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1  �Introduction

A huge body of knowledge can be exploited through clustering techniques. 
Clustering algorithms make use of knowledge present in input data. It uncovers the 
hidden patterns existing in data. Clustering is one of the effective data mining tech-
niques for grouping similar data objects [1]. The grouping is made on the basis of 
attributes. With the tremendous growth in the technology of information sciences, 
huge data is being produced. Such data are sensor data, web data, bioinformatics 
data and many more. The large volume of data not only includes a large number of 
rows but also a large number of attributes. The datasets with many columns/features 
are termed as high dimensional data. Clustering high dimensional data poses a num-
ber of computational challenges [2]. Traditional clustering algorithms’ efficacy 
degrades on high dimensional data. This problem is termed as “curse of dimension-
ality.” This is because traditional clustering algorithms find clusters in all dimension 
space. However, clusters might exist in a few subsets of dimensions. All dimensions 
might not be important for all clusters. Considering all dimensions for clustering 
might hide the relevant dimensions. Another challenge is the distance measure. 
Distance between data objects becomes meaningless in high dimensional data [3]. 
All objects appear equidistant from each other. Most of the traditional clustering 
algorithms use distance measure for grouping data objects. New techniques are 
developed to find relevant dimensions and overcome challenges of high dimen-
sional clustering.

Relevant dimensions are selected through feature selection methods and, subse-
quently, selected features to participate in complete clustering method. However, 
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clusters might exist in different subspaces. Dimensions participating in one cluster 
might be irrelevant for another cluster. Hence to find clusters in different subspaces 
as shown in Fig. 1 (each circle represents one cluster), subspace clustering methods 
are employed [4]. It is an extended version of traditional clustering algorithms. 
Subspace clustering algorithms confine the search in a certain manner, i.e., either 
top-down or bottom-up approach so that it is able to determine clusters existing in 
various subspaces. Further, subspace clusters can be non-overlapping or overlap-
ping in dimensions/objects.

The significance of subspace clustering is intensifying from last two decades. 
Figure  2 shows the percentage of papers published on various methods of high 

Fig. 1  Representation of 
clusters in subspaces

Fig. 2  Papers published on different techniques of high dimensional clustering
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dimensional clustering from the year 2000 onwards. The main techniques for han-
dling high dimensional clustering [5, 6] are as follows:

	(a)	 Dimensionality reduction
	(b)	 Parsimonious models
	(c)	 Projected clustering
	(d)	 Soft projected clustering
	(e)	 Subspace clustering

It was observed that only 15% of work is done in high dimensional clustering 
through dimensionality reduction approach. Sixteen percent of papers are published 
for clustering high dimensional data using soft projected clustering and parsimoni-
ous models. Seventeen percent of the work is dedicated to projected clustering. The 
large amount of work for high dimensional clustering is being done by subspace 
clustering approach. This proves that subspace clustering methods are gaining con-
siderable attention in current research.

This study is entailed to answer the critical research questions identified below.

	 (i)	 What are the major challenges faced by traditional clustering algorithms to 
cluster high dimensional data?

	(ii)	 What search techniques are being used in subspace clustering to determine 
subspaces?

	(iii)	 What are the evaluation measures for comparing subspace clustering 
algorithms?

	(iv)	 What is the current scenario of subspace clustering?
	(v)	 What are the research gaps in the literature and the future prospects of sub-

space clustering?

This chapter presents a combined review of approximately all subspace cluster-
ing algorithms belonging to different classes. Various evaluation measures required 
for comparing the clusters and subspaces are also presented. Additionally, statistical 
data of subspace clustering approaches published in different years and different 
repositories are provided. This chapter is targeted to researchers planning to work in 
subspace clustering area. It provides a roadmap of research in subspace clustering 
approach for high dimensional data. The chapter also presents the application areas, 
identifies gaps in present work, and suggests future opportunities for research in 
this field.

The chapter is divided into following subsections: Sect. 2 presents challenges in 
subspace clustering, Sect. 3 gives various classifications of subspace clustering 
approaches, Sect. 4 presents evaluation measure for comparing subspace clustering 
algorithms, and Sects. 5 and 6 depict the literature survey and empirical assessment 
of subspace clustering algorithms, respectively. Applications and future prospects 
are illustrated in Sect. 7, and Sect. 8 finally concludes the chapter.
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2  �Challenges in Subspace Clustering

The major goal of clustering is not only to find similar groups of data points but to 
find high-quality groups within a reasonable time. In cases where clusters exist in 
different subsets of dimensions, it is essential for clustering algorithms to determine 
effective clusters along with relevant dimensions. Subspace clustering algorithms 
have proved to be efficient for extracting clusters from high dimensional datasets 
[7]. However, a number of challenges persist which needs to be focused before 
developing an efficient subspace clustering algorithm. These challenges are as 
follows:

	(a)	 It is hard to determine the subsets of dimensions where data points are similar. 
This is because a number of dimensions are large and possible combinations 
are huge.

	(b)	 It is quite difficult to determine the distribution of data within subspaces. If data 
is near the cluster center and far from another subspace center, then clustering 
is easy; otherwise it is difficult to cluster within subspaces.

	(c)	 There may be overlapping subspaces that mean few dimensions may be com-
mon in few subspaces. Clustering becomes even more complicated in case of 
overlapping subspaces.

	(d)	 There are possibilities of noisy data in the dataset. That means some data points 
might not belong to any subspace or if they are part of any subspace, they are 
not part of a cluster of particular subspace. Handling of such data becomes a 
challenge for subspace clustering.

	(e)	 It is difficult to understand which clustering algorithm and subspace strategy 
are appropriate for a given problem. As the number of subspaces and the dimen-
sion of each subspace is unknown, the problem becomes intricate.

Due to the above challenges encountered in subspace clustering approaches, 
there has been a scope of improvement in these algorithms. Subspace clustering not 
only determines the clusters in the dataset but also the subspaces in which these 
clusters are present. The next section presents the review of subspace clustering 
classification.

3  �Classification of Subspace Clustering Approaches

In order to determine a group of similar data points in different subspaces, subspace 
clustering algorithms are employed. This section discusses the various categories of 
subspace clustering approaches on the basis of different parameters. Figure 3 depicts 
the categories of subspace clustering algorithms on the basis of parameters required 
in algorithms for forming clusters from data objects [8]. These are as follows:

Cell-based Subspace Clustering: This approach is also called a grid-based 
approach. It makes use of an approximate number of cells required to form a cluster. 
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The cluster description starts with a minimum width “w” of a number of cells. Each 
cell contains a minimum threshold number of objects. The cells of a cluster are 
either of fixed grid size or variable in number forming hypercube of width “w.” The 
cells participating in clustering uses subsets of dimensions of datasets. Hence the 
relevant dimensions to a particular cluster are determined. Irrelevant dimensions, 
not participating in clustering, expand on other cells. Few cell-based algorithms are 
CLIQUE, DOC, MINECLUS, SCHISM, etc.

Density-based Subspace Clustering: This approach is able to determine the clus-
ters of arbitrary shapes. It is dependent upon the density of data objects lying in 
datasets. This approach separates the dense region from sparse region. Density is 
determined through distance measure. The parameters used in algorithms are the 
least number of points “minpts” required to form a cluster and “epsilon” distance 
among the neighboring points. The dense region is formed by counting the number 
of points “minpts” within “epsilon” neighboring distance. Any region not satisfying 
the “minpts” and “epsilon” properties is not able to form a cluster and is termed as 
sparse region. Some density-based subspace clustering algorithms are FIRES, 
INCY, SUBCLU, etc.

Clustering-Oriented-Based Subspace Clustering: This approach does not pro-
vide any requirements for cluster formation. It is not dependent on any cluster defi-
nition or on input parameters to form a cluster. As the name suggests it gives 
statistical orientation properties of total clusters formed. It means it defines proper-
ties of resultant clusters formed like a number of clusters formed, average dimen-
sionality per cluster, etc. Clustering oriented approach is more suitable to datasets 
of varied distributions. Some algorithms of this approach are STATPC, P3C, 
PROCLUS, etc.

Subspace clustering approaches confine their search in such a manner that clus-
ters existing in different subspaces are extracted [3]. The search either proceeds 
from single-dimensional to full dimensional dataset (bottom-up) or full dimensional 
to single dimensional dataset (top-down). Each search method is defined as follows:

Bottom-Up Subspace Search Method: It is a grid-based method which starts 
from single dimension. This method follows an a priori approach [1] to determine 
relevant dimensions. The method begins with forming similar groups in single 
dimensions on the basis of density threshold parameters and grid size. The data 
objects participating in single dimension will also participate in multi-dimensional 

Fig. 3  Classification of 
subspace clustering 
approaches on the basis of 
cluster definitions
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grids. This approach detects the noise and also determines overlapping subspace 
clusters. However, it may find redundant subspaces or clusters across the dataset. 
Some algorithms of bottom-up approach are CLIQUE, ENCLUS, DOC, etc. 
(Fig. 4).

Top-Down Subspace Search Method: It is an iterative method which starts from 
entire dimensions of dataset. Initially, each dimension is assigned equal weights and 
clustering begins. After clustering, the weights of each dimension for each cluster 
are updated. In the next iteration, updated weights are used, clustering proceeds, and 
again weights are updated. Dimensions with highest weights for a cluster are rele-
vant dimensions. This is expensive method which requires many iterations. Input 
parameters used in this approach are number of clusters and size of subspaces. Both 
the parameters are difficult to decide before clustering. This method finds non-
overlapping clusters. Some algorithms are PROCLUS, FINDIT, MAFIA, etc.

Data objects of clusters determined from subspace clustering approaches may or 
may not be aligned along the axis [9, 10]. On this basis, subspace clustering 
approaches are divided into two categories as shown in Fig. 5.

Axis Aligned: Clusters determined along the parallel axis to data space are axis-
aligned. These subspace clusters could be determined with low computational com-
plexity. Number of subspaces determined from this approach are fixed in number, 
e.g., CLIQUE and DOC.

Non-axis Aligned: the subspace clusters determined in the arbitrary orientation 
of data space are non-axis aligned. Clusters may be expressed in a better way using 

Fig. 4  Classification of subspace clustering approaches on basis of search methods

Fig. 5  Classification of subspace clustering approaches on basis of axis alignment
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this approach. However, computation complexity is quite high in finding clusters in 
arbitrary orientation. Subspaces may go infinite in number, e.g., Orclus.

4  �Evaluation Measures for Subspace Clustering Algorithms

This section describes the various systematic evaluation measures used for compar-
ing objects and subspaces of clusters formed. However, there are no standard crite-
ria defined for comparing the subspaces or clusters formed from subspace clustering 
approach. In literature, researchers have employed different evaluation measures for 
performance assessment of subspace clustering algorithms. A common ground of 
comparing subspace clustering algorithms is lacking. This is because true cluster 
labels along with relevant dimensions are lacking in datasets. The paper presents 
thorough evaluation measures shown in Fig. 6, required for comparing subspace 
clustering algorithms [8, 9].

Object-Based Validation Measures: This type of validation considers the data 
objects participating in the clustering process. The various measures are as follows:

F1_Measure – It is the harmonic mean of precision and recall values. This mea-
sure ensures that actual cluster (found cluster from the algorithm) should mask 
maximum objects of true cluster (already given class in dataset) and unmask the 
objects of different clusters. This is computed from the confusion matrix [1]. Let TP 
is true positive, i.e., objects of actual cluster are same of true cluster; TN is true 
negative, i.e., objects of different true clusters are mapped to different actual 

Fig. 6  Evaluation measures for subspace clustering approaches
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clusters; FN false negative, i.e., objects of same true cluster belong to different 
actual cluster; FP false positive, i.e., objects of different true cluster belong to same 
actual cluster. Precision is minimum mapping of objects from other clusters, while 
recall is maximum mapping of objects from same true cluster. It is given by Eqs. 1, 
2, and 3:

	
Precision

TP

TP FP
=

+ 	
(1)

	
Recall

TP

TP FN
=

+ 	
(2)

	
F Measure

Precision Recall

Precision Recall
1

2
_ =

∗ ∗
+ 	

(3)

Accuracy: Accuracy is the ratio of a number of objects of the actual cluster cor-
rectly mapped with objects of true cluster by total objects. It can be calculated using 
confusion matrix through following Eq. 4:

	
Accuracy

TP TN

TP TN FP FN
=

+
+ + + 	

(4)

Purity: This measures the purity or homogeneity of actual clusters determined 
from clustering algorithm with respect to true clusters. It can be calculated as 
follows:

	
Purity

TP

TP TN FP FN
=

+ + + 	
(5)

Object and Subspace-Based Validation Measures: This type of validation consid-
ers not only the data objects but the relevant subsets of dimensions participating in 
the clustering process. These measures actually evaluate how well clusters are 
formed in various subspaces. In these measures, an object of a dataset is assumed to 
be divided into number of sub-objects which spans across all the dimensions of 
datasets. Hence a subspace cluster consists of relevant dimensions along with sub-
objects. An object shared between the subspace clusters with disjoint dimensions 
will have different sub-objects. Thus, subspace clusters having same objects with 
different relevant dimensions do not overlap. The various measures are as follows:

Relative Non-Intersecting Area (RNIA): This measure ensures the maximum 
number of sub-objects found in actual subspace cluster maps the true subspace clus-
ter. A confusion matrix is formed from actual subspace clusters versus true subspace 
clusters [9]. The matching sub-objects with each subspace clusters are filled in the 
matrix. Let “U” is the total number of sub-objects participating in true or actual 
subspace clusters. Same sub-objects participating found in both true and actual 
cluster (with the same dimension) is counted once. Let “I” is the intersecting 
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subjects of true and actual subspace clusters, or it is the sum of all elements of con-
fusion matrix. Then RNIA is calculated as follows:

	
RNIA

U I

U
=

−

	
(6)

Clustering Error (CE): RNIA gives the same result in a case when several actual 
clusters match one true cluster or one actual cluster matches true cluster. Clustering 
error maps one actual cluster to almost one true cluster and vice versa. CE is also 
calculated from confusion matrix formed by above method. Let D is the sum of all 
principal diagonal elements, then CE is given as:

	
CE

U D

U
=

−

	
(7)

Rand Index: This index is measured on the basis of counting the pair of sub-
objects that do or do not participate in clustering. All sub-objects that do not overlap 
are considered as single clusters. A confusion matrix is created considering all sub-
space clusters including singleton clusters. There are four labels important, i.e., 
N11, pair of sub-objects that are same in both actual and true subspace clusters; 
N10, pair of sub-objects that are same in a true cluster but not in actual cluster; N01, 
pair of sub-objects that are same in actual cluster but not in true cluster; and N00, 
pair of sub-objects that are different in both actual and true subspace clusters.

	
1

10 01
− =

+
Rand

N N

Nindex
	

(8)

where N
U U

=
∗ −( )1
2

, U is the union of all sub-objects participating in clustering.

Scalability: Scalability is the measure which could be used to visualize and ana-
lyze the behavior of any algorithm. In subspace clustering algorithms, scalability is 
measured in terms of dimensionality. It depicts the performance of an algorithm 
with the increase in a number of dimensions of dataset. The graphs are plotted 
which could be shown for any evaluation measure with respect to dimensions. The 
X axis shows the dimensions and Y axis depicts evaluation metric like F1_Measure 
or accuracy etc. Scalability of subspace clustering algorithms is shown in the latter 
part of the chapter.

Time Complexity: Run time complexity measures the time taken by an algorithm 
to cluster a given dataset. It is represented in the form of graphs to compare sub-
space clustering algorithm with respect to dimensions. Few examples of representa-
tion are shown in [8].

Ranking: Subspace clustering algorithms can be ranked on the basis of average 
ranking (AR) and success rate ratio ranking (SRR) [11]. The average rank of an 
algorithm is computed by taking the mean of ranks on all dataset on basis of any 
evaluation measure. Let rj

i be the jth algorithm rank for ith dataset. The average rank 
of each algorithm on total “n” datasets is computed using following Eq. 9:
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Success rate ratio rank (SRR) computes the ratio of success rates in a pair of 
algorithms. This method is useful in determining the significant differences in algo-
rithms. In SRR ranking, an algorithm and dataset are taken and accuracy (any evalu-
ation measure) ratio is calculated with respect to other algorithms. This ratio is 
computed by the following Equation:

	
SRR

acc

accj k j k
i j

i

k
i, , ≠ =

	
(10)

where “i” is the dataset, “j” is the algorithm for which SR is calculated, and “k” is 
the compared algorithm different from j. Hence SRR is calculated for algorithm “j” 
with reference to algorithm “k” on an ith dataset. Likewise, with the same pair of 
algorithms, SRR is calculated on all datasets. Subsequently, the mean of SRR is 
computed for all n dataset using Eq. 11.
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(11)

In the same way, the algorithm “j” is paired with all other algorithms on all data-
sets and overall SRR for algorithm “j” is given by:

	
SRR

SRR
j

k j k j k

m
=

−
∑ ≠, ,

1 	
(12)

where “m” is a number of subspace algorithms used for comparison. Similarly, 
SRR for all algorithms against each and every algorithm is calculated and ranked.

The further sections discuss the literature survey outline with analysis of sub-
space clustering algorithms on a few evaluation metrics.

5  �Literature

There is a number of good surveys made by researchers on high dimensional clus-
tering but very few are on subspace clustering. Assent [2] made a brief survey of 
high dimensional clustering on different types of datasets. Authors have also shown 
different methods adopted for clustering high dimensional datasets. Clustering in 
high dimensions is proposed through various models by [6]. A survey on models of 
high dimensional clustering datasets is given by [12]. Kriegel et al. [5] presented a 
survey on clustering high dimension data through subspace, correlation, and pattern-
based clustering methods. Steinbach et  al. illustrated the challenges of high 
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dimensional clustering in detail and proposed a concept-based model for handling 
dataset with large attributes [13]. Fahad et  al. made a survey describing various 
classes of clustering algorithms along with different evaluation metrics [14]. A com-
parative analysis of different swarm intelligence-based clustering algorithm is 
depicted in [15]. A new clustering algorithm with modified flower pollination algo-
rithm is shown in [16]. However, the various studies discussed above mainly focused 
on clustering high dimensional datasets; limited studies have been performed on 
subspace clustering approaches. Parson [3] made a comprehensive survey on sub-
space clustering approaches portraying different subspace search methods. Müller 
[8] depicted the different evaluation measures as well as different categories of sub-
space clustering algorithms. The work [17] also provided a WEKA platform for 
evaluating various subspace clustering algorithms. Subspace clustering through 
evolutionary technique is proposed by [18]. Table 1 presents the review on various 
subspace clustering algorithms along with evaluation metrics used, type of dataset 
applied, and maximum dimensions evaluated and drawbacks.

It can be observed from Table  1 that maximum dimension evaluated in high 
dimensional dataset is 5920, but 6144 is also there. Many algorithms have been 
proposed on subspace clustering to handle high dimensional datasets. A Monte 
Carlo-based subspace clustering algorithm [44] is proposed by Olson et  al. and 
evaluated against subspace and projected clustering algorithms on real and synthetic 
datasets. The significance of subspace clustering approaches is increasing in this big 
data era. Figure 7 depicts the number of papers published in a span of 5 years (shown 
on the x-axis).

Subspace clustering approaches also gained importance in various repositories 
of publications. Figure 8 shows the percentage of subspace clustering papers depos-
ited in different repositories.

Figure 9 gives the percentage of papers published in conference or journals. 53% 
of subspace clustering techniques was published in conferences and 47% of papers 
were published in journals.

The next section illustrates the empirical comparison of subspace clustering 
algorithms on real and artificial datasets.

6  �Empirical Assessment

Subspace clustering algorithms are mainly classified as cell, density, and clustering-
oriented-based algorithms [8]. The algorithms belonging to these categories cover 
almost all subspace clustering algorithms. Present section shows the empirical 
assessment of subspace algorithms on the basis of two evaluation measure i.e. F1_
Measure and accuracy. The algorithms are compared on the basis of ranking and 
scalability.

	(i)	 Ranking of Subspace Clustering Algorithms: Rank of algorithms [11] on real 
and synthetic datasets are made independently on accuracy and F1_Measure. 
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Real and synthetic datasets are obtained from [17]. Actual values of accuracy 
and F1_Measure of various subspace clustering algorithms on real datasets are 
extracted from [8]. While subscale algorithm is implemented in MATLAB 
R2013a platform adopting same parameter values given in [27]. Tables 2 and 3 
shows the average rank and SRR rank of subspace clustering algorithms on real 
and synthetic datasets respectively. CLIQUE emerged to be on the first rank on 
accuracy, while MINECLUS best performs on F1_Measure.

Tables 4 and 5 present average and SRR ranks of subspace clustering algorithms 
on synthetic datasets in terms of F1_Measure and accuracy, respectively. Actual 
values of subspace algorithms on accuracy and F1_Measure on synthetic datasets 
were not available. Hence each algorithm is implemented on WEKA toolbox of 
subspace clustering provided by [17] with best parameter settings. It is observed 
that the subscale algorithm depicts better accuracy while DOC is best performer in 
terms of F1_Measure on synthetic datasets.
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Fig. 7  Year-wise number of papers published on subspace clustering
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47%
53%

Conferences Journals

Subspace Clustering Papers in Journals and ConferencesFig. 9  Percentage of 
papers published in 
conferences and journals 
on subspace clustering

Table 2  Accuracy on real datasets

Accuracy
AR SRR

SUBSCALE 9 11
CLIQUE 1 1
DOC 2 5
MINECLUS 4 7
SCHISM 3 2
SUBCLU 7 8
FIRES 11 10
INCY 4 3
PROCLUS 8 6
P3C 10 9
STATPC 6 4

Table 3  F1_Measure on real datasets

F1_Measure
AR SRR

SUBSCALE 5 7
CLIQUE 9 8
DOC 2 3
MINECLUS 1 2
SCHISM 8 6
SUBCLU 7 9
FIRES 11 11
INCY 3 1
PROCLUS 6 4
P3C 10 10
STATPC 4 5
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	(ii)	 Scalability: Scalability of cell-based, density-based, and clustering-oriented-
based subspace algorithms is shown in Figs. 9, 10, 11, 12, 13, and 14. Graphs 
are represented in terms of data dimensionality. Scalability depicts the perfor-
mance of the algorithm with increasing number of dimensions. It is shown on 
synthetic datasets as number of records/objects are constant and dimensions 
vary from 10 to 75. Synthetic datasets are given in [17]. The X axis of graphs 
represents data dimensionality, and Y axis shows accuracy or F1_Measure.

Figures 10, 11, and 12 represent the performance of cell-based, density-based, 
and clustering-oriented-based algorithms, respectively, in terms of accuracy. It is 
observed from cell-based and density-based algorithms that SCHISM and INCY 
could not cope up after 25 dimensions and hence give results till D25 dataset only. 
MINECLUS accuracy varies randomly from dimensions to dimensions. DOC gives 
highest accuracy at 15 attribute dataset and then shows downfall. However, its accu-
racy shows slight improvement from D20 to D25 but again its performance declines. 
For density-based algorithms, FIRES shows improvement till D25, and then with 

Table 4  Accuracy on synthetic datasets

Accuracy
AR SRR

SUBSCALE 1 2
DOC 5 3
MINECLUS 6 4
SCHISM 3 7
FIRES 1 1
INCY 4 8
PROCLUS 8 6
STATPC 9 9
P3C 7 5

Table 5  F1_Measure on synthetic datasets

F1_Measure
AR SRR

SUBSCALE 6 5
DOC 1 1
MINECLUS 4 2
SCHISM 7 7
FIRES 2 3
INCY 5 6
PROCLUS 3 4
STATPC 9 9
P3C 8 8
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slight downfall, its performance becomes stagnant. SUBSCALE shows improve-
ment in accuracy after D25 dimensional dataset. SUBSCALE and FIRES give high-
est and approximately same accuracy at 75-dimensional dataset. For 
clustering-oriented-based algorithms shown in Fig.  12, STATPC shows highest 
accuracy at D75 dataset. PROCLUS performance falls after 25-dimensional dataset. 
P3C shows low performance for overall datasets.

Figures 13, 14, and 15 depict the scalability of algorithms in terms of F1_
Measure. It has been noticed that subscale gives highest F1_Measure on the 
75-dimensional dataset. However, the efficacy of DOC, FIRES, and P3C shows 
downfall in performance with an increase in dimensions.

It can be concluded from given experiments that on synthetic datasets, FIRES 
and DOC depict the best performance on the basis of accuracy and F1_Measure, 
while CLIQUE and MINECLUS are best performers on accuracy and F1_Measure 
on real datasets. That means cell-based and density-based algorithm is more appro-
priate to opt for subspace clustering.

The next section illustrates the various application areas along with future 
prospects.
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7  �Applications and Future Prospects

In previous sections, it has been shown that the trend of using subspace clustering 
algorithms for high dimensional problems is rising. This section discusses the appli-
cation areas where subspace clustering algorithms are suitable. Additionally devel-
oping amalgamated subspace clustering algorithms are suggested. Following are 
the application areas of high dimensional clustering:

	 (i)	 Collaborative Filtering: The other name of collaborative filtering is a recom-
mendation system. It is a social filtering technique where information is defined 
on basis of recommendations given by people [5]. People who like certain item 
in past are more likely to purchase in the future. People may like the items 
recommended by friends, neighbor, family, colleagues on social media, etc. 
Recommendations can be user-based or item-based. High dimensional cluster-
ing algorithms play an important role in such systems. The dataset is matrix of 
users and products. Clustering in such dataset retrieves the group of users lik-
ing the same product or group of items with relevant users. Hence subspace 
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clustering could be applied [45, 46]. Some examples are Customer 
Recommendation System, Movie Recommendation System, etc.

	(ii)	 Computer Vision: This field is based on mining useful information from single 
image or video to attain automatic visual understanding. The attributes 
extracted from image or video are large in number. An example of such dataset 
is image segmentation data [47]. The dataset contains 2310 data objects and 19 
attributes. Clustering techniques are applied to cluster in either shape group or 
RGB group [33]. Similarly there a number of datasets with large attributes 
where clusters may exist in different subspaces [48]. Field of computer vision 
where subspace clustering can be applied is Facial Recognition, Gesture 
Recognition, etc.

	(iii)	 Biological Dataset: Gene expression dataset is the most widely used dataset 
where subspace clustering can be applied [5]. Microarray DNA is a technology 
which measures a large amount of genes expressions under different circum-
stances. In order to understand the various types of diseases caused by genetic 
disorder at different levels, subspace clustering is required [49].
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	(iv)	 Text Documents: Clustering in text documents is an important task for web 
mining. Web pages are clustered on the basis of frequency of terms occurring 
in the page. Text documents are represented as high dimensional feature vec-
tor, where each feature is a frequency of term in document. Each document is 
represented by a data record/object. Hence the dataset formed from text docu-
ment is high dimensional data [50]. The cluster of related document may exist 
on basis of similar word count, themes, etc. Hence subspace clustering tech-
niques are applicable in such datasets.

	(v)	 Distributed Databases: Massive amount of data is being dissipated by a num-
ber of sources like social media, microarray DNA, etc. Nowadays such a large 
amount of data is stored in different physical locations named distributed data-
bases. The massive data is fragmented so that it can be distributed over multi-
ple servers and parallel queries can be executed. Fragmentation can be row-wise 
(horizontal) or column-wise (vertical). Subspace clustering techniques can be 
applied to aid the fragmentation process. However, no work has been done yet 
on this application using subspace clustering approach.

	(vi)	 Social Network: The data produced from social media is large in volume. 
Clustering can be performed on the social network to find influential groups in 
the network. This task is achieved by analyzing the linkages (edges) and nodes 
of the network. Clustering can be done on bases of various attributes associated 
with each node depending upon the objective in hand. Determining influential 
groups on the basis of various topics can be helpful in promotional activities, 
market segmentation problem, community detection problem [51], etc. Hence 
subspace clustering can be applied to find the groups in subsets of dimensions. 
However, a little amount of work is done on this application using subspace 
clustering approach.

In recent years, subspace clustering is being used with metaheuristic approaches. 
Nature-inspired algorithms [52, 53] are the prominent metaheuristic techniques that 
are used for determining the near-optimal solution to complex and hard problems. 
The first hybrid approach of subspace clustering with an evolutionary algorithm is 
proposed in [54]. With the advent of new metaheuristic algorithms, subspace clus-
tering results could be improved [30, 36]. Some other algorithms can be developed 
amalgamating artificial bee colony algorithm, grey wolf algorithm, etc., with vari-
ous subspace clustering algorithms. The hybrid algorithms developed were not 
applied to the applications described above. This will give a new direction of future 
work to researchers in the field of subspace clustering of high dimensional data.

8  �Conclusion

Subspace clustering finds the clusters existing in various subsets of dimensions. The 
chapter presents a comprehensive survey on subspace clustering approaches, evalu-
ation metrics, and application areas. The chapter also reveals the significance of 
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subspace clustering in literature by presenting the statistical data. Comparison of 
conventional subspace clustering algorithms is also depicted through average rank-
ing and success rate ratio ranking. Performance assessment of algorithms is made 
through scalability on basis data dimensionality. The chapter answers the following 
research questions:

	 (i)	 What are the major challenges faced by traditional clustering algorithms to 
cluster high dimensional data?

ANSWER: The problem of the curse of dimensionality is described in the 
first paragraph of Sect. 1.

	(ii)	 What search techniques are being used in subspace clustering to determine 
subspaces?

ANSWER: Top-down and bottom-up search techniques used to find sub-
spaces and are described in Sect. 3.

	(iii)	 What are evaluation measures for comparing subspace clustering algorithms?
ANSWER: Different evaluation measures are described in Sect. 4.

	(iv)	 What is the current scenario of subspace clustering?
ANSWER: Literature survey on subspace clustering with statistical data is 

illustrated in Sect. 5.
	(v)	 What are the research gaps in the literature and the future prospects of sub-

space clustering?
ANSWER: Research gaps are given in Table 1, and future prospects are 

presented in Sect. 7.
Thus, the chapter is useful to the researchers planning to work in the field of 

subspace clustering. Additionally, it suggests the algorithms to develop in the future 
along with application areas.
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