Chapter 2 ®)
Agricultural Robotics for Precision e
Agriculture Tasks: Concepts

and Principles

Avital Bechar

This chapter focuses on the principles, conditions and guidelines for agricultural
robots to perform precision agricultural tasks, appraises the requirements of robotic
systems, and presents associated concepts and characteristics of the complexities and
types of precision agricultural tasks from a robotic perspective.

2.1 Introduction

Robots are perceptive machines that can be programmed to perform specific tasks,
make decisions and act in real time. They are required in various fields that normally
call for reductions in manpower and workload, and are best-suited for applications
requiring repeatable accuracy and high yield under stable conditions (Holland and
Nof 2007). However, they lack the capability to respond to ill-defined, unknown,
changing, and unpredictable events (Moysiadis et al. 2020). Unlike industrial appli-
cations, which deal with simple, repetitive, well-defined and predetermined tasks,
agricultural applications of automation and robotics require advanced technologies
to deal with complex and highly variable environments and produce (Nof 2009).
The technical feasibility of agricultural robots for a variety of agricultural tasks has
been widely approved. Nevertheless, despite the tremendous amount of research,
commercial applications of robots in complex agricultural environments are not yet
available (Urrea and Munoz 2015). Such applications of robotics in uncontrolled
field environments are still in the developmental stages (Bac et al. 2013). The main
limiting factors lie in production inefficiencies and lack of economic justification.
Development of an agricultural robot must include the creation of sophisticated,
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intelligent algorithms for sensing, planning and controlling to cope with the difficult,
unstructured and dynamic aspects of agriculture (Bechar and Edan 2003).

In agriculture, the environment is very unstructured and demands the motion of
robots unlike that of machines in a factory or of vehicles in a parking lot (Canning
etal.2004). It changes in time and space, with environmental conditions considered to
be hostile and it requires mobile operation in 3-D changing tracks. The terrain, vege-
tation, landscape, visibility, illumination and other atmospheric conditions are not
well defined; they vary continuously, have inherent uncertainty, and generate unpre-
dictable and dynamic situations (Bechar and Vigneault 2017). Complexity increases
when dealing with natural objects, such as fruits and leaves, because of the consid-
erable variation in shape, texture, colour, size, orientation and position that in many
cases cannot be determined a priori.

An example of variability in the agricultural environment is presented in Fig. 2.1,
illustrating the variation and dynamics of the illumination levels in a bell pepper
greenhouse that occur in a few hours and affect the visibility of the rows and the
environment. Therefore, the task will require adaptive algorithms that could cope
with the rapid changes in time.

From a robotic point of view, the world can be divided into four main domains,
according to the structural characteristics of environments and objects: (a) the envi-
ronment and the objects are structured, (b) the environment is unstructured and the
objects are structured, (c) the environment is structured and the objects are unstruc-
tured and (d) the environment and objects are unstructured. Each robotic area such as
industry, medicine, healthcare, and so on can be associated with one of the domains
(Table 2.1). This illustrates the difference between the domains, their complexity
and challenges. The agricultural domain is associated with the fourth, in which none
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Fig. 2.1 Images of a pepper row in a greenhouse taken from a robotic platform at five different
times in a day together with the illumination data (Dar et al. 2011)
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Table 2.1 The four robotic domains (a variation on a table from Bechar and Vigneault (2016)

Environment
Structured Unstructured
Objects | Structured Industrial/Service domains | Military/Space/Underwater domains
Unstructured | Medical/Social domains Agricultural domain

is structured and therefore, it is highly challenging to develop and commercialize.
In such environments there are many situations in which autonomous robots fail
because of the many unexpected events (Steinfeld 2004). This further complicates
the robotic system and results in a system that is difficult and expensive to develop.

Figure 2.2 illustrates the difference in product weight distribution of agriculture
and other domains. By quantifying the weight distribution of a specific product
population with the coefficient of variation (CV, the standard deviation of the product
population weight over the mean of the product population weight), the difference
in product weights of different domains can be compared (Bechar and Vitner 2009).
The analysis reveals that the CVs are small for metal, plastic and rubber products
and vary between 0.01-0.05 and 0.07 to processed wood products. Small CV values
represent a narrow population distribution and little variability. However, the CV
value of agricultural products, in this case, flower cuttings have CVs that are one to
two orders of magnitude larger (CV value of 0.34).

Growing and production processes in agriculture are complex, diverse, require
intensive human labour and are usually unique to each crop. The process type and
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components are influenced by many factors, including: the crop characteristics and
requirements, the geographical or geological environment, climatic and meteorolog-
ical conditions (Tremblay et al. 2011), market demands, customers’ requirements,
and the farmer’s capabilities and means. The technology, equipment and means that
are required for a specific agricultural task involving any given crop and environment
will not necessarily be applicable to another crop or in a different environment. The
wide variety of agricultural systems and their diversity worldwide make it difficult
to generalize the application of automation and control (Schueller 2006), therefore,
more efficient agricultural practices are needed.

Agricultural productivity has increased markedly throughout the past 60 years,
because of intensification, mechanization and automation. It is an important target
for the application of various kinds of technologies designed to improve crop yields
and other aspects of farming. In the 20th century, technological progress in devel-
oped countries has reduced the manpower for these activities by a factor of 80 (Ceres
et al. 1998). Automation increases the productivity of agricultural machinery by
increasing efficiency, reliability, quality, uniformity and precision, and reducing the
need for human intervention. Although the evolution of technology and the transi-
tion to the digitized world of automation has triggered the introduction and use of
autonomous robotic systems (Lampridi et al. 2019), one of the main limiting factors
in the introduction of robotic systems to agriculture and precision agriculture is the
high cost in applying such systems.

Autonomous robots in real-world, dynamic and unstructured environments still
yield inadequate results (Bechar 2010), because of inherent uncertainties, unknown
operational settings and unpredictable environmental conditions. Inadequacies of
sensor technologies further impair the capabilities of autonomous robotics. There-
fore, the promise of automatic and efficient autonomous operations has fallen short
of expectations in unstructured and complex environments. Complexity increases
with the involvement of natural objects, such as those encountered in medical and
agricultural environments, because of the considerable variability in shape, texture,
colour, size, orientation and position of such objects (Bechar et al. 2009). In addi-
tion, the product being dealt with is of relatively low cost, therefore the cost of the
automated system must be low for it to be economically justified. Also, the seasonal
nature of agriculture makes it difficult to achieve the high degree of utilization found
in the manufacturing industries. The complex agricultural environment, combined
with intensive production requires robust systems with short development time at
low cost (Nof 2009).

The seasonality of agriculture makes it difficult to achieve the high level of utiliza-
tion found in manufacturing. However, even if the technical and economic feasibility
of most of the agricultural robotics applications is not reached in the near future
using the existing knowledge and technologies, partial autonomy will add value to
the machine long before autonomous robots are fully available. For many tasks, the
Pareto principle applies. It claims that roughly 80% of a task is easy to adapt to
robotics or automation, but the remaining 20% is difficult (Stentz et al. 2002). There-
fore, by automating the easy parts of a task, one can reduce the required manual work
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by 80%. Furthermore, the development of partially autonomous robots is an excel-
lent transitional path to developing and experimenting with software and hardware
elements that will eventually be integrated into fully autonomous systems.

Precision agriculture (PA) was first introduce some four decades ago. The tech-
niques and research in precision agriculture were conducted to align with four main
objectives: to increase agricultural productivity, increase produce quality, reduce
production costs and reduce environmental impact. Precision agriculture is the main
beneficiary of the variability that defines the agricultural domain as discussed above.
It aims to exploit the spatial variation using high resolution (up to a single plant level)
decision-making and data collection to apply variable-rate operations to increase the
total plot revenue and minimize the total cost. We can argue that If not for the vari-
able nature of agriculture, precision agriculture would not be relevant. However,
until recently, research in the fields of agricultural robotics and precision agriculture
evolved along parallel paths with very little interaction, relation or reference between
the two research fields.

Development of an agricultural robot to perform a precision agriculture task must
start with development of integrated approaches and operation concepts of both
robotics and precision agriculture and include the creation of sophisticated, intelligent
algorithms for sensing, planning and control, and decision-making algorithms to cope
with the difficult, unstructured and dynamic environment and the unique nature of
precision agriculture tasks.

Referring to the three leading characteristics of the agricultural domain: the large
degree of variation in the product, the level of structure in the environment and
the systems costs, as dimensions in a domination space (Fig. 2.3). The agricultural
domain is in the lower right area with high product variability, with poor structure
level and low cost demand. It reveals the gaps that needs to be covered and the chal-
lenges of robotic systems for agriculture, and for precision agriculture in particular.
Robotics is on the other side of the domination space dealing usually with little vari-
ation in the product, a well structured level in the environment and relatively large
costs. The way to reduce the gap could be by developing concepts and approaches
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Fig. 2.4 Peer-reviewed articles on the main topic related to agricultural robotics for precision
agriculture since 2015. Source Scopus, accessed in March 2020. PA—Precision Agriculture, AR—
Agricultural Robots, ARPA—Agricultural Robots for Precision Agriculture

that are more suitable for precision agricultural tasks such as focusing on a specific
task, and integrating a human operator into the robotic system, simplifying the robotic
systems by creating robot teams and so on. These concepts are elaborated in Chaps. 7
and 8.

The relative research effort in the following areas: agriculture, robotics, preci-
sion agriculture (including precision farming and precision irrigation), agricultural
robotics (AR) and robots for precision agriculture (ARPA) in the past five years is
given in Fig. 2.4. It is based on peer-reviewed articles that have been published since
2015 according to Scopus. The annual average increase in the number of articles on
PA, AR and ARPA topics is 15%, 20% and 15% respectively, and although 21% of
the articles related to agricultural robots (AR) deals with precision agriculture tasks
(ARPA), meaning it is an important field to the agricultural robotics community,
only 3% of the articles related to precision agriculture topic (PA) were dedicated to
agricultural robots.

Analysis of the frequencies of the main keywords in articles related to the ARPA
topic revealed the most used keywords. They represent the areas that are investigated
and provide an estimate of the directions that interest researchers working on robots
for precision agriculture. Figure 2.5 shows the ‘normalized frequencies’ of the main
keywords. ‘Normalized frequency’ is the number of times that a keyword appears
divided by the number of articles on the same topic, i.e., for the keyword ‘weed’
(with all its derivatives: weed, seeding, etc.), the normalized frequency value is 14.2.
This means that on average this keyword appears in 14.2% of the articles related
to the ARPA field and probably deal with the precision agriculture task of weed
detection, distribution or weeding. Based on this analysis, it seems that the main
keywords related to ‘agricultural operations’ in the ARPA field are weed, harvest,
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Fig. 2.5 The normalized frequencies of the main keywords used in ARPA articles in the past five
years. Source Scopus, accessed in March 2020. The green bars represents keywords related to
agriculture (crops, operations, etc.). A keyword with an asterisk represents all derivatives of the
keyword

fruit, spraying and phenotyping which appear on average in 14.2, 7.3, 4.7, 4.7 and
4.3% of the articles respectively. The keywords related to ‘agricultural environment’
are farm, field, crop, plant and fruit which appear on average in 11.2, 5.2, 7.7, 6 and
4.7% of the articles respectively.

2.2 Basic Guidelines and Conditions for Applying Robots
in Precision Agricultural Tasks

Much research has been carried out on agricultural robotics in the past 40 years.
Almost all of them did not reach the commercialization stage. The main causes for
incompletion were the extensive costs of the robots developed, inability to execute the
required agricultural task, lack of robustness of the system, and inability to reproduce
the same task successfully in slightly different contexts or to satisfy operational or
economic aspects of the agricultural task. In addition, most approaches were imported
from the industrial domain (Vidoni et al. 2015) and did not fit to the tasks in hand. All
the effort conducted so far has enabled the formulation of guidelines and definitions
of the basic conditions required for development of agricultural robots (Bechar and
Vigneault 2016) with modification to precision agriculture. The development and
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application of robots for precision agricultural tasks has to comply with the following
five guidelines:

1. Thefarmer’s requirements for manipulating specific produce must be considered
first.

2. The precision agricultural task and its components must be feasible using the
existing technology and the required complexity.

3. The required spatial and temporal resolution must be feasible by the robotic
system and synchronized with other tasks in the process chain.

4. The cost of the robotic system solution must be less than the expected revenue.
It is not necessary that it should be the most profitable alternative.

5. The robotic system developed must have an added value for the performance of
the precision agriculture task or for other tasks in that process.

In most cases, the use of robots to perform precision agriculture tasks is achievable
if at least one of the following conditions is met:

a. The cost of utilizing robotics is less than the cost of any concurrent methods.

b. The use of robotics enables increasing farm production capability, produce,
profit and survivability under competitive market conditions.

c.  The use of robotics improves the quality and uniformity of the produce.

d. The use of robotics minimizes the uncertainty and variation in growing and
production processes.

e. The use of robotic systems enables the farmer to make decisions and act at
greater temporal or spatial resolution compared to the current system to achieve
optimization in the growing and production stages in an equivalent manner to
‘lean manufacturing’ in industry.

f.  The use of robotic systems enables an increase in the quality of service or
information.

g. Therobotic system is able to perform specific tasks that are defined as hazardous
or that cannot be performed manually.

2.3 Principles and Classification of Precision Agricultural
Tasks for Robotic Applications

Much research has been conducted worldwide in the field of robots for precision
agriculture recently (Conesa-Munoz et al. 2015; Bhimanpallewar and Narasingarao
2020; Raja et al. 20204, b; Sai et al. 2019; Thayer et al. 2020; Unal et al. 2020). This
research has demonstrated the technical feasibility of agricultural robots for a variety
of crops, precision agriculture tasks and robotic abilities. However, automation solu-
tions have not yet been commercially implemented successfully for field opera-
tions and only a few developments have been adopted and put into practice (Xiang
et al. 2014). Incompatibility between the robotic system designed and the precision
agriculture task led to production inefficiencies, long cycle times and delays, low
detection rates (Zhao et al. 2016) and the inability to perform the necessary PA
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tasks satisfactorily. The unstructured nature of agricultural environments generates
stochastic task requirements and the live and fragile plant and produce make features
of the agricultural task quite different from industrial applications that work with
inorganic products.

Robots for precision agriculture tasks comprise numerous sub-systems and
devices that enable them to operate and perform their tasks. These sub-systems
and devices deal with path planning, navigation or guidance abilities (Carpio et al.
2020, Zaidner and Shapiro 2016), mobility, steering and control (Lipinski et al. 2016),
sensing, manipulators or similar functional devices (Mann et al. 2014), end effectors,
control, decision-support systems to manage individual or simultaneous unexpected
events, and some level of autonomy (van Henten et al. 2013). Robots for precision
agriculture are generally designed to execute a specific agricultural task, such as
specific spraying (Asaei et al. 2019), selective weeding (Wu et al. 2020b), disease
monitoring (Kerkech et al. 2020, Liang et al. 2020), selective pruning (Bechar et al.
2014), and so on. These are considered to be the ‘main tasks’ to be performed by
the robotic system. To execute the ‘main task’ successfully, the robotic system must
perform several ‘supporting tasks’, such as localization and navigation, detection
of the object to treat, etc. Information and commands are transferred between the
‘supporting tasks’ and the ‘main task’. Each ‘supporting task’ controls one or several
sub-systems and devices, and a sub-system or device may serve several ‘supporting
tasks’ (Fig. 2.6). For instance, in developing a disease monitoring robot (Schor et al.
2016a), the ‘main task’ is disease monitoring, the robotic system needs to be able to
perform the ‘supporting tasks’ of self-localization, trajectory planning, steering and
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Fig. 2.6 Structure of task sub-systems in an agricultural robot. Solid arrows represent commands,
data and information transfer; dashed arrows represent conceptual connections. The writing in the
parentheses are examples for agricultural robot ‘main tasks’, ‘supporting tasks’ and subsystems
(Bechar and Vigneault 2016)
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navigating in the plot from its actual location to the next sampling location, collabo-
rating with a human operator or interacting with a human presence, other robots or
unexpected objects on the path and to modify its trajectory planning as necessary.
Nguyen et al. (2013) developed and implemented a framework for motion and hier-
archical task planning for an apple harvesting robot, Bechar et al. (2009) developed
a methodology for melon detection by a human—robot system to be used by a melon
harvesting robot and Ceres et al. (1998) developed and implemented a framework for
a human integrated citrus harvesting robot. A framework for agricultural and forestry
robots was developed by Hellstrom and Ringdahl (2013).

Further investigation of the precision agriculture task characteristics, i.e. the ‘main
task’ to execute in the robotic framework, reveals that it can be classified into a three-
level scale based on the task complexity. The task complexity can be defined by the
level of robot—plant interaction, whereas higher level represents greater challenges.
The lower level of complexity of the robot—plant interaction requires no physical
contact between the robot and the plant. At this level, the precision agriculture tasks
are involved mainly in (i) data collection using visual and other sensors (elaborated
in Chap. 3), e.g. early detection of diseases and pests, abiotic stress diagnostics and
identification of anomalies (Sanchez et al. 2020; Freitas et al. 2020), (ii) transportation
of produce, materials and tools between different locations of the farm (Guzman et al.
2016) and (iii) remote material application such as variable-rate fertilizer application,
selective and specific spraying, and so on (see more in Chap. 6). The middle level of
complexity requires physical contact between the robot and the plant but no handling
of produce, materials or plant parts. Typical precision agriculture tasks at this level
are selective mechanical weeding (Tillett et al. 2008) that will physically damage the
weed but does not collect or handle it, seedling, fruit thinning, and branch pruning that
removes fruitlets and branches, etc. The third level of complexity of the robot—plant
interaction and the most challenging one requires both physical contact between
the robot and the plant and handling of produce, materials or plant parts. Among
the tasks at this complexity level would be fruit picking, harvesting of leaf crops,
which require precise operation, decision-making and handling the produce without
impairing it or reducing its quality. Transplanting of plants and trees, transferring of
pots (with plants) in plant nurseries, and so on.

In addition, since the main objectives of precision agriculture tasks are either
to collect data, analyse it, make decisions or act accordingly at a higher resolu-
tion, up to the plant level, precision agriculture tasks can be defined and classified
according to three phases or stages concerning the operation of agricultural robots
in executing the ‘main task’. The first stage of a PA ‘main task’ deals with data
collection. Representative tasks in this stage are high spatial and temporal resolution
monitoring of climate and environmental conditions, soil sampling (Lukowska et al.
2019; Schnug et al. 1998) for nutrients, pests and bacteria, visual and acoustic moni-
toring (Finkelshtain et al. 2017; Schor et al. 2016b) of anomalies, biotic and abiotic
stresses (Wang et al. 2019), yield and plant conditions. The second stage is attributed
to decision-making, optimization and decision-support processes. Characterizing PA
tasks at this stage are irrigation management interfaces, classification tasks, planning
of farm processes and so on. The third stage relates to tasks that require action or
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Fig. 2.7 The precision agriculture task classification space based on the task complexity level and
the precision agriculture stage. The location of several different tasks in this space can demonstrate
the challenge level. The blue lines represent equal level values of challenges and research and
development effort of robotics in performing a precision agricultural task

physical performance such as specific spraying, transplanting and seeding (Gao et al.
2016; Bhimanpallewar and Narasingarao 2020), weed control (Wu et al. 2020a; Raja
et al. 2020a), fruit picking and harvesting (Bloch et al. 2018), etc.

Combining the two classifications of precision agriculture tasks discussed above
and creating a task classification space (Fig. 2.7), can enable us to position a specific
task and to estimate the challenge level, and the required research and development
effort in designing a robot to perform that task (Fig. 2.7). In this analysis the two
classification dimensions have a similar influence on the challenge level. The chal-
lenge level of a specific task can be evaluated qualitatively by the magnitude of the
distance between the task location to the origin of the axes.

2.4 Conclusions

Research, developments and evaluations of robots to perform precision agriculture
tasks are very diverse in terms of objectives, structures, techniques and components.
In this context, it is difficult to compare different robots and to transfer developed
technology from one task to another. The limiting factors for the development of
such systems are unique to each robotic system and precision agriculture task. In
this chapter, an investigation of the characteristics of precision agriculture tasks
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was conducted and an evaluation platform between different systems and tasks was
created.

Research and development of robotic systems to perform precision agriculture
tasks need to follow several steps. First, investigate and study the nature of the task,
the process and the environment in relation to variation in the leading variables to
evaluate the feasibility of the suggested solution. Second, technologies and method-
ologies must be developed or modified to fit high variable situations and to overcome
difficult problems such as the continuously changing conditions, the variability of the
produce and the environment, and hostile environmental conditions such as vibration,
dust, extreme temperature and humidity. Third, Identification of processes or tasks
that can be ‘robotized’, evaluation of the overall task complexity and the precision
agriculture stage. Fourth, evaluation of the challenge level and the required research
and development effort for such a system and tasks. For very complex tasks, a high
challenge level or large research and development effort, possible solutions to over-
coming this problem might be agronomic modifications or a human integration. Fifth,
to investigate if the solution presented complies with the guidelines and conditions
discussed in Sect. 2.2. Finally, agricultural robotic systems should be developed only
from tasks and processes where other solutions, such as mechanics or automation,
cannot exist or that robotics has a diminishing marginal utility with use of them.

The robots that are to be used for precision agriculture tasks must recognize and
understand the physical properties of each specific object, and must be able to work
under different and dynamic environmental conditions in fields, or in controlled
environments. Therefore, they need sensing systems that can work under variable
conditions, as well as specialized manipulators and end-effectors. The environmental
conditions are occasionally so severe with regard to high temperature, humidity, dust
and or rain that electrical circuit and material corrosion problems can be a major
concern. These conditions must be taken into consideration when designing robotic
systems for precision agriculture tasks. In this sense, development and application
of robots for precision agriculture tasks is an iterative process.
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