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Abstract. Rough set reducts are irreducible attribute subsets preserv-
ing discernibility information of a decision system. Computing all reducts
has exponential complexity regarding the number of attributes in the
decision system. Given the high computational cost of this task, comput-
ing only the reducts of minimum length (the shortest reducts) becomes
relevant for a wide range of applications. Two recent algorithms have
been reported, almost simultaneously, for computing these irreducible
attribute subsets with minimum length: MiLIT and MinReduct. MiLIT
was designed at the top of the Testor Theory while MinReduct comes
from the Rough Set Theory. Thus, in this paper, we present a compar-
ative study of these algorithms in terms of asymptotic complexity and
runtime performance.
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1 Introduction

Rough Set Theory (RST) [11] Reducts are minimal attribute subsets preserving
the discernibility capacity of the whole set of attributes [12]. Reducts have been
found useful for feature selection [9] and classification [10] among others. The
main drawback of reducts is that computing the complete set of reducts for a
decision system is an NP-hard problem [18]. However, most of the times, only
a subset of reducts is necessary for real applications [4]. The set of all reducts
with the minimum length (the shortest reducts) is particularly relevant for such
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applications, since it is a representative sample of all reducts [19]. Recently, the
algorithm MinReduct, for computing all the shortest reducts, was reported [15].

Testor Theory [2]| separately developed the concept of Typical Testor. Typ-
ical Testor and Reduct concepts are so close [3| that algorithms designed for
computing typical testors can be used for computing reducts and vice versa [6].
Typical testors have been used for feature selection [16] and some other real-
world applications [20]. Since computing all typical testors is also NP-hard, a
significant runtime reduction can be obtained from computing only the set of
all the minimum-length typical testors. For this purpose, the Minimum Length
Irreducible Testors (MiLIT) algorithm was recently proposed [13]|. The authors
reported indeed two variants of MiLIT: the first one using an in-place search
based on Next Combination (next attribute subset) calculation (NC) and the
other one using a search with Pruning based on Feature and Row Contribution
(PFRC).

The almost simultaneous publication of these algorithms that solve an equiv-
alent problem deserves a comparative study. Thus, in this work, we present such
a study with the aim of providing application suggestions and some foundations
for the development of future algorithms. To this end, we will first provide a
common theoretical framework for describing the algorithms under study. Then,
a description in terms of asymptotic complexity will be presented. Finally, an
experimental assessment of the three algorithms will be carried out over synthetic
and real-world decision systems.

The rest of this paper is structured in the following way. In Sect. 2, some
basic concepts from RST and the pruning properties used by the algorithms
under study are presented. In Sect. 3, we describe the algorithms with an special
emphasis in their asymptotic time complexity. Then, in Sect. 4, we present our
experimental assessment and the discussion of the results. Finally, our conclu-
sions appear in Sect. 5.

2 Theoretical Background

In this section, we introduce the main concepts of Rough Set Theory, as well as
the definitions and propositions supporting the pruning strategies used in MiLIT
and MinReduct. Notice that although MiLIT algorithms are designed in the top
of Testor Theory, we will use concepts from Rough Set Theory for describing
these algorithms.

In RST, a decision system (DS) is a table with rows representing objects
while columns represent attributes. We denote by U a finite non-empty set of
objects U = {x1,x2,...,2,} and A is a finite non-empty set of attributes. For
every attribute in A there is a mapping: a : U — V. The set V, is called the
value set of a. Attributes in A are further divided into condition attributes C
and decision attributes D such that A =C U D.

Decision attributes D induce a partition of the universe U into decision
classes. Usually, we are interested in those classes induced by an attribute subset
B that correspond to the decision classes. To this end, the B-positive region of
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D, denoted as POSg(D), is defined as the set of all objects in U such that if two
of them have the same value for every attribute in B, they belong to the same
decision class.

A subset B C C' is a decision reduct of DS relative to D if:

1. POS5(D) = POSc(D).

2. B is a minimal subset (regarding inclusion) fulfilling condition 1.

Decision reducts have the same capability as the complete set of condition
attributes for discerning between objects from different classes (Condition 1),
and every attribute in a reduct (typical testor) is indispensable for holding Con-
dition 1 (Condition 2). A super-reduct (testor) is a set B that fulfills Condition 1,
regardless of Condition 2. Decision reducts are called just reducts, for simplicity.

The Binary Discernibility Matriz is a binary table representing the discerni-
bility information of objects belonging to different classes. The element m(%, j, c)
regarding two objects x; and x; and a single condition attribute ¢ € C' is defined
as:

0 otherwise

m(i, j,c) = {1 it e(x;) # c(z;)

The Simplified Binary Discernibility Matriz is a reduced version of the binary
discernibility matrix after applying absorption laws. In Testor Theory [5] this
concept is called Basic Matriz, and we will adopt this term for the rest of this
document, because it is simple and explicit. From the basic matrix of a decision
system all reducts can be computed [21].

2.1 Pruning Properties Used by the Algorithms Under Study

The reader can find the proof and a more detailed explanation of the following
propositions in [13,15].

Definition 1. B is a super-reduct iff in the sub-matriz of the basic matriz
formed by the columns corresponding to the attributes in B, there is no zero
row (a row with only zeros).

The attribute contribution, presented in Definition 2, is used by MinReduct
and PFRC-MiLIT.

Definition 2. Given B C C and z; € C such that x; ¢ B. x; contributes to B
iff the sub-matriz of the basic matriz formed with only those attributes in B has
more zero rows than that matriz formed with attributes in B U {x;}.

The pruning based on Definition 2 is supported by Proposition 1.

Proposition 1. Given B C C and xz; € C such that x; ¢ B. If ©; does not
contribute to B, then BU {x;} cannot be a subset of any reduct.
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The algorithms under study search for super-reducts (testors) instead of
reducts (typical testors) supported by the following proposition, which was first
introduced in [22]. This simplification reduces the cost of candidate subsets eval-
uations.

Proposition 2. Let B C C, if B is one of the shortest super-reducts of a basic
matriz, then it is also one of the shortest reducts.

MiLIT and MinReduct, as in many other algorithms for reduct (and typi-
cal testor) computation [7,14,17] arrange the basic matrix to reduce the search
space. The arrangement consist in moving one of the rows with the fewest num-
ber of 1’s in the basic matrix to the top, and all columns in which this row
has 1, are moved to the left. This arrangement reduces the attribute subsets
evaluated by these algorithms which follow a traversing order that resembles the
lexicographical order. The search can be stopped after all the attribute subsets
that include an attribute of the columns having a 1 in the first row of the basic
matrix are evaluated. For the rest of the attribute subsets in the search space
(in the lexicographical order), the first row is always a zero row.

For PFRC-MILIT the following proposition was presented:

Proposition 3. Given B C C and x; € C such that x; ¢ B. If there exist a zero
row in the sub-matriz of the basic matriz formed by the attributes in B U {x;},
that is also a zero row in the sub-matriz formed by the remaining attributes on
the right side of x;. Then B U {x;} cannot be a subset of any reduct.

Proposition 4 is used by MinReduct in order to avoid the unnecessary evalua-
tion of super-sets of a reduct. If a given attribute subset does not hold this propo-
sition, Condition 2 of the reduct definition cannot be met because it has exclud-
ing (redundant) attributes. The verification of Proposition 4 is called exclusion
evaluation.

Proposition 4. Given B C C, if B is a subset of a reduct, Vx; € B exists at
least one row in the sub-matriz formed by the attributes in B that has a 1 in the
column corresponding to x; and 0 in all other columns.

3 MILIT and MinReduct Algorithms

We present here a brief description of the three algorithms under study. In the
subsequent explanation, the asymptotic time complexity of each algorithm is
detailed. For this purpose, the number of rows in the basic matrix is denoted by
m, the number of columns is denoted by n, the number of 0’s in the first row
of the arranged basic matrix is denoted by my and the length of the shortest
reducts is denoted by k.
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3.1 NC-MiLIT

The key pruning goal of any algorithm designed for computing the shortest
reducts consist in evaluating only attribute subsets with a length not higher than
that of the shortest reducts (k). Unfortunately, the length of the shortest reducts
cannot be known a priori. In fact, the idea of estimating by an approximate
algorithm this length and then use it as a parameter for the exact algorithm
computing all the shortest reducts was reported in [8].

Both versions of the MiLIT (NC and PFRC) ensure the evaluation of only
attribute subsets with a length not higher than k by their traversing order.

For each candidate subset evaluated by NC-MiLIT the super-reduct property
is verified by means of Definition 1. This verification has a time cost of @(m x k).
The number of evaluations can be precisely determined for this algorithm. To
the number of subsets that can be generated with length lower than or equal
to k with the n attributes (Eq. 1) we must subtract the avoided evaluations of
those attribute subsets that do not include an attribute of the columns having
a 1 in the first row (Eq. 2).

Cln, k) = zk; (T;) (1)
C(no, k) = mm(i‘mk) ("ZO) (2)

i=1
Thus, the time complexity of the NC-MiLIT algorithm can be expressed by
Eq. 3

Tie =6 [ mxn (3 (7)- ol (™) 3)

i=1 i=1

3.2 PFRC-MILIT

The PFRC-MILIT algorithm includes the verification of contribution (Proposi-
tion 1) and the zero row remanence (Proposition 3) for each evaluated candidate.
The idea is to avoid subsets that are super-sets of any candidate with a non con-
tributing attribute or with remanent zero rows, since they cannot form reducts.
Both properties can be verified in time @(m x k) which makes no difference
with NC-MiLIT in terms of asymptotic complexity. However, this evaluation
process requires more computation time, but a great number of candidates can
be avoided in this way. In practical terms, this pruning is achieved by means of
a queue data-structure in which those subsets that will not lead to a reduct are
not enqueued.

For PFRC-MILIT, the time complexity computed by Eq. 3 is the upper
bound. This can be expressed as it is shown in Eq. 4. The actual number of
candidates evaluated depends on the distribution of the data in the basic matrix.
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The authors of MiLIT claim that in sparse matrices these avoided subsets are
very common, which seems obvious after Proposition 3.

min(ng,k)

Tprre =0 | (m x k) zk: CL) - Z (720> (4)

i=1 i=1

3.3 MinReduct

MinReduct traverses the search space of attribute subsets using a depth-first
search. When a new attribute is added to the current attribute subset candidate,
it is verified for contribution as in Definition 2. This verification can be com-
puted in a time ©(m) by means of a binary cumulative mask. If the new attribute
contributes, the current candidate is evaluated for the super-reduct condition,
otherwise the new attribute is discarded and several subsets are pruned. Eval-
uating the super-reduct condition as in Definition 1 requires also a time ©(m)
by means of the same binary cumulative mask. This cumulative computation
can be achieved because of the traversing order followed by this algorithm. The
disadvantage of this traversing order is that some subsets with a length higher
than that of the shortest reducts may be evaluated.

The main pruning property of MinReduct consists in avoiding the evaluation
of candidates with length higher than the shortest reduct found so far. Since the
length of the shortest reducts is unknown at the beginning of the algorithm, the
asymptotic upper bound of the number of candidates evaluated by MinReduct
(ss) can be expressed by Eq. 5.

k n min(ng,k) n
ss =0 ()— <‘0>—|—fn 5
; ; ; ; (n) ()

In Eq. 5, f(n) represents the number of subsets with length higher than & that
are evaluated before the first of the shortest reducts is found. There are many
algorithms for estimating k in a time proportional to n [8]. However, estimating
k a priori makes no significant improvement to MinReduct because the algorithm
itself will find a good estimate in a relatively short runtime. Therefore, we can
substitute Eq. 5 by Eq. 6, which is the same upper bound of evaluated candidates
than PFRC-MiLIT.

w03 ()" () ©)

i=1 i=1

In MinReduct, the time complexity for the evaluation of subsets that do not
include the last column of the arranged basic matrix (¢;q.) is @(m). The worst
case time complexity for those subsets including ¢q, is @(nm), because the
exclusion evaluation may be required. The number of such subsets (ss.,,..) has
an asymptotic upper bound as shown in Eq. 7.
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1 k n 1 min(ng,k) n
c =0 - 0
SScoan nl;(l) 7?/0*1 Z (Z)

i=1

1 k n 1 min(ng,k) n
o = - — 0 7
Femas nz<z> o Z <z> (™)

=1

Thus, we can compute the upper bound of the asymptotic time complexity
(Tngr) for MinReduct by the following expression:

Tyr =0 (m*ss+mnxss.,,.) (8)

805 (-0 5 0)
SO-CEE) o

4 Experimental Comparison

TMR:O (m

In this section, an experimental comparison of MiLIT and MinReduct is pre-
sented. For this experiment, 500 randomly generated basic matrices with 2000
rows and 30 columns are used. These dimensions were selected as in [14], to
keep the runtime for the algorithms within reasonable boundaries. These basic
matrices have densities of 1’s uniformly distributed in the range (0.20-0.80).
In addition, the algorithms were tested over 13 decision systems taken from the
UCT machine learning repository [1] and 15 high dimension synthetic basic matri-
ces. All experiments were run on a PC with a Core i3-7100 Intel processor at
3.90 GHz, with 8 GB in RAM, running GNU/Linux. We thankfully acknowledge
the authors of MiLIT [13] for sharing the source code of their Java implementa-
tions of the MIiLIT algorithm.

Figure 1 shows the average runtime for MiLIT (NC and PFRC) and
MinReduct as a function of the density of 1’s over the 500 synthetic basic matri-
ces. The 500 matrices were divided into 15 bins by discretizing the range of
densities, for clarity purposes. As it can be seen in Fig. 1, MinReduct was the
fastest in general.

Figure 2 shows the runtime of MiLIT (NC and PFRC) and MinReduct for
13 matrices with 1200 rows and density 0.33 with a number of columns ranging
from 30 to 54. These matrices were included in order to explore the performance
of the algorithms when the number of attributes increases. For these matrices
MinReduct was also the fastest algorithm without any apparent relation to the
number of attributes of the basic matrix.

Table 1 shows the runtime of MiLIT (NC and PFRC) and MinReduct (MR),
in milliseconds, for 13 decision systems taken from the UCI machine learning
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Runtime vs. density of 1's Matrices with a density of 0.33 and 1200 rows
—#— NC-MiLIT —#— NC-MiLIT
PFRC-MiLIT PFRC-MiLIT
1000 4 —$— MinReduct —e— MinReduct
2000 A
800
_ 1500
= =
£ o £
5 5 1000
400
200 1 500 A
0 0
0.2 0.3 0.4 0.5 0.6 0.7 0.8 30 35 40 45 50 55
Mean density of 1's Attributes
Fig. 1. Average runtime vs. density of Fig. 2. Runtime for matrices with 1200
1’s for MinReduct and MiLIT. rows and density 0.33.

repository and two high dimension synthetic basic matrices. This is a more het-
erogeneous experiment in terms of density and dimensions than our two previous
experiments. The first columns in Table 1 shows the name of the dataset, the
number of attributes (Atts), the number of rows in the basic matrix (Rows), the
density of the basic matrix (Dens), the number of shortest reducts (Nsol) and the
length of the shortest reducts (Len). Decision systems in Table 1 are sorted in
ascending order regarding the density of their basic matrix. Although MinReduct
was the fastest in most cases, for the first three matrices, PFRC-MILIT showed a
significant runtime reduction regarding MinReduct and NC-MiLIT. This result
corresponds to the benefits expected from the application of Proposition 3 for
sparse matrices.

4.1 Discussion

As a result of these experiments carried out over 528 matrices, NC-MiLIT was
the fastest algorithm in 11 matrices with no significant runtime reduction in
any case. On the contrary, PFRC-MiLIT was the fastest algorithm in only three
matrices, but it showed a significant runtime reduction in those matrices.

PFRC-MILIT incorporates pruning strategies over the feature power set to
make fewer evaluations than NC-MiLIT. Although using a breadth-first search
for finding all the shortest reducts guarantees that no subset with length higher
than k is evaluated, it is less efficient in terms of time and space, than the
traditional depth-first search used in most algorithms for reduct computation.
Thus, from our experiments we conclude that the evaluation of Proposition 3
for sparse matrices is the main contribution of PFRC-MILIT. In [13]| an upper
threshold density of 0.3 was estimated for the application of PFRC-MILIT. After
our experiments, we recommend to reduce this value to 0.15.
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Table 1. Runtime (in seconds) over synthetic and real-world data.

Name Atts|Rows |Dens/Nsol |LenMR |NC PFRC
Keyword-activity| 37 26 (0.04 125 396 |1111342 |6
Soybean 35 28 0.11 29 |11 |283 |23021 |8
QSAR-biodeg 42 40 (0.12 213 (264 |254220 |132
Anneal 38 62 |0.21 15| 7 |18 135 50
Dermatology 35 | 1103 |0.34 137 | 6 |96 125 695
Student-mat 32 | 6253 |0.43 21|16 |174 |159 27387
Lung-cancer 57 237 10.47 112 | 4 |25 56 81
Arrhythmia 279 52951 |0.54 5/ 115 192 186
Optdigits (train) | 64 29758 |0.59 185 4 (278 |1989 12986
Landsat (test) 36 | 7980 (0.74 614 |1.6E6 >12.6E6/>12.6E6
1500 x 150 150 | 1500 |0.75 228778 | 4 2286 (21998 37855
250 x 600 600 | 250 0.84 170 | 2 269 |104 127
SPECT Heart 22 | 2284 |0.90 171 3 |1 2 1
Ozone 72 | 5751 |0.93 2392 |7 87 141
Sonar 60 | 426 (0.95 | 2612 4 (191 |1607 4843

5 Conclusions

In this paper we present a comparative study of MiLIT and MinReduct: two
recent algorithms for computing all the shortest reducts (minimum length irre-
ducible testors). Although MiLIT comes from the Testor Theory and MinReduct
comes from the Rough Set Theory, both algorithms are intended to solve
an equivalent algorithmic task. A description of the algorithms in terms of
asymptotic complexity was presented. Finally, an experimental comparison over
synthetic basic matrices and real-world decision systems taken from the UCI
machine learning repository was carried out.

From our experiments, we have concluded that PFRC-MILIT is the fastest
algorithm for sparse basic matrices with densities under 0.15. The main advan-
tage of PFRC-MILIT relays on the evaluation of the zero row remanence on these
sparse matrices. We have also found that the breadth-first search used in MiLIT
is less efficient than the traditional depth-first search used in MinReduct, for can-
didate evaluation. Thus, MinReduct was faster than MiLIT for basic matrices
with densities above 0.15 in most cases.

An interesting study for future work would be assessing the performance
of verifying the zero row remanence using a depth-first search, for sparse basic
matrices. A deeper study involving basic matrices with densities under 0.15 is
needed for providing a stronger conclusion on sparse basic matrices.
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