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Abstract. This paper deals with the exponential utility maximization
problem for semi-Markov decision process with Borel state and action
spaces, and nonnegative reward rates. The criterion to be optimized is the
expected exponential utility of the total rewards before the system state
enters the target set. Under the regular and compactness-continuity con-
ditions, we establish the corresponding optimality equation, and prove
the existence of an exponential utility optimal stationary policy by an
invariant embedding technique. Moreover, we provide an iterative algo-
rithm for calculating the value function as well as the optimal policies.
Finally, we illustrate the computational aspects of an optimal policy with
an example.
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1 Introduction

Semi-Markov decision processes (SMDPs), as an important class of stochas-
tic control problems, have been widely studied [1,10,11,15,20,28,31]. The
commonly used criteria for SMDPs are the finite horizon expected criterion
[8,14,26,28], the expected discounted criterion [1,3,10,13,25,27], and the aver-
age criterion [10,23,31–33]. These criteria are linear utility functions of the total
rewards (i.e. are risk-neutral), which only focus on the expected total rewards
of a system during a fixed or a random horizon, and therefore cannot reflect the
decision maker’s attitude toward risk.

To exhibit the attitude of a decision maker in the face of risk (i.e. risk-
seeking or risk-averse), the risk sensitive criteria, which include the exponential
utility criterion, have been considered for discrete-time MDPs (DTMDPs) [2,4–
6,21,22], and continuous-time MDPs (CTMDPs) [7,9,30,34]. Specifically, Jaque-
tte [21] first introduced the exponential utility to DTMDPs. For the resulting
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optimization problem, Chung and Sobel [6] established the corresponding opti-
mality equation by means of the Banach fixed point theorem. Cavazos-Cadena
and Montes-De-Oca [4,5] gave conditions ensuring the existence of optimal poli-
cies for the positive dynamic programming, where the state space is considered
to be finite in [4], and denumerable in [5]. Jaśkiewicz [22] considered the Borel
state and action spaces, and establish the convergence of the n-stage optimal
expected total reward and the existence of an optimal stationary policy. Baüerle
and Rieder [2] considered a more general problem than the classic risk sensi-
tive optimization problem, which is called minimizing a certainty equivalent.
They solved the optimization problem by an ordinary MDP with extended state
space, and proved the existence of an optimal policy under some suitable con-
ditions. For the case of CTMDPs, Ghosh and Saha [7] studied the risk sensitive
control in discrete state space. They obtain the value function as a solution to
the Hamilton Jacobi Bellman equation, and proved the existence of an opti-
mal Markov control for finite horizon problem, and the existence of an optimal
stationary control for infinite horizon problem. Wei [30] dealt with risk sen-
sitive cost criterion for finite horizon CTMDPs with denumerable state space
and Borel action space. Under suitable conditions, he proved the existence of
the Feynman-Kac formula and an optimal deterministic Markov policy. For the
same problem as in [30], Guo, Liu and Zhang [9] investigated the case when
the transition and cost rates may be unbounded. They proved that the value
function is the unique solution to the optimality equation, and showed the exis-
tence of an optimal policy via the Feynman-Kac formula. Few literature [34]
applied the uniformization technique to reducing the CTMDPs problem with
exponential utility to an equivalent DTMDPs. Recently, Huang, Lian and Guo
[17] considered the risk sensitive unconstrained and constrained problems for
SMDPs with Borel state space, unbounded cost rates and general utility func-
tions, and proved the existence of the Bellman equation and the optimal policies
under some continuity-compactness conditions by using the occupation measure
approach.

All of this existing literature shows that all the aforementioned MDPs for the
risk-sensitive criterion have two common features: the horizon is finite or infinite,
the control model is DTMDPs or CTMDPs. However, such as those encoun-
tered in many real world situations, many models in ruin problems [20,29],
reliability [20,24], and maintenance [20] are considered with a random hori-
zon, and described as SMDPs. Moreover, compared to DTMDPs and CTMDPs
(under stationary policies), SMDPs are more general stochastic optimal models,
in which the holding time of the system state can be allowed to follow any arbi-
trary probability distribution. This is the main reason for considering a random
horizon for SMDPs in this paper.

Compared with the existing research work for risk-sensitive SMDPs in [17],
this paper has some new features as follows: First, in order to make the conclusion
more closely fit the actual situation, we pay more attention to the time horizon is
the random first passage time, which is more general than those in [17]. Second,
since the random first passage time is considered in our control model, by Remark
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4.2 in [17], we know that the occupation measure approach is not suitable for our
model, because the definition of the occupation measure is based on the discount
factor. Instead, we use a so-called minimum nonnegative solution approach to
establish the optimality equation and prove the existence of optimal policies.
Third, we are mainly concerned with the calculation and existence of the optimal
policies, while the purpose of the works in [17] is to establish the existence
condition of the optimal policies. Due to these, we develop a value iteration
algorithm to calculate the value function and the optimal policy, which is new
and the key feature in our paper.

To the best of our knowledge, the risk-sensitive optimality problem for
SMDPs in first passage has not been studied yet.

Motivated by the above discussion, we investigate in this paper the first pas-
sage risk-sensitive optimality problems for SMDPs. We focus on both the exis-
tence conditions and the computational algorithms of an optimal policy, thus
we limit the choice of risk-sensitive criteria to the exponential utility criterion
(e.g. [2,6,21,34]), which maximizes the expected exponential utility of the total
rewards before the state of system enters the target set. More precisely, in order
to ensure the existence of an optimal stationary policy, we impose the standard
regular condition to ensure that the state process is non-explosive, which is sim-
ilar to those given in [13–15,18] for SMDPs (see Lemma 1). Second, compared
with [13–15,18], which are mainly limited to denumerable state space and finite
action set, we consider more general Borel state and action spaces. Then, we
need to introduce a new continuity-compactness condition (see Assumption 2).
Under the regular and continuity-compactness conditions, we establish the cor-
responding optimality equation, and prove that the value function is a solution
to this optimality equation. Moreover, we show the existence of an exponen-
tial utility optimal stationary policy by using an invariant embedding technique
(see Assumption 1). Furthermore, a value iteration algorithm for computing the
value function as well as the optimal policies, in a finite number of iterations, is
provided. Finally, an example illustrating the computational methodology of an
optimal stationary policy and the value function is given.

The rest of this paper is organized as follows. In Sect. 2, we introduce the semi-
Markov decision model and state the first passage exponential utility optimality
problem. The main optimality results are stated and proved in Sect. 3. In Sect. 4,
an example is provided to illustrate the computational aspects of an optimal
policy.

2 Model Description

Models of first passage exponential utility SMDPs are defined by

{S,A, (A(x), x ∈ S), Q(u, y|x, a), B, r(x, a)} (1)

with the following components:

(a) S denotes a Borel state space, endowed with the Borel σ-algebras B(S).
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(b) A denotes a Borel action space, endowed with the Borel σ-algebras B(A).
(c) A(x) ∈ B(A) represents the set of allowable actions when the system is at

state x ∈ S. K := {(x, a)|x ∈ S, a ∈ A(x)} represents the set of all feasible
pairs of states and actions.

(d) Q(·, ·|x, a) is a semi-Markov kernel on R+ ×S given K, where R+ := [0,∞).
For any u ∈ R+,D ∈ B(S), when the action a ∈ A(x) is taken in state
x, Q(u,D|x, a) denotes the joint probability that the holding time of the
system is no more than u ∈ R+ and the state x changes into the set D. The
semi-Markov kernel Q(·, ·|x, a), (x, a) ∈ K has the following features:
(i) For any D ∈ B(S), Q(·,D|x, a) is a non-decreasing, right continuous

function from R+ to [0, 1] with Q(0,D|x, a) = 0 .
(ii) For any u ∈ R+, Q(u, ·|x, a) is a sub-stochastic kernel on the state space

S.
(e) B is target set, which is a measurable subset of S, and usually represents

the set of failure (or ruin) states of a system.
(f) r(x, a) denotes the reward rate, which is assumed to be nonnegative mea-

surable function on K such that r(x, ·) ≡ 0 for all x ∈ B.

The first passage SMDP with exponential utility evolves as follows: When the
system state is x0 ∈ Bc at time t0 = 0, the decision maker selects an admissible
action a0 from the action set A(x0), where Bc denotes the complement of B.
Consequently, the system stays in the state x0 up to time t1. At this point
the system jumps to state x1 with probability p(x1|x0, a0), and earns a reward
r(x0, a0)(t1 − t0). If the state x1 ∈ B, the system will stay at the target set B
forever. If the state x1 ∈ Bc, a new decision epoch t1 comes along. Then, based
on the present state x1 and the previous state x0, the decision maker chooses
an action a1 ∈ A(x1) and the process is repeated. Thus, during its evolution,
the system receives a series of rewards. The decision maker aims at maximizing
the exponential utility of the total rewards before the state of the system first
reaches the target set B.

Let

hk := (x0, a0, t1, x1, a1, . . . , tk, xk), (2)

be an admissible history up to the k-th decision epoch, where tm+1 ≥ tm ≥ 0,
xm ∈ S, am ∈ A(xm) for m = 0, 1, . . . , k − 1, xk ∈ S. From the evolution of
SMDPs, we know that tk+1 (k ≥ 0) denotes the (k + 1)-th decision epoch, xk

denotes the state of the system on [tk, tk+1), ak denotes an action, which is
chosen by the decision maker at time tk. θk+1 := tk+1 − tk denotes the sojourn
time at state xk, which may follow any given probability distribution.

The set of all admissible histories hk is denoted by Hk, that is H0 := S and
Hk := (S × A × (0,+∞])k × S.

For the sake of the optimality problem, we shall pay close attention to some
classes of policies that we introduce below.

Definition 1. A sequence π = {πk, k ≥ 0} is called stochastic history-
dependent policy if, for any k = 0, 1, 2 . . ., the stochastic kernel πk on A(xk)
given Hk satisfies
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πk(A(xk)|hk) = 1 for any hk ∈ Hk.

Denote by Π the set of all stochastic history-dependent policies, φ the set of all
stochastic kernels ϕ on A(x) given S such that ϕ(A(x)|x) = 1, and F the family
of all Borel measurable functions f from S to A(x) for all x ∈ S.

Definition 2. A policy π = {πk} ∈ Π is called stochastic Markov if there
exists a sequence of stochastic kernels {ϕk} such that πk(·|hk) = ϕk(·|xk) for
k ≥ 0, hk ∈ Hk, and ϕk ∈ φ. For simplicity, we denote such a policy by π = {ϕk}.

A stochastic Markov policy π = {ϕk} is called stochastic stationary if all
the ϕk are independent of k. Such a policy is denoted by ϕ, for simplicity.

A stochastic Markov policy π = {ϕk} is called deterministic Markov if each
ϕk(·|xk) is concentrated at fk(xk) ∈ A(xk) for some measurable functions {fk}
with k ≥ 0, xk ∈ S, and fk ∈ F .

A deterministic Markov policy π = {fk} is called deterministic stationary
if all the measurable functions fk are independent of k. For simplicity, such a
policy is denoted by f .

The class of all stochastic Markov, stochastic stationary, deterministic
Markov, and deterministic stationary policies are, respectively, denoted by
ΠRM ,ΠRS , ΠDM and ΠDS . Clearly, φ = ΠRS ⊂ ΠRM ⊂ Π and F = ΠDS ⊂
ΠDM ⊂ Π.

For the sake of mathematical rigor, we need to construct a well-suited prob-
ability space. Define a sample space Ω := {(x0, a0, t1, x1, a1, . . . , tk, xk, ak, . . .)|
x0 ∈ S, a0 ∈ A(x0), tl ∈ (0,∞], xl ∈ S, al ∈ A(xl) for each 1 ≤ l ≤ k, k ≥ 1}. Let
F be the Borel σ-algebra of the sample space Ω. For any ω := (x0, a0, t1, x1, a1,
. . . , tk, xk, ak, . . .) ∈ Ω, we define the random variables Tk,Xk, Ak on (Ω,F) as
follows:

Tk(ω) := tk,Xk(ω) := xk, Ak(ω) := ak, T∞(ω) := lim
k→∞

Tk(ω). (3)

In what follows, for the purpose of simplicity, we omit the argument ω.
Moreover, we define the state process {xt, t ≥ 0} and the action process

{At, t ≥ 0} on (Ω,F) by

xt :=
∑

k≥0

I{Tk≤t<Tk+1}Xk + ΔI{t≥T∞},

At :=
∑

k≥0

I{Tk≤t<Tk+1}Ak + aΔI{t≥T∞},

where ID(·) denotes the indicator function on the set D, Δ �∈ E is a cemetery
state, and aΔ is an isolated point.

For any policy π ∈ Π and initial state x ∈ S, in the light of the Ionescu
Tulcea theorem (e.g., Proposition C.10 in [11]), there exist a unique probability
measure Pπ

x on the measurable space (Ω,F) such that,

Pπ
x (Ak ∈ Γ |T0,X0, A0, . . . , Tk,Xk) = πk(Γ |T0,X0, A0, . . . , Tk,Xk), (4)
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Pπ
x (Tk+1 − Tk ≤ u,Xk+1 ∈ D|T0,X0, A0, . . . , Tk,Xk, Ak) = Q(u,D|Xk, Ak),

for each u ∈ R+, Γ ∈ B(A),D ∈ B(S), k ≥ 0. We shall use E
π
x to represent the

expectation operator with respect to Pπ
x .

To avoid the possibility that the system generates an infinite number of jumps
within a fixed finite horizon, we need to impose the following condition.

Assumption 1 For any π ∈ Π,x ∈ S, Pπ
x (T∞ = ∞) = 1.

To ease the verification of Assumption 1, we state the following sufficient
condition for its validity.

Lemma 1. If Q(δ, S|x, a) ≤ 1 − ε with some constants δ, ε > 0 and (x, a) ∈ K,
then Assumption 1 holds.

Proof. The proof follows directly from Proposition 2.1 in [14]. 	

Remark 1.(a) A key feature of Lemma 1 is that the condition is imposed on

the semi-Markov kernel, and can be directly verified.
(b) Lemma 1 is the standard regular condition, which is similar to the classic

expected criteria for SMDPs, see, for instance [13–15,18].

The random variable τB is given by

τB =

{
inf{t ≥ 0 : xt ∈ B}, if {t ≥ 0 : xt ∈ B} �= ∅;
+∞, otherwise.

(5)

represents the first passage time for which the state process {xt, t ≥ 0} first
enters the target set B.

For any x ∈ S and π ∈ Π, we define the first passage exponential utility
criterion by

V π(x) := Eπ
x

(
e−γ

∫ τB
0 r(xt,At)dt

)
, (6)

where γ > 0 represents the risk aversion coefficient, which expresses the degree
of risk aversion that the decision makers face to the level of the total rewards
before the state of the system first enters the target set.

Definition 3. A policy π∗ ∈ Π is called an optimal policy, if

V π∗
(x) = sup

π∈Π
V π(x), x ∈ S. (7)

The corresponding value function is given by

V ∗(x) := sup
π∈Π

V π(x), x ∈ S. (8)

Remark 2. Note that for any π ∈ Π and initial state x ∈ B, in view of (5), (6)
and (8), we have τB = 0 and V ∗(x) = V π(x) = 1. In order to avoid this trivial
case, our arguments consider only the case x ∈ Bc.
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3 Main Results

In this section, we will state the main results concerning the first passage expo-
nential utility optimality problem for SMDPs.

Notation: Let Vm denotes the set of all Borel measurable functions from S
to [0, 1]. For any x ∈ Bc, V ∈ Vm, ϕ ∈ φ, a ∈ A(x), we define the operators
MaV,MϕV and MV as follows:

MaV (x) :=
∫

B

∫ +∞

0

e−γr(x,a)uQ(du, dy|x, a)

+
∫

Bc

∫ +∞

0

e−γr(x,a)uV (y)Q(du, dy|x, a),

MϕV (x) :=
∫

A(x)

ϕ(da|x)MaV (x),

MV (x) := sup
a∈A(x)

MaV (x).

For any ϕ ∈ φ, we also define the operators (MnV, n ≥ 1), ((Mϕ)nV, n ≥ 1)
as follows:

Mn+1V = M(MnV ), (Mϕ)n+1V = Mϕ((Mϕ)nV ), n ≥ 1.

Since the state and action space are Borel space, in order to ensure the
existence of optimal policies, it follows from [28,31,32], we need establish the
following continuity-compactness condition, and which is trivially satisfied for
the case of denumerable state space and finite action set A(x) with x ∈ S.

Assumption 2. (a) For any x ∈ Bc, A(x) is compact;
(b) For each fixed V ∈ Vm,

∫
y∈S

∫ +∞
0

e−γr(x,a)uV (y)Q(du, dy|x, a) is upper
semicontinuous and inf-compact on K.

Lemma 2. Suppose that Assumptions 1 and 2 hold. Then the operators Ma and
M have the following properties:

(a) For any U, V ∈ Vm, if U ≥ V , then MaU(x) ≥ MaV (x) and MU(x) ≥
MV (x) for any x ∈ S and a ∈ A(x).

(b) For any V ∈ Vm, there exists a policy f ∈ ΠDS such that MV (x) = MfV (x)
for any x ∈ S.

Proof. (a) This statement follows from the definitions of operators Ma and M .
(b) Assuming the validity of Assumption 1 and 2, and invoking the measurable

selection theorem (Theorem B.6 in [28]), we conclude that, for each x ∈ S,
there is a stationary policy f ∈ F with MfV (x) = MV (x) = supa∈A(x) Ma

V (x).
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Since state process {xt, t ≥ 0} is non-explosive and the reward rate is non-
negative, in view of the monotone convergence theorem, we can rewrite V π(x)
as follows:

V π(x) = Eπ
x

(
e−γ

∫ τB
0 r(xt,At)dt

)

= Eπ
x

(
e−γ

∑∞
m=0

∫ Tm+1
Tm

I{τB>t}r(xt,At)dt
)

= Eπ
x

(
e
−γ

∑∞
m=0

∫ Tm+1
Tm

I{⋂m
k=0{xTk

∈Bc}}r(xt,At)dt
)

(9)

= lim
n→∞ Eπ

x

(
e
−γ

∑n
m=0

∫ Tm+1
Tm

I{⋂m
k=0{xTk

∈Bc}}r(xt,At)dt
)
.

We shall find it essential to define the sequence {V π
n (x), n = −1, 0, 1, . . .} by

V π
−1(x) := 1,

V π
n (x) := Eπ

x

(
e
−γ

∑n
m=0

∫ Tm+1
Tm

I{⋂m
k=0{xTk

∈Bc)}}r(xt,At)dt
)
.

Obviously, V π
n (x) ≥ V π

n+1(x) for any n ≥ −1 and limn→∞ V π
n (x) = V π(x) for all

x ∈ Bc.

Proposition 1. For each π = {π0, π1, . . .} ∈ Π and x ∈ S. Then, there exists
a policy π

′
= {ϕ0, ϕ1, . . .} ∈ ΠRM , satisfying V π(x) = V π

′
(x).

Proof. Since V π(x) = Eπ
x

(
e
−γ

∑∞
m=0

∫ Tm+1
Tm

I{⋂m
k=0{xTk

∈Bc}}r(xt,At)dt
)

in (9), to
prove this proposition we need to prove that, for each x ∈ S, there exists a
randomized Markov policy π

′
= {ϕ0, ϕ1, . . .} ∈ ΠRM such that

Pπ
′

x (Xk ∈ D,Tn+1 − Tn > u,Ak ∈ Γ )
= Pπ

x (Xk ∈ D,Tn+1 − Tn > u,Ak ∈ Γ )

with k = 0, 1, . . . , u ∈ R+,D ∈ B(S), Γ ∈ B(A).
Thus, in view of property (4), it suffices to show that

Pπ
′

x (Xk ∈ D,Ak ∈ Γ ) = Pπ
x (Xk ∈ D,Ak ∈ Γ ). (10)

Along the same arguments as in the proof of Theorem 5.5.1 in [28], one can
prove (10) by induction on the integer k. 	


Proposition 1 states, in particular, that in seeking optimal policies for (7), it
is sufficient to limit the search to the set of randomized Markov policies. Thus,
from now on, we will limit our attention to ΠRM .

The following lemma is required to establish the optimality equation.

Lemma 3. Under Assumption 1 and 2, for any x ∈ S, n ≥ −1, and π =
{ϕ0, ϕ1, . . .} ∈ ΠRM , the following statements hold.
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(a) V π
n ∈ Vm and V π ∈ Vm.

(b) V π
n+1(x) = Mϕ0V

1π
n (x) and V π(x) = Mϕ0V

1π(x), with 1π := {ϕ1, ϕ2, . . .}
being the 1-shift policy of π.
In particular, for any f ∈ F , V f

n+1(x) = MfV f
n (x) and V f (x) = MfV f (x).

Proof. (a) We shall prove the first statement of (a) by induction on the integer
n ≥ −1. The statement is trivial for n = −1 since V π

−1(x) = 1 ∈ Vm for any
x ∈ S and π ∈ ΠRM . Assume the statement holds for any n < k. Then, by (4)
and the property of conditional expectation, we have

V π
k+1(x)

= Eπ
x

(
e
−γ

∑k+1
m=0

∫ Tm+1
Tm

I{⋂m
k=0{xTk

∈Bc}}r(xt,At)dt
)

= Eπ
x [Eπ

x [e−γ
∑k+1

m=0

∫ Tm+1
Tm

I{⋂m
k=0{xTk

∈Bc}}r(xt,At)dt|T0, xT0 , A0, T1, xT1 ]]

=
∫

A(x)

ϕ0(da|x)

×
∫

S

∫ +∞

0

Eπ
x

(
e
−γ(

∫ T1
0 r(xt,At)dt+

∑k+1
m=1

∫ Tm+1
Tm

I{⋂m
k=1{xTk

∈Bc}}r(xt,At)dt)

|T0 = 0, xT0 = x,A0 = a, T1 = u, xT1 = y
)
Q(du, dy|x, a)

=
∫

A(x)

ϕ0(da|x)
∫

B

∫ +∞

0

e−γr(x,a)uQ(du, dy|x, a) +
∫

A(x)

ϕ0(da|x)

×
∫

Bc

∫ +∞

0

Eπ
x

(
e
−γ(

∫ T1
0 r(xt,At)dt+

∑k+1
m=1

∫ Tm+1
Tm

I{⋂m
k=1{xTk

∈Bc}}r(xt,At)dt)

|T0 = 0, xT0 = x,A0 = a, T1 = u, xT1 = y
)
Q(du, dy|x, a)

=
∫

A(x)

ϕ0(da|x)[
∫

B

∫ +∞

0

e−γr(x,a)uQ(du, j|x, a)

+
∫

Bc

∫ +∞

0

e−γr(x,a)uE
1π
y

(
e
−γ

∑k
m=0

∫ Tm+1
Tm

I{⋂m
k=0{xTk

∈Bc}}r(xt,At)dt
)

×Q(du, dy|x, a)]

=
∫

A(x)

ϕ0(da|x)[
∫

B

∫ +∞

0

e−γr(x,a)uQ(du, dy|x, a)

+
∫

Bc

∫ +∞

0

e−γr(x,a)uV
1π
k (y)Q(du, dy|x, a)]

:= Mϕ0V
1π
k (x)

which together with induction hypothesis implies that V π
k+1(x) is a measurable

function and V π
k+1(x) ≤ 1. Thus, V π

n ∈ Vm for all n ≥ −1. Since the limit of a
convergent sequence of measurable functions is itself a measurable function, we
obtain limn→∞ V π

n = V π ∈ Vm. This concludes the proof of (a).
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(b) From the proof of part (a), we can deduce that, for any x ∈ Bc and
n ≥ −1,

V π
n+1(x) = Mϕ0V

1π
n (x). (11)

Letting n → ∞ in (11) and using the monotone convergence theorem, we obtain

V π(x) = Mϕ0V
1π(x).

In particular, for π = f ∈ F , we have V f (x) = MfV f (x). 	

Remark 3. For any x ∈ Bc and f ∈ F , one can use Lemma 3 to develop an
efficient iteration algorithm for the computation of the function V f (x) based
on the following: V f (x) = limn→∞ V f

n (x) where V f
−1(x) := 1 and V f

n+1(x) =
MfV f

n (x) for n ≥ 0.

The following theorem states the existence of an optimality equation.

Theorem 1. Under Assumption 1 and 2, the following hold.

(a) For each n ≥ −1, let V ∗
n+1 := MV ∗

n with V ∗
−1 := 1. Then, limn→∞ V ∗

n =
V ∗ ∈ Vm.

(b) The value function V ∗ is a solution to the optimality equation V ∗ = MV ∗.
(c) There is a policy f∗ ∈ F such that V ∗(x) = MfV ∗(x), x ∈ Bc.

Proof. (a) Using Lemma 2(a) and the definition of the operator M , we obtain
0 ≤ V ∗

n+1(x) ≤ V ∗
n (x) ≤ 1 and V ∗

n ∈ Vm, n ≥ −1, for any x ∈ Bc. Thus,
Ṽ := limn→∞ V ∗

n ∈ Vm, since the limit of a convergent sequence of measurable
function is also measurable. To complete the proof of part (a), we need to prove
that Ṽ = V ∗.

We first show by induction on n ≥ −1 that for any x ∈ Bc and π =
{ϕ0, ϕ1, . . .} ∈ ΠRM

V ∗
n (x) ≥ V π

n (x). (12)

It is clear that V ∗
−1 = V π

−1 = 1 for any π ∈ ΠRM . Suppose that (12) holds for
any n ≤ k. By the induction hypothesis, the definition of the operator M and
Lemma 3(b), we have

V ∗
k+1(x) = MV ∗

k (x) ≥ MV
1π
k (x) ≥ Mϕ0V

1π
k (x) = V π

k+1(x).

Letting n → ∞ in (12), we obtain Ṽ (x) = limn→∞ V ∗
n (x) ≥ V π(x) with π ∈

ΠRM . Since π is arbitrary, we conclude that Ṽ (x) ≥ V ∗(x).
We need, now, to prove the reverse inequality Ṽ (x) ≤ V ∗(x). For any

x ∈ Bc, n ≥ −1, let An := {a ∈ A(x)|MaV ∗
n (x) ≥ MṼ (x)} and A∗ :=

{a ∈ A(x)|MaṼ (x) = MṼ (x)}. By the compactness-continuity condition in
Assumption 2 and the convergence V ∗

n ↓ Ṽ , we conclude that An and A∗ are
nonempty and compact, and that An ↓ A∗. It follows from the measurable selec-
tion theorem (Theorem B.6 in [28]) that, for each n ≥ 1, there exist an ∈ An
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such that ManV ∗
n (x) = MV ∗

n (x). Hence, using compactness and the convergence
An ↓ A∗, we deduce that there exist an a∗ ∈ A∗ and a subsequence {ank

} of
{an} such that ank

→ a∗. Since V ∗
n ↓ Ṽ , by Lemma 3(a), for any given n ≥ 1,

we have

Mank V ∗
nk

(x) ≤ Mank V ∗
n (x) ∀nk ≥ n.

Letting k → ∞ and using the upper semicontinuity condition in Assumption 2
give

Ṽ ∗(x) ≤ Ma∗
V ∗

n (x),

which together with the convergence V ∗
n ↓ Ṽ imply

Ṽ ∗(x) ≤ Ma∗
Ṽ (x) ≤ MṼ (x),

By Lemma 2(b), there exists a stationary policy f ∈ F such that

Ṽ (x) ≤ MṼ (x) = Mf Ṽ (x).

Moreover, using Lemma 2(a), Lemma 3(b) and Remark 3, we obtain

Ṽ (x) ≤ (Mf )nṼ (x) ≤ (Mf )nV f
−1(x) = V f

n−1(x).

Letting n → ∞, and invoking Remark 3, we obtain Ṽ (x) ≤ V f (x) ≤ V ∗(x),
which proves the part (a) of the theorem.

(b) By virtue of Lemma 3(b), we know that for any x ∈ Bc and π ∈ ΠRM ,
we have

V π(x) = Mϕ0V
1π(x) ≤ Mϕ0V ∗(x) ≤ MV ∗(x).

Taking the supremum over all policies π ∈ ΠRM implies V ∗(x) ≤ MV ∗(x).
The reverse inequality is proved as follows: From the definition of V ∗

n , for any
x ∈ Bc and a ∈ A(x),

V ∗
n+1(x) = MV ∗

n (x) ≥ MaV ∗
n (x).

Letting n → ∞ and using the monotone convergence theorem, we obtain

V ∗(x) ≥ MaV ∗(x),

which implies that V ∗(x) ≥ MV ∗(x) since a ∈ A(x) is arbitrary. This proves
V ∗ = MV ∗.

(c) The statement in (c) follows from Lemma 2. 	

To guarantee the uniqueness of solution of the optimality equation and the

existence of the optimal policies, we require the following additional condition
(i.e., Assumption 3).

Assumption 3 For any x ∈ Bc, f ∈ Πs, P
f
x (τB < +∞) = 1.
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Remark 4.(a) Assumption 3 means that, when the initial state of such system
is X0 = x ∈ S, the controlled state process {xt, t ≥ 0} will eventually enter
the target set B under the policy f ∈ F .

(b) Letting Xn := xTn
, n = 0, 1, . . ., Tn denotes the jump epoch. Then, we

obtain a discrete-time embedded chain {Xn, n ≥ 0}. For every x ∈ Bc,
using Theorem 3.3 in [16], we know that Assumption 3 can be rewritten as
follows:.

P f
x (τB < +∞) = P f

x (
∞⋃

n=1

{Xn ∈ B}) = 1,

which is equivalent to

P f
x (

∞⋂

n=1

{Xn ∈ Bc}) = 0. (13)

(c) Using Proposition 3.3 in [19], we also obtain a sufficient condition to verify
Assumption 3. There exist a constant α > 0 such that

∫
B

P (dy|x, a) ≥ α for
(x, a) ∈ Bc × A(x), then Assumption 3 holds.

Lemma 4. Suppose that Assumptions 1 and 3 hold.

(a) If U, V ∈ Vm are such that U(x) − V (x) ≤ Mf (U − V )(x) with x ∈ Bc, f ∈
Πs, then U(x) ≤ V (x).

(b) For any f ∈ Πs, V f ∈ Vm is the unique solution to the equation V = MfV .

Proof. (a) For any U, V ∈ Vm, x ∈ Bc, f ∈ Πs, we will show the following
conclusion by induction,

(Mf )n(U − V )(x) ≤ P f
x (

n⋂

k=1

{Xk ∈ Bc}), n ≥ 1. (14)

For n = 1, it follows from U, V ∈ Vm that

Mf (U − V )(x) = MfU(x) − MfV (x)

=
∫

Bc

∫ +∞

0

e−γr(x,f)u(U − V )(y)Q(du, dy|x, a)

≤
∫

Bc

∫ +∞

0

Q(du, dy|x, a)

= P f
x (X1 ∈ Bc).

Suppose that (14) holds for n = k. Then, by using the induction hypothesis
and the nonnegativity of the reward rate, we have
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(Mf )k+1(U − V )(x) = Mf (Mf )k(U − V )(x)

=
∫

Bc

∫ +∞

0

e−γr(x,f)u(Mf )k(U − V )(y)

×Q(du, dy|x, a)

=
∫

Bc

∫ +∞

0

e−γr(x,f)uP f
y (

k⋂

l=1

{Xl ∈ Bc})

×Q(du, dy|x, a)

≤
∫

Bc

∫ +∞

0

P f
y (

k⋂

l=1

{Xl ∈ Bc})Q(du, dy|x, a). (15)

On the other hand,

P f
x (

k+1⋂

l=1

{Xl ∈ Bc})

= Ef
x [I{⋂k+1

l=1 {Xl∈Bc}}]

= Ef
x [Ef

x [I⋂k+1
l=1 {Xl∈Bc}|X0,X1]

=
∫

Bc

∫ +∞

0

P f
x

( k+1⋂

l=1

{Xl ∈ Bc}|X0 = x,X1 = y
)
Q(du, dy|x, a)

=
∫

Bc

∫ +∞

0

P f
y

( k⋂

l=1

{Xl ∈ Bc}
)
Q(du, dy|x, a),

from which together with (15) and the induction, we have for all n ≥ 1,

U(x) − V (x) ≤ (Mf )n(U(x) − V (x)) ≤ P f
x (

n⋂

k=1

{Xk ∈ Bc}). (16)

Letting n → ∞, using (13), we obtain

U(x) − V (x) ≤ P f
x (

∞⋂

k=1

{Xk ∈ Bc}) = 0.

Then, U(x) ≤ V (x), for x ∈ S.
(b) For any x ∈ S, f ∈ F , it follows from Lemma 2(b) that V f (x) ∈ Vm

satisfies the equation V (x) = MfV (x). If U(x) is another solution to the equa-
tion U(x) = MfU(x) on S, and thus U(x) − V f (x) = Mf (U(x) − V f (x)),
which together with the statement in part (a), we know U(x) = V f (x) and the
uniqueness of solution to the equation is proved. 	

Theorem 2. Suppose that Assumption 1,2 and 3 hold. Then, the following
statements hold.
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(a) The value function V ∗ is the unique solution to the optimality equation
V ∗ = MV ∗.

(b) There is a policy f∗ ∈ F which satisfies V ∗ = Mf∗
V ∗, V ∗ = V f∗

and such
a policy f∗ ∈ F is optimal.

Proof. (a) It follows from Lemma 3 (b) that V ∗ satisfies the equation V ∗ =
MV ∗. Then, by Lemma 2(b), there exists a stationary policy f∗ ∈ F such
that V ∗ = Mf∗

V ∗. Moreover, U is another solution of the equation U = MU .
Similarly, the existence of a policy f

′ ∈ F satisfying U = Mf
′
U is ensured by

Lemma 2(b). Then, we have V ∗ −U ≤ Mf∗
(V ∗ −U). Combining this inequality

and Lemma 4 yields that V ∗ ≤ U . Similarly, we obtain U − V ∗ ≤ Mf
′
(U − V ∗)

and U ≤ V ∗, which implies U = V ∗ and the uniqueness of V ∗ is achieved.
(b) Since V ∗ ∈ Vm, for any x ∈ Bc, Lemma 2 guarantees the existence of a

stationary policy f∗ ∈ F such that

V ∗(x) = Mf∗
V ∗(x),

which together with Lemma 3 and Remark 11 yield

V ∗ = lim
n→∞(Mf∗

)nV ∗ ≤ lim
n→∞(Mf∗

)nV f∗
−1 = lim

n→∞ V f∗
n−1 = V f∗

.

This implies the optimality of f∗. 	

Theorem 1 leads to the following iterative algorithm for computing the value

function and the corresponding optimal policies.

The value iteration algorithm procedure:

Step 1: For any x ∈ Bc, set V ∗
−1(x) := 1.

Step 2: According to Theorem 1, the value V ∗
n+1(x), n ≥ 1, is iteratively

computed as:

MaV ∗
n (x) =

∫

B

∫ +∞

0

e−γr(x,f)uQ(du, dy|x, a)

+
∫

Bc

∫ +∞

0

e−γr(x,f)uV ∗
n (y)Q(du, dy|x, a),

V ∗
n+1(x) = sup

a∈A(x)

{MaV ∗
n (x)}.

Step 3: When |V ∗
n+1 − V ∗

n | < 10−12, the iteration stops. Since V ∗
n is very

close to V ∗
n+1, one can view V ∗

n+1 as a good approximation of the value function
V ∗. In addition, Lemma 2 and Theorem 2 ensure the existence of a policy f∗ ∈ F
such that MV ∗ = Mf∗

V ∗, and this policy f∗ is optimal. Or else, go back to
step 2 and replace n with n + 1.

4 Example

In this section, an example is given to illustrate our main results, and to demon-
strate the computation of an optimal stationary policy and the corresponding
value function using the above described iterative algorithm.
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Example 1. Consider a company using idle funds for financial management.
When the company has some idle funds (which is denoted by state 1), the
decision maker gets the reward at the rate of return r(1, a11) ≥ 0 through
deposit method a11 or the reward at the rate of return r(1, a12) ≥ 0 through
another deposit method a12. When the company has plenty of idle funds (which
is denoted by state 2), the decision maker can choose a financial management a21

earning in a reward rate r(2, a21) ≥ 0 or another financing way a22 earning in a
reward rate r(2, a22) ≥ 0. When the company goes bankrupt (which is denoted
by state 0), the decision-maker does not need to choose any way of financing a01

and cannot get any reward r(0, a01) = 0.
Suppose that the evolution mechanism of this system is described as a SMDP.

When the system state is 1, the decision maker selects an admissible action
a1n, n = 1, 2. Then, the system stays at the state 1 with a random time satisfying
the uniform distribution in the region [0, u(1, a1n)], n = 1, 2. After the system
state lingers for a period of time, it will move to a new state j ∈ {0, 2} with
the probability p(j|1, a1n), n = 1, 2. When the action a2n is selected n = 1, 2,
the system stays at 2 with a random time satisfying the exponential distribution
with the parameter λ(2, a2n). Consequently, the system jumps to state j ∈ {0, 1}
with the probability p(j|2, a2n), n = 1, 2.

The corresponding parameters of this SMDPs are given as follows: The state
space S = {0, 1, 2}, the target set B = {0} and the admissible action sets A(0) =
{a01}, A(1) = {a11, a12}, A(2) = {a21, a22}, the risk-sensitivity coefficient γ = 1.
The transition probabilities are assumed to be given

p(0|0, a01) = 1, p(0|1, a11) =
1
2
, p(2|1, a11) =

1
2
,

p(0|1, a12) =
2
3
, p(2|1, a12) =

1
3
, p(0|2, a21) =

3
10

, (17)

p(1|2, a21) =
7
10

, p(0|2, a22) =
2
5
, p(1|2, a22) =

3
5
.

In addition, the corresponding distribution parameters are given by

u(1, a11) = 30, u(1, a12) = 40,

λ(2, a21) = 0.11, λ(2, a22) = 0.13. (18)

and the reward rates are given by

r(1, a11) = 0.0035, r(1, a12) = 0.011,

r(2, a21) = 0.013, r(2, a22) = 0.015.

In this model, we mainly focus on the existence and calculation parts of an
optimal policy and the value function for first passage exponential utility crite-
rion. As can be seen from the discussion in Sect. 3 above, we first need to verify
Assumption 1, 2 and 3. Indeed, by (17) and (18), we know that Assumption 1
and 3 are satisfied. Moreover, since the state space is denumerable and the action
space A is finite, Assumption 2 is trivially satisfied. Thus, by Theorem 1 and 2,
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the value iteration technique can be used for evaluating the value function and
the exponential optimal policies as follows:

Step 1: Let V ∗
−1(x) := 1, x = 1, 2.

Step 2: For x = 1, 2, n ≥ 1, using Theorem 1 (a), we obtain

V ∗
n (1) = MV ∗

n−1(1),

= max
{1

2
× 1

30
×

∫ 30

0

e−0.0035udu

+
1
2

× 1
30

×
∫ 30

0

e−0.0035udu × V ∗
n−1(2),

2
3

× 1
40

×
∫ 40

0

e−0.011udu +
1
3

× 1
40

×
∫ 40

0

e−0.011udu × V ∗
n−1(2)

}

V ∗
n (2) = MV ∗

n−1(2),

= max
{ 3

10
× 0.11 ×

∫ +∞

0

e−0.123udu

+
7
10

× 0.11 ×
∫ +∞

0

e−0.123udu × V ∗
n−1(1),

2
5

× 0.13 ×
∫ +∞

0

e−0.145udu +
3
5

× 0.13 ×
∫ +∞

0

e−0.145udu × V ∗
n−1(1)

}

Step 3: When |V ∗
n − V ∗

n−1| < 10−12, go to step 4, the value V ∗
n is usually

approximated as V ∗; otherwise, go to step n + 1 and go back to step 2.
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Fig. 1. The function MaV ∗
n (1)

Step 4: Plot out the graphs of the value functions Maij V ∗
n (i) and V ∗

n (i), i =
1, 2; j = 1, 2, see Figs. 1, 2 and 3.
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Moreover, for x = 1, using Theorem 1, 2, Fig. 1 and Fig. 2, we know that

MV ∗(1) = V ∗(1) = Ma11V ∗(1).

For x = 2, we also obtain

MV ∗(2) = V ∗(2) = Ma22V ∗(2).

According to the above analysis and Theorem 2, we obtain the optimal
stationary policy f∗(1) = a12, f

∗(2) = a21 and the value function V ∗(1) =
0.8660,V ∗(2) = 0.8245.
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2. Baüerle, N., Rieder, U.: More risk-sensitive Markov decision processes. Math. Oper.
Res. 39, 105–120 (2014)

3. Cao, X.R.: Semi-Markov decision problems and performance sensitivity analysis.
IEEE Trans. Autom. Control 48, 758–769 (2003)

4. Cavazos-Cadena, R., Montes-De-Oca, R.: Optimal stationary policies in risk-
sensitive dynamic programs with finite state space and nonnegative rewards. Appl.
Math. (Warsaw) 27, 167–185 (2000)

5. Cavazos-Cadena, R., Montes-De-Oca, R.: Nearly optimal policies in risk-sensitive
positive dynamic programming on discrete spaces. Math. Meth. Oper. Res. 52,
133–167 (2000)

6. Chung, K.J., Sobel, M.J.: Discounted MDP’s: distribution functions and exponen-
tial utility maximization. SIAM J. Control Optim. 25, 49–62 (1987)

7. Ghosh, M.K., Saha, S.: Risk-sensitive control of continuous time Markov chains.
Stochastics 86, 655–675 (2014)

8. Ghosh, M.K., Saha, S.: Non-stationary semi-Markov decision processes on a finite
horizon. Stoch. Anal. Appl. 31, 183–190 (2013)

9. Guo, X., Liu, Q.L., Zhang, Y.: Finite horizon risk-sensitive continuous-time Markov
decision processes with unbounded transition and cost rates. 4OR 17, 427–442
(2019)

10. Guo, X.P., Hernández-Lerma, O.: Continuous-Time Markov Decision Processes:
Theory and Applications. Springer, Berlin (2009)

11. Hernández-Lerma, O., Lasserre, J.B.: Discrete-Time Markov Control Processes:
Basic Optimality Criteria. Springer, New York (1996)

12. Howard, R.A., Matheson, J.E.: Risk-sensitive Markov decision processes. Manage.
Sci. 18, 356–369 (1972)

13. Huang, Y.H., Guo, X.P.: Discounted semi-Markov decision processes with nonneg-
ative costs. Acta Math. Sin. (Chinese Ser.) 53, 503–514 (2010)

14. Huang, Y.H., Guo, X.P.: Finite horizon semi-Markov decision processes with appli-
cation to maintenance systems. Eur. J. Oper. Res. 212, 131–140 (2011)

15. Huang, Y.H., Guo, X.P.: Mean-variance problems for finite horizon semi-Markov
decision processes. Appl. Math. Optim. 72, 233–259 (2015)

16. Huang, Y.H., Guo, X.P., Song, X.Y.: Performance analysis for controlled semi-
Markov process. J. Optim. Theory Appl. 150, 395–415 (2011)

17. Huang, Y.H., Lian, Z.T., Guo, X.P.: Risk-sensitive semi-Markov decision processes
with general utilities and multiple criteria. Adv. Appl. Probab. 50, 783–804 (2018)

18. Huang, X.X., Zou, X.L., Guo, X.P.: A minimization problem of the risk probability
in first passage semi-Markov decision processes with loss rates. Sci. China Math.
58, 1923–1938 (2015)



First Passage Exponential Optimality Problem for SMDPs 37

19. Huo, H.F., Zou, X.L., Guo, X.P.: The risk probability criterion for discounted
continuous-time Markov decision processes. Discrete Event Dyn. Syst. 27, 675–
699 (2017)

20. Janssen, J., Manca, R.: Semi-Markov Risk Models for Finance, Insurance, and
Reliability. Springer, New York (2006)

21. Jaquette, S.C.: A utility criterion for Markov decision processes. Manage. Sci. 23,
43–49 (1976)

22. Jaśkiewicz, A.: A note on negative dynamic programming for risk-sensitive control.
Oper. Res. Lett. 36, 531–534 (2008)
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