
Didier Buchs
Josep Carmona (Eds.)

LN
CS

 1
27

34 Application and Theory
of Petri Nets
and Concurrency
42nd International Conference, PETRI NETS 2021
Virtual Event, June 23–25, 2021
Proceedings

Lecture Notes in Computer Science 12734

Founding Editors

Gerhard Goos
Karlsruhe Institute of Technology, Karlsruhe, Germany

Juris Hartmanis
Cornell University, Ithaca, NY, USA

Editorial Board Members

Elisa Bertino
Purdue University, West Lafayette, IN, USA

Wen Gao
Peking University, Beijing, China

Bernhard Steffen
TU Dortmund University, Dortmund, Germany

Gerhard Woeginger
RWTH Aachen, Aachen, Germany

Moti Yung
Columbia University, New York, NY, USA

https://orcid.org/0000-0001-9619-1558
https://orcid.org/0000-0001-8816-2693

More information about this subseries at http://www.springer.com/series/7407

http://www.springer.com/series/7407

Didier Buchs • Josep Carmona (Eds.)

Application and Theory
of Petri Nets
and Concurrency
42nd International Conference, PETRI NETS 2021
Virtual Event, June 23–25, 2021
Proceedings

123

Editors
Didier Buchs
Université de Genève
Carouge, Switzerland

Josep Carmona
Universitat Politècnica de Catalunya
Barcelona, Spain

ISSN 0302-9743 ISSN 1611-3349 (electronic)
Lecture Notes in Computer Science
ISBN 978-3-030-76982-6 ISBN 978-3-030-76983-3 (eBook)
https://doi.org/10.1007/978-3-030-76983-3

LNCS Sublibrary: SL1 – Theoretical Computer Science and General Issues

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, expressed or implied, with respect to the material contained herein or for any errors or
omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://orcid.org/0000-0001-9656-254X
https://doi.org/10.1007/978-3-030-76983-3

Preface

This volume constitutes the proceedings of the 42st International Conference on
Application and Theory of Petri Nets and Concurrency (Petri Nets 2021). This series of
conferences serves as an annual meeting place to discuss progress in the field of Petri
nets and related models of concurrency. These conferences provide a forum for
researchers to present and discuss both applications and theoretical developments in this
area. Novel tools and substantial enhancements to existing tools can also be presented.

Petri Nets 2021 included a section devoted to Application of Concurrency to System
Design, which was in the past a separate event. The final selection of this track was
made by Jörg Desel and Alex Yakovlev.

The event was organized by the LoVe (Logics and Verification) team of the computer
science laboratory LIPN (Laboratoire d’Informatique de Paris Nord) at the University
Sorbonne Paris Nord and CNRS, along with members of the Paris region MeFoSyLoMa
(Méthodes Formelles pour les Systèmes Logiciels et Matériels) group. The conference
was supposed to take place in the chosen area of Campus Condorcet, the new inter-
national research campus for humanities and social sciences in Paris, France.

Unfortunately, because of the coronavirus epidemic, the event was organized as a
virtual conference. We would like to express our deepest thanks to the Organizing
Committee chaired by Laure Petrucci and Etienne André for the time and effort
invested in the organization of this event.

This year, 39 papers were submitted to Petri Nets 2020 by authors from 16 different
countries. Each paper was reviewed by at least three reviewers. The discussion phase
and final selection process by the Program Committee (PC) were supported by the
EasyChair conference system. From regular papers and tool papers, the PC selected 22
papers for presentation: 20 regular papers and 2 tool papers. After the conference, some
of these authors were invited to submit an extended version of their contribution for
consideration in a special issue of a journal.

We thank the PC members and other reviewers for their careful and timely evalu-
ation of the submissions and the fruitful constructive discussions that resulted in the
final selection of papers. The Springer LNCS team (notably Anna Kramer) provided
excellent and welcome support in the preparation of this volume.

Due to the virtual format of the event, the keynote presentations of the 2020 edition
were postponed until this 2021 edition. They were given by Serge Abiteboul, Luca
Bernardinello and Jérôme Leroux. Alongside Petri Nets 2021, the following workshops
and events took place: the 11th edition of the Model Checking Contest (MCC 2021),
Algorithms and Theories for the Analysis of Event Data (ATAED 2021), and Petri Nets
and Software Engineering (PNSE 2021).

We hope you enjoy reading the contributions in this LNCS volume.

June 2021 Didier Buchs
Josep Carmona

Organization

Program Committee

Elvio Gilberto Amparore University of Turin, Italy
Abel Armas Cervantes The University of Melbourne, Australia
Paolo Baldan Dipartimento di Matematica, Università di Padova,

Italy
Benoit Barbot LACL, Université Paris-Est Créteil, France
Beatrice Berard LIP6, Sorbonne Université and CNRS, France
Didier Buchs University of Geneva, Switzerland
Josep Carmona Universitat Politècnica de Catalunya, Spain
Thomas Chatain LSV, ENS Paris-Saclay, France
Jörg Desel Fernuniversität in Hagen, Germany
Raymond Devillers Université de Bruxelles, Belgium
Susanna Donatelli Dipartimento di Informatica, Università di Torino, Italy
Javier Esparza Technical University of Munich, Germany
David Frutos Escrig Universidad Complutense de Madrid, Spain
Stefan Haar Inria/LSV, ENS Paris-Saclay, France
Xudong He Florida International University, USA
Loic Helouet Inria, France
Marieke Huisman University of Twente, Netherlands
Ryszard Janicki McMaster University, Canada
Anna Kalenkova The University of Melbourne, Australia
Jörg Keller FernUniversität in Hagen, Germany
Ekkart Kindler Technical University of Denmark, Denmark
Michael Köhler-Bußmeier University of Applied Science Hamburg, Germany
Irina Lomazova National Research University Higher School

of Economics, Russia
Robert Lorenz University of Augsburg, Germany
Roland Meyer TU Braunschweig, Germany
Lukasz Mikulski Nicolaus Copernicus University, Poland
Andrew Miner Iowa State University, USA
Andrey Mokhov Jane Street, UK
Marco Montali KRDB Research Centre, Free University

of Bozen-Bolzano, Italy
Dumitru Potop Butucaru Inria, France
Pierre-Alain Reynier Aix-Marseille Université, France
Arnaud Sangnier IRIF, Université Paris Diderot CNRS, France
Natalia Sidorova Department of Mathematics and Computer Science,

Technische Universiteit Eindhoven, Netherlands

Jaco van de Pol Aarhus University, Denmark
Boudewijn Van Dongen Eindhoven University of Technology, Netherlands
Alex Yakovlev Newcastle University, UK
Wlodek Zuberek Memorial University, Canada

Additional Reviewers

Badouel, Eric
Balasubramanian, A. R.
Bashkin, Vladimir
Blondin, Michael
Boltenhagen, Mathilde
Busatto-Gaston, Damien
Dal Zilio, Silvano
Desel, Jörg
Furbach, Florian
Gogolinska, Anna
Keskin, Eren
Kurpiewski, Damian

Litzinger, Sebastian
Metzger, Johannes
Oualhadj, Youssouf
Petrak, Lisa
Raskin, Mikhail
Rivkin, Andrey
Rosa-Velardo, Fernando
Schalk, Patrizia
van der Wall, Sören
Welzel, Christoph
Wolff, Sebastian
Zakharov, Vladimir

viii Organization

Contents

Keynotes

Topics in Region Theory and Synthesis Problems . 3
Luca Bernardinello

Flat Petri Nets (Invited Talk) . 17
Jérôme Leroux

Application of Concurrency to System Design

Cost and Quality in Crowdsourcing Workflows . 33
Loïc Hélouët, Zoltan Miklos, and Rituraj Singh

Timed Petri Nets with Reset for Pipelined Synchronous Circuit Design 55
Rémi Parrot, Mikaël Briday, and Olivier H. Roux

A Turn-Based Approach for Qualitative Time Concurrent Games 76
Serge Haddad, Didier Lime, and Olivier H. Roux

Games

Canonical Representations for Direct Generation of Strategies
in High-Level Petri Games . 95

Manuel Gieseking and Nick Würdemann

Automatic Synthesis of Transiently Correct Network Updates via
Petri Games . 118

Martin Didriksen, Peter G. Jensen, Jonathan F. Jønler,
Andrei-Ioan Katona, Sangey D. L. Lama, Frederik B. Lottrup,
Shahab Shajarat, and Jiří Srba

Verification

Computing Parameterized Invariants of Parameterized Petri Nets. 141
Javier Esparza, Mikhail Raskin, and Christoph Welzel

On the Combination of Polyhedral Abstraction and SMT-Based Model
Checking for Petri Nets . 164

Nicolas Amat, Bernard Berthomieu, and Silvano Dal Zilio

Skeleton Abstraction for Universal Temporal Properties 186
Sophie Wallner and Karsten Wolf

Reduction Using Induced Subnets to Systematically Prove Properties
for Free-Choice Nets . 208

Wil M. P. van der Aalst

Model Checking of Synchronized Domain-Specific Multi-formalism
Models Using High-Level Petri Nets . 230

Michael Haustermann, David Mosteller, and Daniel Moldt

Synthesis and Mining

Edge, Event and State Removal: The Complexity of Some Basic
Techniques that Make Transition Systems Petri Net Implementable 253

Ronny Tredup

Synthesis of (Choice-Free) Reset Nets . 274
Raymond Devillers

Synthesis of Petri Nets with Restricted Place-Environments: Classical
and Parameterized . 292

Ronny Tredup

Discovering Stochastic Process Models by Reduction and Abstraction 312
Adam Burke, Sander J. J. Leemans, and Moe Thandar Wynn

Reachability and Partial Order

Efficient Algorithms for Three Reachability Problems in Safe Petri Nets 339
Pierre Bouvier and Hubert Garavel

A Lazy Query Scheme for Reachability Analysis in Petri Nets 360
Loïg Jezequel, Didier Lime, and Bastien Sérée

Abstraction-Based Incremental Inductive Coverability for Petri Nets 379
Jiawen Kang, Yunjun Bai, and Li Jiao

Firing Partial Orders in a Petri Net . 399
Robin Bergenthum

Semantics

Deterministic Concurrent Systems . 423
Samy Abbes

Deciphering the Co-Car Anomaly of Circular Traffic Queues Using
Petri Nets. 443

Rüdiger Valk

x Contents

Tools

Cortado—An Interactive Tool for Data-Driven Process Discovery
and Modeling . 465

Daniel Schuster, Sebastiaan J. van Zelst, and Wil M. P. van der Aalst

PROVED: A Tool for Graph Representation and Analysis of Uncertain
Event Data . 476

Marco Pegoraro, Merih Seran Uysal, and Wil M. P. van der Aalst

Author Index . 487

Contents xi

Keynotes

Topics in Region Theory and Synthesis
Problems

Luca Bernardinello(B)

Dipartimento di Informatica, Sistemistica e Comunicazione, Università Degli Studi di
Milano-Bicocca, Viale Sarca 336 U14, Milano, Italy

luca.bernardinello@unimib.it

Abstract. Regions, as introduced by Ehrenfeucht and Rozenberg more
than thirty years ago, have been used as a fundamental tool in synthesis
problems, where a Petri net of a specific type must be built from a
specification given in terms of a transition system. Some topics emerged
in the research on regions are discussed, and a few open problems are
stated. In particular, the paper focuses on three areas: (1) the notion of
‘type of nets’ as a tool for unifying the theory of regions, and as a notion
leading to new variants of Petri nets; (2) the algebraic aspects of region
theory; (3) the proposal of a new type of regions, inspired by reaction
systems, and the potential for studying problems of synthesis of reaction
systems.

1 Introduction

In this paper, I discuss some topics in region theory. The choice of the topics
is biased by my personal past and current interests, and aims at pointing out
a few open problems, on the theoretical side, which I consider interesting and
deserving attention.

Regions were introduced by Ehrenfeucht and Rozenberg in [8] and [9] as a
tool within the theory of 2-structures, a general theory of a class of equivalence
relations. A 2-structure can be defined as a graph with an equivalence relation
on its edges. We can then take the equivalence classes on edges as labels, and
label each edge accordingly.

In that context, regions were used in order to solve a representation problem:
given a labelled 2-structure, find an isomorphic labelled set 2-structure, where
nodes are subsets of a ground set.

A labelled 2-structure can be seen as a labelled transition system, and from
now on, I will directly use labelled transition systems.

In the original definition, regions are subsets of the set of states of a transi-
tion system, satisfying a uniformity property with respect to labels which cross
the border of that subset. This notion of region corresponds to the conditions
(or places) of Elementary Net Systems; a region is in fact the extension of a
(potential) place, namely the set of states in which the place is marked, or the
corresponding condition is true. Regions of this type will be called elementary,

c© Springer Nature Switzerland AG 2021
D. Buchs and J. Carmona (Eds.): PETRI NETS 2021, LNCS 12734, pp. 3–16, 2021.
https://doi.org/10.1007/978-3-030-76983-3_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76983-3_1&domain=pdf
https://doi.org/10.1007/978-3-030-76983-3_1

4 L. Bernardinello

and are the main ingredient needed to solve the following synthesis problem:
given a labelled transition system A, decide whether there exists an Elementary
Net System Σ, such that the set of events coincides with the set of labels of A,
and the marking graph of Σ is isomorphic to A.

Pushing this idea beyond the original context, new types of regions have been
defined, corresponding to places in different kinds of Petri nets, starting from
Place/Transition nets, where regions are functions from states to non-negative
integers (these will be called PT regions in the following).

This led to solve the synthesis problem for several types of Petri nets. In 1996,
Badouel and Darondeau gave a systematic presentation of the theory of regions
(see [4]), introducing the notion of ‘type of nets’. A type of nets is a labelled
transition system, modelling the values that a single place can take on, and the
possible transitions that it can go through as an effect of transition firings. So,
for example, the type of nets corresponding to Elementary Net Systems has two
states, corresponding to a place being marked or not (or to the corresponding
condition being true or false); the type corresponding to Place/Transition nets
is an infinite transition system with states corresponding to natural numbers.

In this general frame, if we define a type of nets τ , a τ -region of a transition
system A can be defined as a morphism from A to τ .

This gives an elegant presentation of regions, and of synthesis problems, with
a remarkable uniformity in the characterization of transition systems for which
the synthesis problem can be solved. Further generalizations have led to define
regions on languages and on other formalisms.

The main applications of the synthesis problem so far include process dis-
covery, circuit design, and supervisory control. In all these fields, one starts with
a specification relying on an interleaving semantics, with no explicit informa-
tion on the dependence relations between actions or events; the computation of
regions reveals, so to speak, potential concurrency.

Apart from their application in synthesis problems, regions are interesting
objects in themselves. Different types of regions bear different algebraic struc-
tures. So far, this topic has not raised much interest, but two cases have been
studied in some depth: elementary regions and PT regions.

The set of PT regions of a transition system forms a finitely generated group,
as was observed in [5]. Elementary regions form instead an orthomodular poset,
an algebraic structure, originally conceived to represent the “logical” structure
of observables in quantum mechanics.

From these results, one can naturally define a new class of synthesis problems:
given an abstract algebraic structure (for instance, a finitely generated group
or an orthomodular poset) construct a transition system with an isomorphic
regional structure (this would then lead to constructing a corresponding Petri
net, of course). This comes with the related problem of characterizing the exact
class of those algebraic structures which admit a solution.

The case of elementary regions, giving rise to orthomodular posets, opens
the way to speculations towards logic, since those posets are a generalization of
Boolean algebras. These ideas are discussed in Sect. 3.

Topics in Region Theory and Synthesis Problems 5

The only original contribution of this paper, in Sect. 4 is the attempt to
define a notion of region useful in the study of reaction systems as defined by
Ehrenfeucht and Rozenberg in [10]. Reaction systems are intended to model bio-
chemical reactions in living cells. A reaction is defined by three sets, interpreted
as the set of reactants, needed for the reaction to take place; the set of inhibitors,
which, if present, prevent the reaction; and the set of products of the reaction.
As an abstract model of an evolving system, they are based on a few principles,
quite different from the conceptual basis of Petri nets. In spite of this difference,
I conjecture that a notion of region can be used in order to tackle synthesis
problems for reaction systems.

In the following sections, I assume the reader knows the basics of Petri net
theory; in particular, I give for granted the definitions of Elementary Net System
and of Place/Transition net. Apart from this, I have tried to include all the formal
definitions needed to understand my arguments. However, I have not been fully
rigorous.

2 Regions and Synthesis of Net Systems

As recalled in the introduction, within region theory a type of nets is a labelled
transition system.

Definition 1. A labelled transition system is a structure A = (Q,E, T), where
Q is the set of states, E is the set of labels, and T ⊆ Q × E × Q is the set of
transitions.

When (q, e, q′) is a transition in T , I will also write q
e−→ q′. If such a transition

exists, e is said to be enabled in q.
If the set of states is finite, then A is said to be finite; otherwise, A is infinite.
Given a type of nets τ = (Qτ , Eτ , Tτ), and a finite transition system A =

(Q,E, T), the set of τ -regions of A is defined as the set of morphisms from A to
τ . A morphism is a map on the set of states together with a map on the set of
labels which preserve transitions, while respecting labels, in this sense:

Definition 2. Let Ai = (Q1, Ei, Ti) be a transition system for i = 1, 2. A mor-
phism from A1 to A2 is a pair of maps rQ : Q1 → Q2 and rE : E1 → E2 (in the
following, the subscripts Q and E will be omitted; the context will always make

clear which map is being used), such that, if q
e−→ q′ in A1, then r(q)

r(e)−→ r(q′)
in A2.

The definition of regions as morphisms into a type of nets allows for a unified
treatment of synthesis problems. The key to the solution consists in the appro-
priate generalization of the so-called state separation and event-state separation
problems, which had been first identified for elementary regions.

The state separation problem for a pair of distinct states q and q′ of a tran-
sition system consists in finding a τ -region r which allows one to distinguish the
two states: q and q′ are separated by r if r(q) �= r(q′).

6 L. Bernardinello

The event-state separation problem for an event (a label) e and a state q
from which e cannot occur consists in finding a region r which “explains” the
fact that e cannot occur in q: a region r separates e from q if r(e) is not enabled
in r(q).

For any type of nets τ , the corresponding synthesis problem for a labelled
transition system A = (Q,E, T) is solvable if, and only if, for each pair of distinct
states (q, q′) there is a region r which separates them, and for each state q and
each label e not enabled at q, there is a region r separating e from q.

The separation problems are indeed the key to the synthesis problem: a set
of regions is sufficient to construct the desired net if it solves all the separation
problems.

Given the general solution to the synthesis problems, one can turn to face
complexity issues of the procedure to compute a sufficient set of regions, or
to decide that there is no solution. A first result on this subject concerned
Place/Transition nets. In [1], it was proved that this problem is polynomial
in the size of the given transition system. This was proved by exploiting the
algebraic structure of PT regions, which allows to devise a procedure which
combines algorithms from graph theory and algorithms for computing rational
solutions of linear systems.

Lately, in [2], it was proved that the synthesis problem for Elementary Net
Systems is instead NP-complete. The reason for the substantial difference in com-
plexity seems to consist in the lack of a rich algebraic structure of elementary
regions (but see the next section for a more detailed discussion of the algebraic
aspects of elementary regions). As a matter of fact, a simple variant of Elemen-
tary Net Systems, in which a third kind of arc is added, so that an event can
swap the value of a place (from false to true or viceversa), admits a polynomial
algorithm for the corresponding synthesis problem, by exploiting the richest alge-
braic structure of the corresponding regions. Nets of this type have been called
“flip-flop nets”. For details, see [3].

More recently, Ronny Tredup has started the ambitious project of system-
atically determining the complexity of the synthesis problem for all classes of
“Boolean nets”, namely nets in which places can take on two values, like Ele-
mentary Net Systems and flip-flop nets. This undertaking is still ongoing, but
a large number of results are already available. In most cases, the problem is
NP-complete, with some exceptions. So far, the results are scattered in several
papers, but the interested reader can look at [13], and the references therein.

Apart from Boolean nets, there is still room for research in devising more
general new types of nets. A convincing argument in this direction can be found
in [11], where some types of nets are introduced, and related open problems are
stated. Constructing regions with rich algebraic properties is, I believe, another
worthwhile direction for research.

Topics in Region Theory and Synthesis Problems 7

3 Regions and Algebra

Besides their use in solving synthesis problems, regions can be interesting objects
in themselves, and in relation with the full set of regions of a given transition
system.

In general, the set of regions of a given type will bear some algebraic structure,
depending on that type. To my knowledge, so far the only cases that have been
studied extensively are the case of elementary regions, and the case of PT-
regions. In this section, I will briefly recall the main results on elementary regions,
and discuss a few directions of research.

3.1 Elementary Regions

Consider a system described by a transition system A. In general, we can define
a property of A as a subset of its states, with the interpretation that the property
holds exactly in those states, and does not hold in any other state. The subset
can then be called the extension of the property. In principle, any subset of states
corresponds to a property. In this view, a state of the system is characterized by
the set of all properties that hold in it. We have then a duality between states
and properties: (the extension of) a property is a set of states, and a state is a
set of properties.

The set of all properties forms a Boolean algebra (here, I will only consider
systems with a finite set of states), and the set-theoretical operations of union,
intersection, and complement correspond to the logical connectives of disjunc-
tion, conjunction, and negation. We can in this way build a logic of properties.

In a distributed system, a global state is not a monolithic object, but rather a
combination of local states of its components. Moreover, we should assume that
the global state at a given instant is not actually observable (the notion of ‘given
instant’ is actually critical, if we believe in the special theory of relativity).

An Elementary Net System is a model of a distributed system, where places
model local states of components, and the global state (or marking) is a set of
local states. Elementary regions are subsets of states. In an elementary transition
system, we can then consider the set of all elementary regions of a given transition
system as a partially ordered set. This set has a minimum (the empty set), and
a maximum (the set of all states), and is closed by complementation and union
of disjoint regions.

In [6], it was proved that the partially ordered set of elementary regions of a
transition system is an orthomodular poset (or quantum logic). Orthomodular
posets can be characterized as families of partially overlapping Boolean algebras.
All the Boolean subalgebras of an orthomodular set share the minimum and the
maximum element. Other elements can be shared by all or only some of the
Boolean subalgebras.

For convenience, I recall here the definition of elementary region, and of
quantum logic.

Definition 3. A region of a transition system A = (Q,E, T) is a subset r of Q
such that ∀e ∈ E, ∀(q1, e, q2), (q3, e, q4) ∈ T :

8 L. Bernardinello

1. (q1 ∈ r and q2 �∈ r) ⇒ (q3 ∈ r and q4 �∈ r); and
2. (q1 �∈ r and q2 ∈ r) ⇒ (q3 �∈ r and q4 ∈ r).

Definition 4. A quantum logic (or logic) L = (L,≤, 0, 1, (.)′) is a partially
ordered finite set (L,≤) endowed with a least and a greatest element, denoted
by 0 and 1, respectively, and a unary operation (.)′ (called orthocomplement),
such that the following conditions are satisfied:
∀x, y ∈ L

1. x ≤ y ⇒ y′ ≤ x′;
2. (x′)′ = x;
3. x ≤ y′ ⇒ x ∨ y ∈ L;
4. x ≤ y ⇒ y = x ∨ (x′ ∧ y).

This latter condition is sometimes referred to as orthomodular law.

Two elements x and y are said to be orthogonal (denoted by x ⊥ y) when
x ≤ y′. A simple quantum logic is shown in Fig. 1. A quantum logic arising
from the set of regions of a transition system can always be seen as a family of
partially overlapping Boolean algebras. Every Boolean subalgebra corresponds to
a partition of the set of states of the transition system formed by regions. In the
net system constructed by solving the synthesis problem, Boolean subalgebras
correspond to state machine components of the net, or sequential components.

Fig. 1. A simple quantum logic.

The quantum logic shown in Fig. 1 has two maximal Boolean subalgebras;
one is formed by the elements in {0, v, w, x} and their orthocomplements; the
other by the elements {x, y, z} and their orthocomplements.

Let us call regional a quantum logic if it is isomorphic to the set of regions
of an elementary transition system.

Now, given an abstract quantum logic, we can ask whether it is isomorphic
to the partially ordered set of regions of some transition system, and if so, how
to construct such a transition system. Solving this synthesis problem requires
one to determine the set of states, the set of labels, and the set of transitions of
the solution.

Topics in Region Theory and Synthesis Problems 9

Quantum logics already provide a notion of state. If we interpret the elements
of a quantum logic as propositions, the (partial) meet and join operations as
logical connectives, and the orthocomplement as negation, then a state is a
maximal set of consistent propositions, a sort of generalization of maximal filter
in Boolean algebras.

Definition 5. A two-valued state on a quantum logic L is a mapping s : L →
{0, 1} such that:

1. s(1) = 1;
2. ∀x, y ∈ L x ⊥ y ⇒ s(x ∨ y) = s(x) + s(y)

S(L) will denote the set of two-valued states of L.

The white circles in Fig. 2 indicate elements of a two-valued state. Then, the
ordered symmetric difference of a pair of distinct states is a natural candidate
to label a state transition. The idea is that the label specifies which propositions
cease to hold, and which start to hold as an effect of this state change. Note the
close resemblance with the firing rule of Elementary Net Systems.

0

v′ w′ x′
y′ z′

v w x y z

1

Fig. 2. A two-valued state.

E(L) = {〈s1 \ s2, s2 \ s1〉 | s1, s2 ∈ S(L), s1 �= s2}. (1)

The set of transitions is now naturally defined: for each pair of distinct states, s1
and s2, there is a transition from s1 to s2, labelled by the corresponding ordered
symmetric difference.

In the following, [s1, s2] will denote 〈s1 \ s2, s2 \ s1〉.

T (L) = {(s1, [s1, s2], s2) | s1, s2 ∈ S(L), s1 �= s2} (2)

Of course, the same label can have several occurrences. We can now define the
transition system derived from a quantum logic L.

A(L) = (S(L), E(L), T (L)). (3)

10 L. Bernardinello

The transition system A(L) includes a transition for each ordered pair of states;
hence we call it saturated of transitions. A(L) is elementary, as shown in [6],
which means that it is isomorphic to the marking graph of an Elementary Net
System.

What happens if we now compute the set of regions of A(L)? In general, L
embeds into the regional quantum logic of A(L), as shown in [6].

Several open problems remain in this line of research. Probably the main
issue is the characterization of regional quantum logics. We know that there are
finite quantum logics that are not regional, and recently we did some progress
towards a characterization by giving some necessary conditions for a logic to be
regional. A related conjecture states that any regional logic is isomorphic to the
logic of its transitions system (regional logics are stable). The interested reader
can find details in [7].

On the other hand, the synthesis procedure described above constructs, as
noted, a “saturated” transition system. This is not necessary: given a regional
quantum logic, there are non saturated solutions. We are working on the problem
of characterizing subsets of states and of labels which are sufficient to solve the
synthesis problem.

4 Regions for Reaction Systems

Reaction systems were introduced in [10] as a formal tool to model biochem-
ical reactions within living cells. The mathematical basis of reaction systems
is simple. A reaction is specified by three sets of elements taken from a back-
ground set: (1) the set of reactants, which intuitively corresponds to the set
of substances that must be present for the reaction to take place; (2) the set
of inhibitors, namely those substances which, if present, prevent the reaction
from taking place; and (3) the set of products, namely the substances that are
produced when the reaction takes place.

A state of a reaction system is fully specified by a subset of the background
set, interpreted as the set of substances available at a given instant. A state
transition is determined by the occurrence of all the “enabled” reactions: a reac-
tion is enabled at a state if the state contains all its reactants and none of the
inhibitors.

In a reaction system, there are no quantities: in a state, a substance is either
present or absent. When it is present, all reactions using it as a reactant can
take place, without any notion of conflict.

Another fundamental principle underlying this model is the principle of non-
persistence of substances. If a substance, present in a state, is not produced by
one of the enabled reactions, it disappears in the next state. So the state reached
after a state transition comprises the union of the products of all the reactions
which were enabled in the previous state.

Usually, a reaction system is considered as living within an environment,
which, at each new state, can inject some substances. Here, I will consider iso-
lated reaction systems.

Topics in Region Theory and Synthesis Problems 11

From the previous discussion, it should be clear that reaction systems are
quite different from Petri nets, in which tokens are resources which can be used
by just one transition, and persist if they are not used. There have been several
attempts to define variants of Petri nets with the aim of modelling reaction
systems (see, for instance, [12]).

I will take here a different approach, and propose a notion of region corre-
sponding to the notion of substance in a reaction system, and discuss its potential
use in the problem of synthesizing a reaction system from a labelled transition
system.

Let us first briefly recall the main formal definitions, taken from [10], with
minor changes.

Definition 6. Let S be a finite set (called the background set). A reaction on
S is a tuple a = (R, I, P), where R, I, P are subsets of S.

If S′ is a subset of S, the result of a on S′, denoted by resa(S′), is defined
as resa(S′) = P if R ⊆ S′ and I ∩ S′ = ∅; resa(S′) = ∅ otherwise. The result of
a subset of reactions Δ on S′, denoted by resΔ(S′), is the union of the results
of all the reactions in Δ.

Definition 7. A reaction system is a pair A = (S,Z), where S is a finite set
(the background set of A), and Z is a set of reactions on S.

Definition 8. Let A = (S,Z) be a reaction system. A transition system on
A is a labelled transition system (Q, 2Z , T), where Q ⊆ 2S, with the following
properties:

– Q is forward closed: if q ∈ Q, and Δ is the set of all reactions enabled at q,
then resΔ(q) ∈ Q.

– (q,Δ, q′) ∈ T if each a in Δ is enabled at q, and q′ = resΔ(q).

We now turn to defining a synthesis problem for reaction systems. The starting
point is a labelled transition system TS, where labels are taken from the set of
subsets of a given set. In other words, we suppose to know the names of the
reactions, and in which global states they can take place. The problem consists
in computing a feasible background set S, and the sets of reactants, inhibitors,
and products for each reaction. The procedure should specify, for each element
in S, in which states it is present. Then, taking the set representations of the
states of TS, and the computed reactions, the transition system of the resulting
reaction system, with the given set of states, should be isomorphic to TS.

Let Z be a finite set of reaction names (for short, of reactions). Define Γ = 2Z ;
Γ is the set of potential labels for a transition system. Let TS = (Q,Γ, T) be a
labelled transition system, where Q is a finite set of states, and T ⊆ Q × Γ × Q

is the set of transitions. If (q,Δ, q′) ∈ T , we write q
Δ−→ q′.

For each reaction a, define •a as the set of states with at least one outgoing
transition whose label includes a:

•a = {q ∈ Q | ∃(q,Δ, q′) ∈ T, a ∈ Δ}

12 L. Bernardinello

and a•, symmetrically:

a• = {q ∈ Q | ∃(q′,Δ, q) ∈ T, a ∈ Δ}

We now try to characterize which subsets of states can be taken as elements of
the background set of a reaction system. Such a subset will be interpreted as
the set of states in which the corresponding element of the background set is
present.

The first step consists in computing the potential relations of a subset of
states with a reaction. Let a be a reaction. A subset of states D is

– a reactant of a if •a ⊆ D
– an inhibitor of a if •a ∩ D = ∅
– a product of a if a• ⊆ D

Then D is a region if, for all q
Δ−→ q′ such that q′ is in D, there is a in Z such

that D is a product of a, and a belongs to Δ.
Regions of the given transition system can be interpreted as elements of the

background set of a reaction system. For each element z of Z we can determine
the corresponding set of reactants, inhibitors, and products: R(z), I(z), P (z), by
applying the definitions above.

Example 1. Consider the transition system in Fig. 3. The following table shows
the relevant sets of states associated to each reaction.

•A = {1, 3} A• = {2, 4} •B = {1, 2, 4, 5} B• = {2, 3, 5}
•C = {2} C• = {3} •D = {2, 4} D• = {3, 5}
•E = {3, 5} E• = {3, 4} •F = {5} F• = {3}

Then, for example, {3, 4, 5} is a region, which acts as a reactant of E and F ,
as an inhibitor of C, and as a product of C, D, E, and F . On the other hand,
{2, 4, 5} is not a region, since it is a product of A only, and its presence in state
5 is not justified by any reaction.

Fig. 3. A transition system.

With this definition of regions, we can tackle the usual problems related to
synthesis: characterize the class of transition systems for which the synthesis
problem is solvable with this notion of regions; characterize sufficient sets of
regions for constructing a solution; studying synthesis problems with stronger
constraints, and so on.

The separation problems introduced earlier apply also in this case. For ease
of notation, when D is a region, the symbol D will be used also to denote the
characteristic function of the corresponding subset of states.

Topics in Region Theory and Synthesis Problems 13

Let R(TS) be the set of regions of TS. We say that TS has the state separation
property if, for each pair of distinct states, q, q′, there is a region D such that
D(q) �= D(q′).

We say that TS has the property of state-reaction separation if, whenever z
is not enabled in q, there is either a region D in R(z) such that D(q) = 0, or
there is a region D in I(z) such that D(q) = 1.

We say that TS has the production property if, for each region D, and for
each state q in D, either q is an initial state, or for each transition q′ Δ−→ q, there
is z ∈ Δ such that D ∈ P (z).

From now on, suppose that TS = (Q, 2Z , T) has the three properties above.
For each reaction name, z, define

R(z) = {s ∈ R(TS) | z ∈ R(s)} (4)
I(z) = {s ∈ R(TS) | z ∈ I(s)} (5)
P (z) = {s ∈ R(TS) | z ∈ P (s)} (6)

For each q ∈ Q, define q̂ = {s ∈ R(A)|q ∈ s}. This gives a concrete representa-
tion of states of A as sets of regions. Define Q̂ = {q̂ | q ∈ Q}.

For each z ∈ Z, define a reaction on the background set R(A), as follows:

ẑ = (R(z), I(z), P (z))

The reaction system derived from A, denoted RS(A), is defined by the back-
ground set R(A) and by the set of reactions {ẑ | z ∈ Z}.

Similarly to what happens for usual regions for Petri nets, also in this case the
synthesis problem is solved if the given transition system satisfies the separation
properties. We can in fact prove that for each q ∈ Q, and for each z ∈ Z, z is
enabled in q if, and only if, ẑ is enabled in q̂.

The set of regions computed in this way is, in a sense, redundant. To solve the
synthesis problem, one must find a set of regions which solves all the separation
problems.

In the definition of region given above, the set of states determines the real-
tions with all reactions. However, in reaction systems, this is not necessarily the
case. Two elements of the background set can be present in the same states, but
bear different relations with reactions. We can then give an alternative definition,
which gives a larger set of regions.

Definition 9. A tuple (r, J,K,L), where r is a subset of states, and J , K, and
L are three subsets of Z, is a region if

– for all z in J , •z ⊆ r
– for all z in K, r ∩ •z = ∅
– for all z in L, z• ⊆ r
– for all (q,Δ, q′) in T , if q′ ∈ r, then there is z in L ∩ Δ

The notions of state separation, and state-reaction separation apply of course,
to this new kind of region, and one can use this new kind to solve the synthesis

14 L. Bernardinello

problem. Encoding explicitly in the notion of region the relations with reactions
allows us to characterize regions as morphisms of set-labelled transition systems,
as shown in the next section.

5 Regions for Reaction Systems and Morphisms

In Sect. 2, we saw that regions can be defined as morphism from a transition
system to a ‘type of nets’, namely a transition system encoding the possible
values of a local state, and the possible transitions of state, for a specific kind of
Petri nets. By extending the notion of ‘type of nets’, we now give a definition of
region as morphism of set-labelled transition systems.

Definition 10. A set-labelled transition system A = (Q, 2Z , T) is given by a
set Q of states, a set Z of basic actions, and a set T of transitions, where a
transition is a triple (q,Δ, q′), with q, q′ ∈ Q, and Δ ⊆ Z.

A morphism between set-labelled transition systems is given by a map on states,
and a map on actions, as follows.

Let Ai = (Qi, 2Zi , Ti) be a set-labelled transition system for i = 1, 2. Let
f : Q1 → Q2 and g : Z1 → 2Z2 be total maps. For Δ subset of Z1, define g(Δ)
as the union of g(z) for all z in Δ. Then (f, g) is a morphism from A1 to A2 if,
whenever (q1,Δ, q′

1) is a transition of A1, f(q1), g(Δ), f(q′
1) is a transition of A2.

5.1 The Type of Reaction Systems

In the general theory of regions, a type of nets is defined as a transition system,
modelling the possible states of a single place, and the possible effects on a place
of transition firings.

In the same line, we define a set-labelled transition system describing the
possible states of a substance in a reaction system. These states correspond to
the presence or absence of the substance in a global state. The basic actions
correspond to the possible relations holding between a substance and a reaction:
reactant (R), inhibitor (I), product (P), or independence (N). In general, more
than one relation can hold between a substance and a reaction. This is reflected
in the definition of map g of a morphism, which maps a label to a set of labels.
Some combinations are meaningless in the context of reaction systems, and could
be prohibited.

0 1

Topics in Region Theory and Synthesis Problems 15

The labels associated to transitions are the following (note that there are
several distinct transitions with the same source and destination states).

0 −→ 0 : {N}, {I}, {N, I} (7)
0 −→ 1 : {P}, {P, I}, {P,N}, {P, I,N} (8)
1 −→ 0 : {R}, {N}, {R,N} (9)
1 −→ 1 : {P}, {P,R}, {P,N}, {P,R,N} (10)

With this definition, a morphism from a transition system TS to is a region
according to Definition 9, and for each region there is a corresponding morphism.

Some attempts have been made to define variants of Petri nets, with the aim
of representing reaction systems. This characterization of regions as morphisms
might be a starting point for a new approach.

6 Conclusion

Region theory is now thirty years old and has a fairly large literature. I have
tried in these pages to argue that it is still a live field of research, with several
interesting open problems.

Acknowledgments. Many colleagues and friends have contributed to shape my views
on concurrency theory and on region theory during more than twenty-five years. I
gratefully acknowledge the pleasure I took working with them, even if they are too
many to mention. I feel I can make an exception for Philippe Darondeau, who will not
be able to apply his rigour and scientific perspicacity to comment on these pages.

References

1. Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the syn-
thesis of bounded nets. In: Mosses, P.D., Nielsen, M., Schwartzbach, M.I. (eds.)
CAAP 1995. LNCS, vol. 915, pp. 364–378. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-59293-8 207

2. Badouel, E., Bernardinello, L., Darondeau, P.: The synthesis problem for elemen-
tary net systems is np-complete. Theor. Comput. Sci. 186(1–2), 107–134 (1997)

3. Badouel, Eric., Bernardinello, Luca, Darondeau, Philippe: Petri Net Synthe-
sis. TTCSAES. Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
47967-4

4. Badouel, E., Darondeau, P.: Theory of regions. In: Reisig, W., Rozenberg, G. (eds.)
ACPN 1996. LNCS, vol. 1491, pp. 529–586. Springer, Heidelberg (1998). https://
doi.org/10.1007/3-540-65306-6 22

5. Bernardinello, L., De Michelis, G., Petruni, K., Vigna, S.: On the synchronic struc-
ture of transition systems. In: Desel, J., (ed.) Proceedings of the International
Workshop on Structures in Concurrency Theory, STRICT 1995, Berlin, Germany,
11–13 May 1995, Workshops in Computing, pp. 69–84. Springer, London (1995)
https://doi.org/10.1007/978-1-4471-3078-9 5

6. Bernardinello, L., Ferigato, C., Pomello, L.: An algebraic model of observable prop-
erties in distributed systems. Theor. Comput. Sci. 290(1), 637–668 (2003)

https://doi.org/10.1007/3-540-59293-8_207
https://doi.org/10.1007/3-540-59293-8_207
https://doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1007/3-540-65306-6_22
https://doi.org/10.1007/3-540-65306-6_22
https://doi.org/10.1007/978-1-4471-3078-9_5

16 L. Bernardinello

7. Bernardinello, L., Ferigato, C., Pomello, L., Aubel, A.P.: On stability of regional
orthomodular posets. Trans. Petri Nets Other Model. Concurr. 13, 52–72 (2018)

8. Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures. part I: basic notions
and the representation problem. Acta Inf. 27(4), 315–342 (1990)

9. Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures. part II: state spaces of
concurrent systems. Acta Inf. 27(4), 343–368 (1990)

10. Ehrenfeucht, A., Rozenberg, G.: Reaction systems. Fundam. Inf.Inform. 75(1–4),
263–280 (2007)

11. Kleijn, J., Koutny, M., Pietkiewicz-Koutny, M., Rozenberg, G.: Applying regions.
Theor. Comput. Sci. 658, 205–215 (2017). Formal Languages and Automata: Mod-
els, Methods and Application In honour of the 70th birthday of Antonio Restivo

12. Kleijn, J., Koutny, M., Rozenberg, G.: Petri nets for biologically motivated com-
puting. Sci. Ann. Comp. Sci. 21(2), 199–225 (2011)

13. Rosenke, C., Tredup, R.: The complexity of synthesizing elementary net systems
relative to natural parameters. J. Comput. Syst. Sci. 110, 37–54 (2020)

Flat Petri Nets (Invited Talk)

Jérôme Leroux(B)

University Bordeaux, CNRS, Bordeaux INP, LaBRI, UMR 5800,
Talence 33405, France

jerome.leroux@labri.fr

https://www.labri.fr/~leroux/

Abstract. Vector addition systems with states (VASS for short), or
equivalently Petri nets are one of the most popular formal methods for
the representation and the analysis of parallel processes. The central
algorithmic problem is reachability: whether from a given initial con-
figuration there exists a sequence of valid execution steps that reaches
a given final configuration. This paper provides an overview of results
about the reachability problem for VASS related to Presburger arith-
metic, by presenting 1) a simple algorithm for deciding the reachability
problem based on invariants definable in Presburger arithmetic, 2) the
class of flat VASS for computing reachability sets in Presburger arith-
metic, and 3) complexity results about the reachability problem for flat
VASS.

Keywords: Formal methods · Petri nets · Flat systems · Presburger
arithmetic

1 Introduction

Vector addition systems with states [30], or equivalently vector addition sys-
tems [31], or Petri nets are one of the most popular formal methods for the
representation and the analysis of parallel processes [24]. The central algorith-
mic problem is reachability: whether from a given initial configuration there
exists a sequence of valid execution steps that reaches a given final configura-
tion. Many computational problems reduce to this reachability problem in logic,
complexity, real-time systems, protocols [28,49].

A d-dimensional vector addition system (d-VASS, or just VASS when the
dimension d is not relevant) is a pair V = (Q,T) where Q is a non empty finite
set of elements called states, and T is a finite set of triples in Q ×Z

d × Q called
transitions. A configuration is a pair (q, x) ∈ Q ×N

d also denoted as q(x) in the
sequel, and an action is a vector in Z

d. The semantics is defined by introducing
for each transition t the binary relation t−→ over the configurations defined by
p(x) t−→ q(y) if t = (p, y − x, q). We also associate to a word σ = t1 . . . tk of

The author is supported by the grant ANR-17-CE40-0028 of the French National
Research Agency ANR (project BRAVAS).

c© Springer Nature Switzerland AG 2021
D. Buchs and J. Carmona (Eds.): PETRI NETS 2021, LNCS 12734, pp. 17–30, 2021.
https://doi.org/10.1007/978-3-030-76983-3_2

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76983-3_2&domain=pdf
http://orcid.org/0000-0002-7214-9467
https://doi.org/10.1007/978-3-030-76983-3_2

18 J. Leroux

transitions t1, . . . , tk the binary relation σ−→ over the configurations defined by
p(x) σ−→ q(y) if there exists a sequence c0, . . . , ck of configurations such that:

p(x) = c0
t1−→ c1 · · · tk−→ ck = q(y)

The reachability set from a set Cin of configurations is the set ReachV (Cin) of
configurations c such that cin

σ−→ c for some configuration cin ∈ Cin and some
word σ of transitions.

Example 1. Let us consider the VASS V depicted bellow. This VASS has a loop
on state p and another loop on state q. Intuitively, iterating the loop on state p
transfers the content of the first counter to the second counter whereas iterating
the loop on state q transfers and multiplies by two the content of the second
counter to the first counter. Let us denote by t1, t2, t3 and t4 the transitions
(p, (−1, 1), p), (p, (0, 0), q), (q, (2,−1), q) and (q, 0, 0, p). We can prove that the
reachability set from {p(1, 0)} is equal to {p, q} × {(n,m) | n + m ≥ 1} by
observing that if n,m ∈ N satisfy n + m ≥ 1 then:

p(1, 0)
(t1t2t3t4)

n+m−1

−−−−−−−−−−→ p(n + m, 0)
tm1−−→ p(n,m) t2−→ q(n,m)

p q

(0, 0)

(−1, 1)
(0, 0)

(2,−1)

The reachability problem takes as input a VASS V and two configurations
cin, cout and it decides if there exists a word σ of transitions such that cin

σ−→ cout.
After an incomplete proof by Sacerdote and Tenney [48], decidability of the
problem was established by Mayr [44,45], whose proof was then simplified by
Kosaraju [32]. Building on the further refinements made by Lambert in the
1990s [34], in 2015, a first complexity upperbound of the reachability problem
was provided [39] more than thirty years after the presentation of the algorithm
introduced by Mayr [32,34,44,45]. The upperbound given in that paper is cubic
Ackermannian. This complexity is obtained by analyzing the computation com-
plexity of the Mayr algorithm. By refining this algorithm and by introducing a
new ranking function proving the termination of this refinement, an Ackerman-
nian complexity upperbound was obtained in [40]. This paper also showed that
the reachability problem in fixed dimension is primitive recursive by bounding
the length of executions thanks to the Grzegorczyk hierarchy. Based on this
bound, in [43], the reachability problem for general VASS is shown to be inter-
reducible in log-space to the reachability problem for structurally bounded VASS
when numbers are encoded in unary or in binary. Let us recall that a VASS is
said to be structurally bounded if the reachability set is finite from any initial
configuration, and this property is decidable in polynomial time (even when
numbers are encoded in binary) thanks to the Kosaraju-Sullivan algorithm [33].

Flat Petri Nets (Invited Talk) 19

The reachability problem for structurally bounded VASS can be decided by a
deterministic brute-force exploration in an obvious way. The computational com-
plexity of such an algorithm is known to be Ackermannian [47]. Moreover, due
to the family of VASS introduced in [46] this bound is tight. It follows that the
reachability problem for general VASS can be solved with a simple determin-
istic brute-force algorithm, and last but not least, the reachability problem for
structurally bounded VASS is a central problem.

In this paper, we present results about the reachability problem for VASS
related to Presburger arithmetic fo(N,+). In this context, a set C of con-
figurations in Q × N

d is said to be Presburger if there exists a sequence
(φq)q∈Q of formulas φq in Presburger arithmetic denoting sets Xq ⊆ N

d such
that C =

⋃
q∈Q{q} × Xq. In Sect. 2 we present a simple algorithm for decid-

ing the reachability problem for VASS based on Presburger inductive invariant
that shows that the Presburger sets of configurations are central for deciding
the reachability problem for VASS even if, as shown in Example 2, there exists
VASS with non Presburger reachability sets. In Sect. 3 we shows that the reach-
ability set of a VASS is Presburger, if and only if, it is flattable, i.e. the VASS
can be unfolded into a VASS without nested cycles called flat VASS. In Sect. 4
we present complexity results about the reachability problem for flat VASS.

Example 2. In 1979, Hopcroft and Pansiot [30] introduced the VASS depicted
bellow. This VASS exhibit a non Presburger reachability set from the initial
configuration p(1, 0, 0). Intuitively, on the first and the second counters, the
behaviour of that VASS is the same as the one introduced in Example 1. The
third counter is incremented each time we come back to state p from q. In [30]
the reachability set from the initial configuration p(1, 0, 0) is proved equal to the
following set:

{p(x1, x2, x3) | x1 + x2 ≤ 2x3} ∪ {q(x1, x2, x3) | x1 + 2x2 ≤ 2x3+1}

p q

(0, 0, 0)

(−1, 1, 0)
(0, 0, 1)

(2,−1, 0)

2 Presburger Inductive Invariants

We present in this section a simple algorithm for deciding the reachability prob-
lem based on Presburger inductive invariants [35–37] that may have an optimal
complexity (this is an open problem). A set C of configurations is called an induc-
tive invariant for a VASS V if for every configurations c, c′ and every transition
t such that c

t−→ c′, then c ∈ C implies c′ ∈ C.

Theorem 1. ([35]). For every VASS V , for every Presburger sets of config-
urations Cin, Cout, either cin

σ−→ cout for some configurations cin ∈ Cin and

20 J. Leroux

cout ∈ Cout and some word σ of transitions, or there exists a Presburger inductive
invariant C that contains Cin and disjoints from Cout.

Since we can decide if a sequence of Presburger formulas denotes an inductive
invariant with classical algorithms deciding Presburger arithmetic, the previous
theorem shows that a brute-force non-deterministic exploration of the reacha-
bility set and sequences of Presburger formulas provides a simple algorithm for
deciding the reachability problem. Whereas the proof in [35] was based on a
refinement of Lambert’s algorithm, in [36] a direct proof based on a well quasi
order over the executions is provided. This proof was then simplified a bit more
in a paper [37] that received a best paper award at Alan Turing centenary con-
ference in 2012. In those two last papers, Presburger formulas denoting inductive
invariants are obtained by proving that reachability sets are “asymptotically”
definable in Presburger arithmetic.

Example 3. Let us come back to Example 2. Notice that the reachability set
from the initial configuration p(1, 0, 0) is not Presburger. Let us introduce the
non-decreasing sequence (Cn)n∈N of Presburger sets defined as follows:

Cn = {p(x1, x2, x3) |
n∨

i=0

(x1 + x2 ≤ 2i ∧ x3 = i) ∨ x3 > n}∪

{q(x1, x2, x3) |
n∨

i=0

(x1 + 2x2 ≤ 2i+1 ∧ x3 = i) ∨ x3 > n}

Notice that Cn is an inductive invariant that contains the initial configuration
p(1, 0, 0) and since

⋂
n∈N

Cn is the reachability set from p(1, 0, 0), it follows that
for every configuration cout outside of this reachability set, there exists n such
that cout
∈ Cn.

3 Flat and Flattable VASS

When the reachability set of a VASS is infinite from an initial configuration, a
brute-force exploration of the reachability set fails. However, even in that case
the computation of the reachability sets may still be possible by using Pres-
burger arithmetic for symbolically representing infinite sets of configurations
and by using acceleration techniques to discover infinite sets of reachable config-
urations. Intuitively, acceleration techniques consist in computing symbolically
the effect of iterating cycles of the system. Those techniques were studied for sev-
eral models: systems with FIFO channels [9–11,15,16], time [2,3,12,13], other
data structures [17], and systems manipulating counters including the VASS
model [4–6,8,14,18,19,27].

Acceleration techniques for VASS are related to the class of flat VASS. For-
mally, a VASS V is said to be flat if for every state q, there exists at most one
simple cycle on q (intuitively no nested cycles).

Flat Petri Nets (Invited Talk) 21

Example 4. The two VASS depicted in Example 1 and Example 2 are not flat.
The VASS depicted below is flat.

p1 q2 p3 q3

p2 q1
(0, 0)

(0, 0)

(−1, 1) (2,−1)

(0, 0)

(−1, 1)

(0, 0)

The reachability set of a flat VASS is clearly Presburger by compiling in Pres-
burger arithmetic the effect of iterating simple cycles [27]. The problem of decid-
ing if the reachability set of a general (non flat) VASS from an initial Presburger
set of configurations is Presburger was studied thirty years ago independently
by Dirk Hauschildt during his PhD [29] and Jean-Luc Lambert. Unfortunately,
these two works were never published. Moreover, from these works, it is difficult
to derive a simple algorithm for computing Presburger formulas denoting the
reachability set. In [38] a simple algorithm for computing such a formula based
on flat VASS is given. Intuitively when a VASS V is not flat, one can try to
unfold it into a flat VASS V ′ such that the reachability set of V from a Pre-
burger set Cin can be derived from the reachability set of V ′ from a Preburger
set C ′

in derived from Cin.
More formally, an unfolding of a VASS V = (Q,T) is a pair (V ′, f) where

V ′ = (Q′, T ′) is a VASS and f : Q′ → Q is a total mapping such that
(f(p′), a, f(q′)) is in T for every transition (p′, a, q′) ∈ T ′. We observe that for
every set of configurations Cin of V , we have where f is extended over the con-
figurations by f(q′, x) = (f(q′), x) for every configuration (q′, x) ∈ Q′ × N

d:

f(ReachV ′(f−1(Cin))) ⊆ ReachV (Cin)

When the previous inclusion is an equality, the unfolding is said to be complete
from Cin. An unfolding is called a flattening when V ′ is flat [7]. A VASS V is said
to be flattable from a set Cin of initial configurations if there exists a flattening
of V complete from Cin (see [42] for various examples of flattable VASS).

Theorem 2. ([38]). For every VASS V , for every Presburger set Cin of con-
figurations, the reachability set ReachV (Cin) is Presburger if, and only if, V is
flattable from Cin.

It follows that if the reachability set from an initial Presburger set of config-
urations is Presburger, a sequence of Presburger formulas denoting the reach-
ability set can be computed by finding the right flattening. In [26] heuristics
and algorithms for finding such a flattening are presented. Those heuristics are
implemented in the tool FAST [4–6] for analyzing Minsky machines, a class of
systems strictly extending VASS with undecidable reachability problem.

22 J. Leroux

Remark 1. In [38], a stronger version of Theorem 2 is proved. More precisely, it
is shown that for every VASS V , for every Presburger set Cin of configurations,
and for every Presburger set C ⊆ ReachV (Cin), there exists a flattening (V ′, f)
of V such that C ⊆ f(ReachV ′(f−1(Cin))). This extension is used in [25] in order
to provide witnesses of well-specification for population protocols [1].

Example 5. Let V = (Q,T) be the VASS introduced in Example 1, V ′ = (Q′, T ′)
be the flat VASS introduced in Example 4, and f : Q′ → Q defined by f(pi) = p
and f(qi) = q for every i ∈ {1, 2, 3}. Observe that (V ′, f) is a flattening of
V . Moreover, we derive from Example 1 that this flattening is complete from
{p(1, 0)}. It follows that V is flattable from {p(1, 0)}.

Flattening are also used for deriving fine complexity results for the reach-
ability problem for 2-VASS. Recall that the reachability sets from an initial
configuration have been shown to be effectively Presburger for 2-VASS in [30].
In [41], it was proved that for every 2-VASS V there exists a flattening (V ′, f)
of V effectively computable such that for every configuration p(x), q(y), we have
p(x) ∗−→V q(y) if, and only if, there exist two states p′ ∈ f−1(p) and q′ ∈ f−1(q)
such that p′(x) ∗−→V ′ q′(y). Based on a similar proof, ten years later, it was proved
that for every 2-VASS V , there exists a family F of flattening (V ′, f) of V of
“small sizes” such that for every configurations p(x), q(y), we have p(x) ∗−→V q(y)
if, and only if, there exists a flattening (V ′, f) in F and states p′ ∈ f−1(p) and
q′ ∈ f−1(q) such that p′(x) ∗−→V ′ q′(y). From this result the reachability prob-
lem for 2-VASS encoded in binary was proved to be PSPACE-complete in the
same paper. Finally, thanks to the family F , and the fact that the reachability
problem for flat 2-VASS encoded in unary is NL-complete [23], the reachability
problem for general 2-VASS encoded in unary was proved NL-complete in [23].

4 Reachability Problem for Flat VASS

In this section we present some complexity lowerbounds of the reachability prob-
lem for flat VASS. In that context, the subclass of ultraflat VASS will play
a central role. Formally, an ultraflat VASS is a VASS V = (Q,T) such that
Q = {q1, . . . , qn} with n = |Q|, and T = {(qj−1, (0, . . . , 0), qj) | 2 ≤ j ≤
n} ∪ {(qj , aj , qj) | 1 ≤ j ≤ n} for some actions a1, . . . , an. An ultraflat VASS is
clearly flat since (qj , aj , qj) is the unique simple cycle on qj for every j.

The reachability problem for flat 1-VASS with numbers encoded in binary
can be easily proved NP-hard by reduction of the subset sum problem. Let us
recall that the subset sum problem takes as input a sequence s, s1, . . . , sk of
natural numbers encoded in binary and it decides if there exists a finite set
I ⊆ {1, . . . , k} such that s =

∑
i∈I si. The following lemma shows that this

lowerbound also holds for ultraflat 1-VASS in binary.

Lemma 1. The reachability problem for ultraflat 1-VASS with numbers encoded
in binary is NP-hard.

Flat Petri Nets (Invited Talk) 23

Proof. Let us consider an instance s, s1, . . . , sk of the subset sum problem. We
can assume that 0 < s <

∑k
j=1 sj and k ≥ 2 since other instances are trivially

accepting or non accepting. We introduce x =
∑k

j=1(1 + sj). Notice that x ≥ 4,
s + k < x, and 1 + sj < x for every 1 ≤ j ≤ k.

We introduce the ultraflat 1-VASS V = (Q,T) defined by the set of states
Q = {p1, q1, . . . , pk, qk}, and the set of transitions T that contains the transitions
labeled by 0 that connect the states of Q to form an ultraflat VASS, and the
transitions αj = (pj , uj , pj) and βj = (qj , vj , qj) with vj = 1−(x−1)x2k+1−j and
uj = sj +vj for every 1 ≤ j ≤ k. Let us prove that p1(x2k+1) ∗−→ qk(xk+1 +s+k)
if, and only if, there exists J ⊆ {1, . . . , k} such that s =

∑
j∈J sj .

Assume first that p1(x2k+1) ∗−→ qk(xk+1 + s + k). Since V is an ultraflat
VASS, there exist sequences (nj)1≤j≤k, (mj)1≤j≤k, (aj)1≤j≤k+1, and (bj)1≤j≤k

of natural numbers with a1 = x2k+1, ak+1 = xk+1 + s + k, and such that for
every 1 ≤ j ≤ k, we have:

pj(aj)
α

mj
j−−−→ pj(bj) qj(bj)

β
nj
j−−→ qj(aj+1)

It follows that aj+1 = aj + mjuj + njvj for every 1 ≤ j ≤ k.
From 1 + sj < x, we derive uj < x − (x − 1)xk+1 ≤ (2 − x)xk+1 ≤ −xk+1

since x ≥ 3. As vj ≤ uj , we have proved that uj , vj < −xk+1. Since ak+1 =
a1 +

∑k
j=1 mjuj + njvj ≤ x2k+1 − (xk+1 + 1)

∑k
j=1(mj + nj), and ak+1 ≥

0, we get
∑k

j=1 mj + nj < xk. Moreover, since uj = 1 + sj mod xk+1 and
vj = 1 mod xk+1, we deduce from aj+1 = aj + mjuj + njvj that aj+1 =
aj + mj(1 + sj) + nj mod xk+1. It follows that ak+1 = a1 + r mod xk+1 where
r =

∑k
j=1(mj(1 + sj) + nj). As ak+1 = s + k mod xk+1 and a1 = 0 mod xk+1

we get r = s + k mod xk+1. Since r ≤ (xk − 1)
∑k

j=1(1 + sj) < xk+1 and

s+k < x ≤ xk+1 we deduce that r = s+k. In particular
∑k

j=1(mj +nj) ≤ s+k.
Assume by contradiction that there exists � ∈ {1, . . . , k} such that m�+n�
= 1

and let � be the minimal one. By induction we deduce that a� = x2k+2−�+�−1+∑
j∈J sj where J = {j ∈ {1, . . . , �−1} | mj = 1}. It follows that a� < x2k+2−�+x.
Notice that if m� + n� ≥ 2 then:

a�+1 = a� + m�u� + n�v�

≤ a� + (m� + n�)u�

< x2k+2−� + x + 2(x − (x − 1)x2k+1−�)

≤ x2k+1−�(2 − x) + 3x

≤ −xk+1 + x2

≤ 0

And we get a contradiction with a�+1 ≥ 0. Therefore m� + n� ≤ 1 and since
m� +n�
= 1 we deduce that m� = n� = 0. It follows that a�+1 = a�. In particular
a�+1 ≥ x2k+2−�.

24 J. Leroux

Now, observe that ak+1 = a�+1+
∑k

j=�+1 njuj +mjvj ≥ a�+1+
∑k

j=�+1(nj +
mj)v�+1 ≥ a�+1 + (s + k)v�+1. It follows that ak+1 ≥ x2k+2−� + (s + k)(1 − (x −
1)x2k−�) = x2k−�(x2 − (s + k)(x − 1)) + s + k. Since s + k ≤ x − 1, we deduce
that x2 − (s + k)(x − 1) ≥ x2 − (x − 1)2 = 2x − 1 > x since x ≥ 2. In particular
ak+1 > xk+1 + s + k = ak+1 and we get a contradiction.

It follows that mj + nj = 1 for every 1 ≤ j ≤ k. Let us introduce J = {j ∈
{1, . . . , k} | mj = 1}. An immediate induction shows that ak+1 = xk+1 + k +∑

j∈J sj . Since ak+1 = xk+1 + k + s, we get s =
∑

j∈J sj .
Conversely, observe that if there exists J ⊆ {1, . . . , k} such that s =

∑
j∈J sj

then p1(x2k+1) ∗−→ qk(xk+1 + s + k) by considering the sequence (mj)1≤j≤k and
(nj)1≤j≤k satisfying (mj , nj) = (1, 0) if j ∈ J and (mj , nj) = (0, 1) otherwise. ��

When the dimension is part of the input, the following lemma shows that
the reachability problem for ultraflat VASS in unary is also NP-hard.

Lemma 2. The reachability problem for ultraflat VASS with numbers encoded
in unary is NP-hard.

Proof. Let us consider an instance s, s1, . . . , sk of the subset sum problem. We
can assume that s ≤ ∑k

j=1 sj . We consider the minimal � ∈ N such that
∑k

j=1 sj < 2�, and we let d = � + k. We denote by z the zero vector of N
d,

and we denote by ei the ith unit vector of Nd defined by ei(i) = 1 and ei(j) = 0
if j
= i. We denote for a natural number n < 2� the vector bin(n) ∈ N

d defined
as

∑�
i=1 biei where b1, . . . , b� ∈ {0, 1} are such that n =

∑�
i=1 bi2i−1.

We introduce the ultraflat d-VASS V = (Q,T) where Q is the set of states
q1, p1 . . . , qk, pk, qk+1, . . . , qk+�, and T is the set of transitions that contains the
transitions labeled by z that connect the states of Q to form an ultraflat VASS,
the transitions (qj ,−e�+k, qj) and (pj ,−e�+k + bin(sj), pj) for every 1 ≤ j ≤ k,
transitions (qk+i,−2ei + ei+1, qk+i) for every 1 ≤ i < �.

Just observe that q1(
∑k

j=1 e�+j)
∗−→ qk+�(bin(s)) if, and only if, there exists

J ⊆ {1, . . . , k} such that s =
∑k

j=1 sj . ��
Finally, let us consider the reachability problem for flat d-VASS where d is

fixed and numbers are encoded in unary. In this context, the complexity of the
problem is difficult to determined since we need to compute with a fix number
of counters large numbers with actions that involves only small numbers. This
intuition is confirmed up to the dimension 2. In fact, the reachability problem
for (not necessarily flat) 1-VASS encoded in unary is NL-complete by using a
classical hill-cutting argument. For flat 2-VASS encoded in unary, the reacha-
bility problem was also proved to be NL-complete in [23] by observing that if
there exists a word σ such that cin

σ−→ cout for a flat 2-VASS, then there exists
another one with a length polynomially bounded in the size of the VASS and
the configurations cin, cout encoded in unary. Such a property is not trivial since
an hill-cutting argument can no longer be applied in that context as shown by
the following example.

Flat Petri Nets (Invited Talk) 25

Example 6. Let us introduce the family (Vn)n∈N of ultraflat 2-VASS parameter-
ized by a natural number n and depicted below (zero vectors are not depicted).
Intuitively, iterating the loop on a state pi transfers and multiplies by two the
content of the first counter to the second counter, iterating the loop on a state ri

transfers back the content of the second counter to the first counter, iterating the
loop on a state si transfers the content of the first counter to the second counter,
and iterating the loop on a state qi transfers back and divides by two the con-
tent of the second counter to the first counter. Observe that p1(1, 0) σn−−→ q1(1, 0)
where σn is a run obtained by executing each loop a maximal number of times.
It follows that σn is exponentially long in n. Moreover, the set Cn of configura-
tions c such that p1(1, 0) u−→ c

v−→ q1(1, 0) where u, v are such that σn = uv is
an exponential set of incomparable configurations for the relation defined by
p(x1, x2) q(y1, y2) if p = q, x1 ≤ y1 and x2 ≤ y2.

p1 r1 · · · pn rn

(−1, 2) (1,−1) (−1, 2) (1,−1)

q1 s1 · · · qn sn

(1,−2) (−1, 1) (1,−2) (−1, 1)

A complexity lowerbound better than NL is open for ultraflat 3-VASS. Start-
ing from that dimension, the minimal length of a word σ such that cin

σ−→ cout
can be exponentially long in the size of the VASS and the configurations cin, cout
encoded in unary as shown by the following example.

Example 7. Let us introduce the family (Vn)n∈N of ultraflat 3-VASS parameter-
ized by a natural number n and depicted below (zero vectors are not depicted).
Those VASS are presented as counter programs in [21]. Intuitively, the loop on
state p initialized the VASS from p(1, 0, 1) to a configuration p0(x, 0, x) where
x is any positive natural number. Iterating the loop on a state pi transfers and
multiplies by n+2−i

n+1−i the content of the first counter to the second counter, iterat-
ing the loop on a state ri transfers back the content of the second counter to the
first counter. By iterating all those loops, starting from p0(x, 0, x), if all the mul-
tiplications are performed exactly, we get the configuration q(x(n+1), 0, x) since∏n

i=1
n+2−i
n+1−i = n + 1. From such a configuration, by iterating the loop on state q

we get the configuration q(0, 0, 0). In order to obtain such an execution, we prove
in [21] that x is necessarily a non zero multiple of lcm(2,...,n+1)

n+1 which is expo-
nential in n. It follows that the minimal word σ such that p(1, 0, 1) σ−→ q(0, 0, 0)
is exponential in n.

26 J. Leroux

p p1 r1 · · · pn rn q

(1, 0, 1)

(−n, n + 1, 0)

(1,−1, 0)

(−1, 2, 0)

(1,−1, 0)

−(n + 1, 0, 1)

Based on Example 7, the reachability problem for flat 7-VASS in unary is
proved to be NP-complete in [21]. In a work in progress, we recently proved
that the problem is also NP-complete in dimension 5. It follows that the best
complexity lowerbound of the reachability problem for flat d-VASS is NL for
d ∈ {3, 4}. Proving that the reachability problem is NP-hard in those dimensions
requires to find a way to use counters in a non trivial way. Such a trick, if
it exists, could pave the way for increasing the best known complexity lower
bound [20] of the general (non flat) reachability problem for VASS in order to
match the Ackermannian complexity upper bound [40]. On the other side, the
best complexity upperbound of the reachability problem for ultraflat d-VASS
encoded in unary is NP for d ≥ 3. Proving that this problem is in P when
d ∈ {3, 4} could provide a way to prove that the reachability problem for flat
d-VASS in unary is in P.

5 Conclusion

We presented in this paper an overview of results about the reachability problem
for VASS related to Presburger arithmetic. Those results came from several peer
reviewed publications, except Lemma 1 and Lemma 2 (we are confident that
those results are correct, but, in case of, notice that when replacing ultraflat by
flat in those lemmas, proofs are almost immediate).

The complexity of the reachability problem for general VASS is still open. The
best known complexity lowerbound is a tower function with an height limited
by the dimension of the VASS. A possible way to lift up this bound to match
the Ackermannian upperbound is to find a trick to reuse some counters in a non
trivial way. We think that looking at the complexity of flat 3-VASS encoded in
unary may pave the way to get such a trick since if this problem is NP-hard,
in order to prove such a bound, we need to encode an NP-hard problem like
the subsetsum problem with only three counters and small actions. Intuitively
some counters must be reused along the computation. On the other hand, if the
problem is in P, we may obtain from the proof of that result a way to prove
that the reachability problem for general 3-VASS is elementary (the best known
upperbound is tower for structurally bounded 3-VASS).

In this paper, we did not present the vast set of results related to Petri
net extensions. Anyway, let us mention that the complexity of the reachability
problem for flat 3-VASS encoded in unary seems to be related to the complexity
of the coverability problem for pushdown 1-VASS [22].

Flat Petri Nets (Invited Talk) 27

References

1. Angluin, D., Aspnes, J., Diamadi, Z., Fischer, M.J., Peralta, R.: Computation in
networks of passively mobile finite-state sensors. In: Chaudhuri, S., Kutten, S.
(eds.) Proceedings of the Twenty-Third Annual ACM Symposium on Principles
of Distributed Computing, PODC 2004, St. John’s, Newfoundland, Canada, July
25–28, 2004, pp. 290–299. ACM (2004). https://doi.org/10.1145/1011767.1011810

2. Annichini, A., Asarin, E., Bouajjani, A.: Symbolic techniques for parametric rea-
soning about counter and clock systems. In: Emerson, E.A., Sistla, A.P. (eds.) CAV
2000. LNCS, vol. 1855, pp. 419–434. Springer, Heidelberg (2000). https://doi.org/
10.1007/10722167 32

3. Annichini, A., Bouajjani, A., Sighireanu, M.: TReX: a tool for reachability analysis
of complex systems. In: Berry, G., Comon, H., Finkel, A. (eds.) CAV 2001. LNCS,
vol. 2102, pp. 368–372. Springer, Heidelberg (2001). https://doi.org/10.1007/3-
540-44585-4 34

4. Bardin, S., Finkel, A., Leroux, J.: FASTer acceleration of counter automata in
practice. In: Jensen, K., Podelski, A. (eds.) TACAS 2004. LNCS, vol. 2988, pp.
576–590. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-24730-
2 42

5. Bardin, S., Finkel, A., Leroux, J., Petrucci, L.: FAST: fast acceleration of symbolic
transition systems. In: Hunt, W.A., Somenzi, F. (eds.) CAV 2003. LNCS, vol.
2725, pp. 118–121. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-45069-6 12

6. Bardin, S., Leroux, J., Point, G.: FAST extended release. In: Ball, T., Jones, R.B.
(eds.) CAV 2006. LNCS, vol. 4144, pp. 63–66. Springer, Heidelberg (2006). https://
doi.org/10.1007/11817963 9

7. Bardin, S., Finkel, A., Leroux, J., Schnoebelen, P.: Flat acceleration in symbolic
model checking. In: Peled, D.A., Tsay, Y.-K. (eds.) ATVA 2005. LNCS, vol. 3707,
pp. 474–488. Springer, Heidelberg (2005). https://doi.org/10.1007/11562948 35

8. Boigelot, B.: On iterating linear transformations over recognizable sets of integers.
Theor. Comput. Sci. 309(1–3), 413–468 (2003). https://doi.org/10.1016/S0304-
3975(03)00314-1

9. Boigelot, B.: Domain-specific regular acceleration. Int. J. Softw. Tools Technol.
Transf. 14(2), 193–206 (2012). https://doi.org/10.1007/s10009-011-0206-x

10. Boigelot, B., Godefroid, P.: Symbolic verification of communication protocols with
infinite state spaces using qdds. Formal Methods Syst. Des. 14(3), 237–255 (1999).
https://doi.org/10.1023/A:1008719024240

11. Boigelot, B., Godefroid, P., Willems, B., Wolper, P.: The power of QDDs (extended
abstract). In: Van Hentenryck, P. (ed.) SAS 1997. LNCS, vol. 1302, pp. 172–186.
Springer, Heidelberg (1997). https://doi.org/10.1007/BFb0032741

12. Boigelot, B., Herbreteau, F.: The power of hybrid acceleration. In: Ball, T., Jones,
R.B. (eds.) CAV 2006. LNCS, vol. 4144, pp. 438–451. Springer, Heidelberg (2006).
https://doi.org/10.1007/11817963 40

13. Boigelot, B., Herbreteau, F., Mainz, I.: Acceleration of affine hybrid transforma-
tions. In: Cassez, F., Raskin, J.-F. (eds.) ATVA 2014. LNCS, vol. 8837, pp. 31–46.
Springer, Cham (2014). https://doi.org/10.1007/978-3-319-11936-6 4

14. Boigelot, B., Wolper, P.: Symbolic verification with periodic sets. In: Dill, D.L.
(ed.) CAV 1994. LNCS, vol. 818, pp. 55–67. Springer, Heidelberg (1994). https://
doi.org/10.1007/3-540-58179-0 43

https://doi.org/10.1145/1011767.1011810
https://doi.org/10.1007/10722167_32
https://doi.org/10.1007/10722167_32
https://doi.org/10.1007/3-540-44585-4_34
https://doi.org/10.1007/3-540-44585-4_34
https://doi.org/10.1007/978-3-540-24730-2_42
https://doi.org/10.1007/978-3-540-24730-2_42
https://doi.org/10.1007/978-3-540-45069-6_12
https://doi.org/10.1007/978-3-540-45069-6_12
https://doi.org/10.1007/11817963_9
https://doi.org/10.1007/11817963_9
https://doi.org/10.1007/11562948_35
https://doi.org/10.1016/S0304-3975(03)00314-1
https://doi.org/10.1016/S0304-3975(03)00314-1
https://doi.org/10.1007/s10009-011-0206-x
https://doi.org/10.1023/A:1008719024240
https://doi.org/10.1007/BFb0032741
https://doi.org/10.1007/11817963_40
https://doi.org/10.1007/978-3-319-11936-6_4
https://doi.org/10.1007/3-540-58179-0_43
https://doi.org/10.1007/3-540-58179-0_43

28 J. Leroux

15. Bouajjani, A., Habermehl, P.: Symbolic reachability analysis of FIFO-channel sys-
tems with nonregular sets of configurations. In: Degano, P., Gorrieri, R., Marchetti-
Spaccamela, A. (eds.) ICALP 1997. LNCS, vol. 1256, pp. 560–570. Springer, Hei-
delberg (1997). https://doi.org/10.1007/3-540-63165-8 211

16. Bouajjani, A., Habermehl, P.: Symbolic reachability analysis of fifo-channel sys-
tems with nonregular sets of configurations. Theor. Comput. Sci. 221(1–2), 211–
250 (1999). https://doi.org/10.1016/S0304-3975(99)00033-X

17. Bozga, M., Iosif, R.: On flat programs with lists. In: Cook, B., Podelski, A. (eds.)
VMCAI 2007. LNCS, vol. 4349, pp. 122–136. Springer, Heidelberg (2007). https://
doi.org/10.1007/978-3-540-69738-1 9

18. Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. In: Bugliesi,
M., Preneel, B., Sassone, V., Wegener, I. (eds.) ICALP 2006. LNCS, vol. 4052, pp.
577–588. Springer, Heidelberg (2006). https://doi.org/10.1007/11787006 49

19. Bozga, M., Iosif, R., Lakhnech, Y.: Flat parametric counter automata. Fundam.
Informaticae 91(2), 275–303 (2009). https://doi.org/10.3233/FI-2009-0044

20. Czerwiński, W., Lasota, S., Lazić, R., Leroux, J., Mazowiecki, F.: The reachabil-
ity problem for petri nets is not elementary. In: Proceedings of the 51st Annual
ACM SIGACT Symposium on Theory of Computing, STOC 2019, Phoenix, AZ,
USA, June 23–26, 2019, pp. 24–33. ACM (2019). https://doi.org/10.1145/3313276.
3316369

21. Czerwinski, W., Lasota, S., Lazic, R., Leroux, J., Mazowiecki, F.: Reachability
in fixed dimension vector addition systems with states. In: Konnov, I., Kovács,
L. (eds.) 31st International Conference on Concurrency Theory, CONCUR 2020,
September 1–4, 2020, Vienna, Austria (Virtual Conference). LIPIcs, vol. 171, pp.
48:1–48:21. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2020). https://doi.
org/10.4230/LIPIcs.CONCUR.2020.48

22. Englert, M., Hofman, P., Lasota, S., Lazic, R., Leroux, J., Straszynski, J.: A lower
bound for the coverability problem in acyclic pushdown VAS. Inf. Process. Lett.
167, 106079 (2021). https://doi.org/10.1016/j.ipl.2020.106079

23. Englert, M., Lazic, R., Totzke, P.: Reachability in two-dimensional unary vector
addition systems with states is nl-complete. In: Grohe, M., Koskinen, E., Shankar,
N. (eds.) Proceedings of the 31st Annual ACM/IEEE Symposium on Logic in
Computer Science, LICS 2016, New York, NY, USA, July 5–8, 2016, pp. 477–484.
ACM (2016). https://doi.org/10.1145/2933575.2933577

24. Esparza, J., Nielsen, M.: Decidability issues for petri nets - a survey. Bull. Eur.
Assoc. Theor. Comput. Sci. 52, 245–262 (1994)

25. Esparza, J., Ganty, P., Leroux, J., Majumdar, R.: Verification of population pro-
tocols. In: Aceto, L., de Frutos-Escrig, D. (eds.) 26th International Conference on
Concurrency Theory, CONCUR 2015, Madrid, Spain, September 1.4, 2015. LIPIcs,
vol. 42, pp. 470–482. Schloss Dagstuhl - Leibniz-Zentrum für Informatik (2015).
https://doi.org/10.4230/LIPIcs.CONCUR.2015.470

26. Finkel, A., Leroux, J.: How to compose presburger-accelerations: applications to
broadcast protocols. In: Agrawal, M., Seth, A. (eds.) FSTTCS 2002. LNCS, vol.
2556, pp. 145–156. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36206-1 14

27. Fribourg, L., Olsén, H.: Proving safety properties of infinite state systems by compi-
lation into Presburger arithmetic. In: Mazurkiewicz, A., Winkowski, J. (eds.) CON-
CUR 1997. LNCS, vol. 1243, pp. 213–227. Springer, Heidelberg (1997). https://
doi.org/10.1007/3-540-63141-0 15

28. Hack, M.H.T.: Decidability questions for Petri nets. Ph.D. thesis, MIT (1975).
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-161.pdf

https://doi.org/10.1007/3-540-63165-8_211
https://doi.org/10.1016/S0304-3975(99)00033-X
https://doi.org/10.1007/978-3-540-69738-1_9
https://doi.org/10.1007/978-3-540-69738-1_9
https://doi.org/10.1007/11787006_49
https://doi.org/10.3233/FI-2009-0044
https://doi.org/10.1145/3313276.3316369
https://doi.org/10.1145/3313276.3316369
https://doi.org/10.4230/LIPIcs.CONCUR.2020.48
https://doi.org/10.4230/LIPIcs.CONCUR.2020.48
https://doi.org/10.1016/j.ipl.2020.106079
https://doi.org/10.1145/2933575.2933577
https://doi.org/10.4230/LIPIcs.CONCUR.2015.470
https://doi.org/10.1007/3-540-36206-1_14
https://doi.org/10.1007/3-540-36206-1_14
https://doi.org/10.1007/3-540-63141-0_15
https://doi.org/10.1007/3-540-63141-0_15
http://publications.csail.mit.edu/lcs/pubs/pdf/MIT-LCS-TR-161.pdf

Flat Petri Nets (Invited Talk) 29

29. Hauschildt, D.: Semilinearity of the Reachability Set is Decidable for Petri Nets.
Ph.D. thesis, University of Hamburg (1990)

30. Hopcroft, J.E., Pansiot, J.J.: On the reachability problem for 5-dimensional vector
addition systems. Theor. Comput. Sci. 8, 135–159 (1979)

31. Karp, R.M., Miller, R.E.: Parallel program schemata. J. Comput. Syst. Sci. 3(2),
147–195 (1969). https://doi.org/10.1016/S0022-0000(69)80011-5

32. Kosaraju, S.R.: Decidability of reachability in vector addition systems (preliminary
version). In: STOC, pp. 267–281. ACM (1982). https://doi.org/10.1145/800070.
802201

33. Kosaraju, S.R., Sullivan, G.F.: Detecting cycles in dynamic graphs in polynomial
time (preliminary version). In: Simon, J. (ed.) Proceedings of the 20th Annual ACM
Symposium on Theory of Computing, May 2–4, 1988, Chicago, Illinois, USA, pp.
398–406. ACM (1988). https://doi.org/10.1145/62212.62251

34. Lambert, J.: A structure to decide reachability in Petri nets. Theor. Comput. Sci.
99(1), 79–104 (1992). https://doi.org/10.1016/0304-3975(92)90173-D

35. Leroux, J.: The general vector addition system reachability problem by Presburger
inductive invariants. In: Logical Methods in Computer Science, vol. 6, no. 3 (2010).
https://doi.org/10.2168/LMCS-6(3:22)2010

36. Leroux, J.: Vector addition system reachability problem: a short self-contained
proof. In: POPL, pp. 307–316. ACM (2011). https://doi.org/10.1145/1926385.
1926421

37. Leroux, J.: Vector addition systems reachability problem (A simpler solution). In:
Turing-100. EPiC Series in Computing, vol. 10, pp. 214–228. EasyChair (2012).
http://www.easychair.org/publications/paper/106497

38. Leroux, J.: Presburger vector addition systems. In: 28th Annual ACM/IEEE Sym-
posium on Logic in Computer Science, LICS 2013, New Orleans, LA, USA, June
25–28, 2013, pp. 23–32. IEEE Computer Society (2013). https://doi.org/10.1109/
LICS.2013.7

39. Leroux, J., Schmitz, S.: Demystifying reachability in vector addition systems. In:
30th Annual ACM/IEEE Symposium on Logic in Computer Science, LICS 2015,
Kyoto, Japan, July 6–10, 2015, pp. 56–67. IEEE Computer Society (2015). https://
doi.org/10.1109/LICS.2015.16

40. Leroux, J., Schmitz, S.: Reachability in vector addition systems is primitive-
recursive in fixed dimension. In: 34th Annual ACM/IEEE Symposium on Logic
in Computer Science, LICS 2019, Vancouver, BC, Canada, June 24–27, 2019, pp.
1–13. IEEE (2019). https://doi.org/10.1109/LICS.2019.8785796

41. Leroux, J., Sutre, G.: On flatness for 2-dimensional vector addition systems with
states. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
402–416. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-
8 26

42. Leroux, J., Sutre, G.: Flat counter automata almost everywhere! In: Software
Verification: Infinite-State Model Checking and Static Program Analysis, 19.02. -
24.02.2006. Dagstuhl Seminar Proceedings, vol. 06081. Internationales Begegnungs-
und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl, Germany (2006).
http://drops.dagstuhl.de/opus/volltexte/2006/729

43. Leroux, J.: When reachability meets grzegorczyk. In: Hermanns, H., Zhang, L.,
Kobayashi, N., Miller, D. (eds.) LICS 2020: 35th Annual ACM/IEEE Symposium
on Logic in Computer Science, Saarbrücken, Germany, July 8–11, 2020, pp. 1–6.
ACM (2020). https://doi.org/10.1145/3373718.3394732

https://doi.org/10.1016/S0022-0000(69)80011-5
https://doi.org/10.1145/800070.802201
https://doi.org/10.1145/800070.802201
https://doi.org/10.1145/62212.62251
https://doi.org/10.1016/0304-3975(92)90173-D
https://doi.org/10.2168/LMCS-6(3:22)2010
https://doi.org/10.1145/1926385.1926421
https://doi.org/10.1145/1926385.1926421
http://www.easychair.org/publications/paper/106497
https://doi.org/10.1109/LICS.2013.7
https://doi.org/10.1109/LICS.2013.7
https://doi.org/10.1109/LICS.2015.16
https://doi.org/10.1109/LICS.2015.16
https://doi.org/10.1109/LICS.2019.8785796
https://doi.org/10.1007/978-3-540-28644-8_26
https://doi.org/10.1007/978-3-540-28644-8_26
http://drops.dagstuhl.de/opus/volltexte/2006/729
https://doi.org/10.1145/3373718.3394732

30 J. Leroux

44. Mayr, E.W.: An algorithm for the general petri net reachability problem. In: Pro-
ceedings of the 13th Annual ACM Symposium on Theory of Computing, May
11–13, 1981, Milwaukee, Wisconsin, USA, pp. 238–246. ACM (1981). https://doi.
org/10.1145/800076.802477

45. Mayr, E.W.: An algorithm for the general Petri net reachability problem. SIAM
J. Comput. 13(3), 441–460 (1984). https://doi.org/10.1137/0213029

46. Mayr, E.W., Meyer, A.R.: The complexity of the finite containment problem for
petri nets. J. ACM 28(3), 561–576 (1981). https://doi.org/10.1145/322261.322271

47. McAloon, K.: Petri nets and large finite sets. Theor. Comput. Sci. 32, 173–183
(1984). https://doi.org/10.1016/0304-3975(84)90029-X

48. Sacerdote, G.S., Tenney, R.L.: The decidability of the reachability problem for
vector addition systems (preliminary version). In: Proceedings of the 9th Annual
ACM Symposium on Theory of Computing, May 4–6, 1977, Boulder, Colorado,
USA, pp. 61–76. ACM (1977). https://doi.org/10.1145/800105.803396

49. Schmitz, S.: The complexity of reachability in vector addition systems. SIGLOG
News 3(1), 4–21 (2016). https://dl.acm.org/citation.cfm?id=2893585

https://doi.org/10.1145/800076.802477
https://doi.org/10.1145/800076.802477
https://doi.org/10.1137/0213029
https://doi.org/10.1145/322261.322271
https://doi.org/10.1016/0304-3975(84)90029-X
https://doi.org/10.1145/800105.803396
https://dl.acm.org/citation.cfm?id=2893585

Application of Concurrency to System
Design

Cost and Quality in Crowdsourcing
Workflows

Löıc Hélouët1(B), Zoltan Miklos2, and Rituraj Singh2

1 INRIA Rennes, University of Rennes 1, Rennes, France
loic.helouet@inria.fr

2 University of Rennes 1, Rennes, France
{zoltan.miklos,rituraj.singh}@irisa.fr

Abstract. Crowdsourcing platforms provide tools to replicate and dis-
tribute micro tasks (simple, independent work units) to crowds and
assemble results. However, real-life problems are often complex: they
require to collect, organize or transform data, with quality and costs
constraints. This work considers dynamic realization policies for com-
plex crowdsourcing tasks. Workflows provide ways to organize a com-
plex task in phases and guide its realization. The challenge is then to
deploy a workflow on a crowd, i.e., allocate workers to phases so that
the overall workflow terminates, with good accuracy of results and at a
reasonable cost. Standard “static” allocation of work in crowdsourcing
affects a fixed number of workers per micro-task to realize and aggregates
the results. We define new dynamic worker allocation techniques that
consider progress in a workflow, quality of synthesized data, and remain-
ing budget. Evaluation on a benchmark shows that dynamic approaches
outperform static ones in terms of cost and accuracy.

Keywords: Crowdsourcing · Data-centric workflows

1 Introduction

Despite recent advances in artificial intelligence and machine learning, many
tasks still require human contributions. With the growing availability of Internet,
it is now possible to hire workers all around the world on crowdsourcing market-
places. Many crowdsourcing platforms have emerged in the last decade: Amazon
Mechanical Turk1, Figure Eight2, Wirk3, etc. They hire workers from a crowd to
solve problems [23]. A platform allows employers to post tasks, that are then real-
ized by workers in exchange for some incentives [3]. Common tasks include image
annotation, surveys, classification, recommendation, sentiment analysis, etc. [10].

Work supported by the Headwork ANR.
1 www.mturk.com.
2 www.appen.com.
3 www.wirk.com.

c© Springer Nature Switzerland AG 2021
D. Buchs and J. Carmona (Eds.): PETRI NETS 2021, LNCS 12734, pp. 33–54, 2021.
https://doi.org/10.1007/978-3-030-76983-3_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76983-3_3&domain=pdf
www.mturk.com
www.appen.com
www.wirk.com
https://doi.org/10.1007/978-3-030-76983-3_3

34 L. Hélouët et al.

The existing platforms support simple, repetitive and independent micro-tasks
which require a few minutes to an hour to complete.

However, many real-world problems are not simple micro-tasks, but rather
complex orchestrations of dependent tasks, that process input data and collect
workers answers for tasks requiring human expertize. Existing crowdsourcing
platforms provide interfaces to execute micro-tasks and access crowd, but lack
ways to specify and execute complex tasks. The next stage of crowdsourcing is
to design systems to specify more involved tasks over existing crowd platforms.
A natural solution is to define complex tasks as workflows, i.e., orchestrations of
phases that exchange data to achieve a final objective [27]. The data output by
an individual phase is passed to the next one(s) according to the workflow rules.

p0

Blur?
p1

Classify p2

Expert

pf DoutDin

(b)

(a)

Fig. 1. a) A workflow from SPIPOLL, b) Generating functions Pr(lij =yj |dj , αi, yj =1)

We illustrate complex workflows in Fig. 1-a). This workflow is an image anno-
tation process on SPIPOLL [5], a platform to survey populations of pollinating
insects. Contributors take pictures of insects that are then classified by crowd-
workers. Pictures are grouped in a dataset Din, input to node p0. The process is
the following. First, received images are filtered to eliminate bad pictures (fuzzy
or blurred ones) in phase p0. The remaining pictures are sent to workers who
try to classify them with the help of the SPIPOLL website. If classification is
too difficult, the image is sent to an expert. Initial classification is represented
by phase p1 in the workflow, and expert classification by p2. Pictures that were
discarded, classified easily or studied by experts are then assembled in a result
dataset Dout in phase pf , to do statistics on insect populations.

Workflows alone are not sufficient to handle complex tasks with crowdsourc-
ing. Many data-centric applications come with budget and quality constraints:
As human workers are prone to errors, one has to hire several workers to aggre-
gate a final answer with sufficient confidence. An unlimited budget allows hiring
large pools of workers to assemble reliable answers for each micro-task, but in
general, a client for a complex task has a limited budget. This forces to replicate
micro-tasks in an optimal way to achieve the best possible quality, but without

Cost and Quality in Crowdsourcing Workflows 35

exhausting the given budget. The objective is hence to obtain a reliable result,
forged through a complex orchestration, at a reasonable cost.

This paper proposes a solution for the efficient realization of complex tasks.
We define a workflow model, which orchestrates tasks and work distribution
according to a dynamic policy that considers confidence in aggregated data and
the cost to increase this confidence. A workflow can be seen as an orchestration
of phases, where the goal of each phase is to tag records from its input dataset.
The output of a phase is used as input for the next ones in the workflow. A
complex task terminates when the last of its phases has completed its tagging.
For simplicity, we consider simple Boolean tagging tasks that associate a tag
in {0, 1} to every record in a dataset. Each tagging task on each record is per-
formed by several workers to reduce errors, and the answers are assembled using
an aggregation technique. We assume that workers are uniformly paid. For each
record, one of the possible answers (called the ground truth) is correct, and an
aggregated answer is considered as reliable if its probability to be the ground
truth (computed by the aggregation technique) is high. Hiring more workers to
tag records increases the reliability of the aggregated answer. The overall chal-
lenge is hence to realize a workflow within a given budget B0, while guaranteeing
that the final dataset forged during the last phase of the workflow has a high
probability to be the ground truth.

Design choices influence realization and quality of workflows realization.
First, the chosen aggregation technique influences the quality of the final results.
Furthermore, the mechanisms used to hire workers impacts costs and accuracy
of answers. The simplest way to replicate micro-tasks is static execution, i.e.,
affect an identical fixed number of workers to each micro-task in the orchestra-
tion without exceeding budget B0. On the other hand, one can allocate workers
to tasks dynamically. One can wait in each phase to achieve a sufficient reliabil-
ity of answers for all records of the input before forwarding data. This is called
a synchronous execution of a workflow. Last, one can eagerly forward records
with reliable tags to the next phases without waiting for the total completion of
a phase. This is called an asynchronous execution.

We then study execution strategies for complex workflows in different con-
texts. We consider several types of workflows, different aggregation mechanisms
(namely Majority Voting (MV) and Expectation Maximization (EM) [12]), sev-
eral distributions of data, difficulty of tasks and workers expertize. We evaluate
the cost and accuracy of workflows execution in these contexts under static,
synchronous and asynchronous assignment of workers to tasks. Unsurprisingly,
dynamic distribution of work saves costs in all cases. A more surprising result is
that synchronous realization of complex tasks is in general more efficient than
asynchronous realization.

Related Work: Several works consider data centric models, deployment on
crowdsourcing platforms, and aggregation techniques to improve data quality.
Due to lack of space, we only mention some of them and refer readers to the
long version of this work [14] for a more complete bibliography.

36 L. Hélouët et al.

Coordination of tasks has been considered in many languages such as BPMN
[22], ORC [16], BPEL [21], or workflow nets [28], a variant of Petri nets dedicated
to business processes. They allow parallel or sequential execution of tasks, fork
and join operations to create or merge a finite number of parallel threads. Some
works propose empirical solutions for complex data acquisition, mainly at the
level of micro-tasks [10,19]. Crowdforge uses Map-Reduce techniques to solve
complex tasks [17]. Turkit [20] is a crash and rerun programming model. It builds
on an imperative language, that allows for repeated calls to services provided by a
crowdsourcing platform. Turkomatic [18] is a tool that recruits crowd workers to
help clients planning and solving complex jobs. It implements a Price, Divide and
Solve (PDS) loop, that asks crowd workers to divide a task into orchestrations
of subtasks, and repeats this operation up to the level of micro-tasks. A PDS
scheme is also used by [31] in a model based on hierarchical state machines that
orchestrates sub-tasks.

In this work, we assemble answers returned by workers using aggregation
techniques. Basic aggregation is majority voting (MV), i.e., a mechanism that
takes the most returned answer as final result for a tagging task. Several
approaches have improved MV by giving more weight to competent workers.
Other approaches use aggregation mechanisms based on Expectation Maximiza-
tion (EM), and consider workers competences, expressed in terms of accuracy
(ratio of correct answers) or in terms of recall and specificity (that considers cor-
rect classification for each possible type of answer). It is usually admitted [32]
that recall and specificity give a finer picture of worker’s competence than accu-
racy. We only highlight works that focus on EM or MV to aggregate data, and
refer interested readers to [32] for a more complete survey of the domain. Zen-
crowd [6] considers workers competences in terms of accuracy and aggregates
answers using EM. Workers accuracy and ground truth are hidden variables
that must be discovered in order to minimize the deviations between workers
answers and aggregated conclusion. D&S [4] uses EM to synthesize answers that
minimize error rates from a set of patient records. It considers recall and speci-
ficity, but not the difficulty of tasks. [15] proposes an algorithm to assign tasks
to workers, synthesize answers, and reduce the cost of crowdsourcing. It assumes
that all tasks have the same difficulty, and that workers reliability is a static
probability to return a correct value (i.e., the ground truth) that applies to all
types of tasks. EM is used by [24] to discover recall and specificity of workers and
propose a maximum-likelihood estimator that jointly learns a classifier, discovers
the best experts, and estimates the ground truth. Most of the works cited above
consider expertise of workers but do not address tasks difficulty. Approaches
such as GLAD [30] or [2] also estimate tasks difficulty to improve quality of
answers aggregation on a single batch of Boolean tagging tasks.

A few papers on data aggregation focus on costs optimization. CrowdBud-
get [26] is an approach that divides a budget B among K existing tasks to
replicate them and then aggregate answers with MV. Crowdinc [25] is an EM-
based aggregation technique that considers task difficulty, recall and specificity
of workers to realize a single batch of micro tasks with a good trade-off between

Cost and Quality in Crowdsourcing Workflows 37

costs and data quality. It computes accuracy of an aggregation, and launches
new tasks dynamically. The model proposed in this paper is a workflow that
orchestrates tasks, replicates them, distributes them and aggregates the returned
results before passing the forged dataset to the next tasks. It is a variant of the
complex workflow model proposed in [1], and it uses the aggregation technique
of Crowdinc [25] to forge reliable answers.

Some works consider deployment of tasks, i.e., synthesis of strategies to hire
workers and parallelize realization of batches of tasks. The objective is to improve
costs and latency, i.e., the time needed to treat a complete batch with an opti-
mal deployment. CLAMSHELL [13] focuses on latency improvement. It affects
workers to batches of tagging tasks and detects staggers. To speed up tasks
completion, some batches are replicated. Pools are assembled and maintained
by rewarding workers for waiting. This approach improves latency, but increases
costs. [9] uses Markov decision processes to dynamically adapt a pricing policy so
that batches of tasks are completed with the lowest latency within a fixed bud-
get, or at the lowest price given some time constraint. [11] proposes a solution
to compute the best static deployment policies in order to achieve an optimal
utility (i.e., a weighted sum of overall cost and accuracy) using sequencing or
parallelization of tasks. This approach is an exhaustive search which limits the
number of workers and orchestrations that can be considered. [29] is a recommen-
dation technique for deployments, that allows parallelization of tasks, sequential
composition, and use of machines to solve open tasks such as translation or text
writing. This approach builds on optimization techniques to find deployments
that reduces latency and improves quality of data.

2 Complex Workflows with Aggregation

Complex Workflows are inspired by data centric workflows [1], but allow tasks
replication, and consider aggregation and budget management. The context of
the workflow is the following: A client wants to realize a complex task that needs
the knowledge and skills of human workers. Complex tasks are divided into sev-
eral dependent phases. Each phase processes records from an input dataset or
merges different inputs to a single one, and forwards the result to its successor.
Datasets are collections of records, i.e., relations of the form r(a1, . . . ak) where
each ai is a value for a field of the record, chosen from a domain Domi. One
can use First-Order statements with variables denoting fields values to address
properties of a record (e.g. write vi == true), or of a set of records in a dataset
(e.g. ∃r(v1, . . . vk) ∈ D, vk == true). We will denote by FOR the FO formu-
las for records, and by FOD the FO formulas for datasets. For simplicity, we
assume that processing a record is a micro-task that simply consists in adding
a new Boolean field (called a tag) to this record. Hence a micro-task can be
seen as an operation that transforms a record r(v1, . . . , vk) into a new record
r′(v1, . . . , vk, vk+1) where vk+1 is a Boolean value. This setting can be easily
adapted to let vk+1 take values from a discrete domain.

As humans are prone to errors, phases are not unique micro tagging tasks,
but rather replications of batches of tagging tasks allocated to several workers.

38 L. Hélouët et al.

The returned answers are then aggregated before proceeding to the next phase.
Hence, an aggregation mechanism is required to combine the answers and for-
ward the results to the next phases. When a phase has several successors, the
contents of records is used to decide to which successor(s) it should be forwarded.
This allows to split datasets according to the value of a particular field, process
differently records depending on their contents, create concurrent threads, etc.

Definition 1 (Complex Workflow). A complex workflow is a tuple W =
(P,−→, G,

⊗
, p0, pf) where P is a finite set of phases, p0 is a particular phase

without predecessor, pf a phase without successor, −→⊆ P ×FOR ×P is a flow
relation and G : P → FOD associates a guard to every phase, and for every
px ∈ P,

⊗x is an operator used to merge datasets input to px.

Intuitively, a phase performs a batch of tagging tasks (one for each record
in a dataset), but replicates and distributes them to several workers. The
answers returned by all hired workers are then aggregated to get a final
trusted answer. We assume that workers answers are independent. For a triple
(px, gx,y, py) in −→, we will say that px is a predecessor of py. We denote by
Succ(px) = {py | px −→∗ py} the set of phases that must occur after px, and by
Pred(px) = {py | py −→∗ px} the set of phases that must occur before px. The
meaning of guard gx,y is that every record produced by phase px that satisfies
guard gx,y is forwarded to py. We will see in the rest of this section that “pro-
ducing a record” is not done in a single shot, and requires to duplicate a tagging
micro-task, aggregate answers, and decide if the confidence in the aggregated
answer is sufficient. When a phase px has several successors p1y, . . . pk

y and the
guards gx,y1 , . . . gx,y1 are exclusive, each record processed by px is sent to at most
one successor. We will say that px is an exclusive fork phase. On the contrary,
when guards are not exclusive, a copy of each record processed in px can be sent
to each successor (hence increasing the amount of data processed in the work-
flow), and px is called a non-exclusive fork phase. For a phase px ∈ P, we denote
by Gx ∈ FOD the guard attached to phase px. Gx addresses properties of the
datasets input to px by its predecessors. This allows in particular to require that
all records in preceding phases have been processed (we will then say that phase
px is synchronous), that at least one record exists in a dataset produced by a
predecessor (the task is then fully asynchronous), or more generally satisfaction
of any FO expressible property on datasets produced by predecessors of px. The
operator

⊗x can be either a simple union of datasets, or a more complex join
operation. If

⊗x is a join operation, we impose that px is synchronous. This
is reasonable, as one cannot start processing data produced by a join opera-
tion when the final set of records is not known. When

⊗x is a simple union of
datasets, as tasks are independent, any record processed on a predecessor of px

can be forwarded individually without waiting for other results to be available.
This allows asynchronous executions in which two phases px, py can be concur-
rently active (i.e., have started processing records), even if px precedes py. On
the contrary, if the execution of a phase px is synchronous, and py is a successor
of px all records input to px must be processed before starting phase py.

Cost and Quality in Crowdsourcing Workflows 39

The semantics of a complex workflow is defined in terms of moves from a
configuration to the next one, organized in rounds. Configurations memorize the
data received by phases, a remaining budget, the answers of workers, aggregated
answers quality and workers competences.

Definition 2. A configuration is a tuple C = (Din,Win,Wout, conf,B) where

– Din : P → Dsets associates a (possibly empty) dataset to every phase px ∈P.
– Win : P ×N× → 2W is a partial map that associates a set of workers to each

record in Din(px).
– Wout : P × N × W → {0, 1} ∪ ∅ is a partial map that associates a tag or the

empty set to a worker, a phase and a record. Wout(p, n, w) is defined only
if w ∈ Win(p, n). We denote by lxi,j the answer returned by worker wi when
tagging record rj during phase px.

– conf : P × N → [0, 1] is a map that associates to each record in Din(px) a
confidence score in [0, 1] computed from answers in Wout.

– B ∈ N is the remaining budget.

Wout(px, k, w) = ∅ indicates that a worker w in a phase px has not yet
processed record rk. We say that phase px is completed for a record rk from
Din(px) if there is no worker w such that Wout(px, w, rk) = ∅. As soon as phase
px is completed for rk, we can derive an aggregated answer r′

k(v1, . . . , vn, yx
k) for

each record rk(v1, . . . vn) from the set of all answers returned by the workers in
Win(px, k). Similarly, we can compute a confidence score conf(px, k) for value
yx

k and the expertise of each worker (we will see how these values are evaluated
in Sect. 4). We say that a record ri in a phase px is inactive if no more workers
are assigned to it. It is active otherwise. Given a threshold value Th, we will
say that px is finished for a record rk from Din(px) if px is completed for rk

and conf(px, k) > Th. Record r′
k(v1, . . . , vn, yx

k) will then be part of the input
of phase py if (px, gx,y, py) ∈−→ and r′

k(v1, . . . , vn, yx
k) satisfies guard gx,y.

We can now detail how rounds change the configuration of a workflow. The
key idea is that each round aggregates available answers, and then decides
whether the confidence in aggregated results is sufficient. If confidence in a
record is high enough, this record is forwarded to the successor phases, if not
new workers are hired for the next round, which decreases the remaining budget.
The threshold for the confidence decreases accordingly. Then new workers are
hired for freshly forwarded data, leaving the system ready for the next round.
From a configuration C =(Din,Win,Wout, conf, exp,B), a round produces a new
configuration C ′ = (Din,Win,Wout, conf, exp,B) as follows:

– Answers: Workers hired in preceding round produce new data. For every
phase px, every record rn ∈ Din(px), and every worker wi such that wi ∈
Win(px, n) and Wout(px, wi, n) = ∅, we produce a new output lxi,n ∈ {0, 1}
and set Wout(px, wi, n) = lxi,n.

– Aggregation: The system aggregates answers in every active phase px. For
every record rk in Din(px), we compute an aggregated answer yx

k from the set
of answers Ak = {lxi,k | wi ∈ Win(px, n)}. We also compute a new confidence

40 L. Hélouët et al.

score conf ′(px, n) for the aggregated answer (this confidence depends on the
aggregation technique), and evaluate workers expertize and the difficulty of
tagging each record(with the algorithm shown in Sect. 3).

– Data forwarding: We distinguish asynchronous and synchronous phases.
Let py be an asynchronous phase (

⊗y can only be a union of records).
Then py accept every new record r′(v1, . . . vk, yx

n) that was not yet among
its inputs from a predecessor px provided r′ satisfies guard gx,y, and the
confidence in the aggregated answer yx

n is high enough. Formally, D′
in(py) =

Din(py) ∪ {r′(v1, . . . vk, yx
n)} if (px, gx,y, py) ∈−→, conf ′(px, n) ≥ Th and

r′(v1, . . . vk, yx
n) |= gx,y. Let py be a phase such that

⊗yis synchronous. We
will say that a phase is closed if all its predecessors are closed, and for every
n, rn ∈ Din(px), conf(px, n) ≥ Th. If there exists a predecessor px of py

that is not closed, then D′
in(py) = ∅. Otherwise we can compute an input

for phase py as a join over datasets computed by all preceding phases. For-
mally, D′

in(py) =
⊗y{Dx | px −→ py}, where Dx = {r′(v1, . . . vk, yx

n) |
r(v1, . . . vk) ∈ Din(px) ∧ r′(v1, . . . vk, yx

n) |= gx,y} i.e., D′
in(py) merges data

produced by all predecessors of py. Hence, for a synchronous phase py, the
input dataset is obtained by a join operation computed over datasets filtered
by guards, and realized only once preceding tasks have produced all their
results. In synchronous and asynchronous settings, a phase py becomes active
if D′

in(py) |= G(py). We set conf ′(py, n) = 0 for every new record in D′
in(py).

– Worker allocation: For every px that is active and every record rn =
r(v1, . . . vk) ∈ D′

in(px) such that conf ′(px, n) < Th, we allocate k new work-
ers w1, . . . wk to record rn for phase px, i.e., W ′

in(px, n) = Win(px, n) ∪
{w1, . . . , wk}. This number k of workers depend on the chosen policy (see
details in Sect. 4). Accordingly, for every new worker wi affected to a tagging
task for a record rn in phase px, we set W ′

out(px, n, i) = ∅.
– Budget update: We then update the budget. The overall number of work-

ers hired is nw =
∑

px∈P

∑

rn∈D′
in(px)

|W ′
in(px, n) \ Win(px, n)|. We consider,

for simplicity, that all workers and tasks have identical costs, we hence set
B′ = B − nw.

An execution starts from an initial configuration C0 in which only p0 is active,
with an input dataset affected to p0, and begins with workers allocation. Exe-
cutions end successfully in a configuration Cf where all records in Din(pf) are
tagged with a sufficient threshold, or fail if they reach a configuration C
= Cf

with a remaining budget B = 0. Notice that several factors influence the overall
execution of a workflow. First of all, the way workers answers are aggregated
influence the number of workers that must be hired to achieve a decent confi-
dence in the synthesized answer. We propose to consider two main aggregation
policies. The first one is majority voting (MV), where a fixed static number of
workers is hired for each record in each phase. A second policy is the expectation
maximization (EM) based technique proposed in [25], in which workers are hired
on demand to increase confidence in aggregated answers. With this policy, the
confidence in answers is computed taking into account the estimated expertise
of workers, and the difficulty of records tagging. The number of workers hired

Cost and Quality in Crowdsourcing Workflows 41

per record in a phase is not fixed, but rather computed considering the difficulty
of tagging records, and the remaining budget.

Recall that for a phase px, asynchronous execution allows to start processing
records as soon as Din(px)
= ∅. Conversely, synchronous execution forces px to
wait for the termination of its predecessors. Choosing a synchronous or asyn-
chronous execution policy may hence influence the time and budget spent to real-
ize a complex task. In Sect. 5, we study the impact of synchronous/asynchronous
guards on the overall execution of a workflow.

3 Aggregation Model

As mentioned in previous section, crowdsourcing requires replication of micro-
tasks, and aggregation mechanisms for the answers returned by the crowd. For
simplicity, we consider Boolean tasks, i.e., with answer 0 or 1. However, the
model easily extends to a more general setting with a discrete set of answers.

Consider a phase px which input is a set of records Dx = {r1, r2, . . . , rn},
and which goal is to associate a Boolean tag to each record of Dx. We assume
a set of k independent workers that return Boolean answers, and denote by lij
the answer returned by worker j for a record ri. Li =

⋃

j∈1...k

lij denotes the set

of answers returned by k workers for a record ri and L =
⋃

j∈1 ... n

Lj denotes

the set of all answers. We assume that workers are independent (there is no
collaboration and their answers are hence independent), and faithful (they do
not give wrong answers intentionally). The objective of aggregation is to derive
a set of final answers Y = {yj , 1 ≤ j ≤ n} from the set of answers L. Once a
final answer yj is computed, it can be appended as a new field to record rj . The
set of produced results can be forwarded to successor phases of px, which may
launch new phases.

We consider several parameters to model tasks and workers, namely the
difficulty to tag a record, and the expertise of workers. The difficulty to tag
a record rj is modeled by a real valued parameter dj ∈ [0, 1]. Value 0 means
that tagging rj is very easy, and dj = 1 means that it is extremely difficult.
Expertise of a worker is often quantified in terms of accuracy, i.e., as the ratio of
correct answers. However, accuracy can lead to bias in the case of datasets with
unbalanced ground truth. Indeed, consider a case where the number of records
with ground truth 1 is much higher than the number of records with ground truth
0. If a worker annotates most of records with ground truth 1 as 1 but makes
errors when tagging records with ground truth 0, her accuracy will still be very
high. We hence prefer a more precise model, where expertise of a worker is given
as a pair ξi = {αi, βi}, where αi is the recall and βi the specificity of worker i.
The recall αi is the probability that worker i answers 1 when the ground truth is
1, i.e., αi = Pr(lij = 1|yj = 1). The specificity βi is the probability that worker
i answers 0 when the ground truth is 0, i.e., βi = Pr(lij = 0|yj = 0). We do
not have a priori knowledge of the behavior of workers, so we define a generative
model to determine the probability of correct answers when αi, βi are known.

42 L. Hélouët et al.

This probability depends on the difficulty of a task, on recall and specificity of
the considered worker, and on the ground truth. We set Pr(lij = yj |dj , αi, yj =
1) = (1+(1−dj)(1−αi))/2 and Pr(lij = yj |dj , βi, yj = 0) = (1+(1−dj)(1−βi))/2.

Figure 1-b) shows probability to get lij = 1 when yi = 1. The horizontal axis
represents the difficulty of a task, the vertical axis denotes the probability to get
answer lij = 1. Each curve represents this probability for a particular value of
recall. Note that the vertical axis ranges from 0.5 to 1.0 as a random guess by a
worker can still provide a correct answer with probability 0.5. As the difficulty
of task increases, the probability of giving a correct answer decreases and when
the task difficulty is 1 workers only make random guesses. For a fixed difficulty
of a task, the higher recall is, the more accurate answers are.

We equip complex workflows with an aggregation technique that uses Expec-
tation Maximization (EM) [12]. EM is an iterative method that alternates
between an expectation (E) step and a maximization (M) step. For a pool of
k workers processing n records, we estimate jointly latent variables (αi)i∈1 ... k,
(βi)i∈1 ... k, (dj)j∈1 ... n and derive a set of final answers Y = y1 . . . yn. We denote
by θ the values of (αi)i∈1 ... k, (βi)i∈1 ... k, (dj)j∈1 ... n. In the E-step, we compute
for each record rj the posterior probability of yj = 0 and yj = 1, given the
difficulty dj , workers expertise (αi, βi)(i∈1 ... k) and the answers Lj = {li,j | i ∈
1 . . . k}. In the M-Step, we compute the parameters θ that maximize Q(θ, θt),
the expected value of the log likelihood function, with respect to the estimated
posterior probabilities of Y computed during the E-step of the algorithm. Let
θt be the value of parameters computed at step t of the algorithm. We use the
observed values of L, and the previous expectation for Y . We find parameters θ
that maximize Q′(θ, θt) = E[logPr(L, Y | θ) | L, θt] (we refer interested readers
to [8]-Chap. 9 and [7] for explanations showing why this is equivalent to maxi-
mizing Q(θ, θt)). We take as next value for parameters θt+1 = arg max

θ
Q′(θ, θt).

This maximization is done with optimization techniques provided by the scipy4

library. We iterate E and M steps, computing at each iteration t the posterior
probability and the parameters θt+1 maximizing Q′(θ, θt). The algorithm con-
verges, and stops when the difference between two successive joint log-likelihood
values is below a threshold (set in our case to 1·e−7). It returns values for param-
eters (αi)i∈1 ... k, (βi)i∈1 ... k, (dj)j∈1 ... n. The final answers are the most probable
yj ’s.

4 Cost Model for Workflow

The objective of a complex workflow W over a set of phases P = {p0, . . . , pf} is
to transform a dataset input to the initial phase p0 and eventually produce an
output dataset. The final answer is the result of the last processed phase pf . The
simplest scenario is a workflow that adds several binary tags to input records.
The realization of a micro-task by a worker is paid, and workflows come with
a fixed maximal budget B0 provided by the client. For simplicity, we consider

4 docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html

Cost and Quality in Crowdsourcing Workflows 43

that each worker receives one unit of credit per realized task. As explained in
Sect. 2, each phase receives records, each record is tagged by one or several
workers. Answers are then aggregated, and the records produced by a phase px

are distributed to its successors if they meet some conditions on their data. A
consequence of this filtering is that records have different lifetimes and follow
different paths in the workflow. Further, one can hire more workers to increase
confidence in an aggregated result if needed and if a sufficient budget remains
available. Several factors influence the realization of a workflow and its cost: the
number of tagging tasks that have to be realized, the available initial budget, the
confidence in produced results, workers expertise, the size and nature of input
data, the difficulty of tagging, and the policies chosen to realize a workflow and
to hire workers. Existing crowdsourcing platforms often use static allocation, i.e.,
fix a number Ks of workers to hire for each micro-task. An obvious drawback of
this approach is that the same effort is spent on easy and difficult tasks.

In Sect. 2, we have defined synchronous and asynchronous schemes to allocate
workers on-the-fly to tasks. In this section, we define the cost model associated
with these schemes, and in particular, the threshold measure used to decide
whether more workers should be hired. We show in Sect. 5 that the algorithm
achieves a good trade-off between cost and accuracy. Recall that at each round,
we allocate new micro-tagging tasks to workers, to obtain answers for records
that are still open. EM aggregation is used to compute a plausible aggregated
tag yx

j for each record rj from a set of answers Lx
j obtained in each active phase

px. The algorithm also gives an estimation of difficulty dx
j (the difficult of the

micro-task that consists in tagging record rj ∈ px), and evaluates the expertise
level of every worker wi, i.e., its recall αi and its specificity βi. We also obtain
a confidence score ĉx

j for the aggregated answer yx
j . This score is used to decide

whether one needs more answers or conversely has to consider yx
j as a definitive

result. Let kx
j = |Lx

j | denote the number of answers for record rj ∈ px at a given
instant. The confidence ĉx

j in final label yx
j is defined as:

ĉx
j =

⎧
⎨

⎩

1
kx

j
· ∑kx

j

i=1

{
lxij × (1+(1−dx

j)
(1−αi)

2) + (1 − lxij) × (1 − 1+(1−dx
j)

(1−αi)

2)
}

if yx
j =1

1
kx

j
· ∑kx

j

i=1

{
(1 − lxij) × (1+(1−dx

j)
(1−βi)

2) + (lxij) × (1 − 1+(1−dx
j)

(1−βi)

2)
}

if yx
j =0

Confidence ĉx
j is a weighted sum of individual confidence of workers in the

aggregated result. Each worker adds its probability of answering correctly (i.e.,
choose lxij = yx

j) when aggregating the final answer. This probability depends on
yx

j , but also on worker’s competences. If confidence ĉx
j is greater than a current

threshold Th, then answer yx
j is considered as definitive and the record rj is

closed. Otherwise, the record remains active. We fix a maximal number τ ≥ 1 of
workers that can be hired during a round for a particular record. Let Tar denote
the set of active records after aggregation and Dx

max the maximal difficulty for
an active record in Tar tagged by phase px. For every record rx

j ∈ Tar with
difficulty dx

j , we allocate ax
j = �(dx

j /Dx
max)× τ new workers for the next round.

Intuitively, we allocate more workers to difficult tasks. Now, Tar and hence ax
j

depend on the threshold computed at each round. An appropriate threshold

44 L. Hélouët et al.

must consider the remaining budget, the remaining work to do, that depends
on the number of records to be processed, on the structure of the workflow,
and on the chosen policy. The first parameter to fix for the realization of a
workflow is the initial budget B0. The height and width of a workflow can be
used to find a coarse overapproximation of the budget allowing to complete an
execution of a workflow. To obtain sharper bound, we first bound the number of
remaining phases that a record have to go through to the final phase pf when
it is processed in a phase px. We call this number the foreseeable workload at
phase px and denote it by fw(px).

Definition 3 (Foreseeable workload). The foreseeable workload fw(px) at
phase px is the maximal number of phases visited by a record processed in px.

We give an algorithm to compute the foreseeable workload in [14]. Intuitively,
it considers the structure of the workflow to compute the number of phases
visited between a fork node n1 and the corresponding merge node n2: it is the
longest path in case of an exclusive fork node, and the total number of nodes
between n1 and n2 otherwise.

Definition 4 (Foreseeable task number). Let C be a configuration, and nx

denote the total number of active records at a phase px in C. The foreseeable task
number from px in C is denoted ftC(px) and defined as ftC(px) = nx ×fw(px).
The foreseeable task number in C is the sum FTN(C) =

∑
px∈P ftC(px).

Let us now define a threshold function based on the current configuration of
a workflow. This function must consider all records that still need processing,
the remaining budget, and an upper bound on the number of tagging tasks that
will have to be realized to complete the workflow. Further, the execution policy
will influence the way workers are hired, and hence the budget spent. In a syn-
chronous execution, records in a phase px can be processed only when all records
in preceding phases have been processed. On the contrary, in asynchronous exe-
cution mode, processing of records input to a phase px can start without waiting
for the closure of all records input to preceding phases. A consequence is that in
synchronous modes, the decision to hire workers to improve accuracy of answers
for a task can be taken locally to each phase, while in an asynchronous mode, this
decision depends on a global view of the remaining work in the workflow. Hence,
for a synchronous execution policy, we will define a local threshold computed for
each phase, and for an asynchronous execution policy, we will consider a global
threshold, computed for the whole workflow.

Asynchronous Execution: The execution of a workflow starts from a configu-
ration C0 with an expected workload FTN(C0). It is an upper bound, as all
records do not necessarily visit this maximal number of phases. We define a
global ratio ΓC ∈ [0, 1] of already executed or avoided work in configuration C

as ΓC = (FTN(C0)−FTN(C))
FTN(C0)

. Note that at the beginning of an execution, ΓC0 = 0
as no record is processed yet. When records are processed and moved to succes-
sor phases, Γ increases, and we necessarily have ΓCf

= 1 when no record remains

Cost and Quality in Crowdsourcing Workflows 45

to process in a final configuration Cf . Now, the threshold value has to account
for the remaining budget to force the progress of records processing. Let B0

denote the initial budget at the beginning of execution, and BC be the budget
consumed in configuration C. We denote by βC the fraction of B0 consumed in
configuration C, i.e., βC = BC

B0
. In the initial configuration, βC0 = 0. The value

of β increases at every round of the execution, and takes value β = 1 when the
whole budget is spent. However, our objective is to end executions with β < 1.
We now define a global threshold value ThC ∈ [0.5, 1.0] that accounts for the
remaining work and budget.

ThC =
1 + (1 − βC)ΓC

2
(1)

We remind that in a phase px, a record rj with confidence level ĉx
j > ThC is

considered as processed for phase px. In an asynchronous execution policy, the
threshold is a global value and applies to all records in the workflow at a given
instant. The intuition for ThC is simple: when only a few records remain to be
processed, and the remaining budget is sufficiently high, then one can hire more
workers. With more contributions, the confidence in aggregated final answers
is expected to increase for several records. Conversely, if the number of records
to be processed is high and the remaining budget is low, then the threshold
decreases, and even records which current answer have a low confidence level are
considered as processed and moved to the next phase(s).

Synchronous Execution: In asynchronous execution, a phase does not wait for
the completion of its predecessors to start. As a consequence, records can be
processed in all phases, and we consider a global threshold ThC , and hence
a global policy to hire workers. However, in synchronous execution, records are
processed phase by phase, i.e., a phase does not start processing its input dataset
until all records in the preceding phases have been processed. Using our global
threshold ThC may produce data with poor quality: as a phase is not launched
as long as a preceding phase has an unprocessed record, one can easily meet
situations where the larger part of the budget Bin is spent to hire workers in the
first phases of the workflow, forcing to accept final answers with low confidence
in the next phases. To avoid this problem, we propose to allocate the budget
phase by phase. The idea is to divide the budget among phases based on the
number of records processed.

We will say that a task becomes active when it starts processing records, i.e.,
once preceding phases have tagged all their records with a sufficient confidence
on aggregated answer and the obtained datasets meet guard Gx. We denote by
init(px) the number of records input to px when the phase becomes active. As
for asynchronous execution, synchronous execution of a workflow starts from
an initial configuration C0 with an initial budget B0, and in each configuration
C, the remaining budget is denoted by Br(C). The key idea in synchronous
execution is to compute resources needed for each active phase, and to maintain
after each round a ratio of input records that still need additional answers to
forge a trusted answer, and a local threshold per phase. Let px be a phase that

46 L. Hélouët et al.

becomes active when the execution reaches configuration C. The initial budget
allocated to px with init(px) records in a configuration C is:

Bx
in =

Br(C)
∑

pi active phase FTN(pi)
× init(px) (2)

Intuitively, the remaining budget is shared among active phases to allow
termination of the workflow from each phase. Then for each active phase px, we
maintain the consumed budget Bx

c , and the ratio βx = Bx
c

Bx
in

of consumed budget.
At the end of each round, for each active phase px, we compute the ratio of
processed tasks

Γ x
C =

|{ri | ĉi ≤ Thx}|
Init(px)

(3)

where Thx is the threshold computed at previous round. Obviously, if Γ x
C = 1,

phase px becomes inactive. Otherwise, a local threshold Th′x for px to be used
in the next round is computed, using the formula:

Th′x =
1 + (1 − βx)Γ x

C

2
(4)

With the convention that the initial threshold Thx for a starting active phase,
as no record is processed yet is Thx = 1+(1−βx)

2 .

Realization of Workflows: Regardless of the chosen policy, the execution of
a workflow always follows the same principles. The structure of workflow W
is static and does not change with time. It describes a set of phases P =
{p0, . . . , pf}, their dependencies, and guarded data flows from one phase to the
next one. A set of n records R = {r1, . . . , rn} is used as input to W , i.e., is passed
to initial phase p0, and must be processed with a budget smaller than a given
initial budget B0. As no information about the difficulty of a task dx

j is available
at the beginning of phase p0, τ workers are allocated to each record for an initial
estimation round. The same principle is followed for each record when it enters
a new phase px ∈ W . After collection of τ answers, at each round we first apply
EM aggregation to estimate the difficulty dx

j of active records rj ∈ px, ĉx
j the

confidence in the final aggregated answer yx
j and the recall αi and specificity βi

of each worker wi. Then we use a stopping threshold to decide whether we need
more answers for each record. In asynchronous execution, the threshold Th is
a global threshold, and in synchronous mode, the confidence of each record rj

in px is compared to the local threshold Thx. Records with sufficient confidence
are passed to the next phase(s). We hire new workers to obtain more answers
for other records. This can increase the confidence level, but also decrease the
threshold, as a part of the remaining budget is consumed. Executions stop when
the whole budget Bin is exhausted or when there is no additional record left to
process. Last, the final phase pf returns the aggregated answer for each record.

Cost and Quality in Crowdsourcing Workflows 47

Termination: Obviously, when the remaining budget decreases, the threshold(s)
decrease too. However, there are situations where the confidence in some answers
remains low, and the remaining budget reaches 0 before the threshold attains
the lower bound 0.5 (that forces moving any record to the next phase(s)). Sim-
ilarly, when records do not progress in the workflow, the ratio of realized work
ΓC remains unchanged for many rounds. As a consequence, synchronous and
asynchronous realization of a workflow may fail. We will see in the experimental
results section that even with poor accuracy of workers, this situation was never
met. Failure corresponds to situations where the weighted answers of workers
remain balanced for a long time. The threshold decreases slowly, and the con-
fidence in aggregated answers remains lower. In that case, when threshold and
confidence values coincide (in the worst case at value 0.5), the remaining budget
is too low to realize the remaining work. Solutions to solve this issue and guar-
antee termination is to bound the sojourn time of a record in a phase, or to keep
a sufficient budget to terminate the workflow with a static worker allocation
policy hiring only a small number of workers per record. Another solution is to
limit allocation of workers to tasks with the highest remaining workload. Yet,
realization can still fail if records remain stuck in the last but one phase.

5 Experiments and Results

In this section, we evaluate execution policies on typical workflows. We consider
a standard situation, where a client wants to realize a complex task defined by a
workflow on a crowdsourcing platform. The client provides input data, and has
a budget B0. Crowd workers do not collaborate and hence realize their micro-
tasks independently. As there exists no platform to realize complex tasks, there
is no available data to compare the realization of a workflow with our approach
to existing complex task executions. To address this issue, we design several
typical workflows, synthetic data, and consider realizations of these workflows
for various execution policies, characteristics of data, and accuracy of workers.

We consider 5 different workflows, represented in Fig. 2. Workflow W1 is a
sequence of tasks, W2 is a standard fork-join pattern i.e., parallel processing of
data followed by a merge of branches results, W3 and W4 are fork-join patterns
with equal and different lengths on branches, and W5 is a more complex workflow
with two consecutive forks followed by merges on each branch. We consider
micro-tasks that simply add Boolean tags to records. Guards from one phase
px to the next phase py are simple exclusive guards sending each record to one
successor, depending on the tag obtained at phase px. Formally, guards are FO
formulas of the form f == l0 or f == l1, where f is the new field produced
by the phase. To avoid unnecessary blocking of workflow progressions, we set
Gx == true for every phase px ∈ P. In Fig. 2 we depict these choices by pairs of
letters (l0, l1) representing the binary decision taken on each phase, For example,
in workflow W1, phase p0 considers two possible tags denoted A and B. Phases p7,
p8 in workflow W5 are simple aggregations, and hence are not labeled by choices.
After realization of the tasks, if the records are tagged as A by the workers then

48 L. Hélouët et al.

records are moved to the phase pf and if tagged with B the records are assigned
to phase p1 for further processing. Each phase of workflows implements similar
tagging and decision.

p0

A/B

W1 :

p1

C/D

p2

E/F

p3

G/H

pf

Dout

p0

A/B

W2 :

p1

C/D
p2

E/F

p3

G/H

pf

Dout

p0

A/B

W3 : p1

C/D

p2

E/F

p3

G/H

p4

I/J

p5

K/L

p6

M/N

pf

Dout

p0

A/B

W4 :

p1

C/D

p2

E/F

p3

G/H

p4

I/J

p5

K/L

p6

M/N

pf

Dout

p0

A/B

W5 : p1

C/D

p2

E/F

p3

G/H

p4

I/J

p5

K/L

p6

M/N

p7

p8

p9

M/N

p10

O/P

p11

Dout

Fig. 2. Five different workflows. W1: sequence of phases, W2: parallel data transforma-
tions followed by an aggregation of results, W3: fork-join patterns with uniform lengths
of branches, W4, W5: fork-join patterns with nonuniform lengths of branches.

We evaluate average costs and accuracies achieved by workflows realizations
with the following parameters. First, the input of each complex task is a dataset
of 80 records. Notice that despite this fixed size, the number of micro-tasks real-
ized during executions depend on workers competences, on the execution policy,
on the value of data fields produced by workers, but also on the initial dataset,
on the initial budget, etc. Each record in the original dataset has initially known
data fields, and new fields are added by aggregation of workers answers during
the execution of the workflow. For these fields, we assume a prior ground truth,
which influences the probability that a worker answers 0 or 1 when filling this
field. We generate balanced (equal numbers of 0 and 1 in fields) and unbalanced
datasets (unbalanced numbers of 0 and 1).

We run the experiment with 4 randomly generated pools of 50 crowd work-
ers, making their accuracy range from low to high expertise. For each pool,
we sampled accuracies of workers according to normal distributions ranging
respectively in intervals [0.2, 0.7] (Expertise0, low expertise of workers), [0.4, 0.9]
(Expertise1, low to average expertise), [0.6, 0.99] (Expertise3, average expertise)
and [0.8, 0.99] (Expertise4, high expertise).

The last parameter to set is the initial budget B0. We first evaluated the cost
for the realization of workflows with a static allocation policy that associates a
fixed number of ksmv workers to each record in each phase, and aggregates their
answers with Majority Voting. We call this policy Static Majority Voting (SMV).
A priori, running SMV with a chosen value for ksmv should consume a budget

Cost and Quality in Crowdsourcing Workflows 49

lower than ksmv.ftC0(p0), i.e., 80.ksmv.fw(p0). This is however a coarse upper
bound for the total budget Bmv consumed during the realization of a workflow
with an SMV policy, as Bmv depends on the execution path followed by records
during execution, and hence on random answers of workers. Yet, SMV was shown
to be a naive and costly approach in most benchmarks (see for instance [25]),
so starting with a budget B0 = Bmv for realization techniques tailored to save
costs when accuracy is sufficient is a sensible approach. For each workflow, and
for three different values ksmv = 10/20/30, we performed random runs of SMV
to evaluate the maximal budget Bmv needed.

In a second step, we used the total budget Bmv spent by the SMV approach
as initial budget for realization of the same workflow with synchronous and
asynchronous policies. The objective was to achieve at least the same accuracy as
SMV with synchronous and asynchronous execution policies with the same initial
budget B0 = Bmv, while spending a smaller fraction of this budget. Overall, our
experiments cover realization of 5 different workflows with different values for
initial budget, workers accuracy, characteristics of data, and realization policy.
This means 72 different contexts, represented in Table 1 (one type of experiment
represents a selection of one entry in each row). We ran each experiment 15 times
to get rid of bias. This represents a sample of 1080 workflow realizations.

Table 1. Evaluation parameters

Workflow W1 W2 W3 W4 W5

Parameter Value

Worker accuracy Low Mid Average High

Value of ksmv 10 20 30

Data type Balanced Unbalanced

Mechanisms Static MV Synchronous Asynchronous

We can now analyze the outcomes of our experiments. A first interesting
result is that all workflow executions terminated without exhausting their given
initial budget, even with low competences of workers. A second interesting (but
rather expected) result is that for all realization policies, and for all workflows,
executions end with poor accuracy when expertize is low. Consider for instance
the results of Fig. 3. This Figure gives the consumed budget and achieved accu-
racy for a given workflow and a given initial budget when workers have a low
expertize. The first series of results concern Workflow 1 with a parameter ksmv

set to 10, 20, 30 workers per record in each phase. The overall expended bud-
get with an SMV approach is around 1200, 2800, 4000, respectively. Regardless
of the initial budget, synchronous and asynchronous approaches spend only a
fraction of the budget allowed by SMV. Accuracy is not conclusive, as the best
realization policy varies with each experiment: for instance, for W1 with 10 work-
ers per record to tag in each phase, SMV seems to be the best approach, while

50 L. Hélouët et al.

with a budget of 20, the synchronous approach is the best. However, most of the
experiments achieve accuracies below 0.2, which is quite low. An explanation
is that, as shown in Fig. 1−b), with low expertise, workers answers are almost
random choices. Hence when all workers have a low expertise, individual errors
are not corrected by other answers, and the ground truth does not influence the
results. At each phase, the algorithms take their decisions mostly based on wrong
answers provided by the workers and as a consequence errors accumulate. The
system’s behavior is then completely random, which results in poor performance.
This tendency shown for all workflows and initial budgets with balanced data is
confirmed on unbalanced data (the results of the experiments with unbalanced
data are available in [14]).

S AM
0

500

1000

1500
Cost

S AM
0

0.1
0.15

Accuracy

S AM
0

500
1000
1500

Cost

S AM
0

0.1
0.15

Accuracy

S AM
0

1000
2000
3000
4000

Cost

S AM
0

0.1
0.15

Accuracy

S AM
0

500

1000

1500

S AM
0

0.1
0.15

S AM
0

1000

2000

3000

S AM
0

0.1
0.15

S A
0

1500

3000

S AM
0
0.1
0.15

0.3

S AM
0

1000

2000

S AM
0

0.1
0.15

S AM
0

2000

4000

S AM
0

0.1
0.15

S AM
0

2000
4000
6000

S AM
0

0.1
0.15

S AM
0

1000

2000
2500

S AM
0

0.1
0.15

S AM
0

2000

4000

S AM
0

0.1
0.15

S AM
0

3000

6000

S AM
0

0.1
0.15

S AM
0

2000

4000

S AM
0
0.10.15

S AM
0

2000
4000

S AM
0

0.1
0.15

S AM
0

0.5

1
·104

S AM
0

0.1
0.15

W
or
k
f
lo
w
1

W
or
k
f
lo
w
2

W
or
k
f
lo
w
3

W
or
k
f
lo
w
4

W
or
k
f
lo
w
5

B = 10 B = 20 B = 30

Synchronous Asynchronous StaticMV

Fig. 3. Budgets and accuracies with low expertize

Next experiments consider mid-level to high expertise, which is a common
setting in crowdsourcing. The experiments with competent workers and syn-
chronous and asynchronous execution policies clearly show that dynamic allo-
cation schemes outperform the SMV approach both in terms of cost and accu-
racy. One can easily see these results Figs. 4 and 5, that represent executions of
workflows W1 with three levels of expertize, 3 values of ksmv (and hence 3 dif-
ferent initial budgets), and all execution policies, respectively for balanced and
unbalanced data. We show similar results in [14] for workflows W2,W3,W4,W5.

In the worst cases, synchronous and asynchronous executions achieve accu-
racies that are almost identical to that of SMV, but often give answers with
better accuracy. With a sufficient initial budget, dynamic approaches achieve an
accuracy greater than 0.9. An explanation for this improvement of synchronous
and asynchronous executions w.r.t. SMV is that in SMV, one does not con-
sider the expertise of the worker, whereas the synchronous and asynchronous

Cost and Quality in Crowdsourcing Workflows 51

Fig. 4. Workflow 1 on balanced data

Fig. 5. Workflow 1 on unbalanced data

executions are EM based algorithms that compute the final answers by weight-
ing individual answers according to worker’s expertise. This makes EM -based
evaluation of final answers more accurate than SMV. This improvement already
occurs at the level of a single phase execution (this was also the conclusion
of [25]). The reasons for cost improvement with respect to SMV are also easy to
figure. SMV allocates a fixed number of workers to every record in every phase of
a workflow, whereas synchronous and asynchronous execution schemes allocate
workers on-the-fly based on a confidence level which depends on the difficulty of
tasks, workers expertise, and returned answers. By comparing confidence levels
with a dynamic threshold, workers allocation considers the remaining budget
and workload as well. This clever allocation of workers saves costs, as easy tasks
call for the help of fewer workers than the fixed number imposed by SMV. The
resources that are not used on easy tasks can be reused later for difficult tasks,
hence improving accuracy.

52 L. Hélouët et al.

These results were expected. A more surprising outcome of the experiment is
that in most cases synchronous execution outperforms asynchronous execution
in terms of accuracy. The intuitive reason behind this result is that the way
records are spread in the workflow execution affects the evaluation of exper-
tize and difficulty. The synchronous execution realizes tasks in phases, while
asynchronous execution starts tasks independently in the whole workflow. A
consequence is that evaluation of hidden variables such as the difficulty of tasks
and workers expertise in the EM aggregation improves with a larger number
of records per phase in synchronous execution, while it might remain imprecise
when the records are spread in different phases during an asynchronous execu-
tion. This precise estimation helps synchronous execution to allocate workers as
well as to derive the final answers more efficiently and hence outperform asyn-
chronous execution. A third general observation is that both synchronous and
asynchronous executions need a greater budget to complete a workflow when
data is unbalanced. Observe the results in Fig. 4 and Fig. 5: the budgets spent
are always greater with unbalanced data. A possible explanation is that with
balanced data, records are sent uniformly to all phases, which helps evaluation
of workers expertize and difficulty of tasks, while with unbalanced data, some
phases receive only a few records, which affects evaluation of hidden variables.

Unsurprisingly (see for instance Fig. 4), for a fixed budget, when worker
expertise increases, accuracy increases too, and consumed budget decreases.
Competent workers return correct answers, reach a consensus earlier, and hence
achieve better accuracy faster. Similarly for a fixed expertise level, increasing the
initial budget increases the overall accuracy of the workflow. Again, the explana-
tion is straightforward: a higher budget increases the threshold used to consider
an aggregated answer as correct, giving better accuracies. To summarize, for a
fixed initial budget and high enough expertize, synchronous and asynchronous
policies usually improve both cost and accuracy.

6 Conclusion

This work has proposed a model to realize complex tasks with the help of a crowd
of workers. It fosters on the advantages of crowdsourcing systems and workflow.
A particular attention is paid to quality of the data produced, and to the overall
cost of complex tasks realization. We have compared several task distribution
strategies through experiments and showed that dynamic distribution of work
outperforms static allocation in terms of cost and accuracy.

A short-term extension is to consider termination of complex tasks realization
with dynamic policies. Indeed, workflows realized with dynamic policies may
not terminate: this happens when the guard associated with a phase is never
satisfied, or when for some record, all workers agree to return the answers that
do not increase the confidence. However, this latter situation was never met
during our experiments, even with low expertize of workers. The probability
of non-terminating executions with synchronous/asynchronous policies seems

Cost and Quality in Crowdsourcing Workflows 53

negligible. In our future work, we plan to demonstrate formally that P(Br =
0 ∧ FTN(C) > 0), the probability of reaching a configuration with exhausted
budget and remaining work to do is very low.

This work opens the way to new challenges. The next step is to test our
approach with existing crowdsourcing platforms on a real case study. We are
targeting citizen science initiatives, that typically require orchestration of various
competence to reach a final objective. Now that our model is settled, another
objective is to consider various strategies to hire workers in the most efficient way.
A possibility to address this challenge is to see complex workflows as stochastic
games, in which one player tries to maximize accuracy and reduce costs, while
its opponent tries to achieve the opposite objectives.

References

1. Bourhis, P., Hélouët, L., Miklos, Z., Singh, R.: Data centric workflows for crowd-
sourcing. Proc. Petri Nets 2020, 46–61 (2020)

2. Dai, P., Lin, C.H., Weld, D.S.: Pomdp-based control of workflows for crowdsourc-
ing. Artif. Intell. 202, 52–85 (2013)

3. Daniel, F., Kucherbaev, P., Cappiello, C., Benatallah, B., Allahbakhsh, M.: Quality
control in crowdsourcing: a survey of quality attributes, assessment techniques, and
assurance actions. ACM Comput. Surv. 51(1), 7 (2018)

4. Dawid, A., Skene, A.: Maximum likelihood estimation of observer error-rates using
the EM algorithm. J. Roy. Stat. Soc. Ser. C (Appl. Stat.) 28(1), 20–28 (1979)

5. Deguines, N., Julliard, R., De Flores, M., Fontaine, C.: The whereabouts offlower
visitors: contrasting land-use preferences revealed by a country-widesurvey based
on citizen science. PLOS ONE 7(9), e45822 (2012)

6. Demartini, G., Difallah, D., Cudré-Mauroux, P.: ZenCrowd: leveraging probabilis-
tic reasoning and crowdsourcing techniques for large-scale entity linking. In: Pro-
ceedings of the WWW 2012, pp. 469–478. ACM (2012)

7. Dempster, A., Laird, N.M., Rubin, D.B.: Maximum likelihood from incomplete
data via the EM algorithm. J. Roy. Stat. Soc. Ser. B (Methodol.) 39(1), 1–22
(1977)

8. Flach, P.: Machine Learning - The Art and Science of Algorithms that Make Senseof
Data. Cambridge University Press (2012)

9. Gao, Y., Parameswaran, A.G.: Finish them!: pricing algorithms for human com-
putation. Proc. VLDB Endow. 7(14), 1965–1976 (2014)

10. Garcia-Molina, H., Joglekar, M., Marcus, A., Parameswaran, A., Verroios, V.: Chal-
lenges in data crowdsourcing. Trans. Knowl. Data Eng. 28(4), 901–911 (2016)

11. Goto, S., Ishida, T., Lin, D.: Understanding crowdsourcing workflow: modeling and
optimizing iterative and parallel processes. In: Proceedings of the HCOMP 2016,
pp. 52–58. AAAI Press (2016)

12. Gupta, M., Chen, Y.: Theory and use of the EM algorithm. Found. Trends Sig.
Process. 4(3), 223–296 (2011)

13. Haas, D., Wang, J., Wu, E., Franklin, M.J.: CLAMShell: speeding up crowds for
low-latency data labeling. Proc. VLDB Endow. 9(4), 372–383 (2015)

14. Hélouët, L., Miklos, Z., Singh, R.: Cost and Quality Assurance in Crowdsourcing
Workflows (October 2020). Extended version. https://hal.inria.fr/hal-02964736

15. Karger, D., Oh, S., Shah, D.: Iterative learning for reliable crowdsourcing systems.
In: Proceedings of the NIPS 2011, pp. 1953–1961 (2011)

https://hal.inria.fr/hal-02964736

54 L. Hélouët et al.

16. Kitchin, D., Cook, W., Misra, J.: A language for task orchestration and its semantic
properties. In: Proceedings of the CONCUR 2006, pp. 477–491 (2006)

17. Kittur, A., Smus, B., Khamkar, S., Kraut, R.: CrowdForge: crowdsourcing complex
work. In: Proceedings of the UIST 2011, pp. 43–52. ACM (2011)

18. Kulkarni, A., Can, M., Hartmann, B.: Collaboratively crowdsourcing workflows
with Turkomatic. In: Proceedings of the CSCW 2012, pp. 1003–1012. ACM (2012)

19. Li, G., Wang, J., Zheng, Y., Franklin, M.: Crowdsourced data management: a
survey. Trans. Knowl. Data Eng. 28(9), 2296–2319 (2016)

20. Little, G., Chilton, L., Goldman, M., Miller, R.: TurKit: tools for iterative tasks
on Mechanical Turk. In: Proceedings of the HCOMP 2009, pp. 29–30. ACM (2009)

21. OASIS: Web Services Business Process Execution Language. Technical report,
OASIS (2007)

22. OMG: Business Process Model and Notation (BPMN). OMG (2011)
23. Quinn, A., Bederson, B.: Human computation: a survey and taxonomy of a growing

field. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 1403–1412 (2011)

24. Raykar, V.C., et al.: Learning from crowds. J. Mach. Learn. Res. 11, 1297–1322
(2010)

25. Singh, R., Hélouët, L., Miklós, Z.: Reducing the cost of aggregation in crowdsourc-
ing. In: Proceedings of the ICWS 2020 (2020)

26. Tran-Thanh, L., Venanzi, M., Rogers, A., Jennings, N.: Efficient budget allocation
with accuracy guarantees for crowdsourcing classification tasks. In: Proceedings of
the AAMAS 2013, pp. 901–908 (2013)

27. Tsai, C.H., Luo, H.J., Wang, F.J.: Constructing a BPM environment with BPMN.
In: 11th IEEE International Workshop on Future Trends of Distributed Computing
Systems, FTDCS 2007, pp. 164–172. IEEE (2007)

28. Van Der Aalst, W., et al.: Soundness of workflow nets: classification, decidability,
and analysis. Formal Aspects Comput. 23(3), 333–363 (2011)

29. Wei, D., Roy, S., Amer-Yahia, S.: Recommending deployment strategies for collab-
orative tasks. In: Proceedings of the 2020 International Conference on Management
of Data, SIGMOD Conference 2020, pp. 3–17. ACM (2020)

30. Whitehill, J., Wu, T., Bergsma, J., Movellan, J., Ruvolo, P.: Whose vote should
count more: optimal integration of labels from labelers of unknown expertise. In:
Proceedings of the NIPS 2009, pp. 2035–2043 (2009)

31. Zheng, Q., Wang, W., Yu, Y., Pan, M., Shi, X.: Crowdsourcing complex task auto-
matically by workflow technology. In: MiPAC 2016 Workshop, pp. 17–30 (2016)

32. Zheng, Y., Li, G., Li, Y., Shan, C., Cheng, R.: Truth inference in crowdsourcing:
is the problem solved? Proc. VLDB Endow. 10(5), 541–552 (2017)

Timed Petri Nets with Reset
for Pipelined Synchronous Circuit Design

Rémi Parrot(B), Mikaël Briday, and Olivier H. Roux

École Centrale de Nantes, LS2N UMR CNRS, 6004 Nantes, France
remi.parrot@ec-nantes.fr

Abstract. This paper introduces an extension of Timed Petri Nets
for the modeling of synchronous electronic circuits, addressing pipeline
design problems. Petri Nets have been widely used for the modeling of
electronic circuits. In particular, Timed Petri Nets which capture tim-
ing properties are perfectly suited for scheduling problems. Our exten-
sion, through reset that model the pipeline stages, and through delayable
transitions that relax timing constraints, allows to widen the conception
space of pipelined systems.

After discussing about maximal-step firing rule and the semantics of
Timed Petri Nets “à la Ramchandani”, we define our Timed Petri Nets
with reset and delayable (non-asap) transitions.

We then study the decidability and the complexity of the main prob-
lems of interest. We propose an abstraction of the state space. We then
establish a translation of this model into a single-clock timed automata,
which preserves the language. This translation settles the decidability on
language inclusion and universality problems.

Finally, an algorithm for the exploration of the state space is pro-
vided, and can be driven by the optimisation of various properties of the
pipeline.

1 Introduction

The field of hardware verification seems to have been started in a little-known
1957 paper by Alonzo Church, 1903–1995, in which he described the use of
logic to specify sequential circuits [11]. Today’s semiconductor designs are still
dominated by synchronous circuits. In these circuits, clock signals synchronize
the logic, providing the designer with a simple operational model.

A major step in the design of synchronous circuits concerns the automatic
generation of the pipeline. The pipeline does not functionally modify the circuit,
but allows to split a process into several steps in order to increase the operat-
ing frequency (throughput). Its implementation can be seen as an optimisation
problem whose aim is to reach a target operating frequency while minimizing
the hardware cost of the pipeline stages (registers).

This work is supported by the Renault-Centrale Nantes chair dedicated to the propul-
sion performance of electric vehicles.

c© Springer Nature Switzerland AG 2021
D. Buchs and J. Carmona (Eds.): PETRI NETS 2021, LNCS 12734, pp. 55–75, 2021.
https://doi.org/10.1007/978-3-030-76983-3_4

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76983-3_4&domain=pdf
https://doi.org/10.1007/978-3-030-76983-3_4

56 R. Parrot et al.

As introduced in [15], a circuit can be abstracted by a weighted directed
graph, where the vertices are the operators of the circuits and the edges are the
connections in between. Weights are added to edges representing the number of
registers, and to vertices representing the propagation delays of operators. The
authors then proposed an operation called retiming, which consists in moving
registers from one place to another (an operation on the edge-weights) without
altering the circuit’s behaviour, in order to explore various pipeline solutions.

A more suitable formalism of this approach is actually the (Timed) Marked
Graph (or Event Graph), which is a subclass of Petri Net where each place has
one incoming arc, and one outgoing arc.

Petri Nets to Model Circuits: Due to their concurrency nature, Petri Net have
been extensively used to analyse and optimise timing properties of both syn-
chronous and asynchronous circuits [6,7,17,21].

For example, it has shown particularly effective for building resource-optimal
pipeline on Latency-insensitive systems [8], in [6], and with control-flow struc-
tures in [14], which is of particular interest in the High-Level Synthesis (HLS)
approach. Furthermore, Marked Graph have also been used to pipeline asyn-
chronous systems, through slack matching in [21]. More recently, in [17] the
authors manage to pipeline mode-based asynchronous circuits, where there are
given probabilities to switch between modes, using a combination of Markov
chains and Marked Graph.

All those works share the same method of resolution: deduce the timing con-
straints from the Petri Net structure, and get back to an Integer Linear Problem.
In contrast, we propose to encapsulate the time in our model, and to explore the
states of the circuit using directly the semantics of our model. In other words, we
suggest a novel modeling of the classical timing closure problem, on synchronous
dataflow circuits without loops.

Petri Nets with Time: The two main time extensions of Petri Nets are Time
Petri Nets [16] and Timed Petri Nets [20]. While a transition can be fired within
a given interval for Time Petri Nets, deterministic (or constant) “firing duration”
are assigned to transitions of Timed Petri Nets.

For Timed Petri Nets [20], each transition takes a positive time (duration)
to fire according to a three-phases firing. The tokens are consumed when the
transitions are enabled, then as soon as the delays have elapsed, the tokens cor-
responding to the firing of the transitions are produced. The model is restricted
to decision-free nets (as Timed marked graph) and zero time delay is prohibited.

Enhanced timed nets are proposed in [22] that combine “immediate” nets
which are in fact ordinary (i.e., timeless) free-choice acyclic Petri nets, and free-
choice bounded timed Petri nets.

In [19], Popova generalised Timed Petri Nets and proposed a semantic based
on the same three-phases firing, allowing null duration. Transitions are fired as
soon as possible (asap) according to the maximal-step rule, i.e. in each marking,
a maximal set of firable transitions fires at once.

Timed Petri Nets with Reset for Pipelined Synchronous Circuit Design 57

Contributions and Outline of the Paper

We first rewrite in Sect. 2 the semantics of Timed Petri Nets with an atomic max-
imal step firing rule i.e. without three-phases firing. We then propose in Sect. 3,
a Timed Petri Net extension closer to real synchronous circuits, which embeds
the effect of registers on the circuit’s timing with a particular reset action, and
which permits to relax some timing constraints (allow lag on operations of the
circuit) with delayable transitions. This new model is proved in Sect. 4 to have
a PSPACE-Complete complexity for the reachability (and TCTL model check-
ing) problem. Moreover, we provide in Sect. 5 a symbolic states space exploration
algorithm, using simplified zones. This latter allows us in Sect. 6 to build a trans-
lation into a single-clock timed automata, preserving timed behaviour. Then it
gives the decidability on timed language inclusion and universality problems.
Finally, we present in Sect. 7 a use case of this model: to build a pipeline of
a circuit, minimising the total number of flip-flops (registers of one bit), while
ensuring the operating frequency to be into an interval. To do so, we provide
a heuristic for the state space exploration, by adding costs which measure the
total number of flip-flops of a state.

2 Maximal Step Firing Rule and Timed Petri Net

The introduction of deterministic time into Petri nets was first attempted by
Ramchandani [20]. The time labels (duration) were assigned to each transition,
denoting the fact that actions take time to complete.

N and R≥0 are respectively the sets of integer and non-negative real numbers.
For vectors of size n, the usual operators +,−,×, <,≤, >,≥ and = are used on
vectors of Nn and Rn

≥0 and are the point-wise extensions of their counterparts
in N and R≥0. Let 0̄ be the null vector of size n.

2.1 Three-Phases Firing

Ramchandani proposed a three-phases firing semantics: delete the input tokens
of the transition (consumption), wait until the firing time is reached (delay) and
create the output tokens of the transition (production). This firing process when
initiated cannot be interrupted or stopped, therefore the consumption phase
can be seen as a reservation (in particular in case of conflict). Moreover the
transitions in the process of firing are synchronized to a global clock, through
a token balance equation linking the tokens added and removed to the tokens
present in a place between two instants. Zero time firing is prohibited, preventing
the same transition from being fired twice when other transitions are in conflict.

More recently, Popova proposed a semantics based on the same three-phases
firing, allowing null duration but selecting beforehand a maximal-step (a set) of
transitions to be fired in the same action [19]. In other words, instead of being
reserved one after the other, the transitions are selected and then reserved all at
the same time (consumption phase).

58 R. Parrot et al.

2.2 Maximal-Step Firing

The classical semantics of timeless Petri Nets is the interleaving semantics. From
a practical point of view, the maximal-step semantics avoids interleaving and is
very interesting for synchronous system modelling.

Given a Petri Nets, the maximal-step firing compared to interleaving seman-
tics puts more strain on the firing, increases expressiveness and removes reach-
able markings.

Popova shows how a counter machine can be simulated by Timed Petri nets
[19]. But she also shows that this reduction can be done by timeless Petri nets
with maximal-step firing. In particular the so-called zero-test, can be simulated
by a timeless net thanks to the maximal-step firing rule. It means that Timeless
as Timed Petri nets firing in maximal-step are Turing equivalent.

2.3 Timed Petri Net

We propose to rewrite Timed Petri Nets semantics without any reservation:
waiting is done while keeping the tokens in their place, then when at least one
transition is fireable we select the maximal step and fire (consumption and pro-
duction) all the transitions in one atomic action. The maximal step contains, in
our case, enabled transitions which have been enabled for a period of time equal
to their delays.

Informally, with each transition of the Net is associated a clock and a delay.
The clock measures the time since the transition has been enabled and the delay
is interpreted as a firing condition: the transition may and must fire if the value
of its clock is equal to the delay.

Formally:

Definition 1 (TPN). A Timed Petri Net is a tuple (P, T,•(.), (.)•, δ,M0)
defined by:

– P = {p1, p2, . . . , pm} is a non-empty set of places,
– T = {t1, t2, . . . , tn} is a non-empty set of transitions,
– •(.) : T → NP is the backward incidence function,
– (.)• : T → NP is the forward incidence function,
– M0 ∈ NP is the initial marking of the Petri Net,
– δ : T → N is the function giving the firing times (delays) of transitions.

A marking M is an element of NP such that ∀p ∈ P , M(p) is the number of
tokens in place p.

A marking M enables a transition t ∈ T if: M ≥• t. The set of transitions
enabled by a marking M is enab (M) = {t ∈ T | M ≥• t}.

Firable transitions are fired according to the maximal-step firing rule and
thus must fire simultaneously. For marked graph where every place has one
incoming arc, and one outgoing arc, there can not be any conflict and the firing
of a transition cannot disable another transition. In the general case, there can
be conflict and, from a given state, there can be several maximal steps τ .

Timed Petri Nets with Reset for Pipelined Synchronous Circuit Design 59

From a marking M , the simultaneous firing of a set τ of transitions leads to
a marking M ′ = M + Σt∈τ

(
t• −•t

)
.

A transition t′ is said to be newly enabled by the firing of a set of transitions
τ if M +Σt∈τ

(
t• −•t

)
enables t′ and (M −Σt∈τ

•t) did not enable t′. If t remains
enabled after its firing then t is newly enabled. The set of transitions newly
enabled by a set of transitions τ for a marking M is noted ↑enab (M, τ).

A state is a pair (M,v) where M is a marking and v ∈ RT
≥0 is a time

valuation of the system (i.e. the value of the clocks). v(t) is the time elapsed
since the transition t ∈ T has been newly enabled. 0̄ is the valuation assigning
0 to every transitions.

Definition 2 (Maximal Step). Let q = (M,v) be a state of the Timed Petri
Net (P, T,•(.), (.)•, δ,M0), τ ⊆ T is a maximal step from q iff:

1. ∀t ∈ τ, v(t) = δ(t)
2.

∑
t∈τ

•t ≤ M
3. ∀t′ ∈ T, (v(t′) = δ(t′) and •t′ ≤ M and t′ 	∈ τ) ⇒ ∑

t∈τ
•t +•t′ 	≤ M

The set of maximal steps from q is noted maxStep(q)

The first condition ensures that the transitions are ready to fire, i.e. the
clocks are equal to the delays. The second condition ensures that the transition
are firable, i.e. enabled and not in conflict with another transition of τ . The
third condition disallows the existence of a proper superset of τ which fulfils the
previous two conditions.

The semantics of TPN is defined as a Timed Transition System (TTS). Wait-
ing in a marking is a delay transition of the TTS and firing a transition of the
TPN is a discrete transition of the TTS.

Definition 3 (Semantics of a TPN). The semantics of a TPN is defined by
the Timed Transition System S = (Q, q0,→):

– Q = NP × RT
≥0 is the set of states,

– q0 = (M0, 0̄) is the initial state,
– →∈ Q×(R≥0∪2T)×Q is the transition relation including a discrete transition

and a delay transition.
• The delay transition is defined ∀d ∈ R≥0 by:

(M,v) d−→ (M,v′) iff ∀t ∈ enab (M) , v′(t) = v(t) + d and v′(t) ≤ δ(t)

• The discrete transition is defined ∀τ ∈ maxStep
(
(M,v)

)
by:

(M,v) τ−→ (M ′, v′) iff

⎧
⎪⎨

⎪⎩

M ′ = M +
∑

t∈τ

(
t• −•t

)

v′(t) =

{
0 if t ∈↑enab (M, τ) or t 	∈ enab (M ′)
v(t) otherwise

A run in a Timed Petri Net is a sequence q0
α1−→ q1

α2−→ . . . , such that for all
i, qi

αi+1−−−→ qi+1 is a transition in the semantics.

60 R. Parrot et al.

2.4 Comparison with Ramchandani’s Semantics

In the absence of conflict, the atomic semantics of Definition 3 is equivalent to
the three-phases one of Ramchandani (extended with zero firing delay [19]): it
exists only one execution, no indeterminism.

In case of conflict, it is possible to construct the three-phases firing in our
semantics: just add a zero time transition before each transition, in order to
simulate the reservation action as illustrated in Figs. 1 and 2. Notice that in
Fig. 1b, the maximal step {t0, t1, t2} is only the consumption phase, while the
production is done implicitly after the delay. Our semantics is then at least as
expressive as the Ramchandani’s one.

t0

t1

t2

t3

1

1

3

1p0

p1

p2

p3

p4

p5

(a) Example of Timed Petri Net
N1

{p0, p1, p1}

{p2, p3}
v(t2) = 1

{p2, p3, p4}

{t0, t1, t2}, 1

2

(b) Run of N1 using
three-phases semantics

{p0, p1, p1}
v(t0) = 0
v(t1) = 0
v(t2) = 0

{p1, p2, p3}
v(t2) = 1
v(t3) = 0

{p1, p5}

1, {t0, t1}

1, {t3}

(c) Run of N1 using
atomic semantics

Fig. 1. Comparison with three-phases firing semantics1.

3 TPN with Reset and Delayable Transitions

We now extend TPN. A transitions can be of two types: either it is fired as soon
as possible, as in Definition 1, or it is delayable (non-asap) i.e. may fire either if
the value of its clock is equal to the delay or if the value of its clock is greater
than the delay and if it is associated with another transition whose clock is equal
to its delay. Moreover, the clocks can be reset (let reset be the corresponding
action) and the delay between two successive resets is given by an interval Ireset.

Formally:

Definition 4 (RTPN). A Timed Petri Net with reset and delayable transitions
(RTPN) N is a tuple (P, T, TD,•(.), (.)•, δ, Ireset,M0) defined by:

1 For the sake of brevity, in all the following figures, we note a marking M as a set of
marked places instead of a vector and we give the valuation v only for the enabled
transitions.

Timed Petri Nets with Reset for Pipelined Synchronous Circuit Design 61

t0 t0

t1 t1

t2 t2

t3 t3

1

1

3

1

0

0

0

0p0

p1

p2

p3

p4

p5

lock(t0)

lock(t1)

lock(t2)

lock(t3)

Fig. 2. Timed Petri Net N2 that simulates N1 with the three-phases firing semantics.

– (P, T,•(.), (.)•, δ,M0) is a Timed Petri Net,
– TD ⊆ T is the set of delayable transitions,
– Ireset is the reset time interval with lower (Ireset) and upper (Ireset) bounds

in N.

From a state (M,v), a transition is firable if it is enabled and its clock is
greater or equal to its delay. As for Timed Petri Net, the clock of asap transition
t 	∈ TD cannot exceed δ(t). Hence v(t) ≤ δ(t) and t must fire when its clock is
equal to its delay.

A delayable transition t ∈ TD, can fire either when v(t) = δ(t) (not delayed in
this case) or when v(t) > δ(t), but in this second case, t must be associated with
at least one (or more if any) other firable transition t′ such that v(t′) = δ(t′).

The maximal step is now maximal only from the asap transitions point of
view as follows:

Definition 5 (Maximal Step w.r.t. TD). Let q = (M,v) be a state of N .
τ ⊆ T is a maximal step w.r.t. TD from q iff:

1. ∀t ∈ τ, v(t) ≥ δ(t)
2. ∃t ∈ τ s.t. v(t) = δ(t)
3.

∑
t∈τ

•t ≤ M
4. ∀t′ ∈ T \ TD, (v(t′) = δ(t′) and •t′ ≤ M and t′ 	∈ τ) ⇒ ∑

t∈τ
•t +•t′ 	≤ M

The set of maximal steps w.r.t. TD from q is noted maxStep\TD
(q).

A state is now a pair (M,v) where v ∈ R
T∪{reset}
≥0 is extended with a value

for the reset, i.e. the time elapsed since the last action reset. The reset action
resets all the clocks of the model. It is possible when the clock of the reset is in
the reset time interval v(reset) ∈ Ireset.

The semantics of RTPN is defined as a Timed Transition System (TTS).
Waiting in a marking is a delay transition of the TTS and firing a set of transi-
tions of the RTPN or resetting the clocks is a discrete transition of the TTS.

Definition 6 (Semantics of a RTPN). The semantics of a RTPN N is
defined by the Timed Transition System SN = (Q, q0,→):

– Q = NP × R
T∪{reset}
≥0 is the set of states,

62 R. Parrot et al.

– q0 = (M0, 0̄) is the initial state,
– →∈ Q×(R≥0∪2T ∪{reset})×Q is the transition relation including a discrete

transition and a delay transition.
• The delay transition is defined ∀d ∈ R≥0 by:

(M,v) d−→ (M,v′) iff

⎧
⎪⎨

⎪⎩

∀t ∈ enab (M) ∪ {reset}, v′(t) = v(t) + d

v′(reset) ≤ Ireset

∀t ∈ enab (M) \ TD, v′(t) ≤ δ(t)

• The discrete transition is defined by:
∗ ∀τ ∈ maxStep\TD

(
(M,v)

)
,

(M, v)
τ−→ (M ′, v′) iff

⎧
⎪⎨

⎪⎩

M ′ = M + Σt∈τ
(
t• −• t

)

v′(t) =

{
0 if t ∈↑enab (M, τ) or t �∈ enab (M ′)
v(t) otherwise

∗ (M,v)
{reset}−−−−−→ (M,v′) iff

{
v(reset) ∈ Ireset

v′ = 0̄

Definition 7 (Runs). Let N be a RTPN and SN its semantics. A run of N
from q1 is a finite or infinite sequence ρ = qr

d1−→ qd1

τ1−→ qτ1 . . .
dn−→ qdn

τn−→ qτn

of alternating di delay (possibly null) and τi discrete transition where either
τi ⊆ T or τi = {reset}.

4 Complexity of Reachability Problem

First we have the following theorem:

Theorem 1. Reachability problem for RTPN is undecidable.

Proof. The behaviour of a timeless Petri Net with maximal step firing rule is
simulated by a RTPN with the same structure and initial marking, and such
that TD = ∅, ∀t ∈ T , δ(t) = 0 and Ireset > 0. Moreover, timeless Petri Nets with
maximal step firing rule are Turing powerful [19]. ��

In the sequel we then consider bounded Nets.

Lemma 1. Reachability for safe timeless Petri Nets with maximal-step firing
rule, for safe TPN and for safe RTPN is PSPACE-hard.

Proof. We first consider 1-safe timeless Petri Net. We reduce the reachability
problem for a 1-safe Petri Net with interleaving semantics to reachability for
a 1-safe Petri Net with maximal-step firing rule. Let N = (P, T,•(.), (.)•,m0)
a 1-safe Petri Net with interleaving semantics. We translate N into N ′ =
(P, T ′, pre, post,m0) with maximal-step firing rule such that T ⊆ T ′, ∀t ∈ T ,
pre(t) =• t and post(t) = t•. Moreover T ′ = T ∪ Tp where Tp is a set of transi-
tions defined by Tp ∩ T = ∅ and ∀p ∈ P there exists a transition tp ∈ Tp such

Timed Petri Nets with Reset for Pipelined Synchronous Circuit Design 63

that pre(tp) = post(tp) = p. Informally speaking, we add a self loop from all
places of P .

Hence we create a conflict between all transitions of N ′ with a transition
of Tp. Since the firing of a transition tp of Tp preserves the marking of p, this
translation allows to simulate the interleaving semantics from the maximal-step
firing rule.

Since reachability in timeless 1-safe Petri net with interleaving semantics is a
PSPACE-complete problem [10], it follows that reachability for 1-safe Petri net
with Maximal-step firing rules is PSPACE-hard. Moreover, as for the proof of
Theorem 1, we can now consider that N ′ is a TPN with ∀t ∈ T ′, δ(t) = 0 or a
RTPN with TD = ∅, ∀t ∈ T ′, δ(t) = 0 and Ireset > 0 proving the lemma. ��

TCTL, introduced in [2], is a real-time extension of the branching-time tem-
poral logic CTL. It has been trivially adapted in [9] for Time Petri Nets where
atomic propositions are linear constraints over markings such as Generalized
Mutual Exclusion Constraints [12].

To construct a finite structure in order to employ usual discrete model check-
ing techniques, we can use the region equivalence relation � over clock interpre-
tations defined for timed automata [2,3]. This region equivalence can be easily
adapted for Timed Petri Nets with or without reset as in [5]. To compute the
region graph, we now just change the computation of the firing step (i.e. the
discrete step) by applying the maximal firing rule. This region graph is expo-
nential in the size of the input T + P . However, we can proceed like in [2,5]
to check TCTL formulas by a recursive procedure label(vertex, ϕ) called for
each sub-formula leading to a polynomial space algorithm. Finally thanks to the
PSPACE-hardness (Lemma 1), we obtain the following theorem and corollaries.

Theorem 2. Reachability and TCTL model checking for bounded Timed Petri
Nets with or without reset is PSPACE-complete.

Corollary 1. The result holds for Timed Petri Nets “à la Ramchandani”.

Corollary 2. Reachability and CTL model checking for bounded timeless Petri
Nets with maximal-step firing rule is PSPACE-complete.

Note that this PSPACE complexity is theoretical and, for Timed Automata
and Time Petri Nets, no effective PSPACE algorithm has been proposed and all
real implementations are with exponential algorithms.

5 State Space Computation

The semantics of RTPN is a transition system in which each state is a pair
of a marking and a clock valuation. Observe that there are only finitely many
markings, but there are uncountably many values for clocks due to the denseness
of time (in particular for the states from which a reset can be done). Hence, the
semantics of RTPN has an uncountably infinite state space.

64 R. Parrot et al.

The region graph partitions the space of valuations into a finite number of
regions. However, the region graph approach turns out to be impractical. A more
efficient solution is to work with convex sets of valuations called zones described
by constraints between clocks.

Using zones, a symbolic semantics graph of RTPN, can be defined. A symbolic
state of a RTPN is a pair (M,Z) representing a set of states of the RTPN, where
M is a marking and Z is a zone. A symbolic transition describes all the possible
concrete transitions from the set of states.

Definition 8. A symbolic state is a pair (M,Z) where M is a marking and the
zone Z is a set of valuations v on T ∪ {reset} represented by a conjunction of:

– rectangular constraints over valuations: (v(x) ∼ c) where x ∈ T ∪{reset} and
∼∈ {≤,=,≥} and c ∈ N, with

– ∀t ∈ enab (M) diagonal constraints on pairs: (v(reset) − v(t) = c) where c ∈
N.

We said that a valuation vi is in a zone: vi ∈ Z, if it verifies all its constraints.
We note 0̄ the zone containing only the valuation 0̄.

5.1 Operations over Symbolic States

Since diagonal constraints are equalities, by setting the value of a single variable
v(x) we obtain a point in the zone. To ensure this, we set to zero the valuations
of non enabled transitions.

Let M be a marking and Z a zone. The computation of the reachable mark-
ings from M according to the zone Z is done by using the following operations:

1. Compute the possible evolution of time (future):
−→
Z = {v′ | v ∈ Z and v′(x) =

v(x) + d with d ≥ 0, x ∈ enab (M) ∪ {reset}}. This is obtained by setting all
upper bounds of v(x) to infinity for x ∈ enab (M) ∪ {reset}.

2. Select only the possible valuations for which M could exist, i.e. valuations of
enabled transitions t 	∈ TD must not be greater than δ(t) and valuation of the
reset must not be greater than Ireset:

Z ′ =
−→
Z ∧ (

v(reset) ≤ Ireset

) ∧

t∈enab(M)\TD

(v(t) ≤ δ(t))

So, Z ′ is the maximal zone starting from Z for which the marking M is legal
according to the semantics.

3. Determine the set of firable transitions sets fireablez(M,Z ′) = {(τ, z) | z ⊆
Z ′, τ ∈ 2T ∪ {reset} is fireable from (M, z)} defined by:

– τ ⊆ T is firable from the firing point (M, {vp}) if τ ∈
maxStep\TD

((M,vp)) and ∃t ∈ τ such that Z ′ ∧ (v(t) = δ(t)) = {vp},
– reset is firable from (M, zreset) with zreset = Z ′ ∧ (

v(reset) ≥ Ireset

)
if

zreset is a non empty zone.
4. Fire transitions

Timed Petri Nets with Reset for Pipelined Synchronous Circuit Design 65

– Firing a firable set of transitions τi ⊆ T from the firing point vp ∈ Z ′

leads to the new marking M ′ = M + Σt∈τ

(
t• −•t

)
and the point zone vi

such that:

∀t ∈ T, vi(t) =

{
0 if t ∈↑enab (M, τ) or t 	∈ enab (M ′)
vp(t) otherwise

and vi(reset) = vp(reset).
– Firing a reset leads to the point zone 0̄ and then to (M, 0̄)

A set of transitions τ ⊆ T is always fired from a point of a zone Z and the
zone obtained after the firing of τ from Z is also a point. A reset is fired from a
part of a zone but since it resets all the clocks, the zone obtained by the firing
of reset from a given zone Z is also a point.

An integer point vi of a zone Z is a valuation such that for all x ∈ T ∪{reset},
v(x) ∈ N.

Lemma 2. ∀τ ⊆ T , (τ, zτ) ∈ fireablez(M,Z) ⇒ zτ is an integer point.

Proof. Each reset leads to an integer point zone 0̄. Between two reset, only firings
of transitions τ ⊆ T can occur. By definition of the semantics (and of operation
3), the firing of a set of transitions τ ⊆ T can occur only if at least one transition
t ∈ τ is such that v(t) = δ(t) in N. Hence a set of transitions τ ⊆ T is always
fired from an integer point of a zone Z and the zone obtained after the firing of
τ from Z is also an integer point. ��

Hence, the set of zones is closed under these 4 operations, in the sense that
the result of the operations is also a zone as defined in Definition 8.

The successor operator succ ((M,Z), τ) gives the symbolic state obtained
from (M,Z) by applying successively operations 4 with τ ∈ 2T ∪ {reset}, 1 and
then 2.

5.2 State Graph

For a RTPN N , the initial symbolic state (M0, Z0) is obtained from (M0, 0̄) by
applying operations 1 and 2.

We compute forward the reachable symbolic states from (M0, Z0) by itera-
tively applying the successor operator for all the firable transitions. The set of
reachable symbolic states from the initial symbolic state is Reach(N).

Lemma 3. Reach(N) is finite.

Proof. First, we consider bounded nets therefore the number of marking is
bounded. Lemma 2 gives that applying operation 4 leads to integer points. The
coordinates of those points are bounded by Ireset, then there is a finite number
of reachable integer points, and then a finite number of zones after applying
operations 1 and 2. ��

66 R. Parrot et al.

Definition 9. The state graph of N is the graph SG(N) = (Reach(N),
(M0, Z0), ↪→, Σ) such that Σ = 2T ∪ {reset} and ∀s ∈ Reach(N), τ ∈ Σ,
s

τ
↪−→ s′ if s′ = succ(s, τ).

This symbolic semantics corresponds closely to the operational semantics in
the sense that (M,Z)

τ
↪−→ (M ′, Z ′) implies for all v′ ∈ Z ′, (M,v) τ−→ (M ′, v′) for

some v ∈ Z. The symbolic semantics is a correct and full characterisation of the
operational semantics given in Definition 6.

Example 1. An example of RTPN is presented in Fig. 3a, in its initial state,
where the delays are in red, and the delayable transitions in gray (only t0 here).
The corresponding part of state graph SG(N) obtained in only one step is given
in Fig. 3b.

t0

t1

t2

t3

5

4

2

9

p0

p1

p2

p3

p4

p5

p6

Ireset = [6, 10]

(a) Example of RTPN N

{p0, p3}
0 ≤ v(t0)
0 ≤ v(t3) ≤ 9
0 ≤ v(reset) ≤ 10
v(reset) − v(t3) = 0
v(reset) − v(t1) = 0

{p1, p2, p3}
0 ≤ v(t1)
0 ≤ v(t2)
5 ≤ v(t3) ≤ 9
5 ≤ v(reset) ≤ 10
v(reset) − v(t1) = 5
v(reset) − v(t2) = 5
v(reset) − v(t3) = 0

{p1, p2, p6}
0 ≤ v(t1) ≤ 4
5 ≤ v(reset) ≤ 10
v(reset) − v(t1) = 5
v(reset) − v(t3) = 0

{p0, p6}
9 ≤ v(t0)
9 ≤ v(reset) ≤ 10
v(reset) − v(t0) = 0

{reset}

{t0}

{t0, t3}

{t3}

sa

sb

sc

sd

(b) Firsts states of SG(N)

Fig. 3. Example of RTPN and part of its state graph

6 Decidability of Some Timed Language Problems

A timed word of N is a finite or infinite sequence w = (d1, τ1)(d1 + d2, τ2) . . .

(Σi=1...ndn, τn) such that ρ = q0
d1−→ qd1

τ1−→ qτ1 . . .
dn−→ qdn

τn−→ qτn is a run of N
from q0. The timed language L(N) recognized by N is the set of words w of N .

The language of a Petri Net is generally prefix-closed but it is easy to extend
Petri Nets with final or repeated markings as in [4] in order to have non-prefix-
closed languages over finite or infinite words.

Language inclusion and universality problems are known to be undecidable
for Timed Automata and Time Petri Nets. However these problems are decidable
on finite words for one clock Timed Automata. We then propose, from any
bounded RTPN N , to build a single-clock timed automaton which recognizes
the same timed language as N .

Timed Petri Nets with Reset for Pipelined Synchronous Circuit Design 67

6.1 From Bounded RTPN to Single-Clock Timed Automata

Timed Automata. Timed automata were first introduced by Alur and Dill in
[2,3] and extend finite automata with a finite number of clocks.

An atomic constraint is a formula of the form x �	 c for x ∈ X, c ∈ N and
�	∈ {<,≤,≥, >,=}. The set of constraints over a set X of variables is denoted
by ξ(X) and consists of conjunctions of atomic constraints.

Definition 10 (Timed Automaton). A timed automaton A is a tuple (L, l0,
X,Σ,E, Inv) where L is a finite set of locations, l0 ∈ L is the initial location,
X is a finite set of clocks, Σ is a finite set of actions, E ⊆ L×ξ(X)×Σ×2X ×L
is a finite set of edges where e = (l, γ, a,R, l′) ∈ E represents an edge from the
location l to the location l′ with the guard γ ∈ ξ(X), the label a ∈ Σ and the
reset set R ⊆ X, Inv ∈ ξ(X)L assigns an invariant to any location; we restrict
the invariants to conjunctions of terms of the form x ≤ k for x ∈ X and k ∈ N.

A clock valuation is a function ν : X → R≥0. If R ⊆ X then v[R �→ 0]
denotes the valuation such that ∀x ∈ X \ R, ν[R �→ 0](x) = ν(x) and ∀x ∈ R,
ν[R �→ 0](x) = 0. The satisfaction relation ν |= c for c ∈ ξ(X) is defined in the
natural way.

Definition 11 (Semantics of a Timed Automaton). The semantics of
the timed automaton A = (L, l0,X,Σ,E, Inv) is the timed transition system
SA = (Q, q0,→) with Q = {(l, ν) ∈ L× (R≥0)X | ν |= Inv(l)}, q0 = (l0, 0̄) is the
initial state and → is defined by:

– the discrete transitions relation (l, ν) a−→ (l′, ν′) iff ∃(l, γ, a,R, l′) ∈ E s.t.
ν |= γ, ν′ = ν[R �→ 0] and ν′ |= Inv(l′);

– the continuous transition relation (l, ν) d−→ (l′, ν′) iff l = l′, ν′ = ν + d and
ν′ |= Inv(l).

Translation from RTPN to Single-Clock Timed Automaton. By
definition of zone, all enabled transition t verify the diagonal contraint
(v(reset) − v(t) = c) with c ∈ N and all transition t′ not enabled verify
v(t′) = 0. Hence a point of a zone is fully characterised by v(reset). Note that
v(reset) − v(t) = c means that the transition t has been enabled c time units
after the last reset.

From any RTPN N , we wish to build a single-clock timed automaton AN in
which the single clock x has the value of v(reset).

We construct the single-clock timed automaton AN = (L, l0,X,Σ,E, Inv)
from the state graph SG(N) = (Reach(N), (M0, Z0), ↪→, Σ), as follows:

– φ : Reach(N) �→ L is a bijection
– L = {φ(s) | s ∈ Reach(N)}
– X = {x}
– The initial location is l0 = φ

(
(M0, Z0)

)

– For each l ∈ L, set the invariant (x ≤ Ireset)

68 R. Parrot et al.

– For each s ∈ Reach(N),
add

(
φ(s), x ≥ Ireset, {reset}, {x}, φ

(
succ(s, {reset})

))
to E

– For all (τ, vτ) = fireablez(M,Z) such that (M,Z)
τ

↪−→ (M ′, Z ′) do both state-
ments:

• add
(
φ
(
(M,Z)

)
, x = vτ (reset), τ, ∅, φ

(
(M ′, Z ′)

))
to E

• if ∃t ∈ τ such that t 	∈ TD then add the constraint (by conjunction)(
x ≤ vτ (reset)

)
to Inv

(
φ((M,Z))

)
.

la

lb

lc

ld

le

lf

lg

lh

li lj

lk ll lm

x ≤ 9

x ≤ 9

x ≤ 10

x ≤ 10

x ≤ 10

x ≤ 10

x ≤ 10

x ≤ 2 x ≤ 4

x ≤ 4 x ≤ 10 x ≤ 10

x ≥ 5

{t0}
x = 9

{t0, t3}
x = 9{t3}

x = 9

{t1, t2
}

x = 9{t1, t3}

x ← 0
x ≥ 6

{reset}

x ← 0x ≥ 6{reset}

x ← 0
x ≥ 6

{reset}

x ← 0
x ≥ 6

{reset}

x = 2
{t2}

x ← 0
x ≥ 6

{reset}

x = 4
{t1}

x ← 0
x ≥ 6

{reset}x ← 0
x ≥ 6

{reset}

x ← 0
x ≥ 6
{reset}

x ← 0
x ≥ 6

{reset}

x ← 0
x ≥ 6

{reset}x ← 0
x ≥ 6

{reset}

Fig. 4. Translation from the RTPN N into a single-clock TA AN

Theorem 3. The single-clock timed automaton AN and the RTPN N recognize
the same timed language: L(N) = L(AN).

Proof. Let (MN , v) a state of N and
(
φ((MA, Z)), ν

)
a state of AN . The relation

�, defined by (MN , v) � (
φ((MA, Z)), ν

)
iff MN = MA, v ∈ Z and v(reset) =

ν(x) is a timed bisimulation between N and AN . From this timed bisimulation
we can state that L(AN) = L(N). ��
Example 2. Figure 4 presents the timed automata constructed from the RTPN
N of Fig. 3a, where the guards and clock resets (denoted x ← 0) are in pink, the
invariants in orange, and the locations reachable by a reset are in cyan. In the
TA, we omit reset when it is not possible i.e. from a location with an invariant
x ≤ c with c < Ireset.

Timed Petri Nets with Reset for Pipelined Synchronous Circuit Design 69

6.2 Corollaries

Thanks to the translation from RTPN to one-clock Timed Automata, we inherit
these decidability results established on one-clock Timed Automata.

Given two timed model A and B, asking if all the timed words recognised by B
also recognised by A (language inclusion problem) is known to be undecidable for
Timed Automata. However it becomes decidable on finite words if A is restricted
to having at most one clock [18].

Corollary 3. Language inclusion problem is decidable for finite words for
RTPN.

The universality problem for timed model is: given a timed model A, does A
accept all timed words? Alur and Dill have shown that the universality problem
is undecidable for timed automata with two clocks. However, for one-clock timed
automata over finite words, the one-clock universality problem is decidable [1].

Corollary 4. Universality problem is decidable for finite words for RTPN.

7 Application to the Pipeline Problem

Now that we have a model that closely represents pipelined synchronous circuits,
we are able to perform model checking of TCTL properties, for example to
ensure the sequentiality of some operations. An interesting use case would be
the sharing of resources (sections of the circuits), indeed thanks to some simple
TCTL properties, one can build a pipeline that prevents conflicts with shared
resources. But as it is an high stakes issue for the designing of synchronous
systems, we wish to focus on the building of an optimised pipeline w.r.t. the
number of registers.

The problem of building a pipeline that minimises the number of registers,
while ensuring a minimal throughput have already been solved in [15]. However,
the minimisation of the number of registers does not imply the minimisation
of the number of flip-flops: it depends on the size of signals. Even though the
signal’s size can be taken into account in the model of [15] by adding edges in
parallel, there is still a problem that cannot be solved with this approach: the
placement of registers when there is one signal used by multiple operators, what
we call branch points. We claim to solve this particular issue by using RTPN.

For a circuit representation, where the transitions illustrate the operators,
and the places illustrate the connections, the Petri Net is actually a Marked
Graph, thus there is no conflict. However the state space still has an exponentiel
size w.r.t. the size of the RTPN, then we will add features that allows us to cut
branches in the exploration according to an optimisation goal. In this particular
case, we aim at the minimisation of the total number of flip-flops (1-bit register),
thus we extend our model with costs which represent the number of flip-flop of a
given pipeline. Remind that the considered circuits are finite with unfolded loops,
so we only focus on finite runs of the RTPN, then adding an only increasing cost
won’t affect the termination.

70 R. Parrot et al.

7.1 RTPN with Cost

We extend RTPN with a cost associated with each place and a marking cost
function.

Definition 12 (RTPN with Cost). A RTPN extended with cost (RTPN with
Cost) is a tuple (N , C, ω) where N = (P, T, TD,•(.), (.)•, δ, Ireset,M0) is a RTPN
and

– C : P → N is the place cost function.
– ω : NP → N is the marking cost function (recall that a marking M ∈ NP).

In Marked Graphs, the marking of a place M(p) can only take its value in {0, 1},
which can be interpreted both as a boolean and as an integer value. Therefore, we
allow to use both arithmetical operators (in {+, ∗}) and the logical or operator
∨ in the definition of the marking cost function ω.

Example for ω(M) = (M(p1) ∨ M(p2)) ∗ 4 + M(p2) ∗ 10. Assume M1(p1) =
M1(p2) = 1 then ω(M1) = (1 ∨ 1) ∗ 4 + 1 ∗ 10 = 14.

A classical marking cost function is ω(M) =
∑

p∈P M(p) ∗ C(p) which is the
sum of marked places weighted by their cost.

Definition 13 (Cost of a run). The cost Ω(ρ) of a run ρ is the cumulated
marking cost of the states after each reset transition over the run, starting with
the cost of the initial marking. It is inductively defined on a run ρn = ρn−1

αn−−→
qn, with αn ∈ R≥0 ∪ 2T ∪ {reset} and qn = (Mn, vn) by:

– Ω(q0) = ω(M0)

– Ω(ρn) =

{
Ω(ρn−1) + ω(Mn) if αn = {reset}
Ω(ρn−1) otherwise

7.2 From a Pipelining Problem to a RTPN with Cost

As stated before, Marked Graphs have been extensively used to model circuits,
where transitions stand for the atomic operators, places for the connections
in between, and where tokens represent the registers on each connection. This
can be improved by considering branch points (points where a signal is used
by multiple operators) as operators with a null propagation delay, and then
integrating them into the model with more transitions.

We propose to use our model of Timed Petri Net with reset and delayable
transitions, in order to build a pipeline of a synchronous circuit, which minimises
the number of registers, while ensuring that the throughput is in a target interval
[fmin, fmax].

We build the RTPN with Cost ((P, T, TD,•(.), (.)•, δ, Ireset,M0), C, ω) from
the circuit by creating a transition t ∈ T for each operator and branch point, with
its delay equal to the propagation delay, a place p ∈ P for each connection of the
circuit, and with •(.) and (.)• preserving the network structure of the circuit. The

Timed Petri Nets with Reset for Pipelined Synchronous Circuit Design 71

initial marking M0 sets a token in all the places corresponding to input connec-
tions of the circuit. The placement of tokens models the placement of registers,
so our model won’t hold the fully pipelined circuit in its state, but only one stage
at a time, a complete pipeline is built from a run. The reset action settles the
registers placement of each pipeline stage, then Ireset = [1

fmax
, 1

fmin
] guarantees

the throughtput to be in [fmin, fmax]. The cost of each place C(p) will be the size
of the signal (in bits) held by the corresponding connection in the circuit. The
marking cost function is such that it gives the number of flip-flops corresponding
to a marking M : ω(M) =

∑
pk∈POp

C(pk) · (M(pk) ∨ ∨
pkl∈PB(pk)

M(pkl)),
where POp is the set of places respectives to connections outgoing from opera-
tors, and PB(pk) is the set of places respectives to connections outgoing from the
branch point after the connection corresponding to pk. In this manner, the cost
of a run will be equal to the number of flip-flops in the pipeline so far. Finally,
all the transitions t corresponding to operators with a larger bus width at the
output than at the input, are set to be delayable t ∈ TD. Thus, we relax the
constraints on those transitions, and allow to explore states where the register
is before the operator, and so with less flip-flops. It is actually possible to make
all transitions delayable, but this will obviously lead to an explosion of the state
space of the model.

An example of circuit is presented on Fig. 5a, involving some operators opi

with propagation delays in red and some signals sj transmitted by connections
with sizes in green.

s0(7:0)
op0

s1(7:0)
op1

op2

s2(3:0)

s3(7:0)

s4

op3

op4

s5(15:0)

s6

5 6

1

3

7

(a) Pipelined circuit (with frequency 1
8

≤ f ≤ 1
4
)

op0 b1

op1

op2

op3

op4

5 0

6

1

3

7

s0 s1

s11

s12

s2

s3

s4

s5

s6

8 8

4

8

1

16

1

8

Ireset = [4, 8]

(b) RTPN with Cost

Fig. 5. A synchronous circuit example (Color figure online)

72 R. Parrot et al.

The RTPN with Cost produced from this circuit is represented on Fig. 5b,
with the delays of transitions in red, the costs of places in green, and the delayable
transitions in gray. The two places s11 and s12 are represented inside a dotted
green box, because they “share” their cost, as it models signals outgoing from
the same branch point. The cost function is ω(M) = 8 · M(s0) + 8 · (M(s1) ∨
(M(s11) ∨ M(s12))) + 4 · M(s2) + 8 · M(s3) + M(s4) + 16 · M(s5) + M(s6).

Firstly the benefit of this approach is that it builds the pipeline from a non-
pipelined circuit. Secondly, the stage produced can be compared on-the-fly, as
they are added to the pipeline. Therefore the exploration can be lead by some
heuristics.

Finally, the reset interval offers flexibility over a fixed value and shorter
pipeline stages can be defined to allow exploration of other configurations. How-
ever if the stages are too short, this increases the number of stages (and thus
the cost in registers). A good trade-off is to restrict Ireset to

[
1
2f , 1

f

]
with some

target frequency f .

7.3 Pipeline Exploration

Each reachable state of the model represents a possible pipeline stage of the real
circuit. A reset operation defines a transition from one pipeline stage to the next

{s0}
v(op0) = 0
v(reset) = 0

{s0}
v(op0) = 5
v(reset) = 5

{s1}
v(b1) = 0
v(reset) = 5

{s11, s12}
v(op1) = 0
v(op2) = 0
v(reset) = 5

{s12, s2}
v(op2) = 6
v(reset) = 6

{s11, s12}
v(op1) = 6
v(op2) = 6
v(reset) = 6

{s11, s12}
v(op1) = 0
v(op2) = 0
v(reset) = 0

{s12, s2}
v(op2) = 0
v(reset) = 0

{s12, s2}
v(op2) = 1
v(reset) = 1

{s2, s3, s4}
v(op3) = 0
v(op4) = 0
v(reset) = 1

{s5, s6}
v(reset) = 0

{s5, s6}
v(reset) = 8

{s2, s3, s4}
v(op3) = 7
v(op4) = 7
v(reset) = 8

5

{op0}

{b1}

{reset}

6

{op1}

{reset}

1

{op2}

7

{op3, op4}

{reset}

q0 q1

q2

q3
q4

q5

q6 q7

q8

q9

q10

q11

q12

(a) One run of the RTPN with Cost of Fig. 5b. States after a reset are
framed in cyan (q0, q4, q7 and q12)

s0(7:0)
op0

s1(7:0)
op1

op2

s2(3:0)

s3(7:0)

s4

op3

op4

s5(15:0)

s6

5 6

1

3

7

(b) One possible pipeline of the circuit of Fig. 5a

Fig. 6. Example of the extraction of a pipeline from a run

Timed Petri Nets with Reset for Pipelined Synchronous Circuit Design 73

one. The full pipeline is retrieved by a walk along a branch of the state graph,
collecting reset operations.

One run ρ of the RTPN with Cost of Fig. 5b, is represented on Fig. 6a. It is
the best run achievable by our model, i.e. the one that minimises the cost. The
corresponding pipeline on the circuit is presented on Fig. 6b.

The marking of every state after a reset (framed in cyan in Fig. 6a) gives
the position of the registers in the pipelined circuit. Although, if all the signals
outgoing from a branch point are marked, then only one register is needed for
the unique signal that they represent. For example the marking M4 = {s11, s12},
leads to only one register on s1.

Let qi = (Mi, vi) (0 ≤ i ≤ 12) be the states of this run ρ. The run cost is
Ω(ρ) = ω(M0)+ω(M4)+ω(M7)+ω(M12) = C(s0)+C(s1)+C(s1)+C(s2)+C(s5)+
C(s6) = 45. This cost matches with the number of flip-flops in the pipeline of
Fig. 6a. Note that on this example, a classical greedy algorithm as implemented
in FloPoCo [13] (a well-known generator of arithmetic operators with pipeline
for FPGAs), produces the result in Fig. 5a, with a total of 55 flip-flops.

8 Conclusion

We have proposed an extension of Timed Petri Nets for the modeling of syn-
chronous electronic circuits, addressing pipelined design problems.

Through a translation from RTPN into a single-clock timed automata, we
have proved the decidability of language inclusion and universality problems for
bounded RTPN. We have proved that the complexity of the reachability problem
for bounded RTPN is PSPACE-Complete. This induces the same complexity for
Timed Petri Nets “à la Ramchandani” and for timeless Petri Nets with maximal-
step firing rule.

We have given a symbolic abstraction of the state space for RTPN. Thanks to
two degrees of freedom through delayable transitions and reset interval of RTPN,
the state space computation allows to generate multiple pipeline configurations.
This makes it possible to address a wide range of interesting problems such
as checking the absence of conflict between sharing resources (sections of the
circuits).

We then have shown that we can also deal with the problem of the construc-
tion of a pipeline optimised w.r.t. the number of registers. We have proposed
a cost extension leading to a state space exploration algorithm guided by cost,
allowing to choose among all combinations those that minimizes the resources
allocated to the pipeline, while ensuring a frequency objective. While this use
case is interesting on its own, we believe that RTPN can handle the design of
pipelined circuits in many ways: for instance to address timed division multi-
plexing problem, or to manage behavioural registers by adding explicit reset
transitions in the model.

74 R. Parrot et al.

References

1. Abdulla, P.A., Deneux, J., Ouaknine, J., Quaas, K., Worrell, J.: Universality anal-
ysis for one-clock timed automata. Fundam. Informaticae 89(4), 419–450 (2008)

2. Alur, R., Courcoubetis, C., Dill, D.: Model-checking in dense real-time. Inf. Com-
put. 104(1), 2–34 (1993)

3. Alur, R., Dill, D.L.: A theory of timed automata. Theoret. Comput. Sci. 126(2),
183–235 (1994)

4. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: The expressive power
of time Petri nets. Theoretical Comput. Sci. (TCS) 474, 1–20 (2013)

5. Boucheneb, H., Gardey, G., Roux, O.H.: TCTL model checking of time Petri nets.
J. Log. Comput. 19(6), 1509–1540 (2009)

6. Bufistov, D., Cortadella, J., Kishinevsky, M., Sapatnekar, S.: A general model for
performance optimization of sequential systems. In: 2007 IEEE/ACM International
Conference on Computer-Aided Design, pp. 362–369 (2007)

7. Campos, J., Chiola, G., Colom, J.M., Silva, M.: Properties and performance bounds
for timed marked graphs. IEEE Trans. Circuits Syst. I: Fund. Theory Appl. 39(5),
386–401 (1992)

8. Carloni, L.P., McMillan, K.L., Saldanha, A., Sangiovanni-Vincentelli, A.L.: A
methodology for correct-by-construction latency insensitive design. In: 1999
IEEE/ACM International Conference on Computer-Aided Design. Digest of Tech-
nical Papers (Cat. No.99CH37051), pp. 309–315 (1999)

9. Cassez, F., Roux, O.H.: Structural translation from Time Petri Nets to Timed
Automata - Model-Checking Time Petri Nets via Timed Automata. J. Syst. Softw.
79(10), 1456–1468 (2006)

10. Cheng, A., Esparza, J., Palsberg, J.: Complexity results for 1-safe nets. Theoret.
Comput. Sci. 147, 117–136 (1995)

11. Church, A.: Application of recursive arithmetic to the problem of circuit synthesis,
pp. 3–50 (1957)

12. Giua, A., DiCesare, F., Silva, M.: Generalized mutual exclusion constraints on nets
with uncontrollable transitions. In: IEEE International Conference on SMC (1992)

13. Istoan, M., de Dinechin, F.: Automating the pipeline of arithmetic datapaths. In:
Design, Automation & Test in Europe Conference & Exhibition (DATE 2017), pp.
704–709, Lausanne, Switzerland (2017)

14. Josipović, L., Sheikhha, S., Guerrieri, A., Ienne, P., Cortadella, J.: Buffer place-
ment and sizing for high-performance dataflow circuits. In: Proceedings of the 2020
ACM/SIGDA Int. Symposium on Field-Programmable Gate Arrays, FPGA 2020,
pp. 186–196. Association for Computing Machinery, New York (2020)

15. Leiserson, C.E., Saxe, J.B.: Retiming synchronous circuitry. Algorithmica 6(1–6),
5–35 (1991)

16. Merlin, P.M.: A study of the recoverability of computing systems. Ph.D. thesis,
Dep. of Information and Computer Science, University of California, Irvine, CA
(1974)

17. Najibi, M., Beerel, P.A.: Slack matching mode-based asynchronous circuits for
average-case performance. In: Proceedings of the International Conference on
Computer-Aided Design, ICCAD 2013, pp. 219–225. IEEE Press (2013)

18. Ouaknine, J., Worrell, J.: On the language inclusion problem for timed automata:
closing a decidability gap. In: Proceedings of the 19th Annual IEEE Symposium
on Logic in Computer Science, 2004, pp. 54–63 (2004)

19. Popova-Zeugmann, L.: Time and Petri Nets. Springer (2013)

Timed Petri Nets with Reset for Pipelined Synchronous Circuit Design 75

20. Ramchandani, C.: Analysis of asynchronous concurrent systems by timed Petri
nets. Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA (1974)

21. Kim, S., Beerel, P.A.: Pipeline optimization for asynchronous circuits: complex-
ity analysis and an efficient optimal algorithm. IEEE Trans. Comput.-Aided Des.
Integrated Circuits Syst. 25(3), 389–4022 (2006)

22. Zuberek, W.: D-timed petri nets and modeling of timeouts and protocols. Trans.
Soc. Comput. Simul. 4(4), 331–357 (1987)

A Turn-Based Approach for Qualitative
Time Concurrent Games

Serge Haddad1, Didier Lime2(B) , and Olivier H. Roux2

1 ENS Paris-Saclay, LMF, CNRS, INRIA, Université Paris-Saclay,
Gif-sur-Yvette, France

2 École Centrale de Nantes, LS2N, CNRS, UMR, 6004 Nantes, France
Didier.Lime@ec-nantes.fr

Abstract. We address concurrent games with a qualitative notion of
time with parity objectives. This setting allows to express how potential
controllers interact with their environment and more specifically includes
relevant features: transient states where the environment will eventually
act, controller avoiding of an environment action either by an immediate
controller action or by masking it, etc. In order to solve the controller
synthesis in this framework, we design a linear-time building of a timeless
turn-based game and show a close connection between strategies of the
controller in the two games. Thus we reduce the synthesis problem to a
standard problem of turn-based game with parity objectives establishing
as a side effect that pure memoryless strategies are enough for winning.
Moreover we introduce permissiveness for safety and reachability games
as a criterion to choose between winning strategies and prove that one
can compute a most permissive strategy (when it exists) in linear time.

1 Introduction

Games and Controller Synthesis. Finite games on graphs [13] are widely
recognized as an adequate formalism to address problems such as controller
synthesis on discrete event systems, originally expressed and studied within the
theory of supervision [9,12,14]. The control problem can indeed be expressed
as a game between two players representing respectively the controller and the
environment. A controller for the system can be synthesized as a winning strategy
for the controller player, when it exists.

Real-Time Controller Synthesis. For real-time systems, a strict turned-
based game is an unnatural model, since the controller and the environment
may play concurrently leading to concurrent games [5,7,8]. Adding quantita-
tive delays before playing actions is a way to select which action should be
played. This results in formalisms called (concurrent) timed games [6,11], for
which tools like UPPAAL-Tiga are available [4]. Nevertheless, the algorithmics
of timed games is costly, and for instance, the mere existence of a controller is
an EXPTIME-complete problem [10] and the resulting strategies can be very

c© Springer Nature Switzerland AG 2021
D. Buchs and J. Carmona (Eds.): PETRI NETS 2021, LNCS 12734, pp. 76–92, 2021.
https://doi.org/10.1007/978-3-030-76983-3_5

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76983-3_5&domain=pdf
http://orcid.org/0000-0001-9429-7586
https://doi.org/10.1007/978-3-030-76983-3_5

A Turn-Based Approach for Qualitative Time Concurrent Games 77

large [1]. Furthermore from a modelling point of view, often the exact timing
constraints are unknown and indeed not needed to ensure the existence of a
winning strategy.

Qualitative Time Concurrent Games. To overcome these issues the authors
of [2,3] have introduced a model of qualitative time concurrent game with the
following features: actions of the environment may occur immediately or require
some non null unknown delay and transient states where when the controller
chooses not to (or cannot) play, an action of the environment is guaranteed to
eventually occur. Then they have designed polynomial time (ad-hoc) algorithms
synthesising (when it exists) a controller for reachability and safety goals.

Our Contribution. Our contribution is threefold. First we extend the model
of [2] by allowing some actions of the environment to be blocked by the con-
troller and considering parity objectives. Then we design a linear-time building
of a timeless turn-based game and show a close (but not one-to-one) connection
between strategies of the controller in the two games. Thus we reduce the syn-
thesis problem to a standard problem of turn-based game with parity objectives
establishing as a side effect that pure memoryless strategies are enough for win-
ning. Finally we introduce permissiveness for safety and reachability games as a
criterion to choose between winning strategies and prove that one can compute
a most permissive strategy (when it exists) in linear time.

Organisation. We illustrate by a relevant example the interest of our frame-
work in Sect. 2. Section 3 gives the basic definitions and terminology used in this
paper. Section 4 provides the translation to turn-based games and establishes the
connections between strategies. Section 5 introduces the notion of permissiveness
and shows how to compute most permissive strategies. Finally, we conclude in
Sect. 6.

2 A Motivating Example

A device driver is the interface between the hardware device and the application
or the operating system. Being executed with supervisor privileges, any error in a
driver may have a serious impact on the integrity of the entire system. A specific
driver (as opposed to a generic driver) is a driver dedicated to an application,
i.e., with a smaller memory footprint.

In the context of driver synthesis, the environment is both the hardware
device and the application using the driver. Then uncontrollable actions are
interrupts that are triggered by the hardware and the requests made by the
application.

Let us consider an analog-to-digital converter (ADC) inspired by the one of
the MPC5xx microcontrollers family. An ADC cell has multiplexed acquisition
channels (only one channel at a time). In order to allow the conversion of several
channels, the conversions are combined into a conversion chain.

There are two types of conversion: normal or injected. In a normal conversion,
it is possible to make a chain of conversion uniquely (oneShot) or continuously

78 S. Haddad et al.

(scan). In oneShot mode, the cell stops acquisition at the end of the conversion,
while in scan mode it repeats the chain ad infinitum (until a stop action is
performed).

If one wants to make a oneShot acquisition in the middle of a conversion in
scan mode, it is possible to use the injected conversions. An injected conversion
is analogous to a software interrupt (inject) that can be maskable, i.e., it can
be disabled. When an injected conversion is started, any conversion in progress
is interrupted. The injected conversion is then carried out. At the end of the
injected conversion, the chain which was interrupted resumes where it had been
stopped (see Fig. 1 for channel CH5). If a conversion is interrupted twice by two
injected conversions, then it is lost and the scan goes to the next one (see Fig. 1
for channel CH6).

Scan
chain

Convert
CH3

Convert
CH5

Inject
CH2

Convert
CH2

Convert
CH5

Convert
CH6

Inject
CH1

Convert
CH1

Convert
CH6

Inject
CH4

Convert
CH4

Convert
CH8

Convert
CH3

Fig. 1. Conversion chain Scan for channels 3, 5, 6, 8 with some injected conversions.

A conversion takes a non-null time that is not known precisely. At the end
of a conversion the hardware generates an interrupt EOC (end of conversion).
This interruption is ineluctable, i.e., it is guaranteed to happen eventually.

Finally, the converter can sleep or be awake but if a conversion request occurs
while sleeping, the driver must return an error to the application. Let us take
stock of what we need to model:

– controllable actions of the driver
– uncontrollable actions of the environment where:

• some uncontrollable actions take a non-null time and cannot happen
immediately (oneShot, scan, eoc);

• some uncontrollable actions are guaranteed to happen eventually. The
input state of such a transition is then a transient state (oneShot, scan,
eoc);

• some uncontrollable actions are maskable (inject): they can be disabled
by the controller.

3 Definitions

The following definitions introduce a kind of concurrent game between the con-
troller (denoted by C) and the environment (denoted by U). In all states q ∈ Q,
C (resp. U) selects an action in AvailC(q) ⊆ AC (resp. AvailU (q) ⊆ AU). As
seen in Definition 2, it selects a qualitative delay for performing its action and
it can block a subset of the maskable actions of the environment (Am

U). C may
also be inactive while the environment has to act in transient states (QT). Thus
in all q ∈ QT , an unmaskable action is available, i.e. AvailU (q) \ Am

U �= ∅.

A Turn-Based Approach for Qualitative Time Concurrent Games 79

Definition 1 (Game structure). A game structure is a tuple
G = (Q,AC , AvailC , AU , AvailU , δ) where:

– Q = QT � QI is a set of states partitioned in transient states QT and idle
states QI with q0 ∈ Q, the initial state;

– AC is the set of actions of the controller and AvailC : Q → 2AC defines its
available actions depending on states.

– AU is the set of actions of the environment with AC ∩ AU = ∅ and AvailU :
Q → 2AU defines its available actions depending on states. AU includes the
set of avoidable actions Aa

U and the set of maskable actions Am
U .

– δ : Q × AC ∪ AU → Q is the transition function such that δ(q, a) is defined if
and only if a ∈ AvailC(q) ∪ AvailU (q). For all q ∈ QT , AvailU (q) \ Am

U �= ∅.
Example 1. The game structure of the case study presented in Sect. 2 is depicted
in Fig. 2. We use the following graphical notations: Idle (resp. transient) states
states are represented by (resp. double) circles, controller (resp. environment)
transitions are represented by solid (resp. dashed) arrows, avoidable transitions
start with a small circle and maskable actions are written in TrueType font.

q0start q1

qerr

q2 q3

q4

i1

i2

q5q6q7os1os2

i3i4

Convert

eoc

Wakeup

Sleep

oneShot,
scan

Error
oneShot

scan

stop

Next Sample

Convert
eoc

inject

inject

inject Convert

eoc

Current SampleConvert

eoc

injectinjectinject

Convert

eoc

Am
U = {inject}

Fig. 2. Game structure of the case study

Given a current state q, the controller decides whether it intends to act (0 or
0) or not (ε), which action it intends to perform, when it will act (immediately:
0; or later: 0) and which actions it will block.

Definition 2 (Decision). Let G be a game structure and q ∈ Q. Then the set
of decisions of the controller Dec(q) is defined as follows. (γ, τ,B) ∈ Dec(q) if:

– the action γ ∈ AvailC(q) ∪ {ε} where ε denotes inaction;
– the delay τ ∈ {0,0, ε} fulfills τ = ε iff γ = ε;
– the actions to be masked B ⊆ Am

U ∩ AvailU (q).

80 S. Haddad et al.

Given a state q and a decision d of the controller, the next state to be reached
may be either (1) q itself if it is idle and the controller is inactive, either (2) the
state reached by the action selected by the controller (if any), or (3) a state
reached by an environment action that has not be preempted by the action of
the controller played without delay or masked by the controller.

Definition 3 (Play transitions). Let G be a game structure, q ∈ Q and
d = (γ, τ,B) ∈ Dec(q), the set of play transitions Next(q, d) is defined by:

– If γ = ε and q ∈ QI then q
d,ε
=⇒ q ∈ Next(q, d);

– If γ �= ε then q
d,γ
==⇒ δ(q, γ) ∈ Next(q, d);

– For all a ∈ AvailU (q) \ (Aa
U ∪ B), q

d,a
=⇒ δ(q, a) ∈ Next(q, d);

– If τ �= 0 then for all a ∈ AvailU (q) ∩ Aa
U \ B, q

d,a
=⇒ δ(q, a) ∈ Next(q, d).

By construction, Next(q, d) is never empty: if γ �= ε then q
d,γ
==⇒ δ(q, γ) ∈

Next(q, d) else if q ∈ QI then q
d,ε
=⇒ q ∈ Next(q, d) else there is some a ∈

AvailU (q) \ Am
U such that q

d,a
=⇒ δ(q, a) ∈ Next(q, d).

A play is a finite or infinite sequence of play transitions such that the source
of a non initial transition is the destination of the transition that precedes it.

Definition 4 (Play). Let G be a game structure. Then r = (qn
dn,an===⇒ qn+1)n∈N

where for all n ∈ N, dn ∈ Dec(qn) and qn
dn,an===⇒ qn+1 ∈ Next(qn, dn) is an

infinite play. A finite play r is a finite prefix of an infinite play, ending in a
state denoted Last(r). R (resp. R) denotes the set of infinite (resp. finite) plays.
The empty play is denoted by λ with Last(λ) = q0.

A strategy of the controller restricts the underlying transition system of the
concurrent game by selecting a decision for all finite plays allowed by the strategy.
Thus this mapping is inductively defined, simultaneously with its domain.

Definition 5 (Strategy). A controller strategy sC is a partial mapping from
R to

⋃
q∈Q Dec(q) with its domain denoted Dom(sC) inductively defined by:

– λ ∈ Dom(sC);

– for all r ∈ Dom(sC), sC(r) ∈ Dec(Last(r)) and for all Last(r)
sC(r),a
====⇒ q ∈

Next(Last(r), sC(r)), r(Last(r)
sC(r),a
====⇒ q) ∈ Dom(sC).

A play r = (qn
dn,an===⇒ qn+1)n∈N complies with sC if for all n, dn = sC((qm

dm,am====⇒
qm+1)m<n). The outcome of sC , denoted by Outcome(sC), is the set of infinite
plays complying with it.

Any decision of a positional (also called memoryless) strategy sC only
depends on the last state of the play. For such a strategy, given some q ∈ Q,
sC(q) denotes the decision of sC for any finite play with last state q.

A Turn-Based Approach for Qualitative Time Concurrent Games 81

A goal W for the controller is a subset of Qω. W.r.t. W , a strategy sC is
winning for q0 if for all plays (qn

dn,an===⇒ qn+1)n∈N complying with sC , (qn)n∈N ∈
W . A parity goal Wμ is defined by a mapping μ from Q to N. Let s = (qn)n∈N

define mμ(s) = max(i | ∀n ∃n′ ≥ n i = μ(qn′)). Then s ∈ Wμ iff mμ(s) is even.
Parity goals include several kinds of goals like safety and reachability goals. A
game is a pair (G,W).

4 From Concurrent Games to Turn-Based Games

A Turn-Based Game Interpretation. In order to apply the theory and algorithms
of parity turn-based games, we propose below a linear-time translation of a
concurrent game structure G into a turn-based one Ĝ such that given some
parity goal W : (1) the controller has a winning strategy for (G,W) iff it has a
winning strategy (Ĝ,W) and (2) from a positional winning strategy in (Ĝ,W),
one can build in linear time a positional winning strategy in (G,W).

Definition 6. Ĝ = (Q̂,→), a turn-based game structure is defined by:

– Q̂ = Q̂C � Q̂U , the set of states with q0 ∈ Q̂C , the initial state;
– →⊂ Q̂ × Q̂ the transition relation fulfilling: ∀q ∈ Q̂ ∃q′ ∈ Q̂ q → q′.

We denote Own the mapping from Q̂ to {C,U} defined for all q ∈ Q̂ by
Own(q) = C if and only if q ∈ Q̂C . (qn)n∈N ∈ Q̂ω is an infinite play of Ĝ if
for all n ∈ N, qn → qn+1. A sequence (qm)m≤n ∈ Q̂∗Q̂C is a finite play if for all
m < n, qm → qm+1. Note that we only define finite plays ending in states owned
by C, as only those will be useful to define strategies for C.

Definition 7 (Strategy). A strategy sC of Ĝ is a partial mapping from the set
of of finite plays to Q̂ with its domain denoted Dom(sC) inductively defined by:

– q0 ∈ Dom(sC);
– for all ρ = (qm)m≤n ∈ Dom(sC), sC(ρ) ∈ Q̂ with qn → sC(ρ)

and for all ρ′′ = ρsC(ρ)ρ′, such that sC(ρ)ρ′ ∈ Q̂∗
U Q̂C ρ′′ ∈ Dom(sC).

A play ρ = (qn)n∈N complies with sC if for all n, such that qn ∈ Q̂C , qn+1 =
sC((qm)m≤n). The outcome of sC , denoted Outcome(sC), is the set of infinite
plays complying with it.

Let Ŵ ⊆ Q̂ω be a goal, sC is winning in (Ĝ, Ŵ), if Outcome(sC) ⊆ Ŵ .
In order to obtain a canonical translation we assume an enumeration order of

AC and AU . It should be clear that the results hold whatever the chosen order.
According to this order, define for all q ∈ Q:

– maskable uncontrollable actions:

AvailU (q) ∩ Am
U = {αq

1, . . . , α
q
�q

};

82 S. Haddad et al.

– unavoidable maskable uncontrollable actions:

(AvailU (q) ∩ Am
U) \ Aa

U = {αq
1, . . . , α

q
kq

} with kq ≤ 	q;

– unmaskable uncontrollable actions:

AvailU (q) \ Am
U = {βq

1 , . . . , β
q
nq

};

– unavoidable unmaskable uncontrollable actions:

AvailU (q) \ (Aa
U ∪ Am

U) = {βq
1 , . . . , β

q
mq

} with mq ≤ nq;

– controllable actions:
AvailC(q) = {γq

1 , . . . , γ
q
pq

}.

In order to avoid handling particular cases, Definition 8 assumes that for
all q, kq ≥ 1, nq ≥ 1, and pq ≥ 1. Afterwards, we explain how to adapt the
translation when this is not the case. Let us first informally describe how the
turn-based version Ĝ of game G is specified:

– The states of G are also states of Ĝ and belong to the controller. In such a
state q, the controller has three choices (see Fig. 3):

• either it decides to (try to) play immediately going to state (qC
0 , αq

1);
• either it decides to (try to) play not immediately going to state (qC

0
, αq

1);
• or it decides to be inactive, going to state (qC

ε , αq
1).

q

(qC
0 , α

q
1)

(qC
0

, α
q
1)

(qC
ε , α

q
1)

Fig. 3. Choices of the controller

– From state (qC
0 , αq

1), the controller successively either lets the environment the
availability of action αq

1 by going to (qU
ε , αq

1) or masks this action by going to
(qC

0 , αq
2). After all maskable unavoidable actions have been enumerated (and

masked or not played), in qU
0 the environment can play any unavoidable and

unmaskable action or, by going in qC
0 , let the controller play an action (see

Fig. 4).

A Turn-Based Approach for Qualitative Time Concurrent Games 83

– The situation from state (qC
0

, αq
1) is similar to the previous one except that the

controller first enumerates all the maskable actions and in qU
0

the environment
can play any unmaskable action (see Fig. 5).

– The situation from state (qC
ε , αq

1) is similar to the previous one except that
in qU

ε , if q is transient the environment must play some unmaskable action
while if q is idle it can decide to be inactive going back to q (see Fig. 6).

(qC
0 , α

q
1) (qU

0 , α
q
1) (qC

0 , α
q
2) (qC

0 , α
q
kq

) (qU
0 , α

q
kq

) qU
0

δ(q, α
q
1) δ(q, α

q
kq

)

qC
0

δ(q, β
q
1)

δ(q, βq
mq

)

δ(q, γ
q
1)

δ(q, γq
pq

)

.

...

Fig. 4. The controller tries to play immediately

(qC
0 , α

q
1) (qU

0 , α
q
1) (qC

0 , α
q
2) (qC

0 , α
q

q
) (qU

0 , α
q

q
) qU

0

δ(q, α
q
1) δ(q, α

q

q
)

qC
0

δ(q, β
q
1)

δ(q, βq
nq

)

δ(q, γ
q
1)

δ(q, γq
pq

)

.

...

Fig. 5. The controller tries to play but not immediately

84 S. Haddad et al.

Definition 8. Let G be a game structure. Then Ĝ = (Q̂, Own,→), a turn-based
game structure, is defined as follows:

– Q̂ = Q ∪ {qy
x | q ∈ Q ∧ ((x ∈ {0,0} ∧ y ∈ {C,U}) ∨ (x = ε ∧ y = U))}

∪ {(qy
x, αq

i)) | q ∈ Q∧y ∈ {C,U}∧(x = 0∧(i ≤ kq))∨(x ∈ {0, ε}∧(i ≤ 	q))};
– Q̂C = Q ∪ {qC

x }q,x ∪ {(qC
x , z)}q,x,z, Q̂U = Q ∪ {qU

x }q,x ∪ {(qU
x , z)}q,x,z;

– → is defined by for all q ∈ Q and all x ∈ {0,0, ε}, q → (qC
x , αq

1) and:
Case of immediate play controller choice.

• For all q and i ≤ kq, (qC
0 , αq

i) → (qU
0 , αq

i) and (qU
0 , αq

i) → δ(q, αq
i);

• For all q and i < kq, (qC
0 , αq

i) → (qC
0 , αq

i+1) and (qU
0 , αq

i) → (qC
0 , αq

i+1);
• For all q, (qC

0 , αq
kq

) → qU
0 and (qU

0 , αq
kq

) → qU
0 ;

• For all q and i ≤ mq, qU
0 → δ(q, βq

i) and qU
0 → qC

0 ;
• For all q and i ≤ pq, qC

0 → δ(q, γq
i).

(qC
ε , α

q
1) (qU

ε , α
q
1) (qC

ε , α
q
2) (qC

ε , α
q

q
) (qU

ε , α
q

q
) qU

ε

δ(q, α
q
1) δ(q, α

q

q
)

q

δ(q, β
q
1)

δ(q, βq
nq

)

.

when q is idle

Fig. 6. The controller decides not to play

Other Cases (x ∈ {0, ε}).
• For all q and i ≤ 	q, (qC

x , αq
i) → (qU

x , αq
i) and (qU

x , αq
i) → δ(q, αq

i);
• For all q and i < 	q, (qC

x , αq
i) → (qC

x , αq
i+1) and (qU

x , αq
i) → (qC

x , αq
i+1);

• For all q, (qC
x , αq

�q
) → qU

x and (qU
x , αq

�q
) → qU

x ;
• For all q and i ≤ nq, qU

x → δ(q, βq
i);

• qU
0

→ qC
0

and for all q ∈ Q and i ≤ pq, qC
0

→ δ(q, γq
i);

• When q ∈ QI, qU
ε → q.

Let us explain how to address the particular cases. For instance when 	q=0, the
three transitions outgoing from q target the states qU

0 , qU
0

and qU
ε . The other

particular cases are similarly handled.

Example 2. Figure 7 partly illustrates this translation for the game structure
of Fig. 2, starting from transient state q0. In all figures illustrating Ĝ, states
owned by the controller are represented by circles while states owned by the
environment are represented by rectangles.

A Turn-Based Approach for Qualitative Time Concurrent Games 85

AvailU (q0) \ Am
U = {oneShot, scan}

AvailC(q0) = {Wakeup}

kq0 = 0 q0 = 0, mq0 = 0, nq0 = 2

β
q0
1 = β

q0
m+1 = oneShot

β
q0
2 = βq0

n = scan

γ
q0
1 = Wakeup

δ(q0, β
q0
1) = δ(q0, β

q0
2) = qerr , δ(q0, γ

q0
1) = q1

q0

q U
00

q C
00

qerr

q1

q U
00

q C
00

q U
0ε

Fig. 7. The controller choices from q0

Correspondence Between Plays. We want to establish a correspondence between
plays of G and plays of Ĝ. With this aim, we introduce connecting paths of Ĝ.

Definition 9. A connecting path of Ĝ is a path from some q ∈ Q to some q′ ∈ Q
that does not visit in between other states of Q.

Let ρ be a connecting path. We denote src(ρ) the source state of ρ and
dst(ρ) its destination state. Given two connecting paths ρ, ρ′ such that q, the
target state of ρ, is the source state of ρ′, ρρ′ denotes the concatenation of ρ and
ρ′ without the repetition of q. As usual, this operation is extended to finite or
countable paths. Observe that any infinite play of Ĝ is a countable concatenation
of connecting paths.

The following lemma lists all possible connecting paths. We omit its proof as
it straightforwardly comes from examination of the local structure of Ĝ. Observe
that we associate an action with a connecting path.

Lemma 1. Let q ∈ Q. Then all connecting paths starting from q can be concisely
specified (with an associated action aρ) as follows:

– ρ(q, y,B, αq
i), the path that (1) starts from q to (qC

y , αq
1), (2) goes to (qU

y , αq
i)

avoiding the set {(qU
y , αq

j) | αq
j ∈ B}, and (3) reaches δ(q, αq

i). aρ = αq
i ;

– ρ(q, y,B, βq
i), the path that (1) starts from q to (qC

y , αq
1), (2) goes to qU

y avoid-
ing the set {(qU

y , αq
j) | αq

j ∈ B}, and (3) reaches δ(q, βq
i). aρ = βq

i ;
– ρ(q, y,B, γq

i), the path that (1) starts from q to (qC
y , αq

1), (2) goes to qC
y avoid-

ing the set {(qU
y , αq

j) | αq
j ∈ B}, and (3) reaches δ(q, γq

i). aρ = γq
i ;

– when q is idle, ρ(q, ε, B, ε), the path that (1) starts from q to (qC
ε , αq

1), (2)
goes to qU

ε avoiding the set {(qU
y , αq

j) | αq
j ∈ B}, and (3) returns to q. aρ = ε.

We now relate play transitions of G to connecting paths of Ĝ.

Definition 10. Let e = q
d,a
=⇒ q′ with d = (γ, τ,B) be a play transition of G.

Then the connecting path ê is defined as follows:

– If a = αq
i for some αq

i then ê = ρ(q, τ, B′, αq
i) with B′ = {αq

j | j < i} ∩ B;

86 S. Haddad et al.

– If a = βq
i for some βq

i then ê = ρ(q, τ, B, βq
i)

– If a = γq
i for some γq

i then ê = ρ(q, τ, B, γq
i);

– If a = ε then ê = ρ(q, τ, B, ε);

We now extend in a natural way the correspondence between transitions to
plays.

Definition 11 (Relation between plays). Let r = (en)n≤N (resp. r =
(en)n∈N) be a finite (resp. infinite) play of G. Then r̂ a finite (resp. infinite)
play of Ĝ, is defined by r̂ = (ên)n≤N (resp. r̂ = (ên)n∈N).

Correspondence Between Strategies. Let G be a concurrent game structure and
ρ = (qn)n∈N ∈ Q̂ω. Define π(ρ) as (qα(n))n∈N where α is a strictly increasing
mapping from N to N with the range of α being {n | qn ∈ Q}. This means, π
extracts the subsequence of states from the original game from any play in the
turn-based game. Let W be a goal of G. Then Ŵ ⊆ Q̂ω, a goal of Ĝ, is defined
by Ŵ = {ρ | π(ρ) ∈ W}.

In order to obtain a correspondence between strategies, we focus on trans-
lating a decision d ∈ Dec(q) in G into a local positional strategy d̂ of Ĝ. Given
a state q and a decision d = (γ, τ,B) induced by a strategy in G, the ‘local’
corresponding strategy in Ĝ consists in allowing exactly the connecting paths
ê such that e ∈ Next(q, d). Thus, (1) in q the strategy selects (qC

τ , αq
1), (2) in

all states (qC
τ , αq

i), it selects (qU
τ , αq

i) if αq
i /∈ B and avoids it otherwise, and (3)

when γ �= ε, it selects in qC
τ the state δ(q, γ).

Definition 12 (From decisions to local strategies). Let q ∈ Q and d =
(γ, τ,B) ∈ Dec(q). The partial mapping d̂ : Q̂ → Q̂ is defined as follows:

– d̂(q) = (qC
τ , αq

1);
– for all (defined) (qC

τ , αq
i) if αq

i /∈ B then d̂(qC
τ , αq

i) = (qU
τ , αq

i);
– for all (defined) (qC

τ , αq
i) if αq

i ∈ B and (i, τ) /∈ {(kq,0), (q,0), (q, ε)}
then d̂(qC

τ , αq
i) = (qC

τ , αq
i+1);

– for all (defined) (qC
τ , αq

i) if αq
i ∈ B and (i, τ) ∈ {(kq,0), (q,0), (q, ε)}

then d̂(qC
τ , αq

i) = qU
τ ;

– If γ �= ε then d̂(qC
τ)) = δ(q, γ).

Definition 13. Let d ∈ Dec(q). A connecting path ρ starting from q complies
with d if for all transitions q1 → q2 of ρ with q1 ∈ Q̂C , q2 = d̂(q1).

By examining all possible cases, one gets the following lemma.

Lemma 2. Let q ∈ Q and d = (γ, τ,B) ∈ Dec(q). Then:

Next(q, d) = {q
d,aρ
===⇒ dst(ρ) | ρ is a connecting path with src(ρ) = q complying with d}

Example 3. Let us consider the example of Fig. 2. Figure 8 shows the result of
the decision d = (γq2

1 ,0, {αq2
1 }) = (Next Sample,0, {inject}) from q2.

A Turn-Based Approach for Qualitative Time Concurrent Games 87

α
q2
1 = α

q2
k

= inject

β
q2
1 = β

q2
m = stop

γ
q2
1 = Next Sample

δ(q2 , β
q2
1) = q1

δ(q2 , γ
q2
1) = q3

q2 q U
20

q C
20

q1 q3

Fig. 8. The connecting paths from q2 complying with d = (Next Sample,0, {inject})

Given the decisions selected by a strategy sC of G and applying the corre-
sponding local strategies, one gets a strategy ŝC of Ĝ. The next definition is
sound since, by induction and using Lemma 2, for every finite play ρ that com-
plies with ŝC and ends in Q, there is some rρ that complies with sC such that
ρ = r̂.

Let q ∈ Q, τ ∈ {0,0, ε}, α ∈ Am
U such that (qU

τ , α) ∈ Q̂ and B ⊆ Am
U ∩

AvailU (q). Then (qU
τ , α)↓B denotes (qU

τ , α) if α /∈ B and the empty word of Q̂∗

otherwise.

Definition 14. Let sC be a controller strategy of G. Then ŝC , a controller strat-
egy of Ĝ is defined by induction on the length of ρ = r̂ρ where rρ is a finite play
of G complying with sC and ending in some q ∈ Q as follows when denoting
sC(r) by d = (γ, τ,B).

– ŝC(ρ) = d̂(q);
– for all (defined) (qC

τ , αq
i), ŝC(ρ(qC

τ , αq
1)(q

U
τ , αq

1)↓B . . . (qC
τ , αq

i)) = d̂(qC
τ , αq

i)
– If γ �= ε then ŝC(ρ(qC

τ , αq
1)(q

U
τ , αq

1)↓B . . . (qC
τ , αq

kq
)(qU

τ , αq
kq

)↓BqU
τ qC

τ))

= d̂(qC
τ)).

Let ρ∗ = ρρ′ where ρ′ is a a connecting path complying with d and associated

action aρ′ . Then rρ∗ = rρ(Last(rρ)
d,aρ′
===⇒ dst(ρ′)).

Applying inductively Lemma 2, one immediately gets the next proposition
and corollary:

Proposition 1. Let sC be a controller strategy of G. Then:

Outcome(ŝC) = {r̂ | r ∈ Outcome(sC)}

Corollary 1. Let Goal ⊆ Qω be a goal and sC be a winning strategy for Goal
in G. Then ŝC is a winning strategy for Goal in Ĝ.

In order to get the converse result we exploit the fact that positional strategies
are sufficient for turn-based parity games.

Definition 15. Let sC be a positional controller strategy of Ĝ. Then sC is a
positional controller strategy of G defined as follows. Let q ∈ Q and denote
sC(q) = (γ, τ,B).

88 S. Haddad et al.

– If sC(q) = (qC
0 , αq

1) and sC(qC
0) = δ(a, γq

i) then
γ = γq

i , τ = 0 and B = {i ≤ kq | sC((qC
0 , αq

i)) �= (qU
0 , αq

i)};
– If sC(q) = (qC

0
, αq

1) and sC(qC
0

) = δ(a, γq
i) then

γ = γq
i , τ = 0 and B = {i ≤ 	q | sC((qC

0
, αq

i)) �= (qU
0

, αq
i)};

– If sC(q) = (qC
ε , αq

1) then
γ = ε, τ = ε and B = {i ≤ 	q | sC((qC

0
, αq

i)) �= (qU
0

, αq
i)};

Observe that sC(q) is an item of Dec(q), say d, and that sC restricted to the
subset of states of Q̂ related to q can be viewed as a local strategy, say d′. By
construction, d′ = d̂. Thus applying inductively Lemma 2, one immediately gets
the next proposition and corollary:

Proposition 2. Let sC be a positional controller strategy of Ĝ. Then:

Outcome(sC) = {r̂ | r ∈ Outcome(sC)}.

Corollary 2. Let Goal ⊂ Qω be a parity goal and sC be a winning positional
strategy for Goal in Ĝ. Then sC is a winning positional strategy for Goal in G.

Combining Corollaries 1 and 2, one gets:

Theorem 1. Let G be a concurrent game, Goal ⊆ Qω be a parity goal.

– Let sC be a controller strategy. Then sC is a winning strategy for Goal if and
only if ŝC is a winning strategy for Goal;

– If there is a winning strategy for G, there is a positional one, i.e. s′
C where

s′
C is any positional winning strategy of Ĝ.

5 Permissivity of the Controller

Permissivity is a criterion that has to be taken into account for choosing between
possible controllers. In our context and due to the results of the previous section,
we limit ourselves to positional controllers. First we introduce an order between
controller decisions. In words, a decision d′ is more permissive than d if (1)
either d′ is inactive or intends to play the same action as d, (2) the delay before
acting of d′ is greater or equal than the delay before acting of d, and (3) the set
of actions masked by d′ is a subset of actions masked by d. Here permissivity
should be interpreted as the controller avoiding to restrict the behaviour of the
environment.

Definition 16. Let q be a state and d = (γ, τ,B) and d′ = (γ′, τ, B) be two
decisions, one says that d′ is more (or equally) permissive than d denoted by
d � d′ if: γ′ = γ or γ′ = ε, τ ≤ τ ′ and B′ ⊆ B.

Assuming that there exists a winning strategy for q0, our goal is to define
and synthesise a maximally permissive winning strategy for q0 w.r.t. safety and
reachability goals. As explained later we introduce slightly different notions of
maximally permissive winning strategy depending on the kind of goal. Observe
that in the next definition, we do not care about losing states of the game since
winning strategies do not enter losing states.

A Turn-Based Approach for Qualitative Time Concurrent Games 89

Definition 17. Let sC and s′
C be positional winning controller strategies of

(G, Goal) where Goal is a safety goal. Then s′
C is more permissive than sC w.r.t.

Goal, denoted sC � s′
C , if for all q winning state of (G, Goal), sC(q) � s′

C(q).
Additionally, sC ≺ s′

C if sC � s′
C and s′

C � sC .
sC is a maximally permissive winning strategy w.r.t. Goal if there is no s′

C such
that sC ≺ s′

C .

The synthesis of a maximally permissive winning strategy w.r.t. a safety goal
is easy. Since it is enough to stay in the winning states, maximally permissive
decisions can be combined without any restriction to get a maximally permissive
winning strategy.

Theorem 2. Let G be a concurrent game and Goal be a safety goal. Once the
winning states of (Ĝ, Goal) have been computed, a maximally permissive winning
strategy of (G, Goal) for q0 can be computed in linear time.

Proof. We compute for all q, winning state of (G, Goal) (and thus of (Ĝ, Goal)),
a most permissive decision. Since we deal with a safety goal, any combination of
decisions works. A maximally permissive decision for q is computed as follows.

– If (qC
ε , αq

1) is winning then define B = {αq
i | i ≤ 	q ∧ δ(q, αq

i) is not winning}.
By construction, (ε, ε,B) is a maximally permissive decision;

– If (qC
ε , αq

1) is not winning and (qC
0

, αq
1) is winning then define

B = {αq
i | i ≤ 	q ∧ δ(q, αq

i) is not winning}. The set {γq
i | i ≤ pq ∧

δ(q, γq
i) is winning} is not empty since (qC

0
, αq

1) is winning. Pick some γq
i

inside. By construction, (γq
i ,0, B) is a maximally permissive decision;

– If (qC
ε , αq

1) and (qC
0

, αq
1) are not winning then (qC

0 , αq
1) is winning. Define

B = {αq
i | i ≤ kq ∧ δ(q, αq

i) is not winning}. The set {γq
i | i ≤ pq ∧

δ(q, γq
i) is winning} is not empty since (qC

0 , αq
1) is winning. Pick some γq

i

inside. By construction, (γq
i ,0, B) is a maximally permissive decision.

��
The definition of a maximally permissive winning strategy w.r.t. a reacha-

bility goal is more involved since we want to take into account the delay before
reaching the target state qf assumed w.l.o.g. to be absorbing (i.e., its only out-
going transition is a self-loop).

Definition 18. Let G be a concurrent game structure and Goal be a reachability
goal defined by an absorbing target state qf . Let sC be a positional winning
strategy and q ∈ Q be a winning state. Then delaysC

(q), the delay of q �= qf

w.r.t. sC is defined by:

delaysC (q) = max(n | (qm
dm,am
====⇒ qm+1)1≤m<ncomplying to sC , q = q1, ∀i qi �= qf)

By convention, delaysC
(qf) = 0.

The minimal delay of a q, denoted delay∗(q) is defined by:

delay∗(q) = min(delaysC
(q) | sC is a winning strategy)

90 S. Haddad et al.

We also restrict the constraint for maximality for decisions of a strategy sC

to states visited by sC : a state q is visited by sC if there is a finite play complying
to sC starting in q0 and ending in q.

Definition 19. Let sC and s′
C be positional winning controller strategies of

(G, Goal) where Goal is a reachability goal defined by an absorbing target state
qf . Then s′

C is more permissive than sC w.r.t. Goal, denoted sC � s′
C , if for all

q state visited by sC , sC(q) � s′
C(q) and delays′

C
(q) ≤ delaysC

(q).
sC ≺ s′

C if sC � s′
C and s′

C � sC .
sC is a maximally permissive winning strategy w.r.t. Goal if there is no s′

C such
that sC ≺ s′

C .

Let us informally explain how the proof of the next theorem proceeds to
synthesise a maximally permissive winning strategy. If q0 = qf we are done.
Otherwise define Q0 = {qf} and Q1 to be the set of states q �= qf for which there
is a decision d such that all the transitions of Next(q, d) lead to Q0. Observe that
this set is non empty. Otherwise q0 could not be a winning state. For such q select
d maximally permissive among these kinds of decisions. If q0 ∈ Q1 we are done.
We iterate this process until q0 is found. Assume Q0, . . . , Qi have been built with
q0 /∈ ⊎

j≤i Qj . Define Qi+1 to be the set of states q /∈ ⊎
j≤i Qj for which there

is decision d such that all the transitions of Next(q, d) lead to
⊎

j≤i Qj . Observe
that this set is non empty. Otherwise q0 could not be a winning state. For such
q select d maximally permissive among these kinds of decisions. Since Q is finite
this process must stop with q0 belonging to some Qi∗ .

Theorem 3. Let G be a concurrent game structure and Goal be a reachabil-
ity goal defined by an absorbing target state qf . Then a maximally permissive
winning strategy of (G, Goal) for q0 can be computed in linear time.

Proof. As explained we proceed by iteratively building disjoint sets of states
Q0, Q1, . . . as long as q0 does not belong to these states. Furthermore we associate
decisions with every state belonging to these sets, that define the strategy sC .
We set Q0 = {qf} and since qf is absorbing, the associated decision is (ε, ε, ∅).
Assume that Q0, Q1, . . . , Qi have been built with q0 /∈ ⊎

j≤i Qj . For sake of
readability, we write Q′ =

⊎
j≤i Qj . Let q /∈ Q′.

– If q is transient and for all k ≤ nq, δ(q, β
q
k) ∈ Q′ then q ∈ Qi+1 and defining

B = {αq
k | k ≤ 	q ∧ δ(q, αq

k) /∈ Q′}, (ε, ε,B) is the decision associated with q;
– Else if for all k ≤ nq, δ(q, β

q
k) ∈ Q′ and there exists γq

p such that δ(q, γq
p) ∈ Q′

then q ∈ Qi+1 and defining B = {αq
k | k ≤ 	q ∧ δ(q, αq

k) /∈ Q′}, (γq
p ,0, B) is

the decision associated with q;
– Else if for all k ≤ mq, δ(q, β

q
k) ∈ Q′ and there exists γq

p such that δ(q, γq
p) ∈ Q′

then q ∈ Qi+1 and defining B = {αq
k | k ≤ kq ∧ δ(q, αq

k) /∈ Q′}, (γq
p ,0, B) is

the decision associated with q.

By construction, for all q ∈ Q, one has q ∈ Qi if and only if delay∗(q) = i.
Furthermore delaysC

(q) = delay∗(q). Assume there exists a winning strategy s′
C

A Turn-Based Approach for Qualitative Time Concurrent Games 91

such that sC ≺ s′
C . Since sC achieves the minimality of delay for states visited

by sC , there must exist a state q visited by sC that belongs to some Qi such that
s′

C(q) is strictly more permissive than sC(q). By definition of sC(q), this implies
that there exists a state q′′ /∈ ⊎

j<i Qj which is the destination of a transition of
Next(q, d). Thus delays′

C
(q) > delaysC

(q), establishing a contradiction.
In order to obtain a linear time algorithm, one proceeds as follows. In the sequel
i denotes the current iteration when the sets Q0, Q1, . . . , Qi−1 have been built.
Here Q′ denotes Q′ =

⊎
j≤i Qj .

– Initially one builds a “reverse graph” whose vertices are the states and there

is an edge q′ βq
k−→ q (resp. q′ γq

p−→ q) with k ≤ mq (resp. p ≤ pq) if δ(q, βq
k) = q′

(resp. δ(q, γq
p) = q′).

– At beginning of the ith iteration, the set Qi has already been computed using
the variables described below.

– One associates a counter cq and a boolean bq with every state q and a boolean
bq with every idle state q. Boolean bq is true if there exists some action γq

p

such that δ(q, γq
p) ∈ Q′ and cq is the size of the set {k ≤ mq, δ(q, β

q
k) /∈ Q′}.

A state q belongs to Qi if (1) it does not belong to Q′, (2) its counter cq is
null, and (3) either it is transient or its boolean bq is true.

– The ith iteration consists in two stages for all q ∈ Qi. First one determines
sC(q) using the rules described above. Then one updates the counters and

the booleans using the edges of the reverse graph: for all q
βq′

k−−→ q′, cq′ is

decremented and if there exists some q
γq′

p−−→ q′ bq′ is set to true. If q′ satisfies
the three conditions w.r.t. iteration i + 1, it enters the set Qi+1.

It is routine to check that this procedures operates in linear time. ��

6 Conclusion

We have introduced a model of qualitative time concurrent game between a con-
troller and an environment. We have designed a linear-time translation from such
a game to an untimed turn-based game and shown that given any parity goal,
the concurrent game is winning for the controller if and only if the turn-based
game is winning for it. This allows us, taking as input a positional winning strat-
egy of the turn-based game, to build in linear time a positional winning strategy
in the original game. Furthermore we have introduced a notion of permissiv-
ity for strategies and we have established that one can compute in linear time
a maximally permissive winning strategy for safety and reachability goals. For
future work, we want to design an algorithm for computing in polynomial time a
maximally permissive winning strategy for repeated reachability goals. We also
plan to modify the notion of delay for reachability goals by integrating the delay
of actions when computing a maximally permissive winning strategy for reacha-
bility. Finally our notion of qualitative delay for actions could be refined in order
to take into account more precise (but still qualitative) information.

92 S. Haddad et al.

References

1. Ashok, P., Křet́ınský, J., Larsen, K.G., Le Coënt, A., Taankvist, J.H., Weininger,
M.: SOS: safe, optimal and small strategies for hybrid Markov decision pro-
cesses. In: Parker, D., Wolf, V. (eds.) QEST 2019. LNCS, vol. 11785, pp. 147–164.
Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30281-8 9

2. Béchennec, J.-L., Lime, D., Roux, O.H.: Control of DES with urgency, avoidability
and ineluctability. In: Keller, J., Penczek, W. (eds.) ACSD 2019. pp, pp. 92–101.
IEEE Computer Society, Aachen, Germany (2019)

3. Béchennec, J.-L., Lime, D., Roux, O.H.: Logical time control of concurrent DES.
Discrete Event Dynamic Systems 1–33 (2021). https://doi.org/10.1007/s10626-
020-00333-x

4. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
UPPAAL-tiga: time for playing games! In: Damm, W., Hermanns, H. (eds.) CAV
2007. LNCS, vol. 4590, pp. 121–125. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73368-3 14

5. Chatterjee, K., de Alfaro, L., Henzinger., T.A. Strategy improvement for concur-
rent reachability and safety games. CoRR http://arxiv.org/abs/1201.2834 (2012)

6. de Alfaro, L., Faella, M., Henzinger, T.A., Majumdar, R., Stoelinga, M.: The ele-
ment of surprise in timed games. In: Amadio, R., Lugiez, D. (eds.) CONCUR
2003. LNCS, vol. 2761, pp. 144–158. Springer, Heidelberg (2003). https://doi.org/
10.1007/978-3-540-45187-7 9

7. de Alfaro, L., Henzinger, T.A., Kupferman, O.: Concurrent reachability games.
Theoret. Comput. Sci. 386(3), 188–217 (2007)

8. de Alfaro, L., Henzinger, T.A., Majumdar, R.: Symbolic algorithms for infinite-
state games. In: Larsen, K.G., Nielsen, M. (eds.) CONCUR 2001. LNCS, vol. 2154,
pp. 536–550. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-44685-
0 36

9. Golaszewski, C., Ramadge, P.: Control of discrete event processes with forced
events. In: Proceedings of the 26th Conference on Decision and Control, pp. 247–
251 (1987)

10. Jurdziński, M., Trivedi, A.: Reachability-time games on timed automata. In: Arge,
L., Cachin, C., Jurdziński, T., Tarlecki, A. (eds.) ICALP 2007. LNCS, vol. 4596, pp.
838–849. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-73420-
8 72

11. Maler, O., Pnueli, A., Sifakis, J.: On the synthesis of discrete controllers for timed
systems. In: Mayr, E.W., Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 229–
242. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-59042-0 76

12. Ramadge, P.J., Wonham, W.M.: Supervisory control of a class of discrete event
processes. SIAM J. Control. Optim. 25(1), 206–230 (1987)

13. Thomas, W.: On the synthesis of strategies in infinite games. In: Mayr, E.W.,
Puech, C. (eds.) STACS 1995. LNCS, vol. 900, pp. 1–13. Springer, Heidelberg
(1995). https://doi.org/10.1007/3-540-59042-0 57

14. Wonham, W.M., Ramadge, P.J.: On the supremal controllable sublanguage of a
given language. In: The 23rd IEEE Conference on Decision and Control, pp. 1073–
1080 (1984)

https://doi.org/10.1007/978-3-030-30281-8_9
https://doi.org/10.1007/s10626-020-00333-x
https://doi.org/10.1007/s10626-020-00333-x
https://doi.org/10.1007/978-3-540-73368-3_14
https://doi.org/10.1007/978-3-540-73368-3_14
http://arxiv.org/abs/1201.2834
https://doi.org/10.1007/978-3-540-45187-7_9
https://doi.org/10.1007/978-3-540-45187-7_9
https://doi.org/10.1007/3-540-44685-0_36
https://doi.org/10.1007/3-540-44685-0_36
https://doi.org/10.1007/978-3-540-73420-8_72
https://doi.org/10.1007/978-3-540-73420-8_72
https://doi.org/10.1007/3-540-59042-0_76
https://doi.org/10.1007/3-540-59042-0_57

Games

Canonical Representations for Direct
Generation of Strategies in High-Level

Petri Games

Manuel Gieseking and Nick Würdemann(B)

Department of Computing Science, University of Oldenburg, Oldenburg, Germany
{gieseking,wuerdemann}@informatik.uni-oldenburg.de

Abstract. Petri games are a multi-player game model for the synthesis
problem in distributed systems, i.e., the automatic generation of local
controllers. The model represents causal memory of the players, which
are tokens on a Petri net and divided into two teams: the controllable
system and the uncontrollable environment. For one environment player
and a bounded number of system players, the problem of solving Petri
games can be reduced to that of solving Büchi games.

High-level Petri games are a concise representation of ordinary Petri
games. Symmetries, derived from a high-level representation, can be
exploited to significantly reduce the state space in the corresponding
Büchi game. We present a new construction for solving high-level Petri
games. It involves the definition of a unique, canonical representation of
the reduced Büchi game. This allows us to translate a strategy in the
Büchi game directly into a strategy in the Petri game. An implemen-
tation applied on six structurally different benchmark families shows in
most cases a performance increase for larger state spaces.

1 Introduction

Whether telecommunication networks, electronic banking, or the world wide
web, distributed systems are all around us and are becoming increasingly more
widespread. Though an entire system may appear as one unit, the local con-
trollers in a network often act autonomously on only incomplete information
to avoid constant communication. These independent agents must behave cor-
rectly under all possible uncontrollable behavior of the environment. Synthesis [7]
avoids the error-prone task of manually implementing such local controllers by
automatically generating correct ones from a given specification (or stating the
nonexistence of such controllers). In case of a single process in the underlying
model, synthesis approaches have been successfully applied in nontrivial applica-
tions (e.g., [3,25]). Due to the incomplete information in systems with multiple

This work was supported by the German Research Foundation (DFG) through the
Research Training Group (DFG GRK 1765) SCARE and through Grant Petri Games
(No. 392735815).

c© Springer Nature Switzerland AG 2021
D. Buchs and J. Carmona (Eds.): PETRI NETS 2021, LNCS 12734, pp. 95–117, 2021.
https://doi.org/10.1007/978-3-030-76983-3_6

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76983-3_6&domain=pdf
http://orcid.org/0000-0001-9073-3002
http://orcid.org/0000-0001-7934-820X
https://doi.org/10.1007/978-3-030-76983-3_6

96 M. Gieseking and N. Würdemann

processes progressing on their individual rate, modeling asynchronous distributed
systems is even more cumbersome and particularly benefits from a synthesis
approach.

Petri games [12] (based on an underlying Petri net [31] where the tokens are
the players in the game) are a well-suited multi-player game model for the syn-
thesis of asynchronous distributed systems because of its subclasses with compa-
rably low complexity results. For Petri games with a single environment (uncon-
trollable) player, a bounded number of system (controllable) players, and a safety
objective, i.e., all players have to avoid designated bad places, deciding the exis-
tence of a winning strategy for the system players is exptime-complete [13]. This
problem is called the realizability problem. The result is obtained via a reduction
to a two-player Büchi game with enriched markings, so called decision sets, as
states.

High-level Petri nets [24] can concisely model large distributed systems. Cor-
respondingly, high-level Petri games [17] are a concise high-level representation of
ordinary Petri games. For solving high-level Petri games, the symmetries [33] of
the system can be exploited to build a symbolic Büchi game with a significantly
smaller number of states [18]. The states are equivalence classes of decision sets
and called symbolic decision sets. For generating a Petri game strategy for a high-
level Petri game the approach proposed in [18] resorts to the original strategy
construction in [13], i.e., the equivalence classes of a symbolic two-player strat-
egy are dissolved and a strategy for the standard two-player game is generated.
Figure 1 shows the relation of the elements just described.

High-level
Petri game G

Petri game
G = L(G)

Symbolic
two-player
game G(G)

Two-player
game G(G)

Strategy
in G(G)

Strategy
in G(G)

Strategy σ
in G

tr
an

sf
or

m

[17]

reduce
[13]

solve

re
pr

es
en

t

bi
si

m
ila

r

[18]

reduce
[18]

solve

ge
ne

ra
te

[18]

translate
[13]

Symbolic game
with canon. rep.

G(G)c
Strategy
in G(G)c

reduce

Sect.
 3,4

solve

generateSect. 4

� �

Fig. 1. An overview of the scope of this paper. The connections between the different
elements describe their interplay and where these methods are introduced. The con-
nections labeled with “solve” mean that a two-player (Büchi) game can be solved by
standard algorithms in game theory (e.g., [21]). The bottom level corresponds to the
original reduction in [13], the level above corresponds to the high-level counterparts
described in [17,18], and the top level contains the elements introduced in this paper.
The new reduction is marked by thick edges.

In this paper, we propose a new construction for solving high-level Petri
games to avoid this detour while generating the strategy. In [18] the symbolic
Büchi game is generated by comparing each newly added state with all already

Canonical Representations for Solving High-Level Petri Games 97

added ones for equivalence, i.e., the orbit problem must be answered. The new
approach calculates a canonical representation for each newly added state (the
constructive orbit problem [8]), and only stores these representations. This gen-
eration of a symbolic Büchi game with canonical representations is based on the
corresponding ideas for reachability graphs from [5]. As in [18], we consider safe
Petri games with a high-level representation, and exclude Petri games where
the system can proceed infinitely without the environment. For the decidability
result we consider, as in [13], Petri games with only one environment player, i.e.,
in every reachable marking there is at most one token on an environment place.

One of the main advantages of the new approach is that the canonical rep-
resentations allow to directly generate a Petri game strategy from a symbolic
Büchi game strategy without explicitly resolving all symmetries (cp. thick edges
in Fig. 1). Another advantage is the complexity for constructing the symbolic
Büchi game. Even though, the calculation of the canonical representation comes
with a fixed cost, less comparisons can be necessary, depending on the input sys-
tem. We implemented the new algorithm and applied our tool on the benchmark
families used in [18] and Example 1. The results show in general a performance
increase with an increasing number of states for most of the benchmark families.

Env

d

I

inf

R

h

H

Sys

a

A

b

B

C1

•

x

x C1

x
C1

y

(y, x)

x
C1

×{x}

x

(y, x)

y

C1 = {c1, c2, c3}
C2 = {•}
x, y ∈ C1

(a) High-level Petri game G

Env
d2

I2

inf 2

Sys2

a22a21 a23
A22A21 A23R2

h2

H2

b22b21 b23

B2

d1

I1

inf 1

Sys1

a12a11 a13
A12A11 A13R1

h1

H1

b12b11 b13

B1

d3

I3

inf 3

Sys3

a32a31 a33
A32A31 A33R3

h3

H3

b32b31 b33

B3

(b) The represented P/T Petri game G = L(G).

Fig. 2. Client/Server : The environment decides on one out of three computers to host
a server. The system players (computers) can win the game by getting informed on the
decision of the environment and connecting correctly.

We now introduce the example on which we demonstrate the successive devel-
opment stages of the presented techniques throughout the paper.

Example 1. The high-level Petri game G depicted in Fig. 2a models a simplified
scenario where one out of three computers must host a server for the others to

98 M. Gieseking and N. Würdemann

connect to. The environment nondeterministically decides which computer must
be the host. The places in the net are partitioned into system places (gray) and
environment places (white). An object on a place is a player in the corresponding
team. Bad places are double-bordered. The variables x, y on arcs are bound only
locally to the transitions, and an assignment of objects to these variables is called
a mode of the transition.

The environment player •, initially residing on place Env , decides via tran-
sition d in mode x = c̃ on a computer c̃ that should host the server. The system
players (computers c1, c2, c3 ∈ C1), initially residing on place Sys, can either
directly, individually connect themselves to another computer via transition a,
or wait for transition inf to be enabled. When they choose to connect themselves
directly, after firing transition a in different modes, the corresponding pairs of
computers reside on place A. Since the players always have to give the possibility
to proceed in the game, and transition h cannot get enabled any more, they must
take transition b to the bad place B . So instead, all players should initially only
allow transition inf (in every possible mode x). After the decision of the environ-
ment, transition inf can be fired in mode x = c̃, placing c̃ on R. In this firing, the
system players get informed on the environment’s decision. Back on place Sys
they can, equipped with this knowledge, each connect to the computer c̃ via
transition a, putting the three objects (c1, c̃), (c2, c̃), (c3, c̃) on place A. Thus,
transition h can be fired in mode c̃, and the game terminates with c̃ in H . Since
the system players avoided reaching the bad place B , they win the play. This
scenario is highly symmetric, since it does not matter which computer is chosen
to be the host, as long as the others connect themselves correctly.

The remainder of this paper is structured as follows: In Sect. 2 we recall the
definitions of (high-level) Petri nets and (high-level) Petri games. In Sect. 3 we
present the idea, formalization, and construction of canonical representations. In
Sect. 4 we show the application of these canonical representations in the symbolic
two-player Büchi game, and how to directly generate a Petri game strategy. In
Sect. 5, experimental results of the presented techniques are shown. Section 6
presents the related work and Sect. 7 concludes the paper.

Further details can be found in the full version of the paper [19].

2 Petri Nets and Petri Games

This section recalls (high-level) Petri nets and -games, and the associated concept
of strategies established in [13,17,18]. Figure 2 serves as an illustration.

2.1 P/T Petri Nets

A (marked P/T) Petri net is a tuple N = (P,T,F,M0), with the disjoint sets
of places P and transitions T, a flow function F : (P × T) ∪ (T × P) → N,
and an initial marking M0, where a marking is a multi-set M : P → N that
indicates the number of tokens on each place. F(x, y) = n > 0 means there is
an arc of weight n from node x to y describing the flow of tokens in the net.

Canonical Representations for Solving High-Level Petri Games 99

A transition t ∈ T is enabled in a marking M if ∀p ∈ P : F(p, t) ≤ M(p). If t
is enabled then t can fire in M, leading to a new marking M′ calculated by
∀p ∈ P : M′(p) = M(p) − F(p, t) + F(t, p). This is denoted by M[t〉M′. N is called
safe if for all markings M that can be reached from M0 by firing a sequence of
transitions we have ∀p ∈ P : M(p) ≤ 1. For each transition t ∈ T we define the
pre- and postset of t as the multi-sets pre (t) = F(·, t) and post (t) = F(t, ·) over P.

An example for a Petri net can be seen in Fig. 2b. Ignoring the different shades
and potential double borders for now, the net’s places are depicted as circles,
transitions as squares. Dots represent the number of tokens on each place in
the initial marking of the net. The flow is depicted as weighted arcs between
places and transitions. Missing weights are interpreted as arcs of weight 1. In
the initial marking, all transitions aij and di are enabled. Firing, e.g., d1 results
in the marking with one token on I1, Sys1, Sys2, and Sys3, each.

2.2 P/T Petri Games

Petri games are an extension of Petri nets to incomplete information games
between two teams of players: the controllable system vs. the uncontrollable
environment. The tokens on places in a Petri net represent the individual players.
The place a player resides on determines their team membership. Particularly, a
player can switch teams. For that, the places are divided into system places and
environment places. A play of the game is a concurrent execution of transitions in
the net. During a play, the knowledge of each player is represented by their causal
history, i.e., all visited places and used transitions to reach to current place.
Players enrich this local knowledge when synchronizing in a joint transition.
Then the complete knowledge of all participating players are exchanged. Based
on this, players allow or forbid transitions in their postset. A transition can only
fire if every player in its preset allows the execution. The system players in a
Petri game win a play if they satisfy a safety-condition, given by a designated
set of bad places they must not reach.

Formally, a (P/T) Petri game is a tuple G = (PS,PE,T,F,M0,PB), with a
set of system places PS, a set of environment places PE, and a set of bad places
PB ⊆ PS. The set of all places is denoted by P = PS∪̇PE, and T,F,M0 are the
remaining components of a Petri net N = (P,T,F,M0), called the underlying net
of G. We consider only Petri games with finitely many places and transitions.

In Fig. 2b, a Petri game is depicted. We just introduced the underlying net of
the game. The system places are shaded gray, the environment places are white.
Bad places are marked by a double border. This Petri game is the P/T-version of
the high-level Petri game described in the introduction. The three tokens/system
players residing on Sysi represent the computers. The environment player resid-
ing on Env makes their decision which computer should host a server by taking
a transition di. The system players can then get informed of the decision and
react accordingly as described above.

A strategy for the system players in a Petri game G can be formally expressed
as a sub-process of the unfolding [10]: in the unfolding of a Petri net, every loop
is unrolled and every backward branching place is expanded by duplicating the

100 M. Gieseking and N. Würdemann

place, so that every transition represents the unique occurrence of a transition
during an execution of the net. The causal dependencies in G (and thus, the
knowledge of the players) are naturally represented in its unfolding, which is
the unfolding of the underlying net with system-, environment-, and bad places
marked correspondingly.

A strategy is obtained from the unfolding by deleting some of the branches
that are under control of the system players. This sub-process has to meet three
conditions: (i) The strategy must be deadlock-free, to avoid trivial solutions;
it must allow the possibility to continue, whenever the system can proceed.
Otherwise the system players could win with the respect to the safety objective
(bad places) if they decide to do nothing. (ii) The system players must act in a
deterministic way, i.e., in no reachable marking of the strategy two transitions
involving the same system player are enabled. (iii) Justified refusal: if a transition
is not in the strategy, then the reason is that a system player in its preset forbids
all occurrences of this transition in the strategy. Thus, no pure environment
decisions are restricted, and system players can only allow or forbid a transition
of the original net, based on only their knowledge. In a winning strategy, the
system players cannot reach bad places.

In Fig. 3, we see the already informally described winning strategy for the
system players in the Petri game G. For clarity, we only show the case in which the
environment chose the first computer to be the host completely. All computers,
after getting informed of the environment’s decision, act correspondingly and
connect to the first computer. The remaining branches in the unfolding are cut off
in the strategy. The other two cases (after firing inf 2 or inf 3) are analogous. We
include the formal definitions of unfoldings and strategies in the full version [19].

Env

d2

I2

inf 2

d1

I1

inf 1

Sys2

a22a21 a23
A22A21 A23

b22b21 b23

B2 B2 B2

Sys1

a12a11 a13
A12A11 A13 R1

h1

H1

b12b11 b13

B1 B1 B1

d3

I3

inf 3

Sys3

a32a31 a33
A32A31 A33

b32b31 b33

B3 B3 B3

Sys1

a12a11 a13
...

...
...

Sys2

a22a21 a23
...

...
...

Sys3

a32a31 a33 ...
...

...

Fig. 3. Part of a winning strategy for the system players in G (solid), obtained by
deleting some of the branches of the unfolding (solid and greyed out).

Canonical Representations for Solving High-Level Petri Games 101

2.3 High-Level Petri Nets

While in P/T Petri nets only tokens can reside on places, in high-level Petri nets
each place is equipped with a type that describes the form of data (also called
colors) the place can hold. Instead of weights, each arc between a place p and a
transition t is equipped with an expression, indicating which of these colors are
taken from or laid on p when firing t. Additionally, each transition t is equipped
with a guard that restricts when t can fire.

Formally, a high-level Petri net is a tuple N = (P ,T ,F , ty , e, g ,M0), with a
set of places P , a set of transitions T satisfying P ∩T = ∅, a flow relation F ⊆
(P ×T)∪ (T ×P), a type function ty from P such that for each place p, ty(p) is
the set of colors that can lie on p, a mapping e that, for every transition t, assigns
to each arc (p, t) (or (t, p)) in F an expression e(p, t) (or e(t, p)) indicating which
colors are withdrawn from p (or laid on p) when t is fired, a guard function g that
equips each transition t with a Boolean expression g(t), an initial marking M0,
where a marking in N is a function M with domain P indicating what colors
reside on each place, i.e., ∀p ∈ P : M (p) ∈ [ty(p) → N].

Figure 2a, a high-level Petri net is depicted. As in the P/T case, we ignore
the different shadings and borders of places for now. The types of the places can
be deducted from the surrounding arcs. For example, the place E has the type
ty(E) = C2 = {•}, and the place A has the type ty(A) = C1 × C1. Each arc
is equipped with an expression, e.g., e(Sys , a) = y, and e(a,A) = (y, x). In the
given net, all guards of transitions are true and therefore not depicted.

Typically, expressions and guards will contain variables. A mode (or valua-
tion) v of a transition t ∈ T assigns to each variable x occurring in g(t), or any
expression e(p, t) or e(t, p), a value v(x). The set Val(t) contains all modes of t.
Each v ∈ Val(t) assigns a Boolean value, denoted by v(t), to g(t), and to each
arc expression e(p, t) or e(t, p) a multi-set over ty(p), denoted by v(p, t) or v(t, p).
A transition t is enabled in a mode v ∈ Val(t) in a marking M if v(t) = true
and for each arc (p, t) ∈ F and every c ∈ ty(p) we have v(p, t)(c) ≤ M (p)(c).
The marking M ′ reached by firing t in mode v from M (denoted by M [t.v〉M ′)
is calculated by ∀p ∈ P ∀c ∈ ty(p) : M ′(p)(c) = M (p)(c) − v(p, t)(c) + v(t, p)(c).

A high-level Petri net N can be transformed into a P/T Petri net L(N) with
P = {p.c | p ∈ P , c ∈ ty(p)}, T = {t.v | t ∈ T , v ∈ Val(t), v(t) = true}, the flow F
defined by ∀p.c ∈ P ∀t.v ∈ T : F(p.c, t.v) = v(p, t)(c) ∧ F(t.v, p.c) = v(t, p)(c),
and initial marking M0 defined by ∀p.c ∈ P : M0(p.c) = M0(p)(c). The two nets
then have the same semantics: the number of tokens on a place p.c in a marking
in L(N) indicates the number of colors c on place p in the corresponding marking
in N . Firing a transition t.v in L(N) corresponds to firing transition t in mode v
in N . We say a high-level Petri net N represents the P/T Petri net L(N).

2.4 High-Level Petri Games

Just as P/T Petri games are structurally based on P/T Petri nets, a high-level
Petri game G = (PS ,PE ,T ,F , ty , e, g ,M0,PB) with underlying high-level net

102 M. Gieseking and N. Würdemann

N = (P ,T ,F , ty , e, g ,M0) divides the places P into system places PS and envi-
ronment places PE . The set PB ⊆ PS indicates the bad places. High-level Petri
games represent P/T Petri games: a high-level Petri game G (with underlying
high-level net N) represents a P/T Petri game L(G) with underlying P/T Petri
net L(N). The classification of places p.c in L(G) into system-, environment-,
and bad places corresponds to the places p in the high-level game.

In Fig. 2a, a high-level Petri game G and its represented Petri game G = L(G)
are depicted. For the sake of clarity, we abbreviated the nodes in L(G). Thus,
e.g., the transition a.[x = c1, y = c2] is renamed to a12. We often use notation
from the represented P/T Petri game to express situations in a high-level game.

3 Canonical Representations of Symbolic Decision Sets

In this paper, we investigate for a given high-level Petri game G with one envi-
ronment player whether the system players in L(G) have a winning strategy
(and possibly generate one). This problem is solved via a reduction to a sym-
bolic two-player Büchi game G(G)c. The general idea of this reduction is, as
in [13], to equip the markings of the Petri game with a set of transitions for each
system player (called commitment sets) which allows the players to fix their next
move. In the generated Büchi game, only a subset of all interleavings is taken
into account, in the way that the moves of the environment player are delayed
until no system player can progress without interacting with the environment.
By that, each system player gets informed about the environment’s last posi-
tion during their next move. This means that in every state, every system player
knows the current position of the environment or learns it in the next step, before
determining their next move. Thus, the system players can be considered to be
completely informed about the game. This is only possible due to the existence
of only one environment player. For more environment players such interleav-
ings would not ensure that each system player is informed (or gets informed in
their next move) about all environment positions. The nodes of the game are
called decision sets. In [18], symmetries in the Petri net are exploited to define
equivalence classes of decision sets, called symbolic decision sets. These are used
to create an equivalent, but significantly smaller, Büchi game.

In this section we introduce the new canonical representations of symbolic
decision sets which serve as nodes for the new Büchi game. We transfer relations
between and properties of (symbolic) decision sets to the established canoni-
cal representations. We start by recalling the definitions of symmetries in Petri
nets [33] and of (symbolic) decision sets [18].

From now on we consider high-level Petri games G representing a safe P/T
Petri game L(G) that has one environment player, a bounded number of system
players with a safety objective, and where the system cannot proceed infinitely
without the environment.

Canonical Representations for Solving High-Level Petri Games 103

3.1 Symmetric Nets

High-level representations are often created using symmetries [33] in a Petri net.
Conversely, in some high-level nets, symmetries can be read directly from the
given specification. A class of nets which allow this are the so called symmetric
nets (SN) [4].1 In symmetric nets, the types of places are selected from given
(finite) basic color classes C1, . . . , Cn. For every place p ∈ P , we have ty(p) =
Cp1

1 ×· · ·×Cpn
n for natural numbers p1, . . . , pn ∈ N, where Cpi

i denotes the pi-fold
Cartesian product of Ci.2 The possible values of variables contained in guards
and arc expressions are also basic classes. Thus, the modes of each transition t ∈
T are also given by a Cartesian product Val(t) = Ct1

1 ×· · ·×Ctn
n . Guards and

arc expressions treat all elements in a color class equally.

Example 2. The underlying high-level net N in Fig. 2a is a symmetric net with
basic color classes C1 = {c1, c2, c3} and C2 = {•}. We have, e.g., Val(a) = C1×C1

(the two coordinates representing y and x), and therefore, a1 = 2, a2 = 0.

Remark 1. In general, each basic color class Ci is possibly partitioned into sub-
classes Ci =

⋃ni

q=1 Ci,q. In this paper, we omit this partition. The detailed proofs
in the full version [19] take the general case into account.

Proposition 1. Any high-level Petri net can be transformed into a SN with the
same basic structure, same place types, and equivalent arc labeling (cf. [4]).

The symmetries ξN in a symmetric net N are all tuples s = (s1, . . . , sn) such
that each si is a permutation on Ci. A symmetry s can be applied to a single
color c ∈ Ci by s(c) = si(c). The application to tuples, e.g., colors on places or
transition modes, is defined by the application in each entry. The set ξN , together
with the function composition ◦, forms a group with identity (idCi

)n
i=1. In the

represented P/T Petri net L(N), symmetries can be applied to places p = p.c ∈ P
and transitions t = t.v ∈ T by defining s(p.c) = p.s(c) and s(t.v) = t.s(v). The
structure of symmetric nets ensures ∀s ∈ ξN ∀t ∈ T : pre (s(t)) = s(pre (t)) and
post (s(t)) = s(post (t)). Thus, symmetries are compatible with the firing relation;
∀s ∈ ξN : M[t〉M′ ⇔ s(M)[s(t)〉s(M′). In a symmetric net, we can w.l.o.g. assume
the initial marking M0 to be symmetric, i.e., ∀s ∈ ξN : s(M0) = M0.

3.2 Symbolic Decision Sets

A decision set is a set D ⊆ P×(P(T)∪�). An element (p,C) ∈ D with C ⊆ post (p)
indicates there is a player on place p who allows all transitions in C to fire. C
is then called a commitment set. An element (p,�) ∈ D indicates the player
on place p has to choose a commitment set in the next step. The step of this
decision is called �-resolution.

1 Symmetric Nets were formerly known as Well-Formed Nets (WNs). The renaming
was part of the ISO standardization [23].

2 In the Cartesian products ty(p) and Val(t), we omit all Cx
i with x = 0 (empty sets).

104 M. Gieseking and N. Würdemann

In a �-resolution, each �-symbol in a decision set D is replaced with a
suitable commitment set. This relation is denoted by D[�〉D′. If there are no
�-symbols in D, a transition t is enabled, if ∀p ∈ pre (t) ∃(p,C) ∈ D : t ∈ C,
i.e., there is a token on every place in pre (t) (as for markings) and addition-
ally, t is in every commitment set of such a token. In the process of firing an
enabled transition, the tokens are moved accordingly to the flow F. The moved
or generated tokens on system places are then equipped with a �-symbol, while
the tokens on environment places allow all transitions that they are involved
in. This relation is denoted by D[t〉D′. The initial decision set is given by
D0 = {(p, {t ∈ T | p ∈ pre (t)}) | p ∈ PE ∩ M0} ∪ {(p,�) | p ∈ PS ∩ M0}, i.e.,
the environment in the initial marking allows all possible transitions, the system
players still have to choose a commitment set.

Example 3. Assume in the Petri game in Fig. 2a that the computers initially
allow transition inf in every mode. The environment player on Env fires tran-
sition d in mode c1. After that, the system gets informed of the environment’s
decision via transition inf in mode c1. The system players, now back on Sys,
decide via �-resolution they all want to assign themselves to c1. This corresponds
to the following sequence of decision sets, where we abbreviate Sys by S .

D0

(Env .•, {d .c1, d .c2, d .c3})
(S .c1, {inf.c1, inf.c2, inf.c3})
(S .c2, {inf.c1, inf.c2, inf.c3})
(S .c3, {inf.c1, inf.c2, inf.c3})

(I .c1, {inf.c1})
(S .c1, {inf.c1, inf.c2, inf.c3})
(S .c2, {inf.c1, inf.c2, inf.c3})
(S .c3, {inf.c1, inf.c2, inf.c3})

(R.c1, {g.c1})
(S .c1,�)
(S .c2,�)
(S .c3,�)

(R.c1, {g.c1})
(S .c1, {a.(c1, c1)})
(S .c2, {a.(c2, c1)})
(S .c3, {a.(c3, c1)})

� d .c1 inf .c1 �

A high-level Petri game G has the same symmetries ξN as its underlying symmet-
ric net N . They can be applied to decision sets by applying them to every occur-
ring color c or mode v. For a decision set D, an equivalence class {s(D) | s ∈ ξN }
is called the symbolic decision set of D, and contains symmetric situations in
the Petri game. In [18], these equivalence classes replace individual decision sets
in the two-player Büchi game to achieve a substantial state space reduction.

Example 4. Consider the second to last decision set in the sequence above. This
situation is symmetric to the cases where the environment chose computer c2
or c3 as the host. In the example G , we have the two color classes C1 and C2.
Since |C2| = 1, the only permutation on C2 is idC2 . Thus, the symmetries in G
are the permutations on C1. Symmetries transform the elements in the symbolic
decision set into each other. The corresponding symbolic decision set contains
the following three elements D, D′, and D′′:

(R.c1, {g.c1})
(S .c1,�)
(S .c2,�)
(S .c3,�)

(R.c2, {g.c2})
(S .c1,�)
(S .c2,�)
(S .c3,�)

(R.c3, {g.c3})
(S .c1,�)
(S .c2,�)
(S .c3,�)

idC1
c2 ↔ c3c1 ↔ c2

c1 �→ c2 �→ c3 �→ c1

c1 ↔ c3

c1 �→ c3 �→ c2 �→ c1D

D′ D′′

Each edge between two decision sets corresponds to the application of a sym-
metry. The abbreviated notation c �→ c′ �→ c′′ �→ c means that each element is
mapped to the next in line. Analogously, c ↔ c′ means that c and c′ are switched.

Canonical Representations for Solving High-Level Petri Games 105

3.3 Canonical Representations

In order to exploit symmetries to reduce the size of the state space, one aims
to consider only one representative of each of the equivalence classes induced
by the symmetries. This can be done either by checking whether a newly gener-
ated state is equivalent to any already generated one, or by transforming each
newly generated state into an equivalent, canonical representative. In [18] we
consider the former approach. The nodes of the symbolic Büchi game are sym-
bolic decision sets. In the construction, an arbitrary representative D is chosen
for each of these equivalence classes. This means, when reaching a new node D′,
we must apply every symmetry s to test whether there already is a representative
D′ = s(D′), or whether D′ is in a new symbolic decision set.

In this section, we now aim at the second approach and define the new canon-
ical representations of symbolic decision sets. For that, we first define dynamic
representations, and then show how to construct a canonical one. We use these
instead of (arbitrary representatives of) symbolic decision sets in the construc-
tion of the symbolic Büchi game in Sect. 4.

Dynamic Representations. A dynamic representation is an abstract descrip-
tion of a symbolic decision set. It consists of dynamic subclasses of variables,
and a dynamic decision set where these dynamic subclasses replace explicit col-
ors. Any (valid) assignment of values to the variables in the dynamic subclasses
results in a decision set in the equivalence class.

Formally, a dynamic representation is a tuple R = (C,D), with the set of
dynamic subclasses C = {Zj

i | 1 ≤ i ≤ n, 1 ≤ j ≤ mi} for natural num-
bers mi, and a dynamic decision set D. A dynamic subclass Zj

i contains a
finite number of variables with values in Ci. Each Zj

i has a cardinality |Zj
i |

that indicates the number of variables. In total, there are as many variables
with values in Ci as there are colors, i.e.,

∑mi

j=1 |Zj
i | = |Ci|. An assignment

va :
⋃n

i=1 Ci → C is valid if it respects the cardinality of dynamic subclasses,
i.e., |{c ∈ Ci | va(c) = Zj

i }| = |Zj
i |. Every valid assignment of colors c ∈ Ci to the

Zj
i , 1 ≤ j ≤ mi, gives a partition of Ci. A dynamic decision set is the same as a

decision set, with dynamic subclasses replacing explicit colors. For every decision
set D in a symbolic decision set with dynamic representation R = (C,D), there
is a valid assignment vaD such that D = va−1

D (D). In general, there are several
dynamic representations of a symbolic decision set.

Example 5. Consider the symbolic decision set from the last example. We can
naively build a dynamic representation by taking one of the decision sets, and
replacing each color by a dynamic subclass of cardinality 1. This results in as
many dynamic subclasses as there are colors, i.e., C = {Z1

1 , Z2
1 , Z3

1 , Z1
2} with

|Zj
i | = 1 for all i, j. Below, the resulting dynamic decision set D is depicted,

with valid assignments that lead to elements D, D′, and D′′.

106 M. Gieseking and N. Würdemann

(
R.Z1

1 , {g.Z1
1})

(
S .Z1

1 ,�)

(
S .Z2

1 ,�)

(
S .Z3

1 ,�)

(R.c1, {g.c1})
(S .c1,�)
(S .c2,�)
(S .c3,�)

(R.c2, {g.c2})
(S .c1,�)
(S .c2,�)
(S .c3,�)

(R.c3, {g.c3})
(S .c1,�)
(S .c2,�)
(S .c3,�)

Zj
1 �→cj

Z2
1 �→c1, Z1

1 �→c2,
Z3
1 �→c3

Z3
1 �→c1, Z2

1 �→c2,
Z1
1 �→c3D D

D′ D′′

The element (R.Z1
1 , {g.Z1

1}), e.g., represents one arbitrary color c (since |Z1
1 | = 1)

on place R with g.c in its commitment set. The same color is on place S , equipped
with a �-symbol.

Minimality. We notice in the example above that Z2
1 and Z3

1 appear in the
same contexts in D. The context con(Zj

i) of a dynamic subclass Zj
i is defined

as the set of tuples in D where exactly one appearance of Zj
i is replaced by a

symbol �. So in our example con(Z2
1) = {(S .�,�)} = con(Z3

1), and con(Z1
1) =

{(S .�,�), (R.�, g .c1), (R.c1, g .�)}. This means Z2
1 and Z3

1 can be merged into a
new dynamic subclass of cardinality 2. The resulting new dynamic representation
is given by Cmin = {Z1

1 , Z2
1 , Z1

2} with |Z1
1 | = |Z1

2 | = 1 and |Z2
1 | = 2, and

Dmin =
{
(R.Z1

1 , {g.Z1
1}), (S .Z1

1 ,�), (S .Z2
1 ,�)

}
.

(
R.Z1

1 , {g.Z1
1})

(
S .Z1

1 ,�)

(
S .Z2

1 ,�)

(R.c1, {g.c1})
(S .c1,�)
(S .c2,�)
(S .c3,�)

(R.c2, {g.c2})
(S .c1,�)
(S .c2,�)
(S .c3,�)

(R.c3, {g.c3})
(S .c1,�)
(S .c2,�)
(S .c3,�)

Zj
1 �→c1

Z2
1 �→c2, c3

Z1
1 �→c2

Z2
1 �→c1, c3,

Z1
1 �→c3

Z2
1 �→c1, c2,Dmin D

D′ D′′

Minimal representations do not contain any two dynamic subclasses Zj
i , Zk

i

with the same context. Given a dynamic representation, it is algorithmically sim-
ple to construct a minimal representation of the same symbolic decision set by
merging all dynamic subclasses with the respectively same context. The dynamic
representation above that resulted from merging the subclasses is therefore min-
imal. Still, minimality is not enough to obtain a unique canonical representation,
since we can permute the indices j of the dynamic subclasses Zj

i .

Lemma 1. The minimal representations of a symbolic decision set are unique
up to a permutation of the dynamic subclasses.

This lemma can be proved using the observation that every minimal representa-
tion can be reached from a dynamic representation that contains only dynamic
subclasses of cardinality 1 (as the one in Example 5) by merging.

Ordering. We can choose one of the minimal representations by ordering the
dynamic subclasses. In the following, we give a possible way to do that. We
display the dynamic decision set D as a matrix, with rows and columns indicating
(tuples of) dynamic subclasses Z. An element of the matrix at entry (Z,Z ′)
returns all tuples (p, t) satisfying (p.Z,C) ∈ D and t.Z ′ ∈ C for a commitment
set C. Also, all tuples (p,�) satisfying (p.Z,�) ∈ D and all tuples (p, ∅) satisfying
(p.Z, ∅) ∈ D are returned (in these cases, Z ′ is neglected).

The elements of the matrix are in P(P×(T∪{�, ∅})). Since this set is finite, we
can give an arbitrary, but fixed, total order on it. This order can be extended to
the matrices over the set (the lexicographic order by row-wise traversion through

Canonical Representations for Solving High-Level Petri Games 107

a matrix). Then we can determine a permutation such that, when applied to the
dynamic subclasses, the matrix is minimal with respect to the lexicographic order.
The corresponding dynamic representation is called ordered.

Example 6. On the left we see the matrix of the dynamic decision set D in
the minimal representation given above. The first entry, at (Z1

1 , Z1
1), e.g., is

{(S ,�), (R, g)} since (S .Z1
1 ,�) and (R.Z1

1 , g .Z1
1) are in D. Assume {(S ,�)} <

{(S,�), (R, g)}. When the permutation switching Z1
1 and Z2

1 is applied, we get
the right matrix, which is lexicographically smaller (the first entry is smaller).

Z1
1 Z2

1

Z1
1 {(S ,�), (R, g)} {(S ,�)}

Z2
1 {(S ,�)} {(S ,�)}

Z1
1↔Z2

1←−−→
Z1
1 Z2

1

Z1
1 {(S ,�)} {(S ,�)}

Z2
1 {(S ,�)} {(S ,�), (R, g)}

Thus, the minimal representation from above is transformed into a minimal
and ordered representation (Cord ,Dord) by the permutation Z1

1 ↔ Z2
1 .

Theorem 1. For every symbolic decision set there is exactly one minimal
and ordered dynamic representation. We call this the canonical (dynamic)
representation.

The proof follows from Lemma 1 and the observation that if two ordered dynamic
representations can be transformed into each other by applying a permutation
of the dynamic subclasses, they must have the same dynamic decision set.

We can algorithmically order a minimal representation by calculating all sym-
metric representations and finding the one with the lexicographically smallest
matrix. These are maximally |ξN | comparisons of dynamic representations. So
by first making a dynamic representation minimal, and then ordering it, we get
the respective canonical representation.

Corollary 1. We can construct the canonical representation of a given symbolic
decision set in O(|ξN |).

3.4 Relations Between Canonical Representations

Between decision sets, we have the two relations D[�〉D′ and D[t.v〉D′ with
v ∈ Val(t) = Ct1

1 ×· · ·×Ctn
n . In canonical representations, we abstract from specific

colors c ∈ Ci and replace them by dynamic subclasses Zj
i of variables. However,

in the process of �-resolution or transition firing, two objects represented by the
same dynamic subclass can act differently. This means we instantiate special
objects in the classes that are relevant in the �-resolution or transition firing.

For this, each dynamic subclass Zj
i in a canonical representation R is split into

finitely many Zj,k
i of cardinality |Zj,k

i | = 1 with k > 0, and a subclass Zj,0
i , con-

taining the possibly remaining, non-instantiated, variables. Then, a � is resolved,
or a transition is fired, with the dynamic subclasses Zj,k

i replacing explicit data
entries c ∈ Ci. Finally, the canonical representation R′ of the reached dynamic
representation is found. These relations are denoted by R[�〉R′ and R[t.Z〉R′,
where Z is a tuple of instantiated Zj,k

i .

108 M. Gieseking and N. Würdemann

Below we see an example that corresponds to the last two steps in Exam-
ple 3. We calculated the second canonical representation in the last section. It is
reached from the first canonical representation by firing inf.Z2,1

1 . In this process
one (the only) element in Z2

1 is instantiated by a dynamic subclass Z2,1
1 of car-

dinality 1. After the actual firing, the reached representation is made canonical.
Then, a � is resolved. Here, Z1

1 is split into Z1,1
1 and Z1,2

1 with |Z1,1
1 | = |Z1,2

1 | = 1.
In the reached dynamic representation, no two subclasses have the same context,
so it is already minimal. After ordering we get the canonical representation.

(
I .Z2

1 , {inf.Z2
1})

(
S .Z1

1 , {inf.Z1
1 , inf.Z2

1})

(
S .Z2

1 , {inf.Z1
1 , inf.Z2

1})
|Z1

1 | = 2
|Z2

1 | = 1

(
R.Z1

1 , {g.Z2
1})

(
S .Z1

1 ,�)

(
S .Z2

1 ,�)|Z1
1 | = 2

|Z2
1 | = 1

(
R.Z3

1 , {g.Z3
1})

(
S .Z1

1 , {a.(Z1
1 , Z3

1)})

(
S .Z2

1 , {a.(Z2
1 , Z3

1)})

(
S .Z3

1 , {a.(Z3
1 , Z3

1)})∀j ∈ {1, 2, 3} :
|Zj

1 | = 2

inf .(Z2,1
1) �

Theorem 2. Every relation D[t.v〉D′ or D[�〉D′ between two decision sets
D and D′ is represented by exactly one symbolic relation R[t.Z〉R′ or R[�〉R′

between the respective canonical representations R and R′.

The proof for the case D[t.v〉D′ follows by applying a valid assignment vaD to v
and splitting R correspondingly. The case D[�〉D′ works analogously.

3.5 Properties of Canonical Representations

The goal is to use canonical representations instead of individual decision sets or
(arbitrary representatives of) symbolic decision sets as nodes in a two player
game. The edges (R,R′) in this game are built from relations R[t.Z〉R′ and
R[�〉R′, depending on the properties of R. For example, if R describes nondeter-
ministic situations in the Petri game, then the edges from R are built in such a
way that player 0 (representing the system) cannot win the game from there. In
this section, we define the relevant properties of canonical representations.

In [13], the following properties of a decision set D are defined. Let M(D) =
{p ∈ P | (p,�) ∈ D ∨ ∃C ⊆ T : (p,C) ∈ D} be the underlying marking of D.
D is environment-dependent iff ¬D[�〉, i.e., there is no � symbol in any tuple
in D, and ∀t ∈ T : D[t〉 ⇒ pre (t) ∩ PE �= ∅, i.e., all enabled transitions have an
environment place in their preset. D contains a bad place iff PB ∩ M(D) �= ∅.
D is a deadlock iff ¬D[�〉, and ∃t′ ∈ T : M(D)[t′〉 ∧ ∀t ∈ T : ¬D[t〉, i.e.,
there is a transition that is enabled in the underlying marking, but the system
forbids all enabled transitions. D is terminating iff ∀t ∈ T : ¬M(D)[t〉. D is
nondeterministic iff ∃t1, t2 : t1 �= t2∧PS∩pre (t1)∩pre (t2) �= ∅∧D[t1〉∧D[t2〉, i.e.,
two separate transitions sharing a system place in their presets both are enabled.

In [18], we showed that all decision sets in one equivalence class share the
same of the properties defined above. Thus, we say a symbolic decision set has one
of the above properties iff its individual members have the respective property.

We now define these properties for canonical representations. Since we do
not want to consider individual decision sets, we do that on the level of dynamic
representations. Let R = (C,D) be a canonical representation. R is environ-
ment-dependent iff ¬R[�〉, i.e., there is no � symbol in any tuple in D, and

Canonical Representations for Solving High-Level Petri Games 109

∀t.Z : R[t.Z〉 ⇒ ∃p ∈ PE : (p, t) ∈ F , and R contains a bad place iff
∃p ∈ PB ∃X : (p.X,�) ∈ R ∨ ∃C : (p.X,C) ∈ D. Both these properties are
rather analogous to the respective property of decision sets. For termination and
deadlocks, we introduce for the given R the representation Rall with the same
dynamic subclasses, and the dynamic decision set where every player has all
possible transitions t.Z in their commitment set. Since then all transitions that
could fire in the underlying marking are enabled, this substitutes for M(D). We
say R is a deadlock iff ¬R[�〉, and ∃t′.Z ′ : Rall [t′.Z ′〉∧∀t.Z : R[t.Z〉. Analogously,
R is terminating iff ∀t.Z : ¬Rall [t.Z〉. For nondeterminism we have to consider
two cases. The first one is analogous to the property for individual decision sets.
ndet1(R) = ∃t.Z, t′.Z ′ : t.Z �= t′.Z ′ ∧ ∃p ∈ PS ∃X,C : (p.X,C) ∈ D ∧ t.Z, t′.Z ′ ∈
C∧R[t, Z〉∧R[t′.Z ′〉. The second case considers the situation that two instances
of one t.Z can both fire with a shared system place in their preset. ndet2(R) =
∃t.Z ∃p ∈ PS ∃X,C : (p.X,C) ∈ D ∧ t.Z ∈ C ∧ ∃Zj,k

i ∈ Z : |Zj
i | > 1 ∧ R[t, Z〉.

Finally, R is nondeterministic iff ndet1(R) ∨ ndet2(R).

Corollary 2. The properties of a symbolic decision set and its canonical repre-
sentation coincide.

For the proof, Theorem 2 is applied to the properties of individual decision sets.

4 Applying Canonical Representations

In this section, we define for a high-level Petri game G the two-player Büchi
game G(G)c with canonical representations R of symbolic decision sets, rather
than arbitrary representative D as in [18]. The edges between nodes are directly
implied by the relations R[t.Z〉R′ and R[�〉R′ between canonical representations.
This allows to directly generate a winning strategy for the system players in G
from a winning strategy for player 0 in G(G)c (cf. Fig. 1).

4.1 The Symbolic Two-Player Game

We reduce a Petri game G with high-level representation G to a two-player Büchi
game G(G)c. The goal is to directly create a strategy σ for the system players
in G from a strategy f for player 0 in G(G)c. Recall that a Petri game strategy
must be deadlock-free, deterministic, and satisfy the justified refusal condition.
Additionally, to be winning, it must not contain bad places.

The nodes in G(G)c are canonical representations of symbolic decision sets,
equivalence classes of situations in the Petri game. The properties of canonical
representations defined in Sect. 3.5 characterize these situations. These proper-
ties are used in the construction of the game. As in [13,18], the environment
in the game G(G)c only moves when the system players cannot continue alone.
Thus, they get informed of the environment’s decisions in their next steps and
the system can therefore be considered as completely informed. Bad situations
(nondeterminism, deadlocks, tokens on bad places) result in player 0 not winning.

110 M. Gieseking and N. Würdemann

If player 0 can avoid these situations and always win the game, this strategy can
be translated into a winning strategy for the system players in the Petri game.

The symbolic two-player Büchi game with canonical representations G(G)c =
(V0,V1,E ,VF ,R0) for a high-level Petri game G has the following components.
The nodes V = V0∪̇V1 are all possible canonical representations R of symbolic
decision sets in G . The partition into player 0’s nodes V0 and player 1’s nodes V1

is given by V1 = {R |R is environment dependent} and V0 = V \V1. The edges E
are constructed as follows. If R ∈ V contains a bad place, is a deadlock, is
terminating, or is nondeterministic, there is only a self-loop originating from R.
If R ∈ V0 then (R,R′) ∈ E if either R[�〉R′, or, if no � can be resolved, R[t.Z〉R′

with only system players participating in t.Z. If R ∈ V1, then (R,R′) ∈ E for
every R′ such that R[t.Z〉R′, i.e., transitions involving environment players can
only fire if nothing else is possible. The set VF of accepting nodes contains all
representations R that are terminating or environment-dependent, but are not
a deadlock, nondeterministic, or contain a bad place. The initial state R0 is the
canonical representation of the symbolic decision set containing D0.

A function f : V ∗V0 → V s.t. ∀R′
0 · · ·R′

k ∈ V ∗V0 : (R′
k, f(R′

0 · · ·R′
k)) ∈ E

is called a strategy for player 0. A strategy f is called winning iff every run
ρ = R0R1R2 · · · from R0 in G(G)c (i.e., ∀k : (Rk,Rk+1) ∈ E) that is consistent
with f (i.e., Rk ∈ V0 ⇒ Rk+1 = f(R0 · · ·Rk)) satisfies the Büchi condition
w.r.t. VF (i.e., ∀k ∃k′ ≥ k : Rk′ ∈ VF).

In the game G(G) in [18], player 0 has a winning strategy if and only if
the system players in L(G) have a winning strategy. As described above, it is
built from the relations D[t.c〉D′ and D[�〉D′ from representatives D of sym-
bolic decision sets. The introduced game G(G)c is built analogously, with the
difference that the nodes are now canonical representations instead of arbitrary
representatives of symbolic decision sets, and the edges are built from the rela-
tions R[t.Z〉R′ and R[�〉R′ (cf. Theorem 2 and Corollary 2). The two games are
isomorphic, as depicted in Fig. 1. Thus, we get the following result.

Theorem 3. Given a Petri game G with one environment player, a bounded
number of system players with a safety objective, and a high-level representa-
tion G, there is a winning strategy for the system players in G if and only if
there is a winning strategy for player 0 in G(G)c.

The size of G(G)c is the same as of G(G) (exponential in the size of G). This
means, using G(G)c, the question whether a winning strategy in G exists can still
be answered in single exponential time [13]. In G(G) we must, for a newly reached
node D′, test if it is equivalent to another, already existing, representative. This
means we check for all symmetries s ∈ ξ if s(D′) is already a node in the game.
In the best case, if we directly find the node, this is 1 comparison. In the worst
case, at step i with currently |V i| nodes, we must make |ξN ||V i| comparisons
(no symmetric node is in the game so far). To get the canonical representation
of a reached node in G(G)c, we must make less than |ξN | comparisons to order
the dynamic representation (cf. Corollary 1), and then compare it to all existing
nodes. Thus, |ξN | + 1 comparisons in the best case vs. |ξN | + |V i| in the i-th
step in the worst case. We further investigate experimentally on this in Sect. 5.

Canonical Representations for Solving High-Level Petri Games 111

4.2 Direct Strategy Generation

The solving algorithm in [18] builds a strategy in the Petri game G = L(G) from
a strategy in G(G) by first generating a strategy in the low-level equivalent G(G).
Constituting the canonical representations as nodes allows us to directly generate
a winning strategy σ for the system players in G from a winning strategy f for
player 0 in G(G)c (cf. Fig. 1).

The key idea is the same as in [13]. The strategy f is interpreted as a tree Tf

with labels in V , and root r0 labeled with R0. The tree is traversed in breadth-
first order, while the strategy σ is extended with every reached node. To show
that this procedure is correct, we must show that the generated strategy σ is sat-
isfying the conditions justified refusal, determinism, and deadlock freedom. Justi-
fied refusal is satisfied because of the delay of environment transitions. Assuming
nondeterminism or deadlocks in the generated strategy σ leads to the contra-
diction that there are respective decision sets in Tf . Finally, σ is winning, since
f also does not reach representations that contain a bad place. For the detailed
proof, cf. the full version [19].

Initially, the strategy σ contains places corresponding to the initial mark-
ing M0 in the Petri game, i.e., places labeled with p.c for every p.c ∈ M0, each
with a token on them. They constitute the initial marking Mσ

0 of σ. Every node r
in Tf , labeled with R, is now associated with a set Kr of cuts – reachable mark-
ings in the strategy/unfolding. The set Kr0 , associated to the root r0, contains
only the cut κ0 = Mσ

0 , the initial marking described above.

Fig. 4. Parts of a winning strategy for player 0 in G(G)c (a tree with gray nodes for
player 0), and the generated strategy for the system players in L(G).

Every edge (r, r′) in Tf corresponds to either a relation R[t.Z〉R′ or R[�〉R′.
Suppose now in the breadth-first traversal of Tf we reach a node r with label R

112 M. Gieseking and N. Würdemann

and associated cuts Kr. Further suppose there is an edge in Tf from r to a node r′

labeled with R′. If the edge (r, r′) in Tf corresponds to a relation R[�〉R′ in G ,
then the node r′ is associated to the same set of cuts Kr′ = Kr and nothing is
added to the strategy. If the edge (r, r′) in Tf corresponds to a relation R[t.Z〉R′

in G and R ∈ V0, then there is, for every cut κ ∈ Kr, a transition t.v corre-
sponding to t.Z that can be fired from κ (cf. Theorem 2). We add a transition
labeled with t.v to the strategy, with its preset in κ. Furthermore, we add places
corresponding to its postset to the strategy. The cut κ′ that results from firing
the new transition from κ is added to Kr′ . If the edge (r, r′) in Tf corresponds
to a relation R[t.Z〉R′ in G and R ∈ V1, then we proceed exactly as in the last
case, but with the crucial difference that instead of one transition t.v fireable
from a cut κ ∈ Kr, we consider all such transition instances and add them to
the strategy. In this step, the number of associated cuts can increase.

In Fig. 4, the strategy tree Tf (consisting of only one branch) in G(G)c and
the generated strategy σ in (the unfolding of) L(G) for the running example
G are depicted. The strategy σ was already informally described in Sect. 1 and
partly shown in Fig. 3. The initial canonical representation R0 is associated to the
cut representing the initial marking in the Petri game. The �-resolution does not
change the associated cuts. Firing d .Z2,1

1 corresponds to the three firings of d1,
d2, and d3 in the strategy. Thus, the third canonical representation is associated
to the three cuts {Sys1,Sys2,Sys3, Ij}, j = 1, 2, 3. The strategy Tf terminates
in the canonical representation at the bottom, which corresponds to the three
situations where all computers connected to the correct host.

5 Experimental Results

In this section we investigate the impact of using canonical representations for
solving the realizability problem of distributed systems modeled with high-level
Petri games with one environment player, an arbitrary number of system players,
a safety objective, and an underlying symmetric net.

A prototype [18] for generating the reduced state space of G(G) for such a
high-level Petri game G shows a state space reduction by up to three orders
of magnitude compared to G(L(G)) (cf. Fig. 1) for the considered benchmark
families [18]. For this paper we extended this prototype and implemented algo-
rithms to obtain the same state space reduction by using canonical representa-
tions in /G(G)c. Furthermore, we implemented a solving algorithm to exploit
the reduced state space for the realizability problem of high-level Petri games.
As a reference, we implemented an explicit approach which does not exploit any
symmetries of the system. We applied our algorithms on the benchmark fam-
ilies presented in [18] and added a benchmark family for the running example
introduced in this paper. An extract of the results for three of these benchmark
families are given in Table 1. The complete results are in the full version [19].

The benchmark family Client/Server (CS) corresponds to the running exam-
ple of the paper. With Document Workflow (DW) a cyclic document workflow
between clerks is modeled. In this benchmark family the symmetries of the sys-
tems are only one rotation per clerk. In Concurrent Machines (CM) a hostile

Canonical Representations for Solving High-Level Petri Games 113

Table 1. Comparison of the run times of the canonical (Canon.) and membership
(Memb.) approach solving the realizability problem (✓/✗) for the 3 benchmark families
CS, DW, CM with the number of states |V | and number of symmetries |ξ|. A gray
number of states |V| for the explicit reference approach indicates a timeout. Results are
obtained on an AMD RyzenTM 7 3700X CPU, 4.4 GHz, 64 GB RAM and a timeout
(TO) of 30 min. The run times are in seconds.

CS |V| |= |V | |ξ| Memb. Canon.

1 21 ✓ 21 1 .38 .36

2 639 ✓ 326 2 .63 .64

3 45042 ✓ 7738 6 5.20 6.05

4 7.225e6 ✓ 3.100e5 24 151.62 148.08

5 3.154e9 – – 120 TO TO

DW |V| |= |V | |ξ| Memb. Canon.

1 57 ✓ 57 1 .40 .39

2 457 ✓ 241 2 .67 .62

· · · · · · · · · · · ·
7 4.055e6 ✓ 5.793e5 7 100.67 75.24

8 2.097e7 ✓ 2.621e6 8 986.77 671.04

9 1.053e8 - - 9 TO TO

CM |V| |= |V | |ξ| Memb. Canon.

2/1 155 ✓ 79 2 .49 .52

2/2 2883 ✗ 760 4 1.07 1.08

2/3 58501 ✗ 5548 12 4.38 5.94

2/4 1.437e6 ✗ 33250 48 15.12 14.40

2/5 3.419e7 ✗ 1.701e5 240 296.05 185.81

2/6 8.376e8 – – 1440 TO TO

3/1 702 ✓ 147 6 .71 .58

3/2 45071 ✓ 4048 12 4.46 4.99

3/3 3.431e6 ✗ 91817 36 89.35 49.90

3/4 2.622e8 – – 144 TO TO

4/1 2917 ✓ 239 24 1.24 1.42

4/2 6.587e5 ✓ 16012 48 25.42 14.09

4/3 1.546e8 – – 144 TO TO

environment can destroy one of the machines processing the orders. Since each
machine can only process one order, a positive realizability result is only obtained
when the number of orders is smaller than the number of machines. In Table 1
we can see that for those benchmark families the extra effort of computing
the canonical representations (Canon.) is worthwhile for most instances com-
pared to the cost of checking the membership of a decision set in an equivalence
class (Memb.). This is not the case for all benchmark families.

In Fig. 5 we have plotted the instances of all benchmark families according
to their number of symmetries and states. The color of the marker shows the
percentaged in- or decrease in performance when using canonical representations
while solving high-level Petri games. Blue (unhatched) indicates a performance
gain when using the canonical approach. This shows that the benchmarks in
general benefit from the canonical approach for an increasing number of states
(the right blue (unhatched) area). However, the DWs benchmark (a simplified
version of DW) exhibits the opposite behavior. This is most likely explained by
the very simple structure, which favors a quick member check.

The algorithms are integrated in AdamSYNT3 [11], open source, and avail-
able online4. Additionally, we created an artifact with the current version run-
ning in a virtual machine for reproducing and checking all experimental data
with provided scripts5.

3 https://github.com/adamtool/adamsynt.
4 https://github.com/adamtool/high-level.
5 https://doi.org/10.6084/m9.figshare.13697845.

https://github.com/adamtool/adamsynt
https://github.com/adamtool/high-level
https://doi.org/10.6084/m9.figshare.13697845

114 M. Gieseking and N. Würdemann

Fig. 5. Comparing the percentage performance gain of the canonical and the mem-
bership approach with respect to the number of states and symmetries of the input
problem for the benchmark families Package Delivery (PD), Alarm System (AS), CM,
DW, DWs, CS. Labels are the parameters of the benchmark. A blue (unhatched) marker
indicates a performance increase when using canonical representations. (Color figure
online)

6 Related Work

For the synthesis of distributed systems other approaches are most prominently
the Pnueli/Rosner model [30] and Zielonka’s asynchronous automata [34]. The
synchronous setting of Pnueli/Rosner is in general undecidable [30], but some
interesting architectures exist that have a decision procedure with nonelemen-
tary complexity [15,26,32]. For asynchronous automata, the decidability of the
control problem is open in general, but again there are several interesting cases
which have a decision procedure with nonelementary complexity [16,28,29].

Petri games based on P/T Petri nets are introduced in [12,13]. Solving
unbounded Petri games is in general undecidable. However, for Petri games
with one environment player, a bounded number of system players, and a safety
objective the problem is exptime-complete. The same complexity result holds
for interchanged players [14]. High-level Petri games have been introduced in
[17]. In [18], such Petri games are solved while exploiting symmetries.

The symbolic Büchi game is inspired by the symbolic reachability graph
for high-level nets from [5], and the calculation of canonical representatives [4]
from [6]. There are several works on how to obtain symmetries of different sub-
classes of high-level Petri nets efficiently [4,6,9,27] and for efficiency improve-
ments for systems with different degrees of symmetrical behavior [1,2,22].

Canonical Representations for Solving High-Level Petri Games 115

7 Conclusions and Outlook

We presented a new construction for the synthesis of distributed systems modeled
by high-level Petri games with one environment player, an arbitrary number of
system players, and a safety objective. The main idea is the reduction to a
symbolic two-player Büchi game, in which the nodes are equivalence classes of
symmetric situations in the Petri game. This leads to a significant reduction
of the state space. The novelty of this construction is to obtain the reduction
by introducing canonical representations. To this end, a theoretically cheaper
construction of the Büchi game can be obtained depending on the input system.
Additionally, the representations now allow to skip the inflated generation of
an explicit Büchi game strategy and to directly generate a Petri game strategy
from the symbolic Büchi game strategy. Our implementation, applied on six
structurally different benchmark families, shows in general a performance gain
in favor of the canonical representatives for larger state spaces.

In future work, we plan to integrate the algorithms in AdamWEB [20], a
web interface6 for the synthesis of distributed systems, to allow for an easy
insight in the symbolic games and strategies. Furthermore, we want to continue
our investigation on the benefits of canonical representations, e.g., to directly
generate high-level representations of Petri game strategies that match the given
high-level Petri game.

References

1. Baarir, S., Haddad, S., Ilié, J.: Exploiting partial symmetries in well-formed
nets for the reachability and the linear time model checking problems. In: Pro-
ceedings of WODES 2004, pp. 219–224 (2004). https://doi.org/10.1016/S1474-
6670(17)30749-8

2. Bellettini, C., Capra, L.: A quotient graph for asymmetric distributed systems.
In: Proceedings of MASCOTS 2004, pp. 560–568 (2004). https://doi.org/10.1109/
MASCOT.2004.1348313

3. Bloem, R., Galler, S.J., Jobstmann, B., Piterman, N., Pnueli, A., Weiglhofer, M.:
Interactive presentation: Automatic hardware synthesis from specifications: a case
study. In: Proceedings of DATE 2007, pp. 1188–1193 (2007). https://dl.acm.org/
citation.cfm?id=1266622

4. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: On well-formed coloured
nets and their symbolic reachability graph. In: Jensen, K., Rozenberg, G. (eds.)
High-level Petri Nets: Theory and Application, pp. 373–396. Springer (1991).
https://doi.org/10.1007/978-3-642-84524-6 13

5. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: A symbolic reachability
graph for coloured Petri nets. Theor. Comput. Sci. 176(1–2), 39–65 (1997). https://
doi.org/10.1016/S0304-3975(96)00010--2

6. Chiola, G., Dutheillet, C., Franceschinis, G., Haddad, S.: Stochastic well-formed
colored nets and symmetric modeling applications. IEEE Trans. Comput. 42(11),
1343–1360 (1993)

6 http://adam.informatik.uni-oldenburg.de/.

https://doi.org/10.1016/S1474-6670(17)30749-8
https://doi.org/10.1016/S1474-6670(17)30749-8
https://doi.org/10.1109/MASCOT.2004.1348313
https://doi.org/10.1109/MASCOT.2004.1348313
https://dl.acm.org/citation.cfm?id=1266622
https://dl.acm.org/citation.cfm?id=1266622
https://doi.org/10.1007/978-3-642-84524-6_13
https://doi.org/10.1016/S0304-3975(96)00010--2
https://doi.org/10.1016/S0304-3975(96)00010--2
http://adam.informatik.uni-oldenburg.de/

116 M. Gieseking and N. Würdemann

7. Church, A.: Applications of recursive arithmetic to the problem of circuit synthesis.
In: Summaries of the Summer Institute of Symbolic Logic. vol. 1, pp. 3–50. Cornell
Univ., Ithaca, NY (1957)

8. Clarke, E.M., Emerson, E.A., Jha, S., Sistla, A.P.: Symmetry reductions in model
checking. In: Hu, A.J., Vardi, M.Y. (eds.) CAV 1998. LNCS, vol. 1427, pp. 147–158.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0028741

9. Dutheillet, C., Haddad, S.: Regular stochastic petri nets. In: Rozenberg, G. (ed.)
ICATPN 1989. LNCS, vol. 483, pp. 186–209. Springer, Heidelberg (1991). https://
doi.org/10.1007/3-540-53863-1 26

10. Esparza, J., Heljanko, K.: Unfoldings - A Partial-Order Approach to Model
Checking. EATCS Monographs in Theoretical Computer Science, Springer (2008).
https://doi.org/10.1007/978-3-540-77426-6

11. Finkbeiner, B., Gieseking, M., Olderog, E.-R.: Adam: causality-based synthesis of
distributed systems. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015. LNCS,
vol. 9206, pp. 433–439. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21690-4 25

12. Finkbeiner, B., Olderog, E.: Petri games: Synthesis of distributed systems with
causal memory. In: Proceedings of GandALF 2014, pp. 217–230. EPTCS161 (2014).
https://doi.org/10.4204/EPTCS.161.19

13. Finkbeiner, B., Olderog, E.: Petri games: synthesis of distributed systems with
causal memory. Inf. Comput. 253, 181–203 (2017). https://doi.org/10.1016/j.ic.
2016.07.006

14. Finkbeiner, B., Gölz, P.: Synthesis in distributed environments. In: Proceedings of
FSTTCS 2017, pp. 28:1–28:14 (2017). https://doi.org/10.4230/LIPIcs.FSTTCS.
2017.28

15. Finkbeiner, B., Schewe, S.: Uniform distributed synthesis. In: Proceedings of LICS
2005, pp. 321–330 (2005). https://doi.org/10.1109/LICS.2005.53

16. Genest, B., Gimbert, H., Muscholl, A., Walukiewicz, I.: Asynchronous games over
tree architectures. In: Fomin, F.V., Freivalds, R., Kwiatkowska, M., Peleg, D. (eds.)
ICALP 2013. LNCS, vol. 7966, pp. 275–286. Springer, Heidelberg (2013). https://
doi.org/10.1007/978-3-642-39212-2 26

17. Gieseking, M., Olderog, E.: High-level representation of benchmark families for
Petri games. CoRR abs/1904.05621 (2019). http://arxiv.org/abs/1904.05621

18. Gieseking, M., Olderog, E.-R., Würdemann, N.: Solving high-level Petri games.
Acta Inform. 57(3), 591–626 (2020). https://doi.org/10.1007/s00236-020-00368-5

19. Gieseking, M., Würdemann, N.: Canonical representations for direct generation of
strategies in high-level Petri games (full version). CoRR abs/2103.10207 (2021).
http://arxiv.org/abs/2103.10207

20. Gieseking, M., Hecking-Harbusch, J., Yanich, A.: A web interface for petri nets with
transits and petri games. TACAS 2021. LNCS, vol. 12652, pp. 381–388. Springer,
Cham (2021). https://doi.org/10.1007/978-3-030-72013-1 22

21. Grädel, E., Thomas, W., Wilke, T. (eds.): Automata Logics, and Infinite Games.
LNCS, vol. 2500. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
36387-4

22. Haddad, S., Ilié, J.M., Taghelit, M., Zouari, B.: Symbolic reachability graph and
partial symmetries. In: De Michelis, G., Diaz, M. (eds.) ICATPN 1995. LNCS,
vol. 935, pp. 238–257. Springer, Heidelberg (1995). https://doi.org/10.1007/3-540-
60029-9 43

https://doi.org/10.1007/BFb0028741
https://doi.org/10.1007/3-540-53863-1_26
https://doi.org/10.1007/3-540-53863-1_26
https://doi.org/10.1007/978-3-540-77426-6
https://doi.org/10.1007/978-3-319-21690-4_25
https://doi.org/10.1007/978-3-319-21690-4_25
https://doi.org/10.4204/EPTCS.161.19
https://doi.org/10.1016/j.ic.2016.07.006
https://doi.org/10.1016/j.ic.2016.07.006
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.28
https://doi.org/10.4230/LIPIcs.FSTTCS.2017.28
https://doi.org/10.1109/LICS.2005.53
https://doi.org/10.1007/978-3-642-39212-2_26
https://doi.org/10.1007/978-3-642-39212-2_26
http://arxiv.org/abs/1904.05621
https://doi.org/10.1007/s00236-020-00368-5
http://arxiv.org/abs/2103.10207
https://doi.org/10.1007/978-3-030-72013-1_22
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1007/3-540-60029-9_43
https://doi.org/10.1007/3-540-60029-9_43

Canonical Representations for Solving High-Level Petri Games 117

23. Hillah, L., Kordon, F., Petrucci, L., Trèves, N.: PN standardisation: a survey.
In: Najm, E., Pradat-Peyre, J.-F., Donzeau-Gouge, V.V. (eds.) FORTE 2006.
LNCS, vol. 4229, pp. 307–322. Springer, Heidelberg (2006). https://doi.org/10.
1007/11888116 23

24. Jensen, K.: Coloured Petri Nets - Basic Concepts, Analysis Methods and Practical
Use - Volume 1. EATCS Monographs on Theoretical Computer Science, Springer
(1992). https://doi.org/10.1007/978-3-662-06289-0

25. Kress-Gazit, H., Fainekos, G.E., Pappas, G.J.: Temporal-logic-based reactive mis-
sion and motion planning. IEEE Trans. Robot. 25(6), 1370–1381 (2009). https://
doi.org/10.1109/TRO.2009.2030225

26. Kupferman, O., Vardi, M.Y.: Synthesizing distributed systems. In: Proceedings of
LICS 2001, pp. 389–398 (2001). https://doi.org/10.1109/LICS.2001.932514

27. Lindqvist, M.: Parameterized reachability trees for predicate/transition nets. In:
Rozenberg, G. (ed.) ICATPN 1991. LNCS, vol. 674, pp. 301–324. Springer, Hei-
delberg (1993). https://doi.org/10.1007/3-540-56689-9 49

28. Madhusudan, P., Thiagarajan, P.S., Yang, S.: The MSO theory of connectedly
communicating processes. In: Sarukkai, S., Sen, S. (eds.) FSTTCS 2005. LNCS,
vol. 3821, pp. 201–212. Springer, Heidelberg (2005). https://doi.org/10.1007/
11590156 16

29. Muscholl, A., Walukiewicz, I.: Distributed synthesis for acyclic architectures.
In: Raman, V., Suresh, S.P. (eds.) Proceedings of FSTTCS 2014, pp. 639–651.
LIPIcs29 (2014). https://doi.org/10.4230/LIPIcs.FSTTCS.2014.639

30. Pnueli, A., Rosner, R.: Distributed reactive systems are hard to synthesize. In:
Proceedings of FOCS, pp. 746–757. IEEE Computer Society Press (1990). https://
doi.org/10.1109/FSCS.1990.89597

31. Reisig, W.: Petri Nets: An Introduction, EATCS Monographs on Theoretical Com-
puter Science, vol. 4. Springer (1985). https://doi.org/10.1007/978-3-642-69968-9

32. Rosner, R.: Modular Synthesis of Reactive Systems. Ph.D. thesis, Weizmann Insti-
tute of Science, Rehovot, Israel (1992)

33. Starke, P.H.: Reachability analysis of Petri nets using symmetries. Syst. Anal.
Model. Simul. 8(4–5), 293–303 (1991)

34. Zielonka, W.: Asynchronous automata. In: Diekert, V., Rozenberg, G. (eds.) The
Book of Traces, pp. 205–247. World Scientific (1995). https://doi.org/10.1142/
9789814261456 0007

https://doi.org/10.1007/11888116_23
https://doi.org/10.1007/11888116_23
https://doi.org/10.1007/978-3-662-06289-0
https://doi.org/10.1109/TRO.2009.2030225
https://doi.org/10.1109/TRO.2009.2030225
https://doi.org/10.1109/LICS.2001.932514
https://doi.org/10.1007/3-540-56689-9_49
https://doi.org/10.1007/11590156_16
https://doi.org/10.1007/11590156_16
https://doi.org/10.4230/LIPIcs.FSTTCS.2014.639
https://doi.org/10.1109/FSCS.1990.89597
https://doi.org/10.1109/FSCS.1990.89597
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1142/9789814261456_0007
https://doi.org/10.1142/9789814261456_0007

Automatic Synthesis of Transiently
Correct Network Updates

via Petri Games

Martin Didriksen, Peter G. Jensen, Jonathan F. Jønler, Andrei-Ioan Katona,
Sangey D.L. Lama, Frederik B. Lottrup, Shahab Shajarat, and Jǐŕı Srba(B)

Department of Computer Science, Aalborg University, Aalborg, Denmark
srba@cs.aau.dk

Abstract. As software-defined networking (SDN) is growing increas-
ingly common within the networking industry, the lack of accessible
and reliable automated methods for updating network configurations
becomes more apparent. Any computer network is a complex distributed
system and changes to its configuration may result in policy violations
during the transient phase when the individual routers update their
forwarding tables. We present an approach for automatic synthesis of
update sequences that ensures correct network functionality throughout
the entire update phase. Our approach is based on a novel translation of
the update synthesis problem into a Petri game and it is implemented
on top of the open-source model checker TAPAAL. On a large bench-
mark of synthetic and real-world network topologies, we document the
efficiency of our approach and compare its performance with state-of-
the-art tool NetSynth. Our experiments show that for several networks
with up to thousands of nodes, we are able to outperform NetSynth’s
update schedule generation.

1 Introduction

Modern computer networks are met with increasing demands on scalability, secu-
rity, reliability and performance. This stipulates the need of frequently updating
the network configurations in order to adapt to changes in flow demands, link fail-
ures and other disturbances. The complexity of current networks shows the limi-
tation of the traditional manual network maintenance as the risks of introducing
faulty behaviour and security leaks become too high. The software defined net-
working (SDN) paradigm [2] is a recent methodology that aims to combat the
increased complexity of network operation by centralizing the network control and
hence allowing for fully automatic updates of network configurations. This enables
the option of dynamically updating networks with increased frequency in order to
optimize their performance, but it also requires a reliable way to govern and sched-
ule updates, so that disruption of service due to forwarding loops or blackholes and
security leaks when e.g. a critical firewall is bypassed, can be avoided.

Even though the initial and final configurations are correct and satisfy a
number of desirable properties like reachability and waypointing (before a packet
c© Springer Nature Switzerland AG 2021
D. Buchs and J. Carmona (Eds.): PETRI NETS 2021, LNCS 12734, pp. 118–137, 2021.
https://doi.org/10.1007/978-3-030-76983-3_7

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76983-3_7&domain=pdf
https://doi.org/10.1007/978-3-030-76983-3_7

Automatic Synthesis of Transiently Correct Network 119

leaves the network a certain router, e.g. a firewall, must be visited), there is no
guarantee that any transient configuration, where individual routers are updated
one by one, preserves the required policies. The update synthesis problem [10]
asks, in which order to update the routers in the network so that at any moment
there is never any policy violation.

As our first contribution, we propose to translate the update synthesis prob-
lem into a two-player Petri game between the controller and the environment.
The objective of the controller is to reach the updated network routing from the
initial one by sequentially scheduling the updates of the individual switches.
The environment can at any time interrupt the construction of the update
sequence and initialize a check on whether the current partially constructed
update sequence satisfies the given security policies. If the policies are satisfied,
the controller is the winner, otherwise the environment wins. A winning strategy
for the controller then defines a transiently correct update sequence.

As a second contribution, we implement the Petri game translation on top
of the open-source model checker TAPAAL [6,12] and update its game engine
with efficient state-space exploration strategies for solving the game synthesis
problem. Our fully automated tool chain accepts the descriptions of network
topologies and the initial and final routings as a JSON file, together with policy
properties that include loop-freedom, reachability and waypointing. The tool
then outputs that either there does not exist any transiently correct update
sequence or it synthesizes such a sequence.

Finally, we conduct a number of experiments on both synthetic and real-world
benchmarks and compare the performance of our approach with state-of-the-art
tool NetSynth [21] that relies on counterexample-guided search and incremen-
tal model checking techniques, and allows for the use of different model checkers
including NuSMV [5] as its backend engine. The results confirm that on two, out
of the three scalable synthetic networks, we obtain several orders of magnitude
speed up. In one case where the synthetic network shares as many possible links
in both the initial and final routing, our method is performing slower. Experi-
ments on the real-world Internet topologies, where the routings are constructed
using the common method based on shortest paths (see e.g. the Equal-Cost-
MultiPath (ECMP) [11] or the Open Shortest Path First (OSPF) [22] rout-
ing protocols), demonstrate that both tools are able to solve smaller instances
of the update synthesis problem below once second, however, for the larger
instances our method wins by a clear margin. As an additional contribution
to the research community, we also provide a publicly available reproducibility
package [7] including both the code as well as all experimental data.

Related Work. The work on updates in SDN is heavily influenced by the work by
Reitblatt et al. [24] that defines the per-packet and per-flow consistency. In per-
packet consistency, each packet traverses the network within at most one stable
configuration, whereas per-flow guarantees that all packets in a flow traverse the
network in the same configuration. The per-packet consistency, which is also the
main focus of our work, inspired further research in this area [3,17,20]. In par-
ticular, Mahajan and Wattenhofer [20] suggest an approach that eliminates the

120 M. Didriksen et al.

use of packet header rewriting and the expensive two-phase update. They devise
a solution that preserves loop-freedom with weak consistency by examining the
dependencies of switches in a network and conclude that half of the updates with
around 100 switches only depended on zero or a single critical switch update and
in 90% of the cases, updates are only dependent on at most three switches, in
contrast to Reitblatt et al. [24] who rely on updating all switches. Their work has
since then been refined and extended to support more properties [1,18], including
waypointing [19]. However, it is known that the update synthesis problem with
waypointing and loop-freedom becomes NP-complete [18] (for a detailed com-
plexity overview see e.g. [10]). More recently, Nate Foster et al. [21] introduce a
specialized incremental model checker NetSynth that automatically synthesises
correct update sequences from LTL specifications. In [21] the authors argue that
their tool is outperforming other existing approaches on a variety of network
topologies for ensuring reachability and waypointing policies. NetSynth essen-
tially performs a (heuristic) search through all possible update sequences and
relies on the assumption that the routings are loop-free. Our approach can verify
also the presence of loops and it uses the general concept of two-player games
instead of the explicit enumeration of all possible update sequences. Another
approach that allows to present updates in concurrent steps is given in [25].

A recent work by Christensen et al. [4] introduces the tool Latte that models
the problem as a timed-arc colored Petri net and its main focus is on reducing the
delays between the updates of the individual routers. While it extends the analysis
with timing aspects, their work relies on obtaining a correct update sequence from
third-party tools (NetSynth in their case) and as such it does not solve the synthe-
sis problem and focuses purely on the timing optimization aspects and the discov-
ery of possible concurrent updates. Another line of work by Finkbeiner et al. [8,9]
focuses on verifying concurrent network updates against Flow-LTL specifications,
using Petri nets extended with transits as the underlying modelling formalism and
circuit model checking as the backend engine. The experiments show that their
tool can verify in minutes networks up to a hundred of routers, however, simi-
larly as Latte [4], they can only verify but not synthesise update sequences. To
the best of our knowledge, our approach is the first one that employs the game
semantics of Petri nets and allows hence for fully automate update synthesis as
well as the reuse of generic game model checkers like TAPAAL. As such, the gen-
erated update sequences can be then further optimized, e.g. for the timing and
concurrent aspects, by the above mentioned approaches.

2 Update Synthesis

We shall now formalize the notion of a network and routing in a network, define
some essential routing properties and formulate the update synthesis problem.

Definition 1 (Network). A network is a directed graph G = (V,E) where V
is a finite set of nodes (switches), and E ⊆ V × V is a set of edges (links) such
that (v, v) /∈ E for all v ∈ V .

Automatic Synthesis of Transiently Correct Network 121

v1 v2

v3 v4

R(v1) = v2

R(v2) = v3

R(v3) = v4

R(v4) is undefined

Fig. 1. A network with routing R depicted by the red dashed arrows (the black arrows
represent existing links that are not used in R) (Color figure online)

A network defines the set of links that connect the switches. For a given
packet type (given by its header and usually determined by its destination),
each switch contains a forwarding table defining the next hop. A switch contains
this information for all different packet types and we project on a certain type in
order to define its routing in a network. For the rest of this section, let G = (V,E)
be a fixed network.

Definition 2 (Routing). A routing in G is a partial function R : V ↪→ V
such that (u,R(u)) ∈ E for all u ∈ V where R(u) is defined.

Consider the network in Fig. 1 with a routing R, indicated by the dashed
edges. The routing naturally defines a path, which is a (unique) sequence of
next hops. A path can be either infinite or finite. Any infinite path, or finite
path that ends in a node with undefined next hop, is called a maximal path.

Definition 3 (Path). A path π under a routing R is a sequence of nodes
v1v2...vn... ∈ V ∗ ∪V ω such that R(vi) = vi+1 for all i. A maximal path is either
an infinite path or a finite path that ends in a node v where R(v) is undefined.

Our example in Fig. 1 contains the maximal path v1v2v3v4. This path demon-
strates reachability between v1 and v4 and the routing does not contain any
infinite path. Moreover, the path starting in v1 contains the switch v2 before
v4 is reached. A switch with this property is called a waypoint. We shall now
formally define these basic properties of a routing function.

Definition 4 (Routing Properties). Let u, v and w be three different nodes
in a network. A routing R satisfies

– the reachability property reach(u, v) if there is a path π = v1v2...vn under R
such that v1 = u and vn = v,

– the waypointing property wp(u, v, w) if for every path π = v1v2...vn under R
where v1 = u and vn = v there exists an i, 1 < i < n, such that vi = w, and

– the loop-freedom property loopfree(u) if the maximal path under R starting
in u is finite.

We shall note that (i) the waypointing property wp(u, v, w) is trivially satis-
fied whenever there is no path under R from u to v, e.g. in our running example
the property wp(v3, v1, v4) holds and (ii) any infinite path under a given routing
must form a loop after some finite initial prefix (as the number of nodes is finite).

122 M. Didriksen et al.

v1 v2

v3 v4

(a) Routing R

v1 v2

v3 v4

(b) R1 = R(v2,v4)

v1 v2

v3 v4

(c) R2 = R
(v3,v2)
1

v1 v2

v3 v4

(d) R3 = R
(v1,v3)
2

Fig. 2. A correct update sequence for reach(v1, v4) and wp(v1, v4, v2)

2.1 Network Updates

In order to be able to change the given routing (and therefore to influence the
routing path) we introduce the notion of an update. An update can either change
the forwarding function of a given node to an alternative next hop, or it can
undefine the routing function (remove the entry from the forwarding table).

Definition 5 (Update). Given a routing R, an update is an element e ∈
E ∪ (V × {undefined}). For a given update e = (u, u′), the updated routing Re

is given by

R(u,u′)(v) =
{

R(v) if v �= u (1a)
u′ if v = u. (1b)

In order to update one routing into another, a number of updates must be
performed in a sequence (a so-called update sequence), executing the updates
from left to right.

Definition 6 (Update Sequence). Given a routing R and an update
sequence ω = e1e2...en ∈ (E ∪ (V × {undefined}))∗, we inductively define the
final routing Rω by (i) Rε = R and (ii) Reω = (Re)ω for any e ∈ E and any
ω ∈ (E ∪ V × {undefined})∗.

Finally, we must guarantee that an update sequence transiently satisfies a
given set of properties P, containing e.g. reach(u, v), wp(u, v, w) and loopfree(u).

Definition 7 (Correct Update Sequence). We say that ω is a correct
update sequence for R with respect to a set of properties P if for every pre-
fix ω′ of ω the routing Rω′

satisfies every property from P.

Figure 2 shows the steps of a correct update sequence ω = (v2, v4) ◦ (v3, v2) ◦
(v1, v3) on our running example, for P = {reach(v1, v4), wp(v1, v4, v2)}. At any
moment during the update sequence, the node v4 is reachable from v1 and at
the same time the node v2 (in grey) is always present on the path from v1 to v4.

The update synthesis problem is, for a given initial routing R and a final
routing R′, to find an update sequence that transforms R into R′ while preserving
a given set of path properties P. Moreover, we allow at most one update of every
node in the network. As we are modelling one fixed flow in the network, we
assume that the path properties always start with the same fixed node u ∈ V .

Automatic Synthesis of Transiently Correct Network 123

v1 v3

v2

v4

v5

(a) Initial routing

v1 v3

v2

v4

v5

(b) Final routing

Fig. 3. A network with no solution preserving reach(v1 , v5) and wp(v1 , v5 , v3)

Definition 8 (Update Synthesis Problem). The update synthesis problem
is a tuple U = (G,R,R′,Pu) where G is a network, R is an initial routing, R′

is a final routing, and Pu ⊆ {wp(u, v ,w), reach(u, v), loopfree(u) | v, w ∈ V } for
some fixed u ∈ V is the set of path properties. The question is whether there
exists a correct update sequence ω ∈ (E ∪ (V × {undefined}))∗ with respect to
Pu such that Rω = R′ and where every v ∈ V appears in ω at most once as a
source node. We then say that ω is a solution to the update synthesis problem.

The update synthesis problem in NP-complete [18]. Figure 2 shows a solu-
tion to the update synthesis problem transforming the routing R into R3 while
preserving reach(v1, v4) and wp(v1, v4, v2). We notice that this is in fact the only
solution. If we in the routing R first update the router v1, we break the way-
pointing property and if we instead decide to update first v3, we create a loop
and invalidate the reachability property. Similarly, in the routing R1 the only
choice is to first update v3, as updating v1 in R1 will avoid the waypoint. Lastly,
in Fig. 3 we give an example of an update synthesis problem that does not have
a solution for preserving the properties reach(v1 , v5) and wp(v1 , v5 , v3). If v3 is
updated before v2, a loop is created and reach(v1 , v5) is violated and if v2 is
updated before v3, the property wp(v1 , v5 , v3) is violated.

3 Petri Games

A Petri net (see e.g. [23]) is a mathematical model of distributed systems that
allows us to model concurrent and nondeterministic behaviour. A Petri game
extends P/T nets by introducing the controllable and environmental transitions.
This kind of games were studied in [13] also including the timing aspects.

Let N
0 be the set of natural numbers including 0 and let N

∞ be the set
of natural numbers extended with the symbol ∞ that is larger than any other
natural number.

Definition 9 (Petri Game). A Petri game is a 4-tuple N = (P, T,W, I)
where P is a finite set of places, T is a finite set of transitions partitioned into
the controllable Tctrl and environmental Tenv ones s.t. T = Tctrl 	 Tenv and
P ∩ T = ∅, the function W : (P × T) ∪ (T × P) → N

0 assigns weights to normal
arcs, and the function I : P × T → N

∞ assigns weights to inhibitor arcs.

124 M. Didriksen et al.

•

Src Router

R1 disabled

Dst

•

Env

R2 disabled

Inject

Disable R1

Route 2

Route 1

Disable R2

(a) A Petri game

M σ(M)
Env + Src Inject

Env + Router Route 1

R1 Disabled + Src Inject

R1 Disabled + Router Route 2

R2 Disabled + Src Inject

R2 Disabled + Router Route 1

(b) A control strategy

Env + Src

R1 disabled + Src Env + Router R2 disabled + Src

R1 disabled
+ Router

Env + Dst

R2 disabled
+ Router

R1 disabled
+ Router

R2 disabled
+ Router

R1 disabled
+ Dst

R2 disabled
+ Dst

R1 disabled
+ Dst

R2 disabled
+ Dst

R1 disabled
+ Dst

R2 disabled
+ Dst

R
o
u
te

1

R
o
u
te

1

R
o
u
te

2

D
is
a
b
le

R
1

D
is
a
b
le

R
2

In
je
c
t

Disa
ble

R1
Disable R2

R
o
u
te

2

R
o
u
te

1
or

R
o
u
te

2

In
je
c
t

In
je
c
t

D
is
a
b
le

R
1

D
isa

b
le

R
2

(c) All runs under strategy σ, invariantly
satisfying ¬deadlock ∨ Dst = 1

Fig. 4. A Petri game example

Let N = (P, T,W, I) be a fixed Petri game. Places in a Petri game are
depicted as circles, controllable transitions by filled rectangles and environmental
by empty rectangles and whenever W (p, t) > 0 or W (t, p) > 0 we draw an arc
between p and t, resp. t and p, labeled by the corresponding weight (no label
stands for the weight 1, and if I(p, t) < ∞ we draw an inhibitor arc depicted
circle-head between p and t and annotated by the weight. An example of Petri
game is given in Fig. 4a and it models a scenario where a packet must travel
through a network from Src to Dst through one of two possible routes Route 1
or Route 2 . However, the environment can disable one of the two routes, and
depending on which it disables we must choose the remaining route.

A marking M on N is a total function M : P → N
0 that marks each place

with 0 or more tokens. Let M(N) bet the set of all markings on N . We can
represent a marking as a formal sum k0p0 + k1p1 + · · · + knpn where ki denotes
the number of tokens present in pi. A marking is graphically denoted by dots
in places. A transition t ∈ T is enabled in a marking M if W (p, t) ≤ M(p)
and I(p, t) > M(p) for all p ∈ P . If a transition t ∈ T is enabled in a marking
M , it can fire resulting in the marking M ′, written M

t−→ M ′, where M ′(p) =
M(p) + W (p, t) − W (t, p) for all p ∈ P .

The controller’s choice of which controllable transition to select in each mark-
ing, is given by the concept of a (memoryless) strategy.

Definition 10 (Strategy). Let N = (P, T,W, I) be a Petri game. A strategy
σ : M(N) ↪→ Tctrl is a partial function such that if σ(M) = t then M

t−→ M ′ for
some M ′ and σ(M) is undefined iff there is no t ∈ Tctrl enabled in M .

Automatic Synthesis of Transiently Correct Network 125

An example of a strategy for the game net from Fig. 4a is given in Fig. 4b.
A strategy determines the set of runs such that from every marking either any
environmental transition or the transition proposed by the strategy can be exe-
cuted. A set of all runs in our running example, organized into a tree where run
prefixes are shared, is given in Fig. 4c. Controllable transitions are depicted with
solid lines and environmental with dashed lines.

Definition 11 (Run). Let N = (P, T,W, I) be a Petri game with an ini-
tial marking M0 and a strategy σ. The set of finite and infinite runs under
σ is given by runsσ(M0) = {M0M1M2... | for all i holds Mi

t−→ Mi+1 s.t. t ∈
Tenv or Mi

σ(Mi)−−−−→ Mi+1 if σ(Mi) is defined}.
The goal of the controller in the game is to invariantly preserve a given safety

objective, expressed as a marking predicate ϕ given by a Boolean combination
of expressions of the form e �� e or deadlock where

e ::= p |n | e + e | e − e | e ∗ e

such that p ∈ P , ��∈ {≤, <, =, �=, ≥, >} and n ∈ N0. We write M |= deadlock
if there are no enabled transitions in M and the semantics of the Boolean con-
nectives as well as of the expressions e �� e is given in a natural way, assuming
that p stands for |M(p)|. If a marking M satisfies a predicate ϕ, we write M |= ϕ.

Definition 12 (Winning Control Strategy). Let N = (P, T,W, I) be a
Petri game with the initial marking M0 and let ϕ be a marking predicate. We
write M0 |= control :AG ϕ if there exists a strategy σ such that for every run
M0M1M2... ∈ runsσ(M0) we have Mi |= ϕ for all relevant i. If such a strategy
exists, we say that σ is a winning strategy.

In Fig. 4a we have Env + Src |= control :AG (¬deadlock ∨ Dst = 1) as
the strategy defined in Fig. 4b is a winning strategy for the safety objective
¬deadlock ∨ Dst = 1 . This can be verified by exploring the possible runs under
the strategy given in Fig. 4c and noticing that all deadlocked markings have a
token in the place Dst . In general, for any bounded Petri game the existence of
a winning control strategy is decidable (see e.g. [15]).

4 From Update Synthesis Problem to Petri Games

We shall now present a reduction from the update synthesis problem into a
Petri game. The reduction idea is that the controller is allowed to step-wise
generate any possible sequence of updates and a given control strategy fixes a
concrete update sequence. The environment can at any moment decide to stop
the generation process and inject a packet into the network in order to verify
whether the current prefix of the update sequence satisfies the given properties.
If this is not the case, the environment wins, otherwise the controller has a
winning strategy that corresponds to a correct update sequence.

The reduction, for a given update synthesis problem (G,R,R′,Pu), is split
into the creation of the following components:

126 M. Didriksen et al.

pu

pv

pv′

t(u,v)

if R(u) = v

t(u,v′)

if R′(u) = v′

(a) Network topology

•

Controller

•

pinit
u pfinal

u

pupdate
u

t(u,v)

if R(u) = v

t(u,v′)

if R′(u) = v′

(b) Switch for each u where R(u) �= R′(u)

pvisited
u pvisited

v
t(u,v)

2

(c) Arcs connected to t(u,v)

•

Controller pu

pvisited
uInject Packet

(d) Packet injection for properties Pu

Fig. 5. Translation components

1. Network topology component based on G.
2. Switch components based on R and R′.
3. Visited places to track how many times a node is visited.
4. Packet injection component to start the verification phase.
5. Satefy objective based on Pu.

For clarity reasons, we decompose our Petri net construction into separate
components. If the same place or transition name appears in multiple compo-
nents, we refer to them as shared and indicate this by surrounding them with a
dashed line. We assume that the shared places and transitions are merged.

4.1 Translation to Petri Games

Let U = (G,R,R′,Pu) be an update synthesis problem such that G = (V,E)
is the underlying network. We create a Petri game N(U) = (P, T, I,W) where
T = Tctrl 	 Tenv by defining the different components mentioned above.

1. Network topology components. For all u ∈ V where R(u) or R′(u) is defined
create the place pu and

– If R(u) = v we create a shared transition t(u,v) ∈ Tctrl and a place pv.
– If R′(u) = v′ we create a shared transition t(u,v′) ∈ Tctrl and a place pv′ .

The created places and transitions are then connected by normal arcs as
illustrated in Fig. 5a.

Automatic Synthesis of Transiently Correct Network 127

2. Switch components. For every u ∈ V where R(u) �= R′(u), we create a switch
component with a controllable transition pupdateu ∈ Tctrl connected to a glob-
ally shared place Controller and two places pinit

u (initially marked) and pfinal
u

as in Fig. 5b. Moreover,
– if R(u) = v, we add the arcs pinit

u to t(u,v) and t(u,v) to pinit
u , and

– if R′(u) = v′, we add the arcs pfinal
u to t(u,v′) and t(u,v′) to pfinal

u .
3. Visited places. For each place pu that was already created, we create a dual

place pvisited
u as illustrated in Fig. 5c where

– for all v ∈ V such that there exists a u ∈ V where R(u) = v or R′(u) = v
we add an arc from t(u,v) to pvisited

v , and
– for all u ∈ V such that R(u) = v or R′(u) = v we add an inhibitor arc

with weight of 2 from pvisited
u to tu,v.

4. Packet injection component. Here we add (the only) environmental transi-
tion Inject Packet ∈ Tenv that connects, as depicted in Fig. 5d, the place
Controller (initially marked with a token) to the places pu and pvisited

u where
u is the initial node fixed in the set of properties Pu.

5. Verification queries. For the given set of properties Pu = {P1, P2, . . . , Pk} we
construct the safety objective control : AG ϕP1 ∧ ϕP2 . . . ∧ ϕPk

where:
– ϕloopfree(u) ≡ ∧

u∈V pvisited
u < 2

– ϕreach(u,v) ≡ ¬deadlock ∨ pvisited
v ≥ 1

– ϕwp(u,v ,w) ≡ pvisited
w ≥ 1 ∨ pvisited

v = 0

The translation is illustrated by a small example in Fig. 6. For the network
in Fig. 6a, we want to update the initial routing via v1, v2 and v4 to the final
routing v1, v3 and v4, while preserving the reachability between v1 and v4. The
translation of the switch components is given in Fig. 6b and the translation
of the renaming components in Fig. 6c, where the place Controller as well as
the transitions t(1,2), t(1,3), t(2,4) and t(3,4) are shared between the two figures.
We note that since R(v4) = R′(v4) = undefined , we do not create a switch
component for v4.

Finally, we notice the once the environmental Inject Packet transition fires,
a token is removed from the place Controller and it is no longer possible to
change the current transient routing. The construction guarantees that token
injected to p1 now follows exactly the path corresponding to the current routing
and every time a place receives a token, the corresponding visited place also
gets a token. Should there be a loop, the first marking where one of the visited
places obtains a second token deadlocks due to the introduction of the inhibitor
arcs. The constructed Petri game is so guaranteed to be bounded. The property
we wish to preserve is reach(v1 , v4) and it translates to the safety objective
¬deadlock∨pvisited

4 ≥ 1. This guarantees that during the execution of the routing
path we do not deadlock (which can be caused either by a blackhole or a loop)
before the target place p4 is reached.

128 M. Didriksen et al.

v1

v2

v3

v4

P = {reach(v1, v4)}

(a) Initial routing in solid
lines, final in dashed lines

•

Controller

•
pinit
1

pfinal
1

•
pinit
2

pfinal
2

•
pinit
3

pfinal
3

t(1,2)

pupdate
1

t(1,3) t(2,4)

pupdate
2 pupdate

3

t(3,4)

(b) Switch components

•

Controller

p1

p2

p3

p4

control : AG ¬deadlock ∨ pvisited4 ≥ 1

pvisited
2

pvisited
3

pvisited
1

pvisited
4Inject Packet

t(1,2) t(2,4)

t(1,3) t(3,4)

2

2

2

2

(c) Topology, visited places and packet injection components

Fig. 6. Translation example

4.2 Translation Correctness

Let U = (G,R,R′,Pu) be an update synthesis problem and let N(U) be the
constructed Petri game with the initial marking M0 and the safety objective ϕ.
The main correctness theorem is stated as follows.

Theorem 1. The problem U has a solution iff M0 |= control : AGϕ in N(U).

We shall first observe that all runs in the constructed Petri game are finite.

Lemma 1. The net N(U) contains no infinite run from the initial marking M0.

Proof. Assume by contradiction that there is an infinite run from M0. Clearly,
the firing of each pupdateu can happen at most once for each u, so necessarily
the transition Inject Packet must fire during such a sequence, initializing the

Automatic Synthesis of Transiently Correct Network 129

execution in the topology component. There must be now a transition t(u,v)

that fires at least twice in the infinite run. Each time t(u,v) fires, a new token is
deposited into pvisitedv and hence the place contains two tokens after the second
time t(u,v) is fired. However, all outgoing transitions from the place pv (containing
a token after t(u,v) is fired) are disabled due to the inhibitor arcs of weight 2
from pvisitedv . Hence the net deadlocks and this contradicts the existence of the
infinite run. ��

Now we prove Theorem 1 by establishing each direction of the claim.

Lemma 2. If ω is a correct update sequence for U then in N(U) there is a
winning control strategy σ for the formula control : AG ϕ.

Proof. Let ω = e1e2...en be a correct update sequence such that ei = (ui, u
′
i)

where ui ∈ V and u′
i ∈ V ∪{undefined}. We shall now define a winning strategy

σ for the controller, given the initial marking M0, as follows: σ(M0) = pupdate
u1

and we let M0

pupdate
u1−−−−−→ M1; we continue to define σ(Mi−1) = pupdate

ui
for all i,

1 < i ≤ n, where we let Mi−1

pupdate
ui−−−−−→ Mi. For all other markings M , we let

σ(M) = M ′ for an arbitrary M ′ such that M
M−→
t

′
and t ∈ Tctrl , if such marking

M ′ exists; otherwise is σ(M) undefined. In other words, the controller fires the
controllable pupdate

ui
transitions in the order specified in the update sequence ω.

We also notice that once the Inject Packet transition is fired by the environment,
there is in any reachable marking at most one enabled controllable transition,
exactly simulating the path under the currently generated sequence of updates.
As stated in Lemma 1, this path is finite as the net deadlocks as soon as the
same node is visited the second time.

Now we argue that the strategy σ is a winning control strategy by showing
that every marking M reachable under the strategy σ satisfies ϕ. As ϕ is a
conjunction of marking predicates of three different types (depending on the
properties in Pu), we discuss the three cases.

– ϕloopfree(u) ≡ ∧
u∈V pvisited

u < 2. Before the environment fires Inject Packet ,
no token can be placed in any pvisited

u and the invariant is satisfied. If
Inject Packet is fired, because ω is a correct update sequence it follows by
Definition 7 that the currently generated prefix of ω yields a loop-free rout-
ing and therefore any reachable marking satisfies pvisited

u < 2.
– ϕreach(u,v) ≡ ¬deadlock ∨ pvisited

v ≥ 1. Before firing Inject Packet , the net
cannot deadlock as Inject Packet is still enabled and hence the property holds.
Once Inject Packet is fired, due to our assumption that the currently gener-
ated prefix of ω is correct and the corresponding routing hence eventually
reaches the node v, and because the Petri net faithfully mimics the routing
path, we know that the Petri net execution eventually marks the place pvisited

v

and cannot deadlock before this: there cannot be any blackhole as this contra-
dicts the reachability of v and there cannot be any node visited twice either
before reaching v, as the path is deterministic and it will imply the existence

130 M. Didriksen et al.

of a loop and contradict the reachability of v. Hence ¬deadlock ∨ pvisited
v ≥ 1

invariantly holds.
– ϕwp(u,v ,w) ≡ pvisited

w ≥ 1∨pvisited
v = 0. Before firing Inject Packet the invari-

ant clearly holds as none of the places pvisited
u can be marked for all nodes

u, including v. After Inject Packet is fired, as we assume that any prefix of ω
corresponds to a correct routing, meaning that the node v cannot be marked
before the node w. Hence the invariant holds also in this case. ��

Lemma 3. If σ is a winning control strategy in N(U) for the formula control :
AG ϕ then there exists a correct update sequence ω solving U.

Proof. Assume that σ is a winning strategy for the formula control : AG ϕ.
Given the initial marking M0, the strategy σ generates the sequence of markings

M0,M1, . . . ,Mn such that σ(Mi−1) = pupdate
ui

and Mi−1

pupdate
ui−−−−−→ Mi for all i,

1 ≤ i ≤ n. This sequence naturally defines the update sequence ω = e1e2...en

where ei = (ui, R
′(ui)) for all i, 1 ≤ i ≤ n.

We know that once Inject Packet fires at a marking Mi, there exists a unique
path in the Petri net, following exactly the routing defined by update sequence
e1e2 . . . ei. As σ is a winning control strategy, we know that ϕ holds in every
marking on such a path. We shall argue by case analysis that the routing after
applying the update sequence e1e2 . . . ei satisfies every path property P ∈ Pu.

– P ≡ loopfree(u). Then the path in the Petri net satisfies the marking property
ϕloopfree(u) ≡ ∧

u∈V pvisited
u < 2 which by the net construction implies that

the path must be finite.
– P ≡ reach(u, v). Then the path in the Petri net satisfies ϕreach(u,v) ≡

¬deadlock ∨ pvisited
v ≥ 1. This implies that the net cannot deadlock before

marking the place v, which gives that v must be necessarily reached as there
is no infinite run due to Lemma 1. The property P hence holds.

– P ≡ wp(u, v ,w). Then every marking in the path satisfies ϕwp(u,v ,w) ≡
pvisited

w ≥ 1∨pvisited
v = 0, exactly formulating the requirement that pv cannot

be marked before pw gets marked, again implying the property P . ��

4.3 Optimization for Reachability and Waypointing

It is a natural requirement that every transient routing in an update sequence
should preserve at least the reachability between the source and the target node.
We may also assume that once the target node is reached, any further routing
from the target becomes undefined as the packet is considered delivered. In this
case, the preservation of reachability also implies loop freedom. Finally, we may
also allow to use multiple waypointing properties for different waypoints, as
long as they are between the source and the destination that are connected in
every transient routing. Formally, we define a set of reachability and waypointing
properties for a given source u ∈ V and target v ∈ V as

P(u,v) = {reach(u, v)} ∪ {wp(u, v, w) | w ∈ W}

Automatic Synthesis of Transiently Correct Network 131

where W ⊆ V is a given set of waypoints. For this restricted set of path prop-
erties, we can notice that the construction of the Petri game solving the update
synthesis problem can be optimized as follows.

Let U = (G,R,R′,P(u,v)) be an update synthesis problem with the set of
reachability and waypointing properties P(u,v) such that G = (V,E) is the under-
lying network. We partition all relevant switches u ∈ V where R(u) �= R′(u) into
three categories:

– V init = {u ∈ V | R(u) �= R′(u), R(u) is undefined },
– V final = {u ∈ V | R(u) �= R′(u), R′(u) is undefined }, and
– V both = {u ∈ V | R(u) �= R′(u), both R(u) and R′(u) are defined }.

We shall now observe that if there is a correct update sequence transforming
the routing R into R′ while preserving P(u,v) then there is also one where all
switches from V init are placed (in arbitrary order) at the beginning of the update
sequence and all switches from V final can be (again in arbitrary order) updated
at the very end of the update sequence.

Lemma 4. Let ω be a correct update sequence for the update synthesis prob-
lem U = (G,R,R′,P(u,v)) with reachability and waypointing property set P(u,v).
Let ω′ be a subsequence of ω containing only updates of the form (u, u′) where
u ∈ V both . Let ωinit = (v1, R′(v1)) ◦ . . . ◦ (vk, R′(vk)) be a sequence of updates
of all nodes from the set V init = {v1, . . . , vk}. Let ωfinal = (u1, undefined) ◦
. . . ◦ (u�, undefined) be a sequence of updates of all nodes from the set V final =
{u1, . . . , u�}. Then ωinit ◦ ω′ ◦ ωfinal is also a correct update sequence.

Proof. Let ω be a correct update sequence such that ω = ω1 ◦ (x, x′) ◦ ω2 where
either (i) x ∈ V init meaning that R(x) is undefined, or (ii) x ∈ V final meaning
that R′(x) is undefined. We want to show that in case (i) (x, x′) ◦ ω1 ◦ ω2 and in
case (ii) ω1 ◦ω2 ◦ (x, x′) is also a correct update sequence. These two facts imply
the statement in the lemma.

In case (i), we know that for any prefix of ω1, the corresponding routing path
always connects u and v a hence it cannot pass thought the node x for which
the next hop is undefined. Hence moving (x, x′) to the beginning of the update
sequence does not change the routing path and after the sequence of updates
(x, x′) ◦ ω1 and ω1 ◦ (x, x′) we arrive to the identical switch configuration.

In case (ii), we know that the reachability between u and v is preserved all
the time during the update sequence ω. As the update (x, undefined) creates a
blackhole, after the sequence ω1 is applied, the switch x cannot be part of the
prefix of the routing path from u until v is reached. This implies that moving
the update to the end does not influence the given set of path properties. ��

We can apply this lemma to improve the efficiency of our translation by
creating a reduced Petri game N ′(U) where from the original net N(U) we remove
the whole switch component for every u where u ∈ V init ∪ V final . This means
that for the switches in V init , the final routing will be enabled already from the
start of the net execution and for the switches from V final we never undefine the
routing function. We can so conclude with the following theorem.

132 M. Didriksen et al.

Theorem 2. Let U = (G,R,R′,P(u,v)) be an update synthesis problem with
reachability and waypointing properties P(u,v). Let N ′(U) be the reduced Petri
game with the initial marking M0 defined above and ϕ the safety objective con-
structed from P(u,v). Then U has a solution iff M0 |= control : AG ϕ in N ′(U).

v1

v2

v3

v4

P = {reach(v1, v4)}

Fig. 7. Counter example

In Fig. 7 we show that Theorem 2 does not hold
e.g. for the property loopfree(v1) alone. As usual, the
initial routing is in black solid lines and the final rout-
ing in dashed red lines. Clearly, (v1, v3) ◦ (v3, v4) ◦
(v4, v2) ◦ (v2, undefined) is a correct update sequence
transforming the initial routing to the final one. How-
ever, even though the final routing for the node v4 is
undefined, it is not possible to move this update to
the beginning of the update sequence as updating
first the node v4 creates a forwarding loop and hence
breaks the loopfree(v1) property.

5 Implementation and Experiments

We implemented a prototype tool in Python that translates the update synthe-
sis problem into Petri game. Our tool accepts a JSON file with the description
of the network topology, initial and final routing as well as the list of required
security policies: reachability, loop-freedom and (multiple) waypointing. The tool
provides three types of output: (i) update synthesis problem definition in Net-
Synth [21] input format, (ii) XML file with Petri game and a safety query to
be opened in the GUI of TAPAAL model checker [6], and (iii) XML Petri game
model file and query file to be used with the command-line engine verifypn
(part of the TAPAAL framework).

The game engine verifypn is based on the algorithms presented in [13,15],
utilizing PTries for efficient state-storage [14], and we designed a new state-space
exploration strategy in order to speedup the game synthesis algorithm. The
engine verifypn is further extended to output the synthetized game strategy
from which the update sequence can be derived. In order to experiment with
network topologies in the standard gml format as used e.g. in the Topology
Zoo dataset [16], our tool also facilitates the generation of update synthesis
problems (in the TAPAAL and NetSynths formats) directly from the gml input
files. We evaluate the performance of our tool (using the engine verifypn from
the TAPAAL model checker) on both synthetic and real-world ISP topologies.

5.1 Synthetic Network Topologies

The synthetic topologies presented in Fig. 8 define scalable network update prob-
lems that model two extreme situations where the initial and final routing paths
are either disjoint or fully dependent, as well as a third, more realistic, scenario
where the two routing paths share a number of waypoints, while still using inde-
pendent routers in between.

Automatic Synthesis of Transiently Correct Network 133

src dst

... ...

... ...

(a) Disjoint

src

dst

(b) Dependent

src dst

...

...

(c) Shared

Fig. 8. Synthetic network topologies; initial routing in black solid lines and final routing
in red dashed lines (Color figure online)

The disjoint network template from Fig. 8a follows the structure used in
NetSynth benchmarks from [21]. The size of the update problem is scaled by
increasing the lengths of the disjoint paths. The dependent network type in
Fig. 8b aims to minimize the number of correct update sequences as many of the
possible update sequences either create a loop or avoid the waypoint drawn in
gray. The problem is scaled by sequentially concatenating (repeating) the same
structure number of times. Finally, the shared topology from Fig. 8c combines
a number of shared nodes that are connected by short disjoint paths of length
two. The scaling is achieved by repeating the depicted pattern several times. The
verified properties in all synthetic networks are reach(src, dst) in conjunction
with wp(src, dst ,w) where w is a single selected waypoint that is shared on the
initial and final routing path (for disjoint topology there is exactly one such node
drawn in gray). For the case of dependent topologies, we also study the variant
with multiple waypoint properties.

5.2 Topology Zoo Benchmark

The topology Zoo database [16] contains 261 network topologies (with up to
700 nodes) from real internet service providers. In order to achieve additional
scaling and larger instances, we combine existing topologies by further nest-
ing/concatenating them. To create realistic initial and final routing paths, we
emulate the standard protocols like OSPF [22] and ECMP [11] that are based on
routing along the shortest paths in the weighted network (the weights are typi-
cally manually assigned by network operators). For each topology, we compute
the diameter of the graph in order to identify the source src and destination
dst nodes that maximize the smallest number of hops between them (for large
network configurations, only a random subset of nodes are chosen in order to
limit the computational effort for generating the test-cases). We randomly assign
the weights up to 5 to every edge and set the initial routing path as one of the
shortest paths between src and dst . We then increase the weights on the initial
path that enforces a change in the set of shortest paths between src and dst in
order to determine an alternative final routing path. The verified properties are
reach(src, dst) in conjunction with wp(src, dst ,w) where w is a randomly chosen
waypoint that is shared by both the initial and final path (routing paths with
no common waypoint are discarded).

134 M. Didriksen et al.

5.3 Results

We compare the performance of our tool translating the update synthesis prob-
lem into a Petri game and using the TAPAAL engine as the backend (this tool
chain is referred to as TAPAAL in the plots) against the state-of-the-art update
synthesis tool NetSynth [21]. The results are presented in the form of cactus
plots where the synthesis times used by each tool are (independently of each
other) sorted in nondecreasing sequence and plotted on the x-axis, while the y-
axis shows the concrete runtime for each instance. These graphs do not provide
instance-to-instance runtime comparison but instead give an overall picture of
the tools performances. All of our experiments are conducted using the Linux
5.8.0 kernel running on AMD EPYC 7551 processors with hyperthreading dis-
abled and limited to 7 GB of memory (the memory limit was though never
exceeded). The tool source code as well as the experimental setup that allows us
to rerun all experiments is available in [7].

Figure 9a shows the cactus plot for the disjoint network experiment. While
NetSynth uses 57 s to solve the largest instance with 1000 nodes, our tool with
TAPAAL backend uses only 0.15 s (contributed mainly to the frequent applica-
bility of Lemma 4). For the case of dependent networks in Fig. 9b with a single
waypoint, the NetSynth incremental algorithm with build-in loop detection check
outperforms TAPAAL, as many update sequence candidates create forwarding
loops that TAPAAL is less efficient to detect. As a result, we need almost 386 s
to solve the largest instance while NetSynth can synthetise the update sequence
in about 16 s. However, once we require that every 10th node must be a way-
point, the relative performance of TAPAAL improves as seen in Fig. 9c and once
every 5th node is set as a waypoint, we already outperform NetSynth as shown
in Fig. 9d. This demonstrates that our approach scales better with increasing
complexity of the required path properties. Moreover, our performance on the
more realistic shared network in Fig. 9e is several orders of magnitude faster
than NetSynth and NetSynth only solves 21 instances within the 1000 s timeout,
while we need less than 37 s to solve even the largest instance.

Finally, Fig. 9f shows the performance on the dataset of existing networks
emulating a realistic network operators behaviour. Here the routing paths are
computed via a shortest path algorithm. We observe that our approach is in the
middle case 8.9 times faster than NetSynth. We manage to solve the majority
(933 instances) of problems in less than 1 s, while NetSynth solved only 689
instances within 1 s. We also remark that NetSynth is unable to solve 42 problems
within the time limit of 100 s while TAPAAL manages to solve all but the 12
hardest instances (not surprising as already deciding the existence of a correct
update sequence is an NP-complete problem [18]). In particular, we notice that
NetSynth is noticeably slower at providing answers for problems where no update
sequence exists.

Automatic Synthesis of Transiently Correct Network 135

Fig. 9. Cactus plots where x-axis shows the increasing problem instances and y-axis
depicts (on logarithmic scale) the synthesis time; n is the number of nodes

6 Conclusion

We presented a fully automatic approach for synthetising correct-by-construction
update sequences in programmable networks. The obtained update sequences
are guaranteed to satisfy a number of network policies like preservation of reach-
ability, loop-freedom and additional waypointing requirements. Our approach
is based on reducing the problem to Petri games and employing the generic
model checker TAPAAL for solving the game synthesis problem. The experi-
ments demonstrate that our method is significantly outperforming the state-of-
the-art tool NetSynth, except for the case of fully dependent networks where
both the initial and final routings share every single node in the network. How-
ever, this scenario is unlikely to appear during the operation of real networks
as the packets are commonly routed along the shortest paths in the network.

136 M. Didriksen et al.

Indeed, the experiments on over one thousand of real network topologies, using
the shortest paths routing algorithms like OSPF and ECMP, document that we
are consistently (in median 8.9 times) faster in synthetising the correct update
sequences compared to NetSynth. In particular, we are able to solve majority
of the realistic update synthesis problems in less than 1 s, which is important in
nowadays dependable networks that must be promptly updated with increasing
frequencies in order to react e.g. to sudden changes in the traffic.

The Petri net model and the generated update sequence is well suited for a
further integration with the tool Latte [4], a plug-in to TAPAAL that extends
the model with timing features and enables further reduction of the duration of
network updates. In the future work, we plan to directly integrate the two tools
into a single tool chain in order to reduce the overhead from parsing/exchanging
of different file formats. We will also consider adding more network update poli-
cies like service chaining (where a given sequence of switches must be visited in
a prescribed order); we expect that this will require only smaller modifications
to our reduction.

Acknowledgements. We thank to Anders Mariegaard for his help with setting up
NetSynth. This work received a support from the DFF project QASNET.

References

1. Amiri S.A., Dudycz, S., Schmid, S., Wiederrecht, S.: Congestion-free rerouting of
flows on DAGs. In: ICALP 2018), volume 107 of Leibniz International Proceedings
in Informatics (LIPIcs), pp. 143:1–143:13. Dagstuhl (2018)

2. Benzekki, K., El Fergougui, A., Elbelrhiti Elalaoui, A.: Software-defined networking
(SDN): a survey. Secur. Comm. Netw. 9(18), 5803–5833 (2016)

3. Brandt, S., Förster, K., Wattenhofer, R.: On consistent migration of flows in SDNs.
In: INFOCOM 2016, pp. 1–9. IEEE (2016)

4. Christesen, N., Glavind, M., Schmid, S., Srba, J.: Latte: improving the latency of
transiently consistent network update schedules. In: IFIP PERFORMANCE 2020,
vol. 48, no. 3 of Performance Evaluation Review, pp. 14–26. ACM (2020)

5. Cimatti, A., et al.: NuSMV 2: an opensource tool for symbolic model checking.
In: Brinksma, E., Larsen, K.G. (eds.) CAV 2002. LNCS, vol. 2404, pp. 359–364.
Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-45657-0 29

6. David, A., Jacobsen, L., Jacobsen, M., Jørgensen, K.Y., Møller, M.H., Srba, J.:
TAPAAL 2.0: integrated development environment for timed-arc petri nets. In:
Flanagan, C., König, B. (eds.) TACAS 2012. LNCS, vol. 7214, pp. 492–497.
Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-28756-5 36

7. Didriksen, M., et al.: Artefact for: Automatic Synthesis of Transiently Correct Net-
work Updates via Petri Games (2021). https://doi.org/10.5281/zenodo.4497000

8. Finkbeiner, B., Gieseking, M., Hecking-Harbusch, J., Olderog, E.-R.: Model check-
ing data flows in concurrent network updates. In: Chen, Y.-F., Cheng, C.-H.,
Esparza, J. (eds.) ATVA 2019. LNCS, vol. 11781, pp. 515–533. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-31784-3 30

9. Finkbeiner, B., Gieseking, M., Hecking-Harbusch, J., Olderog, E.-R.: AdamMC: a
model checker for petri nets with transits against flow-LTL. In: Lahiri, S.K., Wang,
C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 64–76. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-53291-8 5

https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1007/978-3-642-28756-5_36
https://doi.org/10.5281/zenodo.4497000
https://doi.org/10.1007/978-3-030-31784-3_30
https://doi.org/10.1007/978-3-030-53291-8_5
https://doi.org/10.1007/978-3-030-53291-8_5

Automatic Synthesis of Transiently Correct Network 137

10. Foerster, K., Schmid, S., Vissicchio, S.: Survey of consistent software-defined net-
work updates. IEEE Commun. Surv. Tutorials 21(2), 1435–1461 (2019)

11. Hopps, C., et al.: Analysis of an equal-cost multi-path algorithm. Technical report,
RFC 2992, November 2000

12. Jensen, J.F., Nielsen, T., Oestergaard, L.K., Srba, J.: TAPAAL and reachability
analysis of P/T nets. Trans. Petri Nets Other Mod. Concurrency (ToPNoC) 9930,
307–318 (2016)

13. Jensen, P.G., Larsen, K.G., Srba, J.: Real-time strategy synthesis for timed-arc
petri net games via discretization. In: Bošnački, D., Wijs, A. (eds.) SPIN 2016.
LNCS, vol. 9641, pp. 129–146. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-32582-8 9

14. Jensen, P.G., Larsen, K.G., Srba, J.: Ptrie: data structure for compressing and
storing sets via prefix sharing. In: ICTAC 2017, vol. 10580 of LNCS, pp. 248–265.
Springer (2017)

15. Jensen, P.G., Larsen, K.G., Srba, J.: Discrete and continuous strategies for timed-
arc Petri net games. Int. J. Softw. Tools Technol. Transf. 20(5), 529–546 (2017).
https://doi.org/10.1007/s10009-017-0473-2

16. Knight, S., Nguyen, H.X., Falkner, N., Bowden, R., Roughan, M.: The internet
topology Zoo. IEEE J. Select. Areas Comm. 29(9), 1765–1775 (2011)

17. Liu, H.H., Wu, X., Zhang, M., Yuan, L., Wattenhofer, R., Maltz, D.: Zupdate:
updating data center networks with zero loss. SIGCOMM Comput. Commun. Rev.
43(4), 411–422 (2013)

18. Ludwig, A., Dudycz, S., Rost, M., Schmid, S.: Transiently secure network updates.
In: ACM SIGMETRICS, pp. 273–284. ACM (2016)

19. Ludwig, A., Marcinkowski, J., Schmid, S.: Scheduling loop-free network updates:
it’s good to relax! In: PODC 2015, pp. 13–22. ACM (2015)

20. Mahajan, R., Wattenhofer, R.: On consistent updates in software defined networks.
HotNets-XII, New York, NY, USA. ACM (2013)

21. McClurg, J., Hojjat, H., Černy, P., Foster, N.: Efficient synthesis of network
updates. ACM Sigplan Not. 50(6), 196–207 (2015)

22. Moy, J.: RFC2328: OSPF version 2 (1998). https://tools.ietf.org/html/rfc2328
23. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),

541–580 (1989)
24. Reitblatt, M., Foster, N., Rexford, J., Schlesinger, C., Walker, D.: Abstractions for

network update. In: ACM SIGCOMM 2012, pp. 323–334. ACM (2012)
25. Vissicchio, S., Cittadini, L.: FLIP the (flow) table: fast lightweight policy-

preserving SDN updates. In: INFOCOM 2016, pp. 1–9. IEEE (2016)

https://doi.org/10.1007/978-3-319-32582-8_9
https://doi.org/10.1007/978-3-319-32582-8_9
https://doi.org/10.1007/s10009-017-0473-2
https://tools.ietf.org/html/rfc2328

Verification

Computing Parameterized Invariants
of Parameterized Petri Nets

Javier Esparza, Mikhail Raskin, and Christoph Welzel(B)

Technical University of Munich, Munich, Germany
{esparza,raskin,welzel}@in.tum.de

Abstract. A fundamental advantage of Petri net models is the possi-
bility to automatically compute useful system invariants from the syn-
tax of the net. Classical techniques used for this are place invariants,
P-components, siphons or traps. Recently, Bozga et al. have presented a
novel technique for the parameterized verification of safety properties of
systems with a ring or array architecture. They show that the statement
“for every instance of the parameterized Petri net, all markings satis-
fying the linear invariants associated to all the P-components, siphons
and traps of the instance are safe” can be encoded in WS1S and checked
using tools like MONA. However, while the technique certifies that this
infinite set of linear invariants extracted from P-components, siphons or
traps are strong enough to prove safety, it does not return an explanation
of this fact understandable by humans. We present a CEGAR loop that
constructs a finite set of parameterized P-components, siphons or traps,
whose infinitely many instances are strong enough to prove safety. For
this we design parameterization procedures for different architectures.

1 Introduction

A fundamental advantage of Petri net system models is the possibility to auto-
matically extract useful system invariants from the syntax of the net at low com-
putational cost. Classical techniques used for this purpose are place invariants,
P-components, siphons or traps [19,40,41]. All of them are syntactic objects that
can be computed using linear algebra or boolean logic, and from which seman-
tic linear invariants can be extracted. For example, from the fact that a set of
places Q is an initially marked trap of the net one extracts the linear invariant∑

p∈Q M(Q) ≥ 1, which is satisfied for every reachable marking M . This infor-
mation can be used to prove safety properties: Given a set S of safe markings,
if every marking satisfying the invariants extracted from a set of objects is safe,
then all reachable markings are safe.

Classical net invariants have been very successfully used in the verification
of single systems [10,12,26], or as complement to state-space exploration [45].
Recently, an extension of this idea to the parameterized verification of safety
properties of systems with a ring or array architecture has been presented in
[14,15]. The parameterized verification problem asks whether a system composed
of n processes is safe for every n ≥ 2 [4,11,24]. Bozga et al. show in [14,15] that
the statement
c© Springer Nature Switzerland AG 2021
D. Buchs and J. Carmona (Eds.): PETRI NETS 2021, LNCS 12734, pp. 141–163, 2021.
https://doi.org/10.1007/978-3-030-76983-3_8

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76983-3_8&domain=pdf
https://doi.org/10.1007/978-3-030-76983-3_8

142 J. Esparza et al.

“For every instance of the parameterized system, all markings satisfying
the linear invariants associated to all the P-components, siphons and traps
of the corresponding Petri net is safe”

can be encoded in Weak Second-order Logic With One Successor (WS1S), or its
analogous WS2S for two successors. This means that the statement holds iff its
formula encoding is valid. This problem is decidable, and highly optimized tools
exist for it, like MONA [36,43]. The method of [14] is not complete (i.e., there
are safe systems for which the invariants derived from P-components, siphons
and traps are not strong enough to prove safety), but it succeeds for a remark-
able set of examples. Further, incompleteness is inherent to every algorithmic
method, since safety of parameterized nets is undecidable even if processes only
manipulate data from a bounded domain [5,11].

While the technique of [14,15] is able to prove interesting properties of numer-
ous systems, it does not yet provide an explanation of why the property holds.
Indeed, when the technique succeeds for a given parameterized Petri net, the
user only knows that the set of all invariants deduced from siphons, traps, and
P-components together are strong enough to prove safety. However, the technique
does not return a minimal set of these invariants. Moreover, since the parameter-
ized Petri net has infinitely many instances, such a set contains infinitely many
invariants. In this paper we show how to overcome this obstacle. We present a
technique that automatically computes a finite set of parameterized invariants,
readable by humans. This is achieved by lifting a CEGAR (counterexample-
guided abstraction refinement) loop, introduced in [27] and further developed
in [12,26,28], to the parameterized case. Each iteration of the loop of [26,27]
first computes a counterexample, i.e., a marking that violates the desired safety
property but satisfies all invariants computed so far, and then computes a P-
component, siphon, or trap showing that the marking is not reachable. If no
counterexample exists the property is established, and if no P-component, siphon
or trap can be found the method fails. The technique is implemented on top of
an SMT-solver, which receives as input a linear constraint describing the set of
safe markings, and iteratively computes the set of linear invariants derived from
P-components, siphons, and traps.

If we naively lift the CEGAR loop to the parameterized case, the loop never
terminates. Indeed, since the loop computes one new invariant per iteration,
and infinitely many invariants are needed to prove correctness of all instances,
termination is not possible. So we need a procedure to extract from one sin-
gle invariant for one instance a parameterized invariant, i.e., an infinite set of
invariants for all instances, finitely represented as a WS1S-formula. We present
a semi-automatic and an automatic approach. In the semi-automatic approach
the user guesses the parameterized invariant, and automatically checks it, using
the WS1S-checker. The automatic approach does not need user interaction, but
only works for systems with symmetric structure. We provide automatic proce-
dures for rings and barrier crowds, a class of systems closely related to broadcast

Computing Parameterized Invariants of Parameterized Petri Nets 143

protocols. We present experimental results on a number of systems. The semi-
automatic approach requires more human interaction, but produces smaller sets
of invariants.

Related Work. The parameterized verification problem has been extensively
studied for systems whose associated transition systems are well-structured
[1,32,35] (see e.g. [4] for a survey). In this case the verification problem reduces
to a coverability problem, for which different algorithms exist [13,31,34,42]; the
marking equation (which is roughly equivalent to place invariants) have also
been applied [6]. However, the transition systems of parametric rings and arrays
are typically not well-structured.

Parameterized verification of ring and array systems has also been studied in
a number of papers. Three popular techniques are regular model checking (see
e.g. [2,3,39]), abstraction [8,9], and automata learning [17]. All of them apply
symbolic state-space exploration to try to compute a finite automaton recogniz-
ing the set of reachable markings of all instances, or an abstraction thereof. Our
technique avoids any state-space exploration. Also, symbolic state-space explo-
ration techniques are not geared towards providing explanations. Indeed, while
the set of reachable markings of all instances is the strongest invariant of the
system, it is also one single monolithic invariant, typically difficult to interpret
by human users. Our CEGAR loop aims at finding a collection of invariants,
each of them simple and interpretable.

Many works in parameterized follow the cut-off approach, where one manu-
ally proves a cut-off bound c ≥ 2 such that correctness for at most c processes
implies correctness for any number of processes (see e.g. [7,16,21,22,37], and
[11] for a survey). It then suffices to prove the property for systems of up to
c processes, which can be done using finite-state model checking techniques.
Compared to this technique, ours is fully automatic.

Full Version. Due to space restrictions we refer to the full version [29] for proofs
and extended explanations.

2 Preliminaries

WS1S. Formulas of WS1S over first-order variables x,y, . . . and second-order
variables X,Y , . . . have the following syntax:

t := x | 0 | succ(t) (terms)
φ := t1 ≤ t2 | x ∈ X | φ1 ∧ φ2 | ¬φ1 | ∃x : φ | ∃X : φ (formulas)

An interpretation assigns elements of N0 = {0, 1, 2, 3, . . .} to first order variables
and finite subsets of N0 to second-order variables. Given an interpretation, the
semantics that assigns numbers to terms and truth values to formulas is defined
in the usual way.

144 J. Esparza et al.

We extend the syntax with constants 0, 1, 2, 3, . . ., and terms of the form x+c
with c ∈ N0. Further, a term x ⊕n 1 in a formula ϕ stands for

(x + 1 < n ∧ ϕ[x ⊕n 1 ← x + 1]) ∨ (n = x + 1 ∧ ϕ[x ⊕n 1 ← 0])

where ϕ[t ← t′] denotes the result of substituting t′ for t in ϕ. The terms x⊕n c
for every 1 ≤ c are defined similarly. We let ϕ(x1, . . . ,x�,X1, . . . ,Xk) denote
that ϕ uses at most x1, . . . ,x� and X1, . . . ,Xk as free first-order resp. second-
order variables. Finally, we also make liberal use of the following macros:

X = ∅

stands for

∀x : ¬(x ∈ X)
X = {x} x ∈ X ∧ ∀y : y ∈ X → y = x
X = [n] ∀x : x ∈ X ↔ x < n
X ∩ Y = ∅ ∀x : ¬(x ∈ X ∨ x ∈ Y)
|X| = 1 ∃x : X = {x}
|X| ≤ 1 X = ∅ ∨ |X| = 1
X = Y ∀x : x ∈ X ↔ ¬(x ∈ Y)
Y = X ⊕n 1 ∀x : x ⊕n 1 ∈ Y ↔ x ∈ X

Petri Nets. We use a presentation of Petri nets equivalent to but slightly
different from the standard one. A net is a pair 〈P, T 〉 where P is a nonempty,
finite set of places and T ⊆ 2P × 2P is a set of transitions. Given a transition
t = 〈P1, P2〉, we call P1 the preset and postset of t, respectively. We also denote
P1 by •t and P2 by t•. Given a place p, we denote by •p and p• the sets of
transitions 〈P1, P2〉 such that p ∈ P2 and p ∈ P1, respectively. Given a set X of
places or transitions, we let •X :=

⋃
x∈X

•x and X• :=
⋃

x∈X x•.
A marking of N = 〈P, T 〉 is a function M : P → N. A Petri net is a pair

〈N,M〉, where N is a net and M is the initial marking of N . A transition t =
〈P1, P2〉 is enabled at a marking M if M(p) ≥ 1 for every p ∈ P1. If t is enabled
at M then it can fire, leading to the marking M ′ given by M ′(p) = M(p)+1 for
every p ∈ P2 \ P1, M ′(p) = M(p) − 1 for every p ∈ P1 \ P2, and M ′(p) = M(p)
otherwise. We write M

t−→ M ′, and M
σ−→ M ′ for a finite sequence σ = t1t2 . . . tn

if there are markings M1, . . . ,Mn such that M
t1−→ M1

t2−→ · · · Mn−1
tn−→ M ′. M ′

is reachable from M if M
σ−→ M ′ for some sequence σ.

A marking M is 1-bounded if M(p) ≤ 1 for every place p. A Petri net is
1-bounded if every marking reachable from the initial marking is 1-bounded. A
1-bounded marking M of a Petri net is also defined by the set of marked places;
i.e., �M� = {p ∈ P : M(p) = 1}.

3 Parameterized Petri Nets

Definition 1 (Parameterized Nets). A parameterized net is a pair N =
〈P,Tr〉, where P is a finite set of place names and Tr(n,X ,Y) is a WS1S-
formula over one first-order variable n which represents the considered size of

Computing Parameterized Invariants of Parameterized Petri Nets 145

the instance and two tuples X and Y of second-order variables for each place
name of P; i.e., for a fixed enumeration p1, . . . , pk of the elements of P we
get X = 〈Xpi

〉k
i=1 and Y = 〈Ypi

〉k
i=1. We call such tuples of variables placeset

variables.

Let [n] = {0, . . . , n − 1}. A parameterized net N induces a net N (n) = 〈Pn, Tn〉
for every n ≥ 1, where Pn = P × [n] (i.e., Pn consists of n copies of P),
and Tn contains a transition 〈P1, P2〉 for every pair P1, P2 ⊆ Pn of sets of
places such that “Tr(n, P1, P2)” holds. More formally, this means that μ |= Tr
for an interpretation μ s.t. μ(n) = n, μ(Xp) = {i ∈ [n] : 〈p, i〉 ∈ P1}, and
μ(Yp) = {i ∈ [n] : 〈p, i〉 ∈ P2} for all p ∈ P. Therefore, the intended meaning
of Tr(n,X ,Y) is “the pair 〈X ,Y〉 of placesets is (the preset and postset of) a
transition if the size is n”. We say that N (n) is an instance of N .

In the following we use 〈p, i〉 and p(i) as equivalent notations for the elements
of Pn = P × [n].

Example 1. We consider a version of the dining philosophers. Philosophers and
forks are numbered 0, 1, . . . , n − 1. For every i > 0 the i-th philosopher first
grabs the i-th and then the (i ⊕n 1)-th fork, where ⊕n denotes addition modulo
n. Philosopher 0 proceeds the other way round: she first grabs fork 1, and then
fork 0. After eating all philosophers return their forks in one single step. We
formalize this in the following parameterized net N = 〈P,Tr〉:
– P = {think,wait, eat, free, taken}. Intuitively, {think(i),wait(i), eat(i)} are

the states of the i-th philosopher, and {free(i), taken(i)} the states of the i-th
fork.

– Tr(n,X ,Y) = GrabFirst∨GrabSecond∨Release. We only present the formula
for GrabFirst, the complete description can be found in the appendix.

GrabFirst :=

⎛

⎜
⎝

∃x . 1 ≤ x < n ∧ (Xthink = Xfree = Ywait = Ytaken = {x})
∧ (Xwait = Xeat = Xtaken = ∅)
∧ (Ythink = Yeat = Yfree = ∅)

⎞

⎟
⎠

∨
⎛

⎜
⎝

(Xthink = Ytaken = {0}) ∧ (Xfree = Ywait = {1})
∧ (Xwait = Xeat = Xtaken = ∅)
∧ (Ythink = Yeat = Yfree = ∅)

⎞

⎟
⎠

Intuitively, the preset of GrabFirst is a philosopher in state think and her left
(resp. right fork for philosopher 0) in state free; the postset puts the philosopher
in state wait and the fork in state taken. The instance N (3) is shown in Fig. 1.

Parameterized Petri nets are parameterized nets with a WS1S-formula defining
its initial markings:

Definition 2 (Parameterized Petri Nets). A parameterized Petri net is a
pair 〈N , Initial〉, where N is a parameterized net, and Initial(n,M) is a WS1S-
formula over a first-order variable n and a placeset variable M.

146 J. Esparza et al.

fr(0)

ta(0)

th(0)
wa(0)ea(0)

fr(1)

ta(1)

th(1)

wa(1)

ea(1)

fr(2)
ta(2) th(2)

wa(2)

ea(2)

g10

g20
g11

g21

g12

g12

r0

r1

r2

Fig. 1. N (3) for Example 1. Places which are colored green are initially marked w.r.t.
Initial(X) from Example 2. Note the repeating structure for philosophers 1 and 2 while
philosopher 0 grabs her forks in the opposite order. We abbreviate think(i) to th(i),
and similarly with the other states.

A parameterized Petri net defines an infinite family of Petri nets. Loosely
speaking, a Petri net 〈N,M〉 belongs to the family if N is an instance of N ,
i.e., N = N (n) for some n ≥ 1, and M is a 1-bounded marking of N satisfying
Initial(n,M). For example, if P = {p1, p2}, n = 3 and Initial({0, 1} , {0, 2})
holds, then the family contains a Petri net 〈N (3),M3〉 such that M3 is a 1-
bounded marking with �M3� = {p1(0), p1(1), p2(0), p2(2)}.

Example 2. The family of initial markings in which all philosophers think and
all forks are free is modeled by:

Initial(n,M) := (Mthink = Mfree = [n]) ∧ (Mwait = Meat = Mtaken = ∅).

Example 3. Let us now model a simple version of the readers/writers system. A
process can be idle, reading, or writing. An idle process can start to read if no
other process is writing, and it can start to write if every other process is idle.
We obtain the parameterized net N = 〈P,Tr〉, where

– P = {idle, rd,wr,not wr}.
– Tr(n,X ,Y) = StartR∨StopR∨StartW∨StopW. We give the formulae StartR

and StartW, the other two being simpler.

StartR := ∃x .

(
(Xidle = {x} ∧ Xnot wr = Xidle ∧ (Xrd = Xwr = ∅)

∧ Yrd = {x} ∧ Ynot wr = Xidle ∧ (Yidle = Ywr = ∅)

)

Computing Parameterized Invariants of Parameterized Petri Nets 147

StartW := ∃x .

(
Xidle = [n] ∧ Xnot wr = {x} ∧ (Xrd = Xwr = ∅)

∧ Yidle = [n] \ {x} ∧ Ywr = {x} ∧ (Yrd = Ynot wr = ∅)

)

So the preset of a StartR transition is {idle(i),not wr(0), . . . ,not wr(n − 1)}
for some i, and the postset is {rd(i),not wr(0), . . . ,not wr(n − 1)}. The initial
markings in which every process is initially idle are modeled by:

Initial(n,X) := Xidle = [n] ∧ Xnot wr = [n] ∧ (Xrd = Xwr = ∅)

Observe that in the dining philosophers transitions have presets and postsets
of size 3, independently of the number of philosophers. On the contrary, in the
readers and writers problems the transitions of N (n) have presets and postsets
of size n. Intuitively, our formalism allows to model transitions involving all
processes or, for example, all even processes. Observe also that in both cases the
formula Initial has exactly one model for every n ≥ 1, but this is not required.

Proving Deadlock-Freedom for the Dining Philosophers. Let us now
give a taste of what our paper achieves for Example 1. It is well known that
this version of the dining philosophers is deadlock-free. However, finding a proof
based on parameterized invariants of the systems is not so easy. Using the semi-
automatic use of the approach we present we find the following five invariants to
do so. The fully automatic analysis of this example gives ten properties of the
system which collectively induce deadlock-freedom.

The first two invariants simply express that at every reachable marking M ,
and for every 0 ≤ i ≤ n − 1 , the i-th philosopher is either thinking, waiting, or
eating, and the i-th fork is either free or taken.

M(think(i)) + M(wait(i)) + M(eat(i)) = 1 (1)

M(free(i)) + M(taken(i)) = 1. (2)

The last three invariants provide the key insights. The last one holds for every
1 ≤ i ≤ n − 2:

M(wait(0)) + M(eat(0)) + M(free(1)) + M(wait(1)) + M(eat(1)) = 1 (3)

M(eat(0)) + M(free(0)) + M(eat(n − 1)) = 1 (4)

M(eat(i)) + M(eat(i + 1)) + M(free(i + 1)) + M(wait(i + 1)) = 1 (5)

Let us sketch why (1)–(5) imply deadlock freedom. Let Pi denote the i-th philoso-
pher and Fi the i-th fork. If P0 is eating, then F0 and F1 are taken by (1)–(4),
and there is no deadlock because P0 can return them. The same holds if P1 is
eating by (1)–(3) and (5), or if any of P2, . . . , Pn−1 is eating by (1)–(2) and (5).
If no philosopher eats, then by (1)–(3) and (5) either Pi+1 is thinking and Fi+1

is free for some i ∈ {1, . . . , n− 2}, or Pi+1 is waiting for every i ∈ {1, . . . , n− 2}.
In the first case Pi+1 can grab Fi+1. In the second case Pn−1 is waiting, and
since F0 is free by (1)–(2) and (4), it can grab F0.

148 J. Esparza et al.

4 Checking 1-Boundedness

Our techniques work for parameterized Petri nets whose instances are 1-bounded.
We present a technique that automatically checks 1-boundedness of all our exam-
ples. We say that a set of places Q of a Petri net 〈N,M〉, where N = 〈P, T 〉,
is
– 1-balanced if for every transition 〈P1, P2〉 ∈ T either |P1 ∩ Q| = 1 = |P2 ∩ Q|,

or |P1 ∩ Q| = 0 = |P2 ∩ Q|, or |P1 ∩ Q| ≥ 2.
– 1-bounded at M if M(Q) ≤ 1.

The following proposition is an immediate consequence of the definition:
Proposition 1. If Q is a 1-balanced and 1-bounded set of places of 〈N,M〉,
then M ′(Q) = M(Q) holds for every reachable marking M ′.

We abbreviate “1-bounded and 1-balanced set” to 1BB-set, and say that N
is covered by 1BB-sets if every place belongs to some 1BB-set at initial marking
M . By the proposition above, if N is covered by 1BB-sets at M , then M ′(p) ≤ 1
holds for every reachable marking M ′ and every place p, and so N is 1-bounded.

Given a parameterized Petri net (N , Initial), we can check if all instances
are covered by 1BB-sets with the following formula:

1Bal(n,X) := ∀Y,Z : Tr(n,Y,Z) → (|X ∩ Y| = 0 = |X ∩ Z|)∨
(|X ∩ Y| = 1 = |X ∩ Z|)∨
(|X ∩ Y| > 1)

1Bnd(n,X ,M) := |X ∩ M| ≤ 1
Cover := ∀n,∀M : Initial(n,M) → (∀x : ∃X : x ∈ X∧

1Bal(n,X)∧
1Bnd(n,X ,M))

Observe that if Q is a 1BB-set then at every reachable marking exactly one of
the places of Q is marked, with exactly one token. The sets of places correspond-
ing to a philosopher, a fork, a reader, or a writer are 1BB-sets. Unsurprisingly, all
our parameterized Petri net models are covered by 1BB-sets. Moreover, this can
be automatically proved in a few seconds by checking the formula above. This
gives us an automatic proof that all the Petri nets we consider are 1-bounded.

5 Checking Safety Properties

Let 〈N , Initial〉 be a parameterized Petri net, and let Safe(n,M) be a WS1S-
formula describing a set of “safe” markings of the instances of N (for example,
“safe” could mean deadlock-free). It is easy to prove (using simulations of Turing
machines by Petri nets like those of [23]) that the existence of some unsafe reach-
able marking in some instance of a given parameterized Petri net 〈N , Initial〉
is undecidable. In [14,15] we describe a semi-algorithm for the problem that
derives from 〈N , Initial〉 a formula PReach(n,M) describing a superset of the
set of reachable markings of all instances, and checks that the formula

SafetyCheck := ∀n∀M : PReach(n,M) → Safe(n,M)

holds. We recall the main construction of [14,15], adapted and expanded.

Computing Parameterized Invariants of Parameterized Petri Nets 149

1BB-Sets Again. Recall that if a marking M ′ of some instance 〈N,M〉 of a
net 〈N , Initial〉 is reachable from M , then M ′(Q) ≤ 1 holds for every 1BB-set
of places Q of 〈N,M〉. So this latter property can be interpreted as a test for
potential reachability: Only markings that pass the test can be reachable. We
introduce a formula 1BBTest(n,M′,M) expressing that M′ passes the test with
respect to M (i.e., M′ might be reachable from M).

1BBTest(n,M′,M) := ∀X :

(
1Bal(n,X)

∧1Bnd(n,X ,M)

)

→ 1Bnd(n,X ,M′)

Siphons and Traps. Let 〈N,M〉 be a Petri net with N = 〈P, T 〉 and let Q ⊆ P
be a set of places. Q is a trap of N if •Q ⊆ Q•, and a siphon of N if Q• ⊆ •Q.

– If Q is a siphon and M(Q) = 0, then M ′(Q) = 0 for all markings M ′ reachable
from M .

– If Q is a trap and M(Q) ≥ 1, then M ′(Q) ≥ 1 for all markings M ′ reachable
from M .

If M ′ is reachable from M then it satisfies the following property: M ′(Q) ≥ 1
for every trap Q such that M(Q) ≥ 1. A marking satisfying this property passes
the trap test for 〈N,M〉. We construct a formula TrapTest(n,M) expressing
that M passes the trap test for some instance of a parameterized Petri net. We
first introduce a formula expressing that a set X of places is a trap.

Trap(n,X) := ∀Y,Z : (Tr(n,Y,Z) ∧ X ∩ Y �= ∅) → X ∩ Z �= ∅

Now we have:

Marked(n,X ,M) := X ∩ M �= ∅

TrapTest(n,M′,M) := ∀X :

(
Trap(n,X)

∧Marked(n,X ,M)

)

→ Marked(n,X ,M′)

Similarly we obtain a formula for a siphon test:

Empty(n,X ,M) := X ∩ M = ∅

SiphTest(n,M′,M) := ∀X :

(
Siphon(n,X)

∧Empty(n,X ,M)

)

→ Empty(n,X ,M′)

We can now give the formula PReach:

PReach(n,M′,M) :=

⎛

⎜
⎝

1BBTest(n,M′,M)
∧TrapTest(n,M′,M)
∧SiphTest(n,M′,M)

⎞

⎟
⎠

PReach(n,M′) := ∃M : Initial(n,M) ∧ PReach(n,M′,M)

150 J. Esparza et al.

5.1 Automatic Computation of Parameterized Invariants

In [14] it was shown that many safety properties of parameterized Petri nets
can be proved to hold for all instances by checking validity of the corresponding
PReach formula. However, the technique does not return a set of invariants
strong enough to prove the property. In this section we show how to overcome
this problem. We design a CEGAR loop which, when successful, yields a finite
set of parameterized invariants that imply the safety property being considered.

We proceed as follows. In the first part of the section, we describe a CEGAR
loop for the non-parameterized case. The input to the procedure is a parame-
terized Petri net 〈N , Initial〉 and a number n such that all reachable markings
of all instances N (1), . . . ,N (n) are safe. The output is a set of invariants of
N (1), . . . ,N (n), derived from balanced sets, siphons, and traps, which are strong
enough to prove safety. Since the set of all balanced placesets, siphons, and traps
of these instances is finite, the procedure is guaranteed to terminate even if it
computes one invariant at a time. Then we modify the loop by inserting an addi-
tional parameterization procedure that exploits the regularity of 〈N , Initial〉. The
procedure transforms a balanced placeset (siphon, trap) of a particular instance,
say N (4), into a possibly infinite set of balanced placesets (siphons, traps) of all
instances, encoded as the set of models of a WS1S-formula. This formula is a
finite representation of the infinite set.

For the sake of brevity, in the rest of the section we describe a CEGAR loop
that only constructs traps. This allows us to avoid numerous repetitions of the
phrase “balanced placesets, siphons, and traps”. Since the structure of the loop is
completely generic, this is purely a presentation issue without loss of generality1.

A CEGAR Loop for the Non-parameterized Case. We need some prelim-
inaries. Let N = 〈P,Tr〉 be a parameterized Petri net, and let X be a placeset
variable. An interpretation of X is a pair X = 〈�,Q〉, where � ≥ 1 and Q is a
set of places of N (�). We identify X and the tuple 〈Xp〉p∈P , where Xp ⊆ [�],
defined by j ∈ Xp iff p(j) ∈ Q. For example, if P = {p, q, r}, � = 1, and
Q = {p(0), p(1), q(1)}, then 〈Xp,Xq,Xr〉 = 〈{0, 1}, {1}, ∅〉. Given a formula
φ(. . . ,X , . . .) and an interpretation X = (k,Q) of X , we define the formula
φ(. . . ,X, . . .) as follows:

x ∈ Xp :=
∨

j∈Xp

x = j

X = X := n = k ∧
∧

p∈P
∀x : x < n → (x ∈ Xp ↔ x ∈ Xp)

φ(. . . ,X, . . .) := ∀X : X = X → φ(. . . ,X , . . .)

The CEGAR procedure maintains an (initially empty) set T of indexed traps
of N (1),N (2), . . . ,N (n), where an indexed trap is a pair T = 〈i, Q〉 such that
1 The CEGAR loop for the non-parametric case could be formulated in SAT and

solved using a SAT-solver. However, we formulate it in WS1S, since this allows us
to give a uniform description of the non-parametric and the parametric cases.

Computing Parameterized Invariants of Parameterized Petri Nets 151

1 ≤ i ≤ n and Q is a trap of N (i). After every update of T the procedure
constructs the formula SafetyCheckT , defined as follows:

TrapSetT (n,X) :=
∨

X∈T
X = X

PReachT (n,M′,M) := ∀X :

(
TrapSet(n,X)

∧Marked(n,X ,M)

)

→ Marked(n,X ,M′)

PReachT (n,M′) := ∃M : Initial(n,M) ∧ PReachT (n,M′,M)

SafetyCheckT := ∀n∀M : n < n ∧ PReachT (n,M) → Safe(n,M)

Intuitively, PReachT (n,M′,M) states that according to the set T of (indexed)
traps computed so far, M′ could still be reachable from M, because every trap
of T marked at M is also marked at M′. Therefore, if SafetyCheckT holds then
T is already strong enough to show that every reachable marking is safe.

If T is not strong enough, then the negation of SafetyCheckT is satisfiable.
The WS1S-checker returns a counterexample, i.e., a model M = 〈n,M〉 of the
formula PReachT (n,M) ∧ ¬Safe(n,M). Here M is a marking of N (n), poten-
tially reachable from an initial marking but not safe. In this case we search for
a witness trap X that is marked at every initial marking, but empty at M, with
the help of the formula

WTrapM(n,X) :=

⎛

⎜
⎝

Trap(n,X)
∧(∀M : Initial(n,M) → Marked(n,X ,M))
∧Empty(n,X ,M)

⎞

⎟
⎠

If the formula is satisfiable, then the WS1S-checker returns a model T = (n,Q).
The set Q is then a trap of N (n). We can now take T := T ∪ {T}, and iterate.
Observe that after updating T the interpretation M = 〈n,M〉 is no longer
a model of PReachT (n,M) ∧ ¬Safe(n,M). Since N (1), . . . ,N (n) only have
finitely many traps, the procedure eventually terminates.

A CEGAR Approach for the Parameterized Case. In all nontrivial exam-
ples, proving safety of the infinitely many instances requires to compute infinitely
many traps. Since the previous procedure only computes one trap per iteration, it
does not terminate. The way to solve this problem is to insert a parametrization
step that transforms the witness trap T = 〈k,Q〉 into a formula ParTrapT(n,X)
satisfying two properties: (1) all models of the formula are traps, and (2) T is a
model. Since ParTrapT(n,X) can have infinitely many models, it constitutes a
finite representation of an infinite set of traps. These models are also similar to
each other and can be understood as capturing a single property of the system.

Example 4. Consider a parameterized net N = 〈P,Tr〉 exhibiting rotational
symmetry: For every instance N (n), a pair (P1, P2) of sets is a transition of
N (n) iff the pair (P1 ⊕n 1, P2 ⊕n 1) is also a transition, where P ⊕n 1 denotes
the result of increasing all indices by 1 modulo n. Assume that P = {p, q, r} and

152 J. Esparza et al.

T = 〈3, {p(1), q(2)}〉, i.e., {p(1), q(2)} is a trap of N (3). It is intuitively plausible
(and we will later prove) that, due to the rotational symmetry, {p(i), q(i ⊕m 1)}
is a trap of N (j) for every m ≥ 3 and every 0 ≤ i ≤ m − 1. We can then define
the formula ParTrapX(n,X) as:

ParTrapT(n,X) := n ≥ 3 ∧ ∃i : i < n

∧ ∀x : x < n →

⎛

⎜
⎝

(x ∈ Xp ↔ x = i)
∧ (x ∈ Xq ↔ x = i ⊕n 1)
∧ x /∈ Xr

⎞

⎟
⎠ .

Now, in order to describe the CEGAR procedure for the parameterized case
we only need to redefine the formula TrapSetT (n,X). Instead of the formula
TrapSetT (n,X) :=

∨
T∈T X = T, which holds only when X is one of the finitely

many traps in T , we insert the parametrization procedure and define

TrapSetT (n,X) :=
∨

T∈T
ParTrapT(n,X)

All the other formulas remain untouched. The question is how to obtain the
formula ParTrapT(n,X) from T. We discuss this point in the rest of the section.

A Semi-automatic Approach. If we guess the formula ParTrapT(n,X) we can
use the WS1S-checker to automatically prove that the guess is correct. Indeed,
it suffices to check that all models of ParTrapT(n,X) are traps, which reduces
to proving validity of the formula

∀n∀X : ParTrapT(n,X) → Trap(n,X)

Let us see how this works in Example 1. Assume that the CEGAR procedure
produces a trap T = 〈3, {p(1), q(2)}〉. The user finds it plausible that, due to
the identical behavior of philosophers 1, 2, . . . , n − 1, the set {p(i), q(i ⊕ 1)} will
be a trap of N (n) for every n ≥ 3 and for every 1 ≤ i ≤ n − 2 (i.e., the user
excludes the case in which i or i ⊕n 1 are equal to 0). So the user guesses a new
formula

ParTrapT(n,X) :=n ≥ 3 ∧ ∃i : (1 ≤ i ≤ n − 2) ∧ ∀x :
(x ∈ Xp ↔ x = i) ∧ (x ∈ Xq ↔ x = i ⊕n 1) ∧ x /∈ Xr.

The user now automatically checks that all models of ParTrapT(n,X) are traps.
The formula can then be safely added to TrapSetT (n,X) as a new disjunct.

An Automatic Approach for Specific Architectures. Parameterized Petri nets
usually have a regular structure. For example, in the readers-writers problem
all processes are indistinguishable, and in the philosophers problem, all right-
handed processes behave in the same way. In the next sections we show how the
structural properties of ring topologies and crowds (two common structure for
parameterized systems) can be exploited to automatically compute the formula
ParTrapT(n,X) for each witness trap T.

Computing Parameterized Invariants of Parameterized Petri Nets 153

6 Trap Parametrization in Rings

Intuitively, a parameterized net N is a ring if for every transition of every
instance N (n) there is an index i ∈ [n] and sets PL,PR,QL,Qr ⊆ P such
that the preset of the transition is (PL × {i}) ∪ (PR × {i ⊕n 1}) and the post-
set is (QL × i) ∪ (QR × i ⊕n 1). In other words, every transition involves only
two neighbor processes of the ring. In a fully symmetric ring all processes behave
identically, while in a headed ring there is one distinguished process, as in Exam-
ple 1. To ease presentation in this section we only consider fully symmetric rings.
The extension to headed rings can be found in the appendix.

The informal statement “all processes behave identically” is captured by
requiring the existence of a finite set of transition patterns 〈PL,PR,QL,QR〉
such that the transitions of N (n) are the result of “instantiating” each pattern
with all pairs i and i ⊕n 1 of consecutive indices.

Definition 3. A parameterized net N = 〈P,Tr〉 is a fully symmetric ring if
there is a finite set of transition patterns of the form 〈PL,PR,QL,QR〉, where
PL,PR,QL,Qr ⊆ P, such that for every instance N (n) the following condition
holds: 〈P,Q〉 is a transition of N (n) iff there is i ∈ [n] and a pattern such that
P = PL × {i} ∪ PR × {i ⊕n 1} and Q = QL × {i} ∪ QR × {i ⊕n 1}.

It is possible to decide if a given parameterized Petri net is a fully symmetric
ring:

Proposition 2. There is a formula of WS1S such that a parameterized net is
a fully symmetric ring iff the formula holds.

We need to distinguish between global and local traps of an instance. Loosely
speaking, a global trap contains places of all processes, while a local trap
does not. To understand why this is relevant, consider a fully symmetric ring
N = 〈P,Tr〉 where P = {p, q} and the transitions of each instance N (n) are the
pairs 〈{p(i), q(i ⊕n 1)} , {p(i ⊕n 1), q(i)}〉 for every i ∈ [n]. The sets {p(0), q(0)}
and {p(0), p(1), p(2), p(3)} are both traps of N (4) (they are even 1-balanced
sets). However, they are of different nature. Intuitively, in order to decide that
{p(0), q(0)} is a trap it is not necessary to inspect all of N (4), but only pro-
cess 0 and its neighborhood. On the contrary, {p(0), . . . , p(3)} involves all the
processes. This has consequences when parameterizing. Due to the symmetry of
the ring, {p(i), q(i)} is a trap of every instance N (n) for every i ∈ [n]. However,
{p(i), p(i ⊕n 1), . . . , p(i ⊕n 3)} is not a trap of every instance for every i ∈ [n],
for example {p(0), . . . , p(3)} is not a trap of N (5). The correct parametrization
is a different one, namely {p(0), p(1), . . . , p(n − 1)}. The difference between the
two traps is captured by the following definition.

Definition 4. Let N = 〈P,Tr〉 be a parameterized net. An indexed trap T =
〈n,Q〉 of N is global if Q∩ (P ×{i}) �= ∅ for every i ∈ [n], otherwise T is local.

154 J. Esparza et al.

6.1 Parameterizing Local Traps

We first observe that local indexed traps can be “shifted” locally while main-
taining their trap property.

Lemma 1. Let N = 〈P,Tr〉 be a fully symmetric ring and let 〈n,Q〉 be a local
indexed trap of N . Then 〈n,Q′〉 with Q′ = {〈p, i ⊕n 1〉 : 〈p, i〉 ∈ Q} is a local
indexed trap of N .

Our second lemma states that for any indexed local traps 〈n,Q〉 with Q ∩
(P × {n − 1}), the set Q remains a trap in any instance N (n′) with n ≤ n′.

Lemma 2. Let N be a fully symmetric ring and 〈n,Q〉 a local indexed trap with
Q ∩ (P × {n − 1}) = ∅. Then 〈n′, Q〉 is a local indexed trap for all n′ ≥ n.

We can now show how to obtain a sound parameterization of a given indexed
trap. The formula ParTrapT(X) states that X is the result of “shifting” T =
〈n,Q〉 in N (n′) for some n′ ≥ n.

Theorem 1. Let N = 〈P,Tr〉 be a fully symmetric ring and let 〈n,Q〉 be a local
indexed trap of N (n) such that Q ⊆ (P × I) for a minimal set I ⊂ [n]. Assume
I = {i0, . . . , ik−1} with 0 ≤ i0 < i1 < . . . < ik−1 < n − 1. Then every model of
the formula

ParTrapT(n,X) := n ≤ n ∧ ∃y : y < n ∧
∧

p∈P
∀x : x < n →

⎛

⎜
⎜
⎜
⎝
x ∈ Xp ↔

⎛

⎜
⎜
⎜
⎝

∨

〈i0,p〉∈Q

x = y

∨
∨

j>0,〈ij ,p〉∈Q

x = y ⊕n (ij − ij−1)

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

is an indexed trap of N .

Remark 1. Since Theorem 1 requires ik−1 < n−1, it can only be applied to local
traps 〈n,Q〉 such that Q∩(P×{n − 1}) = ∅. However, for every local trap 〈n,Q〉
Lemma 1 allows us to find a local trap 〈n,Q′〉 satisfying Q′ ∩ (P ×{n − 1}) = ∅,
which we can then parameterize applying Theorem 1.

6.2 Parameterizing Global Traps

In contrast to local traps, global traps involve all indices [n] of the instance N (n).
Let 〈n,Q〉 be an indexed global trap. We denote with Q[i] the set P ⊆ P such
that P ×{i} = Q∩ (P ×{i}); i.e., the set of places in Q at index i. Moreover, we
say Q has period p if p is the smallest divisor of n such that for all 0 ≤ j < p we
have Q[j] = Q[k ·p+ j] for all 0 ≤ k < n

p . That is, Q is a repetition of the same p
sets in a row. Since n is a period of Q we know that every Q has a period, which
we denote pQ. Recall the global trap Q = {p(0), p(1), p(2), p(3)} from before.
Then, Q[0] = Q[1] = Q[2] = Q[3] = {p} and, consequently, pQ = 1. Intuitively,
we can repeat a period over and over again and still obtain a trap. So we can
parameterize global traps by capturing the repetition of periodic behavior:

Computing Parameterized Invariants of Parameterized Petri Nets 155

Theorem 2. Let 〈n,Q〉 be an indexed global trap with n ≥ 2. Then every model
of the formula

ParTrapT(n,X) := ∃P : 0 ∈ P ∧ n ∈ P

∧ ∀x : x ≤ n → x ∈ P ↔

⎛

⎜
⎝

∧

0≤k<pQ

x + k /∈ P

∧ x + pQ ∈ P

⎞

⎟
⎠

∧ ∀x0, . . . ,xpQ−1 :

⎛

⎜
⎝

∧

0<k≤pQ−1

xk−1 + 1 = xk

∧ xpQ−1 < n ∧ x0 ∈ P

⎞

⎟
⎠

→
∧

0≤k<pQ

∧

p∈Q[k]

xk ∈ Xp ∧
∧

p∈P\Q[k]

xk /∈ Xp

is an indexed global trap.

7 Trap Parametrization in Barrier Crowds

Barrier crowds are parameterized systems in which communication happens by
means of global steps in which each process makes a move. An initiator process
decides to start a step, and all the other processes get a chance to veto it; if the
step is not blocked (if all the processes accept it), all the processes, including the
initiator, update their local state. Barrier crowds are slightly more general than
broadcast protocols [25], which, loosely speaking, correspond to the special case
in which no process makes use of the veto capability. Like broadcast protocols,
barrier crowds can be used to model cache coherence protocols [18].

As for fully symmetric rings, transitions of the instances of a barrier crowd
are generated from a finite set of “transition patterns”. A transition pattern
of a barrier crowd N is a pair 〈I,A〉, where I ∈ 2P × 2P and A ⊆ 2P × 2P .
Assume for example that each process can be in states p, q, r, and maintains
a boolean variable with values {0, 1}. The corresponding parameterized net
has P = {p, q, r, 0, 1} as set of places. Consider the transition pattern with
I = 〈{p, 0}, {q, 1}〉, and A = {〈{p}, {p}〉 , 〈{q, 0}, {r, 0}〉 , 〈{q, 1}, {r, 0}〉}. This
pattern models that the initiator process, say process i, proposes a step that
takes it from p to q, setting its variable to 1. Each other process reacts as fol-
lows, depending on its current state: if in p, it stays in p, leaving the variable
unchanged; if in q, it moves to r, setting the variable to 0; if in r, it vetoes the
step (because A does not offer a way to accept from state r).

Definition 5. A parameterized Petri net N = 〈P,Tr〉 is a barrier crowd if
there is a finite set of transition patterns of the form 〈I,A〉 such that for every
instance N (n) the following condition holds: a pair 〈P,Q〉 is a transition of N (n)
iff there exists a pattern 〈I,A〉 and i ∈ [n] such that:

– P ∩ (P × {i}) = PI × {i} and Q ∩ (P × {i}) = QI × {i}, where I = 〈PI , QI〉.

156 J. Esparza et al.

– for every j �= i there is 〈PA, QA〉 ∈ A such that P ∩ (P × {j}) = PA × {j}
and Q ∩ (P × {j}) = QA × {j}.

Note that the number of transitions of N (n) grows quickly in n, even though
the structure of the system remains simple, making parameterized verification
particularly attractive.

In the rest of the section we present an automatic parametrization proce-
dure for traps of barrier crowds. First we show that barrier crowds satisfy two
important structural properties.

Given a set of places P ⊆ P × [n] and a permutation π : [n] → [n], let
π(P) denote the set of places {p(π(i)) : p(i) ∈ P}. Given an index 0 ≤ k < n,
let dropk,n(P) denote the set of places defined as follows: p(i) ∈ dropk,n(P) iff
either 0 ≤ i < k and p(i) ∈ P , or k < i ≤ n − 1 and p(i + 1) ∈ P .

Definition 6. Let N be a parameterized Petri net. A transition 〈P1, P2〉 of N (n)
is:

– order invariant if 〈π(P1), π(P2)〉 is also a transition of N (n) for every per-
mutation π : [n] → [n].

– homogeneous if there is an index 0 ≤ i < n such that for every k ∈ [n] \ {i}
the pair 〈dropk,n(P1), dropk,n(P2)〉 is a transition of N (n − 1).

N is homogeneous (order invariant) if all transitions of all instances N (n) is
homogeneous (order invariant).

Intuitively, order invariance indicates that processes are indistinguishable.
Homogeneity indicates that transitions in the large instances are not substan-
tially different from the transitions in the smaller ones.

Proposition 3. Barrier crowds are order invariant and homogeneous.

7.1 Parameterizing Traps for Barrier Crowds

By order invariance, if Q is a trap of an instance, say N (n), then π(Q) is also a
trap for every permutation π. The set of all traps that can be obtained from Q by
permutations can be described as a multiset Q : 2P → [n]. For example, assume
P = {p, q}, n = 5, and Q = {p(0), p(1), q(1), p(2), q(2), q(4)}. Then Q({p, q}) = 2
(because of indices 1 and 2), Q({p}) = Q({q}) = 1 (index 0 and 4, respectively),
and Q(∅) = 1 (index 3). Any assignment of indices to the elements of Q results
in a trap. We call Q the trap family of Q.

Proposition 4. Let N be an order invariant and homogeneous parameterized
Petri net, let Q be a trap of an instance N (n), and let Q : 2P → [n] be the trap
family of Q. We have:

– If Q(∅) ≥ 1 and Q′ is obtained from Q by increasing the multiplicity of ∅,
then Q′ is also a trap family of another instance of N .

– For every S ∈ 2P , if Q(S) ≥ 2 and Q′ is obtained from Q by increasing the
multiplicity of S, then Q′ is also a trap family of another instance of N .

Computing Parameterized Invariants of Parameterized Petri Nets 157

Proposition 4 leads to a parameterization procedure for barrier crowds. Given
a trap Q of some instance N (n) and its trap family Q, consider all multisets
obtained from Q by applying the operations of Proposition 4. We call this set of
multisets the extended trap family of Q. Observe that Q represents a set of traps
of N (n), while the extended family represents a set of traps across all instances
N (n′) with n′ ≥ n.

Give an indexed trap T = 〈n,Q〉, we choose the formula ParTrapT(X) so
that its models correspond to the traps of the extended family of Q. For this,
we capture the minimal required multiplicities of 〈n,Q〉 by quantifying for every
S ⊆ P with Q(S) > 0 indices iS,1, . . . , iS,Q(S) for which precisely the places in
S are marked. Making all indices introduced this way pairwise distinct ensures
that any model of the formula at least covers the multiset Q. Additionally, we
can capture that the subset S of P which are marked in every other index are
chosen such that Proposition 4 ensures that we still obtain a trap.

ParTrapT(n,X) := ∃S⊆PiS,1, . . . , iS,Q(S) :

{⎛

⎝
∧

(S,k) 	=(S′,k′)

(iS,k �= iS′,k′)

⎞

⎠

∧ ∀j : j < n →
[

⎛

⎜
⎜
⎜
⎝

∨

S⊆P,k=1,...,Q(S)

⎛

⎜
⎜
⎜
⎝
j = iS,k ∧

⎛

⎜
⎜
⎜
⎝

∧

p∈S

j ∈ Xp

∧
∧

p∈P\S

j /∈ Xp

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

∨

⎛

⎜
⎜
⎜
⎝

⎛

⎝
∧

S⊆P,k=1,...,Q(S)

j �= iS,k

⎞

⎠ ∧
∨

∅	=S⊆P : Q(S)≥2
S=∅ : Q(S)≥1

⎛

⎜
⎜
⎜
⎝

∧

p∈S

j ∈ Xp

∧
∧

p∈P\S

j /∈ Xp

⎞

⎟
⎟
⎟
⎠

⎞

⎟
⎟
⎟
⎠

]}

.

We immediately get:

Theorem 3. Let N = 〈P,Tr〉 be a barrier crowd and let 〈n,Q〉 be a local
indexed trap of N (n). Then every model of the formula ParTrapT(n,X) defined
above is an indexed trap of N .

Remark 2. This theorem applies to all order invariant and homogeneous systems.
It is easy to see that order invariance and homogeneity of a given parameterized
net can be expressed in WS1S and verified automatically.

8 Experiments

We implemented the CEGAR loop and the parameterization techniques of
Sects. 6 and 7 in our tool ostrich. ostrich heavily relies on MONA as a WS1S-
solver. The results of our experiments are presented in Fig. 2. In the first two
columns the table reports the topology and the name of the system to be veri-
fied. The array topology is a linear topology where agents can refer existentially

158 J. Esparza et al.

or universally to agents with smaller or larger indices. Analogously to the other
topologies we derive a sound parameterization technique for traps, 1-BB sets,
and siphons. The rings are Dijsktra’s token ring for mutual exclusion [33] and
a model of the dining philosophers in which philosophers pick both forks simul-
taneously. For headed rings we consider Example 1 and a model of a message
passing leader election algorithm. The array is Burns’ mutual exclusion algo-
rithm [38]. The crowds are Dijkstra’s algorithm for mutual exclusion [20] and
models of cache-coherence protocols taken from [18]. Note that we check induc-
tiveness of the property; i.e., if it holds initially and there is no marking satisfying
the property and the current abstraction and reaching in a single step a mark-
ing which violates the property. Additionally, we include in the specification of
the parameterized Petri net a partition of the places P such that the places
of every index in every instance form a 1BB-set. Collectively, this ensures that
all examples are 1-bounded and yields invariants similar to (1), (2) for Exam-
ple 1. Since ostrich does not compute but only checks these invariants we do
not count them in Fig. 2 (leading to 3 semi-automatic invariants for Example 1
since we omit (1), and (2)). Moreover, these invariants already imply inductive-
ness of some safety properties; prominently deadlock-freedom for all considered
cache-coherence protocols.

The third column gives the time ostrich needs to initialize the analysis; this
includes verifying that the given parameterized Petri net is covered by 1BB-sets,
and that it indeed has the given topology. The fourth column gives the property
being checked. The specification of the cache coherence protocols consists of a
number of consistency properties, specific for each protocol. The legend “consis-
tency (x/y)” indicates that the specification consists of y properties, of which
ostrich was able to automatically prove the inductiveness of x. Column 5 gives
the time need to check the inductiveness the property (or, in the case of the
cache-coherence protocols, either find a marking which satisfies all constraints
imposed by 1BB-sets, traps or siphons, or prove the inductiveness of the prop-
erties together). Columns 6, 7, and 8 give the number of WS1S-formulas, each
corresponding to a parameterized 1BB-sets, trap, or siphon that are computed
by the CEGAR loop. Some of these WS1S-formulas have only one model, i.e.,
they correspond to a single trap, siphon, or 1BB-set of one instance. Such “arti-
facts” are needed when small instances (e.g., arrays of size 2) require ad-hoc
proofs that cannot be parameterized. In these cases the “real” number of para-
metric invariants is the result of subtracting the number of artifacts from the
total number. The last column reports the number of parameterized inductive
invariants obtained by the semi-automatic CEGAR loop. There the user is pre-
sented a series of counter examples to the inductiveness of the property. The
user can check for traps, siphons or 1BB-sets to disprove the counter example. If
the user then provides an invariant which proves inductive it is used to refine the
abstraction until no further counter example can be found. The response time
of ostrich in this setting is immediate which provides a nice user experience.
Dragon and MOESI are examples showing that the semi-automatic procedure

Computing Parameterized Invariants of Parameterized Petri Nets 159

can lead to proofs with fewer invariants. The last step of the automatic proce-
dure is to remove invariants until no invariant can be removed without obtaining
a counter example again.

For Example 1 ostrich automatically computes the following family of 1BB-
sets (additionally to the invariants (1) and (2)): (For readability we omit some
artifacts.)

2 ≤ n ∧ taken = think = ∅ ∧ wait = eat = {0, 1} ∧ free = {1}
3 ≤ n ∧ taken = wait = think = ∅ ∧ eat = {n − 1, 0} ∧ free = {0}
4 ≤ n ∧ taken = think = ∅ ∧ free = wait = {n − 1} ∧ eat = {n − 2,n − 1}

2 ≤ n ∧ ∃i : 1 < i < n− 2 ∧
(

taken = think = ∅ ∧ free = wait = {i ⊕n 1}
∧eat = {i, i ⊕n 1}

)

.

Topology Example
Init.

(ms)
Property

Check

(ms)
1BB-sets Traps Siphons

Semi-automatic

invariants

deadlock 40 1 (1) 0 (0) 0 (0)
Dijkstra ring 558

mutual exclusion 125 1 (1) 1 (1) 0 (0)
2

ring

atomic phil. 409 deadlock 79 1 (1) 0 (0) 0 (0) 4

lefty phil. 495 deadlock 294 7 (4) 0 (0) 0 (0) 3

not 0 and n− 1 leader 965 1 (0) 0 (0) 2 (1)headed ring
leader election 670

not two leaders – – – –
1

deadlock 16 0 (0) 0 (0) 0 (0)
array Burns 501

mutual exclusion 379 0 (0) 8 (7) 0 (0)
1

deadlock 88 2 (1) 0 (0) 0 (0)
Dijkstra 1830

mutual exclusion 1866 0 (0) 3 (1) 0 (0)
3

deadlock 15 0 (0) 0 (0) 0 (0)
Berkeley 544

consistency (1/3) 442 0 (0) 9 (1) 0 (0)
1

deadlock 19 0 (0) 0 (0) 0 (0)
Dragon 673

consistency (7/7) 2015 25 (5) 11 (2) 0 (0)
2

deadlock 15 0 (0) 0 (0) 0 (0)
Firefly 469

consistency (2/4) 617 0 (0) 14 (2) 0 (0)
1

deadlock 15 0 (0) 0 (0) 0 (0)
Illinois 490

consistency (2/2) 184 0 (0) 5 (1) 0 (0)
1

deadlock 14 0 (0) 0 (0) 0 (0)
MESI 407

consistency (2/2) 179 0 (0) 5 (1) 0 (0)
1

deadlock 14 0 (0) 0 (0) 0 (0)
MOESI 439

consistency (7/7) 1496 0 (0) 35 (6) 0 (0)
1

deadlock 14 0 (0) 0 (0) 0 (0)

crowd

Synapse 398
consistency (2/2) 18 0 (0) 0 (0) 0 (0)

1

Fig. 2. Experimental results of ostrich. The complete data is available at [44].

9 Conclusion

We have refined the approach to parameterized verification of systems with reg-
ular architectures presented in [14]. Instead of encoding the complete verifica-
tion question into large, monolithic WS1S-formula, our approach introduces a
CEGAR loop which also outputs an explanation of why the property holds in the

160 J. Esparza et al.

form of a typically small set of parameterized invariants (see Example 1). The
explanation helps to uncover false positives, where the verification succeeds only
because the system or the specification are incorrectly encoded in WS1S. It has
also helped to find a subtle bug in the implementation of [14] which hid unno-
ticed in the complexity of the monolithic formula. Additionally, our incremental
approach requires to check smaller WS1S-formulas, which often decreases the
verification time (cp. the verification of Dijkstra’s mutual exclusion algorithm
[14] in 10 s to currently 2 s).

On the other hand, seeing the abstraction helps one understand the analyzed
system. For example, we include in [44] a leader election algorithm for which the
parameterization techniques of ostrich are too coarse to establish the general
safety property of having always at most one leader. However, ostrich succeeds
to prove the special case that not agents 0 and n − 1 can become leader at
the same time. For this proof ostrich finds a family of siphons which hint to
a general inductive invariant of the system. Using the semi-automatic mode of
ostrich we can then verify this inductive invariant and, as a result of this, the
general safety property.

Data Availability Statement and Acknowledgements. This work has
received funding from the European Research Council(ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme under grant
agreement No 787367 (PaVeS).

The tool ostrich and associated files are available at [44]. The current ver-
sion is maintained at [30].

We thank the anonymous reviewers for their comments.

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.: General decidability theorems
for infinite-state systems. In: LICS, pp. 313–321. IEEE Computer Society (1996)

2. Abdulla, P.A., Delzanno, G., Henda, N.B., Rezine, A.: Regular model checking
without transducers (on efficient verification of parameterized systems). In: Grum-
berg, O., Huth, M. (eds.) TACAS 2007. LNCS, vol. 4424, pp. 721–736. Springer,
Heidelberg (2007). https://doi.org/10.1007/978-3-540-71209-1 56

3. Abdulla, P.A., Jonsson, B., Nilsson, M., Saksena, M.: A survey of regular model
checking. In: Gardner, P., Yoshida, N. (eds.) CONCUR 2004. LNCS, vol. 3170, pp.
35–48. Springer, Heidelberg (2004). https://doi.org/10.1007/978-3-540-28644-8 3

4. Abdulla, P.A., Sistla, A.P., Talupur, M.: Model checking parameterized systems.
Handbook of Model Checking, pp. 685–725. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-10575-8 21

5. Apt, K.R., Kozen, D.C.: Limits for automatic verification of finite-state concurrent
systems. Inf. Process. Lett. 22(6), 307–309 (1986)

6. Athanasiou, K., Liu, P., Wahl, T.: Unbounded-thread program verification using
thread-state equations. In: Olivetti, N., Tiwari, A. (eds.) IJCAR 2016. LNCS
(LNAI), vol. 9706, pp. 516–531. Springer, Cham (2016). https://doi.org/10.1007/
978-3-319-40229-1 35

https://doi.org/10.1007/978-3-540-71209-1_56
https://doi.org/10.1007/978-3-540-28644-8_3
https://doi.org/10.1007/978-3-319-10575-8_21
https://doi.org/10.1007/978-3-319-10575-8_21
https://doi.org/10.1007/978-3-319-40229-1_35
https://doi.org/10.1007/978-3-319-40229-1_35

Computing Parameterized Invariants of Parameterized Petri Nets 161

7. Außerlechner, S., Jacobs, S., Khalimov, A.: Tight cutoffs for guarded protocols
with fairness. In: Jobstmann, B., Leino, K.R.M. (eds.) VMCAI 2016. LNCS, vol.
9583, pp. 476–494. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49122-5 23

8. Baukus, K., Bensalem, S., Lakhnech, Y., Stahl, K.: Abstracting WS1S systems
to verify parameterized networks. In: Graf, S., Schwartzbach, M. (eds.) TACAS
2000. LNCS, vol. 1785, pp. 188–203. Springer, Heidelberg (2000). https://doi.org/
10.1007/3-540-46419-0 14

9. Baukus, K., Lakhnech, Y., Stahl, K.: Parameterized verification of a cache coher-
ence protocol: safety and liveness. In: Cortesi, A. (ed.) VMCAI 2002. LNCS, vol.
2294, pp. 317–330. Springer, Heidelberg (2002). https://doi.org/10.1007/3-540-
47813-2 22

10. Bensalem, S., Bozga, M., Nguyen, T.-H., Sifakis, J.: D-finder: a tool for composi-
tional deadlock detection and verification. In: Bouajjani, A., Maler, O. (eds.) CAV
2009. LNCS, vol. 5643, pp. 614–619. Springer, Heidelberg (2009). https://doi.org/
10.1007/978-3-642-02658-4 45

11. Bloem, R., et al.: Decidability of parameterized verification. Synth. Lect. Distrib.
Comput. Theory 6, 1–170 (2015)

12. Blondin, M., Esparza, J., Helfrich, M., Kučera, A., Meyer, P.J.: Checking qualita-
tive liveness properties of replicated systems with stochastic scheduling. In: Lahiri,
S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12225, pp. 372–397. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-53291-8 20

13. Blondin, M., Finkel, A., Haase, C., Haddad, S.: Approaching the coverability prob-
lem continuously. In: Chechik, M., Raskin, J.-F. (eds.) TACAS 2016. LNCS, vol.
9636, pp. 480–496. Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-
662-49674-9 28

14. Bozga, M., Esparza, J., Iosif, R., Sifakis, J., Welzel, C.: Structural invariants for
the verification of systems with parameterized architectures. TACAS 2020. LNCS,
vol. 12078, pp. 228–246. Springer, Cham (2020). https://doi.org/10.1007/978-3-
030-45190-5 13

15. Bozga, M., Iosif, R., Sifakis, J.: Checking deadlock-freedom of parametric
component-based systems. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS,
vol. 11428, pp. 3–20. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17465-1 1

16. Browne, M., Clarke, E., Grumberg, O.: Reasoning about networks with many iden-
tical finite state processes. Inf. Comput. 81(1), 13–31 (1989)

17. Chen, Y., Hong, C., Lin, A.W., Rümmer, P.: Learning to prove safety over param-
eterised concurrent systems. In: FMCAD, pp. 76–83 (2017)

18. Delzanno, G.: Automatic verification of parameterized cache coherence protocols.
In: CAV, pp. 53–68 (2000). https://doi.org/10.1007/10722167 8

19. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge University Press, Cam-
bridge (2005)

20. Dijkstra, E.W.: Cooperating sequential processes. In: Hansen, P.B. (ed.) The Origin
of Concurrent Programming, pp. 65–138. Springer, New York (2002). https://doi.
org/10.1007/978-1-4757-3472-02

21. Emerson, E.A., Kahlon, V.: Reducing model checking of the many to the few. In:
McAllester, D. (ed.) CADE 2000. LNCS (LNAI), vol. 1831, pp. 236–254. Springer,
Heidelberg (2000). https://doi.org/10.1007/10721959 19

22. Emerson, E.A., Namjoshi, K.S.: Reasoning about rings. In: POPL, pp. 85–94 (1995)

https://doi.org/10.1007/978-3-662-49122-5_23
https://doi.org/10.1007/978-3-662-49122-5_23
https://doi.org/10.1007/3-540-46419-0_14
https://doi.org/10.1007/3-540-46419-0_14
https://doi.org/10.1007/3-540-47813-2_22
https://doi.org/10.1007/3-540-47813-2_22
https://doi.org/10.1007/978-3-642-02658-4_45
https://doi.org/10.1007/978-3-642-02658-4_45
https://doi.org/10.1007/978-3-030-53291-8_20
https://doi.org/10.1007/978-3-662-49674-9_28
https://doi.org/10.1007/978-3-662-49674-9_28
https://doi.org/10.1007/978-3-030-45190-5_13
https://doi.org/10.1007/978-3-030-45190-5_13
https://doi.org/10.1007/978-3-030-17465-1_1
https://doi.org/10.1007/978-3-030-17465-1_1
https://doi.org/10.1007/10722167_8
https://doi.org/10.1007/978-1-4757-3472-02
https://doi.org/10.1007/978-1-4757-3472-02
https://doi.org/10.1007/10721959_19

162 J. Esparza et al.

23. Esparza, J.: Decidability and complexity of petri net problems—an introduction.
In: Reisig, W., Rozenberg, G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 374–428.
Springer, Heidelberg (1998). https://doi.org/10.1007/3-540-65306-6 20

24. Esparza, J.: Parameterized verification of crowds of anonymous processes. In:
Dependable Software Systems Engineering, pp. 59–71. IOS Press (2016)

25. Esparza, J., Finkel, A., Mayr, R.: On the verification of broadcast protocols. In:
LICS, pp. 352–359. IEEE Computer Society (1999)

26. Esparza, J., Ledesma-Garza, R., Majumdar, R., Meyer, P., Niksic, F.: An SMT-
based approach to coverability analysis. In: Biere, A., Bloem, R. (eds.) CAV 2014.
LNCS, vol. 8559, pp. 603–619. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08867-9 40

27. Esparza, J., Melzer, S.: Verification of safety properties using integer programming:
beyond the state equation. Formal Methods Syst. Des. 16(2), 159–189 (2000)

28. Esparza, J., Meyer, P.J.: An SMT-based approach to fair termination analysis. In:
FMCAD, pp. 49–56. IEEE (2015)

29. Esparza, J., Raskin, M., Welzel, C.: Computing parameterized invariants of param-
eterized petri nets (2021). https://arxiv.org/abs/2103.10280

30. Esparza, J., Raskin, M., Welzel, C.: Computing parameterized invariants of param-
eterized petri nets (2021). https://gitlab.lrz.de/i7/ostrich

31. Finkel, A., Haddad, S., Khmelnitsky, I.: Minimal coverability tree construction
made complete and efficient. FoSSaCS 2020. LNCS, vol. 12077, pp. 237–256.
Springer, Cham (2020). https://doi.org/10.1007/978-3-030-45231-5 13

32. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere!. Theor.
Comput. Sci. 256(1–2), 63–92 (2001)

33. Fribourg, L., Olsén, H.: Reachability sets of parameterized rings as regular lan-
guages. Electr. Notes Theor. Comput. Sci. 9, 40 (1997). https://doi.org/10.1016/
S1571-0661(05)80427-X

34. Geffroy, T., Leroux, J., Sutre, G.: Occam’s razor applied to the petri net cover-
ability problem. Theor. Comput. Sci. 750, 38–52 (2018)

35. German, S.M., Sistla, A.P.: Reasoning about systems with many processes. J. ACM
39(3), 675–735 (1992)

36. Henriksen, J.G., et al.: Mona: monadic second-order logic in practice. In: Brinksma,
E., Cleaveland, W.R., Larsen, K.G., Margaria, T., Steffen, B. (eds.) TACAS 1995.
LNCS, vol. 1019, pp. 89–110. Springer, Heidelberg (1995). https://doi.org/10.1007/
3-540-60630-0 5

37. Jacobs, S., Sakr, M.: Analyzing guarded protocols: better cutoffs, more systems,
more expressivity. VMCAI 2018. LNCS, vol. 10747, pp. 247–268. Springer, Cham
(2018). https://doi.org/10.1007/978-3-319-73721-8 12

38. Jensen, H.E., Lynch, N.A.: A proof of burns N -process mutual exclusion algorithm
using abstraction. In: Steffen, B. (ed.) TACAS 1998. LNCS, vol. 1384, pp. 409–423.
Springer, Heidelberg (1998). https://doi.org/10.1007/BFb0054186

39. Kesten, Y., Maler, O., Marcus, M., Pnueli, A., Shahar, E.: Symbolic model checking
with rich assertional languages. Theor. Comput. Sci 256(1), 93–112 (2001)

40. Murata, T.: Petri nets: properties, analysis and applications. Proc. IEEE 77(4),
541–580 (1989)

41. Reisig, W.: Understanding Petri Nets - Modeling Techniques, Analysis Meth-
ods, Case Studies. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-33278-4

https://doi.org/10.1007/3-540-65306-6_20
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1007/978-3-319-08867-9_40
https://arxiv.org/abs/2103.10280
https://gitlab.lrz.de/i7/ostrich
https://doi.org/10.1007/978-3-030-45231-5_13
https://doi.org/10.1016/S1571-0661(05)80427-X
https://doi.org/10.1016/S1571-0661(05)80427-X
https://doi.org/10.1007/3-540-60630-0_5
https://doi.org/10.1007/3-540-60630-0_5
https://doi.org/10.1007/978-3-319-73721-8_12
https://doi.org/10.1007/BFb0054186
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/978-3-642-33278-4

Computing Parameterized Invariants of Parameterized Petri Nets 163

42. Reynier, P.-A., Servais, F.: On the computation of the minimal coverability set
of petri nets. In: Filiot, E., Jungers, R., Potapov, I. (eds.) RP 2019. LNCS, vol.
11674, pp. 164–177. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
30806-3 13

43. The MONA Project: MONA. https://www.bricks.dk/mona
44. Welzel, C., Esparza, J., Raskin, M.: Ostrich (2020). https://doi.org/10.5281/

zenodo.4499091
45. Wimmel, H., Wolf, K.: Applying CEGAR to the Petri net state equation. Log.

Methods Comput. Sci 8(3), (2012)

https://doi.org/10.1007/978-3-030-30806-3_13
https://doi.org/10.1007/978-3-030-30806-3_13
https://www.bricks.dk/mona
https://doi.org/10.5281/zenodo.4499091
https://doi.org/10.5281/zenodo.4499091

On the Combination of Polyhedral
Abstraction and SMT-Based Model

Checking for Petri Nets

Nicolas Amat(B) , Bernard Berthomieu , and Silvano Dal Zilio

LAAS-CNRS, Université de Toulouse, CNRS, Toulouse, France
namat@laas.fr

Abstract. We define a method for taking advantage of net reductions
in combination with a SMT-based model checker. We prove the correct-
ness of this method using a new notion of equivalence between nets that
we call polyhedral abstraction. Our approach has been implemented in a
tool, named SMPT, that provides two main procedures: Bounded Model
Checking (BMC) and Property Directed Reachability (PDR). Each pro-
cedure has been adapted in order to use reductions and to work with
arbitrary Petri nets. We tested SMPT on a large collection of queries
used during the 2020 edition of the Model Checking Contest. Our exper-
imental results show that our approach works well, even when we only
have a moderate amount of reductions.

1 Introduction

A significant focus in model checking research is finding algorithmic solutions to
avoid the “state explosion problem”, that is finding ways to analyse models that
are out of reach from current methods. To overcome this problem, it is often
useful to rely on symbolic representation of the state space (like with decision
diagrams) or on an abstraction of the problem, for instance with the use of
logical approaches like SAT solving. We can also benefit from optimizations
related to the underlying model. When analysing Petri nets, for instance, a
valuable technique relies on the transformation and decomposition of nets, a
method pioneered by Berthelot [5] and known as structural reduction.

We recently proposed a new abstraction technique based on reductions [6,7].
The idea is to compute reductions of the form (N,E,N ′), where: N is an initial
net (that we want to analyse); N ′ is a residual net (hopefully simpler than N);
and E is a system of linear equations. The idea is to preserve enough information
in E so that we can rebuild the reachable markings of N knowing only the ones
of N ′. In a nutshell, we capture and abstract the effect of reductions using a set
of linear constraints between the places of N and N ′.

In this paper, we show that this approach works well when combined with
SMT-based verification. In particular, it provides an elegant way to integrate
reductions into known verification procedures. To support this statement, we

c© Springer Nature Switzerland AG 2021
D. Buchs and J. Carmona (Eds.): PETRI NETS 2021, LNCS 12734, pp. 164–185, 2021.
https://doi.org/10.1007/978-3-030-76983-3_9

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76983-3_9&domain=pdf
http://orcid.org/0000-0002-5969-7346
http://orcid.org/0000-0001-9895-0052
http://orcid.org/0000-0002-6002-2696
https://doi.org/10.1007/978-3-030-76983-3_9

Combining SMT and Reductions for Checking Petri Nets 165

provide a full theoretical framework based on the definition of a new equivalence-
relation (Sect. 3) and show how to use it for checking safety and invariant prop-
erties on nets (Sect. 4).

We have previously applied this technique in a symbolic model checker, called
Tedd, that uses Set Decision Diagrams [33] in order to generate an abstract
representation for the state space of a net N . In practice, we can often reduce
a Petri net N with n places (from a high dimensional space) into a residual
net N ′ with far fewer places, say n′ (in a lower-dimensional space). Hence, with
our approach, we can represent the state space of N as the “inverse image”,
by the linear system E, of a subset of vectors of dimension n′. This technique
can result in a very compact representation of the state space. We observed this
effect during the recent editions of the Model Checking Contest (MCC) [2], where
Tedd won the competition for the State Space category. In this paper, we show
that we can benefit from the same “dimensionality reduction” effect when using
automatic deduction procedures. Actually, since we are working with (possibly
unbounded) vectors of integers, we need to consider SMT instead of SAT solvers.
We show that it is enough to use solvers for the theory of Quantifier-Free formulas
on Linear Integer Arithmetic, what is known as QF-LIA in SMT-LIB [4].

To adapt our approach with the theory of SMT solving, we define an
abstraction based on Boolean combinations of linear constraints between inte-
ger variables (representing the marking of places). This results in a new relation
N �E N ′, which is the counterpart of the tuple (N,E,N ′) in a SMT setting. We
named this relation a polyhedral abstraction in reference to “polyhedral models”
used in program optimization and static analysis [8,20]. (Like in these works,
we propose an algebraic representation of the relation between a model and its
state space based on the sets of solutions to systems of linear equations.) One of
our main results is that, given a relation N �E N ′, we can derive a formula Ẽ
such that F is an invariant for N if and only if Ẽ ∧ F is an invariant for the net
N ′. Since the residual net may be much simpler than the initial one, we expect
that checking the invariant Ẽ ∧F on N ′ is more efficient than checking F on N .

Our approach has been implemented and computing experiments show that
reductions are effective on a large benchmark of queries. We provide a prototype
tool, called SMPT, that includes an adaptation of two procedures, Bounded
Model Checking (BMC) [9] and Property Directed Reachability (PDR) [13,14].
Each of these methods has been adapted in order to use reductions and to
work with arbitrary Petri nets. We tested SMPT on a large collection of queries
(13 265 test cases) used during the 2020 edition of the Model Checking Contest.
Our experimental results show that our approach works well, even when we only
have a moderate amount of reductions.

Outline and Contributions. This paper summarises the key ideas and results
of [1], to which we refer the reader for full details. The paper is organized as
follows. In Sect. 3, we define our notion of polyhedral abstraction and prove
several of its properties. This definition relies on a presentation of Petri net
semantics that emphasizes the relationship with the QF-LIA theory (Sect. 2).

166 N. Amat et al.

We use these results in Sect. 4 to describe our adaptation of general SMT-based
algorithms with reductions and prove their correctness. In Sect. 5 we describe
our adaptation of BMC and PDR with reductions. Before concluding, we report
on experimental results on an extensive collection of nets and queries.

2 Petri Nets and Linear Arithmetic Constraints

A Petri net N is a tuple (P, T,pre,post) where P = {p1, . . . , pn} is a finite set
of places, T = {t1, . . . , tk} is a finite set of transitions (disjoint from P), and
pre: T → (P → N) and post: T → (P → N) are the pre- and post-condition
functions (also called the flow functions of N). A state m of a net, also called a
marking, is a mapping m : P → N which assigns a number of tokens, m(p), to
each place p in P . A marked net (N,m0) is a pair composed from a net and an
initial marking m0. In the following, we will often consider that each transition
is associated with a label (a symbol taken from an alphabet Σ). In this case, we
assume that a net is associated with a labeling function l : T → Σ ∪ {τ}, where
τ is a special symbol for the silent action name. Every net has a default labeling
function lN such that Σ = T and lN (t) = t for every transition t ∈ T .

A transition t ∈ T is enabled at marking m ∈ N
P when m(p) ≥ pre(t, p) for

all places p in P . (We can also simply write m ≥ pre(t), where ≥ stands for
the component-wise comparison of markings.) A marking m′ ∈ N

P is reachable
from a marking m ∈ N

P by firing transition t, denoted m
t−→m′, if: (1) transition

t is enabled at m; and (2) m′ = m−pre(t)+post(t). By extension, we say that
a firing sequence σ = t1 . . . tn ∈ T ∗ can be fired from m, denoted m

σ=⇒ m′, if
there exist markings m0, . . . ,mn such that m = m0, m′ = mn and mi

ti+1−−→mi+1

for all i < n.
We denote R(N,m) the set of markings reachable from m in N . A marking

m is k-bounded when each place has at most k tokens; property
∧

p∈P m(p) ≤ k
is true. Likewise, a marked Petri net (N,m0) is bounded when there is k such
that all reachable markings are k-bounded. A net is safe when it is 1-bounded.
In our work, we consider generalized Petri nets (in which net arcs may have
weights larger than 1) and we do not restrict ourselves to bounded nets.

We can extend the notion of labels to sequences of transitions in a straight-
forward way. Given a relabeling function, l, we can extend it into a function from
T � → Σ� such that l(ε) = ε, l(τ) = ε and l(σ t) = l(σ) l(t). Given a sequence of
labels σ in Σ�, we write (N,m) σ=⇒ (N,m′) when there is a firing sequence � in
T � such that (N,m)

�
=⇒ (N,m′) and σ = l(�). We say in this case that σ is an

observable sequence of the marked net (N,m).
We use the standard graphical notation for nets, where places are depicted

as circles and transitions as squares. With the net displayed in Fig. 1 (left), the
initial marking is m1 � p0∗5 p6∗4 (only 5 and 4 tokens in places p0 and p6). We
have m1

σ=⇒ m′
1 with σ � t0 t0 t1 t1 t2 t3 t4 and m′

1 � p0∗3 p2∗1 p3∗1 p6∗3; and
therefore m1

a ab c====⇒ m′
1.

We can define many properties on the markings of a net N using Boolean
combinations of linear constraints with integer variables. Assume that we have

Combining SMT and Reductions for Checking Petri Nets 167

p0

p1 p2

p3

p4

p5

p6

t0 a

t1

τ

t2

τ

t3 b

t4

c

t5

a a2

t7

cp6

t6

bp0

Fig. 1. An example of Petri net, M1 (left), and one of its polyhedral abstraction, M2

(right), with EM � (p5 = p4) ∧ (a1 = p1 + p2) ∧ (a2 = p3 + p4) ∧ (a1 = a2).

a marked net (N,m0) with set of places P = {p1, . . . , pn}. We can associate
a marking m over P to the formula m(x1, . . . , xn), below. In this context, an
equation xi = k means that there must be k tokens in place pi. Formula m is
obviously a conjunction of literals, what is called a cube in [13].

m(x1, . . . , xn) � (x1 = m(p1)) ∧ · · · ∧ (xk = m(pk)) (1)

In the remainder, we use the notation φ(�x) for the declaration of a formula φ
with variables in �x, instead of the more cumbersome notation φ(x1, . . . , xn). We
also simply use φ(�v) instead of φ{x1 ← v1} . . . {xn ← vn}, for the substitution
of �x with �v in φ. We should often use place names as variables (or parameters)
and use �p for the vector (p1, . . . , pn). We also often use m instead of m(�p).

Definition 1 (Models of a Formula). We say that a marking m is a model
of (or m satisfies) property φ, denoted m |= φ, when formula φ(�x) ∧ m(�x) is
satisfiable. In this case φ may use variables that are not necessarily in P .

We can use this approach to reframe many properties on Petri nets. For instance
the notion of safe markings, described previously: a marking m is safe when
m |= SAFE1(�x), where SAFEk(�x) �

∧
i∈1..n(xi ≤ k).

Likewise, the property that transition t is enabled corresponds to formula
ENBLt(�x) �

∧
i∈1..n(xi ≥ pre(t, pi)), in the sense that t is enabled at m when

m |= ENBLt(�x). Another example is the definition of deadlocks, which are char-
acterized by formula DEAD(�x) �

∧
t∈T ¬ENBLt(�x). We give other examples in

Sect. 4, when we encode the transition relation of a Petri net using formulas.
In our work, we focus on the verification of safety properties on the reachable

markings of a marked net (N,m0). Examples of properties that we want to
check include: checking if some transition t is enabled (commonly known as
quasi-liveness); checking if there is a deadlock; checking whether some invariant
between place markings is true; . . .

Definition 2 (Invariant and Reachable Properties). Property φ is an
invariant on (N,m0) if and only if we have m |= φ for all m ∈ R(N,m0).
We say that φ is reachable when there exists m ∈ R(N,m0) such that m |= φ.

168 N. Amat et al.

In our experiments, we consider the two main kinds of reachability formulas
used in the MCC: AG φ (true only when φ is an invariant), and EFφ (true when
φ is reachable), where φ is a Boolean combination of atomic properties (it has
no modalities).

3 Polyhedral Abstraction and E-Equivalence

We define a new notion, called E-abstraction equivalence, that is used to state a
correspondence between the set of reachable markings of two Petri nets “mod-
ulo” some system of linear equations, E. Basically, we have that (N1,m1) is
E-equivalent to (N2,m2) when, for every sequence m2

σ2=⇒ m′
2 in N2, there must

exist a sequence m1
σ1=⇒m′

1 in N1 such that E ∧m′
1 ∧m′

2 is satisfiable (and recip-
rocally). Therefore, knowing E, we can compute the reachable markings of N1

from those of N2, and vice versa. We also ask for the observable sequences, σ1

and σ2 in this case, to be equal. As a result, we will prove that our equivalence
is also a congruence.

We can illustrate these notions using the two nets M1,M2 in Fig. 1, we have
that m′

1 � p0∗3 p2∗1 p3∗1 p6∗3 is reachable in M1 and EM ∧ m′
1 entails m′

1 ∧
(a1 = 1)∧(a2 = 1), which means that marking m′

2 � a2∗1 p0∗3 p6∗3 is reachable
in M2. Conversely, we have several markings (exactly 4) in M1 that corresponds
to the constraint EM ∧ m′

2 ≡ (p5 = p4) ∧ (p1 + p2 = 1) ∧ (p3 + p4 = 1) ∧ m′
2.

All these markings are reachable in M1 using the same observable sequence
aabc. More generally, each marking m′

2 of N2 can be associated to a convex
set of markings of N1, defined as the set of positive integer solutions of E ∧ m′

2.
Moreover, these sets form a partition of R(N1,m1). This motivates our choice
of calling this relation a polyhedral abstraction.

While our approach does not dictate a particular method for finding pairs of
equivalent nets, we rely on an automatic approach based on the use of structural
net reductions. When the net N1 can be reduced, we will obtain a resulting net
(N2) and a condition (E) such that N2 is a polyhedral abstraction of N1. In this
case, E will always be expressed as a conjunction of equality constraints between
linear combinations of integer variables (the marking of places). This is why we
should often use the term reduction equations when referring to E. Our goal is
to transform any reachability problem on the net N1 into a reachability problem
on the (reduced) net N2, which is typically much easier to check.

Solvable Systems and E-Equivalence. Before defining our equivalence more
formally, we need to introduce some constraints on the condition, E, used to
correlate the markings of two different nets. We say that a pair of markings
(m1,m2) are compatible (over respective sets of places P1 and P2) when they
have equal marking on their shared places, meaning m1(p) = m2(p) for all p
in P1 ∩ P2. This is a necessary and sufficient condition for formula m1 ∧ m2 to
be satisfiable. When this is the case, we denote m1 m2 the unique marking in
(P1 ∪ P2) such that (m1 m2)(p) = m1(p) if p ∈ P1 and (m1 m2)(p) = m2(p)
otherwise. Hence, with our conventions, m1 m2 ⇔ m1 ∧ m2.

Combining SMT and Reductions for Checking Petri Nets 169

In the following we ask that condition E be solvable for N1, N2, meaning that
for all reachable marking m1 in N1 there must exist at least one marking m2 of
N2, compatible with m1, such that m1 m2 |= E (see condition A2). While this
property is not essential for most of our results, it simplifies our presentation and
it will always be true for the reduction equations generated with our method.
On the other hand, we do not prohibit to use variables in E that are not in
P1 ∪ P2. Actually, such a situation will often occur in practice, when we start to
chain several reductions.

Definition 3 (E-Abstraction Equivalence). Assume N1, N2 are two Petri
nets with respective sets of places P1, P2 and labeling functions l1, l2, over the
same alphabet Σ. We say that the marked net (N2,m2) is an E-abstraction of
(N1,m1), denoted (N1,m1) �E (N2,m2), if and only if:

(A1) the initial markings are compatible with E, meaning m1 m2 |= E.
(A2) for all observation sequences σ ∈ Σ� such that (N1,m1)

σ=⇒ (N1,m
′
1) then

there is at least one marking m′
2 ∈ R(N2,m2) such that m′

1 m′
2 |= E (we

say E solvable), and for all markings m′
2 over P2, we have that m′

1 m′
2 |= E

implies (N2,m2)
σ=⇒ (N2,m

′
2).

We say that (N1,m1) is E-equivalent to (N2,m2), denoted (N1,m1) �E

(N2,m2), when we have both (N1,m1) �E (N2,m2) and (N2,m2) �E (N1,m1).

Notice that condition (A2) is defined only for sequences starting from the
initial marking of N1. Hence the relation is usually not true on every pair of
matching markings; it is not a bisimulation.

By definition, relation �E is symmetric. We deliberately use a “comparison
symbol” for our equivalence, �, in order to stress the fact that N2 should be a
reduced version of N1. In particular, we expect that |P2| ≤ |P1|.

Basic Properties of Polyhedral Abstraction. We prove that we can use
E-equivalence to check the reachable markings of N1 simply by looking at the
reachable markings of N2. We give a first property that is useful in the context of
bounded model checking, when we try to find a counter-example to a property
by looking at firing sequences with increasing length. Our second property is
useful for checking invariants, and is at the basis of our implementation of the
PDR method for Petri nets.

Lemma 1 (Bounded Model Checking). Assume (N1,m1) �E (N2,m2).
Then for all m′

1 in R(N1,m1) there is m′
2 in R(N2,m2) such that m′

1 m′
2 |= E.

Proof. Since m′
1 is reachable, there must be a firing sequence σ1 in N1 such that

(N1,m1)
σ1=⇒ (N1,m

′
1). By condition (A2), there must be some marking m′

2 over
P2, compatible with m′

1, such that m′
1 m′

2 |= E and (N2,m2)
σ2=⇒ (N2,m

′
2)

(for some firing sequence σ2). Therefore we have m′
2 reachable in N2 such that

m′
1 m′

2 |= E. ��

170 N. Amat et al.

Lemma 1 can be used to find a counter-example m′
1, to some property F in

N1, just by looking at the reachable markings of N2. Indeed, it is enough to find
a marking m′

2 reachable in N2 such that m′
2 |= E ∧¬F . This is the result we use

in our implementation of the BMC method.
Our second property can be used to prove that every reachable marking of N2

can be traced back to at least one marking of N1 using the reduction equations.
(While this mapping is surjective, it is not a function, since a state in N1 could
be associated with multiple states in N2.)

Lemma 2 (Invariance Checking). Assume (N1,m1) �E (N2,m2). Then
for all pairs of markings m′

1,m
′
2 over N1, N2 such that m′

1 m′
2 |= E and m′

2 ∈
R(N2,m2) it is the case that m′

1 ∈ R(N1,m1).

Proof. Take m′
1,m

′
2 a pair of markings in N1, N2 such that m′

1 m′
2 |= E and

m′
2 ∈ R(N2,m2). Hence there is a firing sequence σ2 such that (N2,m2)

σ2=⇒
(N2,m

′
2). By condition (A2), since m′

1m′
2 |= E, there must be a firing sequence

in N1, say σ1, such that (N1,m1)
σ1=⇒ (N1,m

′
1). Hence m′

1 ∈ R(N1,m1). ��
Using Lemma 2, we can easily extract an invariant on N1 from an invariant

on N2. Basically, if property E ∧ F is an invariant on N2 (where F is a formula
whose variables are in P1) then we can prove that F is an invariant on N1. This
property (the invariant conservation theorem of Sect. 4) ensures the soundness
of the model checking technique implemented in our tool.

Next we prove that polyhedral abstractions are closed by synchronous com-
position, relabeling, and chaining. Before defining these operations, we start by
describing sufficient conditions in order to safely compose equivalence relations.
The goal here is to avoid inconsistencies that could emerge if we inadvertently
reuse the same variable in different reduction equations.

The fresh variables in an equivalence statement EQ : (N1,m1) �E (N2,m2)
are the variables occurring in E but not in P1 ∪ P2. (These variables can be
safely “alpha-converted” in E without changing any of our results.) We say that
a net N3 is compatible with respect to EQ when (P1 ∪ P2) ∩ P3 = ∅ and there
are no fresh variables of EQ that are also places in P3. Likewise we say that the
equivalence statement EQ′ : (N2,m2) �E′ (N3,m3) is compatible with EQ when
P1 ∩ P3 ⊆ P2 and the fresh variables of EQ and EQ′ are disjoint.

In this section we rely on the classical synchronous product operation between
labeled Petri nets [28]. Let N1 and N2 be two labeled Petri nets with respective
sets of places P1, P2 and with labeling functions l1 and l2 on the respective
alphabets Σ1 and Σ2. We can assume, without loss of generality, that the sets P1

and P2 are disjoint. We denote N1‖N2 the synchronous product between N1 and
N2. Since the places in N1 and N2 are disjoint, we can always see a marking m in
N1‖N2 as the disjoint union of two markings m1,m2 from N1, N2. In this case we
simply write m = m1‖m2. More generally, we extend this product operation to
marked nets and write (N1,m1)‖(N2,m2) for the marked net (N1‖N2,m1‖m2).

Another standard operation on labeled Petri net is relabeling, denoted as
N [a/b], that apply a substitution to the labeling function of a net. Assume l is the
labeling function over the alphabet Σ. We denote l[a/b] the labeling function on

Combining SMT and Reductions for Checking Petri Nets 171

(Σ\{a})∪{b} such that l[a/b](t) = b when l(t) = a and l[a/b](t) = l(t) otherwise.
Then N [a/b] is the same as net N but equipped with labeling function l[a/b].
Relabeling has no effect on the marking of a net. The relabeling law is true even
in the case where b is the silent action τ . In this case we say that we hide action
a from the net.

Theorem 1 (E-Equivalence is a Congruence). Assume we have two
compatible equivalence statements (N1,m1) �E (N2,m2) and (N2,m2) �E′

(N3,m3), and that M is compatible with respect to these equivalences, then:

– (N1,m1)‖(M,m) �E (N2,m2)‖(M,m).
– (N1,m1) �E,E′ (N3,m3).
– (N1[a/b],m1) �E (N2[a/b],m2) and (N1[a/τ],m1) �E (N2[a/τ],m2).

Proof (sketch). The result for the first composition law derives from the fact
that we can always compute a unique pair of firing sequences for N1,M from a
firing sequence of N1‖M . The proof for the other laws are similar, see [1]. ��

The composition laws stated in Theorem 1 are useful to build larger equiva-
lences from simpler axioms (reductions rules). We show some examples of reduc-
tions in the next paragraph and how they occur in the example of Fig. 1.

Deriving E-Equivalences Using Reductions. We can compute net reduc-
tions by reusing a tool, called Reduce, that was developed in our previous
work [7]. The tool takes a marked Petri net as input and returns a reduced
net and a sequence of linear equations. For example, given the net M1 of Fig. 1,
Reduce returns net M2 and equations (p5 = p4), (a1 = p1 + p2), (a2 = p3 + p4),
and (a1 = a2), that corresponds to formula EM in Fig. 1. The tool works by
applying successive reduction rules, in a compositional way. We give an exam-
ple of such rule in Fig. 2 (above), which states that we can fuse places inside a
“deterministic sequence” of transitions. This is one of the many agglomeration
rules defined in [7] and also one of the original rules found in [5].

It is possible to prove that each reduction step computed by Reduce, from
a net (Mi,mi) to (Mi+1,mi+1) with equations Ei, is such that (Mi,mi) �Ei

(Mi+1,mi+1). Therefore, by Theorem 1, the results computed by Reduce always
translate into valid polyhedral abstractions.

We can look at our running example to explain the inner working of Reduce.
It is always safe to remove a redundant place, e.g. a place with the same pre and
post relations than another one. This is the case with places p4, p5 (see Fig. 2).
Redundant places can sometimes be found by looking at the structure of the
net, but our tool can also find more elaborate occurrences of redundant places
by solving an integer linear programming problem [30].

After the removal of p5, we are left with a residual net similar to the one
in the second equivalence of Fig. 2. In this case, we can use our agglomeration
rules to simplify places p1 and p3. Similar situations, where we can aggregate
several places together, can be found by searching patterns in the net. After
this step (introducing two new places a1 and a2), we find a new opportunity

172 N. Amat et al.

p

q

a

t

τc

b

�a=p+q

a

a

c

b

p0

p1 p2

p3

p4

p5

p6

t0 a

t1

τ

t2

τ

t3 b

t4

c

�p5=p4

p0

p1 p2

p3

p4

p6

t0 a

t1

τ

t5

τ

t6 b

t4

c

p0

p1 p2

p3

p4

p6

t0 a

t1

τ

t5

τ

t6 b

t4

c

�E′
p0

p6

t7 a

a1

a2

t8 b

t9

c

p0

p6

t7 a

a1

a2

t8 b

t9

c

�a1=a2

p0

p6

t10 a

a2

t11 b

t9

c

Fig. 2. Example of basic reduction rule for agglomerating places (above), and sequence
of three reductions (below) leading from the net M1 to M2 from Fig. 1, with E′ � (a1 =
p1 + p2) ∧ (a2 = p3 + p4).

to reduce a pair of redundant places, (a1, a2). Besides these two main kinds
of reduction rules (redundancy and agglomeration), the Reduce tool can also
identify other opportunities for reductions. For instance specific structural or
behavioural restrictions, such as nets that are marked graphs or other cases
where the set of reachable markings is exactly defined by the solutions of the
state equation [24].

In conclusion, we can use Reduce to compute polyhedral abstractions auto-
matically. In the other direction, we can use our notion of equivalence to prove
the correctness of new reduction patterns that could be added in the tool. While
it is not always possible to reduce the complexity of a net using this approach, we
observed in our experiments (Sect. 6) that, on a benchmark suite that includes
almost 1 000 instances of nets, about half of them can be reduced by a factor of
more than 30%.

Combining SMT and Reductions for Checking Petri Nets 173

4 SMT-Based Model Checking Using Abstractions

We introduce a general method for combining polyhedral abstraction with SMT-
based model checking procedures. Assume we have (N1,m1) �E (N2,m2), where
the nets N1, N2 have sets of places P1, P2 respectively. In the following, we use
�p1 � (p11, . . . , p

1
k) and �p2 � (p21, . . . , p

2
l) for the places in P1 and P2. We also

consider (disjoint) sequences of variables, �x and �y, ranging over (the places of)
N1 and N2. With these notations, we denote Ẽ(�x, �y) the formula obtained from
E where place names in N1 are replaced with variables in �x, and place names
in N2 are replaced with variables in �y. When we have the same place in both
nets, say p1i = p2j , we also add the constraint (xi = yj) to Ẽ in order to avoid
shadowing variables. (Remark that Ẽ(�p1, �p2) is equivalent to E, since equalities
xi = yj become tautologies in this case.)

Ẽ(�x, �y) � E{�p1 ← �x}{�p2 ← �y} ∧
∧

{(i,j)|p1
i=p2

j}
(xi = yj) (2)

Given a formula F , we denote fv(F) the set of free variables contained in it.
Assume F1 is a property that we want to study on N1, without loss of generality
we can enforce the condition (fv(F1) \ P1) ∩ (fv(E) \ P1) = ∅ (meaning we
can always rename the variables in F1 and E that are not places in N1). This
condition ensures that the studied property on the initial net does not contain
any new variable introduced during the reduction.

Definition 4 (E-Transform Formula). Assume (N1,m1) �E (N2,m2) and
take F1 a property with variables in P1 such that (fv(F1)\P1)∩ (fv(E)\P1) = ∅.
Formula F2(�y) � Ẽ(�x, �y) ∧ F1(�x) is the E-transform of F1.

The following property states that, to check an invariant F1 on the reachable
markings of N1, it is enough to check the corresponding E-transform formula F2

on the reachable markings of N2.

Theorem 2 (Invariant Conservation). Assume (N1,m1) �E (N2,m2) and
that F2(�y) is the E-transform of formula F1 on N1. Then F1 is an invariant on
N1 if and only if F2(�p2) is an invariant on N2.

Proof. Assume (N1,m1) �E (N2,m2) and property F1 is an invariant on N1.
Consider m′

2 a reachable marking in N2. By definition of E-abstraction, we have
at least one reachable marking m′

1 in N1 such that m′
1 m′

2 |= E. Since F1 is
an invariant on N1 we have m′

1 |= F1. The condition m′
1 m′

2 |= E is equivalent
to m′

1 ∧ m′
2 ∧ E satisfiable. By definition we have Ẽ(�p1, �p2) ≡ E, which implies

m′
1 ∧ m′

2 ∧ Ẽ(�p1, �p2) ∧ F1(�p1) satisfiable, since the only variables that are both
in F1 and E must also be in N1. Hence, m′

2 satisfies the E-transform formula of
F1. The proof is similar in the other direction. ��

Since F1 invariant on N1 is equivalent to ¬F1 not reachable, we can directly
infer an equivalent conservation theorem for reachability: to find a model of F1

in N1, it is enough to find a model for F1(�p1) ∧ Ẽ(�p1, �p2) in N2.

174 N. Amat et al.

Theorem 3 (Reachability Conservation). Assume (N1,m1) �E (N2,m2)
and that F2(�y) is the E-transform of formula F1 on N1. Then formula F1 is
reachable in N1 if and only if F2(�p2) is reachable in N2.

5 BMC and PDR Implementation

We developed a prototype model checker that takes advantage of net reductions.
The tool offers two main analysis methods that have been developed for gener-
alized Petri nets. (No specific optimizations are applied when we know the net
is safe.) These options correspond to the implementation of the BMC and PDR
methods, that we sketch below.

Bounded Model Checking (BMC) is an iterative method for explor-
ing the state space of finite-state systems by unrolling their transitions [9]. The
method was originally based on an encoding of transition systems into (a family
of) propositional logic formulas and the use of SAT solvers to check these for-
mulas for satisfiability [17]. More recently, this approach was extended to more
expressive models, and richer theories, using SMT solvers [3].

In BMC, we try to find a reachable marking m that is a model for a given
formula F , that usually models a set of “feared events”. The algorithm starts
by computing a formula, say φ0, representing the initial marking and checking
whether φ0 ∧ F is satisfiable (meaning F is initially true). If the formula is
UNSAT, we compute a formula φ1 representing all the markings reachable in one
step, or less, from the initial marking and check φ1 ∧F . This way, we compute a
sequence of formulas (φi)i∈N until either φi ∧F is SAT (in which case a counter-
example is found) or we have φi+1 ⇒ φi (in which case we reach a fixed point
and no counter-example exists). The BMC method is not complete since it is not
possible, in general, to bound the number of iterations needed to give an answer.
Also, when the net is unbounded, we may very well have an infinite sequence of
formulas φ0 � φ1 � . . . However, in practice, this method can be very efficient
to find a counter-example when it exists.

The crux of the method is to compute formulas φi that represent the set
of markings reachable using firing sequences of length at most i. We show how
we can build such formulas incrementally. We assume that we have a marked
net (N,m0) with places P = {p1, . . . , pn} and transitions T = {t1, . . . , tk}.
In the remainder of this section, we build formulas that express constraints
between markings m and m′ such that m → m′ in N . Hence we define for-
mulas with 2n variables. We use the notation ψ(�x, �x′) as a shorthand for
ψ(x1, . . . , xn, x′

1, . . . , x
′
n).

We already defined (Sect. 2) a helper formula, or operator, ENBLt(�x) such
that ENBLt(�x)∧m(�x) is true when t is enabled at m. We can define, in the same
way, an operator Δt that describes the evolution of a marking after transition
t fires, see (3) below. It can be used to define another helper formula, t(�x, �x′),
such that (m(�x) ∧ t(�x, �x′) ∧ m′(�x′)) entails that m

t−→ m′, when t is enabled at
m, or m = m′ otherwise. With all these notations, we can define T(�x, �x′) as

Combining SMT and Reductions for Checking Petri Nets 175

the disjunction of all the transition formulas t(�x, �x′). By construction, formula
T(m,m′) � m(�x) ∧ T(�x, �x′) ∧ m′(�x′) is true when m −→ m′, or when m = m′.

Δt(�x, �x′) �
∧

i∈1..n(x′
i = xi + post(t, pi) − pre(t, pi)) (3)

EQ(�x, �x′) �
∧

i∈1..n xi = x′
i (4)

t(�x, �x′) � (ENBLt(�x) ⇒ Δt(�x, �x′)) ∧ (¬ENBLt(�x) ⇒ EQ(�x, �x′)) (5)

T(�x, �x′) � EQ(�x, �x′) ∨ ∨
t∈T (ENBLt(�x) ∧ Δt(�x, �x′)) (6)

Formula φi is the result of connecting i successive occurrences of formulas of
the form T(�xj , �xj+1). We define the formulas inductively, with a base case (φ0)
which states that only m0 is reachable initially. To define the φi’s, we assume
that we have a collection of (pairwise disjoint) sequences of variables, (�xi)i∈N.

φ0(N,m0) � m0(�x0) φi+1(N,m0) � φi(N,m0) ∧ T(�xi, �xi+1)

We can prove that this family of BMC formulas provide a way to check
reachability properties, meaning that formula F is reachable in (N,m0) if and
only if there exists i ≥ 0 such that F (�xi)∧φi(N,m0) is satisfiable. The approach
we describe here is well-known (see for instance [9]). It is also quite simplified.
Actual model checkers that rely on BMC apply several optimizations techniques,
such as compositional reasoning; acceleration methods; or the use of invariants
on the underlying model to add extra constraints. We do not consider such
optimizations here, on purpose, since our motivation is to study the impact of
polyhedral abstractions. We believe that our use of reductions is orthogonal and
does not overlap with many of these optimizations, in the sense that we do not
preclude them, and that the performance gain we observe with reductions could
not be obtained with these optimizations.

Assume we have (N1,m1) �E (N2,m2). We denote T1,T2 the equivalent of
formula T, above, for the nets N1, N2 respectively. We also use �x, �y for sequences
of variables ranging over (the places of) N1 and N2 respectively. We should
use φ(N1,m1) for the family of formulas built using operator T1 and variables
�x0, �x1, . . . and similarly for φ(N2,m2), where we use T2 and variables of the
form �y. The following property states that, to find a model of F in the reachable
markings of N1, it is enough to find a model for its E-transform in N2.

Theorem 4 (BMC with E-Transform). Assume (N1,m1) �E (N2,m2) and
that F2(�y) is the E-transform of F1(�x). Formula F1(�x) is reachable in N1 if and
only if there exists j ≥ 0 such that F2(�yj) ∧ φj(N2,m2) is satisfiable.

Proof (sketch). We start by proving that F1 reachable in N1 is equivalent to
F1∧φi(N1,m1) satisfiable for some i ≥ 0. The proof is by induction on the value
of i and uses the fact that T1(m,m′) entails m =⇒ m′ in N1. As a result, we
can prove the existence of a firing sequence m1

σ=⇒ m′
1, of length at most i, such

that m′
1 |= F1. The result follows by our conservation of reachability property

(Theorem 3), F1 reachable in N1 means F2 reachable in N2. Therefore F1 is
reachable iff there is j ≥ 0 such that F2(�yj) ∧ φj(N2,m2) is satisfiable. ��

176 N. Amat et al.

We can give a stronger result, comparing the value of i and j, when the
reductions used in proving the E-abstraction equivalence never introduce new
transitions. This is the case, for example, with the reductions computed using
the Reduce tool. Indeed, in this case, we can show that we may find a witness
of length i in N1 (a firing sequence of length i showing that F1 is reachable
in N1) when we find a witness of length j ≤ i in N2. This is because, in this
case, reductions may compact a sequence of several transitions into a single
one or, at worst, not change it. Take the example of the agglomeration rule in
Fig. 2. Therefore BMC benefits from reductions in two ways. First because we
can reduce the size of formulas φ (which are proportional to the size of the net),
but also because we can accelerate transition unrolling in the reduced net.

Property Directed Reachability (PDR). While BMC is the right choice
when we try to find counter-examples, it usually performs poorly when we want
to check an invariant property, AGF . There are techniques that are better suited
to prove inductive invariants in a transition system; that is a property that is
true initially and stays true after firing any transition.

In order to check invariants with SMPT, we have implemented a method
called PDR [13,14] (also known as IC3), which incrementally generates clauses
that are inductive “relative to stepwise approximate reachability information”.
PDR is a combination of induction, over-approximation, and SAT solving.
For SMPT, we developed a similar method that uses SMT solving, to deal
with markings and transitions, and that can take advantage of polyhedral
abstractions.

We use the same notations as with BMC. The PDR method requires to define
a set of safe states, described as the models of some property F . It also requires
a set of initial states, I. In our case I � m0(�x). The procedure is complete
for finite transition systems, for instance with bounded Petri nets. We can also
prove termination in the general case when property ¬F is monotonic, meaning
that m |= ¬F implies that m′ |= ¬F for all markings m′ that covers m (that is
when m′ ≥ m, component-wise). An intuition is that it is enough, in this case,
to check the property on the minimal coverability set of the net, which is always
finite (see e.g. [21]).

A formula F is inductive [14] when I ⇒F and F (�x) ∧ T(�x, �x′)⇒ F (�x′)
hold. It is inductive relative to formula G if both I ⇒ F and G(�x) ∧ F (�x) ∧
T(�x, �x′)⇒ F (�x′) hold. With PDR we compute Over Approximated Reachability
Sequences (OARS), meaning sequences of formulas (F0, . . . , Fk+1), with vari-
ables in �x, that are monotonic: F0 = I, Fi ⇒Fi+1 for all i ∈ 0..k, and Fk+1 ⇒F ;
and satisfies consecution: Fi(�x) ∧ T(�x, �x′)⇒ Fi+1(�x′) for all i ≤ k + 1. The for-
mulas Fi change at each iteration of the procedure (each time we increase k).
The procedure stops when we find an index i such that Fi = Fi+1. In this case
we know that F is an invariant. We can also stop during the iteration if we find
a counter-example.

Our implementation follows closely the algorithm for IC3 described in [14].
We only give a brief sketch of the OARS construction. Each of the Fi is computed

Combining SMT and Reductions for Checking Petri Nets 177

as a formula in CNF (the conjunction of a set of clauses CL(Fi)) such that
CL(Fi+1) ⊆ CL(Fi). Intuitively, each clause is built from a witness, a marking
such that Fi(�x)∧T(�x, �x′)∧(¬F)(�x′) is satisfiable. The procedure iterates through
possible witnesses, say m, and pushes the clause ¬m(�x) to the formulas Fk with
k < i. Actually, we push a minimal inductive cube (MIC), c, such that c⇒ ¬m
and c is inductive relative to Fk. To overcome the problem with a potential
infinite number of witnesses, we define the formula m̂(�x) �

∧
i∈1..n(xi ≥ m(pi))

that is valid for every marking that covers m; in the sense that m′ |= m̂ only
when m′ ≥ m. By virtue of the monotonicity of the flow function of Petri nets,
when ¬F is monotonic and m is a witness, we know that all models of m̂ are also
witnesses. Hence we can improve the method by generating minimal inductive
clauses from ¬m̂(�x) instead of ¬m(�x). Another benefit of this choice is that m̂
is a conjunction of inequalities of the form (xj ≥ ki), which greatly simplifies
the computation of the MIC. When F is anti-monotonic (¬F is monotonic), we
can prove the completeness of the procedure using an adaptation of Dickson’s
lemma, which states that we cannot find an infinite decreasing chain of witnesses
(but the number of possible witness may be extremely large).

Assume we have (N1,m1) �E (N2,m2) and that G2(�y) is the E-transform
of formula G1(�x) on N1. We also assume that G1 and G2 are monotonic, in
order to ensure the termination of the PDR procedure. (We can prove that Ẽ
is monotonic for systems E computed with the Reduced tool when the initial
net does not use inhibitor arcs.) To check that formula G1 is an invariant on
N1, it is enough [13] to incrementally build OARS (F0, . . . , Fk+1) on N1 until
Fi = Fi+1 for some index i ∈ 0..k. In this context, F0 = m1 and Fk+1 ⇒ G1.
In a similar way than with our extension of BMC with reductions, a corollary
of our invariant conservation theorem (Theorem 2) is that, to check that G1

is an invariant on N1, it is enough to build OARS (F ′
0, . . . , F

′
l+1) on N2 where

F ′
0 = m2 and F ′

l+1 ⇒ G2.

Theorem 5 (PDR with E-Transform). Assume (N1,m1) �E (N2,m2) and
that G2(�y) is the E-transform of G1(�x), both monotonic formulas. Formula G1

is an invariant on N1 if and only if there exists i ≥ 0 such that F ′
i = F ′

i+1 in
the OARS built from net N2 and formula G2.

Combination of BMC and PDR. In the next section, we report on the
results obtained with our implementation of BMC and PDR (with and without
reductions), on an independent and comprehensive set of benchmarks.

With PDR, we restrict ourselves to the proof of liveness properties, EFφ
where φ is monotonic (or equivalently, invariants AGφ with φ anti-monotonic).
In practice, we do not check if φ is monotonic using our “semantical” definition.
Instead, our implementation uses a syntactical restriction that is a sufficient
condition for monotonicity. This is the case, for example, when testing the quasi-
liveness of a set of transitions. On the other hand, deadlock is not monotonic. In
such cases, we can only rely on the BMC procedure, which may not terminate
if the net has no deadlocks. Hence, our best-case scenario is when we check a

178 N. Amat et al.

monotonic property (or if a model for the property exists). In our benchmarks,
we find that almost 30% of all the properties are monotonic.

We have plans to improve our PDR procedure to increase the set of properties
that can be handled. In particular, we know how to do better when the net is
k-bounded (and we know the value of k). We also have several proposals to
improve the computation of a good witness, and its MIC, in the general case.
We should explore all these ideas in a future work.

6 Experimental Results

We have implemented the approach described in Sect. 5 into a new tool, called
SMPT (for Satisfiability Modulo P/T Nets). The tool is open-source, under
the GPLv3 license, and is freely available on GitHub (https://github.com/
nicolasAmat/SMPT/). In this section, we report on some experimental results
obtained with SMPT on an extensive benchmark of models and formulas pro-
vided by the Model Checking Contest (MCC) [2,23].

SMPT serves as a front-end to generic SMT solvers, such as z3 [10,29]. The
tool can output sets of constraints using the SMT-LIB format [4] and pipe them
to a z3 process through the standard input. We have implemented our tool
with the goal to be as interoperable as possible, but we have not conducted
experiments with other solvers yet. SMPT takes as inputs Petri nets defined
using the .net format of the TINA toolbox. For formulas, we accept properties
defined with the XML syntax used in the MCC competition. The tool does not
compute net reductions directly but relies on the tool Reduce, that we described
at the end of Sect. 3.

Benchmarks and Distribution of Reduction Ratios. Our benchmark suite
is built from a collection of 102 models used in the MCC competition. Most of the
models are parametrized, and therefore there can be several different instances
for the same model. There are about 1 000 different instances of Petri nets whose
size vary widely, from 9 to 50 000 places, and from 7 to 200 000 transitions. Most
nets are ordinary, but a significant number of them use weighted arcs. Overall,
the collection provides a large number of examples with various structural and
behavioral characteristics, covering a large variety of use cases.

Since our approach relies on the use of net reductions, it is natural to wonder if
reductions occur in practice. To answer this question, we computed the reduction
ratio (r), obtained using Reduce, as a quotient between the number of places
before (pinit) and after (pred) reduction: r = (pinit − pred)/pinit. We display the
results for the whole collection of instances in Fig. 3, sorted in descending order.
A ratio of 100% (r = 1) means that the net is fully reduced ; the resulting net
has only one (empty) marking. We see that there is a surprisingly high number
of models that are totally reducible with our approach (about 20% of the total
number), with approximately half of the instances that can be reduced by a ratio
of 30% or more.

https://github.com/nicolasAmat/SMPT/
https://github.com/nicolasAmat/SMPT/

Combining SMT and Reductions for Checking Petri Nets 179

Fig. 3. Distribution of reduction ratios over the instances in the MCC

For each edition of the MCC, a collection of about 30 random reachability
properties are generated for each instance. We evaluated the performance of
SMPT using the formulas of the MCC2020, on a selection of 426 Petri nets
taken from instances with a reduction ratio greater than 1%. (To avoid any bias
introduced by models with a large number of instances, we selected at most 5
instances with a similar reduction ratio from each model).

A pair of an instance and a formula is called a test case. For each test case,
we check the formulas with and without the help of reductions (using both the
BMC and PDR methods in parallel) and with a fixed timeout of 120 s. This adds
up to a total of 13 265 test cases which required the equivalent of 447 h of CPU
time.

Impact on the Number of Solvable Queries. We report our results in the
table below. We compared our results with the ones provided by an oracle [31],
which gives the expected answer (as computed by a majority of tools, using
different techniques, during the MCC competition). We achieve 100% reliability
on the benchmark; meaning we always give the answer predicted by the oracle.

We give the number of computed results for four different categories of
test cases: Full contains only the fully reducible instances (the best possible
case with our approach); while Low/Good/High correspond to instances with a
low/moderate/high level of reduction. We chose the limits for these categories in
order to obtain samples with comparable sizes. We also have a general category,
All, for the complete set of benchmarks.

Reduction
Ratio (r)

Test
cases

Results (BMC/PDR)

With reductions Without

All r ∈]0, 1] 13 265 6 986 3 555 (3 261/294)
Low r ∈]0, 0.25[4 586 1 662 (1 532/130) 1 350 (1 247/103)
Good r ∈ [0.25, 0.5[2 823 1 176 (1 084/92) 704 (631/73)
High r ∈ [0.5, 1[3 298 1 591 (1 412/179) 511 (457/54)
Full r = 1 2 558 2 557 990 (926/64)

We observe that we are able to compute almost twice as many results when
we use reductions than without. This gain is greater on the High (×3.1) than on

180 N. Amat et al.

the Good (×1.7) instances. Nonetheless, the fact that the number of additional
queries solved using reductions is still substantial, even for a reduction ratio
under 50%, indicates that our approach can benefit from all the reductions we
can find in a model (and that our results are not skewed by the large number of
fully reducible instances).

In the special case of fully reducible nets, checking a query amounts to solving
a linear system on the initial marking of the reduced net. There are no iterations.
Moreover this is the same system for both the BMC and PDR procedures. For
this category, we are able to compute a result for all but one of the queries (that
could be computed using a timeout of 180 s). Most of these queries can be solved
in less than a few seconds.

When the distinction makes sense, we also report the number of cases solved
using BMC/PDR. (As said previously, the two procedures coincide in category
Full, with reductions.) We observe that the contribution of PDR is poor. This
can be explained by several factors. First, we restricted our implementation of
PDR to monotonic formulas (which represents 30% of all properties). Among
these, PDR is useful only when we have an invariant that is true (meaning
BMC will certainly not terminate). On the other hand, PDR is able to give
answers on the most complex cases. Indeed, it is much more difficult to prove an
invariant than to find a counter-example (and we have other means to try and
find counter-examples, like simulation for instance). This is why we intend to
improve the performances and the “expressiveness” of our PDR implementation.
Another factor, already observed in [32], is the existence of a bias in the MCC
benchmark: in more than 60% of the cases, the result follows from finding a
counter-example (meaning an invariant that is false or a reachability property
that is true).

Impact on Computation Time. To better understand the impact of reduc-
tions on the computation time, we compare the computation time, with or with-
out reductions, for each test case. These results do not take into account the
time spent for reducing each instance. This time is negligible when compared to
each test, usually in the order of 1 s. Also, we only need to reduce the net once
when checking the 30 properties for the same instance.

We display our results in Fig. 4, where we give four scatter plots comparing
the computation time “with” (y-axis) and “without” reductions (x-axis), for the
Low, Good, High and Full categories of instances. Each chart uses a logarithmic
scale. We also display a histogram, for each axis on the charts, that gives the
density of points for a given duration. To avoid overplotting, we removed all
the “trivial” properties (the bottom left part of the chart), that can be com-
puted with and without reduction in less than 10 ms. These “trivial” queries
(507 in total) correspond to instances with a small state space or to situations
where a counter-example can be found very quickly.

We observe that almost all the data points are below the diagonal, meaning
reductions accelerate the computation, with many test cases exhibiting speed-ups
larger than ×100. We have added two light-coloured, dashed lines to materialize
data points with speed-ups larger than ×10 and ×100 respectively.

Combining SMT and Reductions for Checking Petri Nets 181

Fig. 4. Comparing computation time, “with” (y-axis) and “without” (x-axis) reduc-
tions for categories Low (a), Good (b), High (c) and Full (d).

On our 13 265 test cases, we timeout with reductions but compute a result
without on only 51 cases (0.4%). These exceptions can be explained by border
cases where the order in which transitions are processed has a sizeable impact.

Another interesting point is the ratio of properties that can be computed
only using reductions. This is best viewed when looking at the histogram values.
A vast majority of the points in the charts are either on the right border (com-
putation without reductions timeout) or on the x-axis (they can be computed
in less than 10 ms using reductions).

7 Related Work and Conclusion

We propose a new method to combine structural reductions with SMT solving in
order to check invariants on arbitrary Petri nets. While this idea is not original,

182 N. Amat et al.

the framework we developed is new. Our main innovation resides in the use of a
principled approach, where we can trace back reachable markings (between an
initial net and its residual) by means of a conjunction of linear equalities (the
formula Ẽ). Basically, we show that we can adapt a SMT-based procedure for
checking a property on a net (that relies on computing a family of formulas of
the form (φi)i∈I) into a procedure that relies on a reduced version of the net
and formulas of the form (φi ∧ Ẽ)i∈J .

As a proof of concept, we apply our approach to two basic implementations
of the BMC and PDR procedures. Our empirical evaluation shows promising
results. For example, we observe that we are able to compute twice as many
results using reductions than without. We believe that our approach can be
adapted to more decision procedures and could easily accommodate various types
of optimizations.

Related Work. Our main theoretical results (the conservation theorems of
Sect. 4) can be interpreted as examples of reduction theorems [26,27], that allow
to deduce properties of an initial model (N) from properties of a simpler, coarser-
grained version (NR). While these works are related, they mainly focus on reduc-
tions where one can group a sequence of transitions into a single, atomic action.
Hence, in our context, they correspond to a restricted class of reductions, similar
to a subset of the agglomeration rules used in [7].

We can also mention approaches where the system is simplified with respect
to a given property, for instance by eliminating parts that cannot contribute to
its truth value, like with the slicing or Cone of Influence abstractions [16] used
in some model checkers. Finding such “parts” (places and transitions) in a Petri
net is not always easy, especially when the formula involves many places. This
is not a problem with our approach, since we can always abstract away a place,
as long as its effect is preserved in the E-transform formula.

In practice, we derive polyhedral abstractions using structural reductions, a
concept introduced by Berthelot in [5]. In our work, we are interested in reduc-
tions that preserves the reachable states. This is in contrast with most works
about reductions, where more powerful transformations can be applied when we
focus on specific properties, such as the absence of deadlocks. Several tools use
reductions for checking reachability properties. TAPAAL [11], for instance, is an
explicit-state model checker that combines Partial-Order Reduction techniques
and structural reductions and can check property on Petri nets with weighted
arcs and inhibitor arcs.

A more relevant example is ITS Tools [32], which combines several tech-
niques, including structural reductions and the use of SAT and SMT solvers.
This tool relies on efficient methods for finding counter-examples—with the goal
to invalidate an invariant—based on the collaboration between pseudo-random
exploration techniques; hints computed by an SMT engine; and reductions that
may simplify atoms in the property or places and transitions in the net. It
also describes a semi-decision procedure, based on an over-approximation of the
state space, that may detect when an invariant holds (by ruling out infeasible

Combining SMT and Reductions for Checking Petri Nets 183

behaviours). This leads to a very efficient tool, able to compute a result for
most of the queries in our benchmark, when we solve only 52% of our test cases.
Nonetheless, we are able to solve 46 queries with SMPT (with a timeout of 120 s)
that are not in the oracle results collected from ITS Tools [31].

It has to be kept in mind, though, that our goal is to study the impact of poly-
hedral abstractions, in isolation from other techniques. However, the methods
described in [32] provide many ideas for improving our approach, such as: using
linear arithmetic over reals—which is more tractable than integer arithmetic—to
over-approximate the state space of a net; adding extra constraints to strengthen
invariants (for instance using the state equation or constraints derived from
traps); dividing up a formula into smaller sub-parts, and checking them incre-
mentally or separately; . . . But the main lesson to be learned is that there is
a need for a complete decision procedure devoted to the proof of satisfiable
invariants, which further our interest in improving our implementation of PDR.

Indeed, a byproduct of our work is to provide a partial implementation of
PDR that is correct and complete when the property is monotonic (see Sect. 4),
even in the case of nets that are not bounded. Our current solution can be under-
stood as a restriction to the case of “coverability properties”, which seems to be
the current state-of-the-art with Petri nets; see for example [19] or the extension
of PDR to “well-structured transition systems” [25]. We can also mention the
works on inductive procedures for infinite-state and/or parametrized systems,
such as the verification methods used in Cubicle [18], or in [15,22].

Future Work. We propose a new method that adapts our approach—initially
developed for model checking with decision diagrams [6,7]—for use with SMT
solvers. We plan to continue in this direction, trying new verification methods
and tackling properties more complex than reachability. For example, we already
have plans [1] to apply our notion of polyhedral abstraction to the concurrent
places problem [12].

There is also ample room for improving our tool. We already mentioned some
ideas for enhancements that we could borrow from ITS Tools, but we also plan
to specialize our verification procedures in some specific cases, for example when
we know that a net is 1-safe. A first step should be to compare our performances
with other tools in more details. This is what motivate our participation to the
next edition of the MCC, with SMPT alone in the reachability examinations,
even though it is common knowledge that winning tools need to combine several
different techniques.

Finally, the most promising part of our work is to improve our adaptation of
PDR, which raises several interesting problems. We have several ideas on how to
improve our adaptation of PDR, and the computation of the Minimal Inductive
Cube (MIC), while retaining completeness in the case of bounded nets. This will
be the subject of a future work.

References

1. Amat, N.: A New Approach for the Symbolic Model Checking of Petri nets. Mas-
ter’s thesis, University of Grenoble (2020)

184 N. Amat et al.

2. Kordon, F., et al.: MCC’2017 – the seventh model checking contest. In: Koutny,
M., Kristensen, L.M., Penczek, W. (eds.) Transactions on Petri Nets and Other
Models of Concurrency XIII. LNCS, vol. 11090, pp. 181–209. Springer, Heidelberg
(2018). https://doi.org/10.1007/978-3-662-58381-4 9

3. Armando, A., Mantovani, J., Platania, L.: Bounded model checking of software
using SMT solvers instead of SAT solvers. In: Valmari, A. (ed.) SPIN 2006.
LNCS, vol. 3925, pp. 146–162. Springer, Heidelberg (2006). https://doi.org/10.
1007/11691617 9

4. Barrett, C., Fontaine, P., Tinelli, C.: The SMT-LIB Standard: Version 2.6. Tech-
nical report, Department of Computer Science, The University of Iowa (2017).
http://www.smt-lib.org/

5. Berthelot, G.: Transformations and decompositions of nets. In: Brauer, W., Reisig,
W., Rozenberg, G. (eds.) ACPN 1986, Part I. LNCS, vol. 254, pp. 359–376.
Springer, Heidelberg (1987). https://doi.org/10.1007/978-3-540-47919-2 13

6. Berthomieu, B., Le Botlan, D., Dal Zilio, S.: Petri net reductions for counting
markings. In: Gallardo, M.M., Merino, P. (eds.) SPIN 2018. LNCS, vol. 10869, pp.
65–84. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-94111-0 4

7. Berthomieu, B., Le Botlan, D., Dal Zilio, S.: Counting Petri net markings from
reduction equations. Int. J. Softw. Tools Technol. Transfer (2019). https://doi.
org/10.1007/s10009-019-00519-1

8. Besson, F., Jensen, T., Talpin, J.-P.: Polyhedral analysis for synchronous languages.
In: Cortesi, A., Filé, G. (eds.) SAS 1999. LNCS, vol. 1694, pp. 51–68. Springer,
Heidelberg (1999). https://doi.org/10.1007/3-540-48294-6 4

9. Biere, A., Cimatti, A., Clarke, E., Zhu, Y.: Symbolic model checking without
BDDs. In: Cleaveland, W.R. (ed.) TACAS 1999. LNCS, vol. 1579, pp. 193–207.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49059-0 14

10. Bjørner, N.: The z3 theorem prover (2020). https://github.com/Z3Prover/z3/
11. Bønneland, F.M., Dyhr, J., Jensen, P.G., Johannsen, M., Srba, J.: Stubborn versus

structural reductions for petri nets. J. Logic. Algebraic Methods Program. 102,
46–63 (2019). https://doi.org/10.1016/j.jlamp.2018.09.002

12. Bouvier, P., Garavel, H., Ponce-de-León, H.: Automatic decomposition of petri
nets into automata networks – a synthetic account. In: Janicki, R., Sidorova, N.,
Chatain, T. (eds.) PETRI NETS 2020. LNCS, vol. 12152, pp. 3–23. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-51831-8 1

13. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4 7

14. Bradley, A.R.: Understanding IC3. In: Cimatti, A., Sebastiani, R. (eds.) SAT 2012.
LNCS, vol. 7317, pp. 1–14. Springer, Heidelberg (2012). https://doi.org/10.1007/
978-3-642-31612-8 1

15. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Infinite-state invariant checking
with IC3 and predicate abstraction. Formal Methods Syst. Des. 49(3), 190–218
(2016). https://doi.org/10.1007/s10703-016-0257-4

16. Clarke, E.M., Grumberg, O., Peled, D.: Model Checking. MIT Press, Cambridge
(1999)

17. Clarke, E., Biere, A., Raimi, R., Zhu, Y.: Bounded model checking using satisfia-
bility solving. Formal Methods Syst. Des. 19(1), 7–34 (2001). https://doi.org/10.
1023/A:1011276507260

https://doi.org/10.1007/978-3-662-58381-4_9
https://doi.org/10.1007/11691617_9
https://doi.org/10.1007/11691617_9
http://www.smt-lib.org/
https://doi.org/10.1007/978-3-540-47919-2_13
https://doi.org/10.1007/978-3-319-94111-0_4
https://doi.org/10.1007/s10009-019-00519-1
https://doi.org/10.1007/s10009-019-00519-1
https://doi.org/10.1007/3-540-48294-6_4
https://doi.org/10.1007/3-540-49059-0_14
https://github.com/Z3Prover/z3/
https://doi.org/10.1016/j.jlamp.2018.09.002
https://doi.org/10.1007/978-3-030-51831-8_1
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-31612-8_1
https://doi.org/10.1007/978-3-642-31612-8_1
https://doi.org/10.1007/s10703-016-0257-4
https://doi.org/10.1023/A:1011276507260
https://doi.org/10.1023/A:1011276507260

Combining SMT and Reductions for Checking Petri Nets 185

18. Conchon, S., Goel, A., Krstić, S., Mebsout, A., Zäıdi, F.: Cubicle: a parallel SMT-
based model checker for parameterized systems. In: Madhusudan, P., Seshia, S.A.
(eds.) CAV 2012. LNCS, vol. 7358, pp. 718–724. Springer, Heidelberg (2012).
https://doi.org/10.1007/978-3-642-31424-7 55

19. Esparza, J., Ledesma-Garza, R., Majumdar, R., Meyer, P., Niksic, F.: An SMT-
based approach to coverability analysis. In: Biere, A., Bloem, R. (eds.) CAV 2014.
LNCS, vol. 8559, pp. 603–619. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08867-9 40

20. Feautrier, P.: Automatic parallelization in the polytope model. In: Perrin, G.-R.,
Darte, A. (eds.) The Data Parallel Programming Model. LNCS, vol. 1132, pp.
79–103. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61736-1 44

21. Finkel, A.: The minimal coverability graph for Petri nets. In: Rozenberg, G. (ed.)
ICATPN 1991. LNCS, vol. 674, pp. 210–243. Springer, Heidelberg (1993). https://
doi.org/10.1007/3-540-56689-9 45

22. Gurfinkel, A., Shoham, S., Meshman, Y.: SMT-based verification of parameterized
systems. In: International Symposium on Foundations of Software Engineering.
ACM (2016). https://doi.org/10.1145/2950290.2950330

23. Hillah, L.M., Kordon, F.: Petri nets repository: a tool to benchmark and debug
petri net tools. In: van der Aalst, W., Best, E. (eds.) PETRI NETS 2017. LNCS,
vol. 10258, pp. 125–135. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-57861-3 9

24. Hujsa, T., Berthomieu, B., Dal Zilio, S., Le Botlan, D.: Checking marking reacha-
bility with the state equation in petri net subclasses (2020)

25. Kloos, J., Majumdar, R., Niksic, F., Piskac, R.: Incremental, inductive coverabil-
ity. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 158–173.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8 10

26. Cohen, E., Lamport, L.: Reduction in TLA. In: Sangiorgi, D., de Simone, R.
(eds.) CONCUR 1998. LNCS, vol. 1466, pp. 317–331. Springer, Heidelberg (1998).
https://doi.org/10.1007/BFb0055631

27. Lipton, R.J.: Reduction: a method of proving properties of parallel programs. Com-
mun. ACM 18(12), 717–721 (1975). https://doi.org/10.1145/361227.361234

28. Lloret, J.C., Azéma, P., Vernadat, F.: Compositional design and verification of
communication protocols, using labelled petri nets. In: Clarke, E.M., Kurshan,
R.P. (eds.) CAV 1990. LNCS, vol. 531, pp. 96–105. Springer, Heidelberg (1991).
https://doi.org/10.1007/BFb0023723

29. de Moura, L., Bjørner, N.: Z3: an efficient SMT solver. In: Ramakrishnan, C.R.,
Rehof, J. (eds.) TACAS 2008. LNCS, vol. 4963, pp. 337–340. Springer, Heidelberg
(2008). https://doi.org/10.1007/978-3-540-78800-3 24

30. Silva, M., Terue, E., Colom, J.M.: Linear algebraic and linear programming tech-
niques for the analysis of place/transition net systems. In: Reisig, W., Rozenberg,
G. (eds.) ACPN 1996. LNCS, vol. 1491, pp. 309–373. Springer, Heidelberg (1998).
https://doi.org/10.1007/3-540-65306-6 19

31. Thierry-Mieg, Y.: Oracle for the MCC 2020 edition (2020). https://github.com/
yanntm/pnmcc-models-2020

32. Thierry-Mieg, Y.: Structural reductions revisited. In: Janicki, R., Sidorova, N.,
Chatain, T. (eds.) PETRI NETS 2020. LNCS, vol. 12152, pp. 303–323. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-51831-8 15

33. Thierry-Mieg, Y., Poitrenaud, D., Hamez, A., Kordon, F.: Hierarchical set decision
diagrams and regular models. In: Kowalewski, S., Philippou, A. (eds.) TACAS
2009. LNCS, vol. 5505, pp. 1–15. Springer, Heidelberg (2009). https://doi.org/10.
1007/978-3-642-00768-2 1

https://doi.org/10.1007/978-3-642-31424-7_55
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1007/3-540-61736-1_44
https://doi.org/10.1007/3-540-56689-9_45
https://doi.org/10.1007/3-540-56689-9_45
https://doi.org/10.1145/2950290.2950330
https://doi.org/10.1007/978-3-319-57861-3_9
https://doi.org/10.1007/978-3-319-57861-3_9
https://doi.org/10.1007/978-3-642-39799-8_10
https://doi.org/10.1007/BFb0055631
https://doi.org/10.1145/361227.361234
https://doi.org/10.1007/BFb0023723
https://doi.org/10.1007/978-3-540-78800-3_24
https://doi.org/10.1007/3-540-65306-6_19
https://github.com/yanntm/pnmcc-models-2020
https://github.com/yanntm/pnmcc-models-2020
https://doi.org/10.1007/978-3-030-51831-8_15
https://doi.org/10.1007/978-3-642-00768-2_1
https://doi.org/10.1007/978-3-642-00768-2_1

Skeleton Abstraction for Universal
Temporal Properties

Sophie Wallner and Karsten Wolf(B)

Universität Rostock, Rostock, Germany
{sophie.wallner,karsten.wolf}@uni-rostock.de

Abstract. Uniform coloured Petri nets can be abstracted to their skele-
ton, the place/transition net that simply turns the coloured tokens into
black tokens. A coloured net and its skeleton are related by a net mor-
phism [Des91,PGE98]. For the application of the skeleton as an abstrac-
tion method in the model checking process, we need to establish a simula-
tion relation [Mil89] between the state spaces of the two nets. Then, uni-
versal temporal properties (properties of the ACTL∗ logic) are preserved.
The abstraction relation induced by a net morphism is not necessarily a
simulation relation, due to a subtle issue related to deadlocks [Fin92]. We
discuss several situations where the abstraction relation induced by a net
morphism is as well a simulation relation, thus preserving ACTL∗ prop-
erties. We further propose a partition refinement algorithm for folding a
place/transition net into a coloured net. This way, skeleton abstraction
becomes available for models given as place/transition nets. Experiments
demonstrate the capabilities of the proposed technology. Using skeleton
abstraction, we are capable of solving problems that have not been solved
before in the Model Checking Contest [KGH+19].

1 Introduction

In the model checking process for coloured Petri nets, one of the biggest issues is
the state explosion problem, which makes the verification of a property impossi-
ble, as the state space is getting too big to handle. A way to deal with these big
systems, is the wellknown technique of abstraction. Given a coloured Petri net
C, we can form its skeleton S, which has the structure of C and simply decolours
its components and tokens. This skeleton is an abstraction of the coloured net,
its behaviour includes the behaviour of C. To use this abstraction technique
in the model checking process, we need to guarantee, that properties are pre-
served through this abstraction, i.e. that the validity of property in S indicates
the validity of the property in C. Unfortunately, this is not the case for every
coloured net. The issue is that some deadlocks of C are not preserved in S,
such that the additional behaviour of S changes the validity of the property.
Deadlocks in a coloured net can have two different causes. First, they can be
caused by an insufficient number of tokens in the preset of a transition. These
deadlocks are preserved in the skeleton, as the number of tokes will neither be
sufficient in the skeleton. Second, they can be caused by a wrong colour set of
c© Springer Nature Switzerland AG 2021
D. Buchs and J. Carmona (Eds.): PETRI NETS 2021, LNCS 12734, pp. 186–207, 2021.
https://doi.org/10.1007/978-3-030-76983-3_10

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76983-3_10&domain=pdf
https://doi.org/10.1007/978-3-030-76983-3_10

Skeleton Abstraction for Universal Temporal Properties 187

p

r
g g

q
t

x1 x2 x3 y

∨
i∈{g,r} x1=x2=x3=i∧y=i

(a) A coloured net C.

p q
t3 1

∨
i∈{g,r} x1=x2=x3=i∧y=i

(b) The skeleton S of C.

Fig. 1. A coloured net C with a deadlock not preserved in its skeleton S.

tokens, as the number of tokens in the preset of a transition is sufficient, but the
colour distribution of the tokens violates the guard of the transition. This type
of deadlocks is usually not preserved in the skeleton, as the skeleton does not
distinguish colors at all. Consider the following example:

Example 1. Let C be a coloured Petri net, for which we can build the skeleton
S, just by removing the colour sets of the places, the guard of the transition
and making the tokens all indistinguishable. The two nets are pictured in Fig. 1.
We consider the ACTL∗ formula ϕ : AFp ≤ 1. The colour sets of C are χ(p) =
χ(q) = {g, r}. The guard of the only transition t is γ(t) :

∨
i∈{g,r} x1 = x2 =

x3 = i ∧ y = i, which means that t requires three tokens of the same colour and
produces one token of this colour. In the given marking of C, t is not enabled, so
this marking is a deadlock. The corresponding marking of S is not a deadlock,
as the number of tokens is sufficient and t is activated. Firing t in S leads to the
marking, where all tokens are removed from p, so ϕ is true for S. Meanwhile, ϕ
is not true for C. Transferring the validity of ϕ from S to C will draw a wrong
conclusion.

This work will give a detailed analysis of situations, where the skeleton as
an abstraction technique is soundly applicable in the model checking process
for coloured Petri nets. It is structured as follows: The next Sect. 2 will give
an overview of the application of skeleton nets in other contexts, Sect. 3 pro-
vides necessary basic definitions. After that, Sect. 4 will introduce the different
concepts of relations, which can hold between reachability graphs of Petri nets.
Section 5 will set the focus on the simulation relation between reachability graphs
as the core concept for keeping validity through abstraction. We there present an
survey, in which cases, the skeleton is a valid abstraction method for a coloured
Petri net, distinguishing different classes of nets and types of formulas. With the
folding algorithm in Sect. 6, we extend the scope of application of the skeleton
abstraction to place/transition nets. The experimental results in Sect. 7 under-
line the powerfullness of this abstraction method.

2 Related Work

The idea of a skeleton-based analysis of a Petri net is subject of [Vau87]. Based
on this, [Fin92] examines the role of deadlocks within this topic more precisely.
The results are also applied in other contexts. In [RB01] extended Pr/T-Nets

188 S. Wallner and K. Wolf

are used as a modeling formalism for embedded real-time systems due to the
multitude of analysis methods for Petri nets. With the skeleton of a Pr/T-
Net, properties like reachability of states or deadlock freeness can be examined.
[Lil95] transfers Findlow’s results [Fin92] to algebraic nets. They are used as
an application for a folding construction, which is described there. Findlow’s
observations on deadlock-preserving skeletons are further used in [SMS99] for
a skeleton-based analysis of G-Nets, an object-based Petri net formalism. The
preservation of predicates in temporal logic under morphisms has also already
been discussed. [PGE98] describes a rule-based modification of algebraic high-
level nets extended with morphisms such that safety properties described in
temporal logic are preserved. This provides a technique which allows to transfer
safety properties between the source and the target net.

3 Basic Definitions

First, we present definitions for place/transition nets.

Definition 1 (Place/Transition Net). A place/transition net (P/T net) is
a tuple N = [P, T, F,W,m0], where P is a finite set of places and T is a finite
set of transitions with P ∩ T = ∅. The arcs F ⊆ (P × T) ∪ (T × P) of the net
are labeled by a weight function W : F → N, with W (x, y) = 0 iff (x, y) /∈ F .
m0 is the initial marking of the net, whereas m : P → N describes a marking.

The behavior of a P/T net is defined by the transition rule.

Definition 2 (Transition rule of a P/T net). Let N = [P, T, F,W,m0] be a
P/T net. Transition t ∈ T is enabled in marking m if ∀p ∈ P : W (p, t) ≤ m(p).
Firing Transition t leads from marking m to marking m′ (denoted as m

t−→ m′)
in N , if t is enabled in m and ∀p : m′(p) = m(p) − W (p, t) + W (t, p).

A marking m′ is reachable from a marking m (denoted as m
∗−→ m′), if

there is a firing sequence t1t2 . . . tn ∈ T ∗, such that m
t1−→ m1

t2−→ . . .
tn−→ m′.

We extend the notation of reachability to firing sequences ω ∈ T ∗ and we call
RS(N) = {m | ∃ω ∈ T ∗ : m0

ω−→ m} the reachability set, which contains all of
N ’s reachable markings. Using the transition rule, a Petri net induces a labeled
transition system, called the reachability graph.

Definition 3 (Labeled Transition System, Reachability Graph). A tran-
sition system TS = [Q, qo, R,A] is a labeled, directed graph, where Q is the set
of states, q0 ∈ Q is the initial state and a transition relation R ⊆ Q × A × Q
with some set of actions A. The reachability graph RN (m0) of a Petri net N is
a transition system, where the set of states is RS(N), m0 serves as the initial
state and (m, t,m′) ∈ R iff m

t−→ m′.

Furthermore, we introduce a simple notion for coloured Petri nets with finite
colour domains.

Skeleton Abstraction for Universal Temporal Properties 189

Definition 4 (Coloured Petri net). A coloured Petri net C =
[PC, TC , FC ,WC , χ, γ,m0C] consists of a finite set PC of places, a finite set TC

of transitions where PC ∩ TC = ∅ and a set of arcs FC ⊆ (PC × TC) ∪ (TC × PC).
The weight function WC assigns a finite set of variables to each element of FC.
If (x, y) /∈ FC, we assume WC(x, y) = ∅. The colouring function χ assigns a
finite set χ(p) of colours to each place p ∈ PC, called colour domain of p. The
guard function γ assigns a boolean predicate γ(t) to each transition t ∈ TC, which
ranges over the variables of WC(p, t)∪WC(t, p) for all p ∈ PC. The initial marking
m0 is a multiset over χ(p) for every p ∈ PC. The number of tokens of colour c
on place p in marking m is described as m(p)(c).

For a Transition t ∈ TC, we define a firing mode of t as a mapping g :⋃
p∈PC

(WC(p, t) ∪ WC(t, p)) → ⋃
p∈PC

χ(p), which assigns a colour from χ(p) for
every place p ∈ PC and for each variable x ∈ WC(p, t)∪WC(t, p). A firing mode g
of a transition t satisfies the guard γ(t), denoted as g |= γ(t), if the assignment of
colours to variables is a model of the guard. Usually, definitions of coloured nets
permit a richer syntax for arc weights. However, any complex arc inscription w
can be replaced by a simple variable x and by adding x = w to the guard of
the involved transition. Thus, simplicity of our definition does not undermine
expressivity. For a coloured net, its unfolding can be defined.

Definition 5 (Unfolding). Let C = [PC, TC , FC ,WC , χ, γ,m0C] be a coloured
Petri net. A P/T net U = [PU , TU , FU ,WU ,m0U] is the unfolding of C if

– PU = {[p, c] | p ∈ PC, c ∈ χ(p)}
– TU = {[t, g] | t ∈ TC, g |= γ(t)}
– ([p, c], [t, g]) ∈ FU , iff (p, t) ∈ FC and c ∈ g(WC(p, t))
– ([t, g], [p, c]) ∈ FU , iff (t, p) ∈ FC and c ∈ g(WC(t, p))
– WU([p, c], [t, g]) = card({x | x ∈ WC(p, t), g(x) = c})
– WU([t, g], [p, c]) = card({x | x ∈ WC(t, p), g(x) = c})
– m0U([p, c]) = m0C(p)(c).

In the sequel, refer to the transition system defined by a coloured net C as the
transition system of its unfolding U , as they are isomorphic [JK09]. Coloured nets
as defined above are uniform. This means that the number of tokens consumed
or produced on any arc are independent of the particular firing mode, i.e., always
card(W (x, y)) tokens. There exist non-uniform variants of coloured nets. They
use variables that take multisets over χ(p) as values of their variables. They are,
however, out of the scope of this article since the core artifact studied in this
paper, the skeleton, is not applicable to non-uniform nets. For a uniform net, we
can assign a second P/T net, its skeleton.

Definition 6 (Skeleton). Let C = [PC , TC , FC ,WC , χ, γ,m0C] be a coloured net.
Its skeleton S = [PS, TS, FS,WS,m0S] is a P/T net where

– PS = PC, TS = TC, FS = FC

– for all x, y ∈ P ∪ T : WS(x, y) = card(WC(x, y))
– for all p ∈ P : m0S(p) =

∑
c∈χ(p) m0(p)(c).

190 S. Wallner and K. Wolf

[p, g] [p, r] [p, b]

[q, g] [q, r] [q, b]

tg tr tb

(a) The Unfolding U .

p

g

r b χ(p)={g,r,b}

q

χ(q)={g,r,b}

t γ(t):
∨

i∈{g,r,b} xpt=i∧xtq=i

(b) The Coloured Net C.

p

q

t

(c) The Skeleton S.

Fig. 2. A coloured Petri net C, its unfolding U and its skeleton net S.

The following example will help to understand the concepts of the unfolding
and the skeleton of a coloured net.

Example 2. Let C be the given coloured Petri net, as depicted in Fig. 2. Place
p and q have the colour domain χ(p) = χ(q) = {g, r, b}. Unfolding C leads to
the corresponding places [p, g], [p, r], [p, b] resp. [q, g], [q, r], [q, b]. For every firing
mode, which satisfies the guard of transition t, we introduce one transition in the
unfolding, so the unfolding has three transitions tg, tr, tb. Building the skeleton
makes all tokens on p indistinguishable and removes the colour sets of p and q.
The transition t in the skeleton has no guard and is simply acitvated, if there is
a sufficient number of tokens on p.

In the sequel, unless stated otherwise, let C be an arbitrary but fixed coloured
net, U its unfolding, and S its skeleton. U and S are related by a net morphism.

Definition 7 (Net Morphism [Des91]). Let N1 = [P1, T1, F1,W1,m01] and
N2 = [P2, T2, F2,W2,m02] be arbitary P/T nets. A net morphism from N1 to
N2 is a mapping μ : (P1 ∪ T1) → (P2 ∪ T2) such that μ(P1) ⊆ P2, μ(T1) ⊆ T2

and ∀x, y ∈ P1 ∪T1 : W (μ(x), μ(y)) = W (x, y). For the initial markings, it holds
that ∀p2 ∈ P2 : m02(p2) =

∑
p1∈P1:(p1,p2)∈μ m01(p1).

A net morphism can be extended to a mapping from markings of N1 to mark-
ings of N2 by setting m2(p2) =

∑
p1∈P1:(p1,p2)∈μ m1(p1) for all p2 ∈ P2, where

m1 ∈ RS(N1) and m2 ∈ RS(N2). A net morphism preserves the reachability
between the related nets.

Proposition 1 (Net Morphism preserves reachability [Pin11]). Let
N1, N2 be two P/T nets, related by a net morphism μ. The transition m

t−→ m′

in N1 implies the transition μ(m)
μ(t)−−→ μ(m′) in N2.

It is easy to see that U and S are related by a net morphism.

Proposition 2 (Net morphism from unfolding to skeleton [Des91,
PGE98]). Let C be a coloured Petri net, U its unfolding and S its skeleton.
The mapping μ : (PU ∪ TU) → (PS ∪ TS) is a net morphism from U to S, where

Skeleton Abstraction for Universal Temporal Properties 191

– ∀[p, c] ∈ PU : μ([p, c]) = p ∈ PS

– ∀[t, g] ∈ TU : μ([t, g]) = t ∈ TS

The net morphism μ between U and S can as well be extended to the mark-
ings of U and S, such as mS(p) =

∑
[p,c]∈PU :([p,c],p)∈μ : mU([p, c]) for all p ∈ PS,

where mU ∈ RS(U) and mS ∈ RS(S).
We continue with the introduction of the syntax and semantics of the tem-

poral logic CTL∗. The foundation for this logic are atomic propositions, prop-
erties which is either true or false. CTL∗ distinguishes state formulas and path
formulas.

Definition 8 (Syntax of CTL∗). The temporal logic CTL∗ is inductively
defined as follows:

– every atomic proposition is a state formula
– if ϕ and ψ are state formulas, so are (ϕ ∧ ψ), (ϕ ∨ ψ), and ¬ϕ
– every state formula is a path formula
– if ϕ and ψ are path formulas, so are (ϕ ∧ ψ), (ϕ ∨ ψ), ¬ϕ, Xϕ, Fϕ, Gϕ,

(ϕUψ), (ϕW ψ), and (ϕRψ)
– if ϕ is a path formula then Eϕ and Aϕ are state formulas.

The semantics of CTL∗ relies on the concept of paths in the considered
system, given as a transition system.

Definition 9 (Path,Suffix). Let TS = [Q, q0, R,A] be a transition system.
A finite path starting in state q0 is a sequence π = q0 . . . qn of states where
∀i ∈ {0, . . . , n − 1} : (qi, a, qi+1) ∈ R. An infinite path starting in q0 is an
infinite sequence π = q0q1 . . . where ∀i ∈ N : (qi, a, qi+1) ∈ R. A path is a finite
or infinite path. A path is maximal, if it is infinite, or is a finite path q1 . . . qn

where qn is a deadlock, i.e., a state where, for all q ∈ Q, (qn, a, q) /∈ R. As a
Suffix of a path π we define πi as the part of π, starting in qi.

The semantics of CTL∗ is defined on infinite paths, as we find them in Kripke
structures. A Kripke structure is a transition system K = [Q, q0, R,A,L] where R
is total, i.e., every state has at least one successor state. Thus the maximal paths
are always infinite here. Aditionally, Kripke structures have a labelling function
L : Q → 2AP , which assigns the set of atomic propositions to every state, which
are true in this state. Every transition system can canonically be transformed
into a Kripke structure by adding a silent transition action (qd, τ, qd) to R for
each deadlock state qd of the system, which does not have a successor state. The
semantics of CTL∗ is defined by two satisfaction relations, both denoted with |=,
that relate markings and state formulas resp. infinite paths and path formulas
according to the following rules.

Definition 10 (Semantics of CTL∗). Let K = [Q, q0, R,A,L] be a Kripke
structure. Let q ∈ Q be a state and π = q0q1 . . . an infinite path of the system.
The satisfaction of a CTL∗ formula is defined:

192 S. Wallner and K. Wolf

– For an atomic proposition ϕ: let q |= ϕ corresponding to Definition 14.
– For a state formula ϕ: π |= ϕ, if q0 |= ϕ.
– Boolean connectors:

• q |= ¬ϕ, if q |= ϕ; π |= ¬ϕ if q0 |= ϕ
• q |= (ϕ ∧ ψ), if q |= ϕ and q |= ψ; π |= (ϕ ∧ ψ) if π |= ϕ and π |= ψ.

– Temporal operators:
• π |= Xϕ, if π1 |= ϕ
• π |= (ϕUψ), if ∃i ≥ 0 : πi |= ψ and ∀0 ≤ j < i : πj |= ϕ.

– Path quantifier: q1 |= Eϕ, if ∃π : π |= ϕ.

Let further ϕ ∨ ψ be equivalent to ¬(¬ϕ ∧ ¬ψ), Fϕ to true Uϕ, Gϕ to ¬F¬ϕ,
ϕRψ to ¬(¬ϕU¬ψ), ϕW ψ to Gϕ ∨ (ϕUψ) and Aϕ to ¬E¬ϕ.

A Kripke structure satisfies a state formula if its initial states does. It satisfies
a path formula if all paths starting in the initial state do. For CTL∗, several
fragments are frequently studied.

Definition 11 (Fragments of CTL∗). CTL∗ formula ϕ is in

– LTL if ϕ does neither contain E nor A
– ACTL∗ if ϕ does neither contain E nor ¬
– CTL if every occurrence of X,U,F,G,R is immediately preceded by an

occurrence of A or E
– ACTL if ϕ is in ACTL∗ and CTL
– for any fragment F , ϕ is in the fragment FX if ϕ is in F and does not contain

X.

Since CTL and LTL contain, for all their operators, the dual operator
w.r.t negation, we can push negations to the bottom of formulas. Consequently,
LTL is indeed a subset of ACTL∗.

4 Relations Between Reachability Graphs

For describing relations between reachability graphs, we use the concepts of
abstraction relation and simulation relation, defined for Kripke structures.

Definition 12 (Abstraction Relation [Mil89]). Let K = [Q, q0, R,A,L] and
K̂ = [Q̂, q̂0, R̂, Â, L̂] be Kripke structures. An abstraction relation exists between
K and K̂, if there is a surjective abstraction function σ : Q → Q̂, for which it
holds that for every q̂ ∈ Q̂ and ∀a ∈ AP : q̂ |= a ⇔ ∀q ∈ Q with (q, q̂) ∈ σ : q |= a.

If such an abstraction relation exists between K and K̂, we say that K̂
(abstract system) abstracts K (concrete system). A particular type of abstrac-
tion relation is the simulation relation.

Definition 13 (Simulation Relation [GL94]). An abstraction relation
between K = [Q, q0, R,A,L] and K̂ = [Q̂, q̂0, R̂, Â, L̂] with the abstraction
function σ : Q → Q̂ is a simulation relation, if ∀q, q1 ∈ Q : q

∗−→ q1 and
(q, q̂) ∈ σ → ∃q̂1 ∈ Q̂ : q̂

∗−→ q̂1 for q̂ ∈ Q̂ and (q1, q̂1) ∈ σ.

Skeleton Abstraction for Universal Temporal Properties 193

If a simulation relation exists between K and K̂, we say that K̂ simulates
K. ACTL∗ properties are preserved through a simulation relation.

Proposition 3 (Simulation Relation preserves ACTL∗ [CES86]). Let
K = [Q, q0, R,A,L] and K̂ = [Q̂, q̂0, R̂, Â, L̂] be Kripke structures. If there is
a simulation relation between K and K̂, for every ACTL∗ formula ϕ, it holds
that K̂ |= ϕ ⇒ K |= ϕ.

As deadlocks may occur in Petri nets, a reachability graph is not necessarily
a Kripke structure. To make the concepts of abstraction and simulation for-
mally applicable to Petri nets, we need to transform the reachability graphs into
Kripke structures, as described above. Thus, for every deadlock marking md in
a reachability graph, we add a self-loop (md, τ,md) with a silent transition τ
to R. From now on, consider the reachability graphs of Petri nets as Kripke
structures, arised out of this transformation. For an abstraction relation, atomic
propositions are essential, so we first specify atomic propositions in the context
of Petri nets.

Definition 14 (Atomic proposition). Let N be a Petri net. An atomic
proposition is one of the constants true and false or an expression k1p1 +
. . . knpn ≤ k, for some n ∈ N with k1, . . . , kn, k ∈ Z, and p1, . . . , pn ∈ P ,
where P is the set of places of N . A marking m of a P/T net satisfies the
proposition k1p1 + · · · + knpn ≤ k, iff the term

∑n
i=1 ki · m(pi) evaluates to a

number less or equal to k. A marking m of coloured net satisfies proposition
k1p1 + · · · + knpn ≤ k, iff the term

∑n
i=1 ki · ∑

c∈χ(pi)
m(pi)(c) evaluates to a

number less or equal to k. For both, m |= a denote the fact that m satisfies
atomic proposition a.

The net morphism μ : (PU ∪ TU) → (PS ∪ TS) between the unfolding U of a
coloured net C and its skeleton S induces an abstraction relation between their
reachability graphs. To show this, we need to specify the unfolding of atomic
propositions of coloured nets. As S resp. C normally have another set of places
as U , the equisatisfiability between the concrete and the abstract states, required
in Definition 12, is not trivial.

Definition 15 (Unfolding of Atomic Propositions). Let μ : (PU ∪ TU) →
(PS ∪ TS) be the net morphism between U and S. Let aC ∈ APC an atomic
proposition of a coloured net C. Proposition aC can be unfolded to an atomic
proposition aU ∈ APU by substituting every occurrence of any place p ∈ PC by∑

[p,c]∈PU :μ([p,c])=p[p, c] for [p, c] ∈ PU .

An atomic proposition aC and its unfolding aU are equisatisfiable. To make
the unfolding of atomic propositions more clear, consider Example 1 and the
atomic proposition p ≤ 3. As the colour domain of p is χ(p) = {g, r, b} and
p would be unfolded to the places [p, g], [p, r], and [p, b], we unfold the atomic
proposition to [p, g] + [p, r] + [p, b] ≤ 3.

With this definition we can build an abstraction relation between a the
unfolding of a coloured net and its skeleton.

194 S. Wallner and K. Wolf

Proposition 4 (Abstraction Relation between U and S). Let U and S
be related by the net morphism μ : (PU ∪ TU) → (PS ∪ TS) from Proposition 2.
The extension of μ on the markings of U and S yields to a surjective abstrac-
tion function σ with (mU ,mS) ∈ σ for (mU ,mS) ∈ μ. Therefore, an abstraction
relation between the markings of U and S exists.

It is worth mentioning, that markings here include reachable and non-
reachable markings.

Proof. Let aU ∈ APU , aC ∈ APC and aS ∈ APS be atomic propositions. The
relation σ is an abstraction relation indeed, if for a marking mS of S, mS |=
aS ⇔ ∀mU |= aU with (mU ,mS) ∈ σ. If mS |= aS, then

∑n
i=1 ki · mS(pi) ≤ k.

For every corresponding marking mC of C, it holds that mC |= aC, as mS(pi) =∑
c∈χ(pi)

mC(pi)(c) for every i ∈ {1, . . . , n} and so,
∑n

i=1 ki·
∑

c∈χ(pi)
mC(pi)(c) ≤

k. Notice, that mC may be unreachable. As the corresponding markings of the
unfoldings are equisatisfiable, for every mU of U , it holds that mU |= aU . Reversed,
it must hold that if for a marking mS with mS |= aS, there is a marking mU with
(mU ,mS) ∈ σ, for which it holds that mU |= aU . Let

∑n
i ki · mS(pi) > k. For the

marking mC also holds that mC |= aC. This mC might be unreachable again. We
can see, that for mU , mU |= aU as well. ��

The existence of an abstraction relation is not sufficient for transferring the
validity results on the markings of S to U . We need in fact a simulation rela-
tion. A simulation σ requires the preservation of the transitions between the
simulating systems, so it should hold that ∀mU ,mU1 ∈ RS(U) : mU

∗−→ mU1 and
(mU ,mS) ∈ σ ⇒ ∃mS1 ∈ RS(S) : mS

∗−→ mS1 and (mU1,mS1) ∈ σ for mS ∈ RS(S).
As the coloured net may have deadlocks, which is not preserved in the skeleton
as shown in the opening example, there may be silents transitions at the dead-
lock states of U , which are not preserved in the skeleton S. Let mU ∈ RS(U) be
a deadlock of U not preserved in S, so mU

τ−→ mU . Let mS ∈ RS(S) be the cor-
responding marking of S with (mU ,mS) ∈ σ. Since mS is not a deadlock, there
is no silent transition added for mS and consequentially, there is no marking
mS1 ∈ RS(S) with mS

∗−→ mS1 and (mU ,mS1) ∈ σ, as mU ,mS1 do not fulfill atomic
propositions equally.

5 Simulation Relation Between Reachability Graphs

In this section, we discuss the existence of a simulation relation between the
unfolding and the skeleton under various conditions. As mentioned above, dead-
locks that are not preserved in the skeleton, may cause problems. We therefore
distinguish coloured nets, where

a) no deadlocks occur at all (Sect. 5.1),
b) all deadlocks are preserved in the skeleton (Sect. 5.2),
c) deadlocks are not always preserved. (Sect. 5.3)

The kind of the ACTL∗ formula is significant as well. ACTL∗ safety properties
permit the use of the skeleton approach even if deadlocks are not preserved, as
shown in Sect. 5.4.

Skeleton Abstraction for Universal Temporal Properties 195

5.1 Deadlock-Free Nets

When the net C resp. U has no deadlocks, the net morphism directly leads to a
simulation relation between the markings of U and S. There is no need to add
silent transitions in U that are not preserved in S.

Proposition 5. Let C be a coloured net without deadlocks, U its unfolding and
S its skeleton. The net morphism μ : (PU ∪ TU) → (PS ∪ TS) from Proposition 2
induces a simulation relation between the markings of U and S.

Proof. The reachability graph RU(m0) is a Kripke structure, without adding
silent transitions. Let mU ,mU1 ∈ RS(U) and mS ∈ RS(S) be the corresponding
marking of mU with (mU ,mS) ∈ μ. The markings mU and mS are then related
by the abstraction relation σ from Proposition 4: (mU ,mS) ∈ σ. Because net
morphisms preserve reachability, for tU ∈ TU , if it holds that if mU

tU−→ mU1 in

RU(m0), then there is a marking mS1 ∈ RS(S) with mS

μ(t)−−→ mS1 in RS(m0),
for which (mU1,mS1) ∈ μ. Consequently, for all markings mU ,mU1 ∈ RS(U) with
mU

∗−→ mU1 and (mU ,mS) ∈ σ, there is a marking mS1 ∈ RS(S) with mS

∗−→ mS1

in RS(m0) and (mU1,mS1) ∈ σ. ��
Thus, according to Proposition 3, ACTL∗ properties are preserved. If we can

guarantee, that the considered net is deadlock-free, the skeleton abstraction can
be used for transferring positive results of an ACTL∗ verification in S to U .

5.2 Deadlock Preservation

We now consider the case where a Petri nets has deadlocks. The reachability
graph of this net is not readily a Kripke structure, hence all deadlock states
were extended with a self loop with a silent action. In [Fin92], a necessary and
sufficient criterium is formulated, defining a class of coloured Petri nets, which
have a deadlock-preserving skeleton. This means that every dead marking of
the coloured net has a dead skeletal image, thus no deadlock of the coloured
net is invisible in the skeleton and it is possible to detect all deadlocks just
by the skeletal analysis. With this criterium, we can show that the simulation
relation between a coloured net and its skeleton is preserved for this subclass of
coloured nets. As we assume that the coloured net C = [PC, TC , FC ,WC , χ, γ,m0C]
is uniform, the number of input tokens, a transition t ∈ TC needs from each place
pi for i ∈ {1, . . . n} with n = |PC| is unambiguous, from now on denoted as fi(t),
where fi(t) = |WC(pi, t)|. These numbers form an input vector f : T → N

n for
every transition t ∈ TC : f(t) = (f1(t), f2(t), . . . , fn(t)). Building on that, we can
determine a preorder of the transitions of C, such that ∀t, t′ ∈ TC : t ≤ t′, iff
f(t) ≤ f(t′), which leads to an equivalence relation ∼ on TC, such that ∀t, t′ ∈
TC : t ∼ t′, iff f(t) = f(t′). Transitions with an identical input are aggregated
in one equivalence class. Let TC/∼ be the set of equivalence classes of TC. The
preorder of the transitions induces a partial order (TC/∼,≤) on TC/∼, such that
∀[t], [t′] ∈ TC/∼ : [t] ≤ [t′], iff t ≤ t′.

196 S. Wallner and K. Wolf

Definition 16 (Full Transition Class). An equivalence class [t] ∈ TC/∼ is
full, if for every marking mC of C with |mC(pi)| = fi(t) for all i ∈ {1, . . . , n},
there is a transition t ∈ [t] that is enabled in mC.

In other words, [t] is full, if any collection of bags matching the input size
requirements of [t] also matches the input colour distribution requirements of
one t ∈ [t]. This leads to the following proposition:

Proposition 6 (Deadlock-Preserving Skeleton [Fin92]). Let C be a uni-
form, coloured Petri net. Iff every minimal transition class of C in (TC/∼,≤) is
full, then C has a deadlock-preserving skeleton.

This is a necessary and sufficient condition. In this case, the net morphism μ :
(PU ∪TU) → (PS∪TS) between C and S induces a simulation relation. If a coloured
net has a deadlock-preserving skeleton, for every added silent transition at a
dead marking mU ∈ RS(U) of U , a silent transition is added as well in the dead
skeletal image mS ∈ RS(S) with (mU ,mS) ∈ μ. With regard to Proposition 3, we
can verify the ACTL∗ properties only in S without risking wrong conclusions
about the behavior of C.

Next, we shall discuss how to algorithmically check whether a transition class
is full. A brute-force enumeration of all firing modes may be very inefficient, as
already observed in [SRL+20]. It would in particular prevent the application of
the skeleton approach to coloured nets that have an unfolding too large to be con-
structed. Following the approach of [SRL+20], we rather create an automaton,
or an interval decision diagram (IDD) that accepts precisely those assignments
to the variables of a transition t that satisfy the guard of the t. The construction
of that automaton (IDD) is outlined in [SRL+20] and proceeds by recursively
translating the operators used in the guard into operations on the automaton
(IDD). The resulting automaton is a compact representation of all valid firing
modes of t. By a simple projection of this automaton to the variables occur-
ring in the incoming arcs of t, we obtain an automaton that accepts all tuples
of colours that t may consume in any of its firing modes. Using the automata
construction for language union, we can then determine the set of tuples that
can be consumed by any transition in the class of t. The class is full if and only
if the resulting automaton accepts the set of all tuples of colours of the input
places of t (which is the same for all members of the class). Our experiments
revealed that we are able to decide the full transition class criterion for coloured
nets where, so far, no participant in the model checking contest could create its
unfolding. We managed to get some verification results for those nets using the
skeleton approach.

5.3 Inject Deadlocks to Skeleton

The main focus of this section are nets with deadlocks, but without deadlock-
preserving skeleton. Here, the net morphism does not induce a simulation rela-
tion, so the ACTL∗ results cannot be transferred from the skeleton to the
coloured net. We present an approach to modify the skeleton net such that

Skeleton Abstraction for Universal Temporal Properties 197

every deadlock of the unfolding occurs in the new skeleton, but potentially with
some delay. In this case we cannot guarantee that every dead marking has a
dead skeletal image, but we can at least guarantee that for a dead marking, the
corresponding skeletal deadlock occurs after a finite number of actions.

Definition 17 (Modified Skeleton Net). Let C = [PC, TC , FC ,WC , χ, γ,m0C]
be a uniform coloured net. The modified skeleton S′ can be constructed from the
skeleton S as, for every preset place p ∈ PC of a non-full minimal transition
class [t], a complement place p and a recipient transition tr with •tr = {p} and
tr• = {p} are introduced with W (p, tr) = W (tr, p) = 1. Apart from that, S′ and
S are identical.

The modified skeleton has another behaviour than the original skeleton.
Every recipient transition tr can successively empty its preset place p and stores
the tokens on the complement place p. These actions can be considered as silent
actions of S′. Once a token is stored on p, it cannot leave this place anymore.
So, after a finite number of actions of the recipient transitions, the preset of
[t] is empty and the transitions in [t] cannot fire anymore. The deadlock of U
occurs in S′ after a finite number of silent actions of the recipient transitions.
Between U and S′ a stuttering simulation holds, which is a weakened version of
a simulation relation.

Definition 18 (Stuttering Simulation [PSGK00]). Let K = [Q, q0, R,A,L]
and K̂ = [Q̂, q̂0, R̂, Â, L̂] be Kripke structures and a be an atomic proposition.
A mapping σs : Q → Q̂ is a stuttering simulation relation if the following
conditions hold:

– (q0, q̂0) ∈ σs

– (q, q̂) ∈ σs ⇒ q |= a ⇔ q̂ |= a and for every path π = q0q1q2 . . . of K, there is
a path π̂ = q̂0q̂1q̂2 . . . of K̂, such that we can find the partitions B0, B1, B2, . . .
for π resp. B̂0, B̂1, B̂2, . . . for π̂ for which holds that:

• ∀i ≥ 0 : Bi, B̂i are not empty and finite
• every state of B̂i is related with every state of Bi by σs.

If two systems are related by a stuttering simulation, the behaviour of the
concrete system K is simulated by the abstract system K̂, but K̂ can run internal
silent actions while simulating. Between the unfolding and the modified skeleton,
we can observe this stuttering simulation. To prove this, we first need to establish
a relation between the markings of U and S′. Therefore, we create a relation
between the markings of S and the markings of S′. A Marking mS of S and a
marking mS′ of S′ are related, if

– mS(p) = mS′(p)+mS′(p) for p ∈ •[t], where [t] is a non-full minimal transition
class

– mS(p) = mS′(p) otherwise.

The relation between a marking mU and a marking mS′ can then be established
by composing the abstraction relation from mU to mS and with the one just

198 S. Wallner and K. Wolf

defined. Thus, the relation between the markings of U and S′ is an abstraction
relation. The silent actions of the recipient transitions move the tokens of the
preset places to their complementary places. No matter if they have moved one
or all tokens, the sum over the places p and p is always invariant.

Proposition 7 (Stuttering Simulation between U and S′). Let C be a
uniform coloured net, U its unfolding and S′ its modified skeleton. Between the
markings of U and S′, a stuttering simulation σs holds.

Proof. The definition of the marking guarantees, that an abstraction relation
exists between the markings of U and S′. States, which are related by the σs,
fullfil atomic propositions equally. Between the initial markings m0U and m0S′ the
stuttering simulation holds. Now consider the path πU = m1Um2U . . . of U and
the corresponding path πS′ = m1S′m2S′ . . . of S′, where (miU ,miS′) ∈ μ for all i.
The the partitioning of πU and the corresponding path πS′ in S′ is obtained as
follows: For a marking miU of path πU , which is not a deadlock, the corresponding
part of πS′ is simply miS′ with (miU ,miS′) ∈ σs. The partitioning of the paths
for this parts is trivial: BiU = {miU} resp. BiS′ = {miS′}. Let now be miU a
deadlock, which is only followed by the self-loop-τ -actions. The corresponding
marking miS′ is not necessarily a deadlock. Firing the recipient transitions in
miS′ yields to a sequence τ∗ which ends in a deadlock marking mdS′ , where only
the self-loop-τ -action is possible as well. For partitioning, BiU contains only the
deadlock state miU of U . BiS′ contains the states miS′ ,mi+1S′ ,mi+2S′ , . . . ,mdS′ ,
where mi+1S′ ,mi+2S′ , . . . are the markings, reached by actions of the recipient
transitions and mdS′ is the delayed deadlock marking. All states in BiS′ have the
same validity of atomic propositions and so they can be related with miU by σs.
So, between U and S′ a stuttering simulation holds. ��

A stuttering simulation preserves ACTL∗
X properties.

Proposition 8 (Stuttering simulation preserves ACTL∗
X [PSGK00]). Let

K = [Q, q0, R,A,L] and K̂ = [Q̂, q̂0, R̂, Â, L̂] be Kripke structures, which are
related by a stuttering simulation. Then K |= ϕ ⇒ K̂ |= ϕ for any ACTL∗

X

formula ϕ.

ACTL∗
X formulas permit claims about the overall behaviour of the system,

except for referring next states. The silent actions in the abstract system can
generate new next states, which replace the actual simulating next state. Because
of this, assumptions on next states can be falsified, which explains the restriction
to ACTL∗

X . Nevertheless, the validity of at least a subset of ACTL∗ formulas
can be transferred from the modified skeleton to the unfolding.

5.4 Safety Properties

In the context of net morphisms, safety properties make an exception with regard
of their validation.

Skeleton Abstraction for Universal Temporal Properties 199

Definition 19 (Safety Property [KGG99]). An ACTL∗ property is a safety
property, if only the temporal operators W,X and the path quantifier A occur.

We claim that a safety property ϕ is preserved by a net morphism even
if that morphism does not induce a simulation relation. In the context of the
skeleton abstraction, the abstraction relation between the markings of U and S
is sufficient for the preservation of ACTL∗ safety formulas. This fact was already
informally mentioned in [PGE98]. However, that paper did not precisely define
the class of properties and did not prove the claim.

Proposition 9 (Net Morphisms preserve ACTL∗ Safety Properties).
Let C be a coloured net, U its unfolding and S its skeleton. Let μ : (PU ∪ TU) →
(PS ∪ TS) a net morphism, ϕS an ACTL∗ safety property and ϕU its unfolding
after Definition 15. Let m be a marking of U . Then it holds that: μ(m) |= ϕS ⇒
m |= ϕU .

Proof. We prove the contraposition m |= ϕU ⇒ μ(m) |= ϕS by induction on the
structure of ϕC .
Base: If m |= ϕU , then μ(m) |= ϕS, corresponding to Definition 12.
Step: We therefore distinguish between the possible structures of ϕU and ϕS:

1. ϕU = ψU ∧ ξU resp. ϕU = ψU ∨ ξU : the induction hypothesis can directly be
applied to ψU and ξU .

2. ϕU = AψU : If m |= ϕU , there is a path π = mm1m2 . . . with π |= ψU . Because
reachability is preserved, there is a path μ(π) = μ(m)μ(m1)μ(m2) . . . with
μ(π) |= ψS. So, μ(m) |= AψS resp. μ(m) |= ϕS.

3. ϕU = AXψU : If m |= ϕU , there is a path π = mm1m2 . . . where m1 |= ψU . For
the skeleton, there is a path μ(π) = μ(m)μ(m1)μ(m2) . . . where μ(m1) |= ψS.
So, μ(m) |= AXψS resp. μ(m) |= ϕS.

4. ϕU = AψUWξU , which is the disjunction between
a) ϕU = AGψU : If m |= AGψU , there is a path π = mm1m2 . . . with a mark-

ing mi |= ψU . Hence, π |= GψU . Again, the preservation of reachability
leads to a path μ(π) = μ(m)μ(m1)μ(m2) . . . with a marking μ(mi) |= ψS.
So, μ(π) |= GψS and thus μ(m) |= AGψS;

b) ϕU = AψUUξU : If m |= AψUUξU there is a path π = mm1m2 . . . with
π |= (ψUUξU). This is possible in two different ways: On the one hand,
for all i ≥ 0 : mi |= ξU can hold, hence π |= GξU . This can be treated
analogously to case 4.a). On the other hand, there might be a mi |= ξU ,
but there is also a mj with j < i and mj |= ψU . Then, there is a path
μ(π) = μ(m)μ(m1)μ(m2) . . . with μ(mi) and μ(mj) with μ(mi) |= ξS and
μ(mj) |= ψS as well. Hence, it holds μ(m) |= AψSUξS.

In both cases, μ(m) |= ϕS.

The invalidity of ϕU can always be proven with a finite counterexample
path. Deadlocks may just occur in the last marking of this path. Let mi, the
last marking of the counterexample were we can see the invalidity of ϕU , be a
deadlock. Because we consider Kripke structures, every path of the system is

200 S. Wallner and K. Wolf

infinite. The counterexample path π is therefore continued to an infinite path
π = mm1m2 . . . mimimi . . . by repeating the deadlock state mi. This repeti-
tion does not change the finiteness of the counterexample. If the deadlock mi

is preserved in the skeleton, this leads to an corresponding path μ(π) with rep-
etitions as well: μ(π) = μ(m)μ(m1)μ(m2) . . . μ(mi)μ(mi)μ(mi) The inva-
lidity of ϕS remains unchanged. If the deadlock is not preserved, the path μ(π)
has another sequel: μ(π) = μ(m)μ(m1)μ(m2) . . . μ(mi)μ(mi+1)μ(mi+2) . . . with
μ(mi+1) = μ(mi). The counterexample is transferred exactly up to and including
mi, the markings μ(mi+1)μ(mi+2) . . . do not change the invalidity of ϕS.

��

6 Folding Place/Transition Nets

With the results presented so far, the skeleton abstraction is only available for
systems modeled as coloured Petri nets. In this section, we extend the applica-
bility to nets that are originally modeled as P/T nets. There exist translations
from various high level system descriptions directly into P/T nets that could
as well have been translated into coloured nets. We propose an efficient proce-
dure to fold a P/T net N into a coloured net CN , for which we then can build
the skeleton SN . The idea of folding a P/T net into a coloured net is as old
as coloured nets as such. To our best knowledge, however, the efficiency of an
actual implementation has not been observed so far. Our approach is based on
partition refinement. The goal here is to partition a set M into a partition M
of disjunct subsets M1, . . . ,Mn. First, M contains only one subset, which is M.
The Partition is then refined by the application of a split function.

Definition 20. Let M = {M1, . . . ,Mn} be a partition of the set M and f :
M → Z be a split function. The application of f on the partition M is defined
as: split(M,f) = {{x | x ∈ Mi, f(x) = j}} for 1 ≤ i ≤ n, j ∈ Z.

Informally, we separate elements, where f yields different values. This leads
to a new partition of M. For two subsets Mi,Mj , it should hold that Mi = ∅,
Mi∩Mj = ∅ and also M1∪· · ·∪Mn = M. For implementing a split operation, we
assume an array where every element of M appears exactly once. For every class
in the partition, there is a pair of indices i and j such that the elements of the
class are the array entries between i and j. For a split operation, we separately
sort the elements of each class and then introduce new classes where adjacent
elements have different f -values. Given a P/T net N = [P, T, F,W,m0], the ini-
tial set, which should be partitioned is M = P ∪T . The coarsest partition fitting
all requirements is M = {P, T}. We refine this partition such that, ultimately,
every class of places of the given net serves as a place of the resulting coloured
net CN while every class of transitions of the given net serves as a transition.
We have to take care that we obey the restrictions of uniformity, that building
a skeleton is possible. The folding happens with regard to an ACTL∗ formula
ϕ. Let APϕ denote the set of atomic propositions occuring in ϕ. The procedure
for folding a P/T net into a coloured net is described in Fig. 3. To make this
algorithm more understandable, we demonstrate it with an example.

Skeleton Abstraction for Universal Temporal Properties 201

Input: P ∪ T of a Petri net N = [P, T, F, W, m0]
Output: Partition M of P ∪ T resp. CN = [PCN , TCN , FCN , WCN , χ, γ, m0CN]
Split P and T ;
Split class M∗ ∈ M according to equivalence ∼ where x, y ∈ P ∪T : x ∼ y, iff |•x| = |•y|;
Split class M∗ ∈ M according to equivalence ∼ where x, y ∈ P ∪T : x ∼ y, iff |x•| = |y•|;
Split each place class M∗ ∈ M according to equivalence ∼ regarding every (k1p1 + · · · +
knpn <= k) ∈ APϕ where pi ∼ pj , iff ki = kj for pi, pj ∈ M∗ and i, j ∈ {1, . . . , n};
repeat

for all classes M∗ ∈ M do
for all weights w∗ ∈ W do

Split M∗ according to equivalence ∼ where x, y ∈ P ∪ T : x ∼ y
iff card({z|z ∈ M∗, W (x, z) = w∗}) = card({z|z ∈ M∗, W (y, z = w∗});
Split M∗ according to equivalence ∼ where x, y ∈ P ∪ T : x ∼ y
iff card({z|z ∈ M∗, W (z, x) = w∗}) = card({z|z ∈ M∗, W (z, y) = w∗});

end for
end for

until nothing changes anymore
PCN = place classes, TCN = transition classes, (M∗, M∗′) ∈ FCN , WCN(M∗, M∗′) =
{v0, . . . , vk}, iff ∃x ∈ M∗, ∃y ∈ M∗′ : (x, y) ∈ F, W (x, y) = k for k ∈ N,
M∗, M∗′ ∈ M ;
m0CN(M∗) =

∑
p∈M∗ m0(p), χ(M∗) = elements of M∗ for every place class M∗ ∈ M ;

γ(M∗) = disjunction of all firing modes of M∗ for every transition class M∗ ∈ M ;

Fig. 3. Algorithm for folding a P/T net into a coloured net.

Example 3. We consider a P/T net N , which shows the dilemma of five dining
philosophers. The P/T net is structured as follows: For every i ∈ {0, . . . , 4} there
is a place thi (philosopher i is thinking), a place hli (has left fork), hri (has right
fork), eai (philosopher i is eating) and foi (fork i is on the table). There are the
transitions tli (take left fork) that consume tokens from thi and foi, and produce
on hli, transitions tri (take right fork) that consume from hli and foi+1mod 5

and produce on eai, transitions rli (release left fork) that consume from eai

and produce on hri and foi, and, finally, transitions rri (release right fork) that
consume from hri and produce on foi+1mod 5 and thi. Places thi and foi are
initially marked, and all arc weights are 1. For better readability, xi describes the
set x0, . . . , x4 for every node x ∈ P ∪ T of the net. The folding is regarding the
ACTL∗ formula ϕ : AG ¬(

∑
i hr.i = 4) ∧ (

∑
i hl.i = 1) for i ∈ {0, . . . , 4}.

Initially the coarsest partition distinguishes between places and transitions:
M = {{thi, eai, foi, hli, hri}, {tri, tli, rli, rri}}. Then, the sets are split accord-
ing to the number of incoming and outgoing arcs. This leads to partition
M = {{thi, eai, hli, hri}, {foi}, {tri, tli}, {rli, rri}}. Afterwards, the nodes are
partitioned with respect to the cardinality of the incoming and outgoing arcs. For
all occurring weights, a node is mapped to its number of incoming resp. outgoing
arcs with this weight. In the example, these two steps do not lead to another par-
tition, as all weights are 1. The atomic propositions of ϕ give additional restric-
tions, as the elements of the subsets finally should satisfy those propositions

202 S. Wallner and K. Wolf

equally. So, for the atomic propositions
∑4

i=1 hr.i = 4 and
∑4

i=1 hl.i = 1, every
place is mapped to its coefficient in the corresponding proposition. Transitions
are not affected here, so M = {{thi, eai}, {hli}, {hri}, {foi}, {tri, tli}, {rli, rri}}.
For obtaining uniformity, we proceed as follows until nothing changes: Pick a
class M∗ and an arc weight w∗, and split the partition corresponding to the
following mappings:

– for all x ∈ P ∪ T , map node x to card({y|y ∈ M∗,W (x, y) = w∗});
– for all x ∈ P ∪ T , map node x to card({y|y ∈ M∗,W (y, x) = w∗}).

Picking the class that contains all hl places, the two transition classes are
split into the three classes of all tl transitions (have a hl place as post-place),
of all tr transitions (have a hl place as pre-place), and all remaining transi-
tions (are not connected to hl). Picking the class of tl transitions, we sep-
arate the th places (outgoing are to a tl transition) from the hr and ea
places. With the th place class, the rl transitions (not connected to any th
place) are separated from the rr transitions (arc to some th place). Finally,
the rl transitions separate the ea places from the hr places. The partition
is M = {{thi}, {eai}, {hli}, {hri}, {foi}, {tri}, {tli}, {rli}, {rri}}. Finally, every
place class Mi is turned into a place pMi

with
∑

p∈Mi
m(p) tokens and the colour

domain χ(pMi
) = Mi, and every transition class Mj into a transition tMj

. We
obtain the places th, ea, fo, hl, hr and the transitions tr, tl, rl, rr. Let there be
an arc from pMi

to tMj
, if there exists some p ∈ Mi and t ∈ Mj with (p, t) ∈ F .

Arcs from transitions to places are formed analogously. An Arc (pMi
, tMj

) ist
assigned with the variables x1, . . . , xw where w = W (p, t) for p ∈ Mi and t ∈ Mj .
In the end, we need to formulate the guard of the transitions, which needs to
ensure, that the coloured transition only fires if the right coloured tokens lay
on the pre-places. We therefore build the disjunction of the input requirements
of the transitions according the arcs and weights of N . The guard of transition
tl is γ(i) =

∨
i xthtl = th.i ∧ xfotl = fo.i, where xthtl, xfotl are the variables of

the corresponding arcs, for instance. Figure 4 presents the coloured net, which
results of the described folding. The coloured net can subsequently be decoloured
to a skeleton.

The resulting coloured net does not necessarily have full minimal transition
classes (cf. Sect. 5.2), thus it does not have a deadlock-preserving skeleton. Due
to the process for deriving the folded coloured net, the guards do not permit
the approach outlined there for checking whether or not a transition class is full.
We may, however, approach that criterion differently. The idea is to check the
criterion right after the folding procedure, just as we have the final partitioning
of the P/T nodes. If we cannot prove the deadlock preservation at this point,
we can abort the skeletal analysis of this net, as we don’t expect useful results.

Proposition 10 (Deadlock Preservation for P/T Nets). Let N be a P/T net
and CN its folding. Let [t] = {t1, t2, . . . , tk} be a minimal transition class of CN ,
where each transition tj has sj firing modes for j ∈ {1, . . . , k}. Let p1, p2, . . . , p�

be the pre-places of [t], with the colour domains χ(pi) for i ∈ {1, . . . , �}. Every

Skeleton Abstraction for Universal Temporal Properties 203

fo

fo0

fo1

fo2

fo3

fo4

th

th0

th1

th2

th3

th4

hl ea hr

tl
xtlhl

tr
xhltr

xfotr

xtrea
rl

xearl xrlhr
rr

xhrrr

xthtl

xfotl

xrrth

xrrfo

xrlfo

Fig. 4. A coloured net version of the five dining philosophers.

pre-place pi is connected to every transition tj of [t] by an arc with the weight
wij. The folding CN resp. the underlying P/T net N has a deadlock-preserving
skeleton, if

∏�
i=1

(|χ(pi)|
wij

)
=

∑k
j=1 sj for every minimal transition class of CN .

Proof. The folding CN has a deadlock-preserving skeleton, if all of its minimal
transition classes are full. A minimal transition class [t] = {t1, t2, . . . , tk} is full,
if for every marking mCN

with |mCN
(pi)| = fi(t) for i ∈ {1, . . . , �}, there is one

transition in [t], for which the marking is a firing mode. This is expressed by
the equation

∏�
i=1

(|χ(pi)|
wij

)
=

∑k
j=1 sj . The binomial coefficient

(|χ(pi)|
wij

)
gives the

number of sufficient tokensubsets of χ(pi) for one pre-place pi of [t], where i ∈
{1, . . . , �} and j ∈ {1, . . . , k}. Multiplying these numbers for every pre-place pi

for i ∈ {1, . . . , �}, leads to the total number of sufficient combinations of tokens,
i.e., the number of possible markings mCN

with sufficient input requirements
|m(pi)| = fi(t) with i ∈ {1, . . . , �} for [t]. Each of the transitions tj in [t] for j ∈
{1, . . . , k} has sj firing modes, thus in [t], we have

∑k
j=1 sj firing modes overall. If

∏�
i=1

(|χ(pi)|
wij

)
=

∑k
j=1 sj , for every sufficient combination of the coloured tokens,

there is a firing mode of one transition in [t]. If
∏�

i=1

(|χ(pi)|
wij

)
=

∑k
j=1 sj , the

minimal transition class [t] is full, thus if the equation holds for every minimal
transition class, CN has a deadlock-preserving skeleton. Transferring this to N ,
for every combination of tokens of the P/T pre-places (represented by χ(pi)),
there is one P/T transition related to [t] enabled (representend by sj). So, if a
marking of N fits with regard to the cardinality, there must be one activated P/T
transition if the equation holds. Then, N is has a deadlock-preserving skeleton.
It is important to mention, that the firing modes sj need to be all different
from each other, resp. all of the P/T transitions need to have different presets.
Otherwise the equality of combinations and firing modes will not hold, although
every combination activates a transition. ��

This equation is sufficient for the fullness of [t], but it is not necessary.
If

∏l
i=1

(|χ(pi)|
wij

)
>

∑k
j=1 sj , which means there is a combination of tokens

which does not activate a transition, these too many combinations might be
unreachable, thus are not in need of an activated transition. If the equation

204 S. Wallner and K. Wolf

holds for every minimal transition class we know that CN will have a deadlock-
preserving skeleton and the method of skeletal abstraction can be applied to N
and all its ACTL∗ formulas.

7 Experimental Results

We conducted our experiments on the benchmark provided by the Model Check-
ing Contest (MCC) 2019 [KGH+19]. On that page, the reader may find a detailed
specification of the machine “tajo” that was used to execute the experiments.
The benchmark comprises 1018 nets (193 coloured nets and 825 P/T nets). For
the majority of colored nets, their unfolding is among the P/T nets of the bench-
mark, too. We covered the three categories Reachability, CTL, and LTL where
the skeleton approach makes sense. For every net and category, there are 16
formulas with place-based atomic propositions and 16 formulas with transition-
based propositions. That makes a total of 97,728 formulas. If a P/T net is the
unfolding of a coloured net, some but not all formulas of the P/T net accord
with formulas used for the coloured net.

In every single run, we allowed 4 cores, 1800 s, and 16 MB of RAM for the
verification of a group of 16 formulas. The runs used the full portfolio [Wol20] of
verification methods available in our tool LoLA [Wol18], now including the skele-
ton approach. For the skeleton, we applied the same search based model checking
routines as for the unfolded net, and the state equation approach [WW12]. In
our approach, the skeleton is directly derived from the PNML description of a
coloured net, so the skeleton related verification tasks start before the unfold-
ing of the net is generated in parallel (and only then the remaining verification
routines are launched). If the input is a P/T net, we first launch the verifica-
tion tasks for the given net, before trying to fold the net (in parallel to the
already running routines). We launch skeleton related tasks only if the size of
the skeleton is less than one third of the size of the given P/T net. This way,
we avoid spending resources in situations where the skeleton is too close to the
given net. Since folding depends on the formula, we have to execute up to 16
individual folding procedures per run. We do not fold a net if the formula is
trivial (i.e., does not contain temporal operators). Trivial formulas are mostly
the result of sophisticated application of logical tautologies and preprocessing
based on linear programming [BDJ+18]. We also stop the folding procedure as
soon as some other portfolio member has determined the value of the formula.

For the 79,200 formulas for P/T nets, 66,546 skeletons were created. Of the
remaining 12,654 formulas, 11,086 contain no temporal operators, so no folding
was launched. For the remaining 1,568 formulas, some other portfolio member
may have delivered a result before folding completed. Folding took at most 287 s,
with an average of half a second. Generation of the skeleton for a coloured
net takes no time at all as it appears as an intermediate step of the unfolding
process. Generating the skeleton naturally succeeded for all coloured nets. It
also succeeded whenever both net and formula were derived from a coloured net.
There are few other cases where the skeleton could be generated. Although more

Skeleton Abstraction for Universal Temporal Properties 205

nets have a regular, foldable structure, formulas, if not derived from coloured
nets, are generated randomly, so they tend to break symmetry more frequently
than in practical situations. On the other hand, the formula syntax for coloured
nets in the MCC does not permit references to individual colours or firing modes,
so the skeleton approach is applicable more frequently than in practice. Since
there are more P/T nets than coloured nets in the contest, results obtained
for the MCC benchmark should be a lower bound for the performance to be
observed in practice.

The 66,546 skeletons include those that are considered too large to make a
difference compared to the given net. After ruling them out, 34,906 formulas
have useful skeletons, including coloured and P/T nets. In 15,315 cases, we
launched the skeleton related tasks. In the remaining 19,591 cases, the formula
(nor its negation) are not in ACTL∗, or none of the criteria discussed in the
paper would certify preservation of the formula. We need to mention here that
deadlock injection has not been implemented so far.

Of the 15,315 formulas where we launched the skeleton related tasks, they
were the first (among the whole portfolio) to deliver results in 3168 cases. The
remaining 12,147 formulas include those where some other portfolio member
responded earlier, or where the skeleton approach evaluated its ACTL∗ query
to false (so the value is not inherited by the unfolded net).

Among the considered 97,728 formulas considered, there have been 7,768
formulas none of the participants in the MCC 2019 could solve. With the skeleton
approach, we have now been able to solve 226 of these particularly involved
problems. These include but are not restricted to nets that have a prohibitively
large unfolding.

Given that we run the skeleton approach as part of a powerful portfolio, with
LoLA being a competitive participant in the MCC, we may conclude that the
skeleton approach nicely complements the existing portfolio.

8 Conclusion

With our contribution, we turned the skeleton approach into an executable and
useful member of a verification portfolio. We investigated the gap between the
concepts of net morphisms and simulation relations and proposed algorithms for
checking the required criteria. Through folding, we extended the approach to
P/T nets. Experiments underpin the usefulness of the approach.

Future work may include the implementation of deadlock injection. Further-
more, we may enhance the approach to the full transition classes. First, we may
try to use place invariants to rule out certain token distributions in the pre-set
of transition classes thus being able to certify more transition classes as full. Sec-
ond, we may try to split places and transitions in the skeleton, turning non-full
transition classes into full ones.

206 S. Wallner and K. Wolf

References

[BDJ+18] Bønneland, F., Dyhr, J., Jensen, P.G., Johannsen, M., Srba, J.: Simpli-
fication of CTL formulae for efficient model checking of Petri Nets. In:
Khomenko, V., Roux, O.H. (eds.) PETRI NETS 2018. LNCS, vol. 10877,
pp. 143–163. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-
91268-4 8

[CES86] Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-
state concurrent systems using temporal logic specifications. ACM Trans.
Program. Lang. Syst. 8(2), 244–263 (1986)

[Des91] Desel, J.: On abstractions of nets. In: Rozenberg, G. (ed.) ICATPN 1990.
LNCS, vol. 524, pp. 78–92. Springer, Heidelberg (1991). https://doi.org/
10.1007/BFb0019970

[Fin92] Findlow, G.: Obtaining deadlock-preserving skeletons for coloured nets.
In: Jensen, K. (ed.) ICATPN 1992. LNCS, vol. 616, pp. 173–192. Springer,
Heidelberg (1992). https://doi.org/10.1007/3-540-55676-1 10

[GL94] Grumberg, O., Long, D.E.: Model checking and modular verification. ACM
Trans. Program. Lang. Syst. 16(3), 843–871 (1994)

[JK09] Jensen, K., Kristensen, L.M.: Coloured Petri Nets. Modelling and Valida-
tion of Concurrent Systems. Springer, Heidelberg (2009). https://doi.org/
10.1007/b95112

[KGG99] Katz, S., Grumberg, O., Geist, D.: “Have i written enough properties?”
- a method of comparison between specification and implementation. In:
Pierre, L., Kropf, T. (eds.) CHARME 1999. LNCS, vol. 1703, pp. 280–297.
Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-48153-2 21

[KGH+19] Kordon, F., et al.: Complete Results for the 2019 Edition of the Model
Checking Contest (2019). http://mcc.lip6.fr/2019/results.php

[Lil95] Lilius, J.: On the Folding of Algebraic Nets. Helsinki University of Tech-
nology (1995)

[Mil89] Milner, R.: Communication and Concurrency. Prentice Hall International
Series in Computer Science. Prentice Hall, New York (1989)

[PGE98] Padbergx, J., Gajewsky, M., Ermel, C.: Rule-based refinement of high-level
nets preserving safety properties. In: Proceedings of the FASE, vol. 1382,
pp. 221–238 (1998)

[Pin11] Pinna, G.M.: How much is worth to remember? A taxonomy based on Petri
Nets unfoldings. In: Kristensen, L.M., Petrucci, L. (eds.) PETRI NETS
2011. LNCS, vol. 6709, pp. 109–128. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-21834-7 7

[PSGK00] Penczek, W., Szreter, M., Gerth, R., Kuiper, R.: Improving partial order
reductions for universal branching time properties. Fundamenta Informat-
icae 43(14), 245–267 (2000)

[RB01] Rust, C., Tacken, J., Böke, C.: Pr/T-Net based seamless design of embed-
ded real-time systems. In: Colom, J.-M., Koutny, M. (eds.) ICATPN 2001.
LNCS, vol. 2075, pp. 343–362. Springer, Heidelberg (2001). https://doi.
org/10.1007/3-540-45740-2 20

[SMS99] Sliva, V.P., Murataxx, T., Shatz, S.M.: Protocol specification design using
an object-based Petri Net formalism. Int. J. Softw. Eng. Knowl. Eng.
09(01), 97–125 (1999)

https://doi.org/10.1007/978-3-319-91268-4_8
https://doi.org/10.1007/978-3-319-91268-4_8
https://doi.org/10.1007/BFb0019970
https://doi.org/10.1007/BFb0019970
https://doi.org/10.1007/3-540-55676-1_10
https://doi.org/10.1007/b95112
https://doi.org/10.1007/b95112
https://doi.org/10.1007/3-540-48153-2_21
http://mcc.lip6.fr/2019/results.php
https://doi.org/10.1007/978-3-642-21834-7_7
https://doi.org/10.1007/978-3-642-21834-7_7
https://doi.org/10.1007/3-540-45740-2_20
https://doi.org/10.1007/3-540-45740-2_20

Skeleton Abstraction for Universal Temporal Properties 207

[SRL+20] Schwarick, M., Rohr, C., Liu, F., Assaf, G., Chodak, J., Heiner, M.: Effi-
cient unfolding of coloured Petri Nets using interval decision diagrams. In:
Janicki, R., Sidorova, N., Chatain, T. (eds.) PETRI NETS 2020. LNCS,
vol. 12152, pp. 324–344. Springer, Cham (2020). https://doi.org/10.1007/
978-3-030-51831-8 16

[Vau87] Vautherin, J.: Parallel systems specifications with coloured Petri nets and
algebraic specifications. In: Rozenberg, G. (ed.) APN 1986. LNCS, vol. 266,
pp. 293–308. Springer, Heidelberg (1987). https://doi.org/10.1007/3-540-
18086-9 31

[Wol18] Wolf, K.: Petri Net model checking with LoLA 2. In: Khomenko, V., Roux,
O.H. (eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 351–362. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-91268-4 18

[Wol20] Wolf, K.: Portfolio management in explicit model checking. In: Proceedings
of the PNSE (CEUR Workshop Proceedings), vol. 2651, pp. 10–28 (2020)

[WW12] Wimmel, H., Wolf, K.: Applying CEGAR to the Petri Net state equation.
Log. Meth. Comput. Sci. 8(3) (2012). https://doi.org/10.2168/LMCS-8(3:
27)2012

https://doi.org/10.1007/978-3-030-51831-8_16
https://doi.org/10.1007/978-3-030-51831-8_16
https://doi.org/10.1007/3-540-18086-9_31
https://doi.org/10.1007/3-540-18086-9_31
https://doi.org/10.1007/978-3-319-91268-4_18
https://doi.org/10.2168/LMCS-8(3:27)2012
https://doi.org/10.2168/LMCS-8(3:27)2012

Reduction Using Induced Subnets
to Systematically Prove Properties

for Free-Choice Nets

Wil M. P. van der Aalst1,2(B)

1 Process and Data Science (Informatik 9), RWTH Aachen University,
Aachen, Germany

wvdaalst@pads.rwth-aachen.de
2 Fraunhofer-Institut für Angewandte Informationstechnik (FIT),

Sankt Augustin, Germany

Abstract. We use sequences of t-induced T-nets and p-induced P-nets
to convert free-choice nets into T-nets and P-nets while preserving prop-
erties such as well-formedness, liveness, lucency, pc-safety, and perpetu-
ality. The approach is general and can be applied to different properties.
This allows for more systematic proofs that “peel off” non-trivial parts
while retaining the essence of the problem (e.g., lifting properties from
T-net and P-net to free-choice nets).

Keywords: Petri nets · Free-choice nets · Net reduction · Lucency

1 Introduction

Although free-choice nets have been studied extensively, still new and surprising
properties are discovered that cannot be proven easily [2]. This paper proposes
the use of T-reductions and P-reductions to prove properties by reducing free-
choice nets to either T-nets (marked graphs) or P-nets (state machines). These
reductions are based on the notion of t-induced T-nets (denoted by �N (t)) and
the notion of p-induced P-nets (denoted by �N (p)). We propose to use such
reductions to prove properties that go beyond well-formedness. This paper sys-
tematically presents T-reductions and P-reductions, and shows example appli-
cations.

Figure 1 illustrates the notion of induced subnets. The original net N has
two proper induced T-nets (a) and two proper induced P-nets (b). If the original
Petri net N is free-choice and well-formed, then the net after applying the corre-
sponding reduction is still free-choice and well-formed. Think of the original net
as an “onion” that is peeled off layer for layer until a T-net or P-net remains.
We are interested in properties that propagate through the different layers, just
like well-formedness. For example, we will show that all perpetual well-formed
free-choice nets are lucent, i.e., the existence of a regeneration transition implies
that there cannot be two markings enabling the same set of transitions.
c© Springer Nature Switzerland AG 2021
D. Buchs and J. Carmona (Eds.): PETRI NETS 2021, LNCS 12734, pp. 208–229, 2021.
https://doi.org/10.1007/978-3-030-76983-3_11

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76983-3_11&domain=pdf
https://doi.org/10.1007/978-3-030-76983-3_11

Reduction Using Induced Subnets to Systematically Prove Properties 209

t1

t2

t3

t4

t5

t6

t7

p7p1

p2

p3

p4

p5

p6

p8

(a) There are two induced T-nets,
one induced by t1 and one induced by t2.

t2

t5

t6

t7

p7p1

p2

p5

p6

p8

(c) The Petri net a er removing
the t1-induced T-net.

t1

t2

t3

t4

t5

t6

t7

p7p1

p2

p3

p4

p5

p6

p8

(b) There are two induced P-nets,
one induced by p7 and one induced by p8.

t1

t2

t4

t6

t7

p1

p2

p4

p6

p8

(d) The Petri net a er removing
the p7-induced P-net.

Fig. 1. A free-choice Petri net N has (a) two proper induced T-nets (�N (t1) and
�N (t2)) and (b) two proper induced P-nets (�N (p7) and �N (p8)). The Petri nets
after removing �N (t1) and �N (p8) are shown in (c) and (d).

The remainder of the paper is organized as follows. Section 2 discusses related
work and Sect. 3 introduces some standard results and notations. Section 4
presents t-induced T-nets and p-induced P-nets and their characteristic proper-
ties. The general approach of using T- and P-reductions is presented in Sect. 5,
followed by the application to some properties that go beyond known results like
well-formedness (Sect. 6). Section 7 concludes the paper.

2 Related Work

For an introduction to free-choice nets and the main known results, we refer to
[7,9]. The work presented in this paper is most related to the completeness proof
of the reduction rules in [9]. Proper t-induced T-nets are similar to the CP-nets
used in [9]. The use of reduction rules was first proposed and studied by Berthelot
[6]. Desel provided reduction rules for free-choice nets without frozen tokens [8].
Indirectly related are the blocking theorem [12,15] and the notion of lucency in
perpetual free-choice nets [2,4]. To get a deeper understanding of well-formed
free-choice nets, we also refer to [11,14]. The problem addressed in this paper

210 W. M. P. van der Aalst

was inspired by questions originating from the process mining domain [1], e.g.,
see [10] for the application of traditional reduction rules in process discovery and
see [4] for the relation between lucency and translucent event logs.

3 Preliminaries

This section introduces basic mathematical concepts and some well-known Petri
net notions and results.

B(A) is the set of all multisets over some set A, e.g., b = [x3, y2, z] ∈ B(A) is a
multiset with 6 elements (|B| = 6). We assume the standard multiset operators
∈ (element), � (union), \ (difference), ≤ (smaller or equal), and < (smaller).
σ = 〈a1, a2, . . . , an〉 ∈ X∗ denotes a sequence over X of length |σ| = n. σi = ai

for 1 ≤ i ≤ |σ|. 〈 〉 is the empty sequence.

Definition 1 (Petri Net). A Petri net is a tuple N = (P, T, F) with P the
set of places, T the set of transitions such that P ∩ T = ∅, and F ⊆ (P × T) ∪
(T ×P) the flow relation such that the graph (P ∪T, F) is non-empty and weakly
connected. A Petri net is non-trivial if F �= ∅ (i.e., there is at least one place
and one transition).

Definition 2 (Marking). Let N = (P, T, F) be a non-trivial Petri net. A
marking M is a multiset of places, i.e., M ∈ B(P). (N,M) is a marked net.

The requirement that a marked net is non-trivial (i.e., F �= ∅), together with
the requirement that (P ∪ T, F) is weakly connected is there to avoid unin-
teresting border cases (nets without places or transitions cannot change state
and unconnected parts can be analyzed separately). For a subset of places
X ⊆ P : M �X= [p ∈ M | p ∈ X] is the marking projected on this subset.
M(X) =

∑
p∈X M(p) = |M�X | is the total number of tokens in X.

A Petri net N = (P, T, F) defines a directed graph with nodes P ∪ T and
edges F . For any x ∈ P ∪T , •x = {y | (y, x) ∈ F} denotes the set of input nodes
and x• = {y | (x, y) ∈ F} denotes the set of output nodes. The notation can be
generalized to sets: •X = {y | ∃x∈X (y, x) ∈ F} and X• = {y | ∃x∈X (x, y) ∈ F}
for any X ⊆ P ∪ T .

Definition 3 (Elementary Paths and Circuits). A path in a Petri net N =
(P, T, F) is a non-empty (n ≥ 1) sequence of nodes ρ = 〈x1, x2, . . . , xn〉 such that
(xi, xi+1) ∈ F for 1 ≤ i < n. paths(N) ⊆ (P ∪ T)∗ is the set of all paths in N .
ρ is an elementary path if xi �= xj for 1 ≤ i < j ≤ n (i.e., no element occurs
more than once). An elementary path is called a circuit if (xn, x1) ∈ F .

A transition t ∈ T is enabled in marking M of net N , denoted as (N,M)[t〉,
if each of its input places •t contains at least one token. en(N,M) = {t ∈ T |
(N,M)[t〉} is the set of enabled transitions.

An enabled transition t may fire, i.e., one token is removed from each of
the input places •t and one token is produced for each of the output places
t•. Formally: M ′ = (M \ •t) � t• is the marking resulting from firing enabled

Reduction Using Induced Subnets to Systematically Prove Properties 211

transition t in marking M of Petri net N . (N,M)[t〉(N,M ′) denotes that t is
enabled in M and firing t results in marking M ′.

Let σ = 〈t1, t2, . . . , tn〉 ∈ T ∗ be a sequence of transitions (n ≥ 0).
(N,M)[σ〉(N,M ′) denotes that there is a set of markings M1,M2, . . . ,Mn+1

(n ≥ 0) such that M1 = M , Mn+1 = M ′, and (N,Mi)[ti〉(N,Mi+1) for 1 ≤ i ≤ n.
A marking M ′ is reachable from M if there exists a firing sequence σ such that
(N,M)[σ〉(N,M ′). R(N,M) = {M ′ ∈ B(P) | ∃σ∈T ∗ (N,M)[σ〉(N,M ′)} is the
set of all reachable markings.

Definition 4 (Live, Bounded, Safe, Dead, Deadlock-Free, Well-
Formed). A marked net (N,M) is live if for every reachable marking M ′ ∈
R(N,M) and every transition t ∈ T there exists a marking M ′′ ∈ R(N,M ′)
that enables t. A marked net (N,M) is k-bounded if for every reachable marking
M ′ ∈ R(N,M) and every p ∈ P : M ′(p) ≤ k. A marked net (N,M) is bounded
if there exists a k such that (N,M) is k-bounded. A 1-bounded marked net is
called safe. A place p ∈ P is dead in (N,M) when it can never be marked
(no reachable marking marks p). A transition t ∈ T is dead in (N,M) when it
can never be enabled (no reachable marking enables t). A marked net (N,M) is
deadlock-free if each reachable marking enables at least one transition. A Petri
net N is structurally bounded if (N,M) is bounded for any marking M . A Petri
net N is structurally live if there exists a marking M such that (N,M) is live.
A Petri net N is well-formed if there exists a marking M such that (N,M) is
live and bounded.

For particular subclasses of Petri nets, there are various relationships between
structural properties and behavioral properties like liveness and boundedness [7].
In this paper, we focus on free-choice nets [9].

Definition 5 (P-net, T-net, and Free-choice Net). Let N = (P, T, F) be
a Petri net. N is a P-net (also called a state machine) if |•t| = |t•| = 1 for
any t ∈ T . N is a T-net (also called a marked graph) if |•p| = |p•| = 1 for any
p ∈ P . N is a free-choice net if for any t1, t2 ∈ T : •t1 = •t2 or •t1 ∩ •t2 = ∅. N
is strongly connected if the graph (P ∪ T, F) is strongly connected, i.e., for any
two nodes x and y there is a path leading from x to y.

Definition 6 (Cluster). Let N = (P, T, F) be a Petri net and x ∈ P ∪ T . The
cluster of node x, denoted [x]c is the smallest set such that (1) x ∈ [x]c, (2) if
p ∈ [x]c ∩ P , then p• ⊆ [x]c, and (3) if t ∈ [x]c ∩ T , then •t ⊆ [x]c.

Definition 7 (Subnet, Complement, P-Component, T-Component).
Let N = (P, T, F) be a Petri net and X ⊆ P ∪ T . N �X= (P ∩ X,T ∩ X,F ∩
(X × X)) is the subnet generated by X. N \\ X = (P \ X,T \ X,F ∩ (((P ∪ T) \
X)× ((P ∪T)\X))) is the complement generated by X. N�X is a P-component
of N if •p ∪ p• ⊆ X for p ∈ X ∩ P and N �X is a strongly connected P-net.
N �X is a T-component of N if •t ∪ t• ⊆ X for t ∈ X ∩ T and N �X is a
strongly connected T-net. PComp(N) = {X ⊆ P ∪ T | N�X is a P-component}.
TComp(N) = {X ⊆ P ∪ T | N�X is a T-component}.

212 W. M. P. van der Aalst

Definition 8 (P-cover, T-cover). Let N = (P, T, F) be a Petri net. N has a
P-cover if

⋃
PComp(N) = P ∪ T .1 N has a T-cover if

⋃
TComp(N) = P ∪ T .

Theorem 1 (Coverability Theorems [9]). Let N = (P, T, F) be a well-
formed free-choice net.

⋃
PComp(N) =

⋃
TComp(N) = P ∪ T .

Moreover, for any well-formed free-choice net N and marking M : (N,M) is live
if and only if every P-component is marked in M (Theorem 5.8 in [9]).

The dual Petri net is the net where the role of places and transitions is
swapped and the arcs are reversed.

Definition 9 (Dual Net). Let N = (P, T, F) be a Petri net. Ndual =
(T, P, F−1) with F−1 = {(x, y) | (y, x) ∈ F} is the dual net of N .

Note that (Ndual)dual = N . We also use the following well-known result
[9,13].

Theorem 2 (Duality Theorem). Let N be a Petri net and Ndual the dual net
of N . N is a well-formed free-choice net if and only if Ndual is a well-formed
free-choice net.

4 Induced Subnets in Free-Choice Nets: Existence
and Properties

We start by introducing the notion of t-induced T-nets, i.e., subnets fully defined
by an initial transition t and all nodes that can be reached from t without visiting
places with multiple input or multiple output transitions. Figure 1 highlights two
induced T-nets: �N (t1) = {t1, p3, p4, t3, t4} and �N (t1) = {t2, p5, p6, t5, t6}.

Definition 10 (t-Induced T-net). Let N = (P, T, F) be a Petri net and t ∈ T .
�N (t) ⊆ P ∪ T is the smallest set such that

– t ∈ �N (t),
– {p′ ∈ t′• | |•p′| = 1 ∧ |p′•| = 1} ⊆ �N (t) for any t′ ∈ �N (t) ∩ T , and
– p′• ⊆ �N (t) for any p′ ∈ �N (t) ∩ P .

�N (t) are the nodes of the t-induced T-net of N that is denoted by N�(t) =
N ��N (t). N�(t) = N \\ �N (t) is the complement of the t-induced T-net of N .
�N (t) is proper if the complement N�(t) is a non-trivial strongly-connected Petri
net.

Informally, a t-induced T-net can be viewed as the union of a set of elementary
paths that all start in t and have non-branched places. A t-induced T-net is
proper if after removal the net is strongly-connected. �N (t1) is a proper t1-
induced T-net of the net N in Fig. 1(a), because removing all the nodes in �N (t1)
leaves the strongly-connected Petri net N�(t1) depicted in Fig. 1(c). Proper t-
induced T-nets have the following properties.
1 ⋃

Q =
⋃

X∈Q X for some set of sets Q.

Reduction Using Induced Subnets to Systematically Prove Properties 213

Proposition 1 (Properties of Proper t-Induced T-net). Let N = (P, T, F)
be a strongly-connected free-choice net and �N (t) a proper t-induced T-net of N .

(1) N�(t) is a T-net.
(2) N�(t) is free-choice.
(3) For all p′ ∈ �N (t) ∩ P : •p′ ∪ p′• ⊆ �N (t).
(4) For all t′ ∈ �N (t) ∩ (T \ {t}): •t′ ⊆ �N (t).
(5) •t ⊆ P \ �N (t).
(6) There is a t′ ∈ T \ �N (t) such that •t = •t′.
(7) For any path ρ = 〈x1, x2, . . . , xn〉 ∈ paths(N) such that x1 �∈ �N (t) and

xn ∈ �N (t): t ∈ {x2, . . . , xn}.
(8) For any proper t′-induced T-net of N : t′ = t or �N (t′) ∩ �N (t) = ∅.
Proof. (1) N�(t) is a T-net, because, by construction, all added places have

one input transition and one output transition, and only nodes connected
to other nodes are added.

(2) Removing a node and all connected arcs cannot invalidate the free-choice
property. The connections between the remaining places and transitions do
not change.

(3) The t-induced T-net is transition bordered, i.e., for each place in �N (t) the
unique input transition and output transition are added.

(4) If t′ ∈ �N (t)∩(T \{t}), then there is at least one input place p′ ∈ •t′∩�N (t)
(by construction, transitions different from t are only added to �N (t) after
an input place was added). Assume t′ has an input place outside �N (t),
i.e., p′′ ∈ •t′ \ �N (t). Since N�(t) is strongly-connected, there must be a
t′′ ∈ p′′ • \ �N (t) (otherwise p′ would be a sink place in N�(t)). Since the
net is free-choice, •t′ = •t′′ and p′ ∈ •t′′. This contradicts with (3).

(5) Since N is strongly connected, there must be an arc from a node outside
�N (t) to a node inside �N (t). Using (3) and (4), the node inside �N (t)
must be t. Hence, there is a place p′ ∈ •t \ �N (t). Since N�(t) is strongly-
connected, there must be a t′ ∈ p′ • \ �N (t) (otherwise p′ would be a sink
place in N�(t)). Since the net is free-choice, •t = •t′. Assume that t has an
input place inside �N (t), then also t′ has an input place inside �N (t). This
leads to a contradiction because the t-induced T-net is transition bordered.
Hence, t cannot have an input place inside �N (t), i.e., •t ⊆ T \ �N (t).

(6) The input places of t remain after removing �N (t) and the complement is
strongly connected. Hence, there must be a transition t′ ∈ T \ �N (t) such
that •t = •t′.

(7) The only way to “enter” the t-induced T-net is through t. This directly
follows from (3), (4), and (5).

(8) Assume x ∈ �N (t)∩�N (t′). This implies that there must be an elementary
non-branched path (i.e., places on the path have one input and one output
transition) from t′ to x. Using (3) and (4), we can follow this path backwards
from x to t′ and conclude that all the nodes belong to �N (t), including
t′, i.e., t′ ∈ �N (t). Applying (4) once more assuming t �= t′ shows that
•t′ ⊆ �N (t). However, using (6) we know that t′ is involved in a choice,
making the input places branching and thus leading to a contradiction. ��

214 W. M. P. van der Aalst

A p-induced P-net is a subnet fully defined by a final place p and all nodes
from which p can be reached without visiting transitions with multiple input
or multiple output places. Figure 1 highlights two induced P-nets: �N (p7) =
{p7, t3, t5, p3, p5} and �N (p8) = {p8, t4, t6, p4, p6}.

Definition 11 (p-Induced P-net). Let N = (P, T, F) be a Petri net and p ∈
P . �N (p) ⊆ P ∪ T is the smallest set such that

– p ∈ �N (p),
– {t′ ∈ •p′ | |•t′| = 1 ∧ |t′•| = 1} ⊆ �N (p) for any p′ ∈ �N (p) ∩ P , and
– •t′ ⊆ �N (p) for any t′ ∈ �N (p) ∩ T .

�N (p) are the nodes of the p-induced P-net of N which is denoted by N�(p) =
N��N (p). N�(p) = N \\ �N (p) is the complement of the p-induced P-net of N .
�N (p) is proper if the complement N�(p) is a non-trivial strongly-connected Petri
net.

Due to duality, symmetric properties can be found using similar reasoning.

Proposition 2 (Properties of Proper p-Induced P-net). Let N =
(P, T, F) be a strongly-connected free-choice Petri net and �N (p) a proper p-
induced P-net of N .

(1) N�(p) is a P-net.
(2) N�(p) is free-choice.
(3) For all t′ ∈ �N (p) ∩ T : •t′ ∪ t′• ⊆ �N (p).
(4) For all p′ ∈ �N (p) ∩ (P \ {p}): p′• ⊆ �N (p).
(5) p• ⊆ T \ �N (p).
(6) There is a p′ ∈ P \ �N (p) such that p• = p′•.
(7) For any path ρ = 〈x1, x2, . . . , xn〉 ∈ paths(N) such that x1 ∈ �N (p) and

xn �∈ �N (p): p ∈ {x1, x2, . . . , xn−1}.
(8) For any proper p′-induced P-net of N : p′ = p or �N (p′) ∩ �N (p) = ∅.
Proof. Analogous to Proposition 1. ��

Next, we show that a t-induced T-net corresponds to a t-induced P-net in the
dual net (where t is a place). Recall that places and transitions are exchanged
and the direction of all arcs is reversed in Ndual .

Lemma 1 (Duality Lemma for Induced Subnets). Let N = (P, T, F) be a
Petri net.

(1) For any t ∈ T : �N (t) is a (proper) t-induced T-net of N if and only if
�Ndual (t) is a (proper) t-induced P-net of Ndual .

(2) For any p ∈ P : �N (p) is a (proper) p-induced P-net of N if and only if
�Ndual (p) is a (proper) p-induced T-net of Ndual .

Reduction Using Induced Subnets to Systematically Prove Properties 215

Proof. Let N = (P, T, F) be a Petri net and N ′ = (P ′, T ′, F ′) = Ndual =
(T, P, F−1) the dual net. • is used for the pre and post sets in N and ◦ is used
for the pre and post sets in N ′. Note that x ∈ •y ⇔ (x, y) ∈ F ⇔ (y, x) ∈
F ′ ⇔ x ∈ y◦ . Similarly, x ∈ y• ⇔ (y, x) ∈ F ⇔ (x, y) ∈ F ′ ⇔ x ∈ ◦y. Using
these insights and a pairwise comparison of the three rules in Definition 10 and
Definition 11, the proof follows immediately. ��
Proposition 3 (Induced Subnets Relate to T/P-Components). Let N =
(P, T, F) be a well-formed free-choice net. For any proper t-induced T-net �N (t),
there exists a T-component X ∈ TComp(N) such that �N (t) ⊆ X. For any
proper p-induced P-net �N (p), there exists a P-component X ∈ PComp(N)
such that �N (p) ⊆ X.

Proof. Let �N (t) be a proper t-induced T-net. t must be covered by some T-
component X (Theorem 1). If t is included, then also t• is included in X. For the
places in t• that have only one output transition, also these output transitions
need to be included in X. For all transitions included, the input and output
places must be included in X. Etc. Hence, �N (t) ⊆ X. Let �N (p) be a proper
p-induced P-net. We can apply the same reasoning since p is covered by some
P-component X (Theorem 1). However, now the arcs are followed in the reverse
direction to show that �N (p) ⊆ X. ��

Next, we show that a well-formed free-choice net has at least two induced
T-nets or is a T-net. The proof combines Proposition 7.11 in [9] with Lemma
1.2 in [15].

Lemma 2 (Existence of t-Induced T-nets). Let N = (P, T, F) be a well-
formed free-choice net. N is either a T-net or there exist at least two different
transitions t1, t2 ∈ T such that �N (t1) is proper and �N (t2) is proper.

Proof. N is covered by the set of T-components TComp(N). Take a minimal
Q ⊆ TComp(N) such that

⋃
Q = P ∪ T (i.e., removing a T-component from

Q leads to incomplete coverage of the net). Assume |Q| ≥ 2 (otherwise N is
a T-net). Create a spanning tree for the graph G = (V,E) with V = Q and
E = {(X1,X2) ∈ Q × Q | X1 ∩ X2 �= ∅}. Pick a T-component X ∈ Q that is
a leaf in the spanning tree (i.e., the remaining T-components in Q′ = Q \ {X}
are still connected). There are at least two such leaf nodes, because |Q| ≥ 2.
Let Y = X \ ⋃

Q′ be the nodes only in X. Y �= ∅ because Q was minimal.
Let Y ′ ⊆ Y be a maximal connected subset of Y . Obviously, Y ′ is a transition-
bordered connected T-net. N \\ Y is strongly-connected because the remaining
T-components in Q′ = Q \ {X} are still connected and inside a T-component
all nodes are strongly-connected. The nodes in Y \ Y ′ are not connected to Y ′

(due to maximality) and therefore connected to nodes in
⋃

Q′. Hence, N \\Y ′ is
strongly-connected. Moreover, there can only be one transition in Y ′ consuming
tokens from

⋃
Q′. This implies that Y ′ corresponds to a proper induced T-net.

(Note that we use the same reasoning as in Def. 7.7, Prop. 7.10, and Prop. 7.11
in [9].)

216 W. M. P. van der Aalst

t1

t2

t3

t4

t5

t6

t7

p7p1

p2

p3

p4

p5

p6

p8

(a) Original Petri net.

t1

t2

t4

t6

t7

p1

p2

p4

p6

p8

(b) The Petri net a er removing
the p7-induced P-net.

t1

t2

t4

t6

t7

p2

p4

p6

p8

(c) The Petri net a er removing
the p1-induced P-net.

Fig. 2. A well-formed free choice net is reduced in two steps into a P-net using γ =
〈p7, p1〉.

We could have picked two different T-components X1,X2 ∈ Q that are leaves
in the spanning tree. Therefore, it is possible to find at least two different con-
nected subsets that are non-overlapping. Hence, we can find two transitions
t1, t2 ∈ T such that both �N (t1) and �N (t2) are proper. ��

We can use a similar approach to show that a well-formed free-choice net
has at least two induced P-nets or is a P-net. Consider the well-formed free-
choice net in Fig. 2(a). This is not a P-net, so we can find at least two induced
P-nets: �N (p7) and �N (p8). After removing the nodes in �N (p7), we get N ′ =
N�(p7) = N \\ �N (p7) shown in Fig. 2(b). In N ′ there are again at least two
induced P-nets �N ′(p1) and �N ′(p2). After removing the nodes in �N ′(p1), we
obtain the P-net N ′

�(p1) shown in Fig. 2(c).

Lemma 3 (Existence of p-Induced P-nets). Let N = (P, T, F) be a well-
formed free-choice net. N is either a P-net or there exist at least two different
places p1, p2 ∈ P such that �N (p1) is proper and �N (p2) is proper.

Proof. Let N = (P, T, F) be a well-formed free-choice net. N ′ = (P ′, T ′, F ′) =
Ndual = (T, P, F−1) is the dual net. N ′ is also a well-formed free-choice net
(Theorem 2). N is a P-net if and only if N ′ is a T-net. If N is not a P-net, then
N ′ is not a T-net and there exists a t ∈ T ′ = P such that �N ′(t) is a proper
t-induced T-net of N ′ (apply Lemma 2). Using Lemma 1, this implies that �N (t)
is a proper t-induced P-net of N for some place t ∈ P . A similar reasoning can
be used to show that there are at least two proper induced P-nets �N (p1) and
�N (p2). ��

Thus far, we ignored the marking of the free-choice net when removing an
induced T-net or P-net. Removing an induced T-net and its tokens may destroy
liveness. In Fig. 1, we had to “push out” the token in p3 to p7 to preserve liveness.

Proposition 4 (Pushed Out Markings Exist And Are Unique). Let
(N,M) be a strongly-connected marked free-choice net, �N (t) a proper t-induced
T-net of N , T̂ = (�N (t) ∩ T) \ {t}, and push(�N (t),M) = {M ′ ∈ B(P) |
∃σ∈(T̂)∗ (N,M)[σ〉(N,M ′) ∧ en(N,M ′) ∩ T̂ = ∅}. |push(�N (t),M)| = 1.

Reduction Using Induced Subnets to Systematically Prove Properties 217

Proof. Follows directly from the properties listed in Proposition 1. For each
transition t′ ∈ T̂ = (�N (t) ∩ T) \ {t}, there is an elementary path from t to t′

where each place has one input transition and one output transition. Since only
transitions in T̂ are considered in push(�N (t),M), the number of tokens on a
path cannot increase, but decreases when t′ fires. This applies to any t′ ∈ T̂ ,
hence, after some time none of the transitions in T̂ can fire anymore and we
find a marking M ′ such that en(N,M ′) ∩ T̂ = ∅. Since N�(t) is a T-net, all
interleavings lead to the same M ′. ��

Since the “pushed out marking” is unique, we can update the marking after
removing a t-induced T-net in a deterministic manner. When a p-induced P-net
is removed, we can simply project the marking onto the remaining places.

Definition 12 (Updated Markings). Let (N,M) be a marked Petri net, N =
(P, T, F), �N (t) a proper t-induced T-net of N , and �N (p) a proper p-induced
P-net of N .

– mrk�(N, t,M) ∈ {M ′�P\�N (t)| M ′ ∈ push(�N (t),M)} is the unique marking
obtained by “pushing out” tokens as much as possible (see Proposition 4).

– mrk�(N, p,M) = M�P\�N (p) is the unique marking obtained by removing the
tokens in �N (p).

Lemma 4 (Well-Formedness of N�(t)). Let N = (P, T, F) be a well-formed
free-choice net having a transition t ∈ T such that �N (t) is proper. N�(t) =
(P , T , F) is the corresponding complement.

(1) For any M,M
′ ∈ B(P), M̂ ∈ B(P), and σ ∈ T ∗: if

(N�(t),M)[σ〉(N�(t),M
′
), then (N,M � M̂)[σ〉(N,M

′ � M̂).
(2) For any M ∈ B(P): if (N,M) is live and bounded, then

(N�(t),mrk�(N, t,M)) is live and bounded.
(3) N�(t) is well-formed and free-choice.

Proof. Let N = (P, T, F) be a well-formed free-choice net, �N (t) a proper
t-induced T-net, and N�(t) = (P , T , F). N�(t) is free-choice (apply Proposi-
tion 1(2)).

(1) If (N�(t),M)[σ〉(N�(t),M
′
), then (N,M)[σ〉(N,M

′
) (because T ⊆ T and •t

and t• are the same for t ∈ T in both nets). Adding tokens cannot disable
an enabled firing sequence. Hence, (N,M � M̂)[σ〉(N,M

′ � M̂).
(2) Assume (N,M) is live and bounded. M ′ ∈ push(�N (t),M) is the unique

“pushed out marking” (see Proposition 4). Obviously, (N,M ′) is also live
and bounded. Split M ′ into M = mrk�(N, t,M) = M ′ �P\�N (t) and
M̂ = M ′ \ mrk�(N, t,M), i.e., M ′ = M � M̂ . We need to show that
(N�(t),M) is live and bounded.
Using (1) we know that any firing sequence enabled in (N�(t),M) is also

enabled in (N,M �M̂). Hence, (N�(t),M) is bounded, because (N,M �M̂)
is bounded.

218 W. M. P. van der Aalst

(N�(t),M) is a bounded, strongly-connected, and free-choice. Using The-
orem 4.31 in [9], we know that (N�(t),M) is live if and only if (N�(t),M)
is deadlock-free. Assume (N�(t),M) has a reachable deadlock MD. The
corresponding reachable marking from (N,M ′) is MD = MD � M̂ (recall
M ′ = M � M̂). The transitions in T ∪ {t} are also disabled in (N,MD)
because the input places are unaffected (note that there is a t′ ∈ T
such that •t = •t′ that is disabled and so is t). The other transitions in
T̂ = (�N (t)∩T)\{t} are also dead because we started from a marking where
tokens were “pushed out” until no transition in T̂ was enabled anymore.
Hence, also MD is a dead reachable marking contradicting that (N,M ′)
is live. Hence, (N�(t),M) cannot have a reachable deadlock, implying that
(N�(t),M) is live.

(3) Because N is well-formed there is a marking M such that (N,M) is live
and bounded. N�(t) is well-formed because (N�(t),mrk�(N, t,M)) is live
and bounded (follows directly from (2)). ��

We can also show that removing a p-induced P-net does not jeopardize live-
ness and boundedness. Note that mrk�(N, p,M) is obtained by simply removing
the tokens in �N (p) (Definition 12).

Lemma 5 (Well-Formedness of N�(p)). Let N = (P, T, F) be a well-formed
free-choice net having a place p ∈ P such that �N (p) is proper. N�(p) = (P , T , F)
is the corresponding complement.

(1) For any M,M ′ ∈ B(P) and σ ∈ T ∗: if (N,M)[σ〉(N,M ′), then
(N�(p),mrk�(N, p,M))[σ�T 〉(N�(p),mrk�(N, p,M ′)).

(2) N�(p) is well-formed and free-choice.
(3) For any M ∈ B(P): if (N,M) is live and bounded, then

(N�(p),mrk�(N, p,M)) is live and bounded.

Proof. Let N = (P, T, F) be a well-formed free-choice net, �N (p) a proper
p-induced P-net, and N�(p) = (P , T , F). Recall that mrk�(N, p,M) =
M �P\�N (p)= M �P and mrk�(N, p,M ′) = M ′ �P . In the proof, we use these
more compact notations.

(1) If (N,M)[t〉(N,M ′) and t ∈ T , then (N�(p),M�P)[t〉(N�(p),M
′�P) because

removing places cannot disable a transition. If (N,M)[t〉(N,M ′) and t �∈ T ,
then we can ignore t, because t is not impacting places in P and M �P =
M ′ �P . Iteration over all transitions in σ shows that indeed (N�(p),M �P

)[σ�T 〉(N�(p),M
′�P).

(2) Since N = (P, T, F) is a well-formed free-choice net, Ndual = (T, P, F−1) is
a well-formed free-choice net (apply Theorem 2). Since �N (p) is a proper
p-induced P-net of N , �Ndual (p) is a proper p-induced T-net of Ndual (apply
Lemma 1). Since �Ndual (p) is proper and Ndual is well-formed, we can apply
Lemma 4 to show that Ndual

�(p) is well-formed. Moreover, �N (p) = �Ndual (p)

Reduction Using Induced Subnets to Systematically Prove Properties 219

(see proof of Lemma 4). Hence, Ndual
�(p) = Ndual \\ �Ndual (p) = Ndual \\

�N (p) = (N \\�N (p))dual = (N�(p))dual is well-formed. Since (N�(p))dual is
well-formed, also N�(p) is well-formed (apply Theorem 2 again). Obviously,
N�(p) is free-choice (use Proposition 2(2)).

(3) Both N and N�(p) are well-formed and free-choice. Hence, both are struc-
turally bounded and covered by P-components. Any P-component of N�(p)

is also a P-component N and initially marked in M because of liveness (use
Theorem 5.8 in [9]). Such a P-component is also marked in M�P . Applying
Theorem 5.8 [9] in the other direction proves that (N�(p),M�P) is also live
because all P-components are marked.

��

5 Approach: Using Induced Subnets for Reduction

Lemmata 4 and 5 show that iteratively removing proper induced T- and P-
nets preserves well-formedness, liveness, and boundedness. We first introduce
the approach based on reductions using sequences of proper induced T- and P-
nets. In Sect. 6, we apply this to properties like lucency and perpetuality.

Definition 13 (Reductions). Let N = (P, T, F) be a well-formed free-choice
net. A reduction of N is a sequence γ = 〈x1, x2, . . . , xn〉 ∈ (P ∪ T)∗ such that
there exists a sequence of Petri nets denoted netsN (γ) = 〈N0, N1, . . . , Nn〉 where
N0 = N , and for any i ∈ {1, . . . , n}:
– �Ni−1(xi) is a proper xi-induced T-net and N i = N i−1�(xi) if xi ∈ T .
– �Ni−1(xi) is a proper xi-induced P-net and N i = N i−1�(xi) if xi ∈ P .

A reduction γ = 〈x1, x2, . . . , xn〉 is nothing more than a sequence of proper
induced T- and P-nets. Figure 2 shows a two-step reduction γ = 〈p7, p1〉 Note
that γ uniquely determines netsN (γ). Next, we consider different classes of reduc-
tions.

Definition 14 (Complete, T-, and P-Reductions). Let N = (P, T, F) be a
well-formed free-choice net having a reduction γ = 〈x1, x2, . . . , xn〉 ∈ (P ∪ T)∗

with the corresponding sequence of Petri nets: netsN (γ) = 〈N0, N1, . . . , Nn〉.2

– γ is x-preserving if x ∈ P ∪ T is a place/transition in the remaining net Nn.
– γ is a complete reduction if Nn is a T-net or a P-net.
– γ is a T-reduction if {x1, x2, . . . , xn} ⊆ T and Nn is a T-net.
– γ is a P-reduction if {x1, x2, . . . , xn} ⊆ P and Nn is a P-net.

2 The notions of T-reduction and P-reduction are unrelated to the “Desel rules” for
free-choice nets without frozen tokens [8]. We allow for “bigger steps” and can reduce
nets with frozen tokens (i.e., there may be an infinite firing sequence starting from
a strictly smaller marking).

220 W. M. P. van der Aalst

The reduction γ1 = 〈p7, p1〉 illustrated by Fig. 2 is a complete P-reduction
that is t4 preserving. γ2 = 〈p8, p2〉 is another complete P-reduction and γ3 = 〈t1〉
and γ4 = 〈t2〉 are complete T-reductions. Next, we show that such reductions
always exist. Moreover, we can preserve any preselected node.

Lemma 6 (Existence of Reductions). Let N = (P, T, F) be a well-formed
free-choice net. N has at least one T-reduction γT and at least one P-reduction
γP . For any node x ∈ P ∪ T there is an x-preserving T-reduction and an x-
preserving P-reduction.

Proof. Let N = (P, T, F) be a well-formed free-choice net. First, we construct a
T-reduction γT = 〈t1, t2, . . . , tn〉 ∈ T ∗. If N is a T-net, then γT = 〈 〉 (i.e., n = 0).
If N = N0 is not a T-net, then there exists a t1 ∈ T such that �N0(t1) is proper
(Lemma 2). Next, we consider N1 = N0�(t1). If N1 is a T-net, then γT = 〈t1〉
(i.e., n = 1). If N1 is not a T-net, then there exists a t2 ∈ T such that �N1(t2).
Etc. This is repeated until we encounter a T-net Nn = Nn−1�(tn). We can use
the same approach to construct a P-reduction γP = 〈p1, p2, . . . , pm〉 ∈ P ∗. If N
is a P-net, then γP = 〈 〉. If not, we repeatedly apply Lemma 3 until we find a
P-net.

Lemma 2 states that there exist at least two transitions t1, t2 such that
�N (t1) and �N (t2) are proper. These are disjoint, i.e., �N (t1) ∩ �N (t2) = ∅
(see Proposition 1(8)). Hence, in each step, we can pick an induced T-net not
containing a particular node x ∈ P ∪ T . The same applies to P-reductions (use
Lemma 3 and Proposition 2(8)). ��

In Definition 12, we defined update functions for markings that preserve
liveness and boundedness. These can be applied in sequence.

Definition 15 (Reduction of Marked Nets). Let N = (P, T, F) be a well-
formed free-choice net having a reduction γ = 〈x1, x2, . . . , xn〉 ∈ (P ∪ T)∗ with
the corresponding sequence of nets netsN (γ) = 〈N0, N1, . . . , Nn〉. In the context
of netsN (γ), we denote N i = (P i, T i, F i) for i ∈ {0, . . . , n}. mrksN,M (γ) =
〈M0,M1, . . . ,Mn〉 is such that M = M0 and for any i ∈ {1, . . . , n}:
– M i = mrk�(N i−1, xi,M i−1) if xi ∈ T .
– M i = mrk�(N i−1, xi,M i−1) if xi ∈ P .

Reductions preserved liveness and boundedness, e.g., Fig. 2(c) is live and
bounded because Fig. 2(a) is live and bounded.

Theorem 3 (Reduction Theorem). Let (N,M) be a live and bounded free-
choice net and γ = 〈x1, x2, . . . , xn〉 ∈ (P ∪T)∗ a reduction of N . Let netsN (γ) =
〈N0, N1, . . . , Nn〉 and mrksN,M (γ) = 〈M0,M1, . . . ,Mn〉 be the corresponding
nets and markings. (N i,M i) is live and bounded and N i is well-formed and
free-choice for any i ∈ {0, . . . , n}.
Proof. Let (N,M) be a live and bounded free-choice net, γ =
〈x1, x2, . . . , xn〉 a reduction, netsN (γ) = 〈N0, N1, . . . , Nn〉, and mrksN,M (γ) =

Reduction Using Induced Subnets to Systematically Prove Properties 221

〈M0,M1, . . . ,Mn〉. We use induction to prove that (N i,M i) is live and bounded
and N i is well-formed and free-choice for any i ∈ {0, . . . , n}. If i = 0 this holds
by definition. Assume i ≥ 1, (N i−1,M i−1) is live and bounded, and N i−1 is
well-formed and free-choice (induction hypothesis).

If xi ∈ T , then �Ni−1(xi) is proper, N i = N i−1�(Xi), and M i =
mrk�(N i−1, xi,M i−1). Lemma 4 can be applied to show that (N i,M i) is live
and bounded and N i is well-formed and free-choice.

If xi ∈ P , then �Ni−1(xi) is proper, N i = N i−1�(Xi), and M i =
mrk�(N i−1, xi,M i−1). Now, Lemma 5 can be applied to show that (N i,M i)
is live and bounded and N i is well-formed and free-choice. This completes the
proof by induction. ��

The reduction steps are commutative when both are applicable. Consider
a reduction γ = 〈x1, x2, . . . , xn〉 of N , i and j such that 1 ≤ i < j ≤ n,
and γ′ = 〈x1, x2, . . . , xi−1, xj , xi, . . . , xj−1, xj+1, . . . , xn〉 (i.e., xj is moved to the
position before xi). If xj ∈ T and �Ni−1(xj) is proper or xj ∈ P and �Ni−1(xj)
is proper, then γ′ is also a reduction of N .

6 Application of Reduction to Prove Perpetuality
and Lucency

This section illustrates the usage of reductions. Well-formedness, liveness, and
boundedness are preserved “downstream”, i.e., these properties are preserved
if the net is reduced. For example, N j is well-formed if N i is well-formed and
i < j. We will show that less-common studied properties such as pc-safeness and
perpetuality are also preserved “downstream”. Other properties are preserved
“upstream”, i.e., these properties are preserved if the net is extended. We will
use these“upstream” properties to convert results for T-nets or P-nets to free-
choice nets (e.g., lucency). First, we introduce three properties that are preserved
“downstream”.

Definition 16 (Regeneration Transitions). Let Petri net N = (P, T, F) be
a Petri net. Transition tr ∈ T is a regeneration transition of N if the marked
Petri net (N, [p ∈ •tr]) is live and bounded.

A regeneration transition tr defines a regeneration marking Mr = [p ∈ •tr].
This can be viewed as a structural property : A net is perpetual if it has such a
marking.

Definition 17 (Perpetual Nets [2]). Petri net N = (P, T, F) is a perpetual
net if there exists at least one regeneration transition.

In a pc-safe marking all P-components have precisely one token. Note that a
safe marked net does not need to be pc-safe (see, for example, Fig. 6 in [2]).

Definition 18 (PC-Safely Marked Nets). Let Petri net N = (P, T, F) be
a Petri net. M ∈ B(P) is a pc-safe marking of N if for any X ∈ PComp(N):
M(X ∩ P) = 1, i.e., each P-component contains precisely one token. (N,M) is
a pc-safely marked net if M is a pc-safe marking of N .

222 W. M. P. van der Aalst

In a marked perpetual well-formed free-choice net, regeneration markings can
be reached if and only if the initial marking is pc-safe.

Lemma 7 (Perpetual Nets Are PC-Safely Marked). Let N = (P, T, F)
be a perpetual well-formed free-choice net with regeneration transition tr ∈ T .
For any marking M ∈ B(P): M is pc-safe if and only if [p ∈ •tr] ∈ R(N,M).

Proof. Mr = [p ∈ •tr]. (N,Mr) is live and bounded because tr is a regeneration
transition. Take an arbitrary P-component X ∈ PComp(N). Mr(X ∩ P) �= 0,
because, otherwise, the transitions in X∩T would be dead contradicting liveness.
Mr(X ∩ P) �> 1, because this implies that one of the input places of tr has at
least two tokens. Hence, Mr is pc-safe and all P-components contain precisely
one input place of tr. If Mr ∈ R(N,M), then M needs to be pc-safe (the number
of tokens in a P-component cannot change). Remains to show that Mr can be
reached from M if M is pc-safe. (N,M) is live if M is pc-safe (use Theorem 5.8
in [9]). Hence, tr can be enabled, proving that Mr is indeed reachable. ��

Next, we show that the properties just defined are preserved “downstream”
for any reduction (i.e., also for mixtures of place- and transition-induced sub-
sets).

Theorem 4 (Invariant Downstream Properties). Let N = (P, T, F) be
a well-formed free-choice net having a reduction γ = 〈x1, x2, . . . , xn〉 with the
corresponding sequence of nets netsN (γ) = 〈N0, N1, . . . , Nn〉.
(1) If tr ∈ T is a regeneration transition of N (i.e., (N, [p ∈ •tr]) is live

and bounded) and γ is tr-preserving, then tr is a regeneration transition
of all nets in netsN (γ) (i.e., (N i, [p ∈ •tr]) is live and bounded for any
i ∈ {0, . . . , n}).3

(2) If (N,M) is pc-safe, then all markings in mrksN,M (γ) are pc-safe.
(3) If N is perpetual, then all nets in netsN (γ) are perpetual.

Proof. Let N = (P, T, F) be a well-formed free-choice net having a reduction
γ = 〈x1, x2, . . . , xn〉 and netsN (γ) = 〈N0, N1, . . . , Nn〉.
(1) Assume (N, [p ∈ •tr]) is live and bounded and γ is tr-preserving. We

prove that (N i, [p ∈ •tr]) is live and bounded for any i ∈ {0, . . . , n} using
induction. If i = 0, this holds by definition (N0 = N). Assume i ≥ 1
and (N i−1, [p ∈ •tr]) is live and bounded. If xi ∈ T , then �Ni−1(xi) is
proper, N i = N i−1�(Xi), and M i = mrk�(N i−1, xi, [p ∈ •tr]) = [p ∈ •tr],
because tr and •tr are outside �Ni−1(xi) (γ is tr-preserving).3 We can apply
Theorem 3 to show that (N i, [p ∈ •tr]) is live and bounded. If xi ∈ P ,
then �Ni−1(xi) is proper, N i = N i−1�(Xi), and M i = mrk�(N i−1, xi, [p ∈
•tr]) = [p ∈ •tr]�P i . tr is not removed because γ is tr-preserving. Hence,
also at least one input place of tr remains. Therefore, M i = [p ∈ •tr] (note
that •tr may have been changed3) and (N i, [p ∈ •tr]) is live and bounded
(apply again Theorem 3). Hence, tr is a regeneration transition of all nets
in netsN (γ).

3 Note that •tr = {p | (p, tr) ∈ F i} depends on the net considered (here N i).

Reduction Using Induced Subnets to Systematically Prove Properties 223

(2) Assume (N,M) is pc-safe and mrksN,M (γ) = 〈M0,M1, . . . ,Mn〉. Again we
use induction and prove that (N i,M i) is pc-safe for any i ∈ {0, . . . , n}.
If i = 0, this holds by definition ((N0,M0) = (N,M) is pc-safe). Assume
i ≥ 1 and (N i−1,M i−1) is pc-safe (induction hypothesis). We need to show
that (N i,M i) is pc-safe. Take an arbitrary P-component X ∈ PComp(N i),
we need to show that M i(X ∩ P) = 1.
– If xi ∈ P , then PComp(N i) ⊆ PComp(N i−1) because for the remaining

places the context did not change. Also the marking of the remaining
places does not change, because M i = mrk�(N i−1, xi,M i−1) = M i�P i .
Hence, M i(X ∩ P) = 1.

– If xi ∈ T , but X ∈ PComp(N i−1), then nothing changed and M i(X ∩
P) = 1 (note that in a P-component all surrounding transitions are
included, hence the marking of the places in X and their context, i.e.,
pre- and post-sets, did not change).

– Assume xi ∈ T and X �∈ PComp(N i−1). Let PX = X ∩P be the places in
the P-component X (these are outside the xi-induced T-net) and TX =
�Ni−1(xi)∩T the transitions in the xi-induced T-net. Fin = F i−1∩(PX ×
TX) are the ingoing arcs and Fout = F i−1 ∩ (TX × PX) are the outgoing
arcs. Both sets need to have precisely one element, i.e., Fin = {(pin, tin)}
and Fout = {(tout, pout)}, and tin = xi. One of these two sets of arcs is
non-empty because PX must contain at least one place that was connected
to a transition TX and if one is non-empty the other one is also non-
empty. Proposition 1(7) implies that tin = xi and PX cannot hold two
input places of tin because of Proposition 1(6). pin is the unique input
place in X. Fout cannot have multiple elements because N i−1 is well-
formed and therefore structurally bounded. Consider now an elementary
path ρ = 〈tin, p1, . . . , pn, tout〉 ∈ (�Ni−1(xi))∗. Such a path must exist
and the places are non-branching. Y = X ∪ {x ∈ ρ} is a P-component
because Y is strongly connected, all places in Y are non-branching, and all
input and output transitions are included. Hence, Y ∈ PComp(N i−1) and
M i−1(Y) = 1 because (N i−1,M i−1) is pc-safe. Moreover, M i−1(Y) =
M i(X) (pushing out the tokens does not change the total number of
tokens, and X must be marked in M i). Hence, M i(X) = 1.

(3) Assume that N is perpetual. To show that all nets in netsN (γ) are perpet-
ual, the same approach can be used as in (1). The only difference is that
there is not a fixed regeneration transition tr that is preserved. Assume that
(N i−1, [p ∈ •tr]) is live and bounded. We need to show that there is a t′r
such that (N i, [p ∈ •t′r]) is live and bounded. If tr ∈ N i (i.e., the regen-
eration transition is outside the xi-induced subset), then tr = t′r and this
transition remains a regeneration transition (as shown in (1)). If tr �∈ N i,
then we need to consider two cases:
– If xi ∈ P and tr �∈ N i, then we find a contradiction, because tr, like any

regeneration transition, should be in all P-components of N i−1. This is
impossible, because this implies M i = mrk�(N i−1, xi, [p ∈ •tr]) = [].

– If xi ∈ T and tr �∈ N i, then pick t′r ∈ N i such that •t′r = •xi. Proposi-
tion 1(6) shows that such a transition exists. t′r is live in (N i−1, [p ∈ •tr]).

224 W. M. P. van der Aalst

Consider a reachable marking enabling t′r and then “push out” as many
tokens as possible using the same approach as in Proposition 4. Let M
be the marking where t′r and xi are enabled and all other transitions in
�Ni−1(xi) are not. From M we must be able to enable the regeneration
transition tr by only firing transitions in �Ni−1(xi) (other transitions can
only influence the subnet through xi). Therefore, all other places P i \ •t′r
must be empty in M , showing that (N i, [p ∈ •t′r]) is live and bounded.

Hence, using a similar approach as in (1) we showed that N i is perpetual for
any i. ��

Next, we consider lucency, first defined in [2]. We are often interested in
processes where the set of enabled actions uniquely defines the state, e.g., in the
context of process mining or user-interface design [2,4]. In terms of Petri nets,
this means that there cannot be two reachable marking enabling the same set
of transitions.

Definition 19 (Lucency [2]). Petri net N = (P, T, F) is lucent if each pc-safe
marking enables a unique set of transitions, i.e., for any two pc-safe markings
M1 and M2: if en(N,M1) = en(N,M2), then M1 = M2.

After showing that well-formedness, liveness, boundedness, pc-safeness, and
perpetuality are preserved “downstream”, we show that lucency is preserved
by traversing the reduction in “upstream” direction. This is non-trivial because
even live and pc-safe free-choice nets may be non-lucent [2]. Therefore, we first
present some results for perpetual nets, before using a T-reduction to prove that
perpetuality implies lucency.

Lemma 8 (Identical Token Counts On Related Paths). Let N =
(P, T, F) be a perpetual well-formed free-choice net. Let M ∈ B(P) be a pc-safe
marking of N , tb, te ∈ T be two transitions, and ρ1 = 〈tb, p11, t11, p21, t21, . . . , pm

1 , te〉
and ρ2 = 〈tb, p12, t12, p22, t22, . . . , pn

2 , te〉 be two elementary paths leading from tb and
te covering places P1 = {p11, p

2
1, . . . , p

m
1 } and P2 = {p12, p

2
2, . . . , p

n
2} such that for

any p ∈ P1 ∪ P2: |•p| = |p•| = 1. M(P1) = M(P2), i.e., the number of tokens on
both paths is identical.

Proof. The number of tokens on both elementary paths ρ1 and ρ2 is only changed
by tb and te. All other transitions are either not connected to any place p ∈ P1∪P2

or move a token to the next place on the path. tb adds a token to both paths
and te removes a token from both paths. Hence, the difference M ′(P1)−M ′(P2)
remains constant for any M ′ ∈ R(N,M).

Assume that M(P1) �= M(P2). This implies that M ′(P1) �= M ′(P2) for any
M ′ ∈ R(N,M). This includes Mr(P1) �= Mr(P2) for the regeneration marking
Mr = [p ∈ •tr] based on a regeneration transition tr. Due to Lemma 7, Mr is pc-
safe and can be reached from any pc-safe marking. Without loss of generality,
we may assume Mr(P1) > Mr(P2) (we can swap P1 and P2), i.e., there is a
place pr ∈ •tr ∩ P1 marked in the regeneration marking Mr. tr cannot have two
input places from P1 because all places in P1 have one output transition which

Reduction Using Induced Subnets to Systematically Prove Properties 225

is unique. Hence, Mr(P1) = 1 implying that Mr(P2) = 0. Hence, M ′(P1) =
M ′(P2) + 1 for any M ′ ∈ R(N,M). Because N is perpetual, all transitions are
live, including tb. After tb fires, there is at least one token in P2 until te fires.
This implies that there are at least two tokens in P1 until te fires. However, te
cannot be reached without executing first tr, but when executing tr, pr must
be the only marked place in P1 containing precisely one token leading to a
contradiction. Hence, M(P1) = M(P2). ��

We introduce conflict-pairs as “witnesses” of non-lucency. If a T-net is not
lucent, then it must have a conflict-pair (Proposition 5).

Definition 20 (Conflict-Pair). Let N be a Petri net. (M1,M2) is called a
conflict-pair for N if (N,M1) and (N,M2) are pc-safely marked, en(N,M1) ∩
en(N,M2) = ∅ (no transition is enabled in both markings), for all t ∈ en(N,M1):
M2(•t) ≥ 1, and for all t ∈ en(N,M2): M1(•t) ≥ 1.

Proposition 5 (Absence of Conflict-Pairs in T-nets Implies Lucency).
Let N be a perpetual well-formed T-net. If N is not lucent, then N has conflict-
pairs.

Proof. Assume N is not lucent, i.e., there are two pc-safe markings M1 and M2

such that en(N,M1) = en(N,M2) and M1 �= M2. Tokens in M1 but not in M2

are represented by 1© and tokens in M2 but not in M1 are represented by 2©.
These 1© and 2© tokens can be viewed as “disagreement tokens”, i.e., M1 and
M2 disagree on the marking of the corresponding place. Tokens in both mark-
ings are denoted by • and are called “agreement tokens”. We now synchronously
modify the markings M1 and M2 by firing only transitions using “agreement
tokens” (•) and not consuming any of the “disagreement tokens” (1© and 2©).
Because N is perpetual, there is regeneration transition tr ∈ T . Since M1 and
M2 are pc-safe, Mr = [p ∈ •tr] can be reached by both. Consider a shortest fir-
ing sequence σ from M1 to Mr: (N,M1)[σ〉(N,Mr). Try to execute the sequence
without consuming any of the 1© tokens. Transitions that need to consume “dis-
agreement tokens” or that are disabled can be skipped. However, per cluster
transitions are executed in the same order as in σ (note that if one transition
in the cluster is enabled, all are). This is repeated until there are no transi-
tions enabled using only “agreement tokens”. This process can be formalized
by considering the partially-ordered run corresponding to the firing sequence σ
from M1 to Mr. Remove all transition consuming “disagreement tokens” from
the partially-ordered run and execute the run as far as possible. Let M ′

1 be the
resulting marking and σ′ the partial sequence such that (N,M1)[σ′〉(N,M ′

1). σ′

can also be executed starting from M2 since only agreement tokens are used. Let
M ′

2 be such that (N,M2)[σ′〉(N,M ′
2). Also in M ′

2 all enabled transitions need to
consume “disagreement tokens” (i.e., 2© tokens).

(N,M ′
1) and (N,M ′

2) are pc-safely marked, en(N,M ′
1)∩en(N,M ′

2) = ∅ (oth-
erwise a transition using agreement tokens is enabled), for all t ∈ en(N,M1):
M2(•t) ≥ 1, and for all t ∈ en(N,M2): M1(•t) ≥ 1 (because we did not produce
new disagreement tokens, no transition is enabled based on disagreement tokens
only). ��

226 W. M. P. van der Aalst

The goal is to show that perpetual free-choice nets are lucent. To do this,
we construct a T-reduction where perpetuality is preserved “downstream” and
lucency is preserved “upstream”. For the “upstream reasoning” we start from
a T-net. Hence, we first show that any perpetual well-formed T-net is lucent
(using conflict-pairs as witnesses of non-lucency and Lemma 8 to show that such
witnesses cannot exist).

Theorem 5 (Perpetual T-nets Have No Conflict-Pairs). Let N =
(P, T, F) be a perpetual well-formed T-net. N does not have any conflict-pairs.

Proof. Let N = (P, T, F) be a perpetual well-formed T-net with regeneration
transition tr ∈ T . Mr = [p ∈ •tr] is a regeneration marking (i.e., (N, [p ∈ •tr]) is
live and bounded). (N,Mr) is also pc-safe (Lemma 7). Assume N has a conflict-
pair (M1,M2), i.e., (N,M1) and (N,M2) are pc-safely marked, en(N,M1) ∩
en(N,M2) = ∅, for all t ∈ en(N,M1): M2(•t) ≥ 1, and for all t ∈ en(N,M2):
M1(•t) ≥ 1. Note that for any X ∈ PComp(N): M1(X) = M2(X) = Mr(X) = 1.
Each circuit is a P-component of N (and vice versa) and contains precisely one
token in any marking considered. This implies that each circuit includes tr.
TD = {t ∈ T \ {tr} | ∃p∈•tM1(p) �= M2(p)} are all transitions that disagree
on at least one of the input places (excluding tr). Note that TD �= ∅ (M1 and
M2 disagree on at least one P-component, yielding two disagreeing transitions).
Pick a disagreeing transition tD such that there is no other disagreeing transition
on a path from tr to tD. This is possible because each circuit includes tr, i.e.,
there are no cycles not involving the regeneration transition. Without loss of
generality we may assume that there is a place pD ∈ •tD such that M1(pD) = 1
and M2(pD) = 0. tD must have at least one other input place pA that is not
just marked in M1, i.e., M1(pA) ≤ M2(pA) (otherwise (M1,M2) is not a conflict-
pair).

Now we can apply Lemma 8 using the elementary paths ρ1 =
〈tb, p11, t11, p21, t21, . . . , pm

1 , te〉 and ρ2 = 〈tb, p12, t12, p22, t22, . . . , pn
2 , te〉 with tb = tr,

te = tD, pm
1 = pD, pn

2 = pA, and |•p| = |p•| = 1 for any p ∈ P1 ∪ P2. Hence,
Lemma 8 implies that M1(P1) = M1(P2) and M2(P1) = M2(P2).

We picked tD such that there is no other disagreeing transition on a path
from tr to tD. Hence, M1 and M2 agree on P1 \ {pD} = {p11, p

2
1, . . . , p

m−1
1 } and

P2\{pA} = {p12, p
2
2, . . . , p

n−1
2 }, i.e., M1(p) = M2(p) for all p ∈ (P1∪P2)\{pD, pA}.

M1(pD) > M2(pD) and M1(pA) ≤ M2(pA). Therefore, M1(P1) > M2(P1) and
M1(P2) ≤ M2(P2). Combined with M1(P1) = M1(P2) and M2(P1) = M2(P2)
this leads to a contradiction. Hence, (M1,M2) cannot be a conflict-pair of N . ��
Corollary 1 (Perpetual T-nets Are Lucent). Let N = (P, T, F) be a per-
petual well-formed T-net. N is lucent.

Proof. Follows directly from Proposition 5 and Theorem 5. ��
Starting from a perpetual well-formed free-choice net and a T-reduction,

we show that lucency is preserved in the “upstream” direction. We first prove
that the absence of conflict-pairs is preserved “upstream” and use Theorem 5 as

Reduction Using Induced Subnets to Systematically Prove Properties 227

the base case. To simplify the proof, we assume that a particular regeneration
transition tr is preserved, but this is not essential and this requirement could be
dropped (see last part of Theorem 4).

Theorem 6 (T-Reduction Showing Absence of Conflict-Pairs). Let N
be a perpetual well-formed free-choice net having a regeneration transition tr ∈ T
and a T-reduction γT = 〈t1, t2, . . . , tn〉 that is tr preserving. None of the Petri-
nets in netsN (γT) = 〈N0, N1, . . . , Nn〉 has conflict-pairs.

Proof. Assume that N is a perpetual well-formed free-choice net with regenera-
tion transition tr ∈ T and the T-reduction γT = 〈t1, t2, . . . , tn〉 is tr preserving (it
is always possible to create such T-reduction). netsN (γT) = 〈N0, N1, . . . , Nn〉.

Using Theorem 4 we know that N i = (P i, T i, F i) is perpetual for any i ∈
{0, . . . , n}. We need to show that N i has no conflict-pairs. We use induction
in the reverse direction starting with i = n. Base case: Nn is a T-net and has
no conflict-pairs (Theorem 5). Induction step: We need to show that if N i has
no conflict-pairs, N i−1 has no conflict-pairs. This is the same as showing that
if N i−1 has conflict-pairs, N i also has conflict-pairs. To simplify notation we
introduce the shorthands: N = N i−1 = (P, T, F), N ′ = N i = (P ′, T ′, F ′) and
t = ti, i.e., �N (t) is a proper t-induced T-net and N ′ = N�(t).

Let (M1,M2) be a conflict-pair for N , i.e., (N,M1) and (N,M2) are pc-safely
marked, en(N,M1) ∩ en(N,M2) = ∅, for all t′ ∈ en(N,M1): M2(•t′) ≥ 1, and
for all t′ ∈ en(N,M2): M1(•t′) ≥ 1. Based on (M1,M2) we construct (M ′

1,M
′
2)

with M ′
1 = mrk�(N, t,M1) and M ′

2 = mrk�(N, t,M2). We need to show that
(M ′

1,M
′
2) is a conflict-pair. (N ′,M ′

1) and (N ′,M ′
2) are pc-safely marked (use

Theorem 4). The remaining requirements in Definition 20 are shown by case
distinction.

If M1� �N (t) = [] and M2� �N (t) = [], then M ′
1 = M1, M ′

2 = M2, and
(M ′

1,M
′
2) is indeed a conflict-pair for N ′ (it is easy to verify that the requirements

in Definition 20 still hold).
If M1� �N (t) �= [] or M2� �N (t) �= [], then at least one transition in �N (t)

has a token in its input place. Let TD = {t′ ∈ (T ∩ �N (t)) \ {t} | M1(•t′) +
M2(•t′) ≥ 1} (i.e., all transitions have a marked input place in one of the two
markings). Pick a transition tD ∈ TD such that there is no other TD transition
on a path from t to tD. This is possible because there are no cycles inside �N (t)
and there is a path from t to any node in �N (t). If there would be a cycle,
then the regeneration transition tr needs to be in �N (t), which is not the case
because tr is preserved (actually, tr is a regeneration transition of N ′). See also
Theorem 5, which uses similar reasoning.

One of the input places of tD is marked in M1 or M2. Since (M1,M2) is
a conflict-pair for N , tD cannot be enabled in both. Hence, for at least one
of the two markings M1 or M2, we can find two input places that “disagree”
(check all cases using Definition 20). Without loss of generality, let us assume
that pm, pu ∈ •tD, pm ∈ M1, and pu �∈ M1, i.e., the input places pm and pu

of tD and marking are chosen such that pm is marked and pu is not. Moreover,
all places on a path from t to these places are empty. Just like in Theorem 5
and Lemma 8, we create two elementary paths: ρ1 = 〈tb, p11, t11, p21, t21, . . . , pm

1 , te〉

228 W. M. P. van der Aalst

and ρ2 = 〈tb, p12, t12, p22, t22, . . . , pn
2 , te〉, now with tb = t, te = tD, pm

1 = pm, and
pn
2 = pu. All places on these two paths are empty in M1 except pm

1 = pm. This
leads to a contradiction using Lemma 8, which states that the number of tokens
on both paths should be identical. Hence, M1 � �N (t) = M2 � �N (t) = [],
M ′

1 = M1, M ′
2 = M2, and (M ′

1,M
′
2) is indeed a conflict-pair for N ′. ��

Corollary 2 (Perpetual Free-Choice Nets Are Lucent). All perpetual
well-formed free-choice nets are lucent.

Proof. Follows directly from Proposition 5 and Theorem 6. ��
Corollary 2 corresponds to Theorem 3 in [2]. As pointed out earlier by the

author in e.g. [3], the initial proof of Theorem 3 in [2] was incomplete and a
repaired proof was provided [3]. When repairing the proof, the author discov-
ered that the result also holds for non-well-formed perpetual free-choice nets. A
detailed proof is given in [5]. This more general result uses a completely differ-
ent approach and does not build upon existing results for well-formed free-choice
nets.

Note that for any reduction γ = 〈t1, t2, . . . , tn〉 of a perpetual well-formed
free-choice net all nets in netsN (γ) = 〈N0, N1, . . . , Nn〉 are lucent and free of
conflict-pairs. Hence, it is also possible to provide alternative versions of Theo-
rem 6 using a P-reduction and the fact that lucency trivially holds for perpetual
P-nets.

The approach presented in this section can also be used to prove the so-called
blocking theorem [12,15] which states that every cluster in a bounded and live
free-choice system has a unique marking enabling the cluster. This can be seen
as lucency for individual transitions without requiring perpetuality. To prove the
blocking theorem, we first show that blocking markings exist by moving tokens
towards the selected cluster (this is possible due to the free-choice properly).
Moreover, the uniqueness of blocking markings is preserved “upstream” and
holds for T-nets (similar to Theorem 5, but using the fact that in blocking
markings all transitions outside the selected cluster have empty input places).
A detailed proof is straightforward, but omitted for space reasons.

7 Conclusion

This paper proposed reductions based on sequences of proper t-induced T-nets
and p-induced P-nets. Such a reduction can be used to transform any free-choice
net into a T-net or P-net. Given an arbitrary reduction γ, properties are pre-
served “downstream” (e.g., well-formedness, liveness, pc-safety, and perpetual-
ity) and “upstream” (e.g., lucency and the absence of conflict-pairs, assuming
perpetuality). Using the framework, we could reconfirm classical and more recent
results related to lucency and perpetuality in a systematic manner. The frame-
work is general and can be used for other properties, e.g., it becomes straight-
forward to prove the well-known blocking theorem [12,15] using a T-reduction.

The theoretical work presented was driven by challenges in the field of process
mining. Process discovery techniques greatly benefit from additional assumptions

Reduction Using Induced Subnets to Systematically Prove Properties 229

such as lucency and perpetuality [4]. Moreover, we want to extend our work on
interactive and incremental process mining using t-induced T-nets and p-induced
P-nets. An obvious limitation of the current framework is that well-formedness
is preserved “downstream” but not “upstream”. However, the approach can be
adapted to work in the reverse direction (using P-covers and T-covers).

References

1. van der Aalst, W.M.P.: Process Mining: Data Science in Action. Springer, Berlin
(2016). https://doi.org/10.1007/978-3-662-49851-4

2. van der Aalst, W.M.P.: Markings in perpetual free-choice nets are fully charac-
terized by their enabled transitions. In: Khomenko, V., Roux, O.H. (eds.) PETRI
NETS 2018. LNCS, vol. 10877, pp. 315–336. Springer, Cham (2018). https://doi.
org/10.1007/978-3-319-91268-4 16

3. van der Aalst, W.M.P.: Markings in Perpetual Free-Choice Nets Are Fully Char-
acterized by Their Enabled Transitions. CoRR, abs/1801.04315 (2018)

4. van der Aalst, W.M.P.: Lucent process models and translucent event logs. Funda-
menta Informaticae 169(1–2), 151–177 (2019)

5. van der Aalst, W.M.P.: Free-Choice Nets With Home Clusters Are Lucent (Aug
2020) (Under Review)

6. Berthelot, G.: Checking properties of nets using transformations. In: Rozenberg,
G. (ed.) Advances in Petri Nets 1985. Lecture Notes in Computer Science, vol. 222,
pp. 19–40. Springer, Berlin (1986). https://doi.org/10.1007/BFb0016204

7. Best, E., Wimmel, H.: Structure theory of petri nets. In: Jensen, K., van der
Aalst, W.M.P., Balbo, G., Koutny, M., Wolf, K. (eds.) Transactions on Petri Nets
and Other Models of Concurrency VII. LNCS, vol. 7480, pp. 162–224. Springer,
Heidelberg (2013). https://doi.org/10.1007/978-3-642-38143-0 5

8. Desel, J.: Reduction and design of well-behaved concurrent systems. In: Baeten,
J.C.M., Klop, J.W. (eds.) CONCUR 1990. LNCS, vol. 458, pp. 166–181. Springer,
Heidelberg (1990). https://doi.org/10.1007/BFb0039059

9. Desel, J., Esparza, J.: Free Choice Petri Nets, vol. 40. Cambridge Tracts in Theo-
retical Computer Science. Cambridge University Press, Cambridge (1995)

10. Dixit, P.M., Verbeek, H.M.W., Buijs, J.C.A.M., van der Aalst, W.M.P.: Interactive
data-driven process model construction. In: Trujillo, J.C., et al. (eds.) ER 2018.
LNCS, vol. 11157, pp. 251–265. Springer, Cham (2018). https://doi.org/10.1007/
978-3-030-00847-5 19

11. Esparza, J., Silva, M.: Circuits, handles, bridges and nets. In: Rozenberg, G. (ed.)
ICATPN 1989. LNCS, vol. 483, pp. 210–242. Springer, Heidelberg (1991). https://
doi.org/10.1007/3-540-53863-1 27

12. Gaujal, B., Haar, S., Mairesse, J.: Blocking a transition in a free choice net and
what it tells about its throughput. J. Comput. Syst. Sci. 66(3), 515–548 (2003)

13. Hack, M.H.T.: Analysis of Production Schemata by Petri Nets. Master’s thesis,
Massachusetts Institute of Technology, Cambridge, Massachusetts (1972)

14. Thiagarajan, P.S., Voss, K.: A fresh look at free choice nets. Inf. Control 61(2),
85–113 (1984)

15. Wehler, J.: Simplified proof of the blocking theorem for free-choice petri nets. J.
Comput. Syst. Sci. 76(7), 532–537 (2010)

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-319-91268-4_16
https://doi.org/10.1007/978-3-319-91268-4_16
https://doi.org/10.1007/BFb0016204
https://doi.org/10.1007/978-3-642-38143-0_5
https://doi.org/10.1007/BFb0039059
https://doi.org/10.1007/978-3-030-00847-5_19
https://doi.org/10.1007/978-3-030-00847-5_19
https://doi.org/10.1007/3-540-53863-1_27
https://doi.org/10.1007/3-540-53863-1_27

Model Checking of Synchronized
Domain-Specific Multi-formalism Models

Using High-Level Petri Nets

Michael Haustermann(B), David Mosteller, and Daniel Moldt

Faculty of Mathematics, Informatics and Natural Sciences,
Department of Informatics, University of Hamburg, Hamburg, Germany

haustermann@informatik.uni-hamburg.de

https://www.inf.uni-hamburg.de/inst/ab/art/

Abstract. Complex systems require the use of different models that are
linked with each other. Developers are naturally interested to show that
their systems work. Domain practitioners, who work with domain-specific
models, want to verify that their created models perform as desired. Cor-
rectness statements about the behavior of models are only possible if they
have a clear semantics. Support is required for creating the semantics and
also for checking properties of the model.

With the Rmt approach, we make operational semantics usable for
the domain-specific modeling languages (DSML) that are understand-
able to domain experts. High-level Petri nets as a target language of our
transformational approach can be analyzed by the MoMoC CTL model
checking tool. In this contribution MoMoC is extended and integrated
with the Rmt approach so that the results of verification based on the
defined operational semantics can be applied to DSML.

The presented approach does not work equally well for all languages.
However, it is well suited for languages with discrete states that can be
uniquely named. Provided that they map well to Petri nets, questions
about (reachable) states of multiple linked domain-specific models can
be answered.

Keywords: Meta-modeling · Petri nets · Model checking ·
Verification · Multi-formalism · Graphical feedback · Reference Nets ·
CTL · Model synchronization · DSML

1 Introduction

Domain-specific modeling languages (DSML) are a popular way to lower the
initial barrier and complexity for working with models. One problem with DSML
is that while they are tailored to the domain practitioner, their functionality
or correctness is not immediately transparent to them. This requires facilities
for helping DSML users to interactively inspect their models and for proving
that no problems exist. Interactive simulation is a suitable means for inspection
c© Springer Nature Switzerland AG 2021
D. Buchs and J. Carmona (Eds.): PETRI NETS 2021, LNCS 12734, pp. 230–249, 2021.
https://doi.org/10.1007/978-3-030-76983-3_12

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76983-3_12&domain=pdf
https://doi.org/10.1007/978-3-030-76983-3_12

Model Checking of Synchronized Domain-Specific Multi-formalism 231

and model checking is popular for verifying correctness because it allows to
check different specifications without the requirement of individual algorithms
for each property of a model. By providing specifications in the terminology of
the corresponding domain, this is also possible for DSML users. Simulation and
proof of properties require a clear understanding of the semantics of the language
in the first place.

With a transformational semantics it becomes possible to specify a well-
founded semantics for domain-specific languages. This enables the application
of existing simulation and verification tools. However, the use of existing tools
requires the adoption of the terminology and languages of the utilized tool. This
requires that queries on the model as well as simulation and verification results
must be transferred from one formalism to the other by the DSML user.

In previous contributions we addressed the definition of semantics for mod-
eling languages as a transformation into Petri nets [8], which provide concepts
for an integrated simulation in the graphical representation of the DSML [10]
with the structured Renew Meta-Modeling and Transformation (Rmt) app-
roach [11]. Our approach facilitates the combined execution of several for-
malisms [7]. With this paper, based on our previous results, we address the
verification of the DSML languages. Our contribution is the integration of model
checking into the Rmt approach, which involves an extension of the framework
and the adoption of the Modular Model Checker (MoMoC) [17]. By using a
component-based approach, it becomes possible to establish a relation between
DSML states and net markings that allows working with the models in their
original representation, in simulations as well as in verification. This relation
of states is used to formulate system specifications in the terminology that is
well-known to the DSML user from his application domain.

With the goal of seamlessly integrating model checking of DSML into the
Rmt approach, we proceed as follows. Conforming to our agile approach we
opt for transformational semantics with Reference Nets as target formalism
(Sect. 2). Tool support is provided by the modeling and simulation environment
Renew [2], which is the technical basis of our approach and enables verification
on Reference Nets with the MoMoC plugin (Sect. 3). The MoMoC tool itself
is not part of this contribution, however we have extended MoMoC conceptu-
ally and technically to our needs. We subsequently present a running example
to explain the Rmt approach (Sect. 4) and follow this with a proposal for inte-
grating a verification approach (Sect. 5). A remarkable feature of our solution is
the support for graphical exploration of the reachability graph with a replay of
witness paths and the possibility of inspecting the DSML’s graphical representa-
tion in any state. Another feature is the support for multi-formalism verification,
which we have integrated into the Rmt approach. We demonstrate our results
with the application to an elevator model (Sect. 6). Related results from the
literature are presented (Sect. 7) before we summarize our results and give an
outlook on future work (Sect. 8).

232 M. Haustermann et al.

2 Reference Nets

The Reference Net formalism is a high-level Petri net formalism with support for
modeling complex data structures, remote synchronization and Java integration.
Some of the core features of Reference Nets will be presented in the following as
they are relevant for this contribution. This section is adopted from a previous
publication [9]. The Java features will not be discussed in detail as they are of
minor interest in this context. A thorough introduction to Reference Nets with
Java integration is in the Renew manual [5]. Renew provides full support for
modeling and execution of Reference Nets and other modeling languages. An
example of the application to software engineering can be found in the latest
research paper on Renew [2].

Fig. 1. Using collections in Reference Nets.

With high-level Petri nets, data in the form of colors is unified using uni-
fication expressions on the transitions with regard to the variable bindings on
the edges. Reference Nets are not the only high-level Petri net formalism with
support for collection types, however, Fig. 1 shows an example of how they are
realized there. On the left side the variable c is calculated from the inputs a
and b and all of the three variables are outputted in a tuple to the place on the
right side. Tuples can be hierarchically nested to perform complex operations on
them by the means of unification. Lists, as depicted in Fig. 1 on the right, are
even more powerful as they permit iterative or recursive processing. In fact, in
the depicted example the transition may fire three times, each time computing a
new value for variable c from its head element (h) and variable b, which is only
read and not removed by using a test arc.

Fig. 2. Synchronous channels of Reference Nets.

Synchronous channels, as exemplarily depicted in Fig. 2, control the firing of
multiple transitions as one synchronized event. A synchronous channel consists

Model Checking of Synchronized Domain-Specific Multi-formalism 233

of a pair of downlink (caller) and uplink (callee), so the reference must be known
on one side of the channel. They may have arguments to transport information
similar to the call of a function, but they have a slightly different notion as the
unification of arguments enables a bidirectional exchange of data. In the depicted
example the downlink (left side) calls the right side (uplink) in the local net
instance (this). The first argument (m) on the downlink can be unified with
the String (“match”) on the uplink. The second argument (b) receives its actual
parameter from the right side and the calculation of variable c is performed on
the downlink transition on the left side before it flows through the channel to
the uplink.

Fig. 3. Dynamic hierarchies: nets-within-nets [15].

Clearly, the expressiveness of synchronous channels is quite powerful. How-
ever, they unfold their real potential in combination with dynamic hierarchies
and the nets-within-nets paradigm [15]. Using the new syntax shown in the
upmost part of Fig. 3 Reference Nets can create instances of other net pat-
terns. This enables dynamic hierarchies up to an arbitrary level of nesting. The
depicted example is restricted to a level of two and models a message sending
scenario. It shows a system of three components. In the center is a system net,
which manages the instances of senders (left) and receivers (right). The latter
communicate through the synchronous channels (send and receive) of the sys-
tem net. Similar to the synchronous channels, the new constructor can also be
parameterized with optional arguments. They are served by an uplink of the
form :new(args) in the instantiated net.

While Reference Nets are well established for modeling and simulation of
complex systems, possibilities for verification are still young. In the next section
we show the MoMoC tool, which aims at making an advancement in terms of
verification.

3 Modular Model Checker (MOMOC)

The Modular Model Checker (MoMoC) [17] is an explicit model checking tool
for Reference Nets, which is integrated into the Renew environment. Its focus is

234 M. Haustermann et al.

on a beginner-friendly user interface with graphical visualizations of reachability
graphs and model checking results. The tool is under continuous development
and the current version implements a simple CTL model checking algorithm.

A unique feature is the support for the nets-within-nets paradigm, which
is inherently present in Reference Nets. This includes means for coping with
problems that arise from the possibility of creating dynamic hierarchies. Since
hierarchies are dynamic, net instances cannot be addressed directly. In general, it
cannot be predicted whether certain net instances will be created at all and how
many will be created. This means that in some state there may exist multiple
net instances of one net pattern. These instances cannot be addressed directly
because they are created dynamically and thus the identifiers are unknown a
priori. A net instance that resides in a place of another net could be addressed
by combining place names and the reference hierarchy but since one place may
contain multiple instances of the same net pattern the identification of these
instances is still ambiguous.

MoMoC handles this problem of net instance ambiguity [17] by extending
CTL with a specific syntax to handle multiple net instances of the same pattern.
The solution is the concept of net instance quantifiers, which are introduced
to atomic propositions. With net instance quantifiers it becomes possible to
determine whether a given proposition should hold in all instances of a given net
pattern (with the operator !) or in one net instance at least (with the operator ?).
The analysis is always started on a root net instance. The root net instance may
have nested net instances, which are also treated during state space generation.

Another key feature of the MoMoC tool is its modular design that is
intended for flexible extensibility. The tool is modular in a sense that parts of the
model checking environment may be interchanged individually. The extensible
interface allows to add additional binding cores to provide the firing semantics
of a single transition, storage managers to implement the storage and access of
explored net instances, as well as procedures, which provide the actual model
checking algorithms. Additionally, multiple result visualizers may provide indi-
vidual behaviors for visualizing the resulting artifacts of the algorithm.

The current result visualizer generates a reachability graph, which is graphi-
cally arranged with a simulated annealing algorithm. When applicable, the graph
is colored according to the model checking result. Nodes are colored green if a
formula holds and red otherwise. The checked CTL formula is presented in a
tree-like representation, where the results of each individual subformula can be
examined.

MoMoC has a specific syntax for atomic propositions because it needs to
distinguish different net patterns and possibly multiple instances of each of
these patterns. The upper half of Table 1 lists the atomic propositions pro-
vided by MoMoC. These include the net instance independent propositions
Deadlock and Fireable. Deadlock is a global property, while Fireable refers to
any instance of a specific transition. Furthermore, there are rules NetInstance-
Forall and NetInstanceExists, which offer the means for dealing with the prob-
lem of net instance ambiguity by using net instance quantifiers. They contain

Model Checking of Synchronized Domain-Specific Multi-formalism 235

Table 1. MoMoC syntax of atomic propositions (Momoc Syntax: https://paose.
informatik.uni-hamburg.de/paose/wiki/MoMoC).

Rule Derivate Example

Deadlock DEADLOCK DEADLOCK

Fireable FIREABLE(Arg) FIREABLE(T1)

NetInstanceForall !(Arg, InstancePredicate) !(NetA, m(p1) > 0)

NetInstanceExists ?(Arg, InstancePredicate) ?(NetB, m(p2) = 4)

InstancePredicate CardinalityPredicate

ContentPredicate

CardinalityPredicate m(Arg) Op Number m(p3) <= 1

ContentPredicate c(Arg) contains String c(p4) contains foo

an InstancePredicate, which refers to a specific net instance. An example would
be the atomic proposition ?(NetA, InstancePredicate), which means that a net
instance of the pattern with name NetA must exist in which the InstancePredi-
cate holds. An InstancePredicate as depicted in the lower half of Table 1 can be
a query on cardinalities of places (e.g. m(p1) >= 1).

With the extensions to MoMoC made for this contribution, queries on the
contents of places become possible. For instance, c(p4) contains foo means
that the place p4 contains a token which has a string representation equal to
foo. This is specifically necessary to individually address dynamically created
net instances in the context of the presented approach to DSML verification.
Furthermore, the modularity of MoMoC permits to add further atomic propo-
sitions. These atomic propositions can be combined in the usual way via Boolean
operations and with well-known CTL operators each consisting of a path quan-
tifier (A, E) and a path-specific quantifier (X, G, F, U).

4 RENEW Meta-Modeling and Transformation (RMT)

The Rmt approach1 (Renew Meta-Modeling and Transformation) [8] is a
model-driven approach for the agile development of DSML. It follows concepts
from software language engineering (SLE, [4]) and enables a short development
cycle to be appropriately applied in prototyping environments. The Rmt app-
roach defines a structured, iterative DSML development process that starts with
the generation of an (empty) plugin. The initial models for defining the DSML
are already included in the generated plugin and are extended step by step.
Default values make configuration of various parameters optional and enable
rapid deployment of initial prototypes and subsequent adjustment. The techni-
cal basis for the Rmt approach is provided by the Rmt framework, which builds
upon the Renew modeling and simulation environment. Renew was originally

1 The first paragraph of this section is adopted from our previous contribution [11].

https://paose.informatik.uni-hamburg.de/paose/wiki/MoMoC
https://paose.informatik.uni-hamburg.de/paose/wiki/MoMoC

236 M. Haustermann et al.

designed as a Petri net editor and simulator and has evolved into an extensible
integrated development environment (IDE) for various modeling techniques [2].
The Rmt framework is particularly well-suited to develop languages with simu-
lation feedback due to its lightweight approach to SLE and the tight integration
with the extensible Renew simulation engine, which supports the propagation
of simulation events [10].

Fig. 4. Example model for a traffic light DSML in a Rmt modeling tool.

In Fig. 4 a modeling tool is presented that was created following the Rmt
approach and using the Rmt framework. It displays a DSML for modeling traffic
light systems, which consist of traffic lights, crossroads and associations between
them. The modeling tool was generated by the framework from a set of models
and integrates into the Renew modeling and simulation environment. There-
fore the tool adds tool buttons to the menu bar and registers a new drawing
type, from which drawings can be created, transformed and simulated. The left
window shows a traffic light model that contains two traffic lights, a crossroad
and associations respectively. The model was created by using the tools from the
menu as depicted in the second row of icons in Fig. 4. We call this kind of model
drawing a pattern, since multiple instances of the model may be created during
runtime. In the pattern all traffic lights light up at the same time, because the
visual states of the traffic lights are drawn as overlays in the simulation. We will
go into details of this mechanism below. The right window shows the graphical
representation of an instance of the traffic light model during simulation in a
state where one of the traffic lights shows a green signal while the other traffic
light signs red.

A tool like the one shown in Fig. 4 is generated as a Renew plugin from
a set of models. The basis of its specification is a meta-model, which describes
the abstract syntax of a graphical modeling language. The meta-model of the

Model Checking of Synchronized Domain-Specific Multi-formalism 237

traffic light DSML is not shown in this contribution in order to reduce redun-
dancy with previous contributions. Examples of all the required models for the
definition of the syntax can be found in earlier publications [8,11]. The concrete
syntax is defined by creating graphical components within Renew using the pro-
vided graphical primitives or alternatively by using style sheets. These graphical
components contain additional annotations to specify the representation during
execution.

Abstract and concrete syntax are connected by the tool configuration model,
which additionally specifies basic properties of the resulting plugin, such as
names for the plugin and its file type as well as the ordering of tool buttons.
The semantics is provided by a transformation into Petri net formalisms, most
prominently the Reference Net formalism. This has the advantage that it is pos-
sible to achieve fast results in a prototypical approach to the development of
DSML. Reference Nets as a target formalism provide a well-founded mechanism
for creating dynamic hierarchies and the synchronization of multiple models.

The transformation is done component-wise in the form of a 1 : n mapping
from the DSML to the Petri net. A consequence of this approach is a local
perspective on the behavior of the DSML constructs, reducing complexity for
the language developer. This of course comes with the limitation that languages
that have non-local semantics are not well supported. Accordingly, the Rmt
framework targets state-based languages with local semantics and is intended
to provide the best possible support for them. Individual DSML constructs are
mapped to net components (semantic components). A major role in the 1 : n
approach comes to the join of two net components to specify their interaction.
This results in the question of how to select connection points and how to connect
or merge them. Various parameters for the configuration of the transformation
make it possible to implement different variants of the interaction between DSML
constructs. The basic behavior of the transformation is configured in a semantic
mapping model. This includes how connection elements are specified and with
which mechanism net components should be connected (merge of elements vs.
connection with edges). Additional details, such as the identification of connec-
tion elements, are specified by annotations in the semantic components. They
are described in the following using our running example.

Figure 5 shows the artifacts necessary for the visual representation and the
semantics of the traffic light example. Figure 5a shows the graphical components
of the traffic light DSML. It is supplemented by annotations that define how
the traffic light should be represented at execution time. These annotations are
provided in the form of key value attributes, which are presented in this paper
as text annotations connected with a dotted line to the annotated graphical
element. They are invisible in the artifacts that are actually used for generating
the plugin. The UML note figures are only used for explanation in this paper.
For the traffic light construct, each light is annotated with an active-visible
attribute. This indicates a state dependent visualization. In this context, it means
that the graphical element is only displayed in the red (or yellow/green) state.
The state references markings of the underlying semantic component. In this

238 M. Haustermann et al.

(a) traffic light graphical component (b) traffic light semantic component

(c) crossroad graphical component (d) crossroad semantic component

Fig. 5. Graphical and semantic component of the traffic light DSML.

simple case, the annotation active-visible: red refers to the marking where
the place with the name red contains a token. We describe different variants for
the specification of these state-dependent visualizations in an earlier publication
[10]. The underlying graphical elements (unlit lamp) are displayed in all states.

The graphical component for the crossroad (cf. Fig. 5c) has no additional
annotations. This results in using the default fallback highlighting behavior,
where the DSML construct is considered active when at least one token is present
in any of its places. The active state is then represented with a change of colors
according to a color-dependent scheme to indicate a difference.

The semantic component in Fig. 5b is annotated differently. These annota-
tions configure the transformation. In this case, the attribute join: decr resp.
join: incr indicates that the respective elements are connected/merged with
corresponding net elements with a matching attribute during transformation.

In the traffic light DSML, a traffic light can be connected to a crossroad
by an association. The connection points are visible as well for the crossroad’s
semantic component in Fig. 5d, which contains the corresponding counterparts
for the join: decr resp. join: incr annotations in the traffic light compo-
nent. In addition, the two transitions have another transformation directive that
specifies that these net elements are duplicated for each connection (duplicate:
true). The transition with annotation join: decr from the traffic light’s seman-
tic component is merged with the transition with annotation join: decr from
the crossroad’s semantic component and for the transitions with annotations
join: incr respectively. As the merging process is carried out for each of the
associated constructs individually, with a replication of the merging element
with annotation duplicate: true, both of the two traffic light constructs are
connected to the crossroad.

Model Checking of Synchronized Domain-Specific Multi-formalism 239

Fig. 6. Petri net generated from the traffic light model.

Figure 6 shows the Petri net that results from the transformation of the traffic
light model from Fig. 4 by using the artifacts from Fig. 5. The resulting net is not
displayed to the DSML user by default, it is only used as an execution object by
the simulator. The models at runtime are displayed to the user in the original
representation, as seen in Fig. 4 in the window on the right. These models serve
as illustrations for the DSML verification presented in the next section.

5 DSML Verification

For our approach to DSML verification we intend to apply the core concepts
of our approach for providing graphical simulation feedback, which are the
component-based approach and the relating of DSML states and Petri net mark-
ings. A requirement for this approach is that the states of the evaluated modeling
language are unique, disjoint and can be named individually.

In order to provide a meaningful overview of the system, states of DSML
instances should be clearly distinguishable by the user by looking at the graphical
representation. For state-based verification, which we address with our approach,
it must therefore be possible to address individual states that can be identified
from the graphical representation with a comprehensible and unique name. The
interesting question is how to relate the DSML states to the Petri net markings
so that the DSML user can formulate propositions over the model without the
requirement of knowledge about the internal Petri net semantics.

One advantage of the component-based approach is that we benefit from the
local perspective and reduce the task of relating the DSML state and the Petri
net marking to relating a single DSML construct to its corresponding seman-
tic component. This is implemented consistently with the integrated simulation
by extending the semantic components. For semantic components however, the
possible states (or the states that should be addressable) are to be defined explic-
itly. They are defined in the semantic components as atomic propositions (see
Sect. 3) and assigned a name for reference. This is done during the development
of DSML by the language developer, who must have knowledge of Petri nets
in order to provide meaningful transformation semantics. The states defined in
this way can then be referenced by the DSML user without knowledge of the
underlying Petri nets. The labels of the states are parameterized at runtime so
that the states of different DSML constructs can be queried individually.

240 M. Haustermann et al.

For the traffic light construct introduced in the last section, the disjoint
states are unique by design because there is only one token in the component
that changes between colors. Additionally, overlapping states can be defined as
a combination of multiple states. In regard of the traffic light, this should be the
state youcandrive, which applies when the traffic light signs yellow or green.

The specification of states is based on the query language of the MoMoC tool
and uses the same syntax. Specifications are written to the semantic components
with the prefix MACRO. The definition of the state youcandrive has the following
form, where ${name} is parameterized with the name of the DSML construct:

MACRO ${name}.youcandrive = (m(${name}yellow) = 1 OR
m(${name}green) = 1)

Macros like this can be used to formulate CTL queries to check a DSML
model with MoMoC. The proposition language is based on the CTL variant
presented in Sect. 3 where the InstancePredicates are references to the specified
macros. This facilitates the query of states from the system by their provided
state identifier.

For the traffic light model from Fig. 4 it is possible to check whether it can
occur that the crossroad is entered in both directions simultaneously. The cor-
responding query looks like this:

AG ?(tlsystem, (NOT (trafficlight1.youcandrive AND
trafficlight2.youcandrive)))

Recall that the formula without the CTL operator AG is an atomic proposition
(cf. Sect. 3). In this case the atomic proposition holds in a state if it holds in any
of the net instances of the net pattern tlsystem due to the exists quantifier (?).
Because we are inspecting only one instance of a traffic light system the predicate
could just as well be quantified with the forall quantifier (!).

The extension of MoMoC that we developed for this contribution extracts
the macros from the semantic components and parameterizes them during trans-
formation. It generates the CTL specification that can be evaluated on the under-
lying Petri net, which looks as follows:

AG ?(tlsystem, (NOT ((m(trafficlight1yellow) = 1 OR
m(trafficlight1green) = 1) AND (m(trafficlight2yellow) = 1 OR
m(trafficlight2green) = 1))))

The model checking result consists of a tree-like view on the formula and
its subformulas and a function to show a reachability graph that is colorized
according to the result of a selected subformula.

Figure 7 shows two artifacts of the result from the verification of the traffic
light model in Fig. 4. In Fig. 7a one can see the reachability graph generated
by MoMoC, where the colors indicate whether the following subformula holds,
green (true) and red (false):

?(tlsystem, (NOT (trafficlight1.youcandrive AND
trafficlight2.youcandrive)))

Model Checking of Synchronized Domain-Specific Multi-formalism 241

(a) reachability graph (b) instance drawing

Fig. 7. Inspection of the model checking result.

It is plausible that the subformula does not hold in all states, because it is
possible for one traffic light to sign green and the other one sign yellow at the
same time (or both yellow/green). Consequently, the original formula quantified
by AG does not hold in the initial state.

The nodes of the reachability graph store the model instances, which can be
displayed when needed. Figure 7b shows a visualization of the lowermost state
of the reachability graph, which is opened by double-clicking on the node. From
the results, it can be seen that the semantics of the traffic light is not reasonably
chosen for the crossroad scenario.

Fig. 8. Improved version of the semantic components.

For this reason, the semantic components in Fig. 8 have been adapted so that
the traffic lights signal green or yellow in mutual exclusion. Mutual exclusion is
achieved by inverting the edges that add or remove tokens in the crossroad
components. This was realized by swapping the join annotations in the traffic
light component. Another change is the new token added to the initial state of
the crossroad. This may be interpreted as the place now implementing a capacity
rather than activity on the crossroad.

Our modifications result in the generated Petri net in Fig. 9a, which shows
that the desired behavior could be produced with the changes made to the
semantic components. This is also reflected in the reachability graph generated

242 M. Haustermann et al.

(a) generated Petri net (b) reachability graph

Fig. 9. Generated Petri net that uses the improved semantics and the resulting reach-
ability graph.

again in Fig. 9b, which has been stripped from the states that are undesired for
the road crossing scenario.

The simple example presented in this section is intended to show how our
approach can be used to support the development of DSML with execution
semantics. The integrated simulation, in conjunction with the state-based anal-
ysis and inspectability of the system states, allows us to support the modelers
in identifying errors and ambiguities in their models. Furthermore, problems do
not only become identifiable in the models but also in the semantics of the lan-
guage. Thus, the agile prototype-based approach to the development of DSML
itself is supported. In the next section, we demonstrate how this approach can
also be applied to systems in which multiple different model types are used in
combination and are synchronized with each other.

6 Application to Multiple Formalism DSML Verification

The Rmt framework is capable of executing multiple different DSML formalisms
simultaneously and to enable communication between them using transforma-
tional Reference Net semantics. In this way, different views of a system can be
combined to a coherent model. The prerequisite for this is a mapping of the for-
malisms involved to Reference Net implementations and the use of synchronous
channels as described in Sect. 2. In our contribution to multi-formalism simu-
lation based on Reference Nets, we developed a concept for synchronous and
concurrent execution of multiple formalisms [7]. In this context, we have built
a multi-formalism model of an elevator that uses finite automata for the eleva-
tor itself and the control panels on the different floors, and an activity diagram
for the central control of the elevator. In this contribution we revisit the eleva-
tor model to perform DSML model checking on the model using the MoMoC
integration that we developed for the Rmt framework.

Figure 10 shows the elevator model, which slightly differs from the pre-
sentation in the previous contribution [7]. The system consists of three floors
between which the elevator moves depending on the state (pressed/unpressed)
of the control panels (Fig. 10c). The elevator itself (Fig. 10b) can be in the state

Model Checking of Synchronized Domain-Specific Multi-formalism 243

(a) elevator control activity diagram

(b) elevator finite
automaton

(c) floor finite
automaton

Fig. 10. A multi-formalism model of an elevator.

open/closed on one of the floors at a time. Any movement of the elevator is
controlled by the central controller (Fig. 10a), which synchronizes the movement
of the elevator with the state model. The controller is designed in a way that
a change of direction is only possible if there are no pending requests in the
current movement direction of the elevator. When the elevator has reached a
floor, it opens (and closes) the door before it continues to move on.

The data component depicted in the bottom left of Fig. 10a manages the
references to instances of the floor and elevator models and provides access to the
model instances by their name. Tuples are employed in this context to manage
the references to the model instances. One challenge in generating the state space
of a Reference Net is to recognize the equivalence of net instance states. This
is difficult because net instances may contain references to other net instances,
which may produce cycles. Tuples and lists make the detection more difficult
because they can also contain net instances. For efficient handling of references,
we had to extend MoMoC to allow references in collections (lists and tuples)
to be recognized and distinguished by the model checker.

Using the MoMoC integration for the Rmt framework, we now show why
the previously published model of the elevator is not an optimal design from

244 M. Haustermann et al.

an engineering point of view. A desired behavior of an elevator would be that
in case someone is waiting on a floor and has pressed the button, the elevator
should also arrive at that floor at some point and open the door. For such a
request it is necessary to address a specific floor, which is not easily possible
due to the problem of net instance ambiguity. To distinguish nets of the same
type, they must be distinguishable by their content, because their ids are not
known a priori. To this end, we have extended MoMoC with a feature that
allows content queries in addition to cardinality queries. This makes it possible
to store a unique identifier in a place of a net that can be referenced in CTL
queries.

When creating instances of the floor model, unique names are assigned in
each case. These are stored in a place of the semantic component and can be
queried via a content predicate (c(name) contains f0). The query is simplified
by a macro to name.is f0. Another macro allows to query if a finite automaton
model is in a specific state, where the attribute pressed.active indicates that
the respective automaton is in the state pressed. With the two macros above it
is possible to specify the desired behavior using the CTL formula below.

AG ((NOT ?(floor, (name.is f2 AND pressed.active))) OR
AF ?(elevator, open2.active))

With the provided formula, MoMoC performs an analysis on the elevator
model using the DSML model checking procedure. The result from MoMoC
indicates that the formula does not hold in the initial state of the system. The
visualization tools can help to find and correct the problematic parts of the
model.

The result of the analysis can be viewed and interactively inspected as shown
in Fig. 11. In the lower area a small section of the reachability graph of the whole
elevator system is shown. The graph is colored based on the negation of the sub-
formula AF ?(elevator, open2.active). A witness path for this subformula
is highlighted, which is calculated for formulas quantified by a CTL operator
during the execution of the model checking routine (procedure). Since tracing
a path in a larger reachability graph is very difficult, we have implemented a
tool to trace a witness path. This witness replay tool can be seen in the upper
left part of the figure. It facilitates navigation through the state graph along the
witness path and displays the graphical representation of the DSML model in
the current state.

The determined path shows that it is possible to run a cycle in the elevator
that never leads to an opening of the elevator door on the second floor. In the
cycle, the constructs isopenup1, closeup0, isclosedup0 and openup0 can be run
over and over again. This also applies if an elevator has been called from a floor
above (pressed). The reason for this cycle is that the elevator can repeatedly
open the door on the same floor if it was pressed there again. With the result,
the model could now be adjusted, e.g. to introduce a limit for door openings
on the same floor or a timer. Fairness constraints may also change the behavior
of the elevator, but are not considered here. The relevant cycle can be visually

Model Checking of Synchronized Domain-Specific Multi-formalism 245

Fig. 11. Tools for inspecting the model checking result of the elevator example.

reproduced using the witness replay function. All model instances involved in
the explored states can be examined.

In the upper part of the figure you can see the instance drawings in one of
the states on the witness path. The highlighting in the elevator control (elevator-
control[29]) indicates that the action closeup0 is executed, while on the upper
floor (floor[32]) the state pressed is valid. The other two floors are in the state
unpressed but allow a transition through user interaction, indicated by the green
arrow inscribed with manual. The elevator itself (elevator[34]) is currently in the
state open0.

This example demonstrates the integration of multiple tools for interactive
execution and analysis with the combination of multiple DSML formalisms based

246 M. Haustermann et al.

on Reference Net semantics. This example furthermore demonstrates that the
selected combination of tools is useful for identifying various problems with the
semantics of DSML models.

7 Related Work

Since there is an agreement on the need, there exists a considerable number
of tools and frameworks for the development of DSML. Some of them address
execution aspects and also, verification or validation is often an issue with respect
to domain-specific languages.

A widely used approach is to use grammars for graph transformation. This
approach can be applied to both integrated simulation and verification since
the target of the transformation can be chosen depending on the use case. The
feedback of information from the generated result is usually more difficult and
likewise the dynamics of the feedback from the execution is missing. An inter-
esting contribution in the area of graph transformation approaches comes from
Varró since the transformation rules are applied on the model level as well as on
the meta level [16].

Since the Object Constraint Language (OCL) already provides the syntactic
means to specify state properties of model constructs, its use for model checking
is evident. In the work of Bill et al. [1] an extension of the OCL by CTL operators
is proposed. This makes it possible to check models with the MocOCL tool also
offered by the authors, if they support OCL. A similar approach is taken by
Mullins and Oarga [12] using a transformation of UML with OCL constraints to
Abstract State Machines (ASM).

One contribution that puts an emphasis on the feedback of information from
the model analysis comes from the work of Gerking et al. [3]. The approach is
demonstrated on an example of MechatronicUML, a UML dialect for inter-car
communication, using the UPPAAL model checking tool. The focus is on the
propagation of counterexamples from the model checker into the DSML even
if the relation is hard to integrate [3, p. 85]. We have decided to also address
this issue with the present contribution and establish the relation between DSML
and execution model by state annotations in the respective semantic components
(cf. Sect. 5). This is only possible because we have a model-to-model transfor-
mation with an executable target model and restrict the possibilities of mapping
constructs to a 1 : n mapping.

Another interesting result comes from Rusu and Lucanu [14]. They address
executable DSMLs and transform their models to the K framework [13]. The
transformation is rule-based and so is the operational semantics (using the K

Model-Rewrite Language [14, p. 13]). The execution, however, is not interactive
and does not automatically inherit advanced execution semantics in a way the
presented approach benefits from dynamic hierarchies and true concurrency of
the target formalism.

Meyers et al. pursue the goal of hiding formal methods from both the DSML
user and the DSML developer with the argument that the DSML developer does

Model Checking of Synchronized Domain-Specific Multi-formalism 247

not have to be an expert in formal methods either [6]. Both, the models and the
system properties are to be represented in a domain-specific language, which is
to be achieved by transformation between formalisms.

In our approach, a knowledge of formal languages is unavoidable for the lan-
guage developer, because it is already necessary for the definition of the seman-
tics. We use the same formalism for the definition of the semantics as for model
checking. This favors our focus of a strong integration of interactive simulation
and verification.

8 Conclusion

Our contribution addresses the problem that DSML users want to inspect their
models for desired properties, which requires specific tools for the individual lan-
guages. Following up on the ongoing research on the Rmt approach for develop-
ing DSML with execution semantics based on Reference nets, we now provide a
concept for the integrated verification of DSML that is coherent with the Rmt
approach in a sense that it shares the same philosophy and suitability for agile
and rapid prototype-based development. The core concept is the propagation
of simulation and verification results from the underlying Petri net back to the
graphical DSML models for interactive inspection and graphical exploration of
the system.

Reference Nets as a target formalism provide the flexibility necessary to facil-
itate our approach to DSML verification for concurrent and dynamic systems
(Sect. 2). The MoMoC tool, as a CTL model checker with support for the
nets-within-nets paradigm and the net instance quantifiers, provides the basis
for the verification of Reference Nets (Sect. 3). With Rmt, we provide an agile,
prototype-based approach to developing DSML with integrated simulation using
annotated semantic components (Sect. 4). We have applied the approach taken
to integrated simulation to the verification of DSML by establishing a relation
between DSML states and Petri net markings also based on annotations of the
semantic components (Sect. 5). This allows to specify states of DSML models
that can be referenced in verification queries.

The MoMoC integration for the Rmt framework provides the verification
of model instances in the original representation. It supports the users and the
developers of DSML with a graphical visualization of model checking results.
The presented approach, with regard to Reference Nets as a target formalism, is
particularly interesting for models in which multiple models of different types are
involved that are related to each other (Sect. 6). The provided tools for inspection
and visualization of verification results are particularly suitable for identifying
undesired behavior in such systems, because they allow an interactive exploration
of the reachability graph with a visualization of the DSML state. The generation
of witness examples and the witness replay tool help to trace interesting paths
found in complex state spaces.

248 M. Haustermann et al.

One major topic for future work is the improvement of the performance and
space consumption of the model checking algorithm. The currently implemented
basic algorithm offers a lot of potential for optimization, especially with respect
to the storage of net instances. However, these changes are not specific to our
approach to DSML verification but to general MoMoC improvements that the
original authors already address. An interesting direction of research regarding
the dynamic hierarchies of nets within nets concerns the addressing of model
instances. The net instance quantifiers could be made more flexible by param-
eterization, so that quantification is done over a subset of the instances of a
net pattern. Using a graph query language, for example, restricting the search
to net instances on specific places may be promising. Concerning the model
driven approach to DSML verification furthermore increasing the flexibility of
the query language should enhance its usability and applicability. The current
implementation is still prototypical at this point. In addition, further visual-
ization tools could provide additional value for users. These could include a
structured arrangement of net instances or the step-by-step generation of the
reachability graph to render only sections that are currently being explored.

References

1. Bill, R., Gabmeyer, S., Kaufmann, P., Seidl, M.: Model checking of CTL-extended
OCL specifications. In: Combemale, B., Pearce, D.J., Barais, O., Vinju, J.J. (eds.)
SLE 2014. LNCS, vol. 8706, pp. 221–240. Springer, Cham (2014). https://doi.org/
10.1007/978-3-319-11245-9 13

2. Cabac, L., Haustermann, M., Mosteller, D.: Software development with Petri nets
and agents: approach, frameworks and tool set. Sci. Comput. Program. 157, 56–70
(2018). https://doi.org/10.1016/j.scico.2017.12.003

3. Gerking, C., Schäfer, W., Dziwok, S., Heinzemann, C.: Domain-specific model
checking for cyber-physical systems. In: Famelis, M., Ratiu, D., Seidl, M., Selim,
G.M.K. (eds.) Proceedings of the 12th Workshop on Model-Driven Engineer-
ing, Verification and Validation MoDeVVa@MoDELS’15, Ottawa, Canada. CEUR
Workshop Proceedings, vol. 1514, pp. 18–27. CEUR-WS.org (2015). http://ceur-
ws.org/Vol-1514/paper3.pdf

4. Kleppe, A.: Software Language Engineering: Creating Domain-Specific Languages
Using Metamodels. Pearson Education, London (2008)

5. Kummer, O., Wienberg, F., Duvigneau, M., Cabac, L., Haustermann, M.,
Mosteller, D.: Renew - User Guide (Release 2.5.1). University of Hamburg, Fac-
ulty of Informatics, Theoretical Foundations Group, Hamburg (Nov 2020). http://
www.renew.de/

6. Meyers, B., Vangheluwe, H., Denil, J., Salay, R.: A framework for temporal ver-
ification support in domain-specific modelling. IEEE Trans. Softw. Eng. 46(4),
362–404 (2020). https://doi.org/10.1109/TSE.2018.2859946

7. Möller, P., Haustermann, M., Mosteller, D., Schmitz, D.: Model synchronization
and concurrent simulation of multiple formalisms based on reference nets. In:
Koutny, M., Kristensen, L.M., Penczek, W. (eds.) Transactions on Petri Nets and
Other Models of Concurrency XIII. LNCS, vol. 11090, pp. 93–115. Springer, Hei-
delberg (2018). https://doi.org/10.1007/978-3-662-58381-4 5

https://doi.org/10.1007/978-3-319-11245-9_13
https://doi.org/10.1007/978-3-319-11245-9_13
https://doi.org/10.1016/j.scico.2017.12.003
http://ceur-ws.org/Vol-1514/paper3.pdf
http://ceur-ws.org/Vol-1514/paper3.pdf
http://www.renew.de/
http://www.renew.de/
https://doi.org/10.1109/TSE.2018.2859946
https://doi.org/10.1007/978-3-662-58381-4_5

Model Checking of Synchronized Domain-Specific Multi-formalism 249

8. Mosteller, D., Cabac, L., Haustermann, M.: Integrating petri net semantics in a
model-driven approach: the renew meta-modeling and transformation framework.
In: Koutny, M., Desel, J., Kleijn, J. (eds.) Transactions on Petri Nets and Other
Models of Concurrency XI. LNCS, vol. 9930, pp. 92–113. Springer, Heidelberg
(2016). https://doi.org/10.1007/978-3-662-53401-4 5

9. Mosteller, D., Haustermann, M., Dreschler-Fischer, L.S.: Graphical languages for
functional reactive modeling based on petri nets. In: Köhler-Bußmeier, M., Kindler,
E., Rölke, H. (eds.) Proceedings of the International Workshop on Petri Nets and
Software Engineering, PNSE’20, Paris, France. CEUR Workshop Proceedings, vol.
2651, pp. 167–180. CEUR-WS.org (2020). http://ceur-ws.org/Vol-2651/paper11.
pdf

10. Mosteller, D., Haustermann, M., Moldt, D., Schmitz, D.: Integrated simulation of
domain-specific modeling languages with petri net-based transformational seman-
tics. In: Koutny, M., Pomello, L., Kristensen, L.M. (eds.) Transactions on Petri
Nets and Other Models of Concurrency XIV. LNCS, vol. 11790, pp. 101–125.
Springer, Heidelberg (2019). https://doi.org/10.1007/978-3-662-60651-3 4

11. Mosteller, D., Haustermann, M., Moldt, D., Schmitz, D.: The RMT approach: a
systematic approach to the development of DSML with integrated simulation based
on petri nets. In: Koschmider, A., Michael, J., Thalheim, B. (eds.) 10th Interna-
tional Workshop on Enterprise Modeling and Information Systems Architectures,
Kiel, Germany, May 14–15, 2020. CEUR Workshop Proceedings, vol. 2628, pp.
19–24. CEUR-WS.org (2020). http://ceur-ws.org/Vol-2628/paper3.pdf

12. Mullins, J., Oarga, R.: Model checking of extended OCL constraints on UML
models in SOCLe. In: Bonsangue, M.M., Johnsen, E.B. (eds.) FMOODS 2007.
LNCS, vol. 4468, pp. 59–75. Springer, Heidelberg (2007). https://doi.org/10.1007/
978-3-540-72952-5 4

13. Rosu, G., Serbanuta, T.: An overview of the K semantic framework. J. Logic Alge-
braic Program. 79(6), 397–434 (2010). https://doi.org/10.1016/j.jlap.2010.03.012

14. Rusu, V., Lucanu, D.: A K-based formal framework for domain-specific modelling
languages. In: Beckert, B., Damiani, F., Gurov, D. (eds.) FoVeOOS 2011. LNCS,
vol. 7421, pp. 214–231. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-31762-0 14

15. Valk, R.: Petri nets as token objects. In: Desel, J., Silva, M. (eds.) ICATPN 1998.
LNCS, vol. 1420, pp. 1–24. Springer, Heidelberg (1998). https://doi.org/10.1007/
3-540-69108-1 1

16. Varró, D.: Automated formal verification of visual modeling languages by model
checking. Softw. Syst. Model. 3(2), 85–113 (2004). https://doi.org/10.1007/s10270-
003-0050-x

17. Willrodt, S., Moldt, D., Simon, M.: Modular model checking of reference nets:
MoMoC. In: Köhler-Bußmeier, M., Kindler, E., Rölke, H. (eds.) Proceedings of
the International Workshop on Petri Nets and Software Engineering, PNSE’20,
Paris, France, June 24, 2020. CEUR Workshop Proceedings, vol. 2651, pp. 181–
193. CEUR-WS.org (2020). http://ceur-ws.org/Vol-2651/paper12.pdf

https://doi.org/10.1007/978-3-662-53401-4_5
http://ceur-ws.org/Vol-2651/paper11.pdf
http://ceur-ws.org/Vol-2651/paper11.pdf
https://doi.org/10.1007/978-3-662-60651-3_4
http://ceur-ws.org/Vol-2628/paper3.pdf
https://doi.org/10.1007/978-3-540-72952-5_4
https://doi.org/10.1007/978-3-540-72952-5_4
https://doi.org/10.1016/j.jlap.2010.03.012
https://doi.org/10.1007/978-3-642-31762-0_14
https://doi.org/10.1007/978-3-642-31762-0_14
https://doi.org/10.1007/3-540-69108-1_1
https://doi.org/10.1007/3-540-69108-1_1
https://doi.org/10.1007/s10270-003-0050-x
https://doi.org/10.1007/s10270-003-0050-x
http://ceur-ws.org/Vol-2651/paper12.pdf

Synthesis and Mining

Edge, Event and State Removal:
The Complexity of Some Basic

Techniques that Make Transition
Systems Petri Net Implementable

Ronny Tredup(B)

Universität Rostock, Institut Für Informatik, Theoretische Informatik,
Albert-Einstein-Straße 22, 18059 Rostock, Germany

ronny.tredup@uni-rostock.de

Abstract. In Petri net synthesis we ask whether a given transition sys-
tem A can be implemented by a Petri net N . Depending on the level of
accuracy, there are three ways how N can implement A: an embedding,
the least accurate implementation, preserves only the diversity of states
of A; a language simulation already preserves exactly the language of A;
a realization, the most accurate implementation, realizes the behavior of
A exactly. However, independent of the implementation sought, a cor-
responding net does not always exist. In this case, it was suggested to
modify the input behavior –of course as little as possible. Since transi-
tion systems consist of states, events and edges, these components appear
as the natural choice for modifications. In this paper we show that the
task of converting an unimplementable transition system into an imple-
mentable one by removing as few states or events or edges as possible is
NP-complete –regardless of what type of implementation we are aiming
for.

1 Introduction

Petri nets are a widely accepted language for the modeling and validating of
concurrent and distributed systems. In general, there are two ways to deal with
the behavior of Petri nets: Analysis starts from a given Petri net and investigates
if its behavior satisfies some properties. In synthesis, we deal with the opposite
direction: starting from a regular behavior, given as a transition system (TS, for
short), we try to find a Petri net that implements this behavior.

Synthesis of Petri nets has practical applications in numerous areas such as,
for example, data and process mining [1,10], digital hardware design [8,9] and
discovering of concurrency and distributability [4,5]. On the other hand, Petri net
synthesis has also been the subject of theoretical studies that, for example, aim
at characterizing the complexity of synthesis [2] or look for structural properties
that classify a TS as implementable by subclasses of Petri nets such as, for
example, marked graphs, and thus allow improved synthesis procedures [6].

c© Springer Nature Switzerland AG 2021
D. Buchs and J. Carmona (Eds.): PETRI NETS 2021, LNCS 12734, pp. 253–273, 2021.
https://doi.org/10.1007/978-3-030-76983-3_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76983-3_13&domain=pdf
https://doi.org/10.1007/978-3-030-76983-3_13

254 R. Tredup

TS have states, events and labeled edges, i.e., “source-event-target” triplets:
the occurrence of the event at the source triggers a change of state to the target.
They have an initial state, from which, triggered by an event-sequence, any other
state is reachable. Petri nets have places containing tokens and an overall token
distribution is considered as a marking (i.e., a global state) of the net; nets have
transitions, connected with places, which possibly can fire, given the token distri-
butions of their connected places allow the firing. A firing of a transition (locally)
changes the token distribution (of its connected places) and thus (globally) the
marking of the net. They have an initial markig, from which, triggered by the
firing of a sequence of transitions, any other reachable marking is obtained. The
global behavior of a net is captured by its reachability graph, which is a transi-
tion system, where reachable markings become states, transitions become events
and edges correspond to “marking-transition-marking”-triplets. A Petri net N
implements a TS A, if the events of A and the transitions of N coincide and,
moreover, if (the states of) A and (the states of) the reachability graph of N
can be related by a mapping, which satisfies certain requirements.

According to the mappings’ properties, implementations with varying degrees
of “accuracy” are possible: Such a mapping is first required to be a simulation,
which means that every allowed sequence of events (starting at the initial state)
can be simulated by a (fireable) sequence of transitions (starting at the initial
marking). However, finding a net that allows a simulation is not a challenge: If
N is the net without places that has a transition e for every event e of A, then N
simulates A, since it can simply fire every sequence of events of A. Moreover, this
net can obviously simulate every TS that has the same events as A. From this
point of view, N simulates A with the greatest inaccuracy and every information
about the (forbidden) original behavior is lost. On the other end of the spectrum,
N simulates A most accurately if the simulation is an isomorphism: then N is
an (exact) realization of the behavior defined by A. Unfortunately, not every TS
can be realized by a Petri net. However, this is actually not always necessary
depending on the application. Therefore, embedding and language simulation
have been discussed as other implementations in the literature, which –in a
certain sense– are less accurate, but still acceptable: an embedding preserves at
least the diversity of states, that is, the simulation map is injective; a language
simulation preserves exactly the allowed event sequences of A, that is, A and
N are language-equivalent. Unfortunately, although these implementations are
less restrictive, they also do not ensure the existence of a net sought. In order to
achieve implementability, various techniques have been proposed in the literature
that modify the components of the input behavior, i.e., its states, events and
edges [3,14]. One of the most discussed approaches among them is what is known
as label-splitting : events are split into several (new) events and edges are relabeled
so that edges that are initially labeled with the same event then are labeled with
different events, which origin from the same event by splitting. This method
is relatively well-understood from the practical point of view–in the sense of
available algorithms [7,8,11]– and from the theoretical point of view as well. In
particular, it was recently shown that achieving implementability by splitting as

Edge, Event and State Removal 255

few events as possible is a problem hard to solve, namely NP-complete, regardless
of the implementation sought [12,13].

In a natural way, the question arises whether there are other suitable mod-
ifications to obtain implementable behavior. The answer is given by the nature
of implementations itself: States of the input are related with reachable mark-
ings of the implementing net, and if the behavior is not implementable, then for
some of its states no reachable marking may exist; hence, the state-removal of
such states may lead to an implementable TS. Occurrences of events at (source-)
states of the input correspond to the firing of transitions in markings that are
associated with the sources; if the behavior is not implementable, then the firing
of the transitions in the corresponding markings may not be possible; hence,
removing such occurrences (i.e., the corresponding edges) may then yield an
implementable behavior. If the latter is an option, then there are two distinct
ways to put the focus on the removal: On the one hand, the modeler may allow
the edge-removal of several edges that affects several events and, simultaneously,
demand that some occurrences of every event remain –if this is possible; on the
other hand, the modeler may come to the conclusion that some events are less
interesting than others and thus prefer the complete event-removal of the for-
mer (i.e., all of their occurrences) and the complete preservation of the latter.
Just like label-splitting, the removal of states, events and edges is a powerful
transformation, since each of it is able to produce an implementable behavior:
At the latest when A is degenerated to a single state, the resulting behavior is
implementable. Surely, the latter is not desirable. Instead, we are interested in
the corresponding optimization problems, that is, given a TS A, we are looking
for a modification A′ of A, such that the number κ of removed edges, events or
states is as small as possible –depending on the technique applied. If we turn the
number κ into a part of the input, then we obtain the corresponding decision
version of the optimization problem. Obviously, if we can solve the optimization
problem, then we can solve the decision version as well (with only polynomial
overhead). Hence, the characterization of the computational complexity of the
latter problem, provides a lower bound of the complexity of the former.

In this paper, we completely characterize the computational complexity of
state-removal, event-removal and edge-removal for all thinkable implementations
they can aim for, i.e., embedding, language-simulation and realization. In par-
ticular, we show that all of these decision problems are NP-complete and thus
their optimization variant is also hard to solve.

This paper is structured as follows: Sect. 2 provides the basic notions and
supports them with some examples. After that, Sect. 3, Sect. 4, and Sect. 5 pro-
vide the NP-completeness of edge-removal, event-removal, and state-removal,
respectively. Finally, Sect. 6 briefly closes the paper.

2 Preliminaries

This section provides the basic notions that we use throughout the paper and
supports them with examples. The overall starting point for the synthesis of
Petri nets is a behavior that is given by a transition system:

256 R. Tredup

Definition 1 (Transition System). A (deterministic) transition system (TS,
for short) A = (S,E, δ, ι) consists of two disjoint sets of states S and events E
and a partial transition function δ : S × E −→ S and an initial state ι ∈ S. An
event e occurs at state s, denoted by s e , if δ(s, e) is defined. By we denote
that δ(s, e) is not defined. We abridge δ(s, e) = s′ by s e s′ and call the latter
an edge with source s and target s′. By s e s′ ∈ A, we denote that the edge
s e s′ is present in A. A sequence s0

e1 s1, s1
e2 s2, . . . , sn−1

en sn of edges
is called a (directed labeled) path (from s0 to sn in A). A is called reachable, if
there is a path from ι to s for every state s ∈ S. The language of A is the set of
words L(A) = {e1 . . . en ∈ E∗ | ∃s ∈ S : ι e1 . . . en s} ∪ {ε}, where ε denotes
the empty word.

In the remainder of this paper, we always assume that TSs are reachable. In
this paper, we relate TSs with the same set of events by so-called simulations:

Definition 2. A simulation between a TS A = (S,E, δ, ι) and a TS B =
(S′, E, δ′, ι′) is a mapping ϕ : S → S′ such that ϕ(ι) = ι′ and if s e s′ ∈ A,
then ϕ(s) e ϕ(s′) ∈ B; ϕ is called an embedding, denoted by A ↪→ B, if it
is injective, that is, if s �= s′, then ϕ(s) �= ϕ(s′); ϕ is a language-simulation,
denoted by A � B, if implies ; ϕ is an isomorphism, denoted by
A ∼= B, if it is bijective and s e s′ ∈ A if and only if ϕ(s) e ϕ(s′) ∈ B.

It is known from the literature that if A�B, then L(A) = L(B) [3]; if A ∼= B,
then A and B are basically the same –possibly except for names of their states.
A TS describes a behavior that is implementable or not. In the latter case, we
apply the following modifications in order to obtain an implementable TS:

Definition 3 (Edge-Removal). Let A = (S,E, δ, ι) be a TS. A TS B =
(S′, E′, δ′, ι) with state set S′ ⊆ S and event set E′ ⊆ E is an edge-removal
of A if, for all e ∈ E′ and all s, s′ ∈ S′, holds: if s e s′ ∈ B, then s e s′ ∈ A.
By K = {s e s′ ∈ A | s e s′ �∈ B} we refer to the (set of) removed edges.

Definition 4 (Event-Removal). Let A = (S,E, δ, ι) be a TS. A TS B =
(S′, E′, δ′, ι) with state set S′ ⊆ S and event set E′ ⊆ E is an event-removal of
A if for all e ∈ E′ the following is true: s e s′ ∈ B if and only if s e s′ ∈ A
for all s, s′ ∈ S . By E = E \ E′ we refer to the (set of) removed events.

Definition 5 (State-Removal). Let A = (S,E, δ, ι) be a TS. A TS B =
(S′, E′, δ′, ι) with states S′ ⊆ S and events E′ ⊆ E is a state-removal of A if the
following two conditions are satisfied: (1) s e s′ ∈ B if and only if s e s′ ∈ A

for all e ∈ E′ and all s, s′ ∈ S′; (2) if s e s′ ∈ A and s e s′ �∈ B, then s �∈ S′

or s′ �∈ S′. By S = S \ S′ we refer to the (set of) removed states.

Notice that neither of these modifications is “functional”, since, generally,
there are several TS that can be considered as a suitable modification of A.
Moreover, edge-removal is the most general modification introduced, since every

Edge, Event and State Removal 257

Fig. 1. The TS A.

Fig. 2. The state-removal B of A that results by removing the state s3.

Fig. 3. The event-removal C of A that results by removing the event a.

event- or state-removal is also an edge-removal. However, not every edge-removal
is an event-removal or a state-removal, not every event-removal is a state-
removal, and not every state-removal is an event-removal. In particular, there
are substantial differences between these modifications that focus on different
aspects of the TS: If B is an edge-removal, then there could possibly be an event
e ∈ E′ for which there is an edge s e s′ in A that is not in B. In contrast, if B
is an event-removal and e ∈ E′, then every e-labeled edge of A has to be present
in B. Furthermore, if B is a state-removal, then an edge s e s′ of A can only
be missing in B if its source s or its target s′ is removed. By contrast, the latter
is not necessarily the case if B is an event- or an edge-removal.

Example 1. Consider the TS A of Fig. 1. The TS B of Fig. 2 is a state-removal
of A resulting by removing the state s3, i.e., S = {s3}. B is also an edge-
removal, where K = {s2

x s3}. However, this TS is not an event-removal, since
x belongs to B, but not all x-labeled edges of A are present. The TS C of Fig. 3
is an event-removal of A such that E = {a}. C is also an edge-removal and
K = {t0

a t1, q0
a q1}, but is is not a state-removal.

Petri nets are the target model with which we want to implement TS:

Definition 6 (Petri Nets). A Petri net N = (P, T, f,M0) consists of finite
and disjoint sets of places P and transitions T , a (total) flow f : ((P ×
T) ∪ (T × P)) → N and an initial marking M0 : P → N. A transition

t ∈ T can fire or occur in a marking M : P → N, denoted by M t , if
M(p) ≥ f(p, t) for all places p ∈ P . The firing of t in marking M leads

258 R. Tredup

to the marking M ′(p) = M(p) − f(p, t) + f(t, p) for all p ∈ P , denoted by

M t M ′. This notation extends to sequences w ∈ T ∗ and the reachability set
RS(N) = {M | ∃w ∈ T ∗ : M0

w M} contains all of N ’s reachable markings.
The reachability graph of N is the TS AN = (RS(N), T, δ,M0), where, for every

reachable marking M of N and transition t ∈ T with M t M ′, the transition
function δ of AN is defined by δ(M, t) = M ′.

Simulations between A and AN define how a net N implements a TS A:

Definition 7 (Implementations). If A is a TS and N a Petri net, then N is
an embedding of A if A ↪→ AN ; N is a language-simulation of A, if A � AN ,
and N is a realization of A, if A ∼= AN . We say N implements A, if it is an
embedding or a language-simulation or a realization of A.

If a Petri net N implements a TS A, then the events of A are the transitions
of N . We obtain the remaining components of N , that is, places, flow and initial
marking, by regions of A:

Definition 8 (Region). A region R = (sup, con, pro) of a TS A = (S,E, δ, ι)
consists of the mappings support sup : S → N and consume and produce

con, pro : E → N such that if s e s′ is an edge of A, then con(e) ≤ sup(s)
and sup(s′) = sup(s) − con(e) + pro(e).

Remark 1. It is essential that a region R = (sup, con, pro) is implicitly com-
pletely defined by sup(ι), con and pro: Since A is reachable, there is a path
ι e1 . . . en sn such that s = sn for every state s ∈ S. Consequently, we induc-
tively obtain sup(si+1) by sup(si+1) = sup(si) − con(ei+1) + pro(ei+1) for all
i ∈ {0, . . . , n − 1} and s0 = ι. Hence, for the sake of simplicity, we often present
regions only implicitly, since sup and thus R can be obtained from sup(ι), con and
pro. For an even more compact presentation, for c, p ∈ N, we group events with
the same “behavior” together by T R

c,p = {e ∈ E | con(e) = c and pro(e) = p}.

If there is an implementing net N for A, then each place correspond to a
region R = (sup, con, pro) of A: con(e) and pro(e) model f(R, e) and f(e,R) for
all transitions e, respectively, and sup(ι) models the initial marking M0(R). In
particular, every set of regions defines a synthesized net :

Definition 9 (Synthesized Net). A set R of regions of TS A = (S,E, δ, ι)
defines the synthesized net NR

A = (R, E, f,M0), where f(R, e) = con(e) and
f(e,R) = pro(e) and M0(R) = sup(ι) for all R = (sup, con, pro) ∈ R and
e ∈ E.

If the synthesized net is an embedding or a realization of A, then distinct
states of A correspond to distinct markings of the net. The net NR

A satisfies this
requirement if the set R of regions prove the state separation property :

Definition 10 (State Separation Property). A pair (s, s′) of distinct states
of TS A = (S,E, δ, ι) defines a states separation atom (SSA). A region R =

Edge, Event and State Removal 259

(sup, con, pro) solves (s, s′) if sup(s) �= sup(s′). We say a state s is solvable if,
for every s′ ∈ S \ {s}, there is a region that solves the SSA (s, s′). If every SSA
or, equivalently, every state of A is solvable, then A has the state separation
property (SSP).

If the net is a language-simulation or a realization, then the firing of a tran-
sition e must be inhibited at a marking M whenever the event e does not occur
at the state s that correspond to M via ϕ. This is ensured if R witnesses the
event/state separation property :

Definition 11 (Event/State Separation Property). A pair (e, s) of event
e and state s of TS A = (S,E, δ, ι) such that defines an event/state separa-
tion atom (ESSA). A region R = (sup, con, pro) solves (e, s) if sup(s) < con(e).
We say an event e is solvable if, for every s ∈ S with , there is a region
that solves the ESSA (e, s). If every ESSA or, equivalently, every event of A is
solvable, then A has the event/state separation property (ESSP).

A set R of regions of A is called a witness for the SSP or the ESSP (of A) if,
for every SSA or ESSA, there is a region in R that solves it. The next lemma is
based on [3, p. 162] and [3, p. 214 ff.] and discovers in which case the existence of
a witness and the existence of an implementation are equivalent; this will allow
us to formulate our decision problems rather on the notion of witnesses than on
the notion of implementations:

Lemma 1 ([3]). Let A be a TS and N a Petri net.

1. A ↪→ AN if and only if there is a witness R for the SSP of A and N = NR
A ;

2. A � AN if and only if there is a witness R for the ESSP of A and N = NR
A ;

3. A ∼= An if and only if there is a witness R for both the SSP and the ESSP of
A and N = NR

A .
4. Whether A has the SSP or the ESSP can be decided and, in case of a positive

decision, a witness can be computed in polynomial time.

Example 2. Let A = (Z,E, δ,⊥) be the TS of Fig. 1. The following implicitly
defined region R = (sup, con, pro) solves all SSA of A: sup(⊥) = 8 and T R

5,0 =
{v}, T R

7,0 = {w} and T R
1,0 = E \ {v, w}. According to Remark 1, one obtains R

explicitly: sup(si) = 7 − i for all i ∈ {0, . . . , 3} and sup(t0) = 3, sup(t1) = 2,
sup(q0) = 1 and sup(q1) = 0. The set R = {R} witnesses the SSP of A and the
net N = NR

A is an embedding of A. Figure 4 shows N (top) and its reachability
graph AN (bottom). The injective simulation map ϕ is defined by ϕ(⊥) = 8,
ϕ(si) = 7 − i for all i ∈ {0, . . . , 3} and ϕ(t0) = 3, ϕ(t1) = 2, ϕ(q0) = 1 and
ϕ(q1) = 0.

Example 3. The TS A = (Z,E, δ,⊥) of Fig. 1 does not have the ESSP, since
the ESSA α = (x, s1) is not solvable. This can be seen as follows: Assume
R = (sup, con, pro) is a region that solves α, that is, con(x) > sup(s1). Since x
occurs at s0, we have con(x) ≤ sup(s0). By sup(s1) = sup(s0)− con(x)+ pro(x)
and con(x) > sup(s1), this implies con(x) > pro(x). By t0

x t1, this also implies

260 R. Tredup

Fig. 4. The net N = NR
A and its reachability graph AN according to Example 2.

sup(t0) > sup(t1) and thus con(a) > pro(a) by t0
a t1. On the other hand, x

occurs at s2, which implies con(x) ≤ sup(s2). By con(x) > sup(s1) and s1
y s2,

this is only possible if con(y) < pro(y), which implies sup(q0) < sup(q1) and thus
con(a) < pro(a). This is a contradiction. Hence, α is not solvable.

Example 4. The TS of Fig. 1 does not have the ESSP, since the ESSA α = (x, s1)
is not solvable. However, for the TS B of Fig. 2, which is a state-removal for A,
there is a region R = (sup, con, pro) that solves the ESSA (x, s1), which is
implicitly defined as follows: sup(⊥) = 2 and T R

2,1 = {x} and T R
1,0 = {a, y} and

T R
0,0 = E\{a, y, x}. One finds out that the remaining ESSA of B are also solvable.

Hence, B has the ESSP and the SSP. If the modeler comes to the conclusion
that the events x and y, their corresponding edges and all of their sources and
targets are essential for the modeled behavior, then a realizable behavior can
also be obtained as the event-removal C of A as defined in Fig. 3. A Region
R′ = (sup′, con′, pro′) solving (x, s1) in C, is then implicitly defined as follows:
sup(⊥) = 1 and T R′

1,0 = {x} and T R′
0,1 = {y} and T R′

0,0 = E \ {x, y}.

3 The Complexity of Edge-Removal

According to Lemma 1, the question whether a particular implementation for
a given TS exists is equivalent to the question whether the TS has the separa-
tion properties that correspond to the implementation. In this section, we are
interested in modifying a TS into an implementable one by the removal of a
bounded number of edges. In particular, we are interested in the computational
complexity of the following decision problems:

Edge-Removal for Embedding
Input: A TS A = (S,E, δ, ι), a natural number κ.
Question: Does there exist an edge-removal B for A that has the SSP and

satisfies |K| ≤ κ?

Edge, Event and State Removal 261

Edge-Removal for Language-Simulation
Input: A TS A = (S,E, δ, ι), a natural number κ.
Question: Does there exist an edge-removal B for A that has the ESSP and

satisfies |K| ≤ κ?

Edge-Removal for Realization
Input: A TS A = (S,E, δ, ι), a natural number κ.
Question: Does there exist an edge-removal B for A that has the ESSP and

the SSP and satisfies |K| ≤ κ?

In [12], it is argued that Edge-Removal for Embedding is NP-complete.
However, the complexity of the other two problems has not yet been character-
ized. The statement of following theorem closes this gap:

Theorem 1. Edge-Removal for Language-Simulation as well as Edge-
Removal for Realization are NP-complete.

It is easy to see that the addressed problems are in NP: If there is a sought
edge-removal for A, then a Turing machine can guess K by a non-deterministic
computation in time polynomial in the size of the input. After that, the machine
can deterministically compute B and, since the size of B is bounded by the size
of A, it can compute a witness for the relevant property of B in time polynomial
in size of the input by Lemma 1. Hence, in order to complete the proof of
Theorem 1, it remains to prove the NP-hardness of the problems. This proof
bases on a reduction of the vertex cover problem that is well-known to be NP-
complete:

Vertex Cover (VC)
Input: An undirected, unlabelled, finite Graph G = (U,M) with a set

of vertices U = {X0, . . . , Xn−1} and a set of arcs (2-subsets of U)
M = {M0, . . . ,Mm−1}; a natural number λ.

Question: Does there exist a vertex cover of size at most λ for G, that is, a
set Z ⊆ U such that Z ∩ a �= ∅ for all a ∈ M and |Z| ≤ λ?

Example 5. The instance (G, 4) with G = (U,M) such that U = {X0, . . . , X5}
and M = {M0, . . . ,M8}, where M0 = {X0,X1}, M1 = {X0,X3}, M2 =
{X0,X5}, M3 = {X1,X2}, M4 = {X1,X5}, M5 = {X2,X3}, M6 = {X2,X4},
M7 = {X3,X4}, M8 = {X4,X5}, has the vertex cover Z = {X0,X2,X3,X5}
and thus allows a positive decision.

In the remainder of this paper, unless explicitly states otherwise, let (G,λ)
be an arbitrary but fixed input of VC, where G = (U,M) has n vertices U =
{X0, . . . , Xn−1} and m arcs M = {M0, . . . ,Mm−1} such that Mi = {Xi0 ,Xi1}
and (without loss of generality) i0 < i1 for all i ∈ {0, . . . , m − 1}.

In order to prove Theorem 1, we reduce (G,λ) to a pair (A, κ) of TS A and
natural number κ as follows: If there is an edge-removal B of A that removes

262 R. Tredup

at most κ edges and has the ESSP, then there is a vertex cover with at most λ
elements for G. Conversely, if there is a vertex cover with at most λ elements for
G, then there is an edge-removal B of A that removes at most κ edges and has
both the ESSP and the SSP. Notice that such a reduction proves the hardness of
both Edge-Removal for Language-Simulation and Edge-Removal for
Realization. The announced TS A consists of several components. Just as it is
common in the world of reductions, we refer to these components also as gadgets.

For a start, we define κ = λ. For every i ∈ {0, . . . , m − 1}, the TS A has the
following gadget Ti that uses the vertices Xi0 ,Xi1 of the arc Mi as events; and,
for every j ∈ {0, . . . , n − 1}, the TS has the following gadget Fj that applies
the vertex Xj as event and, moreover, has an a�-labeled edge that has the same
direction as the Xj-labeled edge for all � ∈ {0, . . . , λ}:

Ti = ti,0 ti,1 ti,2 ti,3
Xi0 Xi1 Xi0

Fj = fj,0 fj,1

...

Xj

a0

a1

aλ−1

aλ

Notice that, by i0 < i1 for all i ∈ {0, . . . , m − 1}, the construction of the
gadgets is unique. Via the initial state ⊥, the introduced gadgets are joined
by several edges: for all i ∈ {0, . . . , m − 1} and all j ∈ {0, . . . , n − 1}, the

TS A has the edges ⊥ wi ti,0 and ⊥ yj fj,0, respectively. The resulting TS is
A = (S,E, δ,⊥). Figure 5 provides the gadgets of the TS A that is based on the
input of Example 5.

In the following, we prove the functionality of A. (Recall that K refers to the
set of edges removed from A, where the edge-removal is clear from the context).

Lemma 2. If there is an edge-removal B of A that satisfies |K| ≤ κ and has the
ESSP, then there is a vertex cover of size at most λ for G.

Proof. Let B = (S′, E′, δ′, ι) be an edge-removal of A that satisfies |K| ≤ κ
and has the ESSP. In the following, we argue that this implies that the set

Z = {X ∈ U | s X s′ ∈ K} defines a vertex cover with at most λ elements for
G.

Let i ∈ {0, . . . , m − 1} be arbitrary but fixed. There are two possibilities:
either the gadget Ti is completely present in B or one of its edges is miss-

ing, that is, {ti,0
Xi0 ti,1, ti,1

Xi1 ti,2, ti,2
Xi0 ti,3} ∩ K �= ∅. In the latter case,

we have already the situation that Mi ∩ Z �= ∅. We argue that this is also

true in the former case and prove that then one of the edges fi0,0
Xi0 fi0,1

or fi1,0
Xi1 fi1,1 belongs to K such that its corresponding event is a mem-

ber of Z: Since Ti is completely present in B, the ESSA α = (Xi0 , ti,1)

Edge, Event and State Removal 263

Fig. 5. The gadgets T0, . . . , T8 and F0, . . . , F5 of the TS A of Sect. 3 based on Exam-
ple 5. Dashed lines correspond to edges that are removed according to the edge-removal
B defined for the proof of Lemma 3, where the vertex cover is {X0, X2, X3, X5}.

is also present. Hence, there is a region R = (sup, con, pro) that solves α,

since B has the ESSP. We argue that assuming that both edges fi0,0
Xi0 fi0,1

and fi1,0
Xi1 fi1,1 are present in B yields a contradiction as follows: We will

argue that con(Xi0) > pro(Xi0) and con(Xi1) < pro(Xi1) are simultaneously
true. Since sup(fi0,1) = sup(fi0,0) − con(Xi0) + pro(Xi0) and sup(fi1,1) =
sup(fi1,0) − con(Xi1) + pro(Xi1), this implies then sup(fi0,0) > sup(fi0,1) and
sup(fi1,0) < sup(fi1,1). Since the set {a0, . . . , aλ} contains λ + 1 elements and
|K| ≤ κ = λ, there is an index j ∈ {0, . . . , λ} such that all aj-labeled edges
and thus particularly the edges fi0,0

aj fi0,1 and fi1,0
aj fi1,1 are present in

B. Hence, by sup(fi0,0) > sup(fi0,1), we obtain con(aj) > pro(aj) and, by
sup(fi1,0) < sup(fi1,1), we get con(aj) < pro(aj), which is a contradiction.

Consequently, {fi0,0
Xi0 fi0,1, fi1,0

Xi1 fi1,1} ∩ K �= ∅ and thus Mi ∩ Z �= ∅.
Since i was arbitrary, we have Mi ∩ Z �= ∅ for all i ∈ {0, . . . , m − 1}. More-
over, even if all edges of K are pairwise labeled distinctly, there can be at most

264 R. Tredup

|K| ≤ κ = λ distinct events be affected. This particularly implies |Z| ≤ λ and
thus proves that Z defines a sought vertex cover for G. It remains to argue
that con(Xi0) > pro(Xi0) and con(Xi1) < pro(Xi1): Since R solves α, we have

sup(ti,1) < con(Xi0) and, by ti,0
Xi0 , we have con(Xi0) ≤ sup(ti,0). Together

this implies sup(ti,0) > sup(ti,1) and thus con(Xi0) > pro(Xi0). On the other
hand, Xi0 also occurs at ti,2, which implies con(Xi0) ≤ sup(ti,2) and thus
sup(ti,1) < sup(ti,2). Hence, by sup(ti,2) = sup(ti,1) − con(Xi1) + pro(Xi1),
the latter implies con(Xi1) < pro(Xi1). ��

Conversely, if (G,λ) allows a positive decision, then so does (A, κ): Let
Z = {Xj0 , . . . , Xjλ−1} ⊆ U be a vertex cover for G. A suitable edge-removal
B = (S,E, δ′,⊥) is defined by removing, for every � ∈ {0, . . . , λ − 1}, the edge

fj�,0
Xj� fj�,1 and nothing else: K = {fj�,0

Xj� fj�,1 | � ∈ {0, . . . , λ − 1}}. Notice
that B has the same states S and events E as A and satisfies |K| ≤ κ = λ.

Fact 1. The edge-removal B of A has the SSP.

Proof. Let i ∈ {0, . . . ,m − 1} be arbitrary but fixed. The following region
R1 = (sup1, con1, pro1) solves (s, s′) for all s ∈ {ti,0, . . . , ti,3} and s′ ∈
S \ {ti,0, . . . , ti,3}: sup1(⊥) = 0 and T R1

0,1 = {wi} and T R1
0,0 = E \ {wi}. Simi-

larly, if j ∈ {0, . . . , n − 1}, then one defines a region that separates the states
of Fj from the others. Hence, to complete the proof, it remains to consider the
SSA (s, s′), where s and s′ belong to the same gadget. The following region
R2 = (sup2, con2, pro2) solves all the corresponding atoms at once: sup2(⊥) = 0
and T R2

0,1 = E. ��

Fact 2. The edge-removal B of A has the ESSP.

Proof. Let W = {w0, . . . , wm−1} and Y = {y0, . . . , yn−1}.
First of all, the following region R1 = (sup1, con1, pro1) solves (a, s) for all

a ∈ W ∪ Y and s ∈ S \ ⊥: sup(⊥) = 1 and, for all e ∈ E, if e ∈ W ∪ Y , then
(con(e), pro(e)) = (1, 0), otherwise (con(e), pro(e)) = (0, 0).

Secondly, the following region R2 = (sup2, con2, pro2) solves (a,⊥) for all
a ∈ E \ (W ∪ Y): sup2(⊥) = 0 and T R2

0,3 = W ∪ Y and T R2
1,0 = E \ (W ∪ Y).

Hence, it remains to consider the ESSA (a, q) of B such that a and q belong
to one of the gadgets. If a and q belong to different gadgets, then it is easy to see,
that (a, q) is solvable by a region R3 = (sup3, con3, pro3) such that sup3(⊥) = 0
and, for all e ∈ E, if e = a, then (con3(e), pro3(e)) = (1, 1); if e ∈ W ∪ Y
such that there is a path from ⊥ to a gadget that contains the event a, then
(con3(e), pro3(e)) = (0, 1), otherwise (con3(e), pro3(e)) = (0, 0).

Consequently, in order to complete the proof of the lemma, it remains to
consider the ESSA (a, q) of B such that a and q belong to the same gadget. Let
i ∈ {0, . . . , m − 1} be arbitrary but fixed.

We first show that all ESSA provided by Ti are solvable. We start with the
ESSA (Xi0 , ti,1) and (Xi0 , ti,3) and distinguish between Xi0 ∈ Z and Xi0 �∈ Z:

Edge, Event and State Removal 265

1. Xi0 ∈ Z. The following region R4 = (sup4, con4, pro4) solves (Xi0 , ti,1) and
(Xi0 , ti,3): sup4(⊥) = 0; T R4

1,0 = {Xi0} and T R4
0,1 = {Xi1} ∪ {wi} ∪ (U \ Z) ∪

{a0, . . . , aλ} and T R4
0,3 = E \ (T R4

1,0 ∪ T R4
0,1).

2. Xi0 �∈ Z (implying Xi1 ∈ Z). The following region R5 = (sup5, con5, pro5)
solves (Xi0 , ti,1) and (Xi0 , ti,3): sup5(⊥) = 0 and T R5

1,0 = (U\Z)∪{a0, . . . , aλ}
and T R5

0,1 = {Xi1} ∪ {wi} and T R5
0,3 = E \ (T R5

1,0 ∪ T R5
0,1).

Notice that 2con(Xj0)+ con(Xj1) ≤ 3 for all j ∈ {0, . . . , m−1} such that R4

and R5 are well-defined. So far, we are already finished with Xi0 . We proceed
with the ESSA (Xi1 , ti,0) and consider the cases Xi1 ∈ Z and Xi1 �∈ Z separately:

1. Xi1 ∈ Z. The following region R6 = (sup6, con6, pro6) solves (Xi1 , ti,0):
sup6(⊥) = 1 and T R6

1,0 = {Xi1 , wi} and T R6
0,1 = {Xi0} ∪ (U \ Z) ∪ {a0, . . . , aλ}

and T R6
0,3 = E \ (T R6

1,0 ∪ T R6
0,1).

2. Xi1 �∈ Z (implying Xi0 ∈ Z). The following region R7 = (sup7, con7, pro7)
solves (Xi1 , ti,0): sup7(⊥) = 1 and T R7

1,0 = {wi} ∪ (U \ Z) ∪ {a0, . . . , aλ} and
T R7
0,1 = {Xi0} and T R7

0,3 = E \ (T R7
1,0 ∪ T R7

0,1).

Restricted to Ti, it only remains to solve (Xi1 , ti,2) and (Xi1 , ti,2):

1. Xi1 ∈ Z. The following region R8 = (sup8, con8, pro8) solves (Xi1 , ti,2) and
(Xi1 , ti,2): sup8(⊥) = 1 and T R8

1,0 = {Xi1} and T R8
0,3 = (Y ∪ W) \ {wi} and

T R8
0,0 = E \ (T R8

1,0 ∪ T R8
0,3).

2. Xi1 �∈ Z (implying Xi0 ∈ Z). The following region R9 = (sup9, con9, pro9)
solves (Xi1 , ti,2) and (Xi1 , ti,2): sup9(⊥) = 1 and T R9

1,0 = (U\Z)∪{a0, . . . , aλ}
and T R9

0,3 = (Y ∪ W) \ {wi} and T R9
0,0 = E \ (T R9

1,0 ∪ T R9
0,3).

Altogether, this we have shown that the ESSA of Ti are solvable. Consequently,
since i was arbitrary, it follows that all ESSA of B that originate from the gadgets
T0, . . . , Tm−1 are solvable. Hence, it only remains to discuss the ESSA that come
from the gadgets F0, . . . , Fn−1.

Let i ∈ {0, . . . , n − 1} be arbitrary but fixed. The following region R10 =
(sup10, con10, pro10) solves (e, fi,1) for all events e that occur in Fi: sup(⊥) = 2
and T R10

1,0 = {yi} ∪ (U \ Z) ∪ {a0, . . . , aλ} and T R10
0,3 = E \ T R10

1,0 . Since i was
arbitrary, the fact follows. ��

By Fact 1 and Fact 2, we get the following Lemma 3, which, by Lemma 2 and
the fact that the reduction is polynomial, completes the proof of Theorem 1:

Lemma 3. If there is a vertex cover with at most λ elements for G, then there
is an edge-removal B for A that satisfies |K| ≤ κ and has the ESSP and the SSP.

4 The Complexity of Event-Removal

In this section, we are looking for implementable event-removals that remove
only a bounded number of events. By the connection between implementations
and separation properties stated by Lemma 1, the following problems arise:

266 R. Tredup

Event-Removal for Embedding
Input: A TS A = (S,E, δ, ι), a natural number κ.
Question: Does there exist an event-removal B for A that has the SSP and

satisfies |E| ≤ κ?

Event-Removal for Language-Simulation
Input: A TS A = (S,E, δ, ι), a natural number κ.
Question: Does there exist an event-removal B for A that has the ESSP

and satisfies |E| ≤ κ?

Event-Removal for Realization
Input: A TS A = (S,E, δ, ι), a natural number κ.
Question: Does there exist an event-removal B for A that has the ESSP

and the SSP and satisfies |E| ≤ κ?

The following Sect. 4.1 characterizes the complexity of Event-Removal
for Language Simulation and Event-Removal for Realization and,
after that, Sect. 4.2 classifies the complexity of Event-Removal for Embed-
ding.

4.1 Event-Removal Aiming at Language Simulation and Realization

The following theorem states the main result of this section:

Theorem 2. Both Event-Removal for Language Simulation and
Event-Removal for Realization are NP-complete.

Obviously, the problems addressed by Theorem 2 belong to NP: If there is
a fitting event-removal B for A, then a Turing machine T can guess E non-
deterministically in time polynomial in the size of A, since |E| ≤ |E|. After that,
T can deterministically compute B and a witness for the property in question
in polynomial time by Lemma 1, since the size of B is bounded by the size of A.

Hence, to complete the proof of Theorem 2, it remains to prove the hardness
part. In order to do that, we provide a reduction of VC that reduces the input
(G,λ) to an instance (A, κ) with TS A and natural number κ: In particular, we
first define κ = λ. Moreover, the TS A reuses, for all i ∈ {0, . . . ,m − 1} and
for all j ∈ {0, . . . , n − 1}, the gadgets Ti and Fj , which have been introduced
in Sect. 3. The TS A has the initial state ⊥. In order to join the gadgets and,
moreover, to ensure that an event-removal sought is initialized, we add for every
state s of the gadgets an edge from ⊥ to s, which is labeled by an event that
labels no other edge of A: for all i ∈ {0, . . . , m − 1} and all j ∈ {0, . . . , 3}, we

add the edge ⊥ wj
i ti,j ; for all i ∈ {0, . . . , n − 1} and all j ∈ {0, 1}, we add the

edge ⊥ yj
i fi,j . The result is the TS A = (S,E, δ,⊥). In the following, we prove

the functionality of A. (Recall that E refers to the events removed from A.)

Edge, Event and State Removal 267

Lemma 4. (1) If there is an event-removal B for A having the ESSP and sat-
isfying |E| ≤ κ, then there is a vertex cover with at most λ elements for G. (2)
If G has a vertex cover of size at most λ, then there is an event-removal B for
A that has the ESSP and the SSP and satisfies |E| ≤ κ.

Proof. (1): Let B = (S′, E′, δ′,⊥) be a corresponding event-removal of A. Since
|E| ≤ κ = λ, there is an index j ∈ {0, . . . , λ} such that aj and thus all aj-
labeled edges are present in B. Let i ∈ {0, . . . , m − 1} be arbitrary but fixed. If

{Xi0 ,Xi1}∩E = ∅, then Ti is completely present in B and the edges fi0,0
Xi0 fi0,1

and fi1,0
Xi1 fi1,1 are present as well. Hence, similar to the arguments of the

proof of Lemma 2, we obtain that the ESSA (Xi0 , ti,1) is not solvable, which
contradicts the ESSA of B. Consequently, {Xi0 ,Xi1} ∩ E �= ∅, which is true for
all i ∈ {0, . . . , m − 1}, since i was arbitrary. Hence, by |E| ≤ κ = λ, the set
Z = U ∩ E defines a fitting vertex cover for G.

(2): Let Z be a fitting vertex cover, i.e., |Z| ≤ λ. We get B = (S,E′, δ′,⊥)
by removing the events of Z: E′ = E \ Z and if e ∈ Z, then the edge s e s′ is
not present in B. Notice that, by the y- and w-events, B preserves the states of
A.

Let’s prove the ESSP and the SSP: Let W = {w0
0, . . . , w

3
0, w

0
1 . . . , w3

m−1} and
Y = {y0

0 , y
1
0 , y

0
1 , . . . , y

1
n−1}. The following region R1 = (sup1, con1, pro1) shows

that (⊥, s) and (a, s) are solvable for all s ∈ S \ {⊥} and all a ∈ W ∪ Y :
sup1(⊥) = 1 and T R1

1,0 = W ∪ Y and T R1
0,0 = E′ \ T R1

1,0 .
Moreover, the following R2 = (sup2, con2, pro2) solves (a,⊥) for all a ∈

E′ \ (W ∪ Y): sup2(⊥) = 0 and T R2
0,1 = W ∪ Y and T R2

1,1 = E′ \ (W ∪ Y).
Consequently, in order to complete the proof, it remains to solve the ESSA

(e, s) such that e ∈ E′ \(W ∪Y) and the SSA (s, s′) such that s, s′ ∈ S \{⊥}: We
observe that there is a –more or less obvious– way to adopt the regions of Fact 1
and Fact 2, since the current TS A can be considered as an extension of the TS in
Sect. 3, where, for every i ∈ {0, . . . , m−1} and every j ∈ {0, . . . , n−1}, the events
w0

i and y0
j of the current TS correspond to the events wi and yj of the one defined

in Sect. 3, respectively. More exactly, if R = (sup, con, pro) is a region defined
for Fact 1 or Fact 2, then we can modify it to a region R′ = (sup′, con′, pro′)
of the current event-removal B as follows: sup′(s) = sup(s) for all s ∈ S; for
all e ∈ E′, if e ∈ E′ \ (W ∪ Y), then (con′(e), pro′(e)) = (con(e), pro(e)); if
e = w0

i , then (con′(e), pro′(e)) = (con(wi), pro(wi)) for all i ∈ {0, . . . , m − 1}; if
e = y0

i , then (con′(e), pro′(e)) = (con(yi), pro(yi)) for all i ∈ {0, . . . , n − 1}; if
e ∈ {w1

i , . . . , w3
i | i ∈ {0, . . . , m − 1}} ∪ {y1

i | i ∈ {0, . . . , n − 1}}, then there is
a unique state s ∈ S \ {⊥} such that the edge ⊥ e s is present in B, and we
define (con(e), pro(e)) = (sup(⊥) − sup(s), 0) if sup(⊥) > sup(s), and otherwise
(con(e), pro(e)) = (0, sup(s) − sup(⊥)).

In particular, we obtain the solvability of the remaining SSA and ESSA of
B by the regions defined for the proof of Fact 1 and Fact 2, respectively. ��

268 R. Tredup

4.2 Event-Removal Aiming at Embedding

In this section, we show that finding a minimal event-removal is also hard if we
are aiming at an embedding:

Theorem 3. Event-Removal for Embedding is NP-complete.

Similar to the arguments for Theorem 2, one argues that Event-Removal
for Embedding is in NP. In order to prove the hardness part, we present a
reduction of VC, that transforms the input (G,λ) into an instance (A, κ) as
follows: For a start, κ = λ. For all i ∈ {0, . . . , m−1}, the TS A has the following
gadget Ti at which the elements of Mi = {Xi0 ,Xi1} occur as events:

Ti = ti,0 ti,1

Xi0

Xi1

Moreover, for all j ∈ {0, . . . , n−1}, the TS A reuses the gadget Fj introduced in
Sect. 3. The initial state of A is ⊥ and the following edges connect the gadgets
and ensure that event-removals are initialized: for all i ∈ {0, . . . , m − 1} and

all j ∈ {0, 1}, we add the edge ⊥ wj
i ti,j , and for all i ∈ {0, . . . , n − 1} and all

j ∈ {0, 1}, we add the edge ⊥ yj
i fi,j . The result is the TS A = (S,E, δ,⊥).

Lemma 5. There is an event-removal B for A that has the SSP and satisfies
|E| ≤ κ if and only if there is a vertex cover with at most λ elements for G.

Proof. ⇒: Let B = (S′, E′, δ′,⊥) be an event-removal for A that has the SSP
and satisfies |E| ≤ κ. Since |E| ≤ κ = λ, there is an index j ∈ {0, . . . , λ} such that
the event aj (and its edges) is present in B. Let i ∈ {0, . . . ,m − 1} be arbitrary
but fixed. If {Xi0 ,Xi1} ∩ E = ∅, then (ti,0, ti,1) is an SSA of B. Since B has
the SSP, there is a region R = (sup, con, pro) that solves it, which implies either
sup(ti,0) > sup(ti,1) or sup(ti,0) < sup(ti,1). The first case implies con(Xi0) >
pro(Xi0) and con(Xi1) < pro(Xi1), and the second implies con(Xi0) < pro(Xi0)

and con(Xi1) > pro(Xi1). Since the edges fi0,0
Xi0 fi0,1 and fi1,0

Xi1 fi1,1 and the
aj-labelled edges are present in B, both cases imply the contradiction con(aj) >
pro(aj) and con(aj) < pro(aj). Hence, we get {Xi0 ,Xi1} ∩ E �= ∅. Since i was
arbitrary and |E| ≤ λ, the set Z = U ∩ E defines a vertex cover with at most λ
elements for G.

⇐: Let Z be a corresponding vertex cover. We obtain B = (S,E′, δ′,⊥) in
the obvious way by E′ = E \ Z. Notice that B and A have actually the same
state set. The following region R = (sup, con, pro) solves all SSA of B: Firstly,
we define sup(⊥) = 0 and (con(e), pro(e)) = (1, 0) for all e ∈ U \ Z and all
e ∈ {a0, . . . , aλ}; furthermore, for all i ∈ {0, . . . , m − 1}, if Xi0 ∈ E′, then we
define sup(ti,0) = 2i+2 and sup(ti,1) = 2i+1 and (con(w0

i), pro(w0
i)) = (0, 2i+2)

as well as (con(w1
i), pro(w1

i)) = (0, 2i + 1), otherwise (if Xi0 �∈ E′) we define
sup(ti,0) = 2i+1 and sup(ti,1) = 2i+2 and (con(w0

i), pro(w0
i)) = (0, 2i+1) as well

Edge, Event and State Removal 269

as (con(w1
i), pro(w1

i)) = (0, 2i+2); moreover, for all j ∈ {0, . . . , n−1}, we define
sup(fj,0) = 2m + 2j + 2 and sup(fj,1) = 2m + 2j + 1 and (con(y0

j), pro(y0
j)) =

(0, 2m + 2j + 2) as well as (con(y1
j), pro(y1

j)) = (0, 2m + 2j + 1). ��

5 The Complexity of State-Removal

In this section, we are interested in finding implementable state-removals of A
that remove only a restricted number of states. Again justified by Lemma 1, this
task corresponds to the following decision problems:

State-Removal for Embedding
Input: A TS A = (S,E, δ, ι), a natural number κ.
Question: Does there exist a state-removal B for A that has the SSP and

satisfies |S| ≤ κ?

State-Removal for Language-Simulation
Input: A TS A = (S,E, δ, ι), a natural number κ.
Question: Does there exist a state-removal B for A that has the ESSP and

satisfies |S| ≤ κ?

State-Removal for Realization
Input: A TS A = (S,E, δ, ι), a natural number κ.
Question: Does there exist a state-removal B for A that has the ESSP and

the SSP and satisfies |S| ≤ κ?

In the following Sect. 5.1, we show that state-removal aiming at embedding
or realization is NP-complete. After that, we show that this is also true if we
aim at language simulation in Sect. 5.2.

5.1 State-Removal Aiming at Embedding or Realization

Theorem 4. State-Removal for Embedding and State-Removal for
Realization are NP-complete.

First of all, the problems are in NP: If there is a suitable state-removal, then
the set S can be guessed non-deterministically in polynomial time; after that,
B and a witness for the corresponding separation property can be computed
deterministically in polynomial time by Lemma 1. The proof of the hardness-
part bases again on a reduction of VC that transforms the input (G,λ) into an
instance (A, κ): We define κ = λ, and obtain the TS A = (S,E, δ,⊥) as follows:

– The states are defined by S = U∪ {⊥}, i.e., every vertex of G is a state in A;
– the events are defined by E = {a0, . . . , an−1} ∪ {M0, . . . ,Mm−1}, where, for

every i ∈ {0, . . . , m − 1}, the event Mi is associated with the arc Mi of G;

270 R. Tredup

Fig. 6. The TS A of Sect. 5.1 based on Example 5. Red states and edges correspond
to the state-removal B of Lemma 6 removing the states of Z = {X0, X2, X3, X5}.

– for all i ∈ {0, . . . , n − 1}, the TS A has the edge ⊥ ai Xi, and, for all i ∈
{0, . . . , m − 1}, it has the Mi-labelled edges Xi0

Mi Xi1 and Xi1
Mi Xi0 .

Figure 6 shows the TS A that results from the input of Example 5. (For the
following, recall that S refers to the set of removed states.)

Lemma 6. (1) If there is a state-removal B for A having the SSP and satisfying
|S| ≤ κ, then there is a vertex cover with at most λ elements for G.
(2) If G has a vertex cover of size at most λ, then there is a state-removal B for
A that has the ESSP and the SSP and satisfies |S| ≤ κ.

Proof. (1): Let B = (S′, E′, δ′,⊥) be a fitting state-removal. If there are
equally labeled edges s e s′ and s′ e s in B, then B lacks the SSP: Let R =
(sup, con, pro) be an arbitrary region of B. By s e s′, it holds sup(s′) = sup(s)−
con(e) + pro(e) and, by s′ e s, it holds sup(s) = sup(s′) − con(e) + pro(e). If
we subtract the latter equation from the former, we obtain sup(s′) − sup(s) =
sup(s) − sup(s′), which implies sup(s′) = sup(s′). Since R was arbitrary, this
shows that (s, s′) is not solvable. Let i ∈ {0, . . . , m − 1} be arbitrary but fixed.

Since B has the SSP, by the former arguments, one of the edges Xi0
Mi Xi1

or Xi1
Mi Xi0 is missing in B. This implies Xi0 ∈ S or Xi1 ∈ S, since B is a

state-removal of A. Hence, by the arbitrariness of i, we have that Mi ∩ S �= ∅
for all i ∈ {0, . . . , m − 1} and, by assumption, we also have |S| ≤ κ = λ. This
proves this direction.

(2): Let Z ⊆ U be suitable a vertex cover for G. We obtain B = (S′, E′, δ′,⊥)
by defining S′ = S \ Z and by removing an edge s e s′ of A whenever {s, s′} ∩
Z �= ∅ and the events e of A if there is no e-labelled edge in B. The result is a well-
defined state-removal: for every i ∈ {0, . . . , n−1}, if the state Xi is present in B,
then it is reachable from ⊥ by an ai-labelled edge. Since Z is a vertex cover, for
all i ∈ {0, . . . , m−1}, one of the states Xi0 ,Xi1 is removed. Consequently, neither

Xi0
Mi Xi1 nor Xi1

Mi Xi0 are present in B. Hence, {M0, . . . ,Mm−1} ∩ E′ = ∅.
By construction, the other events occur at most once in A and thus in B. It is
easy to see, that this implies the ESSP and the SSP for B. ��

Edge, Event and State Removal 271

5.2 State-Removal Aiming at Language Simulation

Removing as few states of a TS as possible in order to make it implementable is
also hard if we are aiming at a language simulation:

Theorem 5. State-Removal for Language Simulation is NP-complete.

Similar to Theorem 4, one argues that State-Removal for Language
Simulation is in NP. We prove the hardness part by extending the reduction
of Sect. 5.1: We define κ = λ. The current TS A has all states, events and edges
of the TS defined in Sect. 5.1. We want to achieve that if B is a state-removal of
A having the ESSP, then one of Xi0 ,Xi1 belongs to S for all i ∈ {0, . . . ,m− 1}.
The following extension is sufficient: For all i ∈ {0, . . . , m − 1} and for all j ∈

{0, . . . , λ}, we add the path ⊥ yi
j ti,j,0

Mi ti,j,1. The result is A = (S,E, δ,⊥).

Lemma 7. There is a state-removal B for A that has the ESSP and satisfies
|S| ≤ κ if and only if there is a vertex cover with at most λ elements for G.

Proof. ⇒: Let B be a fitting state-removal for A. Let i ∈ {0, . . . , m − 1} be
arbitrary but fixed. Among others, the TS A has the λ + 1 Mi-labeled edges

ti,0,0
Mi ti,0,1, . . . , ti,λ,0

Mi ti,λ,1. By |S| ≤ κ = λ, this implies that there is

j ∈ {0, . . . , λ} such that the edge ti,j,0
Mi ti,j,1 is present in B. Since B has

the ESSP, there is a region R = (sup, con, pro) that solves (Mi, ti,j,1). This
implies con(Mi) ≤ sup(ti,j,0) and con(Mi) > sup(ti,j,1) and, by sup(ti,j,1) =

sup(ti,j,0)−con(Mi)+pro(Mi), also con(Mi) > pro(Mi). If both Xi0
Mi Xi1 and

Xi1
Mi Xi0 are present in B, then, as just argued in Lemma 6 (1), we would have

sup(Xi0) = sup(Xi1), implying the contradiction con(Mi) = pro(Mi). Hence,
{Xi0 ,Xi1} ∩ S �= ∅. Since i was arbitrary and |S| ≤ λ, the claim follows.

⇐: Let Z be a suitable vertex cover for G. We get B = (S′, E′, δ′,⊥) by
defining S′ = S \ Z and removing the incident edges and events for which no
edge remains. Obviously, B is a well-defined state-removal that does not contain

Xi0
Mi Xi1 and Xi1

Mi Xi0 . Let a ∈ E′ be arbitrary but fixed and let {q0, . . . , qk}
be exactly the sources of a in B. One finds out that the following region R =
(sup, con, pro) is well-defined and solves (a, p) for all p ∈ S′ \ {q0, . . . , qk}: for all
s ∈ S′, if s ∈ {q0, . . . , qk}, then sup(s) = 1, otherwise sup(s) = 0; for all e ∈ E′, if

e q for some q ∈ {q0, . . . , qk}, then (con(a), pro(e)) = (0, 1); if q e for some
q ∈ {q0, . . . , qk}, then (con(a), pro(e)) = (1, 0); otherwise (con(a), pro(e)) =
(0, 0). Since a was arbitrary, the claim follows. ��

6 Conclusion

In this paper, we show that converting an unimplementable TS into an imple-
mentable one by removing as few of its states, events or edges as possible, is
intractable. This particularly solves a problem that was left open in [12]. Notice

272 R. Tredup

that the reductions for edge- and event-removal work also if these modifications
are defined in a way that require all original states to be preserved. However, in
general, they could then not always produce an implementable TS, since there
are unimplementable trees. Future work may investigate the complexity of the
problems from the point of view of parameterized complexity where κ is the
parameter. It may also address other techniques of modifications that were sug-
gested in the literature such as, for example, state- or event-refinement.

Acknowledgements. I would like to thank the anonymous reviewers for their detailed
comments and valuable suggestions.

References

1. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer (2011). https://doi.org/10.1007/978-3-642-
19345-3

2. Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the syn-
thesis of bounded nets. In: Mosses, P.D., Nielsen, M., Schwartzbach, M.I. (eds.)
CAAP 1995. LNCS, vol. 915, pp. 364–378. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-59293-8 207

3. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. TTCSAES.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47967-4

4. Badouel, E., Caillaud, B., Darondeau, P.: Distributing finite automata through
Petri net synthesis. Formal Asp. Comput. 13(6), 447–470 (2002). https://doi.org/
10.1007/s001650200022

5. Best, E., Darondeau, P.: petri net distributability. In: Clarke, E., Virbitskaite, I.,
Voronkov, A. (eds.) PSI 2011. LNCS, vol. 7162, pp. 1–18. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-29709-0 1

6. Best, E., Devillers, R.R.: Synthesis and reengineering of persistent systems. Acta
Inf. 52(1), 35–60 (2015). https://doi.org/10.1007/s00236-014-0209-7

7. Carmona, J.: The label splitting problem. Trans. Petri Nets Other Model. Concurr.
6, 1–23 (2012). https://doi.org/10.1007/978-3-642-35179-2 1

8. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: A
region-based theory for state assignment in speed-independent circuits. IEEE
Trans. Comput. Aided Des. Integr. Circuits Syst. 16(8), 793–812 (1997). https://
doi.org/10.1109/43.644602

9. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: Logic
Synthesis for Asynchronous Controllers and Interfaces. Springer, Berlin (2013)

10. de San Pedro, J., Cortadella, J.: Mining structured petri nets for the visualization
of process behavior. In: Ossowski, S. (ed.) Proceedings of the 31st Annual ACM
Symposium on Applied Computing, Pisa, Italy, 4–8 April, 2016. pp. 839–846. ACM
(2016). https://doi.org/10.1145/2851613.2851645

11. Schlachter, U., Wimmel, H.: Relabelling LTS for petri net synthesis via solving
separation problems. Trans. Petri Nets Other Model. Concurr. 14, 222–254 (2019).
https://doi.org/10.1007/978-3-662-60651-3 9

12. Schlachter, U., Wimmel, H.: Optimal label splitting for embedding an LTS into
an arbitrary Petri net reachability graph is NP-complete. CoRR abs/2002.04841
(2020). https://arxiv.org/abs/2002.04841

https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/3-540-59293-8_207
https://doi.org/10.1007/3-540-59293-8_207
https://doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1007/s001650200022
https://doi.org/10.1007/s001650200022
https://doi.org/10.1007/978-3-642-29709-0_1
https://doi.org/10.1007/s00236-014-0209-7
https://doi.org/10.1007/978-3-642-35179-2_1
https://doi.org/10.1109/43.644602
https://doi.org/10.1109/43.644602
https://doi.org/10.1145/2851613.2851645
https://doi.org/10.1007/978-3-662-60651-3_9
https://arxiv.org/abs/2002.04841

Edge, Event and State Removal 273

13. Tredup, R.: Finding an optimal label-splitting to make a transition system petri
net implementable: a complete complexity characterization. In: ICTCS. CEUR
Workshop Proceedings, vol. 2756, pp. 131–144. CEUR-WS.org (2020)

14. Verbeek, H.M.W., Pretorius, A.J., van der Aalst, W.M.P., van Wijk, J.J.: Visualiz-
ing State Spaces with Petri Nets. Eindhoven University of Technology, Eindhoven,
The Netherlands (2007). https://publications.rwth-aachen.de/record/715007

https://publications.rwth-aachen.de/record/715007

Synthesis of (Choice-Free) Reset Nets

Raymond Devillers(B)

Département d’Informatique, Université Libre de Bruxelles, 1050 Brussels, Belgium
rdevil@ulb.ac.be

Abstract. Instead of synthesising a labelled transition system into a
weighted Petri net, we shall here consider the larger class of nets with
reset arcs, allowing to instanciate a larger class of transition systems.
We shall also target an extension of choice-free nets with reset arcs,
since choice-free nets appeared to be especially interesting in terms of
properties, synthesis and implementation. In addition to a general algo-
rithm, we shall analyse how to speed it up by reducing the number and
complexity of the linear systems of constraints to be solved and how to
set up a pre-synthesis phase. We shall also envisage how to implement
the result of such a synthesis as a concurrent program.

Keywords: Labelled transition systems · Reset nets ·
Choice-freeness · Synthesis

1 Introduction

In order to validate a system, instead of analysing a model of the latter to check
if it satisfies a set of desired properties, the synthesis approach tries to build
a model “correct by construction” directly from those properties, and then to
implement it. In particular, if the behaviour of a system is specified by a finite
labelled transition system (LTS for short), more or less efficient algorithms have
been developed to build a bounded weighted Petri net with a reachability graph
isomorphic to (or close to) the given LTS [2,19]. It is also possible to target
some subclasses of Petri nets [6], in particular choice-free nets and some of their
specialisations [4,7,8,13] which present interesting features.

On the contrary, in order to extend a bit the power of the technique, we
shall here consider a superclass of the classical Petri nets, by allowing reset
arcs [1]. When one extends Petri nets, it is often the case that properties which
are decidable for the latter (albeit sometimes with a huge complexity) become
undecidable. And indeed, for reset nets, boundedness and reachability (in partic-
ular) are undecidable [14]. This increases the interest to avoid analysis techniques
in favour of synthesis ones.

The paper is organised as follows. After recalling classical definitions, nota-
tions and properties in Sect. 2, we present presynthesis phases in Sect. 3, and
then general algorithms to synthesise (choice-free) reset nets in Sect. 4. In the
next sections, we analyse how to speed up the synthesis and to implement the
resulting models. As usual, we conclude in the last section.
c© Springer Nature Switzerland AG 2021
D. Buchs and J. Carmona (Eds.): PETRI NETS 2021, LNCS 12734, pp. 274–291, 2021.
https://doi.org/10.1007/978-3-030-76983-3_14

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76983-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-76983-3_14

Synthesis of (Choice-Free) Reset Nets 275

2 Classical Definitions, Notations and Properties

Definition 1. LTS, sequences and reachability
A labelled transition system with initial state, LTS for short, is a quadruple
TS = (S,→, T, ι) where S is the set of states, T is the set of labels, →⊆ (S×T×S)
is the transition relation, and ι ∈ S is the initial state.
A label t is enabled at s ∈ S, written s[t〉, if ∃s′ ∈ S : (s, t, s′) ∈→, in which
case s′ is said to be reachable from s by the firing of t, and we write s[t〉s′.
Generalising to any (firing) sequences σ ∈ T ∗, s[ε〉 and s[ε〉s are always true,
with ε being an empty sequence; and s[σt〉s′, i.e., σt is enabled from state s and
leads to s′ if there is some s′′ with s[σ〉s′′ and s′′[t〉s′.
A state s′ is reachable from state s if ∃σ ∈ T ∗ : s[σ〉s′. The set of states reachable
from s is noted [s〉. �� 1

Definition 2. Some properties of LTS
TS = (S,→, T, ι) is fully reachable if S = [ι〉, i.e., each state is reachable from
the initial one.
TS is forward deterministic if ∀s ∈ S,∀t ∈ T : s[t〉s′ ∧ s[t〉s′′ ⇒ s′ = s′′.
It is backward deterministic if ∀s ∈ S,∀t ∈ T : s′[t〉s ∧ s′′[t〉s ⇒ s′ = s′′. It is
deterministic if it is both forward and backward deterministic, i.e., the successors
or predecessors of a state are determined by the labels of the arcs.
TS is quasi-persistent if ∀s, s1, s2 ∈ S ∀a �= b ∈ T : s[a〉s1∧s[b〉s2 ⇒ s1[b〉∧s2[a〉,
i.e., if there is a choice, it persists until both labels are performed
TS is persistent if ∀s, s1, s2 ∈ S ∀a �= b ∈ T : s[a〉s1 ∧ s[b〉s2 ⇒ s1[b〉s′′ ∧
s2[a〉s′′ for some s′′ ∈ S, i.e., it is quasi-persistent and the resulting states are
the same.
TS is reversible if ∀s ∈ [ι〉 : ι ∈ [s〉, i.e., every reachable state allows to go back
to the initial state. �� 2

Definition 3. Petri nets and reachability graphs.
A (finite, place-transition) weighted Petri net, or weighted net, is a tuple N =
(P, T,W) where P is a finite set of places, T is a finite set of transitions, with
P ∩ T = ∅, and W is a weight function W : ((P × T) ∪ (T × P)) → N giving the
weight of each arc.
A Petri net system, or system, is a tuple S = (N,M0) where N is a net and M0

is the initial marking, a marking being a member of P → N (hence a member of
N

P) indicating the number of tokens in each place.
A transition t ∈ T is enabled by a marking M , denoted by M [t〉, if for all places
p ∈ P , M(p) ≥ W (p, t). If t is enabled at M , then t can occur (or fire) in M ,
leading to the marking M ′ defined by M ′(p) = M(p)−W (p, t)+W (t, p); this is
denoted by M [t〉M ′. A marking M ′ is reachable from M if there is a sequence of
firings leading from M to M ′. The set of markings reachable from M is denoted
by [M〉. The reachability graph of S is the labelled transition system RG(S)
with the set of vertices [M0〉, the set of labels T , initial state M0 and transitions
{(M, t,M ′) | M,M ′ ∈ [M0〉 ∧ M [t〉M ′}. �� 3

276 R. Devillers

A reset net (RPN for short) or system is an easy extension of the classical
Petri nets and system, defined as follows:

Definition 4. Reset nets and systems.

A (finite, place-transition, weighted) reset net is a tuple N = (P, T,W,R) where
(P, T,W) is a Petri net and R ⊆ P ×T is a set of (undirected) reset arcs. A reset
system is a reset net provided with an initial marking M0: (P, T,W,R,M0).
A transition t ∈ T is enabled by a marking M , denoted by M [t〉, if for all places
p ∈ P , M(p) ≥ W (p, t), i.e., it is enabled in the underlying Petri net. If t
is enabled at M , then t can occur (or fire) in M , leading to the marking M ′

defined by M ′(p) = M(p) − W (p, t) + W (t, p) if (p, t) �∈ R and M ′(p) = W (t, p)
otherwise, denoted by M [t〉M ′. The latter case may be interpreted as follows:
first, t absorbs W (p, t) tokens from p, then erases the rest of the tokens in p, and
finally produces W (t, p) new tokens in p.
Like for Petri nets, a marking M ′ is reachable from M if there is a sequence
of firings leading from M to M ′ and the set of markings reachable from M is
denoted by [M〉. The reachability graph of a reset system S = (P, T,W,R,M0)
is the labelled transition system RG(S) with the set of vertices [M0〉, the set of
labels T , initial state M0 and transitions {(M, t,M ′) | M,M ′ ∈ [M0〉∧M [t〉M ′}.
A (reset) net is pure if ∀p ∈ P, t ∈ T : W (p, t) · W (t, p) = 0, i.e., no transition
both checks the presence of tokens in a place and produces tokens in that place.
For any place p ∈ P , we shall denote p• = {t ∈ T |W (p, t) > 0} (the set of
transitions collecting tokens from p, also called successors or outputs of p) and
R(p) = {t ∈ T |(p, t) ∈ R} (the set of transitions resetting p). �� 4

Definition 5. Boundedness

A (reset or Petri net) system S is bounded if ∃k ∈ N ∀p ∈ P ∀M ∈ [M0〉 :
M(p) ≤ k. It is k-bounded if ∀p ∈ P ∀M ∈ [M0〉 : M(p) ≤ k. �� 5

A classical (and easy) result is that

Corollary 1. Bounded system

A (reset or Petri net) system S is bounded iff its reachability graph RG(S) is
finite. �� 1

Among the very numerous subclasses of Petri net systems that have been
considered in the literature, choice-free ones1 (meaning there is no true choice to
be performed when two or more transitions are enabled [20]; they have also been
called output-nonbranching [5]) appeared very interesting in terms of properties,
synthesis and implementation [8]. We shall thus introduce a similar subclass for
reset nets.

1 not to be confused with free-choice nets [9].

Synthesis of (Choice-Free) Reset Nets 277

Definition 6. Choice-free subclasses

A Petri net is said choice-free if ∀p ∈ P : |p•| ≤ 1.
A reset net will be said choice-free if ∀p ∈ P : (|p• ∪ R(p)| ≤ 1). That is, each
place has at most one successor transition and at most one resetting transition,
and if they are both present they must be the same. �� 6

In graphical representations, reset arcs will be drawn as (undirected) dotted
lines, and as usual arcs with null weight are omitted. Figure 1 presents a reset
net and the corresponding reachability graph for some initial marking. It is not
choice free, while each place has a single output transition and a single reset arc,
but not always the same: for instance p2 has output a and is reset by c.

Fig. 1. A reset net system and its (finite) reachability graph for the initial marking
specified in bold.

On the contrary, Figs. 2 and 3 present bounded choice-free reset net systems,
and their reachability graphs (the initial markings are still respresented in bold).

Markings may be considered as a kind of vectors with indices in P , but we
shall also consider vectors of transitions.

Definition 7. T-Vectors

A T-vector is an element of NT .
The support of a vector is the set of the indices of its non-null components.

278 R. Devillers

Fig. 2. A simple choice-free reset net and its reachability graph

Fig. 3. Another bounded choice-free reset net and its reachability graph

A vector is called prime if the greatest common divisor of its components is one
(i.e., its components do not have a common non-unit factor).
The Parikh vector Ψ(σ) of a finite sequence σ ∈ T ∗ of transitions is a T-vector
counting the number of occurrences of each transition in σ, and the support of
σ is the support of its Parikh vector, i.e., supp(σ) = supp(Ψ(σ)) = {t ∈ T |
Ψ(σ)(t) > 0}. �� 7

Definition 8. Synthesis

Two LTS TS1 = (S1,→1, T, ι1) and TS 2 = (S2,→2, T, ι2) are isomorphic
if there is a bijection ζ : S1 → S2 with ζ(ι1) = ι2 and (s, t, s′) ∈→1 ⇔
(ζ(s), t, ζ(s′)) ∈→2, for all s, s′ ∈ S1.
If an LTS TS is isomorphic to the reachability graph RG(S) of some system
S, we say that S solves TS (or X-solves it, if X is the class of S). A LTS is
X-solvable if a system of class X solves it.
A synthesis is a procedure aimed at finding a solution from TS (when
possible); it thus consists to keep the structure of the reachability graph of a
system (dropping the exact values of the markings) in order to obtain a given
LTS. �� 8

Synthesis of (Choice-Free) Reset Nets 279

3 Presynthesis

The presynthesis phase consists in checking that the given LTS satisfies some
structural properties common to all the reachability graphs of the target class.
These properties need of course to be easy to check. If a check fails, we may
immediately reject the synthesis and produce a reason, easy to understand in
general.

For a reset net synthesis, we may use the following:

Proposition 1. General properties of reset nets

The reachability graph of a bounded reset net system is finite, totally reachable
and forward deterministic.

Proof: Finiteness results from Corollary 1. Forward determinism results
from the firing rule, and total reachability from the definition of a reachabil-
ity graph. �� 1

Hence, if a LTS is not finite, or not totally reachable, or not forward deter-
ministic (easy to check if the LTS is given explicitely), there is no reset net
solution (and we know why). Note however that, contrary to what happens for
usual Petri nets, it may happen that the reachability graph of a reset net is not
backward deterministic. This may be observed on Fig. 2 for instance (N2 is even
a choice-free reset net): there are two arcs labelled a arriving at node (0).

For a choice-free reset net synthesis, we may use the following:

Proposition 2. General properties of choice-free reset nets

The reachability graph of a bounded choice-free reset net system is finite, totally
reachable, forward deterministic and quasi-persistent.

Proof: The first three properties result from Proposition 1.
Quasi-persistence results from the observation that, in a reset net system, for any
place p ∈ P , the marking of p may only be decreased when firing t if t ∈ p•∪R(p).
Hence, if the system is choice-free, the marking of p may only be decreased by a
single transition. As a consequence, if t is enabled by some marking, it remains
so at least until t is fired. �� 2

However, contrary to what happened for usual Petri nets, it may happen
that the reachability graph of a choice-free reset net system is not persistent:
this is illustrated by Fig. 3, where N3 is a choice-free reset net system, a and b
are initially enabled, but M0[ab〉 and M0[ba〉 lead to different markings.

Many general properties of choice-free net system have been discovered and
proposed for a pre-synthesis phase (see [8]). However, very few of them remain
valid for choice-free reset net systems.

For instance, it is known that bounded choice-free nets always have home
states in their reachability graphs, i.e., states that remain reachable whatever
the evolution of the system (this is due to Keller’s theorem [18]). This is not
true for choice-free reset nets, as illustrated by Fig. 4.

280 R. Devillers

Fig. 4. A choice-free reset system and its reachability graph without home state

Next, if the reachability graph of a bounded choice-free net is acyclic, all paths
between two reachable markings have the same Parikh vector: Fig. 3 shows that
this is no longer true for choice-free reset nets since there are two paths ab and
bab from (1, 1) to (0, 0).

Moreover, it is known that, in the reachability graph of a bounded choice-
free net, cycles are propagated Parikh-equivalently: if s[α〉s and s[a〉s′ for some
a ∈ T and α ∈ T ∗, then s′[β〉s′ with Ψ(α) = Ψ(β) for some β ∈ T ∗. This is no
longer true when we add reset arcs, as illustrated by Fig. 5. We may observe in
this example that, while the initial cycle (a simple loop a) is not transported on
the next state, it is however transported on the last state. We may then wonder
if any cycle is eventually transported if we go further enough. This is not true
however, as illustrated by Fig. 6: the initial cycle babc is not transported if we
perform the path ab since this leads to a dead end.

Fig. 5. A bounded choice-free reset net and its reachability graph, where cycles are
not always pushed forward

Finally, many interesting properties of bounded choice-free net systems are
linked to the minimal Parikh vectors of non-empty cycles (a cycle with such
a minimal Parikh vector is called small). However, when there are reset arcs,
Parikh vectors are no longer characteristic of cycles. For instance, in Fig. 2, RG2

has two paths a (hence with the same Parikh vector), but only one of them defines
a cycle (in Fig. 5, there are three paths b, but only two of them are cycles). Hence

Synthesis of (Choice-Free) Reset Nets 281

Fig. 6. A bounded choice-free reset net and its reachability graph, where a cycle is not
at all pushed forward

we may suspect that the properties of small cycles will be different for reset net
systems.

For instance, in a bounded choice-free net system, any cycle has a Parikh
vector which is a sum of Parikh vectors of small cycles, but this is no longer
true if we add reset arcs, as illustrated in Fig. 7: the cycles which do not visit
twice some state are abc (and acb), babc and bacabc, of which only the first one
is small, but the Parikh vector (1, 2, 1) of babc is not a multiple of the minimal
Parikh vector (1, 1, 1) (note also that this example shows a bounded system
where it is possible to reach a strictly larger marking: (1, 2, 0, 0) may be reached
from the initial marking (1, 1, 0, 0); this explain why the classical Karp-Miller
procedure [17] does not work for reset nets and reset arcs make boundedness
undecidable).

The status of other classical properties of the reachability graphs of bounded
choice-free nets is uncertain. For instance, it is not known if the Parikh vectors
of small cycles remain prime, nor if they are either equal or disjoint.

4 General Algorithms

A classical technique to perform a Petri net synthesis is to start from a net
with transitions only, then to add progressively new places in order to constrain
the evolutions to get closer and closer to what is specified by the given LTS.
Each added place must allow all the evolutions permitted by the specification,
and exclude some forbidden situations that were allowed by the previously added

282 R. Devillers

Fig. 7. A bounded choice-free reset net and its reachability graph, where cycles do not
have a base of small cycles

places. The process leaves some freeness in the way these new places are added, so
that the result is usually not unique, and it may happen that some additions are
not possible, meaning there is no solution to the considered synthesis problem.

Let TS = (S,→, T, ι) be a given labelled transition system. The theory of
regions [2] characterises the solvability of an LTS through the solvability of a set
of separation problems. In case the LTS is finite, we have to solve 1

2 ·|S|·(|S|−1)
states separation problems and up to |S|·|T | event/state separation problems,
as follows:

Definition 9. Separation problems

• A (Petri net) region of (S,→, T, ι) is a triple (M,B,F) ∈ (S → N, T → N, T →
N) such that for all s[t〉s′ ∈→, M(s) ≥ B(t) and M(s′) = M(s) − B(t) + F(t).
A region models a place p, in the sense that B(t) models W (p, t), F(t) models
W (t, p), and M(s) models the token count of p at the marking corresponding
to s (and in particular, M(ι) models the initial marking of p).

• A states separation problem (SSP for short) consists of a set of states {s, s′}
with s �= s′, and it can be solved by a region (or place) distinguishing them,
i.e., has a different number of tokens in the markings corresponding to the
two states: M(s) �= M(s′). There are |S| · (|S| − 1)/2 such problems.

Synthesis of (Choice-Free) Reset Nets 283

• An event/state separation problem (ESSP for short) consists of a pair (s, t) ∈
S×T with ¬s[t〉. For every such problem, one needs a region (or place) such
that M(s) < B(t). There are |S| · |T | − | → | such problems. �� 9

If the LTS is infinite, also the number of separation problems (of each kind)
becomes infinite, but we need to find a finite set of regions solving all of them.
Other techniques must then be searched for, instead of considering each separa-
tion problem separately, but here we shall restrict our attention to finite LTSs,
i.e., to bounded solutions. Then, [10] showed that a Petri net synthesis problem
is solvable iff each separation problem has a solution, and a possible solution to
the synthesis problem is obtained by gathering all the places corresponding to
those separation problem solutions.

For reset net synthesis problems, the situation is similar, but we need to
consider reset regions:

Definition 10. Reset region

A reset region (RPN-region for short) of (S,→, T, ι) is a tuple (M,R,B,F) ∈
(S → N, 2T , T → N, T → N) such that for all s[t〉s′ ∈→, M(s) ≥ B(t) and
M(s′) = M(s) − B(t) + F(t) if t �∈ R, F(t) otherwise. A region models a place
p (see Fig. 8), in the sense that B(t) models W (p, t), F(t) models W (t, p), M(s)
models the token count of p at the marking corresponding to s, and R specifies
which transitions belong to R(p). �� 10

Fig. 8. A general reset region (pictured as a place p). T = {a1, . . . , am, b1, . . . , bn} and
R = {b1, . . . , bn}. M(ι) is the initial marking of p, and more generally M(s) is the
marking of p corresponding to state s.

The proofs of [10] may be immediately adapted so that a finite, totally reach-
able, forward deterministic LTS admits a RPN-solutions iff each separation prob-
lem has a RPN-region solution, and a possible solution to the synthesis problem
is obtained by gathering all the places corresponding to those separation problem
solutions.

For each separation problem, we thus have to solve a system of (1+2 · | → |)
linear constraints: 1 to express the separation problem to consider (i.e., either

284 R. Devillers

M(s) �= M(s′) or M(s) < B(t)), | → | constraints expressing that a transition
is possible, and the same number to express the resulting marking. There are
(|S|+2·|T |) variables in N: |S| variables M(s), |T | variables B(t) and |T | variables
F(t). But for each case we may have to consider up to 2|T | configurations for R,
as illustrated by Fig. 8.

For the synthesis of choice-free reset nets, instead of considering 2|T | con-
figurations, we only have to consider 2 · |T | of them, as illustrated2 on Fig. 9,
each one having 1 + |T | + |S| variables. Note however that, for each event/state
separation problem (s, t), we only have to consider 2 configurations since b must
be t in this case. On the contrary, for a states separation problem (s, s′), b is
not prescribed and we may need to consider all the possible configurations (in
particular when the problem has no solution).

Fig. 9. The two general choice-free reset regions (pictured as a place p). T =
{a1, . . . , am, b} and R is either empty or {b}. M(ι) is the initial marking of p, and
more generally M(s) is the marking of p corresponding to state s.

For each separation problem and each configuration for R(p), the system
of linear constraint to be solved is polynomial in the size of the LTS to be
solved, and it is homogeneous (no independent term), so that instead of searching
a solution in the integer domain we may work in the (non-negative) rational
one and afterwards apply a multiplicative factor to get integer solutions. We
may thus use a polynomial procedure, like the Karmarkar’s one [16]. This may
no longer be true if we add other constraints; for instance, if we search for a
k-bounded solution, we may add |S| constraints M(s) ≤ k (for each state s ∈ S):
the size of the system remains polynomial, but it is no longer homogeneous, and
the problem is NP-complete (see also [3,21]).

5 Acceleration

Since the complexity of a reset net synthesis may be quite high (still worse than
for usual Petri net synthesis), it may be beneficial to use a divide and conquer
strategy [11,12] and decompose the given LTS as a product or an articulation

2 Note however that, since B(b) may be null, several configurations of the left kind
may intersect.

Synthesis of (Choice-Free) Reset Nets 285

of simpler components: those decompositions were developed in the context of
Petri net synthesis, but they apply as well to reset nets.

Concerning the choice-free case, several accelerations have been exploited
in [7] for instance, based on the analysis of their reachability graphs. Unfortu-
nately, most of them are no longer valid when we add reset arcs.

For instance, it has been shown that, for choice-free synthesis, states sep-
aration problems are irrelevant: if a LTS satisfies the pre-synthesis checks and
all the event-state separation problems, then the states separation problems are
automatically satisfied too. This is no longer the case for choice-free reset syn-
thesis, as illustrated by Fig. 2: there is no event-state separation problems since
there is a single label (a), enabled at each state; however, we need to separate
the two states of the corresponding LTS.

Let us first consider the solution of the event-state separation problems for
some event b ∈ T . It is not necessary to consider all of them in general, and it
is sometimes possible to slightly simplify the systems of linear constraints to be
solved.

Indeed, if we consider the two forms of places/regions detailed in Fig. 9, we
may see that, if there is a cycle in the given LTS without the label b, all the
labels ai occurring in it must have a weight F(ai) = 0 (otherwise, the marking
of p strictly increases around the cycle). As a consequence, if C(b) denotes the
set of labels occurring in cycles without b, ∀a ∈ C(b) : F(a) = 0. Moreover, if
s[a〉s′ for a ∈ C(b), we have M(s) = M(s′). If C(b) �= ∅, both properties reduce
the number of variables to find when searching a region of the kinds exhibited
in Fig. 9 (and it may happen that none is found, in which case the synthesis has
no solution).

Now, if s[a〉s′ and s[b〉 with a �= b, from the quasi-persistence (satisfied if
the given LTS passed succesfully the presynthesis phase), we also have s′[b〉,
so that we do not have to separate b from s′ if we do not have to do it from
s. If a ∈ C(b) and s[a〉s′, since M(s) = M(s′) for any region of the two kinds
illustrated in Fig. 9, if ¬s[b〉 any place separating s from b will also separate s′

from b; we may deduce that if s′[b〉, the synthesis by a choice-free reset net is
then impossible (this could then be incorporated in the presynthesis phase). If
a ∈ C(b), ¬s[b〉 and ¬s′[b〉, it is equivalent to separate b from s and to s′. Let us
thus define the equivalence relation s1 ∼b s2 generated by ∃a ∈ C(b) : s[a〉s′. If
s1 ∼b s2 and ¬s1[b〉, we must also have ¬s2[b〉, but we only have to separate a
single state from b in each equivalence class where b must be excluded. Moreover,
it is not always necessary to separate all such equivalence classes from b.

Indeed, if s[a〉s′ with a ∈ T \ ({b} ∪ C(b)) and ¬s′[b〉, M(s) ≤ M(s′) for
any region of the two kinds illustrated in Fig. 9. As a consequence, any place
separating b from s′ will also separate it from s. Let us thus consider the graph
whose nodes are the equivalence classes of ∼b which do not enable b, with an arc
from c1 to c2 if there is s1[a〉s2 with s1 ∈ c1, s2 ∈ c2 and a ∈ T \ ({b} ∪ C(b)).
From the discussion above, we only have to consider the event-state separation
problems separating a member of a rightmost class (in this graph) from b.

286 R. Devillers

More easily, when considering an event-state separation problem for b, it
is always advisable to first look if some place previously devised for another
separating problem for b does not already solve the present problem.

Let us now consider a states separation problem for s �= s′. Again, we may
first look if some of the regions constructed before does not already solve it.

From the discussion above, it occurs that if s ∼b s′ for some b ∈ T , we
should not search for a separating region with output or reset b, since then
M(s) = M(s′): this reduces the burden of finding an adequate region, if any.
And in particular, if s ∼b s′ for any b ∈ T , it is not possible to separate s from
s′ and the synthesis fails (again, this could be incorporated in the presynthesis
phase).

When a given LTS is reversible, it is known [5] that it has a classical choice-
free solution iff it has a pure one, which reduces the number of unknowns in
each linear system to be solved. We shall now see that this extends immediately
when we add reset arcs.

Proposition 3. Prefixed LTS

If each label occurring in some LTS occurs on a cycle around the initial state,
then this LTS has a choice-free reset solution iff it has a pure one. Moreover, in
the general schemes illustrated in Fig. 9, we may always assume F(b) = 0.

Proof: First, we may observe that, if t ∈ T but t does not occur as a label in
the LTS, this may be obtained by a (pure) place without input, without (initial)
token, and with a unique output transition t. Hence, in the following, without
loss of generality we shall assume that each transition labels some arc in the
given LTS.

Now, let b ∈ T and let us consider a reset region (M,R,B,F) of the kind
illustrated in Fig. 9, so that either R = ∅ (non-resetting region) or R = {b}
(region resetting b).

For any arc s[b〉s′ in the LTS, we may observe that M(s′) ≥ F(b) in the
non-resetting case, and M(s′) = F(b) in the resetting case. Moreover, if s′[σ〉s′′

with σ ∈ (T \ {b})∗, M(s′′) ≥ M(s′). Since we assumed that, for some s ∈ S,
∃σ ∈ T ∗ : s[bσ〉ι, we deduce M(ι) ≥ F(b). And since ∀s ∈ S ∃σ ∈ T ∗ : ι[σ〉s, we
also have ∀s ∈ S : M(s) ≥ F(b).

Now, let k = min(F(b),B(b)). Let us consider the object obtained from
(M,R,B,F) by subtracting k from each M(s) as well as from B(b) and from F(b).
It is easy to see from the previous property that this object is still a choice-free
reset region, and that if the original region solves a (states or event/state) sep-
aration problem, the same is true for the new one. Since in the new region we
may not have both B(b) > 0 and F(b) > 0, this leads to a pure solution if we
apply this procedure to each region of a choice-free reset solution of the given
LTS.

Finally, let us consider a pure non-resetting region for b (left of Fig. 9). If
F(b) > 0, we have B(b) = 0, but then we cannot have a cycle with b (the
marking would increase indefinitely while following the cycle), which contradicts
the hypotheses. For a pure resetting region (M,R,B,F) for b (right of Fig. 9), if

Synthesis of (Choice-Free) Reset Nets 287

F(b) > 0, we have B(b) = 0 and (from the argument above) ∀s ∈ S : M(s) ≥ F(b).
Let us then consider the object obtained by subtracting F(b) from each M(s)
and replacing F(b) by 0. It is easy to see that this object is still a choice-free reset
region for b, and that if the original region solved a states separation problem
(it cannot solve an event/state separation problem since B(b) = 0), the same is
true for the new one. We thus may assume in any case that F(b) = 0. �� 3

For instance, any LTS isomorphic to RG6 in Fig. 6 has a pure choice-free
reset solution, for instance N6. The same is true for RG7 in Fig. 7, and more
generally we have the following corollary:

Corollary 2. Pure solutions

If an LTS is reversible, it has a choice-free reset solution iff it has a pure one.
�� 2

6 Net Implementation

Synthesis may be considered as a simple step in an implementation process. From
a behavioural specification (for instance in the form of a LTS), it allows to find
(if possible) a model of a certain class, which may be considered as a structural
specification presenting the adequate behaviour. It then remains to implement
this model in a practical device, either hardware or software, or mixed.

In our case, since Petri nets and their extensions are especially devised to
describe a distributed application, we may try to obtain a program, where each
place corresponds to data structures (giving in particular the number of tokens
in the place, but each token may provide other informations that will be used
by the absorbing agent) and parallel processes for each transition. Since we
consider models with ‘black’ tokens, the control flow will not rely on the infor-
mation carried by the tokens, but this information may be exploited by the
transition-process when it absorbs the needed tokens and fires. After or during
the processing of these informations, the agent will produce some tokens in some
places, possibly carrying some information that will be available in the future
(but not for the control flow).

In general, a classical problem may occur when the agents check the avail-
ability of their needed tokens in a distributed way: it may happen that an agent
observes that some input place (or all of them) has the needed tokens, but before
the firing takes place and absorbs them, another agent does the same and absorbs
the tokens before, disabling the first agent. In order to avoid this, a solution is
to lock all accesses to memory when an agent tries to get its tokens, but this
is not very distributed. Another solution is that each agent progressively locks
all its input places, in some order compatible with the orders used by the other
agents (putting all these local orders together must yield a – possibly partial –
global order, to avoid deadlocks), but fixing this order is not exactly distributed
either. During this locking, the transition may observe if the needed tokens are
available, and if it is not the case it will be necessary to unlock all the locked
places and retry later (this may induce some starvation phenomenon).

288 R. Devillers

For choice-free nets, the situation is much more sympathetic, since there
is no conflict in accessing the input places of each agent. Hence, if a transition
observes that there are enough tokens in some place, this may not be changed by
other transitions: the latter may only increase the set of tokens in the considered
place. Note however that we could have problems if a transition is duplicated in
several processes in order to implement some form of auto-concurrency [15]: we
shall thus assume that auto-concurrency is not allowed in our systems. It may be
necessary to lock accesses to each place however, in order to avoid intermixing
absorptions and productions of tokens in the place by different parallel processes
(classical problem when performing additions and/or subtractions in parallel,
with local copies of the variables), but this may be done in a distributed way.
Moreover, if a transition observes that there are not enough tokens in some
input place, it is necessary to unlock the place and retry later, but it is never
necessary to restart from the beginning. It is even possible to absorb needed
tokens when their presence is observed, even if not all of them are there: it is
never necessary to give back the absorbed tokens if the transition is blocked
at some point, and starvations are equivalent to blockings. The productions
and absorptions may be done concurrently in any order, provided the places
are protected against simultaneous accesses, since additions and subtractions
commute (+i − j + k = −j + k + i). This does not create problems and does not
perturb the evolutions of the underlying Petri net (but spurious intermediate
markings may be created).

For general reset nets, since this generalises Petri nets, we encounter the same
problems, and the same non-distributed solutions.

For choice-free reset nets, we have the same separation of the input places
as for usual choice-free Petri nets, hence we have the same fact that checking in
a distributed way that the needed tokens are available is not destroyed by the
other agents. However, we have a problem with the production phase of each
agent, due to the fact that commuting a reset and a production is not innocuous.

Fig. 10. A simple choice-free reset system and its reachability graph

This is illustrated by the example on Fig. 10. Initially, both a and b are
enabled. Let us assume they observe it simultaneously, absorb the needed tokens
and proceed as follows: a produces a token in p1, b resets p1, b produces a token in
p2 and a resets p2; we get the marking (0, 0) which blocks the system, hence does

Synthesis of (Choice-Free) Reset Nets 289

not allow to still perform infinitely often ab or ba as specified by the reachability
graph on the right.

Hence, for the reset and production phase of a transition, we must again
either lock all the places, or progressively all its reset-output and output places
in some well-defined order. However, in the latter case, when a place is locked
by another transition, one only has to wait for its unlocking to proceed: it is
never necessary to undo some modification, nor restart the phase, nor wait for
an extra delay. When all the needed places have been modified we may unlock
them and restart the input-phase.

The structure of each implemented transition could then be sketched as illus-
trated on Fig. 11. There are variants of this schema however; for instance, the
absorption of the input tokens in some place may be performed progressively,
without waiting they are all present simultaneously.

Fig. 11. Sketch of a parallel subprogram implementing transition t

7 Concluding Remarks and Future Work

We succeeded in finding how to synthesise, when possible, a finite LTS into a
Petri net when we allow reset arcs, either in the general case or in the choice-free
case.

290 R. Devillers

We explored how to realise a pre-synthesis phase, but some work has still
to be accomplished. In particular, the status of two important properties has to
be determined: the primality of small cycles and the disjointness of small cycles
with non-identical Parikh vectors.

Region theory has been extended to cope with the addition of reset arcs, and
the complexity of the separation problems has been delineated.

Some practical accelerations have been exhibited, but it is likely that some
more could be discovered.

Finally, the way to implement a structural specification with reset arcs as a
concurrent program has been analysed.

Of course, it should be possible to consider other superclasses of Petri nets
(like the ones with inhibitor arcs or transfer arcs or a mixture of those various
extensions), as well as other subclasses of those superclasses (similar to marked
graphs or free-choice nets for instance) but the region approach assumes that the
constraints are only linked to individual places, so the extensions may sometimes
be delicate.

Acknowledgements. We want to thank the anonymous referees for their careful
reading, as well as Eike Best for his encouragements, and some interesting examples.

References

1. Araki, T., Kasami, T.: Some decision problems related to the reachability problem
for Petri nets. Theor. Comput. Sci. 3(1), 85–104 (1976)

2. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. TTCSAES.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47967-4

3. Badouel, E., Bernardinello, L., Darondeau, P.: The synthesis problem for elemen-
tary net systems is NP-complete. Theor. Comput. Sci. 186(1–2), 107–134 (1997).
https://doi.org/10.1016/S0304-3975(96)00219-8

4. Best, E., Devillers, R.: Characterisation of the state spaces of live and bounded
marked graph Petri nets. In: 8th International Conference on Language and
Automata Theory and Applications (LATA 2014), pp. 161–172 (2014). https://
doi.org/10.1007/978-3-319-04921-2 13

5. Best, E., Devillers, R.: Synthesis of persistent systems. In: 35th International Con-
ference on Application and Theory of Petri Nets and Concurrency (ICATPN 2014),
pp. 111–129 (2014). https://doi.org/10.1007/978-3-319-07734-5 7

6. Best, E., Devillers, R., Erofeev, E., Wimmel, H.: Target-oriented Petri net syn-
thesis. Fundamenta Informaticae 175, 97–122 (2020). https://doi.org/10.3233/FI-
2020-1949

7. Best, E., Devillers, R., Schlachter, U.: Bounded choice-free Petri net synthesis:
algorithmic issues. Acta Inf. 55(7), 575–611 (2018)

8. Best, E., Devillers, R.R., Erofeev, E.: A new property of choice-free Petri net
systems. In: Application and Theory of Petri Nets and Concurrency - 41st Inter-
national Conference, PETRI NETS 2020, Paris, France, 24–25 June 2020, Pro-
ceedings, pp. 89–108 (2020). https://doi.org/10.1007/978-3-030-51831-8 5

9. Desel, J., Esparza, J.: Free Choice Petri Nets, Cambridge Tracts in Theoretical
Computer Science, vol. 40. Cambridge University Press, New York (1995)

https://doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1016/S0304-3975(96)00219-8
https://doi.org/10.1007/978-3-319-04921-2_13
https://doi.org/10.1007/978-3-319-04921-2_13
https://doi.org/10.1007/978-3-319-07734-5_7
https://doi.org/10.3233/FI-2020-1949
https://doi.org/10.3233/FI-2020-1949
https://doi.org/10.1007/978-3-030-51831-8_5

Synthesis of (Choice-Free) Reset Nets 291

10. Desel, J., Reisig, W.: The synthesis problem of Petri nets. Acta Inf. 33(4), 297–315
(1996)

11. Devillers, R.: Products of transition systems and additions of petri nets. In: Desel,
J., Yakovlev, A. (eds.) Proceedings 16th International Conference on Application
of Concurrency to System Design (ACSD 2016), pp. 65–73 (2016). https://doi.org/
10.1109/ACSD.2016.10

12. Devillers, R.: Articulation of transition systems and its application to Petri net
synthesis. In: Application and Theory of Petri Nets and Concurrency - 40th Inter-
national Conference, PETRI NETS 2019, Aachen, Germany, 23–28 June 2019,
Proceedings, pp. 113–126 (2019)

13. Devillers, R., Hujsa, T.: Analysis and synthesis of weighted marked graph Petri
nets. In: Application and Theory of Petri Nets and Concurrency - 39th Inter-
national Conference, PETRI NETS 2018, Bratislava, Slovakia, 24–29 June 2018,
Proceedings, pp. 19–39 (2018)

14. Dufourd, C., Finkel, A., Schnoebelen, P.: Reset nets between decidability and unde-
cidability. In: Automata, Languages and Programming, 25th International Collo-
quium, ICALP’98, Aalborg, Denmark, 13–17 July 1998, Proceedings, pp. 103–115
(1998). https://doi.org/10.1007/BFb0055044

15. Grabowski, J.: On partial languages. Fundam. Informaticae 4(2), 427–498 (1981)
16. Karmarkar, N.: A new polynomial-time algorithm for linear programming. Com-

binatorica 4(4), 373–396 (1984)
17. Karp, R., Miller, R.: Parallel program schemata. J. Comput. Syst. Sci. 3(2), 147–

195 (1969)
18. Keller, R.M.: A fundamental theorem of asynchronous parallel computation. In:

Feng, T. (ed.) Parallel Processing. LNCS, vol. 24, pp. 102–112. Springer, Heidelberg
(1975). https://doi.org/10.1007/3-540-07135-0 113

19. Schlachter, U.: Over-approximative Petri net synthesis for restricted subclasses of
nets. In: Language and Automata Theory and Applications - 12th International
Conference, LATA 2018, Ramat Gan, Israel, 9–11 April 2018, Proceedings, pp.
296–307 (2018). https://doi.org/10.1007/978-3-319-77313-1 23

20. Teruel, E., Colom, J.M., Silva, M.: Choice-free petri nets: a model for deterministic
concurrent systems with bulk services and arrivals. IEEE Trans. Syst. Man Cybern.
Part A 27(1), 73–83 (1997). https://doi.org/10.1109/3468.553226

21. Tredup, R.: Hardness results for the synthesis of b-bounded Petri nets. In: Appli-
cation and Theory of Petri Nets and Concurrency - 40th International Conference,
PETRI NETS 2019, Aachen, Germany, 23–28 June 2019, Proceedings, pp. 127–147
(2019). https://doi.org/10.1007/978-3-030-21571-2 9

https://doi.org/10.1109/ACSD.2016.10
https://doi.org/10.1109/ACSD.2016.10
https://doi.org/10.1007/BFb0055044
https://doi.org/10.1007/3-540-07135-0_113
https://doi.org/10.1007/978-3-319-77313-1_23
https://doi.org/10.1109/3468.553226
https://doi.org/10.1007/978-3-030-21571-2_9

Synthesis of Petri Nets with Restricted
Place-Environments: Classical

and Parameterized

Ronny Tredup(B)

Universität Rostock, Institut Für Informatik, Theoretische Informatik,
Albert-Einstein-Stra ßE 22, 18059 Rostock, Germany

ronny.tredup@uni-rostock.de

Abstract. Petri net synthesis consists in deciding for a given transition
system A whether there exists a Petri net N whose reachability graph is
isomorphic to A. In case of a positive decision, N should be constructed.
Several works examined the synthesis of Petri net subclasses that restrict,
for every place p of the net, the cardinality of its preset or of its postset or
both in advance by small natural numbers � and κ, respectively, such as,
for example, (weighted) marked graphs and (weighted) T-systems and
choice-free nets. In this paper, we study the synthesis aiming at Petri
nets, which have such restricted place environments, from the viewpoint
of classical and parameterized complexity: We first show that, for any
fixed natural numbers � and κ, deciding whether for a given transition
system A there is a Petri net N such that (1) its reachability graph is
isomorphic to A and (2) for every place p of N the preset of p has at most
� and the postset of p has at most κ elements is doable in polynomial
time. Secondly, we introduce a modified version of the problem, namely
Environment Restricted Synthesis (ERS, for short), where � and κ
are part of the input and show that ERS is NP-complete. Our methods
also imply that ERS parameterized by � + κ is W [2]-hard.

1 Introduction

Petri net synthesis consists in deciding for a given transition system A whether
there is a Petri net N such that the reachability graph of N is isomorphic to A. In
the event of a positive decision, N should be constructed. Synthesis of Petri nets
has applications in various fields: It is used, for example, to extract concurrency
and distributability data from sequential specifications like transition systems
or languages [6]. It is applied, for example, in the field of process discovery to
reconstruct a model from its execution traces [1] and in supervisory control for
discrete event systems [21], and it is used, for example, for the synthesis of
speed-independent circuits [14].

The synthesis problem has been originally solved for the class of Elementary
net systems [20], relying on regions of transition systems, and has been found
to be NP-complete for this class in [4]. Later on, this solution was extended to
c© Springer Nature Switzerland AG 2021
D. Buchs and J. Carmona (Eds.): PETRI NETS 2021, LNCS 12734, pp. 292–311, 2021.
https://doi.org/10.1007/978-3-030-76983-3_15

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76983-3_15&domain=pdf
https://doi.org/10.1007/978-3-030-76983-3_15

Synthesis of Petri Nets with Restricted Place-Environments 293

(pure) Petri nets for which, however, the synthesis problem is solvable in poly-
nomial time [3]. Since then, many studies have been carried out on the synthesis
of structurally restricted subclasses of Petri nets, which aim at improved (pre-)
synthesis methods with regard to the specified subclass. The most investigated
subclasses of Petri nets include those that restrict the cardinality of the pre-
sets or the postsets of the places by a priori fixed small natural numbers �
and κ, respectively. Among them are especially the so-called (weighted) marked
graphs [12] (every place has exactly one pre- and exactly one post-transition),
the (weighted) T-systems [7] (every place has at most one pre- and at most
one post-transition) and, as a generalization of both, the (weighted) choice-free
nets [25,26] (every place has at most one post-transition). These restrictions are
initially motivated by the fact that, from the theoretical point of view, the result-
ing net classes allow a rich and elegant theory with respect to their structure as
well as highly efficient analysis algorithms [7,16,22,26]. From the perspective of
practical applications, they are particularly useful in, for example, some appli-
cations like hardware design [13,14] or as a proper model for systems with bulk
services and arrivals [26]. On the other hand, as already mentioned, these classes
have also been the subject of research aiming at Petri net synthesis for many
years [8–11,18,19]. It turned out that these net classes provide some very use-
ful features like, for example, persistency of their reachability graphs [26] that
–in the sense of complexity issues– allow improved synthesis procedures that –
instead on regions– rather rely on some basic structural properties of the input
transition system. Also the computational complexity of synthesis depending
on the desired subclass has been subject of this research: In [10], for example,
it has been shown that synthesis aiming at choice-free nets is polynomial, and
in [17], for example, it has been proved that synthesis aiming at weighted marked
graphs (or weighted T -systems) is polynomial when the input transition system
is circular.

In this paper, we extend the research on the computational complexity of
synthesis aiming at Petri nets with restricted place environments: We show that,
for any fixed natural numbers � and κ, deciding whether for a given transition
system A there is a Petri net N such that (1) its reachability graph is isomorphic
to A and (2) for every place p of N the preset of p has at most � and the
postset of p has at most κ elements is decidable in polynomial-time. In a natural
way, the question arises whether synthesis remains polynomial if the bounds
� and κ are not fixed in advance, but are part of the input. In this paper,
we answer this question negatively and show that the corresponding decision
problem Environment Restricted Synthesis (ERS) is NP-complete. We
obtain this result by methods that give also information about the parameterized
complexity of ERS parameterized by � + κ: On the one hand, the proof for
the membership of ERS implies that its parameterized version belongs to the
complexity class XP. On the other hand, the NP-hardness of ERS results from
a polynomial-time reduction of the well-known problem Hitting Set, which is
also a valid parameterized reduction. Since Hitting Set is W [2]-complete, this
implies that ERS parameterized by �+κ is W [2]-hard. Hence, �+κ is unsuitable
for FPT-approaches.

294 R. Tredup

Further Related Work. For net classes for which the (underlying) unrestricted
synthesis problem is already NP-complete as, for example, it is the case for b-
bounded Petri nets [27] or an overwhelming amount of Boolean nets [30] the
problem ERS (or its corresponding formulation) is also NP-complete. This can
easily be shown by a trivial reduction from the unrestricted to the restricted
problem. In [28], it has been shown that ERS, formulated for b-bounded Petri
nets, is NP-complete even if κ = 1. Moreover, in [29], it has been argued that
the corresponding problem, although being in XP, is W [1]-hard for these nets,
when � + κ is considered as a parameter. In [31,32], it has been shown that the
parametrized complexity of (the Boolean formulation of) ERS is W [1]-hard or
W [2]-hard for a lot of Boolean Petri nets. However, neither of these results imply
the ones provided by the current paper.

This paper is organized as follows. Section 2 introduces necessary definitions
and provides some examples. After that, Sect. 3 provides the announced com-
plexity results. Finally, Sect. 4 briefly closes the paper.

2 Preliminaries

In this section, we introduce relevant basic notions around Petri net synthesis
and provide some examples.

Definition 1. (Transition Systems). A (deterministic) transition system
(TS, for short) A = (S, E, δ, ι) is a directed labeled graph with the set of nodes S
(called states), the set of labels E (called events), the partial transition function
δ : S × E −→ S and the initial state ι ∈ S. Event e occurs at state s, denoted by
s e , if δ(s, e) is defined. By , we denote that e does not occur at s. We
abridge δ(s, e) = s′ by s e s′ and call the latter an edge. By s e s′ ∈ A, we
denote that the edge s e s′ is present in A. We say A is loop-free if s e s′ ∈ A

implies s �= s′. A sequence s0
e1 s1, s1

e2 s2, . . . , sn−1
en sn of edges is called a

(directed labeled) path (from s0 to sn in A). A is called initialized if, for every
state s ∈ S, we have s = ι or there is a path from ι to s.

If a TS A is not explicitly defined, then we refer to its components by S(A)
(states), E(A) (events) δA (function), ιA (initial state). In this paper, we inves-
tigate whether a TS corresponds to the reachability graph of a Petri net. Since
the latter are always initialized, we assume that all TS are initialized without
explicitly mentioning this each time. Moreover, we consider TS A and B to be
essentially the same when isomorphic:

Definition 2. (Isomorphic TS). Two TS A = (S, E, δ, ι) and B = (S′, E,
δ′, ι′) with the same set of events are isomorphic, denoted by A ∼= B, if there
is a bijection ϕ : S → S′ such that ϕ(ι) = ι′ and s e s′ ∈ A if and only if
ϕ(s) e ϕ(s′) ∈ B.

Starting from a certain behavior that is defined by a transition system, we
look for a machine that implements this behavior, namely a Petri net:

Synthesis of Petri Nets with Restricted Place-Environments 295

Definition 3. (Petri Nets). A Petri net N = (P, T, f, M0) consists of finite
and disjoint sets of places P and transitions T , a (total) flow f : ((P × T) ∪
(T × P)) → N and an initial marking M0 : P → N. The preset of a place p
is defined by •p = {t ∈ T | f(t, p) > 0} and comprises the transitions that
produce on p; the postset of p is defined by p• = {t ∈ T | (p, t) > 0} and
contains the transitions that consume from p. Notice that •p∩p• is not necessarily
empty. For �, κ ∈ N, we say p is (�, κ)-restricted if |•p| ≤ � and |p•| ≤ κ. A
transition t ∈ T can fire or occur in a marking M : P → N, denoted by M t ,
if M(p) ≥ f(p, t) for all places p ∈ P . The firing of t in marking M leads
to the marking M ′(p) = M(p) − f(p, t) + f(t, p) for all p ∈ P , denoted by
M t M ′. This notation extends to sequences w ∈ T ∗ and the reachability set
RS(N) = {M | ∃w ∈ T ∗ : M0

w M} contains all of N ’s reachable markings.
The reachability graph of N is the TS AN = (RS(N), T, δ, M0), where for every
reachable marking M of N and transition t ∈ T with M t M ′ the transition
function δ of AN is defined by δ(M, t) = M ′.

According to Definition 3, for every Petri net, there is a TS, that reflects the
global behavior of the net, namely its reachability graph. However, not every TS
is the behavior of a Petri net and thus the following decision problem arises:

Synthesis
Input: A TS A = (S, E, δ, ι).
Question: Does there exist a Petri net N such that A ∼= AN ?

If Synthesis allows a positive decision, then we want to construct N purely
from A. Since A and AN should be isomorphic, the events E of A become the
transitions of N . The places, the flow and the initial marking of N originate
from so-called regions of the TS A.

Definition 4. (Region). A region R = (sup, con, pro) of a TS A = (S, E, δ, ι)
consists of the mappings support sup : S → N and consume and produce
con, pro : E → N such that if s e s′ is an edge of A, then con(e) ≤ sup(s)
and sup(s′) = sup(s) − con(e) + pro(e). The preset of R is defined by •R = {e ∈
E | pro(e) > 0} and its postset by R• = {e ∈ E | con(e) > 0}. For �, κ ∈ N, we
say R is (�, κ)-restricted if |•R| ≤ � and |R•| ≤ κ.

Remark 1. Notice that if R = (sup, con, pro) is a region of a TS A = (S, E, δ, ι),
then R can already be obtained from sup(ι), con, and pro: Since A is initialized,
for every state s ∈ S, there is a path ι e1 . . . en sn such that s = sn. Hence,
we inductively obtain sup(si+1) by sup(si+1) = sup(si) − con(ei+1) + pro(ei+1)
for all i ∈ {0, . . . , n − 1} and s0 = ι. For brevity, we often use this observation
and present regions only implicitly by sup(ι), con and pro. For an even more
compact presentation, for c, p ∈ N, we group events with the same “behavior”
together by T R

c,p = {e ∈ E | con(e) = c and pro(e) = p}.

Regions of the TS become places in a sought net if it exists: for a place
R = (sup, con, pro) of such a net, con(e) defines f(R, e), the number of tokens

296 R. Tredup

that e consumes from R, and pro(e) defines f(e, R), the number of tokens that
e produces on R, and sup(s) models (the number of tokens) M(R) (that are
on R) in the marking ϕ(s) = M of N that corresponds to state s of A via the
isomorphism ϕ between A and AN .

Definition 5. (Synthesized Net). Every set R of regions of a TS A defines
the synthesized net NR

A = (R, E, f, M0) with f(R, e) = con(e), f(e, R) = pro(e)
and M0(R) = sup(ι) for all R = (sup, con, pro) ∈ R and all e ∈ E.

In order to ensure that the input behavior A is captured by the synthesized
net N , meaning that A and AN are identified by an isomorphism ϕ, on the one
hand, we have to ensure that distinct states s �= s′ of A correspond to distinct
markings ϕ(s) �= ϕ(s′) of N . In particular, we need A to have the state separation
property, which means that its state separation atoms are solvable:

Definition 6. (State Separation). A pair (s, s′) of distinct states of A defines
a state separation atom (SSA). A region R = (sup, con, pro) solves (s, s′) if
sup(s) �= sup(s′). We say a state s is solvable if, for every s′ ∈ S \ {s}, there is
a region that solves the SSA (s, s′). If every SSA or, equivalently, every state of
A is solvable then A has the state separation property (SSP).

On the other hand, we have to prevent the firing of a transition in a marking
M , if its corresponding event does not occur at the state s of A that corresponds
to M via the isomorphism ϕ, that is, if , then , where ϕ(s) = M . In
particular, A must have the event/state separation property, meaning that all
event/state separation atoms of A are solvable:

Definition 7. (Event/State Separation). A pair (e, s) of event e ∈ E and
state s ∈ S such that defines an event/state separation atom (ESSA). A
region R = (sup, con, pro) solves (e, s) if sup(s) < con(e). We say an event e is
solvable if, for all s ∈ S such that , there is a region that solves the ESSA
(e, s). If every ESSA or, equivalently, every event of A is solvable then A has the
event state separation property (ESSP).

Definition 8. (Admissible set). A set R of regions of A is called admissible
if it witnesses the SSP and the ESSP of A, that is, every SSA and ESSA of A
is solvable by a region R of R.

The next lemma, borrowed from [5, p. 162], establishes the connection
between the existence of an admissible set R of A and the existence of a Petri net
N whose rechability graph is isomorphic to A. Notice that Petri nets correspond
to the type of nets τP T in [5, p. 130].

Lemma 1. ([5]). If A is a TS and N a Petri net, then A ∼= AN if and only if
there is an admissible set R of A and N = NR

A .

By Lemma 1, deciding the existence of a sought net N for A is equivalent to
deciding the existence of an admissible set R of A. Moreover, since the regions
R = (sup, con, pro) of R are places in N = NR

A and the corresponding flow

Synthesis of Petri Nets with Restricted Place-Environments 297

is defined by con and pro, the places of N are (�, κ)-restricted if and only if
every region R ∈ R is (�, κ)-restricted. Eventually, this leads us to the following
decision problem, which is the main subject of this paper:

Environment Restricted Synthesis
Input: A TS A = (S, E, δ, ι) and two natural numbers � and κ.
Question: Does there exist an admissible set R of A such that every region

R ∈ R satisfies |•R| ≤ � and |R•| ≤ κ?

Example 1. The TS A1 of Fig. 1 has neither the SSP nor the ESSP: If R =
(sup, con, pro) is a region of A1, then the edge s0

a s0 requires sup(s0) =
sup(s0)−con(a)+pro(a), implying con(a) = pro(a). The latter implies sup(s1) =
sup(s2) by sup(s2) = sup(s1) − con(a) + pro(a). Moreover, by s1

a , we have
sup(s1) ≥ con(a) and thus sup(s2) ≥ con(a). Consequently, since R was arbi-
trary, the SSA (s1, s2) and the ESSA (a, s2) are not solvable.

Example 2. The TS A2 of Fig. 1 has the ESSP by triviality, since the only event a
occurs at all states of A2, but not the SSP: The SSA (s0, s1) is not solvable, since
any region R = (sup, con, pro) of A2 satisfies sup(s0) = sup(s1)−con(a)+pro(a)
and sup(s1) = sup(s0) − con(a) + pro(a), which implies sup(s0) = sup(s1).

Example 3. The TS A3 of Fig. 1 has the ESSP and the SSP: The region
R1 = (sup1, con1, pro1), which, according to Remark 1, is implicitly given

Fig. 1. The TS A1 (Example 1), A2 (Example 2) and A3 (Example 3).

Fig. 2. Left: The Petri Net N1 with initial marking M0(R1)M0(R2)M0(R3) = 111 and
(1, 1)-restricted places. Right: The reachability graph AN1 .

Fig. 3. Left: The Petri Net N2 with initial marking M0(R1)M0(R2) = 11 and (0, 1)-
restricted places. Right: The reachability graph AN2 .

298 R. Tredup

by sup1(s0) = 1 and T R1
1,0 = {a} and T R1

0,0 = {b}, solves (a, s1), (a, s3),
(s0, s1), (s0, s3), (s2, s1) and (s2, s3). We obtain R1 explicitly by sup1(s1) =
sup1(s0)− con1(a)+pro1(a) = 0 and sup1(s2) = sup(s0)− con1(b)+pro1(b) = 1
and sup1(s3) = sup1(s2) − con1(a) + pro1(a) = 0.

Moreover, the region R2 = (sup2, con2, pro2), which is defined by sup2(s0) =
sup2(s1) = 1, sup2(s2) = sup2(s3) = 0 and T R2

1,0 = {b} and T R2
0,0 = {a}, solves

the remaining SSA (s0, s2) and (s1, s3) and ESSA (b, s2) and (b, s3) of A.
The TS A has also the region R3 = (sup3, con3, pro3) defined by sup3(si) = 1

for all i ∈ {0, 1, 2, 3} and T R3
1,1 = {a} and T R3

0,0 = {b}.
Since R1 and R2 solve all SSA and ESSA both of R1 = {R1, R2, R3} and

R2 = {R1, R2} are admissible sets of A. Figure 2 shows the synthesized net
N1 = NR1

A3
whose places are (1, 1)-restricted, but not (0, 1)-restricted, since

|•R3| = |{a}| = 1. The reachability graph AN1 is sketched on the right hand side
of Fig. 2 and it is isomorphic to A3. The isomorphism ϕ is given by ϕ(s0) = 111,
ϕ(s1) = 011, ϕ(s2) = 101 and ϕ(s3) = 001. However, the input (A3, 0, 1) for
Environment Restricted Synthesis allows a positive decision, because the
admissible set R2 satisfies |•R| = 0 and |R•| = 1 for all R ∈ R2. Figure 3 shows
the synthesized net N2 = NR2

A3
(left) and its reachability graph AN2 (right).

3 The Computational Complexity of Environment
Restricted Synthesis

The following theorem provides the main contribution of this paper:

Theorem 1. Environment Restricted Synthesis is NP-complete.

In order to prove Theorem 1, we have to show that ERS is in NP and that
it is NP-hard. The following Sect. 3.1 is dedicated to the membership in NP.
The corresponding proof basically extends the deterministic polynomial-time
algorithm for the (unrestricted) Synthesis to a non-deterministic algorithm for
ERS. The applied methods also show that, for any fixed � and κ, environment
restricted synthesis can be done in polynomial-time. After that, Sect. 3.2 deals
with the hardness part and provides a reduction of the problem Hitting Set.

3.1 Environment Restricted Synthesis is in NP

In this section, we show that ERS belongs to the complexity class NP. In order
to obtain a fitting non-deterministic algorithm for ERS, we extend the deter-
ministic approach for the (unrestricted) Synthesis, which, for example, has
been presented in [5]. The tractability of Synthesis bases on the fact that the
solvability of a single (state or event/state) separation atom α of a given TS
A = (S, E, δ, ι) is polynomial-time reducible to a system M of equations and
inequalities with rational variables. Such a system can be solved in polynomial-
time by Khachiyan’s method and theorem [24, pp. 168–170]. Since A has at most
|E| · |S| + |S|2 separation atoms, it follows that deciding the solvability of A by

Synthesis of Petri Nets with Restricted Place-Environments 299

deciding the solvability of every atom via the solvability of its corresponding
system M , yields a deterministic polynomial-time algorithm for Synthesis. For
a separation atom α, our approach extends the aforementioned system M non-
deterministically to a system M ′. The additional equations encode the restriction
requirements: M ′ is solvable if and only if there is a properly restricted region
that solves α. The size of M ′ is polynomially bounded by the size of A and can
be solved with Khachiyan’s method. Hence, the membership of ERS in NP then
follows, since A has at most |E| · |S| + |S|2 atoms to solve.

In the following, unless explicitly stated otherwise, let (A, �, κ) be an arbitrary
but fixed input of ERS with TS A = (S, {e1, . . . , en}, δ, ι), and let α be an
arbitrary but fixed separation atom of A. In order to develop the announced
approach, we first briefly recapitulate the deterministic approach to solve α
by a region, which is not necessarily restricted. While we are only informally
providing the intended functionality of all equations and inequalities presented,
the formal proofs for the corresponding statements can be found in [5]. After
that, we introduce the announced extension of this approach.

Recall that, by Remark 1, a region R = (sup, con, pro) is completely defined
by sup(ι) and con and pro. In particular, R can be identified with the element
y ∈ Q

2n+1, defined by y = (sup(ι), con(e1), . . . , con(en), pro(e1), . . . , pro(en)).
The reduction of the solvability of α to the solvability of a system M with
rational variables can be sketched as follows: On the one hand, if R solves α,
then y solves M . On the other hand, if x′ ∈ Q

2n+1 is a solution of M , then
there is a solution x = (x0, x1, . . . , xn, xn+1, . . . , x2n) ∈ Z

2n+1 that implicitly
defines a region R = (sup, con, pro) by sup(ι) = x0 and con(ei) = xi and
pro(ei) = xi+n for all i ∈ {1, . . . , n}, which solves α. In particular, x can be
obtained by multiplying x′ by the common denominator of its entries. Hence, M
is solvable if and only if α is solvable.

The aforementioned system M essentially consists of two parts: The first
part consists of equations and inequalities that ensure that a solution can be
interpreted as a region at all. Among others, this part encompasses equations
that result from fundamental cycles, which are defined by chords of a spanning
tree of A. The second part consists of an inequality that ensures that such a
region actually solves α.

A spanning tree of a TS is a sub-TS whose underlying undirected and unla-
beled graph is a tree in the common graph-theoretical sense that is rooted at ι:

Definition 9. (Spanning tree, chord). A spanning tree A′ = (S, E′, δ′, ι) of
the TS A is a loop-free TS such that, for all s, s′ ∈ S and all e ∈ E′ the following
is satisfied: (1) if s e s′ ∈ A′, then s e s′ ∈ A; (2) either s = ι or there is
exactly one directed labeled path Ps from ι to s in A′. An edge s e s′ that is
present in A but not in A′ is called a chord (for A′).

In the following, let A′ be an arbitrary but fixed spanning tree of A. By
Definition 9, for every state s ∈ S \ {ι}, there is exactly one path Ps from ι to
s in A′. In order to count, for every event e ∈ E, the number of its occurrences
along Ps, we use a Parikh-vector :

300 R. Tredup

Definition 10. (Parikh-vector). Let s ∈ S, and let Ps = ι ei1 . . . eim s be the
unique path from ι to s in A′ if s �= ι. The Parikh-vector ψs (of s in A′) is the
mapping ψs : {e1, . . . , en} → N that, for every e ∈ {e1, . . . , en}, is defined by:

ψs(e) =
{

|{
 | ei�
= e and
 ∈ {1, . . . , m}}|, if s �= ι

0, otherwise

For convenience we identify ψs = (ψs(e1), . . . , ψs(en)).

The chords for A′ define so-called fundamental cycles:

Definition 11. Let t = s e s′ be a chord for A′. The fundamental cycle ψt (of
t) is the mapping ψt : {e1, . . . , en} → Z that, for all i ∈ {1, . . . , n}, is defined by:

ψt(ei) =
{

ψs(ei) − ψs′(ei), if ei �= e

ψs(ei) + 1 − ψs′(ei), otherwise

For convenience, we identify ψt = (ψt(e1), . . . , ψt(en)).

It is well-known that Q
n is a Q-vector space and, for two elements x =

(x1, . . . , xn), y = (y1, . . . , yn) ∈ Q
n, we refer to the canonical (scalar) product by

x · y = x1 · y1 + · · · + xn · yn.
A region R = (sup, con, pro) of A is completely defined by sup(ι) and con, pro:

If ι a1 s1
a2 . . . am s is a path from ι to s in A, then sup(s) is defined by

sup(s) = sup(ι) − con(a1) + pro(a1) · · · − con(am) + pro(am) (1)

This path Ps is unqiue in the spanning tree A′. Hence, if we define z = (pro(e1)−
con(e1), . . . , pro(en) − con(en)), then Eq. 1 reduces to

sup(s) = sup(ι) + ψs · z (2)

Armed with these notions, we are now able to introduce M . For the sake
of simplicity, we first restrict ourselves to the case that α equals an (arbitrary
but fixed) ESSA (ej , q) of A, where j ∈ {1, . . . , n}. We will see later that the
following arguments also apply to SSA.

For every fundamental cycle ψt of A′, M has the following equation:

ψt · (xn+1 − x1, . . . , x2n − xn) = 0 (3)

Moreover, for all s ∈ S and i ∈ {1, . . . , n} with s ei in A (where ei is not
necessarily defined at s in A′), it has the following inequalities:

0 ≤ x0︸︷︷︸
sup(ι)

(4)

0 ≤ x0 + ψs · (xn+1 − x1, . . . , x2n − xn)︸ ︷︷ ︸
sup(s)

− xi︸︷︷︸
con(ei)

(5)

Synthesis of Petri Nets with Restricted Place-Environments 301

Finally, for the ESSA α, M has following inequality:

x0 + ψq · (xn+1 − x1, . . . , x2n − xn)︸ ︷︷ ︸
sup(q)

− xj︸︷︷︸
con(ej)

≤ −1 (6)

If R solves α, then y = (sup(ι), con(e1), . . . , con(en), pro(e1), . . . , pro(en))
solves M : For Eq. 3, this follows by Proposition 6.16 of [5]. For Eq. 4, Eq. 5 and
Eq. 6, this follows by Eq. 2, the definition of regions, implying sup(ι) ≥ 0 and
con(ei) ≥ sup(s) for every state s of A at which ei occurs, and the fact that R
solves α, implying sup(q) < con(ej) and thus sup(q) − con(ej) ≤ −1.

On the other hand, if x = (x0, x1, . . . , xn, xn+1, . . . , x2n) is an integer solu-
tion of this system, then (sup(ι), con(e1), . . . , con(en), pro(e1), . . . , pro(en)) = x
(implicitly) defines a region of A that solves α [5]: The Eqs. 3, ensure that defin-
ing sup(s) for all s ∈ S according to Eq. 2 yields a support sup that satisfies
sup(s′) = sup(s)−con(e)+pro(e) for every edge s e s′ of A. Equation 4 ensures
a valid support value for ι. Equations 5 ensures sup(s) ≥ con(ei) if the event ei

occurs at s in A and, by sup(ι) ≥ 0, the equations also ensure sup(s) ≥ 0 for
all s ∈ S. Hence, the result R = (sup, con, pro) is a well-defined region of A.
Moreover, Eq. 6 implies that R solves α.

Consequently, an integer vector x solves the system built by the Equa-
tions (1,2,3) if and only if x = (sup(ι), con(e1), . . . , con(en), pro(e1), . . . , pro(en))
for some region R = (sup, con, pro) of A that solves α. As already mentioned
above, the system is solvable if and only if it has an integer solution.

Now let’s deduce the announced non-deterministic polynomial-time algo-
rithm that decides whether α is solvable by a (�, κ)-restricted region. If R is
such a region, that is, |•R| ≤ � and |R•| ≤ κ, then there are at most �
indices i1, . . . , i� ∈ {1, . . . , n} and at most κ indices j1, . . . , jκ ∈ {1, . . . , n},
such that con(ei�

) > 0 for all
 ∈ {1, . . . , �} and pro(ejk
) > 0 for all

k ∈ {1, . . . , κ}, respectively. In particular, for all i ∈ {1, . . . , n} \ {i1, . . . , i�}
and all j ∈ {1, . . . , n} \ {j1, . . . , jκ}, the vector y solves the following equations:

xi = 0 (7)
xj+n = 0 (8)

Conversely, let x′ be a rational solution of the system M ′ that consists
of the Eqs. 3 to Eq. 8. Since Eq. 7 and Eq. 8 are homogenous, the vec-
tor x, obtained by multiplying x′ with the common denominator of its
entries, is a solution of M ′. Moreover, by the discussion above, x =
(sup(ι), con(e1), . . . , con(en), pro(e1), . . . , pro(en)) (implicitly) defines a region
R = (sup, con, pro) of A that solves α. In particular, con(ei) = 0 for all
i ∈ {1, . . . , n} \ {i1, . . . , i�} and pro(ej) = 0 for all j ∈ {1, . . . , n} \ {j1, . . . , jκ}.
Since k ≤
 implies n−(n−k) ≤
 for all 0 ≤ k,
 ≤ n, we have |{e ∈ E | con(e) >
0}| ≤ � and |{e ∈ E | pro(e) > 0}| ≤ κ. In particular, R is (�, κ)-restricted.

Obviously, if R exists, then a Turing machine T can guess the indices i1, . . . , i�

and j1, . . . , jκ in a non-deterministic computation. After that, T can determinis-
tically construct M ′ and compute an integer solution x of M ′. The construction

302 R. Tredup

of M ′ (after the aforementioned indices are guessed) and the computation of a
solution x of M ′ as well as the verification that x actually defines a sought region
are doable in polynomial-time. Altogether, we have argued, that the solvability of
an ESSA of A by a (�, κ)-restricted region can be decided by a non-deterministic
Turing-machine in polynomial-time.

Similar, one shows that this applies also for the case that α is an SSA (p, q).
Instead of Eq. 6, the initial system M has then the following Eq. 9:

ψp · (xn+1 − x1, . . . , x2n − xn) − ψq · (xn+1 − x1, . . . , x2n − xn) ≤ −1 (9)

It has been argued in [5] that the resulting system M has a solution if and only
if α can be solved. In particular, Eq. 9 implies sup(q) < sup(p). By [5, p. 214],
such a region exists if and only if there is a region that implies implies sup(p) <
sup(q). Similarly to the former case, we get a non-deterministic procedure that
decides if the SSA α is solvable by a restricted region. This implies that ERS
belongs to NP, since there are at most |S|2 + |E| · |E| atoms to solve.

Let m = |A| denote the size of the input TS A = (S, E, δ, ι), implying |E| =
n ≤ m. If � and κ are fixed in advance, then there are at most

(
m
�

)
and

(
m
κ

)
possibilities to choose {ei1 , . . . , ei�

} and {ej1 , . . . , ejκ
}, respectively. Hence, in

order to decide whether α is solvable by a properly restricted region, we have to
check the solvability of at most O(m�+κ) systems of equations and inequalities
according to the ones discussed above. For every system, its construction and
the test of its solvability can be done deterministically in time polynomial in
m. Moreover, every solution of a system implies a solving region and there are
at most |S| · |E| + |S|2 separation atoms (and this number obviously depends
polynomially on m). Finally, by Lemma 1, any admissible set R implies already
a sought net N = NR

A . On the one hand, this implies that there is a constant c
and an algorithm that (deterministically) solves ERS in time O(m�+κ+c) and,
on the other hand, the following corollary is implied:

Corollary 1. For any fixed natural numbers � and κ, there is a constant c and
an algorithm that runs in time O(mc) and decides whether for a given transition
system A there is a Petri net N such that (1) the reachability graph of N is
isomorphic to A and (2) every place p of N satisfies |•p| ≤ � and |p•| ≤ κ and,
in the event of a positive decision, constructs a sought net N .

3.2 Environment Restricted Synthesis is NP-hard

In order to complete the proof of Theorem 1, it remains to argue that ERS is
NP-hard. The proof of the NP-hardness bases on a polynomial-time reduction
of the hitting set problem, which is known to be NP-complete from [23]:

Hitting Set (HS)
Input: A triple (U, M, λ) that consist of a finite set U and a set M =

{M0, . . . , Mm−1} of subsets of U and a natural number λ.
Question: Does there exist a hitting set S for (U, M), that is, S ⊆ U and

S ∩ Mi �= ∅ for all i ∈ {0, . . . , m − 1}, that satisfies |S| ≤ λ?

Synthesis of Petri Nets with Restricted Place-Environments 303

Example 4. The instance (U, M, 3) such that U = {X0, X1, X2, X3} and M =
{M0, . . . , M5}, where M0 = {X0, X1}, M1 = {X0, X2}, M2 = {X0, X3}, M3 =
{X1, X2}, M4 = {X1, X3} and M5 = {X2, X3}, allows a positive decision: S =
{X0, X1, X2} is a fitting hitting set.

In the remainder of this section, until stated explicitly otherwise, let (U, M, λ)
be an arbitrary but fixed input of HS such that U = {X0, . . . , Xn−1} and M =
{M0, . . . , Mm−1}, where Mi = {Xi0 , . . . , Ximi−1} (and thus |Mi| = mi) for all
i ∈ {0, . . . , m − 1}. For technical reasons, we assume without loss of generality
that i0 < · · · < imi−1 for the elements Xi0 , . . . , Ximi−1 of the set Mi for all
i ∈ {0, . . . , m − 1}. Moreover, still for technical reasons, we assume that λ ≥ 5.
Notice that this is not a restriction of generality, since the hitting set problem
is polynomial for every fixed λ [15].

Remark 2. Obviously, the input of Example 4 does not satisfy λ ≥ 5. However,
in order to be able to provide a complete example of the reduction despite the
space restrictions, this input is deliberately chosen to be small.

The Reduction. In order to prove the hardness part of Theorem 1, we start
from input (U, M, λ) and construct an input (A, �, κ) such that the elements of U
occur as events in the TS A. Moreover, by construction, the TS A has an ESSA α
such that the following implication is true: If R = (sup, con, pro) is a region such
that |•R| ≤ � and |R•| ≤ κ that solves α, then the set S = {X ∈ U | pro(X) > 0}
is a sought HS with at most λ elements for (U, M). Consequently, if (A, �, κ)
allows a positive decision, then there is an admissible set of regions R whose pre-
and postsets are accordingly restricted. In particular, there is a region R ∈ R that
solves α and thus proves that (U, M, λ) also allows a positive decision. Conversely,
we argue that if (U, M, λ) has a fitting hitting set, then there is an admissible set
R of A such that |•R| ≤ � and |R•| ≤ κ for all R ∈ R. Altogether, this approach
proves that (U, M, λ) is a yes-instance if and only if (A, �, κ) is a yes-instance.

First of all, we define � = 2λ and κ = λ+1. Notice that this implies � ≥ 10 and
κ ≥ 6, since we assume λ ≥ 5. However, that does not restrict generality, since
ERS is polynomial for any fixed integers. Figure 4 provides a complete example
for the following construction, which is based on the input of Example 4. The
TS A has, for every i ∈ {0, . . . , m − 1}, the following gadget Ti that represents
the set Mi = {Xi0 , . . . , Ximi−1} by using its elements as events:

Ti = ti,0 ti,1 . . . ti,mi+1 ti,mi+2
k Xi0

Ximi−1 k

In particular, T0 provides α = (k, t0,1). Additionally, the states ti,1 and ti+1,1

are connected by an ui+1-labeled edge ti,1
ui+1 ti+1,1 for all i ∈ {0, . . . , m − 2}.

Moreover, for every i ∈ {0, . . . , λ − 1}, the TS A has the next gadget Fi and, for
every j ∈ {1, . . . , m − 1}, it has the next gadget Gj that uses the event uj again:

304 R. Tredup

Fi = fi,0 fi,1

k

ki

zi
Gj = gj,0 gj,1

uj

vj

The functional part of A is given by the introduced gadgets. The initial state
of A is ⊥0. In order to connect the gadgets, we use the following edges that
introduce fresh events and states: For every i ∈ {0, . . . , m − 1}, the TS A has
the edges ⊥i

yi ti,0 and, if i < m − 1, the edge ⊥i
wi+1 ⊥i+1; the TS A has the

edge ⊥0
a0 �0 and, for every i ∈ {0, . . . , λ − 1}, it has the edge �i

bi fi,0 and,
if i < λ − 1, it has the edge �i

ai+1 �i+1; the TS A has the edge ⊥0
c1 �1 and,

for every i ∈ {1, . . . , m − 1}, it has the edge �i
di gi,0 and if i < m − 1, then

it has the edge �i
ci+1 �i+1. By S and E we refer to the (set of) states and (set

of) events of A, respectively.

Lemma 2. If there is an admissible set of (�, κ)-restricted regions for A, then
there is a hitting set with at most λ elements for (U, M).

Proof. Let R be an admissible set of A that satisfies |•R| ≤ � and |R•| ≤ κ for
all R ∈ R. Since R is admissible, there is an accordingly restricted region that
solves the atom α = (k, t0,1). Let R = (sup, con, pro) be such a region, that is
con(k) > sup(t0,1) and |•R| ≤ 2λ and |R•| ≤ λ + 1. In the following, we argue
that S = {X ∈ U | pro(X) > 0} defines a sought hitting set for (U, M).

Since k occurs at t0,0 and R solves α, the following is true: (1) con(k) ≤
sup(t0,0) and (2) sup(t0,1) = sup(t0,0) − con(k) + pro(k) and (3) con(k) >
sup(t0,1). By combining (1) and (2), we obtain sup(t0,1) ≥ pro(k). If we
combine sup(t0,1) ≥ pro(k) with (3), then we get con(k) > pro(k). For
all i ∈ {0, . . . , λ − 1}, by con(k) > pro(k) and fi,0

k fi,1, we conclude
sup(fi,0) > sup(fi,1), since sup(fi,1) = sup(fi,0) − con(k) + pro(k). This implies
con(ki) > pro(ki) as well as con(zi) < pro(zi) and thus ki ∈ R• and zi ∈ •R
for all i ∈ {0, . . . , λ − 1}. Since k ∈ R•, this implies already |R•| = λ + 1. In
particular, no further event can be a member of R•. Let i ∈ {1, . . . , m − 1} be
arbitrary but fixed. If pro(ui) > con(ui), then we obtain sup(gi,0) > sup(gi,1)
and thus con(vi) > pro(vi) by gi,1

ui gi,0 and gi,0
vi gi,1. This would imply

vi ∈ R• and |R•| ≥ λ+2, a contradiction. Hence, we have pro(ui) ≤ con(ui). By
ti−1,1

ui ti,1, this implies sup(ti−1,1) ≥ sup(ti,1). Since i was arbitrary, we get
sup(t0,1) ≥ sup(t1,1) ≥ · · · ≥ sup(tm−1,1). By con(k) > sup(t0,1), this implies
con(k) > sup(ti,1) for all i ∈ {0, . . . , m−1}. On the other hand, since ti,mi+1

k ,
we have con(k) ≤ sup(ti,mi+1) for all i ∈ {0, . . . , m − 1}. Consequently, there
has to be at least one event X ∈ {Xi0 , . . . , Ximi−1} such that pro(X) > 0. This
implies S∩ Mi �= ∅ for all i ∈ {0, . . . , m − 1}, where S = {X ∈ U | pro(X) > 0}.
Moreover, since zi ∈ •R for all i ∈ {0, . . . , λ − 1} and S ⊆ •R and |•R| ≤ 2λ,
we have that |S| ≤ λ. This proves the claim and thus the lemma. ��

Synthesis of Petri Nets with Restricted Place-Environments 305

Fig. 4. The TS A with initial state ⊥0 that results from Example 4. Based on the 3-HS
{X0, X1, X2} for (U, M), the colored area sketches the region R1 of Fact 1 that solves
(k, t0,1): the support of the states in the green colored area equals 1, states in the blue
colored area have support 2, and the others have 0.

In order to show that all ESSA are solvable by (�, κ)-restricted regions, pro-
vided there is a fitting hitting set for (U, M), we treat the events of A individually.
Recall that an event is solvable if all of its corresponding ESSA are solvable (Defi-
nition 7). Moreover, for a region R = (sup, con, pro) of A, the set T R

c,p summarizes
the events e ∈ E such that (con(e), pro(e)) = (c, p) (Remark 1).

Fact 1. If there is a hitting set with at most λ elements for (U, M), then the
event k is solvable by (�, κ)-restricted regions.

306 R. Tredup

Proof. Let S be a hitting set with at most λ elements for (U, M).
The following region R0 = (sup0, con0, pro0) solves (k, s) for all s ∈⋃m−1

i=1 S(Gi) and all s ∈ {�0, . . . , �λ−1} and all s ∈ {�1, . . . , �m−1}:
sup0(⊥0) = 1 and T R0

1,1 = {k} and T R0
0,1 = {b0, . . . , bλ−1} and T R0

1,0 = {a0, c1}
and T R0

0,0 = E \ (T R1
1,1 ∪ T R1

0,1 ∪ T R1
1,0). This region satisfies |•R0| = λ + 1 ≤ 2λ and

|R•
0| = 3.
The following region R1 = (sup1, con1, pro1) solves α = (k, t0,1) and, more-

over, (k, s) for all s ∈ {fi,1 | i ∈ {0, . . . , λ − 1}}: sup1(⊥0) = 1; T R1
1,0 =

{k, k0, . . . , kλ−1} and T R1
0,1 = S ∪ {z0, . . . , zλ−1} and T R1

0,0 = E \ (T R1
1,0 ∪ T R1

0,1).
This region satisfies |•R1| ≤ 2λ, since |S| ≤ λ, and |R•

1| = λ + 1.
The following region R2 = (sup2, con2, pro2) solves α = (k, s) for all s ∈

{ti,1, ti,mi+2 | i ∈ {0, . . . , m − 1}}: sup2(⊥0) = 2 and T R2
1,0 = {k, k0, . . . , kλ−1}

and T R2
0,1 = {z0, . . . , zλ−1} and T R2

0,0 = E \ (T R2
1,0 ∪ T R2

0,1). This region satisfies
|•R1| = λ ≤ 2λ and |R•

1| = λ + 1.
The next region R3 = (sup3, con3, pro3) solves (k, s) for s = ⊥0 and

all s ∈ {t0,2, . . . , t0,m0}: sup3(⊥0) = 0 and T R3
1,1 = {k} and T R3

0,1 =
{y0, u1, X0m0−1 , a0, c1}} and T R3

0,2 = {w1} and T R3
1,0 = {X00 , v1} and T R3

0,0 =
E \ (T R3

1,1 ∪ T R3
0,1 ∪ T R3

0,2 ∪ T R3
1,0).

Let i ∈ {1, . . . , m − 1} be arbitrary but fixed. The following region R4 =
(sup4, con4, pro4) solves (k, s) for all s ∈ {⊥i, ti,2, . . . , ti,mi

}: sup4(⊥0) = 2 and
T R4
1,1 = {k} and T R4

2,0 = {wi} and T R4
0,2 = {wi+1} and T R4

0,1 = {yi, vi, ui+1, Ximi−1}
and T R4

1,0 = {ui, vi+1, Xi0} and T R4
0,0 = E \ (T R4

1,1 ∪ T R4
2,0 ∪ T R4

0,2 ∪ T R4
0,1 ∪ T R4

1,0). By
the arbitrariness of i, this proves the solvability of k. ��

Fact 2. If e ∈ {u1, . . . , um−1}, then e is solvable by (�, κ)-restricted regions.

Proof. Let i ∈ {1, . . . , m − 1} be arbitrary but fixed. The following region
R5 = (sup5, con5, pro5) solves (ui, s) for all states s ∈ S \ (S(Ti−1) ∪ {gi−1,0})
with If i = 1, then sup5(⊥0) = 1, otherwise sup(⊥0) = 0; if i = 1,
then T R5

1,0 = {ui, wi, vi−1} ∪ {a0, c1}, else T R5
1,0 = {ui, wi, vi−1}; and T R5

0,1 =
{wi−1, ui−1, di−1, vi} and T R5

0,0 = E \ (T R5
1,0 ∪ T R5

0,1).
Region R6 = (sup6, con6, pro6) solves (ui, s) for all s ∈ {⊥i−1, ti−1,0} and

if i ≥ 2, then for s ∈ {gi−1,0}: sup6(⊥0) = 0 and T R6
1,1 = {ui} and T R6

0,1 =
{di, k, k0, . . . , kλ−1} and T R6

1,0 = {z0, . . . , zλ−1} and T R6
0,0 = E\(T R6

1,1 ∪T R6
0,1 ∪T R6

1,0).
Notice that |•R6| = λ + 3 ≤ 2λ, since λ ≥ 6, and |R•

6| = λ + 1.
Finally, the following region R7 = (sup7, con7, pro7) solves (ui, s) for all

s ∈ {ti−1,2, . . . , ti−1,mi+2}: sup7(⊥0) = 1 and T R7
1,1 = {ui} and T R7

1,0 = {Xi0}
and T R7

0,0 = E \ (T R7
1,1 ∪ T R7

1,0). This completes solving ui and, by the arbitrariness
of i, this proves the solvability for all e ∈ {u1, . . . , um−1}. ��

Fact 3. If e ∈ {X0, . . . , Xn−1}, then e is solvable by (�, κ)-restricted regions.

Proof. Let i ∈ {0, . . . , n − 1} be arbitrary but fixed. Moreover, let j,
 ∈
{0, . . . , m − 1} be arbitrary but fixed such that Xi �∈ Mj and Xi ∈ M�.

Synthesis of Petri Nets with Restricted Place-Environments 307

The next region R8 = (sup8, con8, pro8) solves (Xi, s) for s = ⊥j and all
s ∈ {tj,0, . . . , tj,mj+2}: If j = 0, then sup8(⊥0) = 0, otherwise sup(⊥0) = 1;
T R8
1,1 = {Xi} and if j > 0, then T R8

1,0 = {wj , uj , vj+1} ∪ {a0, c1}, else T R8
1,0 =

{wj , uj , vj+1}; T R8
0,1 = {vj , wj+1, uj+1, dj+1} and T R8

0,0 = E \ (T R8
1,1 ∪ T R8

0,1).
The next region R9 = (sup9, con9, pro9) solves (Xi, s) for all s ∈ {⊥�, t�,0}:

sup9(⊥0) = 0; T R9
1,1 = {Xi} and T R9

1,0 = {z0, . . . , zλ−1} and T R9
0,1 =

{k, k0, . . . , kλ−1} and T R9
0,1 = E \ (T R9

1,1 ∪ T R9
1,0 ∪ T R9

0,1). Notice that |R•
9| = λ + 1

and |•R9| = λ + 1 ≤ 2λ.
Let h ∈ {0, . . . , m� − 1} be the unique index such that Xi = X�h

, that is,
Xi is the “h-th element” of M�. The following region R10 = (sup10, con10, pro10)
solves (Xi, s) for all s ∈ {t�,h+1, t�,m�+2}: sup10(⊥0) = 1 and T R10

1,0 = {Xi, a0, c1}
and T R10

0,0 = E \ T R10
1,0 .

It remains to discuss the case Xi �= X�0 , that is h ≥ 1, which requires to
solve (Xi, s) for all s ∈ {t�,1, . . . , t�,h}. So let s ∈ {t�,1, . . . , t�,h} be arbitrary but
fixed.

We distinguish between
 = 0 and
 ≥ 1: If
 = 0, then the following region
R11 = (sup11, con11, pro11) solves (Xi, s): sup11(⊥0) = 0 and T R11

1,0 = {Xi, v1}
and T R11

0,1 = {w1, u1, d1, X0h−1} and T R11
0,0 = E \ (T R11

1,0 ∪ T R11
0,1).

If
 ≥ 1, then region R12 = (sup12, con12, pro12) solves (Xi, s): sup12(⊥0) = 1
and T R12

1,0 = {Xi, w�, u�, v�+1, a0, c1} and T R12
0,1 = {Xih−1 , w�+1, u�+1, v�, d�+1}

and T R12
0,0 = E \ (T R12

1,0 ∪ T R12
0,1). By the arbitrariness of h, this completes the

solvability of (Xi, s) for all s ∈ S(T�).
The following region R13 = (sup13, con13, pro13) solves (Xi, s) for all s ∈

S \ (
⋃m−1

j=0 (S(Tj) ∪ {⊥j}): sup13(⊥0) = 1 and T R13
1,1 = {Xi} and T R13

1,0 = {a0, c1}
and T R13

0,0 = E \ (T R13
1,1 ∪ T R13

1,0). Since i, j,
 were arbitrary, we have the claim.��

Fact 4. If e ∈ {k0, . . . , kλ−1} or e ∈ {z0, . . . , zλ−1} or e ∈ {v1, . . . , vm−1}
or e ∈ {w1, . . . , wm−1} or e ∈ {a0, . . . , aλ−1} or e ∈ {b0, . . . , bλ−1} or e ∈
{y0, yi, wi, ci, di | 1 ≤ i ≤ m − 1}, then e is solvable by (�, κ)-restricted regions.

Proof. Let i ∈ {0, . . . , λ − 1} be arbitrary but fixed. The region R1 of Fact 1
solves (ki, fi,1) and the region R6 of Fact 2 solves (zi, fi,0). It is easy to see that
(ki, s) and (zi, s) are suitably solvable for the remaining s ∈ S \ {fi,0, fi,1}. Since
i was arbitrary, that proves the claim for all e ∈ {k0, . . . , kλ−1, z0, . . . , zλ−1}.

Let i ∈ {1, . . . , m − 1} be arbitrary but fixed. The region R6 or the region
R8 solves (vi, gi,1). It is easy to see that (vi, s) is suitably solvable for all s ∈
S \ {gi,0, gi,1}. By their uniqueness, it is easy to see that the remaining events
are also solvable by suitably restricted regions. The claim follows. ��

Altogether, the just presented facts prove that all ESSA of A are solvable
by (�, κ)-restricted regions, if there is a hitting set of size at most λ for (U, M).
Moreover, if (s, s′) is an SSA of A, then either (s, s′) is already solved by one of
the presented regions or it is easy to see that a solving (�, κ)-restricted region
exists. Hence, we obtain the following lemma, which completes the proof of
Theorem 1.

308 R. Tredup

Lemma 3. If there is a hitting set with at most λ elements for (U, M), then A
has an admissible set R of (�, κ)-restricted regions.

3.3 A Lower Bound for the Parameterized Complexity of ERS

By Theorem 1, the problem ERS is NP-complete. Hence, from the point of view
of classical complexity theory, where we assume that P is different from NP, the
problem is considered intractable, i.e., the worst-case time-complexity of any
deterministic decision algorithm is above polynomial. However, measuring the
complexity of the problem purely in the size of the input may let it appear harder
than it actually is.

In parameterized complexity we deal with parameterized problems, where
every input (x, k) has a distinguished part k, a natural number, that is called
the parameter, and measure the complexity not only in terms of the input size n,
but also in terms of the parameter k. For example, a natural parameter of ERS
is k = � + κ. By the results of Sect. 3.1, there is an algorithm that solves ERS in
time O(nk+c), where c is a constant. In terms of parameterized complexity, this
means that ERS parameterized by k belongs to the complexity class XP (for
slice-wise polynomial). However, such algorithms are not considered as feasible,
since nk+c can be huge even for small k and moderate n. Hence, we are rather
interested in algorithms where k does not appear in the exponent of n: We say
a parameterized problem is fixed parameter tractable if has an algorithm with
running time O(f(k)nc), where f is a computable function that depends only
on k, and c is a constant. Such algorithms are manageable even for large values
of n, provided that f(k) is relatively small and c is a small constant.

In order to obtain a successful parameterization, we need to have some reason
to believe that the parameter is typically small, such that f(k) can be expected
to remain relatively small, too. In the absence of a benchmark that is specif-
ically created for Petri net synthesis, we have analyzed the benchmark of the
Model Checking Contest (MCC) [2], which contains both academic and indus-
trial Petri nets. Their corresponding TS (reachability graphs) have usually (way)
more than 107 states, which provides a lower bound for the length n ≥ |S| + |E|
of an input TS A = (S, E, δ, ι). We analyzed 878 Petri nets in total. For 395 of
them (around 45%), we found that � + κ ≤ 21, and for still 308 of them (around
35%) we even found � + κ ≤ 11 such as, for example, AutoFlight-PT-02a and
CircadianClock-PT-100000 and FMS-PT-50000. In other words: in dependence
on f , a synthesis algorithm with running time f(k)nc could possibly be useful
for a third up to almost half of these nets. From this point of view, the param-
eterization of ERS by � + κ and the search for a fixed-parameter algorithm
appear to be sensible. Unfortunately, we can provide strong evidence that such
an algorithm does not exists. This is of practical relevance, since it prevents an
algorithm designer to waste countless hours with the attempt to find a solution
that most likely cannot be found.

From the viewpoint of classical complexity theory, a problem is considered as
intractable if it is NP-hard. Analogously, in parameterized complexity, a problem
is assumed not to be fixed-parameter-tractable if it is W [i]-hard for some i ≥ 1.

Synthesis of Petri Nets with Restricted Place-Environments 309

We omit the formal definition of the complexity class W [i] and rather refer
to [15]. In order to show that a parameterized problem Q is W [i]-hard, we have
to present a parameterized reduction from a known W [i]-hard problem P to Q.
A parameterized reduction is an algorithm that transforms an instance (x, k) of
P into an instance (x′, k′) of Q such that

1. (x, k) is in P if and only if (x′, k′) is in Q and
2. k′ ≤ g(k) for some computable function independent of x, and
3. the running time is f(k)|x|c for some computable function f and constant c.

The problem Hitting Set parameterized by λ is known to be W [2]-hard
(even W [2]-complete). Moreover, the reduction presented in Sect. 3.2 is a param-
eterized one, since � + κ = 3λ + 1. This proves the following theorem, implying
the fixed-parameter-intractability of ERS parameterized by � + κ:

Theorem 2. ERS parameterized by � + κ is W [2]-hard.

4 Conclusion

In this paper, we investigated the computational complexity of synthesizing Petri
nets for which the cardinality of the pre- and postset of their places is restricted
by natural numbers � and κ. We show that the problem is solvable in polynomial
time for any fixed � and κ. By way of contrast, if � and κ are part of the input,
then the resulting problem ERS is NP-complete. Moreover, we show that ERS
parameterized by � + κ is W [2]-hard and thus most likely does not allow a fixed-
parameter-algorithm. The presented reduction heavily relies on the fact that
places (i.e. regions) need not to be pure, that is, t can be a pre- and a post-
transition of a place at the same time. Future work could therefore focus on
the problem restricted to pure Petri nets or on the search for other parameters
putting the problem into FPT.

Acknowledgements. I would like to thank Karsten Wolf, who provided a summary of
the data from the Model Checking Contest. Also, I’m very thankful to the anonymous
reviewers for their detailed comments and valuable suggestions.

References

1. van der Aalst, W.M.P.: Process Mining - Discovery, Conformance and Enhance-
ment of Business Processes. Springer, New York (2011). https://doi.org/10.1007/
978-3-642-19345-3

2. Amparore, E., et al.: Presentation of the 9th edition of the model checking contest.
In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS,
vol. 11429, pp. 50–68. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17502-3 4

3. Badouel, E., Bernardinello, L., Darondeau, P.: Polynomial algorithms for the syn-
thesis of bounded nets. In: Mosses, P.D., Nielsen, M., Schwartzbach, M.I. (eds.)
CAAP 1995. LNCS, vol. 915, pp. 364–378. Springer, Heidelberg (1995). https://
doi.org/10.1007/3-540-59293-8 207

https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-642-19345-3
https://doi.org/10.1007/978-3-030-17502-3_4
https://doi.org/10.1007/978-3-030-17502-3_4
https://doi.org/10.1007/3-540-59293-8_207
https://doi.org/10.1007/3-540-59293-8_207

310 R. Tredup

4. Badouel, E., Bernardinello, L., Darondeau, P.: The synthesis problem for elemen-
tary net systems is NP-complete. Theor. Comput. Sci. 186(1–2), 107–134 (1997).
https://doi.org/10.1016/S0304-3975(96)00219-8

5. Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis. TTCSAES.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-47967-4

6. Badouel, E., Caillaud, B., Darondeau, P.: Distributing finite automata through
Petri net synthesis. Formal Asp. Comput. 13(6), 447–470 (2002). https://doi.org/
10.1007/s001650200022

7. Best, E.: Structure theory of Petri nets: the free choice hiatus. In: Advances in
Petri Nets. Lecture Notes in Computer Science, vol. 254, pp. 168–205. Springer,
Berlin (1986). https://doi.org/10.1007/BFb0046840

8. Best, E., Darondeau, P.: A decomposition theorem for finite persistent transition
systems. Acta Informatica 46(3), 237–254 (2009)

9. Best, E., Devillers, R.R.: Synthesis of live and bounded persistent systems. Fundam.
Informaticae 140(1), 39–59 (2015)

10. Best, E., Devillers, R., Schlachter, U.: Bounded choice-free Petri net synthesis: algo-
rithmic issues. Acta Informatica 55(7), 575–611 (2017). https://doi.org/10.1007/
s00236-017-0310-9

11. Best, E., Hujsa, T., Wimmel, H.: Sufficient conditions for the marked graph real-
isability of labelled transition systems. Theor. Comput. Sci. 750, 101–116 (2018).
https://doi.org/10.1016/j.tcs.2017.10.006

12. Commoner, F., Holt, A.W., Even, S., Pnueli, A.: Marked directed graphs. J. Com-
put. Syst. Sci. 5(5), 511–523 (1971)

13. Cortadella, J., Kishinevsky, M., Lavagno, L., Yakovlev, A.: Deriving petri nets
from finite transition systems. IEEE Trans. Comput. 47(8), 859–882 (1998)

14. Cortadella, J., Kishinevsky, M., Kondratyev, A., Lavagno, L., Yakovlev, A.: A
region-based theory for state assignment in speed-independent circuits. IEEE
Trans. CAD Integr. Circ. Syst. 16(8), 793–812 (1997). https://doi.org/10.1109/
43.644602

15. Parameterized Algorithms. TTCSAES. Springer, Cham (2015). https://doi.org/10.
1007/978-3-319-21275-3

16. Desel, J., Esparza, J.: Free Choice Petri Nets. Cambridge Tracts in Theoretical
Computer Science, Cambridge University Press, New York (1995). https://doi.org/
10.1017/CBO9780511526558

17. Devillers, R.R., Erofeev, E., Hujsa, T.: Efficient synthesis of weighted marked
graphs with circular reachability graph, and beyond. CoRR abs/1910.14387 (2019).
http://arxiv.org/abs/1910.14387

18. Devillers, R.R., Erofeev, E., Hujsa, T.: Synthesis of weighted marked graphs from
constrained labelled transition systems: a geometric approach. Trans. Petri Nets
Other Model. Concurr. 14, 172–191 (2019). https://doi.org/10.1007/978-3-662-
60651-3 7

19. Devillers, R.R., Hujsa, T.: Analysis and synthesis of weighted marked graph Petri
nets: exact and approximate methods. Fundam. Inform. 169(1-2), 1–30 (2019).
https://doi.org/10.3233/FI-2019-1837

20. Ehrenfeucht, A., Rozenberg, G.: Partial (set) 2-structures. part I: basic notions
and the representation problem. Acta Inf. 27(4), 315–342 (1990). https://doi.org/
10.1007/BF00264611

21. Holloway, L.E., Krogh, B.H., Giua, A.: A survey of Petri net methods for controlled
discrete event systems. Discrete Event Dyn. Syst. 7(2), 151–190 (1997). https://
doi.org/10.1023/A:1008271916548

https://doi.org/10.1016/S0304-3975(96)00219-8
https://doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1007/s001650200022
https://doi.org/10.1007/s001650200022
https://doi.org/10.1007/BFb0046840
https://doi.org/10.1007/s00236-017-0310-9
https://doi.org/10.1007/s00236-017-0310-9
https://doi.org/10.1016/j.tcs.2017.10.006
https://doi.org/10.1109/43.644602
https://doi.org/10.1109/43.644602
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1007/978-3-319-21275-3
https://doi.org/10.1017/CBO9780511526558
https://doi.org/10.1017/CBO9780511526558
http://arxiv.org/abs/1910.14387
https://doi.org/10.1007/978-3-662-60651-3_7
https://doi.org/10.1007/978-3-662-60651-3_7
https://doi.org/10.3233/FI-2019-1837
https://doi.org/10.1007/BF00264611
https://doi.org/10.1007/BF00264611
https://doi.org/10.1023/A:1008271916548
https://doi.org/10.1023/A:1008271916548

Synthesis of Petri Nets with Restricted Place-Environments 311

22. Hujsa, T., Delosme, J.-M., Munier-Kordon, A.: On the reversibility of well-behaved
weighted choice-free systems. In: Ciardo, G., Kindler, E. (eds.) PETRI NETS 2014.
LNCS, vol. 8489, pp. 334–353. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-07734-5 18

23. Karp, R.M.: Reducibility among combinatorial problems. In: Miller, R.E.,
Thatcher, J.W. (eds.) Proceedings of a symposium on the Complexity of Computer
Computations, held 20–22 March 1972, at the IBM Thomas J. Watson Research
Center, Yorktown Heights, New York, USA. pp. 85–103, The IBM Research Sym-
posia Series, Plenum Press, New York (1972). https://doi.org/10.1007/978-1-4684-
2001-2 9

24. Rajan, A.: Theory of linear and integer programming, by alexander schrijver, Wiley,
New York, 1986, 471 pp. price $71.95. Networks 20(6), 801 (1990). https://doi.org/
10.1002/net.3230200608

25. Teruel, E., Chrzastowski-Wachtel, P., Colom, J.M., Silva, M.: On weighted T-
systems. In: Jensen, K. (ed.) ICATPN 1992. LNCS, vol. 616, pp. 348–367. Springer,
Heidelberg (1992). https://doi.org/10.1007/3-540-55676-1 20

26. Teruel, E., Colom, J.M., Suárez, M.S.: Choice-free petri nets: a model for deter-
ministic concurrent systems with bulk services and arrivals. IEEE Trans. Syst Man
Cybern Part A 27(1), 73–83 (1997). https://doi.org/10.1109/3468.553226

27. Tredup, R.: Hardness results for the synthesis of b-bounded petri nets. In: Donatelli,
S., Haar, S. (eds.) PETRI NETS 2019. LNCS, vol. 11522, pp. 127–147. Springer,
Cham (2019). https://doi.org/10.1007/978-3-030-21571-2 9

28. Tredup, R.: Synthesis of structurally restricted b-bounded petri nets: complexity
results. In: Filiot, E., Jungers, R., Potapov, I. (eds.) RP 2019. LNCS, vol. 11674, pp.
202–217. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30806-3 16

29. Tredup, R.: Parameterized complexity of synthesizing b-bounded (m, n)-T-systems.
In: Chatzigeorgiou, A., Dondi, R., Herodotou, H., Kapoutsis, C., Manolopoulos, Y.,
Papadopoulos, G.A., Sikora, F. (eds.) SOFSEM 2020. LNCS, vol. 12011, pp. 223–
235. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-38919-2 19

30. Tredup, R.: The complexity of synthesizing sf nop-equipped boolean petri nets from
g-bounded inputs. Trans. Petri Nets Other Model. Concurr. 15, 101–125 (2021)

31. Chen, J., Feng, Q., Xu, J. (eds.): TAMC 2020. LNCS, vol. 12337. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-59267-7

32. Tredup, R., Erofeev, E.: On the parameterized complexity of synthesizing boolean
petri nets with restricted dependency. In: Lange, J., Mavridou, A., Safina, L.,
Scalas, A. (eds.) Proceedings 13th Interaction and Concurrency Experience, ICE
2020, Online, 19 June 2020. EPTCS, vol. 324, pp. 78–95 (2020). https://doi.org/
10.4204/EPTCS.324.7

https://doi.org/10.1007/978-3-319-07734-5_18
https://doi.org/10.1007/978-3-319-07734-5_18
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1007/978-1-4684-2001-2_9
https://doi.org/10.1002/net.3230200608
https://doi.org/10.1002/net.3230200608
https://doi.org/10.1007/3-540-55676-1_20
https://doi.org/10.1109/3468.553226
https://doi.org/10.1007/978-3-030-21571-2_9
https://doi.org/10.1007/978-3-030-30806-3_16
https://doi.org/10.1007/978-3-030-38919-2_19
https://doi.org/10.1007/978-3-030-59267-7
https://doi.org/10.4204/EPTCS.324.7
https://doi.org/10.4204/EPTCS.324.7

Discovering Stochastic Process Models
by Reduction and Abstraction

Adam Burke(B) , Sander J.J. Leemans , and Moe Thandar Wynn

Queensland University of Technology, Brisbane, Australia
{at.burke,s.leemans,m.wynn}@qut.edu.au

Abstract. In process mining, extensive data about an organizational
process is summarized by a formal mathematical model with well-
grounded semantics. In recent years a number of successful algorithms
have been developed that output Petri nets, and other related for-
malisms, from input event logs, as a way of describing process control
flows. Such formalisms are inherently constrained when reasoning about
the probabilities of the underlying organizational process, as they do not
explicitly model probability. Accordingly, this paper introduces a frame-
work for automatically discovering stochastic process models, in the form
of Generalized Stochastic Petri Nets. We instantiate this Toothpaste
Miner framework and introduce polynomial-time batch and incremen-
tal algorithms based on reduction rules. These algorithms do not depend
on a preceding control-flow model. We show the algorithms terminate
and maintain a deterministic model once found. An implementation and
evaluation also demonstrate feasibility.

Keywords: Stochastic Petri Nets · Process mining · Stochastic
process discovery · Stochastic process mining

1 Introduction

Modelling is a way for us to understand and navigate the world; some thinkers
argue it is the core activity of science [41]. Today’s world, with its cheap comput-
ers and voluminous data, makes new forms and subjects of modelling possible.
The last two decades have seen great progress in one form, process mining [1]
– the analysis of organizational processes using computational techniques and
large event logs. Process-mined models are then used to understand and improve
organizations.

Stochastic process models, such as Stochastic Petri Nets [4], are well-
established in fields from biology [26] to operations research [42] to describe
evolving processes with complex causalities, and relative probabilities. Stochastic
process mining discovers and analyzes stochastic process models. It is a relatively
new area of research which aims to exploit the sophistication of stochastic models
to advance our understanding of organizations and their frequent, or infrequent,

c© Springer Nature Switzerland AG 2021
D. Buchs and J. Carmona (Eds.): PETRI NETS 2021, LNCS 12734, pp. 312–336, 2021.
https://doi.org/10.1007/978-3-030-76983-3_16

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76983-3_16&domain=pdf
http://orcid.org/0000-0003-4407-2199
http://orcid.org/0000-0002-5201-7125
http://orcid.org/0000-0002-7205-8821
https://doi.org/10.1007/978-3-030-76983-3_16

Discovering Stochastic Process Models by Reduction and Abstraction 313

behaviour. Currently few discovery and conformance techniques exist. Impor-
tantly, these existing discovery techniques do not work well for a number of
important real-world cases. They also often depend on control-flow models, lim-
iting the use of stochastic information in the construction of the control-flow
itself.

In this paper we introduce a new stochastic process discovery frame-
work, Toothpaste Miner, which works with Generalized Stochastic Petri Nets
(GSPNs) [4,25] via a data structure targeted at process mining, the Probabilis-
tic Process Tree. Toothpaste Miner does “direct stochastic discovery”, i.e., it
does not rely on an initial control-flow discovery step, but calculates control-flow
and stochastic aspects of the model using a common abstraction. It proceeds by
the repeated application of reduction rules. We show polynomial-time computa-
tional complexity, termination and deterministic properties of these algorithms.
An implementation, in Haskell, and its evaluation, against real-life event logs,
shows the technique’s practical relevance, and also that it trades off quality
against more complex models and longer execution times.

In Sects. 2 and 3, below, we discuss related work and foundational concepts.
The Toothpaste Miner discovery algorithms and transformation rules are intro-
duced in Sect. 4, together with the Probabilistic Process Trees formalism. Incre-
mental discovery and noise-management optimisations are discussed in Sect. 5.
The implementation and evaluation are laid out in Sect. 6, before we conclude
in Sect. 7.

2 Related Work

Important existing work in this area includes that on stochastic process mining,
discovering Petri nets, and discovering probabilistic automata.

The stochastic process mining algorithms introduced in Sects. 4.2 and 5 are
partially region-based. A number of process mining algorithms for region-based
control-flow discovery exist [10]. The Maximal Pattern Mining algorithm [23] is
a region-based algorithm which combines regular expression-like patterns in sys-
tematic ways, and helped inspire the loop and concurrency identification rules
in Sect. 4.3. Other sources for rules are Petri net and Stochastic Petri net reduc-
tions [35,40] and the Inductive Miner [20], which uses process trees. The Proba-
bilistic Process Trees introduced here extend process trees. (The term “stochastic
process tree” is already used to refer to decision trees, e.g. in [13]).

Within process mining, existing stochastic process discovery techniques can
be categorized as control-flow dependent, direct, or declarative. For control-
flow dependent discovery, one key technique discovers Generally Distributed
Stochastic Petri Nets (GDT SPNs) after alignment-based repair [30,31]. Other
techniques output Generalized Stochastic Petri Nets [9], trading some quality
for faster execution times, or combine control-flow models using Bayesian infer-
ence [16]. Direct discovery techniques exist in the literature, as high level descrip-
tions or algorithms [2,15,17,33] and for structures other than Petri nets. One
recent discovery technique shows reduced error percentages by using a Bayesian

314 A. Burke et al.

network with non-classical probability [28]. It is however constrained to exclude
loops and concurrency. Another recent technique [29] re-purposes the Direct Fol-
lows Graph Miner [21] to obtain a stochastic Direct Follows Model. Discovery
of declarative stochastic process models has also seen good progress in recent
years [5,24], though the difficulties of comparing control-flow and declarative
models put them beyond the immediate scope of this article.

The problem of discovering probabilistic models from event data has three
broad classes of existing solutions validated by empirical trials [37]: Bayesian
inference, state merging, and parameter estimation.

Bayesian inference is a method where probability estimates are updated in
a specific form of cumulative average in response to the introduction of new
evidence. Bayesian inference on its own does not yield a structured and visualiz-
able model, just probability estimates for particular events, so cannot be directly
applied to process mining [8]. Probabilities obtained with Gibbs sampling [14]
have recently been successfully combined with an input control flow model for
stochastic process discovery [16].

State merging is exemplified by the Alergia algorithm [12], which discovers
Stochastic Finite-State Automata through state merges in cubic time; alterna-
tives such as MDI [36] achieve quadratic time complexity. Alergia can still
be competitive in real-world trials [37]. Both Alergia and MDI construct an
internal prefix automaton with weights. This general algorithmic structure is
also used by our discovery algorithm in Sect. 4.2 and merge operators and rules
in Sect. 4.3. We adopt a Petri net-based data structure used in process discovery
algorithms, process trees [20], [1, p. 81], to manage state merges, instead of the
prefix trees used in Alergia.

The RegPFA framework [8] uses parameter estimation to do process predic-
tion. RegPFA uses an internal model for prediction based on Baum-Welch [3]. It
outputs a noise-filtered Petri net model for user consumption, which emphasizes
understandability against precision, and elides stochastic information.

To the best of our knowledge, the proposed techniques represent novel solu-
tions for discovering stochastic process models. The framework uses a well-
established process formalism (GSPNs) and supports loops and concurrency.
Rather than annotating stochastic information after finding a control-flow model,
it makes direct use of trace information from the event log to construct the
stochastic aspect of the model in concert with the control-flow.

3 Preliminaries

Generalized Stochastic Petri Nets (GSPNs) [4,25] and Stochastic Deterministic
Finite Automata [38,39] are well-established formalisms, and good overviews
exist [4,25,38,39]. Definitions in this section are based on the process mining
and Petri net literature [1, p. 80], [19]. We use N for natural numbers, R` for
positive real numbers, and B for booleans; ‚ separates quantifiers and predicates.

Discovering Stochastic Process Models by Reduction and Abstraction 315

Event logs. A process consists of various activities. Let the set A be an alphabet
of activities for a process. A trace is a sequence of activities. Σ∗ is the set of all
possible traces over A. A language Ď Σ∗ is a set of traces. An event log L is
a finite multiset of traces collating observations of the underlying process. Let
|L| represent the number of traces and ||L|| the number of activities in the log.
A log with ten traces of xa, by and six traces of xb, cy is written [xa, by10, xb, cy6]
following multiset notation in [32].

Definition 1 (Petri nets). A Petri net [1,19] is a tuple PN “ (P, T, F,M0),
where P is a finite set of places, T is a finite set of transitions, and F : (P ˆT) Ñ
(T ˆ P) is a flow relation. A marking is a multiset of places Ď P that indicate a
state of the Petri net, with M0 being the initial marking. A transition is enabled if
every incoming place contains a token. A transition fires by changing the marking
of the net to consume incoming tokens and producing tokens for its outgoing
places. A net where no further transitions may fire has reached a terminal state
and corresponds to a final marking.

Definition 2 (Generalized Stochastic Petri Net (GSPN)). A GSPN [4,
25] is a tuple (P, T, F,M0,W, Ti, Tt) such that (P, T, F,M0) is a Petri net. Weight
function W : T Ñ R

` assigns each transition a weight. Ti is a set of immediate
transitions and Tt a set of timed transitions such that Ti Y Tt “ T and Ti X
Tt “ H. If multiple transitions Te Ď Ti are enabled in a particular marking,
the probability of a transition t P Te firing is given by W (t)

Σt′PTe
W (t′) . Immediate

transitions take priority over timed transitions. A timed transition, if enabled,
fires according to an exponentially distributed wait time. Given a set of enabled
timed transitions Te Ď Tt, a transition t fires first with probability W (t)

Σt′PTe
W (t′) .

Definition 3 (Generalized Stochastic Labelled Petri Net (GSLPN)). A
GSLPN [22] is a tuple (P, T, F,M0,W, Ti, Tt, Σ, λ) where (P, T, F,M0,W, Ti, Tt)
is a GSPN. λ is a labelling function for transitions λ : T Ñ Σ Y {τ} where
τ /P Σ. When a transition t P T fires, if λ(t) “ a where a �“ τ , the activity a has
executed. λ(t) “ τ is a silent transition where there is no evidence of activity
execution. The set of GSLPNs with only immediate transitions is denoted by G.

Definition 4 (Stochastic Language). A stochastic language LΣ : Σ∗ → [0, 1]
is a function which denotes a probability for each trace such that ΣtPΣ∗LΣ(t) “ 1.

Definition 5 (Stochastic Deterministic Finite Automaton). A Stochastic
Deterministic Finite Automaton (SDFA) [11] is a tuple (S,A, σ, p, s0) where S
is a set of states, A is an alphabet, σ : S ˆ A → S is a transition function,
p : S ˆ A → [0, 1] maps state probability, and the initial state is s0 P S.

SDFAs are a special case of Probabilistic Finite-State Automata (PFAs) [38]
and SDFAs are also referred to as Deterministic Probabilistic Finite Automata
(DPFA) [38]. All event logs can be represented by SDFAs [19].

316 A. Burke et al.

4 Process Discovery by Model Reduction

In this section we first introduce Probabilistic Process Trees (PPTs), which add
relative weights and some alternative operators to the process tree formalism,
and can be translated straightforwardly to GSLPNs. We then describe a novel
algorithm which uses Probabilistic Process Tree transformations for process
model discovery in terms of general rule properties. Lastly, concrete transfor-
mation rules for manipulating these trees are introduced.

Table 1. Translation of PPTs to GSLPNs.

Probabilistic Process Tree GSLPN

‘ : w (root)
I operator-specific

translation of ‘ : w
O

Ñ : w

x : w y : w
x : w y : w

ˆ : w

x : vx y : vy

x : vx

y : vy

∧ : w

x : vx y : vy
τ : w

x : vx

y : vy

τ : w

�ρ
p : w

x : w τ : w

τ : 1

x : ρ ´ 1

�m
n : w

x : w
x : w ...m times

(inclusive)... x : w

a : w a : w

τ : w τ : w

4.1 Probabilistic Process Trees

A Probabilistic Process Tree is view of a GSLPN, and a cousin of the process
tree [1, p. 78] which allows probabilistic choice. As in Sect. 3, A refers to a
finite set of activities with silent activity τ /P A. We first define trees recursively,
followed by operators.

Discovering Stochastic Process Models by Reduction and Abstraction 317

Definition 6 (Probabilistic Process Trees). A Probabilistic Process Tree
(PPT) is a tree of weighted nodes, where each node is denoted by s : w. The
universe of PPTs over activity set A is UA:

1. A single activity. For a P A, a : w P UA.
2. A silent activity. For τ /P A, τ : w P UA.
3. An operator ‘ over one or more child trees. Given n � 1, U1, ..., Un P UA,

then ‘(U1, ..., Un) : w P UA.

Sub-trees. Ui is a sub-tree of its parent U “ ‘(U1, ...Ui, ..., Un) : w, and of
all trees of which U is a sub-tree. Trees are strictly equal, Ux “ Uy, when the
structures are isomorphic and each node and sub-tree is equal, including weights.
Activity powerset function exp gives the set of all activities in a given PPT.

In this paper, we consider operators
À “ {Ñ,∧, ˆ,�p,�n}. These redefine

and extend non-probabilistic process tree operators to include weight semantics.
Sequential operator. The Ñ sequential operator executes its children in

sequential order. To align weight with execution frequency, the weight of
sequence components is the parent’s weight. In the remainder of this paper, we
may omit the child weights, writing Ñ (x, y) : w rather than Ñ (x : w, y : w) : w.

Choice. The probabilistic choice operator ˆ(U1, ..., Un) chooses one sub-tree
Ui “ si : wi for execution from its children, with probability wi

Σsj : wj P{U1,...,Un}wj
.

Concurrency. The concurrency operator ∧ indicates parallel composition.
Each child must execute once with no constraint on order of execution.

Fixed Loops. The fixed loop operator �m
n (U) repeats its child tree m times.

As for sequences, the weight of the loop child is the weight of the parent loop.
Probabilistic Loops. The probabilistic loop operator �ρ

p (U) executes the child
tree with the probability of exiting at each iteration determined by the function
Pr{χ “ 0} “ 1

ρ where ρ P R` ∧ρ � 1. The weight of the child node is the weight
of the parent loop.

∀x, y, w1, w2, w3‚ Ñ (x : w1, y : w2) : w3 P UA “ñ w1 “ w2 “ w3

∀s1, .., sn, w1, .., wn ‚ ˆ(s1 : w1, ..., sn : wn) : w “ñ w “ Σ(sj ,wj)wj

∀s1, .., sn, w1, .., wn ‚ ∧(s1 : w1, ..., sn : wn) : w “ñ w “ Σ(sj ,wj)wj

∀m,x,w1, w2 ‚ m P N∧ �m
n (x : w1) : w2 “ñ w1 “ w2

∀m,x,w1, w2 ‚ ρ P R
`∧ �ρ

p (x : w1) : w2 “ñ w1 “ w2

Size. The size of a PPT is the number of nodes, denoted by |UA|.

Example. One PPT, pe “ ˆ(Ñ (a : 2, b : 2) : 2, Ñ (b : 1, a : 1) : 1,�3
p

(c : 1) : 1) : 4, can be seen in Fig. 1, and has the stochastic language ΣE “
[xa, by 1

2 , xb, ay 1
4 , xc, c, cy 1

4].

318 A. Burke et al.

Fig. 1. Example PPT pe.

Translation to Generalized Stochastic
Petri Nets. Having defined the syntax,
and informally explained the meaning of
PPT constructs, we now formally define
the semantics. PPTs have equivalent con-
structs in a Generalized Stochastic Petri
Net (GSPN), summarized in Table 1.

Note that in the probabilistic loop �ρ
p,

each iteration is a Bernoulli trial with the number of iterations being a geometric
variable. In the GSPN translation, this results in a transition weight of ρ ´ 1:

Pr(�p exit) “ wexit

Σwi
GSPN choice definition

“ 1
1 ` (ρ ´ 1)

“ 1
ρ

�p definition

Fig. 2. Translation of pe to a GSPN.

The translation of PPTs to
GSPNs, as described in Table 1,
shows PPTs are a subset of
Probabilistic Finite Automata [38].
Figure 2 gives the translation of
example PPT pe into a GSPN,
with a more sophisticated example
shown in Fig. 4f.

4.2 A Discovery Algorithm Framework

The Toothpaste framework describes reduction algorithms that “squeeze” an ini-
tial trace model into a more summarized and useful form using transformation
rules. The framework is illustrated in Fig. 3. After introducing component ele-
ments, an example instantiation is made in Definition 7.

Fig. 3. Toothpaste framework.

Toothpaste miner algorithms first trans-
form an event log into an internal PPT.
They then repeatedly transform the PPT by
applying transformation rules. These rules
reduce, summarize, or restructure the tree
towards a desirable form. When desired cri-
teria for an output process model are met,
the PPT is translated into a GSLPN as the

final output. Criteria may include quality criteria such as fitness or precision
thresholds, simplicity, or the preservation of certain critical trace paths in the
final model. As the miner proceeds largely by reduction from an initial state
which perfectly matches the event log, this allows for fine-grained control over
what elements of the initial log are preserved in the final model.

Discovering Stochastic Process Models by Reduction and Abstraction 319

Event Logs and Discovery. Given an event log L “ [ti11 , ..., tinn], a trace model
PPT is given by tm : L Ñ UA, where each trace is converted by st : xAy Ñ UA.

st(xa1, ..., amy) “Ñ (a1 : ij , ..., am : ij) : ij

st(xay) “ a : ij

tm(L) “ ˆ(st(t1), ..., st(tn)) : |L|
For example, tm(xa, by, xcy3) “ ˆ(Ñ (a, b) : 1, c : 3) : 4.

Transformation. In the Toothpaste framework, discovery proceeds by the
application of transformation rules to a PPT, yielding progressively improved
models. For rule sequences, ` is used for concatenation and ran for the set
of elements in a sequence. We instantiate the framework using reduction rules,
those which reduce the total number of nodes in the tree, with specific rules in
Sect. 4.3.

Function Φ applies a sequence of transformation rules to a PPT.

Φ : UA ˆ xUA Ñ UAy Ñ UA
Φ(pt, xy) “ pt

Φ(pt, xry) “ r(pt)
Φ(pt, xry ` rs) “ Φ(r(pt), rs))

ΦM finds a local reduction minima by applying Φ exhaustively.

ΦM : UA ˆ xUA Ñ UAy Ñ UA

ΦM (pt, rs) “
{

ΦM (pt′, rs) if pt �“ pt′

pt otherwise

where pt′ “ Φ(pt, rs)

Both Φ and ΦM are guaranteed to terminate when used with reduction rules,
as the size of the input tree is monotonically decreasing. Informally, so long as
rules are chosen to preserve fidelity to the log, a minimal reducible model is
desirable. The degree to which fidelity is desirable can be controlled by which
rules are provided to the discovery algorithm. If a given ruleset is not confluent [7,
p10], finding a minimal model is not guaranteed and can depend on the sequence
in which the rules are applied.

Definition 7 (Toothpaste miner)

Given reduction rule sequence rs and GSLPN translation function gspn,

dtm : LˆxUA Ñ UAy → G
dtm(L, rs) “ gspn ◦ ΦM (tm(L), rs) is the direct toothpaste miner.

320 A. Burke et al.

Fig. 4. Discovery example using dtm.

Example. An example of model discovery is in Fig. 4, applying (and preview-
ing) rules from Sect. 4.3. The trace model in Fig. 4a has identical xa, by traces
consolidated in model Fig. 4b. The repeated c activities are summarized with a
fixed loop in Fig. 4c. Concurrency of events a and b is identified in Fig. 4d, and
a probabilistic loop is introduced in Fig. 4e. Finally the PPT is translated to a
GSPN in Fig. 4f.

Complexity. The computational complexity of the Φ algorithms depend on the
size of the PPT data structure. Function st produces a binary tree with 2|ti| ´ 1
nodes for each trace ti. The full trace model produced by tm adds a choice node,
for a total size (and memory complexity) of Σ(2|ti| ´ 1) ` 1 “ 2||L|| ´ |L| ` 1 or
O(||L||).

Discovering Stochastic Process Models by Reduction and Abstraction 321

The complexity of Φ depends on evaluating each node of the tree with reduc-
tion rules. If each sub-tree can be summarized with one traversal, the worst
case is comparing each node to each other node, giving O(Φ(UA, R)) “ |UA|2|R|
comparisons. Writing UL for the full PPT trace model produced by tm, this is
limited by (2||L||)2|R| or O(Φ(UL, R)) “ O(||L||2|R|).

Applying Φ exhaustively with ΦM requires executing this process a number
of times. So long as the rule list R is solely reduction rules, then the size of
the tree is monotonically decreasing. The worst case for time complexity is then
also the best case for model size reduction and is bounded by the size of the
trace model, 2||L||. This yields O(ΦM (L,R)) “ O(||L||3|R|). Translation to a
GSPN with the gspn function is linear in the size of the tree (see Table 1). The
overall worst-case time complexity is then dominated by the cubic term and is
O(||L||3|R|).

4.3 Transformation Rules

Probabilistic Process Trees may be manipulated using transformation rules. In
this section we organize and classify rules two ways: by information-preservation
(using quality criteria), and by impact on determinism. After introducing some
useful functions for merging and scaling PPTs, we then explain specific rules.

Classification by Quality Criteria. Transformation rules are classified using
process model quality criteria of fitness, precision, and simplicity [1, p. 189], and
by the criteria of stochastic information loss. Standard process model quality
criteria are control-flow criteria: they do not take the stochastic perspective into
account.

Consider log L with language LL and stochastic language ΣL, and model M
with language LM and stochastic language ΣM . Fitness is given by ft(LM , LL) “
|LMXLL|

|LL| . In defining precision, we have to account for infinitely many traces,
due to the �p construct [34]. Low-probability traces which are longer than the
number of events in the log are filtered out in truncated language LTM :

LTM “ {t P LM | |t| ă ||L|| ∨ ΣM (t) ą ε} where 0 ă ε ! 1

Precision is then given by pn(LM , LL) “ |LTMXLL|
|LTM | .

As a categorization tool for process model transformation rules, fitness and
precision are helpful in showing the loss or retention of information, even if they
are insensitive to stochastic information. The classification of reduction rules is
of particular interest, and necessary to maintain the monotonically simplifying
property of the discovery algorithm in Sect. 4.2. We categorize reduction rules in
four cuts: Preserving Compression, Fitness- and Precision-Preserving, Fitness-
Preserving, and Simplifying Lossy, as seen in Fig. 5. Another useful category of
rules, Preserving but Non-Simplifying, change model structure without reducing
the size of the model.

322 A. Burke et al.

Fig. 5. Rule categories by information preservation.

No Loss Of Fitness Or Precision Without Loss of Stochastic Information.
There are no categories of “Fitness- and Stochastic Information-Preserving But
Precision-Reducing” or “Precision- and Stochastic Information-Preserving but
Fitness Reducing” transformation rules. Let stochastic fidelity between stochas-
tic languages Σ1, Σ2 be ∀t P T ‚ Σ1(t) “ Σ2(t). Models that no longer have
stochastic fidelity have experienced stochastic information loss.

Theorem 1. It is not possible to maintain fitness and reduce precision without
also losing stochastic information from a model. Given log L, models M and M ′,
and corresponding stochastic languages ΣM , ΣM ′ :

ft(M,L) “ ft(M ′, L) ∧ pn(M,L) ą pn(M ′, L) “ñ Dt ‚ ΣM (t) �“ ΣM ′(t)

Proof. Let ΣL be the stochastic language for a trace model, which then has full
stochastic information from the log. Let M ′ be a second model covering language
LM ′ such that ft(M,L) “ ft(M ′, L) ∧ pn(M,L) ą pn(M ′, L). By the fitness
definition, |LMXLL|

|LL| “ |LM′ XLL|
|LL| . As precision decreases, there must therefore be

at least one new trace t P M ′ ∧ t /P M , which is equivalent to ΣM (t) “ 0 and
ΣM ′(t) ą 0. As probabilities must sum to one, some other trace s P M must
have reduced in probability. Ds P LM ‚ ΣM ′(s) ă ΣM (s).
Case 1: Stochastic fidelity had been retained. ΣM (s) “ ΣL(s) �“ ΣM ′(s).
Case 2: Stochastic fidelity already lost. ΣM (s) �“ ΣL(s). The trace t holds no
information for restoring stochastic information on s, as t is not an element of
the log L or covered by the original model M . �	

If |M ′|
|M | ă |LXM ′|

|LXM | , and a rule reduces fitness, then precision increases. This
defines a sub-category of Simplifying Lossy Rules, however no useful concrete
rules were found in this sub-category.

Classification by Determinism. PPTs are not constrained to describe deter-
ministic languages. Non-determinism arises when the next symbol in a trace will
satisfy multiple paths through a process tree. This can be shown trivially with the
tree ˆ(a : 1, a : 2). The trace model produced by function tm may also produce

Discovering Stochastic Process Models by Reduction and Abstraction 323

a non-deterministic tree, for example tm([xay, xa, by]) “ ˆ(a : 1, Ñ (a, b) : 1) : 2.
Determinism is a desirable property in an output model: it makes problems
such as parsing and calculating the most probable path easier [38], and some
important stochastic conformance techniques are constrained to deterministic
models [19]. In this section we describe functions for calculating the determin-
ism of a model, and how rules may preserve determinism.

As the operators Ñ,�n, and �p are all sequential in form, the only PPT
operators which may introduce non-determinism are ˆ and ∧. The function β
reports whether a tree is deterministic.

Let α : UA Ñ P(A) identify starting symbols
α(a : w) “ {a} where a P A

α(‘(U1, ..., Un) : w) “
⎧⎪⎨
⎪⎩

α(U1) where ‘ P {Ñ,�n,�p}
α(U1) Y ... Y α(Un) where ‘ “ ˆ
exp(U1) Y ... Y exp(Un) where ‘ “ ∧

Let αst : UA Ñ P(A) identify non-determinant sub-tree symbols
αst(a : w) “ H where a P A

αst(‘(U1, ..., Un) : w) “
{

α(U1) X ... X α(Un) where ‘ P {ˆ,∧}
α(‘(U1, ..., Un) : w) otherwise

Let β : UA Ñ B identify whether a tree is deterministic
β(U) where a P A

β(‘(U1, ..., Un) : w) “
{

∀i ‚ β(Ui) where ‘ P {Ñ,�n,�p}
αst(‘(U1, ..., Un) : w) “ H where ‘ P {ˆ,∧}

β(U) only has to visit each node at most once, so can complete in O(|U |)
time.

As PPTs are a subset of Probabilistic Finite Automata (PFAs), Determin-
istic Probabilistic Process Trees (DPPTs) are Stochastic Deterministic Finite
Automata (SDFAs) [38]. SDFAs are not closed under union [38] and DPPTs
combinations are not closed under ˆ; trivially, ˆ(a : 1, a : 2) combines two deter-
ministic sub-trees. However DPPTs have the useful property of being closed
under certain subsets of transformation rules.

Definition 8 (β-trap). A β-trap is a transformation rule which preserves
determinism: ∀U P UA, tr : xUA Ñ UAy ‚ tr is a β-trap ⇐ñ β(U) “ñ β(tr(U))

We use α and β to classify rules by their impact on determinism in Table 2.

Theorem 2. DPPTs are closed under reduction by β-trap rules, so will not
introduce non-determinism to a deterministic model.

Proof. From the definition of β and β-trap, β(U) “ñ β(tr(U)), so the compo-
sition of β-trap rules is itself a β-trap. �	

324 A. Burke et al.

Table 2. PPT transformation rule classification by impact on determinism, given
U ′ “ tr(U) for some rule tr.

Classification Definition Description

α-reducing α(U ′) Ď α(U) ∧ αst(U
′) Ď αst(U) Separates and restricts

relevant symbols

Non-optional No ˆ or ∧ Special case of α-stable

α-stable α(U ′) “ α(U) No change to relevant
symbols

β-trap β(U) “ñ β(U ′) Never introduces
non-determinism. Superset of
preceding types

DPPTs are closed under β-trap rule composition, but not tree composition.

Theorem 3. Application of α-stable or α-reducing rules to a sub-tree preserves
the determinism of the parent tree, but a β-trap rule may not.

Proof. Consider possible transformation rule nb(Ñ (a : 1, a : 1, b : 1)) “
ˆ(a : 1, b : 1). (Note this is not a rule used for our discovery algorithm.) The rule
preserves determinism, as β(nb(x)) ∧ β(x). However, α(ˆ(a : 1, b : 1)) “ {a, b} Ą
α(Ñ (a : 1, a : 1, b : 1) “ {a}.

For α-stable and α-reducing rules tr, for process tree ‘(U1, ..., Un), as ∀i ‚
α(tr(Ui)) Ď α(Ui), the intersection α(Ui)Xα(Uj) does not increase, so β(U) “ñ
β(tr(U)), the definition of a β-trap. �	

These results do not guarantee the discovery of a deterministic model, but
they do maintain the determinism of a reduced model once one is discovered.

Concrete Rules. The remainder of this section concerns concrete rules. We
use a, b P A for activities and u1, u2 P U to represent PPTs or sub-trees. Weights
are represented by vi, wi P R

`. Unweighted operators or activities are repre-
sented by x, y such that x : w, y : v P UA. In each subsection, we introduce the
information-preservation category, then each rule in the category. The impact
on determinism, using the system in Table 2, is also shown.

Helper Functions. These functions and relations help define transformation rules.
A scaling function, Γ (U, γ) multiplies every weight in the tree by γ. Γ pre-

serves α-stability. PPTs are similar, denoted ∼“c, when only weights need to be
changed to make them strictly equal.

A stochastic merge function, Ψ , combines two similar trees by adding weights,
�p repetitions being scaled by relative weight. Ψ preserves α-stability, and also
the control-flow fitness and precision of the input process trees, but loses stochas-
tic information, unless x “ y for Ψ(x, y).

Discovering Stochastic Process Models by Reduction and Abstraction 325

Parameter Consolidation (Preserving but non-simplifying). The following asso-
ciativity rules allow all PPTs to be transformed into equivalent trees with at
most two children per operator. In our Toothpaste miner algorithms, such rules
must only be used in combination with reduction rules, to maintain monotonic-
ity of reduction; they act as meta-rules which allow other rules to be stated more
concisely. We denote these rules as ⇐ñ . They are information-preserving and
perform no compression from left-to-right. They are all α-stable.

PC.1 Ñ (s1, s2, ..., sn) : w ⇐ñ Ñ (s1, Ñ (s2, ..., sn) : w) : w
PC.2 ˆ(s1 : w1, s2 : w2, ..., sn : wn) : v

⇐ñ ˆ(s1 : w1, ˆ(s2 : w2, ..., sn : wn) : v ´ w1) : v
PC.3 ∧(s1 : w1, s2 : w2, ..., sn : wn) : v

⇐ñ ∧(s1 : w1,∧(s2 : w2, ..., sn : wn) : v ´ w1) : v
PC.4 The ˆ and ∧ operators are commutative. ‘(u, v) “ ‘(v, u)

The remaining rules are accordingly stated using at most two operator
parameters.

Preserving Compressions. The following rules are information-preserving reduc-
tion rules, achieving compression by using a smaller tree to describe the same
stochastic language. They are denoted with ⇐ñs and are all non-optional deter-
ministic.

CO.1 Fixed loop identity. �1
n (u) : w ⇐ñs u : w. This is used in reverse in

FPL.7.
CO.2 Fixed Loop roll. Ñ (x, x) : w ⇐ñs �2

n (x) : w
Ñ (x,�m

n (x)) : w ⇐ñs�m`1
n (x) : w

Ñ (�m
n (x), x) : w ⇐ñs�m`1

n (x) : w
CO.3 Silent sequence. Ñ (u, τ) : w ⇐ñsÑ (τ, u) : w ⇐ñs u : w
CO.4 Silent concurrency. ∧(u : w, τ : v) : w ` v ⇐ñs Γ (u, w`v

w)
CO.5 Fixed loop nesting. �n

n (�m
n (u)) : w ⇐ñs�nm

n (u) : w

Fitness and Precision-Preserving With Stochastic Information Loss. For these
rules, stochastic information is preserved only where sub-trees are strictly equal,
as for Ψ . They are denoted with ñfps. The determinism properties vary by rule.

FP.1 Choice similarity reduction. Merge choices between structurally similar
trees. ˆ(u1, u2) ñfps Ψ(u1, u2) where u1

∼“c u2. This rule is α-stable.
FP.2 Choice folding. Pull up a common prefix into the head of a new sequence.

ˆ((Ñ (ux1, u2) : w1), (Ñ (ux2, u3) : w2) : w1 ` w2

ñfpsÑ (Ψ(ux1, ux2), ˆ(u2, u3)) : w1 ` w2 where ux1
∼“c ux2. This rule is

α-reducing. (Illustrated in Fig. 6).
FP.3 Choice folding suffixes ˆ((Ñ (u1, uy1) : w1), (Ñ (u2, uy2) : w2)) : w1 ` w2

ñfpsÑ (ˆ(u1, u2), Ψ(uy1, uy2)) : w1 ` w2 where uy1
∼“c uy2. This rule is

α-stable.
FP.4 Choice skip. A common head is pulled into a sequence with a choice

between the tail and a silent activity. ˆ(x1 : w1, Ñ (x2, y) : w2) : v
ñfpsÑ (Ψ(x1 : w1, x2 : w2), ˆ(y : w2, τ : w1)) : v where x1 : w1

∼“c x2 : w2.
This rule is α-reducing.

326 A. Burke et al.

Fig. 6. Choice folding transformation rule for shared prefixes FP.2.

FP.5 Choice skip suffix. ˆ(x1 : w1, Ñ (y, x2) : w2) : v
ñfpsÑ (ˆ(y : w2, τ : w1), Ψ(x1 : w1, x2 : w2)) : v where x1 : w1

∼“c x2 : w2.
This rule is α-stable.

FP.6 Concurrent similarity reduction. Similar concurrent subtrees reduce to
repetition. (∧(x1 : w, x2 : v) : w ` v)
ñfps�2

n (Ψ(x1 : w, x2 : v)) : w ` v) where x1
∼“c x2. This rule is α-stable.

FP.7 Concurrent subsumption. Sequences already recognized as concurrent are
pulled under that pattern. ˆ(Ñ (x1, y1) : w1,∧(x2 : w2, y2 : w3) : v)
ñfps ∧(Ψ(x1 : w1, x2 : w2), Γ (Ψ(y1 : w1, y2 : w3), w3

w1`w3
)) : v where x1

∼“c

x2 ∧ y1 ∼“c y2. This rule is α-stable.

Fitness-Preserving Lossy Reductions. These rules preserve control-flow fitness
of the input model with respect to a given log, but may reduce precision and
stochastic information. They are denoted with ñfs.

FPL.1 Concurrent reduction from choice sequences. Concurrency is inferred
when permutations of a given two-step sequence are seen. Generalizing
concurrency involves re-scaling the weights of the merged sub-trees.
ˆ(Ñ (ux1, uy1) : w, Ñ (uy2, ux2) : v) : w ` v
ñfs ∧(Γ (Ψ(ux1 : w, ux2 : v), w

w`v), Γ (Ψ(uy1 : w, uy2 : v), v
w`v) : w ` v

where ux1
∼“c ux2 ∧ uy1

∼“c uy2.
When sub-trees are compound (that is, not activities), and applied across
partial parameters, as in the binary statement here, there is concur-
rency generalization from a sample rather than complete evidence of
concurrency. E.g., traces xa, b, cy, xb, a, cy, xc, a, by are sufficient to reduce
to ∧(a : 1, b : 1, c : 1). As all activities are already present in both children
before the application of the rule, concurrent reduction is α-stable.

FPL.2 Geometric Abstraction. This rule combines fixed loops into a single prob-
abilistic loop. Consider ˆ(�m1

n (u1) : w1, ...,�mn
n (un) : wn) : v where

∀i, j � n ‚ ui
∼“c uj . By definition of ˆ, v “ Σn

1 wi. These loops are

Discovering Stochastic Process Models by Reduction and Abstraction 327

used as samples in a geometric probability distribution.

Probability of exit P “ Σn
1 wi

Σn
1 miwi

Mean repetitions ρ̄ “ 1
P

“ Σn
1 miwi

Σn
1 wi

Helper function μ averages n loops using a scaled fold with Ψ

ū “ μ(�m1
n (u1) : w1,...,�mn

n (un) : wn) “
�ρ̄

p (Γ (Ψ(Γ (u1,m1), Ψ(..., Γ (un,mn))), P) : v

Then ˆ (�m1
n (u) : w1,...,�mn

n (u) : wn) : v

ñfs μ(�m1
n (u) : w1, ...,�mn

n (u) : wn).

Geometric abstraction is non-optional deterministic.
FPL.3 Choice Loop roll. A tree is always a loop of length one, so can be incor-

porated in a loop by averaging. ˆ(x1 : w1,�ρ
p (x2) : w2)

ñfs�ρ̄
p (μ(�1

p (x1 : w1),�ρ
p (x2) : w2))) : w1 ` w2 given x1

∼“c x2 and
where ρ̄ “ w1`ρw2

w1`w2
. This rule is α-stable.

FPL.4 Fixed Loop of Probability loops. The sum of geometric distributions is a
negative binomial distribution. This rule approximates with a geometric
distribution of the same mean. �m

n (�ρ
p (x)) : w

ñfps�ρ(m´1)
p (x) : w where m ą 1.

The m “ 1 case is handled by Fixed loop identity CO.1. This rule is in
the non-optional determinism category.

FPL.5 Probability Loop of Fixed loops. �ρ
p (�m

n (x)) : w ñfps�mρ
p (x) : w.

This rule is in the non-optional determinism category.
FPL.6 Probabilistic Loop Nesting. �ρ1

p (�ρ2
p (x)) : w ñfps�ρ1ρ2

p (x) : w by the
product of expectations. This rule is in the non-optional determinism
category.

FPL.7 Loop Similarity Normalization. Loops are not similar to their subtrees by
∼“c. However loops and their children can be usefully consolidated with
some loss of information. Noting that �1

n (u) : w ⇐ñ u : w, we define
loop similarity ∼“L : UA ↔ UA:

u1
∼“L�ρ

p (u2) ô u1
∼“c u2

u1
∼“L�m

n (u2) ô u1
∼“c u2

Reduction rules using ∼“c each have a Fitness-Preserving Lossy (ñfs)
variation using ∼“L and replacement tree ū.

For rule parameters x1 : w1
∼“L�ρ

p (x2 : w2) : w2

�ρ′
p (ū) “ μ(�1

p (x1 : w1),�ρ
p (x2 : w2))

The consolidated tree ū may replace u1 and u2 in a transformation rule
tr where u1

∼“L u2 and the resulting rule application still results in tree
size reduction. Loop similarity is non-optional deterministic, but note the
rule it is applied to may have a weaker determinism category, which will
become the category of the final rule.

328 A. Burke et al.

Simplifying Lossy Reductions. The last rule category abstracts or summarizes
a PPT, from both a control flow and stochastic perspective, at the expense of
control-flow fitness and precision. Such rules are useful for the management of
noise and for allowing a user to tune the detail of the model for their specific
use case. They are denoted with ñs, with one rule in this category.

SL.1 Choice Pruning. ˆ(x : w1, y : w2) : v ñs x : v where w2
v ă ε for some sup-

plied probability threshold ε. This rule is α-reducing.

5 Incremental Discovery and Optimisations

A simple Toothpaste Miner was introduced in Sect. 4.2, but it can be limited
when applied to streams, very large event logs, or noisy data. Incremental process
model discovery is of interest for streams of events and very large event logs,
e.g. in [18]. Better models may be achieved through other optimizations while
maintaining tractability. Management of noise is another key process mining
challenge [1, p. 185], which alternative rulesets can address within the overall
Toothpaste Miner framework.

5.1 Incremental Discovery

The ΦΔ algorithm adds a new trace to the existing model and applies reduction
rules: ΦΔ : UA ˆ UA ˆ xUA Ñ UAy Ñ UA.

ΦΔ(x : w, tt : v, rs) “ ΦM (ˆ(x : w, tt : v) : w ` v, rs)

Definition 9 (Incremental Toothpaste Miner) Given trace t P xAy, rule
sequence rs, existing model UM P UA, and functions gspn and tm per Defini-
tion 7, incremental miner dinc : xAy ˆ xUA Ñ UAy ˆ UA Ñ (G ˆ UA) is:

dinc(t, rs, UM) “ (gspn(UM`1), UM`1), given UM`1 “ ΦΔ(UM , st(t), rs)
dinc(t, rs, H) “ (gspn(st(t)), st(t))

An entire event log L may be presented as a stream to dinc, resulting in
repeated invocations of ΦΔ.

Definition 10 (Repeated Incremental Toothpaste Miner).

di : L ˆ xUA Ñ UAy Ñ G
(di(L, rs), pt) “ dinc(t, rs, di(L ´ {t}, rs)), for some t P L

(di([t1], rs), pt) “ dinc(t, rs, H)

Discovering Stochastic Process Models by Reduction and Abstraction 329

5.2 Incremental Complexity

As for other Φ and dtm algorithms, the time complexity of di is dependent
on the size of the tree. For the first trace t1, the size of the initial model is
2|t1| ´ 1. In the worst case, the size of the process model increases over time, so
that subsequent traces ti add 2|ti| nodes each. The time for each run of ΦΔ is
2|ti|2|R|. The overall worse case size for a log L is then

Omem(di(L, rs)) “ Σ
|L|
i“12|ti||R| “ 2|R|Σ|L|

i“1|ti|
“ O(|R| · ||L||), by the definition of||L||

An upper bound for time complexity can be found using Lemma 1.

Lemma 1. For A Ď N, ΣaPAa2 � (ΣaPAa)2.

Proof. By induction over |A|; initial case |A| “ 1, for which a2 “ (a)2,

Show ΣaPAa2 � (ΣaPAa)2 “ñ ΣaPAY{b}a2 � (ΣaPAY{b}a)2

(ΣaPAY{b}a)2 “ (ΣaPAa ` b)2 “ (ΣaPAa)2 ` 2b(ΣaPAa) ` b2

ΣaPAa2 � (ΣaPAa)2 “ñ ΣaPAa2 ` b2 � (ΣaPAa)2 ` b2 ` 2b(ΣaPAa)

�	
Then, Otime(di(L, rs)) “ Σ

|L|
i“12|ti|2|R| “ 2|R|Σ|L|

i“1|ti|2 � 2|R|(Σ|L|
i“1|ti|)2 �

2|R|||L||2, by definition of ||L||. So Otime(di(L, rs)) � O(||L||2|R|).
Notably, the time complexity of the incremental algorithm di is quadratic,

rather than the cubic complexity of reducing the entire trace model at once with
dtm. Informally, the model is of a smaller size for more of the execution of the
algorithm, with the time savings compounding. An important design trade-off
remains, as stochastic information loss occurs with most reduction rules, and
some classes of rules cause more information loss than others.

5.3 K Retries

Finding the minimal model with Φ(pt, rs) would require checking all |rt|! per-
mutations of reduction rules, so becomes intractable even for relatively small
collections of rules. Rather than using the first full reduction, as in Definition 7,
exploring an alternative K permutations, for small constant K, may yield a
smaller model, without impacting computational complexity.

RK “{r P xUA Ñ UAy | ran r “ ran rs} ∧ |RK | “ K

ΦMK(pt, rs) “ pt′

where |pt′| “ min({c P N | Dp P UA, rs′ P RK ∧ c “ |Φ(p, rs′)|})

330 A. Burke et al.

Fig. 7. Teleclaims process model.

5.4 Noise and Lossy Rules

As discussed in Sect. 4.3, reduction rules may be categorized according to the
information loss they cause and their impact on process model quality criteria.
This can impact incremental or full-trace reduction algorithms, and information
losses may also compound with repeated rule applications. This is most severe
for the incremental algorithm dinc, as summary models are local on the log
presented so far, and do not benefit from the context of the full log.

As an example, the Choice Pruning rule SL.1 removes low probability activi-
ties. However, probabilities of activities will fluctuate when few traces have been
processed, and this may remove nodes which are actually well-represented across
a full log. Accordingly, discovery algorithm variant dc takes a cleanup ruleset as
a separate parameter, and performs a penultimate cleanup phase, applying the
cleanup rules only once.

Definition 11 (Toothpaste Miner with Cleanup (TMC))

Given primary ruleset rs and cleanup ruleset cl,

dc : L ˆ xUA Ñ UAyˆxUA Ñ UAy Ñ G
dc(L, rs, cl) “ ΦK(Φ(di(L, rs), cl), rs) is the TMC discovery algorithm

The allocation of rules to main or cleanup rulesets is implementation-
dependent.

6 Implementation and Evaluation

A prototype Toothpaste Miner was evaluated against existing stochastic process
mining techniques using real-world logs. Results show good log conformance
based on Earth-Movers distance [22], in feasible execution times, at the cost of
more complex models.

Discovering Stochastic Process Models by Reduction and Abstraction 331

6.1 Implementation

The prototype has been implemented in Haskell1, extending other open source
process mining tools [27]. Conversion from XES to a simpler, delimited text log
format is done using Python and pm4py [6]. The implementation uses binary
trees, to exploit the pattern-matching capabilities of Haskell. It maintains ∧ and
ˆ nodes in lexical order for cheaper comparisons, and to limit traversal distance
for similarity rules such as Choice similarity FP.1. Haskell allows for concise
expression of transformation rules, as in Listing 1.1.

Listing 1.1. Choice similarity FP.1

choiceSim : : (Eq a) => PRule a
choiceSim (Node2 Choice x y n)

| x =˜= y = merge x y
choiceSim x = x

The extensions of incremental dis-
covery and K retries are not included
in the prototype. The noise-reducing
choice pruning rule SL.1 is not
included, and loop similarity FPL.7
is only partially applied. All fixed
loops �n are converted to probabilis-

tic loops �p. Rules in Sect. 4.3 are otherwise included.

6.2 Evaluation Design

In order to evaluate the potential practical use of our technique, we compare
it to established stochastic discovery techniques in the literature. K-fold cross
validation (k “ 5) was used on three logs, and results compared using stochastic
quality criteria, simplicity and computation time, summarized in Table 3.

Table 3. Evaluation design

Logs Techniques Measures Environment

BPIC 2013 closed Toothpaste (this paper) tEMSC 0.8 [22] Windows 10

Sepsis GDT SPN Discovery [30] Entity count 2.3 GHz CPU

Teleclaims [1] walign-inductive [9] Computation time 50 Gb memory

walign-split [9] GHC 8.8.4

wfreq-inductive [9] JDK 1.8.0 222

wfreq-split [9] Python 3.8.3

wpairscale-split [9]

wpairscale-inductive [9]

Trace model

We evaluated all stochastic process discovery techniques where, to our
knowledge, a public implementation was available. GDT SPN discovery [30],
weight estimator [9] and Inductive Miner [20] implementations are from ProM

1 Source code is accessible at https://github.com/adamburkegh/toothpaste.

https://github.com/adamburkegh/toothpaste

332 A. Burke et al.

6.9 (development branch Jan 2021). Stochastic weight estimator combina-
tions were chosen where previous results [9] had shown meaningful differences.
Logs were selected to represent multiple domains. All logs are publicly avail-
able2. BPIC2013 and Sepsis are real-life logs, and Teleclaims is an established
dataset [1, p. 243].

Stochastic quality measures used were Earth Movers’ Distance (tEMSC) [22]
with 0.8 probability mass. Other stochastic measures such as [19] were restricted
to deterministic nets. Entity count is used to measure complexity.

6.3 Results and Discussion

A selection of evaluation results3 are shown in Table 4. The output from the
full Teleclaims log is shown in Fig. 7. For some k-fold logs and models, Earth
Movers’ Distance errored due to memory limits, or the calculation was timed
out after 5 h. No value reflects no result from any k-fold log; otherwise, partial
results from the remaining logs have been used.

The Toothpaste Miner prototype shows a trade-off of improved Earth Movers’
Distance against longer running times and higher model complexity. This is anal-
ogous to the trade-off of fitness and precision against complexity and run-time
often seen with region-based control-flow miners. For reference log Teleclaims, a
human-readable process model was discovered in four seconds.

Some rules did not fire during the evaluations, which suggests the value
of optimizations in Sect. 5.4, where certain rules are only applied during later
phases of discovery. Real-life logs show sensitivity to the ordering of choice rules
versus log formation rules, with marked model differences depending on rule
sequence. This may reflect the partial implementation of loop similarity FPL.7
in the prototype. For Teleclaims (see Fig. 7), some redundancy is apparent due
to prototype limitations in similarity identification for larger sub-trees.

On more challenging real-life logs, the prototype returned within two minutes,
a shorter time than the existing GDT SPN technique. For the BPIC2013 log,
the additional complexity did not achieve a marked quality improvement. For
the Sepsis log, it was able to retain a very similar tEMSC to the trace model
with a smaller entity footprint, though the final model is not human-readable.
The reductions used may form part of other discovery or conformance strategies,
say as a post-processing step.

2 BPIC2013 and sepsis logs: https://data.4tu.nl/. Teleclaims: http://www.
processmining.org/event logs and models used in book.

3 Full results are available at https://github.com/adamburkegh/toothpaste.

https://data.4tu.nl/
http://www.processmining.org/event_logs_and_models_used_in_book
http://www.processmining.org/event_logs_and_models_used_in_book
https://github.com/adamburkegh/toothpaste

Discovering Stochastic Process Models by Reduction and Abstraction 333

Table 4. Evaluation results.

Miner Log Duration (ms) Entities tEMSC 0.8

GDT SPN discovery BPIC2013 closed 203 25 0.387

Toothpaste BPIC2013 closed 3071 315 0.668

Trace BPIC2013 closed 31 2417 0.9334

walign-inductive BPIC2013 closed 194 6 0.6756

walign-split BPIC2013 closed 56 14 0

wfreq-inductive BPIC2013 closed 160 6 0.7346

wfreq-split BPIC2013 closed 18 14 0.6188

wpairscale-inductive BPIC2013 closed 18 6 0.7364

wpairscale-split BPIC2013 closed 15 14 0.8753

GDT SPN discovery Sepsis 10147434 95 –

Toothpaste Sepsis 84551 2992 0.7019

Trace Sepsis 25 5877 0.7029

walign-inductive Sepsis 497 40 –0

walign-split Sepsis 478 51 0.3645

wfreq-inductive Sepsis 178 40 –

wfreq-split Sepsis 25 51 0.5108

wpairscale-inductive Sepsis 34 40 0.6664

wpairscale-split Sepsis 37 51 –

GDT SPN discovery Teleclaims 453 60 –

Toothpaste Teleclaims 3564 121 –

Trace Teleclaims 61 17754 0.9771

walign-inductive Teleclaims 238 28 0.3529

walign-split Teleclaims 137 56 0.0931

wfreq-inductive Teleclaims 203 28 0.5105

wfreq-split Teleclaims 59 56 0.6301

wpairscale-inductive Teleclaims 62 28 0.5143

wpairscale-split Teleclaims 68 56 0.6299

7 Conclusion

Stochastic Petri Nets are powerful modelling tools with wide applicability. Auto-
matically discovered stochastic process models, in turn, can help understand
and improve organizations. In this paper we presented the Toothpaste Miner
framework for discovering and reasoning about stochastic process models in
the context of process mining. We shared both batch and incremental discov-
ery algorithms, showed they were computationally tractable, and would main-
tain determinism in models once such a model was discovered. A classification
scheme relating transformation rules and process mining quality measures was

334 A. Burke et al.

articulated. Lastly we discussed an implementation of the discovery technique,
with an empirical evaluation showing close to trace-model levels of similarity to
real-life logs, with significantly less required model entities.

Future work in this area may investigate algorithms guaranteed to output
deterministic stochastic models, simpler process models with better human-
readability, and solutions where the choice of ruleset allows for constraining
solutions by particular quality parameters. Other extensions could support addi-
tional statistical distributions and timed transitions.

References

1. van der Aalst, W.: Process Mining: Data Science in Action, 2nd edn. Springer-
Verlag, Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4 1

2. Anastasiou, N., Horng, T.C., Knottenbelt, W.: Deriving generalised stochastic
Petri net performance models from high-precision location tracking data. In: Pro-
ceedings of the 5th International ICST Conference on Performance Evaluation
Methodologies and Tools, pp. 91–100. ICST (Institute for Computer Sciences,
Social-Informatics and Telecommunications Engineering) (2011)

3. Baum, L.E., Petrie, T., Soules, G., Weiss, N.: A maximization technique occurring
in the statistical analysis of probabilistic functions of Markov chains. Ann. Math.
Stat. 41(1), 164–171 (1970), publisher: JSTOR

4. Bause, F., Kritzinger, P.: Stochastic Petri Nets: An Introduction to the Theory.
Vieweg+Teubner Verlag (2002)

5. Bellodi, E., Riguzzi, F., Lamma, E.: Statistical relational learning for workflow
mining. Intell. Data Anal. 20(3), 515–541 (2016)

6. Berti, A., van Zelst, S.J., van der Aalst, W.M.P.: Process mining for python
(PM4Py) : bridging the gap between process- and data science. In: ICPMD 2019,
ICPM Demo Track 2019 : proceedings of the ICPM Demo Track 2019, co-located
with 1st International Conference on Process Mining (ICPM 2019) : Aachen, Ger-
many, 24–26 June 2019 / edited by Andrea Burattin (Technical University of Den-
mark, Kgs. Lyngby, Denmark), Artem Polyvyanyy (The University of Melbourne,
Melbourne, Australia), Sebastiaan van Zelst (Fraunhofer Institute for Applied
Information Technology (FIT), Sankt Augustin, Germany). CEUR workshop pro-
ceedings, vol. 2374, pp. 13–16. RWTH Aachen, Aachen, Germany (June 2019),
backup Publisher: 1st International Conference on Process Mining, Aachen (Ger-
many), 24 June 2019–24 June 2019

7. Bezem, M., Klop, J., Barendsen, E., de Vrijer, R., Terese: Term Rewriting Systems.
Cambridge Tracts in Theoretical Computer Science. Cambridge University Press,
Cambridge (2003)

8. Breuker, D., Matzner, M., Delfmann, P., Becker, J.: Comprehensible Predictive
Models for Business Processes. MIS Q. 40(4), 1009–1034 (2016)

9. Burke, A., Leemans, S.J.J., Wynn, M.T.: Stochastic process discovery by weight
estimation. In: 2020 International Conference on Process Mining (ICPM) press
(2020)

10. Carmona, J., Cortadella, J., Kishinevsky, M.: New region-based algorithms for
deriving bounded petri nets. IEEE Trans. Comput. 59(3), 371–384 (2010)

11. Carrasco, R.C.: Accurate computation of the relative entropy between stochastic
regular grammars. RAIRO-Theor. Inform. Appl. 31(5), 437–444 (1997)

https://doi.org/10.1007/978-3-662-49851-4_1

Discovering Stochastic Process Models by Reduction and Abstraction 335

12. Carrasco, R.C., Oncina, J.: Learning stochastic regular grammars by means of a
state merging method. In: Carrasco, R.C., Oncina, J. (eds.) ICGI 1994. LNCS,
vol. 862, pp. 139–152. Springer, Heidelberg (1994). https://doi.org/10.1007/3-540-
58473-0 144

13. Fünfgeld, S., Holzäpfel, M., Frey, M., Gauterin, F.: Stochastic forecasting of vehicle
dynamics using sequential Monte Carlo simulation. IEEE Trans. Intell. Veh. 2(2),
111–122 (2017)

14. Geman, S., Geman, D.: Stochastic relaxation, gibbs distributions, and the bayesian
restoration of images. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-6(6), 721–
741 (1984)

15. Hu, H., Xie, J., Hu, H.: A novel approach for mining stochastic process model from
workflow logs. J. Comput. Inf. Syst. 7(9), 3113–3126 (2011)

16. Janssenswillen, G., Depaire, B., Faes, C.: Enhancing discovered process models
using Bayesian inference and MCMC. In: Proceedings of the 2020 BPI Workshop
(2020)

17. Leclercq, E., Lefebvre, D., El Medhi, S.O.: Identification of timed stochastic petri
net models with normal distributions of firing periods. IFAC Proc. 42(4), 948–953
(2009)

18. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Scalable process discovery
with guarantees. In: Gaaloul, K., Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q.
(eds.) CAISE 2015. LNBIP, vol. 214, pp. 85–101. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-19237-6 6

19. Leemans, S.J.J., Polyvyanyy, A.: Stochastic-aware conformance checking: an
entropy-based approach. In: Dustdar, S., Yu, E., Salinesi, C., Rieu, D., Pant,
V. (eds.) CAiSE 2020. LNCS, vol. 12127, pp. 217–233. Springer, Cham (2020).
https://doi.org/10.1007/978-3-030-49435-3 14

20. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38697-8 17

21. Leemans, S.J., Poppe, E., Wynn, M.T.: Directly follows-based process mining:
exploration & a case study. In: 2019 International Conference on Process Mining
(ICPM), pp. 25–32, June 2019

22. Leemans, S.J.J., Syring, A.F., van der Aalst, W.M.P.: Earth movers’ stochas-
tic conformance checking. In: Hildebrandt, T., van Dongen, B.F., Röglinger, M.,
Mendling, J. (eds.) BPM 2019. LNBIP, vol. 360, pp. 127–143. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-26643-1 8

23. Liesaputra, V., Yongchareon, S., Chaisiri, S.: Efficient process model discovery
using maximal pattern mining. In: Motahari-Nezhad, H.R., Recker, J., Weidlich, M.
(eds.) BPM 2015. LNCS, vol. 9253, pp. 441–456. Springer, Cham (2015). https://
doi.org/10.1007/978-3-319-23063-4 29

24. Maggi, F.M., Montali, M., Peñaloza, R.: Probabilistic conformance checking based
on declarative process models. In: Herbaut, N., La Rosa, M. (eds.) CAiSE 2020.
LNBIP, vol. 386, pp. 86–99. Springer, Cham (2020). https://doi.org/10.1007/978-
3-030-58135-0 8

25. Marsan, M.A., Balbo, G., Bobbio, A., Chiola, G., Conte, G., Cumani, A.: The
effect of execution policies on the semantics and analysis of stochastic Petri nets.
IEEE Trans. Softw. Eng. 15(7), 832–846 (1989)

26. Matsuno, H., Doi, A., Nagasaki, M., Miyano, S.: Hybrid petri net representation
of gene regulatory network. In: Biocomputing 2000, pp. 341–352. World Scientific,
December 1999

https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/3-540-58473-0_144
https://doi.org/10.1007/978-3-319-19237-6_6
https://doi.org/10.1007/978-3-319-19237-6_6
https://doi.org/10.1007/978-3-030-49435-3_14
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-030-26643-1_8
https://doi.org/10.1007/978-3-319-23063-4_29
https://doi.org/10.1007/978-3-319-23063-4_29
https://doi.org/10.1007/978-3-030-58135-0_8
https://doi.org/10.1007/978-3-030-58135-0_8

336 A. Burke et al.

27. Mokhov, A., Carmona, J., Beaumont, J.: Mining conditional partial order graphs
from event logs. In: Koutny, M., Desel, J., Kleijn, J. (eds.) Transactions on Petri
Nets and Other Models of Concurrency XI. LNCS, vol. 9930, pp. 114–136. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-53401-4 6

28. Moreira, C., Haven, E., Sozzo, S., Wichert, A.: Process mining with real world
financial loan applications: improving inference on incomplete event logs. PLOS
ONE 13(12), e0207806 (2018)

29. Polyvyanyy, A., Moffat, A., Garćıa-Bañuelos, L.: An Entropic Relevance Mea-
sure for Stochastic Conformance Checking in Process Mining. arXiv e-prints 2007.
arXiv:2007.09310 (Jul 2020)

30. Rogge-Solti, A., van der Aalst, W.M.P., Weske, M.: Discovering stochastic petri
nets with arbitrary delay distributions from event logs. In: Lohmann, N., Song, M.,
Wohed, P. (eds.) BPM 2013. LNBIP, vol. 171, pp. 15–27. Springer, Cham (2014).
https://doi.org/10.1007/978-3-319-06257-0 2

31. Rogge-Solti, A., Weske, M.: Prediction of business process durations using non-
Markovian stochastic Petri nets. Inf. Syst. 54, 1–14 (2015)

32. Secretary, I.C.: Information technology - Z formal specification notation - Syntax,
type system and semantics. Standard, International Organization for Standardiza-
tion, Geneva, CH (March 2002), volume: (2002)

33. Silva, R., Zhang, J., Shanahan, J.G.: Probabilistic workflow mining. In: Proceedings
of the Eleventh ACM SIGKDD International Conference on Knowledge Discovery
in Data Mining, pp. 275–284. KDD 2005. Association for Computing Machinery,
Chicago, Illinois, USA, August 2005

34. Tax, N., Lu, X., Sidorova, N., Fahland, D., van der Aalst, W.M.P.: The impreci-
sions of precision measures in process mining. Inf. Process. Lett. 135, 1–8 (2018).
https://doi.org/10.1016/j.ipl.2018.01.013

35. Thierry-Mieg, Y.: Structural reductions revisited. In: Janicki, R., Sidorova, N.,
Chatain, T. (eds.) PETRI NETS 2020. LNCS, vol. 12152, pp. 303–323. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-51831-8 15

36. Thollard, F., Dupont, P., De La Higuera, C.: Probabilistic DFA inference using
Kullback-Leibler divergence and minimality, pp. 975–982, June 2000

37. Verwer, S., Eyraud, R., De La Higuera, C.: PAutomaC: a probabilistic automata
and hidden Markov models learning competition. Mach. Learn. 96(1–2), 129–154
(2014)

38. Vidal, E., Thollard, F., de la Higuera, C., Casacuberta, F., Carrasco, R.: Prob-
abilistic finite-state machines - part II. IEEE Trans. Pattern Anal. Mach. Intell.
27(7), 1026–1039 (2005)

39. Vidal, E., Thollard, F., Higuera, C.d.l., Casacuberta, F., Carrasco, R.C.: Prob-
abilistic finite-state machines - part I. IEEE Trans. Pattern Anal. Mach. Intell.
27(7), 1013–1025 (2005)

40. Wang, X., Chen, G., Zhao, Q., Guo, Z.: Reduction of stochastic petri nets for reli-
ability analysis. In: 2007 8th International Conference on Electronic Measurement
and Instruments, pp. 1-222–1-226, August 2007, iSSN: null

41. Weisberg, M.: Simulation and Similarity : Using Models to Understand the World.
Oxford University Press, Oxford (2013)

42. Zhou, M., Venkatesh, K.: Modeling, Simulation, and Control of Flexible Manufac-
turing Systems: A Petri Net Approach. World Scientific (1999)

https://doi.org/10.1007/978-3-662-53401-4_6
http://arxiv.org/abs/2007
http://arxiv.org/abs/2007.09310
https://doi.org/10.1007/978-3-319-06257-0_2
https://doi.org/10.1016/j.ipl.2018.01.013
https://doi.org/10.1007/978-3-030-51831-8_15

Reachability and Partial Order

Efficient Algorithms for Three
Reachability Problems in Safe Petri Nets

Pierre Bouvier(B) and Hubert Garavel(B)

Univ. Grenoble Alpes, INRIA, CNRS, Grenoble INP LIG, 38000 Grenoble, France
{pierre.bouvier,hubert.garavel}@inria.fr

Abstract. We investigate three particular instances of the marking cov-
erability problem in ordinary, safe Petri nets: the Dead Places Problem,
the Dead Transitions Problem, and the Concurrent Places Problem. To
address these three problems, which are of practical interest, although
not yet supported by mainstream Petri net tools, we propose a combina-
tion of static and dynamic algorithms. We implemented these algorithms
and applied them to a large collection of 13,000+ Petri nets obtained
from realistic systems—including all the safe benchmarks of the Model
Checking Contest. Experimental results show that 95% of the problems
can be solved in a few minutes using the proposed approaches.

1 Introduction

The present article focuses, in the framework of ordinary, safe Petri nets, on three
related problems: the Dead Place Problem, which searches for all places that are
never marked, the Dead Transition Problem, which searches for all transitions
that can never fire, and the Concurrent Places Problem, which searches for all
pairs of places that get a token in some reachable marking.

The two former problems characterize those parts of a net that are never
active, and are thus relevant for simplifying complex Petri nets, especially those
generated automatically from higher-level formalisms such as process calculi.
The latter problem characterizes those parts of a net that can be simultaneously
active, and plays a crucial role in the conversion of an ordinary, safe Petri net
into an equivalent network of automata (see, e.g., [2]), an operation that opens
the way to a compositional expression of Petri nets using process calculi.

The present article is organized as follows. Section 2 introduces the three
problems, discussing their practical usefulness and theoretical complexity.
Section 3 explains why mainstream model checkers are not optimal for these
problems and presents the dedicated software tools that implement our algo-
rithms, as well as the comprehensive set of models used to evaluate these algo-
rithms. Section 4 describes various algorithms for the Dead Place Problem and
the Dead Transition Problem, and reports about their performance when applied
to the set of models. Section 5 does the same as Sect. 4 for the Concurrent Places
Problem. Finally, Sect. 6 gives concluding remarks.

c© Springer Nature Switzerland AG 2021
D. Buchs and J. Carmona (Eds.): PETRI NETS 2021, LNCS 12734, pp. 339–359, 2021.
https://doi.org/10.1007/978-3-030-76983-3_17

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76983-3_17&domain=pdf
https://doi.org/10.1007/978-3-030-76983-3_17

340 P. Bouvier and H. Garavel

2 Problem Statement

2.1 Basic Definitions

We briefly recall the usual definitions of Petri nets and refer the reader to classical
surveys for a more detailed presentation of Petri nets.

Definition 1. A (marked) Petri Net is a 4-tuple (P, T, F,M0) where:

1. P is a finite, non-empty set; the elements of P are called places.
2. T is a finite set such that P ∩T = ∅; the elements of T are called transitions.
3. F is a subset of (P × T) ∪ (T × P); the elements of F are called arcs.
4. M0 is a non-empty subset of P ; M0 is called the initial marking.

Notice that the above definition only covers ordinary nets (i.e., it assumes all
arc weights are equal to one). Also, it only considers safe nets (i.e., each place
contains at most one token), which enables the initial marking to be defined as
a subset of P , rather than a function P → N as in the usual definition of P/T
nets. We now recall the classical firing rules for ordinary safe nets.

Definition 2. Let (P, T, F,M0) be a Petri Net.

– A marking M is defined as a set of places (M ⊆ P). Each place belonging to
a marking M is said to be marked or, also, to possess a token.

– The pre-set of a transition t is the set of places •t def= {p ∈ P | (p, t) ∈ F}.
– The post-set of a transition t is the set of places t• def= {p ∈ P | (t, p) ∈ F}.
– A transition t is enabled in some marking M iff •t ⊆ M .
– A transition t can fire from some marking M1 to another marking M2 iff t is

enabled in M1 and M2 = (M1 \ •t) ∪ t•, which we write as M1
t−→ M2.

– A marking M is reachable from the initial marking M0 iff M = M0 or there
exist n ≥ 1 transitions t1, ..., tn and (n− 1) markings M1, ...,Mn−1 such that
M0

t1−→ M1
t2−→ M2 ... Mn−1

tn−→ M , which we write as M0
∗−→ M .

We then recall the basic definition of a NUPN, referring the interested reader to
[5] for a complete presentation of this model of computation.

Definition 3. A (marked) Nested-Unit Petri Net (acronym: NUPN) is a 8-tuple
(P, T, F,M0, U, u0,�, unit) where (P, T, F,M0) is a Petri net, and where:

5. U is a finite, non-empty set such that U ∩ T = U ∩ P = ∅; the elements of
U are called units.

6. u0 is an element of U ; u0 is called the root unit.
7. � is a binary relation over U such that (U,) is a tree with a single root u0,

where (∀u1, u2 ∈ U) u1 	 u2
def= u2 � u1; intuitively1, u1 � u2 expresses that

unit u1 is transitively nested in or equal to unit u2.

1 � is reflexive, antisymmetric, transitive, and u0 is the greatest element of U for �.

Efficient Algorithms for Three Reachability Problems in Safe Petri Nets 341

8. unit is a function P → U such that (∀u ∈ U \ {u0}) (∃p ∈ P) unit (p) = u;
intuitively, unit (p) = u expresses that unit u directly contains place p.

Because NUPNs merely extend Petri nets by grouping places into units, they
do not modify the Petri-net firing rules for transitions: all the concepts of Def-
inition 2 for Petri nets also apply to NUPNs, so that Petri-net properties are
preserved when NUPN information is added. Finally, we recall a few useful
NUPN concepts [5]:

Definition 4. Let N = (P, T, F,M0, U, u0,�, unit) be a NUPN.

– The predicate disjoint (u1, u2)
def= (u1 �� u2) ∧ (u2 �� u1) characterizes pairs of

units neither equal nor nested one in the other.
– A marking M ⊆ P is said to be unit safe iff (∀p1, p2 ∈ M) (p1 �= p2) ⇒

disjoint (unit (p1), unit (p2)), i.e., all the places of a unit-safe marking are con-
tained in disjoint units.

– The NUPN N is said to be unit safe iff its underlying Petri net (P, T, F,M0)
is safe and all its reachable markings are unit safe.

– N is said to be trivial iff its number of leaf units equals its number of places,
meaning that N carries no more NUPN information than a Petri net.

2.2 The Dead Places Problem

Definition 5. Let (P, T, F,M0) be a Petri Net. A place p ∈ P is dead if there
exists no reachable marking containing p.

A more general definition is given in [4, Def. 4.16], where a place p is said to
be dead at a marking M if it is not marked at any marking reachable from M .
Our definition only considers the case where the net is safe and p is dead at the
initial marking M0.

In the present article, we will carefully avoid using the word live, because it is
not the negation of dead according to the standard definition given in Petri-net
literature, namely: a place p is live if, for any reachable marking M , there exists
a marking M ′ that contains p and is reachable from M . Thus, any live place is
not dead, but a non-dead place is not necessary live.

Definition 6. Given a Petri net (P, T, F,M0), the Dead Places Problem con-
sists in finding all the dead places. Equivalently, this problem consists in com-
puting a vector of |P | bits such that, for each place p, the bit corresponding to p
in the vector is equal to one iff p is dead.

2.3 The Dead Transitions Problem

Definition 7. Let (P, T, F,M0) be a Petri Net. A transition t ∈ T is dead if
there exists no reachable marking in which t is enabled.

342 P. Bouvier and H. Garavel

The above definition is a particular case, for the initial marking M0, of the
definition given in [4, Def. 4.16], where a transition t is dead at a marking M if
t is not enabled in any marking reachable from M .

Again, to avoid confusion, we will not use the word live throughout the
present paper, as there exist multiple notions of liveness for transitions, e.g., L1-
live, L2-live, L3-live, and L4-live [13, Sect. IV.C]; in our context, the negation of
dead is not live, which means L4-live and is a too strong property, but L1-live,
also known as quasi-live.

Definition 8. Given a Petri net (P, T, F,M0), the Dead Transitions Problem
consists in finding all the dead transitions. Equivalently, this problem consists
in computing a vector of |T | bits such that, for each transition t, the bit corre-
sponding to t in the vector is equal to one iff t is dead.

Notice that this problem is different from the deadlock freeness problem: a
net has a deadlock if there exists a reachable marking in which no transition is
enabled, whereas a net has a dead transition if there exists a transition that is
not enabled in any reachable marking.

Notice that this problem is also different from the net quasi-liveness problem:
asking whether a net is quasi-live only calls for a Boolean answer, whereas the
Dead Transitions Problem calls for a vector of Booleans. The latter problem is
more general, as the net is quasi-live iff the solution of the Dead Transitions
Problem is a vector of zeros. In practice, when studying a complex net, quasi-
liveness is not sufficient, as one needs to know the exact set of dead transitions.

In practice, the Dead Places and Dead Transition Problems are relevant for
several reasons. These problems are instances, with respect to Petri nets, of the
more general dead code problem in software engineering. Dead code is generally
considered as a nuisance for readability and maintenance, so that most software
methodologies recommend to get rid of dead code. This is also the case for Petri
nets in industrial automation, as the Grafcet specification prohibits Sequential
Function Charts containing “unreachable” branches (i.e., Petri nets with dead
places or dead transitions).

In model-checking verification, dead places and dead transitions are likely to
increase the cost (in memory and time) of verification. Moreover, many global
properties of a net can be changed to true or to false just by adding dead places
and/or dead transitions. This may disturb structural analyses or net transforma-
tions, by invalidating certain “good” properties (e.g., free choice) and thus lead
to incorrect transformations or prevent the application of efficient algorithms
relying on such properties. It is therefore important to detect and eliminate
dead places and dead transitions to only consider a truly “minimal” Petri net.

2.4 The Concurrent Places Problem

Definition 9. Let (P, T, F,M0) be a Petri Net. Two places p1 and p2 are concur-
rent, which we write as p1 ‖ p2, if there exists a reachable marking M containing
both p1 and p2.

Efficient Algorithms for Three Reachability Problems in Safe Petri Nets 343

Proposition 1. The relation ‖ is symmetric and quasi-reflexive. It is reflexive
iff the net has no dead place.

Proof. Symmetry and quasi-reflexivity follow from Definition 9. As for reflex-
ivity, a place is concurrent with itself iff it is not dead. Notice that both the
relation ‖ and its negation ∦ are neither transitive nor intransitive (since they
are not irreflexive).

The relation ‖ can be found in the literature under various names: coexistency
defined by markings [9, Sect. 9], concurrency relation [7,10–12,15], concurrency
graph [16], etc. These definitions differ by details, such as the kind of Petri
nets considered or the handling of reflexivity, i.e., whether and when a place is
concurrent with itself or not. For instance, [9] defines that p ‖ p is always false,
while [10] defines that p ‖ p is true iff there exists a reachable marking in which
place p has at least two tokens.

Although the concurrency relation can easily be defined on non-ordinary,
non-safe nets (see, e.g., [10]), this is of limited interest. For instance, consider a
Petri net that is a state machine, with an initial marking M0 containing a single
place p0, and all the places reachable from p0: if there is initially a single token in
p0, each place is non-concurrent with each other, but as soon as there is initially
more than one token in p0, all the places become pairwise concurrent.

Definition 10. Given a Petri net (P, T, F,M0), the Concurrent Places Problem
consists in finding all pairs of concurrent places. Equivalently, since the concur-
rency relation is symmetric, this problem consists in computing a half matrix of
|P |(|P | + 1)/2 bits such that, for each two places p1 and p2, the corresponding
bit in the half matrix is equal to one iff p1 ‖ p2.

As mentioned above, solving the Concurrent Places Problem is practically
useful, e.g., for decomposing a Petri net into a network of automata [2].

2.5 Complexity

Proposition 2. The Dead Places Problem is a subproblem of the Dead Transi-
tion Problem.

Proof. Given the set of dead transitions, one can easily compute the set of dead
places. Indeed, each non-dead place belongs to the initial marking and/or the
post-set of at least one non-dead transition. Notice that the converse does not
hold, as the set of dead transitions cannot be directly inferred from the set of
dead places.

Proposition 3. The Dead Places Problem is a subproblem of the Concurrent
Places Problem.

Proof. The diagonal of the Concurrent Places half matrix is the negation of the
Dead Places vector.

344 P. Bouvier and H. Garavel

Proposition 4. The Dead Places Problem, the Dead Transition Problem, and
the Concurrent Places Problem are subproblems of the marking coverability prob-
lem, which is the problem of deciding whether a given marking is included in some
reachable marking of a given Petri net.

Proof. Given a set of places M , let R(M) be the predicate: does it exist a reach-
able marking containing all the places of M? The Dead Places Problem can be
expressed as: for each place p of the net, decide R({p}). The Dead Transitions
Problem can be expressed as: for each transition t, decide R(•t). The Concur-
rent Places Problem can be expressed as: for each two places p1 and p2, decide
R({p1, p2}).

Proposition 5. On safe nets, the Dead Places Problem, the Dead Transition
Problem, and the Concurrent Places Problem are PSPACE-complete.

Proof. One knows from [3, Th. 15] that the marking coverability problem is
PSPACE-complete on safe nets. Although the Dead Places Problem is a sub-
problem of the marking coverability problem (see Proposition 4), its complexity
is not lower: given a net N , let N ′ be the net consisting of N to which one adds
a new place p and a new transition t such that •t = M and t• = {p}; if N is
safe, then N ′ is also safe; deciding R(p) in N ′ requires to decide whether M is
coverable in N . Given that the Dead Place Problem is a subproblem of the Dead
Transition Problem (see Proposition 2) and of the Concurrent Places Problem
(see Proposition 3), the two latter problems are also PSPACE-complete on safe
nets.

2.6 Complete vs Incomplete Solutions

Because the three aforementioned problems are PSPACE-complete, there will
always be Petri nets large enough to prevent the computation of exhaustive
solutions on a given computer. Rather than an “all or nothing” approach (in
which an algorithm is considered to fail if it cannot compute all the dead places,
dead transitions, or concurrent places of a given net), one should consider more
pragmatic approaches in which an algorithm may stop or be halted after com-
puting only a part of the solution, still leaving some results unknown.

Concretely, this means that the vectors of dead places and dead transitions,
and the half matrices of concurrent places should contain three-valued logical
results (zero, one, or unknown) rather than mere Boolean results. A solution is
said to be incomplete if it contains unknown values, or complete otherwise. An
efficient algorithm should produce as few unknown results as possible in a given
lapse of time.

For the Dead Places Problem and Dead Transitions Problems, an incomplete
solution can be turned into a complete one by replacing all unknown values by
zeros, meaning that places and transitions are considered to be dead only if this
has been positively proven.

For the Concurrent Places Problem, the elimination of unknown values
depends on the context. For instance, the decomposition of safe Petri nets

Efficient Algorithms for Three Reachability Problems in Safe Petri Nets 345

into automata networks [2] can work with incomplete half matrices, in which
it replaces unknown values by ones—meaning that two places are assumed by
default to be concurrent unless proven otherwise. Under such a pessimistic
assumption, the algorithms that produce zeros in the half matrix are clearly
more useful than the algorithms that produce ones. However, they may exist
other applications based upon optimistic assumptions about concurrency, for
which the latter kind of algorithms would be preferable.

3 Implementation and Experimentation

3.1 Relation to Temporal Logic

Given that our three reachability problems are particular instances of the mark-
ing coverability problem, one way to solve these problems is to encode them in
temporal logic (e.g., CTL or LTL formulas) and to submit them to an existing
model checker for Petri nets, e.g., one of those competing every year at the Model
Checking Contest [1]. However, such an approach is not practical:

– The number of temporal-logic formulas required for each problem is linear or
quadratic in the size of the Petri net—respectively, |P |, |T |, and |P |(|P |+1)/2.
This is generally too large to be done manually, so one has to develop ad hoc
tools that build these formulas (generating a huge file or a large number of
small files), invoke a model checker on each of these formulas, then collect
and aggregate the results of these invocations.

– Invoking a model checker repeatedly to evaluate hundreds or thousands of
formulas on the same Petri net is inefficient. At each invocation, the formula
and the net are parsed, checked for correctness, and translated from concrete
syntax to internal abstract representation: most of these steps are redundant
given that all formulas are alike and correct by construction.

We thus believe that, although the three aforementioned problems can be
reduced to the evaluation of temporal-logic formulas, it is better to express these
problems at a higher level, namely by equipping Petri-net tools with built-in
options (e.g., -dead-places, -dead-transitions, and -concurrent-places)
dedicated to these problems. Not only such options would be easier for tool
users, but they would also give tool developers more freedom to choose the most
efficient approach(es).

For a tool based on some temporal logic, such options would allow a major
boost in performance: (i) they could produce the formulas in the most appropri-
ate temporal logic supported by the tool; (ii) they could generate the formulas
directly in the internal abstract representation, thus saving the cost of writing
intermediate files and later parsing these files; (iii) they would also save the
cost of correctness checking, since the generated formulas would be known to be
correct by construction; (iv) the Petri-net model would be read and analyzed
only once; (v) because the tool knows in advance how many formulas are to be
evaluated on this Petri net, it can try applying preliminary simplifications (e.g.,

346 P. Bouvier and H. Garavel

structural reductions) and sophisticated optimizations to this model; (vi) the
tool may profitably consider using global model checking (i.e., building the set
of reachable markings first, then evaluating all the formulas on this state space)
whereas, for a single formula, local model checking (i.e., on-the-fly evaluation
that only explores a fragment of the state space relevant to the formula) is often
the default choice.

If temporal logics are one possible way to address the three aforementioned
problems, they are not the only way. The remainder of this article presents
alternative approaches, whose algorithms are implemented in software tools.

3.2 Software Tools and File Formats

We implemented our proposed algorithms in two different tools:

– CÆSAR.BDD2 is a verification tool for Petri nets and NUPNs. It is written
in C (10,400 lines of code), uses the CUDD library for Binary Decision Dia-
grams, and is available as part of the CADP toolbox. CÆSAR.BDD provides
many functionalities, among which solutions for the three aforementioned
problems. For instance, it is routinely used to remove dead transitions from
large interpreted Petri nets automatically generated from specifications writ-
ten in higher-level languages such as LOTOS, LNT, AADL, etc.

– ConcNUPN is a prototype written in Python (730 lines of code) that imple-
ments algorithms for the three aforementioned problems and a few other
functionalities. It is used to quickly prototype new ideas and to cross-check
the results produced by CÆSAR.BDD.

Both tools take as input a file in the NUPN format3 [5, Annex A], which pro-
vides a concise, human-readable representation for ordinary, safe Petri nets. Two
translators4 automatically convert the NUPN format to the standard PNML for-
mat [8] and vice versa.

Depending on the option given (-dead-places, -dead-transitions, or
-concurrent-places), the tools produce as output a vector or a half matrix.
Both are encoded in the same textual format [6, Sect. 8 and A] made up of one
or more lines containing the characters “0”, “1”, and “.”, the latter representing
unknown values. If the input net is an non-trivial NUPN, some values “0” and
“.” in the half matrix may be replaced by other characters giving additional
information about the NUPN structure. Because half matrices can get large, a
run-length compression scheme5 is used, which, on average, divides by 2.4 the
size of vectors and by 214 the size of half matrices—a reduction factor of 4270
was even observed on very large half matrices.

2 http://cadp.inria.fr/man/caesar.bdd.html.
3 http://cadp.inria.fr/man/nupn.html.
4 http://cadp.inria.fr/man/caesar.bdd.html (when invoked with “-pnml” option) and

http://pnml.lip6.fr/pnml2nupn.
5 http://cadp.inria.fr/man/caesar.bdd.html (see compression/decompression).

http://cadp.inria.fr/man/caesar.bdd.html
http://cadp.inria.fr/man/nupn.html
http://cadp.inria.fr/man/caesar.bdd.html
http://pnml.lip6.fr/pnml2nupn
http://cadp.inria.fr/man/caesar.bdd.html

Efficient Algorithms for Three Reachability Problems in Safe Petri Nets 347

3.3 Data Sets

To perform our experiments, we used a collection of 13,116 models in NUPN for-
mat. Most of these models are derived from “realistic” specifications (i.e., nets
obtained from industrial problems described by humans in high-level languages,
rather than randomly generated Petri nets). Our collection contains all the ordi-
nary, safe models from the former PetriWeb collection and from the 2020 edition
of Model Checking Context6.

A statistical survey confirms the diversity of our collection. The upper part
of Table 1 gives the percentage of models that satisfy various (structural and
behavioural) net properties, including the percentage of nets that are non-trivial
NUPNs known to be unit safe (and thus, safe) by construction. The lower part
of the table gives information about the size of the models: number of places,
transitions, and arcs, as well as arc density, which we define as the number of
arcs divided by twice the product of the number of places and the number of
transitions, i.e., the amount of memory needed to store the arc relation as a pair
of place×transition matrices.

Table 1. Structural, behavioural, and numerical properties of our models

Property Yes No

Pure 62.9% 37.1%

Free Choice 41.3% 58.7%

Extended free choice 42.7% 57.3%

Marked graph 3.5% 96.5%

State machine 12.1% 87.9%

Property Yes No

Connected 94.0% 6.0%

Strongly connected 14.3% 85.7%

Conservative 16.5% 83.5%

Sub-conservative 29.7% 70.3%

Non trivial and unit safe 67.7% 32.3%

Feature Min value Max value Average Median Std deviation

#places 1 131,216 282.4 15 2,690

#transitions 0 16,967,720 9,232.8 20 270,287

#arcs 0 146,528,584 72,848 55 2,141,591

Arc density 0.0% 100.0% 14.5% 9.4% 0.2

4 Algorithms for Dead Places and Dead Transitions

This section discusses various algorithms for the Dead Places and Dead Transi-
tion Problems, both of which are addressed together as they are largely similar.

4.1 Marking Graph Exploration

The easiest (at least, conceptually) way of computing the dead places and dead
transitions of a safe Petri net is to follow the global model checking approach
6 http://mcc.lip6.fr/models.php.

http://mcc.lip6.fr/models.php

348 P. Bouvier and H. Garavel

mentioned in Sect. 3.1 by first exploring all the reachable markings, and then
examining whether, during this exploration, some places have never been marked
or some transitions have never been fired.

If the state space can be explored entirely, one obtains the complete vectors
for dead places and dead transitions. If the state space is too large for being
exhaustively generated, these vectors only contain zeros and unknown values,
but no ones.

Actually, one can often avoid generating the state space entirely, still obtain-
ing complete vectors. This can be achieved using algorithmic shortcuts, which
stop the exploration as soon as all the information needed has been determined,
following the idea of on-the-fly verification. For dead transitions, there is one
shortcut: the exploration can stop if each transition has been fired at least once,
meaning that the net is quasi-live. For dead places, there are two shortcuts: the
exploration can stop if each place has been marked, meaning that there are no
dead places, or if each transition has been fired at least once, meaning that a
place never marked so far cannot receive a token from further transition firings.

These ideas have been implemented as follows in the CÆSAR.BDD tool.
Reachable markings are represented using Binary Decision Diagrams, as sym-
bolic exploration proved, in the case of safe Petri nets, to be much more efficient
than explicit-state exploration. If the input net is a non-trivial NUPN and is
known to be unit-safe by construction, CÆSAR.BDD takes advantage of this
information to significantly reduce the number of Boolean variables needed to
encode reachable markings [5, Sect. 6]. The user can limit state-space construc-
tion by specifying a timeout or giving an upper bound on the depth of explo-
ration. Observing which transitions have been fired is easy, as CÆSAR.BDD fires
each transition separately (like in explicit-state exploration) rather than building
a single BDD that encodes all the transition relation. Shortcuts are simply imple-
mented using decreasing counters that store the number of remaining unknown
values in the solution vectors.

4.2 Structural Rules

Marking-graph exploration is a brute-force approach, which may fail on large
nets, yielding incomplete vectors. We now examine complementary algorithms
of a lower complexity, which take as input a vector containing unknown values
and produce as output the same vector in which some unknown values have
been replaced by zeros or ones—meaning that all previously known values are
preserved. In this section, we present such an algorithm based on eight simple
“structural” rules (Proposition 6–13) that can decide whether certain places or
transitions are dead or not.

Proposition 6. Any place belonging to the initial marking M0 is not dead.

Proposition 7. Any transition having no input place and no output place is
not dead.

Efficient Algorithms for Three Reachability Problems in Safe Petri Nets 349

The two next rules exploit the properties of safeness (we only consider Petri nets
that are expected to be safe) and unit safeness (a large proportion of our models
are known to be unit safe by construction—see Sect. 3.3) to characterize certain
classes of dead transitions.

Proposition 8. If the net is safe, any transition whose input places form a
strict subset of the output places is dead.

Notice that, if a transition has no input place and at least one output place, the
net is not safe, as this transition can fire indefinitely often, accumulating tokens
in its output places.

Proposition 9 (from [5] Proposition 8). If the net is unit safe, any transi-
tion having at least two input (resp. two output) places located in two non-disjoint
NUPN units is dead.

The four last rules allow to propagate, in certain cases, the fact that a place
(resp. a transition) is dead or not dead to its adjacent transitions (resp. places).

Proposition 10 (from [4] Proposition 4.17(3)). If a place p is dead, all the
transitions of •p ∪ p• are also dead.

Proposition 11 (contrapositive of Proposition 10). If a transition t is not
dead, all the places of •t ∪ t• are also not dead.

Proposition 12. If a transition t is dead, any place p such that •t = {p} is also
dead.

Proposition 13 (contrapositive of Proposition 12). If a place p is not
dead, any transition t such that •t = {p} is also not dead.

The algorithm below applies Proposition 6–13 iteratively until saturation. The
vector of dead places is represented by P1 and P0, which are, respectively, the
sets of places known to be dead and not dead, the places of P \ (P0 ∪ P1) being
unknown. Similarly, the vector of dead transitions is represented by two sets T1

and T0. Before the algorithm starts, these four sets have been either initialized
to ∅ or filled in by some other algorithm(s), such as the one of Sect. 4.1.
1 P0 := P0 ∪ M0 — from Proposition 6
2 T0 := T0 ∪ {t ∈ T | •t = t• = ∅} — from Proposition 7
3 T1 := T1 ∪ {t ∈ T | (•t ⊆ t•) ∧ (•t �= t•)} ∪ — from Proposition 8 and 9
4 {t ∈ T | (∃(p1, p2) ∈ (•t × •t) ∪ (t• × t•)) ¬ disjoint (unit (p1), unit (p2))}
5 P ′ := ∅ ; T ′ := ∅ ; assert P0 �= ∅

6 while P ′ �= P0 ∪ P1 loop
7 assert P ′

� P0 ∪ P1

8 for p ∈ (P0 ∪ P1) \ P ′ loop
9 if p ∈ P1 then

10 T1 := T1 ∪ •p ∪ p• — from Proposition 10
11 else if p ∈ P0 then

350 P. Bouvier and H. Garavel

12 T0 := T0 ∪ {t ∈ T | •t = {p}} — from Proposition 13
13 end loop
14 P ′ := P0 ∪ P1

15 assert T ′ ⊆ T0 ∪ T1

16 for t ∈ (T0 ∪ T1) \ T ′ loop
17 if t ∈ T0 then
18 P0 := P0 ∪ •t ∪ t• — from Proposition 11
19 else if t ∈ T1 ∧ |•t| = 1 then
20 P1 := P1 ∪ •t — from Proposition 12
21 end loop
22 T ′ := T0 ∪ T1

23 end loop

4.3 Linear Over-Approximation

Definition 11. Let M1 and M2 be two markings, and t a transition. We write
M1

t=⇒ M2 iff t is enabled in M1 (i.e., •t ⊆ M) and M2 = M1 ∪ t•.

The relation differs from the usual firing relation M1
t−→ M2 (cf. Definition 2)

in that the latter uses (M1 \ •t) instead of M1. Thus, when a transition t fires
according to Definition 11, each input place of t keeps its token, while each
output place of t gets a token. Said otherwise, t=⇒ behaves exactly as t−→ if
one assumes that each marked place holds an infinite number of tokens (hence,
M1 \ •t = M1).

Proposition 14. If a marking M is reachable from the initial marking M0, i.e.,
M0

∗−→ M , there exists a marking M ′ such that M0
∗=⇒ M ′ and M ⊆ M ′.

Proof. By induction on firing sequences M0
t1−→ M1

t2−→ M2 ... Mn−1
tn−→ M .

The algorithm below is based on the contrapositive of Proposition 14. It performs
a marking-graph exploration, starting from M0 and using ∗=⇒ instead of ∗−→.
During the exploration, each place, once marked, never loses its token, so that
the state space can be simply represented using the set P ′ of visited places and
the state P ′′ of explored places (with P ′ ⊆ P ′′). We speed up transition firings
by attaching to each (non-dead) transition t a counter c[t] containing the number
of input places of t that have not been marked yet, so that t becomes fireable
when c[t] drops to zero. When the exploration completes, any place that has not
been marked is dead (and thus added to P1) and any transition that has not
been fired is dead (and thus added to T1). The converse is not true: unless each
transition has a single input place, the algorithm may overlook some dead places
and/or dead transitions, as it over-approximates the number of tokens and the
set of fireable transitions.
1 P ′ := ∅

2 P ′′ := P0 ∪ M0

3 for t ∈ T \ T1 loop c[t] := |•t|

Efficient Algorithms for Three Reachability Problems in Safe Petri Nets 351

4 while P ′ �= P ′′ loop
5 assert (P ′

� P ′′) ∧ (P ′′ ∩ P1 = ∅) ∧ (∀t ∈ T \ T1) (c[t] = |•t \ P ′|)
6 let p = oneof (P ′′ \ P ′)
7 P ′ := P ′ ∪ {p}
8 for t ∈ p• \ T1 loop
9 c[t] := c[t] − 1

10 if c[t] = 0 then P ′′ := P ′′ ∪ t•

11 end loop
12 end loop
13 assert (P ′ = P ′′) ∧ (P ′ ∩ P1 = ∅) ∧ (∀t ∈ T \ T1) (c[t] = |•t \ P ′|)
14 P1 := P1 ∪ (P \ P ′)
15 T1 := T1 ∪ {t ∈ T \ T1 | c[t] > 0}
At line 14, the new set of dead places (P \ P ′) contains the initial set of dead
places P1 if Proposition 10 has been applied before executing this algorithm.

4.4 Ordering of Algorithms

Let A1, A2, and A3 denote the algorithms presented in Sects. 4.1, 4.2, and 4.3,
respectively. Let A2 be split into two successive parts: A2 = A′

2;A
′′
2 , where A′

2

comprises lines 1 to 4 (Proposition 6–9) and A′′
2 comprises lines 5 to 23 (Propo-

sition 10–13). It is easy to see that, after executing any of these algorithms,
applying it immediately again never decreases the number of unknown values.
But two successive executions of some algorithm may be fruitful if another algo-
rithm has been successfully applied in between.

Thus, the next question is: in which order, and how many times, should these
algorithms be applied? Our experiments suggest that executing them in the order
(A2;A3;A1;A′′

2) is likely to give the best results, based upon the fact that A1,
which is the most expensive algorithm, can take advantage of the information
pre-computed by (A2;A3). Namely, A1 can avoid trying to fire those transitions
known to be dead, and it can enhance the effectiveness of the algorithmic short-
cuts defined in Sect. 4.1 by generalizing their triggering conditions: instead of
checking if all places have been marked or all transitions fired at least once, A1

can merely check if the solution vector contains no more unknown values, which
better takes into account the existence of dead places or dead transitions, if any.

Finally, between each two algorithms, one also checks the number of remain-
ing unknown values in the vector being computed, and the execution sequence
stops if this number drops to zero. For instance, A1 will not be applied if the
prior execution of (A2;A3) has produced a complete solution.

4.5 Experimental Results

We applied these algorithms to compute the dead places and dead transitions
of the 13,116 models presented in Sect. 3.3. Our experiments are parameterized
by a duration t, which is the number of seconds allocated to algorithm A1 to
symbolically explore (a fragment of) the graph of reachable markings—using the

352 P. Bouvier and H. Garavel

CUDD library for Binary Decision Diagrams. If t is zero, only the initial marking
is explored and no transition is fired by A1.

Our experiments reveal that at least 16.2% (resp. 15.9%) of the models con-
tain dead places (resp. transitions), and that at least 20.4% (resp. 37.7%) of dead
places (resp. transitions) are globally present among the models. Such important
ratios confirm the practical relevance of detecting and eliminating dead places
and transitions as a means to reduce the complexity of Petri nets.

Table 2. Experimental results for dead places and dead transitions

Problem Value of t 0 5 10 15 30 45 60 120 180 240 300

Dead places % Complete

vectors

44.6 93.0 93.6 93.8 94.4 94.6 95.1 95.3 95.4 95.5 95.6

% Unknowns

values

48.9 33.5 32.0 31.3 28.9 28.3 27.9 27.1 26.5 25.9 25.8

% Vector

completion

69.3 97.0 97.3 97.5 97.7 97.9 97.9 98.1 98.1 98.2 98.2

Dead trans. % Complete

vectors

29.3 92.3 92.9 93.2 93.7 94.0 94.1 94.4 94.7 94.9 95.0

% Unknowns

values

68.7 65.0 63.5 62.0 61.0 59.3 57.8 54.6 45.2 39.9 29.8

% Vector

completion

50.9 95.8 96.2 96.4 96.7 96.8 96.9 97.1 97.2 97.3 97.3

Table 2 provides, for various values of t, three metrics about the computation
of dead places (resp. transitions). The first metrics (“% complete vectors”) gives
the percentage of models for which the solution vector can be completely com-
puted within t seconds. The second metrics (“% unknowns values”) gives the
percentage of unknown values that remain after t seconds in all the computed
solution vectors. The third metrics (“% vector completion”) gives the mean, over
all models, of percentage of known values in the computed solution vectors.

The first metrics shows, for t = 0, that algorithms A2 and A3 alone are
sufficient to completely handle 44.6% (resp. 29.3%) of the models; but algorithm
A1, as soon as turned on, gives an major boost, pushing the percentage of models
completely solved to 93.0% (resp. 92.3%) of the models; from there, increasing
the value of t slowly increases this percentage; applying algorithm A′′

2 again
after A1 fully solves 0.1% (resp. 0.1%) more models. The second metrics gives
quite similar results concerning the resolution of unknown values, although the
influence of A1 is not as strong as with the first metrics; the percentage of
unknown values does not quickly converge down to zero, due to a small number
of large models that remain incompletely solved for long, with thousands of
unknown values. The third metrics corroborates the first one, but exhibits higher
success percentages, as each model counts for the proportion of known values
in its solution vector rather than for a binary value (one for a fully complete
model, and zero otherwise).

Additional measurements indicate that: (i) the shortcuts of algorithm A1 are
effective, as they are triggered for more than 82.6% (resp. 79.6%) of the models;

Efficient Algorithms for Three Reachability Problems in Safe Petri Nets 353

(ii) 94.8% (resp. 94.0) of the models are fully solved in less than one second; the
other models are (incompletely) processed in less than 1.56 × t (resp. 1.48 × t)
seconds; (iii) all nets having less than 74 places, 92 transitions, and 366 arcs can
be fully processed with t = 60 (resp. t = 180).

5 Algorithms for Concurrent Places

This section presents various algorithms for the Concurrent Places Problem. In
the sequel, we consider the elements of the half matrix as (unordered) pairs of
places. The diagonal elements of the half matrix are also considered as pairs,
even if both elements of these pairs are equal.

5.1 Marking Graph Exploration

Concurrent places can be determined by an exploration of reachable markings
similar to the one presented in Sect. 4.1, based upon the fact that the places
of each reachable marking are pairwise concurrent. If the state space can be
generated exhaustively, one obtains a complete half matrix; otherwise, if the
state space is too large for being explored entirely, the half matrix contains only
ones and unknown values, but no zeros.

There are no obvious algorithmic shortcuts, apart from halting the explo-
ration if the half matrix gets entirely full of known values, which only occurs if
all unknown values turn out to be equal to one, since the exploration, as long as
it has not been done exhaustively, only produces ones but not zeros. In practice,
such a situation is unlikely, as Sect. 5.6 shows that, statistically, there are much
less ones than zeros in half matrices.

5.2 Structural Rules

We now study the case where the state-space exploration of Sect. 5.1 has not
been exhaustively performed, and propose complementary algorithms, with a
lower complexity, that help reducing the number of unknown values in the half
matrix. The two following rules exploit the information gained about non-dead
places and transitions during marking-graph construction.

Proposition 15. The places of the initial marking M0 are pairwise concurrent.

Proposition 16. If a transition is not dead, its input places (resp. output
places) are pairwise concurrent.

We then apply algorithm A2, i.e., the structural rules of Sect. 4.2, to identify
(a subset of) the dead places and dead transitions. Based on this information,
further unknown values can be eliminated from the half matrix.

Proposition 17. (1) A non dead place is concurrent with itself. (2) A dead
place is non concurrent with any other place, including itself.

354 P. Bouvier and H. Garavel

Proposition 18. If a dead transition has two (distinct) input places, these
places are non concurrent.

The next rule exploits the assumption that the Petri nets considered are safe.

Proposition 19. If a transition t (dead or not) has a single input place p, this
place is non concurrent with any output place of t different from p.

Proof. By contradiction: if there exists a reachable marking M containing p and
some output place of t, the net is unsafe, as t can fire from M . Notice that, if t
is dead, p is dead too, and the result follows directly from Proposition 17(2).

The previous rule can be easily generalized to sequences of transitions having
each a single input place. It is implemented using a transitive-closure algorithm.

Proposition 20. For any path (p1, t1, p2, t2, ..., pn, tn, pn+1) such that each
transition ti has a single input place pi and at least one output place pi+1, the
places p1 and pn+1 are non concurrent if they are distinct.

The last rule exploits the unit-safeness property for those nets known to be unit
safe by construction.

Proposition 21 (from [5] Proposition 6). If the net is a unit-safe NUPN, any
two distinct places located in non-disjoint units are non concurrent. Formally:

(∀p1 ∈ P) (∀p2 ∈ P) (p1 �= p2) ∧ ¬disjoint (unit (p1), unit (p2)) ⇒ p1 ∦ p2

In particular, any two distinct places located in the same unit are non concurrent.

5.3 Quadratic Under-Approximation

From now on, if P ′ and P ′′ are two sets of places, we write P ′ ⊗ P ′′ for the
set of (unordered) pairs of places defined as {{p′, p′′} | (p′ ∈ P ′) ∧ (p′′ ∈ P ′′)},
assuming that the set notation {p′, p′′} actually denotes a singleton if p′ = p′′.
We represent the half matrix of concurrent places by R0 and R1, which are,
respectively, the sets of pairs of places known to be non concurrent and concur-
rent, the pairs of (P ⊗P)\(R0∪R1) being unknown. For instance, the structural
rules of Proposition 15, 16, and 17(1) can be summarized as follows:

R1 := R1 ∪ (M0 ⊗ M0) ∪
⋃

t∈T0

((•t ⊗ •t) ∪ (t• ⊗ t•)) ∪
⋃

p∈P0

{{p}}

In this section, we propose an algorithm to detect more concurrent places. This
algorithm starts from the set R1 computed during prior phases and extends
this set by examining all transitions having one or two input places, namely by
combining Proposition 13, 16, and 18 together with the following result:

Proposition 22. If two distinct places p1 and p2 are concurrent, p2 is also
concurrent with each output place of any transition t such that •t = {p1}.

Efficient Algorithms for Three Reachability Problems in Safe Petri Nets 355

The algorithm below stores, in a set R′, pairs of places found to be concurrent.
The algorithm is said to perform a quadratic approximation because each visited
marking M is abstracted away and represented by its set of concurrent pairs M⊗
M—contrary to algorithm A3 of Sect. 4.3, which performs a linear approximation
by storing only the set of places that appear in at least one visited marking.
The algorithm performs an under -approximation because it may miss exploring
certain concurrent pairs that are actually reachable.

1 R′ := ∅

2 while R′ �= R1 loop
3 assert R′

� R1

4 let {p1, p2} = oneof (R1 \ R′) — possibly with p1 = p2
5 R′ := R′ ∪ {{p1, p2}}
6 for t ∈ T | •t = {p1, p2} loop
7 assert (1 ≤ |•t| ≤ 2) ∧ (t �∈ T1)— from Proposition 13 and 18
8 R1 := R1 ∪ (t• ⊗ t•) — from Proposition 16(b)
9 end loop

10 for t ∈ T | (•t = {p1}) xor (•t = {p2}) loop
11 assert (|•t| = 1) ∧ (p1 �= p2) ∧ (t �∈ T1) — from Proposition 13
12 R1 := R1 ∪ (({p1, p2} \ •t) ⊗ t•) — from Proposition 22
13 end loop
14 end loop

5.4 Quadratic Over-Approximation

Our last algorithm is based upon the works of Kovalyov and Esparza, who pro-
posed various algorithms [10–12] of polynomial complexity that compute a least
fix-point for three rules derived from the Petri-net token game, and produce
an over-approximation of the concurrency relation (i.e., a superset of concurrent
pairs) from which one can safely obtains a subset of R0, the set of non-concurrent
pairs. Our algorithm below evolves their algorithms in several ways: (i) it does
not assume that all places and all transitions are not dead and, instead, exploits
the pre-existing set T1 of dead transitions; (ii) it requires the input nets to be
safe and uses this assumption to produce more accurate results by discarding
unsafe markings, whereas the algorithms of Kovalyov and Esparza handle non-
safe nets, with the alternative definition of diagonal values discussed in Sect 2.4
above; (iii) to get better and faster results, our algorithm reuses the sets of pairs
R0 and R1 precomputed, e.g., by the algorithms of Sect. 5.1 to 5.3, whereas the
algorithms of Kovalyov and Esparza start with no prior knowledge about concur-
rent pairs, i.e., R0 = R1 = ∅. We now formalize the over-approximation (which
we call quadratic due to its memory cost) that underlies all these algorithms.

Definition 12. Let R and R′ be two sets containing pairs of places, t a tran-
sition, and M a marking. We write R

t=⇒ R′ if we have •t ⊗ •t ⊆ R and
R′ = R∪ (t• ⊗ t•)∪{{p}⊗ t• | (p ∈ P \ •t)∧ ({p}⊗ •t ⊆ R)}. We write R

∗m=⇒ M

if there exists R′ such that R ∗=⇒ R′ and M ⊗ M ⊆ R′.

356 P. Bouvier and H. Garavel

In contrast with the firing relation t−→ defined between two markings (cf. Def-
inition 2), this relation t=⇒ is defined between two sets of pairs. With t−→,
the state space is the set of all reachable markings M , whereas, with t=⇒, the
(abstracted) state space is the union of all sets of pairs M⊗M , for each reachable
marking M .

Proposition 23. In a safe Petri net, if a marking M is reachable from the
initial marking M0 (i.e., M0

∗−→ M), then M0 ⊗ M0
∗m=⇒ M .

Proof. By induction on firing sequences from M0 ⊗ M0.

Our algorithm starts from M0 ⊗M0, to which the known concurrent pairs of R1

are added, and explores, using two variables R′ and R′′, the state space of all
pairs that can be reached by firing the relation ∗=⇒ for all non-dead transitions.
The non-concurrent pairs of R0 are systematically excluded from the state space.
Upon termination, all pairs that have not been explored are non concurrent for
sure, and can thus be added to R0. To speed up calculations, we reuse the counter
c[t] of Sect. 4.3, which now stores how many pairs of (•t × •t) have not been yet
proven concurrent; a transition is considered to be fireable when its counter
drops to zero. For the conciseness of the algorithm, we introduce an auxiliary
function fire (M, t,R) def= (M ⊗ •t ⊆ R) ∧ ((M ⊗ •t) ∩ R0 = ∅).

1 R′ := ∅ ; R′′ := (M0 ⊗ M0) ∪ R1

2 T1 := T1 ∪ {t ∈ T | ((•t ⊗ •t) ∩ R0 �= ∅) ∨ ((t• ⊗ t•) ∩ R0 �= ∅)}
3 for t ∈ T \ T1 loop c[t] := |•t| × (|•t| + 1)/2

1 while R′ �= R′′ loop
2 assert (R′

� R′′) ∧ (R′′ ∩ R0 = ∅)
3 assert (∀t ∈ T \ T1) c[t] = |(•t ⊗ •t) \ R′|
4 let {p1, p2} = oneof (R′′ \ R′) — possibly with p1 = p2
5 R′ := R′ ∪ {{p1, p2}}
6 for t ∈ T \ T1 | {p1, p2} ⊆ •t loop
7 c[t] := c[t] − 1
8 if c[t] = 0 then
9 for p ∈ (P \ •t) ∪ t• | fire ({p}, t, R′′) loop

10 assert (p �∈ •t \ t•) ∧ (M0 ⊗ M0
∗m=⇒ {p} ∪ •t)

11 R′′ := R′′ ∪ ({p} ⊗ t•)
12 end loop
13 end if
14 end loop
15 for t ∈ T \ T1 | (c[t] = 0) ∧ ((p1 ∈ •t) xor (p2 ∈ •t)) ∧
16 fire (({p1, p2} \ •t), t, R′′) loop
17 assert (|{p1, p2} \ •t| = 1) ∧ (M0 ⊗ M0

∗m=⇒ {p1, p2} ∪ •t)
18 R′′ := R′′ ∪ (({p1, p2} \ •t) ⊗ t•)
19 end loop
20 assert (∀t ∈ T \ T1) (∀p ∈ (P \ •t) ∪ t•) (c[t] = 0) ∧ fire ({p}, t, R′)
21 ⇒ ({p} ⊗ t• ⊆ R′′)

Efficient Algorithms for Three Reachability Problems in Safe Petri Nets 357

22 end loop
23 assert (R′ = R′′) ∧ (R′ ∩ R0 = ∅) ∧ (R0 ⊆ (P ⊗ P) \ R′)
24 R0 := (P ⊗ P) \ R′

5.5 Ordering of Algorithms

Let C1, C2, C3, and C4 denote the algorithms presented in Sects. 5.1, 5.2, 5.3,
and 5.4, respectively. Each of these algorithms needs to be applied only once.
Analysis of dependencies suggests that these algorithms are best applied in the
following order (C1;C2;C3;C4), knowing that C2 also invokes algorithm A2 of
Sect. 4.2. This execution sequence stops as soon as the number of unknown values
in the half matrix drops to zero.

5.6 Experimental Results

We applied these algorithms to compute the half matrices of concurrent places
for the 13,116 models presented in Sect. 3.3. As for algorithm A1 in Sect. 4.5, the
execution of algorithm C1 is parameterized by a maximum duration t allocated
to the symbolic exploration of reachable markings. Because the computation of
concurrent places for large models can be much longer than the computation of
dead places and dead transitions, each execution run was bounded by a timeout
of 4000 s, which, for various values of t, hits at most 0.82% of our models.

Our experiments reveal that, over the 26,577,437,180 pairs of places present
in all half matrices of the models not interrupted by the timeout, 4.0% are
concurrent, 67.0% are non-concurrent, the others being unknown.

Table 3 reuses the three metrics of Table 2 by adapting them from vectors to
half matrices. The first metrics shows that 94.0% of the models can be completely
solved for t = 60, which is slightly less than in Table 2, although the Concurrent
Places Problem usually requires more CPU time. The second metrics decreases
more slowly than in Table 2 and seems to stabilize at a much higher percentage
of unknown values, which can be explained by the quadratic size of a few large,
incomplete half matrices. However, for most models, the third metrics converges
to a high completion rate similar to those of Table 2.

Additional measurements indicate that: (i) alone, the algorithms C2, C3 and
C4 can completely handle 51.0% of the models for t = 0 but, as soon as algorithm
C1 is turned on, it performs so well on the models whose reachable markings
can be fully explored that algorithms C2, C3 and C4 only contribute for 1% to
the number of complete half matrices; (ii) however, on large models that can
not be fully explored using Binary Decision Diagrams, the algorithms C2, C3

and C4 play a greater role by eliminating 22.5% of unknown values, in addition
to the 33.8% already eliminated by C1; (iii) all nets having less than 66 places,
64 transitions, and 256 arcs can be completely processed with t = 60.

358 P. Bouvier and H. Garavel

Table 3. Experimental results for concurrent places

Value of t 0 5 10 15 30 45 60 120 180 240 300 360 420

% Complete
matrices

51.0 91.6 92.2 92.5 93.0 93.6 94.0 94.2 94.4 94.5 94.6 94.7 94.7

% Unknowns
values

45.0 44.7 44.7 44.4 44.4 43.7 43.7 43.7 43.6 43.6 43.6 43.6 43.6

% Matrix
completion

81.6 96.3 96.6 96.8 97.0 97.1 97.2 97.3 97.4 97.4 97.4 97.5 97.5

6 Conclusion

In the present article, we studied three reachability problems that, although prac-
tically useful, are not well supported by mainstream Petri-net tools. As we could
not find a unified algorithm for addressing each problem, we proposed instead
a combination of methods (static vs dynamic state-space exploration, exact vs
approximate solution, polynomial or exponential cost), which we implemented
in two software tools (written in C and in Python) that cross check each other.
We observed that our approach statistically performs well on a large number of
realistic models but, given that the three problems are PSPACE-complete, there
will always exist models too large for being processed in reasonable time.

Future work should focus on refined algorithms capable of handling even
larger models, either by computing solutions with less unknown values or by
providing equivalent results in shorter time. Among the various approaches
that might be profitably applied, we can mention invariants, semi-flows, par-
tial orders, stubborn sets (e.g., [14, Sect. 11]), SAT solving, explicit-state model
checking (to specifically spot the unknown values that remain in a solution vec-
tor or half matrix computed by other algorithms), and net reductions (in this
respect, we can already mention a recent tool named Kong7 that computes con-
current places by invoking our CÆSAR.BDD tool in combination with net reduc-
tions based on polyhedral abstractions). To foster such research, we suggest [6]
that our three problems, possibly extended to unsafe nets and/or colored nets,
become integral part of Model Checking Contest.

Acknowledgements. The experiments of Sect. 5.6 have been performed using the
French Grid’5000 testbed.

References

1. Amparore, E., et al.: Presentation of the 9th edition of the Model Checking Contest.
In: Beyer, D., Huisman, M., Kordon, F., Steffen, B. (eds.) TACAS 2019. LNCS,
vol. 11429, pp. 50–68. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
17502-3 4

7 https://github.com/nicolasAmat/Kong.

https://doi.org/10.1007/978-3-030-17502-3_4
https://doi.org/10.1007/978-3-030-17502-3_4
https://github.com/nicolasAmat/Kong

Efficient Algorithms for Three Reachability Problems in Safe Petri Nets 359

2. Bouvier, P., Garavel, H., Ponce-de-León, H.: Automatic decomposition of Petri
nets into automata networks – a synthetic account. In: Janicki, R., Sidorova, N.,
Chatain, T. (eds.) PETRI NETS 2020. LNCS, vol. 12152, pp. 3–23. Springer, Cham
(2020). https://doi.org/10.1007/978-3-030-51831-8 1

3. Cheng, A., Esparza, J., Palsberg, J.: Complexity Results for 1-Safe Nets. Theoret.
Comput. Sci. 147(1–2), 117–136 (1995)

4. Desel, J., Esparza, J.: Free Choice Petri Nets, Cambridge Tracts in Theoretical
Computer Science, vol. 40. Cambridge University Press, Cambridge (1995)

5. Garavel, H.: Nested-unit Petri nets. J. Logical Algebraic Methods Program. 104,
60–85 (2019)

6. Garavel, H.: Proposal for Adding Useful Features to Petri-Net Model Checkers,
December 2020. https://arxiv.org/abs/2101.05024

7. Garavel, H., Serwe, W.: State space reduction for process algebra specifications.
Theoret. Comput. Sci. 351(2), 131–145 (2006)

8. ISO/IEC: High-level Petri Nets - Part 2: Transfer Format. International Standard
15909–2:2011, International Organization for Standardization, Geneva (2011)

9. Janicki, R.: Nets, sequential components and concurrency relations. Theoret. Com-
put. Sci. 29, 87–121 (1984)

10. Kovalyov, A.: Concurrency relations and the safety problem for Petri nets. In:
Jensen, K. (ed.) ICATPN 1992. LNCS, vol. 616, pp. 299–309. Springer, Heidelberg
(1992). https://doi.org/10.1007/3-540-55676-1 17

11. Kovalyov, A.: A polynomial algorithm to compute the concurrency relation of a
regular STG. In: Yakovlev, A., Gomes, L., Lavagno, L. (eds.) Hardware Design
and Petri Nets, chap. 6, pp. 107–126. Springer, Boston, MA, USA, January 2000.
https://doi.org/10.1007/978-1-4757-3143-9 6

12. Kovalyov, A., Esparza, J.: A polynomial algorithm to compute the concurrency
relation of free-choice signal transition graphs. In: Proceedings of the 3rd Workshop
on Discrete Event Systems (WODES 1996), Edinburgh, Scotland, UK, pp. 1–6
(1996)

13. Murata, T.: Petri nets: analysis and applications. Proc. IEEE 77(4), 541–580
(1989)

14. Schmidt, K.: Stubborn sets for standard properties. In: Donatelli, S., Kleijn, J.
(eds.) ICATPN 1999. LNCS, vol. 1639, pp. 46–65. Springer, Heidelberg (1999).
https://doi.org/10.1007/3-540-48745-X 4

15. Semenov, A., Yakovlev, A.: Combining partial orders and symbolic traversal for
efficient verification of asynchronous circuits. In: Ohtsuki, T., Johnson, S. (eds.)
Proceedings of the 12th International Conference on Computer Hardware Descrip-
tion Languages and their Applications (CHDL 1995), Makuhari, Chiba, Japan.
IEEE (1995)

16. Wísniewski, R., Karatkevich, A., Adamski, M., Kur, D.: Application of comparabil-
ity graphs in decomposition of Petri nets. In: Proceedings of the 7th International
Conference on Human System Interactions (HSI 2014), Costa da Caparica, Portu-
gal. IEEE (2014)

https://doi.org/10.1007/978-3-030-51831-8_1
https://arxiv.org/abs/2101.05024
https://doi.org/10.1007/3-540-55676-1_17
https://doi.org/10.1007/978-1-4757-3143-9_6
https://doi.org/10.1007/3-540-48745-X_4

A Lazy Query Scheme for Reachability
Analysis in Petri Nets

Loïg Jezequel1,3(B), Didier Lime2,3, and Bastien Sérée2,3

1 Université de Nantes, Nantes, France
2 École Centrale de Nantes, Nantes, France
3 LS2N, UMR CNRS 6004, Nantes, France

{loig.jezequel,didier.lime,bastien.Seree}@ls2n.fr

Abstract. In recent works we proposed a lazy algorithm for reachability
analysis in networks of automata. This algorithm is optimistic and tries
to take into account as few automata as possible to perform its task.
In this paper we extend the approach to the more general settings of
reachability analysis in unbounded Petri nets and reachability analysis
in bounded Petri nets with inhibitor arcs. We consider we are given a
reachability algorithm and we organize queries to it on bigger and bigger
nets in a lazy manner, trying thus to consider as few places and transi-
tions as possible to make a decision. Our approach has been implemented
in the Romeo model checker and tested on benchmarks from the model
checking contest.

Keywords: Reachability analysis · Unbounded Petri nets · Inhibitor
arcs · Lazy algorithms

1 Introduction

In recent works [8,9] we proposed an algorithm for reachability analysis in net-
works of automata. This algorithm is called lazy as it tries to use as few automata
as possible to complete its task. To that extent, it is a non-trivial instance of
a general principle that has been implemented in many approaches (e.g. pro-
gram slicing [21]). In practice, on many benchmarks this approach proved to be
efficient: the LaRA tool (which implements our approach) used only a small
portion of the automata in the network to conclude about reachability. Runtime
comparisons with LoLA [22] (in a non-timed setting [8]) and Uppaal [2] (in a
timed setting [9]) were also frequently in favor of LaRA.

Networks of automata are in fact a subclass of Petri nets as they can be
syntactically transformed into safe Petri nets. Extending our lazy reachability
algorithm to larger classes of Petri nets is thus a natural next step in our work.
Moreover, it is of particular interest for us as it will allow to implement lazy
reachability in the Romeo model checker [16], developed in our research team.
In fact, Romeo works on models even more expressive than Petri nets, where
reachability is not always decidable. In this paper we focus on unbounded Petri
c© Springer Nature Switzerland AG 2021
D. Buchs and J. Carmona (Eds.): PETRI NETS 2021, LNCS 12734, pp. 360–378, 2021.
https://doi.org/10.1007/978-3-030-76983-3_18

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76983-3_18&domain=pdf
https://doi.org/10.1007/978-3-030-76983-3_18

A Lazy Query Scheme for Reachability Analysis in Petri Nets 361

nets and bounded Petri nets with inhibitor arcs, two subclasses of these models
for which reachability is decidable.

Reachability analysis in Petri nets (or equivalent models such as vector addi-
tion systems) has been widely studied. The problem is known to be decidable in
general [12,13,15,17]. Efficient techniques exist for performing it in the particu-
lar case of bounded nets, that is nets with a finite state space. One can notice,
for example, Petri net unfolding [6,18] or variations around it [3,4], partial order
techniques [7], and decision diagram based approaches [5,19].

Here we follow a different approach and do not propose a standalone reacha-
bility algorithm but rather, given such an algorithm, we propose a scheme to use
its results on subnets that are built incrementally from the reachability prop-
erty by adding only places and transitions that are required to make a decision.
This is why we call the approach lazy. Compared to [8], the main challenges we
address here are (1) that the components of the system are less well-defined in
a Petri net than in a network of finite automata, and (2) that the state-space is
infinite in general. Note also that even if a net is bounded, its subnets might not
be. We propose an algorithm for reachability in plain Petri nets, and also show
how to deal with inhibitor arcs in the bounded case.

This paper is organized as follows. We start by giving some definitions and
notations in Sect. 2. Then we present our algorithm for lazy reachability analysis
in Petri nets in Sect. 3 and show its validity. After that, we show how this app-
roach can be transposed to perform reachability analysis for the class of bounded
Petri nets with inhibitor arcs in Sect. 4. Finally, in Sect. 5 we report on an imple-
mentation of our algorithm in the model checker Romeo and give experimental
results obtained from a run of our tool on all the benchmarks from the 2020
edition of the model checking contest [10,11].

2 Definitions and Notations

We define Petri nets and their semantics, as well as the central notion of reach-
ability of markings in Petri nets. Then, we define the notion of subnets and
partial markings, that we use later to perform reachability analysis on a Petri
net without considering it in its entirety.

2.1 Petri Nets

Definition 1 (Petri net). A Petri net is a tuple N = (P, T, F,m0) where P and
T are disjoint finite sets of places and transitions respectively, F : P×T∪T×P →
N is a flow function, and m0 : P → N is called the initial marking.

In a net N, for any x ∈ P ∪ T , we define •x = {y : F (y, x) �= 0} the preset
of x and x• = {y : F (x, y) �= 0} the postset of x. We can extend this postset
(resp preset) concept to subsets of P or T by doing the union of the postsets
(resp presets) of each element of the considered subset.

In a net N, any function m : P → N is called a marking of N. A transition
t ∈ T is fireable from a marking m if and only if ∀p ∈ •t,m(p) ≥ F (p, t). In this

362 L. Jezequel et al.

case, firing t from m leads to the new marking m′ such that ∀p ∈ P,m′(p) =
m(p)−F (p, t)+F (t, p). We denote it by m

t−→ m′. Given a sequence ω = t1, . . . , tn
of transitions, we define m

ω−→ m′ if there exist markings m1, . . . mn−1 such that
m

t1−→ m1, ∀2 ≤ i ≤ n − 1,mi−1
ti−→ mi, and mn−1

tn−→ m′.

Definition 2 (Reachability). A marking m is said to be reachable in N if
and only if there exists a sequence of transitions ω such that m0

ω−→ m.

Definition 3 (Boundedness). A Petri net is said to be k-bounded, for a given
k, if for every reachable marking m and every place p, we have m(p) ≤ k. A Petri
net is said to be bounded, if there exists a k such that it is k-bounded.

2.2 Subnets and Partial Markings

In the following, we will perform reachability analysis on parts of a Petri net:
not all the places and transitions of the net will be considered. This is formalized
through the notion of subnet.

Definition 4 (Subnet). A Subnet N ′ of a Petri net N = (P, T, F,m0) is a
tuple (P ′, T ′, F ′,m′

0) such that P ′ ⊆ P , T ′ ⊆ T , F ′ = F|P ′,T ′ , and m′
0 = m0|P ′ .

Given a subnet N ′ of a net N, and for any x ∈ P ′ ∪ T ′, we define •Nx =
{y : F (y, x) �= 0)} and xN• = {y : F (x, y) �= 0} (that is, intuitively, the preset
and postset taken in N rather than in N ′).

We introduce two notions of completeness with respect to a net N for a
subnet N ′. They will be central in our algorithms and their proofs. The notion
of P-completeness expresses that N ′ contains all the places from N that are used
as preconditions for enabling transitions in N ′.

Definition 5 (P-completeness). A subnet N ′ of a net N is said to be P-
complete when ∀t ∈ T ′, •Nt ⊆ P ′.

In the other way around, the notion of T-completeness expresses that N ′

contains all the transitions from N that can add tokens on places in N ′.

Definition 6 (T-completeness). A subnet N ′ of a net N is said to be T-
complete when ∀p ∈ P ′, •Np ⊆ T ′.

Partial marking will be used to express reachability objectives that do not
concern all the places in a net.

Definition 7 (Partial marking). For a Petri net N = (P, T, F,m0), any func-
tion mp : P → N ∪ {�} is called a partial marking of N.

Intuitively, a partial marking is a marking which is not fully specified: when
mp(p) = � for some p ∈ P it means that this value is left unspecified. For a
partial marking mp of a net N, we define supp(mp) = {p ∈ P : mp(p) �= �}.
A marking m such that m(p) = mp(p) for any p ∈ supp(mp) is said to realize

A Lazy Query Scheme for Reachability Analysis in Petri Nets 363

mp. We can notice that a every marking m of a net N is a partial marking such
that supp(m) = P . For a net N with a subnet N ′, and a (partial) marking m of
N, we denote by m′ the (partial) marking of N ′ such that m′ = m|P ′ and call it
the submarking of m in N ′.

Definition 8 (Reachability). A partial marking mp is said to be reachable in
N if and only if there exists a marking m that realizes mp and is reachable in
N.

Finally, a third notion of completeness, m-completeness, is defined for par-
tial markings. It expresses the fact that, for a given marking m of N ′, all the
transitions from N that can affect this marking by reducing its value for some
place are included in N ′.

Definition 9 (m-completeness). A subnet N ′ of a net N is said to be m-
complete with m a marking of N ′ when ∀p ∈ supp(m), pN• ⊆ T ′.

3 Lazy Reachability Analysis in Petri Nets

In this section we propose an algorithm which, given a Petri net N and a marking
m in N, decides whether or not m is reachable in N. However, this algorithm
consists in a heuristic way to perform reachability queries on smaller nets, which
proves more efficient in some cases than a query on the full net. It therefore
requires an algorithm to perform reachability on Petri nets, used as a black-
box. The technique works on unbounded nets, provided that the reachability
black-box handles them.

We start by demonstrating the concept of our algorithm – in particular, in
which way it is lazy – on two examples, then we formalize the algorithm, and
finally we prove its validity.

3.1 Preliminary Example

Consider the Petri net of Fig. 1 – the places are represented by circles, the tran-
sitions by squares, the flow function by arrows, the initial marking by black dots.
We look at two reachability questions on this net: (Q1) is it possible to reach a
partial marking m1 so that m1(p2) = 1, and m1(p3) = 1? (Q2) is it possible to
reach a partial marking m2 so that m2(p4) = 3?

Let us focus on (Q1) first. To this end, consider the subnets N1 and N2 of
Fig. 2. These two subnets were built from N by considering exactly the places
in the support of m1. If the initial marking of each of these subnets had been a
submarking of m1, then the answer to (Q1) would immediately be a yes. This is
not the case however, so we cannot conclude yet.

Consider N1 first. Our objective with this subnet is to find whether or not it
is possible to reach some marking m so that m(p2) = 1. As this is not the case
initially, one needs to find how to increase the marking of p2. This can only be
done by using transitions t so that p2 ∈ t•. We thus add these transitions to our

364 L. Jezequel et al.

p1 t2

t1
p2

p3

p4

t32

3

Fig. 1. A Petri net N.

p2

N1

t1

p2

N1

p1

t1

p2

N1

p3

N2

t2

p3

N2

p1

t2

p3

N2

Fig. 2. Six subnets incrementally built from p2 and p3.

subnet, leading to N ′
1 (which is T-complete). Now, some m so that m(p2) = 1 is

reachable, however, we cannot yet conclude that this is the case in the full net
N because we do not have all the presets of the transitions we use. So we add
the places in these presets, leading to the new subnet N ′′

1 (which is P-complete).
From this subnet, one can conclude that some m so that m(p2) = 1 is reachable
in N.

A similar process allows to build N ′′
2 and prove that some m so that m(p3) = 1

is reachable in N. However, having obtained these two results does not guarantee
that m1 is reachable in N because N ′′

1 and N ′′
2 overlap (the place p1 appears

in both), which may lead to conflicts between the transition sequences found in
these two subnets. We thus merge the subnets (on common places and transi-
tions, here only p1), which leads to the subnet of Fig. 3. In this subnet m1 is
reachable. Moreover – as we prove later – because this subnet is P-complete, m1

is also reachable in N.
The place p4 and the transition t3 were never included in the subnets consid-

ered. This is why we call our algorithm lazy: it omits the places and transitions
that are not useful for its analysis.

Let us now focus on (Q2). In this case our analysis will start from the subnet
N3 of Fig. 4. For similar reasons as before, we first add the transitions that can
put tokens in p4, leading to N ′

3. In this subnet, no marking m so that m(p4) = 3
is reachable (because there is always an even number of tokens in p4). However,
markings with m(p4) ≥ 3 are reachable. Hence, we add the transitions that can
remove tokens from p4, leading to N ′′

3 . In this subnet, such an m is reachable

A Lazy Query Scheme for Reachability Analysis in Petri Nets 365

Fig. 3. Merging of N ′′
1 and N ′′

2 . Fig. 4. Four subnets built from p4.

(for example by firing t2 three times and then t3 one time). As before, in order
to conclude one needs to verify that (at least some of) the sequences allowing
to reach such an m are fireable in the original net. For that, the places in the
presets of t2 and t3 need to be added, leading to N ′′′

3 . In this subnet it is not
possible to fire t2 three times. Moreover, this subnet is T-complete and so, as
we prove later, if no m such that m(p4) = 3 is reachable in N ′′′

3 , no such m is
reachable at all in N .

3.2 An Algorithm for Lazy Reachability Analysis in Petri Nets

The formalization of the ideas presented in the above examples leads to
Algorithm 11. It is a lazy algorithm that, given a net N and a (partial) marking
m, tells whether or not m is reachable in N . This algorithm works on subnets
of N . These subnets are identified by their sets of places and transitions.

Algorithm 1 starts with subnets built from a partition of the set of places
involved in m. This allows to handle each part of the objective separately as
long as they do not interact. Initially, each element of the List LNets is a pair
(P, T) representing one of these subnets. The algorithm does two main tasks:
concretisation (addition of places and transitions to subnets) and merging (union
of interacting subnets). At each iteration of its main loop it does at least one of
those two tasks.

Concretisation. Concretisation consists in expanding one subnet. If the partial
objective is not reachable one adds new transitions to add new ways to reach it.
If the partial objective is reachable, one needs to add new places to ensure that
the transitions used in the subnet can also be used in the original net (i.e. to
ensure that their full preset is taken into account).

More formally, the objective of the concretisation is to ensure that each
subnet verifies the completeness notion of Definition 10. If this is the case, then
1 It uses the classical list data structure. The length of a list L is given by length(L).
The kth element of L is L[k].

366 L. Jezequel et al.

Algorithm 1. Lazy algorithm checking if a marking m is reachable in a Petri
net N = (P, T, F,m0)

1: choose a partition {P1, ..., Pp} of supp(m)
2: LNets ← [(P1, ∅), ..., (Pp, ∅)]
3: Complete ← false
4: Consistent ← true
5: while not Complete or not Consistent do
6: Complete ← ∀k, LNets[k] is complete
7: if not Complete then
8: optional unless Consistent
9: mayHaveSol ← Concretise(LNets,m)

10: if not mayHaveSol then
11: return false
12: end if
13: end option
14: end if
15: Consistent ← LNets is consistent
16: if not Consistent then
17: optional unless Complete
18: Merge(LNets)
19: end option
20: end if
21: end while
22: return true

m is reachable in N (provided that there is not interaction with other subnets,
which is ensured by the notion of consistency described below). If at least one
subnet cannot be made complete, then it is granted that m is not reachable in
N .

Definition 10. Let N = (P, T, F,m0) be a Petri net and m a marking. A subnet
N ′ of N is complete (with respect to N and m) if N ′ is P -complete and the
submarking m′ is reachable in N ′.

Remark that completeness can be effectively checked provided reachability
can be checked. The rest of the conditions is syntactic.

Concretisation can be implemented as described in Algorithm 2, which alter-
nately adds places and transitions to a subnet.

Merging. Merging consists in replacing two subnets in LNets by a single subnet
obtained by union of places and transitions sets. Merging is needed when two
subnets share places, as in this case the solutions to the reachability problem
found in these subnets can interfere. For the same interference reason, merging is
also needed when one of the subnets contains a transition whose postset contains
a place involved in the submarking of m (the reachability objective) in another
subnet. The fact that two subnets may interfere is formalised through the notion
of consistency in Definition 11.

A Lazy Query Scheme for Reachability Analysis in Petri Nets 367

Algorithm 2. Auxiliary function Concretise(LNets,m) for Algorithm 1
1: choose k such that LNets[k] is not complete
2: (Pk, Tk) ← LNets[k]
3: m′ ← m|Pk

4: if not Reachable(LNets[k],m′) then
5: choose T ′

k such that Tk ⊂ T ′
k ⊆ supp(m′)N• ∪ •NPk

6: if not possible then
7: return false
8: else
9: LNets[k] ← (Pk, T

′
k)

10: end if
11: else
12: choose P ′

k such that Pk ⊂ P ′
k ⊆ •NTk

13: LNets[k] ← (P ′
k, Tk)

14: end if
15: return true

Definition 11. The list of subnets LNets = [(P1, T1), ..., (Pn, Tn)] is consistent
if

1. ∀k �= �, (Pk ∩ P�) = ∅, and
2. ∀k �= �, Tk

N• ∩ supp(m|P�
) = ∅.

Remark that the definition of consistency is completely syntactic and can
therefore be checked effectively.

3.3 Proof of the Algorithm

We now prove the correctness of Algorithm 1. Propositions 1 and 2 together prove
the soundness of Algorithm 1, while Proposition 3 proves its completeness. The
proofs of these propositions are based on lemma for which proofs are presented
in this part.

Proposition 1. If Algorithm 1 returns false, then m is not reachable in N .

Proof. The only way for Algorithm 1 to return false is at line 11. It implies that
the previous call to the Concretise function (Algorithm 2) returned false. This
can only occur at line 7 of Algorithm 2.

In this case, it must not be possible to choose T ′ such that T ⊂ T ′ ⊆
supp(m′)N• ∪ •NP (line 5). In other words, the subnet LNets[k] considered is
m′-complete (Definition 9) and T -complete (Definition 6). Moreover, the current
marking m′ must not be reachable in the subnet LNets[k] (line 4) and is a
submarking of m (line 3). Hence, by applying Lemma 1 below, m is not reachable
in N . �
Lemma 1. Let N ′ be a subnet of a Petri net N . Assume that N ′ is T -complete.
Let m′ be a marking of N ′, that is not reachable. If N ′ is m′-complete, then no
marking m of N such that m′ is the submarking of m in N ′ is reachable in N .

368 L. Jezequel et al.

Proof. Let m be a reachable marking of N , with m0
ω−→ m. Denote by n the

number of transitions in ω. We prove by induction on n that m′ is reachable in
N ′. By the contrapositive, this proves the Lemma.

Induction hypothesis for all n, if m is reachable in N and there is a sequence
ω of n transitions such that m0

ω−→ m, then the submarking m′ of m in N ′ is
reachable in N ′.

Initialisation when n = 0, the only possible m is m0 (it must be reachable
with 0 transitions). Thus, simply take m′ = m′

0, which is, by construction the
submarking of m0 in N ′ and is obviously reachable in N ′.

Induction. Let us consider some n > 0 and assume that the induction hypothesis
is verified for n − 1. First, remark that ω can always be split in two parts: ω′ of
length n−1 and tn (a single transition) such that m0

ω′
−→ m̃

tn−→ m in N for some
marking m̃. From the induction hypothesis, the submarking m̃′ of m̃ is reachable
in N ′. Four cases are then possible. (1) tn

N• ∩ P ′ = ∅ and •N tn ∩ supp(m′) = ∅,
in which case m̃′ = m′ and so m′ is reachable in N ′. (2) tn

N• ∩ P ′ �= ∅ and
•N tn ∩ supp(m′) = ∅, in which case, as N ′ is T − complete, tn must be in T ′.
Moreover, as tn is fireable in N from m̃, it must be fireable as well in N ′ from m̃′.
The effects of tn on the places of P ′ are the same in N and N ′, so m̃′ tn−→ m′ in N ′.
Hence, m′ is reachable in N ′. (3) tn

N•∩P ′ = ∅ and •N tn∩supp(m′) �= ∅, in which
case, as N ′ is m′-complete, tn must be in T ′. Then, using the same arguments as
in case (2), m′ is reachable in N ′. (4) tn

N• ∩P ′ �= ∅ and •N tn ∩ supp(m′) �= ∅, in
which case, as N ′ is T -complete and m′-complete, tn must be in T ′. Again, using
the same arguments as in case (2), m′ is reachable in N ′. In each case, m′ is
reachable, and so the induction hypothesis is also verified for n, which concludes
the induction. �
Proposition 2. If Algorithm 1 returns true, then m is reachable in N .

Proof. The only way for Algorithm 1 to return true is at line 22. This implies
that it goes out of the while loop. It means that both Complete and Consistent
are true (line 5). So, each element of the list LNets is complete according to Def-
inition 10 (line 6). Hence, for any k, LNets[k] is P -complete and the submarking
mk of m in LNets[k] is reachable in LNets[k]. By Lemma 2, the partial marking
of N whose support is exactly the same as the support of mk is reachable in
N , using the same sequence of transitions ωk as in LNets[k]. Moreover, the list
LNets is consistent according to Definition 11 (line 15). Hence, for any k, � the
sets of places of LNets[k] and LNets[�] are disjoint (part 1. of Definition 11), as
LNets[k] is P -complete, this implies that no transition from LNets[k] can reduce
the marking of a place from LNets[�]. Moreover, no transition from LNets[k]
can increase the marking of a place from the support of m� (part 2. of Defini-
tion 11). As a consequence, the concatenation of all the ωk allows to reach the
objective marking m in N . �

A Lazy Query Scheme for Reachability Analysis in Petri Nets 369

Lemma 2. Let N ′ be a P -complete subnet of a Petri net N . Let m′ be a partial
marking of N ′ and let m be a partial marking of N so that supp(m) = supp(m′)
and for all p ∈ supp(m), m(p) = m′(p). If there exists a sequence of transitions
ω such that m′

0
ω−→ m′ in N ′, then m0

ω−→ m in N .

Proof. We proceed by induction.

Induction Hypothesis. For all n, if a partial marking m′ is reachable in N ′ by
a sequence ω of n transitions, then there exists a partial marking m so that
supp(m) = supp(m′), for all p ∈ supp(m), m(p) = m′(p) and m is reachable in
N by the sequence ω.

Initialisation. When n = 0, any partial marking m′ reachable by an empty
sequence of transitions must realize m′

0, hence the partial marking m such that
∀p ∈ P ′,m(p) = m′(p) and ∀p ∈ P \P ′,m(p) = � must also be realized by m0 and
is thus reachable. This marking m is obviously such that supp(m) = supp(m′),
which concludes the initialisation.

Induction. Let consider some n > 0 and assume that the induction hypothesis is
verified for n−1. First remark that ω can always be split in two parts: ω′ of length
n − 1 and tn (a single transition) such that m′

0
ω′
−→ m̃′

c
tn−→ m′

c in N ′ for some
marking m̃′

c (not a partial one) and some marking m′
c that realizes m′. From the

induction hypothesis the only partial marking m̃ so that supp(m̃) = supp(m̃′
c)

is reachable in N by the sequence ω′, so there exists m̃c a marking that realizes
m̃ and is reached by ω′. Moreover, as N ′ is P -complete, if tn is fireable from
m̃′

c in N ′, then tn is fireable from m̃c in N (all the preconditions of tn appear
in N ′). Firing tn in N leads to a marking mc so that ∀p ∈ P ′,mc(p) = m′

c(p),
by definition of a subnet. Hence, taking for m the partial marking such that
∀p ∈ supp(m′),m(p) = mc(p) = m′

c(p) = m′(p) and ∀p ∈ P \supp(m′),m(p) = �
concludes the induction. �
Proposition 3. Algorithm 1 always terminates and returns true or false.

In order to prove Proposition 3 we define a relation over the lists LNets
involved in an execution of Algorithm 1. We show that this relation is an order
relation and use this fact to conclude about the termination of the algorithm.

Definition 12. Let LNets1 and LNets2 be two lists involved in an execution
of Algorithm 1. We write LNets1 <� LNets2 if and only if:

– length(LNets1) < length(LNets2) or
– length(LNets1) = length(LNets2) and ∃1 ≤ k ≤ length(LNets2) such that

∀1 < i < k,LNets1[i] = LNets2[i] and LNets1[k] <n LNets2[k],

370 L. Jezequel et al.

where, for two subnets N1 and N2 of a net N, we have N1 <n N2 if and only if:

– P1 ⊃ P2 or
– P1 = P2 and T1 ⊃ T2.

If LNets1 <� LNets2 or LNets1 = LNets2 we write LNets1 ≤� LNets2.

Lemma 3. The relation ≤� of Definition 12 is an order relation.

Proof. We prove that ≤� is reflexive, antisymmetric, and transitive.

Reflexive. This is a direct consequence of the fact that equality is reflexive.

Antisymmetric. Assume that LNets1 ≤� LNets2 and LNets2 ≤� LNets1.
Suppose that LNets1 <� LNets2. If length(LNets1) < length(LNets2), then
length(LNets1) �= length(LNets2) and length(LNets2) < length(LNets1) can-
not be true, so neither LNets2 <� LNets1 nor LNets2 = LNets1 can be true,
so LNets2 ≤� LNets1 cannot be true. If length(LNets1) = length(LNets2) and
LNets1[k] < LNets2[k] for some k with LNets1[i] = LNets2[i] for any i < k,
then either (1) P1 ⊂ P2 or (2) P1 = P2 and T1 ⊂ T2. In case (1), then P2 �= P1

and P2 ⊂ P1 cannot be true, moreover length(LNets2) < length(LNets1) can-
not be true. So LNets2 <� LNets1 nor LNets2 = LNets1 can be true, so
LNets2 ≤� LNets1 cannot be true. In case (2), then P2 = P1 but T2 �= T1

and T2 ⊂ T1 cannot be true, moreover length(LNets2) < length(LNets1) can-
not be true. So LNets2 <� LNets1 nor LNets2 = LNets1 can be true, so
LNets2 ≤� LNets1 cannot be true. In all cases if LNets1 <� LNets2 then
LNets2 ≤� LNets1 cannot be true. Thus, as LNets1 ≤� LNets2, one necessar-
ily gets LNets1 = LNets2. This proves that ≤� is antisymmetric.

Transitive. Assume that LNets1 ≤� LNets2 and LNets2 ≤� LNets3. We
show that LNets1 ≤� LNets3. If LNets1 = LNets2 or LNets2 = LNets3,
this is clearly true. Thus, assume LNets1 <� LNets2 and LNets2 <�

LNets3. If length(LNets1) < length(LNets2), then, as length(LNets2) ≤
length(LNets3), one gets length(LNets1) < length(LNets3), thus LNets1 ≤�

LNets3. In the case where length(LNets1) = length(LNets2), two cases
are possible: (1) length(LNets2) < length(LNets3), then length(LNets1) <
length(LNets3) is clearly true, and so LNets1 ≤� LNets3, (2)
length(LNets2) = length(LNets3). In this second case, there exists k such that
LNets1[k] <n LNets2[k] with ∀i < k, LNets1[i] = LNets2[i] and k′ such that
LNets2[k′] <n LNets3[k′] with ∀i < k′, LNets2[i] = LNets3[i]. We need to dis-
tinguish three cases: (a) k < k’, (b) k = k’, and (c) k > k’. In case (a), one gets
LNets1[k] <n LNets3[k] and ∀i < k, LNets1[i] = LNets3[i], thus LNets1 ≤�

LNets3. In case (b), one gets ∀i < k, LNets1[i] = LNets3[i] and LNets1[k] <n

A Lazy Query Scheme for Reachability Analysis in Petri Nets 371

LNets2[k] <n LNets3[k]. The transitivity of <n (immediately obtained by
transitivity of ⊂) is sufficient to conclude that LNets1[k] <n LNets3[k], and
thus LNets1 ≤� LNets3. In case (c), one gets LNets1[k′] <n LNets3[k′] and
∀i < k′, LNets1[i] = LNets3[i], thus LNets1 ≤� LNets3. �
Proof. (of Proposition 3). The only return statements in Algorithm 1 are at
line 22 and line 11. At line 22 the algorithm returns true and at line 11 it
returns false. This implies that the only possible return values are true and
false. It remains to prove that the algorithm terminates.

We prove that the successive values of LNets in Algorithm 1 are strictly
decreasing with respect to the order relation ≤�. As there exists a minimal
element (the empty list) with respect to this relation, this suffices to prove the
termination.

Assume that an iteration of the main loop (while loop at line 5) starts. This
results in, at least, one call to Concretise or one call to Merge. Thus, if we show
that LNets strictly decreases with respect to ≤� after a call to either of these
functions, the termination is given by the above argument.

A call to Merge strictly decreases the length of LNets. So, by the first point
of Definition 12, LNets strictly decreases with respect to ≤�.

A call to Concretise does not modify the length of LNets and modifies exactly
one element e of LNets (or returns false, in which case Algorithm 1 terminates).
The modified element is chosen so that its set of transitions is strictly increased
(line 5 of Algorithm 2) or its set of places is strictly increased (line 12 of Algo-
rithm 2). In either case, the modified element e′ is such that e′ <n e. This ensures
that LNets strictly decreases with respect to ≤� and concludes the proof. �

4 Lazy Reachability Analysis with Inhibitor Arcs

We now transpose the previous results from Petri nets to Petri nets with inhibitor
arcs. In such nets, places – when marked – can prevent transitions from being
fired. The results of the previous section were correct in all Petri nets, bounded
or not. In this section, this will no longer be the case as reachability is known
for not being decidable in unbounded Petri nets with inhibitor arcs [1,20].

4.1 From Petri Nets to Petri Nets with Inhibitor Arcs

We start by formally defining Petri nets with inhibitor arcs.

Definition 13 (Petri net with inhibitor arcs). A Petri net with inhibitor
arcs is a tuple NI = (P, T, F, I,m0) where (P, T, F,m0) is a Petri net and I :
P × T → N ∪ {∞} is an inhibition function.

Markings, presets and postsets are defined similarly in Petri nets with and
without inhibitor arcs. In a Petri net with inhibitor arcs NI , for any t ∈ T ,
we define ◦t = {p ∈ P : I(p, t) �= ∞} the inhibition set of t. We extend
this notion to sets T of transitions by union of inhibition sets. A transition

372 L. Jezequel et al.

t ∈ T is fireable from a marking m if and only if ∀p ∈ •t,m(p) ≥ F (p, t) and
∀p ∈ ◦t,m(p) < I(p, t). The result of firing t is similar as for Petri nets without
inhibitor arcs, only the fireability condition changes. Reachability is thus also
similarly defined in these two kinds nets.

Definition 14 (Subnet with inhibitor arcs). A subnet N ′
I of a Petri net

with inhibitor arcs NI = (P, T, F, I,m0) is a tuple (P ′, T ′, F ′, I ′,m′
0) such that

(P ′, T ′, F ′,m′
0) is a subnet of (P, T, F,m0) and I ′ = I|P ′,T ′ .

Given a subnet N ′
I of a Petri net with inhibitor arcs NI , and for any t ∈ T ′,

we define ◦NI t = {p ∈ P : I(p, t) �= ∞)} (that is, intuitively, the inhibition set
taken in NI rather than in N ′

I).
The notions of P-completeness, T-completeness, partial marking, reachability

of partial markings, and m-completeness remain the same in presence of inhibitor
arcs. However, we introduce two other notions of completeness with respect to
a net NI for a subnet N ′

I . The notion of PI-completeness expresses that N ′
I

contains all the places from NI that may inhibit transitions in N ′
I .

Definition 15 (PI-completeness). A subnet N ′
I of a net NI is said to be

PI-complete when ∀t ∈ T ′, ◦NI t ⊆ P ′.

The notion of TI-completeness expresses that N ′
I contains all the transitions

from NI that may remove tokens from places that inhibit transitions in N ′
I .

Definition 16 (TI-completeness). A subnet N ′
I of a net NI is said to be

TI-complete when ∀p ∈ ◦T ′, pNI• ⊆ T ′.

4.2 An Algorithm for Lazy Reachability Analysis with Inhibitor
Arcs

The basic principles of our lazy reachability analysis algorithm for Petri nets
with inhibitor arcs are the same as for the case where there are no inhibitor
arcs. In fact, the main algorithm that we use is still Algorithm 1 – we simply
rename N as NI to make it clear that it has inhibitor arcs – and the merging does
not change. However, we use a different concretisation function (Algorithm 3)
as well as the following definitions for completeness and consistency.

Definition 17. Let NI = (P, T, F, I,m0) be a Petri net with inhibitor arcs and
m a marking. A subnet N ′

I of NI is complete with respect to NI and m if (N ′
I

is P-complete, PI-complete and) the submarking m′ is reachable in N ′
I .

Since we still need to check reachability, we must now assume that NI is
bounded, though we do not need to know the bound. Even when NI is bounded,
its subnets may be unbounded. In the concretisation function, we will nonetheless
build our subnets so that they are bounded by construction.

Definition 18. The list of subnets LNets = [(P1, T1), ..., (Pn, Tn)] is consistent
if

A Lazy Query Scheme for Reachability Analysis in Petri Nets 373

Algorithm 3. Auxiliary function Concretise(LNets,m) for Algorithm 1
1: choose k such that LNets[k] is not complete
2: (Pk, Tk) ← LNets[k]
3: m′ ← m|Pk

4: choose T ′
k such that Tk ⊂ T ′

k ⊆ •NIPk ∪ supp(m′)NI• ∪ (◦Tk)
NI•

5: if not possible then
6: return false
7: else
8: P ′

k ← •NIT ′
k ∪ ◦NIT ′

k

9: LNets[k] ← (P ′
k, T

′
k)

10: end if
11: return true

1. ∀k �= �, (Pk ∩ P�) = ∅, and
2. ∀k �= �, Tk

N• ∩ supp(m|P�
) = ∅.

3. ∀k �= �, Tk
N• ∩ ◦T� = ∅.

The main difference with the concretisation function that was used for Petri
nets with no inhibitor arcs is that one does not distinguish between the case
where transitions should be added and the case where places should be added.
Indeed, if one allows for adding transitions without their preconditions, this
may result in unbounded subnets. In presence of inhibitor arcs this prevents
for checking reachability. One can remark, however, that if all the preconditions
of all transitions of a subnet are also part of this subnet, then this subnet is
necessarily bounded (if the original net was bounded). This is expressed by
Proposition 4 below. Thus, in Algorithm 3, one adds transitions as before to the
considered subnet but then one always adds all the preconditions of the newly
added transitions.

Remark 1. This explains the parenthesis in Definition 17: all the subnets con-
sidered are always P-complete and PI-complete.

Finally, notice that transitions that may remove tokens from inhibition places
are also considered when adding transitions, as they can enable new transitions
firings.

Proposition 4. Let NI = (P, T, F, I,m0) be a bounded Petri net with inhibitor
arcs. Let N ′

I = (P ′, T ′, F ′, I ′,m0|P ′) be a subnet of NI . If P ′ ⊇ •NI T ′
k ∪ ◦NI T ′

k,
then N ′

I is bounded.

Proof. Since NI is bounded, let k be the corresponding bound. Assume N ′
I is

not k-bounded. Then there exists a transition firing sequence ω = t1, . . . , tn,
some marking m′, and some place p ∈ P ′ such that in N ′

I , we have m0
m−→′

and
m′(p) > k.

We prove by induction on the length n of ω that it is also fireable in NI and
that if m (resp. m′) is the marking obtained in NI (resp. in N ′

I) after firing ω,
then m|P ′ = m′.

374 L. Jezequel et al.

First suppose n = 0, then the property holds trivially. Now assume it holds
for some sequence t1, . . . , tn, with n ≥ 0, and consider an additional transition
tn+1 ∈ T ′. Let mn (resp. m′

n) be the marking obtained in NI (resp. N ′
I) after

firing t1, . . . , tn. By the induction hypothesis mn|P = m′
n. By construction the

preset and inhibitor preset of tn+1 in NI are included in P ′ and therefore since
tn+1 is fireable in N ′

I from m′
n, it is fireable in NI from mn and the effect of

those firings on the places in P ′ is the same.
Since NI is k-bounded, ω cannot be fireable in NI so we have a contradiction

and N ′
I is therefore bounded. �

4.3 Proof of the Algorithm

We now prove the correctness of Algorithm 1 when used with the concretisation
function of Algorithm 3 on a bounded Petri net with inhibitor arcs.

First, remark that completeness of the algorithm is achieved essentially for
the same reasons as in the previous case.

Proposition 5. Algorithm 1 always terminates and returns true or false when
used with the concretisation function of Algorithm 3 on a bounded Petri net with
inhibitor arcs.

Proof. The proof of Proposition 3 also works here as the order relation of Defi-
nition 12 does not depends on the arcs of the nets but only on their places and
transitions. The only difference in the proof is to remark that a call to Concretise
always increases the set of transitions. �

It remains to prove to soundness of the algorithm, which is achieved by
proving Propositions 6 and 7.

Proposition 6. If Algorithm 1 used with the concretisation function of Algo-
rithm 3 on a bounded Petri net NI with inhibitor arcs returns false, then m is
not reachable in NI .

Proof. As before, the only way for Algorithm 1 to return false is at line 11. It
implies that the previous call to the Concretise function (Algorithm 3) returned
false. This can only occur at line 6 of Algorithm 3.

In this case, it must not be possible to choose T ′
k such that Tk ⊂ T ′

k ⊆
•NI Pk ∪ supp(m′)NI• ∪ (◦Tk)

NI• (line 4). In other words, the subnet LNets[k]
considered is m′-complete (Definition 9), T -complete (Definition 6), and TI-
complete (Definition 16). Moreover, the current marking m′ must not be reach-
able in the subnet LNets[k] due to Remark 1 and is a submarking of m. Hence,
by applying Lemma 4 below, m is not reachable in NI . �
Lemma 4. Let N ′

I be a subnet of a bounded Petri net with inhibitor arcs NI .
Assume that N ′

I is T -complete and TI-complete. Let m′ be a marking of N ′
I , that

is not reachable. If N ′
I is m′-complete, then no marking m of NI such that m′

is the submarking of m in N ′
I is reachable in NI .

A Lazy Query Scheme for Reachability Analysis in Petri Nets 375

Proof. Let m be a reachable marking of NI , with m0
ω−→ m. Denote by n the

number of transitions in ω. We can prove by induction on n that m′ is reachable
in N ′

I . By the contrapositive, this proves the Lemma.
The induction is in fact similar to the one used for proving Lemma 1. The

only difference is in the induction step where – in cases (2), (3), and (4) – one
could imagine that tn would be fireable in NI but not in N ′

I , due to inhibitor
arcs. However, the fact N ′

I is TI-complete prevents this: any place p that could
inhibit tn must have its full postset in N ′

I and so, if, at some point in ω, p is
marked, and later it is unmarked by some transition t, then t must be a transition
from N ′

I . �
Proposition 7. If Algorithm 1 used with the concretisation function of Algo-
rithm 3 on a bounded Petri net NI with inhibitor arcs returns true, then m is
reachable in NI .

Proof. The only way for Algorithm 1 to return true is at line 22. This implies
that it goes out of the while loop. It means that both Complete and Consistent
are true (line 5). So, each element of the list LNets is complete according to
Definition 17 (line 6). Hence, for any k, LNets[k] is P -complete, PI-complete,
and the submarking mk of m in LNets[k] is reachable in LNets[k]. By Lemma 5,
the partial marking of NI whose support is exactly the same as the support of
mk is reachable in NI , using the same sequence of transitions ωk as in LNets[k].
Moreover, the list LNets is consistent according to Definition 18 (line 15). Hence,
for any k, � the sets of places of LNets[k] and LNets[�] are disjoint (part 1.
of Definition 18), as LNets[k] is P -complete, this implies that no transition
from LNets[k] can reduce the marking of a place from LNets[�]. Moreover, no
transition from LNets[k] can increase the marking of a place from the support of
m� (part 2. of Definition 18) or the marking of a place that inhibits a transition
of LNets[�] (part 3. of Definition 18). As a consequence, the concatenation of
all the ωk allows to reach the objective marking m in N . �
Lemma 5. Let N ′

I be a P -complete and PI-complete subnet of a bounded Petri
net with inhibitor arcs NI . Let m′ be a partial marking of N ′

I and let m be a
partial marking of NI so that supp(m) = supp(m′) and for all p ∈ supp(m),
m(p) = m′(p). If there exists a sequence of transitions ω such that m′

0
ω−→ m′ in

N ′
I , then m0

ω−→ m in NI .

Proof. The only difference with Lemma 2 is that some places in NI may inhibit
a transition of ω. This is prevented by the fact that N ′

I is PI-complete: all
these place must also exist in N ′

I as well. A similar induction proof can thus be
performed. �

5 Experimental Evaluation

We have implemented the algorithms in the tool Romeo [16]2.
2 64bits Linux binaries for Romeo and converters from pnml (MCC) to cts (Romeo),
and full results are at http://lara.rts-software.org/.

http://lara.rts-software.org/

376 L. Jezequel et al.

Note that since Romeo deals with a very expressive formalism, encompassing
inhibitor arcs, we have only implemented the concretisation function described
in Sect. 4, even if it is less efficient than the one in Sect. 3 for the nets used in
the experiments, which do not contain inhibitor arcs.

We implement line 4 in Algorithm 3 by always choosing the biggest possible
T ′

k. Actually to account for the added expressiveness of Romeo, where transitions
can modify the marking in an arbitrarily complex way, we add even a bit more:
every transition that may modify the marking in Pk, i.e., •NI Pk ∪ Pk

NI•.
For reachability, we perform a simple explicit state exploration with no par-

ticular optimization.
Romeo has then been run in a setting as close as we could of the Reachability

Cardinality category of the 2020 edition of the model checking contest [10],
and we compare it with the results of the other tools, which we do not recall
here for the sake of space but which are fully available in [10]. For each model
of the contest, we gave Romeo one hour to solve the same 16 formulas that
the contestant had to solve during the contest. The machine we used is not as
powerful as the machines used for running the contest (it has four Intel Xeon
E5-2620 processors and 128GB of memory), but we did not run Romeo on a
virtual machine (during the MCC it would have been the case).

On a factual point of view, Romeo, using only the algorithm presented here,
has thus been faced to 1016 different models, among which it fully solved 120
(that is, it solved the 16 formulas corresponding to the model within one hour)
and partially solved 288 (that is, solved at least 1 of the formulas within one hour
but not the 16 of them). In total, Romeo solved 2654 formulas among 16256.
We have also run our algorithm on the 2018 version of the contest, thus on a
subset of the models but with different formulas, with similar overall results.

While this overall result is not outstanding, the details are a lot more interest-
ing. First, each result that Romeo returned was the same as the result obtained
by the majority of the tools during the actual contest, and hence we can assume
with some confidence that all those results are correct.

Second, there is also a lot of room left to improve the algorithm itself, by
choosing more cleverly which places to add, which transitions, how much of each
partial net to compute, etc. And actually, since we require nothing in terms of
exploration order, the technique we propose here should easily be combinable
with, e.g., stubborn sets [14] for much better results.

Finally, and most significantly, Romeo managed to completely solve (all 16
formulas) one model (GPPP-PT-C0010N1000000000) that no other tool could
handle (they solved at most the first formula). We have had the same results
for the 2018 formulas and at that time the other tools had solved none of them.
This is very relevant because most of the best performing tools actually have a
portfolio approach, in which several techniques are tried in parallel. It thus seems
that this model is particularly difficult for current state-of-the-art tools, none of
the currently implemented approaches is efficient to handle it, and hardly any
progress has been made on it for the last four years (the model was introduced
in the 2016 edition).

A Lazy Query Scheme for Reachability Analysis in Petri Nets 377

In contrast, the algorithm we have proposed here performs very well on that
model and is thus likely to be a worthy addition to the portfolio approach.

6 Conclusion

In this paper, we have presented an algorithm for reachability analysis in possibly
unbounded Petri nets and in bounded Petri Nets with inhibitor arcs. This algo-
rithm heuristically performs reachability queries on subnets of the original net,
in a lazy manner: it works on subnets of increasing size, trying to answer as soon
as possible. We have proven that, in each case (unbounded Petri nets, bounded
Petri nets with inhibitor arcs), the algorithm terminates, always answers, and
always gives correct answers.

We have implemented the approach in the tool Romeo and performed a large
scale experimental evaluation based on the models from the 2018 edition of
the model-checking contest, showing that on all the models we indeed answered
correctly. Moreover, it revealed that our implementation can solve problems
that state-of-the-art model-checking tools cannot handle. While for many other
problems, those tools outperform our implementation, we believe our algorithm
is still a good candidate for inclusion in a portfolio approach.

Future work consists in incorporating the rest of the features of Roméo in
the lazy framework: timing parameters, cost optimization, properties beyond
reachability, control, etc.

References

1. Akshay, S., Chakraborty, S., Das, A., Jagannath, V., Sandeep, S.: On Petri nets
with hierarchical special arcs. In: CONCUR, pp. 40:1–40:17 (2017)

2. Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL. In: International
School on Formal Methods for the Design of Computer, Communication and Soft-
ware Systems, pp. 200–236 (2004)

3. Bonet, B., Haslum, P., Hickmott, S., Thiébaux, S.: Directed unfolding of Petri nets.
ToPNOC 1(1), 172–198 (2008)

4. Chatain, T., Paulevé, L.: Goal-driven unfolding of Petri nets. In: CONCUR, pp.
18:1–18:16 (2017)

5. Couvreur, J.-M., Thierry-Mieg, Y.: Hierarchical decision diagrams to exploit model
structure. In: Wang, F., (ed.) FORTE, pp. 443–457 (2005)

6. Esparza, J., Römer, S., Vogler, W.: An improvement of McMillan’s unfolding algo-
rithm. In: TACAS, pp. 87–106 (1996)

7. Holzmann, G.J., Peled, D.: An improvement in formal verification. In: FORTE,
pp. 197–211 (1994)

8. Jezequel, L., Lime, D.: Lazy reachability analysis in distributed systems. In: CON-
CUR, pp. 17:1–17:14 (2016)

9. Jezequel, L., Lime, D.: Let’s be lazy, we have time - or, lazy reachability analysis
for timed automata. In: FORMATS, pp. 247–263 (2017)

10. Kordon, F., et al.: Complete Results for the 2020 Edition of the Model Checking
Contest, June 2020. http://mcc.lip6.fr/2020/results.php

http://mcc.lip6.fr/2020/results.php

378 L. Jezequel et al.

11. Kordon, F., et al.: MCC’2015 - the fifth model checking contest. ToPNOC 11,
262–273 (2016)

12. Rao Kosaraju, S.: Decidability of reachability in vector addition systems (prelim-
inary version). In: Lewis, H.R., Simons, B.B., Burkhard, W.A., Landweber, L.H.
(eds.) STOC, pp. 267–281. ACM (1982)

13. Lambert, J.-L.: A structure to decide reachability in Petri nets. TCS 99(1), 79–104
(1992)

14. Lehmann, A., Lohmann, N., Wolf, K.: Stubborn sets for simple linear time prop-
erties. In: ICATPN, pp. 228–247 (2012)

15. Leroux, J., Schmitz, S.: Demystifying reachability in vector addition systems. In:
LICS, pp. 56–67. IEEE Computer Society (2015)

16. Lime, D., Roux, O.H., Seidner, C., Traonouez, L.-M.: Romeo: a parametric model-
checker for Petri nets with stopwatches. In: TACAS, pp. 54–57 (2009)

17. Mayr, E.W.: An algorithm for the general Petri net reachability problem. SIAM
J. Comput. 13(3), 441–460 (1984)

18. McMillan, K.: Using unfoldings to avoid the state explosion problem in the verifi-
cation of asynchronous circuits. In: CAV, pp. 164–177 (1993)

19. Miner, A., Babar, J.: Meddly: multi-terminal and edge-valued decision diagram
library. In: QEST, pp. 195–196 (2010)

20. Reinhardt, K.: Reachability in Petri nets with inhibitor arcs. ENTCS 223, 239–264
(2008)

21. Weiser, M.: Program slicing. IEEE Trans. Softw. Eng. SE-10(4), 352–357 (1984)
22. Wolf, K.: Running LoLA 2.0 in a model checking competition. ToPNOC 11, 274–

285 (2016)

Abstraction-Based Incremental Inductive
Coverability for Petri Nets

Jiawen Kang1,2, Yunjun Bai1,2, and Li Jiao1,2(B)

1 State Key Laboratory of Computer Science, Institute of Software,
Chinese Academy of Sciences, Beijing, China

ljiao@ios.ac.cn
2 University of Chinese Academy of Sciences, Beijing, China

Abstract. We present a novel approach to check the coverability prob-
lem of Petri nets which is based on a tight integration of IC3 with place-
merge abstraction. Place-merge abstraction can reduce the dimensional-
ity of state spaces by trying to merge some places that may be not critical
for proving the property. In this scenario, IC3 runs only on abstract Petri
nets with lower dimensionality. When the current abstraction allows for
a spurious counterexample, it is refined by splitting candidate abstract
places. Furthermore, this can be done in a completely incremental way
without discarding results found in previous abstractions. The experi-
mental evaluation on the standard Petri net benchmarks shows the effec-
tiveness and competitiveness of our approach.

Keywords: Petri nets · Inductive invariants · Coverability · IC3 ·
Place-merge abstraction

1 Introduction

IC3, proposed in [4], is an efficient algorithm for the verification of the safety
property of hardware systems. Different from the bounded model checking and
k-induction, IC3 does not require unrolling the transition relation. It tries to find
an inductive invariant by maintaining over-approximations of the sets of forward-
reachable states and strengthening them based on counterexamples obtained by
searching backward from bad states. A reconstruction of IC3 together with an
efficient implementation, presented in [10], demonstrates its extreme competi-
tiveness for the verification of hardware models.

There have been several contributions to the extension of IC3 to software sys-
tems. One of them is generalizing IC3 from SAT to the case of SMT [5,6] where
software programs are described by first-order logic formulas, and subsequently,
it has been lifted to infinite-state transition systems combined with predicate
abstraction [7]. There exists another extension of IC3 that represents software
programs in the form of control-flow automata [19]. IC3 has been adapted to
timed systems [17] and Markov decision processes [2], respectively. Furthermore,

c© Springer Nature Switzerland AG 2021
D. Buchs and J. Carmona (Eds.): PETRI NETS 2021, LNCS 12734, pp. 379–398, 2021.
https://doi.org/10.1007/978-3-030-76983-3_19

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76983-3_19&domain=pdf
https://doi.org/10.1007/978-3-030-76983-3_19

380 J. Kang et al.

IC3 algorithm has been generalized to solve the coverability problem of the class
of downward-finite well-structured transition systems (WSTS) in [18].

We consider here the case of Petri nets, a subclass of WSTS [13], which pro-
vide a simple and natural automata-like method modeling concurrent systems.
For all WSTS, a large class of safety properties can be solved by conversion to the
coverability problem, which is decidable for WSTS [1], hence for Petri nets. Even
though the coverability problem of Petri nets has an EXPSPACE-completeness
complexity [15], a lot of research works have explored many efficient techniques
to solve the coverability problem. The general and classical algorithm solves
the coverability problem by backward exploration of state space [1,13]. The
approach based on the marking equation and traps has achieved good results
profiting from the SMT solver in [11]. Combining with properties of Petri nets,
generalization of IC3 to WSTS has been implemented on Petri nets to solve the
coverability problem without using SMT solvers [18]. However, when the number
of places in Petri nets becomes larger, most approaches suffer from the explosion
caused by the high dimensionality of state spaces. A method of forward and
backward search based on abstraction has been developed in [14] trying to solve
the coverability problem by manipulating lower dimensional sets, where the way
of abstraction is called place-merge abstraction.

In this paper, we present a novel IC3-like method to solve the coverability
problem of Petri nets based on place-merge abstraction. Place-merge abstrac-
tion is an efficient abstraction technique for Petri nets trying to gather places
that may possibly be not important for satisfaction of properties, and it can
reduce the dimensionality of the state space while preserving the satisfaction of
properties. In our algorithm, we try to improve the outperformance of IC3 in
computing inductive invariants by combining IC3 with dimensionality reduction
benefited from place-merge abstraction. The main idea of our approach is to
let IC3 proceed on abstract Petri nets generated by place-merge abstraction.
We set our algorithm in the Counter-Example Guided Abstraction-Refinement
(CEGAR) framework [8]. When an abstract counterexample is found by IC3, it
is necessary to simulate it on the original Petri net. Note that if the abstract
counterexample is spurious, the current abstract Petri net is not precise enough
to get the conclusion, then the abstract Petri net can be refined by splitting
abstract places that lead to the spurious counterexample path.

The proposed algorithm has several advantages as follows. First, the com-
putation of inductive invariants now works on abstract Petri nets with lower
dimensionality, which is often as effective and correct as the analysis on the
original Petri net, but faster and more efficient. Second, the algorithm proceeds
in a completely incremental way, allowing to keep all results found in previ-
ous abstractions, and the previous spurious counterexamples cannot exist after
refinement.

We experimentally evaluated our approach on a set of benchmarks from
several sources [14,16,20]. The results show that our approach is more effective
than the original IC3 algorithm in terms of run times on a lot of the benchmarks,

Abstraction-Based Incremental Inductive Coverability for Petri Nets 381

and benefiting from place-merged abstraction, the number of places of Petri nets
that allows to conclude is reduced effectively.

The paper is organized as follows. In Sect. 2, we present some backgrounds
about the coverability problem of Petri nets and IC3. In Sect. 3, we show detailed
descriptions and prove the correctness of our algorithm. We experimentally eval-
uate our approach in Sect. 4. In Sect. 5, we discuss the related work. Conclusions
and future work are given in Sect. 6.

2 Preliminaries

2.1 Notations

Well-Quasi-Orderings. For a set M and a relation �⊆ M × M , � is a quasi-
ordering iff � is a reflexive and transitive relation. A quasi-ordering � is a
well-quasi-ordering (wqo for short) if for any infinite sequence m0,m1,m2, · · ·
in M , there exists indices i < j such that mi � mj . For a wqo �, we denote the
converse ordering by �, the equivalence relation � ∩ � by =, and strict ordering
� \ = by ≺.

Upward-Closed Sets and Downward-Closed Sets. Given a wqo �⊆ M ×M , a set
U ⊆ M is upward-closed if for any u ∈ U , u � m implies m ∈ U . x↑ = {m|x �
m ∧ m ∈ M} is the upward-closure of x ∈ M . For any set X ⊆ M , its upward
closure is the set X↑ =

⋃
x∈X x↑. Symmetrically, a set D ⊆ M is downward-

closed if for any d ∈ D and m � d implies m ∈ D. x↓ = {m|m � x ∧ m ∈ M} is
the downward closure of x ∈ M . For any set X ⊆ M , its dowmward closure is
the set X↓ =

⋃
x∈X x↓.

For an upward-closed set U , a basis of U is a finite subset Ub ⊆ U if U = U↑
b .

Clearly, any upward-closed set U has a finite basis consisting of the minimal
elements since � is a wqo. Such a basis allows for a finite representation of
an upward-closed set. Furthermore, the complement of an upward-closed set is
downward-closed, and vice versa. Therefore, downward-closed sets can be repre-
sented by a basis of their complements.

2.2 Petri Nets

We briefly describe some basic concepts of Petri nets, more concepts and defini-
tions are available in [21].

Definition 1 (Petri nets). A Petri net is a tuple N = 〈P, T,W,m0〉 where:

– P is a finite set of places.
– T is a finite set of transitions such that P ∩ T = ∅.
– W is an arc function: (P × T) ∪ (T × P) → N describing the relationship

between places and transitions.
– m0 is the initial marking. A marking m ∈ N

|P | is a vector specifying a number
m(p) of tokens for each place p ∈ P .

382 J. Kang et al.

We introduce a partial order � on the set of markings space N
|P | such that

for all m,m′ ∈ N
|P |, m � m′ iff for every p ∈ P : m(p) ≤ m′(p). It turns out

that � is wqo on N
|P |. A wqo (X,�) is downward-finite if for every x ∈ X, the

downward closure x↓ is finite. It turns out that Petri nets are downward-finite
systems, since markings can consist of only non-negative integers and (N|P |,�)
is a downward-finite wqo.

Definition 2. Let N = 〈P, T,W,m0〉 be a Petri net.

– A transition t ∈ T is enabled at marking m iff W (p, t) ≤ m(p) for all p ∈ P .
– A transition t can fire at marking m iff t is enabled at m, yielding a new

marking m′ and m′(p) = m(p) − W (p, t) + W (t, p) for all p ∈ P , which we
write m

t−→ m′.
– The set of predecessors of m is the set pre(m) = {m′|∃t ∈ T : m′ t−→ m}.
– The set of successors of m is the set post(m) = {m′|∃t ∈ T : m

t−→ m′}.
– A marking m′ is reachable from m iff m = m′ or there exist a transition

sequence σ = t1t2 . . . tk and a marking sequence m1,m2 . . . mk−1 such that
m

t1−→ m1
t2−→ m2...mk−1

tk−→ m′ which we write m
σ−→ m′.

– The set of successors in k-steps of m is the set postk(m) = {m′|∃σ : |σ| =
k ∧ m

σ−→ m′}, and specially post0(m) = {m} where σ is empty.
– The set of reachable markings from m within k-steps is the set Reachk(m) =⋃

0≤i≤k posti(m).
– The set of all reachable markings from m is Reach(m) =

⋃
k≥0 Reachk(m).

Transitions of Petri nets and the wqo �⊆ N
|P |×N

|P | satisfy the monotonicity
property: for all markings m1,m2,m3 ∈ N

|P |, if m1
t−→ m2 and m1 � m3, then

there exists m4 such that m3
t−→ m4 and m2 � m4.

2.3 The Coverability Problem

We recall some important notions about the coverability problem [12].

The Coverability Problem. Let N = 〈P, T,W,m0〉 be a Petri net. The marking
mt is a target marking. The coverability problem is to prove whether there exists
a reachable marking mr ∈ Reach(m0) such that mt � mr.

If there does exist such a marking mr, then the marking mt is coverable.
Moreover, it is equivalent to prove whether the set Reach(m0) has an intersection
with m↑

t . The coverability problem of Petri nets can be converted to the safety
property P = N

|P | \ m↑
t by checking if N � P, i.e. if all reachable markings

Reach(m0) ⊆ P. The safety property P is false iff the target marking mt is
coverable. Thus, we can say that the upward-closed set m↑

t is the set of bad
markings, while the complement N

|P | \ m↑
t represents the set of good markings.

To solve the coverability problem, we introduce coverable sets, defined as the
downward-closure of reachable sets.

Abstraction-Based Incremental Inductive Coverability for Petri Nets 383

Definition 3. Let N = 〈P, T,W,m0〉 be a Petri net.

– The coverable set of N within k-steps is the set Coverk(N) = {m|∃m′ ∈
Reachk(m0) : m � m′}, i.e. Coverk(N) = Reachk(m0)↓.

– The coverable set of N is the set Cover(N) = Reach(m0)↓.

The coverability problem has an EXPSPACE-complete complexity and is
decidable for Petri nets, resulting from a general decidability result [1]. The
classical algorithm for solving this problem is a backward algorithm, it is based
on the following formula:

U0 = mt, U
↑
i+1 = pre(U↑

i) ∪ U↑
i

The U↑
i increases gradually and must stabilize. When the sequence stabilizes,

we denote stabilized U↑
i by U↑. It is easy to see that if m0 �∈ U↑ then Cover(N)∩

U↑ = ∅, i.e. the target marking mt is not coverable in the Petri net.

2.4 IC3 for Petri Nets

IC3 [4] has drawn extensive concern as an efficient algorithm for the computation
of inductive invariants. Combining with properties of Petri nets, generalization
of IC3 to the class of downward-finite WSTS has been implemented on Petri
nets to solve the coverability problem without using SMT solvers [18]. In the
following, we present its main idea. More details can be found in [4,18].

Let N = 〈P, T,W,m0〉 be a Petri net and mt be a target marking, the IC3
algorithm tries to find an inductive invariant F for the coverability problem
such that F � P. F is an inductive invariant for the coverability problem iff (a)
m0 ∈ F , (b) F is a downward-closed set, and (c) post(F) ⊆ F . If the inductive
invariant F ⊆ P, we have Cover(N) ⊆ F ⊆ P. Therefore, our goal is to build
such an inductive invariant.

In order to find an inductive invariant F , the IC3 algorithm maintains a
sequence F0, F1 . . . Fk such that for all 0 ≤ i < k:

m0 ∈ Fi

post(Fi) ⊆ Fi+1

Fi ⊆ Fi+1

Fi ⊆ P

where Fi is a downward-closed set called frame which over-approximates the
set of coverable markings within i steps Coveri(N), F0 plays a special role and
always represents the downward closure of the initial marking, i.e. F0 = m↓

0.
A description of IC3 is shown in Algorithm 1 as a pseudo-code which is sum-

marized from [18]. The algorithm generally proceeds by alternating two phases:
the blocking phase and the propagation phase.

In the blocking phase (lines 6–8), IC3 tries to block mt in k-th frame or build
a path from m↓

0 to m↑
t by searching backward. In this phase, IC3 maintains a

384 J. Kang et al.

Input: a Petri net N = 〈P, T, W, m0〉 and the target marking mt

Output: TRUE or FALSE
1 Function IC3(N , mt):
2 if m0 ∈ m↑

t then return TRUE ;
3 k = 1, F0 = m↓

0, Fk = N
|P |

4 π = ∅ // a list recording counterexample
5 while TRUE do

// blocking phase
6 if not recBlock(mt, k) then
7 return TRUE // counterexample π found
8 end

// propagation phase
9 k = k + 1, Fk = N

|P |, π = ∅
10 for i = 1 to k do
11 foreach marking mb blocked in Fi do
12 if pre(m↑

b) ∩ Fi = ∅ then remove m↑
b from Fi+1;

13 end
14 if Fi == Fi+1 then
15 return FALSE// inductive invariant Fi found
16 end
17 end
18 end
19 Function recBlock(m, i):
20 if i = 0 then return False;
21 while pre(m↑) ∩ Fi−1 \ m↑ �= ∅ do
22 select a marking mp in pre(m↑) ∩ Fi−1 \ m↑ along transition t
23 if not recBlock(mp,i − 1) then
24 π.append(t)
25 return False
26 end
27 end
28 mg = generalize(m, i)
29 for j = 1 to i do remove m↑

g from Fj ;
30 return True

Algorithm 1: IC3 for coverability problem of Petri net (summarized from
[18])

set of pairs (m, i), where m is a bad marking or can lead to bad markings, and
i is the position of m in the sequence of frames. For the pair (m, i), IC3 tries
to block m in Fi by checking if m↑ is reachable from Fi−1. If unreachable, there
is no path from m↓

0 to m↑ within i steps, and the marking m is not coverable
within i steps. Then we can block m in Fi, i.e. remove m↑ from Fi safely. If
reachable, it is not strong enough to show that m↑ is unreachable from m↓

0. In
this scenario, let mp be a predecessor of m↑ in Fi−1 such that mp can lead to
m↑ in one step, then a new pair (mp, i − 1) is generated and IC3 tries to block

Abstraction-Based Incremental Inductive Coverability for Petri Nets 385

mp in Fi−1. The algorithm continues recursively, until either a pair (ma, 0) is
generated, which means that a path from m↓

0 to m↑
t is found and the target

marking mt is coverable, or the blocking operation succeeds somewhere meaning
that the marking m in original pair (m, i) can be blocked in Fi.

In the propagation phase (lines 9–17), IC3 tries to extend the sequence with
a new frame Fk+1 that contains all markings. For every blocked marking mb

in Fi(1 ≤ i ≤ k), if the set of predecessors of m↑
b has no intersection with Fi,

blocked marking mb can be propagated to Fi+1 and m↑
b can be removed in Fi+1.

During this process, if two consecutive frames become equivalent Fi = Fi+1,
then we can conclude post(Fi) ⊆ Fi and an inductive invariant Fi is found, i.e.
mt is not coverable.

More importantly, when the marking m can be blocked in Fi, we can remove
even a bigger set m↑

g instead of m↑, mg is computed as follows [18]:

generalize(m, i) = {mg|mg � m ∧ m0 �∈ m↑
g ∧ pre(m↑

g) ∩ Fi−1 \ m↑
g = ∅}

It is easy to see that mg can also be blocked in Fi. This generalization can speed
up search significantly for the construction of inductive invariants in a given
search space.

In particular, we can get the predecessors of m↑ by the following Lemma 1.

Lemma 1. Give a Petri net N = 〈P, T,W,m0〉. Let t ∈ T be a transition. Then
m′ ∈ pre(m↑) is a predecessor of m↑ along t iff for all p ∈ P

m′(p) ≥ max{m(p) + W (p, t) − W (t, p),W (p, t)} (1)

Proof. Suppose m′ is a predecessor of m↑ along t. m′(p) ≥ W (p, t) for all p ∈ P ,
because the transition t is enabled in marking m′. Transition t fires yielding a
new marking m′′ such that m � m′′, i.e. m′(p) − W (p, t) + W (t, p) ≥ m(p) for
all p ∈ P . Therefore, predecessors of m↑ make (1) satisfiable.

For the other direction, transition t is enabled at m′ because m′(p) ≥ W (p, t)
for all p ∈ P . After t firing, the resulting marking m′′ satisfies m � m′′. because
m′(p) ≥ m(p) − W (t, p) + W (p, t) for all p ∈ P . Thus, the marking m′ making
(1) satisfiable is a predecessor of m↑ along t.

Moreover, such a marking b satisfying b(p) = max{m(p) + W (p, t) −
W (t, p),W (p, t)} itself is a predecessor of m↑ along t, and b is the minimal
marking of pre(m↑). �

Clearly, all predecessors of m↑ form also an upward-closed set by Lemma 1
and the monotonicity property of Petri nets. It facilitates the computation of all
predecessors of an upward-closed set and the process of backward search.

3 Combining IC3 with Place-Merge Abstraction

3.1 The Place-Merge Abstraction

Abstraction [9] in model checking is a very powerful approach to reduce the com-
plexity of verification in search space while preserving the satisfaction of some

386 J. Kang et al.

properties. Therefore, the abstract model can be used to verify the satisfiability
of some properties of the concrete model.

Place-merge abstraction [14] is an efficient abstraction method for Petri nets.
With the help of place-merge abstraction, we get new abstract Petri nets with
fewer places by merging unimportant places into one single place, and therefore
reduce the dimensionality of marking spaces. In the following, we present some
important definitions and propositions about place-merge abstraction.

Definition 4. Given a Petri net N = 〈P, T,W,m0〉, where P = {p1, p2...pk}.
The abstraction function is a surjective function α : P → P̂ , where P̂ =
{p̂1, p̂2 . . . p̂k̂} and k̂ ≤ k. The corresponding concretization function is an injec-
tion γα : P̂ → 2P such that γα(p̂) = {p ∈ P |α(p) = p̂}.

Intuitively, the abstraction of Petri nets is a partition of the set of places. It
divides k places into k̂ classes. The partition will be used to compute abstract
versions of markings with lower dimensionality. Given a marking m(denoted by a
vector over N

k), the abstraction converts m to an abstract marking m̂ (denoted
by a vector over N

k̂). Since transitions are related to places in Petri nets, we
introduce the following definition of markings and transitions under place-merge
abstraction. It is worth noting that the number of transitions is the same after
abstraction.

Definition 5. Given an abstraction function α and a marking m, m̂ is the
abstract version of m, and m̂(p̂) =

∑
α(p)=p̂ m(p). Given a transition t, the

relationship between places and transitions of abstraction can be denoted by
Ŵ (p̂, t) =

∑
α(p)=p̂ W (p, t) and Ŵ (t, p̂) =

∑
α(p)=p̂ W (t, p).

From Definitions 4 and 5, we get the abstraction of the original Petri net
N̂ =

〈
P̂ , T, Ŵ , m̂0

〉
which is also a Petri net.

The following propositions can be obtained to show that abstract Petri nets
can admit behaviors in original Petri nets but the converse does not hold.

Proposition 1. Given a Petri net N = 〈P, T,W,m0〉 and an abstraction func-
tion α, we get the abstract Petri net N̂ =

〈
P̂ , T, Ŵ , m̂0

〉
using Definitions 4

and 5. m and m′ are markings in N . m̂ and m̂′ in N̂ are the abstract version of
m and m′, respectively. t ∈ T is a transition. If m

t−→ m′ in the Petri net, then
m̂

t−→ m̂′ in the abstract Petri net.

Proof. Following the fact that m
t−→ m′, it implies that t is enabled at marking m

in N where m(p) ≥ W (p, t) and m′(p) = m(p)− W (p, t) +W (t, p) for all p ∈ P .
According to Definition 5, m̂(p̂) =

∑
α(p)=p̂ m(p), Ŵ (p̂, t) =

∑
α(p)=p̂ W (p, t)

and Ŵ (t, p̂) =
∑

α(p)=p̂ W (t, p) for all p̂ ∈ P̂ . Therefore, m̂(p) ≥ Ŵ (p̂, t) for
all p̂ ∈ P̂ , i.e. t is enabled at the abstract marking m̂. Transition t fires at m̂
yielding m̂′(p̂) = m̂(p̂)− Ŵ (p̂, t) + Ŵ (t, p̂) =

∑
α(p)=p̂ m(p)− ∑

α(p)=p̂ W (p, t) +
∑

α(p)=p̂ W (t, p). Since m′(p) = m(p) − W (p, t) + W (t, p), it allows to conclude
that m̂′(p̂) =

∑
α(p)=p̂ m′(p) for all p̂ ∈ P̂ . �

Abstraction-Based Incremental Inductive Coverability for Petri Nets 387

Proposition 2. Given a Petri net N = 〈P, T,W,m0〉 and an abstraction func-
tion α, the abstract Petri net N̂ =

〈
P̂ , T, Ŵ , m̂0

〉
can be obtained by Defini-

tions 4 and 5. mr is a marking in N and m̂r is its abstract version in N̂ .
σ = t0, t1 . . . tk is a transition sequence where ti ∈ T for all 0 ≤ i ≤ k. If
m0

σ−→ mr in N , then m̂0
σ−→ m̂r in N̂ .

Proof. According to Proposition 1, if m
t−→ m′ in N , then m̂

t−→ m̂ in N̂ . Let the
transitions in the sequence fire in order, it is easy to see that m̂r is reachable
from m̂0 in N̂ along the same transition sequence σ. �

Proposition 3. Given a Petri net N = 〈P, T,W,m0〉 and an abstraction func-
tion α, the abstract Petri net N̂ =

〈
P̂ , T, Ŵ , m̂0

〉
, m̂t can be obtained by Defi-

nitions 4 and 5. mt is a target marking in N and m̂t is the abstract version of
mt in N̂ . If mt is coverable in N , then m̂t is coverable in N̂ .

Proof. Supposed mt is coverable in N , then there exists a reachable marking mr

in N such that mt � mr. According to Proposition 2, the abstract version m̂r

is also reachable from m̂0 in N̂ . By Definition 5, m̂t � m̂r holds since mt � mr.
Thus, m̂t is coverable in N̂ . �

For an abstract Petri net, each abstract place p̂ corresponds to a set of places
of the original Petri net. By abuse of notation, we write p̂ = γα(p̂) directly and
write a marking as a vector where the components are arranged by indices of
places in Petri nets.

Fig. 1. A Petri net (a) and its abstraction (b). It assumes that all weights of arcs are
equal to one, except for W (q1, t2) = 2.

Example 1. Consider the Petri nets shown in Fig. 1, the current distribution of
tokens represents the initial marking. It is clear to see that the Petri net N̂ in
(b) is an abstraction of N in (a) with q0 = {p0, p1}, q1 = {p2, p3, p4}. Our goal is
to prove whether the target marking mt = (1, 1, 0, 0, 0) is coverable in N . In the

388 J. Kang et al.

abstraction, it is converted to prove whether the abstract marking m̂t = (2, 0)
is coverable. If the abstract marking m̂t is not coverable in N̂ , then mt is also
not coverable in N according to Proposition 3. Therefore, we can analyze the
property of the original Petri net in its abstraction whose state space is N

2

instead of N5.

Clearly, a marking of abstraction corresponds to a set of markings in the
original Petri nets. It is safe to conclude that mt is coverable in N implies m̂t

is coverable in N̂ by Proposition 3. However, the converse does not hold, since
there may exist counterexamples in N̂ which have no counterpart in N , in this
case, these counterexamples are spurious.

Fig. 2. A spurious counterexample path of the abstract Petri net in Fig. 1(b). Each
vector in the rectangle represents a concrete marking and each solid arrow is a transi-
tion. Each rectangle represents an abstract marking and its value is on the top of the
rectangle.

Example 2. Consider Fig. 2, the figure shows a spurious counterexample path of
Example 1. Each vector is a marking and solid arrows are transitions. Each rect-
angle represents an abstract marking and its value is on the top of the rectangle,
the concrete markings in the same rectangle correspond to the same abstract
marking. It is clear that the marking m̂t = (2, 0) is coverable in N̂ since there
exists a reachable marking m̂r = (2, 1) along the counterexample path σ = t0t0
such that m̂t � m̂r. However, the path σ has no counterpart in the original Petri
net N , since t0 fires at the initial marking of N yielding m1 = (1, 0, 0, 1, 1), but
the next transition t0 is not enabled at m1. Therefore, σ = t0t0 is a spurious
counterexample path.

It is possible there exist spurious counterexample paths if the abstraction is
too coarse. The abstraction should be refined to rule out these spurious coun-
terexample paths. CEGAR [8] is a fast-developing algorithm framework and
is highly focused on software model checking. It can automatically refine an
abstraction by extracting information from spurious counterexamples. In place-
merge abstraction, we can refine the abstraction by splitting the large abstract
places which contain too many original places.

Abstraction-Based Incremental Inductive Coverability for Petri Nets 389

3.2 The Algorithm

In this section, we propose a new algorithm (IC3+PMA for short) that combines
IC3 and place-merge abstraction to solve the coverability problem of Petri nets
more efficiently. The main idea of IC3+PMA is to let IC3 work on abstract Petri
nets with lower dimensionality.

The IC3+PMA algorithm is shown in Algorithm 2 as pseudo-code and it
has the same structure as IC3. The key differences between IC3+PMA and IC3
in Algorithm 1 arise from the fact that we are working on abstract marking
spaces with lower dimensionality and the fact that counterexample paths may
be spurious, and in this case, a new abstraction is obtained by refinement.

Just as IC3 shown in Algorithm 1, IC3+PMA also maintains a sequence of
frames to find an inductive invariant, and consists of a loop, where each iteration
is divided into the blocking phase and the propagation phase.

Initially, we use an initial abstraction function α that merges all places of
the original Petri net N into one single abstract place, then we get the abstract
Petri net N̂ and the abstract version of the target m̂t by Definitions 4 and 5
(line 2). Different from IC3, IC3+PMA initializes the sequence of frames with
N

|P̂ | (line 7).
In the blocking phase (lines 9–17), IC3+PMA tries to block m̂t or build a

path from m̂↓
0 to m̂↑

t in the current abstract Petri net by searching backward as
IC3 does. IC3+PMA maintains a set of pairs (m̂, i), where m̂ is a bad marking or
can lead to bad markings in N̂ . IC3+PMA continues recursively (recBlock pro-
cedure at line 28) on abstract Petri net. If IC3+PMA generates a pair (m̂a, 0),
there exists such a counterexample path from m̂↓

0 to m̂↑
t , i.e. m̂t is coverable in

N̂ . In that case, the counterexample path should be simulated in the original
Petri net N (line 11). If the simulation succeeds, it is sufficient to conclude mt is
coverable in the original Petri net along this path (line 15). Otherwise, the coun-
terexample is spurious, thus the abstraction can be refined by splitting specific
abstract places into two, and a new abstraction N̂ is generated so that the spuri-
ous counterexample is ruled out in the new abstraction (line 12). Furthermore, it
is necessary to update the sequence of frames to adapt it to the new abstraction
after refinement. Then IC3+PMA continues to try to redo the search of coun-
terexamples in the new abstraction without rebuilding the sequence of frames.
If the blocking operation succeeds somewhere, the marking m̂ in original pair
(m̂, i) can be blocked in Fi. m̂t is not coverable in N̂ within k steps, it is sufficient
to conclude that mt is not coverable on N within k steps by Proposition 3.

In the propagation phase (lines 18-26), IC3 tries to extend the sequence with
a new frame Fk+1 with N

|P̂ | that contains all markings in N̂ . Blocked markings
in Fi whose predecessors have no intersection with Fi are propagated to the
frame Fi+1 (line 21). During this process, same as IC3 in Algorithm 1, if two
consecutive frames become equivalent, we can conclude m̂t is not coverable in
the abstract Petri net, and thus mt is not coverable in the original one.

390 J. Kang et al.

Input: a Petri net N = 〈P, T, W, m0〉, and the target marking mt

Output: TRUE or FALSE
1 Function IC3+PMA(N , mt):

// α merges all places into a single abstract place initially
2 N̂ , m̂t = abstraction(N, mt, α), π = ∅
3 if m̂t � m̂0 then
4 if mt � m0 then return UNSAFE ;
5 N̂ , m̂t = refinement(π)// refinement at initial marking
6 end
7 k = 1, F0 = m̂0

↓, Fk = N
|P̂ |

8 while TRUE do
// blocking phase

9 if not recBlock(m̂t, k) then
10 find an abstract counterexample path π
11 if not simulation(N, mt, π) then
12 N̂ , m̂t = refinement(π), π = ∅
13 continue
14 else
15 return TRUE // counterexample π found
16 end
17 end

// propagation phase

18 k = k + 1, Fk = N
|P̂ |, π = ∅

19 for i = 1 to k do
20 foreach marking mb blocked in Fi do
21 if in N̂ , pre(m↑

b) ∩ Fi = ∅ then remove m↑
b from Fi+1;

22 end
23 if Fi == Fi+1 then
24 return FALSE// inductive invariant Fi found
25 end
26 end
27 end
28 Function recBlock(m, i):
29 if i = 0 then return False;
30 while in N̂ , pre(m↑) ∩ Fi \ m↑ �= ∅ do
31 select a marking mp in pre(m↑) ∩ Fi−1 \ m↑ along transition t
32 if not recBlock(mp,i − 1) then
33 π.append(t)
34 return False
35 end
36 end
37 mg = generalize(mp, i)
38 for j = 1 to i do remove m↑

g from Fj ;
39 return True

Algorithm 2: IC3 with place-merge abstraction (with changes w.r.t. Algo-
rithm 1 in red)

Abstraction-Based Incremental Inductive Coverability for Petri Nets 391

3.3 Simulation and Refinement

When a counterexample, denoted by a transition sequence π = t0t1 . . . tk−1, is
found on current abstraction N̂ , we check if it can be simulated, i.e. it has a coun-
terpart on N . The simulation procedure is called to check if such a counterex-
ample π exists, and if not, refinement must be called to increase the precision of
the abstraction by generating a new partition of places.

The abstract counterexample holds on the original Petri net iff

m0
π−→ mk ∧ mt � mk (2)

Note that if (2) is satisfiable, there exists a concrete counterexample on the
original Petri net, i.e. mt is coverable. Otherwise, if the formula is unsatisfiable,
either there exists i(0 ≤ i ≤ k − 1) such that ti is not enabled at marking mi, or
mt �� mk, in these cases, π is spurious and the abstraction must be refined.

There are two refinement methods corresponding to the above two cases
where (2) is unsatisfiable. In the first case, ti is not enabled at marking mi,
there must exist pu ∈ P such that mi(pu) < W (pu, ti). IC3+PMA finds all
such pu’s denoted by a set U , then splits all abstract places p̂ ∈ P̂ satisfying
γα(p̂) ∩ U �= ∅ into two parts, γα(p̂′

1) = {p|p ∈ γα(p̂) ∧ p ∈ U} and γα(p̂′
2) =

{p|p ∈ γα(p̂) ∧ p �∈ U}. In the second case, each transition ti ∈ π is enabled at
marking mi but finally mt �� mk. The method of refinement is similar to the first
case, IC3+PMA marks out places pu satisfying mk(pu) < mt(pu) by a set U . For
each abstract place p̂ ∈ P̂ satisfying γα(p̂)∩ U �= ∅, IC3+PMA also splits it into
two parts, γα(p̂′

1) = {p|p ∈ γα(p̂) ∧ p ∈ U} and γα(p̂′
2) = {p|p ∈ γα(p̂) ∧ p �∈ U}.

It is worth noting that each refinement may add more than one place in
our approach. For example, the set of places of previous abstraction is P̂ =
{q0, q1}, where q0 = {p0, p1, p2} and q1 = {p3, p4}. If there exists a spurious
counterexample in the previous abstraction such that (2) is unsatisfiable and
U = {p2, p4}. According to the method of refinement explained above, all p̂ ∈ P̂
satisfying are split γα(p̂) ∩ U �= ∅ into two parts. i.e. q0 = {p0, p1, p2} is split
into to part q0 = {p0, p1} and q2 = {p2}, adn q1 = {p3, p4} is split into to
part q1 = {p3} and q3 = {p4}. Thus, the set of places of new abstraction is
P̂ = {q0, q1, q2, q3}.

Clearly, the refinement method can generate a new partition of places of
original Petri nets. After the refinement, we can get a new abstraction Petri net
according to Definitions 4 and 5, and IC3+PMA continues to proceed in the
new abstraction after processing the sequence of frames to adapt it to the new
abstraction. The following theorem shows that the new abstract Petri net will
rule out the counterexample π.

Theorem 1 (Refinement). Given a Petri net N = 〈P, T,W,m0〉, an abstrac-
tion N̂ and a counterexample path π = t0t1 . . . tk−1 of N̂ such that formula (2) is
unsatisfiable on N . If N̂ ′ is a new abstract Petri net obtained by the refinement
explained above, (2) is unsatisfiable on N̂ ′.

Proof. According to the fact that π is a spurious counterexample and the two
cases where (2) is unsatisfiable on N , we have the following analysis.

392 J. Kang et al.

In the first case, ti is not enabled at marking mi for some ti(0 ≤ i ≤ k−1) in
N . According to the refinement explained above, we have U = {p ∈ P |mi(p) <
W (p, ti)}. The abstract places q in N̂ which did not allow for ti to be enabled are
split into two abstract places q1 and q2 where γα(q1) = γα(q) ∩ U and γα(q2) =
γα(q) \ γα(q1). The new abstraction N̂ ′ is obtained by the new partition after
refinement by Definitions 4 and 5. Because mi reachable along t0, t1 . . . ti−1 in N ,
the corresponding abstract marking m̂′

i is reachable from m̂′
0 along t0, t1 . . . ti−1

in N̂ ′ by Proposition 2. Clearly, for all p ∈ γα(q1), mi(p) < W (p, ti) since ti is
not enabled at marking mi in the original Petri net. At the abstract marking
m̂′

i, there exist at least such a q1 in N̂ ′ satisfying m̂′
i(q1) < Ŵ (q1, ti) in the new

abstract Petri net N̂ ′ by Definition 5, and thus ti is not enabled at m̂′
i in the

new abstraction. Therefore, (2) is unsatisfiable on N̂ ′ and the counterexample π
does not hold after refinement.

In the second case, we can get that (2) is unsatisfiable on N̂ ′ similar to the
first one. Therefore, we can conclude that the method of refinement is sufficient
to rule out the spurious counterexample. �

Example 3. Let us consider the Petri net N = 〈P, T,W,m0〉 of Example 1, where
P = {p0, p1, p2, p3, p4}, T = {t0, t1, t2, t3}, m0 = (0, 0, 1, 1, 1) and the arc func-
tion W (p, t) = W (t, p) = 1 for all p ∈ P and t ∈ T as shown in Fig. 1(a). To
show the main ideas of IC3+PMA, we describe its key steps when checking the
coverability of mt = (1, 1, 0, 0, 0) in N .

Initial Abstraction. We merge all places into a single abstract place q0, i.e.
q0 = {p0, p1, p2, p3, p4}, to get the abstract Petri net N̂ and the abstract target
marking m̂t = (2). At line 3 in Algorithm 2, IC3+PMA checks that m̂t � m̂0

and gets a new partition P̂ = {q0, q1} where q0 = {p0, p1} and q1 = {p2, p3, p4}.

Second Abstraction. According to the new partition, IC3+PMA gets the new
abstraction N̂ with P̂ = {q0, q1} shown in Fig. 1(b) and m̂t = (2, 0). The status of
frames is F0 = (0, 3)↓ and F1 = N

2. In the blocking phase, IC3+PMA generates a
pair (m̂t, 1) and tries to blocks m̂t in the frame F1. In fact, pre(m̂↑

t)∩F1 \ m̂↑
t =

∅, therefore m̂t can be blocked in F1 and m̂t has no possible generalization,
then F1 = N

2 \ (2, 0)↑. The current sequence of frames is not sufficient to get
the conclusion, and thus IC3+PMA adds a new frame F2 = N

2 and in the
propagation phase no markings blocked in a frame that can be propagated to
the successive frame. IC3+PMA generates a new pair (m̂t, 2) and finds a chain of
pairs (m̂t, 2), ((1, 1), 1) and ((0, 2), 0) by recursively calling the function recBlock
along the path π = t0t0, i.e. (0, 2) t0−→ (1, 1) t0−→ m̂t holds in the abstraction. Thus,
an abstract counterexample is found but it cannot be simulated on the concrete
system since t0 fires at the initial marking of N yielding m1 = (1, 0, 0, 1, 1),
but the next transition t0 is not enabled at m1. According to the result of
simulation, IC3+PMA gets a new partition P̂ = {q0, q1, q2} where q0 = {p0, p1},
q1 = {p3, p4} and q2 = {p2} since m1(p2) < W (p2, t0).

Third Abstraction. According to the new partition, IC3+PMA gets the new
abstraction N̂ with P̂ = {q0, q1, q2} and m̂t = (2, 0, 0). Furthermore, IC3+PMA

Abstraction-Based Incremental Inductive Coverability for Petri Nets 393

converts the sequence of frames to F0 = (0, 2, 1)↓, F1 = N
3 \ (2, 0, 0)↑ and

F2 = N
3, and resets π to empty set. After refinement, IC3+PMA still generates

a chain of pairs (m̂t, 2), ((1, 0, 1), 1) and ((0, 1, 1), 0) by recursively calling the
function recBlock and an abstract counterexample path π = t1t0 is found, i.e.
(0, 1, 1) t1−→ (1, 0, 1) t0−→ m̂t holds in the abstraction. Moreover, the simulation
operation succeeds since m0

t1−→ m2
t0−→ m3 in original Petri net N where m2 =

(0, 1, 1, 1, 0) and m3 = (1, 1, 0, 1, 0) such that mt � m3.
Finally, we can conclude that mt is coverable in N .

3.4 Correctness

It is easy to see that IC3+PMA will work on the original Petri net in the worst
case, which is equivalent to IC3 running on the original Petri net directly. Thus,
the correctness of IC3 contributes to the correctness of IC3+PMA. The following
two theorems briefly demonstrate the correctness of IC3+PMA.

Theorem 2 (Soundness). Given a Petri net N = 〈P, T,W,m0〉 and a tar-
get marking mt. When IC3+PMA terminates with “TRUE”, there must exist a
counterexample path from m0 to m↑

t , i.e. mt is coverable. And when it terminates
with “FALSE”, then there exists no path from m0 to m↑

t , i.e. mt is not coverable.

Proof. If IC3+PMA returns TRUE, then the simulation of counterexample π of
abstract Petri net on the original Petri net succeeded, and thus mt is coverable
on the original Petri net. If IC3+PMA returns FALSE, Fk−1 == Fk holds on
the abstract Petri net. We have that Fk is an inductive invariant of the abstract
Petri net, it means that Cover(N̂) ⊆ P̂ and m̂t is not coverable on N̂ . Thus, mt

is uncoverable in the original Petri net by Proposition 3. �

Theorem 3 (Termination). Given a Petri net N = 〈P, T,W,m0〉 and a target
marking mt. If mt is coverable, IC3+PMA will terminate with “TRUE”. If mt

is not coverable, IC3+PMA will terminate with “FALSE”.

Proof. In the worst case, IC3+PMA finally works on the original Petri nets. If
the target marking mt is coverable on N , there must exists a finite k such that
Coverk(N)∩m↑

t �= ∅. Each frame Fi over-approximates coverable set Coveri(N).
Thus, IC3+PMA will terminate with the sequence of k frames F0, F1, F2 . . . Fk

and find a counterexample while returning “TRUE”.
Recall the backward coverability algorithm in Sect. 2.3 which IC3 based on,

we define a set Di which captures the basis of all new elements introduced into
U↑

i . Di = ∅ will hold since Ui must be stabilized with a finite number of steps.
In the backward search phase of our algorithm, every marking we try to block
in Fi is from Di, there are only a finite number of different frames Fi. Thus the
frame sequence must converge when the length of the sequence increases. If the
target marking mt is not coverable on N , m0 has no intersection with Ui when
Ui stabilizes and there must exist a finite number k such that Fk−1 = Fk. By
soundness, it must terminate with “FALSE”. �

394 J. Kang et al.

From the above theorems, we know that our algorithm terminates and returns
the right result. In terms of the worst case, more details of the proof can be
obtained in [18].

4 Experimental Evaluation

We have implemented Algorithm 1 (IC3) and Algorithm 2(IC3+PMA) in Python
3.6 and both of them use the input format of MIST1. In our implementation, we
refer to the implementation details of IC3 on Petri nets [18] as much as possible
such as delta-encoding and the method of generalization. It is worth noting that
the implementation of Algorithm 1 (IC3) and Algorithm 2 (IC3+PMA) is exactly
the same except for the place-merge abstraction, and facilitates the comparisons
of IC3+PMA with IC3.

Benchmarks. For the input of our algorithms, we have collected three benchmarks
of coverability problem instances for Petri nets from several sources. The first
part of benchmarks is a collection of Petri net examples from the MIST toolkit
used in [14]. The second part consists of message passing benchmarks used in
[20] which come from medical systems and bug-tracking systems. The third part
consists of Petri net instances originating from the analysis of concurrent C
programs [16].

Our experimental evaluation has two goals. First, we wanted to show that
the number of places of the abstraction that allows to conclude is fewer than the
original Petri net and the dimensionality of the coverability problem is reduced
effectively. The second goal is to measure the performance of IC3+PMA and to
compare it with the IC3 algorithm. All experiments were performed on identical
machines, equipped with Intel(R) Core i5-10210U 1.60GHz CPUs and 4 GB of
memory, running Linux 3.10.0 in 64 bit mode. Execution time was limited to 1 h
and memory to 5 GB.

Table 1 shows run times and the number of places (final in the case of
IC3+PMA) on the set of benchmarks running IC3 and IC3+PMA. For each
row, the results in bold show the optimal values (run times and number of
places) for each benchmark. We can see that when IC3+PMA terminates, the
number of places of the abstract Petri nets has decreased by 63.34% on average
comparing with the original Petri nets. For example of the benchmark newrtp
with 9 places, IC3+PMA abstracts it as an abstract Petri net with 1 place and
tries to compute an inductive invariant in the marking space N instead of N9.

Table 2 shows comparisons of IC3+PMA with IC3 while IC3 performed
much better. We have identified the main reasons for the worse performance
of IC3+PMA on these benchmarks. The first reason is that the efficiency of
refinement is not very high on these benchmarks. It is clear to see that the num-
ber of refinements on these benchmarks is more than half the number of places
of original Petri nets. The second reason is that IC3+PMA may generate some
unnecessary markings to explore when handling the sequence of frames. When a

1 https://github.com/pierreganty/mist.

https://github.com/pierreganty/mist

Abstraction-Based Incremental Inductive Coverability for Petri Nets 395

Table 1. Experimental results: comparison of running time and the number of places
for IC3+PMA and IC3 on Petri net benchmarks. Running time is in seconds. “Places”
is the number of the places of original Petri nets. “AbsPlaces” is the number of places of
the abstraction which allows to get the conclusion. “Ref” is the number of refinements.

Benchmark Places IC3+PMA
AbsPlaces

IC3+PMA
Ref

IC3+PMA
time(s)

IC3 time(s)

Uncoverable instances

newrtp 9 1 0 <0.01 0.06
kanban (bounded) 16 1 0 <0.01 1.22
manufacturing 13 1 0 <0.01 0.16
fms 22 4 3 <0.01 <0.01
fms_attic 22 4 3 0.01 0.04
mesh2x2 32 5 4 0.01 0.03
mesh3x2 52 5 4 0.02 0.08
pingpong 6 5 4 <0.01 <0.01
RandCAS 2 110 8 7 0.08 0.44
Conditionals 2 214 26 25 1.39 5.79

Coverable instances

leabasicapproach 16 5 4 <0.01 <0.01
Dekker 1 41 27 25 2.08 3.23
DoubleLock1 1 64 35 32 11.26 13.31
Pthread5 1 80 47 44 97.28 Timeout
RandLock0 2 110 48 46 21.40 24.89
Spin2003 2 56 38 35 67.35 Timeout
Szymanski 1 61 46 44 19.62 32.69
Constants 1 26 14 13 0.03 0.03
FuncPtr3 1 40 16 13 0.19 0.33

Table 2. Experimental results: the meaning of each column is as Table 1.

Benchmark Places IC3+PMA
AbsPlaces

IC3+PMA
Ref

IC3+PMA
time(s)

IC3 time(s)

Uncoverable instances

Peterson 14 10 8 0.35 0.13
Lamport 11 7 6 0.06 0.02
Ext. ReadWrite (small consts) 24 14 13 1.23 0.28
x0_AA_q1 312 # # Timeout 70.28
csm 14 9 8 0.19 0.02
Coverable instances

RandCAS 1 48 34 33 0.85 0.67
StackCAS0 1 41 30 29 3.72 2.14
StackLock0 1 37 26 25 2.33 1.06
Lu-fig2 1 39 20 19 0.22 0.12
Lu-fig2 2 61 35 32 43.06 9.05

396 J. Kang et al.

new abstract Petri net is generated, IC3+PMA has to convert the markings of
the old abstraction in frames to markings of the new abstraction. This conversion
may cause the number of markings in frames to increase dramatically, because
a marking of the old abstraction maybe corresponds to multiple markings of
the new abstraction. Thus, when IC3+PMA needs to propagate all its frames
via counter examples to induction, it needs much more expense. For example,
a frame Fi = N \ (1)↑ in the old abstraction with one place can be converted
to Fi = N

2 \ {(1, 0)↑, (0, 1)↑} in the new abstraction with two places, but (0, 1)
may be a redundant and unnecessary marking to explore in the new abstraction.
Thus, both reasons can cause IC3+PMA to be less efficient on some benchmarks
than expected.

Based on Table 1 and Table 2, IC3+PMA performs better than IC3 on some
coverable benchmarks though the number of refinements is more than half the
number of places of original Petri nets. This is because in coverable instances,
IC3+PMA just tries to build a true counterexample path, while in uncoverable
instances, it is necessary to generate an inductive invariant, the former expenses
less than the latter.

We can conclude that based on experimental results, IC3+PMA is a practical
technique to solve the coverability problem on some benchmarks.

5 Related Work

In this paper, we focus on two effective techniques of verification: abstraction
and IC3.

Abstraction [9] is a very powerful and efficient approach to reduce the com-
plexity of model checking. Among the existing abstraction techniques, place-
merge abstraction has been proposed and successfully applied to solve the cov-
erability problem of Petri nets by computing fixpoints using forward analysis on
abstract Petri nets [14]. In our work, we take advantage of place-merge abstrac-
tion in IC3 to attack the dimensionality problem of Petri nets during exploration
in marking space.

The IC3 [4] has been widely generalized to software systems to prove safety
property [5,19]. IC3 has been adapted to the class of downward-finite WSTS and
implemented on Petri nets [18]. IC3 was first combined with implicit abstraction
in a CEGAR loop in [6], and subsequently the approach was lifted to infinite-
state systems in [7]. Furthermore, IC3 in counterexample to induction-guided
abstraction-refinement (CTIGAR) focuses on single steps of the transition rela-
tion which reduce the expense of refinement and eliminating the need for full
traces [3]. Inspired by the approach combining IC3 and predicate abstraction
on symbolic transition systems [3,6,7], we try to develop an IC3-like approach
combined with place-merge abstraction in the CEGAR framework to solve the
coverability problem of Petri nets. The inspiring approach has a similar structure
to our work, but benefiting from the original IC3 on Petri nets our approach does
not depend on SMT solvers [18]. Different from the original IC3, our approach
makes IC3 work on abstract Petri nets with fewer places that can sometimes
speed up the exploration.

Abstraction-Based Incremental Inductive Coverability for Petri Nets 397

6 Conclusions

In this paper, we have proposed IC3+PMA, a new IC3-like algorithm to solve the
coverability problem of Petri nets, based on an extension of IC3 with place-merge
abstraction. The main feature of our algorithm is that IC3 proceeds on abstract
Petri nets obtained by the place-merge abstraction. When current abstraction
allows for a spurious counterexample, it is refined by splitting candidate abstract
places. Moreover, the refinement can be done in a completely incremental way
without discarding markings explored in previous abstractions.

The key advantage of our approach is that it can process some Petri nets
with high dimensionality efficiently on some benchmarks, by converting them
into abstract Petri nets with lower dimensionality, and taking advantage of the
efficiency of the IC3 algorithm. The advantage is showed by experimental results
on a set of benchmarks. In conclusion, IC3+PMA is a practical and efficient
technique for the coverability problem of Petri nets on some benchmarks.

In the future, we plan to optimize the implementation to achieve better
results and apply the approach to analyze more properties.

Acknowledgements. We thank Dr. Weifeng Wang for helpful suggestions on this
paper, and we also thank the anonymous referees for their constructive comments.
This work is partly funded by NSFC-62072443 and NSFC-61972385.

References

1. Abdulla, P.A., Cerans, K., Jonsson, B., Tsay, Y.: General decidability theorems for
infinite-state systems. In: Proceedings, 11th Annual IEEE Symposium on Logic in
Computer Science, 1996. pp. 313–321. IEEE Computer Society (1996). https://
doi.org/10.1109/LICS.1996.561359

2. Batz, K., Junges, S., Kaminski, B.L., Katoen, J.-P., Matheja, C., Schröer, P.: PrIC3:
property directed reachability for MDPs. In: Lahiri, S.K., Wang, C. (eds.) CAV
2020. LNCS, vol. 12225, pp. 512–538. Springer, Cham (2020). https://doi.org/10.
1007/978-3-030-53291-8_27

3. Birgmeier, J., Bradley, A.R., Weissenbacher, G.: Counterexample to Induction-
Guided Abstraction-Refinement (CTIGAR). In: Biere, A., Bloem, R. (eds.) CAV
2014. LNCS, vol. 8559, pp. 831–848. Springer, Cham (2014). https://doi.org/10.
1007/978-3-319-08867-9_55

4. Bradley, A.R.: SAT-based model checking without unrolling. In: Jhala, R.,
Schmidt, D. (eds.) VMCAI 2011. LNCS, vol. 6538, pp. 70–87. Springer, Heidel-
berg (2011). https://doi.org/10.1007/978-3-642-18275-4_7

5. Cimatti, A., Griggio, A.: Software model checking via IC3. In: Madhusudan, P.,
Seshia, S.A. (eds.) CAV 2012. LNCS, vol. 7358, pp. 277–293. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-31424-7_23

6. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: IC3 modulo theories via implicit
predicate abstraction. In: Ábrahám, E., Havelund, K. (eds.) TACAS 2014. LNCS,
vol. 8413, pp. 46–61. Springer, Heidelberg (2014). https://doi.org/10.1007/978-3-
642-54862-8_4

https://doi.org/10.1109/LICS.1996.561359
https://doi.org/10.1109/LICS.1996.561359
https://doi.org/10.1007/978-3-030-53291-8_27
https://doi.org/10.1007/978-3-030-53291-8_27
https://doi.org/10.1007/978-3-319-08867-9_55
https://doi.org/10.1007/978-3-319-08867-9_55
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1007/978-3-642-31424-7_23
https://doi.org/10.1007/978-3-642-54862-8_4
https://doi.org/10.1007/978-3-642-54862-8_4

398 J. Kang et al.

7. Cimatti, A., Griggio, A., Mover, S., Tonetta, S.: Infinite-state invariant checking
with IC3 and predicate abstraction. Formal Methods Syst. Des. 49(3), 190–218
(2016). https://doi.org/10.1007/s10703-016-0257-4

8. Clarke, E.M., Grumberg, O., Jha, S., Lu, Y., Veith, H.: Counterexample-guided
abstraction refinement for symbolic model checking. J. ACM (JACM) 50(5), 752–
794 (2003). https://doi.org/10.1145/876638.876643

9. Clarke, E.M., Grumberg, O., Long, D.E.: Model checking and abstraction. ACM
Trans. Programm. Lang. Syst. (TOPLAS) 16(5), 1512–1542 (1994). https://doi.
org/10.1145/186025.186051

10. Eén, N., Mishchenko, A., Brayton, R.K.: Efficient implementation of property
directed reachability. In: Bjesse, P., Slobodová, A. (eds.) International Confer-
ence on Formal Methods in Computer-Aided Design, FMCAD 2011, pp. 125–134.
FMCAD Inc. (2011)

11. Esparza, J., Ledesma-Garza, R., Majumdar, R., Meyer, P., Niksic, F.: An SMT-
based approach to coverability analysis. In: Biere, A., Bloem, R. (eds.) CAV 2014.
LNCS, vol. 8559, pp. 603–619. Springer, Cham (2014). https://doi.org/10.1007/
978-3-319-08867-9_40

12. Finkel, A., Leroux, J.: Recent and simple algorithms for Petri nets. Softw. Syst.
Model. 14(2), 719–725 (2014). https://doi.org/10.1007/s10270-014-0426-0

13. Finkel, A., Schnoebelen, P.: Well-structured transition systems everywhere! Theor.
Comput. Sci. 256(1–2), 63–92 (2001)

14. Ganty, P., Raskin, J.-F., Van Begin, L.: From many places to few: automatic
abstraction refinement for petri nets. In: Kleijn, J., Yakovlev, A. (eds.) ICATPN
2007. LNCS, vol. 4546, pp. 124–143. Springer, Heidelberg (2007). https://doi.org/
10.1007/978-3-540-73094-1_10

15. Jones, N.D., Landweber, L.H., Lien, Y.E.: Complexity of some problems in Petri
nets. Theor. Comput. Sci. 4(3), 277–299 (1977)

16. Kaiser, A., Kroening, D., Wahl, T.: Efficient coverability analysis by proof mini-
mization. In: Koutny, M., Ulidowski, I. (eds.) CONCUR 2012. LNCS, vol. 7454, pp.
500–515. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-32940-
1_35

17. Kindermann, R., Junttila, T., Niemelä, I.: SMT-based induction methods for
timed systems. In: Jurdziński, M., Ničković, D. (eds.) FORMATS 2012. LNCS,
vol. 7595, pp. 171–187. Springer, Heidelberg (2012). https://doi.org/10.1007/978-
3-642-33365-1_13

18. Kloos, J., Majumdar, R., Niksic, F., Piskac, R.: Incremental, inductive coverabil-
ity. In: Sharygina, N., Veith, H. (eds.) CAV 2013. LNCS, vol. 8044, pp. 158–173.
Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-39799-8_10

19. Lange, T., Neuhäußer, M.R., Noll, T., Katoen, J.-P.: IC3 software model checking.
Int. J. Softw. Tools Technol. Transf. 22(2), 135–161 (2019). https://doi.org/10.
1007/s10009-019-00547-x

20. Majumdar, R., Meyer, R., Wang, Z.: Static provenance verification for message
passing programs. In: Logozzo, F., Fähndrich, M. (eds.) SAS 2013. LNCS, vol.
7935, pp. 366–387. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38856-9_20

21. Reisig, W.: Petri Nets: An Introduction. EATCS Monographs on Theoretical Com-
puter Science, vol. 4. Springer (1985)

https://doi.org/10.1007/s10703-016-0257-4
https://doi.org/10.1145/876638.876643
https://doi.org/10.1145/186025.186051
https://doi.org/10.1145/186025.186051
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1007/978-3-319-08867-9_40
https://doi.org/10.1007/s10270-014-0426-0
https://doi.org/10.1007/978-3-540-73094-1_10
https://doi.org/10.1007/978-3-540-73094-1_10
https://doi.org/10.1007/978-3-642-32940-1_35
https://doi.org/10.1007/978-3-642-32940-1_35
https://doi.org/10.1007/978-3-642-33365-1_13
https://doi.org/10.1007/978-3-642-33365-1_13
https://doi.org/10.1007/978-3-642-39799-8_10
https://doi.org/10.1007/s10009-019-00547-x
https://doi.org/10.1007/s10009-019-00547-x
https://doi.org/10.1007/978-3-642-38856-9_20
https://doi.org/10.1007/978-3-642-38856-9_20

Firing Partial Orders in a Petri Net

Robin Bergenthum(B)

Faculty of Mathematics and Computer Science, FernUniversität in Hagen, Hagen,
Germany

robin.bergenthum@fernuni-hagen.de

Abstract. Petri nets have the simple firing rule that a transition is
enabled to fire if its preset of places is marked. The occurrence of a
transition is called an event. To check whether a sequence of events is
enabled, we simply try to fire the sequence from ‘start’ to ‘end’ in the
initial marking of the net. It is a bit of a stretch to call this an algorithm,
but its runtime complexity is in O(|P | · |V |), where P is the set of places
and V is the set of events.

Petri nets model distributed systems. An execution of a distributed
system is a partial order of events rather than a sequence. Compact
tokenflows are tailored to an efficient algorithm that decides if a partial
order of events is enabled in a Petri net. Yet, the runtime complexity of
this algorithm is in O(|P | · |V |3).

In practical applications dealing with a huge amount of behavioral
data, the gap between just firing a sequence and deciding if a partial
order is enabled, makes a big difference.

In this paper, we present an approach to just firing a partial order
of events in a Petri net. By firing a partial order, we obtain a lot of
information about whether or not the partial order is enabled. We show
that just firing is often enough if done correctly.

1 Introduction

Petri nets model distributed systems. They have formal semantics, an intuitive
graphical representation, and are able to express concurrency among the occur-
rence of events [1,2,8,9,21,22]. Petri nets have the simple firing rule that a
transition can fire if its prefix is marked. This definition implies so-called firing
sequences, i.e., sequences of subsequently enabled transitions. In many practical
applications, we equate the set of firing sequences with the behavior of the net.
Thus, it is very easy to check if specified or recorded behavior is ‘in’ a Petri net
model. We simply fire the sequence from ‘start’ to ‘end’ and immediately obtain
a result.

Then again, the behavior of a concurrent system is often defined as a set
of scenarios [4,7,10–13] expressing causal dependencies and concurrency among
the events of the systems behavior. Obviously, such scenarios cannot be modeled
by sequences, only by partially ordered sets of events.

Even though partially ordered sets of events are a very intuitive approach to
modeling the behavior of a distributed system, checking if such order is ‘in’ a
c© Springer Nature Switzerland AG 2021
D. Buchs and J. Carmona (Eds.): PETRI NETS 2021, LNCS 12734, pp. 399–419, 2021.
https://doi.org/10.1007/978-3-030-76983-3_20

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76983-3_20&domain=pdf
https://doi.org/10.1007/978-3-030-76983-3_20

400 R. Bergenthum

Petri net model is not trivial. There are even different semantics which all define
the same partial language of a Petri net. In this sense, the notion of executing a
partially ordered set of events in a Petri net is ambiguous.

(i) Step semantics of Petri nets [15]: A partially ordered set of events is in a
Petri net model if and only if each maximal set of unordered events of the
partial order is enabled after the occurrence of its prefix.

(ii) Process net semantics of Petri net [16]: A partially ordered set of events is
in a Petri net model if and only if there is a process net (occurrence net) of
the Petri net, so that the run extends the order relation between events of
this process.

(iii) Tokenflow semantics of Petri net [4,17]: A partially ordered set of events
is in a Petri net model if and only if there is a valid distribution of tokens
between events only using the relations specified by the partial order.

These three semantics are equivalent [17,19,23], i.e., they (fortunately) define
the same partial language. However, each semantic implies a different algorithm
deciding if a partially ordered set of events is enabled. Utilizing step or process
net semantics, the number of process nets and the number of maximal sets of
unordered events grow exponentially with the size of the partial order, producing
slow algorithms. Only algorithms utilizing tokenflow semantics run in polynomial
time [4].

A tokenflow is a distribution of tokens between events along the relations
of a partial order. A tokenflow is valid if every event receives enough tokens
to occur from its prefix, and no event has to produce more tokens than it is
able to. If there is a valid tokenflow for every place of a Petri net, the partial
order is enabled. We test if there is a valid tokenflow for a place by solving a
related flow optimization problem [14]. There a many highly specialized flow
optimization algorithms pushing the boundaries of their worst-case runtime [3].
For practical applications, however, the famous pre-flow-push algorithm [18] is
easy to implement and has a very good runtime for most examples. The pre-
flow-push is in O(n3), where n is the number of nodes of the flow network.
Thus, deciding if a set of partially ordered events is enabled in a Petri net is in
O(|P | · |V |3), where P is the set of places and V is the set of events.

In the area of process mining, some of the recently developed algorithms
exploit the idea that firing sequences of events is really cheap. For example, the
eST-miner [20] records huge sets of data observing the behavior of a business
process and tries to automatically generate a fitting process model. The eST-
miner fires the observed sequences over and over again in some initial Petri net
to generate more fitting places to complete the model. However, increasingly
more process mining papers state that the observed log files are actually partial
orders, not only sequences. Thus, there is a clear need to also fire partial orders
fast.

In this paper, we revisit the problem of deciding if a partially ordered set
of events is enabled in a Petri net and decompose the problem along the set
of places. We brute force fire the partial order in the net once to build a first

Firing Partial Orders in a Petri Net 401

tokenflow for every place. If the size of the Petri net is fixed, this is possible in
linear runtime. The constructed tokenflow will be valid for a subset of places.
Experimental results will show that this set is actually quite large for most
practical applications. During the firing of the partial order, we, furthermore,
present how to easily check if there are alternative distributions of tokens. If
there is only one possibility to distribute tokens and our first firing fails, the
partial order is not enabled. Only if enabledness is not decided yet, we tackle
the subset of not yet-decided places by a dedicated compact tokenflow algorithm.
In the remainder of the paper, we present the new algorithm, discuss its runtime,
and show experimental results using models taken from practical applications.

2 Preliminaries

Let f be a function and B be a subset of the domain of f . We write f |B to
denote the restriction of f to B. As usual, we call a function m : A → N a
multiset and write m =

∑
a∈A m(a) ·a to denote multiplicities of elements in m.

Let m′ : A → N be another multiset. We write m ≥ m′ if ∀a ∈ A : m(a) ≥ m′(a)
holds. We denote the transitive closure of an acyclic and finite relation < by <∗.
We denote the skeleton of < by <�. The skeleton of < is the smallest relation
�, so that �∗ =<∗ holds. Let (V,<) be some acyclic and finite graph, (V,<�) is
called its Hasse diagram. We model distributed systems by place/transition nets
[9,21,22].

Definition 1. A place/transition net (p/t-net) is a tuple (P, T,W) where P is
a finite set of places, T is a finite set of transitions so that P ∩T = ∅ holds, and
W : (P × T) ∪ (T × P) → N is a multiset of arcs. A marking of (P, T,W) is a
multiset m : P → N. Let m0 be a marking, we call the tuple N = (P, T,W,m0)
a marked p/t-net and m0 the initial marking of N .

Fig. 1. A marked p/t-net.

402 R. Bergenthum

Figure 1 depicts a marked p/t-net. Transitions are rectangles, places are cir-
cles, the multiset of arcs is represented by weighted arcs, and the initial marking
is represented by black dots called tokens.

There is a simple firing rule for transitions of a p/t-net. Let t be a transition
of a marked p/t-net (P, T,W,m0). We denote ◦t =

∑
p∈P W (p, t) ·p the weighted

preset of t. We denote t◦ =
∑

p∈P W (t, p) · p the weighted postset of t. A transi-
tion t is enabled (can fire) at marking m if m ≥ ◦t holds. Once transition t fires,
the marking of the p/t-net changes from m to m′ = m − ◦t + t◦.

In our exemplary marked p/t-net, transitions a and d can fire at the initial
marking. If a fires, this removes one token from p1 and the token from p5. Addi-
tionally, firing a will produce a new token in p2. In this new marking, transitions
c and d can fire. a is not enabled anymore because there is no more token in
p5. Firing transition c will enable transition a again and enable transition e.
Transition e needs three tokens in p4 to be enabled.

Repeatedly processing the firing rule produces so-called firing sequences.
These firing sequences are the most basic behavioral model of Petri nets. For
example, the sequence a d c a b d e f is enabled in the marked p/t-net of Fig. 1.
Let N be a marked p/t-net, the set of all enabled firing sequences of N is the
(sequential) language of N .

Petri nets are able to express concurrency between events. For example, tran-
sitions a and d can fire independently from one another. Roughly speaking, they
can fire in any order while not sharing tokens. If we fire transition a, transitions
c and d can fire in any order but not concurrently because they share the token
in p7.

To specify concurrency between events, we formalize executions of a p/t-net
by means of labeled partial orders.

Definition 2. Let T be a set of labels. A labeled partial order is a triple (V,
, l)
where V is a finite set of events,
 ⊆ V × V is a transitive and irreflexive
relation, and the labeling function l : V → T assigns a label to every event. A
run is a triple (V,<, l) iff (V,<∗, l) is a labeled partial order. A run (V,<, l) is
also called a labeled Hasse diagram iff <�=< holds.

Fig. 2. A run.

Firing Partial Orders in a Petri Net 403

Just like a firing sequence, a run can be enabled in a marked p/t-net. A run
is enabled if we can replay the order by firing transitions where unordered parts
of the partial order can fire concurrently. As stated in the introduction, there are
different semantics to formally define whether a run is enabled, but the compact
tokenflow semantic is the most efficient [4].

A compact tokenflow is a distribution of tokens along the relations and nodes
of a run. A run is in the partial language of a p/t-net if there is a compact
tokenflow distributing tokens so that three conditions hold: first, every event
receives enough tokens, second, no event has to pass too many tokens, and third,
the initial marking is not exceeded. Tokens must be received from the particular
presets of events. Thus, we ensure that consumed tokens are available before
the actual event occurs. If a transition produces tokens, the related events are
allowed to produce tokenflow in the run and pass these tokens to their particular
postsets. If an event receives tokens, it consumes the tokenflow needed and passes
the redundant tokenflow to later events. Tokens of the initial marking are free
for all, i.e., any event can consume or pass tokens from the initial marking.

Definition 3. Let N = (P, T,W,m0) be a marked p/t-net and run = (V,<, l) be
a run so that l(V) ⊆ T holds. A compact tokenflow is a function x : (V ∪ <) → N.
x is valid for p ∈ P iff the following conditions hold:
(i) ∀ v ∈ V : x(v) +

∑
v′<v x(v′, v) ≥ W (p, l(v)),

(ii) ∀ v ∈ V :
∑

v<v′ x(v, v′) ≤ x(v)+
∑

v′<v x(v′, v) − W (p, l(v)) + W (l(v), p),
(iii)

∑
v∈V x(v) ≤ m0(p).

run is valid for N iff there is a compact valid tokenflow for every p ∈ P .

Figure 3, Fig. 4, and Fig. 5 depict three compact tokenflows for three different
places of the marked p/t-net of Fig. 1 and the run of Fig. 2 (integer 0 is not
shown).

Figure 3 depicts a valid compact tokenflow for the place p2 of Fig. 1. The
transitions related to the two events labeled b and c need to receive one token in
p2. The transition related to the events labeled a can produce one token in p2.
Initially, there are no tokens in this place but no event consumes tokens from
the initial marking. Thus, this is a valid tokenflow for p2.

Fig. 3. Valid compact tokenflow for p2 of Fig. 1.

404 R. Bergenthum

Figure 4 depicts a valid compact tokenflow for the place p6 of Fig. 1. The
event labeled f needs to receive three tokens. All three events labeled d or e can
produce one token. All other events just receive and push tokens to later events.
Again, we do not need any token from the initial marking. Thus, this is a valid
tokenflow for p6.

Fig. 4. Valid compact tokenflow for p6 of Fig. 1.

Figure 5 depicts a valid compact tokenflow for the place p7 of Fig. 1. The
events labeled c or d need to receive one token. Because of the short loops at
place p7, these events can also produce one token in p6. Obviously, an event
is not allowed to consume the tokens it produces itself. This is why event e2
consumes a token from the initial marking before pushing its own token to e3.
e3 consumes the token and pushes a new token to e6. This is a valid tokenflow
for p7.

Fig. 5. Valid compact tokenflow for p7 of Fig. 1.

If there is a valid tokenflow for every place of a marked p/t-net, the run is
valid. The set of valid runs coincides with the (partial) language of a p/t-net.
Here, we refer the reader to [4,5] and state the following theorem.

Theorem 1. The language of a marked p/t-net is well-defined by the set of valid
runs [4].

Firing Partial Orders in a Petri Net 405

3 Deciding Enabledness and Firing Runs

In this section, we decide if a run is enabled in a marked p/t-net. In the first
subsection, we recap the algorithm that decides if a run is enabled using compact
tokenflows in polynomial runtime, originally introduced in [5]. In the second
subsection, we present an approach to firing a run in a p/t-net to decide if the
run is enabled for a subset of the places of the p/t-net in linear runtime. In
the last subsection, we present the idea of firing backwards and combine all
approaches to obtain a new and faster algorithm to decide enabledness for runs
in p/t-nets.

3.1 Tokenflows and Flow Networks

We decide if a run is enabled in a marked p/t-net by constructing a flow network
and a maximal flow for every place. A flow network (see for example [3]) is a
directed graph with two specific nodes: A source, the only node having no ingoing
arcs, and a sink, the only node having no outgoing arcs. Each arc has a capacity,
and a flow is a function from the arcs to the non-negative integers assigning a
value of flow to each arc. This flow function needs to respect the capacity of each
arc and the so-called flow conservation. The flow conservation states that the
sum of flow reaching a node is equal to the sum of flow leaving a node for every
inner node of the flow network. Thus, flow is only generated at the source and
flows along different paths till it reaches the sink. The value of a flow function in
a flow network is the sum of flow reaching the sink. The maximal flow problem
is to find a flow function that has a maximal value.

For a place of a p/t-net and a run, we construct the so-called associated
flow network. The flow in the associated flow network directly coincides with a
compact tokenflow in the related partial order. For each event, we create two
nodes in the flow network: an in-node and an out-node. The flow at the in-node is
the value of tokenflow received by the related event. This value has to be greater
than the number of tokens needed by the related transition. We rout the number
of tokens needed from the in-node to the sink representing tokens consumed by
the occurrence of the transition. We distribute additional flow further through
the network by adding an arc from every in-node to its out-node. The out-
node will distribute flow to later events. The maximal amount of flow this node
can push on is the amount of flow received from its in-node plus the number of
tokens produced by the occurrence of the related transition. We rout the number
of additionally produced tokens from the source to the out-node. In addition,
all pairs of in-nodes and out-nodes are connected just like the partial order of
events. Whenever there is an arc from one event to another, there is a related arc
in the flow network connecting the out-node of the first event with the in-node
of the second event. Finally, we add one additional node to the flow network to
represent the initial marking.

Figure 6 depicts the associated flow network for Fig. 1, the place p7 of the
same figure, and Fig. 2. We already saw a related compact tokenflow in Fig. 5. At
the top of Fig. 6 is the source, at the bottom is the sink. The node furthest to the

406 R. Bergenthum

left relates to the initial marking. The initial marking of p7 is 1; thus, this node
is connected to the source with capacity 1. Events e2, e3, and e6 can produce
a token each. Thus, the related out-nodes are connected to the source as well.
Roughly speaking, one piece of flow, i.e., one token in the run, can enter the flow
network at the initial marking and at all events labeled by c or d. Events e2, e3,
and e6 need to receive a token each. Thus, the related in-nodes are connected
to the sink. Again, one piece of flow, i.e., one token in the run, can leave the
flow network at these nodes. The capacity of all inner arcs is not limited. Only
looking at place p7, the run is enabled if the nodes related to events e2, e3, and
e6 can consume a token each. Due to the construction of the associated flow
network, there is a valid compact tokenflow if there is a flow saturating all arcs
leading to the sink (value 3 in this example).

Fig. 6. Associated flow network for Fig. 1, the place p7 of the same figure, and Fig. 2.

Figure 7 depicts a maximal flow in the flow network of Fig. 6. This flow satu-
rates all arcs going to the sink; thus, by construction, the flow directly relates to
a valid compact tokenflow and the run is enabled. If the value of a maximal flow
does not saturate all arcs leading to the sink, there is no valid compact tokenflow
because for every distribution of tokens, at least one event cannot occur and the
run is not enabled.

Constructing a maximal flow in a flow network is the well-known maximal
flow problem (see, for example, [3]). There are various algorithms solving the
maximal flow problem in polynomial time. For the application of calculating the
value of a maximal flow in an associated flow network, we consider a pre-flow-
push algorithm using a so-called gap heuristic. The worst-case time complexity
of the pre-flow-push algorithm is in O(n3), where n is the number of nodes.

Firing Partial Orders in a Petri Net 407

Fig. 7. A maximal flow in Fig. 6.

We recap the algorithm that decides if a run is enabled in a marked p/t-net
using compact tokenflows. Additionally, Algorithm 1 computes the set of places
that hinders the execution of the run. Obviously, the run is enabled if and only
if this set of non-valid places is empty. We can simply stop the algorithm as soon
as we find the first non-valid place, but in applications, it may be very helpful
to know the set of all non-valid places to fix model or run.

Algorithm 1. Calculates the set of non-valid places of a marked p/t-net for a
run.
1: input: marked p/t-net (P, T,W,m0), run (V,<, l)
2: for each p ∈ P do
3: G ← associated flow network of (P, T,W,m0), (V,<, l), p
4: x ← sum of capacities of arcs leading to the sink of G
5: w ← pre-flow-push of G
6: if (w < x) Pnvalid add p
7: return Pnvalid

The runtime of Algorithm 1 is in O(|P | · |V |3).

3.2 Firing Runs

In this subsection, we introduce the concept of firing runs in a marked p/t-
net. The initial marking is a multiset of places. We (randomly) distribute this
marking to the set of minimal nodes of the run, creating a set of local marking
at each event. We fire each event in its local marking and (randomly) push the
resulting local markings to later events. The four conceptual differences to the

408 R. Bergenthum

construction of a valid tokenflow are: (a) Instead of building a network for every
place, we handle all places at once. (b) We want to fire in linear time; thus,
we cannot redistribute markings or search for paths. We just randomly push
local markings to later events to fire every event exactly once. (c) Valid compact
tokenflows are tailored to a fast flow network algorithm. Every event only has
to receive enough tokens to occur. Thus, conditions (i) and (ii) of Definition 3
are formulated as inequalities to keep the number of tokens small. When firing
an event in a local marking, every event will produce its maximal number of
tokens. Thus, no token is lost, and we also construct a final marking. (d) A local
marking can be negative.

We fire a run in a p/t-net as a first step to decide if the run is enabled or not.
The main idea is that the enabledness problem can easily be decomposed along
the set of places. For some of the places, we need the maximal flow algorithm to
distribute and re-distribute tokens to decide if a valid tokenflow exist. For other
places, obviously highly depending on the specific run, a valid compact token-
flow may be very easy to construct. Thus, we tackle our problem in two steps:
first brute force fire a run in a p/t-net, constructing a so-called multi-tokenflow
describing a distribution of local markings. For some of the places, these markings
will directly relate to valid compact tokenflows and we will not have to consider
these places further. If the multi-tokenflow is not valid for some place, we will
gain additional information about the existence of alternative token distribu-
tions to even see if a re-distribution is possible. If a re-distribution is possible,
we redistribute using the algorithm presented in the previous subsection.

To fire a run in a marked p/t-net, constructing a multi-tokenflow as a distri-
bution of (local) markings, we first extend the run by introducing two additional
events, one initial and one final event.

Definition 4. Let N = (P, T,W,m0) be a marked p/t-net and run = (V,<, l)
be a run so that l(V) ⊆ T holds. We denote Vmin ⊆ V the set of events with
an empty preset and Vmax ⊆ V the set of events with an empty postset. Let
vi, vf �∈ V be two events and define an extended relation ≺ by ≺:=< ∪(vi ×
Vmin)∪ (Vmax ×vf). We denote run+ = (V, vi, vf ,≺, l) the extended run of run.
A function X :≺→ Z

P is a multi-tokenflow for run iff the following conditions
hold:
(I)

∑
vi≺v′ X(vi, v′) = m0.

(II) ∀ v ∈ V :
∑

v≺v′ X(v, v′) =
∑

v′≺v X(v′, v) − ◦l(v) + l(v)◦,
(III) ∀ v ∈ V ∪ {vi}: (

∑
v≺v′ X|p(v, v′) ≥ 0 =⇒ ∀ v′′ ∈ V : X|p(v, v′′) ≥ 0) .

We call mf :=
∑

v′≺vf
X(v′, vf) the final marking of X.

Note that local markings of a multi-tokenflow can be negative. Condition
(I) distributes the initial marking to the minimal events of the run, condition
(II) ensures that the local markings reflect the firing rule, and condition (III)
ensures that tokens are distributed and not just appearing from nowhere by
adding negative values to nearby arcs. Thus, a multi-tokenflow is a distribution
of actually produced tokens whenever possible.

Figure 8 depicts a sequential run. Obviously, the concept of a multi-tokenflow
for a sequential run is just the concept of markings of a firing sequence.

Firing Partial Orders in a Petri Net 409

Fig. 8. A multi-tokenflow and markings of a firing sequence.

Figure 9 depicts a multi-tokenflow for the run depicted in Fig. 2. In compar-
ison to Fig. 8, a multi-tokenflow implements the concept of local markings. Just
like a tokenflow, the marking is distributed whenever the partial order branches.
Every event receives a sum of local markings and fires to push the resulting local
marking to later events. In contrast to tokenflows, every produced token has to
be pushed until it is consumed or until it reaches the final marking. In contrast
to markings, we allow negative values and distribute markings at every branch
in the partial order.

Fig. 9. A multi-tokenflow in the run of Fig. 2.

410 R. Bergenthum

We formalize the relation between a tokenflow and a multi-tokenflow in the
following theorem.

Theorem 2. Let N = (P, T,W,m0) be a marked p/t-net, run = (V,<, l) be a
run so that l(V) ⊆ T holds, run+ = (V, vi, vf ,≺, l) be the extended run. There is
a valid compact tokenflow x in run for N and p, if and only if there is a multi-
tokenflow X in run+, so that X|p enables every event in its sum of in-going
local markings in N only considering p.

Proof. If there is a valid compact tokenflow for a place p in run, we simply
construct a multi-tokenflow enabling every event for place p. We can construct
this p-component of a multi-tokenflow by copying the tokenflow to the extended
run and moving the initial tokenflow to paths outgoing of the initial event.
Whenever there is an event not producing its full number of tokens (i.e., (ii)
holds, but not yet (II)), we find a path from this event to the final event. We
can add tokenflow to this path without making conditions (i), (ii), and (iii) not
valid until (II) holds. The same holds for the initial marking; we can go from
(iii) to (I) by adding tokens on paths from the initial to the final event. Every
valid tokenflow is non-negative, thus, (III) holds as well.

If there is a multi-tokenflow enabling every event for place p, there is a valid
compact tokenflow for p. If all the events are enabled for p, we show that every
local marking is positive for p. Assume there is some negative value. Without
loss of generality, we choose an arc with a negative value so that there is no
earlier arc with a negative value. This is always possible because the initial
marking is non-negative. Because of (III), the start-event of a first negative arc
has a negative sum of outgoing local markings for p but a non-negative sum of
in-going local markings. We apply the firing rule to see that this event is not
enabled for p in its in-going local markings. Thus, the multi-tokenflow is non-
negative for component p. By copying component p of the multi-tokenflow from
the extended run into the run and moving initial tokenflow to the minimal nodes
of the run, we directly obtain a valid compact tokenflow, because if every event
is enabled, (i) holds, (II) implies (ii), and (I) implies (iii). ��

Thus, if we fix a run, we can construct a multi-tokenflow for a marked p/t-
net, and if this flow enables all the events of the run for a subset of places, the
run is enabled according to this set.

Furthermore, if there is only one possibility to construct a p-component of a
multi-tokenflow, if the set of local markings does not enable every event for p,
there is no valid compact tokenflow for p.

Lemma 1. Let N = (P, T,W,m0) be a marked p/t-net, run = (V,<, l) be a
run so that l(V) ⊆ T holds, run+ = (V, vi, vf ,≺, l) be the extended run. Let
X be a multi-tokenflow in run+. For every p ∈ P , where at least one event is
not-enabled for p in its sum of in-going local markings, if X|p ≤ 0 for every
event with multiple out-going arcs, there is no valid compact tokenflow in run
for p and N .

Firing Partial Orders in a Petri Net 411

Proof. With the preconditions of this lemma: assume there is a valid compact
tokenflow for p. We can construct another multi-tokenflow enabling all events
for p, but X|p is unique. ��

In the next lemma, we use the concept of a final marking of a multi-tokenflow.
We show that this marking is actually unique and if it is negative for one p-
component, the related run is not enabled.

Lemma 2. Let N = (P, T,W,m0) be a marked p/t-net, run = (V,<, l) be a run
so that l(V) ⊆ T holds, run+ = (V, vi, vf ,≺, l) be the extended run. Let X be a
multi-tokenflow in run+ and mf be the final marking. If mf (p) < 0 holds, there
is no valid compact tokenflow for p in run.

Proof. Due to the construction of the extended run, every event is on a path from
the initial to the final event. For this reason and because of (II), a multi-tokenflow
does not lose tokens and the final marking is mf = m0 + (

∑
v∈V l(v) ◦ − ◦ l(v))

for every multi-tokenflow. The final marking of a multi-tokenflow is independent
from the distribution of tokens. If this final marking is negative for a component
p, there is no valid compact tokenflow for p, because, if we assume run is enabled,
then also every firing sequence respecting the order of run is enabled and leads to
a negative local marking in p according to the (usual) firing rule for sequences. ��

In Fig. 9, the depicted multi-tokenflow enables all events considering places
p1, p2, p5, p6. Thus, with the help of Theorem 2 and only using one multi-
tokenflow, we decide enabledness for four of the seven places. The multi-
tokenflow branches for places p3, p4, and p7 at the initial event. Thus, although
these three components do not enable all events, we cannot apply Lemma 1
because there are other possible distributions of tokens. We cannot apply Lemma
2, either, because the final marking is not negative. Thus, we have to decide
places p3, p4, and p7 using Algorithm 1.

At the end of this subsection, we present the algorithm firing a run in a
marked p/t-net, deciding enabledness and non-enabledness for a subset of places
using Theorem 2, Lemma 1, and Lemma 2.

Algorithm 2. Calculates a set of valid and a set of non-valid places of a marked
p/t-net for a run.
1: input: marked p/t-net (P, T,W,m0), run (V,<, l)
2: (V, vi, vf ,≺, l) ← extension of (V,<, l).
3: (first successor of vi).marking add m0

4: for each e ∈ V in ≺-order do
5: Pfnvaild add {p ∈ P |e.marking(p) < W (p, l(e))}
6: Pfbranch add {p ∈ P |e.marking(p) > 0, |e • | > 1}
7: (first successor of e).marking add e.marking − ◦l(e) + l(e)◦
8: Pfnvaild add {p ∈ P |vf .marking(p) < 0}
9: Pvalid ← P \ Pfnvaild

10: Pnvalid ← Pfnvaild ∪ (P \ Pfbranch)
11: return (Pvalid, Pnvalid)

412 R. Bergenthum

To conclude this subsection, we take a look at the runtime of Algorithm 2.
There is a problem in line 4, where we have to consider all events in some total
order respecting ≺. We can very easily calculate such an order in a preprocessing
step but not in linear time. If this order is part of the input, we only consider
every event once. For every event, we only touch one outgoing arc. We store the
sum of in-going arcs at events whenever we push local markings. Thus, we never
have to iterate a set of arcs to calculate a sum of local markings. The runtime
of Algorithm 2 is in O(|P | · |V |), or in O(|V |2 + |P | · |V |) if we need to calculate
a total order first.

3.3 Firing Backwards

The reason we have to tackle places p3, p4, and p7 from Fig. 1 deciding enabled-
ness of 2 by Algorithm 2 is that they are marked at the two forward-branched
events vi and e3. The components of these three places do not enable all events,
but we cannot apply Lemma 1 because there might be another valid distribution.
The flow of p2 is unique because it is only positive at non-branching events. Yet,
the multi-tokenflow for places p1 and p5 is positive at forward-branched events.
However, since the multi-tokenflow components p1 and p5 already enable all
events, we do not have to distribute further. In some sense, we were lucky to
find these valid distributions for p1 and p5 at the first attempt. In this section,
we will introduce the concept of firing backwards to offer a heuristic to find valid
distributions more often.

We already mentioned that it is important not to re-distribute local markings
or even look for paths to be able to fire in linear time. The most efficient strategy
to construct a multi-tokenflow is to push the complete local marking of every
event to its first subsequent event. Thus, the number of push operations is the
number of events, not the number of arcs. We call this strategy the forward-
strategy in the remainder of the paper. The multi-tokenflow depicted in Fig. 9 is
produced by the forward-strategy, i.e., the complete initial marking is pushed to
e1, the local marking of e3 is pushed to e4. Thus, the arcs (vi, e2) and (e3, e7) are
never touched. Obviously, the constructed multi-tokenflow randomly depends on
the order of events.

Figure 10 depicts a typical structure of a run. In Fig. 10, all arcs leaving
forward-branched events are depicted by dashed arcs. When firing this run in
a p/t-net, we can actually decide enabledness in linear time using the forward-
strategy of pushing local markings for every place which is not marked at the
two highlighted events. If there is a local marking for a place at the branching
events, we may be lucky to randomly construct a valid distribution. However, if
we need to share the marking between different subsequent events, the forward-
strategy will always fail. For this reason, it is not a good idea to fire the run
forward again using some modified distribution strategy.

We brute force fire the run again but starting from the (unique) final marking
and backwards. We already constructed this marking firing forward once. Start-
ing from this final marking at the final event, we push this marking backwards to
the first predecessor. We fire the event backwards to calculate the ingoing local

Firing Partial Orders in a Petri Net 413

Fig. 10. The set of forward-branched events.

marking to this event. This local marking is pushed to the next first predecessor
and so on. This will construct a multi-tokenflow as well.

Figure 11 depicts the run of Fig. 10 and highlights another set of arcs and
events. When firing this run in a p/t-net, we can actually decide enabledness in
linear time using the backward-strategy of pushing local markings from the final
marking of a run for every place which is not marked at the four highlighted
events.

Fig. 11. The set of backward-branched events.

The main advantage of combining a forward-strategy with the backward-
strategy in the example run of Fig. 10 is that the example does not contain
any forward and backward-branched events. Thus, the set of difficult events is
disjoint. If the forward-strategy is not able to decide enabledness, the backward-
strategy only fails as well if the related place is also marked at some backward-
branched event. If we think of typical workflow Petri nets, for example, that are
relatively well-structured using workflow patterns like and/xor-splits and joins,
these kinds of places are very rare. In the next section, we present experimental
results on how many places can be decided in linear time using the combination
of the forward-strategy and the backward-strategy for models taken from prac-
tical applications. Yet, before we move on, we combine the forward-, backward-,
and flow network-strategies to present the new algorithm that decides if a run
is enabled in a marked p/t-net.

414 R. Bergenthum

Algorithm 3. Calculates the set of non-valid places of a marked p/t-net for a
run.
1: input: marked p/t-net (P, T,W,m0), run (V,<, l)
2: (V, vi, vf ,≺, l) ← extension of (V,<, l).
3: (first successor of vi).marking add m0

4: for each e ∈ V in ≺-order do
5: Pfnvaild add {p ∈ P |e.marking(p) < W (p, l(e))}
6: Pfbranch add {p ∈ P |e.marking(p) > 0, |e • | > 1}
7: (first successor of e).marking add e.marking − ◦l(e) + l(e)◦
8: Pfnvaild add {p ∈ P |vf .marking(p) < 0}
9: Pvalid ← P \ Pfnvaild

10: Pnvalid ← Pfnvaild ∪ (P \ Pfbranch)
11: P ′ ← P \ (Pvaild ∪ Pnvalid)
12: (P, T,W,m0) ← (P ′, T,W |P ′×P ′ ,m0|P ′)
13: (first predecessor of vf).marking2 add vf .marking|P
14: for each e ∈ V in reverse ≺-order do
15: Pbnvaild add {p ∈ P |e.marking2(p) < W (l(e)), p)}
16: Pbbranch add {p ∈ P |e.marking2(p) + W (p, l(e)) − W (l(e), p) > 0, | • e| >

1}
17: (first predecessor of e).marking2 add e.marking2 + ◦l(e) − l(e)◦
18: Pvalid add P \ Pbnvaild

19: Pnvalid add Pbnvaild ∪ (P \ Pbbranch)
20: P ′ ← P \ (Pvaild ∪ Pnvalid)
21: (P, T,W,m0) ← (P ′, T,W |P ′×P ′ ,m0|P ′)
22: Pnvalid add Algorithm 1 (P, T,W,m0), (V,<, l)
23: return Pnvalid

Algorithm 3 has three parts: lines 1 to 10 implement the forward-strategy.
The set Pfbranch keeps track of places marked at forward-branching events. Line
8 implements Lemma 2. In lines 11 and 12, we remove the set of places that we
do not have to tackle anymore. Again, if a total order of events is part of the
input, this part of the algorithm runs in linear run-time. In line 13, we start the
backward-strategy reusing the final marking calculated in the first part of the
algorithm. The set Pbbranch keeps track of places marked at backward-branching
events. Line 16 implements a backward version of Lemma 1. Note that there
is no backwards version of Lemma 2 because firing backwards from the final
marking will reconstruct the initial marking. In lines 20 and 21, we remove the
set of places that we do not have to tackle further. Again, if a total order of
events is part of the input, this second part of the algorithm runs in linear time
as well. In line 20, we only keep places that have to be handled in cubic runtime
by Algorithm 1.

4 Comparison and Experimental Results

In this section, we compare the runtimes of Algorithm 1 and Algorithm 3. To
compare run-time, we denote (P, T,W,m0) a marked p/t-net, (V,<, l) a run,

Firing Partial Orders in a Petri Net 415

and assume a total order respecting < is part of the input. In the remainder,
we call all places we can check by brute force firing the run in a p/t-net simple
places. We call the remaining places complex places. This is a bit misleading
because whether a place is simple highly depends on the run as well. As stated
above, dealing with sequential runs, every place is simple. Furthermore, whether
a place is simple or complex does not only depend on the structure of a run,
but also on the order of events. Figure 12 depicts a very simple p/t-net where
a transition b can fire if transition a produces a token in p1 and a run with
some kind of w-structure. Figure 12 depicts a distribution for tokens produced
by events e1, e2, and e3 on solid arcs. The dashed arcs depict a redistribution
of tokens redistributing all previous tokens adding the token from e4 to e8.
This re-distribution is done by flow network algorithms looking for paths, and
considering already produced flow as a possible step backwards. Although the
net of Fig. 12 is very simple, it is a complex place.

Fig. 12. Redistribution of tokens.

The worst-case runtimes of Algorithm 1 and Algorithm 3 is in O(|P | · |V |3).
If the set of simple-places is empty, the run-time of Algorithm 3 is, obviously,
the runtime of Algorithm 1 plus the runtime of two times firing the run. If the
set of complex places is empty, the runtime of Algorithm 3 is two times firing
the run, i.e., in linear runtime.

In the remainder of this section, we will take a look at examples from practical
applications to have a feeling for an average number of simple-places. In a first
experiment, we take a look at the latest example net of the model checking
contest (https://mcc.lip6.fr/2020/) to have a variety of different models. We
calculate a set of 1000 runs of every net by simply randomly unfolding the net
[6]. We implement Algorithm 3 and Algorithm 1 in Java to decide if the run
is valid. Obviously, every run will be valid as a part of the unfolding. Yet, this
will only increase the runtime of both algorithms. For a run of the language of a
net, we have to calculate a distribution of tokens for every place. If a run is not
valid, both algorithms can stop as soon as they find one place that is not valid.
Roughly speaking, stopping early is an advantage for Algorithm 3, because the
first two thirds of the algorithm are very fast. Using the examples, we compare
the runtime of both algorithms and depict the number of simple places.

We perform the following two experiments on an Intel Core i5 3.30 GHz (4
CPUs) machine with 8 GB RAM running a Windows 10 operating system. The

https://mcc.lip6.fr/2020/

416 R. Bergenthum

implementation of both algorithms is available at https://www.fernuni-hagen.
de/ilovepetrinets/.

Experiment 1. We consider the most recent example called SatelliteMemory
from the Model Checking Contest 2020. SatelliteMemory has two parameters X
and Y defining the maximal number of tokens per place. We refer the reader to
https://mcc.lip6.fr/ 2020/ pdf/ SatelliteMemory-form.pdf for a detailed descrip-
tion of the example and the parameters. Figure 13 depicts the structure of the
p/t-nets, i.e., markings with many tokens, arc weights, short loops, and cyclic
behavior. For each example, we randomly compute 1000 runs for every number
100, 200, 300, and 400 of events and decide enabledness using Algorithm 1 and
Algorithm 3. Figure 13 depicts: (1) percentage of all places decided by firing once
with the forward strategy, (2) percentage of all places decided by firing twice,
once with the forward and once with the backward-strategy, (3) overall average
run-time of Algorithm 3, (4) overall average run-time of Algorithm 1. We set the
parameters to (a) X=100 Y=3 (100 tokens), (b) X=1000 Y=32 (1000 tokens),
(c) X=1500 Y=46 (1500 tokens), (d) X=3000 Y=94 (3000 tokens), (e) X=65535
Y=2048 (65535 tokens).

100 events 200 events 300 events 400 events
a. .34 .48 5ms 11ms .31 .45 44ms 98ms .28 .43 147ms 330ms .26 .40 391ms 800ms
b. .40 .55 4ms 15ms .38 .54 34ms 115ms .34 .50 115ms 310ms .29 .41 287ms 608ms
c. .39 .54 4ms 14ms .38 .54 32ms 109ms .36 .52 110ms 356ms .35 .49 220ms 581ms
d. .39 .54 4ms 14ms .38 .53 32ms 105ms .39 .54 108ms 352ms .35 .53 267ms 936ms
e. .39 .54 4ms 14ms .38 .54 32ms 108ms .38 .54 111ms 363ms .36 .51 224ms 709ms

Fig. 13. Model and results of Experiment 1.

Experiment 1 considers a quite complex p/t-net model. The number of places
in every combination of parameters is 13. We increase the number of tokens and
the number of events. Experiment 1 shows that half of the places are simple-
places in this example. The runtime of both algorithms grows quadratic with the
size of the input, i.e., number of events, in this example. This fits perfectly with
our considerations because, if tokens don’t have to be redistributed often and the

https://www.fernuni-hagen.de/ilovepetrinets/
https://www.fernuni-hagen.de/ilovepetrinets/
https://mcc.lip6.fr/2020/ pdf/SatelliteMemory-form.pdf

Firing Partial Orders in a Petri Net 417

number of places is fixed, the runtime of Algorithm 1 is in O(|V |2). Furthermore,
if half of the places are simple, the run-time of Algorithm 3 is twice as fast but
still in O(|V |2)).
Experiment 2. We consider the data set from the Process Discovery Contest
2020. The model has parameters defining the control-flow, i.e., dependent tasks,
loops, or-constructs, routing constructs, optional tasks, and duplicate tasks, of
the model. We refer the reader to https:// icpmconference.org/ 2020/ process-
discovery-contest/ data-set/ for a detailed description of the example and the
parameters. The structure of the p/t-nets are typical workflow Petri nets with
an initial and a final marking. For each example, we randomly compute 1000
runs from start to end and decide enabledness using Algorithm 1 and Algorithm
3. Figure 14 depicts: (1) file-name (2) average number of events per run (3)
percentage of all places decided by firing once with the forward-strategy, (4) per-
centage of all places decided by firing twice, once with the forward and once with
the backward-strategy, (5) overall average runtime of Algorithm 3, (6) overall
average runtime of Algorithm 1.

pdc 2020 0010000.pnml 15 .93 .99 0.043ms 0.284ms
pdc 2020 1000000.pnml 16 .95 1.0 0.036ms 0.296ms
pdc 2020 0001000.pnml 21 .87 .99 0.060ms 0.389ms
pdc 2020 0000000.pnml 21 .87 .99 0.051ms 0.412ms
pdc 2020 0000100.pnml 21 .87 1.0 0.041ms 0.419ms
pdc 2020 0000010.pnml 22 .87 .99 0.041ms 0.387ms
pdc 2020 1111110.pnml 25 .99 1.0 0.014ms 0.845ms
pdc 2020 1211110.pnml 37 .99 1.0 0.019ms 1.733ms
pdc 2020 1210110.pnml 37 .98 1.0 0.023ms 2.412ms
pdc 2020 0100000.pnml 50 .86 .97 0.208ms 2.432ms
pdc 2020 0200000.pnml 86 .82 .97 0.579ms 7.540ms

Fig. 14. Model and results of Experiment 2.

Experiment 2 considers a workflow p/t-net model with standard workflow
patterns. All examples in this experiment have an initial and a final marking;
thus, we cannot scale the size of the input as we did in Experiment 1. Only if
the model contains loops, i.e., the second parameter in this example, the number
of events of the randomly generated runs increases. Almost every place of this
example is a simple place. In workflow models, most of the places are empty
most of the time and can, thus, be handled by firing very easily. The runtime
of Algorithm 1 grows quadratic with the size of the input. In Experiment 2,
the overall runtime of Algorithm 1 is almost exactly |V |2/1000 ms. The overall
runtime of Algorithm 3 is much smaller and highly depends on the number of
simple places. The algorithm is very fast for the examples in lines 7, 8, and 9
where almost every place is decided by the forward-strategy of the algorithm.
Obviously, for those examples, the algorithm runs in linear time.

https://icpmconference.org/2020/process-discovery-contest/data-set/
https://icpmconference.org/2020/process-discovery-contest/data-set/

418 R. Bergenthum

5 Conclusion and Future Work

This paper presents an approach to firing a partially ordered set of events in a
Petri net model. The new approach also introduces the concept of local markings
of a run and a marked p/t-net. With the help of this definition, it is possible to
define a set of simple places and to decide enabledness fast.

The paper presents two experiments deciding enabledness of a run in models
taken from two very different but well-known contests in the area of Petri nets.
In the latest example of the Model Checking Contest, we deal with nets having
cyclic behavior, complex net structure, and many tokens. In the latest example
of the Process Discovery Contest, we deal with workflow nets with initial and
final markings, workflow-patterns, control-flow structure, and only few tokens.

In both experiments, the new algorithm clearly outperforms the algorithm
using compact tokenflows only. In that sense, there is never a disadvantage in
trying to fire first. The new algorithm is especially fast in workflow-net-like p/t-
nets. Here, we open the door to further applications in the area of business
process modelling.

In future work, we would like to check if the set of simple places is a good
indicator for the complexity of a process model. Let us say we want to discover
or synthesize a p/t-net model from behavioral data recorded in terms of partial
orders of events; maybe it is sufficient to only generate simple places to obtain
a readable, well-structured process model.

References

1. van der Aalst, W.M.P., van Dongen, B.F.: Discovering petri nets from event logs.
In: Jensen, K., van der Aalst, W.M.P., Balbo, G., Koutny, M., Wolf, K. (eds.)
Transactions on Petri Nets and Other Models of Concurrency VII. LNCS, vol.
7480, pp. 372–422. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-38143-0 10

2. van der Aalst, W.M.P.: The application of petri nets to workflow management. J.
Circ. Syst. Comput. 8(1), 21–66 (1998)

3. Ahuja, R.K., Magnanti, T.L., Orlin, J.B.: Network Flows: Theory, Algorithms, and
Applications. Prentice Hall, Englewood Cliffs (1993)

4. Bergenthum, R., Lorenz, R.: Verification of scenarios in petri nets using compact
tokenflows. Fundamenta Informaticae 137, 117–142 (2015)

5. Bergenthum, R.: Faster verification of partially ordered runs in petri nets using
compact tokenflows. In: Colom, J.-M., Desel, J. (eds.) PETRI NETS 2013. LNCS,
vol. 7927, pp. 330–348. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-38697-8 18

6. Bergenthum, R., Lorenz, R., Mauser, S.: Faster unfolding of general petri nets based
on token flows. In: van Hee, K.M., Valk, R. (eds.) PETRI NETS 2008. LNCS, vol.
5062, pp. 13–32. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-
68746-7 6

7. Desel, J., Juhás, G., Lorenz, R., Neumair, C.: Modelling and validation with Vip-
Tool. Bus. Process Manag. 2003, 380–389 (2003)

https://doi.org/10.1007/978-3-642-38143-0_10
https://doi.org/10.1007/978-3-642-38143-0_10
https://doi.org/10.1007/978-3-642-38697-8_18
https://doi.org/10.1007/978-3-642-38697-8_18
https://doi.org/10.1007/978-3-540-68746-7_6
https://doi.org/10.1007/978-3-540-68746-7_6

Firing Partial Orders in a Petri Net 419

8. Desel, J., Juhás, G.: “What is a petri net?” informal answers for the informed
reader. In: Ehrig, H., Padberg, J., Juhás, G., Rozenberg, G. (eds.) Unifying Petri
Nets. LNCS, vol. 2128, pp. 1–25. Springer, Heidelberg (2001). https://doi.org/10.
1007/3-540-45541-8 1

9. Desel, J., Reisig, W.: Place/transition petri nets. In: Reisig, W., Rozenberg, G.
(eds.) ACPN 1996. LNCS, vol. 1491, pp. 122–173. Springer, Heidelberg (1998).
https://doi.org/10.1007/3-540-65306-6 15

10. Dumas, M., Garćıa-Bañuelos, L.: Process mining reloaded: event structures as a
unified representation of process models and event logs. In: Devillers, R., Valmari,
A. (eds.) PETRI NETS 2015. LNCS, vol. 9115, pp. 33–48. Springer, Cham (2015).
https://doi.org/10.1007/978-3-319-19488-2 2

11. Desel, J., Erwin, T.: Quantitative Engineering of Business Processes with VIPbusi-
ness. In: Ehrig, H., Reisig, W., Rozenberg, G., Weber, H. (eds.) Petri Net Technol-
ogy for Communication-Based Systems. LNCS, vol. 2472, pp. 219–242. Springer,
Heidelberg (2003). https://doi.org/10.1007/978-3-540-40022-6 11

12. Fahland, D.: Scenario-based process modeling with Greta. BPM Demonstration
Track 2010, CEUR 615 (2010)

13. Fahland, D.: Oclets – scenario-based modeling with petri nets. In: Franceschinis,
G., Wolf, K. (eds.) PETRI NETS 2009. LNCS, vol. 5606, pp. 223–242. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02424-5 14

14. Ford, L.R., Fulkerson, D.R.: Maximal flow through a network. Can. J. Math. 8,
399–404 (1956)

15. Grabowski, J.: On partial languages. Fundamenta Informaticae 4, 427–498 (1981)
16. Goltz, U., Reisig, W.: Processes of place/transition-nets. In: Diaz, J. (ed.) ICALP

1983. LNCS, vol. 154, pp. 264–277. Springer, Heidelberg (1983). https://doi.org/
10.1007/BFb0036914

17. Juhás, G., Lorenz, R., Desel, J.: Can i execute my scenario in your net? In: Ciardo,
G., Darondeau, P. (eds.) ICATPN 2005. LNCS, vol. 3536, pp. 289–308. Springer,
Heidelberg (2005). https://doi.org/10.1007/11494744 17

18. Karzanov, A.: Determining the maximal flow in a network by the method of pre-
flows. Doklady Math. 15, 434–437 (1974)

19. Kiehn, A.: On the interrelation between synchronized and non-synchronized
behaviour of petri nets. Elektronische Informationsverarbeitung und Kybernetik
2(1/2), 3–18 (1988)

20. Mannel, L.L., van der Aalst, W.M.P.: Finding complex process-structures by
exploiting the token-game. In: Donatelli, S., Haar, S. (eds.) PETRI NETS 2019.
LNCS, vol. 11522, pp. 258–278. Springer, Cham (2019). https://doi.org/10.1007/
978-3-030-21571-2 15

21. Peterson, J.L.: Petri Net Theory and the Modeling of Systems. Prentice-Hall,
Englewood Cliffs (1981)

22. Reisig, W.: Understanding Petri Nets - Modeling Techniques, Analysis Meth-
ods, Case Studies. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-
642-33278-4

23. Vogler, W. (ed.): Modular Construction and Partial Order Semantics of Petri
Nets. LNCS, vol. 625. Springer, Heidelberg (1992). https://doi.org/10.1007/3-540-
55767-9

https://doi.org/10.1007/3-540-45541-8_1
https://doi.org/10.1007/3-540-45541-8_1
https://doi.org/10.1007/3-540-65306-6_15
https://doi.org/10.1007/978-3-319-19488-2_2
https://doi.org/10.1007/978-3-540-40022-6_11
https://doi.org/10.1007/978-3-642-02424-5_14
https://doi.org/10.1007/BFb0036914
https://doi.org/10.1007/BFb0036914
https://doi.org/10.1007/11494744_17
https://doi.org/10.1007/978-3-030-21571-2_15
https://doi.org/10.1007/978-3-030-21571-2_15
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/3-540-55767-9
https://doi.org/10.1007/3-540-55767-9

Semantics

Deterministic Concurrent Systems

Samy Abbes(B)

Université de Paris - IRIF (CNRS UMR 8243), Paris, France
abbes@irif.fr

Abstract. Deterministic concurrent system are “locally commutative”
concurrent systems. We characterise these systems by means of their
combinatorial properties.

Keywords: Trace monoid · Möbius transform · Concurrency · Lattice

1 Introduction

Trace monoids are well known models of concurrency. They represent systems able
to perform several types of actions, represented by letters in a given alphabet, and
with the feature that some actions may occur concurrently. If a and b are two con-
current actions, then the system does not distinguish between the two sequences
of actions a-then-b and b-then-a. Instead, a unique compound action a · b = b · a
may be performed. This feature is typically used when one wishes to work on the
logical order between actions rather than on the chronological order.

Mathematically, a trace monoid M is a monoid generated by an alphabet Σ,
and with relations of the form ab = ba for some fixed pairs of letters (a, b) ∈ Σ×Σ.
The identity ab = ba in M renders the concurrency of the two actions a and b.

The use of trace monoids in concurrency theory goes back at least to the
1980s with survey works such as [6,7]. Trace monoids had also been studied
in Combinatorics under different names, as free partially commutative monoids
and heaps of pieces in the seminal works [4] and [13] respectively. Hence, trace
monoids stand at a junction point between computer science and combinatorics.

Despite their successful use as models of concurrency for databases for
instance, trace monoids lack an essential feature present in most real-life sys-
tems, namely they lack a notion of state. Indeed, any action can be performed
at any time when considering a trace monoid model; whereas, in real-life sys-
tems, some actions may only be enabled when the system enters some specified
state, and then one expects the system to enter a new state, determined by the
former state and by the action performed.

A natural model combining both the “built-in” concurrency feature of trace
monoids and the notion of state arises when considering a partially defined
monoid action of a trace monoid M on a finite set of states X. Equivalently,
instead of considering that the monoid action is only partially defined, it is more
convenient to introduce a sink state ⊥ and to consider a total monoid action

c© Springer Nature Switzerland AG 2021
D. Buchs and J. Carmona (Eds.): PETRI NETS 2021, LNCS 12734, pp. 423–442, 2021.
https://doi.org/10.1007/978-3-030-76983-3_21

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76983-3_21&domain=pdf
http://orcid.org/0000-0003-3382-3647
https://doi.org/10.1007/978-3-030-76983-3_21

424 S. Abbes

(X ∪ {⊥}) × M → (X ∪ {⊥}). Hence, if the system is in state α, performing
the letter a ∈ Σ brings the system into the new state α · a, with the convention
that a was actually not allowed if α · a = ⊥. This notion of concurrent system,
introduced in [1], encompasses in particular popular models of concurrency such
as bounded Petri nets [10,11].

In the present paper, we use some results previously obtained in [1,3] in order
to study a particular case of concurrent systems, namely the class of determin-
istic concurrent systems. Intuitively, a deterministic concurrent system (DCS) is
a concurrent system where no conflict between different actions can ever arise.
Hence the only non-determinism left results solely from the concurrency of the
model, combined with the constraints imposed by the monoid action. Deter-
ministic concurrent systems can be related, for instance, to causal nets and to
elementary event structures found in 1980s papers [10]. We prove in particular
that deterministic concurrent systems correspond to concurrent systems which
are “locally commutative”.

Compared to general concurrent systems, deterministic concurrent systems
appear as limit cases. For instance, we prove that their space of maximal execu-
tions is at most countable—whereas it is uncountable in general; if the system is
moreover irreducible, we prove that it carries a unique probabilistic dynamics—
whereas there is a continuum of them in general. Yet, proving these properties
is not trivial. The definition of DCS is formulated in elementary terms; their
specific properties are formulated in elementary terms; but the proof of these
properties relies on the combinatorics of partially ordered sets.

Beside the general properties of deterministic concurrent systems, our main
contribution is to give several equivalent characterisations of concurrent sys-
tems which are both deterministic and irreducible: an algebraic characterisation;
a probabilistic characterisation; a characterisation from the Analytic combina-
torics viewpoint; and a characterisation through set-theoretic properties of the
set of infinite executions. The multiplicity of these viewpoints suggests that the
notion is worth exploring it.

Another contribution is a generalisation of the well known fact that commu-
tative free monoids have a polynomial growth. The property that we obtain in
Corollary 1 is general enough to be of interest per se.

Although quite specific, the class of deterministic concurrent systems has a
non trivial modelisation power. We also believe that understanding deterministic
concurrent systems is useful for the deeper understanding of general concurrent
systems.

Organisation of the Paper. Section 2 is devoted to preliminaries, and is divided
into three subsections. Section 2.1 and 2.2 survey respectively basic notions on
trace monoids and on concurrent systems; Sect. 2.3 is devoted to an elementary,
yet original result of trace theory, that we tried to formulate in a way not too
specific so that it could be of general interest, and that will be used later in the
paper. Deterministic concurrent systems are introduced in Sect. 3. Section 4 is
devoted to the study of concurrent systems which are both deterministic and
irreducible.

Deterministic Concurrent Systems 425

2 Preliminaries

2.1 Trace Monoids and Their Combinatorics

The background material introduced in this section is standard, see for
instance [6,7], excepted for the probabilistic notions which are borrowed from [2].

Independence and Dependence Pairs. An alphabet is a finite set, which we usually
denote by Σ, the elements of which are called letters. An independence pair
is a pair (Σ, I), where I is a binary symmetric and irreflexive relation on Σ,
called an independence relation. A dependence pair is a pair (Σ,D), where D
is a binary symmetric and reflexive relation on Σ, called a dependence relation.
With Σ fixed, dependence and independence relations correspond bijectively to
each others, through the association D = (Σ × Σ) \ I.

In the remaining of Sect. 2.1, we fix an independence pair (Σ, I), with corre-
sponding dependence pair (Σ,D).

Traces. The trace monoid1 M(Σ, I) is the presented monoid M = 〈Σ ∣
∣ ab =

ba for (a, b) ∈ I〉. Elements of M are called traces. The unit element, also called
empty trace, is denoted by ε, and the concatenation of x, y ∈ M is denoted
by x · y. We identify letters of the alphabet with their images in M through the
canonical mappings Σ → Σ∗ → M.

The trace monoid M is irreducible if the dependence pair (Σ,D), seen as a
graph, is connected.

Length. Occurrence of Letters. Every trace x ∈ M corresponds to the congruence
class of some word u ∈ Σ∗. The length of x, denoted by |x|, is the length of u.
For each letter a ∈ Σ, we write a ∈ x whenever a has at least one occurrence
in u, and we write a /∈ x otherwise.

Divisibility Order. The preorder (M,≤) inherited from the left divisibility in
M is defined by: x ≤ y ⇐⇒ (∃z ∈ M y = x · z). This preorder is actually a
partial order. If x ≤ y, the element z ∈ M such that y = x · z is unique since
trace monoids are left cancelable. We denote this element by z = x\y.

Cliques. A clique of M is a trace of the form x = a1 · . . . · ai, where all ais
are letters such that i �= j =⇒ (ai, aj) ∈ I. Since all ais commute with each
other, we identify the clique x ∈ M with the subset {a1, . . . , ai} ∈ P(Σ). If C
denotes the set of cliques of M, the restricted partial order (C ,≤) corresponds
to a sub-partial order of (P(Σ),⊆). We note that C is always downward closed
in (P(Σ),⊆), and that C corresponds to the full powerset P(Σ) if and only if
M is the free commutative monoid on Σ.

1 In the literature, trace monoids are also called free partially commutative monoids,
and they also correspond to right-angled Artin-Tits monoids.

426 S. Abbes

A non empty clique is a clique x �= ε. The set of non empty cliques of M is
denoted by C. Minimal elements of (C,≤) correspond to the letters of Σ.

Parallel Cliques. Lower and Upper Bounds. Any two traces x, y ∈ M have a
greatest lower bound (glb) in (M,≤), which we denote by x ∧ y. They have a
least upper bound (lub) in (M,≤), denoted by x ∨ y if it exists, if and only if
they have a common upper bound.

If x and y are cliques, then x ∧ y is the clique corresponding to the subset
x ∩ y ∈ P(Σ). We say that x and y are parallel, denoted by x ‖ y, if x × y ⊆ I,
where x and y are seen as subsets of Σ. In this case, x ∨ y exists and is given by
x ∨ y = x · y = y · x.

Normal Sequences. A pair (x, y) ∈ C × C is a normal pair if: ∀b ∈ y ∃a ∈
x (a, b) ∈ D. This relation is denoted by x → y. A sequence (ci)i of cliques,
the sequence being either finite or infinite, is a normal sequence if (ci, ci+1) is a
normal pair for all pairs of indices (i, i + 1).

Note that the empty clique satisfies x → ε for all x ∈ C , and ε → x if and
only if x = ε.

Normal Form and Generalised Normal Form. [4] For any trace x �= ε, there
exists a unique integer k ≥ 1 and a unique normal sequence (c1, . . . , ck) of non
empty cliques such that x = c1 · . . . · ck. The sequence (c1, . . . , ck) is the Cartier-
Foata normal form of x, or the normal form of x for short. The integer k is the
height of x, denoted by k = τ(x).

The generalised normal form of x is the infinite normal sequence (ci)i≥1

defined by ci = ε for i > k. By definition, the generalised normal form of ε is
the normal sequence (ε, ε, . . .).

For every integer i ≥ 1, we introduce the mapping Ci : M → C defined by
Ci(x) = ci, where (ci)i≥1 is the generalised normal form of x.

Generalised Traces and Infinite Traces. A generalised trace is any infinite normal
sequence ξ = (ci)i≥1 of cliques. If ci = ε for some integer i, then cj = ε for all
j ≥ i, and then ξ is the generalised normal form of a unique element of M. If
ci �= ε for all i ≥ 1, then ξ is said to be an infinite trace.

We denote by M the set of generalised traces, and by ∂M the set of infinite
traces—the latter set is called the boundary at infinity of M. We note that ∂M
is non empty as soon as Σ �= ∅.

We define a partial order on (M,≤) by putting, for ξ = (ci)i≥1 and ζ =
(di)i≥1 two generalised traces:

ξ ≤ ζ ⇐⇒ (∀i ≥ 1 ci ≤ di).

The injection M → M induces an embedding of partial orders (M,≤) →
(M,≤), so we simply identify M with its image in M. With this identification,
we have M = M + ∂M, where ‘+’ denotes the disjoint union.

Deterministic Concurrent Systems 427

The family of mappings (Ci)i≥1 extends in the obvious way to the natural
projections Ci : M → C , with restrictions Ci : ∂M → C.

The digraph (C ,→) is called the digraph of cliques of the monoid. Generalised
traces correspond bijectively to infinite paths in (C ,→), with finite traces corre-
sponding to paths hitting the empty clique ε, and infinite traces corresponding
to paths never hitting the empty clique.

Möbius Transform. Let f : C → A be a function where A is any commutative
group. The Möbius transform [12] of f is the function h : C → A defined by:

∀c ∈ C h(c) =
∑

c′∈C : c≤c′
(−1)|c′|−|c|f(c′). (1)

The function f can be retrieved from h thanks to the Möbius inversion
formula, which is a kind of generalised inclusion-exclusion formula:

∀c ∈ C f(c) =
∑

c′∈C : c≤c′
h(c′). (2)

In particular, one has:
f(ε) =

∑

c∈C

h(c). (3)

Valuations and Probabilistic Valuations. [2] A valuation is a monoid homomor-
phism f : (M, ·) → (R≥0,×). One instance is the constant valuation f = 1.
More generally, any assignation of non negative numbers λa to letters a of Σ
yields a valuation f , obviously unique, such that f(a) = λa for a ∈ Σ.

Let h : C → R be the Möbius transform of a valuation f , restricted to C .
Then f is a probabilistic valuation whenever:

(

h(ε) = 0
) ∧ (∀c ∈ C h(c) ≥ 0

)

. (4)

In this case, the vector
(

h(c)
)

c∈C
is a probability vector. Indeed, it is non

negative and it sums up to 1 thanks to (3), since f(ε) = 1 and h(ε) = 0.

Markov Chain of Cliques. [2] If f is a probabilistic valuation, then there exists a
unique probability measure ν on ∂M equipped with the natural Borel σ-algebra,
such that ν(↑ x) = f(x) for all x ∈ M, where ↑ x is the visual cylinder defined
by ↑ x = {ω ∈ ∂M ∣

∣ x ≤ ω}.
With respect to this probability measure, the sequence of mappings Ci :

∂M → C, seen as a sequence of random variables, is a homogeneous Markov
chain. Its initial distribution is given by: ∀c ∈ C ν(C1 = c) = h(c), where h
is the Möbius transform of f . The transition matrix of the chain can also be
described, but we shall not need it in the sequel.

428 S. Abbes

•
a0

•
a1

•
a2

•
a3

•
a4

Fig. 1. Coxeter graph of the trace monoid M(Σ, I) with Σ = {a0, . . . , a4} and
(ai, aj) ∈ I ⇐⇒ |i − j| ≥ 2. The set of cliques is C = {ε, a0, . . . , a4, a0 · a2, a0 ·
a3, a0 · a4, a1 · a3, a1 · a4, a2 · a4, a0 · a2 · a4}.

Example. Let M = 〈a, b, c, d | ad = da, bd = db〉. The set of cliques is C =
{ε, a, b, c, d, ad, bd}. Let us simply denote by a, b, etc., the values of f(a),
f(b), etc., for some valuation f . The normalization conditions (4) for f to be a
probabilistic valuation are:

1 − a − b − c − d + ad + bd = 0

a − ad ≥ 0, b − bd ≥ 0, c ≥ 0, d ≥ 0, ad ≥ 0, bd ≥ 0.

A solution is to put a = b = 1/3 and c = d = 1/4. Another solution is to put
a = b = c = d = 1−√

2/2. The later value is the root of smallest modulus of the
polynomial 1 − 4p + 2p2, which we encounter below as the Möbius polynomial
of the monoid.

Growth Series and Möbius Polynomials. The growth series G(z) and the Möbius
polynomial μ(z) of M are defined as follows:

G(z) =
∑

x∈M
z|x|, μ(z) =

∑

c∈C

(−1)|c|z|c|.

[4] The series G(z) is rational, and it is the formal inverse of the Möbius
polynomial: G(z)μ(z) = 1.

[8,9] If Σ �= ∅, the Möbius polynomial has a unique root of smallest modulus.
This root, say r, is real and lies in (0, 1]. If Σ = ∅, we put r = ∞. In all cases,
the radius of convergence of G(z) is r.

We note that: r ≥ 1 if and only if M is commutative—an elementary result
to be generalised when dealing with deterministic concurrent systems in Sect. 3
and 4. Indeed, if M is not commutative, then M contains the free monoid on
two generators as a submonoid, hence r ≤ 1/2. Whereas, if M is commutative
and Σ has N ≥ 0 elements, then μ(z) = (1 − z)N and therefore r = 1 or r = ∞.
In this case, one recovers from the formula G(z) = 1/(1 − z)N the standard
elementary result that commutative free monoids have a polynomial growth.

Representation of Traces. The alphabet Σ is usually represented by its Coxeter
graph [5], which is the graph (Σ,D) with all self-loops omitted. Hence two dis-
tinct letters commute with each other if and only if they are not joined by an
edge; see an example depicted on Fig. 1.

A convenient representation of traces is provided by the identification of
traces with the heaps of pieces introduced in [13]. Picture each letter as a piece

Deterministic Concurrent Systems 429

falling to the ground, in such a way that distinct letters which commute with each
other fall along parallel lines; whereas non commutative letters fall in such a way
that they block each other. The heaps of pieces thus obtained are combinatorial
object corresponding bijectively to the elements of the trace monoid, by reading
the letters labelling the pieces from bottom to top. The cliques of the normal
form of a trace correspond to the horizontal layers that appear in the heap of
pieces. See an illustration on Fig. 2.

a0 a3

a0 a2

a1 a3

a4

a0

a3

a0

a2

a1

a3

a4

a0

a3

a0

a2

a1

a3

a4

Fig. 2. In this example the commutation relations are those of the Coxeter graph
depicted on Fig. 1. Left: representation as a heap of piece of the trace which normal
form is (a0a3, a0a2, a1a3, a4). Middle and right: representations of two words in the
congruence class of the trace x: a0-a3-a0-a2-a1-a3-a4 (middle) and a3-a2-a3-a0-a4-a0-
a1 (right).

2.2 Concurrent Systems and their Combinatorics

The background material presented in this section is borrowed from [1,3].

Concurrent Systems and Executions. A concurrent system is a triple (M,X,⊥)
where M is a trace monoid, X is a finite set of states and ⊥ is a special symbol
not in X, together with a right monoid action of M on X ∪ {⊥}, denoted by
(α, x) �→ α · x, and such that ⊥ · x = ⊥ for all x ∈ M. By definition of a monoid
action, one has thus α · (x · y) = (α · x) · y for all (α, x, y) ∈ X × M × M, and
α · ε = α for all α ∈ X.

The concurrent system X is trivial if α · a = ⊥ for all α ∈ X and for all
a ∈ Σ. It is non trivial otherwise.

The symbol ⊥ represents a sink state. So we are interested, for every α, β ∈ X,
in the following subsets of M:

Mα,β = {x ∈ M ∣
∣ α · x = β}, Mα = {x ∈ M ∣

∣ α · x �= ⊥}.
Traces of Mα are called executions starting from α, or executions for short

if the context is clear. Note that Mα is always downward closed in (M,≤).

We introduce the following useful notations, for α, β ∈ X:

Σα = Σ ∩ Mα Cα = C ∩ Mα Cα = C ∩ Mα Cα,β = C ∩ Mα,β

430 S. Abbes

A generalised execution from α is an element ξ ∈ M such that:

∀x ∈ M x ≤ ξ =⇒ x ∈ Mα.

Their set is denoted Mα, and we also put ∂Mα = Mα ∩ ∂M.
As a running example for a “general concurrent system”, we use the 1-safe

Petri net depicted in Fig. 3(a). The underlying trace monoid is generated by the
transitions, with commutative transitions t and t′ whenever •t• ∩ •t′• = ∅, thus
M = 〈a, b, c, d | ad = da, db = db〉. The corresponding Coxeter graph is depicted
on Fig. 3(b), and the graph of marking is depicted on Fig. 3(c).

• A

a b

B •C

c d

•
a

•
b

• c

• d

α0

d a

bc

α1

d

(a) (b) (c)

(α0, d)

(α0, ad) (α0, bd)

(α0, a) (α0, b) (α1, c)

(α1, d)

(d)

Fig. 3. (a)—A safe Petri net with its initial marking α0 = {A, C} depicted. The two
reachable markings are α0 and α1 = {B, C}. (b)—The Coxeter graph of the associated
trace monoid. (c)—Graph of markings of the net. (d)—Digraph of states-and-cliques
of the associated concurrent system.

Deterministic Concurrent Systems 431

Digraph of States-and-Cliques. Generalised executions of a concurrent system
X = (M,X,⊥) are generalised traces of M. As seen in Sect. 2.1, generalised
traces correspond to paths in the digraph of cliques (C ,→). Not all paths of
(C ,→) however correspond, in general, to executions of X . In order to take into
account the constraints induced by the monoid action, we introduce the digraph
of states-and-cliques (D ,→), the vertices of which are pairs (α, c) with α ranging
over X and c ranging over Cα. There is an arrow (α, c) → (β, d) in D if β = α · c
and if (c, d) is a normal pair of cliques.

To every generalised execution ξ = (ci)i≥1 with ξ ∈ Mα, is associated the
path (αi−1, ci)i≥1 in D , where αi is defined by α0 = α and αi = α · (c1 · . . . · ci)
for i ≥ 1. We put Yi(ξ) = (αi−1, ci) for every integer i ≥ 1.

Conversely, every infinite path in D corresponds to a unique generalised
execution. Consider the subgraph D of D with all vertices of the form (α, c) with
c �= ε. Then infinite paths in D correspond bijectively to infinite executions.

For our running example, the digraph of states-and-cliques is depicted on
Fig. 3(d).

Characteristic Root. The combinatorics of a concurrent system X = (M,X,⊥)
involves not only the combinatorics of M, but also of the monoid action
X × M → X. Consider the Möbius matrix μ(z) = (μα,β(z))(α,β)∈X×X , the
polynomial θ(z), and the growth matrix G(z) = (Gα,β(z))(α,β)∈X×X defined by:

μα,β(z) =
∑

c∈Cα,β

(−1)|c|z|c| θ(z) = det μ(z) Gα,β(z) =
∑

x∈Mα,β

z|x|

Then G(z) is a matrix of rational series, and it is the inverse of the Möbius
matrix: G(z)μ(z) = Id. One of the roots of smallest modulus of the polynomial
θ(z) is real and lies in (0, 1] ∪ {∞}, with the convention that it is ∞ if θ(z) is a
non zero constant. This non negative real or ∞ is the characteristic root of the
concurrent system X . The characteristic root r is the minimum of all convergence
radii of the generating series Gα,β(z), for (α, β) ranging over X × X.

For our running example, the Möbius matrix is given by:

μ(z) =
α0

α1

(
1 − 2z + z2 −z + z2

−z 1 − z

)

with determinant θ(z) = (1−z)2(1−2z). The characteristic root is thus r = 1/2.

Irreducibility and the Spectral Property. A concurrent system X = (M,X,⊥) is
irreducible if: 1) The monoid M is irreducible; 2) Mα,β �= ∅ for all α, β ∈ X;
3) For every α ∈ X and for every letter a ∈ Σ there exists x ∈ Mα such that
a ∈ x.

If Σ′ is any subset of Σ, and if M′ = 〈Σ′〉 is the submonoid of M generated
by Σ′, then the restriction of the action (X∪{⊥})×M′ → X∪{⊥} defines clearly
a new concurrent system X ′ = (M′,X,⊥), said to be induced by restriction. In
particular, let X a denote the concurrent system induced by restriction with
Σ′ = Σ \ {a}, and let ra be the characteristic root of X a.

432 S. Abbes

A key property, that we shall use later, is the spectral property [3] which
states: if X is irreducible, then ra > r for every a ∈ Σ.

The concurrent system in our running example from Fig. 3 is irreducible.

Valuations and Probabilistic Valuations. Markov Chain of States-and-Cliques. A
valuation on a concurrent system X = (M,X,⊥) is a family f = (fα)α∈X of
mappings fα : M → R≥0 satisfying the three following properties:

∀α ∈ X ∀x ∈ M α · x = ⊥ =⇒ fα(x) = 0 (5)

∀α ∈ X ∀x ∈ Mα ∀y ∈ Mα·x fα(x · y) = fα(x)fα·x(y) (6)

∀α ∈ X fα(ε) = 1 (7)

Let f = (fα)α∈X be a valuation and for each α ∈ X, let hα : C → R be the
Möbius transform of the restriction fα

∣
∣
C

: C → R≥0. Note first that hα(x) = 0
if x /∈ Mα. We say that f is a probabilistic valuation if:

∀α ∈ X
(

hα(ε) = 0 ∧ (∀c ∈ Cα hα(c) ≥ 0)
)

. (8)

In this case, there exists a unique family ν = (να)α∈X , where να is a prob-
ability measure on ∂Mα, such that να(↑ x) = fα(x) for all α ∈ X and for all
x ∈ Mα. Of course the existence of a probabilistic valuation implies in particular
that ∂Mα �= ∅, a property which might not be satisfied in general even if Σ �= ∅.

If ν = (να)α∈X is associated as above with a probabilistic valuation f =
(fα)α∈X , then for each state α ∈ X, and with respect to the probability mea-
sure να , the family of mappings Yi : ∂Mα → D defined earlier is a homogeneous
Markov chain, called the Markov chain of states-and-cliques. Its initial distribu-
tion is given by 1α ⊗ hα; hence in particular:

∀α ∈ X ∀c ∈ Cα να(C1 = c) = hα(c). (9)

Let us determine all the probabilistic valuations for the running example of
Fig. 3. Any probabilistic valuation f = (fα)α∈X is entirely determined by the
finite family of values fα(u) for (α, u) ranging over {α0, α1} × Σ, since then the
other values fα(x) are obtained by the chain rule fα(xy) = fα(x)fα·x(y).

Since fα0(c) = fα1(a) = fα2(b) = 0, the remaining parameters for f are
p = fα0(a), q = fα0(b), s = fα0(d), t = fα1(c), u = fα1(d). The parameters
are not independent; to cope with the commutativity relations induced by the
trace monoid, one must have fα0(a)fα0·a(d) = fα0(d)fα0·d(a), since ad = da,
and fα0(b)fα1(d) = fα0(d)fα0·d(b) since bd = db; yielding simply u = s here.

The Möbius tranform of fα0 evaluated for instance at b is hα0(b) = fα0(b) −
fα0(bd) = fα0(b) − fα0(b)fα1(d) = q − qs. Other computations are done simi-
larly, and we gather the results in Table 1. According to (8), the normalization
contraints on the parameters for the valuation f to be probabilistic are thus:

1 − p − q − s + ps + qs = 0, 1 − t − s = 0, (10)

Deterministic Concurrent Systems 433

Table 1. Möbius tranform of a generic valuation for the running example depicted in
Fig. 3, with parameters p = fα0(a), q = fα0(b), s = fα0(d) = fα1(d) and t = fα1(c).

state α hα(ε) hα(a) hα(b) hα(c) hα(d) hα(ad) hα(bd)

α0 1 − p − q − s + ps + qs p − ps q − qs 0 s − ps − qs ps qs

α1 1 − t − s 0 0 t s 0 0

plus all inequalities hα0(a) ≥ 0, etc., which in this case amount to specify that
all parameters vary between 0 and 1. The second equality in (10) is standard:
since there is no concurrenycy enabled at α1, the events of firing c and d are
disjoint, hence their probabilities sum up to 1. The first equality in (10) is less
standard. It takes into account the existence of concurrency enabled at α0 and
shows a degree greater than 1, resulting form the existence of cliques of order 2.

Here, the equality hα0(ε) = 0 rewrites as (1 − p − q)(1 − s) = 0. It follows
that, if s �= 1, then 1 − p − q = 0 and therefore hα0(d) = s(1 − p − q) = 0. Hence
the node (α0, d) is never reached, which meets well the intuition. We say that
(α0, d) is a null node. See [3] for more details about the notion of null node.

Representation of Concurrent Systems and of Executions. To represent a con-
current system X = (M,X,⊥), we first use the Coxeter graph of M, as in Fig. 1.
We also depict the labelled multigraph of states, which vertices are the elements
of X, and with an edge from α to β labelled by the letter a ∈ Σ if α · a = β, as
in Fig. 3(c). For representing executions, we stick to the representation by heaps
of pieces introduced earlier for traces.

Remark 1. Any multigraph V with edges labelled by elements from a set Σ
represents an action of the free monoid (V ∪ {⊥}) × Σ∗ → (V ∪ {⊥}), provided
that for any node v ∈ V , there is no two edges starting from v and labelled
with the same letter. It requires an additional verification to check that it also
represents an action of a trace monoid M = M(Σ, I) on V ; namely, one has to
check that α · (ab) = α · (ba) for any two letters (a, b) ∈ I.

2.3 A Comparison Result

In this subsection, we state an elementary lemma and its corollary, both belong-
ing to trace theory, and given in a form slightly more general than precisely
needed in the sequel.

Consider an alphabet Σ and two independence relations I and I ′ on Σ such
that I ⊆ I ′, and consider the two trace monoids M = M(Σ, I) and N =
M(Σ, I ′). There is a natural surjection π : M → N , which entails in particular
that M is “not smaller” than N . It seems to have been unnoticed so far that,
when restricted to the set of sub-traces of a given trace of M, or even of M,
then π becomes injective. This is the topic of the following lemma.

The lemma generalises the following elementary fact. Let M = Σ∗ be a free
monoid and let u ∈ Σ∗. Then any prefix word x ≤ u is entirely determined

434 S. Abbes

by the collection (na)a∈Σ where na is the number of occurrences of the letter a
in x. Hence x is entirely determined by its image in the free commutative monoid
generated by Σ.

Lemma 1. Let I ⊆ I ′ be two independence relations on an alphabet Σ, let
M = M(Σ, I) and N = M(Σ, I ′), and let π : M → N be the natural surjection.
Then π extends naturally to a surjection on generalised traces, as a mapping still
denoted by π : M → N . Let ω ∈ M, and define: M≤ω = {x ∈ M ∣

∣ x ≤ ω}.
Then the restriction of π to M≤ω is injective.

Proof. The extension of π to a mapping M → N follows from the definitions,
hence we focus on proving that the restriction of π to M≤ω is injective. Let
x ∈ M≤ω and let y = π(x). Let c1 be the first clique in the normal form of x,
and let d1 be the first clique in the normal form of y. Let also C1 be the first
clique in the normal form of ω. We assume with loss of generality that x �= ε
since π−1({ε}) = {ε}.

We claim that c1 = d1 ∩ C1. The inclusion c1 ⊆ d1 ∩ C1 is clear since both
inclusions c1 ⊆ d1 and c1 ⊆ C1 are obvious. For proving the converse inclusion,
seeking a contradiction, we assume that there is a letter a ∈ d1 ∩ C1 such that
a /∈ c1. Then, since y = π(x), the letter a belongs to some higher clique in the
normal form of x. But, since x ≤ ω, and since a ∈ C1, that entails that a ∈ c1,
contradicting the assumption a /∈ c1. Hence c1 = d1 ∩ C1, as claimed.

Repeating inductively the same reasoning, with x′ = c1\x and with y′ =
π(x′) = c1\y and ω′ = c1\ω in place of x and of y and of ω respectively2, we
see that all the cliques (ci)i≥1 of the generalised trace x can be reconstructed
from y. This entails that π is injective. ��
Corollary 1. Let M be a trace monoid, and let ω ∈ ∂M be an infinite trace.
For each integer n ≥ 0, consider:

M≤ω(n) = {x ∈ M ∣
∣ x ≤ ω ∧ |x| = n}, pn = #M≤ω(n).

Then there is a polynomial P ∈ Z[X] such that pn ≤ P (n) for all integers n.
Furthermore, the set ∂M≤ω = {ξ ∈ ∂M ∣

∣ ξ ≤ ω} is at most countable. The
polynomial P only depends on M, and not on ω.

Proof. Let M = M(Σ, I) and let N be the free commutative monoid generated
by Σ, i.e., N = M(Σ, I ′) with I ′ = (Σ × Σ) \ Δ and Δ = {(x, x) : x ∈ Σ}.

For each integer n, let qn = #N (n). Then it is well known that qn = P (n) for
some polynomial P ∈ Z[X] (a short proof based on the Möbius inversion formula
was given in Sect. 2.1). Since I ⊆ I ′, it follows from Lemma 1 that p(n) ≤ q(n).

Furthermore, N itself is at most countable since N identifies with:

N ∼ {

(xi)i∈Σ

∣
∣ xi ∈ Z≥0 ∪ {∞}, ∃i ∈ Σ xi = ∞}

.

Hence, the fact that ∂M≤ω is at most countable also follows from Lemma 1. ��
2 Recall that, if c ≤ u with c, u ∈ M, we denote by c\u the left cancellation of u by c,
which is the unique trace v ∈ M such that c · v = u.

Deterministic Concurrent Systems 435

Remark 2. Of course, the direct argument:

∂M≤ω ⊆ {

ξ ∈ CZ≥1
∣
∣ ∀i ≥ 1 Ci(ξ) ⊆ Ci(ω)

}

would not allow to conclude as in Corollary 1 that ∂M≤ω is at most countable.

3 Deterministic Concurrent Systems

Definition 1. A deterministic concurrent system (DCS) is a concurrent system
X = (M,X,⊥) such that for every state α ∈ X, the partial order (Mα,≤) is a
lattice.

Remark 3. According to the background on lub and glb on trace monoids
recalled in Sect. 2.1 on the one hand, and since Mα is a downward closed subset
of M on the other hand, we have for any two executions x, y ∈ Mα: 1) x and y
have a glb in Mα, which coincides with their glb in M; and 2) x and y have a
lub in Mα if and only they have a common upper bound in Mα, in which case
their lub in Mα coincides with their lub in M. Note however that the existence
of x ∨ y in M is not enough to insure that x ∨ y ∈ Mα.

Henceforth, a concurrent system (M,X,⊥) is a DCS if and only if, for every
state α, any two executions x, y ∈ Mα have a common upper bound in Mα.

The following result says that DCS correspond to “locally commutative”
concurrent systems.

Proposition 1. Let X = (M,X,⊥) be a concurrent system. Then the following
properties are equivalent:

(i) X is deterministic.
(ii) For every α ∈ X, the partial order (Cα,≤) is a lattice.
(iii) For every α ∈ X, any two letters in Σα commute with each other.

Proof. The equivalence (ii) ⇐⇒ (iii) and the implication (i) =⇒ (iii) are clear.
The interesting point is the implication (ii) =⇒ (i).

Assume that (Cα,≤) is a lattice for every α ∈ X. Fix α ∈ X and let x, y ∈
Mα. Assume first that x∧y = ε. Let (c1, . . . , ck) and (d1, . . . , dm) be the normal
forms of x and of y. Maybe by adding the empty trace at the tail of one or the
other normal form, we assume that k = m, at the cost of tolerating that some
of the elements may be the empty trace.

On the one hand, since c1 · c2 is an execution starting from α, one has c2 ∈
Cα·c1 . On the other hand, both c1 and d1 belong to Cα, which is a lattice by
assumption. Hence c1 ∨ d1 ∈ Cα. And since c1 ∧ d1 = ε by assumption, one has
c1 ∨ d1 = c1 · d1 = d1 · c1. Therefore: d1 ∈ Cα·c1 . Since both cliques c2 and d1
belong to Cα·c1 , which is a lattice, it follows that c2 ∨ d1 ∈ Cα·c1 .

Now we claim that c2 ∧d1 = ε. Otherwise, there exists a letter a occurring in
both c2 and d1. Since (c1, c2) is a normal pair of cliques, there exists b ∈ c1 such
that (a, b) ∈ D, the dependence pair of the monoid. Because of the assumption

436 S. Abbes

c1 ∧d1 = ε, the identity a = b is impossible. But both a and b belong to Σα, and
since a �= b, the fact that (a, b) ∈ D contradicts that Cα is a lattice; our claim is
proved.

We have obtained that c2 ∨ d1 exists in Cα·c1 and that c2 ∧ d1 = ε. Hence
c2 ∨ d1 = c2 · d1 = d1 · c2. It implies that c2 ∈ Cα·(c1∨d1). Symmetrically, we
obtain that d2 ∈ Cα·(c1∨d1). Since Cα·(c1∨d1) is a lattice, it follows that d2 ∨ c2 ∈
Cα·(c1∨d1). But again, d2 ∧ c2 = ε hence d2 ∨ c2 = d2 · c2 = c2 · d2. Therefore we
obtain that the following trace belongs to Mα:

(c1 ∨ d1) · (c2 ∨ d2) = (c1 · c2) · (d1 · d2) = (d1 · d2) · (c1 · c2).

Repeating inductively the same reasoning, we finally obtain that x · y = y · x ∈
Mα, hence providing a common upper bound of x and of y in Mα. This proves
the existence of x ∨ y in Mα in the case where x ∧ y = ε.

The general case follows by considering x′ = (x ∧ y)\x and y′ = (x ∧ y)\y
instead of x and y. ��
Remark 4. In a DCS, for each state α ∈ X, the partially ordered set of cliques
(Cα,≤) identifies with the powerset (P(Σα),⊆). In particular Cα has a maximum
cα = max(Cα) =

∨
Σα, given by: cα = Σα. We keep this notation in the

statement of the following lemma.

Lemma 2. Let X = (M,X,⊥) be a deterministic concurrent system, and let
α ∈ X. Let Tα = (ci)i≥1 be the sequence of cliques defined by c1 = cα, and
inductively by ci+1 = cαi

where αi = α · (c1 · . . . · ci). Then Tα is a generalised
execution which is the maximum of (Mα,≤).

Proof. We first observe that, for cα the maximum of Cα, then cα → y holds3 for
every clique y ∈ Cα·cα

. Here in particular, ci → ci+1 holds for all i ≥ 1, hence
Tα is indeed a generalised execution.

Let x ∈ Mα, with x = (di)i≥1. We prove that x ≤ Tα. Assume first that x
is a finite trace, of height k = τ(x). Put y = c1 · . . . · ck. Then x and y belong
to Mα. Hence z = x ∨ y exists in Mα. Let (e1, . . . , ek) be the normal form of z
(since x and y have the same height k, z also has height k). Then cj ≤ ej and
thus cj = ej for all j by maximality of cj . Hence dj ≤ cj for all j, which was to
be proved.

If x = (ci)i≥1 is now a generalised trace, we obtain the same result by apply-
ing the previous case to all sub-traces (ci)1≤i≤k. ��

Let us introduce a name for a valuation that will play a special role.

Definition 2. Let X = (M,X,⊥) be a concurrent system. The valuation f =
(fα)α∈X defined by:

∀α ∈ X ∀x ∈ M fα(x) =

{

1, if x ∈ Mα

0, otherwise

is called the dominant valuation of X .
3 This actually holds for any concurrent system, not necessarily deterministic, if cα is
taken to be any maximal element in Cα.

Deterministic Concurrent Systems 437

The family f = (fα)α∈X given in Def. 2 is indeed a valuation. Indeed, using
the axioms of the monoid action and the additional assumption ⊥· z = ⊥ for all
z ∈ M, one sees that the following equivalence is true for every α ∈ X and for
every traces x, y ∈ M:

α · (x · y) �= ⊥ ⇐⇒ (α · x �= ⊥ ∧ (α · x) · y �= ⊥),

which translates at once as the identity fα(x · y) = fα(x)fα·x(y).

Theorem 1. Let X = (M,X,⊥) be a non trivial concurrent system.

1. If Σα �= ∅ for all α ∈ X, then the two following statements are equivalent:
(i) X is deterministic.
(ii) The dominant valuation of X is probabilistic.

2. If X is deterministic, then all sets ∂Mα, for α ∈ X, are at most countable
and the characteristic root of X is r = 1 or r = ∞.

Proof. Point 1. To prove the stated equivalence, assume (i), and let f = (fα)α∈X

be the dominant valuation. Let α ∈ X, and let c ∈ Cα. Since Cα identifies
with P(Σα), the Möbius transform of fα evaluated at c is given by:

hα(c) =
∑

c′∈Cα : c′≥c

(−1)|c′|−|c| =

{

1, if c = cα (the maximum ofCα)
0, otherwise.

Since ε �= cα for all α ∈ X, this shows that f is a probabilistic valuation.
Conversely, assume as in (ii) that f is probabilistic. Let α ∈ X be a state,

and let cα be a maximal element of (Cα,≤). Then, on the one hand, and since
cα is a maximal clique, one has hα(cα) = fα(cα) = 1. But on the other hand,
hα is nonnegative on Cα and sums up to 1 on Cα. Hence hα vanishes on all other
cliques of Cα. Since this is true for every maximal element of Cα, it entails that
Cα has actually a unique maximal element, which is thus its maximum Σα. Hence
(Cα,≤) is a lattice for every α ∈ X, which proves (i) according to Proposition 1.

Point 2. We assume that X is a DCS. According to Lemma 2, the partial
order (Mα,≤) has a maximum Tα for every α ∈ X, hence Mα ⊆ M≤Tα

.
It follows at once from Corollary 1 that ∂Mα is at most countable, and that
#Mα(n) ≤ P (n) for all integers n and for some polynomial P . All generating
series Gα,β(z) are rational with non zero coefficients at least 1, and they have
their coefficients dominated by some polynomial. They have therefore a radius
of convergence either 1 or ∞. Hence r ∈ {1,∞}. ��
Remark 5. In general, there might exist other probabilistic valuations than the
dominant valuation, even for a DCS. See an example at the end of next section.

Since the dominant valuation f is probabilistic, there corresponds a family of
probability measures as described in Sect. 2.2. The behaviour of the associated
Markov chain of states-and-cliques is trivial, as shown by the following result.

438 S. Abbes

Proposition 2. Let X = (M,X,⊥) be a non trivial DCS such that Σα �= ∅ for
all α ∈ X, and let ν = (να)α∈X be the family of probability measures associated
with the dominant valuation. Then for each initial state α ∈ X, the probability
measure να is the Dirac distribution δ{Tα}, where Tα = max Mα.

Proof. Assuming that X is a DCS, we keep using the notation cα = maxCα = Σα

for all α ∈ X.
A direct proof is as follows. Fix α ∈ X, and let (αi, zi)i≥0 be defined induc-

tively by α0 = α, z0 = ε and zi+1 = zi · cαi
, αi+1 = α · zi. On the one hand,

we have
∨

i≥0 zi = Tα by the construction used in the proof of Lemma 2. But
on the other hand, the characterisation of the probability measure να yields
να(↑ zi) = f(zi) = 1 for all i ≥ 0. Since ↑ zi+1 ⊆↑ zi for all i ≥ 0, we have thus:

να(ω ≥ Tα) = να

(⋂

i≥0

↑ zi

)

= lim
i→∞

να(↑ zi) = 1.

Since Tα = max Mα, it implies να(ω = Tα) = 1.
An alternative proof is as follows. Let (Yi)i≥1 be the Markov chain of states-

and-cliques associated to the dominant valuation, and let α ∈ X. One has
να(C1 = c) = hα(c) for all c ∈ Cα, by (9). The values of hα computed in
the proof of Th. 1 show that the initial distribution of the chain is δ{(α,cα)}.
It is shown in [1] that the (α, c)-row of the transition matrix of the chain is
proportional to hα·c(·). Hence all entries of the (α, c)-row are 0, except for the
(

(α, c), (β, cβ)
)

entry with β = α · c, where the entry is 1. Hence the execution
Tα is given να-probability 1. ��

4 Irreducible Deterministic Concurrent Systems

Before stating the main result of this section, we need to prove two lemmas.

Lemma 3. Let X = (M,X,⊥) be a DCS. Let α ∈ X and let c ∈ Cα be a clique
such that a /∈ c for some letter a ∈ Σα. Then:

∀x ∈ Mα C1(x) = c =⇒ a /∈ x.

Proof. Let α, a and c be as in the statement. Clearly, the implication stated in
the lemma is true if we prove it to be true for x ranging over Mα instead of Mα.
Hence, let x ∈ Mα be such that C1(x) = c. Let (ci)i≥1 be the generalised normal
form of x, and define by induction x0 = ε, xi+1 = xi · ci+1 for all i ≥ 0 and
αi = α · xi for all i ≥ 0. We prove by induction on i ≥ 1 that: 1) a ∈ Σαi−1 ; and
2) a /∈ ci.

For i = 1, both properties derive from the assumptions of the lemma. Assume
that both properties hold for some i ≥ 1. By construction, ci ∈ Cαi−1 , and a ∈
Σαi−1 by the induction hypothesis. Since the concurrent system is deterministic,
it follows that a∨ci ∈ Cαi−1 . Since a /∈ ci by the assumption hypothesis, this lub
is given by ci · a ∈ Cαi−1 . This entails first that a ∈ Cαi−1·ci

, but αi−1 · ci = αi

hence a ∈ Σαi
. But it also entails that a /∈ ci+1 , completing the induction step.

The result of the lemma follows. ��

Deterministic Concurrent Systems 439

Lemma 4. Let X = (M,X,⊥) be a concurrent system. Let α ∈ X, and let rα

be the radius of convergence of the generating series Gα(z) =
∑

x∈Mα
z|x|. Then

the following properties are equivalent: (i) Mα is finite; (ii) ∂Mα = ∅; (iii)
rα = ∞.

Proof. The implications (i) =⇒ (ii) and (i) =⇒ (iii) are clear.
Assume that Mα is infinite. Then there exists executions in Mα of length

arbitrary large. Therefore there exists x ∈ Mα and y �= ε such that α · x =
α · (x · y). Then all traces xn = x · yn belong to Mα for n ≥ 0. This proves two
things. First, if k = |y|, the coefficient of z|x|+kn in the series Gα(z) is ≥ 1 for
all integers n, hence rα < ∞. Second, the execution ξ =

∨

n≥0 xn is an element
of ∂Mα, showing that ∂Mα �= ∅. Hence we have proved both (ii) =⇒ (i) and
(iii) =⇒ (i) by contraposition, completing the proof. ��
Theorem 2. Let X = (M,X,⊥) be an irreducible and non trivial concurrent
system, of characteristic root r, and let f be the dominant valuation of X . Then
the following statements are equivalent:

(i) X is deterministic.
(ii) f is a probabilistic valuation.
(iii) f is the only probabilistic valuation of X .
(iv) r = 1.
(v) One set ∂Mα is at most countable.
(vi) Every set ∂Mα is at most countable.

Proof. Since X is both irreducible and non trivial, it satisfies in particular Σα �= ∅
for all α ∈ X. Hence the equivalence (i) ⇐⇒ (ii) and the implications (i) =⇒
(iv) and (i) =⇒ (vi) derive already from Theorem 1. The implications (iii)
=⇒ (ii) and (vi) =⇒ (v) are trivial.

(i) =⇒ (iii). Let f = (fα)α∈X be a probabilistic valuation, and let f̃ =
(f̃α)α∈X be the dominant valuation. Let α ∈ X and let c ∈ Cα with c �= cα,
where cα = Σα is the maximum of Cα. There is thus a letter a ∈ Σα such that
a /∈ c. Let Ma be the submonoid of M generated by Σ \ {a}. It follows from
Lemma 3 that {ω ∈ ∂Mα

∣
∣ C1(ω) = c} ⊆ ∂Ma

α.
According to the spectral property recalled in Sect. 2.2, the characteristic root

ra of X a = (Ma,X,⊥) satisfies ra > r since X is assumed to be irreducible.
But r = 1 since X is deterministic, and therefore ra = ∞, which implies that
∂Ma

α = ∅ according to Lemma 4. Let ν = (να)α∈X be the family of probability
measures associated with the probabilistic valuation f , as explained in Sect. 2.2.
Then να(∂Ma

α) = 0 and thus να(C1 = c) = 0. But one also has hα(c) = να(C1 =
c) according to (9), where hα is the Möbius transform of fα. Hence hα(c) = 0.
We have proved that hα vanishes on all cliques c ∈ Cα such that c �= cα. Since
(hα(c))c∈Cα

is a probability vector, it entails that hα(cα) = 1. Thus hα coincides
with the Möbius transform of f̃α, and f = f̃ .

(iv) =⇒ (i) and (v) =⇒ (i) . By contraposition, assume that X is not
deterministic. Prop. 1 implies the existence of a state α and of two distinct letters
a, b ∈ Σα such that a ·b �= b ·a. Since X is assumed to be irreducible, there exists

440 S. Abbes

x ∈ Mα·a,α and y ∈ Mα·b,α. Put xa = a·x and xb = b·y, and we can also assume
without loss of generality that |xa| = |xb|. Then Mα contains the submonoid
generated by {xa, xb}, which is free. This implies two things: first, the generating
series Gα(z) =

∑

x∈Mα
z|x| has radius of convergence smaller than 1, and thus

r < 1; second, ∂Mα is uncountable. The proof is complete. ��
For an irreducible DCS, the behaviour of the Markov chain of states-and-

cliques associated to the unique probabilistic dynamics is the trivial dynamics
described by Prop. 2. This is illustrated in the following example.

Example 1. Fig. 4 depicts an example of irreducible DCS. The digraph of states-
and-cliques of the system is depicted on Fig. 5. Compare with the situation
depicted next for a DCS which is not irreducible.

•
a0

•
a1

•
a2

•
a3

•
a0

5
•

a0

a3
2

•
a0

a2 0

•
a1

6 •
a1

a3

3
•a2

1

•
0

•
a1

8
•

a2
7

•
a3

4

Fig. 4. Example of an irreducible and deterministic concurrent system X = (M, X, ⊥)
with Σ = {a0, . . . , a3}, X = {0, 1, . . . , 8}. Left: Coxeter graph of the monoid M. Right:

multigraph of states of X . The two framed labels 0 are identified and correspond to
the same state.

Example 2. Without the irreducibility assumption, the equivalence stated in
Th. 2 may fail. We give below an example of a deterministic concurrent sys-
tems not irreducible, and not satisfying point (iii).

Let X = (M,X,⊥) be the DCS depicted in Fig. 6. The system is not irre-
ducible for several reasons: none of the three conditions for irreducibility is met.
The probabilistic valuations of X are all of the following form, for some real
p ∈ [0, 1]:

fα0(a) = 1 fα0(c) = p fα1(b) = 1 fα1(c) = p fβ0(a) = 1 fβ1(b) = 1

Hence the dominant valuation is not the unique probabilistic valuation, con-
trary to irreducible systems as stated by point (iii) of Th. 2. The parameter p
is to be interpreted as the “probability of playing c” in the course of the exe-
cution. But this decision—playing c or not—is made once, hence allowing all
values between 0 or 1 for the probability. Whereas, in a sequential model of
concurrency, that would typically be a decision repeated infinitely often, hence

Deterministic Concurrent Systems 441

yielding the only two possible values 0 or 1 for this probability. The formula
να(C1 = γ) = hα(γ) for γ ∈ Cα yields the following initial distribution of the
Markov chain of states-and-cliques if, for instance, the initial state of the system
is α0:

να0(C1 = a) = 1 − p να0(C1 = c) = 0 να0(C1 = ac) = p

(5, a0) (8, a1) (0, a0)

(2, a0a3) (6, a1) (7, a2) (0, a2) (2, a3)

(4, a3) (3, a1a3) (2, a0)

(1, a2) (0, a0a2) (3, a1)

(3, a3)

Fig. 5. Digraph of states-and-cliques for the DCS depicted on Fig. 4. Nodes with solid
frames are nodes of the form (α, cα) with cα = maxCα. The probability for the Markov
chain of states-and-cliques to jump from a solid frame node to a dashed frame node
is 0; the probability of starting in a dashed node in 0.

•
a

•
b

•
c

•
a

c

α0 •
b

c

α1

•
a

β0 •
b

β1

(α0, a) (α1, b)

(β0, a) (β1, b)

(α1, bc) (α0, ac)

(α0, c) (α1, c)

Fig. 6. A non irreducible DCS not satisfying property (iii) of Th. 2. Left: the Coxeter
graph of the monoid. Middle: the multigraph of states of the DCS. Right: the digraph
of states-and-cliques. The parameter p is only involved in the initial distribution of the
Markov chain of states-and-cliques. The dashed nodes are isolated in the digraph of
states-and-cliques and are immaterial to the Markov chain of states-and-cliques.

442 S. Abbes

References

1. Abbes, S.: Markovian dynamics of concurrent systems. Discrete Event Dyn. Syst.
29(4), 527–566 (2019). https://doi.org/10.1007/s10626-019-00291-z

2. Abbes, S., Mairesse, J.: Uniform and Bernoulli measures on the boundary of trace
monoids. J. Comb. Theor. Ser. A 135, 201–236 (2015)

3. Abbes, S., Mairesse, J., Chen, Y.-T.: A spectral property for concurrent sys-
tems and some probabilistic applications. Submitted for publication. Available at
https://arxiv.org/abs/2003.03762 (2020)

4. Cartier, P., Foata, D.: Problèmes combinatoires de commutation et
réarrangements. LNM, vol. 85. Springer, Heidelberg (1969). https://doi.org/
10.1007/BFb0079468

5. Dehornoy, P., Digne, F., Godelle, E., Krammer, D., Michel, J.: Foundations of
Garside Theory. EMS (2015)

6. Diekert, V.: Combinatorics on Traces. LNCS, vol. 454. Springer, Heidelberg (1990).
https://doi.org/10.1007/3-540-53031-2

7. Diekert, V., Rozenberg, G. (eds.): The Book of Traces. World Scientific (1995)
8. Goldwurm, M., Santini, M.: Clique polynomials have a unique root of smallest

modulus. Inform. Process. Lett. 75(3), 127–132 (2000)
9. Krob, D., Mairesse, J., Michos, I.: Computing the average parallelism in trace

monoids. Discrete Math. 273, 131–162 (2003)
10. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures and domains,

part I. Theor. Comput. Sci. 13, 85–108 (1981)
11. Reisig, W.: Petri Nets- An Introduction. Springer, Heidelberg (1985). https://doi.

org/10.1007/978-3-642-69968-9
12. Rota, G.-C.: On the foundations of combinatorial theory I. Theory of Möbius func-

tions. Z. Wahrscheinlichkeitstheorie 2, 340–368 (1964). https://doi.org/10.1007/
BF00531932

13. Viennot, G.X.: Heaps of pieces, I: Basic definitions and combinatorial lemmas.
In: Labelle, G., Leroux, P. (eds.) Combinatoire énumérative. LNM, vol. 1234, pp.
321–350. Springer, Heidelberg (1986). https://doi.org/10.1007/BFb0072524

https://doi.org/10.1007/s10626-019-00291-z
https://doi.org/10.1007/BFb0079468
https://doi.org/10.1007/BFb0079468
https://doi.org/10.1007/3-540-53031-2
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/978-3-642-69968-9
https://doi.org/10.1007/BF00531932
https://doi.org/10.1007/BF00531932
https://doi.org/10.1007/BFb0072524

Deciphering the Co-Car Anomaly
of Circular Traffic Queues Using

Petri Nets

Rüdiger Valk(B)

Department of Informatics, University of Hamburg, Hamburg, Germany
valk@informatik.uni-hamburg.de

Abstract. The co-car anomaly appears in the study of circular traffic
queues. An unfolding of the corresponding coloured net is proved to be
isomorphic to a particular cycloid. Then the anomaly is reduced to a
combinatorial property of path lengths in the cycloid. Methods of the
cycloid algebra are used to derive iterations of cycloids. Different such
iterations correspond to different models of traffic queues, but only those
with observable co-traffic items show the anomaly.

Keywords: Circular traffic queues · Coloured petri nets · Unfoldings ·
Structure of petri nets · Cycloids · Cycloid algebra · Iteration of
cycloids

1 Introduction

During the study of circular traffic queues an interesting anomaly came to our
attention. In the model under investigation, traffic items like cars, trains, air-
crafts, production goods, computer tasks or electronic particles, are divided into
two sorts, namely those moving from left to right and those moving to the oppo-
site direction. While the former are called cars in this introduction the latter
are denoted as co-cars. In each step of the system, when in face of a co-car a car
may interchange its position with it. The circular traffic queue of Fig. 1 contains
a number of c = 3 cars a0, a1 and a2 and g = 5 co-cars. In the current state of
this system car a0 in position 2 can swap with co-car u2 in position 3, as well
as a2 in position 7 with co-car u0 in position 0. For modelling and programming
the size of such systems is of importance. The size is strongly connected with the
minimal length Ξ(c, g) of a recurrent transition sequence, which is defined as a
sequence that reproduces a given initial state. Experiments have shown that for
the system in Fig. 1 we obtain Ξ(3, 5) = 120, but by slightly increasing one of the
parameters to g = 6 this number is not increased, but reduced to Ξ(3, 6) = 54.
This effect is called the co-car anomaly of circular traffic queues. In this paper we
give an explanation of this anomaly using the graphical representation of T-nets.
To this end we first model circular traffic queues by a standard representation
of coloured nets and then unfold this net (also by a standard method) into a
c© Springer Nature Switzerland AG 2021
D. Buchs and J. Carmona (Eds.): PETRI NETS 2021, LNCS 12734, pp. 443–462, 2021.
https://doi.org/10.1007/978-3-030-76983-3_22

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76983-3_22&domain=pdf
https://doi.org/10.1007/978-3-030-76983-3_22

444 R. Valk

Fig. 1. Circular traffic queue with c = 3 cars and g = 5 co-cars.

T-net, which obviously shows more graphical structure than the coloured net.
Instead of directly investigating such T-nets we will use the elaborated theory
of cycloids. Cycloids have been introduced by C.A. Petri in [4]. Cycloids define
a subclass of partial cyclic orders and hence generalize the well known token
ring structure (a total cyclic order) that is at the core of many solutions to
the distributed mutual exclusion problem. This also includes virtual token rings
that have been employed in group communication middleware (e.g. the Spread
system). We conjecture that cycloids could more generally play a role as coordi-
nation models in new middleware architectures. The methods and results of this
article lead to understand and construct coordination mechanisms of cooper-
ating processes. For instance the problem to make such a system wait-free [1] is
solved in this context (not in this paper).

Petri used cycloids to model very different phenomena among which were
special forms of circular traffic queues. When replacing the co-cars by gaps or
anonymous items, a simpler system is obtained which was called tq-g(c, g) in
[7], where a proof can be found that tq-g(c, g) is behavioural equivalent to a
particular cycloid. In this paper we prove a much stronger relation, namely
that the mentioned unfolding of a coloured net is syntactically isomorphic to a
different cycloid.

The results of this article are summarized as follows (some notions will be
introduced later in the article): In Sect. 2 circular traffic queues are formally
defined and the theorem on the number of recurrent transition sequences from
[7] is cited. The model is represented as a coloured net in Sect. 3 together with an
unfolding which follows the standard construction of occurrence nets (the Petri
net processes). Section 4 recalls the needed results on cycloids [5] and of regular
cycloids [7]. A new theorem is presented which gives for an arbitrary element of
the Petri space its equivalent element in the fundamental parallelogram. Using
the Chinese remainder theorem, in Sect. 5 the unfolding of the coloured net from
Sect. 3 is proved to be isomorphic to the cycloid C(g, c, g·c

Δ , g·c
Δ). This cycloid plays

an important role in Sect. 6, where the co-car anomaly is reduced to the f -factor,
which is the quotient of the lengths of certain paths in the cycloid C(g, c, c, c).
This cycloid models circular traffic queues with gaps tq-g(c, g), where co-cars
are reduced to anonymously named items. The relation of both kinds of cycloids
is studied in Sect. 7, where the iteration of cycloids is defined using the cycloid
algebra.

The author is grateful to the anonymous referees for proposing numerous
improvements.

Deciphering the Co-Car Anomaly of Circular Traffic 445

We recall some standard notations for set theoretical relations. If R ⊆ A×B
is a relation and U ⊆ A then R[U] := {b | ∃u ∈ U : (u, b) ∈ R} is the image of U
and R[a] stands for R[{a}]. R−1 is the inverse relation and R+ is the transitive
closure of R if A = B. Also, if R ⊆ A×A is an equivalence relation then [[a]]R
is the equivalence class of the quotient A/R containing a. Furthermore N+, Z
and R denote the sets of positive integer, integer and real numbers, respectively.
For integers: a|b if a is a factor of b. The modulo-function is used in the form
amod b = a − b · �a

b �, which also holds for negative integers a ∈ Z. In particular,
−amod b = b − a for 0 < a ≤ b. Furthermore we will use (a ⊗ b)modn =
(amodn ⊗ bmodn)modn for ⊗ ∈ {+,−} and (z + k · p)mod p = z mod p for all
k ∈ N, z ∈ Z. As a short notation we write x ⊕r y for (x + y) mod r and x
r y
for (x − y) mod r. Different to the article [7] we use indices in sets of size n in
the form B = {b0, · · · , bn−1} rather than B = {b1, · · · , bn}.

2 Circular Traffic Queues

Circular traffic queues are composed by a number of sequential and interacting
processes of traffic items a ∈ C and co-items u ∈ G. An intuitive notation would
be to consider a state as a word of length n over the alphabet C∪G with distinct
letters only, and the rewrite rule au → ua with a ∈ C, u ∈ G when inside the
word and u · · · a → a · · · u at the borders. An example of two such transitions
with C = {a, b, c}, G = {u, v, w, x} is u a b v w x c → u a v bw x c → c a v bw xu.
When defining the elements of G to be indistinguishable, they can be interpreted
as gaps interchanging with the traffic items from C.

Definition 1. A circular traffic queue tq(c, g) is defined by two positive inte-
gers c and g. Implicitly with these integers we consider two finite and dis-
joint sets of traffic items C = {a0, · · · , ac−1} and G = {u0, · · · , ug−1} with
cardinalities c and g, respectively. A state is a bijective index function ind :
{0, · · · , n − 1} → C ∪ G, hence c + g = n. The labelled transition system
LTS(c, g) = (States, T, tr, ind0) of tq(c, g) is defined by a set States of states,
a set of transitions T = {〈〈ti, aj〉〉|0 ≤ i < n, 0 ≤ j < c}, a transition rela-
tion tr and a regular initial state ind0. The regular initial state is given by
ind0(i) = ai for 0 ≤ i < c and ind0(i) = ui−c for c ≤ i < n. The transition
relation tr ⊆ States × T × States is defined by (ind1, 〈〈ti, aj〉〉, ind2) ∈ tr ⇔

ind1(i ⊕n 1) = ind2(i) ∈ G ∧ ind2(i ⊕n 1) = ind1(i) = aj ∧
ind2(m) = ind1(m) for all m /∈ {i, i ⊕n 1}.

This is written as ind1
〈〈ti,aj〉〉−→ ind2 or ind1 → ind2. A transition sequence ind0 →

ind1 → · · · → ind0 of minimal length, leading from the initial state ind0 back to
ind0 is called a recurrent sequence. As usual ind1

∗→ ind2 denotes the reflexive
and transitive closure of tr. We restrict the set of states to the states reachable
from the initial state: States := R(LTS(c, g), ind0) := {ind|ind0

∗→ ind}.
Theorem 2. ([7]). Let Δ = gcd(c, g) be the greatest common divisor of c and
g. The length of each recurrent sequence of tq(c, g) is Ξ(c, g) := g

Δ · (c + g) · c.

446 R. Valk

For the example in the introduction we obtain Ξ(3, 5) = 5
1 · (3 + 5) · 3 = 120

and Ξ(3, 6) = 6
3 · (3 + 6) · 3 = 54.

While the regular initial state is natural in the sense that the traffic items
start without gaps in between, in a different context it is useful that the gaps
are equally distributed, as in the following definition of a standard initial state.
If for instance the numbers c and g are even, the queue in its initial state is
composed of two equal subsystems with the parameters c

2 and g
2 . An analogous

situation holds for larger divisors. The spacial iteration of a cycloid, as defined
in Sect. 7, formalizes such a composition.

Definition 3. A standard initial state ind0 of tq(c, g) is defined by the state
ind0(0)ind(1)0 · · · ind0(n − 1) = a0w0a1w1 · · · ac−1wc−1 with aj ∈ C,wj ∈ Grj

(set of words of length rj over G), rj = |{ x ∈ Z | j − 1 ≤ c
g · x < j}| for

0 ≤ j < c and w0w1 · · · wc−1 = u0u1 · · · ug−1.

To give an example, we consider the case c = 6, g = 4. We obtain
(r0, r1, r2, r3, r4, r5) = (0, 1, 1, 0, 1, 1) and ind0 = a0a1u0a2u1a2a4u2a5u3. Con-
trary to the regular initial state the standard initial state is invariant to taking
integer multiples of c and g. For instance the standard initial state of the circular
traffic queue tq(3, 2) is ind′

0 = a0a1u0a2u1 which is the first half of ind0.

3 A Coloured Net and Its T-Equivalent

We define nets as they will be used in this article. In this section we use a simple
form of a coloured net, for the definition of which we refer to the literature [2].

Definition 4. As usual, a net N = (S, T, F) is defined by non-empty, disjoint
sets S of places and T of transitions, connected by a flow relation F ⊆ (S ×T)∪
(T × S) and X := S ∪ T . N � N ′ denote isomorphic nets. A transition t ∈ T is
active or enabled in a marking M ⊆ S if •

t ⊆ M ∧ t
• ∩ M = ∅ and in this case

M
t→ M ′ if M ′ = M\•

t ∪ t
• , where •

x := F−1[x], x
• := F [x] denote the input

and output elements of an element x ∈ X, respectively. ∗→ is the reflexive and
transitive closure of →. A net together with an initial marking M0 ⊆ S is called
a net-system (N,M0) with its reachability set R(N,M0) := {M |M0

∗→ M}.
We start with modelling the circular traffic queue from Definition 1 by a

coloured net. This is shown in Fig. 2 by a standard construction of the net
Nsym(c, g) using places and their complementary counter-parts (with the restric-
tion c ≥ 2 due to the layout style).

Definition 5. The coloured net Nsym(c, g) = (S̄, T, F, var,M0) is defined by a
set of places S̄ := S ∪ S′ with S = {s0, · · · , sn−1} , S′ = {s′

0, · · · , s′
n−1} and

n = c + g, a set of transitions T = {t0, · · · , tn−1}, the set of arrows F :=
F 1 ∪F 2 ∪F 3 ∪F 4 with F 1 := {(si�n1, ti)|0 ≤ i < n}, F 2 := {(ti, si)|0 ≤ i < n},
F 3 := {(s′

i⊕n1, ti)|0 ≤ i < n}, F 4 := {(ti, s′
i)|0 ≤ i < n}. The

arrow labelling by variables var : F → {x, y} is defined by var((x1, x2))

=

{
x if (x1, x2) ∈ F1 ∪ F2

y if (x1, x2) ∈ F3 ∪ F4

.

Deciphering the Co-Car Anomaly of Circular Traffic 447

The initial marking is given by M0(si�n1) = ai for 0 ≤ i < c and M0(s′
i) = ui−c

for c ≤ i < n. All different places are unmarked.

Fig. 2. Coloured net Nsym(c, g) of a circular traffic queue (c ≥ 2).

The problem to be studied in this paper becomes more apparent in the T-net
equivalent NT (c, g) of this net. This net is built by using a well-known method of
creating a net-process of Nsym(c, g). To begin with, we first define the occurrence
modes1 or bindings of a transition ti, which is obtained by the fact that such
a transition is interchanging a traffic item aj in position i with a co-item uh

in position i ⊕n 1 (see Fig. 3 a). From the representation of a transition ti of
Nsym(c, g) in Fig. 3 b) we construct the process transition [ti, aj , uh] in part c)
of the figure. The semantics of the net elements from the last figure are as follows:

Fig. 3. Constructing a T-net equivalent from Nsym(c, g) in Fig. 2.

a) [ti, aj , uh]: ti swaps aj at position i with uh at position i ⊕n 1.
b) [si�n1, aj , uh�g1]: aj is at position i and the next item to swap with is uh by

transition ti.
c) [s′

i⊕n1, aj⊕c1, uh]: uh is at position i ⊕n 1 and the next item to swap with is
aj by transition ti.

1 For the notion of occurrence mode of a coloured net see [2], page 35.

448 R. Valk

In the following (pseudo-)process construction we start from the given initial
marking and then in an iterated way add some transition from Tbase having
its input places in the marking obtained so far. But different to a real process
construction we do not create copies of places or transitions, giving a finite net
containing cycles. To keep the following definition simpler we begin with all
transitions of Tbase and then restrict to the reachable places and transitions.

Definition 6. For the coloured tq-net Nsym(c, g) = (S ∪S′, T, F, var,M0) a net
NT (c, g) = (S2, T2, F2,M

0
2), called T-net-equivalent of Nsym(c, g), is defined as

follows with n=c+g:
Sbase := {[s, a, u]|s ∈ S, a ∈ C, u ∈ G}, S′

base := {[s′, a, u]|s′ ∈ S′, a ∈ C, u ∈ G},
Tbase := {[t, a, u]|t ∈ T, a ∈ C, u ∈ G}, Fbase := F 1

2 ∪ F 2
2 ∪ F 3

2 ∪ F 4
2 ,

F 1
2 := {([si�n1, aj , uh�g1], [ti, aj , uh])|0 ≤ i < n, 0 ≤ j < c, 0 ≤ h < g},

F 2
2 := {([ti, aj , uh], [si, aj , uh])|0 ≤ i < n, 0 ≤ j < c, 0 ≤ h < g},

F 3
2 := {([s′

i⊕n1, aj⊕c1, uh], [ti, aj , uh])|0 ≤ i < n, 0 ≤ j < c, 0 ≤ h < g},
F 4
2 := {([ti, aj , uh]), [s′

i, aj , uh]|0 ≤ i < n, 0 ≤ j < c, 0 ≤ h < g},
M2

0 := {[si�n1, ai, ug−1]|0 ≤ i < c}∪ {[s′
i, a0, ui−c]|c ≤ i < n}.

T2 is defined as the set of transitions which are obtained by starting from M2
0

and inductively generating transitions of Tbase with their output places using the
arrows from Fbase. Then S2 := T

•
2 ∪•

T2 and F2 := Fbase ∩((S2×T2)∪(T2×S2)).

As in the case of occurrence nets or net processes Nsym(c, g) is a homomor-
phic image of NT (c, g). But contrary to this case NT (c, g) is necessarily finite.
The number of transitions is given in the following lemma. This result also fol-
lows from the isomorphism proved in Sect. 5.

Lemma 7. Nsym(c, g) = (S̄, T, F, var,M0) is a homomorphic image of NT (c, g)
and NT (c, g) contains g

Δ · n · c transitions and twice as much places.

Proof. The homomorphism is defined by ρ1 : S2 → S̄, ρ1([s, a, u]) := s and ρ2 :
T2 → T1, ρ1([t, a, u]) := t. It has to be proved (s, t) ∈ F 1

2 ∪F 3
2 ⇒ (ρ1(s), ρ2(t)) ∈

F 1∪F 3 as well as (t, s) ∈ F 2
2 ∪F 4

2 ⇒ (ρ2(t), ρ1(s)) ∈ F 2∪F 4. This follows easily
by comparing Definitions 5 and 6. The morphism is also compatible with the ini-
tial markings: [si�n1, ai, ug−1] ∈ M2

0 ⇒ M0(ρ1([si�n1, ai, ug−1])) = M0(si�n1) =
ai for 0 ≤ i < c and [s′

i, a0, ui−c] ∈ M2
0 ⇒ M0(ρ1([s′

i, a0, ui−c])) = M0(s′
i) = ui−c

for c ≤ i < n. To compute the number of transitions we consider the process
cycle Tj of an item aj : Tj = [t0, aj , uh0], [t1, aj , uh1], [t2, aj , uh2], · · · , where the
indices of ti repeat the sequence 0, · · · , n−1 a number of times and, similarly, the
indices of uhk

repeat 0, · · · , g−1. The cycle is closed at the least common multiple
lcm(n, g) of n and g. Therefore we obtain for the length of the cycle (the process
length) p = lcm(n, g) = n·g

gcd(n,g) = n·g
gcd(c+g,g) = n·g

gcd(c,g) = n·g
Δ . As there are c such

disjoint cycles of transition the total number of transitions is at most g
Δ ·n · c. In

the calculation the equations lcm(a, b) = |a·b|
gcd(a,b) and gcd(b + a, a) = gcd(a, b),

holding for all integers a and b are used. As for each transition there are exactly
two places it is sufficient to prove that all transitions are different2. The proof
2 This also follows from the Chinese remainder theorem as discussed in Sect. 5.

Deciphering the Co-Car Anomaly of Circular Traffic 449

Fig. 4. The net NT (c, g) for c = 6, g = 4. Pairs like [s19, a0] are regular coordinates.

becomes easier to read if we restrict it to j = 0, while the other cases fol-
low by symmetry. Since the second component of each element of T0 is a0 we
consider the sequence of the pairs composed of the first and third component
Ω = (t0, uh0), (t1, uh1), (t2, uh2), · · · of length p = g

Δ · n. The first components
form a sequence of classes modulo n: 0, 1, · · · , n−1, 0, 1, · · · , n−1, · · · repeated g

Δ

450 R. Valk

times. The distance of a swap of a0 with some uh to the next time of such a swap
is g, since there are g−1 swaps to pass in between. Hence for the second compo-
nents we have a sequence of classes modulo g: 0, 1, · · · , g − 1, 0, 1, · · · , g − 1, · · ·
repeated n

Δ since g divides p. Next we prove by contradiction that all pairs in
the sequence Ω are different: suppose that the same element (x, y) is at posi-
tions r ∈ Z and s ∈ Z. Their distance is smaller than the length of the whole
sequence: r − s = q · n with q < g

Δ . Furthermore, since the elements are equal,
we have s − r = q · n = q′ · g for some integers q and q′. We conclude that
q′ = 1

g · q · n = q
g · (c + g) = q·c

g + q ∈ Z. With Δ = gcd(g, c) we obtain
q·c
g = q·c1·Δ

g1·Δ = q·c1
g1

∈ Z with gcd(g1, c1) = 1. Therefore g1 has to be a divisor of
q, which is a contradiction to q < g

Δ = g1. ��
An example of the construction for the case g = 4, c = 6 is given in Fig. 4. The

process length is p = g
Δ · n = 4

2 · 10 = 20. For the transition [t9, a0, u3] we obtain
[t9, a0, u3]

•
= {[s9, a0, u3], [s′

9, a0, u3]}. Furthermore [s′
9, a0, u3]

• = {[t8, a5, u3]}.
Pairs like [s19, a0] are for later references. The reader might wonder a little why
not smaller parameters are chosen for this example. The reason is that, with
respect to later considerations in this paper, the parameters should have the
property gcd(g, c) > 1 but one of them should not be a divisor of the other.

4 Cycloids

In this section cycloids are defined. Some results are cited from [5,6] and [7],
whereas Theorem 18 is new.

Definition 8. A Petri space is defined by the net PS1 := (S1, T1, F1) where
S1 = S→

1 ∪ S←
1 , S→

1 = {s→
ξ,η | ξ, η ∈ Z} , S←

1 = {s←
ξ,η | ξ, η ∈ Z} , S→

1 ∩ S←
1 = ∅,

T1 = {tξ,η | ξ, η ∈ Z} , F1 = {(tξ,η, s→
ξ,η) | ξ, η ∈ Z} ∪ {(s→

ξ,η, tξ+1,η) | ξ, η ∈ Z}∪
{(tξ,η, s←

ξ,η) | ξ, η ∈ Z} ∪ {(s←
ξ,η, tξ,η+1) | ξ, η ∈ Z} (cutout in Fig. 5 a). S→

1 is the
set of forward places and S←

1 the set of backward places.
→• tξ,η := s→

ξ−1,η is the forward input place of tξ,η and in the same way
←•

tξ,η := s←
ξ,η−1, t→

•
ξ,η := s→

ξ,η and t←
•

ξ,η := s←
ξ,η (see Fig. 5 a).

By a twofold folding with respect to time and space we obtain the cyclic
structure of a cycloid. See [5,6] for motivation and Fig. 6 a) for an example of a
cycloid.

Definition 9. ([5,6]). A cycloid is a net C(α, β, γ, δ) = (S, T, F), defined by
parameters α, β, γ, δ ∈ N+, by a quotient of the Petri space PS1 := (S1, T1, F1)
with respect to the equivalence relation ≡ ⊆ X1×X1 with X1 = S1∪T1, ≡[S→

1] ⊆
S→
1 ,≡[S←

1] ⊆ S←
1 ,≡[T1] ⊆ T1, xξ,η ≡ xξ+mα+nγ, η−mβ+nδ for all ξ, η,m, n ∈ Z ,

X = X1/≡, [[x]]≡ F [[y]]≡ ⇔ ∃x′ ∈ [[x]]≡ ∃ y′ ∈ [[y]]≡ : x′F1y
′ for all x, y ∈ X1.

The matrix A =
(

α γ
−β δ

)
is called the matrix of the cycloid. Petri denoted the

number |T | of transitions as the area A of the cycloid and proved in [4] its value
to |T | = A = αδ + βγ which equals the determinant A = det(A). Cycloids are

Deciphering the Co-Car Anomaly of Circular Traffic 451

Fig. 5. a) Petri space, b) Fundamental parallelogram of C(α, β, γ, δ) = C(2, 4, 3, 2) with
regular initial marking.

safe T -nets with |•s| = |s• | = 1 for all places s ∈ S. The embedding of a cycloid
in the Petri space is called fundamental parallelogram (see Fig. 5 b), but ignore
the tokens for the moment). If the cycloid is represented as a net N without
explicitly giving the parameters α, β, γ, δ, we call it a cycloid in net form C(N).

For proving the equivalence of two points in the Petri space the following
procedure is useful.

Theorem 10. ([7]). Two points x1,x2 ∈ X1 are equivalent x1 ≡ x2 if and only
if π(v) = π(x2 −x1) has integer values, where π(v) = 1

A ·B · v with area A and

B =
(

δ −γ
β α

)
. With m,n from Definition 9 we obtain v = A

(
m
n

)
.

Definition 11. For a cycloid C(α, β, γ, δ) we define a cycloid-system
C(α, β, γ, δ,M0) or C(N,M0) by adding the standard initial marking:

M0 = {s→
ξ,η ∈ S→

1 | βξ + αη ≤ 0 ∧ β(ξ + 1) + αη > 0} /≡ ∪
{s←

ξ,η ∈ S←
1 | βξ + αη ≤ 0 ∧ βξ + α(η + 1) > 0} /≡

The motivation of this definition is given in [5] and [6]. See Fig. 6 a) for an
example of a cycloid with standard initial marking. We define a regular initial
marking for cycloids, but not necessarily within the fundamental parallelogram
(the black tokens in Fig. 5 b). It is characterized by the absence of gaps between
the traffic items whereby only a single transition on the top of the queue is
enabled. behavioural

Definition 12. ([7]). For a cycloid C(α, β, γ, δ) a regular initial marking is
defined by a number of β forward places {s→

−1,i| 0 ≥ i ≥ 1 − β} and a number of
α backward places {s←

i,−β | 0 ≤ i ≤ α − 1}.
By the construction of a behavioural equivalent cycloid from a circular traffic

queue tq(c, g) in [7] the regular and standard initial marking are preserved. Cir-
cular traffic queues are composed of c many sequential and interacting processes

452 R. Valk

Fig. 6. Cycloid C(4, 3, 3, 3) in a) and with regular coordinates in b).

of equal length. In the formalism of cycloids this corresponds to a number of
β disjoint processes of equal length p. Cycloids with such a property are called
regular.

Definition 13. ([7]) A cycloid C(α, β, γ, δ) with area A is called regular if for
each η ∈ {0, · · · , 1 − β} the set {tξ,η|0 ≤ ξ < p} with p = A

β of transitions forms
an elementary cycle3 and all these sets are disjoint. p ∈ N+ is called the process
length of the regular cycloid. A regular cycloid together with its regular initial
marking M0 is called a regular cycloid system C(α, β, γ, δ,M0).

Similar to the processes of cars in Definition 13, processes for co-cars can be
defined. They start with the output transitions of tokens in backward places of
the regular initial marking and follow through backward output places until a
cycle is closed. A cycloid is called co-regular if there are a number of α many
such disjoint cycles of length p′ = A

α .

Theorem 14. ([7]). A cycloid C(α, β, γ, δ) is regular if and only if β|δ.
Similar to the proof of Theorem 14 in [7], it can be shown that a cycloid

C(α, β, γ, δ) is co-regular if and only if α|γ. A regular cycloid can be seen
as a system of β disjoint sequential and cooperating processes. To exploit this
structure we define specific coordinates, called regular coordinates. The process
of a traffic item a0 starts with transition t0,0 which is denoted [t0, a0], having
the input place [sp−1, a0]. The next transitions are [t1, a0] up to [tp−1, a0] and
then returning to [t0, a0]. The other processes for a1 to ac−1 (with β = c) are
denoted in the same way (see Fig. 6 b). As the process of aj starts in position j
of the queue, its initial token is in [sj�p1, aj].

3 An elementary cycle is a cycle where all nodes are different.

Deciphering the Co-Car Anomaly of Circular Traffic 453

Definition 15. ([7]). Given a regular cycloid C(α, β, γ, δ), regular coordinates
are defined as follows: transitions of process j ∈ {1, · · · , β}, each with length p,
are denoted by {[t0, aj], · · · , [tp−1, aj]}. For each transition we define [ti, aj]→

•
:=

[si, aj] and [ti, aj]←
•

:= [s′
i, aj] and [si, aj]

• := [ti⊕p1, aj] for 0 ≤ i < p, 0 ≤ j < c.
Regular coordinates are related to standard coordinates of the Petri space by
defining the following initial condition [t0, aj] := t−j,−j for 0 ≤ j < c (taking the
equivalent transition of t−j,−j in the fundamental parallelogram).

For instance, in Fig. 6 b) we obtain for the last formula in Definition 15:
[t0, a2] := t−2,−2 ≡ t1,1. While the output place [s′

i, aj] in regular coordinates
takes its name from the input transition, it remains to determine its output
transition according to the corresponding standard coordinates.

Lemma 16. ([7]). In a regular cycloid the injective mapping stand from regular
to standard coordinates is given by stand([ti, aj]) = ti−j,−j for 0 ≤ i < p and
0 ≤ j < c (modulo equivalent transitions). The output transition is
[s′

i, a0]
• = [t(i+β+α−1)mod p, aβ−1] (Case 1), while for 0 < j < c we have

[s′
i, aj]

• = [ti�p1, aj�β1] (Case 2).

Corollary 17. ([7]). The regular initial marking of a regular cycloid system
C(α, β, γ, δ,M0) with process length p in regular coordinates is
M0 = {[sp−1, a0]} ∪ {[si, ai+1]|0 ≤ i < β − 1} ∪ {[s′

i, a0]|p − α ≤ i < p}.
For later reference, we note ←•

[tβ−1, aβ−1] = [s′
p−α, a0].

In the regular cycloid system C(4, 3, 3, 3,M0) in Fig. 6 b) we obtain ←•
[t2, a2] =

[s′
p−α, a0] = [s′

7−4, a0]. The given regular initial marking is {[s6, a0], [s0, a1],
[s1, a2], [s′

3, a0], [s′
4, a0], [s′

5, a0], [s′
6, a0]}. The standard initial marking is given

by bold circles. When working with cycloids it is sometimes important to find
for a transition outside the fundamental parallelogram the equivalent element
inside. For instance the first set in Definition 12 of a regular initial marking
contains the element s→

−1,1−β . It is named by its input transition t−1,1−β , which
is outside the fundamental parallelogram. To obtain the corresponding place
of the cycloid net the equivalent transition of t−1,1−β inside the fundamental
parallelogram has be computed. In general, by enumerating all elements of the
fundamental diagram (using Theorem 7 in [5]) and applying the equivalence test
from Theorem 10 a runtime is obtained, which already fails for small cycloids.
The following theorem allows for a better algorithm, which is linear with respect
to the cycloid parameters.

Theorem 18. For any element u = (u, v) of the Petri space the (unique) equi-

valent element of the fundamental parallelogram is x = u − A
(

m
n

)
where

m = � 1
A (uδ − vγ)� and n = � 1

A (vα + uβ)�.

Proof. As m-sector we denote the band between the lines OQ and PR including
the points of OQ, but not those of PR (see Fig. 7). The idea of the proof is

454 R. Valk

to reach the m-sector on a line parallel to QR starting in u until a point c
is reached4. The point c is the intersection of this line and the line through x

parallel to OQ. Then m,n are the integer multiples of the vectors
(−α

β

)
,
(

γ
δ

)
,

resulting in the line segments u to c and c to x, respectively.

More formally we derive: u ≡ x ⇔ u−x = A
(

m
n

)
(by Theorem 10). Hence

we obtain: x = u − A
(

m
n

)
= u −

(
α γ

−β δ

) (
m
n

)
= u −

(
m · α + n · γ
−m · β + n · δ

)
=

u + m

(−α
β

)
− n

(
γ
δ

)
or

x + n

(
γ
δ

)
= u + m

(−α
β

)
. (1)

This vector equation results in two linear equations for four unknown n,m and

x = (x, y). With λ ∈ R and u + λ

(−α
β

)
the right hand side of equation (1)

defines the line through u parallel to the line QR. It is intersecting the line OQ
in point d and the line PR in point b. In the same way equation (1) defines with

μ ∈ R and x + μ

(
γ
δ

)
the line through x parallel to the line containing O und

Q. Both lines intersect in d, which is defined by the equation(
0
0

)
+ μ

(
γ
δ

)
=

(
u
v

)
+ λ

(−α
β

)
(2)

This vector equation provides two linear equations with the solutions λ = 1
A (uδ−

vγ) und μ = 1
A (vα + uβ). If λ is not negative, then u is on the half-line

starting with (and including) the point d in the direction of c and b, hence

d = u+ λ

(−α
β

)
and b = d−

(−α
β

)
= u+ (λ − 1)

(−α
β

)
. Since c is between d

and b on the same line we obtain for λ1 satisfying c = u+λ1

(−α
β

)
the inequality

λ ≥ λ1 > λ−1 and since λ1 ∈ Z the result m = �λ�. If λ is negative, then u, now
denoted as u′, is on the complementary half-line until (but not containing) d and
not containing b. The distance between u′ and c now is greater (or equal) than
the distance between u′ and d. Instead of the inequality λ ≥ λ1 > λ − 1 in the
case before, we now have λ ≤ λ1 < λ−1 and the number λ1 ∈ Z is again obtained
by m = λ1 = �λ�. The formula for n = �μ� is derived analogously: it remains to
determine the vector −→c x := x−c. To this end we introduce a := d+−→c x. As in the

case where we concluded m = λ1 = �λ� from λ we compare
(

0
0

)
= d − μ

(
γ
δ

)

with a = d−μ1

(
γ
δ

)
to obtain n = μ1 = �μ� and −→c x = a−d = d−μ1

(
γ
δ

)
−d =

4 u, a, b, c, · · · denote the points in the Petri space, while the vectors u,a, b, c, · · · are
pointing to them when originated in the origin (0, 0), respectively.

Deciphering the Co-Car Anomaly of Circular Traffic 455

Fig. 7. Cycloid C(2, 4, 3, 2) in the Petri space to illustrate the proof of Theorem 18.

−μ1

(
γ
δ

)
. Combining this result with the vector c we obtain for the wanted point

x = c+−→c x = u+�λ�
(−α

β

)
+�μ�

(−γ
−δ

)
= u+m

(−α
β

)
+n

(−γ
−δ

)
= u−A

(
m
n

)
the formula just before equation (1). ��

An example for the preceding proof is shown in Fig. 7 for the cycloid
C(2, 4, 3, 2), which is the same as in Fig. 5 b): for u = (u, v) = (15,−9) we
obtain (λ, μ) = (5716 , 21

8), (m,n) = (3, 2), c = (9, 3), (x, y) = (3,−1). For the point
(u′, v′) = (5, 11) on the same line (d, b) we obtain (λ, μ) = (− 23

16 , 21
8), (m,n) =

(−2, 2), c = (9, 3), (x, y) = (3,−1). Next we apply the theorem for C(4, 3, 3, 3)
(Fig. 6) to the element t−1,1−β , which was mentioned just before the theorem.
In this case we obtain: (u, v) = (−1,−2), m = � 3

21� = 0, n = �− 11
21� = −1 and

x = (2, 1). The corresponding place s→
2,1 is highlighted in Fig. 6 a) as an element

of the regular initial marking.

5 The Net Isomorphism

In this section it will be proved that the T-net-equivalent NT (c, g) of the coloured
net Nsym(c, g) is isomorphic to the cycloid-system (C(g, c),M0

3). This is of parti-
cular interest as the nets arise from different contexts.

Theorem 19. The T-net-equivalent NT (c, g) = (S2, T2, F2,M
0
2) (Definition 6)

of Nsym(c, g) is isomorphic to the cycloid-system
(C(g, c),M0

3) := C(g, c, g·c
Δ , g·c

Δ , M0
3) with regular initial marking M0

3 .

456 R. Valk

Proof. The sequences of the first and second components of the sequence Ω in
the proof of Lemma 7 are instances of the Chinese remainder theorem. In this
theorem a system of two (or more) congruences are considered which are in our
case:

x = a mod n x = b mod g (3)

Different to the classical case n and g are not coprime in our cases. In a gen-
eralized version of the theorem however [3], page 60, there is a unique solu-
tion modulo g·n

d if and only if d|(b − a) or, equivalently a = b mod d where
d = gcd(n, g) = gcd(g + c, g) = Δ. This condition holds in our case since we will
take a and b from a common position x of Ω, starting the count with 0. For some
integers i, h, n′, g′ from this follows x = i · n + a = i · (n′ · Δ) + a = (i · n′) · Δ + a
and x = h ·g+b = h ·(g′ ·Δ)+b = (h ·g′) ·Δ+b with gcd(n′, g′) = 1. Therefore we
obtain (i ·n′) ·Δ+a = (h ·g′) ·Δ+b and the wanted condition a = b mod Δ. Now
consider x = 1

Δ ·(a·v ·g+b·u·n), where u, v solve Bézout’s identity u·n+v ·g = Δ,
[3], page 7. If by this identity the term v · g = Δ − u · n is introduced into the
term of x we obtain x = (b−a

Δ ·u) ·n+a, which proves that it solves the lefthand
part of (3). In a similar way the same is proved for the right hand part of (3).
Also, by [3], page 60, the general solution is a single congruence class modulo
lcm(g, n) = g·n

Δ . We will use χ(a, b, n, g) := (1
Δ · (a · v · g + b · u · n)) mod p with

p = g·n
Δ and the condition u · n + v · g = Δ to denote the unique solution of (3).

In the following we assume n and g to be given and define χ0(a, b) :=
χ(a, b, n, g). As will be seen in the definition of the isomorphism, χ0(a, b) is
defined with respect to the process of a0. The corresponding function for aj is
χ

j
(a, b) := χ0(a, b + j)5 for 0 ≤ j < c. Before defining and proving the isomor-

phism we derive some equations of the function χ0 :

χ0(a, a) = a for 0 ≤ a < p (4)

χ0(a + k, b + k) = χ0(a, b) ⊕p k for k ∈ Z (5)

χ0(n − k, g − k) = p − k for k ∈ N, 0 ≤ k < p (6)

χ0(a, b + c) = χ0(a, b) ⊕p n (c is the constant from NT (c, g)) (7)

To prove (4) consider χ0(a, a) = 1
Δ ·(a·v ·g+a·u·n) mod p = 1

Δ ·(a·Δ) mod p = a
since u ·n+v ·g = Δ. To prove (5) consider χ0(a+k, b+k) mod p = 1

Δ · ((a+k) ·
v · g +(b+ k) ·u ·n) mod p = (1

Δ · (a · v · g + b ·u ·n)+ 1
Δ (v · g +u ·n) · k) mod p =

(χ0(a, b)+k) mod p. To prove (6) consider χ0(n−k, b−k) = (1
Δ · ((n−k) ·v ·g +

(g − k) · u · n) mod p = (1
Δ · g · n · (v + u) − k) mod p = (p · (v + u) − k) mod p =

(0 + (−k)) mod p = (0 mod p + (−k) mod p) mod p = (0 + p − k) mod p = p − k.
To prove (7) we calculate χ0(a, b + c) − χ0(a, b) = 1

Δ · c · u · n. In this difference
u is unknown, but the value does not depend on the arguments a and b. We
compute it using the particular values a = n and b = g using Eqs. (4) and (6):
χ0(n, g + c)−χ0(n, g) = χ0(n, n)−χ0(n, g) = n− p. Finally: (n− p) mod p = n.

For the cycloid-system (C(g, c),M0) := C(g, c, g·c
Δ , g·c

Δ , M0) we consider
the regular coordinates from Definition 15 and denote its net elements as
5 χ0(a, b ⊕g j) would be insufficient in case of c > g.

Deciphering the Co-Car Anomaly of Circular Traffic 457

(C(g, c),M0) = (S3, T3, F3,M
0
3). To prove that the net systems NT (c, g) and

(C(g, c),M0) are isomorphic we have to define bijections ψ1 : S2 → S3 and
ψ2 : T2 → T3 such that (s, t) ∈ F2 ⇔ (ψ1(s), ψ2(t)) ∈ F3 and (t, s) ∈
F2 ⇔ (ψ2(t), ψ1(s)) ∈ F3. Furthermore the initial markings must be con-
sistent: {ψ1(m)|m ∈ M0

2 } = M0
3 . Using the functions χ

j
the bijections are

defined by ψ1([si, aj , uh]) := [sχ
j
(i,h), aj], ψ1([s′

i, aj , uh]) := [s′
χ

j
(i,h), aj] and

ψ2([ti, aj , uh]) := [tχ
j
(i,h), aj]. They are bijective since for a given aj the χ

j
are

bijective on their domain. The required properties of ψ1 and ψ2 are verified for
the parts of F2 := F 1

2 ∪F 2
2 ∪F 3

2 ∪F 4
2 . Since the cases for F 2

2 and F 4
2 are obvious

we concentrate on the cases for F 1
2 and F 3

2 .
ad F1

2: (ψ1([si�n1, aj , uh�g1]), ψ2([ti, aj , uh])) =

([sχ
j
(i�n1,h�g1), aj], [tχ

j
(i,h), aj]) (8)

Assume first i �= 0, h �= g, hence i
n 1 = i− 1, h
g 1 = h− 1. Then we continue
with (8) = ([sχ

j
(i−1,h−1), aj], [tχ

j
(i,h), aj]) =

(5)
([sχ

j
(i,h)�p1, aj], [tχ

j
(i,h), aj]) ∈ F3

by equation (5) and the case [si, aj]
• := [ti⊕p1, aj] of Definition 15.

If i = 0, h = g, hence i
n1 = n−1, h
g1 = g−1, then (8) = ([sχ0 (n−1,g−1+j), aj],
[tχ0 (0,g+j), aj]) =

(5)
[sχ0 (n,g+j)�p1, aj], [tχ0 (0,g+j), aj]) ∈ F3. This holds since

χ0(n, b) = χ0(0, b) for all b ∈ N. The latter property of χ0 is proved by χ0(n, b)−
χ0(0, b) = (1

Δ · n · v · g)mod g·n
Δ = 0. The remainig cases i = 0, h �= g and

i �= 0, h = g are similarly proved.
ad F3

2: (ψ1([s′
i⊕n1, aj⊕c1, uh]), ψ2([ti, aj , uh])) =

([s′
χ

j⊕c1 (i⊕n1,h), aj⊕c1], [tχj
(i,h), aj]) (9)

In Case 1 of Lemma 16 we have j = c − 1 and j ⊕c 1 = 0. For easier compu-
tation we continue with an index shift i ⊕n 1 to i and i to i
n 1. In a first
subcase we assume i �= 0, hence i
n 1 = i− 1 and continue the calculation from
(9) by: ([s′

χ0 (i,h)
, a0], [tχ

c−1 (i−1,h), ac−1]). The second component of this pair is
evaluated to [tχ0 (i−1,h+c−1), ac−1] =

(5)
[tχ0 (i,h+c)−1, ac−1] =

(7)
[tχ0(i,h)⊕p(n−1), ac−1].

Together with the first component this result is matching the case [s′
i, a0]

• =
[t(i+β+α−1)mod p, aβ−1] = [t(i⊕p(n−1), ac−1] in Lemma 16. In the subcase i = 0 we
evaluate the second component to [tχ0 (0�n1,h+c−1), ac−1] = [tχ0 (n−1,h+c−1), ac−1]
=
(5)

[tχ0 (n,h+c)−1, ac−1] =
(7)

[tχ0(n,h)⊕p(n−1), ac−1]. Since χ0(n, b) = χ0(0, b) for all

b ∈ N, as proved before, this reduces to the first subcase. In case 2 of Lemma
16 we have 0 < j < c. For the subcase i �= n − 1, j �= c − 1, resulting in
i⊕n1 = i+1, j⊕c1 = j+1, we obtain (9) = ([s′

χ0 (i+1,h+j+1), aj+1], [tχ0 (i,h+j), aj])
=
(5)

([s′
χ0 (i,h+j)+1, aj+1], [tχ0 (i,h+j), aj]) ∈ F3 matching Case 2 of Lemma 16. The

remaining three subcases are similar to prove: in the cases where j = c − 1 the
proof is similar to the preceding proof for j ⊕c 1 = 0, while in the remaining case
i = n − 1, j �= c − 1 it is similar to the first subcase.

In order to make the proof for the initial markings easier we use the
initial marking of NT (c, g) (Definition 6) in the form M2

0 = A ∪ B ∪ C

458 R. Valk

where A = {[sn−1, a0, ug−1]}, B = {[si, ai⊕c1, ug−1]|0 ≤ i < c − 1} and
C = {[s′

i, a0, ui−c]|c ≤ i < c + g}. With respect to the regular initial marking of
(C(g, c),M0

3) (in regular coordinates: Corollary 17) with α = g and β = c we have
to prove: ψ1(A) = {[sp−1, a0]} =: U , ψ1(B) = {[si, ai⊕c1]|0 ≤ i < c − 1} =: V
and ψ1(C) = {[s′

i, a0]|p− g ≤ i < p} =: W . For the first part we obtain ψ1(A) =
{[sχ0 (n−1,g−1), a0]}=

(6)
{[sp−1, a0]} = U. With respect to ψ1(B), since i �= c − 1

(hence i ⊕c 1 = i + 1) we have ψ1([si, ai⊕c1, ug−1]) = [sχ
i⊕c1 (i,g−1), ai⊕c1] =

[sχ0 (i,(g−1))+(i+1)), ai⊕c1] =
(5)

[sχ0 (0,g)+i, ai⊕c1] = [si, ai⊕c1]. Here χ0(0, g) =

(g·n
Δ · u)mod(g·n

Δ) = 0 is used and ψ1(B) = {[si, ai⊕c1]|0 ≤ i < c − 1} = V .
ψ1(C) = {[s′

χ0 (i,i−c), a0]|c ≤ i < c + g} = W . This holds since the bounds of
the inequality match when introduced as indices. For the lower bound i = c we
obtain χ0(c, c−c) = χ0(c+g−g, g−g) = χ0(n−g, g−g)=

(6)
p−g, while the upper

bound i = c + g − 1 gives χ0(c + g − 1, c + g − 1 − c) = χ0(n − 1, g − 1)=
(6)

p − 1. ��

In the cycloid C(4, 6, 12, 12) of Fig. 4 we obtain as an example for the isomor-
phism ψ2([t9, a0, u3]) = [t19, a0], ψ1([s9, a0, u3]) = [s19, a0] and ψ1([s′

9, a0, u3])
= [s′

19, a0] since χ0(9, 3) = 19. By χ(6, 0) = 16 the transition [t6, a0, u0] trans-
forms to [t16, a0] in regular coordinates. In the computation of χ0 the values
u = 1, v = −2 are used to fulfil the condition n · u + g · v = Δ = 2. To illus-
trate the first part of case F 3

2 we compute (ψ1([s′
6, a0, u0]), ψ2([t5, a5, u0])) =

([s′
χ0 (6,0), a0], [tχ5 (5,0), a5)] = ([s′

16, a0], [tχ0 (5,0+5), a5)] =
(4)

([s′
16, a0], [t5, a5]) ∈ F3.

6 The f-factor of Regular Cycloids

A circular traffic queue with gaps is obtained from the model given by Definition
1 by replacing the co-cars by indistinguishable items. In [7] it has been proved
that for c cars and g gaps this model is behaviour equivalent to the (regular)
cycloid C(g, c, c, c), which is the topic of this section. Definition 1 is modified as
follows to define circular traffic queue with gaps.

Definition 20. A circular traffic queue with gaps tq-g(c, g) is defined as in
Definition 1, with the difference that |G| = 1 and the index function ind is not
bijective in general, but only on the co-image ind−1(C). In addition we require
that there is at least one gap: ind−1(G) �= ∅. As the number g from Definition 1
is not longer needed, we use it here to define the number of gaps: g := n− c ≥ 1.

With G = {×} for tq-g(3, 4) the example given before Definition 1 modifies to
×a b ××× c → ×a ×b××c → c a×b×××. When replacing the co-items u ∈ G
by black tokens and removing the variables y in the coloured net Nsym(c, g)
of Fig. 2 we obtain the coloured net Ncoul(c, g). In [7] is has been shown that
it is behaviour equivalent to the cycloid C1(g, c) := C(g, c, c, c). In Theorem
2 the co-car anomaly was proved outside the theory of cycloids. For a given
circular traffic queue with gaps tq-g(c, g) the length of a recurrent transition

Deciphering the Co-Car Anomaly of Circular Traffic 459

Fig. 8. Cycloid C(4, 6, 6, 6) with Δ > 1.

sequence is Γ(c, g) := c · (c + g). When switching to the case where the gaps are
replaced by individual cars this value is not increased in general by the factor
g, which is the number of different co-cars. Instead, the factor is g

Δ where Δ =
gcd(c, g). In the following, we deduce this result by a proof, which is using the
results of the cycloid theory. Furthermore, the effect which intuitively describes
a form of resonance between the streams of cars and co-cars, becomes more
intuitive by the graphical representation of cycloids. By the f-factor, as defined
in the next definition, the regular cycloid C(g, c, c, c) is extended to the cycloid
C(g, c, g·c

Δ , g·c
Δ), which is regular and co-regular (see the remarks after Definition

13 and Theorem 14). In a regular cycloid the run of a co-car is modelled by a
so-called co-process.

Definition 21. A co-process is an elementary cycle in a regular cycloid, con-
taining only backward places of S←

1 (Definition 8) starting in a marked place of
the regular initial marking. For given integers g, c, f consider the regular cycloid
Cf := C(g, c, f · c, f · c), where all tokens are individual (modelling cars on pro-
cesses and co-cars on co-processes). The smallest positive integer f , such that
Cf represents a cycloid, where each transition sequence containing all transitions
once, reproduces the initial state of cars as well of co-cars is called f -factor.

Theorem 22. Consider the cycloid C(g, c, c, c) and n = c + g.

a) The f-factor of the cycloid is f = g
Δ .

b) The length p′ of a co-process is p′ = c·n
Δ .

c) The number of (disjoint) co-processes is Δ = gcd(g, c).

460 R. Valk

d) The number of tokens in a co-process is g
Δ .

Proof. a) The f -factor increases the process length n = g + c of C(g, c, c, c) to
the process length p1 = A

c = 1
c · (g · f · c + c · f · c) = f · n. Without loss of

generality by the symmetry of regular cycloids it is sufficient to consider the
process of any car ai. Let us take the first one a0 and any of its transitions,
say [ti, a0] for 0 ≤ i < n. When [ti, a0] is occurring a token from its forward
input place →• [ti, a0] is moved as well as a token from its backward input place
←•

[ti, a0]. While the former token is describing the state of the car a0 we can
interpret the latter as giving state of a co-car uh. We now determine the next
transition of the process where a0 is interacting again with uh. After the occur-
rence of [ti, a0] the position of uh is [ti, a0]←

•
= [s′

i, a0]. By Lemma 16 the output
transition of this place is [s′

i, a0]
• = [t(i+g+c−1)mod p, ac−1] with p = n. With

this transition uh runs through a release message chain (see [7]) (see Fig. 8):
[t(i+g+c−1)mod n, ac−1], [t((i+g+c−1)−1)mod n, ac−2], [t((i+g+c−1)−2)mod n, ac−3], · · · ,
[t((i+g+c−1)−(c−1))mod n, a(c−1)−(c−1)] = [t(i+g)mod n, a0]. We conclude that the
process of a0 is meeting uh exactly after g transition occurrences. To determine
the f -factor, the process of a0 of length p has to be repeated until it reaches the
length p1 = f ·n, which is the least common multiple lcm(n, g) of n and g. There-
fore we obtain p1 = x · g = lcm(n, g) = n·g

gcd(n,g) = n·g
gcd(c+g,g) = n·g

gcd(c,g) = n·g
Δ and

f = p1
n = g

Δ .
b) Consider again the co-process starting in [s′

i, a0]. It reaches the process of
a0 after c transitions in a transition [tq, a0]. This is repeated x-times and the
co-process length is p′ = x · c. After [tq, a0] the co-process passes the tran-
sitions [tq⊕ng, a0], [tq⊕n(2·g), a0], · · · [tq⊕n(x·g), a0] until the cycle is closed with
q ⊕n (x · g) = q. The factor x · g is computed in the same way as p1 in part a),
hence x · g = p1 and x = n

Δ . Finally we obtain p′ = c · x = c · n
Δ .

c) and d) By the area A = c·n of C(g, c, c, c) there are A
p′ = c·n

p′ = Δ co-processes.
The number of g marked places in S←

1 are equally distributed over the number
Δ of co-processes. ��
In the cycloid C(4, 6, 6, 6) of Fig. 8 we take [t0, a0] as an instance of [ti, a0] in the
preceding proof. Then [t0, a0]←

•
= [s′

0, a0] and [s′
0, a0]

• = [t(0+g+c−1)mod p, ac−1] =
[t(0+4+6−1)mod 10, a5] = [t9, a5]. Furthermore, the here starting release message
chain is [t9, a5], [t8, a4], [t7, a3], [t6, a2], [t5, a1], [t4, a0] and the new meeting arises
after g = 4 occurrences. Therefore n = 10, p1 = lcm(n, g) = n·g

gcd(n,g) =
10·4

gcd(10,4) = 20 , f = p1
n = 2 and p′ = 30. The augmented cycloid C(4, 6, f ·6, f ·6)

as shown in Fig. 4 is regular and co-regular. Theorem 22 gives an alternative
explanation of the co-car anomaly: in a circular traffic queue tq(c, g) there is a
number of g disjoint co-processes of length p′ = c·n

Δ . Therefore the length of a
recurrent transition sequence is g · c·n

Δ . The cycloid C(g, c, f · c, f · c) with f = g
Δ

is the smallest co-regular extension of C(g, c, c, c).

7 Compositions of Cycloids

By the f -factor, introduced in the section before, a regular cycloid is enlarged
in the temporal dimension and the process cycles become larger. Using cycloid

Deciphering the Co-Car Anomaly of Circular Traffic 461

algebra such extensions can be formulated for the general case of cycloids. This
is also a form of composing cycloids.

Theorem 23. Let C1(α, β, γ, δ) be a cycloid and a, b ∈ N+ such that a is a divi-
sor of α and β as well as b is a divisor of γ and δ. Then the equivalence relation
≡1 of C1(α, β, γ, δ) is included in the equivalence relation ≡2 of C2(α

a , β
a , γ

b , δ
b),

more precisely ≡1 ⊆ ≡2.

Proof. Let be v = x2 − x1 and π1 and π2 the parameter vector function of C1

and C2, respectively. Then we have to prove that π2(v) ∈ Z
2 if π1(v) ∈ Z

2. This
is done by the following deduction, where A1 is the area of C1 and A2 = 1

a·bA1

is the area of C2.

π2(v) = 1
A2

(
δ
b

−γ
b

β
a

α
a

)
v = a·b

A1

(
δ
b

−γ
b

β
a

α
a

)
v = 1

A1

(
a · δ −a · γ
b · β b · α

)
v =

1
A1

(
a 0
0 b

)(
δ −γ
β α

)
v =

(
a 0
0 b

)
1

A1

(
δ −γ
β α

)
v =

(
a 0
0 b

)
π1(v).

Since π1(v) ∈ Z
2 by assumption also π2(v) ∈ Z

2. ��
Theorem 23 allows to define iterations of cycloids, both with respect to time

and space. In a cycloid transitions that are occurring only sequentially, are
ordered in time, while those that may occur concurrently model a space-oriented
order.

Definition 24. For a cycloid C(α, β, γ, δ) and integers n,m ∈ N+ the spacio-
temporal iteration is defined by C(α, β, γ, δ)[n][m] := C(m · α,m · β, n · γ, n · δ).

In particular, C(α, β, γ, δ)[n] := C(α, β, γ, δ)[n][1] is the temporal iteration and

C(α, β, γ, δ)[m] := C(α, β, γ, δ)[1][m] is the spacial iteration.

Lemma 25. The iteration C[n](α, β, γ, δ) of a regular cycloid C(α, β, γ, δ) is
regular with process length p[n] = n · p if p is the process length of C(α, β, γ, δ).

Proof. If β is a divisor of δ then also of n · δ. If A[n] and A are the areas of the
two cycloids then A[n] = α ·n · δ +β ·n · δ = n ·A and p[n] = A[n]

β = n·A
β = n · p ��

When replacing all items a ∈ C and co-items u ∈ G by black tokens and
removing the variables x and y in the coloured net Nsym(c, g) of Fig. 2 we
obtain the net Nbasic(c, g). In [7] is has been shown that it is isomorphic to
the cycloid C0(g, c) := C(g, c, 1, 1). This allows to characterize the two most
important cycloids of this article by iterations of this cycloid.

Corollary 26. a) The cycloid C1(g, c) = C(g, c, c, c), which is behaviour equiva-
lent to the circular traffic queue tq-g(c, g) (Definition 20), is isomorphic to
the c-fold temporal iteration: C0(g, c)[c] = C(g, c, 1, 1)[c] � C(g, c, c, c).

b) The cycloid C2(g, c) = C(g, c, g·c
Δ , g·c

Δ), which is behaviour equivalent to the
circular traffic queue tq(c, g), is isomorphic to the g·c

Δ -fold temporal iteration
C0(g, c)[

g·c
Δ] = C(g, c, 1, 1)[

g·c
Δ] � C(g, c, g·c

Δ , g·c
Δ).

c) The cycloid C2(g, c) is also isomorphic to the g
Δ -fold temporal iteration of the

cycloid C1(g, c)[
g
Δ] � C2(g, c).

462 R. Valk

8 Conclusion

The co-car anomaly arises if the co-traffic items are observable. This step can be
compared with the step from classical Petri nets to coloured nets. Using cycloids
an alternative and more graphical explanation of the anomaly has been given.
The unfolding of the coloured net, modelling circular traffic queues, giving a
representation of individual tokens by indistinguishable black tokens, is shown
to be isomorphic to a certain class of cycloids. This establishes a connection
between two different research areas in the field of Petri nets. On the base of
these results elementary synchronization mechanisms will be developed, such as
making cooperating processes wait-free [1].

References

1. Attiya, H., Welch, J.: Distributed Computing. McGraw-Hill, New York (1998)
2. Girault, C., Valk, R. (eds.): Petri Nets for System Engineering - A Guide to Mod-

elling, Verification and Applications. Springer, Berlin (2003) https://doi.org/10.
1007/978-3-662-05324-9

3. Jones, G.A., Jones, J.M.: Elementary Number Theory. SUMS, pp. 163–189.
Springer, London (1998). https://doi.org/10.1007/978-1-4471-0613-5 9

4. Petri, C.A.: Nets, Time and Space. Theor. Comput. Sci. 153, 3–48 (1996)
5. Valk, R.: On the Structure of cycloids introduced by Carl Adam Petri. In:

Khomenko, V., Roux, O.H. (eds.) PETRI NETS 2018. LNCS, vol. 10877, pp. 294–
314. Springer, Cham (2018). https://doi.org/10.1007/978-3-319-91268-4 15

6. Valk, R.: Formal Properties of Petri’s Cycloid Systems. Fundamenta Informaticae
169, 85–121 (2019)

7. Valk, R.: Circular traffic queues and Petri’s cycloids. In: Janicki, R., Sidorova, N.,
Chatain, T. (eds.) PETRI NETS 2020. LNCS, vol. 12152, pp. 176–195. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-51831-8 9

https://doi.org/10.1007/978-3-662-05324-9
https://doi.org/10.1007/978-3-662-05324-9
https://doi.org/10.1007/978-1-4471-0613-5_9
https://doi.org/10.1007/978-3-319-91268-4_15
https://doi.org/10.1007/978-3-030-51831-8_9

Tools

Cortado—An Interactive Tool
for Data-Driven Process Discovery

and Modeling

Daniel Schuster1(B) , Sebastiaan J. van Zelst1,2 ,
and Wil M. P. van der Aalst1,2

1 Fraunhofer Institute for Applied Information Technology FIT,
Sankt Augustin, Germany

2 RWTH Aachen University, Aachen, Germany
{daniel.schuster,sebastiaan.van.zelst}@fit.fraunhofer.de,

wvdaalst@pads.rwth-aachen.de

Abstract. Process mining aims to diagnose and improve operational pro-
cesses. Processmining techniques allow analyzing the event data generated
and recorded during the execution of (business) processes to gain valuable
insights. Process discovery is a key discipline in process mining that com-
prises the discovery of process models on the basis of the recorded event
data. Most process discovery algorithms work in a fully automated fashion.
Apart from adjusting their configuration parameters, conventional process
discovery algorithms offer limited to no user interaction, i.e., we either edit
the discovered process model by hand or change the algorithm’s input by,
for instance, filtering the event data. However, recent work indicates that
the integration of domain knowledge in (semi-)automated process discov-
ery algorithms often enhances the quality of the process models discovered.
Therefore, this paper introduces Cortado, a novel process discovery tool
that leverages domain knowledge while incrementally discovering a pro-
cess model from given event data. Starting from an initial process model,
Cortado enables the user to incrementally add new process behavior to
the process model under construction in a visual and intuitive manner. As
such, Cortado unifies the world of manual process modeling with that of
automated process discovery.

Keywords: Process mining · Interactive process discovery · Process
trees · Block-structured workflow nets · Process modeling

1 Introduction

Process mining techniques allow analyzing the execution of (business) processes
on the basis of event data collected by any type of information system, e.g., SAP,
Oracle, and Salesforce. Next to conformance checking and process enhancement,
process discovery is one of the three main sub-disciplines in process mining [3].
Process discovery aims to learn a process model from observed process behavior,
c© Springer Nature Switzerland AG 2021
D. Buchs and J. Carmona (Eds.): PETRI NETS 2021, LNCS 12734, pp. 465–475, 2021.
https://doi.org/10.1007/978-3-030-76983-3_23

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76983-3_23&domain=pdf
http://orcid.org/0000-0002-6512-9580
http://orcid.org/0000-0003-0415-1036
http://orcid.org/0000-0002-0955-6940
https://doi.org/10.1007/978-3-030-76983-3_23

466 D. Schuster et al.

Fig. 1. Overview of Cortado’s core functionality. The user discovers an initial model
from user-selected process behavior. Next, the obtained process model can be incre-
mentally extended by new process behavior from the event log. In addition, the user
can edit the process model anytime and compare it with the event log

i.e., event data. Most process discovery algorithms are fully automated. Apart
from adjusting configuration parameters of a discovery algorithm, which, for
instance, can influence the complexity and quality of the resulting models, the
user has no direct option to steer or interact with the algorithm. Further (indi-
rect) user interaction is limited to either changing the input, i.e., the event data
fed into the discovery algorithm, or manipulating the output, i.e., the discovered
process model. Thus, conventional process discovery algorithms work like a black
box from the user’s perspective.

Several studies indicate that exploiting domain knowledge within (semi-)
automated process discovery leads to better process models [4,6]. Recent work
has proposed the tool ProDiGy [5], allowing the user to interact with auto-
mated process discovery. However, the tool approaches the user-interaction from
a modeling-perspective, i.e., a human modeler supported by the underlying algo-
rithms (including an auto-complete option) is central to the tool and makes the
design decisions for the model. Thus, model creation is still a largely manual
endeavor.

This paper introduces Cortado, an interactive tool for data-driven process
discovery and modeling. Cortado exploits automated process discovery to con-
struct process models from event data in an incremental fashion. Main func-
tionalities of our tool are visualized in Fig. 1. The central idea of Cortado is the
incremental discovery of a process model, which is considered to be “under con-
struction”. Cortado thereby utilizes the user’s domain knowledge by delegating
the decision to the user, which is about selecting the observed process behavior
that gets added to the process model.

Cortado allows for discovering an initial process model from a user-selected
subset of observed process behavior with a conventional process discovery algo-
rithm (see Discover in Fig. 1). Alternatively, one can also import a process
model into Cortado. Cortado allows incrementally extending an initially given
process model, which is either imported or discovered, by adding process behav-
ior that is not yet described by the process model “under construction”. Thus,

Cortado—An Interactive Process Discovery Tool 467

the user is required to incrementally select process behavior from the event log
and to perform incremental process discovery. Our incremental discovery algo-
rithm [10] takes the current process model and the selected process behavior and
alters the process model such that the selected process behavior is described by
the resulting model (see Extend in Fig. 1). By incrementally selecting process
behavior, the user guides the incremental process discovery algorithm by provid-
ing feedback on the correctness of the observed event data. The user therefore
actively selects the process behavior to be added. Since the incremental process
discovery approach allows users to undo/redo steps at any time, they have more
control over the process discovery phase of the model compared to conventional
approaches. To improve the flexibility of Cortado, a process model editor is also
embedded, allowing the user to alter the process model at any time (see Edit
in Fig. 1). Furthermore, feedback mechanisms are implemented that notify the
user of the quality of the discovered process models (see Compare in Fig. 1).

The remainder of this paper is structured as follows. In Sect. 2, we briefly
introduce background knowledge. In Sect. 3, we explain the algorithmic foun-
dation of Cortado, i.e., the incremental process discovery approach. In Sect. 4,
we present our tool and explain its main functionality and usage. In Sect. 5, we
briefly describe the underlying implementation. Section 6 concludes the paper.

2 Background

In this section, we briefly explain the concept of event data and present process
trees, which is the process modeling formalism used by Cortado.

2.1 Event Data

The information systems used in companies, e.g., Customer Relationship Man-
agement (CRM) and Enterprise Resource Planning (ERP) systems, track the
performed activities during the executions of a process in great detail.

Table 1 presents a simplified example of such event data, i.e., referred to as
an event log. Each row represents an event, a recording related to some activity
instance of the process. For example, the first row indicates that a fine with
identifier A1 was created on July 24, 2006. The next line/event records that
the same fine was sent. Note that the corresponding expense for sending the
fine was e11.0, the Article of this violation is 157, the vehicle class is A, etc.
Multiple rows have the same value for the Fine-column, i.e., often referred to
as the case identifier ; all these events are executed for the same instance of
the process, e.g., for the same customer, the same patient, the same insurance
claim, or, in the given case, for the same fine. We refer to the digital recording
of a process instance as a case. As such, an event log, describes a collection of
cases. In Cortado, we focus on trace variants, i.e., unique sequences of executed
activities. For instance, for the fine A1 we observe the trace 〈Create Fine, Send
Fine〉 and for the fine A100 〈Create Fine, Send Fine, Insert Fine Notification,
Add penalty, Send for Credit Collection〉. Note that, in general, there may be
several cases for which the same sequence of activities has been performed.

468 D. Schuster et al.

Table 1. Example (simplified) event data, originating from the Road Traffic Fine Man-
agement Process Event Log [8]. Each row records an activity executed in the context
of the process. The columns record various data related to the corresponding fine and
the activity executed.

Fine Event Start Complete Amount Notification Expense Payment Article
Vehicle
Class

Total
Payment

A1 Create Fine 2006/07/24 2006/07/24 35.0 157 A 0.0
A1 Send Fine 2006/12/05 2006/12/05 35.0 11.0 157 A 0.0

A100 Create Fine 2006/08/02 2006/08/02 35.0 157 A 0.0
A100 Send Fine 2006/12/12 2006/12/12 35.0 11.0 157 A 0.0

A100
Insert Fine
Notification 2007/01/15 2007/01/15 35.0 P 11.0 157 A 0.0

A100 Add penalty 2007/03/16 2007/03/16 71.5 P 11.0 157 A 0.0

A100
Send for Credit

Collection 2009/03/30 2009/03/30 71.5 P 11.0 157 A 0.0

A10000 Create Fine 2007/03/09 2007/03/09 36.0 157 A 0.0
A10000 Send Fine 2007/07/17 2007/07/17 36.0 13.0 157 A 0.0
A10000 Add penalty 2007/10/01 2007/10/01 74.0 P 13.0 157 A 0.0
A10000 Payment 2008/09/09 2008/09/09 74.0 P 13.0 87.0 157 A 87.0

. .

2.2 Process Trees

We use process models to describe the control-flow execution of a process. Some
process modeling formalisms additionally allow specifying, for instance, what
resources execute an activity and what data attributes in the information system
might be read or written during the activity execution. In Cortado, we use
process trees as a process modeling formalism. Process trees are a hierarchical
process modeling notation that can be expressed as sound Workflow nets (sound
WF-nets), i.e., a subclass of Petri nets, often used to model business processes.
Process trees are annotated rooted trees and correspond to the class of block-
structured WF-nets, a subclass of sound WF-nets. Process trees are used in
various process discovery algorithms, e.g., the inductive miner [7].

In Fig. 2, we show two simplified models of the road fine management process,
which is partially shown in Table 1. Figure 2a shows a sound WF-net. Figure 2b
shows a process tree describing the same behavior as the model in Fig. 2a. Both
models describe that the Create Fine activity is executed first. Secondly, the
Send Fine activity is optionally executed. Then, the Insert Fine Notification
activity is performed, followed by a block of concurrent behavior including Add
penalty and potentially multiple executions of Payment.

The semantics of process trees are fairly simple, and, arguably, their hierar-
chical nature allows one to intuitively reason about the general process behavior.
Reconsider Fig. 2b. We refer to the internal vertices as operators and use them
to specify control-flow relations among their children. The leaves of the tree refer
to activities. The unobservable activity is denoted by τ . In terms of operators,
we distinguish four different types: the sequence operator (→), the exclusive
choice operator (×), the parallel operator (∧), and the loop operator (�). The
sequence operator (→) specifies the execution of its subtrees in the given order
from left to right. The exclusive choice operator (×) specifies that exactly one of
its subtrees gets executed. The parallel operator (∧) specifies that all subtrees
get executed in any order and possibly interleaved. The loop operator (�) has

Cortado—An Interactive Process Discovery Tool 469

(a) Simple example Petri net (sound WF-net) modeling a road fine management pro-
cess.

(b) A process tree modeling the same behavior as the Petri net in Figure 2a.

Fig. 2. Two process models, a Petri net (Fig. 2a) and a process tree (Fig. 2b), describing
the same process behavior, i.e., a simplified fine management process

exactly two subtrees. The first subtree is called the “do-part”, which has to be
executed at least once. The second subtree is called the “redo-part”, which is
optionally executed. If the redo-part gets executed, the do-part is required to be
executed again.

3 Algorithmic Foundation

In this section, we briefly describe the algorithmic foundation of Cortado’s incre-
mental process discovery approach [10]. Consider Fig. 3, in which we present a
schematic overview on said algorithmic foundation.

As an input, we assume a process model M , which is either given initially or
the result of a previous iteration of the incremental discovery algorithm. Addi-
tionally, a trace σ′=〈a1, . . . , an〉, i.e., a sequence of executed activities a1, . . . , an,
is given. We assume that the trace σ′ is not yet part of the language of model M
(visualized as σ′ /∈L(M)). Note that σ′ is selected by the user. If the incremen-
tal procedure has already been executed before, i.e., traces have been already
added to the process model in previous iterations, we use those traces as input as
well (visualized as {σ1, σ2, σ3, . . . } in Fig. 3). The incremental process discovery
algorithm transforms the three input artifacts into a new process model M ′ that
describes the input trace σ′ and the previously added traces {σ1, σ2, σ3, . . . }. In
the next iteration, the user selects a new trace σ′′ to be added and the set of
previously added traces gets extended, i.e., {σ1, σ2, σ3, . . . }∪{σ′}.

470 D. Schuster et al.

Fig. 3. Schematic overview of incremental process discovery (presented in our earlier
work [10]), i.e., the algorithmic foundation of Cortado. Starting with an initial process
model M and observed process behavior (a trace σ′ capturing a sequence of executed
process activities: a1, . . . , an) that is not yet captured by the model, the incremen-
tal discovery approach alters the given process model M into a new model M ′ that
additionally accepts the given trace σ′

As mentioned before, Cortado uses process trees as a process model formal-
ism. The incremental discovery approach [10] exploits the hierarchical structure
of the input process tree M and pinpoints the subtrees where the given trace σ′

deviates from the language described from the model. To identify the subtrees,
the process tree is converted into a Petri net and alignments [2] are calculated.
Subsequently, the identified subtrees get locally replaced, i.e., M ′ is a locally
modified version of M .

4 Functionalities and User Interface

In this section, we present the main functionalities of Cortado. We do so along
the lines of the user interface of Cortado as visualized in Fig. 4.

4.1 I/O Functionalities

Cortado supports various importing and exporting functionalities, which can
be triggered by the user by clicking the import/export buttons visualized in
the left sidebar, see Fig. 4. Cortado supports importing event data stored in the
IEEE eXtensible Event Stream (XES) format [1]. Furthermore, Cortado supports
importing process tree models stored as a .ptml-file, for instance, if an initial
(manual) process model is available. Process tree model files (.ptml-files) can
be generated, e.g., by process mining tools such as ProM1 and PM4Py2.
1 https://www.promtools.org.
2 https://pm4py.fit.fraunhofer.de/.

https://www.promtools.org
https://pm4py.fit.fraunhofer.de/

Cortado—An Interactive Process Discovery Tool 471

Fig. 4. Screenshot of the graphical user interface of Cortado. In the screenshot, we
have loaded the Road Traffic Fine Management Process Event Log [8].

Next to importing, Cortado supports exporting the discovered process model
both as a Petri net (.pnml-file) and as a process tree (.ptml-file). In short,
Cortado offers a variety of I/0 functionalities and, hence, can be easily combined
with other process mining tools.

4.2 Visualizing and Editing Process Trees

Cortado supports the visualization and editing of process trees. The “process
tree under construction” – either loaded or iteratively discovered – is visualized
in the upper half of the tool (Fig. 4). The user can interactively select subtrees
or individual vertices of the process tree by clicking an operator or a leaf node.
Various edit options, e.g., removing or shifting the selected subtree left or right,
are available from the top bar of the application (Fig. 4). Apart from removing
and shifting subtrees, the user can also add new subtrees to the process tree.
Figure 5 shows a screenshot of the tree editor in detail. In the given screenshot,
an inner node, a parallel operator (∧), is selected. Based on the selected inner
node, the user can specify the position where to add a new node in the dropdown-
menu by clicking on either insert left, insert right or insert below. In the
given screenshot, insert right is selected. Next, the user can choose between
an activity (a leaf node) or an operator (an inner node). By clicking on one of
the options, the new node is added directly to the right of the selected node. In
summary, the process tree editor in Cortado allows the user to alter the process
tree at any time.

472 D. Schuster et al.

Fig. 5. Screenshot of the process tree editor in Cortado

Fig. 6. Screenshot of the trace variants visualization in Cortado. There are two icons
to the left of each trace variant. The left icon, a circle or a circle with a check mark,
indicates whether a trace variant has been explicitly added to the model by the user.
The right icon, a red cross or a green check mark, indicates if the trace variant is
accepted by the current process model

4.3 Event Data Interaction

To visualize the loaded event data, Cortado uses trace variants. Clearly, mul-
tiple instances of a process can describe the exact same behavior regarding
the sequence of observed activities. For example, the most frequently observed
sequence of behavior in the Road Traffic Fine Management Process Event Log [8]
(i.e., used in Fig. 4), describes the sequence: 〈Create Fine, Send Fine, Insert
Fine Notification, Add Penalty, Send for Credit Collection〉. In total, the process
behavior of 56,482 fines (37.56% of the total number of recorded fines) follows
this sequence of activities.

Trace variants are visualized in Cortado as a sequence of colored chevrons.
Each activity gets a unique color assigned. For instance, the activity Create Fine
is assigned a blue color in Fig. 6. Cortado sorts the trace variants based on their
frequency of occurrence, descending from top to bottom. By clicking a trace
variant, the user “selects a variant”. Selection of multiple variants is also sup-
ported. In case an initial model does not exist, clicking the discover initial
model button discovers one from the selected trace variants using the Inductive

Cortado—An Interactive Process Discovery Tool 473

Miner [7], a process discovery algorithm that guarantees replay fitness on the
given traces and returns a process tree. In case an initial model is present, the
selected variants can be “added to the model” by clicking the add variant(s)
to model button. In this case, Cortado performs incremental process discovery
as described in Sect. 3.

Left to each trace variant, we see statistics about its occurrence in the event
log and two icons. The left-most icon, an empty circle or a white check mark,
indicates whether or not the trace variant has been explicitly added to the model
by the user (Fig. 6). A variant has been explicitly added by the user if either the
variant was used to discover an initial model or the variant has been added
to an existing model by applying incremental discovery, i.e., the variant was
selected and the user pressed the button add variant(s) to model. Note that
it is possible that a particular trace variant which was not explicitly selected by
the user is described by the process model; however, after incrementally adding
further variants to the model, the variant is potentially no longer described.
In contrast, Cortado guarantees that explicitly added trace variants are always
described by any future model incrementally discovered. However, since Cortado
allows for manual tree manipulation at any time, it might be the case that an
explicitly added variant is not described anymore by the tree due to manual
changes to the process tree.

The right-most icon is either a red cross or a green check mark (Fig. 6).
These icons indicate whether a trace variant is described/accepted by the process
model, i.e., if a trace variant is in the language of the process model. For the
computation of these conformance statistics, we use alignments [2]. Therefore,
we internally translate the process tree into a Petri net and execute the alignment
calculation. For instance, the first three variants in Fig. 6 are not accepted by
the current process model, but the last two variants are accepted. Similar to
triggering incremental discovery, manipulations of the process tree potentially
result in variants that are no longer described by the process model. To assess
the conformity of traces after editing the process tree manually, the user can
trigger a new conformity check by clicking the conformance check button.

Lastly, Cortado shows an overview list of all activities from the loaded event
log. This overview is located in the lower right part of Cortado’s user interface
(Fig. 4). Besides listing the activity names, Cortado indicates – by using a check
mark icon – which activities from the event log are already present in the process
model under construction. Thereby, the user gets a quick overview of the status
of the incremental discovery.

5 Implementation and Installation

The algorithmic core of Cortado is implemented in Python. For the core process
mining functionality, we use the PM4Py3 library, a python library that con-
tains, for instance, event log handling and conformance checking functionality.

3 https://pm4py.fit.fraunhofer.de/.

https://pm4py.fit.fraunhofer.de/

474 D. Schuster et al.

The GUI is implemented using web technologies, e.g., we chose the Electron4

and Angular5 framework to realize a cross-platform desktop application. For the
graphical representation of the process tree and the trace variants we use the
JavaScript library d3.js6.

The tool is available as a desktop application and can be freely downloaded
at https://cortado.fit.fraunhofer.de/. The provided archive, a ZIP-file, contains
an executable file that will start the tool. Upon starting, the data used within
this paper, i.e., Road Traffic Fine Management Process [8], gets automatically
loaded. Moreover, the archive contains examples of other event logs available as
XES-files in the directory example event logs.

6 Conclusion and Future Work

This paper presented Cortado, a novel tool for interactive process discovery
and modeling. The tool enables the user to incrementally discover a process
model based on observed process behavior. Therefore, Cortado allows to load
an event log and visualizes the trace variants in an intuitive manner. Starting
from an initial model, which can be either imported or discovered, the user can
incrementally add observed process behavior to the process model under con-
struction. Various feedback functionalities, e.g., conformance checking statistics
and the activity overview, give the user an overview of the process model under
construction anytime. Supporting common file formats such as XES and PNML,
Cortado can be easily used with other process mining tools.

In future work, we plan to extend Cortado’s functionality in various ways.
First, we aim to offer more options for the user to interact with the underlying
incremental discovery approach. For example, we plan to allow the user to lock
specific subtrees during incremental discovery to prevent these from being mod-
ified further. We also plan, in case the user changes the tree in the editor, to
provide improved and instant feedback on the conformance impact the changes
have w.r.t. the loaded event log and the already explicitly added trace variants.
However, since the calculation of conformance checking statistics – a crucial part
for instant user feedback – is computationally complex, we plan to evaluate the
extent to which approximation algorithms [9] can be integrated.

Next to further functionality, we plan to conduct case studies with industry
partners. Thereby, we aim to focus on the practical usability of Cortado. The goal
is to investigate which interaction options are meaningful and understandable
for the user interacting with Cortado.

4 https://www.electronjs.org/.
5 https://angular.io/.
6 https://d3js.org/.

https://cortado.fit.fraunhofer.de/
https://www.electronjs.org/
https://angular.io/
https://d3js.org/

Cortado—An Interactive Process Discovery Tool 475

References

1. IEEE standard for extensible event stream (XES) for achieving interoperability in
event logs and event streams. IEEE Std 1849–2016 pp. 1–50 (2016). https://doi.
org/10.1109/IEEESTD.2016.7740858

2. van der Aalst, W., Adriansyah, A., van Dongen, B.: Replaying history on process
models for conformance checking and performance analysis. WIREs Data Min.
Knowl. Disc. 2(2), 182–192 (2012). https://doi.org/10.1002/widm.1045

3. van der Aalst, W.M.P.: Process Mining - Data Science in Action, Second Edition.
Springer (2016). https://doi.org/10.1007/978-3-662-49851-4

4. Benevento, E., Dixit, P.M., Sani, M.F., Aloini, D., van der Aalst, W.M.P.: Evalu-
ating the effectiveness of interactive process discovery in healthcare: a case study.
In: Di Francescomarino, C., Dijkman, R., Zdun, U. (eds.) BPM 2019. LNBIP,
vol. 362, pp. 508–519. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-
37453-2 41

5. Dixit, P.M., Buijs, J.C.A.M., van der Aalst, W.M.P.: ProDiGy : Human-in-the-
loop process discovery. In: 12th International Conference on Research Challenges
in Information Science, RCIS 2018, Nantes, France, 29–31 May 2018, pp. 1–12.
IEEE (2018). https://doi.org/10.1109/RCIS.2018.8406657

6. Dixit, P.M., Verbeek, H.M.W., Buijs, J.C.A.M., van der Aalst, W.M.P.: Interactive
data-driven process model construction. In: Trujillo, J.C. (ed.) ER 2018. LNCS,
vol. 11157, pp. 251–265. Springer, Cham (2018). https://doi.org/10.1007/978-3-
030-00847-5 19

7. Leemans, S.J.J., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: Colom, J.-M., Desel,
J. (eds.) PETRI NETS 2013. LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg
(2013). https://doi.org/10.1007/978-3-642-38697-8 17

8. de Leoni, M., Mannhardt, F.: Road traffic fine management process (Feb 2015).
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5

9. Schuster, D., van Zelst, S., van der Aalst, W.M.P.: Alignment approximation for
process trees. In: Leemans, S., Leopold, H. (eds.) Process Mining Workshops. ICPM
2020. Lecture Notes in Business Information Processing, vol. 406, pp. 247–259.
Springer, Cham (2021). https://doi.org/10.1007/978-3-030-72693-5 19

10. Schuster, D., van Zelst, S.J., van der Aalst, W.M.P.: Incremental discovery of
hierarchical process models. In: Dalpiaz, F., Zdravkovic, J., Loucopoulos, P. (eds.)
RCIS 2020. LNBIP, vol. 385, pp. 417–433. Springer, Cham (2020). https://doi.org/
10.1007/978-3-030-50316-1 25

https://doi.org/10.1109/IEEESTD.2016.7740858
https://doi.org/10.1109/IEEESTD.2016.7740858
https://doi.org/10.1002/widm.1045
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-030-37453-2_41
https://doi.org/10.1007/978-3-030-37453-2_41
https://doi.org/10.1109/RCIS.2018.8406657
https://doi.org/10.1007/978-3-030-00847-5_19
https://doi.org/10.1007/978-3-030-00847-5_19
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.4121/uuid:270fd440-1057-4fb9-89a9-b699b47990f5
https://doi.org/10.1007/978-3-030-72693-5_19
https://doi.org/10.1007/978-3-030-50316-1_25
https://doi.org/10.1007/978-3-030-50316-1_25

PROVED: A Tool for Graph
Representation and Analysis of Uncertain

Event Data

Marco Pegoraro(B) , Merih Seran Uysal , and Wil M.P. van der Aalst

Chair of Process and Data Science (PADS) Department of Computer Science,
RWTH Aachen University, Aachen, Germany

{pegoraro,uysal,wvdaalst}@pads.rwth-aachen.de
http://www.pads.rwth-aachen.de/

Abstract. The discipline of process mining aims to study processes in
a data-driven manner by analyzing historical process executions, often
employing Petri nets. Event data, extracted from information systems
(e.g. SAP), serve as the starting point for process mining. Recently, novel
types of event data have gathered interest among the process mining
community, including uncertain event data. Uncertain events, process
traces and logs contain attributes that are characterized by quantified
imprecisions, e.g., a set of possible attribute values. The PROVED tool
helps to explore, navigate and analyze such uncertain event data by
abstracting the uncertain information using behavior graphs and nets,
which have Petri nets semantics. Based on these constructs, the tool
enables discovery and conformance checking.

Keywords: Process mining · Uncertain data · Partial order · Petri net
tool

1 Introduction

Process mining is a branch of process sciences that performs analysis on processes
focusing on a log of execution data [4]. From an event log of the process, it is
possible to automatically discover a model that describes the flow of a case in
the process, or measure the deviations between a normative model and the log.

The primary enabler of process mining analyses is the control-flow perspec-
tive of event data, which has been extensively investigated and utilized by
researchers in this domain.

Modern information systems supporting processes can enable the extraction
of more data perspectives: for instance, it is often possible to retrieve (and thus
analyze) additional event attributes, such as the agent (resource) associated with
the event, or the cost of a specific activity instance.

We thank the Alexander von Humboldt (AvH) Stiftung for supporting our research
interactions.

c© Springer Nature Switzerland AG 2021
D. Buchs and J. Carmona (Eds.): PETRI NETS 2021, LNCS 12734, pp. 476–486, 2021.
https://doi.org/10.1007/978-3-030-76983-3_24

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76983-3_24&domain=pdf
http://orcid.org/0000-0002-8997-7517
http://orcid.org/0000-0003-1115-6601
http://orcid.org/0000-0002-0955-6940
https://doi.org/10.1007/978-3-030-76983-3_24

PROVED: A Tool for Uncertain Event Data 477

Collected event data can be subjected to errors, imprecisions and anoma-
lies; as a consequence, they can be affected by uncertainty. Uncertainty can be
caused by many factors, such as sensitivity of sensors, human error, limitations
of information systems, or failure of recording systems. The type of uncertainty
we consider here is quantified: the event log includes some meta-attributes that
describe the uncertainty affecting the event. For instance, the activity label of
an event can be unknown, but we might have access to a set of possible activity
labels for the event. In this case, in addition to the usual attributes constituting
the event in the log, we have a meta-attribute containing a set of activity labels
associated with the event. In principle, such meta-attributes can be natively
supported by the information system; however, they are usually inferred after
the extraction of the event log, in a pre-processing step to be undertaken before
the analysis. Often, this pre-processing step necessitates domain knowledge to
define, identify, and quantify different types of uncertainty in the event log.

In an event log, regular traces provide a static description of the events that
occurred during the completion of a case in the process. Conversely, uncertain
process traces contain behavior, and describe a number of possible scenarios that
might have occurred in reality. Only one of these scenarios actually took place.
It is possible to represent this inherent behavior of uncertain traces with graph-
ical constructs, which are built from the data available in the event log. Some
applications of process mining to uncertain data require a model with execution
semantics, so to be able to execute all and only the possible real-life scenarios
described by the uncertain attributes in the log. To this end, Petri nets are the
model of choice to accomplish this, thanks to their ability to compactly represent
complex constructs like exclusive choice, possibility of skipping activities, and
most importantly, concurrency.

Process mining using uncertain event data is an emerging topic with only
a few recent papers. The topic was first introduced in [12] and successively
extended in [14]: here, the authors provide a taxonomy and a classification of
the possible types of uncertainty that can appear in event data. Furthermore,
they propose an approach to obtain measures for conformance score (upper and
lower bounds) between uncertain process traces and a normative process model
represented by a Petri net.

An additional application of process mining algorithms for uncertain event
logs relates to the domain of process discovery. Here, the uncertain log is mined
for possible directly-follows relationships between activities: the result, an Uncer-
tain Directly-Follows Graph (UDFG), expresses the minimum and maximum
possible strength of the relationship between pair of activities. In turn, this can
be exploited to perform process discovery with established discovery techniques.
For instance, the inductive miner algorithm can, given the UDFG and some fil-
tering parameters, automatically discover a process model of the process which
also embeds information about the uncertain behavior [13].

While the technological sector of process mining software has been flourish-
ing in recent years, no existing tool – to the best of our knowledge – can analyze
or handle event data with uncertainty. In this paper, we present a novel tool

478 M. Pegoraro et al.

based on Petri nets, which is capable of performing process mining analyses on
uncertain event logs. The PROVED (PRocess mining OVer uncErtain Data)
software [2] is able to leverage uncertain mining techniques to deliver insights
on the process without the need of discarding the information affected by uncer-
tainty; on the contrary, uncertainty is exploited to obtain a more precise picture
of all the possible behavior of the process. PROVED utilizes Petri nets as means
to model uncertain behavior in a trace, associating every possible scenario with
a complete firing sequence. This enables the analysis of uncertain event data.

The remainder of the paper is structured as follows: Sect. 2 provides an
overview of the relevant literature on process mining over uncertainty. Section 3
presents the concept of uncertain event data with examples. Section 4 illustrates
the architectural structure of the PROVED tool. Section 5 demonstrates some
uses of the tool. Lastly, Sect. 6 concludes the paper.

2 Related Work

The problem of modeling systems containing or representing uncertain behav-
ior is well-investigated and has many established research results. Systems where
specific components are associated with time intervals can, for instance, be mod-
eled with time Petri nets [6]. Large systems with more complex timed inter-
operations between components can be represented by interval-timed coloured
Petri nets [3]. Probabilistic effects can be modeled and simulated in a system
by formalisms such as generalized stochastic Petri nets [11]. It is important to
notice, however, that the focus of process mining over uncertain event data is
different: the aim is not to simulate the uncertain behavior in a model, but rather
to perform data-driven analyses, some results of which can be represented by
(regular) Petri nets.

The PROVED tool contains the implementation of existing techniques for
process mining over uncertain event data. In this paper, we will show the capa-
bilities of PROVED in performing the analysis presented in the literature men-
tioned above. In terms of tool functionalities, constructing a Petri net based on
the description of specific behavior – known as synthesis in Petri net research
– has some precedents: for instance, from transition systems [8] in the context
of process discovery. More relevantly for this paper, the VipTool [5] allows to
synthesize Petri nets based on partially ordered objects. While partial order
between events is in itself a kind of uncertainty and a consequence of the pres-
ence of uncertain timestamps, in this tool paper we extend Petri net synthesis
to additional types of uncertainty, and we add process mining functionalities.

3 Preliminary Concepts

The motivating problem behind the PROVED tool is the analysis of uncertain
event data. Let us give an example of a process instance generating uncertain
data.

PROVED: A Tool for Uncertain Event Data 479

An elderly patient enrolls in a clinical trial for an experimental treatment
against myeloproliferative neoplasms, a class of blood cancers. The enrollment
in this trial includes a lab exam and a visit with a specialist; then, the treatment
can begin. The lab exam, performed on the 8th of July, finds a low level of
platelets in the blood of the patient, a condition known as thrombocytopenia
(TP). At the visit, on the 10th of May, the patient self-reports an episode of
night sweats on the night of the 5th of July, prior to the lab exam: the medic
notes this, but also hypothesized that it might not be a symptom, since it can
be caused not by the condition but by external factors (such as very warm
weather). The medic also reads the medical records of the patient and sees that,
shortly prior to the lab exam, the patient was undergoing a heparine treatment
(a blood-thinning medication) to prevent blood clots. The thrombocytopenia
found with the lab exam can then be primary (caused by the blood cancer) or
secondary (caused by other factors, such as a drug). Finally, the medic finds an
enlargement of the spleen in the patient (splenomegaly). It is unclear when this
condition has developed: it might have appeared at any moment prior to that
point. The medic decides to admit the patient to the clinical trial, starting 12th
of July.

These events are collected and recorded in the trace shown in Table 1 in
the information system of the hospital. Uncertain activities are indicated as a
set of possibilities. Uncertain timestamps are denoted as intervals. Some event
are indicated with a “?” in the rightmost column; these so-called indeterminate
events have been recorded, but it is unclear if they actually happened in reality.
Regular (i.e., non-indeterminate) events are marked with “!”. For the sake of
readability, the timestamp field only indicates the day of the month.

Table 1. The uncertain trace of an instance of healthcare process used as a running
example. For the sake of clarity, we have further simplified the notation in the times-
tamps column, by showing only the day of the month.

Case ID Event ID Timestamp Activity Indet. event

ID192 e1 5 NightSweats ?

ID192 e2 8 {PrTP, SecTP} !

ID192 e3 [4, 10] Splenomeg !

ID192 e4 12 Adm !

Throughout the paper, we will utilize the trace of Table 1 as a running exam-
ple to showcase the functionalities of the PROVED tool.

4 Architecture

This section provides an overview of the architecture of the PROVED tool, as
well as a presentation of the libraries and existing software that are used in the
tool as dependencies.

480 M. Pegoraro et al.

Our tool has two distinct parts, a library (implemented in the PROVED
Python package) and a user interface allowing to operate the functions in the
library in a graphical, non-programmatic way.

The library is written in the Python programming language (compatible with
versions 3.6.x through 3.8.x), and is distributed through the Python package
manager pip [1]. Notable software dependencies include:

– PM4Py [7]: a process mining library for Python. PM4Py is able to provide
many classical process mining functionalities needed for PROVED, including
importing/exporting of logs and models, management of log objects, and
conformance checking through alignments. Notice that PM4Py also provides
functions to represent and manage Petri nets.

– NetworkX [10]: this library provides a set of graph algorithms for Python. It
is used for the management of graph objects in PROVED.

– Graphviz [9]: this library adds visualization functionalities for graphs to
PROVED, and is used to visualize directed graphs and Petri nets.

The aforementioned libraries enable the management, analysis and visualization
of uncertain event data, and support the mining techniques of the PROVED
toolset here illustrated. An uncertain log in PROVED is a log object of the
PM4Py library; here, we will list only the novel functionalities introduced in
PROVED, while omitting existing features inherited from PM4PY – such as
importing/exporting and attribute manipulation.

4.1 Artifacts

As mentioned earlier, uncertain data contain behavior and, thus, dedicated con-
structs are necessary to enable process mining analysis. In the PROVED tool, the
subpackage proved.artifacts contain the models and construction methods of
such constructs. Two fundamental artifacts for uncertain data representation are
available:

– proved.artifacts.behavior graph: here are collected the PROVED func-
tionalities related to the behavior graph of an uncertain trace. Behavior graphs
are directed acyclic graphs that capture the variability caused by uncertain
timestamps in the trace, and represent the partial order relationships between
events. The behavior graph of the trace in Table 1 is shown in Fig. 1. The
PROVED library can build behavior graphs efficiently (in quadratic time with
respect to the number of events) by using an algorithm described in [15].

– proved.artifacts.behavior net: this subpackage includes all the function-
alities necessary to create and utilize behavior nets, which are acyclic Petri
nets that can replay all possible sequences of activities (called realizations)
contained in the uncertain trace. Behavior nets allow to simulate all “possi-
ble worlds” described by an uncertain trace, and are crucial for tasks such
as computing conformance scores between uncertain traces and a normative
model. The construction technique for behavior nets is detailed in [14].

PROVED: A Tool for Uncertain Event Data 481

Fig. 1. The behavior graph of the
trace in Table 1. All the nodes in the
graph are connected based on prece-
dence relationships. Pairs of nodes for
which the order is certain are connected
by a path in the graph; pairs of nodes
for which the order is unknown are
pairwise unreachable.

Fig. 2. The behavior net correspond-
ing to the uncertain trace in Table 1.
The labels above the transitions show
the corresponding uncertain event. The
initial marking is displayed; the gray
“token slot” represents the final mark-
ing. This net is able to replay all and
only the sequences of activities that
might have happened in reality.

4.2 Algorithms

The algorithms contained in the PROVED tool are categorized in the three
subpackages:

– proved.algorithms.conformance: this subpackage contains all the function-
alities related to measuring conformance between uncertain data and a nor-
mative Petri net employing the alignment technique [12,14]. It includes func-
tions to compute upper and lower bounds for conformance score through
exhaustive alignment of the realizations of an uncertain trace, and an opti-
mized technique to efficiently compute the lower bound.

– proved.algorithms.discovery: this subpackage contains the functionalities
needed to perform process discovery over uncertain event logs. It offers func-
tionalities to compute a UDFG, a graph representing an extension of the
concept of directly-follows relationship on uncertain data; this construct can
be utilized to perform inductive mining [13].

– proved.algorithms.simulation: this subpackage contains some utility
functions to simulate uncertainty within an existing event log. It is possible to
add separately the different kinds of uncertainty described in the taxonomy
of [14], while fine-tuning the dictionary of activity labels to sample and the
amplitude of time intervals for timestamps.

4.3 Interface

Some of the functionalities of the PROVED tool are also supported by a
graphical user interface. The PROVED interface is web-based, utilizing the
Django framework in Python for the back-end, and the Bootstrap framework in
Javascript and HTML for the front end. The user interface includes the PROVED
library as a dependency, and is, thus, completely decoupled from the logic and
algorithms in it. We will illustrate some parts of the user interface in the next
section.

482 M. Pegoraro et al.

5 Usage

In this section, we will outline how to install and use our tool. Firstly, let us
focus on the programmatic usage of the Python library.

The full source code for PROVED can be found on the GitHub project page1.
Once installed Python on the system, PROVED is available through the pip
package manager for Python, and can be installed with the terminal command
pip install proved, which will also install all the necessary dependencies.

Thanks to the import and export functionalities inherited from PM4Py,
which has full XES [16] certification, it is possible to start uncertain logs analysis
easily and compactly. Let us examine the following example:

1 from pm4py.objects.log.importer.xes import importer as x_importer
2 from proved.artifacts import behavior_graph, behavior_net
3

4 uncertain_log = x_importer.apply(’uncertain_event_log.xes’)
5 uncertain_trace = uncertain_log[0]
6 beh_graph = behavior_graph.BehaviorGraph(uncertain_trace)
7 beh_net = behavior_net.BehaviorNet(beh_graph)

In this code snippet, an uncertain event log is imported, then the first trace
of the log is selected, and the behavior graph and behavior net of the trace are
obtained. Nodes and connections of behavior graphs and nets can be explored
using the igraph functionalities and the PM4Py functionalities. We can also
visualize both objects with Graphviz, obtaining graphics akin to the ones in
Figs. 1 and 2.

1 from pm4py.objects.petri.importer import importer as p_importer
2 from proved.algorithms.conformance.alignments import alignment_bounds_su
3

4 net, i_mark, f_mark = p_importer.apply(’model.pnml’)
5

6 alignments = alignment_bounds_su_log(uncertain_log, net, i_mark, f_mark)

In the snippet given above, we can see the code that allows to compute
upper and lower bounds for conformance score of all the traces in the uncertain
log against a reference model that we import, utilizing the technique of align-
ments [14]. For each trace in the log, a pair of alignment objects is computed: the
first one corresponds to an alignment with a cost equal to the lower bound for
conformance cost, while the second object is an alignment with the maximum
possible conformance cost. The object alignments is a list with one of such pairs
for each trace in the log.

Let us now see some visual examples of the usages of the PROVED tool
user interface2. The graphical tool can be executed in a local environment by
starting the Django server in a terminal with the command python manage.py
runserver.

Upon opening the tool and loading an uncertain event log, we are presented
with a dashboard that summarizes the main information regarding the event
log, as shown in Fig. 3.
1 Available at https://github.com/proved-py/proved-core/.
2 Available at https://github.com/proved-py/proved-app/.

https://github.com/proved-py/proved-core/
https://github.com/proved-py/proved-app/

PROVED: A Tool for Uncertain Event Data 483

Fig. 3. The dashboard of the PROVED user interface. This screen contains general
information regarding an uncertain event log, including the list of uncertain variants,
the number of instances of each activity label (minimum and maximum), and statistics
regarding the frequency of uncertain events and uncertain traces in the log.

In the center panel of the dashboard, we can see statistics regarding the
uncertain log. On the top left, we find basic statistics such as the size of the log
in the number of events and traces, the average trace length, and the number of
uncertain variants. Note that the classical definition of variant is inconsistent in
uncertain event logs; rather, uncertain variants group together traces which have
mutually isomorphic behavior graphs [14]. We can also find pie charts indicating
the percentage of uncertain events in the log (events with at least one uncertain
attribute) and the percentage of uncertain traces in the log (traces with at least
one uncertain event).

On the bottom, a table reports the counts of the number of occurrences for
each activity label in the event log. Because of uncertainty on activity labels and
indeterminate events, there is a minimum and maximum amount of occurrences
of a specific activity label. The table reports both figures. There are two other
tables in the dashboard, the Start Activities table and the End Activities table.
Both are akin to the activity table depicted, but separately list activity labels
appearing in the first or last event in a trace.

Upon clicking on one of the uncertain variants listed on the left, the user can
access the graphical representation of the variant. It is possible to visualize both
the behavior graph and the behavior net: the former is depicted in Fig. 4. The
figure specifically shows information related to the trace depicted in Table 1.

Next to the variant menu on the left, we now have a trace menu, listing all
the traces belonging to that uncertain variant. Clicking on a specific trace, the
user is presented with data related to it, including a tabular view of the trace
similar to that of Table 1, and a Gantt diagram representation of the trace.
Similarly to the behavior graph, the Gantt diagram shows time information in a
graphical manner; but, instead of showing the precedence relationship between

484 M. Pegoraro et al.

Fig. 4. The uncertain variant page of the PROVED tool, showing information regard-
ing the variant obtained from the trace in Table 1. For a variant in an uncertain log,
this page lists the traces belonging to that variant, and displays the graphical represen-
tations for that variant – behavior graph and behavior net (the latter is not displayed,
but can be accessed through the tab on the top).

Fig. 5. Visualization dedicated to a specific trace in the PROVED tool, showing infor-
mation related to the trace in Table 1. It is possible to see details on each event and
on the uncertainty that might affect them, as well as a visualization showing the time
relationship between uncertain event in scale.

events, it shows the time information in scale, representing the time intervals on
an absolute scale. This visualization is presented in Fig. 5.

The interface allows the user to explore the features of an uncertain log, to
“drill down” to variants, traces, event and single attributes, and visualize the
uncertain data in a graphical manner without the need to resort to coding in
Python.

Lastly, the menu on the left also allows for loading a Petri net, and obtaining
alignments on uncertain event data.

As shown above, every uncertain trace can be represented by a behavior
net. A conformance score can be computed between such behavior nets and
a normative process model also represented by a Petri net: Fig. 6 illustrate the
results of such alignment. For a given behavior net, two alignments are provided,
together with the respective cost: one, showing a best-case scenario, and the other
showing a worst-case scenario. This enables diagnostics on uncertain event data.

PROVED: A Tool for Uncertain Event Data 485

Fig. 6. Visualization of alignments of the uncertain trace in Table 1 and a normative
process model. In this case, the optimal alignment in the best case scenario perfectly
fits the model, while in the worst case scenario we have an alignment cost of 2, caused
by one move on model and one move on log.

6 Conclusions

In many real-world scenarios, the applicability of process mining techniques is
severely limited by data quality problems. In some situations, these anomalies
causing an erroneous recording of data in an information system can be trans-
lated in uncertainty, which is described through meta-attributes included in the
log itself. Such uncertain event log can still be analyzed and mined, thanks to
specialized process mining techniques. The PROVED tool is a Python-based soft-
ware that enables such analysis. It provides capabilities for importing and export-
ing uncertain event data in the XES format, for obtaining graphical representa-
tions of data that can capture the behavior generated by uncertain attributes,
and for computing upper and lower bounds for conformance between uncertain
process traces and a normative model in the form of a Petri net.

Future work on the tool includes the definition of a formal XES language
extension with dedicated tags for uncertainty meta-attributes, the further devel-
opment of front-end functionalities to include more process mining capabilities,
and more interactive objects in the user interface. Moreover, the research effort
on uncertainty affecting the data perspective of processes can be integrated with
the model perspective, blending uncertainty research with formalisms such as
stochastic Petri nets.

References

1. Pip - PyPi. https://pypi.org/project/pip/. Accessed 03 Feb 2020
2. The PROVED project on GitHub. https://github.com/proved-py/. Accessed 03

Feb 2021

https://pypi.org/project/pip/
https://github.com/proved-py/

486 M. Pegoraro et al.

3. van der Aalst, W.M.P.: Interval timed coloured Petri nets and their analysis. In:
Ajmone Marsan, M. (ed.) ICATPN 1993. LNCS, vol. 691, pp. 453–472. Springer,
Heidelberg (1993). https://doi.org/10.1007/3-540-56863-8 61

4. van der Aalst, W.M.P.: Process Mining: Data Science in Action, pp. 3–23. Springer,
Heidelberg (2016). https://doi.org/10.1007/978-3-662-49851-4 1

5. Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Synthesis of petri nets from
scenarios with viptool. In: van Hee, K.M., Valk, R. (eds.) Bergenthum, R., Desel,
J., Lorenz, R., Mauser, S.: Synthesis of Petri nets from scenarios with VipTool.
In: International Conference on Applications and Theory of Petri Nets. pp. 388–
398. Springer (2008). LNCS, vol. 5062, pp. 388–398. Springer, Heidelberg (2008).
https://doi.org/10.1007/978-3-540-68746-7 25

6. Berthomieu, B., Diaz, M.: Modeling and verification of time dependent systems
using time Petri nets. IEEE Trans. Software Eng. 17(3), 259 (1991)

7. Berti, A., van Zelst, S.J., van der Aalst, W.M.P.: Process mining for python
(PM4Py): bridging the gap between process and data science. In: ICPM Demo
Track (CEUR 2374), pp. 13–16 (2019)

8. Carmona, J., Cortadella, J., Kishinevsky, M.: Genet: a tool for the synthesis and
mining of Petri nets. In: 2009 Ninth International Conference on Application of
Concurrency to System Design, pp. 181–185. IEEE (2009)

9. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.: Graphviz: open
source graph drawing tool. In: Mutzel, P., Jünger, M., Leipert, S. (eds.) GD 2001.
LNCS, vol. 2265, pp. 483–484. Springer, Heidelberg (2002). https://doi.org/10.
1007/3-540-45848-4 57

10. Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics, and
function using NetworkX. Technical report, Los Alamos National Lab. (LANL),
Los Alamos, NM (United States) (2008)

11. Marsan, M.A., Balbo, G., Conte, G., Donatelli, S., Franceschinis, G.: Modelling
with generalized stochastic Petri nets. ACM SIGMETRICS Perform. Eval. Rev.
26(2), 2 (1998)

12. Pegoraro, M., van der Aalst, W.M.P.: Mining uncertain event data in process
mining. In: 2019 International Conference on Process Mining (ICPM), pp. 89–96.
IEEE (2019)

13. Pegoraro, M., Uysal, M.S., van der Aalst, W.M.P.: Discovering process models
from uncertain event data. In: Di Francescomarino, C., Dijkman, R., Zdun, U.
(eds.) BPM 2019. LNBIP, vol. 362, pp. 238–249. Springer, Cham (2019). https://
doi.org/10.1007/978-3-030-37453-2 20

14. Pegoraro, M., Uysal, M.S., van der Aalst, W.M.P.: Conformance checking over
uncertain event data. arXiv preprint - arXiv:2009.14452 (2020)

15. Pegoraro, M., Uysal, M.S., van der Aalst, W.M.P.: Efficient time and space repre-
sentation of uncertain event data. Algorithms 13(11), 285–312 (2020)

16. Verbeek, H.M.W., Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.:
XES, XESame, and ProM 6. In: Soffer, P., Proper, E. (eds.) CAiSE Forum 2010.
LNBIP, vol. 72, pp. 60–75. Springer, Heidelberg (2011). https://doi.org/10.1007/
978-3-642-17722-4 5

https://doi.org/10.1007/3-540-56863-8_61
https://doi.org/10.1007/978-3-662-49851-4_1
https://doi.org/10.1007/978-3-540-68746-7_25
https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1007/3-540-45848-4_57
https://doi.org/10.1007/978-3-030-37453-2_20
https://doi.org/10.1007/978-3-030-37453-2_20
http://arxiv.org/abs/2009.14452
https://doi.org/10.1007/978-3-642-17722-4_5
https://doi.org/10.1007/978-3-642-17722-4_5

Author Index

Abbes, Samy 423
Amat, Nicolas 164

Bai, Yunjun 379
Bergenthum, Robin 399
Bernardinello, Luca 3
Berthomieu, Bernard 164
Bouvier, Pierre 339
Briday, Mikaël 55
Burke, Adam 312

Dal Zilio, Silvano 164
Devillers, Raymond 274
Didriksen, Martin 118

Esparza, Javier 141

Garavel, Hubert 339
Gieseking, Manuel 95

Haddad, Serge 76
Haustermann, Michael 230
Hélouët, Loïc 33

Jensen, Peter G. 118
Jezequel, Loïg 360
Jiao, Li 379
Jønler, Jonathan F. 118

Kang, Jiawen 379
Katona, Andrei-Ioan 118

Lama, Sangey D. L. 118
Leemans, Sander J. J. 312

Leroux, Jérôme 17
Lime, Didier 76, 360
Lottrup, Frederik B. 118

Miklos, Zoltan 33
Moldt, Daniel 230
Mosteller, David 230

Parrot, Rémi 55
Pegoraro, Marco 476

Raskin, Mikhail 141
Roux, Olivier H. 55, 76

Schuster, Daniel 465
Sérée, Bastien 360
Shajarat, Shahab 118
Singh, Rituraj 33
Srba, Jiří 118

Tredup, Ronny 253, 292

Uysal, Merih Seran 476

Valk, Rüdiger 443
van der Aalst, Wil M. P. 208, 465, 476
van Zelst, Sebastiaan J. 465

Wallner, Sophie 186
Welzel, Christoph 141
Wolf, Karsten 186
Würdemann, Nick 95
Wynn, Moe Thandar 312

	Preface
	Organization
	Contents
	I Keynotes
	Topics in Region Theory and Synthesis Problems
	1 Introduction
	2 Regions and Synthesis of Net Systems
	3 Regions and Algebra
	3.1 Elementary Regions

	4 Regions for Reaction Systems
	5 Regions for Reaction Systems and Morphisms
	5.1 The Type of Reaction Systems

	6 Conclusion
	References

	Flat Petri Nets (Invited Talk)
	1 Introduction
	2 Presburger Inductive Invariants
	3 Flat and Flattable VASS
	4 Reachability Problem for Flat VASS
	5 Conclusion
	References

	II Application of Concurrency to System Design
	Cost and Quality in Crowdsourcing Workflows
	1 Introduction
	2 Complex Workflows with Aggregation
	3 Aggregation Model
	4 Cost Model for Workflow
	5 Experiments and Results
	6 Conclusion
	References

	Timed Petri Nets with Reset for Pipelined Synchronous Circuit Design
	1 Introduction
	2 Maximal Step Firing Rule and Timed Petri Net
	2.1 Three-Phases Firing
	2.2 Maximal-Step Firing
	2.3 Timed Petri Net
	2.4 Comparison with Ramchandani's Semantics

	3 TPN with Reset and Delayable Transitions
	4 Complexity of Reachability Problem
	5 State Space Computation
	5.1 Operations over Symbolic States
	5.2 State Graph

	6 Decidability of Some Timed Language Problems
	6.1 From Bounded RTPN to Single-Clock Timed Automata
	6.2 Corollaries

	7 Application to the Pipeline Problem
	7.1 RTPN with Cost
	7.2 From a Pipelining Problem to a RTPN with Cost
	7.3 Pipeline Exploration

	8 Conclusion
	References

	A Turn-Based Approach for Qualitative Time Concurrent Games
	1 Introduction
	2 A Motivating Example
	3 Definitions
	4 From Concurrent Games to Turn-Based Games
	5 Permissivity of the Controller
	6 Conclusion
	References

	III Games
	Canonical Representations for Direct Generation of Strategies in High-Level Petri Games
	1 Introduction
	2 Petri Nets and Petri Games
	2.1 P/T Petri Nets
	2.2 P/T Petri Games
	2.3 High-Level Petri Nets
	2.4 High-Level Petri Games

	3 Canonical Representations of Symbolic Decision Sets
	3.1 Symmetric Nets
	3.2 Symbolic Decision Sets
	3.3 Canonical Representations
	3.4 Relations Between Canonical Representations
	3.5 Properties of Canonical Representations

	4 Applying Canonical Representations
	4.1 The Symbolic Two-Player Game
	4.2 Direct Strategy Generation

	5 Experimental Results
	6 Related Work
	7 Conclusions and Outlook
	References

	Automatic Synthesis of Transiently Correct Network Updates via Petri Games
	1 Introduction
	2 Update Synthesis
	2.1 Network Updates

	3 Petri Games
	4 From Update Synthesis Problem to Petri Games
	4.1 Translation to Petri Games
	4.2 Translation Correctness
	4.3 Optimization for Reachability and Waypointing

	5 Implementation and Experiments
	5.1 Synthetic Network Topologies
	5.2 Topology Zoo Benchmark
	5.3 Results

	6 Conclusion
	References

	IV Verification
	Computing Parameterized Invariants of Parameterized Petri Nets
	1 Introduction
	2 Preliminaries
	3 Parameterized Petri Nets
	4 Checking 1-Boundedness
	5 Checking Safety Properties
	5.1 Automatic Computation of Parameterized Invariants

	6 Trap Parametrization in Rings
	6.1 Parameterizing Local Traps
	6.2 Parameterizing Global Traps

	7 Trap Parametrization in Barrier Crowds
	7.1 Parameterizing Traps for Barrier Crowds

	8 Experiments
	9 Conclusion
	References

	On the Combination of Polyhedral Abstraction and SMT-Based Model Checking for Petri Nets
	1 Introduction
	2 Petri Nets and Linear Arithmetic Constraints
	3 Polyhedral Abstraction and E-Equivalence
	4 SMT-Based Model Checking Using Abstractions
	5 BMC and PDR Implementation
	6 Experimental Results
	7 Related Work and Conclusion
	References

	Skeleton Abstraction for Universal Temporal Properties
	1 Introduction
	2 Related Work
	3 Basic Definitions
	4 Relations Between Reachability Graphs
	5 Simulation Relation Between Reachability Graphs
	5.1 Deadlock-Free Nets
	5.2 Deadlock Preservation
	5.3 Inject Deadlocks to Skeleton
	5.4 Safety Properties

	6 Folding Place/Transition Nets
	7 Experimental Results
	8 Conclusion
	References

	Reduction Using Induced Subnets to Systematically Prove Properties for Free-Choice Nets
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Induced Subnets in Free-Choice Nets: Existence and Properties
	5 Approach: Using Induced Subnets for Reduction
	6 Application of Reduction to Prove Perpetuality and Lucency
	7 Conclusion
	References

	Model Checking of Synchronized Domain-Specific Multi-formalism Models Using High-Level Petri Nets
	1 Introduction
	2 Reference Nets
	3 Modular Model Checker (MoMoC)
	4 Renew Meta-Modeling and Transformation (Rmt)
	5 DSML Verification
	6 Application to Multiple Formalism DSML Verification
	7 Related Work
	8 Conclusion
	References

	V Synthesis and Mining
	Edge, Event and State Removal: The Complexity of Some Basic Techniques that Make Transition Systems Petri Net Implementable
	1 Introduction
	2 Preliminaries
	3 The Complexity of Edge-Removal
	4 The Complexity of Event-Removal
	4.1 Event-Removal Aiming at Language Simulation and Realization
	4.2 Event-Removal Aiming at Embedding

	5 The Complexity of State-Removal
	5.1 State-Removal Aiming at Embedding or Realization
	5.2 State-Removal Aiming at Language Simulation

	6 Conclusion
	References

	Synthesis of (Choice-Free) Reset Nets
	1 Introduction
	2 Classical Definitions, Notations and Properties
	3 Presynthesis
	4 General Algorithms
	5 Acceleration
	6 Net Implementation
	7 Concluding Remarks and Future Work
	References

	Synthesis of Petri Nets with Restricted Place-Environments: Classical and Parameterized
	1 Introduction
	2 Preliminaries
	3 The Computational Complexity of Environment Restricted Synthesis
	3.1 Environment Restricted Synthesis is in NP
	3.2 Environment Restricted Synthesis is NP-hard
	3.3 A Lower Bound for the Parameterized Complexity of ERS

	4 Conclusion
	References

	Discovering Stochastic Process Models by Reduction and Abstraction
	1 Introduction
	2 Related Work
	3 Preliminaries
	4 Process Discovery by Model Reduction
	4.1 Probabilistic Process Trees
	4.2 A Discovery Algorithm Framework
	4.3 Transformation Rules

	5 Incremental Discovery and Optimisations
	5.1 Incremental Discovery
	5.2 Incremental Complexity
	5.3 K Retries
	5.4 Noise and Lossy Rules

	6 Implementation and Evaluation
	6.1 Implementation
	6.2 Evaluation Design
	6.3 Results and Discussion

	7 Conclusion
	References

	VI Reachability and Partial Order
	Efficient Algorithms for Three Reachability Problems in Safe Petri Nets
	1 Introduction
	2 Problem Statement
	2.1 Basic Definitions
	2.2 The Dead Places Problem
	2.3 The Dead Transitions Problem
	2.4 The Concurrent Places Problem
	2.5 Complexity
	2.6 Complete vs Incomplete Solutions

	3 Implementation and Experimentation
	3.1 Relation to Temporal Logic
	3.2 Software Tools and File Formats
	3.3 Data Sets

	4 Algorithms for Dead Places and Dead Transitions
	4.1 Marking Graph Exploration
	4.2 Structural Rules
	4.3 Linear Over-Approximation
	4.4 Ordering of Algorithms
	4.5 Experimental Results

	5 Algorithms for Concurrent Places
	5.1 Marking Graph Exploration
	5.2 Structural Rules
	5.3 Quadratic Under-Approximation
	5.4 Quadratic Over-Approximation
	5.5 Ordering of Algorithms
	5.6 Experimental Results

	6 Conclusion
	References

	A Lazy Query Scheme for Reachability Analysis in Petri Nets
	1 Introduction
	2 Definitions and Notations
	2.1 Petri Nets
	2.2 Subnets and Partial Markings

	3 Lazy Reachability Analysis in Petri Nets
	3.1 Preliminary Example
	3.2 An Algorithm for Lazy Reachability Analysis in Petri Nets
	3.3 Proof of the Algorithm

	4 Lazy Reachability Analysis with Inhibitor Arcs
	4.1 From Petri Nets to Petri Nets with Inhibitor Arcs
	4.2 An Algorithm for Lazy Reachability Analysis with Inhibitor Arcs
	4.3 Proof of the Algorithm

	5 Experimental Evaluation
	6 Conclusion
	References

	Abstraction-Based Incremental Inductive Coverability for Petri Nets
	1 Introduction
	2 Preliminaries
	2.1 Notations
	2.2 Petri Nets
	2.3 The Coverability Problem
	2.4 IC3 for Petri Nets

	3 Combining IC3 with Place-Merge Abstraction
	3.1 The Place-Merge Abstraction
	3.2 The Algorithm
	3.3 Simulation and Refinement
	3.4 Correctness

	4 Experimental Evaluation
	5 Related Work
	6 Conclusions
	References

	Firing Partial Orders in a Petri Net
	1 Introduction
	2 Preliminaries
	3 Deciding Enabledness and Firing Runs
	3.1 Tokenflows and Flow Networks
	3.2 Firing Runs
	3.3 Firing Backwards

	4 Comparison and Experimental Results
	5 Conclusion and Future Work
	References

	VII Semantics
	Deterministic Concurrent Systems
	1 Introduction
	2 Preliminaries
	2.1 Trace Monoids and Their Combinatorics
	2.2 Concurrent Systems and their Combinatorics
	2.3 A Comparison Result

	3 Deterministic Concurrent Systems
	4 Irreducible Deterministic Concurrent Systems
	References

	Deciphering the Co-Car Anomaly of Circular Traffic Queues Using Petri Nets
	1 Introduction
	2 Circular Traffic Queues
	3 A Coloured Net and Its T-Equivalent
	4 Cycloids
	5 The Net Isomorphism
	6 The f-factor of Regular Cycloids
	7 Compositions of Cycloids
	8 Conclusion
	References

	VIII Tools
	Cortado—An Interactive Tool for Data-Driven Process Discovery and Modeling
	1 Introduction
	2 Background
	2.1 Event Data
	2.2 Process Trees

	3 Algorithmic Foundation
	4 Functionalities and User Interface
	4.1 I/O Functionalities
	4.2 Visualizing and Editing Process Trees
	4.3 Event Data Interaction

	5 Implementation and Installation
	6 Conclusion and Future Work
	References

	PROVED: A Tool for Graph Representation and Analysis of Uncertain Event Data
	1 Introduction
	2 Related Work
	3 Preliminary Concepts
	4 Architecture
	4.1 Artifacts
	4.2 Algorithms
	4.3 Interface

	5 Usage
	6 Conclusions
	References

	Author Index

