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Abstract. Petri nets have the simple firing rule that a transition is
enabled to fire if its preset of places is marked. The occurrence of a
transition is called an event. To check whether a sequence of events is
enabled, we simply try to fire the sequence from ‘start’ to ‘end’ in the
initial marking of the net. It is a bit of a stretch to call this an algorithm,
but its runtime complexity is in O(|P | · |V |), where P is the set of places
and V is the set of events.

Petri nets model distributed systems. An execution of a distributed
system is a partial order of events rather than a sequence. Compact
tokenflows are tailored to an efficient algorithm that decides if a partial
order of events is enabled in a Petri net. Yet, the runtime complexity of
this algorithm is in O(|P | · |V |3).

In practical applications dealing with a huge amount of behavioral
data, the gap between just firing a sequence and deciding if a partial
order is enabled, makes a big difference.

In this paper, we present an approach to just firing a partial order
of events in a Petri net. By firing a partial order, we obtain a lot of
information about whether or not the partial order is enabled. We show
that just firing is often enough if done correctly.

1 Introduction

Petri nets model distributed systems. They have formal semantics, an intuitive
graphical representation, and are able to express concurrency among the occur-
rence of events [1,2,8,9,21,22]. Petri nets have the simple firing rule that a
transition can fire if its prefix is marked. This definition implies so-called firing
sequences, i.e., sequences of subsequently enabled transitions. In many practical
applications, we equate the set of firing sequences with the behavior of the net.
Thus, it is very easy to check if specified or recorded behavior is ‘in’ a Petri net
model. We simply fire the sequence from ‘start’ to ‘end’ and immediately obtain
a result.

Then again, the behavior of a concurrent system is often defined as a set
of scenarios [4,7,10–13] expressing causal dependencies and concurrency among
the events of the systems behavior. Obviously, such scenarios cannot be modeled
by sequences, only by partially ordered sets of events.

Even though partially ordered sets of events are a very intuitive approach to
modeling the behavior of a distributed system, checking if such order is ‘in’ a
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Petri net model is not trivial. There are even different semantics which all define
the same partial language of a Petri net. In this sense, the notion of executing a
partially ordered set of events in a Petri net is ambiguous.

(i) Step semantics of Petri nets [15]: A partially ordered set of events is in a
Petri net model if and only if each maximal set of unordered events of the
partial order is enabled after the occurrence of its prefix.

(ii) Process net semantics of Petri net [16]: A partially ordered set of events is
in a Petri net model if and only if there is a process net (occurrence net) of
the Petri net, so that the run extends the order relation between events of
this process.

(iii) Tokenflow semantics of Petri net [4,17]: A partially ordered set of events
is in a Petri net model if and only if there is a valid distribution of tokens
between events only using the relations specified by the partial order.

These three semantics are equivalent [17,19,23], i.e., they (fortunately) define
the same partial language. However, each semantic implies a different algorithm
deciding if a partially ordered set of events is enabled. Utilizing step or process
net semantics, the number of process nets and the number of maximal sets of
unordered events grow exponentially with the size of the partial order, producing
slow algorithms. Only algorithms utilizing tokenflow semantics run in polynomial
time [4].

A tokenflow is a distribution of tokens between events along the relations
of a partial order. A tokenflow is valid if every event receives enough tokens
to occur from its prefix, and no event has to produce more tokens than it is
able to. If there is a valid tokenflow for every place of a Petri net, the partial
order is enabled. We test if there is a valid tokenflow for a place by solving a
related flow optimization problem [14]. There a many highly specialized flow
optimization algorithms pushing the boundaries of their worst-case runtime [3].
For practical applications, however, the famous pre-flow-push algorithm [18] is
easy to implement and has a very good runtime for most examples. The pre-
flow-push is in O(n3), where n is the number of nodes of the flow network.
Thus, deciding if a set of partially ordered events is enabled in a Petri net is in
O(|P | · |V |3), where P is the set of places and V is the set of events.

In the area of process mining, some of the recently developed algorithms
exploit the idea that firing sequences of events is really cheap. For example, the
eST-miner [20] records huge sets of data observing the behavior of a business
process and tries to automatically generate a fitting process model. The eST-
miner fires the observed sequences over and over again in some initial Petri net
to generate more fitting places to complete the model. However, increasingly
more process mining papers state that the observed log files are actually partial
orders, not only sequences. Thus, there is a clear need to also fire partial orders
fast.

In this paper, we revisit the problem of deciding if a partially ordered set
of events is enabled in a Petri net and decompose the problem along the set
of places. We brute force fire the partial order in the net once to build a first
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tokenflow for every place. If the size of the Petri net is fixed, this is possible in
linear runtime. The constructed tokenflow will be valid for a subset of places.
Experimental results will show that this set is actually quite large for most
practical applications. During the firing of the partial order, we, furthermore,
present how to easily check if there are alternative distributions of tokens. If
there is only one possibility to distribute tokens and our first firing fails, the
partial order is not enabled. Only if enabledness is not decided yet, we tackle
the subset of not yet-decided places by a dedicated compact tokenflow algorithm.
In the remainder of the paper, we present the new algorithm, discuss its runtime,
and show experimental results using models taken from practical applications.

2 Preliminaries

Let f be a function and B be a subset of the domain of f . We write f |B to
denote the restriction of f to B. As usual, we call a function m : A → N a
multiset and write m =

∑
a∈A m(a) ·a to denote multiplicities of elements in m.

Let m′ : A → N be another multiset. We write m ≥ m′ if ∀a ∈ A : m(a) ≥ m′(a)
holds. We denote the transitive closure of an acyclic and finite relation < by <∗.
We denote the skeleton of < by <�. The skeleton of < is the smallest relation
�, so that �∗ =<∗ holds. Let (V,<) be some acyclic and finite graph, (V,<�) is
called its Hasse diagram. We model distributed systems by place/transition nets
[9,21,22].

Definition 1. A place/transition net (p/t-net) is a tuple (P, T,W ) where P is
a finite set of places, T is a finite set of transitions so that P ∩T = ∅ holds, and
W : (P × T ) ∪ (T × P ) → N is a multiset of arcs. A marking of (P, T,W ) is a
multiset m : P → N. Let m0 be a marking, we call the tuple N = (P, T,W,m0)
a marked p/t-net and m0 the initial marking of N .

Fig. 1. A marked p/t-net.
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Figure 1 depicts a marked p/t-net. Transitions are rectangles, places are cir-
cles, the multiset of arcs is represented by weighted arcs, and the initial marking
is represented by black dots called tokens.

There is a simple firing rule for transitions of a p/t-net. Let t be a transition
of a marked p/t-net (P, T,W,m0). We denote ◦t =

∑
p∈P W (p, t) ·p the weighted

preset of t. We denote t◦ =
∑

p∈P W (t, p) · p the weighted postset of t. A transi-
tion t is enabled (can fire) at marking m if m ≥ ◦t holds. Once transition t fires,
the marking of the p/t-net changes from m to m′ = m − ◦t + t◦.

In our exemplary marked p/t-net, transitions a and d can fire at the initial
marking. If a fires, this removes one token from p1 and the token from p5. Addi-
tionally, firing a will produce a new token in p2. In this new marking, transitions
c and d can fire. a is not enabled anymore because there is no more token in
p5. Firing transition c will enable transition a again and enable transition e.
Transition e needs three tokens in p4 to be enabled.

Repeatedly processing the firing rule produces so-called firing sequences.
These firing sequences are the most basic behavioral model of Petri nets. For
example, the sequence a d c a b d e f is enabled in the marked p/t-net of Fig. 1.
Let N be a marked p/t-net, the set of all enabled firing sequences of N is the
(sequential) language of N .

Petri nets are able to express concurrency between events. For example, tran-
sitions a and d can fire independently from one another. Roughly speaking, they
can fire in any order while not sharing tokens. If we fire transition a, transitions
c and d can fire in any order but not concurrently because they share the token
in p7.

To specify concurrency between events, we formalize executions of a p/t-net
by means of labeled partial orders.

Definition 2. Let T be a set of labels. A labeled partial order is a triple (V,
, l)
where V is a finite set of events, 
 ⊆ V × V is a transitive and irreflexive
relation, and the labeling function l : V → T assigns a label to every event. A
run is a triple (V,<, l) iff (V,<∗, l) is a labeled partial order. A run (V,<, l) is
also called a labeled Hasse diagram iff <�=< holds.

Fig. 2. A run.
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Just like a firing sequence, a run can be enabled in a marked p/t-net. A run
is enabled if we can replay the order by firing transitions where unordered parts
of the partial order can fire concurrently. As stated in the introduction, there are
different semantics to formally define whether a run is enabled, but the compact
tokenflow semantic is the most efficient [4].

A compact tokenflow is a distribution of tokens along the relations and nodes
of a run. A run is in the partial language of a p/t-net if there is a compact
tokenflow distributing tokens so that three conditions hold: first, every event
receives enough tokens, second, no event has to pass too many tokens, and third,
the initial marking is not exceeded. Tokens must be received from the particular
presets of events. Thus, we ensure that consumed tokens are available before
the actual event occurs. If a transition produces tokens, the related events are
allowed to produce tokenflow in the run and pass these tokens to their particular
postsets. If an event receives tokens, it consumes the tokenflow needed and passes
the redundant tokenflow to later events. Tokens of the initial marking are free
for all, i.e., any event can consume or pass tokens from the initial marking.

Definition 3. Let N = (P, T,W,m0) be a marked p/t-net and run = (V,<, l) be
a run so that l(V ) ⊆ T holds. A compact tokenflow is a function x : (V ∪ <) → N.
x is valid for p ∈ P iff the following conditions hold:
(i) ∀ v ∈ V : x(v) +

∑
v′<v x(v′, v) ≥ W (p, l(v)),

(ii) ∀ v ∈ V :
∑

v<v′ x(v, v′) ≤ x(v)+
∑

v′<v x(v′, v) − W (p, l(v)) + W (l(v), p),
(iii)

∑
v∈V x(v) ≤ m0(p).

run is valid for N iff there is a compact valid tokenflow for every p ∈ P .

Figure 3, Fig. 4, and Fig. 5 depict three compact tokenflows for three different
places of the marked p/t-net of Fig. 1 and the run of Fig. 2 (integer 0 is not
shown).

Figure 3 depicts a valid compact tokenflow for the place p2 of Fig. 1. The
transitions related to the two events labeled b and c need to receive one token in
p2. The transition related to the events labeled a can produce one token in p2.
Initially, there are no tokens in this place but no event consumes tokens from
the initial marking. Thus, this is a valid tokenflow for p2.

Fig. 3. Valid compact tokenflow for p2 of Fig. 1.
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Figure 4 depicts a valid compact tokenflow for the place p6 of Fig. 1. The
event labeled f needs to receive three tokens. All three events labeled d or e can
produce one token. All other events just receive and push tokens to later events.
Again, we do not need any token from the initial marking. Thus, this is a valid
tokenflow for p6.

Fig. 4. Valid compact tokenflow for p6 of Fig. 1.

Figure 5 depicts a valid compact tokenflow for the place p7 of Fig. 1. The
events labeled c or d need to receive one token. Because of the short loops at
place p7, these events can also produce one token in p6. Obviously, an event
is not allowed to consume the tokens it produces itself. This is why event e2
consumes a token from the initial marking before pushing its own token to e3.
e3 consumes the token and pushes a new token to e6. This is a valid tokenflow
for p7.

Fig. 5. Valid compact tokenflow for p7 of Fig. 1.

If there is a valid tokenflow for every place of a marked p/t-net, the run is
valid. The set of valid runs coincides with the (partial) language of a p/t-net.
Here, we refer the reader to [4,5] and state the following theorem.

Theorem 1. The language of a marked p/t-net is well-defined by the set of valid
runs [4].
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3 Deciding Enabledness and Firing Runs

In this section, we decide if a run is enabled in a marked p/t-net. In the first
subsection, we recap the algorithm that decides if a run is enabled using compact
tokenflows in polynomial runtime, originally introduced in [5]. In the second
subsection, we present an approach to firing a run in a p/t-net to decide if the
run is enabled for a subset of the places of the p/t-net in linear runtime. In
the last subsection, we present the idea of firing backwards and combine all
approaches to obtain a new and faster algorithm to decide enabledness for runs
in p/t-nets.

3.1 Tokenflows and Flow Networks

We decide if a run is enabled in a marked p/t-net by constructing a flow network
and a maximal flow for every place. A flow network (see for example [3]) is a
directed graph with two specific nodes: A source, the only node having no ingoing
arcs, and a sink, the only node having no outgoing arcs. Each arc has a capacity,
and a flow is a function from the arcs to the non-negative integers assigning a
value of flow to each arc. This flow function needs to respect the capacity of each
arc and the so-called flow conservation. The flow conservation states that the
sum of flow reaching a node is equal to the sum of flow leaving a node for every
inner node of the flow network. Thus, flow is only generated at the source and
flows along different paths till it reaches the sink. The value of a flow function in
a flow network is the sum of flow reaching the sink. The maximal flow problem
is to find a flow function that has a maximal value.

For a place of a p/t-net and a run, we construct the so-called associated
flow network. The flow in the associated flow network directly coincides with a
compact tokenflow in the related partial order. For each event, we create two
nodes in the flow network: an in-node and an out-node. The flow at the in-node is
the value of tokenflow received by the related event. This value has to be greater
than the number of tokens needed by the related transition. We rout the number
of tokens needed from the in-node to the sink representing tokens consumed by
the occurrence of the transition. We distribute additional flow further through
the network by adding an arc from every in-node to its out-node. The out-
node will distribute flow to later events. The maximal amount of flow this node
can push on is the amount of flow received from its in-node plus the number of
tokens produced by the occurrence of the related transition. We rout the number
of additionally produced tokens from the source to the out-node. In addition,
all pairs of in-nodes and out-nodes are connected just like the partial order of
events. Whenever there is an arc from one event to another, there is a related arc
in the flow network connecting the out-node of the first event with the in-node
of the second event. Finally, we add one additional node to the flow network to
represent the initial marking.

Figure 6 depicts the associated flow network for Fig. 1, the place p7 of the
same figure, and Fig. 2. We already saw a related compact tokenflow in Fig. 5. At
the top of Fig. 6 is the source, at the bottom is the sink. The node furthest to the
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left relates to the initial marking. The initial marking of p7 is 1; thus, this node
is connected to the source with capacity 1. Events e2, e3, and e6 can produce
a token each. Thus, the related out-nodes are connected to the source as well.
Roughly speaking, one piece of flow, i.e., one token in the run, can enter the flow
network at the initial marking and at all events labeled by c or d. Events e2, e3,
and e6 need to receive a token each. Thus, the related in-nodes are connected
to the sink. Again, one piece of flow, i.e., one token in the run, can leave the
flow network at these nodes. The capacity of all inner arcs is not limited. Only
looking at place p7, the run is enabled if the nodes related to events e2, e3, and
e6 can consume a token each. Due to the construction of the associated flow
network, there is a valid compact tokenflow if there is a flow saturating all arcs
leading to the sink (value 3 in this example).

Fig. 6. Associated flow network for Fig. 1, the place p7 of the same figure, and Fig. 2.

Figure 7 depicts a maximal flow in the flow network of Fig. 6. This flow satu-
rates all arcs going to the sink; thus, by construction, the flow directly relates to
a valid compact tokenflow and the run is enabled. If the value of a maximal flow
does not saturate all arcs leading to the sink, there is no valid compact tokenflow
because for every distribution of tokens, at least one event cannot occur and the
run is not enabled.

Constructing a maximal flow in a flow network is the well-known maximal
flow problem (see, for example, [3]). There are various algorithms solving the
maximal flow problem in polynomial time. For the application of calculating the
value of a maximal flow in an associated flow network, we consider a pre-flow-
push algorithm using a so-called gap heuristic. The worst-case time complexity
of the pre-flow-push algorithm is in O(n3), where n is the number of nodes.
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Fig. 7. A maximal flow in Fig. 6.

We recap the algorithm that decides if a run is enabled in a marked p/t-net
using compact tokenflows. Additionally, Algorithm 1 computes the set of places
that hinders the execution of the run. Obviously, the run is enabled if and only
if this set of non-valid places is empty. We can simply stop the algorithm as soon
as we find the first non-valid place, but in applications, it may be very helpful
to know the set of all non-valid places to fix model or run.

Algorithm 1. Calculates the set of non-valid places of a marked p/t-net for a
run.
1: input: marked p/t-net (P, T,W,m0), run (V,<, l)
2: for each p ∈ P do
3: G ← associated flow network of (P, T,W,m0), (V,<, l), p
4: x ← sum of capacities of arcs leading to the sink of G
5: w ← pre-flow-push of G
6: if (w < x) Pnvalid add p
7: return Pnvalid

The runtime of Algorithm 1 is in O(|P | · |V |3).

3.2 Firing Runs

In this subsection, we introduce the concept of firing runs in a marked p/t-
net. The initial marking is a multiset of places. We (randomly) distribute this
marking to the set of minimal nodes of the run, creating a set of local marking
at each event. We fire each event in its local marking and (randomly) push the
resulting local markings to later events. The four conceptual differences to the
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construction of a valid tokenflow are: (a) Instead of building a network for every
place, we handle all places at once. (b) We want to fire in linear time; thus,
we cannot redistribute markings or search for paths. We just randomly push
local markings to later events to fire every event exactly once. (c) Valid compact
tokenflows are tailored to a fast flow network algorithm. Every event only has
to receive enough tokens to occur. Thus, conditions (i) and (ii) of Definition 3
are formulated as inequalities to keep the number of tokens small. When firing
an event in a local marking, every event will produce its maximal number of
tokens. Thus, no token is lost, and we also construct a final marking. (d) A local
marking can be negative.

We fire a run in a p/t-net as a first step to decide if the run is enabled or not.
The main idea is that the enabledness problem can easily be decomposed along
the set of places. For some of the places, we need the maximal flow algorithm to
distribute and re-distribute tokens to decide if a valid tokenflow exist. For other
places, obviously highly depending on the specific run, a valid compact token-
flow may be very easy to construct. Thus, we tackle our problem in two steps:
first brute force fire a run in a p/t-net, constructing a so-called multi-tokenflow
describing a distribution of local markings. For some of the places, these markings
will directly relate to valid compact tokenflows and we will not have to consider
these places further. If the multi-tokenflow is not valid for some place, we will
gain additional information about the existence of alternative token distribu-
tions to even see if a re-distribution is possible. If a re-distribution is possible,
we redistribute using the algorithm presented in the previous subsection.

To fire a run in a marked p/t-net, constructing a multi-tokenflow as a distri-
bution of (local) markings, we first extend the run by introducing two additional
events, one initial and one final event.

Definition 4. Let N = (P, T,W,m0) be a marked p/t-net and run = (V,<, l)
be a run so that l(V ) ⊆ T holds. We denote Vmin ⊆ V the set of events with
an empty preset and Vmax ⊆ V the set of events with an empty postset. Let
vi, vf �∈ V be two events and define an extended relation ≺ by ≺:=< ∪(vi ×
Vmin)∪ (Vmax ×vf ). We denote run+ = (V, vi, vf ,≺, l) the extended run of run.
A function X :≺→ Z

P is a multi-tokenflow for run iff the following conditions
hold:
(I)

∑
vi≺v′ X(vi, v′) = m0.

(II) ∀ v ∈ V :
∑

v≺v′ X(v, v′) =
∑

v′≺v X(v′, v) − ◦l(v) + l(v)◦,
(III) ∀ v ∈ V ∪ {vi}: (

∑
v≺v′ X|p(v, v′) ≥ 0 =⇒ ∀ v′′ ∈ V : X|p(v, v′′) ≥ 0) .

We call mf :=
∑

v′≺vf
X(v′, vf ) the final marking of X.

Note that local markings of a multi-tokenflow can be negative. Condition
(I) distributes the initial marking to the minimal events of the run, condition
(II) ensures that the local markings reflect the firing rule, and condition (III)
ensures that tokens are distributed and not just appearing from nowhere by
adding negative values to nearby arcs. Thus, a multi-tokenflow is a distribution
of actually produced tokens whenever possible.

Figure 8 depicts a sequential run. Obviously, the concept of a multi-tokenflow
for a sequential run is just the concept of markings of a firing sequence.
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Fig. 8. A multi-tokenflow and markings of a firing sequence.

Figure 9 depicts a multi-tokenflow for the run depicted in Fig. 2. In compar-
ison to Fig. 8, a multi-tokenflow implements the concept of local markings. Just
like a tokenflow, the marking is distributed whenever the partial order branches.
Every event receives a sum of local markings and fires to push the resulting local
marking to later events. In contrast to tokenflows, every produced token has to
be pushed until it is consumed or until it reaches the final marking. In contrast
to markings, we allow negative values and distribute markings at every branch
in the partial order.

Fig. 9. A multi-tokenflow in the run of Fig. 2.
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We formalize the relation between a tokenflow and a multi-tokenflow in the
following theorem.

Theorem 2. Let N = (P, T,W,m0) be a marked p/t-net, run = (V,<, l) be a
run so that l(V ) ⊆ T holds, run+ = (V, vi, vf ,≺, l) be the extended run. There is
a valid compact tokenflow x in run for N and p, if and only if there is a multi-
tokenflow X in run+, so that X|p enables every event in its sum of in-going
local markings in N only considering p.

Proof. If there is a valid compact tokenflow for a place p in run, we simply
construct a multi-tokenflow enabling every event for place p. We can construct
this p-component of a multi-tokenflow by copying the tokenflow to the extended
run and moving the initial tokenflow to paths outgoing of the initial event.
Whenever there is an event not producing its full number of tokens (i.e., (ii)
holds, but not yet (II)), we find a path from this event to the final event. We
can add tokenflow to this path without making conditions (i), (ii), and (iii) not
valid until (II) holds. The same holds for the initial marking; we can go from
(iii) to (I) by adding tokens on paths from the initial to the final event. Every
valid tokenflow is non-negative, thus, (III) holds as well.

If there is a multi-tokenflow enabling every event for place p, there is a valid
compact tokenflow for p. If all the events are enabled for p, we show that every
local marking is positive for p. Assume there is some negative value. Without
loss of generality, we choose an arc with a negative value so that there is no
earlier arc with a negative value. This is always possible because the initial
marking is non-negative. Because of (III), the start-event of a first negative arc
has a negative sum of outgoing local markings for p but a non-negative sum of
in-going local markings. We apply the firing rule to see that this event is not
enabled for p in its in-going local markings. Thus, the multi-tokenflow is non-
negative for component p. By copying component p of the multi-tokenflow from
the extended run into the run and moving initial tokenflow to the minimal nodes
of the run, we directly obtain a valid compact tokenflow, because if every event
is enabled, (i) holds, (II) implies (ii), and (I) implies (iii). ��

Thus, if we fix a run, we can construct a multi-tokenflow for a marked p/t-
net, and if this flow enables all the events of the run for a subset of places, the
run is enabled according to this set.

Furthermore, if there is only one possibility to construct a p-component of a
multi-tokenflow, if the set of local markings does not enable every event for p,
there is no valid compact tokenflow for p.

Lemma 1. Let N = (P, T,W,m0) be a marked p/t-net, run = (V,<, l) be a
run so that l(V ) ⊆ T holds, run+ = (V, vi, vf ,≺, l) be the extended run. Let
X be a multi-tokenflow in run+. For every p ∈ P , where at least one event is
not-enabled for p in its sum of in-going local markings, if X|p ≤ 0 for every
event with multiple out-going arcs, there is no valid compact tokenflow in run
for p and N .
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Proof. With the preconditions of this lemma: assume there is a valid compact
tokenflow for p. We can construct another multi-tokenflow enabling all events
for p, but X|p is unique. ��

In the next lemma, we use the concept of a final marking of a multi-tokenflow.
We show that this marking is actually unique and if it is negative for one p-
component, the related run is not enabled.

Lemma 2. Let N = (P, T,W,m0) be a marked p/t-net, run = (V,<, l) be a run
so that l(V ) ⊆ T holds, run+ = (V, vi, vf ,≺, l) be the extended run. Let X be a
multi-tokenflow in run+ and mf be the final marking. If mf (p) < 0 holds, there
is no valid compact tokenflow for p in run.

Proof. Due to the construction of the extended run, every event is on a path from
the initial to the final event. For this reason and because of (II), a multi-tokenflow
does not lose tokens and the final marking is mf = m0 + (

∑
v∈V l(v) ◦ − ◦ l(v))

for every multi-tokenflow. The final marking of a multi-tokenflow is independent
from the distribution of tokens. If this final marking is negative for a component
p, there is no valid compact tokenflow for p, because, if we assume run is enabled,
then also every firing sequence respecting the order of run is enabled and leads to
a negative local marking in p according to the (usual) firing rule for sequences. ��

In Fig. 9, the depicted multi-tokenflow enables all events considering places
p1, p2, p5, p6. Thus, with the help of Theorem 2 and only using one multi-
tokenflow, we decide enabledness for four of the seven places. The multi-
tokenflow branches for places p3, p4, and p7 at the initial event. Thus, although
these three components do not enable all events, we cannot apply Lemma 1
because there are other possible distributions of tokens. We cannot apply Lemma
2, either, because the final marking is not negative. Thus, we have to decide
places p3, p4, and p7 using Algorithm 1.

At the end of this subsection, we present the algorithm firing a run in a
marked p/t-net, deciding enabledness and non-enabledness for a subset of places
using Theorem 2, Lemma 1, and Lemma 2.

Algorithm 2. Calculates a set of valid and a set of non-valid places of a marked
p/t-net for a run.
1: input: marked p/t-net (P, T,W,m0), run (V,<, l)
2: (V, vi, vf ,≺, l) ← extension of (V,<, l).
3: (first successor of vi).marking add m0

4: for each e ∈ V in ≺-order do
5: Pfnvaild add {p ∈ P |e.marking(p) < W (p, l(e))}
6: Pfbranch add {p ∈ P |e.marking(p) > 0, |e • | > 1}
7: (first successor of e).marking add e.marking − ◦l(e) + l(e)◦
8: Pfnvaild add {p ∈ P |vf .marking(p) < 0}
9: Pvalid ← P \ Pfnvaild

10: Pnvalid ← Pfnvaild ∪ (P \ Pfbranch)
11: return (Pvalid, Pnvalid)
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To conclude this subsection, we take a look at the runtime of Algorithm 2.
There is a problem in line 4, where we have to consider all events in some total
order respecting ≺. We can very easily calculate such an order in a preprocessing
step but not in linear time. If this order is part of the input, we only consider
every event once. For every event, we only touch one outgoing arc. We store the
sum of in-going arcs at events whenever we push local markings. Thus, we never
have to iterate a set of arcs to calculate a sum of local markings. The runtime
of Algorithm 2 is in O(|P | · |V |), or in O(|V |2 + |P | · |V |) if we need to calculate
a total order first.

3.3 Firing Backwards

The reason we have to tackle places p3, p4, and p7 from Fig. 1 deciding enabled-
ness of 2 by Algorithm 2 is that they are marked at the two forward-branched
events vi and e3. The components of these three places do not enable all events,
but we cannot apply Lemma 1 because there might be another valid distribution.
The flow of p2 is unique because it is only positive at non-branching events. Yet,
the multi-tokenflow for places p1 and p5 is positive at forward-branched events.
However, since the multi-tokenflow components p1 and p5 already enable all
events, we do not have to distribute further. In some sense, we were lucky to
find these valid distributions for p1 and p5 at the first attempt. In this section,
we will introduce the concept of firing backwards to offer a heuristic to find valid
distributions more often.

We already mentioned that it is important not to re-distribute local markings
or even look for paths to be able to fire in linear time. The most efficient strategy
to construct a multi-tokenflow is to push the complete local marking of every
event to its first subsequent event. Thus, the number of push operations is the
number of events, not the number of arcs. We call this strategy the forward-
strategy in the remainder of the paper. The multi-tokenflow depicted in Fig. 9 is
produced by the forward-strategy, i.e., the complete initial marking is pushed to
e1, the local marking of e3 is pushed to e4. Thus, the arcs (vi, e2) and (e3, e7) are
never touched. Obviously, the constructed multi-tokenflow randomly depends on
the order of events.

Figure 10 depicts a typical structure of a run. In Fig. 10, all arcs leaving
forward-branched events are depicted by dashed arcs. When firing this run in
a p/t-net, we can actually decide enabledness in linear time using the forward-
strategy of pushing local markings for every place which is not marked at the
two highlighted events. If there is a local marking for a place at the branching
events, we may be lucky to randomly construct a valid distribution. However, if
we need to share the marking between different subsequent events, the forward-
strategy will always fail. For this reason, it is not a good idea to fire the run
forward again using some modified distribution strategy.

We brute force fire the run again but starting from the (unique) final marking
and backwards. We already constructed this marking firing forward once. Start-
ing from this final marking at the final event, we push this marking backwards to
the first predecessor. We fire the event backwards to calculate the ingoing local
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Fig. 10. The set of forward-branched events.

marking to this event. This local marking is pushed to the next first predecessor
and so on. This will construct a multi-tokenflow as well.

Figure 11 depicts the run of Fig. 10 and highlights another set of arcs and
events. When firing this run in a p/t-net, we can actually decide enabledness in
linear time using the backward-strategy of pushing local markings from the final
marking of a run for every place which is not marked at the four highlighted
events.

Fig. 11. The set of backward-branched events.

The main advantage of combining a forward-strategy with the backward-
strategy in the example run of Fig. 10 is that the example does not contain
any forward and backward-branched events. Thus, the set of difficult events is
disjoint. If the forward-strategy is not able to decide enabledness, the backward-
strategy only fails as well if the related place is also marked at some backward-
branched event. If we think of typical workflow Petri nets, for example, that are
relatively well-structured using workflow patterns like and/xor-splits and joins,
these kinds of places are very rare. In the next section, we present experimental
results on how many places can be decided in linear time using the combination
of the forward-strategy and the backward-strategy for models taken from prac-
tical applications. Yet, before we move on, we combine the forward-, backward-,
and flow network-strategies to present the new algorithm that decides if a run
is enabled in a marked p/t-net.
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Algorithm 3. Calculates the set of non-valid places of a marked p/t-net for a
run.
1: input: marked p/t-net (P, T,W,m0), run (V,<, l)
2: (V, vi, vf ,≺, l) ← extension of (V,<, l).
3: (first successor of vi).marking add m0

4: for each e ∈ V in ≺-order do
5: Pfnvaild add {p ∈ P |e.marking(p) < W (p, l(e))}
6: Pfbranch add {p ∈ P |e.marking(p) > 0, |e • | > 1}
7: (first successor of e).marking add e.marking − ◦l(e) + l(e)◦
8: Pfnvaild add {p ∈ P |vf .marking(p) < 0}
9: Pvalid ← P \ Pfnvaild

10: Pnvalid ← Pfnvaild ∪ (P \ Pfbranch)
11: P ′ ← P \ (Pvaild ∪ Pnvalid)
12: (P, T,W,m0) ← (P ′, T,W |P ′×P ′ ,m0|P ′)
13: (first predecessor of vf ).marking2 add vf .marking|P
14: for each e ∈ V in reverse ≺-order do
15: Pbnvaild add {p ∈ P |e.marking2(p) < W (l(e)), p)}
16: Pbbranch add {p ∈ P |e.marking2(p) + W (p, l(e)) − W (l(e), p) > 0, | • e| >

1}
17: (first predecessor of e).marking2 add e.marking2 + ◦l(e) − l(e)◦
18: Pvalid add P \ Pbnvaild

19: Pnvalid add Pbnvaild ∪ (P \ Pbbranch)
20: P ′ ← P \ (Pvaild ∪ Pnvalid)
21: (P, T,W,m0) ← (P ′, T,W |P ′×P ′ ,m0|P ′)
22: Pnvalid add Algorithm 1 (P, T,W,m0), (V,<, l)
23: return Pnvalid

Algorithm 3 has three parts: lines 1 to 10 implement the forward-strategy.
The set Pfbranch keeps track of places marked at forward-branching events. Line
8 implements Lemma 2. In lines 11 and 12, we remove the set of places that we
do not have to tackle anymore. Again, if a total order of events is part of the
input, this part of the algorithm runs in linear run-time. In line 13, we start the
backward-strategy reusing the final marking calculated in the first part of the
algorithm. The set Pbbranch keeps track of places marked at backward-branching
events. Line 16 implements a backward version of Lemma 1. Note that there
is no backwards version of Lemma 2 because firing backwards from the final
marking will reconstruct the initial marking. In lines 20 and 21, we remove the
set of places that we do not have to tackle further. Again, if a total order of
events is part of the input, this second part of the algorithm runs in linear time
as well. In line 20, we only keep places that have to be handled in cubic runtime
by Algorithm 1.

4 Comparison and Experimental Results

In this section, we compare the runtimes of Algorithm 1 and Algorithm 3. To
compare run-time, we denote (P, T,W,m0) a marked p/t-net, (V,<, l) a run,
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and assume a total order respecting < is part of the input. In the remainder,
we call all places we can check by brute force firing the run in a p/t-net simple
places. We call the remaining places complex places. This is a bit misleading
because whether a place is simple highly depends on the run as well. As stated
above, dealing with sequential runs, every place is simple. Furthermore, whether
a place is simple or complex does not only depend on the structure of a run,
but also on the order of events. Figure 12 depicts a very simple p/t-net where
a transition b can fire if transition a produces a token in p1 and a run with
some kind of w-structure. Figure 12 depicts a distribution for tokens produced
by events e1, e2, and e3 on solid arcs. The dashed arcs depict a redistribution
of tokens redistributing all previous tokens adding the token from e4 to e8.
This re-distribution is done by flow network algorithms looking for paths, and
considering already produced flow as a possible step backwards. Although the
net of Fig. 12 is very simple, it is a complex place.

Fig. 12. Redistribution of tokens.

The worst-case runtimes of Algorithm 1 and Algorithm 3 is in O(|P | · |V |3).
If the set of simple-places is empty, the run-time of Algorithm 3 is, obviously,
the runtime of Algorithm 1 plus the runtime of two times firing the run. If the
set of complex places is empty, the runtime of Algorithm 3 is two times firing
the run, i.e., in linear runtime.

In the remainder of this section, we will take a look at examples from practical
applications to have a feeling for an average number of simple-places. In a first
experiment, we take a look at the latest example net of the model checking
contest (https://mcc.lip6.fr/2020/) to have a variety of different models. We
calculate a set of 1000 runs of every net by simply randomly unfolding the net
[6]. We implement Algorithm 3 and Algorithm 1 in Java to decide if the run
is valid. Obviously, every run will be valid as a part of the unfolding. Yet, this
will only increase the runtime of both algorithms. For a run of the language of a
net, we have to calculate a distribution of tokens for every place. If a run is not
valid, both algorithms can stop as soon as they find one place that is not valid.
Roughly speaking, stopping early is an advantage for Algorithm 3, because the
first two thirds of the algorithm are very fast. Using the examples, we compare
the runtime of both algorithms and depict the number of simple places.

We perform the following two experiments on an Intel Core i5 3.30 GHz (4
CPUs) machine with 8 GB RAM running a Windows 10 operating system. The

https://mcc.lip6.fr/2020/
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implementation of both algorithms is available at https://www.fernuni-hagen.
de/ilovepetrinets/.

Experiment 1. We consider the most recent example called SatelliteMemory
from the Model Checking Contest 2020. SatelliteMemory has two parameters X
and Y defining the maximal number of tokens per place. We refer the reader to
https://mcc.lip6.fr/ 2020/ pdf/ SatelliteMemory-form.pdf for a detailed descrip-
tion of the example and the parameters. Figure 13 depicts the structure of the
p/t-nets, i.e., markings with many tokens, arc weights, short loops, and cyclic
behavior. For each example, we randomly compute 1000 runs for every number
100, 200, 300, and 400 of events and decide enabledness using Algorithm 1 and
Algorithm 3. Figure 13 depicts: (1) percentage of all places decided by firing once
with the forward strategy, (2) percentage of all places decided by firing twice,
once with the forward and once with the backward-strategy, (3) overall average
run-time of Algorithm 3, (4) overall average run-time of Algorithm 1. We set the
parameters to (a) X=100 Y=3 (100 tokens), (b) X=1000 Y=32 (1000 tokens),
(c) X=1500 Y=46 (1500 tokens), (d) X=3000 Y=94 (3000 tokens), (e) X=65535
Y=2048 (65535 tokens).

100 events 200 events 300 events 400 events
a. .34 .48 5ms 11ms .31 .45 44ms 98ms .28 .43 147ms 330ms .26 .40 391ms 800ms
b. .40 .55 4ms 15ms .38 .54 34ms 115ms .34 .50 115ms 310ms .29 .41 287ms 608ms
c. .39 .54 4ms 14ms .38 .54 32ms 109ms .36 .52 110ms 356ms .35 .49 220ms 581ms
d. .39 .54 4ms 14ms .38 .53 32ms 105ms .39 .54 108ms 352ms .35 .53 267ms 936ms
e. .39 .54 4ms 14ms .38 .54 32ms 108ms .38 .54 111ms 363ms .36 .51 224ms 709ms

Fig. 13. Model and results of Experiment 1.

Experiment 1 considers a quite complex p/t-net model. The number of places
in every combination of parameters is 13. We increase the number of tokens and
the number of events. Experiment 1 shows that half of the places are simple-
places in this example. The runtime of both algorithms grows quadratic with the
size of the input, i.e., number of events, in this example. This fits perfectly with
our considerations because, if tokens don’t have to be redistributed often and the

https://www.fernuni-hagen.de/ilovepetrinets/
https://www.fernuni-hagen.de/ilovepetrinets/
https://mcc.lip6.fr/2020/ pdf/SatelliteMemory-form.pdf
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number of places is fixed, the runtime of Algorithm 1 is in O(|V |2). Furthermore,
if half of the places are simple, the run-time of Algorithm 3 is twice as fast but
still in O(|V |2)).
Experiment 2. We consider the data set from the Process Discovery Contest
2020. The model has parameters defining the control-flow, i.e., dependent tasks,
loops, or-constructs, routing constructs, optional tasks, and duplicate tasks, of
the model. We refer the reader to https:// icpmconference.org/ 2020/ process-
discovery-contest/ data-set/ for a detailed description of the example and the
parameters. The structure of the p/t-nets are typical workflow Petri nets with
an initial and a final marking. For each example, we randomly compute 1000
runs from start to end and decide enabledness using Algorithm 1 and Algorithm
3. Figure 14 depicts: (1) file-name (2) average number of events per run (3)
percentage of all places decided by firing once with the forward-strategy, (4) per-
centage of all places decided by firing twice, once with the forward and once with
the backward-strategy, (5) overall average runtime of Algorithm 3, (6) overall
average runtime of Algorithm 1.

pdc 2020 0010000.pnml 15 .93 .99 0.043ms 0.284ms
pdc 2020 1000000.pnml 16 .95 1.0 0.036ms 0.296ms
pdc 2020 0001000.pnml 21 .87 .99 0.060ms 0.389ms
pdc 2020 0000000.pnml 21 .87 .99 0.051ms 0.412ms
pdc 2020 0000100.pnml 21 .87 1.0 0.041ms 0.419ms
pdc 2020 0000010.pnml 22 .87 .99 0.041ms 0.387ms
pdc 2020 1111110.pnml 25 .99 1.0 0.014ms 0.845ms
pdc 2020 1211110.pnml 37 .99 1.0 0.019ms 1.733ms
pdc 2020 1210110.pnml 37 .98 1.0 0.023ms 2.412ms
pdc 2020 0100000.pnml 50 .86 .97 0.208ms 2.432ms
pdc 2020 0200000.pnml 86 .82 .97 0.579ms 7.540ms

Fig. 14. Model and results of Experiment 2.

Experiment 2 considers a workflow p/t-net model with standard workflow
patterns. All examples in this experiment have an initial and a final marking;
thus, we cannot scale the size of the input as we did in Experiment 1. Only if
the model contains loops, i.e., the second parameter in this example, the number
of events of the randomly generated runs increases. Almost every place of this
example is a simple place. In workflow models, most of the places are empty
most of the time and can, thus, be handled by firing very easily. The runtime
of Algorithm 1 grows quadratic with the size of the input. In Experiment 2,
the overall runtime of Algorithm 1 is almost exactly |V |2/1000 ms. The overall
runtime of Algorithm 3 is much smaller and highly depends on the number of
simple places. The algorithm is very fast for the examples in lines 7, 8, and 9
where almost every place is decided by the forward-strategy of the algorithm.
Obviously, for those examples, the algorithm runs in linear time.

https://icpmconference.org/2020/process-discovery-contest/data-set/
https://icpmconference.org/2020/process-discovery-contest/data-set/
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5 Conclusion and Future Work

This paper presents an approach to firing a partially ordered set of events in a
Petri net model. The new approach also introduces the concept of local markings
of a run and a marked p/t-net. With the help of this definition, it is possible to
define a set of simple places and to decide enabledness fast.

The paper presents two experiments deciding enabledness of a run in models
taken from two very different but well-known contests in the area of Petri nets.
In the latest example of the Model Checking Contest, we deal with nets having
cyclic behavior, complex net structure, and many tokens. In the latest example
of the Process Discovery Contest, we deal with workflow nets with initial and
final markings, workflow-patterns, control-flow structure, and only few tokens.

In both experiments, the new algorithm clearly outperforms the algorithm
using compact tokenflows only. In that sense, there is never a disadvantage in
trying to fire first. The new algorithm is especially fast in workflow-net-like p/t-
nets. Here, we open the door to further applications in the area of business
process modelling.

In future work, we would like to check if the set of simple places is a good
indicator for the complexity of a process model. Let us say we want to discover
or synthesize a p/t-net model from behavioral data recorded in terms of partial
orders of events; maybe it is sufficient to only generate simple places to obtain
a readable, well-structured process model.
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