for each shift, where ST ranges from
1 to n. Note that n is set to shift duration ÷ slot duration as described in
Sect. 3.
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(r1) {x(R,P,SR,AN,O,S,D,ST): (ST+SU) <= slots} :- registration(R,P,SU,SP),
mss(O,S,SP,D), surgeon(SR,SP,S), an(AN,SP,S), time(S,ST).

(r2) :- registration(R,_,_,_), #count{R,SR,AN,O,S,D,ST : x(R,P,SR,AN,O,S,D,ST)}>1.
(r3) :- x(R1,_,_,_,O,S,D,ST), x(R2,_,_,_,O,S,D,ST), R1 != R2.
(r4) :- #count{R:x(R,_,_,_,O,S,_,ST), registration(R,_,SU,_), T>=ST, T<ST+SU}>1,

mss(O,S,_,_), time(S,T).
(r5) :- #count{R:x(R,_,SR,_,_,S,_,ST)} > 1, surgeon(SR,_,S), time(S,ST).
(r6) :- #count{R:x(R,_,SR,_,_,S,_,ST), registration(R,_,SU,_), T>=ST, T<ST+SU}>1,

surgeon(SR,_,S), time(S,T).
(r7) :- #count{R:x(R,_,_,AN,_,S,_,ST)} > 1, an(AN,_,S), time(S,ST).
(r8) :- #count{R:x(R,_,_,AN,_,S,_,ST), registration(R,_,SU,_), T>=ST, T<ST+SU}>1,

an(AN,_,S), time(S,T).
(r9) :- #sum{SU,R:x(R,_,SR,_,_,_,D,_), registration(R,_,SU,_)} > SWT, surgWT(SWT,SR,D).
(r10) :- #sum{SU,R:x(R,_,_,AN,_,_,D,_), registration(R,_,SU,_)} > AWT, anWT(AWT,AN,D).
(r11) :- #count{R:x(R,1,_,_,_,_,_,_)} < totRegsP1.
(r12) :∼ M=#count{R:x(R,2,_,_,_,_,_,_)}, N=totRegsP2-M. [N@3]
(r13) : M=#count{R:x(R,3,_,_,_,_,_,_)}, N=totRegsP3-M. [N@2]

Fig. 1. ASP encoding of the ORS problem with surgical teams.

– Instances of registration(R,P,SU,SP) represent the registrations, with an
identifier (R), a priority score (P), the duration of the surgery expressed in
terms of time slots (SU), and the id of the specialty it belongs to (SP).

– Instances of mss(O,S,SP,D) link each operating room (O) to a shift (S) for
each specialty (SP) and planning day (D), as established by the MSS.

– Instances of surgeon(SR,SP,S) represent the surgeons with an id (SR) for
each specialty (SP) and shift (S).

– Instances of an(AN,SP,S) show the anaesthetists with an id (AN) for each
specialty (SP) and shift (S).

– Instances of surgWT(SWT,SR,D) represent the total work time (SWT) expressed
in time slots for surgeons with id (SR) for each day (D).

– Instances of anWT(AWT,AN,D) represent the total work time (AWT) expressed
in time slots for anaesthetists with id (AN) for each day (D).

The output is stored in an assignment to atom of the following form:

x(R,P,SR,AN,O,S,D,ST)

representing that the registration (R) with priority (P) is assigned with surgeon
id (SR) and anaesthetist id (AN) to the operating room (O) during the shift (S)
of the day (D) with a time slot (ST).

4.2 Encoding

The related ASP encoding is shown in Fig. 1, and is described in this subsection.
The encoding is based on the Guess&Check programming methodology.

Rule (r1) guesses an assignment for the registrations, surgeons and anaes-
thetists to an OR in a given day, shift and with a time slot among the ones
permitted by the MSS for the particular specialty the registrations, surgeons
and anaesthetists belongs to, such that the registrations assigned with a slot
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Table 4. Total number of randomly generated registrations for each benchmark.

Specialty Registrations ORs

5-day 3-day 2-day 1-day

1 80 48 32 16 3

2 70 42 28 14 2

3 70 42 28 14 2

4 60 36 24 12 1

5 70 42 28 14 2

Total 350 210 140 70 10

time and surgery duration should be less than slots of OR, where slots rep-
resents the total number of slots in the shift. Note that (r1) encodes conditions
(c1) and (c2) thanks to the minimality property of the ASP semantics.

After guessing an assignment for the registrations, the encoding presents
constraints from (r2) to (r11) to discard some unwanted assignments. Note that
each constraint ri (i = 2..11) encodes condition (cN), N= i+1.

Finally, weak constraints (r12) and (r13) are used to give preference to reg-
istrations having priority 2 over those having priority 3, where totRegsP2 and
totRegsP3 are constants representing the total number of registrations having
priority 2 and 3, respectively.

5 Experimental Results

This section reports about the results of an empirical analysis of the ORS prob-
lem with surgical teams. In the first subsection we present the benchmarks we
have employed, whose results coupled with our encoded are shown in the second
subsection. The third subsection reports about a further analyses focused on
anesthetists WT efficiency.

5.1 Benchmarks

For each scenario, the characteristics of the tests are as follows:

– 4 scenarios for testing the dimension of the slot interval: A, B, C, and D for
slot interval of 10, 20, 30, and 60 min, respectively.

– 4 different benchmarks, with a planning period of 1, 2, 3 and 5 working days;
– For each benchmark the total number of randomly generated registrations

are 350 for 5 days, 210 for 3 days, 140 for 2 days and 70 for 1 day, respectively;
– 5 specialties;
– 20 surgeons assigned to the 5 specialties;
– 20 anaesthetists assigned to the 5 specialties;
– 4 h of work time in a day for each surgeon;
– 6 h of work time in a day for each anaesthetist;
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– 10 ORs distributed among the specialties;
– 5 h morning and afternoon shifts for each OR summing up to 500, 300, 200

and 100 h of OR available time for the four benchmarks, resp..

Table 4 shows the distribution of the total number of randomly generated
registrations for each benchmark of 5, 3, 2 and 1 day, for each specialty, together
with the distribution of ORs for each specialty.

5.2 Results

Experiments have been run on a HP 630 Notebook with Intel(R) Core(TM)
i3 CPU M380@2.53GHz. The ASP system used is clingo [17]. Results of the
experiments are reported for scenario A in Table 5, for scenario B in Table 6, for
scenario C in Table 7 and for scenario D in Table 8, respectively.

Each benchmark was tested 10 times with different randomly generated
inputs. A time limit of 300 s was set for each experiment. In each table aver-
ages for 10 instances for each benchmark are reported. The first three columns
show the number of assigned registrations out of the generated ones for each
priority P1, P2 and P3, the fourth column shows the cumulative assigned regis-
trations, while the last three columns show a measure of the total time occupied
by the assigned registrations as a percentage of the total OR time available (indi-
cated as OR time Eff in the tables) and the total percentage of surgeons and
anesthetists working time (indicated as Surg WT Eff and Anest WT Eff in the
tables, respectively).

As we can see in scenario A (Table 5), with slot interval of 10 min, we obtain
results only for schedules up to 3 days, while in the case of the 5-day bench-
mark the computation time exceeds our time limit on all instances. Scenario B
(Table 6) details the scheduling results with slot interval of 20 min. It can be
seen that OR efficiency is 75% while the Surgeons and Anesthetists WT effi-
ciency remain greater than 90% and 60%, respectively, for all benchmarks in
this scenario. In scenario C (Table 7) with a slot interval of 30 min, the OR effi-
ciency is around 76% while the Surgeons and Anesthetists WT efficiency are
enhanced up to 95% and 63% for all benchmarks, respectively. In scenario D
(Table 8) with a slot interval of 60 min, OR efficiency is almost 79% while the
Surgeons WT efficiency is further enhanced to more than 95%, and Anesthetists
WT efficiency is up to 65%.

In all the evaluated benchmarks for different scenarios we observed that the
OR efficiency and the anesthetists WT efficiency are limited by the fact that we
reached the ceiling of the surgeons maximum working hours. Considering that in
our setup we had one anesthetist for each surgeon, the ratio between anesthetist
and surgeon efficiencies coincides to the ratio between their maximum working
time of the surgeons and the anesthetists, i.e., 2/3. In a real application, this
would be a useful information for the Hospital manager to quantify the excess
of anesthetists and reorganize their numbers or their working times.

Overall, we obtained satisfying results but for the 5-day schedule length for
the more fine-grained slot interval of Scenario A. In order to further investigate
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the issue, we moved on a different dimension and tested the Scenario A configu-
ration with half the number of registrations (35 instead of 70 for each planning
day), surgeons (10 instead of 20), anesthetists (10 instead of 20) and ORs (5
instead of 10). With these numbers we can reach acceptable solutions after 60 s
of computation time (see Table 9) for every benchmark, including the 5-day one.

Table 5. Averages of the results for 5, 3, 2 and 1 day benchmarks for Scenario A.

Bench. P1 P2 P3 Total OR time
Eff.

Surg WT
Eff.

Anest WT
Eff.

5 days – – – – – – –

3 days 43.1/43.1 53.0/81.6 26.2/85.3 122.3/210.0 73.5% 91.8% 61.2%

2 days 29.9/29.9 37.0/54.7 17.7/55.4 84.6/140.0 74.7% 93.4% 62.3%

1 day 13.4/13.4 22.8/28.0 8.9/28.6 46.1/70.0 75.6% 94.5% 62.9%

Table 6. Averages of the results for 5, 3, 2 and 1 day benchmarks for Scenario B.

Bench. P1 P2 P3 Total OR time
Eff.

Surg WT
Eff.

Anest WT
Eff.

5 days 71.2/71.2 99.4/140.1 38.3/138.7 208.9/350.0 75.1% 93.8% 62.5%

3 days 40.9/40.9 61.6/85.3 25.2/83.8 127.7/210.0 75.3% 94.1% 62.8%

2 days 28.2/28.2 41.1/56.1 14.9/55.7 84.2/140.0 75.0% 93.7% 62.5%

1 day 12.5/12.5 23.1/29.7 8.9/27.8 43.5/70.0 75.5% 94.4% 62.9%

5.3 Extended Analysis

In order to improve the anesthetists WT efficiency, we further analysed our solu-
tion considering the new setting introduced at the end of the previous analysis,
and introducing 3 alternative scenarios wrt number of surgeons and anesthetists:

– Scenario 1: 10 surgeons and 8 anesthetists
– Scenario 2: 10 surgeons and 7 anesthetists
– Scenario 3: 10 surgeons and 5 anesthetists

Overall, for each new scenario, the characteristics of the tests performed that
were modified wrt the analysis in the previous subsection are:

– For each benchmark the total number of randomly generated registrations
were 175 for 5 days, 105 for 3 days, 70 for 2 days and 35 for 1 day;
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Table 7. Averages of the results for 5, 3, 2 and 1 day benchmarks for Scenario C.

Bench. P1 P2 P3 Total OR time
Eff.

Surg WT
Eff.

Anest WT
Eff.

5 days 71.9/71.9 99.0/139.8 44.1/138.3 215.0/350.0 76.0% 95.2% 63.3%

3 days 41.7/41.7 66.9/84.8 21.6/83.5 130.2/210.0 76.1% 95.1% 63.5%

2 days 27.9/27.9 42.7/53.8 16.9/58.3 87.5/140.0 76.2% 95.2% 63.5%

1 day 14.2/14.2 23.0/29.4 6.7/26.4 43.9/70.0 76.2% 95.1% 63.5%

Table 8. Averages of the results for 5, 3, 2 and 1 day benchmarks for Scenario D.

Bench. P1 P2 P3 Total OR time
Eff.

Surg WT
Eff.

Anest WT
Eff.

5 days 68.7/68.7 109.6/143.8 46.9/137.5 224.8/350.0 79.0% 98.8% 65.8%

3 days 41.8/41.8 65.1/ 81.9 25.5/86.3 132.4/210.0 78.7% 98.4% 65.6%

2 days 27.5/27.5 46.5/ 54.5 14.6/58.0 87.7/140.0 79.2% 98.9% 65.9%

1 day 13.3/13.3 23.1/27.5 8.3/29.2 44.7/70.0 78.3% 97.8% 65.2%

– 10 surgeons assigned to the 5 specialties;
– 10 anaesthetists assigned to the 5 specialties;
– 5 ORs, unevenly distributed among the specialties;

Results of the extended analysis are reported in this section for Scenario 1
in Table 10, for Scenario 2 in Table 11 and for Scenario 3 in Table 12, respec-
tively, organized as Tables 5, 6, 7 and 8. Each benchmark was tested 10 times
with different randomly generated inputs with a time limit of 60 s set for each
experiment, and averages over 10 instances.

As we can see, in Scenario 1 (Table 10) the OR efficiency is greater than 64%
while the Surgeons and Anesthetists WT efficiency remain greater than 80%
and 67%, respectively. In Scenario 2 (Table 11) OR efficiency is again between
64% and 68%, with the Surgeons WT efficiency of around 84% and improved
Anesthetists WT efficiency up to 80%. Finally, on Scenario 3 (Table 12) the OR
efficiency decreases around 50%, while the Surgeons WT efficiency is still from
64% to 67%, and Anesthetists WT efficiency is further enhanced up tp 90%.

6 Related Work

In this section we discuss some relevant works related to this research. Meskens
et al. [30] considered the surgical teams in the computation of an OR schedule,
and developed a model using Constraint Programming (CP) with multiple con-
straints such as availability, staff preferences and affinities among surgical teams.
They optimize the use of ORs by minimizing makespan and maximizing affinities
among surgical team members. The effectiveness of their proposed method for
improving surgical cases was evaluated using real data from an Hospital. Hamid
et al. [29] incorporated the decision-making styles (DMS) of the surgical team
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Table 9. Averages of the results for 5, 3, 2 and 1 day benchmarks with slot interval
10 min and reduced number of registrations.

Bench. P1 P2 P3 Total OR time
Eff.

Surg WT
Eff.

Anest WT
Eff.

5 days 35.5/35.5 52.3/68.3 17.0/71.2 104.8/175.0 74.4% 93.1% 62.0%

3 days 19.0/19.0 31.9/41.2 12.9/40.8 63.8/105.0 74.4% 93.0% 62.0%

2 days 14.2/14.2 20.8/28.6 6.9/26.3 40.9/70.0 73.0% 91.3% 60.8%

1 day 5.5/5.5 10.4/15.1 3.6/14.4 19.5/35.0 70.7% 89.5% 58.9%

Table 10. Averages of the results for 5, 3, 2 and 1 day benchmarks with 10 surgeons
and 8 anesthetists for Scenario 1.

Bench. P1 P2 P3 Total OR time
Eff.

Surg WT
Eff.

Anest WT
Eff.

5 days 35.5/35.5 47.0/68.3 13.5/71.2 93.0/175.0 67.6% 84.5% 70.2%

3 days 19.0/19.0 29.3/41.2 10.3/41.2 58.6/105.0 68.1% 85.1% 70.9%

2 days 13.9/13.9 18.8/28.2 5.3/26.9 38.0/70.0 66.8% 83.6% 69.7%

1 day 5.5/5.5 9.8/15.1 2.4/14.4 17.7/35.0 64.3% 80.4% 67.0%

Table 11. Averages of the results for 5, 3, 2 and 1 day benchmarks with 10 surgeons
and 7 anesthetists for Scenario 2.

Bench. P1 P2 P3 Total OR time
Eff.

Surg WT
Eff.

Anest WT
Eff.

5 days 35.5/35.5 45.2/68.3 14.8/71.2 95.5/175.0 67.3% 84.1% 80.2%

3 days 19.0/19.0 30.3/41.2 9.0/44.8 58.3/105.0 67.6% 84.5% 80.5%

2 days 13.9/13.9 19.1/28.2 4.8/26.9 37.9/70.0 67.2% 84.0% 80.0%

1 day 5.5/5.5 9.8/15.1 2.4/14.4 17.7/35.0 64.3% 80.4% 76.5%

Table 12. Averages of the results for 5, 3, 2 and 1 day benchmarks with 10 surgeons
and 5 anesthetists for Scenario 3.

Bench. P1 P2 P3 Total OR time
Eff.

Surg WT
Eff.

Anest WT
Eff.

5 days 35.5/35.5 35.3/68.3 9.4/71.2 80.2/175.0 53.6% 67.0% 89.4%

3 days 19.0/19.0 25.2/41.2 3.6/44.8 48.3/105.0 54.3% 67.8% 90.4%

2 days 13.9/13.9 14.6/28.2 2.8/26.9 31.0/70.0 53.4% 66.7% 88.0%

1 day 5.5/5.5 7.8/15.1 1.5/14.3 14.9/35.0 51.2% 64.0% 85.3%

to improve the compatibility level by considering constraints such as the avail-
ability of material resources, priorities of patients, and availability, skills, and
competencies of the surgical team. They developed a multi-objective mathemat-
ical model to schedule surgeries. Two metaheuristics, namely Non-dominated
Sorting Genetic Algorithm and Multi-Objective Particle Swarm Optimization,
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were developed to find pareto-optimal solutions. Xiang et al. [34] proposed an
Ant Colony Optimization (ACO) approach to surgical scheduling taking into
account all resources in the entire process of a surgery. The problem was rep-
resented as an extended multi-resource constrained flexible job shop schedul-
ing problem, which was solved using a two-level hierarchical graph to integrate
sequencing job and allocating resources. To evaluate the efficiency of ACO, a
Discrete Event System (DES) model of an OR system was developed in the sim-
ulation platform SIMIO. Monteiro et al. [31] developed a comprehensive multi-
objective mathematical model using epsilon-constraint method coupled to the
CPLEX solver. Vijayakumar et al. [33] used Mixed Integer Programming (MIP)
model for multi-day, multi-resource, patient-priority-based surgery scheduling.
A First Fit Decreasing algorithm was developed. From a solution time perspec-
tive, their model took hours and in most cases was unable to optimally solve the
problem. Belkhamsa et al. [7] proposed two meta heuristics, an Iterative Local
Search (ILS) approach and Hybrid Genetic Algorithm (HGA) to solve a daily
surgery scheduling problem. Zhou et al. [35] developed an Integer Programming
model for optimal surgery schedule of assigning patients to different resources in
any surgical stage. They used Lagrangian Relaxation algorithm and solved the
subproblem by using branch and bound. They verified their model using real
data instances from an Hospital. A common issue with all such solutions seem
to be computation time and scalability.

About, instead, other scheduling problems in which ASP have been profi-
ciently employed: Nurse Scheduling Problem [3,4,16], where the goal is to create
a scheduling for nurses working in Hospitals; Team Building Problem [32], where
the goal is to allocate the available personnel of a seaport for serving the incom-
ing ships; the Conference Paper Assignment Problem [5], which deals with the
problem of assigning reviewers in the PC to submitted conference papers; and
scheduling production materials between storage locations and assembly station
[20].

Finally, this is an extended and revised version of a paper appearing in
[13], with the following main improvements: (i) the mathematical formulation
(Sect. 3.2), (ii) the precise definition of the problem (still Sect. 3.2), and (iii) the
extended experimental analysis (Sect. 5.3).

7 Conclusions

In this paper we employed ASP for solving ORS problems with surgical teams.
The results of our experiments confirm that ASP is a suitable methodology for
addressing planning and scheduling problems in healthcare system. We presented
the results of an experimental analysis on several directions to check scalability
of our solution in terms of efficiency, considering shift duration, surgeons and
anesthetist working hours. This solution achieved satisfied ORs, surgeons’ and
anaesthetists’ efficiency also for the planning length of 5 days. As a future work
we would like first to analyze the performance of our solution on real data,
that we only recently obtained. We also want to integrate the extension of the
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ORS model with beds management with the one presented in this paper, in
order to have a more complete unified solution. We also plan to compare to
alternative methods, assuming this is possible (i.e., availability of alternative
solutions), and viable (i.e., very same problem solved). Finally, through results
are satisfying, we plan to work also on improving performance by both evaluating
more solvers, e.g., WASP [2], other than Clingo actually used, and employing
SAT techniques (e.g., [11,25–28]), given the strong existing relation between
ASP and SAT [23,24].
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