
Chapter 8
Emerging Directions of Precision
Agriculture and Agricultural Robotics

Ashwin S. Nair, Shimon Y. Nof, and Avital Bechar

8.1 Introduction and Definitions

In this chapter,we aim to shed some light on the next steps in the evolutionofPrecision
Agriculture (PA) and Agricultural Robotics Systems (ARS), and the technological
factors that will drive this evolution. To that end, we summarize a variety of research
projects that are at the frontiers of Precision Agriculture and Agricultural Robotics
Systems that integrate these two areas.

Precision Agriculture, as stated and discussed earlier in this book, is a field in
agriculture concentrating on selective decision making and planning based on the
processing of detailed farm-timely information, knowledge and thoughtful expertise.
Underpinning PrecisionAgriculture is the need to improve aspects of the future farm,
such as crop profitability and affordability, farm productivity and long-term sustain-
ability, and environmental benefit. Precision agriculture is designed to follow these
aims by reducing, through technological means, the required amount of fertilizers
and other chemicals, irrigation, fuel, manual work, and lease and crop insurance
payments (e.g. Mulla 2013).

In complex systems and systems-of-systems, intelligent control techniques and
systems are necessary for dynamic, real-time interpretation and guidance of the
environment and the objects operating in it (Nof 2009). Many PA related projects
have been undertaken that use the potential of technologies and concepts, such as
Cloud computing, Internet of Things (IoT), Internet of Services (IoS), Cyber Physical
System (CPS), robotic simulatorswith realisticmotion simulations, cyber augmented
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collaborative control and Human–Robot Collaboration. Some of these emerging
technologies are described in this chapter.

8.1.1 Why Is Precision Collaboration Essential in Precision
Agriculture?

The concept of Precision Collaboration (Bechar et al. 2015) is the underlying aspect
in all emerging trends in Precision Agriculture. Why? Because many, often highly
dispersed and distributed agents and resources are integrated to enable and accom-
plish the goals of PA. The details of Collaborative Control Theory and Precision
Collaboration will be expounded in Sects. 8.4 and 8.5. Two key aspects of Precision
Collaboration are:

1. When networks and systems of systems scale up, and the probability of ineffi-
ciencies, gaps of responsibility, errors and conflicts increase, precise interaction
becomes crucial. Therefore, it is worth implementing Precision Collaboration
methods and tools.

2. Augmentation by sensors and collaborative control theory (CCT) enable and
enhance smart and precise coordination and collaboration beyond communi-
cation and processing, and as contributors to collaboration support systems,
has been found in recent research and surveys to be an important and valuable
emerging area.

A few definitions are included below because they are used often in this chapter:

1. Cloud computing: An information technology paradigm that enables ubiqui-
tous access to shared pools of configurable system resources and higher-level
services that can be provisioned with minimal management effort, usually over
the Internet.

2. Internet of things (IoT): A system of interrelated computing devices, mechan-
ical or digital machines, objects and people that are provided with unique identi-
fiers and the ability to interact and transfer data over a networkwithout requiring
human-to-human or human-to-computer interaction.

3. Internet of services (IoS): A technology that provides the network infrastruc-
ture to support a service-oriented ecosystem. A fundamental characteristic of
the IoS is that services combine and integrate collaboratively the functionalities
of other services. (Van der Mei et al. 2018).

4. Cyber physical systems (CPS): CPSs are commonly defined as the systems
that offer collaborative integration of computation, networking and physical
processes (Khaitan and McCalley 2015). The US National Science Foundation
states “In cyber-physical systems, physical and software components are deeply
intertwined, each operating on different spatial and temporal scales, exhibiting
multiple and distinct behavioral modalities, and interacting with each other in
a myriad of ways that change with context.”
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5. Service oriented architecture (SOA): A service-oriented architecture is a
collection of services that communicate with each other. The communication
can involve either simple data transfers or could involve dynamic coordination
and collaboration among two or more services that combine temporarily for
required purposes and timely execution.

6. e-Work: e-Work is a collection of collaborative, computer-supported and
communication-enabled e-Activities, e-Operations, e-Functions and e-Support
systems that enables other e-Systems and e-Activities (Nof 2003). The c-Work
is a more advanced e-Work, augmented for smart collaboration by cyber-
physical models and techniques. The Cc-Work is the currently emerging Cyber-
Collaborative Work, enabled by cyber-augmented (e.g. wearables, augmented
and virtual reality) human–robot–machine work processes and systems (Nof
2019).

7. e-Service: e-Service is the provision of services over electronic networks such
as Internet, intranets or extranets without its scope being limited to service orga-
nizations, but rather encompassing all enterprises, even those that manufacture
goods and which require the development and implementation of sound service
practices over electronic networks (Nof et al. 2015). The c-Service is a more
advanced e-Service, where cyber-augmented collaboration is enabled.

8.2 Cloud Computing and Physical Internet/IOT, IOS
and CPS for ARS c-Work and c-Service for Precision
Agriculture

Precision Agriculture is an innovative effort that combines agricultural with digital
and data science technologies that increasingly include cyber technologies, in the
context of what is defined as ARS: Agricultural Robotic Systems. Innovations
that involve various implementations based on cloud computing and Internet of
Things/Services (IoT/S) into Precision Agriculture are expected to emerge in the
future, given the rapid advancement and benefits of these technologies.

Cloud computing based applications of Agriculture IoT Sensor Monitoring
Network were reviewed byMekala and Viswanathan (2017a, b). A simple IoTmodel
for an agricultural problem is presented in this chapter. The problem addressed was
that farmers in India lack sufficient knowledge of soil characteristics and environ-
mental informationbecause the number of testing laboratories available in the country
is limited. Internet of things based agriculture was proposed as a solution to this
problem. The four layered IoT architecture can be applied to Precision Agriculture.

Layered architectures are commonly applied for the design and standardization
of complex systems. Similar to layered architectures in industry and services, the
first (top) layer in agriculture-related applications serves as a user interface layer.
With this layer farmers can make decisions regarding crop protection and optimizing
food production outputs and food security. The second layer involves data compi-
lation, classification, processing, monitoring, and decision analysis. The third layer
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involves network management which would include communication technologies,
such as Gateway, RFID, GSM, Wifi, 3G, UMTS, Bluetooth Low Energy, Zigbee,
and so on. The fourth layer is the information collection layer that contains all
physical instruments, sensors, cameras, and so on. This study also compares and
contrasts various available hardware technologies and their use in an agricultural
IoT setup. According to this survey, challenges for implementing IoT in agriculture
include design of Service-oriented Architecture (SOA), Decision Support Systems
(DSS) capabilities, efficient data mining and analytics, and IoT maintenance costs.
The study addresses challenges and provides an IoT agricultural framework. Light
Fidelity (Li-Fi) technology was introduced and evaluated for fixed area structure
topology. The cloud computing framework was used to facilitate remotely controlled
processes to perform spraying, weeding, bird and animal scaring, vigilance, moisture
sensing, and so on. The methodology included smart warehouse management, which
includes temperature and humidity maintenance, and theft detection. It also included
intelligent decision making based on accurate real-time field data for smart irrigation
with smart control.

Wang et al. (2014) also explored the architecture of the Internet of Things in
agriculture with heterogeneous sensor data and proposed a data management system
involving cloud computing to enable an IoT in agriculture (Fig. 8.1). Their design is
based on a two-tier storage structure of a distributed database with large scalability,
named HBase. Their work also proposes a management mechanism for heteroge-
neous sensor data for IoT in agriculture based on cloud computing. It consists of a data
unificationmodule, abnormal data processingmodule and a two-layer architecture to

Fig. 8.1 Topological structure of IoT in agriculture
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Fig. 8.2 Architecture of the ROSCC methodology

store data and access data. A cloud computing-based framework for agriculture infor-
mation integration was also created by Duan (2012). In this research, a methodology
and system for the integration of agricultural information and sharing a platform
based on cloud computing were developed.

The data management problem of large size remote sensing images in soil mois-
ture mapping for Precision Agriculture was addressed by Zhou et al. (2016). This
methodology implements a Remote Sensing Observation Sharing method based on
cloud computing (ROSCC) to enhance storage of remote sensing images and to
achieve large-scale soil moisture mapping in Precision Agriculture (Fig. 8.2).

A system that combines wireless sensor networks (WSNs) and cloud computing
into an integrated architecture for agricultural environmental applications was
designed by Kassim and Harun (2017).

Cyber-Physical Systems (CPS) need to adapt to the changing physical world and
expand their capabilities dynamically (Pradilla and Palau 2016). They designed a
three-tier architecture that integrates: cloud computing, fog computing, and networks
of sensors and actuators. The implementation involves the use of micro virtual
machines and sensor observation, combining the isolation of virtual machines with
standardized storage and information-exchange under a Sensor Web Enablement
framework. The proposed architecture is coupled with the Internet of things (IoT)
and applicable to Precision Agriculture.

The issue of information security and privacy in agriculture cloud information
systemswas addressed by Tan et al. (2014).Most encryption schemes cannot support
encryption based on ciphertext. Therefore, it is difficult to build up the corporate
and individual information security and privacy-securing in the information system
based on a cloud computing platform. To enable information security and privacy
of the cloud computing infrastructure that would be practical for an Agriculture
Information System (AIS), the researchers have created an innovative encryption
method for an agriculture intelligent information system (AIIS) based on a cloud
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computing platform. It is based on matrix theory and supports a series of cipher–
text–operations? essential to create a secure communication protocol between users,
owner and cloud server. Thismethodology can perform crypto-function at amoderate
speed and can be used for securing corporate–individual privacywith regard toAIISs.

Further research will be needed to assure security of a cyber-augmented precision
agricultural system and to prevent malicious disruptions and remote intervention in
their safe and smooth operations.

8.3 Simulating an Agricultural Robotic System
for Precision Agriculture Tasks

As more robotic systems are being developed and implemented in the agricultural
domain, it would be cost effective to simulate such systems in the development phase.
Recently there have been a few research projects on simulating a robotic system for
human–robot collaboration. A computational simulation environment named ‘Simu-
lation Environment for Precision Agriculture Tasks using Robot Fleets’ (SEARFS)
was developed (Emmi et al. 2013) to study and evaluate the execution of agricultural
tasks that can be performed by an autonomous fleet of robots. The environment is
based on a mobile robot simulation tool that enables the performance, cooperation
and interaction of a set of autonomous robots to be analysed while simulating the
execution of specific actions on a three-dimensional (3-D) crop field. The SEARFS
computational simulation environment is capable of simulating new technological
advances such as GPS, GIS, automatic control, in-field and remote sensing, and
mobile computing, which will enable the evaluation of new algorithms derived from
PA techniques. This environment was designed as an open source computer applica-
tion. The SEARFS environment consists of four levels of configurations, where the
lower levels depend on the configuration of the higher levels (Fig. 8.3).

A general method for the development of customized robot simulation and control
system software with a robot operating system (ROS) was also developed by Wang

Fig. 8.3 SEARFS environment configuration levels
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et al. (2016). The simulation designed in this research involves: a) a 3-D visual-
ization model, created in URDF (unified robot description format) and viewed in
Rviz to achieve motion planning with the MoveIt! software package, b) machine
vision provided by a camera driver package in ROS to enable the use of tools for
image processing, and 3-D point cloud analysis to reconstruct the environment to
achieve accurate target locations and c) communication protocols provided by ROS
for serial, Modbus support of the communication system development. A tomato
harvesting scenario was simulated using thismethodology to demonstrate its features
and effectiveness.

8.4 Cyber Physical Systems and ARS

To overcome difficult problems such as the variability in agricultural produce and
continuously changing conditions, development of intelligent systems is neces-
sary to perform tasks successfully in such environments. Information acquisition
systems, including sensors, fusion algorithms and data analysis need to be improved
and adjusted to the dynamic and uncertain conditions of unstructured agricultural
environments (Bechar 2010).

The trend in digital transformation has offered considerable opportunity for more
efficient production using Cyber Physical Systems (CPS), which will enable new
concepts for future farming systems (Herlitzius 2017). The rapid development of
information and communication technologies is driving the evolution of mobile
machines and devices into cyber-physical systems with few limitations with regard
to communication.

A Precision Agriculture architecture (Fig. 8.4) was developed by Nie et al. (2014)
based on CPS technology that comprises three control layers, i.e. the physical,
network and decision layers.

A CPS oriented framework and workflow for agricultural greenhouse stress
management, called MDR–CPS, was designed by Guo et al. (2018). It has been
designed to focus on monitoring, detecting and responding to various types of stress.
The system combines sensors, robots, humans and agricultural greenhouses as an
integratedCPS, aimed atmonitoring, detecting and responding to abnormal situations
and conditions. The purpose is to provide an innovative solution that combines wire-
less sensor networks, agricultural robots and humans applying collaborative control
theory (CCT) to detect and respond selectively to stresses as early as possible. The
agricultural MDR–CPS framework is depicted in Fig. 8.5.

Sensor nodes are used in greenhouses to provide information on environmental
properties that influence the healthy development of the agricultural crops. An agri-
cultural cloud model platform is used in the field based on several server clusters
(Guo et al. 2018; Zamora-Izquierdo et al. 2019).
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Fig. 8.4 Architecture of Precision Agriculture CPS nodes

Fig. 8.5 Agricultural MDR–CPS framework (Courtesy of Guo et al. 2018)
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Fig. 8.6 Coordination vs Cooperation vs Collaboration in terms of interaction level (Source Nof
et al. 2015)

8.5 Cyber-Augmented Collaborative Control of ARS

8.5.1 Collaborative Control Theory (CCT)

Collaborative control theory has been developed by researchers at the PRISM center
at Purdue University and elsewhere (Nof 2007; Seok et al. 2012; Barbosa et al. 2014;
Hernandez 2014; Nof et al. 2015; Yilmaz et al. 2017; Moghaddam and Nof 2017;
Reyes Levalle 2018; Zhong and Nof 2020) to optimize distributed, decentralized and
multi-agent based e-Work and s-Service. Collaboration is known to be essential for
effective design and control of e-Work and e-Service. It enables all involved entities,
human and artificial, in decentralized e-Systems to share their resources, information
and responsibilities, such that mutual benefits are obtained (Figs. 8.6, 8.7 and 8.8).

Future precision agricultural systems will comprise multiple distributed and
autonomous agents, therefore, the efficiency and effectiveness of the CPS would
depend upon how well its constituent agents can collaborate.

Figure 8.9 illustrates the precision requirements for collaborative support features
as evaluated by Bechar et al. (2015).

Automated processes in an uncertain and unstructured environment (such as agri-
culture) are challenged by changing peripheral requirements (Zhong et al. 2015).
Addition of extra flexibility to the existing equipment to handle a larger range of
tasks is a desirable solution, which can be offered, for example by Reconfigurable
End-Effectors (REEs). An REE system has an adjustable structure to facilitate the
adaptation of the end-effectors to various objects, therefore it is an intermediate
solution between flexible and dedicated end-effectors (Zhong et al. 2015). Use of
multiple end effectors enables the robot to adapt directly to multiple agricultural
functions as and when required. For effective REE operations, the asynchronous
cooperation requirement planning (ACRP) framework was created to facilitate the
design and control of REE. The ACRP provides a dynamic solution, extending from
the planning facet of collaborative control theory (CCT) for designing (offline) and
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Fig. 8.7 The different components of cyber enhanced processes (Source Nof 2007)

controlling (online)multi-agent collaborations. TheACRPmethodology is illustrated
in Fig. 8.10.

The framework is illustrated with a case study of vegetable harvesting by multi-
arm automated systems (Zhong et al. 2015). In harvesting processes, the grasp quality
is one of the most important factors for production quality, therefore research on
effective design and control of reconfigurable end effectors is highly relevant.

In emerging and future agricultural robotic systems, we can expect heterogeneity
in multi-robot teams. To handle the varieties and variations of tasks observed in
unstructured agricultural environments, multiple configurations of robots or hetero-
geneous robots, would need to be designed and included in the system. In such
collaborative systems consisting of heterogeneous robots, ineffective task assign-
ments can result in weak? collaboration and thus poor efficiency. Zhang et al. (2015)
define the collaborative task assignment problem and develop a fuzzy collaborative
intelligence-based algorithm to optimize the assignment plans as a solution to the
challenging requirement of collaboration in heterogeneousmulti-robot systems. This
research introduces the concepts in collaboration type, the collaboration matrix and
assignment matrix, and introduces an algorithm for adaptive fuzzy collaborative task
assignment that is based on fuzzy set theory. Experimental results show and vali-
date a shorter completion time, less energy consumption and a statistically significant
larger loading accuracy. The methodology and algorithmwere simulated in a general
setting, and the methodology can be adapted directly to agricultural robotic systems.
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Fig. 8.8 Collaborative mechanisms of CCT and DSS (decision support system) for sustainability
planning and control (Source Seok et al. 2012)

Fig. 8.9 Collaboration support augmented by laser: Features and their precision requirements
(Source Bechar et al. 2015)
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Fig. 8.10 Framework of Asynchronous Cooperation Requirement Planning (ACRP) (Courtesy of
Zhong et al. 2015)

Below is a brief description of the types of collaboration in a multi-robot and a
human–robot system (Zhang et al. 2015) (Table 8.1).

Research by Zhang et al. (2015) solves a heterogeneous multi-robot collaboration
problem where stochastic and consecutive tasks are assigned to single or multiple
robots in a dynamic changing environment.

The remainder of this section describes several recent research projects involving
cyber enhanced and/or cyber augmented collaboration.

A. Methods for simultaneous orchard and harvesting robot design

Robotic manipulators can perform a variety of agricultural tasks, many of them with
precision. However, despite decades of research, few agricultural robots have been
commercialized. One of the reasons for the lack of agricultural robots on the market
today is their high cost and lack of precision enabling functions, which makes them
unprofitable for farmers.

Bloch et al. (2015, 2017, 2018) from the Agricultural Research Organization,
Rishon LeZion, Israel prepared robotic systems that are optimal for specific tasks.
In the optimization process, the robot’s performance is maximized while allowing
it to perform the task. To achieve a reliable result, the actual field task must be
described andmodelledwith sufficient precision. However, the complex and unstruc-
tured environment of agricultural tasks complicates the task description as well as
the robot-design process.
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Table 8.1 Collaboration among robots working together (following Nof 1999)

Collaboration types Number of
participating robots

Definition PA task

(1) Individual One One single robot
completes task
individually without
any collaboration with
other robots

Specific spraying,
variable-rate
applications, disease
monitoring, etc.

(2) Mandatory Two or more Two or more robots
cooperate to complete
a task simultaneously,
and all of them are
necessary for the
completion

Cereal harvesting,
fruit picking and
storage, etc.

(3) Concurrent Two or more Any one of the robots
is able to complete the
task, but when
performed by two or
more of them together
concurrently, it
decreases completion
time, increases
production or service
quality and is more
fault tolerant

Combined stress
detection, yield
assessment, complete
plant protection
system, etc.

The main goal was to characterize and analyse the environment of a given orchard
and the required agricultural tasks, to understand their combined influence and inter-
action with the optimal design of a task-based robot for that orchard. This analysis
allows the task description to be simplified by characteristics of the environment
during simultaneous design of the robot and its environment.

The main results of the research are as follows. For the task-based robot opti-
mization, we created a library with approximately 20 plant models. Software for
evaluating the robot’s performance effectiveness (optimization of cost function) was
written and used for the optimal robot design. Based on the model library and soft-
ware, robots were designed with optimal kinematics for a number of agricultural
tasks and environments. During robot optimization, the level of complexity of the
environment included yet did not enable the proposed software to solve the opti-
mization problem in an acceptable time. In addition, a methodology for optimal
robot location was developed.

To solve the robot-optimization problem for picking fruit in complex environ-
ments, a method was developed for characterizing the agricultural environment
by fruit clustering and reaching cones. The method systematically reduces the
complexity of the environments, thereby decreasing the number of calculations
and providing a near-optimal solution. The method was approved and successfully
applied to complex environments, solving the optimization problem in hours, rather
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than after weeks of calculations. The expected precision of the achieved solutions
was 10% in the case examined.

A preliminary design for the robot working environment was prepared. Research
findings include an environment that was fitted maximally to the robotic operation
and that optimized one of the variables defining the structure of the environment.

In general, a set of tools andmethodologywas developed for analysis and design of
the agricultural environment, together with optimal robot design. This methodology
is novel in robot design, in particular in agriculture. It helps to improve the robot
performance while designing low-cost robots affordable for farmers. The methods
developed in this research are applied to apple and nectarine harvesting, although
they can be used for robotic harvesting of any type of fruits, for other agricultural
tasks, or in any area where the robot-environment design is used or is applicable.

B. Development of a selective autonomous sprayer for greenhouses

The essential process of pest control and chemical application of nutrients is one of the
most important processes in any agricultural production. Nevertheless, the applica-
tion requires human resources; it is a time-consuming task and exposes the operators
to the danger of contamination with hazardous chemicals. Integrating autonomous
robots and machinery for agricultural tasks involving expensive labour, and that are
monotonous and hazardous has accelerated recently. An autonomous robot is an
alternative in many cases. This research focuses on the development of a navigation
procedure for an autonomous sprayer in a greenhouse growing sweet peppers.

C. A robotic sonar system for specific yield assessment and plant status evaluation

Specific yield assessment is essential for precision farming and agriculture in general.
It is an important tool in agriculture for forecasting crop revenues, planning the budget
and store capacity, labour management and compensation calculations (Fermont and
Benson 2011). In several crops, such as fruit trees, fruit thinning is done based on
yield estimation.

Subsidized crop insurance has become the most important single support policy
in agriculture in both the USA and Israel. The program is immense in the USA,
currently insuring over $120 billion in agricultural values and costing its taxpayers
approximately $10 billion each year (Glauber 2013; Goodwin and Smith 2013). In
Israel, for example, the aggregate premium payments from government subsidies
for crop and disaster insurance programmes amount to over $25 million annually
(source: Israeli Agriculture ministry budget).

An accurate and site-specific yield assessment technique that will decrease the
assessment cost and increase its accuracy has the potential to reduce production costs,
increase yield and profitability and save billions of dollars in tax subsidies:

The present techniques, however, for yield assessment are labour intensive and
tend to be expensive. Moreover, the process is inaccurate because it is carried out
manually by workers in the field and is based on crop sampling in small quantities,
which in addition loses information on the variation. There is a tradeoff between the
amount of time invested in sampling the crop and the accuracy given the inhomo-
geneous nature of crop distribution. To meet this challenge, various modern sensing
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technologies, such as thermal imaging (Stajnko et al. 2004), depth cameras (Andújar
et al. 2016) and optical methods (Wachs et al. 2010) have been suggested for devel-
oping an automated system to detect crop biomass and for yield estimation (Lee et al.
2010). Recent vision-based studies in the context of specialty crops include one by
Moonrinta et al. (2010) who developed a vision-based pineapple mapping algorithm
with a detection success rate of 80%. Another vision-based yield estimation study
by Nuske et al. (2011) detected 50–70% of the visible grapefruit and predicted the
amount of crop mass with an error of 9%.

An ultrasonic sensing system was developed and the resulting classification
features that would ultimately be used for a yield estimation robotic system were
analysed (Mizrach et al. 2003; Mizrach 2008; Finkelstein et al. 2017). An algorithm
was also developed to predict fruit mass per plant based on the ultrasonic echo return
from a plant. The ultrasonic sensor system was tested in laboratory and greenhouse
(with peppers) environments and on single pepper plants, single leaves and fruit.
The results showed the potential of ultrasonic sensors for such a robot in classifying
plants and greenhouse infrastructures such as walls. It showed the robot’s ability
to detect hidden plant rows and fruits as well as estimating the fruit mass in single
plants. The system developed can detect and map crop rows without a direct line of
sight using a matched filter and normalizing the acoustic energy by distance.

8.6 Human-Robot Collaborative System for ARS in PA
Tasks

An overview and a framework for Precision Collaboration are shown below
(Fig. 8.11). As mentioned in earlier sections, when networks and systems of systems
scale up, and the probability of inefficiencies, errors and conflicts increases, the
precision of interactions becomes crucial.

Unstructured environments such as agriculture are characterized by rapid changes
in time and space (Bechar and Edan 2003). Fully automated systems do not perform
well in such environments where they become cumbersome, complicated and expen-
sive to develop and operate. Therefore, optimal output of a Precision Agriculture
robotic system would depend on the effectiveness of collaboration between human
agents and cyber controlled agents.

Cheein et al. (2015) reported a study that included guidelines for designing a
human–robot interaction strategy for harvesting tasks that could be used for other
agricultural tasks. The four design cores of a service unit are: mapping, navigation,
sensing and action. This research addressed the problem of a decline in availability
of human labour in agriculture in Chile and Argentina.

The research also discusses the current constrains related to precision farming and
associated with flexible automation of farms in Argentina and Chile. The constraints
include environmental constraints such as the variation in yield, the field, soil, crop,
anomalous factors and management. For the latter this includes tillage practice and
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Fig. 8.11 Precision Collaboration support framework (H- Human; C- Computer; R- Robot)

seeding rate, crop rotation, fertilizer and pesticide application and irrigation pattern;
these are facts that the service unit must know during its incursion into the workplace
to avoid interference with the manual labour.

With regard to collaboration in a networked telerobotic environment, Nof and
the PRISM center at Purdue University have developed a mechanism and tool
called HUB-CI, a hub for Collaborative Intelligence (Fig. 8.12). Collaborative intel-
ligence is a concept and a potential measure of performance of an e-System. It
is a combination of communication intelligence, cumulative intelligence, cooper-
ative intelligence and collective intelligence (Zhong et al. 2013). The HUB is an
online portal that enables users to create and share research materials and computa-
tional tools. It can deliver all resources and simulations by a standard web browser
and use high performance Grid computing resources. The majority of HUBs allow
collaboration on virtual materials and simulations, but there has been no tool for
users to perform physical collaboration (Zhong 2012). The HUB together with cloud
computing allows software and data to be shared directly by groups of users, and
provides knowledge and analytical tools that can be applied in Precision Agriculture
systems (Nair et al. 2019; Sreeram and Nof 2021). The HUBs enable better, faster,
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Fig. 8.12 The HUB-CI concept and architecture, enabling precision in operations planning and
control (Source Zhong 2012; Devadasan et al. 2013)

smarter collaboration among decentralized, asynchronous decision-makers. Further-
more, it is considered a major enabler of precision in manufacturing, logistics and
agriculture (Fig. 8.12).

The HUB-CI has been applied and tested in knowledge-based service planning
(Zhong et al. 2013) and also to collaboration between telerobots and human agents
in manufacturing (Zhong et al. 2013). Current research is being undertaken to apply
HUB-CI in a telerobotic agricultural cyber physical system. Below are some projects
in which Human–robot collaboration was applied to enhance output and productivity
of the agricultural robot system:

A. Human–Robot collaborative system for selective tree pruning

Orchard pruning is a labour-intensive task that involves more than 25% of the labour
costs. The main objectives of this task are to increase exposure to sunlight, control
the tree shape and remove unwanted branches. In most orchards this task is done
once a year and up to 20% of the branches are removed selectively.

Ahuman–robot collaborative system for selective tree pruning has been developed
(Bechar et al. 2014). The systemconsists of aMotomanmanipulator, a colour camera,
a single beam laser distance sensor, a human machine interface (HMI) and a cutting
tool based on a circular saw developed for this task. The cutting tool, camera and
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Fig. 8.13 Cutting tool design for tree pruning (Source Agricultural Research Organization Israel)

laser sensor are mounted on the manipulator’s end-effector, and aligned parallel to
one another (Fig. 8.13).

Experiments were established to examine the performance of the system under
different conditions, human–robot collaboration methods and different trajectory
types (Bechar et al. 2014). A cutting tool was designed for pruning branches with a
diameter of up to 26 mm at a 45° cutting angle. The saw diameter was determined
to be 115 mm with a standard shaft diameter of 41 mm. An interface to connect the
cutting tool to the robot’s end effector was designed to minimize the total dimensions
of the tool and to increase e robot dexterity. An average cycle time of 9.2 s was
achieved when the human operator and robot perform simultaneously. The results
also revealed that the average time required to determine the location and orientation
of the cut was 2.51 s.

B. Robot for automatic melon collection

Melon and watermelon harvesting require intensive manual labour. Machines with
automatic robotic arms may replace personnel, especially in a simple routine that
requires considerable physical effort. In this project a human is involved but in
a different way. Based on preliminary tests it was found that about 80% of the
workers’s time is invested in transferring the picked melons from the bed and only
20% in locating and disconnecting the ripe melons from the plant. Therefore, the
task is conducted in two steps. In the first, the human passes in the field, detects
the ripe melons, marks their locations and disconnects them from the plants with
pruning shears. In the second steps, the robotic system passes and collects only the
melons that were marked and harvested. A robotic arm system has been developed
(Fig. 8.14) that can collect the melons automatically knowing their coordinates,
while moving through the collection area. An electro-mechanical robotic arm system
has been assembled that consists of a wheeled frame, cylindrical rails with end
limit switches, stepper motors with encoder for X- and Y-axis arm movement, a
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Fig. 8.14 A close up of the melon picking robot and the robotic arm for melon picking (circled)
(Source Agricultural Research Organization, Israel)

pneumatically operated robotic arm system for additional Y- and Z-axis movements,
vacuum operated gripper, motor controllers and a PLC.

A human machine interface has been developed to enable operator intervention.
Amelon ‘picking-up’ simulator program has been created, capable of demonstrating
the process of collecting melons by the robotic arm. For experimental applications,
the melon collecting path optimization algorithm was used. The system was tested
and succeeded in reaching up to seven target points in sequence with an accuracy of
84% (with a target reaching error of 7–10 mm, collection time 7–8 melons min−1, at
a distance of up to 4000 mm, with arm velocity of up to 800 mm s−1 and acceleration
of up to 50 m per s2).

C. Multi-sensor fault tolerant learning algorithm in an agricultural robotic system

Ajidarma 2017; Ajidarma and Nof 2021 aimed to develop a new fault tolerant
interface design based on the collaborative control theory (CCT) principles of best
matching (BM), error prevention and conflict resolution (EPCR) for an agricultural
robotic system. They developed a fault tolerant learning algorithm to process the data
of moving sensors in an agricultural robotic system. The sensor data and actual state
of the object were modelled as a function of error and rate of conflict. Two learning
algorithms, adaptive learning algorithm (ALA) and cumulative learning algorithm
(CLA) were developed and tested. This method involves collaboration with a human
operator and an adaptive learning mechanism to minimize measurement and detec-
tion errors. It is an excellent example of the concept of Precision Collaboration. This
research addressed the problem of having an interface with fault tolerant sensor data
processing in a collaborative agricultural robotic system where multiple sensors are
mounted on a mobile robot, and a human operator performs supervisory functions.
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D. Human–robot collaborative system for early detection of crop diseases

Traditional agricultural management practices assume that fields growing crops have
homogeneous properties (Oerke et al. 2011). In contrast, modern, Precision Agricul-
ture integrates different technologies, such as: sensors, information and management
systems for adapting agricultural practices to variation within the field (McBratney
et al. 2005; Dong et al. 2013). Monitoring is a major component in Precision Agri-
culture and of precision crop protection (Gebbers and Adamchuk 2010; Schellberg
et al. 2008).

Crop yield is affected by different stresses, e.g. pests, diseases, weeds, environ-
mental conditions, nutrition or water deficiencies, which can impair production.
Oerke and Dehne (2004) indicated that the impact of diseases, insects and weeds
represents a potential annual loss of 40% of world food production. The occur-
rence of diseases depends on environmental factors and they often have a sporadic
spatial distribution, therefore sensing techniques can be useful in identifying primary
disease foci and distribution (Franke and Menz 2007; Franke et al. 2009). Sankaran
et al. (2010) and Lee et al. (2010) suggested that detection and quantification of
diseases with visible and infrared spectroscopy would be feasible. If a symptom or a
disease can be detected by the naked eye, a sensor should be able to record the stress
symptoms (Nutter et al. 1990; Stafford 2000).

Currently, disease detection and monitoring in greenhouses are conducted manu-
ally by an expert inspector and are limited because of the availability of human
resources, sparse sampling and large monitoring costs. Sampling intensity and reso-
lution are lowwith about 20 arbitrarily locations sampled per hectare in a fixed pattern
(the same locations are revisited) and each plot is monitored every 7–10 days. The
plants are inspected for symptoms by an inspector crossing the greenhouse rows on
foot. Thus, the inspector walks about 20 km per day covering about 8 hectares, and a
designated inspector is required for every 80 hectares. The limitations of the current
inspection methods can lead to late detection and inability to contain a disease. As a
precaution, repeated, large doses of pesticide are often applied even when symptoms
are far below thresholds that require pesticide application. Moreover, pesticides are
typically applied uniformly throughout the greenhouse while disease distribution is
typically centred in distinct locations, resulting in additional pesticides use, increased
material cost and adverse environmental effects.

In greenhouses, a current challenge is the early detection of stresses (potentially
leading to diseases) and other crop risks to prevent the spread of uncontrolled disease
and hence improve productivity. Often detection is too late even though there is
enough knowledge on how to address the specific stress in plants. Different biotic
and abiotic stresses affect the expected potential crop yield. These stresses and other
factors that limit yields must be detected as early as possible such that appropriate
and precise counter measures may be applied. In the absence of an affordable and
effective monitoring mechanism or system, the decisions taken by farmers could
be wrong and might result in over- or under-application of pesticides, nutrients and
water.
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Robotic systems in greenhouses enable early detection and improved control of
plant diseases. They are expected to increase yield, improve quality, reduce pesticide
application, increase sustainability and reduce costs. Symptoms vary for each disease
and crop, and each plantmight suffer frommultiple threats, thus, dedicated integrated
disease detection systems and algorithms are required.

Automation of disease detection can alleviate current difficulties and lead to
improvement in yield together with considerable reduction in pesticide use (Franke
andMenz 2007; Franke et al. 2009; Bock et al. 2010). In addition to reduced produc-
tion costs, this will also lead to reduced exposure to pesticides of farm workers
and inspectors, and increased sustainability (Hillnhuetter and Mahlein 2008). Plant
diseases can affect various optical foliage characteristics, therefore disease detection
can be based on different spectral ranges (Lee et al. 2010). Image processing of
foliage light reflection has been applied to many different diseases and cultivars (for
reviews see: Barbedo and Garcia 2013; Pujari et al. 2015; Patil and Kumar 2011; Lee
et al. 2010). Methods based on fluorescence (Wetterich et al. 2016) or thermography
(Oerke et al. 2011) can also be used for disease detection and have been extensively
studied, but they are less relevant for a robotic detection system operating in the field
because of cost, payload weight or required setup. Mobile robotic manipulators with
various sensing capabilities offer an automated solution suitable for disease detec-
tion in greenhouses. There has been, however, little comprehensive research on the
development of such integrated robotic disease detection systems for greenhouses,
probably because the primary challenge of developing robust disease detection algo-
rithms is still an open research question. Aerial platforms (Gennaro et al. 2012)
and ground mobile robotic platforms with fixed sensor configurations (Harper and
McKerrow2001;Moshou et al. 2011; Pilli et al. 2014) for disease detection have been
tested for open field crops. Yet, in greenhouses both solutions have inherent short-
comings. The maneuverability and flight duration of aerial systems within green-
houses is limited, and navigation and location cannot rely on GPS sensors because
the structure can cause unpredictable errors, therefore they lose their main outdoor
advantage. In greenhouses, sensory position and adaptation of orientation can greatly
improve detection, especially early detection where symptoms are typically centered
on distinct locations. For fixed sensor configuration, position and orientation adap-
tation are not possible. Moreover, in fixed configuration systems, the requirement
for multiple disease detection can lead to a requirement for multiple detection posi-
tions and orientations, which tend to increase system complexity and cost and hinder
maneuverability.

To address this issue, a robotic disease detection system for greenhouse pepper
plants was developed based on the concept of a mobile robotic manipulator (Schor
et al. 2015; Schor et al. 2016), which provides the required maneuverability and
flexibility (Fig. 8.15). Prior to the above, no major system had been developed for
disease detection for specialty crops in greenhouses that involved a mobile robotic
manipulator.

The robotic disease detection systemwas developed holistically, i.e. system archi-
tecture, operation cycle and detection algorithms for multiple threats to a pepper crop
were developed in an integrated manner. Eizicovits et al. (2016) showed that early
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Fig. 8.15 The apparatus for disease detection for pepper plants (Source Agricultural Research
Organization, Israel)

integration and testing of perceived requirements can lead to improved system design
and operation in environments with taxing needs (e.g. the agricultural environment).

The detection system comprises amechanical structure, sensor suite, motion plan-
ning (Fig. 8.16) and disease detection algorithms. Visual spectrum imagery is used
for motion planning and disease detection for fast, non-destructive and cost-effective
operation. An algorithm based on principal component analysis (PCA) was devel-
oped for powdery mildew, and three algorithms were developed for tomato spotted
wilt virus)TSWV(disease detection, one based on PCA and two on the coefficient of
variation (CV). Principal component analysis is a statistical tool used to reduce the

Fig. 8.16 Example of motion planning for the robotic arm in disease detection in plants (Source
Agricultural Research Organization, Israel)
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dimensionality of data and demonstrate patterns in a dataset. The CV is a statistical
measure of dispersion, calculated as the ratio of the standard deviation to the mean.

The algorithms were tested using images of healthy and infected plants taken
from a greenhouse. For RGB-based detection of TSWV, PCA-based classification
with leaf veins removed achieved the greatest classification accuracy (90%), and the
accuracy of CV methods was also high (85%, 87%). For powdery mildew (PM), the
accuracy of pixel-level classification was high (95.2%) while that of leaf condition
classification was low (64.3%) because leaf images came from the top of the leaf
and disease symptoms start appearing on the bottom. The NIR-R-G-based detection
produced inferior results for both diseases. The components of the system were
integrated, and preliminary integration tests were done in a laboratory environment
to verify that all system components would work together. The integrated system
operated successfully for 110 consecutive minutes with an average cycle time of
26.7 s for end-effector velocity of 15 mm s−1 and PCA-based detection algorithms.
Future research will examine improvement of disease detection, aiming to achieve
greater accuracy together with earlier detection, e.g. by facilitating PM examination
on the bottomof the leaf or by integration of the twoCV-basedmethods. For complete
integration tests and field performance studies, a dynamic detection process (i.e. with
a moving conveyor) will be implemented and tested.

Results are encouraging because the cycle time attained was slower than the
calculated required baseline (Schor et al. 2017). However, the laboratory environ-
ment comprising a conveyor belt, stationary sensor system and black background
for simplifying plant identification and background removal procedures makes the
disease detection task easier and faster. Conducting a disease detection task in an
unstructured environment such as a greenhouse will require more sophisticated algo-
rithms for motion control, path planning and image processing because of a more
complex environment that includes obstacles, background noises, illumination etc.,
thus cycle time may be extended.

A subsequent multidisciplinary project was undertaken by researchers at the Agri-
cultural Research Organization (ARO) in Israel, PRSIM center – Purdue University,
USA and the University of Maryland, USA. This research was funded by BARD,1

the US–Israel binational agricultural research and development fund (Bechar et al.
2020). It combines the following three disciplines to solve the problem of consistent
early detection:

(1) Smart agricultural robots
(2) Human–robot collaboration (based on theHUB-CI andCCTdescribed inSects.

8.4 and 8.5)
(3) Early stress detection and classification usingmultispectral imaging and image

classification and creation of a stress map

The robotic platform (cart) was modified at ARO to improve the control and
autonomous navigation, and to suit the disease detection task better in a greenhouse.
The platform is equipped with a UR5 manipulator, a sensory system comprising

1 BARD Research Project IS-4886-16 R.
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(a)       (b) 

Fig. 8.17 Three-D mapping of a pepper greenhouse (a) and the robotic platform (b)

two depth cameras to create 3-D and 2-D maps of the greenhouse, the Kinect V2
and RealSense 435 and an RGB 1080p camera. A real-time environment mapping
application was developed and modified with the robot sensors while it moves in
the environment and generates a 3-D model of it. A 3-D mapping experiment was
conducted in the laboratory and in a pepper greenhouse at ARO (Fig. 8.17).

For the ‘human-in-the-loop’ tasks of the agricultural robot system, a HUB-CI
(hub for collaborative intelligence) system was developed by the PRISM team at
Purdue and the ARO team. The objective: To enable effective and timely integration,
and resulting collaboration tasks, by optimized exchange and leveraging of signals
and information gathered in real-time from distributed components. The outcome
of the HUB-CI is collaborative intelligence from the ARS networked components,
thus enabling precision tasks (Nair et al. 2019). The following algorithms and proto-
cols were developed by Dusadeerungsikul and Nof (2019): (a) algorithm to deter-
mine what image or case must be reviewed by remote human users, (b) adaptive
search: use knowledge-based information, (c) routing algorithm: create a tour for a
mobile robot, (d) detection-routing protocol:mechanism for remote disease detection
algorithm to communicate with the routing algorithm, (e) manual control protocol:
mechanism and constraints for manual control of the robot and (f) human-in-the-
loop protocol: mechanism for human operator to communicate with the search and
routing algorithm. The HUB-CI system has been designed as a virtual platform to
integrate signals, data and control logic from several participating agents (cyber and
human agents). It enables the cyber-collaborative protocols to make local control
decisions based on global, real-time information. An initial prototype of HUB-CI
was developed and tested in the experiments. Unique features designed with the
HUB-CI system include (Nair et al. 2019): (i) planned collaboration between diverse
users (farmer, engineer, pathology expert, etc.) of the agricultural robotic system in a
HUB-CI environment, (ii) collaborative semi-automated andmanual control (remote
and local) of agricultural robot, (iii) learning-based filtering algorithm for spectral
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images taken off plants, (iv) collaborative decision making regarding the greenhouse
system based on intelligent information sharing, (v) scheduling and task administra-
tion of all cyber and human agents in the agricultural robotic system (ARS) and (vi)
adaptive search and routing algorithms: use resource (time) to perform monitoring
and inspection tasks. Three experiments were conducted to examine the collabora-
tive control of the system. In all experiments, the robot was controlled from Purdue
University. Two-way collaboration frames were developed: (1) an ad-hoc connection
using TeamViewer in which researchers at Purdue controlled the robot’s computer
directly and (2) through a server using dropbox. In all experiments, collaboration
with direct commands from Purdue to ARO was tested.

The hyperspectral imaging analysis can be divided into two research steps. First,
a classification algorithm needs to be developed based on full spectral information of
healthy and diseased spots. Second, some key hyperspectral bands need to be selected
specifically for real-time in-field detection. The decrease in number of spectral bands
should not affect classification accuracy. The University of Maryland research group
developed a new method of hyperspectral analysis named ‘outlier removal auxiliary
classifier generative adversarial nets (OR-AC-GAN)’ (Wang et al. 2019). The model
uses full spectral information (395–1005 nm) to integrate the tasks of background
removal, pixel-level spectral analysis and image-level plant classification. Themodel
starts from generative adversarial nets (GAN) to learning the data distribution of
different spectral classes. It can augment the training dataset online according to the
data distribution and effectively remove the side effects of data outliers and imbalance
on the dataset. This model can classify the one-dimensional spectral signal into
different classes. Images were taken at ARO using a Specim hyperspectral camera
with a high-resolution, high-speed image acquisition device (NI PCIe-1427) installed
on an i7-4770 CPU PC. The computer was equipped with the Specim data recording
application for hyperspectral images (HSI): Lumo Scanner. In the experiment for
54 independent test images of the TSWV disease database constructed by ARO, the
model can reach 96.25% prediction accuracy (92.59% sensitivity, 100% specificity)
before visible symptoms appear (as early as 5 days after disease inoculation) (Wang
et al. 2019). In contrast, human experts can tell the difference of diseased and healthy
plants 15 days after disease inoculation. For pixel-level classification accuracy, the
prediction of false positives in healthy plants was as small as 1.47%. The OR-AC-
GAN is an all-in-one model meeting the first requirement of hyperspectral data
analysis. The experiment proved that the augmented data, a ‘by-product’ of OR-AC-
GAN can markedly improve the performance of existing band selection algorithms
(Wang et al. 2019).

8.7 Bio Inspired Robots for ARS in Precision Agriculture

Recent research has created bio-inspired robots for various agricultural applications.
The fundamental motivation behind the development of bio-inspired multi-robot
teams is that living organisms can successfully cope and provide good solutions
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to almost all robot-related problems (Tsourveloudis 2014). Navigation, material
handling, sensors and machine learning are only some of the research areas that
have benefited from examining and adopting methods, techniques or mimicking
behaviours proved sustainable and successful for animals andhumans (Tsourveloudis
2014). This section describes several bio-inspired robots that have been built for
agriculturally related tasks.

Climbot (Guan et al. 2016,) is a biomimetic biped-climbing robot for potential
applications in agriculture (like climbing and grasping), forestry and the building
industry. Built with a modular approach, the robot consists of five joint modules
connected in series and two special grippers mounted at the ends, with the scalability
of changing degrees-of-freedom (DoFs). With this configuration, Climbot not only
has superior mobility on multiple climbing media such as poles and trusses, but can
also grasp and manipulate objects. It was inspired by observing the climbing patterns
of animals such as caterpillars, chimpanzees,monkeys and sloths. Climbotmay climb
in several modes. The study proposed three basic climbing gaits, which are the inch-
wormgait, the swinging-aroundgait and theflipping-over gait.Autonomous climbing
will be highly relevant for augmenting manual work in unstructured environments.

Guanjun et al. (2017) proposed a bio-soft robot inspired by the elephant trunk
and octopus which has applications to robotic agricultural harvesting. A basic static
model for axial elongationwas established for the fundamental analysis of the bio-soft
robot module’s features, such as iso-force, isobaric and isometric characteristics.

A plant-inspired robot, named Plantoid, with sensorized robotic roots was devel-
oped by Sadeghi et al. (2016). It is the first robot prototype inspired by plants
and, in particular, by the movements, sensing capabilities and behaviour of their
roots. Plantoid, integrates artificial roots able to respond to environmental conditions
and stimuli, performing bending movements and obstacle avoidance response. Each
robotic root integrates three soft spring-based actuators that imitate the different
bending capability of plant roots through variable elongation of the actuators,
obtained by the direct assembly of helical springs on the shafts of DC gear-motors.
Each robotic root apex embeds a matrix of commercial gravity and temperature
sensors and innovative sensors for touch and humidity, customized for the specific
robotic root application. The combination of sensors and a root-inspired behaviour
algorithm allowed the robotic roots to move and follow external stimuli in air.

8.8 Machine Learning Applications in Agricultural CPS

An important feature of intelligence in Precision Agriculture is the ability to
learn automatically from historical data and experiences (generally called ‘machine
learning’). Various learning methods and algorithms have been implemented in
cyber physical systems, which facilitate continuous improvements, adaptations and
learning from mistakes, as well as from success. Common applications of machine
learning in cyber physical systems include, for example, fault detection (Sargolzaei
et al. 2016), system security (Junejo and Goh 2016), pattern recognition or detection
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(Spezzano and Vinci 2015), predictive maintenance (Wu et al. 2018) and adaptive
scheduling (Linard and Bueno 2016).

In agricultural CPS, machine learning research (Airlanga and Liu. 2019) has
addressed several Precision Agriculture topics: image classification for plant recog-
nition, plant disease detection using hyperspectral imaging (Moghadam et al. 2017;
Wang et al. 2019), smart irrigation management (Goap et al. 2018), data mining and
knowledge extraction (Schuster et al. 2011; Dimitriadis, and Goumopoulos 2008),
detection and prediction of biotic stresses in plants (Behmann et al. 2015; Wani and
Ashtankar 2017), crop yield evaluation (Finkelstein et al. 2015, 2017), predicting
environmental factors (Taki et al. 2018; Pandey et al. 2019) and automatic plant
phenotyping (Yahata et al. 2017).

Future research could explore predictivemaintenance, pattern detection, enhanced
collaboration among agents (human or non-human agents) and system security, as
related to agriculture.

8.9 Summary

Exciting capabilities and opportunities are emerging in the application of robotics
in Precision Agriculture. The main areas described and illustrated in this chapter,
as well as in previous chapters for robotics in different Precision Agriculture tasks
include: Precision Collaboration and collaborative control (collaborative robotics),
cyber physical systems, human–robot collaborative system, cloud computing, multi-
robots and robot fleets, bio inspired robots, and integration of machine learning.

A summary of the dimensions of Precision Collaboration in six Precision
Agriculture case studies described in this chapter is shown below (Table 8.2).

Emerging trends and future developments are planned and anticipated in all the
above areas. Particular advantages can be expected by cyber-augmentation for further
smart automation and autonomy (autonomation), including cyber-augmented Preci-
sion Collaboration of stakeholder farmers and human–robot agents of Precision
Agriculture.

A summary of the research challenges of Precision Collaboration in different
Precision Agriculture tasks is given in Table 8.3.
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Table 8.2 Dimensions of precision collaboration in precision agriculture case studies

DIMENSIONS:
Case Study:

Sensor-based
processes

Planned
collaboration

Mechanism to
address or
over-come or
prevent errors
and conflicts

Dynamic
re-configuration;
best matching

Robotic sonar
system for specific
yield assessment
and plant status
evaluation

Yes No Yes An option

Development of a
robotic detection
system for
greenhouse pepper
plant diseases

Yes Yes Yes An option

Human–robot
collaborative
system for selective
tree pruning

Yes (for locating
the cutting point)

Yes An option

Robot for
automatic melon
collection

No Yes An option

Simultaneous
orchard and
harvesting robot
design

Yes No No

Selective
autonomous
sprayer for
greenhouses

Yes An option An option
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Table 8.3 Summary of research challenges in Precision Collaboration and Precision Agriculture

PA Target Area CCT approach Challenge examples

Planting; Harvesting;
Packinghouses

Humans–robots teams and
swarms

• Collaborative CPS for
agriculture relevant missions

• Laser and sensors integration

Crops and livestock Stress
monitoring, and disease
detection and Prevention

Algorithms and protocols for
H-R; Best matching protocols

• Sensor-based solutions
• Error and conflict prevention
• Fault-tolerance by teaming

Precision agriculture through
cloud computing; Yield/risk
estimates; Strategic and
life-cycle Considerations

CDSS and RT-CDSS; Demand
and capacity Sharing

• Cloud, mobile
communications, e-Services
for collaborative control and
decision support

• CPS in production, growth,
and delivery

Modelling, measurement,
simulation and control

DHM-R tools • Digital production
• DHM-R of ag tasks
• Implications to Agricultural
industry, training and
education
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