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Preface

This book contains extended versions of selected reports presented at the traditional
Liverpool workshop on controlled stochastic processes in July 2021. These are
independent research papers on Markov decision processes, optimal stopping
problems, stochastic games, reinforcement learning, optimization algorithms, sys-
tem control theory, queueing networks, scheduling, etc. Along with new theoretical
results and open problems, many chapters contain case studies and applications to
real-life problems. This book can be useful for active researchers in the afore-
mentioned fields and also to practitioners interested in applying mathematical
methods to the problems arising in finance, economics, queueing systems,
telecommunication, and so on.
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Introduction

Alexey B. Piunovskiy& and Yi Zhang

University of Liverpool, Department of Mathematical Sciences,
Liverpool L69 7ZL, UK
piunov@liv.ac.uk, yi.zhang@liverpool.ac.uk

The traditional workshop in Liverpool was initially scheduled for the summer 2020.
Because of the COVID-19 pandemic, it was postponed till July 2021. Like in 2010
and 2015, we expect that world-class and active experts will be able to meet in
Liverpool or at least to participate in a series of Zoom meetings to discuss inter-
esting and challenging problems of stochastic optimal control. This book contains
several extended reports from the mentioned forthcoming workshop. We hope, it
will enable researchers, academics, and research students to get a sense of novel and
interesting results, concepts, models, methods, and applications of controlled
stochastic processes. Below, we briefly describe the topics touched in the further
chapters. Roughly speaking, chapters [3–6, 8, 10–12, 15, 18, 19] are mainly the-
oretical, although include a lot of meaningful examples. Chapters [1, 2, 7, 9, 13, 14,
20] are more problem-oriented and contain case studies.

Models and Methods. Classical discrete-time Markov decision processes
(MDPs) are considered in [3, 4, 6, 8, 9, 12, 15]; continuous-time Markov,
semi-Markov, and more general processes are considered in [2, 5, 10, 11, 19].
Chapters [4, 14, 18] are about various types of stochastic games, including the game
against the nature [4]. Let us underline that many authors investigate the models
with partial information [3–5, 9, 12, 18, 19] which are deservedly considered to be
more challenging.

As for the methods, dynamic programming is useful on many occasions [3, 4, 6,
8–10, 15]. When some probabilities (e.g., describing the dynamics of the process)
are not precisely known, the Bayesian approach [9, 12, 14], Q-learning [3, 4],
optimal filtering [19], robust control [1, 4, 12], and H2 control [5] can be useful. Let
us also mention variational inequalities [11] and self-organizing algorithms [7].
Many authors suggested new effective numerical methods for tackling optimal
control problems [3, 4, 6, 7, 10, 12, 13], especially arising from real-life case
studies. Results of essential computer calculations and simulations are presented in
[1, 3–5, 7, 9, 10, 13, 14, 18, 20].

Compared with the workshops in 2010 and 2015 [16, 17], we decided to give
more attention to applications of the optimal control theory to real-life problems. As
a result, the following case studies and meaningful examples are presented:
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• regulation of the adaptive immune response [1];
• efficiency of allocating the same job(s) to several servers in queueing systems

(survey) [2];
• forest management [3];
• control of moving objects [3,7];
• control of water resources [4];
• control of an unmanned aircraft subject to actuator faults [5];
• optimal economic growth [6];
• screening program for women breast cancer [9];
• portfolio optimization [10];
• scheduling theory [13];
• optimization of the strategies of a defender and an attacker (terrorist) in a

generalized Blotto game [14];
• optimization of advertising efforts [18];
• Jackson networks [19];
• optimization of the targeted drug delivery system [20].

Acknowledgements. All the authors are thankful to the Engineering and Physical
Sciences Research Council (EPSRC, UK, grant EP/T018216/1) and to the Research
Centre in Mathematics and Modelling (RCMM, Uni. of Liverpool) for the financial
support of the workshop “Modern Trends in Controlled Stochastic Processes:
Theory and Applications” to be held at the Dept. of Mathematical Sciences of the
University of Liverpool in July 2021.
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Average Cost Markov Decision Processes
with Semi-Uniform Feller Transition

Probabilities

Eugene A. Feinberg1(B), Pavlo O. Kasyanov2, and Michael Z. Zgurovsky2

1 Department of Applied Mathematics and Statistics, Stony Brook University,
Stony Brook, NY 11794-3600, USA

eugene.feinberg@sunysb.edu
2 Institute for Applied System Analysis, National Technical University

of Ukraine “Kyiv Polytechnic Institute”, Kyiv, Ukraine
kasyanov@i.ua, mzz@kpi.ua
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Abstract. This paper studies average-cost Markov decision processes
with semi-uniform Feller transition probabilities. This class of MDPs
was recently introduced by the authors to study MDPs with incomplete
information. This paper studies the validity of optimality inequalities, the
existence of optimal policies, and the approximations of optimal policies
by policies optimizing total discounted costs.

Keywords: MDP · Average-cost · Semi-uniform Feller transition
probabilities

AMS(2020) subject classification: Primary 90C40 · Secondary
90C39

1 Introduction

This paper establishes the validity of the optimality inequality and the existence
of stationary optimal policies for Markov Decision Processes (MDPs) with semi-
uniform Feller transition probabilities. It also investigates approximations of
optimal policies by policies minimizing discounted costs when the discount factor
tends to 1. This class of MDPs with semi-uniform Feller transition probabilities
was introduced in [12] because significant classes of problems with incomplete
information can be reduced to belief MDPs with semi-uniform Feller transition
probabilities.

The paper deals with MDPs with possibly unbounded cost functions and
noncompact action sets. Such problems were studied in [11] for MDPs with
weakly continuous transition probabilities and in [6,17] for MDPs with setwise
continuous transition probabilities. For MDPs with compact action sets, the
models with weakly and setwise continuous probabilities were studied in [21].

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
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2 Model Description

For a metric space S = (S, ρS), where ρS is a metric, let τ(S) be the topology of
S (the family of all open subsets of S), and let B(S) be its Borel σ-field, that is,
the σ-field generated by all open subsets of the metric space S. For s ∈ S and
δ > 0 denote by Bδ(s) and B̄δ(s) respectively the open and closed balls in the
metric space S of radius δ with center s and by Sδ(s) the sphere in S of radius δ
with center s. Note that Sδ(s) = B̄δ(s) \ Bδ(s). For a subset S of S let S̄ denote
the closure of S and So the interior of S. Then So ⊂ S ⊂ S̄. So is open and S̄
is closed. ∂S := S̄ \So denotes the boundary of S. In particular, ∂Bδ(s) = Sδ(s).
We denote by P(S) the set of probability measures on (S,B(S)). A sequence of
probability measures {μ(n)}n=1,2,... from P(S) converges weakly to μ ∈ P(S) if
for any bounded continuous function f on S

∫
S

f(s)μ(n)(ds) →
∫
S

f(s)μ(ds) as n → ∞.

A sequence of probability measures {μ(n)}n=1,2,... from P(S) converges in total
variation to μ ∈ P(S) if

sup
C∈B(S)

|μ(n)(C) − μ(C)| → 0 as n → ∞; (1)

see [3,10,13] for properties of these types of convergence of probability measures.
Note that P(S) is a separable metric space with respect to the topology of weak
convergence for probability measures, when S is a separable metric space; [20,
Chapter II]. Moreover, according to [4, Theorem 8.3.2], if the metric space S

is separable, then the topology of weak convergence of probability measures on
(S,B(S)) coincides with the topology generated by the Kantorovich-Rubinshtein
metric

ρP(S)(μ, ν) :=

sup
{∫

S

f(s)μ(ds) −
∫
S

f(s)ν(ds)
∣∣∣ f ∈ Lip1(S), sup

s∈S

|f(s)| ≤ 1
}

,
(2)

μ, ν ∈ P(S), where

Lip1(S) := {f : S �→ R, |f(s1) − f(s2)| ≤ ρS(s1, s2), ∀s1, s2 ∈ S}.

For a Borel subset S of a metric space (S, ρS), where ρS is a metric, we always
consider the metric space (S, ρS), where ρS := ρS

∣∣
S×S

. A subset B of S is called
open (closed) in S if B is open (closed respectively) in (S, ρ). Of course, if S = S,
we omit “in S”. Observe that, in general, an open (closed) set in S may not be
open (closed respectively). For S ∈ B(S) we denote by B(S) the Borel σ-field on
(S, ρS). Observe that B(S) = {S ∩ B : B ∈ B(S)}.

For metric spaces S1 and S2, a (Borel-measurable) stochastic kernel Ψ(ds1|s2)
on S1 given S2 is a mapping Ψ( · | · ) : B(S1) × S2 �→ [0, 1], such that Ψ( · |s2) is
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a probability measure on S1 for any s2 ∈ S2, and Ψ(B| · ) is a Borel-measurable
function on S2 for any Borel set B ∈ B(S1). A stochastic kernel Ψ(ds1|s2) on
S1 given S2 defines a Borel measurable mapping s2 �→ Ψ( · |s2) of S2 to the
metric space P(S1) endowed with the topology of weak convergence. A stochastic
kernel Ψ(ds1|s2) on S1 given S2 is called weakly continuous (continuous in total
variation), if Ψ( · |s(n)) converges weakly (in total variation) to Ψ( · |s) whenever
s(n) converges to s in S2. For one-point sets {s1} ⊂ S1, we sometimes write
Ψ(s1|s2) instead of Ψ({s1}|s2). Sometimes a weakly continuous stochastic kernel
is called Feller, and a stochastic kernel continuous in total variation is called
uniformly Feller [19].

Let S1,S2, and S3 be Borel subsets of Polish spaces (a Polish space is a
complete separable metric space), and Ψ on S1 × S2 given S3 be a stochastic
kernel. For each A ∈ B(S1), B ∈ B(S2), and s3 ∈ S3, let:

Ψ(A,B|s3) := Ψ(A × B|s3). (3)

In particular, we consider marginal stochastic kernels Ψ(S1, · | · ) on S2 given S3

and Ψ( · ,S2| · ) on S1 given S3.
In this paper we consider a discrete-time Markov decision process, which is

specified by a tuple (X,A, P, c), where

(i) the state space X equals to XW ×XY , where XW and XY are Borel subsets
of Polish spaces;

(ii) A is the action space, which is assumed to be a Borel subset of a Polish
space;

(iii) P is a stochastic kernel on XW ×XY given XW ×XY ×A, which determines
the distribution of the new state P ( · |w, y, a) on XW × XY , if (w, y) ∈
XW × XY is the current state and a ∈ A is the current action, and it is
assumed that the stochastic kernel P on X given XW × XY × A is weakly
continuous in (w, y, a) ∈ XW × XY × A;

(iv) x0 = (w0, y0) is the initial state;
(v) c : XW × XY × A �→ R+ = [0,+∞] is a one-step cost function.

The Markov decision process evolves as follows. At time t = 0, the initial
state x0 = (w0, y0) is given. At each time epoch t = 0, 1, . . ., if the state of the
system is (wt, yt) ∈ XW × XY and the decision-maker chooses an action at ∈ A,
then the cost c(wt, yt, at) is incurred and the system moves to state (wt+1, yt+1)
according to the transition law P ( · |wt, yt, at).

Define the histories: h0 := (w0, y0) ∈ H0 and ht := (w0, y0, a0, w1, y1,
a1, . . . , wt−1, yt−1, at−1, wt, yt) ∈ Ht for all t = 1, 2, . . . , where H0 := X and
Ht := Ht−1 × A × X if t = 1, 2, . . . . Then a policy is defined as a sequence
π = {πt} such that, for each t = 0, 1, . . . , πt is a transition kernel on A given
Ht. Moreover, π is called nonrandomized if each probability measure πt( · |ht) is
concentrated at one point. A nonrandomized policy is called Markov if all of the
decisions depend only on the current state and time. A Markov policy is called
stationary if all the decisions depend only on the current state. The set of all
policies is denoted by Π. The Ionescu Tulcea theorem ([2, pp. 140–141] or [18, p.
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178]) implies that a policy π ∈ Π, and initial state x0 = (w0, y0) together with
the transition kernel P determine a unique probability measure Pπ

x0
on the set

of all trajectories H∞ = (XW × XY × A)∞ endowed with the product of σ-field
defined by Borel σ-fields of XW , XY , and A respectively. The expectation with
respect to this probability measure is denoted by E

π
x0

= E
π
w0,y0

.
Let us specify the performance criterion. For a finite horizon T = 0, 1, . . .,

and for a policy π ∈ Π, let the expected total discounted costs be

vπ
T,α(x0) := E

π
x0

T−1∑
t=0

αtc(wt, yt, at), x0 ∈ X, (4)

where α ≥ 0 is the discount factor, vπ
0,α(x0) = 0. When T = ∞, (4) defines an

infinite horizon expected total discounted cost, and we denote it by vπ
α(x0). The

average cost per unit time is defined as

wπ(x0) := lim sup
T→∞

1
T

vπ
T,1(x0), x0 ∈ X. (5)

For any function gπ(x0), including gπ(x0) = vπ
T,α(x0), gπ(x0) = vπ

α(x0), and
gπ(x0) = wπ(x0) define the optimal cost g(x0) := inf

π∈Π
gπ(x0), x0 ∈ X. A policy π

is called optimal for the respective criterion, if gπ(x0) = g(x0) for all x0 ∈ X. For
gπ = vπ

t,α, the optimal policy is called t-horizon discount-optimal ; for gπ = vπ
α,

it is called discount-optimal ; and for gπ = wπ, it is called average-cost optimal.
It is well known (see, e.g., [2, Proposition 8.2]) that the functions vt,α(x)

recursively satisfy the following optimality equations with v0,α(x) = 0 for all
x ∈ X,

vt+1,α(x) = inf
a

{
c(x, a) + α

∫
X

vt,α(z)q(dz|x, a)
}

, x ∈ X, t = 0, 1, ... . (6)

In addition, a Markov policy φ, defined at the first T steps by the mappings
φ0, ...φT−1, that satisfy for all t = 1, ..., T the equations

vt,α(x) = c(x, φT−t(x)) + α

∫
X

vt−1,α(z)q(dz|x, φT−t(x)), x ∈ X, (7)

is optimal for the horizon T ; see, e.g., [2, Lemma 8.7].
It is also well known ([2, Propositions 9.8 and 9.12] or [1,5]) that vα, where

α ∈ (0, 1], satisfies the following discounted cost optimality equation (DCOE):

vα(x) = inf
a

{
c(x, a) + α

∫
X

vα(z)q(dz|x, a)
}

, x ∈ X, (8)

and a stationary policy φα is discount-optimal if and only if

vα(x) = c(x, φα(x)) + α

∫
X

vα(z)q(dz|x, φα(x)), x ∈ X. (9)
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3 Properties of Semi-Uniform Feller Stochastic Kernels

Let us consider some basic definitions.

Definition 1. Let S be a metric space. A function f : S �→ R is called

(i) lower semi-continuous (l.s.c.) at a point s ∈ S if lim inf
s′→s

f(s′) ≥ f(s);

(ii) upper semi-continuous at s ∈ S if −f is lower semi-continuous at s;
(iii) continuous at s ∈ S if f is both lower and upper semi-continuous at s;
(iv) lower/upper semi-continuous (continuous respectively) (on S) if f is

lower/upper semi-continuous (continuous respectively) at each s ∈ S.

For a metric space S, let F(S), L(S), and C(S) be the spaces of all real-valued
functions, all real-valued lower semi-continuous functions, and all real-valued
continuous functions respectively defined on the metric space S. The following
definitions are taken from [7].

Definition 2. A set F ⊂ F(S) of real-valued functions on a metric space S is
called

(i) lower semi-equicontinuous at a point s ∈ S if lim inf
s′→s

inf
f∈F

(f(s′) − f(s)) ≥ 0;

(ii) upper semi-equicontinuous at a point s ∈ S if the set {−f : f ∈ F} is lower
semi-equicontinuous at s ∈ S;

(iii) equicontinuous at a point s ∈ S, if F is both lower and upper semi-
equicontinuous at s ∈ S, that is, lim

s′→s
sup
f∈F

|f(s′) − f(s)| = 0;

(iv) lower/upper semi-equicontinuous (equicontinuous respectively) (on S) if it is
lower/upper semi-equicontinuous (equicontinuous respectively) at all s ∈ S;

(v) uniformly bounded (on S), if there exists a constant M < +∞ such that
|f(s)| ≤ M for all s ∈ S and for all f ∈ F.

Obviously, if a set F ⊂ F(S) is lower semi-equicontinuous, then F ⊂ L(S).
Moreover, if F is equicontinuous, then F ⊂ C(S).

Let S1,S2, and S3 be Borel subsets of Polish spaces, and Ψ on S1 × S2 given
S3 be a stochastic kernel.

Definition 3. ([12]) A stochastic kernel Ψ on S1 × S2 given S3 is semi-uniform
Feller if, for each sequence {s

(n)
3 }n=1,2,... ⊂ S3 that converges to s3 in S3 and

for each bounded continuous function f on S1,

lim
n→∞ sup

B∈B(S2)

∣∣∣∣
∫
S1

f(s1)Ψ(ds1, B|s(n)3 ) −
∫
S1

f(s1)Ψ(ds1, B|s3)
∣∣∣∣ = 0. (10)

We recall that the marginal measure Ψ(ds1, B|s3), s3 ∈ S3, is defined in (3).
The term “semi-uniform” is used in Definition 3 because the uniform property
holds in (10) only with respect to the first coordinate. If the uniform property
holds with respect to both coordinates, then the stochastic kernel Ψ on S1 × S2

given S3 is continuous in total variation. Stochastic kernels continuous in total
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variation are sometimes called uniformly Feller [19]. According to Corollary 1, a
semi-uniform Feller stochastic kernel is weakly continuous.

By [2, Proposition 7.27], there exists a stochastic kernel Φ on S1 given S2×S3

such that
Ψ(A × B|s3) =

∫
B

Φ(A|s2, s3)Ψ(S1, ds2|s3), (11)

A ∈ B(S1), B ∈ B(S2), s3 ∈ S3. The stochastic kernel Φ( · |s2, s3) on S1 given
S2×S3 defines a measurable mapping Φ : S2×S3 → P(S1), where Φ(s2, s3)( · ) =
Φ( · |s2, s3). According to [2, Corollary 7.27.1], for each s3 ∈ S3 the mapping
Φ( · , s3) : S2 → P(S1) is defined Ψ(S1, · |s3)-almost surely uniquely in s2 ∈ S2.
Consider the stochastic kernel

φ(D × B|s3) :=
∫

B

I{Φ(s2, s3) ∈ D}Ψ(S1, ds2|s3), (12)

D ∈ B(P(S1)), B ∈ B(S2), s3 ∈ S3. In models for decision making with incom-
plete information, φ is the transition probability between belief states, which
are posterior distributions of states. Continuity properties of φ play the funda-
mental role in the studies of models with incomplete information. Theorem 1
characterizes such properties, and this is the reason for the title of this section.

According to [2, Corollary 7.27.1], the particular choice of a stochastic kernel
Φ satisfying (11) does not effect the definition of φ in (12) because for each
s3 ∈ S3 the mapping Φ( · , s3) : S2 → P(S1) is defined Ψ(S1, · |s3)-almost surely
uniquely in s2 ∈ S2.

Consider the following assumption.

Assumption 1 There exists a stochastic kernel Φ on S1 given S2×S3 satisfying
(11) such that, if a sequence {s

(n)
3 }n=1,2,... ⊂ S3 converges to s3 ∈ S3 as n → ∞,

then there exists a subsequence {s
(nk)
3 }k =1,2,... ⊂ {s(n)3 }n=1,2,... and a measurable

subset B of S2 such that Ψ(S1 × B|s3) = 1 and

Φ(s2, s
(nk)
3 ) converges weakly to Φ(s2, s3), for all s2 ∈ B. (13)

In other words, the convergence in (13) holds Ψ(S1, ds2|s3)-almost surely.

The following theorem provides necessary and sufficient conditions for semi-
uniform Fellerness of a stochastic kernel φ in terms of the properties of a given
stochastic kernel Ψ. This theorem describes the necessary and sufficient condi-
tions for the semi-uniform Feller property of the belief-MDPs in terms of the
conditions on the transition kernel in the initial model for decision making with
incomplete information.

Theorem 1. ([12, Theorem 5.14]) For a given stochastic kernel Ψ on S1 × S2

given S3, let the marginal kernel Ψ(S1, · | · ) on S2 given S3 is continuous in total
variation. Then the following conditions are equivalent:

(a) the stochastic kernel Ψ on S1 × S2 given S3 is semi-uniform Feller;
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(b) Assumption 1 holds;
(c) if a sequence {s

(n)
3 }n=1,2,... ⊂ S3 converges to s3 ∈ S3 as n → ∞, then

ρP(S1)(Φ(s2, s
(n)
3 ), Φ(s2, s3)) → 0 in probability Ψ(S1, ds2|s3), (14)

where ρP(S1) is the Kantorovich-Rubinshtein metric defined in (2);
(d) the stochastic kernel φ on P(S1) × S2 given S3 is semi-uniform Feller;

and each of these statements implies that the stochastic kernels Ψ on S1 × S2

given S3 and φ on P(S1) × S2 given S3 are weakly continuous.

Corollary 1. ([12, Corollary 5.15]) A semi-uniform Feller stochastic kernel Ψ
on S1 × S2 given S3 is weakly continuous.

For other properties of semi-uniform Feller stochastic kernels we refer to [12,
Section 5].

4 Expected Discounted Costs

For a metric space U, we denote by K(U) the family of all nonempty compact
subsets of U.

For an R-valued function f , defined on a nonempty subset U of a metric
space U, consider the level sets

Df (λ;U) = {y ∈ U : f(y) ≤ λ}, λ ∈ R. (15)

We recall that a function f is inf-compact on U if all the level sets Df (λ;U) are
compact.

Let S1,S2, and S3 be Borel subsets of Polish spaces. Let LW (S1;S2) be the
class of all nonnegative Borel-measurable functions ϕ : S1 × S2 �→ R such that
s1 �→ ϕ(s1, s2) is lower semi-continuous on S1 for each s2 ∈ S2.

Definition 4. ([12]) A function u : S1×S2×S3 �→ R is called measurable K-inf-
compact if it is Borel-measurable and for each s2 ∈ S2 the function (s1, s3) �→
u(s1, s2; s3) is K-inf-compact on S1 × S3, that is, for each s2 ∈ S2 the function
(s1, s3) �→ u(s1, s2; s3) is inf-compact on K × S3 for each K ∈ K(S1).

Consider a discrete-time MDP (X,A, q, c) with the state space X = XW ×XY ,
an action space A, one-step costs c, and transition probabilities q. Assume that
XW ,XY , and A are Borel subsets of Polish spaces. For any α ≥ 0 and u ∈
LW (XW ;XY ), we consider:

ηα
u (x, a) = c(x, a) + α

∫
X

u(x̃)q(dx̃|x, a), (x, a) ∈ X × A. (16)

The following assumption is used in this paper to prove the existence of
optimal policies.



8 E. A. Feinberg et al.

Assumption 2 Let the following two conditions hold:

(i) the function c : X × A �→ R is nonnegative and measurable K-inf-compact
with S1 := XW , S2 := XY , S3 := A, and u = c;

(ii) the stochastic kernel q on XW × XY given XW × XY × A is semi-uniform
Feller.

The following theorem, which is stronger theorem than Theorem 6.2 in [12],
is the main result of this section.

Theorem 2. Let Assumption 2 hold. Then

(i) the functions vα(w, y) and vt,α(w, y), t = 0, 1, . . ., belongs to LW (XW ×
[0, 1];XY ), and vt,α(x) ↑ vα(x) as t → ∞ for all (x, α) ∈ X × [0, 1];

(ii) for each x ∈ X the functions α �→ vα(x) and α �→ vt,α(x), t = 0, 1, . . ., where
α ∈ [0, 1], are nondecreasing, and they are continuous on the interiors of
their domains;

(iii) if t = 0, 1, . . ., α ∈ [0, 1], and x ∈ X, then vt+1,α(x) = min
a∈A

ηα
vt,α

(x, a),

and the nonempty sets At,α(x) := {a ∈ A : vt+1,α(x) = ηα
vt,α

(x, a)} satisfy
the properties: (a) Gr(At,α) ∈ B(X × [0, 1] × A), and (b) At,α(x) = A, if
vt+1,α(x) = +∞, and At,α(x) is compact if vt+1,α(x) < +∞;

(iv) for T = 1, 2, . . . and α ∈ [0, 1], if for a T -horizon Markov policy
(φ0, . . . , φT−1) the inclusions φT−1−t(x) ∈ At,α(x) hold for all x ∈ X and
for all t = 0, . . . , T −1, then this policy is T -horizon optimal for the discount
factor α, and, in addition, there exist Markov optimal T -horizon policies
(φα

0 , . . . , φα
T−1) for the discount factor α such φα

t (x) : X × [0, 1] �→ A is
Borel measurable for each t = 0, . . . , T − 1;

(v) if α ∈ [0, 1] and x ∈ X, then vα(x) = min
a∈A

ηα
vα

(x, a), and the nonempty

sets Aα(x) := {a ∈ A : vα(x) = ηα
vα

(x, a)} satisfy the properties: (a)
Gr(Aα) ∈ B(X× [0, 1]×A), and (b) Aα(x) = A, if vα(x) = +∞, and Aα(x)
is compact if vα(x) < +∞;

(vi) for a discount factor α ∈ [0, 1], a stationary policy φ is optimal for an
infinite-horizon problem with this discount factor if and only if φ(x) ∈
Aα(x) for all x ∈ X, and there exists a Borel measurable mapping φα :
X �→ A, such that for each α ∈ [0, 1] the stationary policy φα is optimal for
the infinite-horizon problem with the discount factor α.

Before the proof of Theorem 2, we provide Lemma 1, which is useful for
establishing continuity properties of the value functions vt,α and vα(x). The proof
of this lemma uses Theorem 2.2 from [6]. For each (w, y, α) �→ wα(w, y) from
LW (XW ×R+;XY ), where R+ := [0,+∞), we consider the function (w, y, α) �→
w∗

α(w, y) := inf
a∈A

ηα
wα

(w, y, a) on XW × XY × R+. We observe that, if for some

x ∈ X the function α �→ wα(x) is nondecreasing, then the interior of its domain
is the open interval (0, α(x)).

Lemma 1. Let Assumption 2 hold, and let (w, y, α) �→ wα(x) be a function
from LW (XW × R+;XY ) such that for each x ∈ X the function α �→ wα(x) is
nondecreasing, and it is continuous on the interior of its domain. Then:
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(i) the function (x, a, α) �→ ηα
wα

(x, a) is Borel measurable on X×A×R+, and
for each y ∈ XY the function (w,α; a) �→ ηα

wα
(w, y, a) is K-inf-compact on

(XW × R+) × A;
(ii) for each (x, a) ∈ X × A the function α �→ ηα

wα
(x, a) is nondecreasing and

continuous in α on the interior of its domain;
(iii) the function (w, y, α) �→ w∗

α(w, y) belongs to LW (XW × R+;XY );
(iv) for each x ∈ X the function α �→ w∗

α(x) is nondecreasing and continuous
on the interior of its domain;

(v) there exists a Borel mapping (x, α) �→ fα(x) of X × R+ into A such that
fα(x) ∈ A and w∗

α(x) = ηα
wα

(x, fα(x)) for all x ∈ X and α ≥ 0;
(vi) the nonempty sets A∗

α(x) =
{
a ∈ A : w∗

α(x) = ηα
wα

(x, a)
}
, (x, α) ∈ X×R+,

satisfy the following properties: (a) Gr(A∗
α) ∈ B(X×R+ ×A); (b) A∗

α(x) =
A, if w∗

α(x) = +∞, and A∗
α(x) is compact if w∗

α(x) < +∞.

Proof. (i). The function (x, a, α) �→ ηα
wα

(x, a) is nonnegative and nondecreasing
in α because (x, a) �→ c(x, a) and (x, α) �→ wα(x) are nonnegative and nonde-
creasing in α. Borel-measurability and continuity properties of (x, α) �→ wα(x)
and regularity of the transition kernel q imply that the function (x, a, α) �→∫
X

wα(z)q(dz|x, a) is Borel measurable on X × A × R+, which implies that the
function (x, a, α) �→ ηα

wα
(x, a) is Borel measurable on X × A × R+.

Fix an arbitrary y ∈ XY and prove that the function (w,α; a) �→ ηα
wα

(w, y, a)
is K-inf-compact on (XW ×R+)×A. According to Assumption 2(i), the function
(w, a) �→ c(x, y, a) is K-inf-compact on XW × A. If

∫
X

wα(x̃)q(dx̃|w, y, a) ≤ lim inf
n→∞

∫
X

wα(n)(x̃)q(dx̃|w(n), y, a(n)), (17)

for all (w, a, α) ∈ XW × A × R+ and {w(n), a(n), α(n)}n=1,2,... converging to
(w, a, α), then the function (w,α; a) �→ ηα

wα
(w, y, a) is K-inf-compact on (XW ×

R+) × A since it is a sum of a K-inf-compact function and a nonnegative lower
semi-continuous function. Let us prove that (17) holds. On the contrary, there
exist a sequence {(w(n), a(n), α(n))}n=1,2,... ⊂ XW × A × R+ that converges to
some (w, a, α) ∈ XW × A × R+ and a constant λ such that

∫
X

wα(n)(x̃)q(dx̃|w(n), y, a(n)) ≤ λ <

∫
X

wα(x̃)q(dx̃|w, y, a), (18)

for each n = 1, 2, . . . . Since the function α �→ wα(x) is nondecreasing, without
loss of generality, assume that α(n) ↑ α as n → ∞. According to Theorem 1(a,
b) applied to Ψ := q, S1 := XW , S2 := XY , S3 := XW × {y} × A, there exists
a stochastic kernel Φ on XW given XY × XW × {y} × A such that (11) and
Assumption 1 hold. In particular, (18) implies that

∫
XY

[∫
XW

wα(n)(w̃, ỹ)Φ(dw̃|ỹ, w(n), y, a(n))
]

q(XW , dỹ|w(n), y, a(n)) ≤ λ, (19)

for each n = 1, 2, . . ., and there exist a subsequence {(w(nk), a(nk))}k=1,2,... ⊂
{(w(n), a(n))}n=1,2,... and a Borel set Y ∈ B(XY ) such that q(XW ×Y |w, y, a) = 1
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and Φ(ỹ, w(n), y, a(n)) converges weakly to Φ(ỹ, w, y, a) in P(XW ) as k → ∞, for
all ỹ ∈ Y. Therefore, since the function w̃ �→ wα(p)(w̃, ỹ) is nonnegative and
lower semi-continuous for each ỹ ∈ Y and p = 1, 2, . . ., Fatou’s lemma for weakly
converging probabilities [14, Theorem 1.1] implies that

∫
XW

wα(m)(w̃, ỹ)Φ(dw̃|ỹ, w, y, a) ≤

lim inf
k→∞

∫
XW

wα(m)(w̃, ỹ)Φ(dw̃|ỹ, w(nk), y, a(nk)) ≤

lim inf
k→∞

∫
XW

wα(nk)(w̃, ỹ)Φ(dw̃|ỹ, w(nk), y, a(nk)),

for each m = 1, 2, . . . and ỹ ∈ Y , where the second inequality holds, since
α(nk) ↑ α as k → ∞, and the function α �→ wα(x) is nondecreasing. Therefore,
the monotone convergence theorem implies
∫
XW

wα(w̃, ỹ)Φ(dw̃|ỹ, w, y, a) ≤ lim inf
k→∞

∫
XW

wα(nk)(w̃, ỹ)Φ(dw̃|ỹ, w(nk), y, a(nk)),

for each ỹ ∈ Y. For a fixed N = 1, 2, . . . we set

ϕN
k (ỹ) := min{

∫
XW

wα(nk)(w̃, ỹ)Φ(dw̃|ỹ, w(nk), y, a(nk)), N},

ϕN (ỹ) := min{
∫
XW

wα(w̃, ỹ)Φ(dw̃|ỹ, w, y, a), N},

ỹ ∈ Y , k = 1, 2, . . . . Note that ϕN (ỹ) ≤ lim inf k→∞ ϕN
k (ỹ), for each ỹ ∈ Y.

Therefore, uniform Fatou’s lemma [13, Corollary 2.3] implies that
∫
XY

ϕN (ỹ)q(XW , dỹ|w, y, a) ≤ lim inf
k→∞

∫
XY

ϕN
k (ỹ)q(XW , dỹ|w(nk), y, a(nk)) ≤ λ,

for each N = 1, 2, . . ., where the second inequality follows from (19) since
ϕN

k (ỹ) ≤ ∫
XW

wα(nk)(w̃, ỹ)Φ(dw̃|ỹ, w(nk), y, a(nk)) for each ỹ ∈ Y , and k =
1, 2, . . . . Thus, the monotone convergence theorem implies that

∫
X

wα(x̃)q(dx̃|w, y, a) = lim
N→∞

∫
XY

ϕN (ỹ)q(XW , dỹ|w, y, a) ≤ λ.

This is a contradiction to (18). Therefore, the function (w,α; a) �→ ηα
wα

(w, y, a)
is K-inf-compact on (XW × R+) × A.

(iii, v, vi). Statement (i) and Berge’s theorem for noncompact action sets [9,
Theorem 1.2] imply that the function (w,α) �→ w∗

α(w, y) is lower semi-continuous
for each y ∈ XY . Moreover, [6, Theorem 2.2, and Corollary 2.3 (i)] directly imply
that the function (w, y, α) �→ w∗

α(w, y) is Borel measurable and statements (v)
hold. Property (vi)(a) follows from Borel measurability of (x, a, α) �→ ηα

wα
(x, a)

on X×A×R+ and (x, α) �→ w∗
α(x) on X×R+; and property (vi)(b) follows from

inf-compactness of a �→ ηα
wα

(x, a) on A for each (x, α) ∈ X × R+.
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(ii). The function α �→ α
∫
X

wα(z)q(dz|x, a) is continuous on the interior of
its domain for each (x, a) ∈ X × A. This follows from Assumption 2 (ii) and [7,
Theorem 6.1] because, according to Corollary 1, the stochastic kernel q is weakly
continuous. So, the function α �→ ηα

wα
(x, a) is continuous in α on the interior of

its domain.
(iv). Fix an arbitrary x ∈ X. Statement (ii) implies that the function α �→

w∗
α(x) is nondecreasing. The continuity statement is nontrivial only if the interior

of the domain of this function is not empty. Let (0, α(x)) be the interior domain
of α �→ w∗

α(x). We shall prove that the function w∗
α(x) is continuous on (0, α(x)).

Let us fix an arbitrary α′ ∈ (0, α(x)). We choose an arbitrary β ∈ (α′, α(x)).
Then w∗

β(x) < +∞, and therefore ηβ
wβ

(x, aβ) < +∞ for some aβ ∈ A. Then
ηα

wα
(x, aβ) ≤ ηβ

wβ
(x, aβ) < +∞ for all α ∈ (0, β]. For each a ∈ A the function

g(α, a) = min{ηα
wα

(x, a), ηα
wα

(x, aβ)} is continuous in α ∈ (0, β] as a minimum
of two continuous functions, and w∗

α(x) = infa∈A g(α, a). Since the infimum
of upper semi-continuous functions is an upper semi-continuous function, the
function α �→ w∗

α(x) is upper semi-continuous on (0, β], and therefore it is upper
semi-continuous on (0, α(x)). According to statement (iii), the function α �→
w∗

α(x) is lower semi-continuous on R+. So, statement (iv) holds. �
Proof of Theorem 2. According to (6), the functions vt,α(x), t = 0, 1, . . ., recur-
sively satisfy the optimality equations vt+1,α(x) = inf

a∈A

ηα
vt,α

(x, a) with v0,α(x) =

0, for all (x, α) ∈ X × [0, 1]). So, Lemma 1 (i, ii) sequentially applied to the
functions v0,α(x), v1,α(x), . . ., imply statements (i,ii) of the theorem. In par-
ticular, statement (ii) of the theorem implies that these functions are lower
semi-continuous in α on the interiors of their domains. According to [2, Propo-
sition 9.17], vt,α(x) ↑ vα(x) as t → +∞ for each (x, α) ∈ X × [0, 1]. There-
fore, vα(x) ∈ LW (XW × [0, 1];XY ), and vα(x) is nondecreasing and lower semi-
continuous in α on the interior of its domain. Thus, statement (i) is proved.

In addition, (7) imply that a Markov policy defined at the first T steps by the
mappings φα

0 , ...φα
T−1, that satisfy for all t = 1, . . . , T the equations vt,α(x) =

ηα
vt−1,α

(x, φα
T−t(x)), for each (x, α) ∈ X × [0, 1], is optimal for the horizon T.

According to (8) and (9), vα(x) satisfies the discounted cost optimality equation
vα(x) = inf

a∈A

ηα
vα

(x, a) for each (x, α) ∈ X× [0, 1]; and a stationary policy φα(x) is

discount-optimal if and only if vα(x) = ηα
vα

(x, φα(x)) for each x ∈ X. Statements
(iii–vi) follow from these facts and Lemma 1 (v, vi).

To complete the proof of statement (ii), we need to show that for each fixed
x ∈ X the function α �→ vα(x) is upper semi-continuous in the interior of its
domain. Since vα(x) is nondecreasing and lower semi-continuous in α on the
interior of its domain, this means that we need to show that vα(x) is right-
continuous in α ∈ (0, 1) if vα(x) < +∞. Indeed, if vα(x) < +∞, let us consider
a stationary optimal stationary policy φα whose existence is claimed in statement
(vi). Then the function vφα

α+Δ(x) is continuous in Δ as a value of a converging
power series. Therefore,

0 ≤ vα+Δ(x) − vα(x) = vα+Δ(x) − vφα

α (x) ≤ vφα

α+Δ(x) − vφα

α (x) ↓ 0

as Δ ↓ 0. �
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5 Average Costs per Unit Time

Following [21], we assume that w∗ := inf
x∈X

w(x) < +∞, that is, there exist x ∈ X

and π ∈ Π with wπ(x) < +∞. Otherwise, if this assumption does not hold, then
the problem is trivial, because w(x) = +∞ for all x ∈ X and any policy π is
average-cost optimal.

Define the following quantities for α ∈ [0, 1):

mα = inf
x∈X

vα(x), uα(x) = vα(x) − mα,

w = lim inf
α↑1

(1 − α)mα, w = lim sup
α↑1

(1 − α)mα.

According to [21, Lemma 1.2],

0 ≤ w ≤ w ≤ w∗ < +∞. (20)

In this section we show that Assumption 2 and boundedness assumption
Assumption B on the function uα introduced in [8], which is weaker than
boundedness Assumption B introduced in [21], lead to the validity of station-
ary average-cost optimal inequalities and the existence of stationary policies.
Stronger results hold under Assumption B.

Assumption B. lim inf
α↑1

uα(x) < +∞ for all x ∈ X.

The above is weaker than the following assumption.
Assumption B. supα∈[0,1) uα(x) < +∞ for all x ∈ X.

In the rest of this paper we assume that Assumption B holds. In view of
Theorem 2 (i), if vα(x) = +∞ for some (x, α) ∈ X× [0, 1), then uβ(x) = vβ(x) =
+∞ for all β ∈ [α, 1), and u(x) = +∞, where mβ is finite in view of (20). Thus
Assumption B implies that vα(x) < +∞, and therefore uα(x) < +∞ for all
(x, α) ∈ X × [0, 1). Under Assumption 2, in view of (20) and Theorem 2(i,ii),
mα : [0, 1) �→ R+ is a nondecreasing upper semi-continuous function as an
infimum of the family of the continuous functions, and therefore uα(w, y) =
vα(w, y) − mα ∈ LW (XW × [0, 1);XY ).

Let us define the following nonnegative functions on XW × XY :

Uβ(w, y) := inf
α∈[β,1)

uα(w, y),

U∼ β(w, y) := lim inf
w′→w

Uβ(w′, y),

u(w, y) := sup
β∈[0,1)

U∼ β(w, y),

(21)

β ∈ [0, 1), x ∈ X. To establish the Borel measurable properties for these functions
we need to make the following assumption.
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Assumption 3 The space XW is σ-compact.

Lemma 2. Let β ∈ [0, 1). Under Assumptions 2 and 3, the functions Uβ , U∼ β , u :

X �→ R+ defined in (21) are Borel measurable on X. Moreover, the functions
U∼ β(w, y) and u(w, y) are lower semi-continuous in w for each y ∈ XY .

Proof. Fix β ∈ [0, 1). Borel measurability of (w, y) �→ Uβ(w, y) follows from (21)
and [6, Theorem 2.1] applied to the Borel spaces X and [0, 1), set-valued map
B(x) = [β, 1) for all x ∈ X, and the function u(x, α) := uα(x) ∈ LW ([0, 1);X).
Let us prove the Borel measurability of (w, y) �→ U∼ β(w, y). Indeed, consider the

function
u(w′, α, w, y, δ) := uα(w′, y)χ{w′ ∈ B̄δ(w)},

w′, w ∈ XW , y ∈ XY , α ∈ [β, 1), δ > 0, where χ{“True′′} := 0, and χ{“False′′} :=
+∞. Since the nonnegative functions (w′, α, y) �→ uα(w′, y) and (w′, w, δ) �→
χ{w′ ∈ B̄δ(w)} belong to LW (XW × [0, 1);XY ) and LW (XW ;XW × (0,+∞))
respectively, then the function u belongs to LW (XW ×[0, 1);X×(0,+∞)). There-
fore, according to Feinberg and Kasyanov [6, Theorem 2.1] applied to the Borel
space X := X × (0,+∞), σ-compact space A := XW × [0, 1), set-valued map
B(w, δ) = XW × [β, 1) for all w ∈ XW , and the function u ∈ LW (A; X), we have
that the function

(w, y) �→ U(w, y) := inf
w′∈B̄δ(w)

inf
α∈[β,1)

uα(w′, y)

is Borel measurable. Therefore, the function (w, y) �→ U∼ β(w, y) is Borel measur-

able because

U∼ β(w, y) = sup
n=1,2,...

inf
w′∈B̄ 1

n
(w)

inf
α∈[β,1)

uα(w′, y),

w ∈ XW and y ∈ XY , and a supremum of countable family of Borel measurable
functions is Borel measurable. Note that lower semi-continuity of U∼ β(w, y) in w

directly follows from its definition (21). Therefore, according to (21), the function
(w, y) �→ u(w, y) is Borel measurable and it is lower semi-continuous in w for
each y ∈ XY as a supremum of countable family of Borel measurable functions
{U∼ 1− 1

n
(w, y)}n=1,2... which are lower semi-continuous in w. �

In view of the definition of u in Assumption B,

u(w, y) = lim
β↑1 U∼ β(w, y), w ∈ XW , y ∈ XY . (22)

Under Assumptions 2 and 3 the following sets can be defined for u introduced
in (21):

Au(x) :=
{
a ∈ A : w + u(x) ≥ η1

u(x, a)
}

,

Au(x) :=
{

a ∈ A : min
a∗∈A

η1
u(x, a∗) = η1

u(x, a)
}

, x ∈ X.
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In view of Lemma 1, the sets Au(x) are nonempty and compact for all x ∈ X.
In the following theorem we show that Assumption 2 and boundedness assump-
tion Assumptions B on the functions {uα}α∈[0,1) lead to the validity of stationary
average-cost optimal inequalities and the existence of stationary policies. [8, The-
orems 3 and 4] are respectively counterparts to Theorem 3.3 and the main result
in [16] for MDPs with weakly continuous transition probabilities. Assumption B
and some additional conditions lead to the validity of optimality equations for
average-costs MDPs. In [15] such sufficient conditions are provided for MDPs
with weakly continuous transition probabilities and applied to inventory con-
trol. More general sufficient conditions for validity of optimality equations are
provided in [7, Section 7] for MDPs with weakly and setwise continuous transi-
tion probabilities.

Theorem 3. Let Assumptions 2, 3, and B hold. Then for infinite-horizon aver-
age costs per unit time there exists a stationary optimal policy φ satisfying

w + u(x) ≥ η1
u(x, φ(x)), x ∈ X, (23)

with u defined in (21), and for this policy

w(x) = wφ(x) = lim sup
α↑1

(1 − α)vα(x) = w = w∗, x ∈ X. (24)

Moreover, the following statements hold:

(a) the function u : X �→ R+ defined in (21) is Borel measurable;
(b) the nonempty sets Au(x), x ∈ X, satisfy the following properties: (b1)

Gr(Au) ∈ B(X × A); (b2) for each x ∈ X the set Au(x) is compact;
(c) if ϕ(x) ∈ Au(x) for all x ∈ X for a stationary policy ϕ, then ϕ satisfies

(23) and (24), with u defined in (21) and with φ = ϕ, and ϕ is optimal for
average costs per unit time;

(d) the sets Au(x) are compact and Au(x) ⊂ Au(x) for all x ∈ X, and there
exists a stationary policy ϕ with ϕ(x) ∈ Au(x) ⊂ Au(x) for all x ∈ X.

The proof of Theorem 3 uses the following statement.

Lemma 3. Under Assumptions 2, 3, and B,

w + u(x) ≥ min
a∈A

η1
u(x, a), x ∈ X. (25)

Proof. Fix an arbitrary ε∗ > 0. Due to the definition of w, there exists α0 ∈ (0, 1)
such that

w + ε∗ > (1 − α)mα, α ∈ [α0, 1). (26)

According to Lemma 2, the R+-valued function (w, y) �→ U∼ α(w, y) is Borel

measurable for all α ∈ (0, 1). Therefore, the function ηα
U∼α

(x, a) is well-defined.

Let us prove that

w + ε∗ + u(x) ≥ min
a∈A

ηα
U∼α

(x, a), x ∈ X, α ∈ [α0, 1). (27)
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Indeed, Theorem 2 (v) and (26) imply that

w + ε∗ + uβ(w, y) > (1 − β)mβ + uβ(w, y) = vβ(w, y) − βmβ

= min
a∈A

ηβ
uβ

(w, y, a) ≥ min
a∈A

ηα
U∼α

(w, y, a),

for each w ∈ XW , y ∈ XY , and α, β ∈ [α0, 1) such that β ≥ α. Since the right-
hand side of the above inequality does not depend on β ∈ [α, 1), by taking the
infimum in β ∈ [α, 1), we obtain that

w + ε∗ + Uα(w, y) ≥ min
a∈A

ηα
Uα

(w, y, a) ≥ min
a∈A

ηα
U∼α

(w, y, a), (28)

for all w ∈ XW , y ∈ XY , and α ∈ [α0, 1). Since the function c is measurable
K-inf-compact and, due to Lemma 2, U∼ α ∈ LW (XW ;XY ), and the function

w �→ min
a∈A

ηα
U∼α

(w, y, a) is nonnegative lower semi-continuous function for each

y ∈ XY . Therefore, (28) implies that

w + ε∗ + U∼ α(w, y) ≥ min
a∈A

ηα
U∼α

(w, y, a), (29)

for all w ∈ XW , y ∈ XY , and α ∈ [α0, 1). Thus, since the function U∼ α(w, y) is

nonincreasing in α ∈ [0, 1), inequalities (27) hold in view of (22).
Let us fix an arbitrary x ∈ X. By Lemma 1 (v, vi), for every α ∈ [0, 1)

there exists aα ∈ A such that min
a∈A

ηα
U∼α

(x, a) = ηα
U∼α

(x, aα). Since U∼ α ≥ 0, for

α ∈ [α0, 1), inequality (27) can be continued as

w + ε∗ + u(x) ≥ ηα
U∼α

(x, aα) ≥ c(x, aα). (30)

Thus, for all α ∈ [α0, 1)

aα ∈ Dηα
U∼α

(x, · )(w + ε∗ + u(x)) ⊂ Dc(x, · )(w + ε∗ + u(x)) ⊂ A.

Since the function c(x, · ) is inf-compact, the nonempty set Dc(x, · )(w+ε∗+u(x))
is compact. Therefore, for every sequence β(n) ↑ 1 of numbers from [α0, 1) there
is a subsequence {α(n)}n≥1 such that the sequence {aα(n)}n≥1 converges and
a∗ := limn→∞ aα(n) ∈ A. Consider a sequence α(n) ↑ 1 such that aα(n) → a∗
for some a∗ ∈ A. Due to (22) and Lemma 2, similarly to the proof of (17), we
obtain that

lim inf
n→∞ α(n)

∫
X

U∼ α(n)(z)q(dz|x, a(n)) ≥
∫
X

u(z)q(dz|x, a∗). (31)

Therefore, since the function c is lower semi-continuous in a, (30) imply

w + ε∗ + u(x) ≥ lim inf
n→∞ ηα(n)

U∼α(n)
(x, aα(n))

≥ c(x, a∗) +
∫
X

u(z)q(dz|x, a∗) ≥ min
a∈A

η1
u(x, a∗),

which implies (25) because ε∗ > 0 is arbitrary. �
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Proof of Theorem 3. For statement (a) see (22) and the following sentence. Since
Gr(Au) = {(x, a) ∈ Gr(A) : g(x, a) ≥ 0}, where g(x, a) = w + u(x) − c(x, a) −∫
X

u(y)q(dy|x, a) is a Borel function, the set Gr(Au) is Borel. The sets Au(x),
x ∈ X, are compact because for each x ∈ X the function a �→ η1

u(x, a) is inf-
compact on A as a sum of inf-compact and nonnegative lower semi-continuous
functions. Thus, statement (b) is proved. The Arsenin-Kunugui theorem implies
the existence of a stationary policy φ such that φ(x) ∈ Au(x) for all x ∈ X.
Statement (d) follows from and Lemma 1(v) because each a∗ ∈ Au(x) satis-
fies η1

u(x, a∗) = mina∗∈A η1
u(x, a∗) ≤ w + u(x), where the inequality holds since

Au(x) = ∅. The remaining conclusions of Theorem 3 follow from Lemma 3 and
[21, Proposition 1.3] stating that inequalities (23) imply optimality of the policy
φ and (24). �

Under Assumptions 2, 3, and B, consider the sequence α(n) ↑ 1 such that
(1−α(n))mα(n) → w as n → ∞. Let us define the following nonnegative functions
on XW × XY :

Um(w, y) := inf
n≥m

uα(n)(w, y),

U∼ m(w, y) := lim inf
w′→w

Um(w′, y),

u(w, y) := sup
m→∞

U∼ m(w, y),

(32)

m = 1, 2, . . ., x ∈ X.

Theorem 4. Suppose Assumptions 2, 3, and B hold. Then all the conclusions
of Theorem 3 hold and, in addition, for a stationary policy φ satisfying (23) with
u defined in (32),

wφ(x) = w = lim
α↑1

(1 − α)vα(x) = lim
N→∞

1
N

vφ
N,1(x), x ∈ X. (33)

Proof repeats the proof of Theorem 3 if we replace [α, 1) with {α(n)}n≥m; cf.
[11, Theorem 4]. �

6 Approximation of Average Cost Optimal Policies by
α-discount Optimal Policies

Under Assumptions 2, 3, and B, consider a nondecreasing sequence α(n) ↑ 1 such
that (1−α(n))mα(n) → w as n → ∞. Consider the nonnegative functions defined
in (32). For a family of sets {Gr(Aα(n))}n=1,2,..., x ∈ X, from Theorem 2, let us
set:

Aapp(x) :=
{

a ∈ Au(x) : (x, a) ∈ Ã
}

, x ∈ X,

where (w, y, a) ∈ Ã if and only if there exist a subsequence {γ(n)}n=1,2,... ⊂
{α(n)}n=1,2,... and a sequence {w(n), a(n)}n=1,2,... ⊂ Gr(Aα(n)) that converges
to (w, a) as n → ∞.
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Theorem 5. Under Assumptions 2, 3, and B, the graph Gr(Aapp) is a Borel
subset of Gr(A∗), and for each x ∈ X the set Aapp(x) is nonempty and compact.
Furthermore, there exists a stationary policy φapp such that φapp(x) ∈ Aapp(x)
for all x ∈ X, and any such policy is average-cost optimal.

Proof is similar to the proof of [8, Theorem 5] with minor changes; cf. the proof
of Theorem 3. �

Corollary 2. (cf. [8, Corollary 3]) Under Assumptions 2, 3, and B, for any
stationary average-cost optimal policy φapp, such that φapp(x) ∈ Aapp(x) for all
x ∈ X, for every (w, y) ∈ X there exist αn ↑ 1 and wn → w as n → +∞ such
that for some an ∈ Aαn

(wn, y), n ≥ 1, the equality φapp(w, y) = limn→+∞ an

holds.
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Abstract. This paper deals with the exponential utility maximization
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ditions, we establish the corresponding optimality equation, and prove
the existence of an exponential utility optimal stationary policy by an
invariant embedding technique. Moreover, we provide an iterative algo-
rithm for calculating the value function as well as the optimal policies.
Finally, we illustrate the computational aspects of an optimal policy with
an example.

Keywords: Semi-Markov decision processes · Exponential utility ·
First passage time · Value iterative approach · Optimality equation ·
Optimal policy

AMS(2020) subject classification: Primary 90C40 · Secondary
90C39

1 Introduction

Semi-Markov decision processes (SMDPs), as an important class of stochas-
tic control problems, have been widely studied [1,10,11,15,20,28,31]. The
commonly used criteria for SMDPs are the finite horizon expected criterion
[8,14,26,28], the expected discounted criterion [1,3,10,13,25,27], and the aver-
age criterion [10,23,31–33]. These criteria are linear utility functions of the total
rewards (i.e. are risk-neutral), which only focus on the expected total rewards
of a system during a fixed or a random horizon, and therefore cannot reflect the
decision maker’s attitude toward risk.

To exhibit the attitude of a decision maker in the face of risk (i.e. risk-
seeking or risk-averse), the risk sensitive criteria, which include the exponential
utility criterion, have been considered for discrete-time MDPs (DTMDPs) [2,4–
6,21,22], and continuous-time MDPs (CTMDPs) [7,9,30,34]. Specifically, Jaque-
tte [21] first introduced the exponential utility to DTMDPs. For the resulting
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optimization problem, Chung and Sobel [6] established the corresponding opti-
mality equation by means of the Banach fixed point theorem. Cavazos-Cadena
and Montes-De-Oca [4,5] gave conditions ensuring the existence of optimal poli-
cies for the positive dynamic programming, where the state space is considered
to be finite in [4], and denumerable in [5]. Jaśkiewicz [22] considered the Borel
state and action spaces, and establish the convergence of the n-stage optimal
expected total reward and the existence of an optimal stationary policy. Baüerle
and Rieder [2] considered a more general problem than the classic risk sensi-
tive optimization problem, which is called minimizing a certainty equivalent.
They solved the optimization problem by an ordinary MDP with extended state
space, and proved the existence of an optimal policy under some suitable con-
ditions. For the case of CTMDPs, Ghosh and Saha [7] studied the risk sensitive
control in discrete state space. They obtain the value function as a solution to
the Hamilton Jacobi Bellman equation, and proved the existence of an opti-
mal Markov control for finite horizon problem, and the existence of an optimal
stationary control for infinite horizon problem. Wei [30] dealt with risk sen-
sitive cost criterion for finite horizon CTMDPs with denumerable state space
and Borel action space. Under suitable conditions, he proved the existence of
the Feynman-Kac formula and an optimal deterministic Markov policy. For the
same problem as in [30], Guo, Liu and Zhang [9] investigated the case when
the transition and cost rates may be unbounded. They proved that the value
function is the unique solution to the optimality equation, and showed the exis-
tence of an optimal policy via the Feynman-Kac formula. Few literature [34]
applied the uniformization technique to reducing the CTMDPs problem with
exponential utility to an equivalent DTMDPs. Recently, Huang, Lian and Guo
[17] considered the risk sensitive unconstrained and constrained problems for
SMDPs with Borel state space, unbounded cost rates and general utility func-
tions, and proved the existence of the Bellman equation and the optimal policies
under some continuity-compactness conditions by using the occupation measure
approach.

All of this existing literature shows that all the aforementioned MDPs for the
risk-sensitive criterion have two common features: the horizon is finite or infinite,
the control model is DTMDPs or CTMDPs. However, such as those encoun-
tered in many real world situations, many models in ruin problems [20,29],
reliability [20,24], and maintenance [20] are considered with a random hori-
zon, and described as SMDPs. Moreover, compared to DTMDPs and CTMDPs
(under stationary policies), SMDPs are more general stochastic optimal models,
in which the holding time of the system state can be allowed to follow any arbi-
trary probability distribution. This is the main reason for considering a random
horizon for SMDPs in this paper.

Compared with the existing research work for risk-sensitive SMDPs in [17],
this paper has some new features as follows: First, in order to make the conclusion
more closely fit the actual situation, we pay more attention to the time horizon is
the random first passage time, which is more general than those in [17]. Second,
since the random first passage time is considered in our control model, by Remark
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4.2 in [17], we know that the occupation measure approach is not suitable for our
model, because the definition of the occupation measure is based on the discount
factor. Instead, we use a so-called minimum nonnegative solution approach to
establish the optimality equation and prove the existence of optimal policies.
Third, we are mainly concerned with the calculation and existence of the optimal
policies, while the purpose of the works in [17] is to establish the existence
condition of the optimal policies. Due to these, we develop a value iteration
algorithm to calculate the value function and the optimal policy, which is new
and the key feature in our paper.

To the best of our knowledge, the risk-sensitive optimality problem for
SMDPs in first passage has not been studied yet.

Motivated by the above discussion, we investigate in this paper the first pas-
sage risk-sensitive optimality problems for SMDPs. We focus on both the exis-
tence conditions and the computational algorithms of an optimal policy, thus
we limit the choice of risk-sensitive criteria to the exponential utility criterion
(e.g. [2,6,21,34]), which maximizes the expected exponential utility of the total
rewards before the state of system enters the target set. More precisely, in order
to ensure the existence of an optimal stationary policy, we impose the standard
regular condition to ensure that the state process is non-explosive, which is sim-
ilar to those given in [13–15,18] for SMDPs (see Lemma 1). Second, compared
with [13–15,18], which are mainly limited to denumerable state space and finite
action set, we consider more general Borel state and action spaces. Then, we
need to introduce a new continuity-compactness condition (see Assumption 2).
Under the regular and continuity-compactness conditions, we establish the cor-
responding optimality equation, and prove that the value function is a solution
to this optimality equation. Moreover, we show the existence of an exponen-
tial utility optimal stationary policy by using an invariant embedding technique
(see Assumption 1). Furthermore, a value iteration algorithm for computing the
value function as well as the optimal policies, in a finite number of iterations, is
provided. Finally, an example illustrating the computational methodology of an
optimal stationary policy and the value function is given.

The rest of this paper is organized as follows. In Sect. 2, we introduce the semi-
Markov decision model and state the first passage exponential utility optimality
problem. The main optimality results are stated and proved in Sect. 3. In Sect. 4,
an example is provided to illustrate the computational aspects of an optimal
policy.

2 Model Description

Models of first passage exponential utility SMDPs are defined by

{S,A, (A(x), x ∈ S), Q(u, y|x, a), B, r(x, a)} (1)

with the following components:

(a) S denotes a Borel state space, endowed with the Borel σ-algebras B(S).
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(b) A denotes a Borel action space, endowed with the Borel σ-algebras B(A).
(c) A(x) ∈ B(A) represents the set of allowable actions when the system is at

state x ∈ S. K := {(x, a)|x ∈ S, a ∈ A(x)} represents the set of all feasible
pairs of states and actions.

(d) Q(·, ·|x, a) is a semi-Markov kernel on R+ ×S given K, where R+ := [0,∞).
For any u ∈ R+,D ∈ B(S), when the action a ∈ A(x) is taken in state
x, Q(u,D|x, a) denotes the joint probability that the holding time of the
system is no more than u ∈ R+ and the state x changes into the set D. The
semi-Markov kernel Q(·, ·|x, a), (x, a) ∈ K has the following features:
(i) For any D ∈ B(S), Q(·,D|x, a) is a non-decreasing, right continuous

function from R+ to [0, 1] with Q(0,D|x, a) = 0 .
(ii) For any u ∈ R+, Q(u, ·|x, a) is a sub-stochastic kernel on the state space

S.
(e) B is target set, which is a measurable subset of S, and usually represents

the set of failure (or ruin) states of a system.
(f) r(x, a) denotes the reward rate, which is assumed to be nonnegative mea-

surable function on K such that r(x, ·) ≡ 0 for all x ∈ B.

The first passage SMDP with exponential utility evolves as follows: When the
system state is x0 ∈ Bc at time t0 = 0, the decision maker selects an admissible
action a0 from the action set A(x0), where Bc denotes the complement of B.
Consequently, the system stays in the state x0 up to time t1. At this point
the system jumps to state x1 with probability p(x1|x0, a0), and earns a reward
r(x0, a0)(t1 − t0). If the state x1 ∈ B, the system will stay at the target set B
forever. If the state x1 ∈ Bc, a new decision epoch t1 comes along. Then, based
on the present state x1 and the previous state x0, the decision maker chooses
an action a1 ∈ A(x1) and the process is repeated. Thus, during its evolution,
the system receives a series of rewards. The decision maker aims at maximizing
the exponential utility of the total rewards before the state of the system first
reaches the target set B.

Let

hk := (x0, a0, t1, x1, a1, . . . , tk, xk), (2)

be an admissible history up to the k-th decision epoch, where tm+1 ≥ tm ≥ 0,
xm ∈ S, am ∈ A(xm) for m = 0, 1, . . . , k − 1, xk ∈ S. From the evolution of
SMDPs, we know that tk+1 (k ≥ 0) denotes the (k + 1)-th decision epoch, xk

denotes the state of the system on [tk, tk+1), ak denotes an action, which is
chosen by the decision maker at time tk. θk+1 := tk+1 − tk denotes the sojourn
time at state xk, which may follow any given probability distribution.

The set of all admissible histories hk is denoted by Hk, that is H0 := S and
Hk := (S × A × (0,+∞])k × S.

For the sake of the optimality problem, we shall pay close attention to some
classes of policies that we introduce below.

Definition 1. A sequence π = {πk, k ≥ 0} is called stochastic history-
dependent policy if, for any k = 0, 1, 2 . . ., the stochastic kernel πk on A(xk)
given Hk satisfies
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πk(A(xk)|hk) = 1 for any hk ∈ Hk.

Denote by Π the set of all stochastic history-dependent policies, φ the set of all
stochastic kernels ϕ on A(x) given S such that ϕ(A(x)|x) = 1, and F the family
of all Borel measurable functions f from S to A(x) for all x ∈ S.

Definition 2. A policy π = {πk} ∈ Π is called stochastic Markov if there
exists a sequence of stochastic kernels {ϕk} such that πk(·|hk) = ϕk(·|xk) for
k ≥ 0, hk ∈ Hk, and ϕk ∈ φ. For simplicity, we denote such a policy by π = {ϕk}.

A stochastic Markov policy π = {ϕk} is called stochastic stationary if all
the ϕk are independent of k. Such a policy is denoted by ϕ, for simplicity.

A stochastic Markov policy π = {ϕk} is called deterministic Markov if each
ϕk(·|xk) is concentrated at fk(xk) ∈ A(xk) for some measurable functions {fk}
with k ≥ 0, xk ∈ S, and fk ∈ F .

A deterministic Markov policy π = {fk} is called deterministic stationary
if all the measurable functions fk are independent of k. For simplicity, such a
policy is denoted by f .

The class of all stochastic Markov, stochastic stationary, deterministic
Markov, and deterministic stationary policies are, respectively, denoted by
ΠRM ,ΠRS , ΠDM and ΠDS . Clearly, φ = ΠRS ⊂ ΠRM ⊂ Π and F = ΠDS ⊂
ΠDM ⊂ Π.

For the sake of mathematical rigor, we need to construct a well-suited prob-
ability space. Define a sample space Ω := {(x0, a0, t1, x1, a1, . . . , tk, xk, ak, . . .)|
x0 ∈ S, a0 ∈ A(x0), tl ∈ (0,∞], xl ∈ S, al ∈ A(xl) for each 1 ≤ l ≤ k, k ≥ 1}. Let
F be the Borel σ-algebra of the sample space Ω. For any ω := (x0, a0, t1, x1, a1,
. . . , tk, xk, ak, . . .) ∈ Ω, we define the random variables Tk,Xk, Ak on (Ω,F) as
follows:

Tk(ω) := tk,Xk(ω) := xk, Ak(ω) := ak, T∞(ω) := lim
k→∞

Tk(ω). (3)

In what follows, for the purpose of simplicity, we omit the argument ω.
Moreover, we define the state process {xt, t ≥ 0} and the action process

{At, t ≥ 0} on (Ω,F) by

xt :=
∑

k≥0

I{Tk≤t<Tk+1}Xk + ΔI{t≥T∞},

At :=
∑

k≥0

I{Tk≤t<Tk+1}Ak + aΔI{t≥T∞},

where ID(·) denotes the indicator function on the set D, Δ �∈ E is a cemetery
state, and aΔ is an isolated point.

For any policy π ∈ Π and initial state x ∈ S, in the light of the Ionescu
Tulcea theorem (e.g., Proposition C.10 in [11]), there exist a unique probability
measure Pπ

x on the measurable space (Ω,F) such that,

Pπ
x (Ak ∈ Γ |T0,X0, A0, . . . , Tk,Xk) = πk(Γ |T0,X0, A0, . . . , Tk,Xk), (4)
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Pπ
x (Tk+1 − Tk ≤ u,Xk+1 ∈ D|T0,X0, A0, . . . , Tk,Xk, Ak) = Q(u,D|Xk, Ak),

for each u ∈ R+, Γ ∈ B(A),D ∈ B(S), k ≥ 0. We shall use E
π
x to represent the

expectation operator with respect to Pπ
x .

To avoid the possibility that the system generates an infinite number of jumps
within a fixed finite horizon, we need to impose the following condition.

Assumption 1 For any π ∈ Π,x ∈ S, Pπ
x (T∞ = ∞) = 1.

To ease the verification of Assumption 1, we state the following sufficient
condition for its validity.

Lemma 1. If Q(δ, S|x, a) ≤ 1 − ε with some constants δ, ε > 0 and (x, a) ∈ K,
then Assumption 1 holds.

Proof. The proof follows directly from Proposition 2.1 in [14]. 	

Remark 1.(a) A key feature of Lemma 1 is that the condition is imposed on

the semi-Markov kernel, and can be directly verified.
(b) Lemma 1 is the standard regular condition, which is similar to the classic

expected criteria for SMDPs, see, for instance [13–15,18].

The random variable τB is given by

τB =

{
inf{t ≥ 0 : xt ∈ B}, if {t ≥ 0 : xt ∈ B} �= ∅;
+∞, otherwise.

(5)

represents the first passage time for which the state process {xt, t ≥ 0} first
enters the target set B.

For any x ∈ S and π ∈ Π, we define the first passage exponential utility
criterion by

V π(x) := Eπ
x

(
e−γ

∫ τB
0 r(xt,At)dt

)
, (6)

where γ > 0 represents the risk aversion coefficient, which expresses the degree
of risk aversion that the decision makers face to the level of the total rewards
before the state of the system first enters the target set.

Definition 3. A policy π∗ ∈ Π is called an optimal policy, if

V π∗
(x) = sup

π∈Π
V π(x), x ∈ S. (7)

The corresponding value function is given by

V ∗(x) := sup
π∈Π

V π(x), x ∈ S. (8)

Remark 2. Note that for any π ∈ Π and initial state x ∈ B, in view of (5), (6)
and (8), we have τB = 0 and V ∗(x) = V π(x) = 1. In order to avoid this trivial
case, our arguments consider only the case x ∈ Bc.
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3 Main Results

In this section, we will state the main results concerning the first passage expo-
nential utility optimality problem for SMDPs.

Notation: Let Vm denotes the set of all Borel measurable functions from S
to [0, 1]. For any x ∈ Bc, V ∈ Vm, ϕ ∈ φ, a ∈ A(x), we define the operators
MaV,MϕV and MV as follows:

MaV (x) :=
∫

B

∫ +∞

0

e−γr(x,a)uQ(du, dy|x, a)

+
∫

Bc

∫ +∞

0

e−γr(x,a)uV (y)Q(du, dy|x, a),

MϕV (x) :=
∫

A(x)

ϕ(da|x)MaV (x),

MV (x) := sup
a∈A(x)

MaV (x).

For any ϕ ∈ φ, we also define the operators (MnV, n ≥ 1), ((Mϕ)nV, n ≥ 1)
as follows:

Mn+1V = M(MnV ), (Mϕ)n+1V = Mϕ((Mϕ)nV ), n ≥ 1.

Since the state and action space are Borel space, in order to ensure the
existence of optimal policies, it follows from [28,31,32], we need establish the
following continuity-compactness condition, and which is trivially satisfied for
the case of denumerable state space and finite action set A(x) with x ∈ S.

Assumption 2. (a) For any x ∈ Bc, A(x) is compact;
(b) For each fixed V ∈ Vm,

∫
y∈S

∫ +∞
0

e−γr(x,a)uV (y)Q(du, dy|x, a) is upper
semicontinuous and inf-compact on K.

Lemma 2. Suppose that Assumptions 1 and 2 hold. Then the operators Ma and
M have the following properties:

(a) For any U, V ∈ Vm, if U ≥ V , then MaU(x) ≥ MaV (x) and MU(x) ≥
MV (x) for any x ∈ S and a ∈ A(x).

(b) For any V ∈ Vm, there exists a policy f ∈ ΠDS such that MV (x) = MfV (x)
for any x ∈ S.

Proof. (a) This statement follows from the definitions of operators Ma and M .
(b) Assuming the validity of Assumption 1 and 2, and invoking the measurable

selection theorem (Theorem B.6 in [28]), we conclude that, for each x ∈ S,
there is a stationary policy f ∈ F with MfV (x) = MV (x) = supa∈A(x) Ma

V (x).
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Since state process {xt, t ≥ 0} is non-explosive and the reward rate is non-
negative, in view of the monotone convergence theorem, we can rewrite V π(x)
as follows:

V π(x) = Eπ
x

(
e−γ

∫ τB
0 r(xt,At)dt

)

= Eπ
x

(
e−γ

∑∞
m=0

∫ Tm+1
Tm

I{τB>t}r(xt,At)dt
)

= Eπ
x

(
e
−γ

∑∞
m=0

∫ Tm+1
Tm

I{⋂m
k=0{xTk

∈Bc}}r(xt,At)dt
)

(9)

= lim
n→∞ Eπ

x

(
e
−γ

∑n
m=0

∫ Tm+1
Tm

I{⋂m
k=0{xTk

∈Bc}}r(xt,At)dt
)
.

We shall find it essential to define the sequence {V π
n (x), n = −1, 0, 1, . . .} by

V π
−1(x) := 1,

V π
n (x) := Eπ

x

(
e
−γ

∑n
m=0

∫ Tm+1
Tm

I{⋂m
k=0{xTk

∈Bc)}}r(xt,At)dt
)
.

Obviously, V π
n (x) ≥ V π

n+1(x) for any n ≥ −1 and limn→∞ V π
n (x) = V π(x) for all

x ∈ Bc.

Proposition 1. For each π = {π0, π1, . . .} ∈ Π and x ∈ S. Then, there exists
a policy π

′
= {ϕ0, ϕ1, . . .} ∈ ΠRM , satisfying V π(x) = V π

′
(x).

Proof. Since V π(x) = Eπ
x

(
e
−γ

∑∞
m=0

∫ Tm+1
Tm

I{⋂m
k=0{xTk

∈Bc}}r(xt,At)dt
)

in (9), to
prove this proposition we need to prove that, for each x ∈ S, there exists a
randomized Markov policy π

′
= {ϕ0, ϕ1, . . .} ∈ ΠRM such that

Pπ
′

x (Xk ∈ D,Tn+1 − Tn > u,Ak ∈ Γ )
= Pπ

x (Xk ∈ D,Tn+1 − Tn > u,Ak ∈ Γ )

with k = 0, 1, . . . , u ∈ R+,D ∈ B(S), Γ ∈ B(A).
Thus, in view of property (4), it suffices to show that

Pπ
′

x (Xk ∈ D,Ak ∈ Γ ) = Pπ
x (Xk ∈ D,Ak ∈ Γ ). (10)

Along the same arguments as in the proof of Theorem 5.5.1 in [28], one can
prove (10) by induction on the integer k. 	


Proposition 1 states, in particular, that in seeking optimal policies for (7), it
is sufficient to limit the search to the set of randomized Markov policies. Thus,
from now on, we will limit our attention to ΠRM .

The following lemma is required to establish the optimality equation.

Lemma 3. Under Assumption 1 and 2, for any x ∈ S, n ≥ −1, and π =
{ϕ0, ϕ1, . . .} ∈ ΠRM , the following statements hold.
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(a) V π
n ∈ Vm and V π ∈ Vm.

(b) V π
n+1(x) = Mϕ0V

1π
n (x) and V π(x) = Mϕ0V

1π(x), with 1π := {ϕ1, ϕ2, . . .}
being the 1-shift policy of π.
In particular, for any f ∈ F , V f

n+1(x) = MfV f
n (x) and V f (x) = MfV f (x).

Proof. (a) We shall prove the first statement of (a) by induction on the integer
n ≥ −1. The statement is trivial for n = −1 since V π

−1(x) = 1 ∈ Vm for any
x ∈ S and π ∈ ΠRM . Assume the statement holds for any n < k. Then, by (4)
and the property of conditional expectation, we have

V π
k+1(x)

= Eπ
x

(
e
−γ

∑k+1
m=0

∫ Tm+1
Tm

I{⋂m
k=0{xTk

∈Bc}}r(xt,At)dt
)

= Eπ
x [Eπ

x [e−γ
∑k+1

m=0

∫ Tm+1
Tm

I{⋂m
k=0{xTk

∈Bc}}r(xt,At)dt|T0, xT0 , A0, T1, xT1 ]]

=
∫

A(x)

ϕ0(da|x)

×
∫

S

∫ +∞

0

Eπ
x

(
e
−γ(

∫ T1
0 r(xt,At)dt+

∑k+1
m=1

∫ Tm+1
Tm

I{⋂m
k=1{xTk

∈Bc}}r(xt,At)dt)

|T0 = 0, xT0 = x,A0 = a, T1 = u, xT1 = y
)
Q(du, dy|x, a)

=
∫

A(x)

ϕ0(da|x)
∫

B

∫ +∞

0

e−γr(x,a)uQ(du, dy|x, a) +
∫

A(x)

ϕ0(da|x)

×
∫

Bc

∫ +∞

0

Eπ
x

(
e
−γ(

∫ T1
0 r(xt,At)dt+

∑k+1
m=1

∫ Tm+1
Tm

I{⋂m
k=1{xTk

∈Bc}}r(xt,At)dt)

|T0 = 0, xT0 = x,A0 = a, T1 = u, xT1 = y
)
Q(du, dy|x, a)

=
∫

A(x)

ϕ0(da|x)[
∫

B

∫ +∞

0

e−γr(x,a)uQ(du, j|x, a)

+
∫

Bc

∫ +∞

0

e−γr(x,a)uE
1π
y

(
e
−γ

∑k
m=0

∫ Tm+1
Tm

I{⋂m
k=0{xTk

∈Bc}}r(xt,At)dt
)

×Q(du, dy|x, a)]

=
∫

A(x)

ϕ0(da|x)[
∫

B

∫ +∞

0

e−γr(x,a)uQ(du, dy|x, a)

+
∫

Bc

∫ +∞

0

e−γr(x,a)uV
1π
k (y)Q(du, dy|x, a)]

:= Mϕ0V
1π
k (x)

which together with induction hypothesis implies that V π
k+1(x) is a measurable

function and V π
k+1(x) ≤ 1. Thus, V π

n ∈ Vm for all n ≥ −1. Since the limit of a
convergent sequence of measurable functions is itself a measurable function, we
obtain limn→∞ V π

n = V π ∈ Vm. This concludes the proof of (a).
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(b) From the proof of part (a), we can deduce that, for any x ∈ Bc and
n ≥ −1,

V π
n+1(x) = Mϕ0V

1π
n (x). (11)

Letting n → ∞ in (11) and using the monotone convergence theorem, we obtain

V π(x) = Mϕ0V
1π(x).

In particular, for π = f ∈ F , we have V f (x) = MfV f (x). 	

Remark 3. For any x ∈ Bc and f ∈ F , one can use Lemma 3 to develop an
efficient iteration algorithm for the computation of the function V f (x) based
on the following: V f (x) = limn→∞ V f

n (x) where V f
−1(x) := 1 and V f

n+1(x) =
MfV f

n (x) for n ≥ 0.

The following theorem states the existence of an optimality equation.

Theorem 1. Under Assumption 1 and 2, the following hold.

(a) For each n ≥ −1, let V ∗
n+1 := MV ∗

n with V ∗
−1 := 1. Then, limn→∞ V ∗

n =
V ∗ ∈ Vm.

(b) The value function V ∗ is a solution to the optimality equation V ∗ = MV ∗.
(c) There is a policy f∗ ∈ F such that V ∗(x) = MfV ∗(x), x ∈ Bc.

Proof. (a) Using Lemma 2(a) and the definition of the operator M , we obtain
0 ≤ V ∗

n+1(x) ≤ V ∗
n (x) ≤ 1 and V ∗

n ∈ Vm, n ≥ −1, for any x ∈ Bc. Thus,
Ṽ := limn→∞ V ∗

n ∈ Vm, since the limit of a convergent sequence of measurable
function is also measurable. To complete the proof of part (a), we need to prove
that Ṽ = V ∗.

We first show by induction on n ≥ −1 that for any x ∈ Bc and π =
{ϕ0, ϕ1, . . .} ∈ ΠRM

V ∗
n (x) ≥ V π

n (x). (12)

It is clear that V ∗
−1 = V π

−1 = 1 for any π ∈ ΠRM . Suppose that (12) holds for
any n ≤ k. By the induction hypothesis, the definition of the operator M and
Lemma 3(b), we have

V ∗
k+1(x) = MV ∗

k (x) ≥ MV
1π
k (x) ≥ Mϕ0V

1π
k (x) = V π

k+1(x).

Letting n → ∞ in (12), we obtain Ṽ (x) = limn→∞ V ∗
n (x) ≥ V π(x) with π ∈

ΠRM . Since π is arbitrary, we conclude that Ṽ (x) ≥ V ∗(x).
We need, now, to prove the reverse inequality Ṽ (x) ≤ V ∗(x). For any

x ∈ Bc, n ≥ −1, let An := {a ∈ A(x)|MaV ∗
n (x) ≥ MṼ (x)} and A∗ :=

{a ∈ A(x)|MaṼ (x) = MṼ (x)}. By the compactness-continuity condition in
Assumption 2 and the convergence V ∗

n ↓ Ṽ , we conclude that An and A∗ are
nonempty and compact, and that An ↓ A∗. It follows from the measurable selec-
tion theorem (Theorem B.6 in [28]) that, for each n ≥ 1, there exist an ∈ An
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such that ManV ∗
n (x) = MV ∗

n (x). Hence, using compactness and the convergence
An ↓ A∗, we deduce that there exist an a∗ ∈ A∗ and a subsequence {ank

} of
{an} such that ank

→ a∗. Since V ∗
n ↓ Ṽ , by Lemma 3(a), for any given n ≥ 1,

we have

Mank V ∗
nk

(x) ≤ Mank V ∗
n (x) ∀nk ≥ n.

Letting k → ∞ and using the upper semicontinuity condition in Assumption 2
give

Ṽ ∗(x) ≤ Ma∗
V ∗

n (x),

which together with the convergence V ∗
n ↓ Ṽ imply

Ṽ ∗(x) ≤ Ma∗
Ṽ (x) ≤ MṼ (x),

By Lemma 2(b), there exists a stationary policy f ∈ F such that

Ṽ (x) ≤ MṼ (x) = Mf Ṽ (x).

Moreover, using Lemma 2(a), Lemma 3(b) and Remark 3, we obtain

Ṽ (x) ≤ (Mf )nṼ (x) ≤ (Mf )nV f
−1(x) = V f

n−1(x).

Letting n → ∞, and invoking Remark 3, we obtain Ṽ (x) ≤ V f (x) ≤ V ∗(x),
which proves the part (a) of the theorem.

(b) By virtue of Lemma 3(b), we know that for any x ∈ Bc and π ∈ ΠRM ,
we have

V π(x) = Mϕ0V
1π(x) ≤ Mϕ0V ∗(x) ≤ MV ∗(x).

Taking the supremum over all policies π ∈ ΠRM implies V ∗(x) ≤ MV ∗(x).
The reverse inequality is proved as follows: From the definition of V ∗

n , for any
x ∈ Bc and a ∈ A(x),

V ∗
n+1(x) = MV ∗

n (x) ≥ MaV ∗
n (x).

Letting n → ∞ and using the monotone convergence theorem, we obtain

V ∗(x) ≥ MaV ∗(x),

which implies that V ∗(x) ≥ MV ∗(x) since a ∈ A(x) is arbitrary. This proves
V ∗ = MV ∗.

(c) The statement in (c) follows from Lemma 2. 	

To guarantee the uniqueness of solution of the optimality equation and the

existence of the optimal policies, we require the following additional condition
(i.e., Assumption 3).

Assumption 3 For any x ∈ Bc, f ∈ Πs, P
f
x (τB < +∞) = 1.
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Remark 4.(a) Assumption 3 means that, when the initial state of such system
is X0 = x ∈ S, the controlled state process {xt, t ≥ 0} will eventually enter
the target set B under the policy f ∈ F .

(b) Letting Xn := xTn
, n = 0, 1, . . ., Tn denotes the jump epoch. Then, we

obtain a discrete-time embedded chain {Xn, n ≥ 0}. For every x ∈ Bc,
using Theorem 3.3 in [16], we know that Assumption 3 can be rewritten as
follows:.

P f
x (τB < +∞) = P f

x (
∞⋃

n=1

{Xn ∈ B}) = 1,

which is equivalent to

P f
x (

∞⋂

n=1

{Xn ∈ Bc}) = 0. (13)

(c) Using Proposition 3.3 in [19], we also obtain a sufficient condition to verify
Assumption 3. There exist a constant α > 0 such that

∫
B

P (dy|x, a) ≥ α for
(x, a) ∈ Bc × A(x), then Assumption 3 holds.

Lemma 4. Suppose that Assumptions 1 and 3 hold.

(a) If U, V ∈ Vm are such that U(x) − V (x) ≤ Mf (U − V )(x) with x ∈ Bc, f ∈
Πs, then U(x) ≤ V (x).

(b) For any f ∈ Πs, V f ∈ Vm is the unique solution to the equation V = MfV .

Proof. (a) For any U, V ∈ Vm, x ∈ Bc, f ∈ Πs, we will show the following
conclusion by induction,

(Mf )n(U − V )(x) ≤ P f
x (

n⋂

k=1

{Xk ∈ Bc}), n ≥ 1. (14)

For n = 1, it follows from U, V ∈ Vm that

Mf (U − V )(x) = MfU(x) − MfV (x)

=
∫

Bc

∫ +∞

0

e−γr(x,f)u(U − V )(y)Q(du, dy|x, a)

≤
∫

Bc

∫ +∞

0

Q(du, dy|x, a)

= P f
x (X1 ∈ Bc).

Suppose that (14) holds for n = k. Then, by using the induction hypothesis
and the nonnegativity of the reward rate, we have
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(Mf )k+1(U − V )(x) = Mf (Mf )k(U − V )(x)

=
∫

Bc

∫ +∞

0

e−γr(x,f)u(Mf )k(U − V )(y)

×Q(du, dy|x, a)

=
∫

Bc

∫ +∞

0

e−γr(x,f)uP f
y (

k⋂

l=1

{Xl ∈ Bc})

×Q(du, dy|x, a)

≤
∫

Bc

∫ +∞

0

P f
y (

k⋂

l=1

{Xl ∈ Bc})Q(du, dy|x, a). (15)

On the other hand,

P f
x (

k+1⋂

l=1

{Xl ∈ Bc})

= Ef
x [I{⋂k+1

l=1 {Xl∈Bc}}]

= Ef
x [Ef

x [I⋂k+1
l=1 {Xl∈Bc}|X0,X1]

=
∫

Bc

∫ +∞

0

P f
x

( k+1⋂

l=1

{Xl ∈ Bc}|X0 = x,X1 = y
)
Q(du, dy|x, a)

=
∫

Bc

∫ +∞

0

P f
y

( k⋂

l=1

{Xl ∈ Bc}
)
Q(du, dy|x, a),

from which together with (15) and the induction, we have for all n ≥ 1,

U(x) − V (x) ≤ (Mf )n(U(x) − V (x)) ≤ P f
x (

n⋂

k=1

{Xk ∈ Bc}). (16)

Letting n → ∞, using (13), we obtain

U(x) − V (x) ≤ P f
x (

∞⋂

k=1

{Xk ∈ Bc}) = 0.

Then, U(x) ≤ V (x), for x ∈ S.
(b) For any x ∈ S, f ∈ F , it follows from Lemma 2(b) that V f (x) ∈ Vm

satisfies the equation V (x) = MfV (x). If U(x) is another solution to the equa-
tion U(x) = MfU(x) on S, and thus U(x) − V f (x) = Mf (U(x) − V f (x)),
which together with the statement in part (a), we know U(x) = V f (x) and the
uniqueness of solution to the equation is proved. 	

Theorem 2. Suppose that Assumption 1,2 and 3 hold. Then, the following
statements hold.



32 H. Huo and X. Wen

(a) The value function V ∗ is the unique solution to the optimality equation
V ∗ = MV ∗.

(b) There is a policy f∗ ∈ F which satisfies V ∗ = Mf∗
V ∗, V ∗ = V f∗

and such
a policy f∗ ∈ F is optimal.

Proof. (a) It follows from Lemma 3 (b) that V ∗ satisfies the equation V ∗ =
MV ∗. Then, by Lemma 2(b), there exists a stationary policy f∗ ∈ F such
that V ∗ = Mf∗

V ∗. Moreover, U is another solution of the equation U = MU .
Similarly, the existence of a policy f

′ ∈ F satisfying U = Mf
′
U is ensured by

Lemma 2(b). Then, we have V ∗ −U ≤ Mf∗
(V ∗ −U). Combining this inequality

and Lemma 4 yields that V ∗ ≤ U . Similarly, we obtain U − V ∗ ≤ Mf
′
(U − V ∗)

and U ≤ V ∗, which implies U = V ∗ and the uniqueness of V ∗ is achieved.
(b) Since V ∗ ∈ Vm, for any x ∈ Bc, Lemma 2 guarantees the existence of a

stationary policy f∗ ∈ F such that

V ∗(x) = Mf∗
V ∗(x),

which together with Lemma 3 and Remark 11 yield

V ∗ = lim
n→∞(Mf∗

)nV ∗ ≤ lim
n→∞(Mf∗

)nV f∗
−1 = lim

n→∞ V f∗
n−1 = V f∗

.

This implies the optimality of f∗. 	

Theorem 1 leads to the following iterative algorithm for computing the value

function and the corresponding optimal policies.

The value iteration algorithm procedure:

Step 1: For any x ∈ Bc, set V ∗
−1(x) := 1.

Step 2: According to Theorem 1, the value V ∗
n+1(x), n ≥ 1, is iteratively

computed as:

MaV ∗
n (x) =

∫

B

∫ +∞

0

e−γr(x,f)uQ(du, dy|x, a)

+
∫

Bc

∫ +∞

0

e−γr(x,f)uV ∗
n (y)Q(du, dy|x, a),

V ∗
n+1(x) = sup

a∈A(x)

{MaV ∗
n (x)}.

Step 3: When |V ∗
n+1 − V ∗

n | < 10−12, the iteration stops. Since V ∗
n is very

close to V ∗
n+1, one can view V ∗

n+1 as a good approximation of the value function
V ∗. In addition, Lemma 2 and Theorem 2 ensure the existence of a policy f∗ ∈ F
such that MV ∗ = Mf∗

V ∗, and this policy f∗ is optimal. Or else, go back to
step 2 and replace n with n + 1.

4 Example

In this section, an example is given to illustrate our main results, and to demon-
strate the computation of an optimal stationary policy and the corresponding
value function using the above described iterative algorithm.
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Example 1. Consider a company using idle funds for financial management.
When the company has some idle funds (which is denoted by state 1), the
decision maker gets the reward at the rate of return r(1, a11) ≥ 0 through
deposit method a11 or the reward at the rate of return r(1, a12) ≥ 0 through
another deposit method a12. When the company has plenty of idle funds (which
is denoted by state 2), the decision maker can choose a financial management a21

earning in a reward rate r(2, a21) ≥ 0 or another financing way a22 earning in a
reward rate r(2, a22) ≥ 0. When the company goes bankrupt (which is denoted
by state 0), the decision-maker does not need to choose any way of financing a01

and cannot get any reward r(0, a01) = 0.
Suppose that the evolution mechanism of this system is described as a SMDP.

When the system state is 1, the decision maker selects an admissible action
a1n, n = 1, 2. Then, the system stays at the state 1 with a random time satisfying
the uniform distribution in the region [0, u(1, a1n)], n = 1, 2. After the system
state lingers for a period of time, it will move to a new state j ∈ {0, 2} with
the probability p(j|1, a1n), n = 1, 2. When the action a2n is selected n = 1, 2,
the system stays at 2 with a random time satisfying the exponential distribution
with the parameter λ(2, a2n). Consequently, the system jumps to state j ∈ {0, 1}
with the probability p(j|2, a2n), n = 1, 2.

The corresponding parameters of this SMDPs are given as follows: The state
space S = {0, 1, 2}, the target set B = {0} and the admissible action sets A(0) =
{a01}, A(1) = {a11, a12}, A(2) = {a21, a22}, the risk-sensitivity coefficient γ = 1.
The transition probabilities are assumed to be given

p(0|0, a01) = 1, p(0|1, a11) =
1
2
, p(2|1, a11) =

1
2
,

p(0|1, a12) =
2
3
, p(2|1, a12) =

1
3
, p(0|2, a21) =

3
10

, (17)

p(1|2, a21) =
7
10

, p(0|2, a22) =
2
5
, p(1|2, a22) =

3
5
.

In addition, the corresponding distribution parameters are given by

u(1, a11) = 30, u(1, a12) = 40,

λ(2, a21) = 0.11, λ(2, a22) = 0.13. (18)

and the reward rates are given by

r(1, a11) = 0.0035, r(1, a12) = 0.011,

r(2, a21) = 0.013, r(2, a22) = 0.015.

In this model, we mainly focus on the existence and calculation parts of an
optimal policy and the value function for first passage exponential utility crite-
rion. As can be seen from the discussion in Sect. 3 above, we first need to verify
Assumption 1, 2 and 3. Indeed, by (17) and (18), we know that Assumption 1
and 3 are satisfied. Moreover, since the state space is denumerable and the action
space A is finite, Assumption 2 is trivially satisfied. Thus, by Theorem 1 and 2,
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the value iteration technique can be used for evaluating the value function and
the exponential optimal policies as follows:

Step 1: Let V ∗
−1(x) := 1, x = 1, 2.

Step 2: For x = 1, 2, n ≥ 1, using Theorem 1 (a), we obtain

V ∗
n (1) = MV ∗

n−1(1),

= max
{1

2
× 1

30
×

∫ 30

0

e−0.0035udu

+
1
2

× 1
30

×
∫ 30

0

e−0.0035udu × V ∗
n−1(2),

2
3

× 1
40

×
∫ 40

0

e−0.011udu +
1
3

× 1
40

×
∫ 40

0

e−0.011udu × V ∗
n−1(2)

}

V ∗
n (2) = MV ∗

n−1(2),

= max
{ 3

10
× 0.11 ×

∫ +∞

0

e−0.123udu

+
7
10

× 0.11 ×
∫ +∞

0

e−0.123udu × V ∗
n−1(1),

2
5

× 0.13 ×
∫ +∞

0

e−0.145udu +
3
5

× 0.13 ×
∫ +∞

0

e−0.145udu × V ∗
n−1(1)

}

Step 3: When |V ∗
n − V ∗

n−1| < 10−12, go to step 4, the value V ∗
n is usually

approximated as V ∗; otherwise, go to step n + 1 and go back to step 2.
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Fig. 1. The function MaV ∗
n (1)

Step 4: Plot out the graphs of the value functions Maij V ∗
n (i) and V ∗

n (i), i =
1, 2; j = 1, 2, see Figs. 1, 2 and 3.
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Moreover, for x = 1, using Theorem 1, 2, Fig. 1 and Fig. 2, we know that

MV ∗(1) = V ∗(1) = Ma11V ∗(1).

For x = 2, we also obtain

MV ∗(2) = V ∗(2) = Ma22V ∗(2).

According to the above analysis and Theorem 2, we obtain the optimal
stationary policy f∗(1) = a12, f

∗(2) = a21 and the value function V ∗(1) =
0.8660,V ∗(2) = 0.8245.
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Abstract. In this paper we investigate the following conjecture about
the random walk on the positive integer lattice, starting from a large
point i > 0 and up to the absorption at negative points: on the first steps,
one has to maximize the expected reward coming from passing through
one point on the lattice. Under appropriate conditions, this conjecture is
true. The counter-example shows that sometimes it is not valid.
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1 Introduction

The current article is an attempt to study the conjecture formulated by Prof.
I.Sonin in a private communication.

The random walk on the positive integer lattice, starting from X0 = i, is
defined by equation

Xt = Xt−1 − Zt(at)

and is terminated as soon as Xt < 0. Here {Zt(a)}∞
t=1 are mutually independent

positive integer-valued random variables depending on the action a ∈ A =
{a1, a2, . . . , aN}, with the given probability distribution

P (Z(a) = m) = pm(a), m = 1, 2, . . . ,M.

See Fig. 1.
On each step t, the associated expected reward equals Rat . For example, if

RZ(a)(a) is the reward associated with the action a ∈ A and the value Z(a),
then

Ra =
M∑

m=1

Rm(a)pm(a).
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Absorbing states

Fig. 1. Random walk.

For a fixed a ∈ A, for a large initial state i, the total expected number of steps
up to the absorption equals ≈ i

La , where La := E[Z(a)] =
∑M

m=1 mpm(a). Thus,
the total expected reward is ≈ iRa

La . To put it slightly different, the expected
reward, coming from passing through one point on the lattice, equals ≈ Ra

La . The
conjecture to be investigated reads as follows:

There is such I < ∞ that, if Xt−1 ≥ I , then the optimal action at ∈ A∗,
where A∗ :=

{
a ∈ A : Ra

La = c∗ := maxa∈A
Ra

La

}
(1)

In the current article, we provide sufficient conditions for this conjecture to
be valid. The numerical example in Sect. 4 shows that in general it is not the
case. In Sect. 5, we formulate the similar statement for the discounted version of
the described model. All the proofs are presented in the Appendix.

In what follows, if P is a matrix, then Ps,· denotes its s-th row. We say that
a stochastic matrix P is ergodic or aperiodic if the corresponding Markov chain
is so. The maximum (minimum) over the empty set equals −∞ (+∞).

2 MDP Formulation and Preliminaries

Obviously, we deal with the Markov decision process (MDP) with the state space

X := {−M,−M + 1, . . . ,−1, 0, 1, 2, . . .},

action space
A := {a1, a2, . . . , aN},

the transition probability

P̃i,j(a) =
{

pm(a), if i ≥ 0, j = i − m, m = 1, 2, . . . ,M ;
0 otherwise,

and the reward function

ri(a) :=
{

0, if i < 0;
Ra, if i ≥ 0.
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The initial state is i ∈ X, and we consider MDP 〈X,A, P̃ , r〉 with the total
expected reward, with (random) states and actions

X0 = i, A1, X1, A2, . . . .

The definition of a strategy π (past-dependent, randomized) is conventional
[1,2,4,6]; Eπ

i is the corresponding mathematical expectation;

V (i) := sup
π

Eπ
i

[ ∞∑

t=1

rXt−1(At)

]
(2)

is the Bellman function for this MDP; i ∈ X. Since the reward r is bounded and
the process Xt is ultimately absorbed at {−M,−M+1, . . . ,−1} after (maximum)
i + 1 time steps, the function V is finite-valued. It is well known (see, e.g.,
[2, Ch.4] or [1, §9.5]) that the function V is the unique solution to the optimality
(Bellman) equation

V (i) = max
a∈A

{
Ra +

M∑

m=1

V (i − m)pm(a)

}
for i ≥ 0; (3)

V (i) = 0 for i = −M,−M + 1, . . . ,−1,

which can be solved successively for i = 0, 1, . . .. Now the conjecture (1) is
reformulated as follows:

There is such I < ∞ that, for all i ≥ I, (4)
the maximum in (3) is only provided by a ∈ A∗.

It is natural to call the interval {I, I + 1, . . .} ‘Turnpike’.

Lemma 1. Function

W̃ (i) := V (i) − c∗i, i ∈ X (5)

is the (unique) uniformly bounded function satisfying equation

W̃ (i) = −c∗i for i = −M,−M + 1, . . . ,−1;

W̃ (i) = max
a∈A

{
La

(
Ra

La
− c∗

)
+

M∑

m=1

W̃ (i − m)pm(a)

}
for i ≥ 0, (6)

which can be solved successively for i = 0, 1, . . .. Hence

V (i) = c∗i + O(1) when i → ∞.

Moreover, for each i ∈ X, the maxima in (3) and in (6) are provided by the
same values of a ∈ A.
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Every value of i ∈ X can be uniquely represented as

i = (k − 1)M + s, where s ∈ S := {0, 1, . . . ,M − 1}, k = 0, 1, 2, . . . . (7)

For each i ∈ X with the corresponding values of k and s, we denote W̃ (i),
introduced in (5), as W k(s). Now Eq. (6) takes the following form:

W 0(s) = −c∗(−M + s) for s ∈ S;

W k+1(0) = max
a∈A

{
La

(
Ra

La
− c∗

)
+

M−1∑
j=0

W k(j)pM−j(a)

}
, (8)

W k+1(1) = max
a∈A

{
La

(
Ra

La
− c∗

)
+ W k+1(0)p1(a) +

M−1∑
j=1

W k(j)pM−j+1(a)

}
,

. . .

W k+1(M − 1) = max
a∈A

{
La

(
Ra

La
− c∗

)
+ W k+1(M − 2)p1(a) + W k+1(M − 3)p2(a)

+ . . . +W k+1(0)pM−1(a) + W k(M − 1)pM (a)
}

, k = 0, 1, . . . .

After we introduce the stochastic matrix

P (a) :=

⎛
⎜⎜⎝

P0,0(a) = pM (a) P0,1(a) = pM−1(a) . . . P0,M−1(a) = p1(a)
P1,0(a) = p1(a) P1,1(a) = pM (a) . . . P1,M−1(a) = p2(a)
. . . . . .
PM−1,0(a) = pM−1(a) PM−1,1(a) = pM−2(a) . . . PM−1,M−1(a) = pM (a)

⎞
⎟⎟⎠ ,

(9)
the obtained equations for W k(s) can be rewritten as

W 0(s) = −c∗(−M + s) for s ∈ S; (10)

W k+1(s) = max
a∈A

{
La

(
Ra

La
− c∗

)
+

s−1∑
j=0

W k+1(j)Ps,j(a) +

M−1∑
j=s

W k(j)Ps,j(a)

}

for s ∈ S, k ≥ 0.

Iterations (10) are similar to the Gauss-Seidel version of the value iteration
algorithm for the average reward MDP (see [6, §6.3.3]). For a fixed k ≥ 0, we
substitute the expression for W k+1(0) in the formula for W k+1(1), the expression
for W k+1(0) and the modified expression for W k+1(1) in the formula for W k+1(2)
and so on. After we denote D the finite set of all mappings from S to A, called
below ‘decisions’, iterations (10) can be represented in the form

W 0(s) = −c∗(−M + s) for s ∈ S;
W k+1(s) = max

d∈D
Ud ◦ W k(s) for s ∈ S, k ≥ 0,
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where

Ud ◦ W k(0) := Ld(0)

(
Rd(0)

Ld(0)
− c∗

)
+

M−1∑

j=0

W k(j)P0,j(d(0))

Ud ◦ W k(1) := Ld(1)

(
Rd(1)

Ld(1)
− c∗

)
+ P1,0(d(1))Ld(0)

(
Rd(0)

Ld(0)
− c∗

)

+P1,0(d(1))
M−1∑

j=0

W k(j)P0,j(d(0)) +
M−1∑

j=1

W k(j)P1,j(d(1))

and so on, up to Ud ◦ W k(M − 1).

In what follows, each function W : S → R is identified with the column
vector W ∈ R

M , and the both notations W (s) = Ws are in use. Now one can
rewrite iterations (10) in the matrix form:

W 0(s) = −c∗(−M + s), s ∈ S;
W k+1 = max

d∈D
Ud ◦ W k = max

d∈D
{R(d) + Q(d)W k}, k = 0, 1, . . . , (11)

where, for fixed d ∈ D, the column vector R(d) ∈ R
M and the rows of the square

M × M matrix Q(d) are defined recursively:

R0(d) = Ld(0)

(
Rd(0)

Ld(0)
− c∗

)
;

Rl+1(d) = Ld(l+1)

(
Rd(l+1)

Ld(l+1)
− c∗

)
+

l∑

j=0

Pl+1,j(d(l + 1))Rj(d), (12)

l = 0, . . . , M − 2;

Q0,j(d) = P0,j(d(0)), j = 0, 1, . . . ,M − 1;

Ql+1,j(d) =

{ ∑l
i=0

[
Pl+1,i(d(l + 1))Qi,j(d)

]
for j < l+ 1;∑l

i=0

[
Pl+1,i(d(l + 1))Qi,j(d)

]
+ Pl+1,j(d(l + 1)) for j ≥ l+ 1.

(13)

l = 0, . . . ,M − 2;

Clearly, Rs(d) ≤ 0 for all s ∈ S and d ∈ D. We underline that the rows Ql,·(d)
of the matrix Q(d) with l ≤ s do not depend on the values of d(s + 1), d(s +
2), . . . , d(M − 1). Note also that, for every function W on S, there is d̂ ∈ D
providing the component-wise maximum to Ud ◦ W . Indeed, the values d̂(s) can
be calculated successively for s = 0, 1, . . . ,M − 1, and any other mapping d is
such that Ud ◦ W ≤ Td̂ ◦ W component-wise. In other words, d̂ solves the vector
optimization problem Ud ◦ W → maxd∈D, i.e., this problem is well defined: the
Pareto set contains the unique point Td̂ ◦ W .
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Lemma 2. (a) The matrix Q(d) is stochastic for all d ∈ D, provided the original
matrix P (a) is stochastic for all a ∈ A.

(b) Suppose d ∈ D is such that Ps,s(d(s)) > 0 for all s ∈ S. Then, for all
s, l ∈ S, Qs,l(d) > 0 provided Ps,l(d(s)) > 0.

Definition 1. Decisions d ∈ D satisfying the property d(s) ∈ A∗ for all s ∈ S
will be called trivial. Equivalently, a decision d ∈ D is trivial if and only if
R(d) = 0. Here and below, 0 ∈ R

M is the zero vector. The set of all trivial
decisions is denoted as D∗.

The conjecture (4), and also (1) is now reformulated as follows:

There exists K such that, for all k ≥ K, the maximum in (11) (14)
is only provided by the trivial decisions d ∈ D∗.

Note that all the vectors W 0,W 1, . . . are uniformly bounded by Lemma 1, and
the maxima in (4) and (10) are provided by the same values of a ∈ A.

3 Main Results

Condition 1. There exists J such that, for every sequence of mappings
d̂1, d̂2, . . . , d̂J ∈ D∗, the matrix Q(d̂1)Q(d̂2) . . . Q(d̂J ) contains no zeroes.

Theorem 1. If Condition 1 is satisfied then the conjecture (14) (and also (4)
and (1)) is valid.

In the following statements, the sufficient conditions for the conjecture (14)
to be valid are given in terms of the original matrix P (a).

Corollary 1. Suppose A∗ = {a∗} is a singleton (consequently D∗ = {d∗} is a
singleton with d∗(s) ≡ a∗). Let the matrix P (a∗) be ergodic. Assume additionally
that pM (a∗) > 0. Then Condition 1 is satisfied, and hence the conjecture (14)
(and also (4) and (1)) is valid.

When using a different method of attack, one can prove the following state-
ment. (See [5, Cor.2].)

Proposition 1. Suppose pM (a) > 0 for all a ∈ A and, for any two states
i, j ∈ S, there exists a path i0 = i → i1 → . . . → iN = j in S such that, for any
a0, a1, . . . , aN−1 ∈ A,

Pi0,i1(a0)Pi1,i2(a1) . . . PiN−1,iN
(aN−1) > 0.

Then the conjecture (14) (and also (4) and (1)) is valid.
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The matrix P (a) has a cyclic structure. Thus, the conditions of Proposition 1
are satisfied if there is m < M having no common divisors with M such that
pM (a) > 0 and pm(a) > 0 for all a ∈ A.

Let us briefly discuss the connection of the conjecture (14) and the Turnpike
Theorem for the average reward MDP established in [5]. During the proof of
Theorem 1, it was shown that

lim
k→∞

sp(W k+1 − W k) = 0, (15)

where sp(W ) := maxs∈S W (s)−mins∈S W (s) is the ‘span-seminorm’ and the vec-
tors W k come from the iterations (11). Condition (15) is sufficient for the Turn-
pike Theorem [5, Thm.1] which is strictly connected with the conjecture (14).
Namely, under mild additional requirements that Turnpike Theorem implies the
validity of the conjecture (14): see [5, Thm.3]. By the way, Proposition 1 also fol-
lows from the Turnpike Theorem [5, Thm.1]. One can show that in the example
from Sect. 4 limk→∞ sp(W k+1 − W k) = 2

[
1 − h−2

ε

]
> 0: see [5, §5.3].

Suppose Condition 1 is satisfied, K is as in the proof of Theorem 1, k ≥ K
is arbitrarily fixed and d /∈ D∗. Then, according to the proof of Theorem 1 (see
(24) and (25)), for each s ∈ S such that d(s) /∈ A∗,

Rs(d) + Qs,·(d)W k < max
d∈D∗

{Rs(d) + Qs,·(d)W k} = W k+1(s).

Therefore, going back to (10), we again have the strict inequality

W k+1(s) > max
a∈A\A∗

⎧
⎨

⎩La

(
Ra

La
− c∗

)
+

s−1∑

j=0

W k+1(j)Ps,j(a) +
M−1∑

j=s

W k(j)Ps,j(a)

⎫
⎬

⎭

and finally, going back to (3):

for all i = (k − 1)M + s, V (i) > max
a∈A\A∗

{
Ra +

M∑

m=1

V (i − m)pm(a)

}
,

i.e., for the valid conjecture (4) we have the following:

max
a∈A

{
Ra +

M∑

m=1

V (i − m)pm(a)

}
max

a∈A\A∗

{
Ra +

M∑

m=1

V (i − m)pm(a)

}
(16)

for all i ≥ I := (K − 1)M.

4 Counter-Example

In this subsection, we show that the conjecture (4) (and also (1) and (14)) may
be not valid if the conditions formulated in Sect. 3 are not satisfied.

Put

A := {a1, a2}, M := 3, ε ∈ (0, 1), p2(a1) = 1, p2(a2) = 1 − ε, p3(a2) = ε,
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where ε ∈ (0, 1); other probabilities being zero. Finally, let Ra1 := 2 and Ra2 :=
h ∈ (2, 2 + ε). Now

La1 = 2, La2 = 2 + ε,
Ra1

La1
= 1,

Ra2

La2
=

h

2 + ε
< 1, c∗ = 1, A∗ = {a1}.

Below, we study the iterations (3).
Since h > 2, obvious calculations lead to the following expressions:

V (0) = V (1) = max{2, h} = h;
V (2) = max{2+V (0) = 2+h; h+(1−ε)V (0)+εV (−1) = h+(1−ε)h} = 2+h
because

2
1 − ε

= 2[1 + ε + ε2 + . . .] > 2 + ε > h =⇒ 2 > (1 − ε)h.

V (3) = max{2 + V (1) = 2 + h; h + (1 − ε)V (1) + εV (0) = 2h} = 2h. Further
properties of the function V are given in the following lemma.

Lemma 3. For all j ≥ 1, the following statements hold.

(i) For even steps i = 2j,
V (2j) = 2j + h,

and maximum in (3) is provided by a1 only.
(ii) For odd steps i = 2j − 1,

V (2j − 1) <
2ε(j − 1) + (1 + ε)h − 2

ε
.

(iii) For odd steps i = 2j + 1,

V (2j + 1) = (1 − ε)V (2j − 1) + (1 + ε)h + 2ε(j − 1),

and maximum in (3) is provided by a2 only.

Therefore, for all odd values of i, the maximum in (3) is provided only by
a2 /∈ A∗. The conjecture (4) (and also (1) and (14)) is not valid.

In this example, D∗ = {d∗} with d∗(s) ≡ a∗ = a1. The matrices P (a∗) and
Q(d∗) look as follows:

P (a∗) =

⎛

⎝
0 1 0
0 0 1
1 0 0

⎞

⎠ ; Q(d∗) =

⎛

⎝
0 1 0
0 0 1
0 1 0

⎞

⎠

and are periodic; pM (a∗) = 0. Thus, Theorem 1, Corollary 1 and Proposition 1
are not applicable.
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5 Discounted Model

In this section, β ∈ (0, 1) is the discount factor, expression (2) is replaced with

V β(i) := sup
π

Eπ
i

[ ∞∑

t=1

βt−1rXt−1(At)

]
, (17)

and the optimality equation looks like

V β(i) = max
a∈A

{
Ra + β

M∑

m=1

V β(i − m)pm(a)

}
for i ≥ 0; (18)

V β(i) = 0 for i = −M,−M + 1, . . . ,−1.

Like previously, it can be solved successively for i = 0, 1, . . .. We put R∗ :=
maxa∈A Ra and

A∗ := {a ∈ A : Ra = R∗}. (19)

The so-called turnpike theory in discounted models (see [6, §6.8)],[7]) leads
to the following statement (cf (4)):

Theorem 2. There is such I < ∞ that, for all i ≥ I, the maximum in (18) is
only provided by a ∈ A∗.

Some recent developments of the turnpike theory for discounted MDPs can
be found in [3].

It is interesting to look at what happens if the discount factor β is close
to 1, assuming that the Condition 1 is satisfied (more generally, assuming the
conjecture (4) to be valid for β = 1). Denote the corresponding I as I1, i.e.,
I1 = (K − 1)M with K as in the proof of Theorem 1 (see the end of Sect. 3),
and fix an arbitrary I2 > I1. Obviously, for each i ∈ X, limβ→1− V β(i) = V (i)
with V as in (3). According to (16), there is β0 ∈ (0, 1) such that, for all i =
I1, I1 + 1, . . . , I2, for all β ∈ [β0, 1]

max
a∈A

{
Ra +

M∑

m=1

V β(i − m)pm(a)

}
> max

a∈A\A∗

{
Ra +

M∑

m=1

V β(i − m)pm(a)

}
.

Thus, for a fixed β ∈ [β0, 1], for all i = I1, I1 + 1, . . . , I2, the maximum in (18) is
only provided by a ∈ A∗. Of course, by Theorem 2, there is a finite I3 > I2 such
that, for all i ≥ I3, the maximum in (18) is only provided by a ∈ A∗. Recall
that A∗ and A∗ are given by (1) and (19). One can say that, for β close to 1,
there are two turnpikes, where only actions from A∗ and A∗ are optimal in the
model (17): see Fig. 2. When β approaches 1, I2 and I3 go to infinity, and in the
limiting case β = 1 we have just the conjecture (4).
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Only ac�ons from       
are op�mal

Only ac�ons from       
are op�mal

Turnpike 1 Turnpike 2

Fig. 2. Turnpikes for β ≈ 1.

6 Summary

In this article, we studied the conjecture (1) (equivalent to (4) and (14)) and
showed that in general it is not valid. In the discounted case, Turnpike Theorem 2
always holds. Under appropriate conditions, when the discount factor is close to
1, there are two turnpikes.

Appendix

Proof of Lemma 1. The case of i = −M,−M + 1, . . . ,−1 is obvious.
For i ≥ 0,

W̃ (i) = max
a∈A

{
Ra +

M∑

m=1

[W̃ (i − m) + c∗(i − m)]pm(a)

}
− c∗i

= max
a∈A

{
Ra − c∗La +

M∑

m=1

W̃ (i − m)pm(a)

}
.

Equalities (6) are proved, and the maxima in (4) and in (6) are provided by the
same values of a ∈ A.

Finally, keeping in mind that

• |W̃ (i)| ≤ |c∗|M for i < 0,
• Ra

La − c∗ ≤ 0 for all a ∈ A, and
• Ra

La − c∗ = 0 for a ∈ A∗ = ∅,

it is easy to prove by induction that |W̃ (i)| ≤ |c∗|M for all i = 0, 1, 2, . . .. �

Proof of Lemma 2. (a) All the elements of the matrix Q(d) are obviously non-
negative.

Clearly,
M−1∑

j=0

Q0,j(d) =
M−1∑

j=0

P0,j(d(0)) = 1
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Suppose
∑M−1

j=0 Qi,j(d) = 1 for all i ≤ l for some l ∈ {0, 1, . . . ,M − 2} and
consider l + 1:

M−1∑

j=0

Ql+1,j(d) =
l∑

j=0

l∑

i=0

[Pl+1,i(d(l + 1))Qi,j(d)]

+
M−1∑

j=l+1

(
l∑

i=0

[Pl+1,i(d(l + 1))Qi,j(d)] + Pl+1,j(d(l + 1))

)

=
l∑

i=0

⎛

⎝
M−1∑

j=0

Qi,j(d)

⎞

⎠ Pl+1,i(d(l + 1)) +
M−1∑

j=l+1

Pl+1,j(d(l + 1))

=
M−1∑

i=0

Pl+1,i(d(l + 1)) = 1.

The last equality is by the induction supposition.
(b) If l ≥ s then this statement follows directly from the definition (13):

Qs,l(d) ≥ Ps,l(d(s)).
Suppose l < s. Then, again using (13), we have Qs,l(d) ≥ Ps,l(d(s))Ql,l(d).

Since Ql,l(d) ≥ Pl,l(d(l)) > 0, we finally obtain that

Qs,l(d) > 0, if Ps,l(d(s)) > 0.

�

For the proof of Theorem 1 we need the following lemma.

Lemma 4. Suppose
→
α∈ R

M is a substochastic row vector and
∑M−1

i=0 αiRi(d) =
0 for some d ∈ D. Then the row vector

→
α Q(d) coincides with the row vector

→
α Q(d̂) for some d̂ ∈ D∗ with d̂(i) = d(i) if αi > 0.

Proof. Suppose α0 ∈ [0, 1] and consider the substochastic row vector
→
α:=

(α0, 0, . . . , 0) ∈ R
M such that

∑M−1
i=0 αiRi(d) = 0, where d ∈ D is fixed.

Then the row vector
→
α Q(d) coincides with the row vector

→
α Q(d̂) for some

d̂ ∈ D∗ with d̂(0) = d(0) if α0 > 0. Indeed, for α0 > 0, R0(d) = 0, and we put
d̂(0) := d(0) ∈ A∗. The other values d̂(i) ∈ A∗ for i = 1, 2, . . . ,M − 1 can be
taken arbitrarily leading to equalities

→
α Q(d̂) =

(
α0P0,j(d̂(0))

)M−1

j=0
= (α0P0,j(d(0)))M−1

j=0 =
→
α Q(d).

If α0 = 0 then one can take an arbitrary d̂ ∈ D∗:

→
α Q(d̂) =

→
α Q(d) = 0.

We proceed further by induction. Suppose the statement of the lemma is
valid for all

→
α satisfying condition αl = αl+1 = . . . = αM−1 = 0 for some
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1 ≤ l ≤ M − 1 and d̂(l), d̂(l + 1), . . . , d̂(M − 1) can be arbitrary in A∗. Consider
a vector

→
α with αl+1 = αl+2 = . . . = αM−1 = 0 and let d ∈ D be such that∑M−1

i=0 αiRi(d) = 0.
Since, for each fixed d̃ ∈ D, the product

→
α Q(d̃) does not depend on the

rows Qj,·(d̃) with j ≥ l + 1, the values d̃(j) with such j do not affect the value
of

→
α Q(d̃). (See (13)) Hence one can put d̂(l + 1), d̂(l + 1), . . . , d̂(M − 1) ∈ A∗

arbitrarily.
In case αl = 0 the statement of the lemma holds by the induction supposition.

Below, αl > 0 and hence Rl(d) = 0 and d(l) ∈ A∗. Therefore, we put d̂(l) := d(l).
Moreover, in the current situation Rj(d) = 0 for all j ∈ {0, 1, . . . , l − 1} with
positive values of Pl,j(d(l)): see (12). Thus, for the row vector

→
α′:= (α0 + αlPl,0(d(l)), . . . , αl−1 + αlPl,l−1(d(l)), 0, . . . , 0) ∈ R

M

we have
∑M−1

i=0 α′
iRi(d) = 0, and we will use the induction supposition for

→
α′ to

complete the proof. Note also that the vector
→
α′ is substochastic.

For any d̃ ∈ D, according to (13), the elements of the row vector
→
α Q(d̃) are

as follows:
l∑

j=0

αjQj,0(d̃) =
l−1∑

j=0

αjQj,0(d̃) + αl

l−1∑

i=0

[Pl,i(d̃(l))Qi,0(d̃)]

=
l−1∑

j=0

{αj + αlPl,j(d̃(l))}Qj,0(d̃);

l∑

j=0

αlQj,1(d̃) =
l−1∑

j=0

{αj + αlPl,j(d̃(l))}Qj,1(d̃);

. . . . . . . . .
l∑

j=0

αlQj,l−1(d̃) =
l−1∑

j=0

{αj + αlPl,j(d̃(l))}Qj,l−1(d̃);

l∑

j=0

αlQj,l(d̃) =
l−1∑

j=0

{αj + αlPl,j(d̃(l))}Qj,l(d̃) + αlPl,l(d̃(l));

. . . . . . . . .
l∑

j=0

αlQj,M−1(d̃) =
l−1∑

j=0

{αj + αlPl,j(d̃(l))}Qj,M−1(d̃) + αlPl,M−1(d̃(l)).

To put it differently, for the mapping d we have

→
α Q(d) =

→
α′ Q(d) + (0, . . . , 0, αlPl,l(d(l)), . . . , αlPl,M−1(d(l)).

According to the induction supposition, there is d̂ ∈ D∗ (with fixed d̂(l) = d(l) ∈
A∗ and arbitrary values d̂(l +1), . . . , d̂(M − 1) ∈ A∗ which do not appear in the
provided expressions) such that
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→
α′ Q(d) =

→
α′ Q(d̂).

Therefore,
→
α Q(d) =

→
α Q(d̂).

Besides, for i = 0, 1, . . . , l − 1, if α′
i > 0 then d̂(i) = d(i); hence, if αi > 0 then

d̂(i) = d(i) for all i = 0, 1, . . . , l − 1, l.
The proof is completed. �

Proof of Theorem 1. Let Tk := maxs∈S W k(s) and tk := mins∈S W k(s) and let us
show that the sequence {Tk}∞

k=0 decreases and the sequence {tk}∞
k=0 increases.

Since, for every d ∈ D, R(d) ≤ 0 and the matrix Q(d) is stochastic (see
Lemma 2(a)),

{R(d) + Q(d)W k}s ≤ Tk for all s ∈ S.

Hence, Tk+1 ≤ Tk.
For every d ∈ D∗, R(d) = 0, so

{R(d) + Q(d)W k}s ≥ tk for all s ∈ S.

Hence, W k+1(s) ≥ tk and tk+1 ≥ tk.
Therefore, there exist limits T∞ := limk→∞ Tk ≥ t∞ := limk→∞ tk which

are finite because of Lemma 1. Later, under the imposed condition, it will be
clear that these limits coincide.

Let

Δ̃ := − max
d∈D,s∈S: Rs(d)<0

Rs(d) and q := min
d∈D, s,l∈S: Qs,l(d)>0

Qs,l(d).

Since the sets D and S are finite, Δ̃ > 0, q ∈ (0, 1], and we introduce an arbitrary
Δ ∈ (0, Δ̃) and

ε :=
Δ

2

(
q

2 − q

)J

> 0.

Let K be such that

TK < T∞ + ε (hence TK < T∞ +
Δ

2
).

Since the sequence {Tk}∞
k=0 decreases to T∞, we conclude that

Tk < T∞ + ε < T∞ +
Δ

2
for all k ≥ K. (20)

We intend to show that

∀s ∈ S WK(s) > T∞ − Δ

2
. (21)

To do this, fix s̃ ∈ S such that WK+J(s̃) = TK+J and let us prove by induction
the following statement
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A. For each j = 0, 1, . . . , J , there exist mappings d̂1, d̂2, . . . , d̂j ∈ D∗
such that, for the s̃-th row of the stochastic matrix Q(d̂1)Q(d̂2) . . . Q(d̂j)

denoted below as
→
γj , if γj

s > 0, then WK+J−j(s) > T∞ −
(

2−q
q

)j

ε.

Let j = 0. Then no mappings d̂ ∈ D∗ are considered,
→
γ0= (δs̃,s)M−1

s=0 is the
basic row vector with element 1 on the s̃-th place, and WK+J(s̃) > T∞ − ε
because
– WK+J(s̃) = TK+J by the definition of s̃;
– and TK+J ≥ T∞ because the sequence {Tk}∞

k=0 decreases to T∞.
Suppose the statement A is valid for some j ∈ {0, 1, . . . , J − 1} and the

mappings d̂1, d̂2, . . . , d̂j ∈ D∗ are fixed;
→
γj=

→
γ0 Q(d̂1)Q(d̂2) . . . Q(d̂j),

where
→
γ0= (δs̃,s)M−1

s=0 as before. Let dj+1 ∈ D be such that

WK+J−j = R(dj+1) + Q(dj+1)WK+J−(j+1).

For s ∈ S such that γj
s > 0 we have inequality

WK+J−j(s) > T∞ −
(

2 − q

q

)j

ε (22)

according to the inductive supposition. For such value of s, suppose Rs(dj+1) <
0. Then

WK+J−j(s) ≤ −Δ + TK+J−(j+1) < −Δ + T∞ +
Δ

2
= T∞ − Δ

2

because of (20): remember, J − (j + 1) ≥ 0. Further,

WK+J−j(s) < T∞ −
(

2 − q

q

)J

ε ≤ T∞ −
(

2 − q

q

)j

ε

which contradicts (22). Therefore, if γj
s > 0 then Rs(dj+1) = 0 and∑M−1

s=0 γj
sRs(dj+1) = 0.

Using Lemma 4 with the (sub)stochastic vector
→
γj , we conclude that the row

vector
→
γj Q(dj+1) coincides with the row vector

→
γj Q(d̂j+1) for some d̂j+1 ∈ D∗.

Now the s̃-th row of the matrix Q(d̂1)Q(d̂2) . . . Q(d̂j+1) equals

−−→
γj+1 =

→
γj Q(d̂j+1) =

→
γj Q(dj+1).

Suppose γj+1
l > 0. Then there is at least one index s such that γj

s > 0 and
Qs,l(dj+1) > 0; hence Qs,l(dj+1) ≥ q. As was proved above, Rs(dj+1) = 0.
Consider equality

WK+J−j(s) = Rs(dj+1) + Qs,·(dj+1)WK+J−(j+1) = Qs,·(dj+1)WK+J−(j+1).
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Since TK+J−(j+1) < T∞ + ε ≤ T∞ +
(

2−q
q

)j

ε (see (20)),

WK+J−j(s) ≤ Qs,l(dj+1)WK+J−(j+1)(l)+(1−Qs,l(dj+1))

[
T∞ +

(
2 − q

q

)j

ε

]
.

In case

WK+J−(j+1)(l) ≤ T∞ −
(

2 − q

q

)j+1

ε

we have

WK+J−j(s) ≤ Qs,l(dj+1)

[
T ∞ −

(
2 − q

q

)j+1

ε

]

+(1 − Qs,l(dj+1))

[
T ∞ +

(
2 − q

q

)j

ε

]

= T ∞ +

(
2 − q

q

)j

ε − Qs,l(dj+1)

[(
2 − q

q

)j

ε +

(
2 − q

q

)j+1

ε

]

≤ T ∞ +

(
2 − q

q

)j

ε − q

(
2 − q

q

)j

ε

[
1 +

2 − q

q

]
(because Qs,l(dj+1) ≥ q)

= T ∞ +

(
2 − q

q

)j

ε[1 − q − (2 − q)] = T ∞ −
(
2 − q

q

)j

ε

which contradicts (22). Therefore

WK+J−(j+1)(l) > T∞ −
(

2 − q

q

)j+1

ε,

and the statement A is proved for j + 1.

When j = J , the vector
→
γJ contains no zeroes; hence

WK(s) > T∞ −
(

2 − q

q

)J

ε = T∞ − Δ

2
for all s ∈ S

by the definition of ε. Inequality (21) is proved.
Note also that inequality (21) implies that tK > T∞ − Δ

2 and, since the
sequence {tk}∞

k=0 increases to t∞, t∞ ≥ T∞ − Δ
2 . Noting that Δ ∈ (0, Δ̃) was

arbitrary, we conclude that t∞ = T∞.
Now, if d /∈ D∗ then, for some s ∈ S,

Rs(d) + Qs,·(d)WK < −Δ + T∞ +
Δ

2
= T∞ − Δ

2

according to (20). On the other hand, for each d ∈ D∗, for all s ∈ S,
Qs,·(d)WK > T∞ − Δ

2 because of (21), meaning that
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WK+1 = max
d∈D

{R(d) + Q(d)WK} = R(dK+1
∗ ) + Q(dK+1

∗ )WK = Q(dK+1
∗ )WK

with dK+1
∗ ∈ D∗.

The following statement can be easily proved by induction.

B. For each k ≥ K

W k(s) > T∞ − Δ

2
for all s ∈ S

and the maximum in equation

W k+1 = max
d∈D

{R(d) + Q(d)W k} (23)

is provided necessarily by dk+1
∗ ∈ D∗.

As was shown above, this statement is valid for k = K.
Suppose it is valid for some k − 1 ≥ K and consider the case of k. Firstly,

the vector
W k = Q(dk

∗)W k−1

is such that (for all s ∈ S) W k(s) > T∞− Δ
2 because of the inductive supposition:

W k−1(s) > T∞ − Δ
2 for all s ∈ S. Secondly, like previously, if d /∈ D∗, then, for

some s ∈ S,

Rs(d) + Qs,·(d)W k < −Δ + T∞ +
Δ

2
= T∞ − Δ

2
. (24)

(This inequality holds for each s ∈ S with d(s) /∈ A∗ =⇒ Rs(d) < 0 =⇒ Rs(d) <
−Δ.) And, for each d ∈ D∗, for all s ∈ S,

Rs(d) + Qs,·(d)W k = Qs,·(d)W k > T∞ − Δ

2
. (25)

Thus the maximum in (23) at k is provided necessarily by dk+1
∗ ∈ D∗.

The proof is completed. �

Proof of Corollary 1. It is sufficient to show that the matrix Q(d∗) is ergodic.
The mapping d∗ satisfies the condition of Lemma 2(b): Ps,s(d∗(s)) = Ps,s(a∗) =
pM (a∗) > 0 for all s ∈ S. Hence, for all s, l ∈ S, if Ps,l(d∗(i)) = Ps,l(a∗) > 0 then
Qs,l(d∗) > 0. Therefore, the matrix Q(d∗) is ergodic because the matrix P (a∗)
is ergodic. The proof is completed. �

Proof of Lemma 3. When j = 1, Items (i) and (iii) are valid by the preliminary
calculations, and Item (ii) comes from the following:

2ε(j − 1) + (1 + ε)h − 2 − εV (2j − 1) = (1 + ε)h − 2 − εh = h − 2 > 0.

Suppose statements (i), (ii) and (iii) hold for some j ≥ 1 and consider j + 1.
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(i) For i = 2(j+1), using the induction supposition, we estimate the difference

2 + V (2j) − [h + (1 − ε)V (2j) + εV (2j − 1)]

> 2 + 2j + h − h − (1 − ε)(2j + h) − ε
2ε(j − 1) + (1 + ε)h − 2

ε
= 4 + 2ε − 2h = 2[2 + ε − h] > 0.

The inequality is according to statement (ii) at j.
Thus, V (2(j + 1)) = 2(j + 1) + h, and the maximum in (3) is provided only
by a1.

(ii)

V (2j + 1) = (1 − ε)V (2j − 1) + (1 + ε)h + 2ε(j − 1)

< (1 − ε)
2ε(j − 1) + (1 + ε)h − 2

ε
+ (1 + ε)h + 2ε(j − 1)

=
2εj + (1 + ε)h − 2

ε
,

so that statement (ii) is valid for j + 1.
(iii) For i = 2(j + 1) + 1, using the induction supposition, we estimate the

difference

h + (1 − ε)V (2j + 1) + εV (2j) − [2 + V (2j + 1)]
= h − εV (2j + 1) + ε[2j + h] − 2
> h(1 + ε) − [2εj + h − 2 + εh] + 2εj − 2 = 0,

where the inequality is by the proved above Item (ii) for j + 1. Recall also
that V (2j) = 2j + h. Therefore,

V (2(j + 1) + 1) = h + (1 − ε)V (2j + 1) + ε[2j + h),

and we see that statement (iii) is valid for j + 1 and the maximum in (3) is
provided only by a2. �

Proof of Theorem 2. Introduce function

W̃ (i) := V β(i) − R∗

1 − β
, i ∈ X,

which obviously satisfies equation

W̃ (i) = − R∗

1 − β
for i = −M,−M + 1, . . . ,−1;

W̃ (i) = max
a∈A

{
(Ra − R∗) + β

M∑

m=1

W̃ (i − m)pm(a)

}
for i ≥ 0.

Like previously, (see (7)), we replace the argument i with k = 0, 1, 2, . . . and
s ∈ S = {0, 1, . . . ,M − 1}, denote W k(s) := W̃ (i) and finish with equations
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like (8). The only difference is that pm(a) is replaced by βpm(a), and the initial
condition is

W 0(s) = − R∗

1 − β
for s ∈ S.

We obtain iterations (cf (11))

W 0(s) = − R∗

1 − β
, s ∈ S;

W k+1 = max
d∈D

{Rβ(d) + Qβ(d)W k}, k = 0, 1, . . . , (26)

where

Rβ
0 (d) = Rd(0) − R∗;

Rβ
l+1(d) = Rd(l+1) − R∗ + β

l∑

j=0

Pl+1,j(d(l + 1))Rβ
j (d),

l = 0, . . . , M − 2,

and the matrix Qβ is given by (13) with P being replaced by βP . Similarly to
(11), the maximum in the expression

U ◦ W := max
d∈D

{Rβ(d) + Qβ(d)W}

is provided by some d̂ ∈ D for each W ∈ R
M : the values d̂(s) can be calculated

successively for s = 0, 1, . . . ,M − 1. Note also that Rβ(d) ≤ 0 for all d ∈ D.
The matrix Qβ(d) is (uniformly with respect to d) strictly substochastic, i.e.,

0 <
M−1∑

j=0

Qβ
l,,j(d) ≤ β < 1 for all l ∈ S :

the proof is identical to the proof of Lemma 2(a). Therefore, the mapping U is
a contraction in the space R

M with the uniform norm: see the proof of Propo-
sition 6.2.4 in [6]. The maximum maxd∈D Rβ(d) = 0 (the zero vector in R

M ) is
provided by those and only those d ∈ D, for which d(s) ∈ A∗ for all s ∈ S. There-
fore, the unique fixed point of the operator U is W∞ = 0 and limk→∞ W k = 0.
Below,

D∗ := {d ∈ D : d(s) ∈ A∗ for all s ∈ S},

and
U ◦ W∞ = Rβ(d) + Qβ(d)W∞ = Rβ(d) = W∞ = 0

if and only if d ∈ D∗. The theorem will be proved if we show that, for some
K < ∞, the maximum in (26) at all k ≥ K is only provided by d ∈ D∗.

Denote
Δ := min

d∈D\D∗
min

s∈S:Rβ
s (d)<0

{−Rβ
s (d)}.

The spaces D and S are finite, and Δ > 0.
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If Δ = +∞ then D∗ = D and the proof is finished. (One can put K = 0.)
Suppose Δ < +∞. Then, for each d ∈ D \ D∗ = ∅, for each s ∈ S such that

Rβ
s (d) < 0,

Rβ
s (d) ≤ −Δ.

Let us choose 0 < ε < Δ
2 and fix K ≥ 0 such that

max
j∈S

|W k(j)| < ε for all k ≥ K.

Now, for each k ≥ K, if d /∈ D∗ provides the maximum in (26), then there is
s ∈ S such that Rβ

s (d) < 0, and, for each such s,

W k+1(s) = Rβ
s (d) +

M−1∑

j=0

Qβ
s,j(d)W k(j) ≤ Rβ

s (d) + ε ≤ −Δ + ε.

(Recall that Qβ(d) is a substochastic matrix.) Since W k+1(s) > −ε, we obtain
the strict inequalities

W k+1(s) < W k+1(s) + ε − Δ + ε < W k+1(s).

The obtained contradiction shows that, for all k ≥ K, only the decisions from
D∗ provide the maximum in (26). �
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Abstract. In this chapter we study the well-known optimal stopping
problem applied to a general family of continuous-time Markov processes.
The approach to follow is merely analytic and it is based on the charac-
terization of stopping problems through the study of a certain variational
inequality; namely one solution of this inequality will coincide with the
optimal value of the stopping problem. In addition, by means of this
characterization, it is possible to find the so-named continuation region,
and as a byproduct obtaining the optimal stopping time. The most of the
material is based on the semigroup theory, infinitesimal generators and
resolvents. The chapter is a complete version of the former presentation
without detailed proofs in [25].

Keywords: Optimal stopping times · Continuous-time Markov
processes · Variational inequalities
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1 Introduction

Optimal stopping problems are perhaps one of the most interesting and studied
problems in the theory of stochastic processes. Successful methods have been
developed during decades to show the existence and several characterizations of
optimal stopping times. The most studied methods to address these problems
are definitely the theory of Snell envelopes and backward-reflected stochastic
differential equations—see [7,14,15,17,18], but on the other hand, there is also
another useful method that tackles stopping problems from a merely analytical
viewpoint—see [3,5,22,23,29,31,32], among others.

One of the main differences of the second method with respect to the former
is the assumption of a Markovian structure of the process, so in principle it
could seem more restrictive. However, its analytical nature allows the use of
sophisticated tools of functional analysis, set topology, or even more, the use
of numerical approximations of the original (and theoretic) problem—see for
instance [16].
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In this work we shall apply the analytical approach we have already men-
tioned, and extend several works on this line. But before to specify the details,
we can depart to mentioning some pioneer works on this analytical direction,
such as [3–5]. All these works were focused on the study of both optimal stop-
ping and impulsive control problems associated to non-degenerated diffusion
processes. Based on these works, several authors followed the same line (with
both/either theoretical and/or applied viewpoints) that have produced during
decades a spread of knowledge on this field.

Other former but nor less important works were developed by Robin [31,32]
and later by Stettner [34] that also applied analytical tools for solving optimal
stopping problems on general continuous-time Markov-Feller processes. Within
the analysis of the aforementioned papers, we highlight the assumptions on the
state space of either type: locally compact or compact.

Following with the description of the former literature, we can quote
Menaldi’s works [22–24] as well as the one by Menaldi and Sritharan [28], in
which the authors analyzed two great families of Markov-Feller process: (1)
degenerate stochastic differential equations with either jumps or without jumps,
and (2) Navier-Stokes equations; in all these mentioned works the authors take
advantage to the particularities of the model in order to explore the regularity of
the optimal values. As for the discrete-time models there is a handful of works
such as [6,19,20,30],

In this work we use the same line as Robin’s works [31,32] but we drop the
local-compactness assumption of the state space. It is important to say that our
model is based on the existence of a Markov process that lives on a fixed proba-
bility space, whereas in the aforementioned references, this space is constructed
through the canonical space. This implies that both works are not a special case
of each other. Actually, we are somehow inspired from the ideas scattered in
reference [25]. One difference of this reference with respect to this proposal, is
the nature of the dynamical system and also the general details, since in this
work we detail point by point all the arguments of the proofs.

The content of this paper is organized as follows: In Sect. 2, we describe the
class of Markov processes we are interested in, and its associated semigroup.
Due to a minimal set of assumptions imposed to this process, we will be forced
to introduce a seminorm that measures the maximum value of functions along
the trajectories (rather than over the whole space, that is the usual case of the
supremum norm). This seminorm, produces some properties of the aforemen-
tioned semigroup such as a kind of Feller version that is measured through this
seminorm. By the end of the section, we will define the corresponding infinitesi-
mal generator and the resolvent operators that both together play a substantial
role within the analysis of the optimal stopping problems. In Sect. 3, we will
turn our attention to the study of the so-called penalized problem, whose main
characteristic is the associated parametric family of functional equations that
will be analyzed in this part; in particular, the existence and regularity of these
functional equations are ensured. Later we will consider a certain variational
inequality. This inequality satisfies the following two nice properties: (i) one of
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its subsolutions becomes the limit of the (unique) solutions of the aforemen-
tioned family of parametric equations and (ii) the maximal sub-solution of this
inequality is just the minimal cost of our stopping problem; this last property
will be proved later in Sect. 4, in which we will also provide a characterization
of the optimal stopping time as a hitting time associated to a given set so-called
continuation region or contact set.

2 A Family of Markov Processes

In this section we introduce the dynamics of our stopping problem. This dynam-
ics consists of a continuous-time Markov process that in turn defines a family
of operators so-called the semigroup of the process. With these elements it is
possible to introduce both an infinitesimal generator and a resolvent operator
related to that semigroup. These latter operators will play a substantial role for
the analysis of the optimal stopping problem. The way to construct the above
mentioned mathematical objects is not straightforward due to the generality of
the state space.

2.1 Preliminaries

Let E := (Ω,F , {Ft}t≥0,P) be a fixed filtered probability space, satisfying the
usual conditions (i.e., the filtration {Ft}t≥0 is right-continuous and F0 contains
all subsets of the P-null sets). Besides, let us consider an open subset O of a
Banach space with norm |·|. Throughout this work we will be working with
an abstract homogeneous O-valued stochastic process {y(t, x)}t≥0, with initial
condition x ∈ O (i.e. P(y(0, x) = x) = 1), defined on E .

A first consequence of the above mathematical objects is the definition of the
space B(O) consisting of all measurable functions h : O → R such that

h(y(t, x)) ∈ L1(Ω,R), ∀ t ≥ 0, x ∈ O; (1)

we note that every bounded measurable function belongs to this space.
With these preliminary elements, we can establish the following assumptions

for {y(t, x)}t≥0:

Assumption 1. The mapping

(t, x) �→ P(y(t, x) ∈ B) is measurable ∀ B ∈B(O), (2)

where B(O) denotes the σ-algebra generated by O. In addition:

(a) There exist constants α0 > 0, and k ≥ 1, as well as a measurable function
w : O → [1,+∞) satisfying lim|x|→∞ w(x) = ∞, such that all together satisfy
the following:

(a.1)
E

[
sup
s≥0

{
e−α0sw(y(s, x))

} ]
≤ kw(x), ∀ x ∈ O, and (3)
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(a.2)
E

[
e−α0sw(y(s, x))

]
≤ w(x), ∀ x ∈ O and ∀ s ≥ 0, (4)

where E[·] is the expectation associated to P.
(b) The Markov property:

P(y(t + s, x) ∈ B|Fs) = P(y(t, y(s, x)) ∈ B), a.s. ∀ t, s ≥ 0, B ∈ B(O).
(5)

The right-hand side of the above equality is understood as the evaluation of
the mapping z �→ P(y(t, z) ∈ B) at z = y(s, x).

(c) The following relation holds true for all s, t ≥ 0, x ∈ O

E[h(y(t, y(s, x)))] = E[h(y(s, y(t, x)))], a.s. ∀ h ∈ B(O), (6)

where the left-hand side means the evaluation of z �→ E[h(y(t, z))] at z =
y(s, x), and the right-hand side is the evaluation of f �→ E[f(y(t, x))] at
f = h(y(s, ·)).

(d) For each x ∈ O, t �→ y(t, x) has not discontinuities of second kind. Moreover,
for all x ∈ O and ε > 0 there is δ > 0 such that if 0 ≤ t ≤ δ then

P( sup
0≤s≤ 1

ε

|y(t + s, x) − y(s, x)| ≥ ε) < ε. (7)

Remark 1.(a) The measurability assumption (2), is a well known fact, as it is
established in Dellacherie and Meyer [12], Ethier and Kurtz [13], Rogers and
Williams [33]. A clear consequence of the above property is that (t, x) �→
E[h(y(t, x))] is measurable for every simple function h : O → R. Thus, a
standard convergence procedure to each h ∈ B(O) from sequences of simple
functions, yields that

(t, x) �→ E[h(y(t, x))] is measurable ∀ h ∈ B(O). (8)

In particular, equation (6) is well-defined.
(b) It is worth to say that properties (3), (4), and (7) are common in special

cases of Markov processes, such as those that come from solutions of both
ordinary and partial stochastic differential equations—see Bensoussan and
Lions[3,5], Bensoussan [4], Menaldi [22–24], Menaldi and Sritharan [26–28].

(c) It is not difficult to prove that the Markov property (5) is equivalent to this
one:

E[h(y(t, y(s, x)))] = E[h(y(t + s, x))|Fs] ∀ t ≥ s ≥ 0, x ∈ O, ∀ h ∈ B(O).
(9)

(d) Condition (6) is a kind of uniqueness on the paths. This type of relation is
satisfied for a big family of Markov processes {y(t, x)}t≥0, for instance the
well-known family of Ito’s process (with or without jumps, of finite or infinite
dimension)—see Bensoussan and Lions [3,5], Bensoussan [4], Menaldi [22–
24], Menaldi and Sritharan [26–28], Da Prato [10,11], among others.
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(e) By writing the set of right-discontinuities of {y(t, x)}t≥0 as

∪ε>0 ∩δ>0 { sup
0≤t≤δ

|y(t + s, x) − y(s, x)| ≥ ε},

and with the aid of (7), it is not difficult to show that {y(t, x)}t≥0 has
right-continuous paths. Also, since the process has not second order discon-
tinuities, we can conclude that it is càdlàg.

We will also think over the space of functions h ∈ B(O) with the property of

sup
x∈O

|h(x)|
w(x)

< ∞. (10)

This space is denoted by Bw(O) that will be endowed with the norm

‖h‖w := sup
x∈O

|h(x)|
w(x)

. (11)

It is common to say that every function in Bw(O) satisfies a finite w-growth. In
addition, it is not difficult to show that (Bw(O), ‖·‖w) is a Banach space.

Finally, using the (fixed) constant α0 > 0 appearing in (3), we introduce the
family of seminorms {p(·, x)}x∈O on B(O) by

p(h, x) = E

[
sup
s≥0

{
e−α0s|h(y(s, x))|

}]
, ∀ x ∈ O. (12)

Each element of the above family is in fact a seminorm because p(h, x) ≥ 0,
p(ah, x) = |a|p(h, x) for all a ∈ R and p(h + g, x) ≤ p(h, x) + p(g, x), but if
p(h, x) = 0 then {h(y(s, x))}s≥0 is indistinguishable of the constant process
equal to zero. Using this seminorm, we shall denote by Bp(O) the subspace of
B(O) consisting of functions h satisfying

p(h, x) < ∞, ∀x ∈ O. (13)

Note that the definition of this later space, together with the definition of
Bw(O) in (11), and the assumption in (3), all together yield that Bw(O) ⊆
Bp(O) ⊆ B(O).

2.2 The Associated Semigroup

For α ≥ α0, with α0 as in (3), we define the family of operators {Φα(t)}t≥0 on
Bp(O) by

Φα(t)h(x) = E[e−αth(y(t, x))], ∀ x ∈ O, h ∈ Bp(O), t ≥ 0. (14)

In view of Φα(t) is essentially an integral (with respect to the probability measure
P), we have that it is monotone, that is, h ≥ 0 implies Φα(t)h ≥ 0 for any t ≥ 0.
Besides, from the definition of Φα(t) in (14), it is clear that Φα(0)h = h. This
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family of operators also satisfies the semigroup property Φα(t)Φα(s) = Φα(t + s)
that follows directly from the Markov property, namely for h ∈ Bp(O),

Φα(t)Φα(s)h(x) = E[e−αtΦα(s)h(y(t, x))] = E[e−αt
E[e−αsh(y(t, y(s, x)))]]

= E[e−α(t+s)
E[h(y(t + s, x))|Fs]] = E[e−α(t+s)h(y(t + s, x))]

= Φα(t + s)h(x).

If h ∈ Bw(O) then, using the inequality (4) as well as the norm in (11), we get
the following

|Φα(t)h(x)| ≤ E[e−αt|h(y(t, x))|] = E
[
e−αt |h(y(t, x))|

w(y(t, x))
w(y(t, x))

]

≤ ‖h‖w E[e−α0tw(y(t, x))] ≤ ‖h‖w w(x), ∀ x ∈ O.

Hence,
‖Φα(t)h‖w ≤ ‖h‖w . (15)

The semigroup property naturally arises when the operators Φα(t) are defined
as an integral with respect to a given transition probability kernel q(x, t, ·) =
P[y(t, x) ∈ ·] that in turn satisfies the well-known Chapman-Kolmogorov equa-
tions. This last type of equations is very common in specific models, such as
continuous-time Markov chains, Lévy Processes, partial stochastic differential
equations, to mention a few. (See [1,2,10,11], among others). The family of the
operators Φα defined in (14) will be called throughout this work as the associated
semigroup of the Markov process {y(t, x)}t≥0.

As we will see in the following result, the semigroup Φα satisfies the contrac-
tion property with respect to the seminorm p(·, x). The details are as follows.

Proposition 1. For each h ∈ Bp(O), t, s ≥ 0 and x ∈ O we have that

p(Φα(t)h, x) ≤ p(h, x).

Proof. Fixed h ∈ Bp(O), t, s ≥ 0 and x ∈ O, we have

p(Φ(t)h, x) = E
[
sup
s≥0

{e−α0s|E[e−αth(y(t, y(s, x)))]|}
]

= E
[
sup
s≥0

{e−α0s|E[e−αth(y(s, y(t, x)))]|}
]

(by (6))

≤ E
[
E[sup

s≥0
{e−α0se−αt|h(y(s, y(t, x)))|}]

]
.

On the other hand, it is not difficult to prove that the Markov property in (1)
implies the Markov property (see e.g. [35, Section 5.2.2.]) in the following sense

E[sup
s≥0

{e−α0se−αt|h(y(s, y(t, x)))|}] = E[sup
s≥0

{e−α0se−αt|h(y(s + t, x))|}
∣∣Ft].
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Then we can conclude that

p(Φ(t)h, x) ≤ E
[
E[sup

s≥0
{e−α0se−αt|h(y(s + t, x))|}

∣∣Ft]
]

= E[sup
s≥0

{e−α0se−αt|h(y(s + t, x))|}]

≤ E[sup
s≥0

{e−α0s|h(y(s, x))|}] = p(h, x).

�

Remark 2.(a) The assumption in (2) together with (15), give us that Φα(t)
leaves invariant the space Bw(O); actually, our family of operators t �→ Φα(t)
satisfies the properties of the so-called monotone semigroup of contractions
defined on Bw(O).

(b) Even more, (2) and Proposition 1 also give the invariance of the semigroup
Φα over the set Bp(O).

Continuity of the Semigroup. In many situations, the above semigroup sat-
isfies the so-called strong continuity (see [1,2,8,10] among others)

‖Φα(t)h − h‖ → 0, as t ↓ 0, (16)

applied to a suitable space of functions h—for example, the set of continuous
functions that vanish at infinity. The above case is very common when the dimen-
sion of O is either finite-dimensional or locally compact. However, there exist sit-
uations when O does not hold the previous two properties—for example, assume
that O is a Hilbert space as in references [26–28]), so convergence (16) is no
longer valid. However, it is possible to obtain a sort of continuity type in the
next weaker sense (see, for instance Böttcher et al. [8], Menaldi [25], or Menaldi
and Sritharan [28]).

Φα(t)h(x) − h(x) → 0, as t ↓ 0 ∀ x ∈ O, (17)

where h is Borel measurable. One of the disadvantages of this later continuity is
that it produces a lack of regularity of some sophisticated mathematical objects
(i.e., infinitesimal generator, the resolvent operator, among others), whose defi-
nitions depend strongly from the convergence in (17).

Since our hypotheses of the state space O are not restricted to the cases of
finite dimension nor local compactness, it is expected to not obtain convergence
of type (16), even when we could use the norm ‖ · ‖w. To avoid this drawback,
we shall seek an intermediate convergence, weaker than (16) but a little stronger
than (17) so that we are in conditions to achieve regularity properties for the
infinitesimal generator and on the resolvent operator. The key point is to define
a suitable functions set whose elements are continuous in certain sense but at
the same time, the semigroup applied to this set can be continuous in seminorm
(see Definition 2 below).

Let us now define the concept of convergence in seminorm that is crucial to
define continuity in seminorm sense.



64 H. Jasso-Fuentes et al.

Definition 1. We say that a sequence hn in Bp(O) converges in seminorm to
some h in Bp(O) as n → ∞, denoted by s − limn→∞ hn = h, if

lim
n→∞

p(hn − h, x) = 0, ∀ x ∈ O. (18)

Moreover, if the elements of the above sequence are in Bw(O) then we say that hn

converges boundedly in seminorm to h as n → ∞, denoted by bs− limn→∞ hn =
h, provided the following conditions are satisfied

{
supn∈N ‖hn‖w < ∞;
s − limn→∞ hn = h.

(19)

Note that for each x ∈ O, t ≥ 0, and h ∈ Bw(O), a simple use of the bound
(3) yields that

p(h, x) = E[sup
s≥0

e−α0s|h(y(s, x))|]

≤ E[sup
s≥0

e−α0s ‖h‖w w(y(s, x))] ≤ k ‖h‖w w(x) < ∞. (20)

The above relation means that convergence in norm implies convergence in semi-
norm which, at the same time, implies pointwise convergence.

Definition 2. We define the subspace Cp(O) of Bp(O) that is conformed by the
functions h such that:

(a) s − limt↓0 Φα(t)h = h,
(b) for each x ∈ O we have that {h(y(s, x))}s≥0 is a càdlàg process.

We also denote the intersection Cp(O) ∩ Bw(O) by Cw
p (O).

The next proposition shows further properties of the sets Cp(O) and Cw
p (O).

Proposition 2. Under Assumption 1, we have

(a) The sets Cp(O) and Cw
p (O) are non-empty.

(b) For every t ≥ 0:
(b.1) Φα(t)h ∈ Cp(O) when h ∈ Cp(O),
(b.2) Φα(t)h ∈ Cw

p (O) when h ∈ Cw
p (O).

Proof. (a) Let Cu(O) be the space of bounded uniformly continuous functions
and take h ∈ Cu(O). Note that

p(Φα(t)h − h, x) ≤ p(Φα(t)h − e−αth, x) + p(e−αth − h, x)
≤ p(Φα(t)h − e−αth, x) + (e−αt − 1)p(h, x),

where (e−αt − 1) → 0 when t ↓ 0. So, we aim to show

p(Φα(t)h − e−αth, x) → 0
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when t ↓ 0. Namely, for any t ≥ 0 and x ∈ O, we have

p(Φα(t)h − e−αth, x) ≤ E
[
sup
s≥0

e−α0s |h(y(t + s, x)) − h(y(s, x))|
]

≤ E
[

sup
0≤s≤T

e−α0s |h(y(t + s, x)) − h(y(s, x))|
]

+ E
[
sup
s≥T

e−α0s |h(y(t + s, x)) − h(y(s, x))|
]

(21)

for any T > 0. In order to bound this expression, let us take ε > 0 and choose
0 < δ1 ≤ ε such that |x − x̄| < δ1 implies |h(x) − h(x̄)| < ε. In turn, in virtue of
(7), let us choose 0 < δ0 ≤ δ1 such that for all 0 ≤ t ≤ δ0 we have

P( sup
0≤s≤ 1

δ1

|y(t + s, x) − y(s, x)| ≥ δ1) < δ1.

Letting T = 1
δ0

we get

E
[

sup
0≤s≤ 1

δ0

e−α0s
∣∣e−αth(y(t + s, x)) − h(y(s, x))

∣∣ ]

≤ E
[

sup
0≤s≤ 1

δ0

e−α0s
∣∣e−αth(y(t + s, x)) − h(y(s, x))

∣∣

×1sup0≤s≤ 1
δ0

|y(t+s,x)−y(s,x)|<δ0

]

+E
[

sup
0≤s≤ 1

δ0

e−α0s
∣∣e−αth(y(t + s, x)) − h(y(s, x))

∣∣

×1sup0≤s≤ 1
δ0

|y(t+s,x)−y(s,x)|≥δ0

]
.

The fact that h is bounded (uniformly), gives us

E
[

sup
0≤s≤ 1

δ0

e−α0s
∣∣e−αth(y(t + s, x)) − h(y(s, x))

∣∣1sup0≤s≤ 1
δ0

|y(t+s,x)−y(s,x)|≥δ0

]

≤ 2 ‖h‖∞ P( sup
0≤s≤ 1

δ0

|y(t + s, x) − y(s, x)| ≥ δ0) < 2 ‖h‖∞ ε, (22)

where we have denoted by ‖ · ‖∞ the supremum norm. On the other hand, the
uniform continuity of h gives us

E
[

sup
0≤s≤ 1

δ0

e−α0s
∣∣e−αth(y(t + s, x)) − h(y(s, x))

∣∣

×1sup0≤s≤ 1
δ0

|y(t+s,x)−y(s,x)|<δ0

]
< ε. (23)

We have for the second term in the right-hand side of (21)

E
[

sup
s≥ 1

δ0

e−α0se−αt |h(y(t + s, x)) − h(y(s, x))|
]

≤ sup
s≥ 1

δ0

2e−α0s ‖h‖∞

≤ 2e−α0
1
ε ‖h‖∞ . (24)



66 H. Jasso-Fuentes et al.

Using the estimations (22), (23) and (24) in (21) we get p(Φα(t)h−e−αth, x) → 0
as t ↓ 0. This proves that h satisfies part (a) of Definition 2. But also note that
h trivially satisfies Definition 2(b) because {y(t, x)}t≥0 is càdlàg. Therefore, we
can easily conclude that Cu(O) ⊂ Cw

p (O) ⊂ Cp(O), which proves part (a) of this
proposition.

(b.1) Let h ∈ Cp(O). Now, in virtue of Proposition 1, we have that

p(Φα(t)h, x) ≤ p(h, x),

for each x ∈ O and t ≥ 0. Hence

p(Φα(s)Φα(r)h − Φα(r)h, x) = p(Φα(r)(Φα(s)h − h), x)
≤ p(Φα(s)h − h, x) → 0, s ↓ 0.

This shows that Φα(r)h ∈ Cp(O) for all r ≥ 0, for every element h ∈ Cp(O). It
remains to prove that the process {Φα(t)h(y(s, x))}s≥0 is càdlàg for each x ∈ O
and t ≥ 0. To do this, let s0 ≥ 0 and {sn}n∈N be a decreasing sequence in [0,∞)
converging to s0. Take t ≥ 0 and x ∈ O. We have that {h(y(s + t, x))}s≥0 is
a càdlàg process and sups≥0 e−α0s|h(y(s + t, x))| ∈ L1(Ω) because h ∈ Cp(O)
and satisfies (13). Hence, applying Theorem 45 in [12], the right continuity of
both the filtration and the process h(y(s, x)), as well as the Markov property,
we deduce

lim
n→∞

e−α0sneαtΦα(t)h(y(sn, x)) = lim
n→∞

E[e−α0snh(y(sn + t, x))|Fsn
]

= E[e−α0s0h(y(s0 + t, x))|Fs0 ] = e−α0s0eαtΦα(t)h(y(s0, x)), a.s.

Due to the continuity of the exponential function, from the above we deduce
that lims↓s0 Φα(t)h(y(s, x)) = Φα(t)h(y(s0, x)), a.s. On the other hand, using
again Theorem 45 in [12] and the existence of left-limits of the process h(y(s, x))
we get lims↑s0 Φα(t)h(y(s, x)) = E[e−αth(y(t + s−

0 , x))|Fs−
0
], a.s. Therefore, the

process {Φα(t)h(y(s, x))}s≥0 is càdlàg.
(b.2) If h ∈ Cw

p (O), then we have that ‖Φα(t)h‖w ≤ ‖h‖w < ∞ due to (15),
yielding that Φα(t)h ∈ Cw

p (O). �

Our next target is to describe a closedness properties of both Cp(O) and
Cw

p (O) under (boundedly) seminorm-convergence. For this end, we will prove
the next ancillary result.

Lemma 1. Consider a sequence of functions {hn}n∈N together with a function
h all contained in B(O). For each x ∈ O, suppose that limn↓0 p(hn − h, x) = 0.
Then, there exists a subsequence {nk}k∈N (dependent of x), such that

lim
k→∞

sup
s≥0

{
e−α0s|hnk

(y(s, x)) − h(y(s, x))|
}

= 0, a.s.

Proof. We note that convergence in seminorm implies that

sup
s≥0

{
e−α0s|hn(y(s, x)) − h(y(s, x))|

}
→ 0 as n → ∞, (25)
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where the last convergence is of L1(Ω,R) type. Then, the above sequence con-
verges also in measure and this yields the existence of a subsequence which
converges a.s. �

Theorem 1. Let h and {hn}n∈N be functions all in B(O). Then, under Assump-
tion 1, the following assertions hold true.

(a) If hn ∈ Bp(O) and s − limn→∞ hn = h then h ∈ Bp(O).
(b) If hn ∈ Cp(O) and s − limn→∞ hn = h then h ∈ Cp(O).
(c) If hn ∈ Cw

p (O) and bs − limn→∞ hn = h then h ∈ Cw
p (O).

Proof. (a) Given x ∈ O, there exists n ∈ N such that p(h − hn, x) ≤ 1 and
we have that |h| ≤ |h − hn| + |hn|. Then due to the triangular inequality of the
seminorm, we get p(h, x) ≤ p(h−hn, x)+p(hn, x) < ∞ and therefore h ∈ Bp(O).

(b) Let us suppose hn ∈ Cp(O) and s − limn→∞ hn = h. Then we have that

p(Φα(t)h − h, x) ≤p(Φα(t)h − Φα(t)hn, x) + p(Φα(t)hn − hn, x) + p(hn − h, x)
≤2p(hn − h, x) + p(Φα(t)hn − hn, x).

Letting t ↓ 0 and hence n → ∞ to the last expression, we get limt↓0 p(Φα(t)h −
h, x) = 0, for each x ∈ O. On the other hand, a simple use of Lemma 1 ensures
the existence of a subsequence {nk}k∈N such that

sup
s≥0

{
e−α0s|hnk

(y(s, x)) − h(y(s, x))|
}

→ 0, a.s. (26)

when k → ∞. Note that this subsequence x. Let t0 ≥ 0, we have that

|h(y(t, x)) − h(y(t0, x))|
≤ |h(y(t, x)) − hnk

(y(t, x))| + |hnk
(y(t, x)) − hnk

(y(t0, x))|
+|hnk

(y(t0, x)) − h(y(t0, x))|
≤ (eα0t + eα0t0) sup

s≥0
e−α0s|hnk

(y(s, x)) − h(y(s, x))|

+|hnk
(y(t, x)) − hnk

(y(t0, x))|. (27)

Since t �→ hnk
(y(t, x)) is right-continuous and considering the convergence (26),

we then apply the limits t ↓ t0 and hence k → ∞ on the last expression and
obtain limt↓t0 |h(y(t, x)) − h(y(t0, x))| = 0 a.s. On the other hand, in the same
way as in (27), we get

|h(y(t, x)) − h(y(t−0 , x))| ≤(eα0t + eα0t0) sup
s≥0

e−α0s|hnk
(y(s, x)) − h(y(s, x))|

+ |hnk
(y(t, x)) − hnk

(y(t−0 , x))|.

We apply the limits t ↑ t0 and hence k → ∞ on the last expression and obtain
limt↑t0 |h(y(t, x)) − h(y(t−0 , x))| = 0 a.s. due to the left-limits existence.

(c) If hn ∈ Cp(O) and bs − limn→∞ hn = h, then we have that

s − lim
n→∞

hn = h
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and supn∈N ‖hn‖w, then due to part (b), we have that h ∈ Cp(O) and we need
to demonstrate ‖h‖w < ∞. Namely, we have that seminorm convergence implies
pointwise convergence, hence |h(x)|

w(x) = limn→∞
|hn(x)|
w(x) ≤ supn∈N ‖hn‖w < ∞

implying ‖h‖w < ∞ and therefore h ∈ Cw
p (O). �

2.3 The Infinitesimal Generator and the Resolvent

We define the infinitesimal generator (D(Aα),Aα) associated to the semigroup
Φα as follows

{
D(Aα) := {h ∈ Cw

p (O) : ∃ bs − limt↓0
h−Φα(t)h

t };
Aαh := bs − limt↓0

h−Φα(t)h
t .

(28)

Remark 3. In virtue of Definition 2 and Theorem 1, every limit in (28) belongs
to Cw

p (O).

Recall from Assumption 1 that t �→ Φα(t)h(x) is measurable for every h ∈
B(O) and x ∈ O, then we are in conditions to define the resolvent operator
{Rα}α>α0 by

Rαh(x) =
∫ ∞

0

Φα(t)h(x) dt, ∀x ∈ O, h ∈ B(O), (29)

where the integral is taken in the Lebesgue sense for real valued functions. A
direct consequence of this definition is that Rαh is Borel measurable, for each
fixed α. Also, if h ∈ Bp(O) then Fubini’s Theorem along with Proposition 1
yield

p(Rαh, x) ≤E
[
sup
s≥0

e−α0s

∫ ∞

0

|Φα(t)h(y(s, x))| dt
]

≤
∫ ∞

0

E
[
sup
s≥0

e−α0s|Φα(t)h(y(s, x))|
]

dt =
∫ ∞

0

p(Φα(t)h, x) dt

=
∫ ∞

0

e−(α−α0)tp(Φα0(t)h, x) dt ≤ 1
α − α0

p(h, x), (30)

which implies Rαh ∈ Bp(O). Moreover, if h ∈ Bw(O) then we have

‖Rαh‖w ≤
∫ ∞

0

e−(α−α0)t ‖Φα0(t)h‖w dt ≤ 1
α − α0

‖h‖w < ∞, (31)

and so Rαh ∈ Bw(O).
Our next goal is to prove the stronger fact that Rh ∈ Cw

p (O) when h ∈
Cw

p (O), that is, we will show that Rα maps Cw
p (O) into itself. Such results will

be provided in Theorem 2 below. Before doing this, we will check some useful
properties:



Optimal Stopping Problems 69

In the same way as in (30) it is easy to demonstrate that

p(
∫ b

a

Φα(t)h dt, x) ≤
∫ b

a

p(Φα(t)h, x) dt, for every 0 ≤ a ≤ b ≤ ∞. (32)

Besides, we can interchange the semigroup and the resolvent; namely, for every
β > α0 and α ≥ α0, using Fubini’s Theorem we get

RβΦα(t)h(x) =
∫ ∞

0

Φα(t)Φβ(s)h(x) ds =
∫ ∞

0

E[e−αtΦβ(s)h(y(t, x))] ds

=E
[
e−αt

∫ ∞

0

Φβ(s)h(y(t, x)) ds
]

= Φα(t)Rβh(x). (33)

The use of Fubini’s Theorem is justified since
∫ ∞

0

E[e−αt|Φβ(s)h(y(t, x))|] ds ≤ Φα(t)Rβ |h|(x) ≤ 1
β − α0

‖h‖w w(x).

Our next result uses the following notation:

u(t) = Φα(t)h, for a given h ∈ Cp(O) and α > α0. (34)

Lemma 2. Fix x ∈ O. Then:

(a) For all t0 ≥ 0 we have that limt→t0 p(u(t) − u(t0), x) = 0.
(b) We have limt→∞ p(u(t), x) = 0.
(c) For all ε > 0 there exists δ = δ(x, ε) > 0 such that if |t − s| ≤ δ then

p(u(t) − u(s), x) ≤ ε.

Proof. (a) Using Proposition 1, the semigroup property and the continuity in
seminorm at t = 0 of the semigroup, it is straightforward to show that

lim
t→t+0

p
(
Φα(t)h − Φα(t0)h, x

)
= lim

t→t−
0

p
(
Φα(t)h − Φα(t0)h, x

)
= 0,

which proves (a).
(b) By Proposition 1, we have that p(u(t), x) = p(e−(α−α0)tΦα0(t)h, x) ≤

e−(α−α0)tp(h, x). Due to α − α0 > 0, we can take T > 0 such that

e−(α−α0)tp(h, x) ≤ ε

for all t ≥ T .
(c) Using part (b) above, we can take T > 0 large enough such that for all

t ≥ T , p(u(t), x) ≤ ε
2 . Also, by the compactness of [0, T ] and (a) above, we can

find δ > 0 such that |t − s| < δ and t, s ≤ T imply p(u(t) − u(s), x) < ε. On the
other hand, if s, t ≥ T we get p(u(t) − u(s), x) ≤ p(u(t), x) + p(u(s), x) ≤ ε. �
Lemma 3. For each u as in (34), there exists a sequence of functions un :
[0,∞) → Cp(O) such that

lim
n→∞

sup
t≥0

p(u(t) − un(t), x) = 0. (35)

Moreover, if h ∈ Cw
p (O) then we can choose the above sequence such that un(t) ∈

Cw
p (O), for all n ∈ N and t ≥ 0.
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Proof. For fixed x ∈ O and n ∈ N, we define

En,k := [
k − 1

n
,
k

n
), k = 1, . . . , n2,

Fn := [n,∞).

Define also the sequence of functions

un(t) :=
n2∑

k=1

u(tk)1En,k
(t) + u(n)1Fn

(t), (36)

with tk = k−1
n . Note by Proposition 2, for all n ∈ N and t ≥ 0, each un(t) is in

Cp(O) because they are linear combination of functions in Cp(O). In the same
way, if h ∈ Cw

p (O) in (34) then in virtue of this same proposition, u ∈ Cw
p (O),

yielding also un(t) ∈ Cw
p (O). The limit (35) follows easily from estimations in

Lemma 2. �
Remark 4. We know that un(t) belongs to Cp(O) (resp. to Cw

p (O)) if h ∈ Cp(O)
(resp. ∈ Cw

p (O)). Also, because of the definition of un in (36) we have that for

each x ∈ R the function t �→ un(t)(x) =
∑n2

k=1 u(tk)(x)1En,k
(t) + u(n)(x)1Fn

(t)
is simple and real valued. Hence, given β > 0 the function t �→ e−βtun(t)(x) is
Lebesgue integrable with integral given by
∫ b

a

e−βtun(t)(x) dt =
n2∑

k=1

u(tk)(x)
∫

En,k∩[a,b]

e−βt dt + u(n)(x)
∫

Fn∩[a,b]

e−βt dt.

(37)
We note that the above integral, as a function of x, belongs to Cp(O) (resp.
to Cw

p (O)), because it is a sum of functions in Cp(O) (resp. Cw
p (O)). Then, we

simply denote this integral by
∫ b

a
e−βtun(t) dt.

We have arrived to our first main result regarding the regularity of the resolvent
Rα, when the integrand satisfies that regularity.

Theorem 2. Assume that Assumption 1 is valid. Then, for all 0 ≤ a ≤ b ≤ ∞,
and β > 0, the next relation holds true

s − lim
n→∞

∫ b

a

e−βtun(t) dt =
∫ b

a

e−βtu(t) dt, (38)

for the functions u and {un} introduced in Lemma 3. In particular, we have that
Rαh is in Cp(O). Analogously, we obtain the same result with Cw

p (O) instead of
Cp(O) if h ∈ Cw

p (O) with bs − lim instead of s − lim in (38).

Proof. By the inequality in (32) as long with Lemma 3, we get

p
( ∫ b

a

e−βtun(t) dt −
∫ b

a

e−βtu(t) dt, x
)

≤
∫ b

a

e−βtp
(
un(t) − u(t), x

)
dt

≤ sup
t∈[a,b]

p
(
un(t) − u(t), x

) ∫ b

a

e−βt dt → 0,
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when n → ∞. That is s− limn→∞
∫ b

a
e−βtun(t) dt =

∫ b

a
e−βtu(t) dt, that implies∫ b

a
e−βtu(t) dt ∈ Cp(O) due to Theorem 1. Moreover, in the case of h ∈ Cw

p (O)
we have that u(t) ∈ Cw

p (O) and ‖u(t)‖w = ‖Φα(t)h‖w ≤ ‖h‖w for all t ≥ 0.
Using this last inequality together with (37) we get

∥∥∥
∫ b

a

e−βtun(t) dt
∥∥∥

w
≤

n2∑
k=1

‖h‖w

∫

En,k∩[a,b]

e−βt dt + ‖h‖w

∫

Fn∩[a,b]

e−βt dt

= ‖h‖w

∫ b

a

e−βt dt < ∞. (39)

Hence, supn∈N

∥∥∥∫ b

a
e−βtun(t) dt

∥∥∥
w

< ∞, and therefore

bs − lim
n→∞

∫ b

a

e−βtun(t) dt =
∫ b

a

e−βtu(t) dt,

that implies
∫ b

a
e−βtu(t) dt ∈ Cw

p (O), again due to Theorem 1. In particular,
taking β = α−α0

2 > 0, u(t) = Φβ+α0(t)h, a = 0, and b = ∞, we obtain

Rαh(x) =
∫ ∞

0

Φα(t)h(x) dt =
∫ ∞

0

e−(α−α0)tΦα0(t)h(x) dt

=
∫ ∞

0

e− α−α0
2 tΦα−α0

2 +α0
(t)h(x) dt =

∫ ∞

0

e−βtu(t)(x) dt.

Thus, Rαh is in Cp(O) (resp. in Cw
p (O) when h ∈ Cw

p (O)). �
The next result is a useful property of the integrals of semigroups that is

very common in finite-dimensional spaces.

Lemma 4. Let h ∈ Cw
p (O). For any t0 ≥ 0 we have

bs − lim
t↓0

1
t

∫ t0+t

t0

Φα(s)h ds = Φα(t0)h. (40)

Proof. Let t0 ≥ 0 and fix x ∈ O. By Theorem 1 (c), we get that 1
t

∫ t0+t

t0
Φα(s)h ∈

Cw
p (O). Since t �→ Φα(t)h is continuous in seminorm, given ε > 0 we consider

δ > 0 such that |t0 − s| < δ implies p(Φα(s)h − Φα(t0)h, x) < ε. Hence, if |t| ≤ δ
then, by (32) we get

p
(1
t

∫ t0+t

t0

Φα(s)h ds − Φα(t0)h, x
)

= p
(1
t

∫ t0+t

t0

[Φα(s)h − Φα(t0)h] ds, x
)

≤1
t

∫ t0+t

t0

p(Φα(s)h − Φα(t0)h, x) ds < ε.

On the other hand, using (15) we get
∥∥∥1

t

∫ t0+t

t0

Φα(t)h ds
∥∥∥

w
≤ 1

t

∫ t0+t

t0

‖Φα(t)h‖w ds ≤ 1
t

∫ t0+t

t0

‖h‖w ds = ‖h‖w .

(41)
Thus, we have proved bs − limt↓0

1
t

∫ t0+t

t0
Φα(t)h ds = Φα(t0)h. �
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Our next definition has to do with the differentiability of semigroups.

Definition 3. We say that t �→ Φα(t)h is boundedly differentiable in seminorm
in a fixed point r ≥ 0 if the limit

bs − lim
t→0

Φα(t + r)h − Φα(r)h
t

exists in Cw
p (O).

Remark 5.(a) If h ∈ Cw
p (O) and the above limit exists, then Theorem 1(c)

ensures that this limit belongs to Cw
p (O).

(b) The boundedly differentiability in seminorm implies the pointwise differen-
tiability; i.e., for each x ∈ O, limt↓0

Φα(t+r)h(x)−Φα(t)h(x)
t .

The next theorem shows a relation between the semigroup Φα and the
infinitesimal generator Aα, among other important properties.

Theorem 3. Suppose that Assumption 1 is valid. Then, for each h ∈ D(Aα), we
have that Φα(t)h ∈ D(Aα) for all t > 0. Furthermore, the function t �→ Φα(t)h is
boundedly differentiable in seminorm on (0,∞), and the following relation holds

− d

dt
(Φα(t)h) = AαΦα(t)h = Φα(t)Aαh, ∀ t > 0. (42)

(The derivative on the left-hand side is understood in the sense of boundedly
differentiability in seminorm.)

Proof. First note that

1
s
(Φα(t)h − Φα(t + s)h) = Φα(t)

1
s
(h − Φα(s)h). (43)

Next, by using the fact of s − lims↓0
1
s (h − Φα(s)h) = Aαh as long with

Proposition 1, we have that

−d+

dt
Φα(t)h = s − lim

s↓0

1
s
(Φα(t)h − Φα(t + s)h) = Φα(t)Aαh.

On the other hand, taking into account (43) we get

∥∥1
s
(Φα(t)h − Φα(t + s)h)

∥∥
w

≤ 1
s

‖Φα(t)(h − Φα(s)h)‖w

≤ 1
s

‖h − Φα(s)h‖w ≤ sup
s≥0

1
s

‖h − Φα(s)h‖w < ∞.

The last inequality is due to the boundedly convergence in seminorm bs− lims↓0
1
s (h−Φα(s)h) in (19) applied to the definition of Aα. Hence Φα(t)h ∈ D(Aα) and
AαΦα(t)h = Φα(t)Aαh. In the same way it is possible to show that − d

dtΦα(t)h =
AαΦα(t)h, which proves (42). �
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The next two results are crucial for our analysis: the first one shows the
denseness of the domain D(Aα) into the space Cw

p (O), whereas the second proves
that the resolvent is the inverse operator of the generator; that is, A−1

α = Rα.

Theorem 4. Under the assumption of Theorem 3, the domain D(Aα) is dense
in Cw

p (O) in the sense of the boundedly seminorm-convergence.

Proof. Take h ∈ Cw
p (O) and define hn := n

∫ 1
n

0
Φα(s)h ds. By the proof of

Lemma 4, we know that hn ∈ Cw
p (O) and bs− limn→∞ hn = h, so it is sufficient

to show that hn ∈ D(Aα). Indeed, using Fubini’s Theorem, we have that

Φα(t)hn(x)

= E
[
e−αtn

∫ 1
n

0

Φα(s)h(y(t, x)) ds
]

= n

∫ 1
n

0

E[e−αtΦα(s)h(y(t, x))] ds

= n

∫ 1
n

0

Φα(s + t)h(x) ds = n

∫ t+ 1
n

t

Φα(s)h(x) ds.

Then, we obtain

1
t
(hn − Φα(t)hn) = n

(1
t

∫ 1
n

0

Φα(s)h ds − 1
t

∫ t+ 1
n

t

Φα(s)h ds
)

= n
(1

t

∫ t

0

Φα(s)h ds − 1
t

∫ t+ 1
n

1
n

Φα(s)h ds
)
.

Using this last fact together with Lemma 4, we get s− limt↓0
1
t (hn −Φα(t)hn) =

n(h − Φα( 1
n )h). We have also the relation

∥∥1
t
(hn − Φα(t)hn)

∥∥
w

≤ n

t

∥∥∥
∫ t

0

Φα(s)h ds
∥∥∥

w
+

n

t

∥∥∥
∫ t+ 1

n

1
n

Φα(s)h ds
∥∥∥

w

≤ n

t

∫ t

0

‖Φα(s)h‖w ds +
n

t

∫ t+ 1
n

1
n

‖Φα(s)h‖w ds ≤ 2n ‖h‖w .

Hence, hn ∈ D(Aα).

Theorem 5. Let Assumption 1 hold true. Then, for each α > 0, the operator
Aα from D(Aα) to Cw

p (O) is bijective. Besides, the following identity is satisfied

A−1
α = Rα.

Proof. Let us show first that Aα is surjective. Let h ∈ Cw
p (O) and s ≥ 0. Using

(33) we obtain

Φα(s)Rαh(x) = RαΦα(s)h(x) =
∫ ∞

0

Φα(t + s)h(x) dt =
∫ ∞

s

Φα(t)h(x) dt.
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Then,

1
s
(Rαh − Φα(s)Rαh) =

1
s

∫ ∞

0

Φα(t)h(x) dt − 1
s

∫ ∞

s

Φα(t)h(x) dt

=
1
s

∫ s

0

Φα(t)h(x) dt.

By Lemma 4, we deduce that bs− lims↓0
1
s (Rαh−Φα(s)Rαh) = h which implies

Rαh ∈ D(Aα) and AαRαh = h, and therefore Aα is surjective. Now, let us show
that Aα is injective. Take h ∈ D(Aα) such that Aαh = 0. By Theorem 3, we
have that d

dtΦα(t)h(x) = −Φα(t)Aαh(x) = 0 for all x ∈ O, which implies that
t �→ Φα(t)h(x) is a real constant. But, |Φα(t)h(x)| ≤ e−(α−α0)t ‖h‖w w(x), so,
limt→∞ Φα(t)h(x) = 0. Moreover, we have Φα(0)h(x) = h(x) and then, h(x) = 0
for all x ∈ O. Thus, we have concluded that Aα is invertible with inverse given
by Rα. �

As a direct consequence of both Theorems 5 and 3 we can get, for all h ∈
Cw

p (O), the relation

Rαh − Φα(t)Rαh =
∫ t

0

Φα(s)h ds =
∫ t

0

Φα(s)AαRαh ds. (44)

We conclude this section by providing some properties of the operators Aα

and Rα.

Proposition 3. For all h ∈ Cw
p (O) and β > 0, we have the next relation

bs − lim
α→∞

αRα+βh = h. (45)

Proof. By definition of the resolvent and (33) we get the resolvent equation:

RαRβ =
1

α − β
(Rβ − Rα). (46)

Next, we will prove limα→∞ p(αRαh − h, x) = 0 for all h ∈ Cw
p (O). Let us

assume first that h ∈ D(Aα) and let us take g ∈ Cw
p (O) such that h = Rβg. We

have

αRαh = αRαRβg =
α

α − β
(Rβg − Rαg) =

α

α − β
h − α

α − β
Rαg.

It is easy to see that limα→∞
∥∥ α

α−β h − h
∥∥

w
= 0 and limα→∞

∥∥ α
α−β Rαg

∥∥
w

= 0,
where the last limit is due to (31). Therefore,

lim
α→∞

‖αRαh − h‖w = 0.

By (20) we see that the above convergence in norm implies the convergence in
seminorm: s − limα→∞ αRαh = h. Now, consider the general case h ∈ Cw

p (O).
Let hn be a sequence in D(Aα) such that bs − limn→∞ hn = h. We have

|αRαh − h| ≤ |αRαh − αRαhn| + |αRαhn − hn| + |hn − h|,
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applying (30) to the above inequality we get

0 ≤ p(αRαh − h, x) ≤ α

α − α0
p(h − hn, x) + p(αRαhn − hn, x) + p(hn − h, x).

Letting α → ∞ and hence n → ∞ in the last inequality, we easily deduce that
limα→∞ p(αRαh − h, x) = 0; in other words s − limα→∞ αRαh = h. Moreover,
by (31) we get ‖αRαh‖w ≤ α/(α − α0) ‖h‖w, and so bs − limα→∞ αRαh = h.
It remains to show (45). For this purpose, let β > 0 and note that αRα+β =
(α + β)Rα+β − βRα+β , we know that bs − limα→∞(α + β)Rα+βh = h and
bs − limα→∞ βRα+β = 0, hence bs − limα→∞ αRα+βh = h. �

Proposition 4. Given α > α0 and β ≥ 0, we have

Aα+β = Aα + βI. (47)

Proof. Let h ∈ D(Aα). Then,

h − Φα+β(t)h =h − e−βtΦα(t)h = h − Φα(t)h + (1 − e−βt)Φα(t)h.

Multiplying by 1
t the last expression, and hence letting t ↓ 0, we get Aα+βh :=

bs − limt↓0
1
t (h − Φα+β(t)h) = Aαh + βh. �

3 The Optimal Stopping Problem

This section deals with an optimal stopping control problem whose dynamical
system is of Markov type studied in Sect. 2. The total cost consists of both
a running cost that is paid when the dynamic is still running and a stopping
cost that must to be paid once the dynamic is stopped. The way to tackle
this problem is through a characterization of the optimal cost (value function)
regarded as the maximal subsolution of a variational inequality defined later. In
addition, by means of this characterization, it is also possible to find the well-
known continuation region that in turn provides the associated optimal stopping
time viewed as the first hitting time of that region.

3.1 The Statement of the Problem

In this subsection we start our analysis recalling some mathematical objects
introduced in Sect. 2. Namely, we recall the underlying stochastic process, con-
sisting of the homogeneous Markov process {y(t, x)}t≥0, x ∈ O defined on the
probability space E := (Ω,F , {Ft}t≥0,P), with state space (O, |·|), satisfying
P(y(0, x) = x) = 1 as well as the properties established in Assumption 1.

We bring to mind that a stopping time is a random variable τ with values in
the no-negative real numbers set such that the event {τ ≤ t} is Ft measurable
for every t ≥ 0, with Ft the associated filtration to the space E .
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Let T be the set consisting of all stopping times introduced in the above
paragraph. With this in mind, for x ∈ O, f, ϕ ∈ Cw

p (O), τ ∈ T , and α > α0 > 0,
we define the following cost function

J(x, τ) := E

[∫ τ

0

f(y(t, x))e−αtdt + ϕ(y(τ, x))e−ατ1τ∞

]
, (48)

where as mentioned above, f and ϕ represent the running and stopping cost per
unit of time respectively, and e−α· denotes the discount factor at each instant of
time.

The optimal cost, also known as the value function, is then defined as

û(x) = inf
τ∈T

J(x, τ). (49)

We will say that the random variable τ̂ ∈ T is an optimal stopping time if it
minimizes the cost (48) in the following way

û(x) = J(x, τ̂). (50)

One of the goals of this section will consist to showing that the value function
û defined in (49) does exist in Cw

p (O). Furthermore, this function satisfies the
next variational inequality (VI) in the integral (or weak) form:

û ≤ ϕ, û ≤
∫ t

0

Φα(s)f ds + Φα(t)û, ∀ t ≥ 0. (51)

3.2 Penalized Method

We start our analysis by studying an ancillary problem so-called penalized prob-
lem. This problem consists of searching for a unique solution of the following
penalized equations

Aαuε +
1
ε
(uε − ϕ)+ = f, for each ε > 0, (52)

with

(uε − ϕ)+ =
{

uε − ϕ, if uε − ϕ ≥ 0;
0, if uε − ϕ ≤ 0.

Our goal is to prove that one subsolution of the inequality (51) can be charac-
terized as the limit as ε ↓ 0 of the sequence of solutions uε associated to (52).
This limit function will be the “good one” for us.

Note that (uε −ϕ)+ = uε −(uε ∧ϕ). Hence, Proposition 4 together with (52),
imply

Aα+ 1
ε
uε = f +

1
ε
(uε ∧ ϕ). (53)

Applying Rα+ 1
ε

to the last equation we get

uε = Rα+ 1
ε
(f +

1
ε
(uε ∧ ϕ)). (54)
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As mentioned earlier, we will prove that u0 := s− limε↓0 uε verifies the VI (51) as
well as its corresponding regularity. To this end, we need the following technical
result.

Lemma 5. The following inequality holds for any measurable functions f, g, h
from O to R:

|f ∧ h − g ∧ h| ≤ |f − g|.

Proof. We have both −|f − g| + g ∧ h ≤ f − g + g = f and −|f − g| + g ∧ h ≤ h
that imply −|f − g|+g∧h ≤ f ∧h. Analogously, we have −|f − g|+f ∧h ≤ g∧h,
and joining the two obtained inequalities we get |f ∧ h − g ∧ h| ≤ |f − g|. �

Theorem 6. Assume that f, ϕ ∈ Cw
p (O). Then, Assumption 1 implies the fol-

lowing.

(a) There exists a unique solution uε ∈ D(Aα) of the penalized equation (52)
for each ε > 0.

(b) For all 0 < ε′ < ε we have that

0 ≤ uε − uε′ ≤ (uε − ϕ)+ ≤ |Rα+ 1
ε
f + Rα+ 1

ε
ϕ − ϕ|. (55)

Furthermore, there exists the limit u0 := s − limε↓0 uε and therefore, u0 ∈
Cp(O).

Proof. First, we will show the existence of a unique solution uε of the penalized
problem. Namely, based on (54), we define the nonlinear operator Tε : Bw(O) →
Bw(O) given by Tεh := Rα+1/ε(f + 1

ε (h ∧ ϕ)). We will prove that Tε is a
contraction map. Indeed, as h, g ∈ Bw(O), we have

Tεh − Tεg =
1
ε
Rα+ 1

ε
(h ∧ ϕ − g ∧ ϕ).

Using the monotony of the resolvent together with Lemma 5 we get

1
ε
|Rα+ 1

ε
(h ∧ ϕ − g ∧ ϕ)| ≤ 1

ε
Rα+ 1

ε
|h ∧ ϕ − g ∧ ϕ| ≤ 1

ε
Rα+ 1

ε
|h − g|.

Now use (31) to obtain

‖Tεh − Tεg‖w ≤
1
ε

α − α0 + 1
ε

‖h − g‖w .

We know that
1
ε

α−α0+
1
ε

< 1. Then Tε is a contraction map on the Banach space
Bw(O), so there exist a unique uε in Bw(O) such that Tεuε = uε, this implies
that uε solves (52). Moreover, we have that limn→∞ ‖Tn

ε h − uε‖w = 0 that
implies convergence in seminorm.

On the other hand, using the fact that f, ϕ ∈ Cw
p (O), and taking h ∈ Cw

p (O),
all together allow us to apply Theorem 5 to claim that Tεh = Rα+ 1

ε
(f + 1

ε (h ∧
ϕ)) ∈ D(Aα). Iterating n-times the operator Tε, it is easy to see that Tn

ε h ∈
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D(Aα) for all n ∈ N. Hence, in virtue of Theorem 1 we have uε ∈ Cw
p (O),

yielding that uε = Rα+ 1
ε
(f + 1

ε (uε ∧ ϕ)) ∈ D(Aα).
Let us prove now the inequalities (55). Namely, let 0 < ε′ < ε. Then from

(53) we obtain

Aα+ 1
ε
uε′ = Aα+ 1

ε′ uε′ + (
1
ε

− 1
ε′ )uε′ = f +

1
ε′ (uε′ ∧ ϕ) + (

1
ε

− 1
ε′ )uε′

= f +
1
ε′ uε′ − 1

ε′ (uε′ − ϕ)+ + (
1
ε

− 1
ε′ )uε′

= f − 1
ε′ (uε′ − ϕ)+ +

1
ε
uε′ ≤ f − 1

ε
(uε′ − ϕ)+ +

1
ε
uε′ = f +

1
ε
(uε′ ∧ ϕ).

Applying Rα+ 1
ε

to the last inequality we obtain

uε′ ≤ Tεuε′ .

Iterating, we get uε′ ≤ Tn
ε uε′ . Therefore, letting n → ∞ we obtain uε′ ≤ uε.

Next, we will show that uε − uε′ ≤ (uε − ϕ)+ ≤ |Rα+ 1
ε
f + Rα+ 1

ε
ϕ − ϕ|.

Namely, assuming uε′ ≥ ϕ we get uε − uε′ ≤ uε − ϕ ≤ (uε − ϕ)+. Otherwise, if
ϕ ≥ uε′ then from (52) we obtain Aα(uε−uε′) = − 1

ε (uε−ϕ)+ ≤ 0, and applying
Rα to the last inequality we get uε − uε′ ≤ 0 ≤ (uε − ϕ)+. Moreover, from (54)
we obtain

uε − ϕ = Rα+ 1
ε
(f +

1
ε
(uε ∧ ϕ)) − ϕ

= Rα+ 1
ε
(f +

1
ε
(uε ∧ ϕ) − 1

ε
ϕ) +

1
ε
Rα+ 1

ε
ϕ − ϕ

= Rα+ 1
ε
(f − 1

ε
(ϕ − uε)+) +

1
ε
Rα+ 1

ε
ϕ − ϕ ≤ Rα+ 1

ε
f +

1
ε
Rα+ 1

ε
ϕ − ϕ. (56)

Hence,

0 ≤ uε − uε′ ≤ (uε − ϕ)+ ≤
∣∣Rα+ 1

ε
f +

1
ε
Rα+ 1

ε
ϕ − ϕ

∣∣. (57)

Let ε > ε′ > 0. Using uε′ ≤ uε and 0 ≤ uε − uε′ ≤ (uε − ϕ)+, we obtain that
there exists the pointwise monotone limit u0 := limε↓0 uε and u0 > −∞. Letting
ε′ ↓ 0 in (57), we get 0 ≤ uε − u0 ≤

∣∣Rα+ 1
ε
f + 1

εRα+ 1
ε
ϕ − ϕ

∣∣. Thus, in virtue of
the relations (30) and (45) we get

p(uε − u0, x) ≤ 1
α + 1

ε − α0

p(f, x) + p
(1
ε
Rα+ 1

ε
ϕ − ϕ, x

)
→ 0, as ε ↓ 0,

and so s − limε↓0 uε = u0; this implies that u0 ∈ Cp(O) after using
Theorem 1(b). �

3.3 Variational Inequalities

Let f, ϕ ∈ Cw
p (O). We say that u ∈ Cw

p (O) satisfies the variational inequalities
(VI) if: {

u ≤
∫ t

0
Φα(s)f ds + Φα(t)u, ∀ t ≥ 0;

u ≤ ϕ.
(58)
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Any function u ∈ Cw
p (O) that satisfies the VI above, will be referred to as a

subsolution.
On the other hand, by definition of w in (3), it is obvious that w ∈ Bw(O).

For the later purposes, we need the next assumption in order to guarantee that
the subsolution of interest associated to (58) is regular enough.

Assumption 2. We suppose that w defined in (3), belongs to Cw
p (O).

Remark 6. The above assumption is verified in particular models, see for
instance, Menaldi [24,25] or Menaldi and Sritharan [28], where the authors use
a polynomial function of type w(x) = k1(k2 + |x|2)p, for some constants k1 ≥ 1,
k2 ≥ 0.

Now let u := Rαf − (‖ϕ‖w + 1
α−α0

‖f‖w)w ∈ Cw
p (O). Note that Rαf −

1
α−α0

‖f‖w w ≤ 0 because of (31), then u ≤ − ‖ϕ‖w w ≤ ϕ. We also have that

Φα(t)u ≥ Φα(t)Rαf − (‖ϕ‖w +
1

α − α0
‖f‖w)w.

Using (44), we obtain
∫ t

0

Φα(s)f ds + Φα(t)u = Rαf − Φα(t)Rαf + Φα(t)u

≥ Rαf − (‖ϕ‖w +
1

α − α0
‖f‖w)w = u.

Therefore, we have proved that u ∈ Cw
p (O) defined in the previous paragraph

satisfies the VI (58).
We will see next that the limit function u0 obtained in the past subsection,

is the maximal subsolution on Cw
p (O) of the VI (58) and ‖u0‖w < ∞ as it is

established in the following theorem.

Theorem 7. Under Assumptions 1 and 2, the limit function u0 introduced in
Theorem 6 verifies the VI (58). Moreover, every u ∈ Cw

p (O) that is also a
subsolution of (58) satisfies u ≤ u0; as a consequence u0 ∈ Cw

p (O).

Proof. From (52) and (44), we obtain

uε = Rα(f − 1
ε
(uε − ϕ)+) =

∫ t

0

Φα(s)(f − 1
ε
(uε − ϕ)+) ds + Φα(t)uε

≤
∫ t

0

Φα(s)f ds + Φα(t)uε.

Moreover, for each t ≥ 0, we have that Φα(t)uε → Φα(t)u0 pointwise as ε ↓ 0,
because p(Φα(t)uε − Φα(t)u0, x) ≤ p(uε − u0, x) → 0, as ε ↓ 0. So, letting ε ↓ 0
in the last inequality we get

u0 ≤
∫ t

0

Φα(s)f ds + Φα(t)u0.
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On the other hand from (54) we have

uε = Rα+ 1
ε
(f +

1
ε
(uε ∧ ϕ)) ≤ Rα+ 1

ε
(f +

1
ε
ϕ). (59)

In virtue of (30) and (45), we have

p
(
Rα+ 1

ε
(f +

1
ε
ϕ) − ϕ, x

)

≤ 1
α + 1

ε − α0

p(f, x) + p
(1
ε
Rα+ 1

ε
ϕ − ϕ, x

)
→ 0, as ε ↓ 0.

The last relation implies in particular that Rα+ 1
ε
(f + 1

εϕ) → ϕ pointwise, as
ε ↓ 0. Hence, letting ε ↓ 0 in (59) we get

u0 ≤ ϕ,

which implies that u0 satisfies (58).
It only remains to show that u0 the maximal subsolution. Indeed, take u ∈

Cw
p (O) that satisfies (58). Then, u satisfies: u − Φα(t) ≤

∫ t

0
Φα(s)f ds. Apply

then Rα+ 1
ε

to both sides of the last inequality and hence multiply by 1
t , so that

1
t
(Rα+ 1

ε
u − Φα(t)Rα+ 1

ε
u) ≤ Rα+ 1

ε

1
t

∫ t

0

Φα(s)f ds.

The commutative property between Φα(t) and Rα+ 1
ε

is due to (33). Using again
(44), the fact that α �→ Rα is a family of commutative operators given in (46),
as well as the relation (33), we deduce

1
t
(Rα+ 1

ε
u − Φα(t)Rα+ 1

ε
u) ≤ 1

t
(RαRα+ 1

ε
f − Φα(t)RαRα+ 1

ε
f),

thus letting t ↓ 0 we get

AαRα+ 1
ε
u ≤ AαRαRα+ 1

ε
f = Rα+ 1

ε
f. (60)

In virtue of Proposition 4, we know that (1εI + Aα)Rα+ 1
ε

= Aα+ 1
ε
Rα+ 1

ε
= I,

then
AαRα+ 1

ε
= I − 1

ε
Rα+ 1

ε
. (61)

This last fact, together with the relation u = u ∧ ϕ (recall that u ≤ ϕ), and (60)
yield that

u ≤ Rα+ 1
ε
f +

1
ε
Rα+ 1

ε
u = Rα+ 1

ε
f +

1
ε
Rα+ 1

ε
(u ∧ ϕ) = Tεu.

Iterating the last expression, we obtain that u ≤ Tn
ε u, implying that u ≤ uε.

Letting ε ↓ 0, we obtain u ≤ u0.
Finally, take u ∈ Cw

p (O) that satisfies the VI (58) (we know that there exist
at least a function in Cw

p (O) satisfying the VI). Then we have u ≤ u0 ≤ ϕ that
implies |u0| ≤ |u0 − u| + |u| ≤ |ϕ − u| + |u|. Since ϕ − u and u belong to Cw

p (O)
we get that ‖u0‖w ≤ ‖ϕ − u‖w + ‖u‖w < ∞. So, we conclude that u0 ∈ Cw

p (O)
is the maximal subsolution on Cw

p (O) of the VI (58). �
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4 Solution of the Stopping Problem

In this section we will analyze the optimal control problem through the solution
of the VI (58). In addition, we provide the way to find an optimal stopping time
in terms of so-named continuation region or contact set.

To begin with, we will show the next result regarding the strong Markov
property of the process y(t, x). Its proof has been inspired from Proposition 8.9
and Theorem 19.17 in [21].

Proposition 5. The Markov process {y(t, x)}t≥0 satisfies the strong Markov
property in the following sense: for all stopping time τ ∈ T and h ∈ B(O) we
have

E[h(y(s + τ, x))|Fτ ] = E[h(y(s, y(τ, x)))], (62)

where Fτ is the σ-algebra generated of events A ∈ F for which A ∩ {τ ≤ t} ∈ Ft

for every t ≥ 0.

Proof. First, let us suppose that τ has a denumerable state space D in R̄. Then,
we have that

E[e−α(t+τ)h(y(t + τ, x))|Fτ ] =
∑
s∈D

1τ=sE[e−α(t+τ)h(y(t + τ, x))|Fτ ]

=
∑
s∈D

1τ=sE[e−α(t+τ)h(y(t + s, x))|Fs]

=
∑
s∈D

1τ=sE[e−α(t+τ)h(y(t, y(s, x)))] = E[e−α(t+τ)h(y(t, y(τ, x)))].

Note that every conditional expectation above is well defined since

E[e−α(t+τ)|h(y(t + τ, x))|] ≤ E[sup
s≥0

e−αs|h(y(s, x))|] < ∞.

In the general case, by Lemma 7.4 in [21] we can take a sequence of stopping
times τn with denumerable state space such that τn ↓ τ . So, we have that

E[h(y(t + τn, x))|Fτn
] = E[h(y(t, y(τn, x)))]

which implies

E[e−τnh(y(t + τn, x))|Fτn
] = e−ατnE[h(y(t, y(τn, x)))]

= e−α(τn−t)Φα(t)h(y(τn, x)). (63)

By the right continuity of s �→ Φα(t)h(y(s, x)) and the fact that τn ↓ τ we get
e−α(τn−t)Φα(t)h(y(τn, x)) → e−α(τ−t)Φα(t)h(y(τ, x)) when n → ∞. By Lemma
7.3 in [21], we have Fτ = ∩n∈NFτn

which together with Theorem 45 in [12] give
us

E[e−τnh(y(t + τn, x))|Fτn
] → e−ατ

E[h(y(t + τ, x))|Fτ ]

when n → ∞. Using this last fact along with (63) we conclude that

E[h(y(t + τ, x))|Fτ ] = E[h(y(t, y(τ, x)))].

�
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In order to characterize the optimal stopping time as the hitting time of certain
region of the state space, we will also need the following property of our process
{y(t, x)}t≥0.

Assumption 3. The process {y(t, x)}t≥0 is quasi-left continuous, that is, for
every stopping time τ and any sequence of stopping times τ1, τ2, . . . such that
τn ↑ τ we have that y(τn, x) → y(τ, x) P-a.s. on {τ < ∞}.

Remark 7.(a) Assumption 3 is a little variation of the Hunt process definition.
(b) It is well-known that a Markov process associated to a strong Feller semi-

group is a Hunt process—for further details, see Chung [9], Chapter 3.

Let us now establish the main result of this section.

Theorem 8. Under Assumptions 1, 2, and 3, the following statements hold
true.

(a) The optimal cost û in (49) is equal to the limit function u0.
(b) The optimal stopping time can be regarded as the first hitting time of the

so-called continuation region (a.k.a. contact set). That is, for all x ∈ O,

τ̂(x) := inf{t ≥ 0 : û(y(t, x)) = ϕ(y(t, x))} (continuation region), (64)

satisfying û(x) = J(x, τ̂(x)).
(c) If the stopping cost ϕ ∈ D(Aα), then

Rα(f ∧ Aαϕ) ≤ û ≤ Rαf ∧ ϕ. (65)

Proof. (a) Take τ ∈ T , where T is the set of stopping times defined at the
beginning of the section. Moreover, define u := f − 1

ε (uε −ϕ)+. Then, from (52)
we have

uε(x) = Rαu(x) =
∫ ∞

0

E[e−αsu(y(s, x))]ds = E[
∫ ∞

0

e−αsu(y(s, x))ds]

= E[
∫ τ

0

e−αsu(y(s, x))ds] + E[
∫ ∞

τ

e−αsu(y(s, x))ds]. (66)

Let us analyze the last term of (66). We have that
∫ ∞
0

E[e−α(s+τ)

|u(y(s + τ, x))|]ds ≤
∫ ∞
0

e−(α−α0)sp(h, x)ds < ∞. Then using Fubini Theorem
and strong Markov property (62) we get

E[
∫ ∞

τ

e−αsu(y(s, x))ds] =
∫ ∞

0

E[e−α(s+τ)u(y(s + τ, x))]ds

=
∫ ∞

0

E[E[e−α(s+τ)u(y(s + τ, x))|Fτ ]]ds =
∫ ∞

0

E[e−ατΦα(s)u(y(τ, x))]ds

= E[e−ατRαu(y(τ, x))] = E[e−ατuε(y(τ, x))]. (67)
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Hence, in virtue of (66) and (67), we have that

uε(x) = E[
∫ τ

0

e−αsu(y(s, x))ds] + E[
∫ ∞

τ

e−αsu(y(s, x))ds]

= E[
∫ τ

0

e−αsu(y(s, x))ds] + E[e−ατuε(y(τ, x))]

= E

[ ∫ τ

0

e−αs[f − 1
ε
(uε − ϕ)+](y(s, x))ds + e−ατuε(y(τ, x))

]
. (68)

On the other hand, from the definition of the seminorm p, it is evident that
E

[
e−ατ |uε(y(τ, x))−u0(y(τ, x))|

]
≤ p(uε −u0, x) → 0 when ε ↓ 0, where the last

convergence is due to Theorem 6. Then, using this last fact along with (68) and
Theorem 7, we obtain

u0(x) = lim
ε↓0

uε(x) ≤ lim
ε↓0

E[
∫ τ

0

e−αsf(y(s, x))ds + e−ατuε(y(τ, x))]

= E[
∫ τ

0

e−αsf(y(s, x))ds + e−ατu0(y(τ, x))]

≤ E[
∫ τ

0

e−αsf(y(s, x))ds + e−ατϕ(y(τ, x))] = J(x, τ).

Therefore, u0 ≤ û, after applying the infimum over all τ in last rightmost term.
On the other hand, for each ε > 0, let us consider the stopping time

τε(x) := inf{t ≥ 0 : uε(y(t, x)) ≥ ϕ(y(t, x))}.

Now take a sequence {tn}n∈N in [0,∞) such that tn ↓ τε(x) (pointwise w.r.t.
ω ∈ Ω) and uε(y(tn, x)) ≥ ϕ(y(tn, x)). Since t �→ uε(y(t, x)) − ϕ(y(t, x)) is
continuous a.s., we obtain uε(y(τε(x), x)) ≥ ϕ(y(τε(x), x)) when tn ↓ τε(x).
Then by (68), we deduce

uε(x) = E[
∫ τε

0

e−αs[f − 1
ε
(uε − ϕ)+](y(s, x))ds + e−ατεuε(y(τε, x))]

= E[
∫ τε

0

e−αsf(y(s, x))ds + e−ατεϕ(y(τε, x))] = J(τε, x) ≥ û(x).

This shows that u0 = limε↓0 uε ≥ û. Joining the pieces, we conclude that u0 = û.
(b) Given ε > ε′, we know by the proof of Theorem 6 that uε ≥ uε′ then we

have the expression

{s ≥ 0 : uε′(y(s, x)) ≥ ϕ(y(s, x))} ⊆ {s ≥ 0 : uε(y(s, x)) ≥ ϕ(y(s, x))},

implying τε ≤ τε′ . So, there exists the monotone limit τε ↑ τ0, as ε ↓ 0.
Also, because of the continuity of s �→ u0(y(s, x)) on [0,∞) a.s., we have that
ϕ(y(τ̂ , x)) = u0(y(τ̂ , x)) ≤ uε(y(τ̂ , x)), where τ̂ was defined in (64). Hence, we
obtain τε ≤ τ̂ that implies τ0 ≤ τ̂ .



84 H. Jasso-Fuentes et al.

On the other hand, the fact s−lim uε = u0 gives us the existence of a sequence
εn, n ∈ N, such that εn ↓ 0 and

lim
n→∞

sup
s≥0

e−α0s|uεn
(y(s, x)) − u0(y(s, x))| = 0, a.s., (69)

where this last assertion is due to Lemma 1. Also, because of uεn
≥ u0, we have

that

0 ≤ uεn
(y(τεn

, x)) − u0(y(τεn
, x)) ≤ eα0τεn sup

s≥0
e−α0s|uεn

(y(s, x)) − u0(y(s, x))|.

(70)
If τ0 = ∞ then ∞ = τ0 ≤ τ̂ , so τ0 = τ̂ . Now, suppose τ0 < ∞ a.s., then we have
that eα0τεn → eα0τ0 , when n → ∞. Hence, using (69), the right hand side of
inequality (70) converges to 0 when n → ∞. Using Assumption 3 we deduce

ϕ(y(τ0, x)) = lim
n→∞

ϕ(y(τεn
, x)) ≤ lim

n→∞
uεn

(y(τεn
, x)) = u0(y(τ0, x)), a.s.

Thus, the definition of τ̂ yields to τ̂ ≤ τ0 and so, τ̂ = τ0. It remains to show that
u0(x) = J(τ̂(x), x). Namely, consider ε0 > 0 fixed. Given 0 < ε ≤ ε0 and t ≤ τε0

we know that t ≤ τε and uε(y(t, x)) < ϕ(y(t, x)). Then the relation (68) leads to

uε(x) = E[
∫ τε0

0

e−αsf(y(s, x)) ds + e−ατε0 uε(y(τε0 , x))].

By monotone convergence and quasi-left continuity of y(s, x), letting ε ↓ 0 and
hence ε0 ↓ 0, we obtain

u0(x) = E[
∫ τ0

0

e−αsf(y(s, x)) ds + e−ατ0ϕ(y(τ0, x))] = J(τ0, x).

Thus, we conclude that τ̂ is the optimal stopping time for the problem (48)–(50).
(c) Suppose ϕ ∈ D(Aα) and let vε := 1

εRα+ 1
ε
(f − Aαϕ)+. In virtue of (56)

and a variation of (61) we obtain

uε − ϕ ≤ Rα+ 1
ε
f +

1
ε
Rα+ 1

ε
ϕ − ϕ = Rα+ 1

ε
f − Rα+ 1

ε
Aαϕ,

which in turn gives (uε − ϕ)+ ≤ Rα+ 1
ε
(f − Aαϕ)+. Using this last inequality

together with (52), we get

f − Aαuε =
1
ε
(uε − ϕ)+ ≤ 1

ε
Rα+ 1

ε
(f − Aαϕ)+ = vε,

or equivalently, f − vε ≤ Aαuε, yielding that

Rα(f − vε) ≤ uε, (71)

after applying the resolvent operator in both sides of this later expression. Also
note that by (45), we know that bs − limε↓0 vε = (f − Aαϕ)+. Using this last
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property, we can let ε ↓ 0 at (71) to deduce Rα(f−(f−Aαϕ)+) = Rα(f∧Aαϕ) ≤
u0.

On the other hand, using (52) again we have that Aαuε ≤ f , or equivalently,
uε ≤ Rαf . Letting ε ↓ 0, we obtain u0 ≤ Rαf but also we have that u0 ≤ ϕ
because it is a subsolution of (58). Then û = u0 ≤ Rαf ∧ϕ. Hence, we conclude
that

Rα(f ∧ Aαϕ) ≤ u0 ≤ Rαf ∧ ϕ.

�
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Abstract. In this paper we study the H2 state-feedback control of
continuous-time Markov jump linear systems considering that the mode
of operation cannot be directly measured. Instead we assume that there
is a detector that provides the only information concerning the main
jump process, so that the jump processes are modelled by a continuous-
time exponential hidden Markov model. We present a new convex design
condition for calculating a state-feedback controller depending only on
the detector which guarantees stability in the mean-square sense of the
closed-loop system, as well as a suitable bound on its H2 norm. We
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1 Introduction

Lately a great deal of attention has been given to systems subject to sudden
changes in their dynamic behavior. This is due in part to the fact that real
worlds systems are subject to various alterations which can be caused inter-
nally or externally as, for instance, due to environmental conditions, faults in
dynamical systems, or changes to new operation points. Bearing that in mind,
modern control systems have to be designed with the capability of maintaining
an acceptable behavior and meeting some performance requirements even in the
presence of abrupt changes in the system dynamics. In order to derive treat-
able mathematical models for these situations, a class of systems that has been
recently intensively studied in the literature is of linear systems in which the
changes in their dynamics are modeled by a Markov chain (known as Markov
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jump linear systems, MJLS). It has gained a great boost in the early 1990s when,
among other applications, it was used to model fault-tolerant control systems
(see, for instance, [21,27]). We refer to [1,5,7,14,16,22,26] and references therein
for a general overview on MJLS and [20] for the application of MJLS in active
fault-tolerant control.

The literature on control of MJLS for the case in which the current state of
the Markov process (mode of operation) is perfectly known is nowadays quite
comprehensive but the case in which there is only a partial information on this
parameter is more scarce. Recently, there have been proposed some approaches
in the specialized literature to deal with the control problem for MJLS with
partial observations of the Markov chain, under different names as the detector-
based approach (see, e.g., [6,30]); MJLS with hidden Markov models (see e.g.
[4,12,18]); or asynchronous MJLS (see [19,25]). It has a close connection to
the so-called active fault-tolerant control systems (AFTCS) in the sense that
it is assumed that the Markov chain θ is a failure process and we would have
access only to a type of failure detector θ̂ for designing the controller. In this
context, it was studied in [6] the H2-control (or quadratic control) problem of
discrete-time MJLS employing a detector-based approach for θ̂. It was shown
in [6] that this approach encompasses the cases with perfect information, no
information and the cluster observations of the Markov parameter. Analogously,
the H∞ control problem was studied in [30]. In [12], the mixed H2/H∞ dynamic
output feedback control for discrete-time hidden MJLS was studied through a
type of iterative separation procedure. The continuous-time counterpart of the
H∞ control problem was studied in [24], and [29], while the H2-control problem
was dealt with in [28], and the dynamic output control case for both the H2 as
well as the H∞ was analyzed in [13]. In all these cases, it was assumed that the
dynamics of the detector follows a probabilistic Markov type assumption and an
explicit analytical expression for that has been exhibited.

More specifically, the mathematical representation of the model considered
in this chapter is given by a continuous-time linear system following the class of
differential equations given by

ẋ(t) = Aθ(t)x(t) + Bθ(t)u(t), x(0) = x0, θ(0) = θ0. (1)

where it is assumed that there is a continuous-time hidden Markov model (see,
for instance, [17]) Z(t) = (θ(t), θ̂(t)) in which the change on the mode of oper-
ation (due, for instance, to a component failure), is modeled by the unobserved
component θ(t), while the observed component θ̂(t) plays the role of the detector,
which provides the information on this change on the mode of operation (a fail-
ure detection and identification device in the case of failures). In this problem we
are interested in controlling (1) under partial information on the mode of oper-
ation θ(t), that is, the goal is to find a state-feedback control u(t) = Kθ̂(t)x(t)
such that the closed loop system

ẋ(t) = (Aθ(t) + Bθ(t)Kθ̂(t))x(t) (2)
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meets some stability and performance index requirements. It was proposed in
[28] a linear matrix inequality (LMI) optimization formulation for the design
of a stochastic stabilizing feedback control with guaranteed H2-cost. For the
perfect information case (that is, θ̂(t) = θ(t)) it was shown in [28] that these
results recast the usual ones for the H2 control of continuous-time-time MJLS
as presented in [5] provided a design parameter is made sufficiently large. It was
also shown in [28] that this modeling encompasses the mode independent and
cluster observation cases considered in [31] for the discrete-time case.

The goal of this chapter is re-visit the H2-control problem studied in [28]
and derive a new set of conditions to design a stochastic stabilizing feedback
control with guaranteed H2-cost. Notice that for the general hidden Markov
model Z(t) = (θ(t), θ̂(t)) the set of conditions obtained here and in [28] are
independent in the sense that it is not possible to say that one implies the other.
But, as in [28], we show that for the perfect information case (θ̂(t) = θ(t)) these
conditions also recast the usual ones for the H2 control of continuous-time-time
MJLS as presented in [5] as long as a design parameter is made sufficiently large.

This chapter is organized as follows. In Sect. 2 we introduce some notation
and auxiliary results that will be needed throughout this chapter. In Sect. 3 we
present the stochastic model, the concept of mean square stability needed in this
work, the quadratic performance index to be minimized, and the general opti-
mization problem. The main result of this chapter is presented in Sect. 4. For the
general partial observation case, Theorem 1 shows that if a set of LMI inequali-
ties are satisfied then we get a state-feedback control such that the closed loop
system is mean square stable and the associated quadratic performance index
satisfies an upper bound value. Moreover it will be shown that whenever we
assume the perfect information case (that is, θ̂(t) = θ(t)), we recast the opti-
mal non-conservative solution for the control problem, provided that an input
parameter of the LMI inequalities is made sufficiently large. Section 5 presents
an illustrative numerical example and Sect. 6 concludes the chapter with some
final comments.

2 Notation and Preliminaries

The real Euclidean space of dimension n is represented by R
n, and the space of

real matrices of dimension m × n, by B(Rn,Rm), with B(Rn) � B(Rn,Rn). The
identity matrix of size n × n is given by In (or simply I), (· · · )′ is the transpose
operator and, for a square matrix G, we set Her(G) � G + G′, and Tr(·) is
the trace operator. Given positive integers N and M , we set N � {1, . . . , N},
M � {1, . . . , M}, and V ⊆ N × M. The linear space composed by all sequence
of matrices V = (Vik ∈ B(Rn,Rm); (ik) ∈ V) is represented by H

n,m, and for
ease of notation we set H

n � H
n,n and H

n+ � {V ∈ H
n : Vik ≥ 0, (ik) ∈ V}.

Similarly we define the set M
n,m � {Mk ∈ B(Rn,Rm), k ∈ M}, Mn � M

n,n,
and M

n+ accordingly. For V ∈ H
n+, by V > 0 we mean that Vik > 0 for all

(ik) ∈ V (similarly for P > 0 in M
n+). We denote by o(h) any function f

such that limh→0
f(h)

h = 0. (Ω,F , P rob) is a probability space equipped with
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a measurable right-continuous filtration Ft. The expectation in this space if
represented by E(·), and the conditional expectation, by E(· | ·).

We recall the following results that will be useful along this chapter. For given
symmetric matrices Fi, i = 0, . . . , m, a strict linear matrix inequality (LMI) has
the form

F (x) = F0 +
m∑

i=1

xiFi > 0

where x =
[
x1 . . . xm

]′ ∈ R
m, xi ∈ R, i = 1, . . . , m are the variables. A Semidef-

inite optimization programming (SDP optimization problem), also referred to as
an LMI optimization problem, consists of finding a feasible x (that is, find x such
that F (x) > 0) which minimizes a linear function c′x. LMI optimization prob-
lems are tractable both from theoretical and numerical point of view (e.g. [2]).
A key result for converting nonlinear convex inequalities into LMI formulation
is the Schur complement, presented next.

Proposition 1. (Schur’s complement) The following affirmatives are equiva-
lent:

a) Q=
(

Q11 Q12

Q′
12 Q22

)
> 0.

b) Q22 > 0 and Q11 − Q12Q
−1
22 Q′

12 > 0.
c) Q11 > 0 and Q22 − Q′

12Q
−1
11 Q12 > 0.

Notice that a) in Proposition 1 is in the form of a LMI, and b), c) is in
the form of nonlinear convex inequalities. SDP optimization problems include
several important standard classes of convex optimization problems, such as lin-
ear programming, quadratic programming, quadratically constrained quadratic
program, and second-order cone programming problems.

Some important results that will be used in this chapter are as follows.

Proposition 2 ([8,9]). For G ∈ B(Rn) and P ∈ B(Rn) such that P > 0, we get
that

G′P−1G ≥ Her(G) − P. (3)

Proposition 3 (Projection Lemma [2]). Given P , U , and V , there exists G
such that

P + Her(UGV ′) > 0

if and only if

Ũ ′PŨ > 0, Ṽ ′PṼ > 0

where Ũ and Ṽ are, respectively, orthogonal complements of U and V .
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3 Problem Formulation

In a probability space (Ω,F , P rob) we consider a continuous-time hidden Markov
model (CT-HMM) Z(t) = (θ(t), θ̂(t)), t ∈ R

+, formed by two components, the
hidden state θ(t) taking values in the set N , and the observation state θ̂(t) taking
values in the set M. It is assumed that Z(t) is a homogeneous Markov process
taking values in N ×M and having transition rates ν(ik)(j�), with ν(ik)(j�) ≥ 0 for
(j�) �= (ik) and −ν(ik)(ik) =

∑
(j�) �=(ik) ν(ik)(j�). We assume that the transition

rates ν(ik)(j�) of Z(t) = (θ(t), θ̂(t)), are given by

Prob(Z(t + h) = (j�) | Z(t) = (ik)) =
{

ν(ik)(j�)h + o(h), (j�) �= (ik)
1 + ν(ik)(ik)h + o(h), (j�) = (ik)

where

ν(ik)(j�) =

⎧
⎪⎪⎨

⎪⎪⎩

αk
j�λij , i �= j, � ∈ M,

qi
k�, j = i, � �= k, i ∈ N ,

λii + qi
kk, j = i, � = k,
0, otherwise

and
∑

�∈M αk
j� = 1, λij ≥ 0 for all i �= j, qi

k� ≥ 0, � �= k, λii = −
∑

j∈N i λij ,
qi
kk = −

∑
�∈Mi qi

k�.
We represent by V ⊂ N × M an invariant set of Z(t), that is, Prob(Z(t) ∈

V) = 1 provided that Z(0) ∈ V.

Remark 1. Recalling that λij represents the transition rate of θ(t), we get that
αk

j� and qi
k� models simultaneous and spontaneous jumps of ˆθ(t), that is, for

small h > 0, Prob(θ̂(t + h) = � | θ(t + h) = j, Z(t) = (ik)) = αk
j� + r(h) for

some function such that limh→0 r(h) = 0, and Prob(θ̂(t + h) = � | θ(t + h) =
i, Z(t) = (ik)) = qi

k�h + o(h), see [13,28], and the references therein for more
information.

As mentioned in Sect. 1 we consider the continuous-time MJLS (1) where
Ai ∈ B (Rn), Bi ∈ B(Rm,Rn), i ∈ N , and with the state vector denoted by
x(t) ∈ R

n and the control input by u(t) ∈ R
m. We aim at designing the following

state-feedback controller

u(t) = Kθ̂(t)x(t) (4)

that depends only on the observed variable θ̂(t) taking values in M, such that
the closed loop system (2) is mean square stable (see Definition 1 below) and
has a guaranteed H2 cost (see Definition 2 below). In what follows we set K =
(K1, . . . , KM ) and for i ∈ N , � ∈ M,

Ai� = Ai + BiK�. (5)
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Remark 2. The following cases found in the literature can be recasted from the
approach presented above (see, for instance, [29]):

– Mode-dependent case: M = N , qi
k� = 0, αk

jj = 1, and αk
j� = 0 for j �= �, with

invariant set V = {(ii) ∈ N ×N}. In this case, we get that θ(t) = θ̂(t) almost
surely (as).

– Mode-independent case: M = {1}, qi
k� = 0, and α1

j1 = 1. Then, θ̂(t) = 1 and
θ(t1) and θ̂(t2) jump with t1 = t2 as.

– No Mutual Jumps: αk
jk = 1 and αk

j� = 0 for k �= �.
– The Cluster Case: We partition the Markov chain states as the union of M ≤

N disjoint sets (clusters) Ni so that N = ∪i∈MNi. Considering the function
g : N → M such that g(i) = j that represents the cluster where the Markov
state belongs to, the controller would have access to g(i). Equivalently, by
taking qi

k� = 0 and αk
ig(i) = 1, so that whenever θ(t) jumps to i, θ̂(t) will

jump simultaneously to g(i).

We introduce next the concept of mean-square stability and the H2 norm.

Definition 1 (Mean-square stability MSS, adapted from [5]). System (2)
is said to be MSS if limt→∞ E(‖x(t)‖2) = 0 for arbitrary x0 and Z(0).

We now introduce conditions for verifying the MSS of (2). For that we define
the linear operator T from H

n to H
n such that

Tik(P) � Her(A′
ikPik) +

∑

(j�)∈V
ν(ik)(j�)Pj� (6)

for P ∈ H
n. We have the following lemma derived in Theorem 1 of [28].

Lemma 1. The system ẋ(t) = Aθ(t)θ̂(t)x(t), x(0) = x0 ∈ R
n, is MSS if and only

if there exists P ∈ H
n+ such that

P > 0, T (P) < 0. (7)

The set of admissible controllers (4) is given by

K � {K = (K1, . . . , KM ) : such that (7) holds for Ai� as in (5)}

We define next the concept of the H2 norm. In order to do that we consider
the following MJLS in the probability space (Ω,F , P rob)

G :
{

ẋ(t) = Aθ(t)x(t) + Bθ(t)u(t) + Jθ(t)w(t)
z(t) = Cθ(t)x(t) + Dθ(t)u(t) (8)

where, as before, x(t) ∈ R
n, u(t) ∈ R

m, and z(t) ∈ R
q, w(t) ∈ R

r. We also
consider that x(0) = 0 and that the initial probability distribution for θ0 satisfies
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Prob(θ0 = i) = μi > 0. By plugging (8) and (4), we get the closed-loop system
yielding to

GK :

{
ẋ(t) = Aθ(t)θ̂(t)x(t) + Jθ(t)w(t)
z(t) = Cθ(t)θ̂(t)x(t) (9)

where Ai� is as in (5) and

Ci� = Ci + DiK�. (10)

We introduce the definition of the H2 norm next. Notice that the H2 norm
is associated to the minimization over K ∈ K of the infinite horizon quadratic
cost JK(x0, Z0) defined by

JK(x0, Z0) �
∫ ∞

0

E
(
‖z(t)‖2

)
dt, (11)

where x(0) = x0 and Z0 = (θ0, θ̂0), see [5] for further details.

Definition 2 (H2 norm). Considering that (9) is MSS and x(0) = 0, the H2

norm of (9) is given by ‖GK‖2
2 �

∑r
s=1 ‖zs‖2

2, where zs(k) is the controlled
output of (9) for w(t) = vsδ(t), vs is the s−th element of the standard basis of
R

r.

For calculating the H2 norm of (9) for a given stabilizing controller K, we
can resort to the following (convex) optimization problem

‖GK‖2
2 = inf

Qik>0,γ
γ2, (12)

∑

(ik)∈V
μikTr(J ′

ikQikJik) < γ2 (13)

Her(QikAik) +
∑

(j�)∈V
ν(ik)(j�)Qj� + C ′

ikCik < 0, (14)

where Q ∈ H
n+ and we recall that Prob(Z(0) = (ik)) = μik > 0, (ik) ∈ V.

We are now able to formally state the main goal of this work, that is, for a
given γ > 0,

find K ∈ K such that ‖GK‖2 < γ. (15)

For the perfect observation case, described in Remark 2 as the mode-depen-
dent case (that is, we have perfect information of θ(t) which corresponds to the
situation θ̂(t) = θ(t)) we can obtain the optimal H2 controller by two methods,
the classical Riccati equation approach and the LMI approach. Both methods
are described in [5] as well as a connection between them, so that, the solution
for this case is not conservative in the sense that the optimal controller can be
numerically derived. On the other hand, for the more general case in which we



94 A. M. de Oliveira and O. L. do Valle Costa

could have a mismatch between θ̂(t) and θ(t), optimality is lost at the expense
of a tractable (convex) formulation to the control problem so that only a bound
γ on the H2 norm of (9), which can be minimized, is guaranteed.

A question that naturally arises is that if the numerical procedure that we
derive for the general case recast the optimal solution whenever we assume the
perfect information case. In [28] we derived a numerical procedure based on
a LMI optimization problem that achieved this property. In the next section
we present a different LMI optimization that also has this property, that is,
the results in Sect. 4 yield to the optimal H2 control whenever the assumptions
for the mode-dependent case described in Remark 2 are fulfilled. In this case,
we show that the conditions presented in Sect. 4 are equivalent to (13)–(14)
considering K as a decision variable in the (non-convex) optimization problem

‖G∗‖2
2 = inf

K∈K,Qik>0,γ
{γ2; such that the conditions in (13)−(14) hold}.

Remark 3. For K ∈ K, we get that

JK(x0, Z0) ≤ E(x′
0Qθ0θ̂0

x0), (16)

where JK(x0, θ0) is the quadratic cost defined in (11) and Qik > 0 is any solution
of (14). Considering that x0 ∈ R

n is a given known initial condition and recalling
that Prob(Z(0) = (ik)) = μik, we get that

JK(x0, Z0) ≤ E(x′
0Qθ0θ̂0

x0) = x′
0E(Qθ0θ̂0

)x0 = x′
0

∑

(ik)∈V
μikQikx0, (17)

which is precisely the left-hand side of (13) for Jik = x0, (ik) ∈ V. In this case,
it readily follows that JK(x0, Z0) = ‖GK‖2

2.

4 Main Result

In this section we present the main results of this chapter which consist
of obtaining, through an LMI optimization problem, a state-feedback control
u(t) = Kθ̂(t)x(t) such that the closed loop system (2) is MSS and the associated
H2 norm satisfies an upper bound value. Moreover it will be shown that when-
ever we assume the perfect information case (that is, θ̂(t) = θ(t)), we recast the
optimal solution for the H2 control problem, provided that a design parameter is
made sufficiently large. These results will be presented in Theorem 1, while the
LMI for the optimization problem will be defined next. Consider the following
inequalities for (ik) ∈ V,
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∑

(ik)∈V
μikTr(Wik) < ς (18)

[
Wik •
Ji Xik

]
> 0, (19)

Hik + Her(ΨikΦik) < 0 (20)
[
Z(ik)(jl) •

Hik Xjl

]
> 0 (21)

Xik > 0, (22)

where

Hik �

⎡

⎢⎢⎣

ν(ik)(ik)Xik • • •
Xik 0n×n • •
Xik 0n×n −Her(Hik) +

∑
(j�)∈V(ik) ν(ik),(j�)Z(ik),(j�) •

0q×n 0q×n 0q×n −Iq

⎤

⎥⎥⎦ ,

Ψ ′
ik �

[
Inζik In 0n×n 0n×q

]
,

Φik �
[
(AiGk + BiYk)′ −G′

k 0n×n (CiGk + DiYk)′] ,

with V(ik) = {(j�) ∈ V : ν(ik),(j�) > 0}.
In the first part of the next theorem we have a design LMI procedure based

on (18)–(22) for obtaining K satisfying (15), while in the second part we show
that for the perfect information case the existence of a solution for the LMI
inequalities (18)–(22) is also necessary for (15) provided that the parameters ζik

are made sufficiently large.

Theorem 1. We have the following statements:

1. There exist ς > 0, ζik > ν(ik),(ik)/2, Z(ik),(j�), Hik, Wik, Xik, Gk, Yk, (ik) ∈ V
such that (18)–(22) hold.

2. There exists K ∈ K such that ‖GK‖2 < ς1/2.

We get that 1. =⇒ 2. with K = (K1, . . . , KM ), Kk = YkG−1
k , k ∈ M. Besides,

if the complete observation assumption of Remark 2 is fulfilled, by taking ζik

sufficiently large, we get that 2. =⇒ 1.

Proof. 1. =⇒ 2.: Given that (18)–(22) holds, we get, by setting γ2 = ς and
Yk = KkGk, that

∑

(ik)∈V
μikTr(Wik) < γ2, (23)

Hik + Her(ΨikG′
kΦ̄ik) < 0 (24)

holds, where

Φ̄ik �
[
A′

ik −In 0n×n C ′
ik

]
.
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By defining

Nik =

⎡

⎢⎢⎣

In 0 0
A′

ik 0 C ′
ik

0 In 0
0 0 Iq

⎤

⎥⎥⎦

so that Rank(Nik) = 2n + q, we get that Nik is the orthogonal complement of
Φ̄

′
ik. From Proposition 3 (or by directly multiplying (24) to the left-hand side by

N ′
ik and to the right-hand side by Nik), we obtain that

Cik � N ′
ikHikNik =

⎡

⎣
ν(ik)(ik)Xik + Her(AikXik) Xik XikC ′

ik

Xik Mik 0n×q

CikXik 0q×n −Iq

⎤

⎦ < 0 (25)

holds, where Mik � −Her(Hik) +
∑

(j�)∈V(ik) ν(ik),(j�)Z(ik),(j�). Considering a
similar reasoning as employed in [3], by the Schur complement (see Proposi-
tion 1), we get that (21) yields Z(ik)(j�) > H ′

ikX−1
j� Hik so that

Her(Hik) − H ′
ik

⎛

⎝
∑

(j�)∈V(ik)

ν(ik),(j�)X
−1
j�

⎞

⎠Hik ≥ −Mik.

By setting

G = Hik, P =
( ∑

(j�)∈V(ik)

ν(ik),(j�)X
−1
j�

)−1

(26)

in Proposition 2, we get that P ≥ Her(G) − G′P−1G ≥ −Mik. Thus,
⎡

⎢⎣
ν(ik)(ik)Xik + Her(AikXik) Xik XikC ′

ik

Xik −
(∑

(j�)∈V(ik) ν(ik),(j�)X
−1
j�

)−1

0n×q

CikXik 0q×n −Iq

⎤

⎥⎦ < 0.

By applying the congruence transformation diag(X−1
ik , In, Iq), permuting some

rows and columns, and using the Schur complement (Proposition 1) in the last
inequality, we get that (14) holds for Qik = X−1

ik . Similarly, by applying the
Schur complement (see Proposition 1) to (19), we get that Wik > J ′

iX
−1
ik Ji, then

by multiplying this equation by μik, summing everything up for all (ik) ∈ V and
considering (23), we get (13), and the claim follows.

2. =⇒ 1.: If the complete observation hypothesis of Remark 2 is fulfilled
(that is, θ̂(t) = θ(t)), we get that V = {(ii) : i = 1, . . . , N}, ν(ii)(jj) = λij and

∑

(ii)∈V
μiiTr(J ′

iiQiiJii) < γ2
2 (27)

Her(QiiAii) +
∑

(jj)∈V
ν(ii)(jj)Qjj + C ′

iiCii < 0, (28)

Qii > 0 (29)
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holds for some mode-dependent MS-stabilizing controller K = (K1, . . . , KN ).
Considering a similar reasoning as presented in [3] and the references therein,
we define Xii � Q−1

ii along with

Z(ii)(jj) �

⎛

⎝
∑

(jj)∈V
ν(ii),(jj)X

−1
jj

⎞

⎠
−1

X−1
jj

⎛

⎝
∑

(jj)∈V
ν(ii),(jj)X

−1
jj

⎞

⎠
−1

+ Iε

>

⎛

⎝
∑

(jj)∈V
ν(ii),(jj)X

−1
jj

⎞

⎠
−1

X−1
jj

⎛

⎝
∑

(jj)∈V
ν(ii),(jj)X

−1
jj

⎞

⎠
−1

(30)

for some small ε > 0. Then, after applying the Schur complement (see Proposi-

tion 1) to (30) and setting Hii =
(∑

(jj)∈V(ii) ν(ii),(jj)X
−1
jj

)−1

, we get that (21)
holds. By directly applying the Schur complement, Proposition 1, to (28), we
get that

⎡

⎢⎣
Qiiν(ii)(jj) + Her(QiiAii) • •

I −
(∑

j∈V(ii) ν(ii)(jj)Q
−1
jj

)−1

•
Cii 0 −I

⎤

⎥⎦ < 0 (31)

Multiplying (31) by diag(Xii, I, I), we then get that
⎡

⎢⎣
Xiiν(ii)(jj) + Her(AiiXii) • •

Xii −
(∑

j∈V(ii) ν(ii)(jj)X
−1
jj

)−1

•
CiiXii 0 −I

⎤

⎥⎦ < 0 (32)

holds. Besides,

−Mii = Her(Hii) −
∑

(jj)∈V(ii)

ν(ii)(jj)HiiX
−1
jj Hii + ν(ii)εI

= Hii + ν(ii)εI. (33)

By choosing the small perturbation ε > 0 to (32) such that
⎡

⎣
Xiiν(ii)(jj) + Her(AiiXii) • •

Xii −
(
Hii + ν(ii)εI

)
•

CiiXii 0 −I

⎤

⎦ < 0 (34)

still holds, and using (33), we get (25). The remainder of the proof is partially
inspired in [23]. We now define

Mi � Cii + Dii
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where Cii is given by (25) and

Dii � 1
2ζii

⎡

⎣
Aii

0
Cii

⎤

⎦Xii

[
A′

ii 0 C ′
ii

]

=

⎡

⎣
Aii

Xii

ζii

0
C ′

ii
Xii

ζii

⎤

⎦ ζii

2
X−1

ii

[
Xii

ζii
A′

ii 0 Xii

ζii
C ′

ii

]
≥ 0, (35)

since Xii > 0. Note that limζii→∞ Mi = Cii < 0, so that, by taking suitable
ζii large enough, we get that Mi < 0. Define Gi � Xii/ζii, so that Her(Gi) =
2Xii/ζii. For this suitable choice of ζii > 0, we get that

Mii = Cii +

⎡

⎣
AiiGi

0
CiiGi

⎤

⎦Her(Gi)−1
[
G′

iA
′
ii 0 G′

iC
′
ii

]
< 0.

By applying the Schur complement (see Proposition 1) to the last inequality,
and recalling that Xii = Giζii, we get that

⎡

⎢⎢⎣

ν(ii)(ii)Xii + ζiiHer(AiiGi) • • •
Xii Mii • •

CiiGiζii 0q×n −Iq •
G′

iA
′
ii 0 G′

iC
′
ii −Her(Gi)

⎤

⎥⎥⎦ < 0 (36)

holds. By commuting suitable rows and columns, we get that
⎡

⎢⎢⎣

ν(ii)(ii)Xii + ζiiHer(AiiGi) • • •
G′

iA
′
ii −Her(Gi) • •

Xii 0 Mii •
CiiGiζii CiiGi 0q×n −Iq

⎤

⎥⎥⎦ < 0. (37)

Finally, by defining Yi = KiGi and recalling that Xii − Giζii = 0, we get that
(20) holds, and the claim follows. �

The best upper bound for our main goal (15) can be calculated by solving
the following LMI optimization problem

inf
ξ∈Ξ(ζ)

ς (38)

where ξ = (ς, Z(ik),(j�),Hik,Wik,Xik, Gk, Yk) and Ξ(ζ) is the set of solutions of
(18)–(22) for a given ζ = (ζik : (ik) ∈ V).

Remark 4. Note that if ζik ≤ ν(ik),(ik)/2, then (19) is unfeasible. Indeed, through
the Projection Lemma of Proposition 3, by setting U = Φik and taking the
orthogonal complement Ũ as

Ũ =

⎡

⎢⎢⎣

−In 0 0
Inζik 0 0

0 In 0
0 0 Iq

⎤

⎥⎥⎦ ,
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we get that if (19) holds, then
⎡

⎣
ν(ik)(ik)Xik − 2Xikζik • •

−Xik −Her(Hik) +
∑

(j�)∈V(ik) ν(ik),(j�)Z(ik),(j�) •
0 0 −Iq

⎤

⎦ < 0

also holds. Therefore, a necessary condition for the last inequality to hold is that
Xik(ν(ik)(ik) − 2ζik) < 0. Since Xik > 0, we must have that ζik > ν(ik)(ik)/2, for
all (ik) ∈ V.

5 Illustrative Example

In this example, we consider the linearized model of the unstable lateral dynamics
of an unmanned aircraft discussed in [15]. The original, nonlinear, model is
obtained by considering a rigid-body motion, assuming that Earth is locally
flat, so that centripetal acceleration caused by the its curvature is neglected, and
also that Earth is an inertial (Galilean) frame so that the Coriolis acceleration
is ignored. Then the nonlinear model follows by using classical (Newtonian)
mechanics. The state x =

[
p̄ r̄ β φ

]
is composed by variations on the roll rate

p̄, the yaw rate r̄, the sideslip angle β, and the roll angle φ. The control input
u′ =

[
δa δr

]
is given by variations on the aileron δa and on the rudder δr.

The linearization is performed around the nominal conditions p̄nom = q̄nom =
r̄nom = 0, θnom = αnom, βnom = 0, and φnom = 0, where q̄nom is the nominal
pitch rate, θnom is the nominal pitch angle, and αnom is the nominal angle of
attack, considering that the aircraft flies at a straight and level flight, a constant
altitude of 500 above sea level, assuming a constant speed of 30 m/s. Therefore,
the nominal matrices are given by

Anom =

⎡

⎢⎢⎣

−11.4540 2.7185 −19.4399 0
0.5068 −2.9875 23.3434 0
0.0922 −0.9957 −0.4680 0.3256

1 0.0926 0 0

⎤

⎥⎥⎦ , Bnom =

⎡

⎢⎢⎣

78.4002 −2.7282
−3.4690 13.9685

0 0
0 0

⎤

⎥⎥⎦ .

(39)

We consider that the aircraft is subject to actuator faults that can be modeled by
the Markov chain θ(t) whose states represent three possible modes of operation:
the nominal one = θ(k) = 1 so that B1 = Bnom; the case in which the actuator
power is reduced to 50% θ(t) = 0, B2 = 0.5Bnom; and the case in which the
actuator power is reduced to 10% B3 = 0.1Bnom0. That is, N = {1, 2, 3}. Also,
Ai = Anom, ∀i ∈ N . Similarly to [13], we consider that the fault rates are given
by

[λij ] =

⎡

⎣
−0.3 0.2 0.1
1.1 −1.5 0.4
1.0 1.0 −2.0

⎤

⎦ . (40)
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Fig. 1. γ and ‖GK‖2 against ζ̄ for the complete observation case

The main goal is to investigate the H2 control through the lens of the LQR
control as discussed in Remark 3. Then, we set

Ci =
[

I4

02×4

]
,Di =

[
04×2

I2

]
(41)

for all i ∈ N , that is, we choose the same weights for all states and control
inputs. We consider the initial condition

x0 =
[
0 0 0.087 −0.087

]′ (42)

so that Ji = x0, i ∈ V, considering the reasoning of Remark 3.
Let us first assume that we have a perfect fault detector so that θ̂(t) = θ(t)

for all t and consider the invariant set

V = {(1, 1), (2, 2), (3, 3)} (43)

μ =
[
0.7808 0.1502 0.0691

]
. Then, we calculate the optimal H2 control by solving

(38) for ζ̄ii = ζ ∈ {10−5, 10−4, 10−3, 10−2, 10−1, 1}, i ∈ N . Finally, for the control
K ∈ K obtained by solving (38), we calculate the H2 norm of the closed-loop
system resorting to (12)–(14). The upper bound γ and ‖GK‖2 is shown in Fig. 1.

In this example, we note that the conservatism between the upper bound
yielded by (38) and the actual H2 norm is readily decreased by increasing ζ̄, as
discussed in Theorem 1.

We now study the partial observation case and consider three possible detec-
tor outputs so that M = N . We consider that the detector can perfectly detect
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the nominal mode of operation, that is, θ̂(t) = 1 whenever θ(t) = 1. However, the
detector may have difficulties in distinguishing between θ(t) = 2 and θ(t) = 3.
In this case, the invariant set is given by

V = {(11), (22), (23), (32), (33)} (44)

and the transition rate matrix is given by

[ν(ik),(j�)] =

⎡

⎢⎢⎢⎢⎣

λ11 λ12α
1
22 λ12α

1
23 λ13α

1
32 λ13α

1
33

λ21 λ22 + q2
22 q2

23 λ23α
2
32 λ23α

2
33

λ21 q2
32 λ22 + q2

33 λ23α
3
32 λ23α

3
33

λ31 λ32α
2
22 λ32α

2
23 λ33 + q3

22 q3
23

λ31 λ32α
3
22 λ32α

3
23 q3

32 λ33 + q3
33

⎤

⎥⎥⎥⎥⎦
, (45)

where the states sequence in the transition matrix is given by (11), (22), (23),
(32), and (33). We note that, by restricting the invariant set to (44), we auto-
matically impose that q1

11 = 0 and αk
11 = 1, k ∈ M.

We first investigate the case in which only simultaneous jumps occur by
varying αk

j�, that is, the probability of the detector going to � given that its
current state is k and the next Markov state is j. We also consider that

αk
22 = ᾱ2, α

k
33 = ᾱ3, k ∈ M,

for 0 < ᾱi < 1, i ∈ {2, 3}, along with the following regions

Region 1: ᾱi = 0,V = {(11), (23), (32)}
Region 2: 0 < ᾱi < 1,V as in (44)
Region 3: ᾱi = 1,V as in (43)

for i ∈ {2, 3}. The spontaneous rates are set to zero, that is, qi
k� = 0. We

solve (38) by varying ᾱ2 and ᾱ3 and calculate the actual H2 norm for each
case. In each iteration, we set the initial distribution of Z(t) as the stationary
distribution and ζik = 10, (ik) ∈ {(11), (22), (23), (32), (33)}. The upper bounds
γ and ‖GK‖2 are shown in Fig. 2 against ᾱ3 and ᾱ2. The result of this simulation
traces a parallel to the discrete-time hidden MJLS approach of [12] considering
the behavior of γ and ‖GK‖2 with respect to variations on αk

j� (αil for the discrete-
time formulation). We note that we get the perfect observation case in Region
3. Interestingly the same configuration is obtained in Region 1: since we know
for sure that the detector will jump to θ̂(t + h) = 3 if θ(t + h) = 2 (and vice-
versa), then we know which mode of operation we have in this situation. Finally,
there is a worst-case line for α3 = 1 − α2 in which all costs and controllers are
numerically close and achieves their maximum value, that is, γ = 0.1345 and
‖GK‖2 = 0.1329, with control gains given by

K1 =
[
−0.8814 −0.0167 −0.1129 −1.0753
−0.0087 −0.8221 −0.0084 0.0281

]
,

K2 ≈ K3 ≈
[
−0.5170 −0.0437 −0.0681 −0.6962
−0.1603 −0.3536 −0.1232 −0.0985

]
.
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Fig. 2. γ and ‖GK‖2 against ᾱ2 and ᾱ3

By analysing the control gains, we note that there are two clusters (sets), {1}
and {2, 3} that naturally arises from solving (38) with the given probabilities.
All those cases we previously explained are similar to the ones studied in [10–12],
and the references therein, for discrete-time hidden MJLS.

Let us now study the case in which only spontaneous jumps (no mutual
jumps, see Remark 2) occur for the modes {2, 3} so that αk

jk = 1 for all j ∈ {2, 3},
k ∈ {2, 3} (recalling that

∑
�∈{2,3} αk

j� = 1, j ∈ {2, 3}, k ∈ {2, 3}). We set

q2
22 = q2

33 = q3
22 = q3

33 = −q̄

so that

[ν(ik),(j�)] =

⎡

⎢⎢⎢⎢⎣

λ11 λ12α
1
22 λ12α

1
23 λ13α

1
32 λ13α

1
33

λ21 λ22 − q̄ q̄ λ23 0
λ21 q̄ λ22 − q̄ 0 λ23

λ31 λ32 0 λ33 − q̄ q̄
λ31 0 λ32 q̄ λ33 − q̄

⎤

⎥⎥⎥⎥⎦
, (46)

and again, the states sequence in the transition matrix is given by (11), (22),
(23), (32), and (33). By inspecting (46), we note that the choice of V as in (44)
imposes that simultaneous jumps will occur if θ(t) = 1 and θ(t + h) = 2 (or
θ(t + h) = 3). In this case, we set α1

22 = α1
33 = ᾱ. By varying q̄ ∈

[
0.01 1.00

]

for ᾱ ∈
[
0.05 0.95

]
, we solve (38) and calculate the H2 norm of the resulting

closed-loop system with (12). The upper bound γ2 against q̄ and ᾱ are shown in
Fig. 3. By fixing q̄, we note that the behavior of γ2 is similar to the one displayed
in Fig. 2 for ᾱ3 = ᾱ2. That is, the smallest upper bounds are obtained if ᾱ → 0
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Fig. 3. γ2 against q̄ and ᾱ

or ᾱ → 1. Conversely, the worst-case scenario is also given by ᾱ = 0.5. On the
other hand, we note that, by increasing q̄, we get that γ2 also increases, since q̄
increases the uncertainty of the detector, as discussed in [28].

Let us now suppose a more general case in which V = {(ik), i ∈ N , k ∈ M},
that is, we consider all possible combinations of i and k. We set

αk
11 = 1, αk

22 = αk
33 = 0.7, k ∈ M, (47)

for all k ∈ M, along with

[qi
k�] =

⎡

⎣
−1 1/3 2/3
1/3 −1 2/3
1/3 2/3 −1

⎤

⎦ (48)

for all i ∈ N . We now compare our results to the ones given in [28]. By varying
the parameter ζik = ζ̄ of Theorem 1, for all (ik) ∈ V, and ζ� = ζ̄ of Theorem
5 of [28], for all � ∈ M, for ζ > 0, we obtain the upper bounds γ1 and γ2, as
well as ‖G(1)

K ‖2 and ‖G(2)
K ‖2, shown in Fig. 4. In this example, we note that the

upper bounds γ1 obtained through Theorem 1 are smaller compared to the ones,
γ2, yielded by Theorem 5 of [28].The smallest upper bound obtained through
(38) is given by γ∗

1 = 0.1403, for an actual H2 norm of ‖G1
K‖2 = 0.1334 whereas

we get that γ∗
2 = 0.2059 and ‖G2

K‖2 = 0.1424 obtained through Theorem 5 of
[28], both for ζ̄ = 4. Concerning the conservatism of both results, that is, the
distance between the upper bounds and the actual H2 norm, we note that it
tends to decrease as we increase ζ, albeit not necessarily monotonically. Besides,
we note that γ∗

1/‖G1
K‖2 = 1.0517 and γ∗

2/‖G2
K‖2 = 1.4458 for ζ̄ = 4. Thus, for this

example, the conservatism yielded by the conditions of Theorem 1 are smaller
compared to Theorem 5 of [28].
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Fig. 4. Top figure: γ1 (full line) and ‖G(1)
K ‖2 (dashed line) calculated through (38)

against ζ̄; Bottom figure: γ2 (full line) and ‖G(2)
K ‖2 (dashed line) against ζ̄ calculated

through Theorem 5 of [28].

Fig. 5. ‖z(t)‖2 (grey lines) and E(‖z(t)‖2) (black line) against t for a Monte Carlo
simulation of 500 rounds.
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Finally, we run a Monte Carlo simulation of 500 rounds and take the trajec-
tories ‖z(t)‖2 against time for the detector probabilities given in (47) and (48),
respectively. The initial condition is given in (42) and we set ζ̄ = ζik = 4. The
‖z(t)‖2 curves, along with E(‖z(t)‖2) are shown in Fig. 5.

By numerically integrating E(‖z(t)‖2), we get that

JK(x0, θ0) ≈ 0.0179. (49)

Considering Remark 3, we get, by simulation, that ‖GK‖2 =
√

JK(x0, θ0) ≈
0.134, whereas the actual H2 norm value is given by ‖GK‖2 = 0.133.

6 Conclusion

In this chapter, we revisited the H2 state-feedback control of continuous-time
Markov jump linear systems considering that the main Markov chain cannot be
directly measured. We consider that the only information available of the main
jump process comes from a detector. We assume that the joint process of the pro-
cess of the plant and the detector follows an extended exponential Markov pro-
cess, the so-called Exponential Hidden Markov Model. This modelling is appeal-
ing to represent systems subject to faults. We present new sufficient conditions
for calculating state-feedback controllers depending on the detector that stabilize
the closed-loop system while guaranteeing a bound on its H2 norm. In the case
in which the detector is able to provide the correct information regarding the
jump process of the plant, the so-called perfect observation case, our conditions
also become necessary, leading to the optimal H2 state-feedback controller. We
numerically compare our conditions to the ones already presented in the litera-
ture through illustrative examples in the context of networked control systems
and systems subject to faults.
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as a second player chooses the least favorable disturbance density in each
scenario. Under suitable assumptions, we prove that the value function
is the unique fixed point of an operator and that minimizers respectively,
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1 Introduction

The theory of Markov Decision Processes (MDPs) which developed after the
groundbreaking work by Richard Bellman (see e.g. [3] or the reprint [4]) has
been shown to be extremely useful for solving stochastic dynamic decision prob-
lems. Areas of application are among others production planning, operations
management, control of robots, scheduling in queueing networks, investment
management and health care decisions. The starting point of the theory is a
model where the state transition function, the cost function and the distribu-
tion of the disturbances are known or can be estimated with sufficient precision.
Whereas the transition function is often given due to physical laws, in many
cases it might not be possible or very costly to determine the true distribution
of the disturbances. Hence, there is some kind of model uncertainty or ambigu-
ity in the problem. There are various ways to deal with this uncertainty (for
an overview in the field of economics see e.g. [13]). In this paper, we approach
the problem by considering distributionally robust MDPs. More precisely, this
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means that we consider a stochastic dynamic game against nature where nature
as a second player tries to choose the least favorable disturbance distribution
whereas the decision maker tries to minimize her expected discounted cost. We
implement this as a Stackelberg game where the decision maker has to reveal
her action first and then nature chooses the disturbance distribution. This can
be seen as a worst-case approach.

Distributionally robust MDPs with finite state space have been considered
before in [11,19] on a theoretical basis, both for finite and infinite planning
horizon. In [1] the finite horizon case has been extended to a situation with Borel
state and action spaces and unbounded cost function. The major obstacle here is
a sensible introduction of policies for nature. A similar situation is also considered
in [7,12]. In both papers, there is a classical game structure with a predetermined
order of actions of both players. In particular, the model assumptions and the
choice of the ambiguity set are different from our paper. In the present paper, we
consider as ambiguity set the set of densities and thus use a different topology.
The advantage is to obtain some relations to dynamic risk measures, see [1].
Indeed, relations like this have been discovered in the economic literature before.
There, it is common to speak of model ambiguity. For an overview of the recent
literature see [8]. We also use different, two-sided bounding functions. In [20]
another approach is used, where nested uncertainty sets for the transition laws
are considered which correspond to confidence sets.

In the current paper, we will extend the results in [1] to a setting with infinite
time horizon. Under some assumptions on the continuity and compactness of
the model data and under some growth conditions we will show that the value
function of the model is the unique fixed point of a certain operator and that
minimizers respectively, maximizers in the optimality equation lead to optimal
policies for the decision maker and nature. Based on this result, we provide
a Q-learning approach to solve the problem numerically via simulation-based
techniques. To the best of our knowledge, this has not been done before. Q-
learning can be seen as a combination of value iteration and simulation and also
works in the case of a game. Other MDP algorithms like policy improvement
cannot be generalized to games in an easy way. Q-learning determines the so-
called Q-function from which we can derive the value function immediately.
We prove the convergence of the algorithm and study its performance using a
distributionally robust irrigation problem. The model is considered with different
sizes of the state space and different learning rates. In this application, the state
space and the action space of the decision maker are finite.

The paper is organized as follows: In the next section, we introduce our model
and the optimization problem. We clarify in particular our ambiguity set. In
Sect. 3, we summarize our assumptions and explain the solution theorem which
consists of a fixed point statement. We use the weighted supremum norm to deal
with the unbounded cost function and rely on Banach’s fixed point theorem.
In the subsequent section, we discuss the relation of our optimization criterion
to risk measures. Section 5 contains the theory of the Q-learning algorithm and
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proves in particular its convergence. In Sect. 6, the algorithm is applied to the
irrigation example. In particular, the influence of the learning rate is discussed.

2 The Markov Decision Model

We consider the following stationary Markov Decision Process with state space
E, action space A and infinite planning horizon. Both state and action space are
assumed to be Borel spaces with Borel σ-algebras B(E) and B(A), respectively.
The possible state-action combinations are a measurable subset D ⊂ E ×A such
that D contains the graph of a measurable mapping. The x-section

D(x) = {a ∈ A : (x, a) ∈ D}

is the set of admissible actions in state x ∈ E. We assume that the dynamics of
the MDP depend on disturbances Z1, Z2, . . . which are i.i.d. random elements
on a common probability space ⊗∞

n=1(Ω,A,P) with values in a measurable space
(Z,Z). W.l.o.g. we assume that Zn((ω1, ω2, . . .)) = ωn. Let Z be a representative
of the disturbance variables. When the current state is xn, the controller chooses
action an ∈ D(xn) and zn+1 is the realization of Zn+1, then the next state is
given by

xn+1 = T (xn, an, zn+1),

where T : D × Z → E is a measurable transition function. The one-stage cost
function c : D × E → R gives the cost c(x, a, x′) for choosing action a if the
system is in state x and the next state is x′.

In what follows we will restrict w.l.o.g. to deterministic Markovian policies,
for more details see [1].

Definition 1. A measurable mapping d : E → A with d(x) ∈ D(x) for every
x ∈ E is called decision rule. A sequence π = (d0, d1, . . . ) is called policy. The
set of all policies is denoted by Π. A policy π is called stationary if π = (d, d, . . . )
for some decision rule d.

We denote by (Xn), (An) the random state and action processes. In the
sequel, we will require P to be separable. The transition kernel is given by

Q(B|x, a) :=
∫

1B

(
T (x, a, z)

)
P(dz), B ∈ B(E), (x, a) ∈ D. (1)

We assume now that there is some uncertainty about P, e.g. because it cannot
be estimated properly. Moreover, the decision maker is very risk averse and tries
to minimize the expected cost on a worst case basis. We denote by M1(Ω,A,P)
the set of probability measures on (Ω,A) which are absolutely continuous with
respect to P and define for q ∈ (1,∞]

Mq
1(Ω,A,P) :=

{
Q ∈ M1(Ω,A,P) :

dQ
dP

∈ Lq(Ω, A,P)
}

.
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Henceforth, we fix a non-empty subset Q ⊆ Mq
1(Ω,A,P) which is referred to as

ambiguity set. This can be seen as the set of probability measures which may
reflect the law of motion. Due to absolute continuity, we can identify Q with the
set of corresponding densities w.r.t. P

Qd :=
{

dQ
dP

∈ Lq(Ω,A,P) : Q ∈ Q
}

.

Accordingly, we view Q as a subset of Lq(Ω,A,P) and endow it with the trace
topolgy of the weak* topolgy σ(Lq, Lp) on Lq(Ω,A,P) where 1

p + 1
q = 1. The

weak* topology in turn induces a Borel σ-algebra on Q making it a measurable
space. We obtain the following result (for a proof see the appendix of [1]).

Lemma 1. Let the ambiguity set be norm-bounded (see (A)(vi) below) and the
probability measure P on (Ω,A) be separable. Then Q endowed with the weak*
topology σ(Lq, Lp) is a separable metrizable space. If Q is additionally weak*
closed, it is even a compact Borel space.

The controller only knows that the transition kernel (1) at each stage is
defined by some Q ∈ Q instead of P but not which one exactly. For example it
could be known that the disturbances are normally distributed, but mean and
variance are not precisely known, i.e.

Q =
{
N (μ, σ2) : μ ∈ [μ1, μ2], σ ∈ [σ1, σ2]

}
.

Since all moments of the normal distribution exist, such an ambiguity set with
compact parameter intervals is bounded in the Lq-norm and Lemma 1 applies.

The controller’s worst-case approach can be interpreted as a dynamic game
against nature. This means that nature reacts to the controller’s action a ∈ D(x)
at time n with a measurable decision rule γn : D → Q. A policy of nature is a
sequence of such decision rules γ = (γ0, γ1, . . . ). Let Γ be the set of all policies
of nature. Thus, we are faced with a Stackelberg game where the controller is
the mover and nature is the follower. A proof of the next lemma can be found
in the appendix of [1].

Lemma 2. A decision rule γ : D → Q induces a stochastic kernel from D to Ω
by

γ(B|x, a) := γ(x, a)(B), B ∈ A, (x, a) ∈ D.

As in the case without ambiguity, the Theorem of Ionescu-Tulcea yields that
each initial state x ∈ E and pair of policies of the controller and nature (π, γ) ∈
Π × Γ induce a unique law of motion

Q
πγ
x := δx ⊗ γ0(·|x0, d0(x0)) ⊗ γ1(·|x1, d1(x1)) ⊗ . . .

with corresponding expectation operator E
πγ
x .
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The value of a policy pair (π, γ) ∈ Π × Γ under an infinite planning horizon
is defined as

J∞πγ(x) := E
πγ
x

[ ∞∑
k=0

βkc(Xk, dk(Xk),Xk+1)

]
, x ∈ E. (2)

The corresponding robust value of a policy π ∈ Π of the controller is then the
worst case cost

J∞π(x) := sup
γ∈Γ

J∞πγ(x), x ∈ E.

Hence, the optimality criterion is to minimize this worst case cost

J∞(x) := inf
π∈Π

J∞π(x), x ∈ E. (3)

3 Solution Theory for the Distributionally Robust MDP

In order to solve the problem we make the following assumptions:

Assumptions (A)
(i) The set-valued mapping E � x 	→ D(x) is upper semicontinuous and

compact-valued.
(ii) The transition function T is continuous in (x, a).
(iii) The one-stage cost function c is lower semicontinuous.
(iv) There exist α, ε, ε̄ ≥ 0 with ε + ε̄ = 1 and measurable functions b : E →

(−∞,−ε] and b̄ : E → [ε̄,∞) such that for all Q ∈ Q and (x, a) ∈ D

E
Q

[
−c−(x, a, T (x, a, Z))

]
≥ b(x), E

Q [b(T (x, a, Z))] ≥ αb(x),

E
Q

[
c+(x, a, T (x, a, Z))

]
≤ b̄(x), E

Q
[
b̄(T (x, a, Z))

]
≤ αb̄(x).

(v) We define b : E → [1,∞), b(x) := b̄(x) − b(x). For all (x̄, ā) ∈ D there
exists an ε > 0 and measurable functions Θx̄,ā

1 , Θx̄,ā
2 : Z → R+ such that

Θx̄,ā
1 (Z), Θx̄,ā

2 (Z) ∈ Lp(Ω,A,P) and

|c(x, a, T (x, a, z))| ≤ Θx̄,ā
1 (z), b(T (x, a, z)) ≤ Θx̄,ā

2 (z)

for all z ∈ Z and (x, a) ∈ Bε(x̄, ā) ∩ D. Here, Bε(x̄, ā) is the closed ball
around (x̄, ā) w.r.t. an arbitrary product metric on E × A.

(vi) The ambiguity set Q is norm bounded, i.e. ∃K ∈ [1,∞) such that

E

∣∣∣∣dQdP
∣∣∣∣
q

≤ K

for all Q ∈ Q.
(vi) The discount factor β satisfies αβ < 1 with α from (iv).
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Remark 1. a) Conditions (i)–(iii) and (v) are needed to ensure the existence of
optimal policies. Condition (iv) guarantees that the value functions we are
interested in have a finite weighted supremum norm with weight function b.
Condition (vi) is a requirement for Lemma 1 and the last condition ensures
the contraction property of the optimality operator.

b) Note that when E and A are finite, conditions (i)–(vi) are automatically
satisfied. In particular b can be chosen as a constant and α = 1.

It is convenient to introduce the corresponding finite horizon problems. For
horizon N ∈ N and policies π ∈ Π, γ ∈ Γ , we set

JNπγ(x) := E
πγ
x

[
N−1∑
k=0

βkc(Xk, dk(Xk),Xk+1)

]
, x ∈ E.

Moreover, let JNπ = supγ∈Γ JNπγ and JN = infπ∈Π JNπ. We first make sure
that (2) is well-defined.

Lemma 3. Under Assumptions (A) the sequences {JNπγ}N∈N, {JNπ}N∈N and
{JN}N∈N converge pointwise for every policy pair (π, γ) ∈ Π ×Γ to limits which
are bounded by 1

1−αβ b from below and by 1
1−αβ b̄ from above. Moreover, it holds

lim
N→∞

JNπγ = J∞πγ(x), x ∈ E.

Proof. We have for 1 ≤ m ≤ N

JNπγ(x) = Jmπγ(x) +
N−1∑

k=m+1

βk
E

πγ
x [c(Xk, dk(Xk),Xk+1)]

≥ Jmπγ(x) +
N−1∑

k=m+1

βk
E

πγ
x

[
−c−(Xk, dk(Xk),Xk+1)

]

≥ Jmπγ(x) + b(x)
N−1∑

k=m+1

(αβ)k

≥ Jmπγ(x) + b(x)
∞∑

k=m

(αβ)k

=: Jmπγ(x) + δm(x) (4)

where δm is a non-positive function with limm→∞ δm(x) = 0 for all x ∈ E.
Hence, the sequence of functions {JNπγ}N∈N is weakly increasing. Taking the
supremum over γ (and infimum over π) on both sides of (4), yields that the
sequences {JNπ}N∈N and {JN}N∈N are weakly increasing, too. By Theorem
A.1.6 in [2] all three sequences are convergent. Moreover, we can apply Theorem
A3 in [10] which yields

J∞πγ(x) = lim
N→∞

E
πγ
x

[
N−1∑
k=0

βkc(Xk, dk(Xk),Xk+1)

]
= lim

N→∞
JNπγ(x).
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In the same way as (4) we can prove that

JNπγ(x) ≤ Jmπγ(x) + b̄(x)
∞∑

k=m

(αβ)k (5)

Choosing m = 0 and taking the limit N → ∞ in (4) and (5) yields

1
1 − αβ

b(x) ≤ J∞πγ(x) ≤ 1
1 − αβ

b̄(x).

For the other limits the same bounds obviously hold, too. ��
The pointwise limits

Jπ(x) := lim
N→∞

JNπ(x) and J(x) := lim
N→∞

JN (x), x ∈ E,

are referred to as limit robust policy value of π ∈ Π and limit value function,
respectively.

Remark 2. The infinite horizon and limit robust policy values and value func-
tions have the following relations.

(i) It holds for any policy pair (π, γ) ∈ Π × Γ that JNπγ ≤ JNπ. By taking the
limit N → ∞ it follows that J∞πγ ≤ Jπ and finally by taking the supremum
over γ ∈ Γ

J∞π(x) ≤ Jπ(x), x ∈ E.

(ii) It holds for any policy π ∈ Π that JN ≤ JNπ. Taking limits yields

J(x) ≤ Jπ(x), x ∈ E.

With the bounding function b = b̄ − b we define the function space

Bb := {v : E → R | v measurable, ∃λ ∈ R+ s.t. |v(x)| ≤ λ b(x) ∀x ∈ E} .

Endowing Bb with the weighted supremum norm

‖v‖b := sup
x∈E

|v(x)|
b(x)

makes (Bb, ‖·‖b) a Banach space, cf. Proposition 7.2.1 in [9]. Note that according
to Lemma 3 and Theorem 3.6 and 3.10 in [1] we have J, Jπ, J∞πγ ∈ Bb. To ease
the notation we introduce the following operators.

Definition 2. For functions v ∈ Bb and for all (x, a) ∈ D,Q ∈ Q and decision
rules d,γ let

Lv(x, a,Q) :=
∫

c
(
x, a, T (x, a, z)

)
+ βv

(
T (x, a, z)

)
Q(dz),

Td,γv(x) := Lv(x, d(x), γ(x, d(x))),
Tdv(x) := sup

Q∈Q
Lv(x, d(x),Q),

T v(x) := inf
a∈D(x)

sup
Q∈Q

Lv(x, a,Q).
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For the next result define

B := {v ∈ Bb | v lower semicontinuous}

which is again a complete metric space.

Lemma 4. Given Assumptions (A), the Bellman operator T is a contraction
on B with modulus αβ ∈ (0, 1).

Proof. Let v ∈ B. It has been established in the proof of Theorem 3.10 in [1]
that T v is lower semicontinuous. Furthermore,

|T v(x)| =
∣∣∣∣ inf
a∈D(x)

sup
Q∈Q

E
Q

[
c
(
x, a, T (x, a, Z)

)
+ βv

(
T (x, a, Z)

)]∣∣∣∣
≤ inf

a∈D(x)
sup
Q∈Q

E
Q

[∣∣c(x, a, T (x, a, Z)
)∣∣] + βEQ

[∣∣v(
T (x, a, Z)

)∣∣]

≤ inf
a∈D(x)

sup
Q∈Q

E
Q

[∣∣c(x, a, T (x, a, Z)
)∣∣] + βλEQ

[
b
(
T (x, a, Z)

)]

≤ (1 + αβλ)b(x),

Hence, the operator T is an endofunction on B and it remains to verify the
Lipschitz constant αβ. It holds for v1, v2 ∈ B

T v1(x) − T v2(x) ≤ sup
a∈D(x)

(
sup
Q∈Q

E
Q

[
c
(
x, a, T (x, a, Z)

)
+ βv1

(
T (x, a, Z)

)]

− sup
Q∈Q

E
Q

[
c
(
x, a, T (x, a, Z)

)
+ βv2

(
T (x, a, Z)

)] )

≤ β sup
a∈D(x)

sup
Q∈Q

E
Q

[
v1

(
T (x, a, Z)

)
− v2

(
T (x, a, Z)

)]

≤ β‖v1 − v2‖b sup
a∈D(x)

sup
Q∈Q

E
Q

[
b
(
T (x, a, Z)

)]

≤ αβ‖v1 − v2‖bb(x).

Interchanging the roles of v1 and v2 yields

|T v1(x) − T v2(x)| ≤ αβ‖v1 − v2‖bb(x).

Now, dividing by b(x) and taking the supremum over x ∈ E on the left hand
side completes the proof. ��

The following theorem is a consequence of Proposition 3.5, Theorem 3.6 and
Theorem 3.10 in [1]. It is crucial for our main result.

Theorem 1. Let Assumptions (A) be satisfied and policies π = (d0, d1, . . .) ∈ Π
and γ = (γ0, γ1, . . . ) ∈ Γ be given with π̄ := (d1, d2, . . .), γ̄ := (γ1, γ2, . . . ).

a) For all N ∈ N we have JNπγ = Td0,γ0JN−1π̄γ̄ .
b) For all N ∈ N we have JNπ = Td0JN−1π̄.
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c) For all N ∈ N we have JN = T JN−1 and JN ∈ B.

The next theorem is our main result. It characterizes the value function and
explains how optimal policies for the decision maker and nature can be obtained.

Theorem 2. Let Assumptions (A) be satisfied.

a) The limit value function J is the unique fixed point of the Bellman operator
T in B.

b) There exists a decision rule d∗ : E → A of the controller such that

Td∗J(x) = T J(x), x ∈ E.

Moreover, for every ε > 0 there exists an ε-optimal decision rule γ̂0 : D → Q
of nature such that

Td∗γ̂0J(x) + ε ≥ T J(x), x ∈ E.

c) If the ambiguity set Q is weak* closed, there exists a decision rule γ∗
0 : D → Q

of nature such that

Td∗γ∗
0
J(x) = T J(x), x ∈ E.

d) Each stationary policy π∗ = (d∗, d∗, . . . ) induced by a decision rule d∗ as in
part b) is optimal for optimization problem (3) and it holds J∞ = J .

e) If the ambiguity set Q is weak* closed, each stationary policy γ∗ = (γ∗
0 , γ∗

0 , . . . )
induced by a decision rule γ∗

0 as in part c) is an optimal response of nature
to π∗, i.e. J∞π∗γ∗ = J∞.

Proof. a) The fact that J is the unique fixed point of the operator T in B follows
directly from Banach’s Fixed Point Theorem using Lemma 4.

b) The existence of a minimizing decision rule of the controller and an ε-optimal
decision rule of nature follow from the respective results in the finite horizon
case, cf. Theorem 3.10 a) in [1].

c) This follows analogously from Theorem 3.10 b) in [1].
d) Let d∗, γ̂0 be decision rules as in part b) and π∗ := (d∗, d∗, . . . ), γ̂ :=

(γ̂0, γ̂0, . . . ). It has to be shown that

J∞π∗(x) = J∞(x) = J(x), x ∈ E. (6)

We proceed in two steps. Firstly, we prove that

J(x) ≥ J∞π∗(x), x ∈ E (7)

and secondly we prove that

J(x) ≤ J∞π(x), x ∈ E, for all π ∈ Π. (8)

From (7) we get J ≥ J∞π∗ ≥ J∞. On the other hand, taking the infimum
over π ∈ Π in (8) yields J ≤ J∞. Together, these inequalities imply (6) and
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the assertion is proven.

Step 1: We show by induction that for all N ∈ N0

J(x) ≥ JNπ∗(x) +
(αβ)N

1 − αβ
b(x), x ∈ E.

Then letting N → ∞ yields (7). The case N = 0 follows from Lemma 3. For
N ≥ 1 it follows from the induction hypothesis

J(x) = Td∗J(x)

= sup
Q∈Q

E
Q

[
c
(
x, d∗(x), T (x, d∗(x), Z)

)
+ βJ

(
T (x, d∗(x), Z)

)]

≥ sup
Q∈Q

E
Q

[
c
(
x, d∗(x), T (x, d∗(x), Z)

)
+ βJN−1π∗

(
T (x, d∗(x), Z)

)

+ β
(αβ)N−1

1 − αβ
b
(
T (x, d∗(x), Z)

)]

≥ sup
Q∈Q

E
Q

[
c
(
x, d∗(x), T (x, d∗(x), Z)

)
+ βJN−1π∗

(
T (x, d∗(x), Z)

)]

+
(αβ)N

1 − αβ
b(x)

= JNπ∗(x) +
(αβ)N

1 − αβ
b(x).

Note that the last inequality is by Assumption (A) (ii) and the last equality
by Theorem 1 b).

Step 2: Let π = (d0, d1, . . . ) ∈ Π be arbitrary. We show by induction for ε
and γ̂ from b) that for all N ∈ N0

J(x) ≤ JNπγ̂(x) +
ε

1 − β
+

(αβ)N

1 − αβ
b̄(x), x ∈ E.

Then letting N → ∞ yields J ≤ J∞πγ̂ + ε
1−β . Since ε > 0 is arbitrarily small,

it follows that J ≤ J∞π, i.e. (8) holds. The case N = 0 follows again from
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Lemma 3. For N ≥ 1 we have

J(x) = T J(x) ≤ Td∗γ̂0J(x) + ε ≤ Td0γ̂0J(x) + ε

≤ Td0γ̂0

(
JN−1π̄γ̂(x) +

ε

1 − β
+

(αβ)N−1

1 − αβ
b̄(x)

)
+ ε

=
∫

c
(
x, d0(x), T (x, d0(x), z)

)
+ βJN−1π̄γ̂

(
T (x, d0(x), z)

)

+ β
(αβ)N−1

1 − αβ
b̄
(
T (x, d0(x), z)

)
γ̂0(dz|x, d0(x)) +

(
1 +

β

1 − β

)
ε

= JNπγ̂(x) + β
(αβ)N−1

1 − αβ

∫
b̄
(
T (x, d0(x), z)

)
γ̂0(dz|x, d0(x)) +

ε

1 − β

≤ JNπγ̂(x) + β
(αβ)N−1

1 − αβ
sup
Q∈Q

E
Q

[
b̄
(
T (x, d0(x), Z)

)]
+

ε

1 − β

≤ JNπγ̂(x) +
(αβ)N

1 − αβ
b̄(x) +

ε

1 − β
.

We used that π ∈ Π is arbitrary, so it is no problem to apply the induction
hypothesis to the shifted policy π̄. The third equality is by Theorem 1 a).

e) Replacing the ε-optimal decision rule γ̂0 by the optimal one γ∗
0 in step 2 of

part d) yields J ≤ J∞πγ∗ for all π ∈ Π, so especially J ≤ J∞π∗γ∗ . Combining
this with (6), we get

J ≤ J∞π∗γ∗ ≤ J∞π∗ = J∞ = J,

which concludes the proof. ��

Remark 3. Note that we do not have a classical game here. In particular it is
not possible in general to interchange sup and inf. Additional properties like
convexity are required to achieve this. For a discussion and examples, see [1].

4 Connection to Risk Measures

In this section, we outline how distributionally robust MDPs are related to the
minimization of coherent risk measures. This provides another interpretation
of the optimality criterion (3) in addition to the worst-case approach and the
dynamic Stackelberg game. A risk measure is a functional ρ : Lp(Ω,A,P) → R̄

which determines the necessary capital to make holding a risky position X ∈
Lp(Ω,A,P) acceptable. The following properties are important.

Definition 3. A risk measure ρ : Lp(Ω,A,P) → R̄ is

a) monotone if X ≤ Y implies ρ(X) ≤ ρ(Y ).
b) translation invariant if ρ(X + m) = ρ(X) + m for all m ∈ R.
c) positive homogeneous if ρ(λX) = λρ(X) for all λ ∈ R+.
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d) subadditive if ρ(X + Y ) ≤ ρ(X) + ρ(Y ) for all X,Y .
e) coherent if it has properties a)–d).
f) said to have the Fatou property, if for every sequence {Xn}n∈N ⊆ Lp with

|Xn| ≤ Y P-a.s. for some Y ∈ Lp and Xn → X P-a.s. for some X ∈ Lp it
holds

lim inf
n→∞ ρ(Xn) ≥ ρ(X).

Recall that an extended real-valued convex functional is called proper if it
never attains −∞ and is strictly smaller than +∞ in at least one point. Coherent
risk measures have the following dual or robust representation, cf. Theorem 7.20
in [16].

Theorem 3. A functional Lp(Ω,A,P) → R̄ is a proper coherent risk measure
with the Fatou property if and only if there exists a subset Q ⊆ Mq

1(Ω,A,P)
such that

ρ(X) = sup
Q∈Q

E
Q[X], X ∈ Lp. (9)

The supremum is attained since the subset Q ⊆ Mq
1(Ω, A,P) can be chosen

σ(Lq, Lp)-compact and the functional Q 	→ E
Q[X] is σ(Lq, Lp)-continuous.

With this duality result we can reformulate the right hand side of the fixed
point equation J = T J from Theorem 2 to

J(x) = inf
a∈D(x)

ρ
(
c
(
x, a, T (x, a, Z)

)
+ βJ

(
T (x, a, Z)

))
(10)

for some proper coherent risk measure ρ with the Fatou property if and only if
the ambiguity set Q is weak* closed. Note that we already require Q to be norm
bounded, cf. Assumption (A) (vi), and by the Theorem of Banach-Alaoglu weak*
compact is equivalent to norm bounded and weak* closed. Equation (10) shows
that for a weak* closed ambiguity set the distributionally robust optimality
criterion is equivalent to the stage-wise minimization of a coherent risk measure.

Due to this connection, the dual representations of coherent risk measures
are a natural source for ambiguity sets. A particular advantage is that there are
often explicit formulas for nature’s maximizing probability measure. We present
two examples. Since the probability measures in Q are absolutely continuous
w.r.t. P, we can consider the set of densities Qd.

(i) Expected Shortfall is defined on L1(Ω,A,P) as

ESα(X) :=
1

1 − α

∫ 1

α

F−1
X (u)du, α ∈ [0, 1),

with F−1
X denoting the quantile function of X. Its dual representation is based

on the set of densities

Qd =
{

Y ∈ L∞(Ω,A,P) : E[Y ] = 1, Y ≤ 1
1 − α

}
.
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The supremum (9) is attained in

Y =
1{X > F−1

X (α)} + κ1{X = F−1
X (α)}

1 − α

with κ = 1−α−P(X>F −1
X (α))

P(X=F −1
X (α))

1
{
P(X = F−1

X (α)) > 0
}
, see Remark 8.15 in [14].

(ii) A superclass are the spectral risk measures ρφ : Lp(Ω,A,P) → R̄. They are
of the form

ρφ(X) :=
∫ 1

0

F−1
X (u)φ(u)du,

where φ : [0, 1] → R+ is an increasing function with ‖φ‖q < ∞ and∫ 1

0
φ(u)du = 1 called spectrum. Expected Shortfall is a special case with

spectrum φ(u) = 1{u≥α}
1−α . The dual representation of spectral risk measures

is given by the set of densities

Qd = {Y ∈ Lq(Ω,A,P) : Y ≤cx φ(U), U ∼ U(0, 1)} .

The maximizing density in (9) is φ(UX), where UX is the generalized distribu-
tional transform of X, i.e. a uniformly distributed random variable satisfying
almost surely F−1

X (UX) = X, see Corollary 12 in [15].

The connection of distributionally robust MDPs to coherent risk measures
goes beyond the stage-wise perspective of (10). The optimality criterion (3) can
be written as

J∞(x) = inf
π∈Π

sup
Q∈Qπ

E
Q

x

[ ∞∑
k=0

βkc(Xk, dk(Xk),Xk+1)

]
, x ∈ E,

where Qπ = {Qπγ
x : γ ∈ Γ}. By direct verification of the axioms one can

see that for a fixed policy π ∈ Π of the controller ρ̃(X) = supQ∈Qπ
E
Q[X],

X ∈ Lp(Ω,A,P), defines a coherent risk measure. I.e. in some sense the stage-
wise connection (10) holds also globally. If the ambiguity set Q is induced by a
spectral risk measure and the model data has certain monotonicity properties,
Q is independent of π, cf. Lemma 6.8 and subsequent remarks in [1]. In this
case, the distributionally robust expected cost optimization is equivalent to the
minimization of a coherent risk measure applied to the total cost.

5 Q-Learning for Distributionally Robust Models

We want to obtain J = J∞ and the optimal policy numerically. In order to
achieve this, we use a Q-learning algorithm. For simplicity let us assume now that
state and action space are finite as well as the ambiguity set. Thus Assumptions
(A) (i)–(vi) are automatically satisfied (see Remark 1). We only have to assume
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that β < 1. In what follows it will be more convenient to work with the densities
Qd instead of Q. The fixed point equation of Theorem 2 a) reads

J(x) = T J(x) = inf
a∈D(x)

sup
Y ∈Qd

∑
z

P(z)Y (z)
(
c(x, a, T (x, a, z)) + βJ(T (x, a, z))

)
.

The Q-function of the problem is for (x, a, Y ) ∈ D × Qd given by

Q(x, a, Y ) := LJ(x, a, Y ).

It is the value when we take the pair (a, Y ) as the first action of the decision
maker and nature and act optimally afterwards. In particular, we have J(x) =
T J(x) = infa∈D(x) supY ∈Qd Q(x, a, Y ). Thus, we obtain

Q(x, a, Y ) =
∑

z

P(z)Y (z)
(
c(x, a, T (x, a, z)) + β inf

a′∈D(x)
sup

Y ′∈Qd

Q(T (x, a, z), a′, Y ′)
)

=: HQ(x, a, Y ) (11)

The operator H is slightly different to T , however they share the following
important property. In what follows we denote by ‖ · ‖∞ the supremum norm on
the Banach space of bounded functions.

Theorem 4. The operator H is a contraction on the space of bounded functions
with modulus β ∈ (0, 1) and Q is the unique fixed point of the H-operator in the
set of bounded functions.

Proof. First note that when Q is bounded, HQ is bounded, too. Now take two
bounded functions Q1, Q2 on D × Qd. Then

(HQ1 − HQ2)(x, a, Y )

= β
∑

z

P(z)Y (z)
(

inf
a′

sup
Y ′

Q1(T (x, a, z), a′, Y ′) − inf
a′

sup
Y ′

Q2(T (x, a, z), a′, Y ′)
)

≤ β
∑

z

P(z)Y (z) sup
a′

sup
Y ′

(
Q1(T (x, a, z), a′, Y ′) − Q2(T (x, a, z), a′, Y ′)

)

≤ β‖Q1 − Q2‖∞

Interchanging Q1 and Q2 finally yields ‖HQ1 − HQ2‖∞ ≤ β‖Q1 − Q2‖∞ and
implies that H is contracting. Thus, it follows from Banach’s fixed point theorem
that the fixed point of H in the set of bounded functions is unique. That Q is a
fixed point follows from (11). ��

We consider the following iteration with numbers αt ≥ 0 called learning rate
and satisfying limt→∞ αt = 0. We start with Q(0) ≡ 0. In each step, we choose
randomly a feasible pair (x, a, Y ), generate z according to P and update Q(t).
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Algorithm:

1. Set Q(0) ≡ 0.
2. Choose a pair (x, a, Y ) at random (uniformly over D × Qd) and generate z

according to P.
3. Update the value at (x, a, Y ) by

Q(t+1)(x, a, Y ) = (1 − αt)Q(t)(x, a, Y ) + αtY (z)
(
c(x, a, T (x, a, z))

+β min
a′

max
Y ′

Q(t)(T (x, a, z), a′, Y ′)
)

and set Q(t+1)(·) = Q(t)(·) for all other arguments.

It is now possible to prove that the iteration converges to the Q-function.

Theorem 5. If the numbers (αt) are chosen such that

∞∑
t=0

αt = ∞ and
∞∑

t=0

α2
t < ∞,

then {Q(t)}t∈N0 converges with probability 1 to Q for t → ∞.

Proof. Note that we can write the iteration as

Q(t+1)(x, a, Y ) = (1 − αt)Q(t)(x, a, Y )

+αtY (z)
(
c(x, a, T (x, a, z)) + β min

a′
max

Y ′
Q(t)(T (x, a, z), a′, Y ′)

)

= (1 − αt)Q(t)(x, a, Y ) + αt

(
HQ(t)(x, a, Y ) + wt(x, a, Y )

)

where

wt(x, a, Y ) = Y (z)
(
c(x, a, T (x, a, z)) + β min

a′
max

Y ′
Q(t)(T (x, a, z), a′, Y ′)

)

−HQ(t)(x, a, Y ).

The statement follows from Proposition 4.4 in [5] since H is contracting and the
random variables Wt(x, a, Y ) which are obtained from wt(x, a, Y ) by replacing
the realisation z by its random counterpart Z satisfy

(i) EWt(x, a, Y ) = 0 by definition of the H-operator.
(ii) EW 2

t (x, a, Y ) is bounded.

Thus, we can apply Proposition 4.4 in [5]. ��

Once we have obtained Q we can compute J and the minimizer d∗ and maximizer
γ∗ which yields the optimal policies.

Remark 4. Note that the Q-learning algorithm is model-free in the sense that it
is not necessary to know the probability law P. Instead of simulating z one can
of course use observed model data if available.



Q-Learning for Distributionally Robust MDP 123

6 Numerical Example

In this section, we apply the distributionally robust Q-learning algorithm to an
agricultural irrigation management problem. With progressing climate change,
water becomes a scarce resource in many regions of the world which must be
carefully managed. Therefore, mathematical optimization may be needed where
simple rules of thumb have been sufficient in the past. The stylized setting of
this example is designed to illustrate the performance of our algorithm. It can
be easily extended to a practical model. We refer the interested reader to [17,18]
for some approaches in continuous time.

Consider a greenhouse that is irrigated from a water reservoir with capacity
s̄ ∈ N. One unit of water is needed for every irrigation procedure. The crops
rot when irrigated on two consecutive days and wither if they are not watered
again within x̄ ≥ 2 days. Both events destroy the harvest and a fixed cost
c > 0 is incurred. Precipitation may occur on each day independently with
probability p ∈ [p1, p2] ⊂ (0, 1) and add one unit of water to the reservoir.
The true rain probability is unknown and it is therefore prudent to work with
the confidence interval [p1, p2] instead of a single estimate. I.e. Q consists of all
Bernoulli distributions with parameter between p1 and p2. Thus, we can identify
Qd with the parameter set [p1, p2]. If the maximal capacity of the reservoir is
exceeded, the spillover goes into the greenhouse like a regular irrigation. The
corresponding Markov decision model is given by the following data.

(i) The state space is
(
{0, . . . , x̄} × {0, . . . , s̄}

)
∪ {∞}. The first component of

a state (x, s) gives the days since the last irrigation and the second one the
current level of the water reservoir. The absorbing state ∞ corresponds to
a destroyed harvest.

(ii) The action space is {0, 1}. Action a = 1 means that the crops are watered
and a = 0 that they are not. The decision maker faces no constraint.

(iii) The i.i.d. disturbances Z1, Z2, · · · ∼ Bin(1, p), p ∈ [p1, p2] model the amount
of daily precipitation.

(iv) The transition function T (x, s, a, z) is given by

T (x, s, 0, 0) =

{
(x + 1, s), x < x̄

∞, x = x̄

T (x, s, 1, 0) =

⎧⎪⎨
⎪⎩

(0, s − 1), x > 0, s > 0
(x + 1, 0), x < x̄, s = 0
∞, x = x̄, s = 0 or x = 0, s > 0

T (x, s, 0, 1) =

⎧⎪⎨
⎪⎩

(x + 1, s + 1), x < x̄, s < s̄

∞, x = x̄, s < s̄ or x = 0, s = s̄

(0, s̄), x > 0, s = s̄

T (x, s, 1, 1) =

{
(0, s), x > 0
∞, x = 0
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and T (∞, a, z) = ∞.
(v) The one-stage cost function is c(x, s, x′, s′) = c1{(x, s) �= ∞, (x′, s′) = ∞}.

The model clearly satisfies Assumptions (A). The target of the decision maker
is to minimize the expected discounted cost

J∞(x, s) = inf
π∈Π

sup
γ∈Γ

E
πγ
x,s

[ ∞∑
k=0

βkc(Xk, Sk,Xk+1, Sk+1)

]

under the assumption of being confronted with the most adverse precipitation
probability p on each day. This means that the decision maker tries to avoid
ruin if ever possible or to delay it to a later time point. His opponent in the
dynamic Stackelberg game is nature in the proper meaning of the word. She
selects the rain probability knowing the current state and the decision maker’s
action. Since expectation is linear in the measure, her optimal action can only
be at the boundary, i.e. p1 or p2. So we have a robust point of view here.

For the implementation of the Q-learning algorithm we selected β = 0.9 as
discount factor, c = 10 as fixed cost, x̄ = 3 as time until withering, p1 = 0.2,
p2 = 0.3 and 0.25 as reference probability for the two densities Y1(z) = 0.2

0.251{z =
1} + 0.8

0.751{z = 0} and Y2(z) = 0.3
0.251{z = 1} + 0.7

0.751{z = 0} that nature may
select. At first, the maximal capacity of the reservoir is s̄ = 3.

Fig. 1. Approximation of the value function in different states as a function of the
number of iterations.

Figure 1 shows the convergence of the approximated value function

J (t)(x, s) = min
a

max
Y

Q(t)(x, s, a, Y ), t = 0, . . . , 100000
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in four exemplary states. State (0, 3) represents an imminent spillover, (3, 0)
imminent withering and (1, 1), (2, 2) are two moderate situations. We compared
three different learning rates.

black curve: dark grey curve: light grey curve:

αt =
0.5

1 + 0.01t
αt =

0.5
1 + 0.001t

αt =
0.5

1 + 0.0001t

The same color code is used in all other figures, too. The faster the learning
rate goes to zero, the earlier the approximate cost stabilizes. In the two extreme
states (0, 3) and (3, 0), where the optimal action of both players is obvious, even
the learning rate with the strongest decay yields a good approximation. In the
two moderate states, where the path to ruin is longer, the strong decay essen-
tially terminates the approximation too early. On the other hand, the slowest
decay works well in case of a long path to ruin while convergence in the two
extreme states takes unnecessarily long. The medium decay seems to be a suit-
able compromise for all states.

Fig. 2. Approximation of the decision maker’s optimal policy in different states as a
function of the number of iterations.

Figure 2 shows the convergence of the approximated optimal policy of the
decision maker

π(t)(x, s) = arg min
a

max
Y

Q(t)(x, s, a, Y ), t = 0, . . . , 100000

in the same states and for the same learning rates. In (0, 3) and (1, 1) the learn-
ing rates are indistinguishable which is also true in (3, 0) from iteration 50000
onward. Only in state (2, 2) the minimizing argument remains rather unstable
despite the fast stabilization of the minimal value shown in Fig. 1. I.e. here the
two actions lead to almost the same cost.

Figure 3 displays the convergence of the approximated optimal policy of
nature

γ(t)(x, s, a) = arg max
Y

Q(t)(x, s, a, Y ), t = 0, . . . , 100000
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Fig. 3. Approximation of nature’s optimal policy in different state-action combinations
as a function of the number of iterations.

again in the same states and for the same learning rates. With the third learn-
ing rate, nature’s optimal action does not stabilize during the first 100000
iterations in all four states. The other two learning rates perform better. In
the relevant scenarios given optimal behavior of the decision maker (x, s, a) =
(0, 3, 0), (1, 1, 0), (3, 0, 1) we observe an early stabilization under the two learning
rates with faster decay. In state (2, 2) the stabilization is good at least for action
a = 0.

All in all, the second learning rate appears to be the best choice in this
application with fast convergence of the value function to the true optimal cost
and a relatively good stabilization of the optimizing arguments.

In Fig. 4, we compare the convergence of the distributionally robust Q-
learning algorithm with the classical risk-neutral version (with rain probability
p = 0.25) in terms of the absolute step sizes

δ(t) = ‖Q(t+1) − Q(t)‖∞

= αtYt(zt)
∣∣∣c(xt, st, T (xt, st, at, zt)) + β min

a′
max

Y ′
Q(t)(T (xt, st, at, zt), a′, Y ′)

− Q(t)(xt, st, at, Yt)
∣∣∣.

Here, (xt, st, at, Yt, zt) is the state-action-disturbance combination sampled in
iteration t. The plots show the moving averages

Δ(t) =
1

100

t∑
k=t−99

δ(k), t = 99, . . . , 100000
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Fig. 4. Moving average of the absolute step sizes as a function of the number of itera-
tions.

of the step sizes both for the risk-neutral and the distributionally robust algo-
rithm as well as the small reservoir s̄ = 3 and a larger one with s̄ = 10. First,
we observe that the distributionally robust algorithm performs as good as its
classical counterpart. Besides, the fast convergence also holds for larger models.
We can also note that the learning rate with intermediate decay combines fast
convergence with the good approximation results shown above.

Table 1. Robust optimal policy of the decision maker in all states (x, s) with additional
1’s compared to the risk-neutral case in bold print.

x\s 0 1 2 3 4 5 6 7 8 9 10

0 0 0 0 0 0 0 0 0 0 0 0

1 0 0 0 0 0 0 1 1 1 1 1

2 0 0 0 0 0 0 1 1 1 1 1

3 1 1 1 1 1 1 1 1 1 1 1

To illustrate the difference between the classical risk-neutral and the distribu-
tionally robust cost minimization criterion for the decision maker, Table 1 shows
his optimal policy for the model with larger reservoir. Optimal actions that differ
under the two optimization targets are in bold print. The two bold 1’s belong
to the robust case and must be zero in the risk-neutral case. In order to prevent
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a spillover destroying the harvest, the more conservative decision maker in the
robust model irrigates the crops already at water level 6 where a risk-neutral
controller would not take action yet.
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Abstract. The problem of filter-based state estimation for a partially
observed stochastic network is considered in this paper, using the mea-
sure change approach. The network is assumed to have two types of
nodes: observed and hidden. Their dynamics are defined by a set of count-
ing processes with state-dependent intensities. The goal is to derive the
nonlinear optimal filter and to propose a numerical scheme for its prac-
tical implementation. Network models that allow the optimal filter to be
finite-dimensional are also considered. The theoretical results are applied
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1 Introduction

First publications on stochastic filtering in queueing systems and networks were
aimed at proving and enhancing classical results of the queueing theory (such as
Burke’s output theorem and Arrivals-See-Time-Averages properties) to a wider
class of point processes, using martingale methods [5,8,18]. Martingale theory
together with a reference probability approach has obtained numerous applica-
tions in estimation, control and optimization for stochastic systems described
by jump Markov processes [6,7,14–16]. However in the field of queueing systems
there has been little work on the applications of filtering theory [3,4,13,16]. This
can be explained, in part, by the opinion that rational queueing does not need
complicated estimation algorithms even if dealing with strategic customers who
can observe the queue length [9]. Nevertheless, recovery of unknown parameters
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and hidden states based on partially observed dynamics constitutes an important
class of inverse problems in the queueing theory [2]. In communication network
applications, especially in wireless congestion control, filter-based estimates have
recently received considerable attention to cope with time-varying behavior of
packet arrival rates [12,17]. This problem known as bandwidth estimation is for-
mulated in the form of a nonlinear filtering problem to track changes in incoming
data flows given measurements of buffer occupancy.

In this paper, we consider a Jackson-type stochastic network with observed
and hidden nodes. The number of units at each hidden node is to be estimated
from changes in states of the observed nodes. Instead of using the infinite-
dimensional differential system for conditional probabilities, we adopt the refer-
ence probability method to derive underlying equations for the conditional expec-
tation and covariances. Although these equations, in general, have no closed-form
solution we present a particular class of the network model that provides a finite-
dimensional filter. For practical implementation of the state estimation method
we propose a numerical scheme based on regularization of the optimal filtering
equations. To justify the estimation algorithm we consider a call center model
described by the main station (a single-server finite queueing system) and two
additional stations (“orbits”) whose states are to be estimated given the observed
queue length at the main system.

2 Model Description and Problem Formulation

We study a stochastic network with the set of nodes S = {1, 2 . . . , d}. Each node
receives units (jobs, customers and so on) from other nodes and from outside.
An additional node 0 is used as a source of external arrivals or a sink in the
case of service completion. Network dynamics are determined by a continuous-
time process X(t) = (X1(t), . . . , Xd(t)) defined on a probability space (Ω,F ,P),
where Xi(t) denotes the number of units at node i at time t ≥ 0. Any change in
the network state is caused by one of three possible single-unit movements:

a) a unit moves from one node i ∈ S to another j ∈ S;
b) a unit finishes a service at node i ∈ S;
c) a unit arrives to node j ∈ S from outside.

These transitions are described by the respective point processes Ni,j(t),
Ni,0(t), and N0,j(t) which have right-continuous sample paths and unit jumps.
We do not consider instantaneous transitions within the same node, so the pro-
cesses Ni,i or N0,0 are not used in the paper.

Assume all these processes {Nα,β} are adapted to some right-continuous
complete filtration F = {Ft}t≥0 and have the following representation:

Nα,β(t) =
∫ t

0

να,β(s) ds + Mα,β(t), (1)

where Mα,β is a square-integrable F-martingale and να,β is a nonnegative F-
predictable function [6].
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We suppose the martingales Mα,β and Mα′,β′ are orthogonal for (α, β) �=
(α′, β′). This is equivalent to the condition that jumps of Nα,β and Nα′,β′ (i.e.,
any two different transitions including arrivals and departures) do not occur at
the same time.

Then the state of node k ∈ S can be expressed as follows:

Xk(t) = Xk(0) +
∑
α

Nα,k(t) −
∑

β

Nk,β(t),

where α and β run over S ∪ {0}.
To complete the description of the network model, it remains to define how

the transition intensities να,β depend on the current state or previous evolution
of the network.

For Jackson networks, given an ·/Mμi
/mi queueing system at each node i,

constant arrival rates λj , service rates μi, and routing probabilities ri,j , i, j ∈ S,
we obtain the transition intensities: ν0,j = λj , νi,j(t) = μi(Xi(t−) ∧ mi)ri,j , and
νi,0(t) = μi(Xi(t−) ∧ mi)

(
1 − ∑

j∈S ri,j

)
. In the case of loss networks, there is a

station j with finite capacity Kj , so the routing probabilities {ri,j}j∈S must be
multiplied by the indicator I{Xj(t−) < Kj}. If the network is considered in a
control setting, all three sets of parameters {λj}, {μi}, and {ri,j} can be defined
by access, service, and routing control policies, respectively.

In this paper, we study a partially observed stochastic network. To this end,
let us split the set of nodes into two subsets: S = J � H, where J will denote the
set of all observed nodes while H will contain hidden nodes of the network except
for the fictitious node 0 which will also be treated as unobservable. The only
information about the network evolution is given by the state of the observed
nodes Y (t) = {Xi(t)}i∈J including the initial state of the entire network X(0).
Then, write

Yt = σ{X(0), Y (s) : s ≤ t} and Yt− = σ{X(0), Y (s) : s < t}
for complete sigma-algebras generated by the observations and Y = {Yt}t≥0 for
the corresponding filtration.

We make an additional assumption on transitions from the observed nodes:
the intensities νiβ must be Y-predictable for all i ∈ J and β ∈ S ∪ {0}. This
means that we not only know the true state of nodes i ∈ J at each time; we
also have direct information on the rate at which units move from these nodes.
This condition is fulfilled for Jackson-type stochastic networks whenever service
rates μi and routing probabilities ri,β are Y-predictable for all observed nodes
i ∈ J . In contrast, it does not hold for loss networks if there is a transition from
one observed node i ∈ J to some hidden station k ∈ H with finite capacity.

The goal of the optimal filtering problem for the partially observed network
is to find the conditional expectation Ẑ(t) = E{Z(t) | Yt} of the network’s hidden
part Z(t) = {Xk(t)}k∈H given the observations available up to the current time t.
Since we are going to solve this problem without finding the whole posterior dis-
tribution

{
P{Z(t) = z | Yt}: z = {xk}k∈H

}
, we will use the conditional covari-

ance matrix Q(t) = cov{Z(t), Z(t) | Yt} to characterize the estimation accuracy.
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Our aim is to determine X̂(t) and Q(t) in a recursive manner which is suitable
for practical implementation including approximation schemes.

This setting is motivated by optimization problems that arise in the design of
queueing systems, such as contact centers. The lack of exact information about
how many customers are blocked by the system or unsatisfied with the quality
of service makes difficult to improve the efficiency of the system. Thus, filtered
estimates of unobservable interactions can be used to tune the tradeoff between
customer satisfaction and personnel-related operating costs.

Another application where partially observed stochastic networks can be use-
ful is related to a bottleneck link problem in data transmission. Some nodes of
wireless communication networks, especially over a multi-hop path, are often
hidden from direct measurements of service rate and buffer occupancy, so to ade-
quately track end-to-end throughput one needs to develop recursive algorithms
for on-line estimating actual states and parameters of unobservable nodes.

3 Optimal Filter for a Process with Network Dynamics

We start with a simple but important remark on the observable dynamics: the
filtration Y can be defined as that generated only by the point processes

Ni,j , Na
j =

∑
k/∈J

Nk,j , and Nd
i =

∑
k/∈J

Ni,k (i, j ∈ J)

together with the initial state X(0). Note that {Ni,j} describe transitions inside
the set of observed nodes J , while Na

j and Nd
i count arrivals to j ∈ J from any

unobservable node k /∈ J and departures from i ∈ J to any k /∈ J , respectively.
The intensities of observed arrivals and departures are the following:

νa
j =

∑
k/∈J

νk,j and νd
i =

∑
k/∈J

νi,k.

To derive equations for the optimal filter we will use the reference probability
method [6]. To this end, define a measure P on (Ω,F) such that under P, all
point processes {Nα,β} are mutually independent Poisson processes with unit
intensity. The measure P is called a reference probability and the corresponding
expectation is denoted by E.

The lemma below shows that expectations under P are computed in an easy
way. To simplify notation, we write E{ξ dt | Yt} = dη as shorthand for the integral
equation E

{∫ t

0
ξ(s) ds

∣∣ Yt

}
=

∫ t

0
dη(s) if it holds for all t ∈ (0,∞).

Lemma 1. Suppose that F is a complete filtration generated by all point pro-
cesses {Nα,β}. If ξ(t) is an F-predictable process such that

∫ t

0
E|ξ(s)| ds < ∞ for

any t < ∞, then

E
{
ξ dt

∣∣ Yt

}
= ξ dt, (2)
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E
{
ξ dNi,j

∣∣ Yt

}
= ξ dNi,j , i, j ∈ J, (3)

E
{
ξ dNi,k

∣∣ Yt

}
=

ξ

p
dNd

i , i ∈ J, k /∈ J, (4)

E
{
ξ dNk,j

∣∣ Yt

}
=

ξ

p
dNa

j , k /∈ J, j ∈ J, (5)

E
{
ξ dNk,l

∣∣ Yt

}
= ξ dt, k, l /∈ J, (6)

where ξ(t) denotes a Y-predictable version of E{ξ(t) | Yt−} and p equals the
number of unobservable nodes H ∪ {0}. Furthermore, after replacing each point
process with the centered counterpart

◦
Nα,β(t) = Nα,β(t) − t,

◦
Nd

i (t) = Nd
i (t) − pt,

◦
Na

j (t) = Na
j (t) − pt,

(3), (4), and (5) remain to be valid whereas (6) yields zero.

To return to the “real-world” model, one needs to define a probability mea-
sure P, under which the stochastic network will have the original transition
intensities να,β given by (1). To do this, we first consider a stochastic exponen-
tial

dΘ(t) = Θ(t−) dM(t), t > 0, Θ(0) = 1,

M(t) =

t∫

0

∑
α,β

(να,β(s) − 1) d
◦

Nα,β(s),

and then put

P(A) = E{IAΘ(t)}, A ∈ Ft, t ≥ 0. (7)

The next lemma confirms the fact that (7) determines the original model
described in Sect. 2.

Lemma 2. Assume F = σ
{⋃

t≥0 Ft

}
and the intensities satisfy two conditions:

να,β > 0 whenever ΔNα,β > 0; (8)

∃C = const :
∑
α,β

να,β ≤ C
∑
α,β

Nα,β . (9)
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Then

1. Θ(t) is a positive P-martingale with EΘ(t) = 1;
2. (7) is a probability measure uniquely defined on F ;
3. Any F-adapted process ξ(t) with E|ξ(t)| < ∞ is a P-martingale if and only if

ξ(t)Θ(t) is a P-martingale;
4. Under P, conditional expectations are calculated using Bayes’ rule

E{ξ | Yt} = E{ξΘ(t) | Yt}
/
θ(t), θ(t) = E{Θ(t) | Yt}, (10)

where ξ is a random variable such that E|ξ| < ∞;
5. Under P, each point process Nα,β has the martingale representations (1).

Let us consider a process ξ(t) with jumps generated by the stochastic net-
work:

dξ = η dt +
∑

i∈J, k/∈J

ζi,k dNi,k +
∑

j∈J, k/∈J

ζk,j dNk,j +
∑

k,l/∈J

ζk,l dNk,l (11)

where η(t) and {ζα,β(t)} are F-predictable processes and ξ(0) is a Y0-measurable
initial state. The terms related to transitions within the observable part of the
network {ζi,j dNi,j , i, j ∈ J} are not used in the paper, so they are omitted
in (11).

Our goal now is to obtain equations for the unnormalized estimate ξ̃(t) and
the conditional expectation ξ̂(t):

ξ̃(t) = E{ξ(t)Θ(t) | Yt} and ξ̂(t) = E{ξ(t) | Yt}.

From now on we use this notation for the estimates of any F-adapted corlol
process ξ [19]. In the case of an F-predictable process, say η, we denote Y-
predictable versions of E{η(t)Θ(t−) | Yt−} and E{η(t) | Yt−} by η̃(t) and η̂(t),
respectively. In the case of the product, we write ξ̃η(t) and ξ̂η(t) for the corre-
sponding estimates of the F-predictable process ξ(t−)η(t).

The theorem below is the main tool for deriving filtered estimates of any
process governed by the network dynamics.

Theorem 1. Under the assumptions of Lemmas 1 and 2, the estimates of (11)
satisfy the following equations:

dξ̂ =
(
η̂ +

∑
k,l/∈J

̂ζk,lνk,l −
∑
j∈J

ĉa
j

)
dt +

∑
i∈J

ζ̂d
i

νd
i

dNd
i +

∑
j∈J

ζ̂a
j + ĉa

j

ν̂a
j

dNa
j , (12)

ζd
i =

∑
k/∈J

ζi,kνi,k, ζa
j =

∑
k/∈J

ζk,jνk,j , ĉa
j = ξ̂νa

j − ξ̂(t−)ν̂a
j
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and

dξ̃ = η̃ dt + ξ̃(t−) dM′ +
∑
j∈J

(ξ̃νa
j /p − ξ̃(t−)) d

◦
Na

j

+
1
p

∑
i∈J

ζ̃d
i dNd

i +
1
p

∑
j∈J

ζ̃a
j dNa

j +
∑

k,l/∈J

˜ζk,lνk,l dt, (13)

dM′ =
∑

i,j∈J

(νi,j − 1) d
◦

N i,j +
∑
i∈J

(νd
i /p − 1) d

◦
Nd

i .

with initial conditions ξ̂(0) = ξ̃(0) = ξ(0) and M′(0) = 0.

Proof. We first apply Ito’s rule:

d(ξΘ) = Θ(t−) dξ + ξ(t−) dΘ + ΔξΔΘ

= Θ(t−)η dt +
∑

Θ(t−)ζα,β dNα,β +
∑

i,j∈J

ξ(t−)Θ(t−)(νi,j − 1) d
◦

N i,j

+
∑

ξ(t−)Θ(t−)(να,β − 1) d
◦

Nα,β +
∑

ζα,βΘ(t−)(να,β − 1) dNα,β

where all sums without subscripts are taken over (α, β) /∈ J × J . Then, using
Lemma 1, we obtain

dξ̃ = η̃ dt +
∑

i,j∈J

ξ̃(t−)(νi,j − 1) d
◦

N i,j

+
1
p

∑
i∈J,k/∈J

ξ̃(t−)(νi,k − 1) d
◦

Nd
i +

1
p

∑
j∈J,k/∈J

(˜ξνk,j − ξ̃(t−)) d
◦

Na
j

+
1
p

∑
i∈J,k/∈J

ζ̃i,kνi,k dNd
i +

1
p

∑
j∈J,k/∈J

˜ζk,jνk,j dNa
j +

∑
k,l/∈J

˜ζk,lνk,l dt

which coincides with (13).
In particular, we can now write the equation for θ(t) = E{Θ(t) | Yt}:

dθ = θ(t−) dM′ +
∑
j∈J

(ν̃a
j /p − θ(t−)) d

◦
Na

j . (14)

To derive the estimate ξ̂(t) = ξ̃(t)/θ(t), we use the expression

dξ̂ =
dξ̃

θ(t−)
− ξ̂(t−) dθ

θ(t−)
− Δξ̂Δθ

θ(t−)
. (15)

Then, from (13) and (14) it follows that

dξ̃

θ(t−)
− ξ̂(t−) dθ

θ(t−)
= η̂ dt +

1
p

∑
j∈J

(ξ̂νa
j − ξ̂(t−)ν̂a

j ) d
◦

Na
j

+
1
p

∑
i∈J

ζ̂d
i dNd

i +
1
p

∑
j∈J

ζ̂a
j dNa

j +
∑

k,l/∈J

̂ζk,lνk,l dt (16)
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The last term in (15) may be nonzero only in three cases:

a) ΔNi,j �= 0 (i, j ∈ J), b) ΔNd
i �= 0 (i ∈ J), c) ΔNa

j �= 0 (j ∈ J).

Then, Δξ̃ = ξ(t−)(g − 1) + b and Δθ = θ(t−)(a − 1), where

a) g = a, b = 0, b) g = a =
νd

i

p
, b =

ξ̃d
i

p
, c) g =

ξ̃νa
j

p ξ̃(t−)
, a =

ν̂a
j

p
, b =

ξ̃a
j

p
.

It is easy to show that

Δξ̂Δθ

θ(t−)
= (a − 1)

(
ξ̂(t−)(g/a − 1) +

b

aθ(t−)

)
.

This yields zero in case a) and

Δξ̂Δθ

θ(t−)
=

⎧⎨
⎩

(
1/p − 1/νd

i

)
ζ̂d
i in case b),

(
1/p − 1/ν̂a

j

)(
ξ̂νa

j − ξ̂(t−)ν̂a
j + ζ̂a

j

)
in case c).

(17)

Subtracting (17) from (16), we obtain (12). �

Remark 1. The structure of the estimate (12) can be explained as follows. The
unobservable dynamics {ζk,l dNk,l, k, l /∈ J} affect only the drift coefficient of
the filter. The term ζ̂d

i /νd
i defines the average effect of jumps {ζi,k}k/∈J caused

by transitions from node i to the unobservable part of the network. Analogously,
ζ̂a
j /ν̂a

j is a mixture of terms {ζk,j}k/∈J related to transitions from unobservable
nodes to station j. The only difference between these two types of transitions is
the correction term

ĉa
j = cov{ξ(t−), νa

j | Yt−} (18)

which is added to the coefficient of jump dNa
j and subtracted from the drift.

4 State Estimation for Hidden Nodes

In this section, we focus on deriving a filtering algorithm for state estimation of
unobservable nodes in the stochastic network.

For any node k ∈ H, its state can be represented in the form of (11):

dXk =
∑
i∈J

dNi,k −
∑
j∈J

dNk,j +
∑
m/∈J

(dNm,k − dNk,m).

From Theorem 1, we have immediately

dX̂k =
{

ν̂a
k − ν̂d

k −
∑
j∈J

ĉk,j

}
dt +

∑
i∈J

ξd
i,k dNd

i +
∑
j∈J

ξa
k,j dNa

j , (19)



State Estimation in Partially Observed Stochastic Networks 137

ν̂a
k =

∑
m/∈J

ν̂m,k, ν̂d
k =

∑
m/∈J

ν̂k,m, (20)

ξd
i,k =

νi,k

νd
i

, ξa
k,j =

ĉk,j − ν̂k,j

ν̂ a
j

, (21)

where the coefficients {ĉk,j} are analogous to (18):

ĉk,j = cov{Xk(t−), νa
j | Yt−} = ̂Xkνa

j − X̂(t−)ν̂a
j . (22)

Since by assumption {νi,k} are Y-predictable for any observed node i, the
terms {ξd

i,k} related to departures from i ∈ J do not require to be estimated.
In addition to the estimates {X̂k(t)}k∈H , we also describe their errors

εk(t) = Xk(t) − X̂k(t)

using conditional variances and covariances.

Theorem 2. Under the conditions of Lemmas 1 and 2, the following statements
hold:

1. For k ∈ H, the estimate X̂k(t) = E{Xk(t) | Yt} satisfies (19);
2. For k ∈ H, the conditional error variance Qk,k(t) = E{ε2(t) | Yt} has the form

dQk,k =
(
ν̂a

k + ν̂d
k + 2b̂k,k −

∑
j∈J

τ̂k,k,j

)
dt +

∑
i∈J

(
1 − ξd

i,k

)
ξd
i,k dNd

i

+
∑
j∈J

{ 1
ν̂a
j

(
τ̂k,k,j + ν̂k,j − 2κ̂k,k,j

) − (
ξa
k,j

)2}
dNa

j ; (23)

3. For k, l ∈ H such that k �= l, the conditional error covariance Qk,l(t) =
E{εk(t)εl(t) | Yt} is given by the equation

dQk,l =
(
b̂k,l + b̂l,k − ν̂k,l − ν̂l,k −

∑
j∈J

τ̂k,l,j

)
dt −

∑
i∈J

ξd
i,kξd

i,l dNd
i

+
∑
j∈J

{ 1
ν̂a
j

(
τ̂k,l,j − κ̂ k,l,j − κ̂ l,k,j

)
− ξa

k,jξ
a
l,j

}
dNa

j . (24)

The above coefficients κ̂ k,l,j , b̂k,l, and τ̂k,l,j are Y-predictable versions of the
conditional covariances:

κ̂ k,l,j = cov{Xk(t−), νl,j | Yt−}, (25)

b̂k,l = cov{Xk(t−), νa
l − νd

l | Yt−} =
∑
m/∈J

(
κ̂ k,m,l − κ̂ k,l,m

)
, (26)

τ̂k,l,j = cov{εk(t−)εl(t−), νa
j | Yt−}. (27)



138 K. V. Semenikhin

Proof. We start by representing the estimation error in the form (11):

dεk = dXk − dX̂k = ηk dt +
∑
m/∈J

(dNm,k − dNk,m)

+
∑
i∈J

∑
m/∈J

(δm,k − ξd
i,k) dNi,m −

∑
j∈J

∑
m/∈J

(δm,k + ξa
k,j) dNm,j ,

where ηk is some Y-predictable coefficient and δm,k is a Kronecker’s symbol.
Given any k, l ∈ H, we apply Ito’s product formula

d(εkεl) = εk(t−) dεl + εl(t−) dεk + ΔεkΔεl

= (εk(t−)ηl + εl(t−)ηk) dt + ΔεkΔεl + εl(t−)Δεk + εk(t−)Δεl.

Since ε̂kηl = ε̂k(t−)ηl = 0, the drift term in dQk,l can be omitted. So we are
interested in calculating only the discontinuous component Δ(εkεl). It consists
of three parts. The first is related to completely unobservable jumps:

δk,l

∑
m/∈J

(dNm,k + dNk,m) − (1 − δk,l)(dNk,l + dNl,k)

+
∑
m/∈J

{εl(t−) (dNm,k − dNk,m) + εk(t−) (dNm,l − dNl,m)}.

The second part is a sum of {dNi,m, i ∈ J , m /∈ J} with the coefficients:

(δm,k − ξd
i,k)(δm,l − ξd

i,l) + εl(t−) (δm,k − ξd
i,k) + εk(t−) (δm,l − ξd

i,l).

The third part contains {dNm,j , j ∈ J , m /∈ J} with the coefficients:

(δm,k + ξa
k,j)(δm,l + ξa

l,j) − εl(t−) (δm,k + ξa
k,j) − εk(t−) (δm,l + ξa

l,j).

From Theorem 1 it follows that the first two parts can be estimated sepa-
rately. The estimate of the first part is

{
δk,l

∑
m/∈J

(ν̂m,k + ν̂k,m) − (1 − δk,l)(ν̂k,l + ν̂l,k)

+
∑
m/∈J

(κ̂ l,m,k − κ̂ l,k,m + κ̂ k,m,l − κ̂ k,l,m)
}

dt

which coincides with the drift of (23) and (24) except the correction term∑
j∈J τ̂k,l,j .
Using ε̂lνi,m = ε̂l(t−)νi,m = 0, we obtain the estimate of the second part

∑
i∈J

∑
m/∈J

(δm,k − ξd
i,k)(δm,l − ξd

i,l)
νi,m

νd
i

dNd
i . (28)
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Taking into account the correction term, the estimate of the third part takes
the form:

−
∑
j∈J

τ̂k,l,j dt +
∑
j∈J

1
ν̂a

[
τ̂k,l,j +

∑
m/∈J

{
(δm,k + ξa

k,j)(δm,l + ξa
l,j)ν̂m,j

− (δm,k + ξa
k,j)κ̂ l,m,j − (δm,l + ξa

l,j)κ̂ k,m,j

}]
dNa

j . (29)

Simple calculations show that (28) and (29) yield the corresponding terms
in (23) and (24). �

The following proposition describes a class of stochastic networks that admit
a closed-form optimal filter for state estimates of hidden nodes.

Corollary 1. If a) transitions from hidden to observed nodes have Y-predict-
able intensities {νm,j , m /∈ J, j ∈ J}; b) transitions within the unobservable
part of the network are linear functions of the states:

νm,n = μm,n,0 +
∑
α∈H

μm,n,αXα(t−) (m,n /∈ J)

with Y-predictable coefficients {μm,n,α}, then the optimal estimates {X̂k}k∈H

are described by a finite-dimensional filter:

dX̂k =
(
ν̂a

k − ν̂d
k

)
dt +

∑
i∈J

νi,k

νd
i

dNd
i −

∑
j∈J

νk,j

ν a
j

dNa
j .

Furthermore, taking into account

τ̂k,l,j = κ̂k,l,j = 0 (k, l ∈ H, j ∈ J)

κ̂k,m,n =
∑
α∈H

μm,n,αQk,α(t−) (k ∈ H, m, n /∈ J)

the conditional error covariance matrix {Qk,l}k,l∈H satisfies the closed-form sys-
tem (23), (24).

Assumption a) and b) look rather restrictive in view of applications to queue-
ing models. Even if we have a simple tandem system Mλ|Mμ1 |m1 → · |Mμ1 |m2

where station 1 is to be estimated given the observed state of station 2, both
conditions a) and b) are violated.

So we need an approximation scheme to practically implement filtering equa-
tions derived above. To this end, we consider a stochastic network that has
Jackson-like transition intensities at least for hidden nodes:

νk,β = μk,βXk(t−), k ∈ H, ν0,β = λβ

where μk,β and λβ are Y-predictable coefficients.
For such a network, we have ĉk,j =

∑
m∈H Qk,m(t−)μm,j , ν̂k,β = μk,βX̂k(t−).

So all coefficients of the optimal filter (19) can be expressed in terms of the state
estimates {X̂k}k∈H and conditional covariances {Qk,l}k,l∈H .
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To simplify equations for {Qk,l}, we propose to exclude third-order terms

Mτ
k,l(t) =

∫ t

0

∑
j∈J

τ̂k,l,j

(
dNa

j

ν̂a
j

− ds

)
.

Since {Mτ
k,l} are zero-mean martingales, this operation can be considered as

a projection. Other coefficients of (23) and (24) are represented via the state
estimates and error covariances (e.g., κ̂k,l,β = Qk,l(t−)μl,β).

So after this simplification we obtain a closed-form counterpart of the system
(19), (23), (24). Between jump times of {Nd

i } and {Na
j }, it is described by the

system of linear ordinary differential equations:

˙̂
Z = Λ�Ẑ + λ − Qγ,

Q̇ = (Q − diag[Ẑ])Λ + Λ�(Q − diag[Ẑ]) + diag[Λ�Ẑ + λ],

where the column vector Ẑ and the matrix Q are approximations of the state
estimate and conditional error covariance, respectively; λ = {λk}k∈H and γ =
{γk}k∈H are column vectors and Λ = {λk,l}k,l∈H is a square matrix such that

γk =
∑
j∈J

μk,j , λk,l = μk,l − δk,l

∑
m/∈J

μk,m.

Fig. 1. Retrial queueing system as a stochastic network.

5 State Estimation in a Retrial Queueing System

In this section, we study a partially observed network model of inbound call
centers.

Figure 1 depicts a call center model in the form of a queueing network with
three stations. Station 1 is the main queueing system providing service for incom-
ing customers by m independent agents. For each agent, the processing time
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is exponentially distributed with mean 1/μ1. Customers arrive at the system
according to a Poisson stream with rate λ. The maximum number of customers
in the system is finite and denoted by K.

Station 2 contains blocked customers: they are not served in the main sys-
tem because all agents are busy, so they try to call again after a random time
exponentially distributed with mean 1/μ2.

Station 3 includes unsatisfied customers: after being served, they try to call
again to get additional information or extra service from the agents; such retri-
als occur after a random delay exponentially distributed with mean 1/μ3. The
probability that a customer will remain unsatisfied with the service is r1,3. If the
main system is busy, unsatisfied customers join station 2.

The initial state is assumed to be zero for all stations of the network.
Since the network belongs to the class of retrial queueing systems [1], we refer

to stations 2 and 3 as the orbits. The number of customers in the both orbits
are not observed directly; rather the state of the main system is known exactly
at each time.

Our goal is to apply the filtering scheme designed above to state estimation
for two unobservable stations given the on-line information on the main queueing
system.

The queueing network we study has one observed node J = {1} and two
hidden nodes H = {2, 3}. The number of customers at node i is denoted by Xi

(i = 1, 2, 3). The transition intensities are as follows:

ν0,1 = λ (1 − β), ν0,2 = λ β,

ν1,0 = μ1(1 − r1,3)(X1(t−) ∧ m), ν1,3 = μ1r1,3(X1(t−) ∧ m),

ν2,1 = μ2X2(t−) (1 − β),

ν3,1 = μ3X3(t−) (1 − β), ν3,2 = μ3X3(t−)β,

where β(t) = I{X1(t−) = K}.
Using point processes {Ni,j}, we can write the state dynamics

dX1 = dN0,1 + dN2,1 + dN3,1 − (dN1,0 + dN1,3),

dX2 = dN0,2 + dN3,2 − dN2,1,

dX3 = dN1,3 − (dN3,1 + dN3,2).

We have the two observed point processes with the corresponding intensities:

Na
1 = N0,1 + N2,1 + N3,1, Nd

1 = N1,0 + N1,3,
νa
1 = (λ + μ2X2(t−) + μ3X3(t−)) (1 − β), νd

1 = μ1(X1(t−) ∧ m).
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Due to (20), (21), and (22), the coefficients of the state estimates X̂2, X̂3 take
the form:

ĉk,1 = cov{Xk(t−), νa
1 | Yt−} = (Qk,2(t−)μ2 + Qk,3(t−)μ3) (1 − β), k = 2, 3,

ν̂a
2 = ν̂0,2 + ν̂3,2 = (λ + μ3X̂3(t−))β, ν̂d

3 = ν̂3,2 = μ3X̂3(t−)β, ν̂d
2 = ν̂a

3 = 0,

ξa
k,1 =

Qk,2(t−)μ2 + Qk,3(t−)μ3 − X̂k(t−)μk

λ + μ2X̂2(t−) + μ3X̂3(t−)
, ξd

1,2 = 0, ξd
1,3 = r1,3.

From (25) and (26) we obtain the coefficients of equations for the error covari-
ances {Qk,l}:

κ̂k,l,1 = cov{Xk(t−), νl,1 | Yt−} = Qk,l(t−)μl (1 − β), k, l = 2, 3,

b̂2,2 = cov{X2(t−), νa
2 | Yt−} = Q2,3(t−)μ3 β,

b̂3,3 = cov{X3(t−), −νd
3 | Yt−} = −Q3,3(t−)μ3 β,

b̂3,2 + b̂2,3 = (Q3,3(t−) − Q2,3(t−))μ3 β.

Now we are ready to present the filtering equations:

dX̂2 =
(
(λ + μ3X̂3)β − (Q2,2μ2 + Q2,3μ3)(1 − β)

)
dt + ξa

2,1 dNa
1 ,

dX̂3 =
(−μ3X̂3β − (Q3,2μ2 + Q3,3μ3)(1 − β)

)
dt + ξa

3,1 dNa
1 + r1,3 dNd

1 ,

dQ2,2 = μ3(λ/μ3 + X̂3 + 2Q2,3)β dt +
{

(ν̂2,1 − 2κ̂2,2,1)/ν̂a
1 − (

ξa
2,1

)2}
dNa

1 ,

dQ3,3 = μ3

(
X̂3 − 2Q3,3

)
β dt +

{
(ν̂3,1 − 2κ̂3,3,1)/ν̂a

1 − (
ξa
3,1

)2}
dNa

1

+ (1 − r1,3)r1,3 dNd
1 ,

dQ2,3 = μ3

(
Q3,3 − Q2,3 − X̂3

)
β dt −

{
(κ̂2,3,1 + κ̂3,2,1)/ν̂a

1 + ξa
2,1ξ

a
3,1

}
dNa

1 .

These equations will be referred to as the suboptimal filter (SF).
It is worth noting that just before the jump ΔNa

1 > 0 the main system has
a vacant place, so that β = 0 in all terms related to dNa

1 . In contrast, each error
(co)variance Qk,l has a non-zero drift only if the main system is full, i.e. β = 1.

To provide a comparative analysis of the estimation accuracy, we also propose
two additional filtering schemes. The first is called the truncated filter (TF)
because it is obtained by truncation of the filtering equations, specifically, by
letting ĉk,j = 0 in (19). The TF estimates denoted by {X̌k} are described by the
following equations:

dX̌2 = (λ + μ3X̌3)β dt − X̌2(t−)μ2

λ + μ2X̌2(t−) + μ3X̌3(t−)
dNa

1 ,

dX̌3 = −μ3X̌3β dt − X̌3(t−)μ3

λ + μ2X̌2(t−) + μ3X̌3(t−)
dNa

1 + r1,3 dNd
1 .

The second filter used for comparison is the drift-based filter (DF). The DF
estimates are denoted by {X̄k}. To define them, we replace each point process
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dNk,l in the dynamics of dXk with the drift term ν̄k,l dt. So we obtain a system
of linear ODEs:

˙̄X2 = (λ + μ3X̄3)β − μ2X̄2(1 − β),

˙̄X3 = μ1r1,3(X1(t−) ∧ m) − μ3X̄3.

For numerical experiments we choose the following parameters:

m = 20, K = 25, λ = 21, μ1 = 2, μ2 = 10.5, μ3 = 4.2, r1,3 = 0.45.

We take λ less than but close to μ1(1−r1,3)m in order for the main system to be
near the loaded state. In this case, customers are blocked more frequently but
the load of station 2 behaves stable.

Table 1 contains root-mean square errors (RMSEs) obtained in one experi-
ment. The estimation accuracy has been evaluated on 10 time intervals (with
1000 jumps of the network process in each interval). Figure 2 shows sample paths
of the states and suboptimal estimates on two time intervals.

Table 1. Estimation errors over several segments along one sample path

Segment: 1 2 3 4 5 6 7 8 9 10 Total

RMSE of X̌2: 3.976 0.733 1.337 5.107 8.097 9.849 0.167 2.310 2.401 3.497 4.631

RMSE of X̄2: 2.396 1.043 1.617 1.891 3.806 2.815 0.201 1.424 2.465 2.267 2.145

RMSE of X̂2: 2.145 0.840 1.305 1.933 2.755 2.763 0.188 1.191 2.118 2.193 1.867

RMSE of X̌3: 1.939 1.830 1.648 1.772 1.926 2.283 2.042 1.949 1.977 1.935 1.934

RMSE of X̄3: 2.104 1.716 1.975 1.906 1.973 2.112 1.986 2.166 1.691 1.959 1.962

RMSE of X̂3: 1.692 1.609 1.771 1.569 1.489 1.830 1.663 1.947 1.555 1.852 1.705

Our experiment shows the superiority of the suboptimal scheme over two
other filtering algorithms. However it should be noted that the drift-based scheme
demonstrates relatively close results: its RMSE ranges within 10–15% in com-
parison with the suboptimal filter for both hidden stations. In contrast, the
truncated scheme turns to be much worse in estimating the number of blocked
customers.

Figure 3 depicts RMSE trajectories evaluated on the basis of 1000 Monte
Carlo runs. Basically, this experiment confirms the results obtained along one
sample path, though the accuracy of SF and DF estimates become more similar
for station 2 before achieving the steady state mode.

6 Appendix

Proof of Lemma 1. Due to the monotone class theorem and the dominated-
convergence theorem, it suffices to consider an F-predictable step process



144 K. V. Semenikhin

Fig. 2. Sample paths of states (shown as solid lines) and SF-estimates (shown as dashed
lines).
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Fig. 3. RMSE of three filters SF (solid), DF (dashed), and TF (dotted) for two states
X2 (red) and X3 (blue).

ξ(s) = U I(t1,t2](s), where U is a bounded Ft1-measurable random variable. Then,

E

{∫ t

0

ξ dNα,β

∣∣∣ Yt

}
= E

{
U(Nα,β(t2) − Nα,β(t1))

∣∣ Yt

} ∀ t ≥ t2. (30)

We introduce two σ-algebras Ft1,t2 and Yt1,t2 . Both of them are generated by
the increments {N(s) − N(t1): t1 ≤ s ≤ t2}, where for Ft1,t2 , N is any of Nα,β ,
whereas for Yt1,t2 , N is any observed process Ni,j , Nd

i , or Na
j (i, j ∈ J).

It is important that Ft1 and Ft1,t2 are independent under P.
Note that Ys− is generated by events AB such that A ∈ Yt1 and B ∈ Yt1,s′

for some s′ ∈ (t1, s). Since A,B are independent, we have

E
{
E{U | Yt1} IAB

}
= E

{
E{U | Yt1} IA

}
E{IB} = E{U IA}E{IB} = E{U IAB}

and hence

E
{
U

∣∣ Yt1

}
= E

{
U

∣∣ Ys−
} ∀ s > t1.

Therefore, the right-hand side of the integral equalities in (6) is

E
{
U

∣∣ Yt1

}
(t2 − t1). (31)
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For the right-hand side of (3) and (4)–(5) we have

E
{
U

∣∣ Yt1

}
(Ni,j(t2) − Ni,j(t1)) and E

{
U

∣∣ Yt1

}
(N(t2) − N(t1))/p, (32)

respectively, where N stands for Nd
i or Na

j .
To prove that (30) equals (31) or (32), we consider an event AB ∈ Yt such

that A ∈ Yt1 and B ∈ Yt1,t.
The random variable Dk,l = Nk,l(t2) − Nk,l(t1) (k, l /∈ J) and σ-algebras Ft1

and Yt1,t are mutually independent. This implies

E{UDk,l IAB} = E{U IA}E{IB}E{Dk,l}
= E{E(U | Yt1) IA}E{IB}(t2 − t1) = E{E(U | Yt1)(t2 − t1) IAB}.

In the case i, j ∈ J , pairs {U,A} and {Di,j , B} are independent. Therefore,
we obtain

E{UDi,j IAB} = E{U IA}E{Di,j IB} = E{E(U | Yt1) IA}E{Di,j IB}
= E{E(U | Yt1)Di,j IAB}.

In the case i ∈ J , k /∈ J , we use the same independence:

E{UDi,k IAB} = E{E(U | Yt1) IA}E{Di,k IB}.

It remains to note that E{Di,k | Yt1,t} = Di/p, where Di = Nd
i (t2) − Nd

i (t1).
This follows from two facts: 1) Nd

i is a sum of the processes {Ni,l, l /∈ J} that
are independent of all observed processes except for Nd

i ; 2) Di,k and Di − Di,k

are independent Poisson variables with parameters proportional to 1 and p − 1,
respectively, and hence E{Di,k |Di} = Di/p.

Thus, we have established (6), (3), and (4). Equality (5) can be verified
similarly to (4). A proof of (2) can be found in [19, Lemma 7.3.2]. �
Proof of Lemma 2. The exponential Θ(t) is positive due to condition (8) [10,
4.62]. To prove the martingale property for Θ(t), we can apply [11, Th.5.1]:
it suffices to note that Θ(t) is defined by a local P-martingale M(t) with the
integrand that grows no faster than a linear function of the state X(t). The last
condition coincides with (9). Statements 2–4 can be proved similarly to [19].

To prove the last part, we need to verify that the process Mα,β satisfying (1)
is a P-martingale. To do this, we will prove that Mα,βΘ is a P-martingale.
Applying Ito’s rule, we obtain

d(Mα,βΘ) = Mα,β(t−) dΘ + Θ(t−) dMα,β + ΔMα,βΔΘ.

Since the first term in the right-hand side defines a P-martingale, it remains to
see that the other terms yield a P-martingale as well:

Θ(t−)(dNα,β − να,β dt) + Θ(t−)(να,β − 1) dNα,β = Θ(t−)να,β d
◦

Nα,β .

�
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Abstract. We study a class of discrete-time advertising game with ran-
dom responses to the advertising efforts made by a duopoly. The firms
are assumed to observe the values of the random responses but they do
not know their distributions. With the recorded values, firms estimate
distributions and play estimated equilibrium strategies. Under suitable
assumptions, we prove that the estimated equilibrium strategies con-
verge to equilibria of the advertising game with the true distributions.
Our results are numerically illustrated for specific cases.

Keywords: Advertising games · Lanchester model · Markov games ·
Empirical distribution
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1 Introduction

We consider a dynamic noncooperative game of advertising where the market
shares of the firms follow a stochastic difference equation. The stochastic behav-
ior in the market shares comes from the uncertain responses to advertising efforts
modeled by a sequence of random variables. Further, we assume that firms can
observe the values of such random variables a posteriori but they do not know the
distributions. In this sense, by using appropriate statistical estimation methods
to approximate the distributions of the random variables, firms can play Nash
equilibrium strategies of the estimated games. When these equilibrium strate-
gies converge, the question we aim to answer is whether the limit strategies are
equilibria for the game with the true distributions of the responses to advertising
efforts.
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The literature about dynamic models of advertising and marketing games is
very large; we can mention the papers [4,6,7,21] and the books [2,8]. Most of
these references mainly focus on deterministic differential game models; instead
there are few works that deal with stochastic differential game models and deter-
ministic discrete-time models, we can cite, for instance, [1,18]. On the other
hand, discrete-time stochastic zero-sum games with incomplete information have
been studied under several context, see, e.g., [5,10,12–16,22,23], which include
the case when the transition law among states is unknown. However, to the best
of our knowledge, the only work dealing on estimation problem for nonzero-
sum Markov games is [19]. Specifically, in [19] is used the empirical distribution
of the disturbance process to obtain an almost surely convergent procedure to
approximate Nash equilibria under the discounted criterion.

In this chapter we analyze the stochastic version of the advertising Lanch-
ester model introduced in [1]. Additionally, we assume that the random variables
modeling the uncertainty in responses to advertising efforts have unknown distri-
butions. Under this scenario, using the empirical distribution as an estimator and
considering finite action sets for players, we apply similar ideas to [19] to simulate
values of the advertising responses, estimate equilibrium strategies, and prove
that these equilibria converge in some sense to an equilibrium of the advertising
game with full information. In order to introduce the model and compare our
results, previously we analyze the advertising game with full information, where
we numerically compute the Nash equilibria in mixed stationary strategies.

The remaining of the paper is organized as follows. The stochastic advertising
game we deal with is described in Sect. 2 as well as the numerical algorithm we
use to compute the Nash equilibria. Section 3 is devoted to the stochastic game
with unknown distributions of the advertising responses. Finally, in Sect. 4, we
give some conclusions.

2 A Discrete-Time Stochastic Game of Advertising

Essentially, Lanchester model is an ordinary-differential-equation model of war-
fare [11]. Over time, this model has been adapted to study different conflict
situations, including advertising models. In this section, we introduce a discrete-
time stochastic version of the Lanchester model in the context of the models
that appear in [1] and [8, pp. 29–31]. We also give a numerical algorithm to find
Nash equilibria in stationary strategies of the proposed model.

2.1 The Advertising Game Model

Consider a duopoly competing for the market share by making advertising
efforts. Let x be the market share of Firm 1 and let a and b be the adver-
tising efforts of Firm 1 and Firm 2, respectively, at some decision epoch. The
market share of Firm 2 is 1−x. Then the market share of Firm 1 at the beginning
of the next decision epoch is determined by the mapping

(x, a, b) �→ x + (1 − x)d(ξ, a) − xe(ζ, b) (1)
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where d(ξ, a) and e(ζ, b) are the advertising responses to a and b, respectively,
and (ξ, ζ) is a pair of random variables. The functions d(i, ·) and e(j, ·)—for fixed
values of i and j—are production functions, that is, they are increasing, have
diminishing marginal effects, and take nonnegative values. Typical advertising
responses are

d(ξ, a) = ξ
√

a, e(ζ, b) = ζ
√

b. (2)

The evolution of the state system is given by the mapping (1) and has the
following interpretation: the advertising of Firm 1 aims to attract customers
from Firm 2, thus the increment of the market share is proportional to (1 − x),
and analogously for the advertising made by Firm 2.

For the purposes of this paper, we assume that the triples (x, a, b) belong to
a finite set X×A×B. Thus the image of the mapping (1)—with the advertising
responses (2), for instance—is not necessarily a subset of X. In such a case, we
map x+(1−x)d(ξ, a)−xe(ζ, b) to the nearest state in X. Although, for simplicity,
we write

xk+1 = xk + (1 − xk)d(ξk, ak) − xke(ζk, bk), k = 0, 1, ..., (3)

where x0 ∈ X is given. In addition, the so-called disturbance processes {ξk} and
{ζk} consist of independent and identically distributed (i.i.d.) random variables,
which take values in the finite sets S1 and S2 respectively. The process {(ξk, ζk)}
is defined on some underlying probability space (Ω,F , P ). The common proba-
bility functions of the random variables {ξk} and {ζk} are, respectively, θ and
ϑ, that is, {

θ(i) = P [ξk = i] ∀i ∈ S1, k ∈ N0,

ϑ(j) = P [ζk = j] ∀j ∈ S2, k ∈ N0.
(4)

We use the notation K := {(x, a, b) : x ∈ X, a ∈ A, b ∈ B}. Combining
(3) and (4), we obtain the transition law among the states as follows. For each
(x, a, b) ∈ K,

Px,y[a, b] := P [xk+1 = y | xk = x, ak = a, bk = b] =
∑

(i,j)∈SF

θ(i)ϑ(j), y ∈ X

(5)
where

SF := {(s, t) ∈ S1 × S2 : x + (1 − x)d(s, a) − xe(t, b) = y} .

Finally, ri : K → R is the one-stage payoff function for the Firm i = 1, 2,{
r1(x, a, b) = p1x − a

r2(x, a, b) = p2(1 − x) − b
(6)
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where p1 and p2 are the gross profit rate of Firms 1 and 2 respectively. In what
follows, the probability space (Ω,F , P ) is fixed and a.s. means almost surely
with respect to P.

Putting together all the elements described above, we define the advertising
game model as

Gθ,ϑ := (X,A,B,S1,S2, θ, ϑ, r1, r2) (7)

The model is a representation of a dynamic game which is played as follows.
At each stage k ∈ N0, when the game is in state xk ∈ X, the firms independently
choose actions ak = a ∈ A and bk = b ∈ B. Consequently, the following happens:
first, Firm i receives payoffs of ri(x, a, b), i = 1, 2; and second, the system moves
to the next state xk+1 ∈ X according to probability transition (5). Once the
system reaches the next state, the process repeats. In addition, the payoffs are
accumulated according to a discounted criterion, as we will define below.

Let PA and PB consist of the set of all probability functions on A and
B respectively. That is, PA is the set of functions σ : A → [0, 1] such that∑

a∈A
σ(a) = 1. Similarly for PB. By convention, for each σ ∈ PA, τ ∈ PB, we

denote
v(x, σ, τ) :=

∑
a∈A

∑
b∈B

v(x, a, b)σ(a)τ(b), x ∈ X (8)

for any function v : K → R. Likewise, for σ ∈ PA, τ ∈ PB

[x+(1−x)d(s, σ)−xe(t, τ)] :=
∑
a∈A

∑
b∈B

[x+(1−x)d(s, a)−xe(t, b)]σ(a)τ(b), (9)

where x ∈ X, s ∈ S1, and t ∈ S2.
A strategy played by Firm 1 is a sequence π = {πk} where πk is a probability

function over A conditioned on the history hk := (x0, a0, b0, ..., ak1, bk1, xk) That
is, for each history hk, πk(·|hk) ∈ PA. The set of all strategies for Firm 1 is
denoted by Π. A strategy π ∈ Π is said to be a Markov strategy if there is
a probability function fk over A such that πk(·|hk) = fk(·|xk) for all k ∈ N0.
Further, a Markov strategy π = {fk} is stationary if fk = f for all k ∈ N0; in
this case, we use this notation

f∞ := {f, f, f, ...}.

We denote by ΠM and F the sets of Markov strategies and stationary strate-
gies, respectively, for Firm 1. The sets Γ , ΓM , and G of all strategies, Markov
strategies, and stationary strategies for Firm 2 are defined similarly.
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Let π = {πk} ∈ Π and γ = {γk} ∈ Γ be a pair of strategies. For each
initial state x ∈ X, we define the discounted criterion, also known as expected
discounted payoff, for Firm i = 1, 2, as⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Jθ,ϑ
1 = E(π,γ)

x

[ ∞∑
k=0

βk{p1xk − ak}
]

Jθ,ϑ
2 = E(π,γ)

x

[ ∞∑
k=0

βk{p2(1 − xk) − bk}
] (10)

where β ∈ (0, 1) is the discount factor and E
(π,γ)
x denotes the expectation oper-

ator corresponding to the unique probability measure P
(π,γ)
x induced by x ∈ X

and (π, γ) ∈ Π × Γ , (see [3]).

2.2 Stationary Nash Equilibrium in Discounted Games

Definition 1. A pair of strategies (π∗, γ∗) ∈ Π × Γ is a Nash equilibrium if,
for all x ∈ X,

Jθ,ϑ
1 (x, π∗, γ∗) ≥ Jθ,ϑ

1 (x, π, γ∗), ∀π ∈ Π

and
Jθ,ϑ
2 (x, π∗, γ∗) ≥ Jθ,ϑ

2 (x, π∗, γ), ∀γ ∈ Γ.

The equilibrium payoffs of the game, with initial state x, are Jθ,ϑ
1 (x, π∗, γ∗) and

Jθ,ϑ
2 (x, π∗, γ∗).

The following lemma about the existence of Nash equilibria in Markov strate-
gies for this model is well known. For instance, see [17, Theorem 5.1].

Lemma 1. The game model, with discounted payoffs Jθ,ϑ
1 and Jθ,ϑ

2 , has a Nash
equilibrium in stationary strategies. That is, there exists (f∞, g∞) ∈ F×G such
that for each x ∈ X,

Jθ,ϑ
1 (x, f∞, g∞) ≥ Jθ,ϑ

1 (x, π, g∞), ∀π ∈ Π

and
Jθ,ϑ
2 (x, f∞, g∞) ≥ Jθ,ϑ

2 (x, f∞, γ), ∀γ ∈ Γ.

Observe that once f∞ ∈ F and g∞ ∈ G are fixed,

J1(x, π) := Jθ,ϑ
1 (x, π, g∞), π ∈ Π, x ∈ X
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and
J2(x, γ) := Jθ,ϑ

2 (x, f∞, γ), γ ∈ Γ, x ∈ X

constitute performance indices, where each of them corresponds to an optimal
control problem. Hence, the value functions

V (x) := max
π∈Π

J1(x, π), x ∈ X (11)

and
W (x) := max

γ∈Γ
J2(x, γ), x ∈ X, (12)

satisfy, respectively, the Dynamic Programming equations

V (x) = max
μ∈PA

⎡
⎣[p1x − μ] + β

∑
(i,j)∈S1×S2

V [x + (1 − x)d(i, μ) − xe(j, g)]θ(i)ϑ(j)

⎤
⎦

(13)

= [p1x−f ]+β
∑

(i,j)∈S1×S2

V [x+(1−x)d(i, f)−xe(j, g)]θ(i)ϑ(j), ∀x ∈ X, (14)

and

W (x)

= max
λ∈PB

⎡
⎣[p2(1 − x) − λ] + β

∑
(i,j)∈S1×S2

W [x + (1 − x)d(i, f) − xe(j, λ)]θ(i)ϑ(j)

⎤
⎦ (15)

= [p2(1 − x) − g] + β
∑

(i,j)∈S1×S2

W [x + (1 − x)d(i, f) − xe(j, g)]θ(i)ϑ(j), ∀x ∈ X. (16)

Remark 1. By considering standard dynamic programming arguments, if there
are functions V and W and a pair (f, g) satisfying (13)–(16), then (f∞, g∞) ∈
F × G is a stationary Nash equilibrium for the game with discounted pay-
offs (10). Further, the equilibrium payoffs are Jθ,ϑ

1 (x, f∞, g∞) = V (x) and
Jθ,ϑ
2 (x, f∞, g∞) = W (x).

2.3 Numerical Examples

We compute the equilibria in Markov strategies for an advertising game with
the data of Table 1.

The equilibrium strategies are found using and adaptation of the well-
known value iteration algorithm from discounted dynamic programming. In each
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Fig. 1. Equilibrium strategies f and g in the full-information game with data of Table 1.
The height of each action is the probability it is played with.

iteration we get the equilibrium by minimizing McKelvey’s function, see
[9, p. 133]. For the parameters given above, the iteration algorithm converges.
The algorithm is implemented in Python and the code is available at

https://github.com/adra1973/

The limit strategies (f, g), that form the stationary equilibrium (f∞, g∞), are
plotted in Fig. 1 and 2. Since we are using exactly the same parameters for both
firms, in Fig. 1 we can observe for each state an effect of “mirror” in the strategies
for both firms.

https://github.com/adra1973/
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Fig. 2. Equilibrium strategies f and g in the full-information game with data from
Table 1 but the set of actions for Firm 2 is replaced by (17).

In Fig. 2 we plot the equilibrium strategies for the game with the same data
of Table 1 but the set of actions for Firm 2 now is

B = {0.03, 0.04, 0.05, 0.06} (17)

and thus the behavior of the strategies breaks the “mirror” observed before.
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Table 1. Data for the advertising game.

Variable Description

X Space of 21 states of market shares,
{0.0, 0.05, 0.1, 0.15, 0.2, ..., 0.8, 0.85, 0.9, 0.95, 1.0},

A Set of 4 actions for advertising effort of Firm 1,
A = {0.01, 0.02, 0.03, 0.04},

B Set of 4 actions for advertising effort of Firm 2,
B = {0.01, 0.02, 0.03, 0.04},

S1 Set of 10 values of Firm 1, S1 = {0.95, ..., 1.05}
S2 Set of 10 values of Firm 2, S2 = {0.95, ..., 1.05}
ξ Random variable of Firm 1 that take values in S1 with

probability θ(i), i ∈ S1, ξ ∼ Binomial(10, 0.4)

ζ Random variable of Firm 2 that take values in S2 with
probability ϑ(j), j ∈ S2, ζ ∼ Binomial(10, 0.4).

d Advertising response function of Firm 1, d(ξ, a) = ξ
√

a, a ∈ A

e Advertising response function of Firm 2, e(ζ, b) = ζ
√

b, b ∈ B

p1 Gross profit for each product sold by Firm 1, p1 = 1.2

p2 Gross profit for each product sold by Firm 2, p2 = 1.2

β The discount factor β = 0.95

3 The Advertising Game with Unknown Distribution

In this section, we study the advertising game when the distributions of the
random variables (ξ, ζ) are unknown for the players. We assume that, after the
n−th stage, players have recorded the values ξn := (ξ0, ξ1, ..., ξn) and ζn :=
(ζ0, ζ1, ..., ζn) and use the empirical distributions

θn(i) :=
1
n

n−1∑
t=0

1i(ξt), i ∈ S1, n ∈ N

and

ϑn(j) :=
1
n

n−1∑
t=0

1j(ζt), j ∈ S2, n ∈ N

to estimate equilibrium strategies. More precisely, for each n ∈ N, consider the
empirical advertising game

Gθn,ϑn
:= (X,A,B,S1,S2, θn, ϑn, r1, r2) (18)

with dynamics (3) and payoffs (10), where θ and ϑ are replaced by θn and ϑn,
respectively. Given a stationary Nash equilibrium (f∞

n , g∞
n ) for the empirical

advertising game (18), by well-known dynamic programming results, there exist
functions Vn and Wn that satisfy the optimality equations
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Vn(x) = max
μ∈PA

⎡
⎣[p1x − μ] + β

∑
i,j

Vn[x + (1 − x)d(i, μ) − xe(j, gn)]θn(i)ϑn(j)

⎤
⎦ (19)

= [p1x − fn] + β
∑
i,j

Vn[x + (1 − x)d(i, fn) − xe(j, gn)]θn(i)ϑn(j), x ∈ X,

and

Wn(x)

= max
λ∈PB

⎡
⎣[p2(1 − x) − λ] + β

∑
i,j

Wn[x + (1 − x)d(i, fn) − xe(j, λ)]θn(i)ϑn(j)

⎤
⎦ (20)

= [p2(1 − x) − gn] + β
∑
i,j

W [x + (1 − x)d(i, fn) − xe(j, gn)]θn(i)ϑn(j), x ∈ X.

Remark 2. Notice that Vn and Wn are defined on X×Ω, thus Vn(x) and Wn(x)
are random variables for each x ∈ X. The strategies fn and gn are also random
vectors.

The following proposition is based on [19]; for completeness, we outline a
proof in the scenario of the present work.

Proposition 1. For each n ∈ N, let fn, gn, Vn, and Wn satisfy (19) and (20).
If

lim
n→∞(fn, gn) = (f, g) P − a.s. (21)

and
lim

n→∞(Vn,Wn) = (V,W ) P − a.s., (22)

then (f∞, g∞) is P − a.s. a Nash equilibrium for the advertising game with
dynamics (3) and payoffs (10).

Proof. It is well known that from the strong law of large numbers,

(θn, ϑn) → (θ, ϑ) P − a.s. (23)

Now, fix ω in Ω such that the convergence in (21), (22), and (23) holds. Then,
for each μ ∈ PA, x ∈ X, and n ∈ N,∑

i,j

∣∣∣Vn[x + (1 − x)d(i, μ) − xe(j, gn)]

−V [x + (1 − x)d(i, μ) − xe(j, gn)]
∣∣∣θn(i)ϑn(j)

≤
∑
i,j

max
x∈X

∣∣∣Vn(x) − V (x)
∣∣∣θn(i)ϑn(j)

≤ max
x∈X

∣∣∣Vn(x) − V (x)
∣∣∣. (24)
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and ∑
i,j

∣∣∣V [x + (1 − x)d(i, μ) − xe(j, gn)]

−V [x + (1 − x)d(i, μ) − xe(j, g)]
∣∣∣θn(i)ϑn(j)

≤
∑
i,j

∑
b∈B

∣∣∣V [x + (1 − x)d(i, μ) − xe(j, b)]
∣∣∣∣∣∣gn(b|x) − g(b|x)

∣∣∣θn(i)ϑn(j)

≤ max
x∈X

|V (x)|
∑
b∈B

∣∣∣gn(b|x) − g(b|x)
∣∣∣ (25)

Thus ∑
i,j

∣∣∣Vn[x + (1 − x)d(i, μ) − xe(j, gn)]θn(i)ϑn(j)

−V [x + (1 − x)d(i, μ) − xe(j, g)]θ(i)ϑ(j)
∣∣∣

≤
∑
j∈S

∣∣∣Vn[x + (1 − x)d(i, μ) − xe(j, gn)]θn(i)ϑn(j)

−V [x + (1 − x)d(i, μ) − xe(j, gn)]θn(i)ϑn(j)
∣∣∣

+
∑
j∈S

∣∣∣V [x + (1 − x)d(i, μ) − xe(j, gn)]θn(i)ϑn(j)

−V [x + (1 − x)d(i, μ) − xe(j, g)]θn(i)ϑn(j)
∣∣∣

+
∑
j∈S

∣∣∣V [x + (1 − x)d(i, μ) − xe(j, g)]θn(i)ϑn(j)

−V [x + (1 − x)d(i, μ) − xe(j, g)]θ(i)ϑ(j)
∣∣∣.

Then, (24), (25), and (23) imply

lim
n→∞

∑
i,j

Vn[x + (1 − x)d(i, μ) − xe(j, gn)]θn(i)ϑn(j)

=
∑
i,j

V [x + (1 − x)d(i, μ) − xe(j, g)]θ(i)ϑ(j) P − a.s. (26)

for each μ ∈ PA and x ∈ X. We can also show that

lim
n→∞

∑
i,j

Vn[x + (1 − x)d(i, fn) − xe(j, gn)]θn(i)ϑn(j)

=
∑
i,j

V [x + (1 − x)d(i, f) − xe(j, g)]θ(i)ϑ(j) P − a.s. (27)
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On the other hand, from (24) and (26), we have

Vn(x) ≥ [p1x − μ] + β
∑
i,j

Vn[x + (1 − x)d(i, μ) − xe(j, gn)]θ(i)ϑ(j) ∀μ ∈ PA

and hence, by letting n → ∞,

V (x) ≥ [p1x − μ] + β
∑
i,j

V [x + (1 − x)d(i, μ) − xe(j, g)]θ(i)ϑ(j) ∀μ ∈ PA.

Furthermore, the second equality in (24) and (27) yield

V (x) = max
μ∈PA

⎡
⎣[p1x − μ] + β

∑
i,j

V [x + (1 − x)d(i, μ) − xe(j, g)]θ(i)ϑ(j)

⎤
⎦

= [p1x − f ] + β
∑
i,j

V [x + (1 − x)d(i, f) − xe(j, g)]θ(i)ϑ(j), P − a.s.

The following equalities are analogously proved

W (x) = max
λ∈PB

[
[p2(1 − x) − λ] + β

∑
i,j

W [x + (1 − x)d(i, f) − xe(j, λ)]θ(i)ϑ(j)

]

= [p2(1 − x) − g] + β
∑
i,j

W [x + (1 − x)d(i, f) − xe(j, g)]θ(i)ϑ(j), P − a.s.

These optimality equations prove that (f∞, g∞) is a stationary Nash equilibrium
P − a.s. for the advertising game. 
�

3.1 Numerical Examples for the Empirical Game Model

In order to generate simulations of the empirical games Gθm,ϑm
, we use the

algorithm in [20, p. 56] to produce values from a Binomial random variable. All
parameters are exactly the same as in Table 1 but the pair (θ, ϑ) is replaced
by (θm, ϑm). As in Subsection 2.3, we compute the stationary Nash equilibrium
(f∞

m , g∞
m ) for each empirical game Gθm,ϑm

, with m ∈ N0.
For a realization ω ∈ Ω and different values of m, the equilibrium strategies

(fm, gm) are plotted in Fig. 3 and 4, and equilibrium payoffs (Vm,Wm) are shown
in Fig. 5 and 6. By looking at the proof of Proposition 1, if (21) and (22) hold
for a given value of ω, then the limit strategy pair (f, g) determines a stationary
Nash equilibrium of the full information game. The equilibrium strategy (f, g)
or equilibrium payoffs (V,W ) for the full-information model (7) are also plotted
on the right of each figure.

A numerical validation of the hypotheses in Proposition 1 would consist in
simulating empirical games for infinitely many realizations of ω, computing the
equilibria along with the payoffs, and verifying (21) and (22). From a practical
point of view, however, firms record the values of the random variables—and
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Fig. 3. Estimated equilibrium strategies of Firm 1 for different values of m at the states
0.25, 0.5, 0.75, and 0.85.
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Fig. 4. Estimated equilibrium strategies of Firm 2 for different values of m at the states
0.25, 0.5, 0.75, and 0.85.
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Fig. 5. Estimated equilibrium payoffs of Firm 1 for different values of m at the states
0.25, 0.5, 0.75, and 0.85.
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Fig. 6. Estimated equilibrium payoffs of Firm 2 for different values of m at the states
0.25, 0.5, 0.75, and 0.85.
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Fig. 7. Estimated equilibrium strategies of Firm 1 for six realizations of ω and different
values of m at states 0.3, 0.4, 0.5, and 0.6.
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Fig. 8. Estimated equilibrium payoffs of Firm 1 for six realizations of ω and different
values of m at states 0.1, 0.2, 0.4, and 0.5.
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play the corresponding equilibrium strategies—of a single realization ω. If the
strategies converge, then Proposition 1 asserts that, with probability 1, the esti-
mated equilibrium strategies are close to an equilibrium of the full-information
game.

For illustrative purposes, in Fig. 7, we plot the equilibrium strategies cor-
responding to six different realizations of ω. The game model components are
given in Table 1, except for β = 0.75 and X = {0.0, 0.1, 0.2, 0.3, . . . , 1.0}. The
associated payoffs are shown in Fig. 8. We plot data for some states of Firm 1
only. An interesting feature we can observe in this numerical experiment, pos-
sibly due to the uniqueness of equilibrium in the full-information game, is that
the limits of the estimated equilibrium strategies and the estimated payoffs are
independent of ω.

4 Conclusions

We have shown how to estimate equilibrium strategies in a stochastic advertis-
ing game with unknown distributions of the response to advertising efforts. From
the numerical results, it is worth remarking some features of our model. First,
since we deal with a finite game, the equilibrium strategies are mixed instead
of pure strategies—obtained in most of the deterministic differential games of
advertising—because the corresponding action spaces in those models are con-
vex. Second, the qualitative behavior of the equilibrium strategies we found cor-
responds to that in the existing literature, namely, for higher market shares the
advertising efforts are also higher. Third, we assume that at the m−th decision
epoch, firms have recorded m values of the advertising responses; hence firms
have good estimators (θn, ϑn) only when m is large enough. However, firms can
improve the estimators by using information of previous advertising campaigns
as well as information acquired between decision epochs. With such improved
estimators, the conclusion of Proposition 1 does not change. Finally, the problem
of multiple equilibria and/or the non convergence of the estimated equilibrium
strategies can be overcame by passing to a subsequence as is shown in [19].
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Abstract. In stochastic control applications, typically only an ideal
model (controlled transition kernel) is assumed and the control design is
based on the given model, raising the problem of performance loss due to
the mismatch between the assumed model and the actual model. In some
further setups, an exact model may be known, but this model may entail
computationally challenging optimality analysis leading to the solution
of some approximate model being implemented. With such a motiva-
tion, we study continuity properties of discrete-time stochastic control
problems with respect to system models and robustness of optimal con-
trol policies designed for incorrect models applied to the true system. We
study both fully observed and partially observed setups under an infinite
horizon discounted expected cost criterion. We show that continuity can
be established under total variation convergence of the transition kernels
under mild assumptions and with further restrictions on the dynamics
and observation model under weak and setwise convergence of the tran-
sition kernels. Using these, we establish convergence results and error
bounds due to mismatch that occurs by the application of a control policy
which is designed for an incorrectly estimated system model to the actual
system, thus establishing results on robustness. These entail implications
on empirical learning in (data-driven) stochastic control since often sys-
tem models are learned through empirical training data where typically
the weak convergence criterion applies but stronger convergence crite-
ria do not. We finally view and establish approximation as a particular
instance of robustness.
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incomplete/incorrect characterization, and view learning and approximate mod-
eling as instances of the robustness problem. The article builds on some recent
work of the authors but the models considered here are more general (involving
changing cost functions also in the MDP models), and the unifying relationship
between robustness and finite model approximations involving standard Borel
models has not been studied elsewhere, to our knowledge.

Let X ⊂ R
m denote a Borel set which is the state space of a partially observed

controlled Markov process. Here and throughout the paper Z+ denotes the set
of non-negative integers and N denotes the set of positive integers. Let Y ⊂ R

n

be a Borel set denoting the observation space of the model, and let the state
be observed through an observation channel Q. The observation channel, Q,
is defined as a stochastic kernel (regular conditional probability) from X to Y,
such that Q( · |x) is a probability measure on the (Borel) σ-algebra B(Y) of Y
for every x ∈ X, and Q(A| · ) : X → [0, 1] is a Borel measurable function for
every A ∈ B(Y). A decision maker (DM) is located at the output of the channel
Q, and hence it only sees the observations {Yt, t ∈ Z+} and chooses its actions
from U, the action space which is a Borel subset of some Euclidean space. An
admissible policy γ is a sequence of control functions {γt, t ∈ Z+} such that γt is
measurable with respect to the σ-algebra generated by the information variables

It = {Y[0,t], U[0,t−1]}, t ∈ N, I0 = {Y0},

where
Ut = γt(It), t ∈ Z+, (1)

are the U-valued control actions and

Y[0,t] = {Ys, 0 ≤ s ≤ t}, U[0,t−1] = {Us, 0 ≤ s ≤ t − 1}.

We define Γ to be the set of all such admissible policies. The update rules of the
system are determined by (1) and the following:

Pr
(
(X0, Y0) ∈ B

)
=

∫

B

P (dx0)Q(dy0|x0), B ∈ B(X × Y),

where P is the (prior) distribution of the initial state X0, and

Pr
(

(Xt, Yt) ∈ B

∣
∣
∣
∣ (X,Y,U)[0,t−1] = (x, y, u)[0,t−1]

)

=
∫

B

T (dxt|xt−1, ut−1)Q(dyt|xt), B ∈ B(X × Y), t ∈ N,

where T is the transition kernel of the model. The objective of the agent (decision
maker) is the minimization of the infinite horizon discounted cost,

Jβ(c, T , γ) = ET ,γ
P

[ ∞∑

t=0

βtc(Xt, Ut)

]
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for some discount factor β ∈ (0, 1), over the set of admissible policies γ ∈ Γ ,
where c : X × U → R is a Borel-measurable stage-wise cost function and ET ,γ

P

denotes the expectation with initial state probability measure P and transition
kernel T under policy γ. Note that we write the infinite horizon discounted cost
as a function of the transition kernels and the stage-wise cost function since we
will analyze the cost under the changes on those variables.

We define the optimal cost for the discounted infinite horizon setup as a
function of the stage-wise cost function and the transition kernels as

J∗
β(c, T ) = inf

γ∈Γ
Jβ(c, T , γ).

Problem P1: Continuity of J∗
β (c,T ) under the Convergence of the

Models. Let {Tn, n ∈ N} be a sequence of transition kernels which converges
in some sense to another transition kernel T and {cn, n ∈ N} be a sequence of
stage-wise cost functions corresponding to Tn which converge in some sense to
another cost function c. Does that imply that

J∗
β(cn, Tn) → J∗

β(c, T )?

Problem P2: Robustness to Incorrect Models. A problem of major practi-
cal importance is robustness of an optimal controller to modeling errors. Suppose
that an optimal policy is constructed according to a model which is incorrect:
how does the application of the control to the true model affect the system per-
formance and does the error decrease to zero as the models become closer to each
other? In particular, suppose that γ∗

n is an optimal policy designed for Tn and
cn, an incorrect model for a true model T and c. Is it the case that if Tn → T
and cn → c, then Jβ(c, T , γ∗

n) → J∗
β(c, T )?

Problem P3: Empirical Consistency of Learned Probabilistic Models
and Data-Driven Stochastic Control. Let T (·|x, u) be a transition kernel
given previous state and action variables x ∈ X, u ∈ U, which is unknown to the
decision maker (DM). Suppose the DM builds a model for the transition kernels,
Tn(·|x, u), for all possible x ∈ X, u ∈ U by collecting training data (e.g. from
the evolving system). Do we have that the cost calculated under Tn converges to
the true cost (i.e., do we have that the cost obtained from applying the optimal
policy for the empirical model converges to the true cost as the training length
increases)?

Problem P4: Approximation by Finite MDPs as an Instance of
Robustness to Incorrect Models. Can we view the approximation problem
of a continuous space MDP model with a finite model (in particular [22, Theo-
rem 2.2], [22, Theorem 4.1] or [23, Theorem 3.2]) as an instance of the robustness
problem?
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Brief Literature Review. Robustness is a desired property for the opti-
mal control of stochastic or deterministic systems when a given model does
not reflect the actual system perfectly, as is usually the case in practice.
This is a classical problem, and there is a very large literature on robust
stochastic control and its application to learning-theoretic methods; see e.g.
[1,2,7,8,14,16,18,20,21,25,26]. A rather comprehensive literature review is pre-
sented in [18]. The article builds on [16,18], but the models considered considered
here are more general (involving changing cost functions also in the MDP mod-
els), and the unifying relationship between robustness and finite model approxi-
mations involving standard Borel models has not been studied elsewhere, to our
knowledge.

1.1 Some Examples and Convergence Criteria for Transition
Kernels

Convergence Criteria for Transition Kernels. Before presenting conver-
gence criteria for controlled transition kernels, we first review the convergence
of probability measures. Three important notions of convergences for sets of
probability measures to be studied in the paper are weak convergence, setwise
convergence, and convergence under total variation. For N ∈ N, a sequence
{μn, n ∈ N} in P(RN ) is said to converge to μ ∈ P(RN ) weakly if

∫

RN

c(x)μn(dx) →
∫

RN

c(x)μ(dx) (∗)

for every continuous and bounded c : RN → R. {μn} is said to converge setwise
to μ ∈ P(RN ) if (*) holds for all measurable and bounded c : RN → R. For
probability measures μ, ν ∈ P(RN ), the total variation metric is given by

‖μ − ν‖TV = 2 sup
B∈B(RN )

|μ(B) − ν(B)| = sup
f :‖f‖∞≤1

|
∫

f(x)μ(dx) −
∫

f(x)ν(dx)|,

where the supremum is taken over all measurable real f such that ‖f‖∞ =
supx∈RN |f(x)| ≤ 1. A sequence {μn} is said to converge in total variation to
μ ∈ P(RN ) if ‖μn − μ‖TV → 0. Total variation defines a stringent metric for
convergence; for example, a sequence of discrete probability measures does not
converge in total variation to a probability measure which admits a density func-
tion. Setwise convergence, though, induces a topology on the space of probability
measures which is not metrizable [10, p. 59]. However, the space of probability
measures on a complete, separable, metric (Polish) space endowed with the topol-
ogy of weak convergence is itself complete, separable, and metric [19]. We also
note here that relative entropy convergence, through Pinsker’s inequality [11,
Lemma 5.2.8], is stronger than even total variation convergence, which has also
been studied in robust stochastic control. Another metric for probability mea-
sures is the Wasserstein distance: For compact spaces, the Wasserstein distance
of order 1 metrizes the weak topology and for non-compact spaces convergence
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in the W1 metric implies weak convergence. Considering these relations, our
results in this paper can be directly generalized to the relative entropy distance
or the Wasserstein distance. Building on the above, we introduce the following
convergence notions for (controlled) transition kernels.

Definition 1. For a sequence of transition kernels {Tn, n ∈ N}, we say that

– Tn → T weakly if Tn(·|x, u) → T (·|x, u) weakly, for all x ∈ X and u ∈ U,
– Tn → T setwise if Tn(·|x, u) → T (·|x, u) setwise, for all x ∈ X and u ∈ U,
– Tn → T under the total variation distance if Tn(·|x, u) → T (·|x, u) under

total variation for all x ∈ X and u ∈ U.

Examples [18]. Let a controlled model be given as xt+1 = F (xt, ut, wt), where
{wt} is an i.i.d. noise process. The uncertainty on the transition kernel for such
a system may arise from lack of information on F or the i.i.d. noise process wt

or both:

(i) Let {Fn} denote an approximating sequence for F , so that Fn(x, u, w) →
F (x, u, w) pointwise. Assume that the probability measure of the noise
is known. Then, corresponding kernels Tn converge weakly to T : If we
denote the probability measure of w with μ, for any g ∈ Cb(X) and for
any (x0, u0) ∈ X × U using the dominated convergence theorem we have

lim
n→∞

∫
g(x1)Tn(dx1|x0, u0) = lim

n→∞

∫
g(Fn(x0, u0, w))μ(dw)

=
∫

g(F (x0, u0, w))μ(dw) =
∫

g(x1)T (dx1|x0, u0).

(ii) Much of the robust control literature deals with deterministic systems where
the nominal model is a deterministic perturbation of the actual model (see e.g.
[24]). The considered model is in the following form: F̃ (xt, ut) = F (xt, ut)
+ΔF (xt, ut), where F represents the nominal model and ΔF is the model
uncertainty satisfying some norm bounds. For such deterministic systems,
pointwise convergence of F̃ to the nominal model F , i.e. ΔF (xt, ut) → 0,
can be viewed as weak convergence for deterministic systems by the discus-
sion in (i). It is evident, however, that total variation convergence would be
too strong for such a convergence criterion, since δF̃ (xt,ut)

→ δF (xt,ut) weakly
but ‖δF̃ (xt,ut)

− δF (xt,ut)‖TV = 2 for all ΔF (xt, ut) �= 0 where δ denotes the
Dirac measure.

(iii) Let F (xt, ut, wt) = f(xt, ut) + wt be such that the function f is known
and wt ∼ μ is not known correctly and an incorrect model μn is assumed.
If μn → μ weakly, setwise, or in total variation, then the corresponding
transition kernels Tn converge in the same sense to T . Observe the following:

∫
g(x1)Tn(dx1|x0, u0) −

∫
g(x1)T (dx1|x0, u0)

=
∫

g(w0 + f(x0, u0))μn(dw0) −
∫

g(w0 + f(x0, u0))μ(dw0). (2)
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(a) Suppose μn → μ weakly. If g is a continuous and bounded function,
then g(·+f(x0, u0)) is a continuous and bounded function for all (x0, u0) ∈
X×U. Thus, (2) goes to 0. Note that f does not need to be continuous. (b)
Suppose μn → μ setwise. If g is a measurable and bounded function, then
g(· + f(x0, u0)) measurable and bounded for all (x0, u0) ∈ X×U. Thus, (2)
goes to 0. (c) Finally, assume μn → μ in total variation. If g is bounded,
(2) converges to 0, as in item (b). As a special case, assume that μn and μ
admit densities hn and h, respectively; then the pointwise convergence of
hn to h implies the convergence of μn to μ in total variation by Scheffé’s
theorem.

(iv) Suppose now neither F nor the probability model of wt is known per-
fectly. It is assumed that wt admits a measure μn and μn → μ weakly.
For the function F we again have an approximating sequence {Fn}. If
Fn(x, u, wn) → F (x, u, w) for all (x, u) ∈ X × U and for any wn → w, then
the transition kernel Tn corresponding to the model Fn converges weakly
to the one of F , T : For any g ∈ Cb(X),

lim
n→∞

∫
g(x1)Tn(dx1|x0, u0) = lim

n→∞

∫
g(Fn(x0, u0, w))μn(dw)

=
∫

g(F (x0, u0, w))μ(dw) =
∫

g(x1)T (dx1|x0, u0).

(v) Let again {Fn} denote an approximating sequence for F and suppose now
Fx0,u0,n(·) := Fn(x0, u0, ·) : W → X is invertible for all x0, u0 ∈ X × U

and F−1
(x0,u0),n

(·) denotes the inverse for fixed (x0, u0). It is assumed that
F−1
(x0,u0),n

(x1) → F−1
x0,u0

(x1) pointwise for all (x0, u0). Suppose further that
the noise process wt admits a continuous density fW (w). The Jacobian
matrix, ∂x1

∂w , is the matrix whose components are the partial derivatives of
x1, i.e. with x1 ∈ X ⊂ R

m and w ∈ W ⊂ R
m, it is an m × m matrix with

components ∂(x1)i
∂wj

, 1 ≤ i, j ≤ m . If the Jacobian matrix of derivatives
∂x1
∂w (w) is continuous in w and nonsingular for all w, then we have that the
density of the state variables can be written as

fX1,n,(x0,u0)(x1) = fW (F−1
x0,u0,n(x1))

∣
∣∂x1

∂w
(F−1

x0,u0,n(x1))
∣
∣−1

,

fX1,(x0,u0)(x1) = fW (F−1
x0,u0

(x1))
∣
∣∂x1

∂w
(F−1

x0,u0
(x1))

∣
∣−1

.

With the above, fX1,n,(x0,u0)(x1) → fX1,(x0,u0)(x1) pointwise for all
fixed (x0, u0). Therefore, by Scheffé’s theorem, the corresponding kernels
Tn(·|x0, u0) → T (·|x0, u0) in total variation for all (x0, u0).

(vi) These examples will be utilized in Sect. 5.1, where data-driven stochastic
control problems will be considered where estimated models are obtained
through empirical measurements of the state action variables.
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1.2 Summary

We now introduce the main assumptions that will be occasionally used for our
technical results in the article.

Assumption 1.(a) The sequence of transition kernels Tn satisfies the follow-
ing: {Tn(·|xn, un), n ∈ N} converges weakly to T (·|x, u) for any sequence
{xn, un} ⊂ X × U and x, u ∈ X × U such that (xn, un) → (x, u).

(b) The stochastic kernel T (·|x, u) is weakly continuous in (x, u).
(c) The sequence of stage-wise cost functions cn satisfies the following: cn(xn,

un) → c(x, u) for any sequence {xn, un} ⊂ X×U and x, u ∈ X×U such that
(xn, un) → (x, u).

(d) The stage-wise cost function c(x, u) is non-negative, bounded, and continu-
ous on X × U.

(e) U is compact.

Assumption 2. The observation channel Q(·|x) is continuous in total variation
i.e., if xn → x, then Q( · |xn) → Q( · |x) in total variation (only for partially
observed models).

Assumption 3.(a) The sequence of transition kernels Tn satisfies the follow-
ing: {Tn(·|x, un), n ∈ N} converges setwise to T (·|x, u) for any sequence
{un} ⊂ U and x, u ∈ X × U such that un → u.

(b) The stochastic kernel T (·|x, u) is setwise continuous in u.
(c) The sequence of stage-wise cost functions cn satisfies the following: cn(x, un)

→ c(x, u) for any sequence {un} ⊂ U and x, u ∈ X × U such that un → u.
(d) The stage-wise cost function c(x, u) is non-negative, bounded, and continu-

ous on U.
(e) U is compact.

Assumption 4.(a) The sequence of transition kernels Tn satisfies the following:
‖Tn(·|x, un)−T (·|x, u)‖TV → 0 for any sequence {un} ⊂ U and x, u ∈ X×U

such that un → u.
(b) The stochastic kernel T (·|x, u) is continuous in total variation in u.
(c) The sequence of stage-wise cost functions cn satisfies the following: cn(x, un)

→ c(x, u) for any sequence {un} ⊂ U and x, u ∈ X × U such that un → u.
(d) The stage-wise cost function c(x, u) is non-negative, bounded, and continu-

ous on U.
(e) U is compact.

In Sects. 2 and 3 we study continuity (Problem P1) and robustness (Problem
P2) for partially observed models. In particular we show the following:

(a) Continuity and robustness do not hold in general under weak convergence
of kernels (Theorem 1).

(b) Under Assumptions 1 and 2, continuity and robustness hold (Theorem 4,
Theorem 8).

(c) Continuity and robustness do not hold in general under setwise convergence
of the kernels (Theorem 5).
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(d) Continuity and robustness do not hold in general under total variation con-
vergence of the kernels (Example 1).

(f) Under Assumption 4, continuity and robustness hold (Theorem 6, Theo-
rem 7).

In Sect. 4, we study continuity (Problem P1) and robustness (Problem P2)
for fully observed models. In particular we show the following

(a) Continuity and robustness do not hold in general under weak convergence
of kernels (Theorem 9, Example 1).

(b) Under Assumption 1, continuity holds (Theorem 10), under Assumption 1,
robustness holds if the optimal policies for every initial point are identical
(Theorem 11).

(c) Continuity and robustness do not hold in general under setwise convergence
of the kernels (Theorem 12, Theorem 14).

(d) Under Assumption 3, continuity holds (Theorem 13), and under Assumption
3, robustness holds if the optimal policies for every initial point are identical
(Theorem 15).

(e) Continuity and robustness do not hold in general under total variation con-
vergence of the kernels (Example 1).

(f) Under Assumption 4, continuity and robustness hold (Subsect. 4.3).

In Sect. 5, we study applications to empirical learning (in Sect. 5.1) where we
establish the positive relevance of Theorem 10, and then applications to finite
model approximations under the perspective of robustness in Sect. 5.2. Here, we
restrict the analysis to the case with weakly continuous kernels.

2 Continuity of Optimal Cost in Convergence of Models
(POMDP Case)

In this section, we will study continuity of the optimal discounted cost under
the convergence of transition kernels and cost functions.

2.1 Weak Convergence

Absence of Continuity Under Weak Convergence. The following shows
that the optimal cost may not be continuous under weak convergence of transi-
tion kernels.

Theorem 1 [18]. Let Tn → T weakly, then it is not necessarily true that
J∗

β(c, Tn) → J∗
β(c, T ) even when the prior distributions are the same, the mea-

surement channel Q is continuous in total variation, and c(x, u) is continuous
and bounded on X × U.

We prove the result with a counterexample [18]. Letting X = U = Y =
[−1, 1] and c(x, u) = (x − u)2, the observation channel is chosen to be uniformly
distributed over [−1, 1], Q ∼ U([−1, 1]), the initial distributions of the state
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variable are chosen to be same as P ∼ δ1, where δx(A) := 1{x∈A} for Borel A,
and the transition kernels are:

T (·|x, u) = δ−1(x)[
1
2
δ1(·) +

1
2
δ−1(·)] + δ1(x)[

1
2
δ1(·) +

1
2
δ−1(·)]

+ (1 − δ−1(x))(1 − δ1(x))δ0(·)

Tn(·|x, u) = δ−1(x)[
1
2
δ(1−1/n)(·) +

1
2
δ(−1+1/n)(·)] + δ1(x)[

1
2
δ(1−1/n)(·)

+
1
2
δ(−1+1/n)(·)] + (1 − δ−1(x))(1 − δ1(x))δ0(·).

It can be seen that Tn → T weakly according to Definition 1(i). Note that the
cost function is continuous, and the measurement channel is continuous in total
variation. The optimal discounted costs can be found as

J∗
β(c, T ) =

∞∑

k=1

ET
P [βkX2

k ] =
∞∑

k=1

βk =
β

1 − β

J∗
β(c, Tn) =

∞∑

k=1

ETn

P [βkX2
k ] = β[

1
2
(1 − 1

n
)2 +

1
2
(−1 +

1
n

)2].

Then we have J∗
β(c, Tn) → β �= β

1−β .

2.2 A Sufficient Condition for Continuity Under Weak Convergence

In the following, we will establish and utilize some regularity properties for the
optimal cost with respect to the convergence of transition kernels.

Assumption 5.(a) The stochastic kernel T (·|x, u) is weakly continuous in
(x, u), i.e. if (xn, un) → (x, u), then T (·|xn, un) → T (·|x, u) weakly.

(b) The observation channel Q(·|x) is continuous in total variation, i.e., if xn →
x, then Q( · |xn) → Q( · |x) in total variation.

(c) The stage-wise cost function c(x, u) is non-negative, bounded and continuous
on X × U

(d) U is compact.

It is a well known result that, any POMDP can be reduced to a (completely
observable) MDP, whose states are the posterior state distributions or beliefs of
the observer; that is, the state at time t is Zt( · ) := Pr{Xt ∈ · |Y0, . . . , Yt, U0, . . . ,
Ut−1} ∈ P(X). We call this equivalent MDP the belief-MDP . The belief-MDP
has state space Z = P(X) and action space U. Under the topology of weak
convergence, since X is a Borel space, Z is metrizable with the Prokhorov metric
which makes Z into a Borel space [19]. The transition probability η of the belief-
MDP can be constructed through non-linear filtering equations.

The one-stage cost function c of the belief-MDP is given by c̃(z, u)
:=

∫
X

c(x, u)z(dx). Under the regularity of the belief-MDP, we have that the
discounted cost optimality operator T : Cb(Z) → Cb(Z)

(T (f))(z) = min
u

(c̃(z, u) + βE[f(z1)|z0 = z, u0 = u]) (3)
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is a contraction from Cb(Z) to itself under the supremum norm. As a result, there
exists a fixed point, the value function, and an optimal control policy exists. In
view of this existence result, in the following we will consider optimal policies.

The following result is key to proving the main result of this section whose
detailed analysis can be found in [18].

Theorem 2. Suppose we have a uniformly bounded family of functions {fγ
n :

X → R, γ ∈ Γ, n > 0} such that ‖fγ
n‖∞ < C for all γ ∈ Γ and for all n > 0 for

some C < ∞.
Further suppose we have another uniformly bounded family of functions {fγ :

X → R, γ ∈ Γ} such that ‖fγ‖∞ < C for all γ ∈ Γ for some C < ∞. Under the
following assumptions,

(i) For any xn → x

sup
γ∈Γ

∣
∣fγ

n (xn) − fγ(x)
∣
∣ → 0, sup

γ∈Γ

∣
∣fγ(xn) − fγ(x)

∣
∣ → 0,

(ii) supγ ρ(μγ
n, μγ) → 0 where ρ is some metric for the weak convergence topol-

ogy,

we have

sup
γ∈Γ

∣
∣
∣
∣

∫
fγ

n (x)μγ
n(dx) −

∫
fγ(x)μγ(dx)

∣
∣
∣
∣ → 0.

Theorem 3. Under Assumptions 1 and 2,

sup
γ∈Γ

|Jβ(cn, Tn, γ) − Jβ(c, T , γ)| → 0.

Proof Sketch.

sup
γ∈Γ

|Jβ(cn, Tn, γ) − Jβ(c, T , γ)|

= sup
γ∈Γ

∣
∣
∣
∣

∞∑

t=0

βt

(
ETn

P

[
cn

(
Xt, γ(Y[0,t])

)]
− ET

P

[
c
(
Xt, γ(Y[0,t])

)]
)∣

∣
∣
∣

≤
∞∑

t=0

βt sup
γ∈Γ

∣
∣
∣
∣E

Tn

P

[
cn

(
Xt, γ(Y[0,t])

)]
− ET

P

[
c
(
Xt, γ(Y[0,t])

)]
∣
∣
∣
∣.

Recall that an admissible policy γ is a sequence of control functions {γt, t ∈ Z+}.
In the last step above, we make a slight abuse of notation; the sup at the first
step is over all sequence of control functions {γt, t ∈ Z+} whereas the sup at the
last step is over all sequence of control functions {γt′ , t′ ≤ t}, but we will use
the same notation, γ, in the rest of the proof.

For any ε > 0, we choose a K < ∞ such that
∑∞

t=K+1 βk2‖c‖∞ ≤ ε/2. For
the chosen K, we choose an N < ∞ such that

sup
γ∈Γ

∣
∣
∣
∣E

Tn

P

[
cn

(
Xt, γ(Y[0,t])

)]
− ET

P

[
c
(
Xt, γ(Y[0,t])

)]
∣
∣
∣
∣ ≤ ε/2K
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for all t ≤ K and for all n > N . We note that in [18] a fixed c function was
considered, but by considering the additional term

sup
γ∈Γ

∣
∣
∣ETn

P

[
cn

(
Xt, γ(Y[0,t])

)
]

− ET
P

[
cn

(
Xt, γ(Y[0,t])

)
]∣
∣
∣

and noting that supγ |
∫

Q(dy|xn)cn(xn, γ(y)) −
∫

Q(dy|x)c(x, γ(y))| → 0, for
every xn → x, by a generalized dominated convergence theorem as Q is con-
tinuous in total variation, a triangle inequality argument shows that the same
result applies. This follows from a generalized dominated convergence theorem
as stated in Theorem 2 whose detailed analysis can be found in [18]. Thus,
supγ∈Γ

∣
∣Jβ(cn, Tn, γ) − Jβ(c, T , γ) → 0 as n → ∞. ��

Theorem 4. Suppose the conditions of Theorem 3 hold. Then limn→∞ |J∗
β

(cn, Tn) − J∗
β(c, T )| = 0.

Proof Sketch. We start with the following bound:

|J∗
β(cn, Tn) − J∗

β(c, T )| (4)

≤max
(

Jβ(cn, Tn, γ∗) − Jβ(c, T , γ∗), Jβ(c, T , γ∗
n) − Jβ(cn, Tn, γ∗

n)
)

,

where γ∗ and γ∗
n are the optimal policies, respectively, for T and Tn. Both terms

go to 0 by Theorem 3. ��

2.3 Absence of Continuity Under Setwise Convergence

We now show that continuity of optimal costs may fail under the setwise con-
vergence of transition kernels. Theorem 12 in the next section establishes this
result for fully observed models, which serves as a proof for this setup also.

Theorem 5. Let Tn → T setwise. Then, it is not true in general that J∗
β(c, Tn)

→ J∗
β(c, T ), even when X,Y, and U are compact and c(x, u) is continuous and

bounded in X × U.

2.4 Continuity Under Total Variation

Theorem 6. Under Assumption 4, J∗
β(cn, Tn) → J∗

β(c, T ).

Proof Sketch. We start with the following bound:

|J∗
β(cn, Tn) − J∗

β(c, T )| ≤max
(

Jβ(cn, Tn, γ∗) − Jβ(c, T , γ∗), Jβ(cn, Tn, γ∗
n)

− Jβ(c, T , γ∗
n)

)
,

where γ∗ and γ∗
n are the optimal policies, respectively, for T and Tn.
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We now study the following:

sup
γ∈Γ

|Jβ(cn, Tn, γ) − Jβ(c, T , γ)|

= sup
γ∈Γ

∣
∣
∣
∣

∞∑

t=0

βt

(
ETn

P

[
cn

(
Xt, γ(Y[0,t])

)]
− ET

P

[
c
(
Xt, γ(Y[0,t])

)]
)∣

∣
∣
∣

≤
∞∑

t=0

βt sup
γ∈Γ

∣
∣
∣
∣E

Tn

P

[
cn

(
Xt, γ(Y[0,t])

)]
− ET

P

[
c
(
Xt, γ(Y[0,t])

)]
∣
∣
∣
∣.

It can be shown that [18]

sup
γ∈Γ

∣
∣
∣
∣E

Tn

P

[
cn

(
Xt, γ(Y[0,t])

)]
− ET

P

[
c
(
Xt, γ(Y[0,t])

)]
∣
∣
∣
∣ → 0. (5)

This was shown in [18] for fixed c. The extension to varying cn follows from a
triangle inequality step with the assumption that Tn(·|x, un) → T (·|x, u) setwise,
and cn(x, un) → c(x, u) for any un → u. Therefore, using identical steps as in
the proof of Theorem 3 we have supγ∈Γ

∣
∣Jβ(cn, Tn, γ) − Jβ(c, T , γ)

∣
∣ → 0. ��

3 Robustness to Incorrect Models (POMDP Case)

Here, we consider the robustness problem P2: Suppose we design an optimal
policy, γ∗

n, for a transition kernel, Tn and a cost function cn, assuming they are
the correct model and apply the policy to the true model whose transition kernel
is T and whose cost function is c. We study the robustness of the sub-optimal
policy γ∗

n.

3.1 Total Variation

The next theorem gives an asymptotic robustness result.

Theorem 7. Under Assumption 4

|Jβ(cn, T , γ∗
n) − J∗

β(c, T )| → 0,

where γ∗
n is the optimal policy designed for the kernel Tn.

Proof Sketch. We write the following:

|Jβ(c, T , γ∗
n) − J∗

β(c, T )| ≤ |Jβ(c, T , γ∗
n) − J∗

β(cn, Tn)| + |J∗
β(cn, Tn) − J∗

β(c, T )|.

Both terms can be shown to go to 0 using (5). ��

3.2 Setwise Convergence

Theorem 14 in the next section establishes the lack of robustness under the
setwise convergence of kernels. As we note later, a fully observed system can
be viewed as a partially observed system with the measurement being the state
itself, (see (6)).
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3.3 Weak Convergence

Theorem 8. Under Assumptions 1 and 2, |Jβ(c, T , γ∗
n) − J∗

β(c, T )| → 0, where
γ∗

n is the optimal policy designed for the transition kernel Tn.

Proof Sketch. We write

|Jβ(c, T , γ∗
n) − J∗

β(c, T )| ≤|Jβ(c, T , γ∗
n) − Jβ(cn, Tn, γ∗

n)| + |Jβ(cn, Tn, γ∗
n)

− Jβ(T , γ∗)|.
The first term goes to 0 by Theorem 3. For the second term we use Theorem 4.

��

4 Continuity and Robustness in the Fully Observed Case

In this section, we consider the fully observed case where the controller has direct
access to the state variables. We present the results for this case separately, since
here we cannot utilize the regularity properties of measurement channels which
allows for stronger continuity and robustness results. Under measurable selection
conditions due to weak or strong (setwise) continuity of transition kernels [13,
Section 3.3], for infinite horizon discounted cost problems optimal policies can
be selected from those which are stationary and deterministic. Therefore we
will restrict the policies to be stationary and deterministic so that Ut = γ(Xt)
for some measurable function γ. Notice also that fully observed models can be
viewed as partially observed with the measurement channel thought to be

Q(·|x) = δx(·), (6)

which is only weakly continuous, thus it does not satisfy Assumption 2.

4.1 Weak Convergence

Absence of Continuity Under Weak Convergence. We start with a neg-
ative result.

Theorem 9. For Tn → T weakly, it is not necessarily true that J∗
β(c, Tn) →

J∗
β(c, T ) even when the prior distributions are the same and c(x, u) is continuous

and bounded in X × U.

Proof. We prove the result with a counterexample, similar to the model used in
the proof of Theorem 1 Letting X = [−1, 1], U = {−1, 1} and c(x, u) = (x − u)2,
the initial distributions are given by P ∼ δ1, that is, X0 = 1, and the transition
kernels are

T (·|x, u) = δ−1(x)[
1
2
δ1(·) +

1
2
δ−1(·)] + δ1(x)[

1
2
δ1(·) +

1
2
δ−1(·)]

+ (1 − δ−1(x))(1 − δ1(x))δ0(·),

Tn(·|x, u) = δ−1(x)[
1
2
δ(1−1/n)(·) +

1
2
δ(−1+1/n)(·)] + δ1(x)[

1
2
δ(1−1/n)(·)

+
1
2
δ(−1+1/n)(·)] + (1 − δ−1(x))(1 − δ1(x))δ0(·).
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It can be seen that Tn → T weakly according to Definition 1(i). Under this setup
we can calculate the optimal costs as follows:

J∗
β(c, Tn) =

1
n2

+
∞∑

k=2

βk =
1
n2

+
β2

1 − β
,

and J∗
β(c, T ) = 0. Thus, continuity does not hold. ��

We now present another counter example emphasizing the importance of
continuous convergence in the actions. The following counter example shows that
without the continuous convergence and regularity assumptions on the kernel
T , continuity fails even when Tn(·|x, u) → T (·|x, u) pointwise (for x, u) in total
variation (also setwise and weakly) and even when the cost function c(x, u) is
continuous and bounded. Notice that this example also holds for both setwise
and weak convergence.

Example 1. Assume that the kernels are given by

Tn(·|x, u) ∼ U([un, 1 + un]),

T (·|x, u) ∼
{

U([0, 1]) if u �= 1,

U([1, 2]) if u = 1,

where U = [0, 1] and X = R. We note first that Tn(·|x, u) → T (·|x, u) in total
variation for every fixed x and u.

The cost function is in the following form:

c(x, u) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

2 if x ≤ 1
e ,

2 − x− 1
e

0.1 if 1
e < x ≤ 0.1 + 1

e ,

1 if 0.1 + 1
e < x ≤ 1 + 1

e − 0.1,

2 − 1+ 1
e −x

0.1 if 1 + 1
e − 0.1 < x ≤ 1 + 1

e ,

2 if 1 + 1
e < x.

Notice that c(x, u) is a continuous function.
With this setup, γ∗(x) = 0 is an optimal policy for T since on the [0, 1]

interval the induced cost is less than the cost induced on the [1, 2] interval. The
cost under this policy is

J∗
β(c, T ) =

∞∑

t=0

βt

(
2 × 1

e
+

0.3
2

+ 0.9 − 1
e

)
=

1
1 − β

(
1.05 +

1
e

)
.

For Tn, γ∗
n(x) = e− 1

n is an optimal policy for every n as e− 1
n×n = 1

e and thus
the state is distributed between 1

e < x ≤ 1 + 1
e in which interval the cost is the

least. Hence, we can write

lim
n→∞

Jβ(c, Tn, γ∗
n) =

∞∑

t=0

βt

(
0.3 + 1 − 0.2

)
=

1.1
1 − β

�= 1
1 − β

(
1.05 +

1
e

)

= J∗
β(c, T ).
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A Sufficient Condition for Continuity Under Weak Convergence. We
will now establish that if the kernels and the model components have some
further regularity, continuity does hold. The assumptions of the following result
are the same as the assumptions for the partially observed case (Theorem 4)
except for the assumption on the measurement channel Q.

Theorem 10. Under Assumption 1, Jβ(cn, Tn, γ∗
n) → Jβ(c, T , γ∗) for any ini-

tial state x0, as n → ∞.

Proof. We will use the successive approximations for an inductive argument.
Recall discounted cost optimality operator T : Cb(Z) → Cb(Z) from (3)

(T (v))(x) = inf
u∈U

(
c(x, u) + βE[v(x1)|x0 = x, u0 = u]

)
,

which is a contraction from Cb(X) to itself under the supremum norm and has
a fixed point, the value function. For the kernel T , we will denote the approxi-
mation functions by

vk(x) = T (vk−1)(x),

and for the kernel Tn we will use vk
n(x) to denote the approximation functions,

notice that the operator T also depends on n for the model Tn, but we will
continue using it as T in what follows.

We wish to show that the approximation functions for Tn continuously con-
verge to the ones for T . Then, for the first step of the induction we have

v1(x) = c(x, u∗), v1
n(xn) = cn(xn, u∗

n),

and thus we can write,

|v1(x) − v1
n(xn)| ≤ sup

u∈U

∣
∣c(x, u) − cn(xn, u)

∣
∣

since cn(xn, un) → c(x, u) for all (xn, un) → (x, u) and the action space, U, is
compact, the first step of the induction holds, i.e. limn→∞ |v1(x) − v1

n(xn)| = 0.
For the kth step we have

vk(x) = T (vk−1)(x) = inf
u

[
c(x, u) + β

∫

X

vk−1(x1)T (dx1|x, u)
]
,

vk
n(xn) = T (vk−1

n )(xn) = inf
u

[
cn(xn, u) + β

∫

X

vk−1
n (x1)Tn(dx1|xn, u)

]
.

Note that the assumptions of the theorem satisfy the measurable selection crite-
ria and hence we can choose minimizing selectors [13, Section 3.3]. If we denote
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the selectors by u∗ and u∗
n, we can write

|vk(x) − vk
n(xn)|

≤ max
([

|c(x, u∗) − cn(xn, u∗)|

+ β|
∫

X

vk−1(x1)T (dx1|x, u∗) −
∫

X

vk−1
n (x1)Tn(dx1|xn, u∗)|

]
,

[
|c(x, u∗

n) − cn(xn, u∗
n)|

+ β|
∫

X

vk−1(x1)T (dx1|x, u∗
n) −

∫

X

vk−1
n (x1)Tn(dx1|xn, u∗

n)|
])

.

Hence, we can write

|vk(x) − vk
n(xn)| (7)

≤ sup
u∈U

[
|c(x, u) − cn(xn, u)|

+ β|
∫

X

vk−1(x1)T (dx1|x, u) −
∫

X

vk−1
n (x1)Tn(dx1|xn, u)|

]
,

above, the first term goes to 0 as cn(xn, un) → c(x, u) for all (xn, un) → (x, u)
and the action space, U, is compact. For the second term we write,

sup
u∈U

|
∫

X

vk−1(x1)T (dx1|x, u) −
∫

X

vk−1
n (x1)Tn(dx1|xn, u)|

≤ sup
u∈U

|
∫

X

(
vk−1(x1) − vk−1

n (x1)
)
Tn(dx1|xn, u)|

+ sup
u∈U

|
∫

X

vk−1(x1)T (dx1|x, u) −
∫

X

vk−1(x1)Tn(dx1|xn, u)|

above, for the first term, by the induction argument for any x1
n → x1,

∣
∣vk−1(x1)−

vk−1
n (x1

n)
∣
∣ → 0 (i.e., we have continuous convergence). We also have that

Tn(·|xn, u) → T (·|x, u) weakly uniformly over u ∈ U as U is compact. Therefore,
using Theorem 2 the first term goes to 0. For the second term we again use that
Tn(·|xn, u) converges weakly to T (·|x, u) uniformly over u ∈ U. With an almost
identical induction argument it can also be shown that vk−1(x1) is continuous
in x1, thus the second term also goes to 0.

So far, we have showed that for any k ∈ N, limn→∞
∣
∣vk

n(xn) − vk(x)
∣
∣ = 0 for

any xn → x, in particular it is also true that limn→∞
∣
∣vk

n(x) − vk(x)
∣
∣ = 0 for

any x.
As we have stated earlier, it can be shown that the approximation operator, T

is a contractive operator under supremum norm with modulus β and it converges
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to a fixed point which is the value function. Thus, we have

∣
∣Jβ(c, T , γ∗) − vk(x)

∣
∣ ≤ ‖c‖∞

βk

1 − β
,

∣
∣J∗

β(cn, Tn, γ∗
n) − vk

n(x)
∣
∣ ≤ ‖c‖∞

βk

1 − β
.

(8)

Combining the results,

|Jβ(cn, Tn, γ∗
n) − |Jβ(c, T , γ∗)| ≤|Jβ(cn, Tn, γ∗

n) − vk
n(x)| + |vk

n(x) − vk(x)|
+ |Jβ(c, T , γ∗) − vk(x)|.

Note that the first and the last term can be made arbitrarily small since (8)
holds for all k ∈ N; the second term goes to 0 with an inductive argument for
all k ∈ N. ��

A Sufficient Condition for Robustness Under Weak Convergence. We
now present a result that establishes robustness if the optimal policies for every
initial point are identical. That is, for every n, γ∗

n is optimal for every x0 ∈ X

(under the model Tn). A sufficient condition for this property is that γ∗
n solves

the discounted cost optimality equation (DCOE) for every initial point.
A policy γ∗ ∈ Γ solves the discounted cost optimality equation and is optimal

if it satisfies

J∗
β(c, T , x) = c(x, γ∗(x)) + β

∫
J∗

β(c, T , x1)T (dx1|x, γ∗(x)).

Thus, a policy is optimal for every initial point if it satisfies the DCOE for all
initial points x ∈ X. The following generalizes [18].

Theorem 11. Under Assumption 1, Jβ(c, T , γ∗
n) → Jβ(c, T , γ∗) for any initial

point x0 if γ∗
n is optimal for any initial point for the kernel Tn and for the

stage-wise cost function cn.

Remark 1. For the partially observed case, the proof approach we use makes use
of policy exchange (e.g. (4)) and for this approach the total variation continuity
of channel Q(·|x) is a key step to deal with the uniform convergence over policies.
As we stated before, the channel for fully observed models can be considered in
the form of (6) which is only weakly continuous and not continuous in total vari-
ation. Thus, obtaining a result uniformly over all policies may not be possible.
However, for the fully observed models we can reach continuity and robustness
(Theorem 10, Theorem 11) using a value iteration approach. With this approach,
instead of exchanging policies and analyzing uniform convergence over all poli-
cies, we can exchange control actions (e.g. (7)) and analyze uniform convergence
over the action space U by using the discounted optimality operator (3). Hence,
we are only able to show convergence over optimal policies for the fully observed
case, i.e. Jβ(cn, Tn, γ∗

n) → Jβ(c, T , γ∗) or Jβ(c, T , γ∗
n) → Jβ(c, T , γ∗) where γ∗

n

and γ∗ are optimal policies, whereas, for partially observed models, regularity
of the channel allows us to show convergence over any sequence of policies, i.e.
supγ∈Γ |Jβ(cn, Tn, γ) − Jβ(c, T , γ)| → 0.
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Remark 2. As we have discussed in Subsect. 2.2, a partially observed model can
be reduced to a fully observed process where the state process (beliefs) becomes
probability measure valued. Consider the partially observed models with transi-
tion kernels Tn and T (with a channel Q) and their corresponding fully observed
transition kernels ηn and η: following the discussions and techniques in [9] and
[15], one can show that ηn and η satisfy the conditions of Theorem 11 and
Theorem 10 that is ηn(·|zn, un) → η(·|z, u) for any (zn, un) → (z, u) under the
following set of assumptions

– Tn(·|xn, un) → T (·|x, u) for any (xn, un) → (x, u),
– Q(·|x) is continuous on total variation in x.

We remark that these conditions also agree with the conditions presented for
continuity and robustness of the partially observed models (Theorem 4 and
Theorem 8).

4.2 Setwise Convergence

Absence of Continuity Under Setwise Convergence. We give a negative
result similar to Theorem 5, via Example 1:

Theorem 12. Letting Tn → T setwise, then it is not necessarily true that
J∗

β(c, Tn) → J∗
β(c, T ) even when c(x, u) is continuous and bounded in X × U.

A Sufficient Condition for Continuity Under Setwise Convergence.

Theorem 13. Under Assumption 3 Jβ(cn, Tn, γ∗
n) → Jβ(c, T , γ∗), for any ini-

tial state x0, as n → ∞.

Proof. We use the same value iteration technique that we used to prove Theorem
10. See [18]. ��

Absence of Robustness Under Setwise Convergence. Now, we give a
result showing that even if the continuity holds under the setwise convergence
of the kernels, the robustness may not be satisfied (see [18, Theorem 4.7]).

Theorem 14. Supposing Tn(·|xn, un) → T (·|x, u) setwise for every x ∈ X and
u ∈ U and (xn, un) → (x, u), then it is not true in general that Jβ(c, T , γ∗

n) →
Jβ(c, T , γ∗), even when X and U are compact and c(x, u) is continuous and
bounded in X × U.

A Sufficient Condition for Robustness Under Setwise Convergence.
We now present a similar result to Theorem 11 that is we show that under the
conditions of Theorem 13, if further for every n, γ∗

n is optimal for every x0 ∈ X

(under the model Tn) then robustness holds under setwise convergence.

Theorem 15. Supposing Assumption 3 holds, if further we have that for every
n, γ∗

n is optimal for every x0 ∈ X (under the model Tn) then Jβ(c, T , γ∗
n) →

Jβ(c, T , γ∗).
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4.3 Total Variation

The continuity result in Theorem 6 and the robustness result in Theorem 7 apply
to this case since the fully observed model may be viewed as a partially observed
model with the measurement channel Q given in (6).

5 Applications to Data-Driven Learning and Finite
Model Approximations

5.1 Application of Robustness Results to Data-Driven Learning

In practice, one may estimate the kernel of a controlled Markov chain using
empirical data; see e.g. [3,12] for some related literature in the control-free and
controlled contexts.

Let us briefly review the basic case where an i.i.d. sequence of random vari-
ables is repeatedly observed, but its probability measure is not known apriori.
Let {(Xi), i ∈ N} be an X-valued i.i.d. random variable sequence generated
according to some distribution μ. Defining for every (fixed) Borel B ⊂ X, and
n ∈ N, the empirical occupation measures μn(B) = 1

n

∑n
i=1 1{Xi∈B}, one has

μn(B) → μ(B) almost surely by the strong law of large numbers. It then follows
that μn → μ weakly with probability one [6, Theorem 11.4.1], . However, μn

does not converge to μ in total variation or setwise, in general. On the other
hand, if we know that μ admits a density, we can find estimators to estimate μ
under total variation [5, Chapter 3]. For a more detailed discussion, see [17, pp.
1950–1951]. In the previous sections, we established robustness results under the
convergence of transition kernels in the topology of weak convergence and total
variation. We build on these observations.

Corollary 1 (to Theorem 6 and Theorem 7). Suppose we are given the
following dynamics for finite state space, X, and finite action space, U,

xt+1 = f(xt, ut, wt), yt = g(xt, vt)

where {wt} and {vt} are i.i.d.noise processes and the noise models are unknown.
Suppose that there is an initial training period so that under some policy, every
x, u pair is visited infinitely often if training were to continue indefinitely, but that
the training ends at some finite time. Let us assume that, through this training,
we empirically learn the transition dynamics such that for every (fixed) Borel
B ⊂ X, for every x ∈ X, u ∈ U and n ∈ N, the empirical occupation measures
are

Tn(B|x0 = x, u0 = u) =
∑n

i=1 1{Xi∈B,Xi−1=x,Ui−1=u}∑n
i=1 1{Xi−1=x,Ui−1=u}

.

Then we have that J∗
β(Tn) → J∗

β(T ) and Jβ(T , γ∗
n) → J∗

β(T ), where γ∗
n is the

optimal policy designed for Tn. Since the channel model g has no restrictions,
this result also applies to the fully observed model setup by taking g(xt, vt) = xt.



Robustness to Incorrect Models and Approximations 185

Proof. We have that Tn(·|x, u) → T (·|x, u) weakly for every x ∈ X, u ∈ U

almost surely by law of large numbers. Since the spaces are finite, we also have
Tn(·|x, u) → T (·|x, u) under total variation. By Theorem 6 and Theorem 7, the
results follow. ��

The following holds for more general spaces.

Corollary 2 (to Theorems 8, 4, 10 and 11). Suppose we are given the fol-
lowing dynamics with state space X and action space U,

xt+1 = f(xt, ut, wt), yt = g(xt, vt),

where {wt} and {vt} are i.i.d.noise processes and the noise models are unknown.
Suppose that f(x, u, ·) : W → X is invertible for all fixed (x, u) and f(x, u, w)
is continuous and bounded on X×U×W. We construct the empirical measures
for the noise process wt such that for every (fixed) Borel B ⊂ W, and for every
n ∈ N, the empirical occupation measures are

μn(B) =
1
n

n∑

i=1

1{f−1
xi−1,ui−1 (xi)∈B} (9)

where f−1
xi−1,ui−1

(xi) denotes the inverse of f(xi−1, ui−1, w) : W → X for given
(xi−1, ui−1). Using the noise measurements, we construct the empirical transi-
tion kernel estimates for any (x0, u0) and Borel B as

Tn(B|x0, u0) = μn(f−1
x0,u0

(B)).

(i) If the measurement channel (represented by the function g) is continuous
in total variation then J∗

β(Tn) → J∗
β(T ) and Jβ(T , γ∗

n) → J∗
β(T ), where γ∗

n

is the optimal policy designed for Tn for all initial points.
(ii) If the measurement channel is in the form g(xt, vt) = xt (i.e. fully observed)

then J∗
β(Tn) → J∗

β(T ) and if further for every n, γ∗
n is optimal for every

x0 ∈ X (under the model Tn) then Jβ(T , γ∗
n) → J∗

β(T ).

Proof. We have μn → μ weakly with probability one where μ is the model. We
claim that the transition kernels are such that Tn(·|xn, un) → T (·|x, u) weakly
for any (xn, un) → (x, u). To see that observe the following for h ∈ Cb(X)

∫
h(x1)Tn(dx1|xn, un) −

∫
h(x1)T (dx1|x, u)

=
∫

h(f(xn, un, w))μn(dw) −
∫

h(f(x, u, w))μ(dw) → 0,

where μn is the empirical measure for wt and μ is the true measure again. For the
last step, we used that μn → μ weakly and h(f(xn, un, w)) continuously converge
to h(f(x, u, w)) i.e. h(f(xn, un, wn)) → h(f(x, u, w) for some wn → w since f
and g are continuous functions. Similarly, it can be also shown that Tn(·|x, u) and
T (·|x, u) are weakly continuous on (x, u). Thus, for the case where the channel is
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continuous in total variation by Theorem 8 and Theorem 4 if c(x, u) is bounded
and U is compact the result follows.

For the fully observed case, J∗
β(Tn) → J∗

β(T ) by Theorem 10 and Jβ(T , γ∗
n) →

J∗
β(T ) by Theorem 11. ��

Remark 3. We note here that the moment estimation method can also lead to
consistency. Suppose that the distribution of W is determined by its moments,
such that estimate models Wn have moments of all orders and limn = E[W r

n ] =
E[W r] for all r ∈ Z+. Then, we have that [4, Theorem 30.2] Wn → W weakly
and thus Tn(·|xn, un) → T (·|x, u) weakly for any (xn, un) → (x, u) under the
assumptions of above corollary. Hence, we reach continuity and robustness using
the same arguments as in the previous result (Corollary 2).

Now, we give a similar result with the assumption that the noise process of
the dynamics admits a continuous probability density function.

Corollary 3 (to Theorem 6 and Theorem 7). Suppose we are given the
following dynamics for real vector state space X and action space U

xt+1 = f(xt, ut, wt), yt = g(xt, vt),

where {wt} and {vt} are i.i.d.noise processes and the noise models are unknown
but it is known that the noise wt admits a continuous probability density function.
Suppose that f(x, u, ·) : W → X is invertible for all (x, u). We collect i.i.d.
samples of {wt} as in (9) and use them to construct an estimator, μ̃n , as
described in [5] which consistently estimates μ in total variation. Using these
empirical estimates, we construct the empirical transition kernel estimates for
any (x0, u0) and Borel B as

Tn(B|x0, u0) = μ̃n(f−1
x0,u0

(B)).

Then independent of the channel, J∗
β(Tn) → J∗

β(T ) and Jβ(T , γ∗
n) → J∗

β(T ),
where γ∗

n is the optimal policy designed for Tn. Since the channel model g has no
restrictions, this result also applies to the fully observed model setup by taking
g(xt, vt) = xt.

Proof. By [5] we can estimate μ in total variation so that almost surely
limn→∞ ‖μ̃n − μ‖TV = 0. We claim that the convergence of μ̃n to μ under total
variation metric implies the convergence of Tn to T in total variation uniformly
over all x ∈ X and u ∈ U i.e. limn→∞ supx,u ‖Tn(·|x, u) − T (·|x, u)‖TV = 0.
Observe the following:

sup
x,u

‖Tn(·|x, u) − T (·|x, u)‖TV

= sup
x,u

sup
||h||∞≤1

∣
∣
∫

h(x1)Tn(dx1|x, u) −
∫

h(x1)T (dx1|x, u)
∣
∣

= sup
x,u

sup
||h||∞≤1

∣
∣
∫

h(f(x, u, w))μ̃n(dw) −
∫

h(f(x, u, w))μ(dw)
∣
∣

≤‖μ̃n − μ‖TV → 0.
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Thus, by Theorem 6 and Theorem 7, the result follows. ��

The following example presents some system and channel models which sat-
isfy the requirements of the above corollaries.

Example 2. Let X,Y, U be real vector spaces with

xt+1 = f(xt, ut) + wt, yt = h(xt, vt)

for unknown i.i.d. noise processes {wt} and {vt}.

1. Suppose the channel is in the following form; yt = h(xt, vt) = xt +vt where vt

admits a density (e.g. Gaussian density). It can be shown by an application
of Scheffé’s theorem that the channels in this form are continuous in total
variation. If further f(xt, ut) is continuous and bounded then the requirements
of Corollary 2 hold for partially observed models.

2. If the channel is in the following form; xt = h(xt, vt) then the system is fully
observed. If further f(xt, ut) is continuous and bounded then the requirements
of Corollary 2 holds for fully observed models.

3. Suppose the function f(xt, ut) is known, if the noise process wt admits a con-
tinuous density, then one can estimate the noise model in total variation in a
consistent way (see [5]). Hence, the conditions of Corollary 3 holds indepen-
dent of the channel model.

5.2 Application to Approximations of MDPs and POMDPs
with Weakly Continuous Kernels

We now discuss Problem P4, that is whether approximation of an MDP model
with a standard Borel space with a finite MDPs can be viewed an instance of
robustness problem to incorrect models and whether our results can be applied.

Review of Finitely Quantized Approximations to Standard Borel
MDPs. Consider an MDP which is quantized as follows.

Finite State Approximate MDP: Quantization of the State Space. Let
dX denote the metric on X. For each n ≥ 1, there exists a finite subset {xn,i}kn

i=1

of X such that

min
i∈{1,...,kn}

dX(x, xn,i) < 1/n for all x ∈ X.

Let Xn := {xn,1, . . . , xn,kn
} and define Qn mapping any x ∈ X to the nearest

element of Xn, i.e.,

Qn(x) := arg min
xn,i∈Xn

dX(x, xn,i).
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For each n, a partition {Sn,i}kn
i=1 of the state space X is induced by Qn by

setting

Sn,i = {x ∈ X : Qn(x) = xn,i}.

Let ψ be a probability measure on X which satisfies

ψ(Sn,i) > 0 for all i, n,

and define probability measures ψn,i on Sn,i by restricting ψ to Sn,i:

ψn,i( · ) := ψ( · )/ψ(Sn,i).

Using {ψn,i}, we define a sequence of finite-state MDPs, denoted as f-MDPm,
to approximate the compact-state MDP.

For each m, f-MDPm is defined as:
(
Xn,U, Tn, cn

)
, and the one-stage cost

function cn : Xn × U → [0,∞) and the transition probability Tn on Xn given
Xn × U are given by

cn(xn,i, a) :=
∫

Sn,i

c(x, a)ψn,i(dx)

Tn( · |xn,i, a) :=
∫

Sn,i

Qn ∗ T ( · |x, a)ψn,i(dx),

where Qn ∗ T ( · |x, a) ∈ P(Xn) is the pushforward of the measure T ( · |x, a) with
respect to Qn; that is,

Qn ∗ T (zn,j |x, a) = T
(
{y ∈ X : Qn(y) = xn,j}|x, a

)
,

for all xn,j ∈ Xn.

Finite Action Approximate MDP: Quantization of the Action Space.
Let dU denote the metric on U. Since the action space U is compact and thus
totally bounded, one can find a sequence of finite sets Λn = {an,1, . . . , an,kn

} ⊂ U

such that for all n,

min
i∈{1,...,kn}

dU(a, an,i) < 1/n for all a ∈ U.

In other words, Λn is a 1/n-net in U. Let us assume that the sequence {Λn}n≥1

is fixed. To ease the notation in the sequel, let us define the mapping Υn

Υn(f)(x) := arg min
a∈Λn

dU(f(x), a), (10)

where ties are broken so that Υn(f)(x) is measurable.
It is known that finite quantization policies are nearly optimal under the

conditions to be presented below, see [23, Theorem 3.2]. Thus, to make the
presentation shorter, we will either assume that the action set is finite, or it
has been approximated by a finite action space through the construction above.
Assuming finite action sets will help us avoid measurability issues (see universal
measurability discussions in [22]) as well as issues with existence of optimal
policies.
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Assumption 6.(a) The one stage cost function c is nonnegative and continu-
ous.

(b) The stochastic kernel T ( · |x, a) is weakly continuous in (x, a) ∈ X × U.
(c) U is finite.
(d) X is compact.

We note that condition (d) in Assumption 6 as presented in [22] was more
general, but we have used the simpler version here for clarity in exposition.

One can write the following fixed point equation for the finite MDP

Jn
β (x) = min

a∈U

{

cn(x, a) + β
∑

x1∈Xn

Jn
β (x1)Tn(x1|x, a)

}

where Tn is the transition model for the finite MDP and cn is the cost function
defined on the finite model. Since the acton space is finite, we can find an optimal
policy, say f∗

n for this fixed point equation. One can also simply extend Jn
β and

f∗
n, which are defined on Xn to the entire state space X by taking them constant

over the quantization bins Sn,i. If we call the extended versions Ĵn
β and f̂n, the

following result can be established:

Theorem 16. [22, Theorem 2.2 and 4.1] Suppose Assumption 6 holds. Then,
for any β ∈ (0, 1) the discounted cost of the deterministic stationary policy f̂n,
obtained by extending the discounted optimal policy f∗

n of f-MDPm to X (i.e.,
f̂n = f∗

n ◦ Qn), converges to the discounted value function J∗ of the compact-
state MDP:

lim
n→∞

‖Ĵn
β (· ) − J∗

β(· )‖ = 0 and lim
n→∞

‖Jβ(f̂n, · ) − J∗
β‖ = 0. (11)

Theorems 16 shows that under Assumption 6, an optimal solution can be
approximated via the solutions of finite models. We now show that the above
approximation scheme can be viewed in relation to our robustness results.
Proof Sketch of Theorem 16 via results from Sect. 4. With the introduced setup,
one can see that the extended value function and optimal policy for the finite
model satisfy the following:

Ĵn
β (x) = min

a∈U

{
ĉn(x, u) + β

∫
Ĵn

β (x1)T̂n(dx1|x, u)
}

where ĉn is the extended version of cn to the state space X by making it constant
over the quantization bins {Sn,i}i and T̂n is such that for any function f

∫
f(x1)T̂n(dx1|x, u) :=

∫

x1∈X

∫

z∈Sn,i

f(x1)T (dx1|z, u)ψn,i(dz)

where Sn,i is the quantization bin that x belongs to.
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With this setup, one can see that for any xn → x we have ĉn(xn, u) → c(x, u)
and for any continuous and bounded f

∫
f(x1)T̂n(dx1|xn, u) :=

∫

x1∈X

∫

z∈Sn,i

f(x1)T (dx1|z, u)ψn,i(dz)

→
∫

f(x1)T (dx1|x, u).

Hence, Assumption 1 holds under Assumption 6, and we can conclude the
proof using Theorem 11 and Theorem 10. ��

6 Concluding Remarks

We studied regularity properties of optimal stochastic control on the space of
transition kernels, and applications to robustness of optimal control policies
designed for an incorrect model applied to an actual system. We also presented
applications to data-driven learning and related the robustness problem to finite
MDP approximation techniques. For the problems presented in this article, our
focus was on infinite horizon discounted cost setup. However, we note that the
results can be extended to the infinite horizon average cost setup under various
forms of ergodicity properties on the state process.
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Abstract. We analyze the DQN reinforcement learning algorithm as a
stochastic approximation scheme using the o.d.e. (for ‘ordinary differ-
ential equation’ ) approach and point out certain theoretical issues. We
then propose a modified scheme called Full Gradient DQN (FG-DQN,
for short) that has a sound theoretical basis and compare it with the
original scheme on sample problems. We observe a better performance
for FG-DQN.
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1 Introduction

Recently we have witnessed tremendous success of Deep Reinforcement Learn-
ing algorithms in various application domains. Just to name a few examples,
DRL has achieved superhuman performance in playing Go [41], Chess [42] and
many Atari video games [31,32]. In Chess, DRL algorithms have also beaten
the state of the art computer programs, which are based on more or less brute-
force enumeration of moves. Moreover, playing Go and Chess, DRL surprised
experts with new insights and beautiful strategies [41,42]. We would also like
to mention the impressive progress of DRL applications in robotics [23,24,33],
telecommunications [29,36,51] and medicine [26,34].

The use of Deep Neural Networks is of course an essential part of DRL.
However, there are other paramount elements that contributed to the success of
DRL. A starting point for DRL was the Q-learning algorithm of Watkins [49],
which in its original form can suffer from the proverbial curse of dimension-
ality. In [25,45] the convergence of Q-learning has been rigorously established.
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Then, in [21,22] Gordon has proposed and analyzed fitted Q-learning using a
novel architecture based on what he calls ‘averager’ maps. In [38] Riedmiller
has proposed using a neural network for approximating Q-values. There he has
also suggested that we treat the right hand side of the dynamic programming
equation for Q-values (see Eq. (5) below) as the ‘target’ to be chased by the left
hand side, i.e., the Q-value itself, and then seek to minimize the mean squared
error between the two. The right hand side in question also involves the Q-value
approximation and ipso facto the parameter itself, which is treated as a ‘given’
for this purpose, as a part of the target, and the minimization is carried out
only over the same parameter appearing in the left hand side. This leads to a
scheme reminiscent of temporal difference learning, albeit a nonlinear variant of
it. The parameter dependence of the target leads to some difficulties because of
the permanent shifting of the target itself, what one might call the ‘dog chasing
its own tail’ phenomenon. Already in [38], frequent instability of the algorithm
has been reported.

The next big step in improvement of DRL performance was carried out by
DeepMind researchers, who elaborated the Deep Q-Network (DQN) scheme [31],
[32]. Firstly, to improve the stability of the algortihm in [38], they suggested
freezing the parameter value in the target network for several iterates. Thus in
DQN, the target network evolves on a slower timescale. The second successful
tweak for DQN has been the use of ‘experience replay’, or averaging over some
relevant traces from the past, a notion introduced in [27,28]. Then, in [47,48] it
was suggested that we introduce a separation of policy estimation and evaluation
to further improve stability. The latter scheme is called Double DQN. While
various success stories of DQN and Double DQN schemes have been reported,
this does not completely fix the theoretical and practical issues.

Let us mention that apart from Q-value based methods in DRL, there is
another large family of methods based on policy gradient. Each family has its
own positive and negative features (for background on RL and DRL methods
we recommend the texts [7,20,43]). While there has been a notable progress in
the theoretical analysis of the policy gradient methods [1,2,8,13,30,44], there
are no works establishing convergence of the neural Q-value based methods to
the best of our knowledge.

In this work, we revisit DQN and scrutinize it as a stochastic approxima-
tion algorithm, using the ‘o.d.e.’ (for ‘ordinary differential equation’) approach
for its convergence analysis (see [11] for a textbook treatment). In fact, we go
beyond the basic o.d.e. approach to its generalization based on differential inclu-
sions, involving in particular non-smooth analysis. This clarifies the underlying
difficulties regarding theoretical guarantees of convergence and also suggests a
modification, which we call the Full Gradient DQN, or FG-DQN. We estab-
lish theoretical convergence guarantees for FG-DQN and compare it empirically
with DQN on sample problems (forest management [14,16] and cartpole [5,19]),
where it gives better performance at the expense of some additional computa-
tional overhead per iteration.

As was noticed above, another successful tweak for DQN has been the use
of ‘experience replay’. We too incorporate this in our scheme. Many advantages
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of experience replay have been cited in literature, which we review later in this
article. We also unearth an interesting additional advantage of ‘experience replay’
for Bellman error minimization using gradient descent and compare it with the
‘double sampling’ technique of [3]. See Sects. 4.2 and 5.1 below.

2 DQN Reinforcement Learning

2.1 Q-learning

We begin by recalling the derivation of the original Q-learning scheme [49]
to set up the context. Consider a Markov chain {Xn} on a finite state space
S := {1, 2, · · · , s}, controlled by a control process {Un} taking values in a finite
action space A = {1, 2, · · · , a}. Its transition probability function is denoted by
(x, y, u) ∈ S2 × A �→ p(y|x, u) ∈ [0, 1] such that

∑
y p(y|x, u) = 1 ∀ x, u. The

controlled Markov property then is

P (Xn+1 = y|Xm, Um,m ≤ n) = p(y|Xn, Un) ∀ n ≥ 0, y ∈ S.

We call {Un} an admissible control policy. It is called a stationary policy if
Un = v(Xn) ∀n for some v : S → A. A more general notion is that of a stationary
randomized policy wherein one chooses the control Un at time n probabilistically
with a conditional law given the σ-field Fn := σ(Xm, Um,m < n;Xn) that
depends only on Xn. That is,

ϕ(u|Xn) := P (Un = u|Fn) = P (Un = u|Xn)

for a prescribed map x ∈ S �→ ϕ(·|x) ∈ P(A) := the simplex of probability
vectors on A. One identifies such a policy with the map ϕ. Denote the set of
stationary randomized policies by USR. In anticipation of the learning schemes
we discuss, we impose the ‘frequent updates’ or ‘sufficient exploration’ condition

lim inf
n↑∞

1
n

n−1∑

m=0

I{Xm = x,Um = u} > 0 a.s. ∀x, u. (1)

Given a per stage reward (x, u) �→ r(x, u) and a discount factor γ ∈ (0, 1), the
objective is to maximize the infinite horizon expected discounted reward

E

[ ∞∑

m=0

γmr(Xm, Um)

]

.

The ‘value function’ V : S → R defined as

V (x) = max E

[ ∞∑

m=0

γmr(Xm, Um)
∣
∣
∣X0 = x

]

, x ∈ S, (2)

then satisfies the dynamic programming equation

V (x) = max
u

[

r(x, u) + γ
∑

y

p(y|x, u)V (y)

]

, x ∈ S. (3)
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Furthermore, the maximizer v∗(x) on the right (chosen arbitrarily if not unique)
defines a stationary policy v∗ : S → A that is optimal, i.e., achieves the maximum
in (2). Equation (3) is a fixed point equation of the form V = F (V ) (which defines
the map F : Rs → Rs) and can be solved by the ‘value iteration’ algorithm

Vn+1(x) = max
u

[

r(x, u) + γ
∑

y

p(y|x, u)Vn(y)

]

, n ≥ 0, (4)

beginning with any V0 ∈ Rs. F can be shown to satisfy

‖F (x) − F (y)‖∞ ≤ γ‖x − y‖∞,

i.e., it is an ‖ · ‖∞-norm contraction. Then (4) is a standard fixed point iteration
of a contraction map and converges exponentially to its unique fixed point V .

Now define Q-values as the expression in square brackets in (3), i.e.,

Q(x, u) = r(x, u) + γ
∑

y

p(y|x, u)V (y), x ∈ S, u ∈ A.

If the function Q(·, ·) is known, then the optimal control at state x is found by
simply maximizing Q(x, ·) without requiring the knowledge of reward or transi-
tion probabilities. This makes it suitable for data-driven algorithms of reinforce-
ment learning. By (3), V (x) = maxu Q(x, u). The Q-values then satisfy their
own dynamic programming equation

Q(x, u) = r(x, u) + γ
∑

y

p(y|x, u)max
v

Q(y, v), (5)

which in turn can be solved by the ‘Q-value iteration’

Qn+1(x, u) = r(x, u) + γ
∑

y

p(y|x, u)max
v

Qn(y, v), x ∈ S, u ∈ A. (6)

What we have gained at the expense of increased dimensionality is that the
nonlinearity is now inside the conditional expectation w.r.t. the transition prob-
ability function. This facilitates a stochastic approximation algorithm [11] where
we first replace this conditional expectation by actual evaluation at a real or sim-
ulated random variable ζn+1(x, u) with law p(·|x, u), and then make an incre-
mental correction to the current guess based on it. That is, replace (6) by

Qn+1(x, u) = (1−a(n))Qn(x, u)+a(n)
(
r(x, u) + γ max

v
Qn(ζn+1(x, v), v)

)
(7)

for some a(n) > 0. The Q-learning algorithm does so using a single run of a real
or simulated controlled Markov chain (Xn, Un), n ≥ 0, so that:

• at each time instant n, (Xn, Un) are observed and the (Xn, Un)th component
of Q is updated, leaving other components of Qn(·, ·) unchanged,
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• this update follows (7) where ζn+1(x, u) with x = Xn, u = Un, gets replaced
by Xn+1, which indeed has the conditional law p(·|Xn, Un) as required,

• {a(n)} are positive scalars in (0, 1) chosen to satisfy the standard Robbins-
Monro conditions of stochastic approximation [11], i.e.,

∑

n

a(n) = ∞,
∑

n

a(n)2 < ∞. (8)

It is more convenient to write the resulting Q-learning algorithm as

Qn+1(x, u) = Qn(x, u) + a(n)I{Xn = x,Un = u}
(

r(x, u)

+ γ max
v

Qn(Xn+1, v) − Qn(x, u)

)

∀ x, u, (9)

where I{· · · } := the indicator random variable that equals 1 if ‘· · · ’ holds and
0 if not. The fact that only one component is being updated at a time makes
this an asynchronous stochastic approximation. Nevertheless, it exhibits the well
known ‘averaging effect’ of stochastic approximation whereby it is a data-driven
scheme that emulates (6) and exhibits convergence a.s. to the same limit, viz.,
Q. For formal proofs, see [25,45,50].

2.2 DQN Learning

The raw Q-learning scheme (9), however, does inherit the ‘curse of dimension-
ality’ of MDPs. One common fix is to replace Q by a parametrized family
(x, u, θ) �→ Q(x, u; θ) (where we again use the notation Q(·, ·; ·) by abuse of
terminology so as to match standard usage). Here θ ∈ Θ ⊂ Rd for a moderate
d ≥ 1 and the objective is to learn the ‘optimal’ approximation Q(·, ·; θ∗) by iter-
ating in Θ. For simplicity, we take Θ = Rd. One natural performance measure
is the ‘DQN Bellman error’

E(θ) := E
[
(Zn − Q(Xn, Un; θ))2

]
, (10)

where
Zn := r(Xn, Un) + γ max

v
Q(Xn+1, v; θn)

is the ‘target’ that is taken as a given quantity and the expectation is w.r.t. the
stationary law of (Xn, Un). For later reference, note that this is different from
the ‘true Bellman error’

Ē(θ) := E

[(
r(Xn, Un) + γ

∑

y
p(y|Xn, Un)max

v
Q(y, v; θ) − Q(Xn, Un; θ)

)2
]

.

(11)
The stochastic gradient type scheme based on the empirical semi-gradient of

E(·) then becomes

θn+1 = θn + a(n)(Zn − Q(Xn, Un; θn))∇θQ(Xn, Un; θn), n ≥ 0. (12)
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2.3 Experience Replay

An important modification of the DQN scheme has been the incorporation of
‘experience replay’. The idea is to replace the term multiplying a(n) on the right
hand side of (12) by an empirical average over traces of transitions from past
that are stored in memory. The algorithm then becomes

θn+1 = θn +
a(n)

M

×
M∑

m=1

(
(Zn(m) − Q(Xn(m), Un(m)))∇θQ(Xn(m), Un(m); θn(m))

)
, n ≥ 0, (13)

where (Xn(m), Un(m)), 1 ≤ m ≤ N, are samples from past. This has multiple
advantages. Some that have been cited in literature are as follows.

1. As in the mini-batch stochastic gradient descent for empirical risk minimiza-
tion in machine learning, it helps reduce variance. It also diminishes effects
of anomalous transitions.

2. Training based on only the immediate experiences (≈ samples) tends to over-
fit the model to current data. This is prevented by experience replay. In
particular, if past samples are randomly picked, they are less correlated.

3. The re-use of data leads to data efficiency.
4. Experience replay is better suited for delayed rewards or costs, e.g., when the

latter are realized only at the end of a long episode or epoch.

There are also variants of basic experience replay, e.g., [40], which replaces
purely random sampling from past by a non-uniform sampling which picks a
sample with probability proportional to its absolute Bellman error.

We shall be implementing experience replay a little differently in the variant
we describe next, which has yet another major advantage from a theoretical
standpoint in the specific context of our scheme.

2.4 Double DQN Learning

One more modification of the vanilla DQN scheme is doing the policy selection
according the local network [47,48]. The target network is still used in Zn and is
updated on a slower time scale. The latter can be represented with another set
of parameters θ̄n. Thus, the iterate for the Double DQN scheme can be written
as follows:

θn+1 = θn + a(n)(Zn − Q(Xn, Un; θn))∇θQ(Xn, Un; θn), n ≥ 0, (14)

with
Zn := r(Xn, Un) + γQ(Xn+1, v; θ̄n)

∣
∣
∣
v=argmaxv′Q(Xn+1,v′;θn)

.

For the sake of comparison, in the vanilla DQN one has:

Zn := r(Xn, Un) + γQ(Xn+1, v; θ̄n)
∣
∣
∣
v=argmaxv′Q(Xn+1,v′;θ̄n)

.
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Note that in Double DQN, the selection and evaluation of the policy is done
separately. According to [47,48] this modification improves the stability of the
DQN learning. One can also combine Double DQN with experience replay [48].

3 The Issues with DQN Learning

The expression for DQN learning scheme is appealing because of its apparent
similarity with the very successful temporal difference learning for policy eval-
uation [46], not to mention its empirical successes, including some high profile
ones such as [32]. Nevertheless, a good theoretical justification seems lacking.
The difficulty arises from the fact that the ‘target’ Zn is not something extrane-
ous, but is also a function of the operative parameter θn. In fact, this becomes
apparent once we expand Zn in (12) to write

θn+1 = θn + a(n)(r(Xn, Un) + γ max
v

Q(Xn+1, v; θn) − Q(Xn, Un; θn))

×∇θQ(Xn, Un; θn), n ≥ 0. (15)

Write

Ẽ(θ, θ̄) := E

[(
r(Xn, Un) + γ max

v
Q(Xn+1, v; θ̄) − Q(Xn, Un; θ)

)2
]

, (16)

where E[·] is the stationary expectation as before. Consider the ‘off-policy’ case,
i.e., {(Xn, Un)} is the state-action sequence of a controlled Markov chain satisfy-
ing (1) with a pre-specified stationary randomized policy that does not depend
on the iterates. (As we point out later, the ‘on-policy’ version, which allows for
the latter adaptation, has additional issues.) If we apply the ‘o.d.e. approach’ for
analysis of stochastic approximation (see, e.g., [11] for a textbook treatment),
we get the limiting o.d.e. as

θ̇(t) = −∇1Ẽ(θ(t), θ(t)),

where ∇i denotes gradient with respect to the ith argument of Ẽ(·, ·) for i = 1, 2.
Thus it is a partial stochastic gradient descent wherein only the gradient with
respect to the first occurrence of the variable is used. Unlike gradient dynamics,
there is no reason why such dynamics should converge. It was already mentioned
that in case of linear function approximation, the DQN iteration bears a simi-
larity with TD(0), except for the nonlinear ‘max’ term. The o.d.e. proof of con-
vergence for TD(0) does not carry over to DQN precisely because the stochastic
approximation version leads to the interchange of the conditional expectation
and max operators. The other issue is that in TD(0), the linear operator in
question is a contraction w.r.t. the weighted L2-norm weighted by the station-
ary distribution. That argument also fails for DQN because of presence of the
max operator.

That said, there is already a tweak that treats the first occurrence of θ on the
RHS, i.e., that inside the maximizer, as the ‘target’ being followed, and updates
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it only after several (say, K) iterates. In principle, this implies a delay in the
corresponding input to the iteration and with decreasing stepsizes, introduces
only an asymptotically negligible additional error, so that the limiting o.d.e.
remains the same ([11], Chapter 6). This is also the case for Double DQN.

Suppose on the other hand that in DQN or Double DQN we consider a small
constant stepsize a(n) ≡ a > 0 and let K be large, so that with a fixed target
value, the algorithm nearly minimizes the Bellman error before the target is
updated. Then, assuming the simpler ‘off-policy’ case again, the limiting o.d.e.
for the target, treating the multiple iterates between its successive iterates as a
subroutine, is

θ̇(t) = −∇1Ẽ(x, θ(t))
∣
∣
∣
x=argmax(Ẽ(·,θ(t)))

. (17)

There is no obvious reason why this should converge either. In fact the right hand
side would be ≈ the zero vector near the current maximizer and the evolution
of the o.d.e. and the iteration would be very slow. Of course, this is a limiting
case of academic interest only, stated to underscore the fact that it is difficult to
get convergent dynamics out of the DQN learning scheme. This motivates our
modification, which we state in the next section.

4 Full Gradient DQN

We propose the obvious, viz., to treat both occurrences of the variable θ on equal
footing, i.e., treat it as a single variable, and then take the full gradient with
respect to it. The iteration now is

θn+1 = θn − a(n)
(
r(Xn, Un) + γ max

v
Q(Xn+1, v; θn) − Q(Xn, Un; θn)

)

× (γ∇θQ(Xn+1, vn; θn) − ∇θQ(Xn, Un; θn)) (18)

for n ≥ 0, where vn ∈ ArgmaxQ(Xn+1, ·; θn) chosen according to some tie-
breaking rule when necessary. Note that when the maximizer in the term involv-
ing the max operator is not unique, one may lose its differentiability, but the
expression above still makes sense in terms of the Frechet sub-differential, see
Appendix. We assume throughout that {Xn} is a Markov chain controlled by
the control process {Un} generated according to a fixed stationary randomized
policy ϕ ∈ USR. Other simulation scenarios are possible for the off-policy set-
up. For example, we may replace the triplets (Xn, Un,Xn+1) on the right hand
side by triplets (X ′

n, U ′
n, Y ′

n) where {X ′
n} are generated i.i.d. according to some

distribution with full support and (U ′
n, Y ′

n) are generated with conditional law
P (U ′

n = u, Y ′
n = y|X ′

n = x) = ϕ(u|x)p(y|x, u), conditionally independent of all
other random variables generated till n given X ′

n. The analysis will be similar.
Yet another possibility is that of going through the relevant pairs (x, u) in a
round robin fashion.
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We modify (18) further by replacing the right hand side as follows:

θn+1 = θn − a(n)

(

(r(Xn, Un) + γ max
v

Q(Xn+1, v; θn) − Q(Xn, Un; θn))

× (γ∇θQ(Xn+1, vn; θn) − ∇θQ(Xn, Un; θn)) + ξn+1

)

(19)

for n ≥ 0, where {ξn} is extraneous i.i.d. noise componentwise distributed inde-
pendently and uniformly on [−1, 1], and the overline stands for a modified form
of experience replay which comprises of averaging at time n over past traces
sampled from (Xk, Uk,Xk+1), k ≤ n, for which Xk = Xn, Uk = Un. We analyze
the asymptotic behavior of this scheme in the remainder of this section in the
‘off-policy’ case, i.e., we use a prescribed stationary randomized policy ϕ ∈ USR.

We make the following key assumptions:

(C1) (Assumptions regarding the function Q(·, ·; ·))
1. The map (x, u; θ) �→ Q(x, u; θ) is bounded and twice continuously differen-

tiable in θ with bounded first and second derivatives;
2. For each choice of x ∈ S, the set of θ for which the maximizer of Q(x, ·; θ)

is not unique, is the complement of an open and dense set and has Lebesgue
measure zero;

3. Call θ̂ a critical point of E(·) (which is defined in terms of Q) if the zero vector
is contained in the (Frechet) subdifferential ∂−E(θ̂) (see the Appendix for a
definition). We assume that there are at most finitely many such points.

We also assume:

(C2) (Stability assumption)
The iterates remain a.s. bounded, i.e.,

sup
n

‖θn‖ < ∞ a.s. (20)

Our final assumption is a bit more technical. Rewrite the term

(r(Xn, Un) + γ max
v

Q(Xn+1, v; θn) − Q(Xn, Un; θn))

as ∑

y

p(y|Xn, Un)
(
r(Xn, Un) + γ max

v
Q(y, v; θn) − Q(Xn, Un; θn)

)

+ ε(Xn, Un, θn)

where the error term ε(Xn, Un, θn) captures the difference between the empir-
ical conditional expectation using experience replay and the actual conditional
expectation. We assume that:
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(C3) (Assumption regarding the residual error in experience replay)
The error terms {ε(Xn, Un, θn)} satisfy

ε(Xn, Un, θn) → 0 a.s. and
∑

n

a(n)E[|ε(Xn, Un, θ)|]|θ=θn
< ∞ a.s.,

where the expectation is taken w.r.t. the stationary distribution of the state-
action pairs.

We comment on these assumptions later. Recall the true Bellman error Ē(·)
defined in (11).

Theorem 1. The sequence {θn} generated by FG-DQN converges a.s. to a sam-
ple path dependent critical point of Ē(·).
Proof: For notational ease, write

ε(n) := −ε(Xn, Un, θn) (γ∇θQ(Xn+1, vn; θn) − ∇θQ(Xn, Un; θn)) ,

where vn is chosen from Argmax Q(Xn+1, ·; θn) as described earlier. Consider
the iteration

θn+1 = θn − a(n)

×
(

(∑

y

p(y|Xn, Un)(r(Xn, Un) + γ max
v

Q(y, v; θn) − Q(Xn, Un; θn))
)

× (γ∇θQ(Xn+1, vn; θn) − ∇θQ(Xn, Un; θn)) + ε(n) + ξn+1

)

(21)

for n ≥ 0. Adding and subtracting the one step conditional expectation of the
RHS with respect to F ′

n := σ(Xm, Um,m ≤ n), we have

θn+1 = θn − a(n)

×
(

∑

y

p(y|Xn, Un)(r(Xn, Un) + γ max
v

Q(y, v; θn) − Q(Xn, Un; θn))

)

×
(

∑

y

p(y|Xn, Un) (γ∇θQ(y, un(y); θn) − ∇θQ(Xn, Un; θn))

)

+ a(n)ε(n) + a(n)Mn+1(θn) (22)

where un(y) ∈ Argmax Q(y, ·; θn) is chosen as described earlier, and {Mn(θn−1)}
is a martingale difference sequence w.r.t. the sigma fields {F ′

n}, given by

Mn+1(θn) =
(

( ∑

y

p(y|Xn, Un)(r(Xn, Un) + γ max
v

Q(y, v; θn) − Q(Xn, Un; θn))
)

×
(

γ∇θQ(Xn+1, vn; θn) −
∑

y

p(y|Xn, Un)γ∇θQ(y, un(y); θn)

)

+ ξn+1

)

.



202 K. E. Avrachenkov et al.

Because of our assumptions on Q(·, ·; ·) and {ξn}, Mn(·) will have derivatives
uniformly bounded in n and therefore a uniform linear growth w.r.t. θ. The
same holds for the expression multiplying a(n) in the first term on the right.
We shall analyze this iteration as a stochastic approximation with Markov noise
(Xn, Un), n ≥ 0, and martingale difference noise Mn+1, n ≥ 0 ([11], Chapter 6).

The difficult terms are those of the form γ∇θQ(y, u; θ) above, because all we
can say about them is that:

∇θQ(y, u; θ) ∈ G(y, θ) :=
{

∑

v

ψ(v|y)∇θQ(y, v; θ) : ψ(·|y) ∈ Argmaxφ(·|y)

(
∑

u

φ(u|y)Q(y, u; θ)

)}

.

Define correspondingly the set-valued map

(x, u, θ) �→ H(x, u, θ)

by

H(x, u; θ) := co

({
(∑

y

p(y|x, u)(r(x, u) + γ max
v

Q(y, v; θ) − Q(x, u; θ))
)

×
∑

y

p(y|x, u) (γ∇θQ(y, vj ; θ) − ∇θQ(x, u; θ)) : vj ∈ ArgmaxQ(y, ·; θ)
})

=

{
( ∑

y

p(y|x, u)(r(x, u) + γ max
v

Q(y, v; θ) − Q(x, u; θ))
)

×
∑

y

p(y|x, u)
(
γ∇θQ̄(y, πy; θ) − ∇θQ(x, u; θ)

)
: πy ∈ ArgmaxQ̄(y, ·; θ)

}

where Q̄(y, ψ; θ) :=
∑

u ψ(u|y)Q(y, u; θ) for ψ ∈ USR. Then (22) can be written
in the more convenient form as the stochastic recursive inclusion ([11], Chapter
5) given by

θn+1 ∈ θn − a(n)

(

H(Xn, Un; θn) + ε(n) + Mn+1(θn)

)

. (23)

We shall now use Theorem 7.1 of [52], pp. 355, for which we need to verify the
assumptions (A1)–(A5), pp. 331-2, therein. We do this next.
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• (A1) requires H(y, φ, θ) to be nonempty convex compact valued and upper
semicontinuous, which is easily verified. It is also bounded by our assumptions
on Q(·, ·; ·).

• Sn of [52] corresponds to our (Xn, Un) and (A2) can be verified easily.
• (A3) are the standard conditions on {a(n)} also used here.
• Mn+1(θn), n ≥ 0, defined above, has linear growth in ‖θn‖ as observed above.

Thus (20) implies that for some K ∈ (0,∞),

n∑

m=0

a(m)2E
[‖Mm+1(θm)‖2|Fm

] ≤ K(1 + sup
m

‖θm‖2)
∑

m

a(n)2 < ∞ a.s.

This implies that
∑n−1

m=0 a(m)Mm+1(θm) is an a.s. convergent martingale by
Theorem 3.3.4, pp. 53-4, [10]. This verifies (A4).

• (A5) is the same as (20) above.

Let μ(x, u) := the stationary probability P (Xn = x,Un = u) under ϕ. Then
Theorem 7.1 of [52] applies and allows us to conclude that the iterates will track
the asymptotic behavior of the differential inclusion

θ̇(t) ∈ −
∑

x,u

μ(x, u)H(x, u, θ(t)). (24)

Now we make the important observation that under our hypotheses on the
function Q(·, ·; ·) (see 2. of (C1)), for all x, u and Lebesgue-a.e. θ belonging
to some open dense set O, H(x, u, θ) is the singleton corresponding to Argmax
Q(x, ·; θ) = {u} for some u ∈ A. Furthermore, in this case, the RHS of (24)
reduces to −∇E(θ(t)). Since {ξn} has density w.r.t. the Lebesgue measure, so
will {θn} and therefore by (C1), θn ∈ O ∀n, a.s. Let

L(x, u; θ) :=
1
2

(

r(x, u) + γ
∑

y

p(y|x, u)max
v

Q(y, v; θ) − Q(x, u; θ)

)2

denote the instantaneous Bellman error. Then

Ē(θ) =
∑

x,u

μ(x, u)L(x, u; θ).

Write Ê(θ′) for Ē(θ) evaluated at a possibly random θ′, in order to emphasize the
fact that while Ē(·) is defined in terms of an expectation, a random argument of
Ê(·) is not being averaged over. We use an analogous notation for other quantities
in what follows. Applying the Taylor formula to Ē(·), we have,

Ê(θn+1) = Ê(θn) +
∑

x,u

μ(x, u)〈∇θL(x, u; θ), θn+1 − θn〉 + O(a(n)2).
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But by (22), a.s.,

θn+1 − θn = a(n)
(

− ∇θL(Xn, Un; θn) + ε(n) + Mn+1(θn)

)

= a(n)

(

−
∑

x,u

μ(x, u)∇θL(x, u; θn) + ε(n) + M̃n+1(θn) + O(a(n)2)

)

,

where we have replaced ∇θL(Xn, Un; θn) with
∑

i,u μ(i, u)∇θL(i, u; θn), i.e.,
with the state-action process (Xn, Zn) averaged w.r.t. its stationary distribu-
tion (recall that under our randomized stationary Markov policy, it is a Markov
chain). This uses a standard (though lengthy) argument for stochastic approx-
imation with Markov noise that converts it to a stochastic approximation with
martingale difference noise using the associated parametrized Poisson equation,
at the expense of: (i) adding an additional martingale difference noise term
that we have added to Mn+1(θn) to obtain the combined martingale difference
noise M̃n+1(θn), and, (ii) another O(a(n)2) term that comes from the differ-
ence of the solution of the Poisson equation evaluated at θn and θn+1, which is
O(‖θn+1−θn‖) = O(a(n)), multiplied further by an additional a(n) from (22) to
give a net error that is O(a(n)2). See [6] for a classical treatment of this passage.

Hence for suitable constants 0 < K1,K
′
1 < ∞,

E[Ê(θn+1)|F ′
n] ≤ Ê(θn) + a(n)

(

− ‖
∑

x,u

μ(x, u)∇θL(x, u; θn)‖2

+K1

∑

x,u

μ(x, u)|ε(x, u, θn)| + K2a(n)2
)

≤ Ê(θn) + a(n)

(

K1

∑

x,u

μ(x, u)|ε(x, u, θn)| + K2a(n)2
)

, (25)

where we have used (C1). In view of (C3) and the fact
∑

n a(n)2 < ∞, the ‘almost
supermartingale’ convergence theorem (Theorem 3.3.6, p. 54, [10]) implies that
Ê(θn) converges a.s. This is possible only if

θn →
{

θ : the zero vector is in
∑

x,u

μ(x, u)H(x, u; θ)

}

=

{

θ : θ is a critical point of
∑

x,u

μ(x, u)H(x, u; θ)

}

.

By property (P4) of the Appendix, it follows that H(i, u; θ) ⊂ ∂−L(i, u; θ).
By property (P3) of the Appendix, it then follows that

∑
i,u μ(i, u)H(i, u; θ) ⊂

∂−Ē(θ). The claim follows from item 3 in (C1) given that any limit point of θn

as n ↑ ∞ must be a critical point of ∂−Ē(·) in view of the foregoing. �
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Some comments regarding our assumptions are in order.

1. The vanilla Q-learning iterates, being convex combinations of previous iter-
ates with a bounded quantity, remain bounded. Thus the boundedness
assumption on Q in (C1) is reasonable. The twice continuous differentiability
of Q in θ is reasonable when the neural network uses a smooth nonlinearity
such as SmoothReLU, GELU or a sigmoid function. As we point out later,
using standard ReLU adds another layer of non-smooth analysis which we
avoid here for the sake of simplicity of exposition. The last condition in (C1)
is also reasonable, e.g., when the graphs of Q(x, u; ·), Q(x, u′; ·) cross along a
finite union of lower dimensional submanifolds.

2. (C2) assumes stability of iterates, i.e., supn ‖θn‖ < ∞ a.s. There is an assort-
ment of tests to verify this. See, e.g., [11], Chapter 3. Also, one can enforce
this condition by projection onto a convenient large convex set every time the
iterates exit this set, see ibid., Chapter 7.

3. (C3) entails that we perform successive experience replays over larger and
larger batches of past samples so that the error in applying the strong law
of large numbers decreases sufficiently fast. While this is possible in principle
because of the increasing pool of past traces with time, this will be an ideal-
ization in practice. It seems possible that the additional error in absence of
this can be analyzed as in [37]. Note also that for deterministic control prob-
lems, experience replay is not needed for our purposes. The cartpole model
studied in the next section is an example of this.

It is worth noting that bulk of the argument above is indeed the classical
argument for convergence of stochastic gradient descent with both Markov and
martingale difference noise, except that our iteration fits this paradigm only
‘a.s.’. The missing piece is that the (possibly random) point it converges to need
not be a point of differentiability of Ē(·), and therefore not a classical critical
point thereof. This is what calls for the back and forth between the classical proof
and the differential inclusion limit for stochastic gradient descent to minimize a
non-smooth objective function.

Before we proceed, we would like to underscore a subtle point, viz., the role
of experience replay here. Consider the scheme without the experience replay as
above, given by

θn+1 = θn − a(n)(r(Xn, Un) + γ max
v

Q(Xn+1, v; θn) − Q(Xn, Un; θn))

×
(

γ∇θQ(Xn+1, v; θn)
∣∣∣
v=argmaxQ(Xn+1,·;θn)

− ∇θQ(Xn, Un; θn)

)
. (26)

The limiting o.d.e. for this is

θ̇(t) = E

[
∑

y

p(y|Xn, Un)

(

(r(Xn, Un) + γ max
v

Q(y, v; θ(t)) − Q(Xn, Un; θn))

×
(

γ∇θQ(y, v; θ(t))
∣
∣
∣
v=argmax Q(y,·;θ(t))

− ∇θQ(Xn, Un; θ(t))
) )]

,(27)
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where E[·] denotes the stationary expectation. This is again not in a form where
the convergence is apparent. The problem, typical of naive Bellman error gra-
dient methods, is that we have a conditional expectation (w.r.t. p(·|Xn, Un)) of
a product instead of a product of conditional expectations, as warranted by the
actual Bellman error formula. The experience replay suggested above does one of
the conditional expectations ahead of time, albeit approximately, and therefore
renders (approximately) the expression a product of conditional expectations.
Observe that this is so because we average over past traces (Xm, Um,Xm+1)
where Xm, Um are fixed at the current Xn, Un, so that it is truly a Monte Carlo
evaluation of a conditional expectation. If we were to average over such traces
without fixing Xn, Un, we would get the o.d.e.

θ̇(t) = E
[
r(Xn, Un) + γ max

v
Q(Xn+1, v; θ(t)) − Q(Xn, Un; θn)

]

× E

[
γ∇θQ(Xn+1, v; θ(t))

∣∣∣
v=argmaxQ(Xn+1,·;θ(t))

− ∇θQ(Xn, Un; θ(t))

]
, (28)

where E[·] denotes the stationary expectation. Here the problem is that the
desired ‘expectation of a product of conditional expectations’ has been split
into a product of expectations, which too is wrong. This discussion underscores
an additional advantage of experience replay in the context of Bellman error
gradient methods, over and above its traditional advantages listed earlier.

4.1 Comments About ‘On-Policy’ Schemes

An ‘on-policy’ scheme has an additional complication, viz., the expectation oper-
ator in the definition of Ē(·) itself depends on the parameter θ. This is because
the policy with which the state-action pairs (Xn, Un) are being sampled depends
at time n on the current iterate θn. Therefore there is explicit θ dependence for
the probability measure μ(·, ·), now written as μθ(·, ·). The framework of [52] is
broad enough to allow this ‘iterate dependence’ and we get the counterpart of
(24) with μ(·, ·) replaced by μθ(t)(·, ·), leading to the limiting differential inclusion

θ̇(t) ∈ −∇∗Ēθ(t)(θ(t)). (29)

Here ∇∗ denotes the Frechet subdifferential with respect to only the argument in
parentheses, not the subscript. Hence it is not the full subdifferential and the the-
oretical issues we pointed out regarding DQN come back to haunt us. This is true,
e.g., when you use the ε-greedy policy that picks the control argmax(Q(Xn, ·; θn))
with probability 1 − ε, and chooses a control independently and with uniform
probability from A, with probability ε.
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Clearly, a scheme such as (29) that performs gradient descent for the sta-
tionary expectation of a parametrized cost function w.r.t. the parameter, but
ignoring the parameter dependence of the stationary law itself on the parame-
ter, is not guaranteed to converge. There are special situations such as the EM
algorithm [18] where additional structure of the problem makes it work. In gen-
eral, policy gradient methods based on suitable sensitivity formulas for Markov
decision processes seem to provide the most flexible approach in such situations,
see, e.g., [30].

4.2 Comparison with Double Sampling

To recapitulate, DQN can be viewed as an instance of a broader class of schemes
known as Bellman error minimization or Bellman residual minimization [3]. The
commonality between such schemes is that they first replace the candidate value
function by a parsimoniously parametrized family of functions, e.g., linear com-
binations of basis functions or neural networks. The original equation then need
not hold, so one seeks to minimize the ‘Bellman error’, i.e., the squared differ-
ence between the right and left hand sides of the approximate Bellman quation.
Its gradient involves a product of conditional expectations. If one uses the naive
strategy of replacing them by evaluation at actual samples, the gradient of the
resulting ‘empirical Bellman error’ leads to an (approximate) expectation of a
product in the averaged dynamics where it should have been the expectation of
a product of conditional expectations. That is, product and conditional expecta-
tion get interchanged, causing bias to creep in. In fact, [3] already containes a way
to avoid this. This is the ‘double sampling’ scheme that simulates two transitions
simultaneously at each time instant for the current state-action pair. These are
simulated independently with the same conditional law. One then performs the
function evaluations for next state in the two terms of the product in Bellman
error gradient using the two different samples thus generated. While this has
been used subsequently (see, e.g., [9,35]), it can be very awkward to implement
in some simulation environments and is certainly untenable in on-line mode.
Also, it increases the variance as we note below in numerical experiments. One
of the contributions of the present work is to circumvent this by using a variant
of experience replay. This can be executed with a single simulation run with
buffered data and also has the advantage of lower variance due to averaging.

As for the mathematical analysis, the error process {ε(n)} in the application
of the strong law of large numbers to experience replay drops out and assump-
tion (C3) becomes redundant if no experience replay is used. With pure double
sampling without experience replay, we have only the martingale difference noise
obtained by subtracting from the right hand side of the iteration its one step
conditional expectation. This will be a little different from the martingale dif-
ference noise {Mn+1(θn)} above due to the additional simulated transition and
perforce will have higher variance.
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A recent work [39] treats the empirical Bellman error as a deterministic
function of the parameter and minimizes it using the full gradient as described
here. It does not, however, use either double sampling or experience replay and
therefore retains the problem of replacing a product of conditional expectations
by conditional expectation of a product.

For deterministic systems, double sampling is redundant as there is no con-
ditional expectation in the Bellman equation. Experience replay may still be
desirable for its other advantages mentioned earlier, but is not required on above
grounds.

5 Numerical Results

In this section, we compare on two realistic examples the performance of FG-
DQN with respect to that of the standard DQN scheme [32]. In particular, we
investigate the behaviour of Bellman error, Hamming distance from the optimal
policy (if the optimal policy is known) and the average reward. The pseudo-code
for FG-DQN is described in Algorithm 1.

5.1 Forest Management Problem

Consider a Markov decision process framework for a simple forest manage-
ment problem [14,16]. The objective is to maintain an old forest for wildlife
and make money by selling the cut wood. We consider discounted infinite hori-
zon discrete-time problem. The state of the forest at time n is represented by
Xn ∈ {0, 1, 2, 3, · · · ,M} where the value of the state represents the age of the
forest; 0 being the youngest and M being the oldest. The forest is managed by
two actions: ‘Wait’ and ‘Cut’. An action is applied at each time at the beginning
of the time slot. If we apply the action ‘Cut’ at any state, the forest will return
to its youngest age, i.e., state 0. On the other hand, when the action ‘Wait’
is applied, the forest will grow and move to the next state if no fire occurred.
Otherwise, with probability p, the fire burns the forest after applying the ‘Wait’
action, leaving it at its youngest age (state 0). Note that if the forest reaches
its maximum age, it will remain there unless there is a fire or action ‘Cut’ is
performed. Lastly, we only get a reward when the ‘Cut’ action is performed. In
this case, the reward is equal to the age of the forest. There is no reward for the
action ‘Wait’.
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Algorithm 1: Full Gradient DQN (FG-DQN)
Input: replay memory D of size M , minibatch size B, number of episodes
N , maximal length of an episode T , discount factor γ, exploration
probability ε.
Initialise the weights θ randomly for the Q-Network.
for Episode = 1 to N do

Receive initial observation s1.
for n = 1 to T do

if Uni[0,1] < ε then
Select action Un at random.

else
Un = ArgmaxuQ(Xn, u; θ)

end
Execute the action and take a step in the RL environment.
Observe the reward Rn and obtain next state Xn+1.
Store the tuple (Xn, Un, Rn,Xn+1) in D.
Sample random minibatch of B tuples from D.
for k = 1 to B do

Sample all tuples (Xj , Uj , Rj ,Xj+1) with a fix state-action pair
(Xj = Xk, Uj = Uk) from D

Set Zj =

{
Rj , for terminal state,
Rj + γ maxu Q(Xj+1, u; θ), otherwise.

Compute gradients and using Eq. (19) update parameters θ.
end

end
end

Since the objective is to maximize the discounted profit obtained by selling
wood, we may want to keep waiting to get the maximum possible reward, but
there is an increasing chance that the forest will get burned down.

For numerical simulations, we assume that the maximum age of the forest is
M = 10. Then, we implement standard DQN and FG-DQN to analyse the policy
obtained from the algorithm and the Bellman error. We use a neural network
with one hidden layer to approximate the Q-value. The number of neurons for
this hidden layer is 2000, and we use ReLU for nonlinear activation. It has been
recently advocated to use a neural network with one but very wide hidden layer
[2,15]. The input to the neural network is the state of the forest and the action.
Furthermore, the batch size to draw the samples for the experience replay is
fixed to 25. We test both the algorithms for the off-policy scheme, i.e., we run
through all possible state-action pairs in round-robin fashion to train the neural
network.

We run two different simulations - i) with low discounting factor γ = 0.8
and ii) with high discounting factor γ = 0.95. Figure 1 depicts the simulation
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(a)

(b)

Fig. 1. Forest management problem with γ = 0.8 and p = 0.05
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(a)

(b)

Fig. 2. Forest management problem with γ = 0.95 and p = 0.01
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results for case i) with forest fire probability p = 0.05. We run the experiment
10 times and plot the running average of Bellman error across iterations in
Fig. 1(a). We also calculate the standard deviation of the Bellman error. The
shaded region in the plot denotes the 95% confidence interval. We observe that
FG-DQN converges much faster than DQN. Furthermore, the variance for FG-
DQN is relatively low.

We now analyse how far the answer of each algorithm is from the optimal
policy. To do this, we first find the optimal policy for this setting by policy
iteration algorithm. The optimal policy has a threshold structure as follows:
π∗ = [0, 0, 1, 1, 1, 1, 1, 1, 1, 1] for γ = 0.8 and p = 0.05.

After each iteration, we now evaluate the Q-network and calculate the Ham-
ming distance between the current policy and the optimal policy π∗, which gives
us the count of the number of states where optimal action is not taken. We run
the simulations 10 times and plot the average Hamming distance for DQN and
FG-DQN in Fig. 1(b). Note that we plot every 50th value of the average Ham-
ming distance in the figure. It is to avoid the squeezing of rare spikes obtained at
later time steps of the simulations. The shaded region denotes the 95% confidence
interval for the averaged Hamming distance. We observe from the figure that the
policy obtained by FG-DQN starts converging to the optimal policy at around
8000 iterations. In comparison, for DQN, we observe a lot of spikes during later
iterations. The occurrence of these spikes means that there is a one-bit error in
the policy obtained by DQN. Further analysis shows that the DQN policy in this
case which has one bit error resembles to myopic policy [0, 1, 1, 1, 1, 1, 1, 1, 1, 1].

We next observe the impact of a high discounting factor on the performance
of our algorithm and how well it performs as compared to the standard DQN
scheme. We set γ = 0.95 and forest fire probability p = 0.01. The optimal policy
obtained by exact policy iteration for this case is π∗ = [0, 0, 0, 0, 0, 1, 1, 1, 1, 1].
Figure 2(a) shows the mean loss for 10 simulations and the corresponding 95%
confidence interval. We observe similar behaviour as before, i.e., the variance
for FG-DQN is low. Figure 2(b) shows the averaged Hamming distance between
the policy obtained by the algorithm and the optimal policy. It is clear from
the figure that the variance for DQN is very high throughout the simulation. It
means we may end up with a policy that can have a 3 or 4 bits error at the end of
our simulation runs. On the other hand, FG-DQN is more stable since it shows
fewer variations with the increasing number of iterations. Thus, we are more
likely to get the policy with a 2 bits error on average. The shaded region in the
plot shows the 95% confidence interval for 10 simulations which demonstrates
that the behaviour is consistent across the multiple simulations.

Let us present an additional simulation to evaluate the performance of FG-
DQN versus double sampling scheme [3]. We note that the double sampling
scheme requires to generate two independent samples at each time step. This
becomes difficult in many simulation environments and impossible in on-policy
mode. We further note that if the underlying environment is deterministic,
both these schemes become exactly identical. Therefore, in order to investigate
the difference in their performance, we slightly modify the forest management
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problem to have more stochasticity in its dynamics. Namely, the dynamics
remain the same except for the following change. With probability p, the fire
burns a fraction of the forest after applying the ‘Wait’ action. The fraction of
the forest burnt follows a uniform distribution. In this simulation, we set p = 0.2
and the discount factor γ = 0.9. The optimal policy obtained by the exact policy
iteration for this case is π∗ = [0, 0, 1, 1, 1, 1, 1, 1, 1, 1]. Figure 3 shows the compar-
ison of averaged Hamming distance between the policy obtained by respective
algorithm and the optimal policy. Note that we run the simulations 10 times and
also plot the 95% confidence intervals. We observe that the policy obtained from
FG-DQN approaches quicker the optimal policy and the performance is more
stable. On the other hand, the double sampling policy has significant fluctua-
tions even after 30000 iterations. The figure also shows that the double sampling
policy has a 2–4 bits error at the end of our simulation runs.

Fig. 3. Comparison with the double sampling scheme. Average Hamming distance from
the optimal policy for the forest management problem with resetting to a uniform value
and with γ = 0.9 and p = 0.2.
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Fig. 4. Cartpole system

5.2 Cartpole - OpenAI Gym Model

We now test our algorithm for a more complex example, the Cartpole-v0 model
from OpenAI gym [12]. The environment description is as follows. The state of
the system is defined by a four dimensional tuple that represents cart position x,
cart velocity ẋ, pole angle α and angular velocity α̇ (See Fig. 4). The pole starts
upright and the aim is to prevent it from falling over by pushing the cart to the
left or to the right (binary action space). The cart moves without friction along
the x-axis.

We run multiple simulations, each with 1500 episodes for DQN and FG-
DQN. For every time-step while an episode is running, we get the reward of
+1. The episode ends if any of the following conditions holds: the pole is more
than 12◦ from the vertical axis, the cart moves more than 2.4 units from the
centre, or the episode length is more than 200. The model is considered to be
trained well when the discounted reward is greater than or equal to 195.0 over
100 consecutive trials.

In this example, we used the ‘on-policy’ version with the popular ‘ε-greedy’
scheme which picks the current guess for the optimal (i.e., the control that
maximizes Q(Xn, ·; θn)) with probability 1 − ε and chooses a control uniformly
with probability ε for a prescribed ε > 0. We use ε = 0.1. As we see below,
FG-DQN continues to do much better than DQN even in this on-policy scheme
for which we do not have a convergence proof as yet.

We use a neural network with three hidden layers. The number of nodes for
the hidden layers are 16, 32, and 32, respectively. For non-linearity, we use ReLU
activation after each hidden layer.

We now compare the performances of FG-DQN and DQN for a very high
discounting factor of 0.99. Note that the Cartpole example is deterministic,
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(a)

(b)

Fig. 5. Cartpole example with γ = 0.99
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meaning that for a fixed state-action pair (Xn, Un), the pole moves to state
X ′

n with probability 1. As a result, there will be no averaging in Eq. (18) and
no need for ‘experience replay’. Since this example is complex with significant
non-linearity, we use the batch size of 128 for both DQN and FG-DQN to update
the parameters of the neural network inside one iteration.

Figure 5(a) depicts the reward behaviour for a single typical run of DQN
and FG-DQN. We see that the fluctuations for reward per episode for both the
algorithms are high, and thus, we also plot the moving average of rewards with a
window of 100 episodes. It is clear from the figure that FG-DQN starts achieving
the maximum reward of 200 after 800 episodes regularly, however, DQN hardly
attains the maximum reward during 1000 episodes. To check the consistency of
the behaviour of our algorithm, we run the experiment 10 times and plot the
average reward and 95% confidence interval in Fig. 5(b). We see that FG-DQN
performs much better than DQN with an average reward after 1000 episodes
lying around 175. In comparison, the average reward for DQN is between 50 and
75.

6 Conclusions and Future Directions

We proposed and analyzed a variant of the popular DQN algorithm that we call
Full Gradient DQN or FG-DQN wherein we also include the parametric gradient
(in a generalized sense) of the target. This leads to a provably convergent scheme
with sound theoretical basis which also shows improved performance over test
cases. There is ample opportunity for further research in this direction, both
theoretically and in terms of actual implementations. To highlight opportunities,
we state here some additional remarks, which also contain a few pointers to future
research directions.

1. Since the critical points are isolated, we get a.s. convergence to a single sample
path dependent critical point. This situation is generic in the sense that it
holds true for the problem parameters in an open dense set thereof, by a
standard fact from Morse theory in the smooth case. However, connected
sets of non-isolated equilibria can occur due to overparametrization and it
will be interesting to develop sufficient conditions for point convergence.

2. Thanks to the addition of {ξn}, the noise in FG-DQN is ‘rich enough’ in
all directions in a certain sense. One then expects it to ensure that under
reasonable assumptions, the unstable equilibria, here the critical points other
than local minima of the Bellman error, will be avoided with probability one.
That is, a.s. convergence to a local minimum can be claimed. See Sect. 4.3 of
[11] for a result of this flavor under suitable technical conditions. We expect
a similar result to hold here. In practice, the extraneous noise {ξn} is usually
unnecessary and the inherent numerical errors and noise of the iterations
suffice.

3. We can also use approximation of the ‘max’ operator by ‘softmax’, i.e.,
by picking the control with a probability distribution that concentrates on
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argmax and depends smoothly on the parameter θ. Then we can work with
a legitimate gradient in place of a set-valued map in the o.d.e. limit, at the
expense of picking up an additional bounded error term. Then the conver-
gence to a small neighborhood of an equilibrium may be expected, the size
of which will be dictated in turn by the bound on this error, see, e.g., [37].
There is a similar issue if we drop (C3) and let a persistent small error due to
the use of approximate conditional expectation by experience replay remain.

4. Working with nondifferentiable nonlinearities such as ReLU raises further
technical issues in analysis that need to be explored. This will require further
use of non-smooth analysis.

5. As we have pointed out while describing our numerical experiments on the
cartpole example, FG-DQN gives a significantly better performance than
DQN, in an ‘on-policy’ scenario for which we do not have rigorous theory yet.
This is another promising and important research direction for the future.
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Appendix: Elements of Non-smooth Analysis

The (Frechet) sub/super-differentials of a map f : Rd �→ R are defined by

∂−f(x) :=
{

z ∈ Rd : lim inf
y→x

f(y) − f(x) − 〈z, y − x〉
|x − y| ≥ 0

}

,

∂+f(x) :=
{

z ∈ Rd : lim sup
y→x

f(y) − f(x) − 〈z, y − x〉
|x − y| ≤ 0

}

,

respectively. Assume f, g is Lipschitz. Some of the properties of ∂±f are as
follows.

• (P1) Both ∂−f(x), ∂+f(x) are closed convex and are nonempty on dense
sets.

• (P2) If f is differentiable at x, both equal the singleton {∇f(x)}. Conversely,
if both are nonempty at x, f is differentiable at x and they equal {∇f(x)}.

• (P3) ∂−f + ∂−g ⊂ ∂−(f + g), ∂+f + ∂+g ⊂ ∂+(f + g).

The first two are proved in [4], pp. 30-1. The third follows from the definition.
Next consider a continuous function f : Rd × B �→ R where B is a compact
metric space. Suppose f(·, y) is continuously differentiable uniformly w.r.t. y. Let
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∇xf(x, y) denote the gradient of f(·, y) at x. Let g(x) := maxy f(x, y), h(x) :=
miny f(x, y) with

M(x) := {∇xf(x, y), y ∈ Argmaxf(x, ·)}
and

N(x) := {∇xf(x, y), y ∈ Argminf(x, ·)}.

Then N(x),M(x) are compact nonempty subsets of B which are upper semi-
continuous in x as set-valued maps. We then have the following general version
of Danskin’s theorem [17]:

• (P4) ∂−g(x) = co(M(x)), ∂+g(x) = y if M(x) = {y}, = φ otherwise, and g
has a directional derivative in any direction z given by maxy∈M(x)〈y, z〉.

• (P5) ∂+h(x) = co(N(x)), ∂−h(x) = y if N(x) = {y}, = φ otherwise, and h
has a directional derivative in any direction z given by miny∈N(x)〈y, z〉.
The latter is proved in [4], pp. 44-6, the former follows by a symmetric argu-

ment.
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1 Introduction

In this paper, we justify a finite approximation scheme to solve numerically
Markov decision processes (MDP) with recursive and nonlinear discounting.
The deterministic dynamic programming problem (as a special MDP model)
with recursive and nonlinear discounting was considered in [11,12], which found
many applications to economics. A more recent development is [5], which also
demonstrates the connections of this model with several other relevant problems.

There are two possible ways of extending this model from the deterministic to
the stochastic dynamic programming setup. The latter term is used interchange-
ably below with an MDP. One way of extension was carried out in [10], where the
total cost is discounted firstly along each sample path and then the expectation
is applied. For the resulting MDP problem, in general, stationary policies do not
form a sufficient class. A second possible extension was published more recently,
see [3], where the conditional expected discounted cost is aggregated recursively.
In [3], it was shown that stationary optimal policies exist under the conditions
imposed therein, along with some meaningful examples in e.g., optimal growth
problems. We mention that the models in both [3,10] cover the standard linear
discounting as a special case.
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The purpose of this paper is to justify a finite approximation scheme with
an explicit error bound to the MDP problem considered in [3]. Finite approxi-
mations to MDP models with standard discounting have been considered inten-
sively in the literature, and we confine ourselves to the most relevant ones here.
Most early literature provides convergence results without an explicit estimate
of the error bound. For models with denumerable state and action spaces, see
[2,15,17] and the discussion therein. A most recent development is [13]. Finite
approximations to MDP models in Borel spaces with standard linear discount-
ing were considered and justified in e.g., [4], where an explicit error bound was
provided for the underlying approximation scheme. More recent developments
in this direction can be found in e.g., [6,7,16]. An error bound is desirable for
practical implementations and computations, but establishing it usually requires
stronger conditions on the model.

In the present paper, we extend the method in [6,7] to MDP problems with
recursive and nonlinear discounting. The model considered here is with state and
action spaces being both Borel spaces. Besides the compactness-continuity and
growth conditions imposed in [3], which are needed for establishing basic opti-
mality results (solvability and the dynamic programming equation), we assume
further that the model has Lipschitz continuous initial data. Like in [4,6,7], this
allows us to obtain an explicit error bound. The imposed conditions are satisfied
by a version of the stochastic optimal growth problem formulated in [3], which
can also serve as a motivation of this paper.

The rest of the paper is organized as follows. In Sect. 2, we describe the
model, impose the conditions on it, as well as briefly present the relevant facts
established in [3]. In Sect. 3 we present the main results, whose proofs are post-
poned to Sect. 5. An example is presented in Sect. 4 to illustrate the verification
of the imposed conditions.

2 Model Description

In this section, we present the concerned model, and introduce the conditions on
the system primitives. To ease the reading, we also formulate the relevant state-
ments and facts, primarily from [3], which will be referred to in the subsequent
sections. In what follows, unless stated otherwise, measurability is understood
with respect to underlying Borel σ-algebra, and δx denotes the Dirac measure.

The system primitives of our model are as follows:

– X is the state space, assumed to be a locally compact (topological) Borel
space. A (topological) Borel space is a Borel subset (endowed with the relative
topology) of a complete separable metric space. Let dX be the metric on X,
and we endow X with its Borel σ-algebra B(X).

– A is the action space, assumed to be a locally compact Borel space, with the
metric dA and the Borel σ-algebra B(A).

– A(x) ∈ B(A) is the nonempty set of admissible actions at the state x ∈ X.
That is, A(x) defines a multifunction on X, denoted by A. Assume that

D := {(x, a) : x ∈ X, a ∈ A(x)}
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is a Borel subset of X ×A such that it contains the graph of some measurable
mapping from X to A, say f∞. Here and below, X × A is endowed with the
metric dX + dA defined by dX(x1, x2) + dA(a1, a2) for all x1, x2 ∈ X and
a1, a2 ∈ A.

– q(dy|x, a) is a stochastic kernel on X given (x, a) ∈ D, representing the con-
trolled transition probability.

– u is an R-valued measurable function on D with u(x, a) representing the
utility associated with the current state x ∈ X and action a ∈ A(x).

– δ is an R-valued increasing (and thus measurable) function on R such that
δ(0) = 0, with δ(v) representing the discounted value if the continuing value
of the utility at the next stage is v. (The standard linear discounting with a
constant discount factor β ∈ (0, 1) is retrieved if δ(v) = βv.)

Let us describe the controlled and controlling processes as follows. Let H0 :=
X and Hn := Dn × X for all 1 ≤ n < ∞. We put H := D∞ as the countably
infinite product. For each 1 ≤ n < ∞, Hn is a Borel space and is endowed with
the corresponding Borel σ-algebra B(Hn). The similar assertion applies to H.

Definition 1. (a) A policy π = {πn}n≥0 is given by a sequence of A-valued
measurable mappings πn on Hn such that πn(hn) ∈ A(xn) for each hn =
(x0, a0, x1, a1, . . . , xn) ∈ Hn.

(b) A policy π = {πn}n≥0 is called Markov and is written as {fn}n≥0 with
fn being measurable on X if πn(hn) = fn(xn) for all n ≥ 0 and hn =
(x0, a0, x1, a1, . . . , xn) ∈ Hn.

(c) A policy π = {πn}n≥0 is called stationary and is written as f if for some
measurable mapping f on X, πn(hn) = f(xn) for all n ≥ 0 and hn =
(x0, a0, x1, a1, . . . , xn) ∈ Hn.

The above policies are called pure or deterministic. For simplicity we do not
consider randomized strategies, in which case πn would be stochastic kernels on
A given hn = (x0, a0, . . . , xn) ∈ Hn concentrated on A(xn).

Take (H,B(H)) as the sample space. Given an initial state x ∈ X and policy
π = {πn}n≥0, by the Ionescu-Tulcea theorem, there is a unique probability
measure Pπ

x defined thereon such that

Pπ
x(x0 ∈ dy) = δx(dy);

Pπ
x(xn+1 ∈ dy|hn, an) = q(dy|xn, an); Pπ

x(an ∈ da|hn) = δπn(hn)(da) ∀ n ≥ 0.

Here we use interchangeably xn and the random element defined by Xn(h) = xn

for each h = (x0, a0, . . . , xn, an, . . . ) ∈ H, and the same concerns the use of an.
The context excludes any confusion.

We shall impose the following conditions to guarantee the performance mea-
sure introduced below to be well defined.

Condition 1. There is some [1,∞)-valued measurable function w on X such
that the following are verified.

(a) For some constant b ≥ 0, |u(x)| ≤ bw(x) for all x ∈ X.
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(b) There is some [0,∞)-valued increasing and continuous function γ on [0,∞)
satisfying
(i) γ(0) = 0 and γ(x) < x for all x ∈ (0,∞).
(ii) |δ(x1) − δ(x2)| ≤ γ(|x1 − x2|) for all x1, x2 ∈ R.
(iii) γ(x1 + x2) ≤ γ(x1) + γ(x2) for all x1, x2 ∈ [0,∞).
(iv) γ(w(x)y) ≤ w(x)γ(y) for all x ∈ X and y ∈ [0,∞).
(v) For some α ∈ (0,∞),

∫
X

w(y)q(dy|x, a) ≤ αw(x) for all (x, a) ∈ D, and
αγ(y) < y for all y ∈ (0,∞).

In the forthcoming discussions, we assume that Condition 1 is satisfied unless
stated otherwise. Let us list down some immediate consequences of the above
condition.

Condition 1(b, i) implies that

lim
n→∞ γ(n)(y) = 0 ∀ y ∈ [0,∞),

where γ(n)(y) := γ(γ(n−1))(y) for each n ≥ 2. Indeed, this is automatic if y = 0
for γ(0) = 0. Consider y > 0. Since γ(n)(y) decreases in n, limn→∞ γ(n)(y) = c ≥
0 exists. If c > 0, then c > γ(c) = γ(limn→∞ γ(n)(y)) = limn→∞ γ(n+1)(y) = c,
which is a contradiction. Now Condition 1(b, i, v) implies

lim
n→∞ γ̃(n)(y) = 0 ∀ y ∈ [0,∞), (1)

for

γ̃ := αγ. (2)

Condition 1(b, iii) asserts that γ is a sub-additive function on [0,∞), which
together with Condition 1(b, i), implies that the next result applies to γ and γ̃.

Proposition 1. Let ψ be a [0,∞)-valued increasing sub-additive continuous
function on [0,∞) satisfying ψ(y) < y for all y ∈ (0,∞) (so that ψ(0) = 0).
Define for all y ∈ [0,∞),

ψ
0
(y) := 0, ψ

1
(y) := ψ(y) := y; ψ

n+1
(y) := y + ψ(ψ

n
(y)) ∀ n ≥ 0, (3)

Then for each y ∈ [0,∞), ψ
n
(y) is increasing in n, and

ψ∞(y) := lim
n→∞ ψ

n
(y)

exists and is finite. In particular, ψ∞(y) = y+ψ(ψ∞(y)) for all n ≥ 0. Moreover,
ψ∞ is continuous on [0,∞).

Proof. See Lemma 4.6 of [3]. (For the last assertion, by inspecting the proof of
Lemma 4.6 of [3], we see that ψ

n
converges to ψ∞ uniformly on each compact

subset, and thus the continuity of ψ∞ follows from the continuity of ψ
n
.) ��
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One can recognize that ψ
n
(z) = z + ψ(z + ψ(z + · · · + ψ(z) . . . )), where z

appears n times. Proposition 1 will be instrumental on several occasions in the
main text below. In particular, we may legitimately consider

γ∞(z) := lim
n→∞ γ

n
(z) = sup

n≥1
γ

n
(z) ∈ [0,∞) ∀ z ∈ [0,∞);

γ̃∞(z) := lim
n→∞ γ̃

n
(z) = sup

n≥1
γ̃

n
(z) ∈ [0,∞) ∀ z ∈ [0,∞)

with γ
n
(z) and γ̃

n
(z) as defined in (3) with γ and γ̃ in lieu of ψ.

For any [1,∞)-valued measurable function w on a (measurable) space
E, let Bw(E) be the collection of measurable functions v on E such that
||v||w := supx∈E

|v(x)|
w(x) < ∞. Such a function v will be called w-bounded (on E).

Condition 1(a) asserts that u is w-bounded with ||u||w ≤ b.
To introduce the performance measure of a policy π = {πn}n≥0, for each

n ≥ 0, we consider the operators Tπn
and Qγ

πn
defined as follows. For each

w-bounded function v on Hn+1 (n ≥ 0),

Tπn
v(hn) := u(xn, πn(hn)) +

∫

X

δ(v(hn, πn(hn), xn+1))q(dxn+1|xn, πn(hn)),

Qγ
πn

v(hn) :=
∫

X

γ(v(hn, πn(hn), xn+1))q(dxn+1|xn, πn(hn)) ∀ hn ∈ Hn. (4)

Condition 1 implies that Tπn
|v| is w-bounded on Hn. Consequently,

Uπ
1 (x) := Tπ00(x); Uπ

n (x) := Tπ0Tπ1 . . . Tπn−10(x) ∀ n ≥ 2, x ∈ X

are well defined and in Bw(X). In fact, the next upper bound of the w-norm of
Uπ

n will be needed below.

Proposition 2. Suppose Condition 1 is satisfied. For each n ≥ 1 and policy π,

|Uπ
n (x)| ≤ w(x)γ̃

n
(||u||w) ≤ w(x)γ̃∞(||u||w) ∀ x ∈ X.

Proof. See the proof of Lemma 5.3 of [3]. ��
The above-defined Uπ

n is called the n-stage total recursively discounted utility
of the policy π, or say the total recursively discounted utility for the n-stage
problem. The discounting is non-linear. In case π = {fn}n≥0 is a Markov policy,
it is informative to write down that

Uπ
3 (x) = u(x, f0(x))

+
∫

X

δ

(

u(x1, f1(x1)) +
∫

X

δ(u(x2, f2(x2)))q(dx2|x1, f1(x1))
)

q(dx1|x, f0(x)).

The next proposition allows us to define the infinite horizon total recursively
discounted utility of a policy as the limit of the n-stage performance measure.
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Proposition 3. Suppose Condition 1 is satisfied. Then

Uπ(x) := lim
n→∞ Uπ

n (x) ∀ x ∈ X,

exists for each policy π, so that |Uπ(x)| ≤ w(x)γ̃∞(||u||w) for all x ∈ X. In
particular, Uπ ∈ Bw(X) for each policy π. Moreover, the convergence also holds
in Bw(X): in fact, ||Uπ − Uπ

n ||w ≤ γ̃(n)(γ̃∞(||u||w)) → 0 as n → ∞.

Proof. See Lemma 5.3 of [3] for the convergence, and Proposition 1 and (5.5) of
[3] for the bound of |Uπ| and ||Uπ − Uπ

n ||w. ��
According to Proposition 3, we may legitimately consider

Uπ(x) = lim
n→∞ Tπ0Tπ1 . . . Tπn−10(x) ∀ x ∈ X.

It is useful to observe that in the above definition of Uπ, we may replace 0 with
any function v ∈ Bw(X), as stated in the next lemma.

Lemma 1. Suppose Condition 1 is satisfied. Then for any policy π and v ∈
Bw(X),

Uπ(x) = lim
n→∞ Tπ0Tπ1 . . . Tπn−1v(x) ∀ x ∈ X.

Proof. Note that

|Tπ0Tπ1 . . . Tπn−10(x) − Tπ0Tπ1 . . . Tπn−1v(x)| ≤ Qγ
π0

Qγ
π1

. . . Qγ
πn−1

|v|(x)

≤ Qγ
π0

Qγ
π1

. . . Qγ
πn−1

(w||v||w)(x) ≤ γ̃(n)(||v||w)w(x),

where the operator Qγ
πn

was defined in (4), the first inequality is by Condition
1(b, i, ii), and the last inequality is by applying Condition 1(b, iv, v); recall that
γ̃ was defined by (2). It remains to recall that limn→∞ γ̃(n)(||v||w) = 0 by (1). ��

The concerned optimal control problem can be now stated as

Maximize over all π: Uπ(x). (5)

The value function U is defined by U(x) := supπ Uπ(x) for all x ∈ X.

Definition 2. We call a policy π uniformly optimal if Uπ(x) = U(x) for all
x ∈ X, and uniformly optimal on a subset E ⊆ X if Uπ(x) = U(x) for all x ∈ E.
If E = {x} is a singleton, we call the policy optimal at x. For a given ε > 0, we
call a policy uniformly ε-optimal on a subset E ⊆ X if Uπ(x) + ε ≥ U(x) for all
x ∈ E. If E = X, then it is called uniformly ε-optimal.

The objective here is to provide an implementable scheme to obtain a uni-
formly ε-optimal policy on a given compact subset of the state space. To this
end, we impose further conditions on the model.

Condition 2.(a) The multifunction A is compact-valued, i.e., A(x) is a com-
pact subset of A for each x ∈ X.
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(b) For some constant LA ∈ [0,∞), the multifunction A satisfies

dH(A(x),A(y)) ≤ LAdX(x, y) ∀ x, y ∈ X,

where dH is the Hausdorff metric on the space of nonempty compact subsets
of A, so that

dH(A(x),A(y)) := sup
a∈A(x)

inf
b∈A(y)

dA(a, b) ∨ sup
b∈A(y)

inf
a∈A(x)

dA(a, b).

(c) The function w from Condition 1 is continuous on X, and the function u is
Lipschitz continuous on D, i.e., for some constant Lu ∈ [0,∞),

|u(x, a) − u(y, b)| ≤ Lu(dX(x, y) + dA(a, b)) ∀ x, y ∈ X, a ∈ A(x), b ∈ A(y).

(d)
∫

X
v(y)q(dy|x, a) is continuous in (x, a) ∈ D for each bounded continuous

function v on X, and for v = w.

Condition 2(a, b) implies that the multifunction A is upper semicontinuous
(in fact, continuous), according to Lemma 2.6 of [7]. Therefore, Condition 2 is
stronger than Condition (W) in [3], which together with Condition 1, in turn
implies the following result.

Proposition 4. Suppose Conditions 1 and 2 are satisfied. Then the following
assertions hold.

(a) There is a stationary uniformly optimal policy for problem (5).
(b) |U(x)| ≤ w(x)γ̃∞(||u||w) for all x ∈ X, U is upper semicontinuous on X,

and is the unique solution to TU = U out of the set of upper semicontinuous
functions in Bw(X), where T is defined for each v ∈ Bw(X) by

Tv(x) := sup
a∈A(x)

{

u(x, a) +
∫

X

δ(v(y))q(dy|x, a)
}

∀ x ∈ X.

Moreover, U = limn→∞ T (n)v for any upper semicontinuous v ∈ Bw(X),
where the convergence is in Bw(X).

(c) Define the functions {Un}N
n=0 on X by

U0 ≡ 0; Un(x) := sup
a∈A(x)

{

u(x, a) +
∫

X

δ(Un−1(y))q(dy|x, a)
}

∀ x ∈ X, 1 ≤ n ≤ N.

Then for each 0 ≤ n ≤ N , Un = supπ Uπ
n , Un ∈ Bw(X) and is upper

semicontinuous on X, and ||Un||w ≤ γ̃
n
(||u||w) ≤ γ̃∞(||u||w), ||Un −U ||w ≤

γ̃(n)(γ̃∞(||u||w)).

Proof. For parts (a,b), see Theorem 5.1 of [3]. For part (c), Un = supπ Uπ
n is

by a standard dynamic programming argument. The rest was established in the
proof of Theorem 5.1 of [3]. ��
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The operator T will be referred to frequently below. Under the conditions
of Proposition 4, by an extension of the Berge theorem, see [8,9], it maps any
upper semicontinuous function v ∈ Bw(X) to an upper semicontinuous function
in Bw(X). We impose an additional condition, under which it will be verified
below that T is an operator from the space of Lipschitz continuous function
v ∈ Bw(X) to itself, and U is a Lipschitz continuous function.

Condition 3. There is some constant Lq ∈ [0,∞) such that the following are
satisfied.

(a) For each Lipschitz continuous function v ∈ Bw(X) with a Lipschitz constant
Lv,

∣
∣
∣
∣

∫

X

δ(v(z))q(dz|x, a) −
∫

X

δ(v(z))q(dz|y, b)
∣
∣
∣
∣

≤ γ(LqLv)(dX(x, y) + dA(a, b)) ∀ x, y ∈ X, a ∈ A(x), b ∈ A(y).

(b) γ(Lqy)(1 + LA) < y for all y > 0.

For brevity, we put

ϕ(y) := γ(Lqy)(1 + LA), y ≥ 0, (6)

so that ϕ(0) = 0. Under Conditions 1 and 3, Proposition 1 applies to ϕ in lieu
with ψ, so that for each y ≥ 0, ϕ∞(y) is defined, and is finite.

Observe that when δ(x) = βx = γ(x) for all x ∈ X and some β ∈ [0, 1),
Condition 3(a) is the same as the next condition.

Condition 4. There is some constant Lq ∈ [0,∞) such that for each Lipschitz
continuous function v ∈ Bw(X) with a Lipschitz constant Lv,

∣
∣
∣
∣

∫

X

v(z)q(dz|x, a) −
∫

X

v(z)q(dz|y, b)
∣
∣
∣
∣ ≤ LqLv(dX(d, y) + dA(a, b))

∀ x, y ∈ X, a ∈ A(x), b ∈ A(y).

3 Main Statement

In what follows, let K0 be a fixed compact subset of X, and we present schemes
for obtaining stationary and Markov policies that are uniformly ε-optimal on
the arbitrarily fixed set K0. The schemes are similar to those in [6,7] for linearly
discounted model and finite horizon model. They are based on solving a sequence
of models in finite state and action spaces, and are implementable in the sense of
Remark 1. In particular, the expression of the Markov policy that is uniformly
ε-optimal on K0 can be explicitly obtained.

Let ζ, ζX , ζA ∈ (0,∞) be fixed. Then according to the proof of Lemma 2.9 of
[7], there is a sequence of compact subsets {Kn}n≥1 of X satisfying

sup
x∈Kn,a∈A(x)

∫

X\Kn+1

w(y)q(dy|x, a) < ζ ∀ n ≥ 0. (7)
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For each n ≥ 0, since Kn is compact, it has a finite ζX -net

Xn := {z1, . . . , zkn
}

of Kn, and an associated measurable partition {Ki
n}kn

i=1 of Kn such that zi ∈ Ki
n,

and for each z ∈ Ki
n, dX(x, zi) < ζX . Let pKn

Xn
(x) = zi for each x ∈ Ki

n. Similarly,
for each x ∈ X, since A(x) is compact, it has a finite ζA-net

B(x) := {b1, . . . , bk(x)}.

Let N ≥ 1 be fixed. Define recursively the following functions:

ÛN−1,N (x) := 0 ∀ x ∈ XN ,

ÛN−1,n(x) := max
a∈B(x)

⎧
⎨

⎩
u(x, a) +

∑

y∈Xn+1

δ(ÛN−1,n+1(y))q((pKn+1
Xn+1

)−1(y)|x, a)

⎫
⎬

⎭

∀ x ∈ Xn, 0 ≤ n ≤ N − 1.

For each x ∈ Xn, 0 ≤ n ≤ N − 1, there is some cN,n(x) ∈ B(x) such that

ÛN−1,n(x) := u(x, cN,n(x)) +
∑

y∈Xn+1

δ(ÛN−1,n+1(y))q((pKn+1
Xn+1

)−1(y)|x, cN,n(x)).

For each N ≥ 0, we define a Markov policy gN = {fN
n }n≥0 by

fN
n (x) := argmina∈A(x){dA(a, cN,n(pKn

Xn
(x)))} ∀ x ∈ Kn,

fN
n (x) := f∞(x) ∀ x ∈ X\Kn

for all 0 ≤ n ≤ N − 1, and fN
n (x) := f∞(x) for all x ∈ X and n ≥ N, where

f∞ is an arbitrarily fixed stationary policy. The above definition is legitimate
because dA(a, cN,n(pKn

Xn
(x))) is continuous in a ∈ A(x) and measurable in x ∈ Kn

and thus jointly measurable in (x, a) by [1, Lem.4.51] or [14, Prop.B.1.38], and
A is compact-valued and upper semicontinuous by [7, Lem.2.6]. In particular,
fN

n (x) := cN,n(x) for all x ∈ Xn and n ≤ N − 1. This Markov policy gN will be
shown to be a required uniformly ε-optimal policy on the given compact set K0

when ζ, ζX , ζA and N are suitably chosen.
Finally, we define a stationary policy fN that will be shown to be a required

uniformly ε-optimal policy on the given compact set K0 when ζ, ζX , ζA and N
are suitably chosen. Let C0 := K0,

Cn :=
n−1⋂

i=0

(X\Ci) ∩ Kn n ≥ 1,

and C∞ := X \ (
⋃

n≥0 Cn). Then {Cn}n=0,1,...,∞ is a (disjoint) partition of X
satisfying

⋃
n≥0 Cn =

⋃
n≥0 Ki. For the fixed N ≥ 1, define a stationary policy

fN as follows:

fN (x) := fN+n
n (x) ∀ x ∈ Cn, fN (x) := f∞(x) ∀ x ∈ C∞.
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Theorem 1. Suppose Conditions 1, 2 and 3 are satisfied. Let ζ, ζX , ζA ∈ (0,∞)
and an integer N ≥ 1 be fixed. Let K0 be any compact subset of X. Then, for
the stationary policy fN defined above, the following holds:

sup
x∈K0

|UfN

(x) − U(x)| ≤ γ∞(LUζX + 3ζγ(γ̃∞(||u||w)) + 2γ∞(Λ̃))

+ γ̃∞(2γ̃(N)(γ̃∞(||u||w))) sup
x∈K0

w(x),

where

LU := ϕ∞(Λ), Λ̃ = LU (ζA + ζX) + γ(γ̃∞(||u||w))ζ

with ϕ being defined by (6), and

Λ := Lu(1 + LA) ≥ 0. (8)

The proofs of this theorem and Theorem 2 below are postponed to Sect. 5.

Remark 1.(a) As ζA, ζX , ζ → 0, Λ̃ → 0, and by Proposition 1, limΛ̃→0 γ∞(Λ̃) =
0. It follows that, for any given ε > 0, one may take small enough constants
ζ, ζX , ζA ∈ (0,∞) and a large enough integer N ≥ 1 such that the right-hand
side of the inequality in Theorem 1 is majorized by ε. The corresponding
stationary policy fN is uniformly ε-optimal on the given compact set K0.
Given the current state x ∈ X, there is a unique n ∈ {0, 1, . . . ,∞} such that
x ∈ Cn, and according to that n, one can compute fN (x) = fN+n

n (x) as the
action that should be chosen.

(b) The proof of the previous statement reveals that, for each x ∈ ⋃
n≥0 Kn,

|UfN

(x) − U(x)| ≤ γ∞(LUζX + 3ζγ(γ̃∞(||u||w)) + 2γ∞(Λ̃))

+ γ̃∞(2γ̃(N)(γ̃∞(||u||w)))w(x).

The next statement asserts that the Markov policy gN is a required uniformly
ε-optimal policy on the given compact set K0 when ζ, ζX , ζA and N are suitably
chosen.

Theorem 2. Suppose Conditions 1, 2 and 4 are satisfied. Let ζ, ζX , ζA ∈ (0,∞)
and an integer N ≥ 1 be fixed. Let K0 be any compact subset of X. For the
Markov policy gN defined above, the following holds: Then

sup
x∈K0

|UgN

(x) − U(x)| ≤ 2γ̃(N)(γ̃∞(||u||w)) sup
x∈K0

w(x) + γ
N

(G)

with G := 2γ
N

(Λ̃N ) + ϕ′
N

(Λ)ζX + 3ζγ̃
N

(||u||w), where

ϕ′(y) := (1 + LA)Lqy ∀ y ≥ 0, Λ̃N := ϕ′
N

(Λ)(ζA + ζX) + γ(γ̃
N

(||u||w))ζ.

Obviously, a similar remark to Remark 1(a) can be formulated.
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4 Example

We take a stochastic optimal growth model from [3] (see Example 7.1 therein) as
an example, to which the approximation schemes in this paper can be applied.

Example 1. The state x ∈ X = [0,∞) represents the wealth. At each stage, one
has to decide the amount a ∈ A(x) = [0, x] to be consumed. Let A = [0,∞).
The unconsumed wealth will be invested. If y is invested in this stage, then
the wealth in the next stage is yS, where S, representing the random shock, is
a [0,∞)-valued random variable, whose distribution is ν. We assume that the
random shocks are all independent and identically distributed and with a finite
mean

s :=
∫

[0,∞)

sν(ds) < ∞.

Therefore, we may take

q(dy|x, a) =
∫

[0,∞)

δ(x−a)s(dy)ν(ds).

Proposition 5.(a) Consider u(x, a) =
√

1 + a for all x ∈ X and a ∈ A(x),
and

δ(x) = ((1 − ε)x + ε ln(1 + ε))I{x ≥ 0}

with ε ∈ (0, 1) being a constant. Then Conditions 1, 2 and 4 are satisfied with
γ = δ on [0,∞), w(x) =

√
1 + x, α = 1, LA = Lu = 1, Lq = s̄.

(b) Consider u(x, a) =
√

1 + a − 2 for all x ∈ X and a ∈ A(x), and

δ(x) =
{

β1x x ≤ 0
β2x x ≥ 0

for some constant β1, β2 ∈ (0, 1). Assume 2βs̄ < 1. Then Conditions 1, 2 and
3 are satisfied with γ(x) = βx, β = max{β1, β2}, w(x) =

√
1 + x, α = 1,

LA = Lu = 1, Lq = s̄.

Proof. Condition 1(a) and (b, i), as well as Condition 2(a, b) are evidently
satisfied, whereas Condition 1(b, ii–v) and Condition 2(d) were verified by the
given function w and constant α in Example 7.1 of [3]. For example, Condition
1(v) holds according to the calculation

∫

X

w(y)q(dy|x, a) =
∫

[0,∞)

√
(x − a)s + 1ν(ds) ≤ √

x + 1.

Condition 2(c) holds because the derivative of
√

1 + a with respect to a is
bounded by 1, and |√1 + a − 1| ≤ a − 0 for all a ∈ [0,∞). Finally, regard-
ing Condition 4, for a Lipschitz continuous function v ∈ Bw(X) with a Lipschitz
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constant Lv, we note that
∣
∣
∣
∣

∫

X

v(z)q(dz|x, a) −
∫

X

v(z)q(dz|y, b)
∣
∣
∣
∣

=
∣
∣
∣
∣

∫

X

v((x − a)s)ν(ds) −
∫

X

v((y − b)s)ν(ds)
∣
∣
∣
∣

≤
∫

X

Lv(|x − y| + |a − b|)sν(ds) = Lv s̄(|x − y| + |a − b|)

so that we may take Lq = s̄.
(b) Conditions 1 and 2 can be seen to be satisfied as in part (a). Regarding

Condition 3(a), for a Lipschitz continuous function v ∈ Bw(X) with a Lipschitz
constant Lv,

∣
∣
∣
∣

∫

X

δ(v(z))q(dz|x, a) −
∫

X

δ(v(z))q(dz|y, b)
∣
∣
∣
∣

≤
∫

[0,∞)

γ(Lv(|x − y| + |a − b|)s)ν(ds)

= βLv s̄(|x − y| + |a − b|) = γ(s̄Lv)(|x − y| + |a − b|)

and so we may take Lq = s̄. Condition 3(b) holds because 2βs̄ < 1. ��

5 Proof of Main Statements

In this section, we provide the detailed proof of Theorem 1. The proof of
Theorem 2 is similar to the proof of Theorem 1, and will be sketched.

5.1 Proof of Theorem1

Throughout this subsection, we suppose that Conditions 1, 2 and 3 are satisfied,
without explicit indications.

Lemma 2. Let v ∈ Bw(X) be Lipschitz continuous with a Lipschitz constant
Lv. Then Tv ∈ Bw(X) is also Lipschitz continuous with a Lipschitz constant

LTv = (Lu + γ(LqLv))(1 + LA).

Proof. In view of the remarks below Proposition 4, we only need to check the
claimed Lipschitz continuity of Tv as follows. Let x, z ∈ X and some Lipschitz
continuous v ∈ Bw(X) with a Lipschitz constant Lv be fixed. Then



Finite Approximations 233

|Tv(x) − Tv(z)| (9)

≤ max

{

sup
a∈A(x)

inf
b∈A(z)

{|u(x, a) − u(y, b)|

+
∣
∣
∣
∣

∫

X

δ(v(y))q(dy|x, a) −
∫

X

δ(v(y))q(dy|z, b)
∣
∣
∣
∣

}

,

sup
b∈A(z)

inf
a∈A(x)

{|u(x, a) − u(y, b)|

+
∣
∣
∣
∣

∫

X

δ(v(y))q(dy|x, a) −
∫

X

δ(v(y))q(dy|z, b)
∣
∣
∣
∣

}}

.

Indeed, in case |Tv(x) − Tv(z)| = Tv(x) − Tv(z), for any fixed ε > 0, there is
some a∗ ∈ A(x) such that Tv(x) ≤ u(x, a∗)+

∫
X

δ(v(y))q(dy|x, a∗)+ ε and thus

|Tv(x) − Tv(z)| ≤ u(x, a∗) +
∫

X

δ(v(y))q(dy|x, a∗) + ε

+ inf
b∈A(z)

{

−u(z, b) −
∫

X

δ(v(y))q(dy|z, b)
}

≤ sup
a∈A(x)

inf
b∈A(z)

{|u(x, a) − u(z, b)|

+
∣
∣
∣
∣

∫

X

δ(v(y))q(dy|x, a) −
∫

X

δ(v(y))q(dy|z, b)
∣
∣
∣
∣

}

+ ε.

Since ε > 0 was arbitrarily fixed,

|Tv(x) − Tv(z)| ≤ sup
a∈A(x)

inf
b∈A(z)

{|u(x, a) − u(z, b)|

+
∣
∣
∣
∣

∫

X

δ(v(y))q(dy|x, a) −
∫

X

δ(v(y))q(dy|z, b)
∣
∣
∣
∣

}

.

In case |Tv(x) − Tv(z)| = Tv(z) − Tv(x), we analogously see

|Tv(x) − Tv(z)| ≤ sup
b∈A(z)

inf
a∈A(x)

{|u(x, a) − u(z, b)|

+
∣
∣
∣
∣

∫

X

δ(v(y))q(dy|x, a) −
∫

X

δ(v(y))q(dy|z, b)
∣
∣
∣
∣

}

,

and hence (9) holds. By Conditions 2 and 3

|u(x, a) − u(z, b)| +
∣
∣
∣
∣

∫

X

δ(v(y))q(dy|x, a) −
∫

X

δ(v(y))q(dy|z, b)
∣
∣
∣
∣

≤ Lu(dX(x, z) + dA(a, b)) + γ(LqLv)(dX(x, z) + dA(a, b))
= (Lu + γ(LqLv))(dX(x, z) + dA(a, b))
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and so by (9),

|Tv(x) − Tv(z)|
≤ (Lu + γ(LqLv))(dX(x, z) + sup

a∈A(x)

inf
b∈ A(z)

dA(a, b) ∨ sup
b∈A(z)

inf
a∈A(x)

dA(a, b))

= (Lu + γ(LqLv))(dX(x, z) + dH(A(x),A(z)))
≤ (Lu + γ(LqLv))(1 + LA)dX(x, z),

where the last inequality is by Condition 2(b). ��
As a consequence of the previous lemma, we deduce the Lipschitz continuity

of the value function U .

Lemma 3. Let v ∈ Bw(X) be a Lipschitz continuous function with a Lipschitz
constant Lv. Then the following assertions hold.

(a) For each n ≥ 1, Tnv ∈ Bw(X) is with a Lipschitz constant ϕ
n
(Λ)+ϕ(n)(Lv),

where ϕ
n

is defined by (3) with ϕ in lieu of ψ. In particular, Un = Tn0 is
Lipschitz continuous with a Lipschitz constant ϕ

n
(Λ) ≤ ϕ∞(Λ).

(b) The value function U is Lipschitz continuous with a Lipschitz constant LU =
ϕ∞(Λ).

Proof. (a) By Lemma 2, Tnv ∈ Bw(X) and is Lipschitz continuous for each
n ≥ 0, and we may take the following as a Lipschitz constant of Tv:

Lu(1 + LA) + γ(LqLv)(1 + LA) = Λ + ϕ(Lv),

and thus the claimed relation holds for n = 1. Assume it holds for n. Now, by
Lemma 2 and the inductive supposition, we may take the following as a Lipschitz
constant of Tn+1v = T (Tnv):

Λ + ϕ(ϕ
n
(Λ) + ϕ(n)(Lv)) ≤ Λ + ϕ(ϕ

n
(Λ)) + ϕ(n+1)(Lv)

= ϕ
n+1

(Λ) + ϕ(n+1)(Lv),

where the inequality is by the sub-additivity of ϕ. The statement follows from
this and the induction.

(b) For each x, y ∈ X, by Proposition 4 and the assertion in (a) with v ≡
0 = ϕ(0) = Lv,

|U(x) − U(y)| ≤ lim
n→∞ |Tn0(x) − Tn0(y)| ≤ lim

n→∞ ϕ
n
(Λ)dX(x, y)

= ϕ∞(Λ)dX(x, y),

where the limit ϕ∞(Λ) is finite and exists by applying Proposition 1 to ϕ, which
is valid under Conditions 1 and 3. The statement follows now. ��

For the forthcoming discussions and statements, for each fixed N ≥ 1 and
0 ≤ n ≤ N , we extend the definition of ÛN−1,n from Xn to Kn by putting
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ÛN−1,n(x) := ÛN−1,n(pKn

Xn
(x)) for all x ∈ Kn \ Xn. Then for all x ∈ Xn and

0 ≤ n ≤ N − 1,

ÛN−1,n(x) = max
a∈B(x)

{

u(x, a) +
∫

Kn+1

δ(ÛN−1,n+1(y))q(dy|x, a)

}

. (10)

Lemma 4. Let N ≥ 1 and 0 ≤ n ≤ N be fixed. Then supx∈Kn
|ÛN−1,n(x) −

UN−n(x)| ≤ γ∞(Λ̃) with Λ̃ = LU (ζA + ζX) + γ(γ̃∞(||u||w))ζ.

Proof. The case of n = N is trivial. Let 0 ≤ n ≤ N − 1 be fixed, and consider
firstly some x ∈ Xn. Then

|ÛN−1,n(x) − UN−n(x)| =

∣
∣
∣
∣
∣

max
a∈B(x)

{

u(x, a) +
∫

Kn+1

δ(ÛN−1,n+1(y))q(dy|x, a)

}

− sup
b∈A(x)

{

u(x, b) +
∫

X

δ(UN−n−1(y))q(dy|x, b)
}∣

∣
∣
∣
∣
.

The same argument as in the justification of (9) shows

|ÛN−1,n(x) − UN−n(x)|

≤ max

{

sup
b∈A(x)

inf
a∈B(x)

{

|u(x, b) − u(x, a)| +
∣
∣
∣
∣

∫

X

δ(UN−n−1(y))q(dy|x, b)

−
∫

Kn+1

δ(ÛN−1,n+1(y))q(dy|x, a)

∣
∣
∣
∣
∣

}

,

sup
a∈B(x)

inf
b∈A(x)

{

|u(x, b) − u(x, a)| +
∣
∣
∣
∣

∫

X

δ(UN−n−1(y))q(dy|x, b)

−
∫

Kn+1

δ(ÛN−1,n+1(y))q(dy|x, a)

∣
∣
∣
∣
∣

}}

.

Recall from Condition 2(c) that |u(x, a)−u(x, b)| ≤ LudA(a, b) for each a ∈ B(x)
and b ∈ A(x). Also, for each a ∈ B(x) and b ∈ A(x),

∣
∣
∣
∣
∣

∫

X

δ(UN−n−1(y))q(dy|x, b) −
∫

Kn+1

δ(ÛN−1,n+1(y))q(dy|x, a)

∣
∣
∣
∣
∣

≤
∣
∣
∣
∣

∫

X

δ(UN−n−1(y))q(dy|x, b) −
∫

X

δ(UN−n−1(y))q(dy|x, a)
∣
∣
∣
∣

+

∣
∣
∣
∣
∣

∫

X

δ(UN−n−1(y))q(dy|x, a) −
∫

Kn+1

δ(ÛN−1,n+1(y))q(dy|x, a)

∣
∣
∣
∣
∣
. (11)

For the first summand, since UN−n−1 ∈ Bw(X) and is Lipschitz continuous
with a Lipschitz constant ϕ

N−n−1
(Λ) by Lemma 3 and Proposition 4, applying
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Condition 3 to it gives
∣
∣
∣
∣

∫

X

δ(UN−n−1(y))q(dy|x, b) −
∫

X

δ(UN−n−1(y))q(dy|x, a)
∣
∣
∣
∣

≤ γ(LqϕN−n−1
(Λ))dA(a, b).

For the second summand in (11),
∣
∣
∣
∣
∣

∫

X

δ(UN−n−1(y))q(dy|x, a) −
∫

Kn+1

δ(ÛN−1,n+1(y))q(dy|x, a)

∣
∣
∣
∣
∣

≤
∫

Kn+1

|δ(UN−n−1(y)) − δ(ÛN−1,n+1(y))|q(dy|x, a)

+
∫

X\Kn+1

|δ(UN−n−1(y))|q(dy|x, a)

≤ sup
y∈Kn+1

|δ(UN−n−1(y)) − δ(ÛN−1,n+1(y))|

+ γ(γ̃
N−n−1

(||u||w))
∫

X\Kn+1

w(y)q(dy|x, a)

≤ sup
y∈Kn+1

γ(|UN−n−1(y) − ÛN−1,n+1(y)|) + γ(γ̃
N−n−1

(||u||w))ζ,

where the second inequality holds because

|δ(UN−n−1)| ≤ γ(|UN−n−1|) ≤ wγ(||UN−n−1||w)
≤ wγ(γ̃

N−n−1
(||u||w)) ∈ Bw(X)

by Proposition 4 and Condition 1, and the last inequality holds by Condition 1
and (7).

Now

|ÛN−1,n(x) − UN−n(x)|
≤ max{ sup

b∈A(x)

inf
a∈B(x)

{LudA(a, b) + γ(LqϕN−n−1
(Λ))dA(a, b)

+ sup
y∈Kn+1

γ(|UN−n−1(y) − ÛN−1,n+1(y)|) + γ(γ̃
N−n−1

(||u||w))ζ},

sup
a∈B(x)

inf
b∈A(x)

{LudA(a, b) + γ(LqϕN−n−1
(Λ))dA(a, b)

+ sup
y∈Kn+1

γ(|UN−n−1(y) − ÛN−1,n+1(y)|) + γ(γ̃
N−n−1

(||u||w))ζ}}

= (Lu + γ(LqϕN−n−1
(Λ)))ζA + sup

y∈Kn+1

γ(|UN−n−1(y) − ÛN−1,n+1(y)|)

+ γ(γ̃
N−n−1

(||u||w))ζ

≤ (Lu + γ(Lqϕ∞(Λ)))(1 + LA)ζA + sup
y∈Kn+1

γ(|UN−n−1(y) − ÛN−1,n+1(y)|)

+ γ(γ̃∞(||u||w))ζ.
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Having recognized (Lu +γ(Lqϕ∞(Λ)))(1+LA) = Λ+ϕ(ϕ∞(Λ)) = ϕ∞(Λ) = LU

(recall (8) and (6), Proposition 1 and Lemma 3), we see now

|ÛN−1,n(x) − UN−n(x)| ≤ LUζA + γ(γ̃∞(||u||w))ζ

+ sup
y∈Kn+1

γ(|UN−n−1(y) − ÛN−1,n+1(y)|)

= LUζA + γ(γ̃∞(||u||w))ζ + γ( sup
y∈Kn+1

|UN−n−1(y) − ÛN−1,n+1(y)|) ∀ x ∈ Xn,

where the last equality holds because γ is increasing.
Next, we arbitrarily fix some x ∈ Kn and z = pKn

Xn
(x) ∈ Xn. Then

|ÛN−1,n(x) − UN−n(x)| = |ÛN−1,n(z) − UN−n(x)|
≤ |ÛN−1,n(z) − UN−n(z)| + |UN−n(z) − UN−n(x)|
≤ LUζA + γ(γ̃∞(||u||w))ζ + γ( sup

y∈Kn+1

|UN−n−1(y) − ÛN−1,n+1(y)|)

+ϕ∞(Λ)dX(x, z)

≤ ϕ∞(Λ)(ζA + ζX) + γ(γ̃∞(||u||w))ζ + γ( sup
y∈Kn+1

|UN−n−1(y) − ÛN−1,n+1(y)|)

where the second inequality is by (12) and Lemma 3. Hence,

sup
x∈Kn

|ÛN−1,n(x) − UN−n(x)| ≤ ϕ∞(Λ)(ζA + ζX) + γ(γ̃∞(||u||w))ζ

+ γ( sup
y∈Kn+1

|UN−n−1(y) − ÛN−1,n+1(y)|)

= Λ̃ + γ( sup
y∈Kn+1

|UN−n−1(y) − ÛN−1,n+1(y)|)

≤ Λ̃ + γ(Λ̃ + γ( sup
y∈Kn+2

|UN−n−2(y) − ÛN−1,n+2(y)|)),

and by iteration, we see from the sub-additivity of γ that

sup
x∈Kn

|ÛN−1,n(x) − UN−n(x)|

≤ γ
N−n

(Λ̃) + γ(N−n)( sup
x∈KN

|ÛN−1,N (x) − U0(x)|) = γ
N−n

(Λ̃) ≤ γ∞(Λ̃)

with the last equality following from γ(0) = 0 and that γ
n
(Λ̃) increases in n. ��

Corollary 1. For each N ≥ 1,

sup
x∈K0

|ÛN−1,0(x) − U(x)| ≤ γ∞(Λ̃) + w(x)γ̃(N)(γ̃∞(||u||w)),

where Λ̃ := γ∞(Λ)(ζA + ζX) + γ(γ̃∞(||u||w))ζ.
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Proof. This follows from

|ÛN−1,0(x) − U(x)| ≤ |ÛN−1,0(x) − UN (x)| + |UN (x) − U(x)|,

Lemma 4 and Proposition 4(c). ��
Lemma 5. Let N ≥ 1, 0 ≤ n ≤ N − 1 and x ∈ Kn be fixed. Then

U(x) − LUζX − 2ζγ(γ̃∞(||u||w)) − 2γ∞(Λ̃) − 2w(x)γ̃(N−n)(γ̃∞(||u||w))

≤ u(x, fN
n (x)) +

∫

Kn+1

δ(U(y))q(dy|x, fN
n (x)).

Proof. Let x ∈ Kn and z = pKn

Xn
(x) ∈ Xn be fixed.

Recall from Proposition 4 that

U(x) ≤ UN−n(x) + w(x)γ̃(N−n)(γ̃∞(||u||w))

≤ ÛN−1,n(x) + γ∞(Λ̃) + w(x)γ̃(N−n)(γ̃∞(||u||w))

= ÛN−1,n(z) + γ∞(Λ̃) + w(x)γ̃(N−n)(γ̃∞(||u||w)),

where the inequality is by Lemma 4 and the last equality is by the definition
of ÛN−1,n(x) for x ∈ Kn. For ÛN−1,n(z), recall from (10) and the definition of
fN

n ,

ÛN−1,n(z) = u(z, fN
n (z)) +

∫

Kn+1

δ(ÛN−1,n+1(y))q(dy|z, fN
n (z))

≤ u(z, fN
n (z)) +

∫

Kn+1

δ(UN−(n+1)(y) + γ∞(Λ̃))q(dy|z, fN
n (z))

≤ u(z, fN
n (z)) +

∫

Kn+1

δ(UN−(n+1)(y))q(dy|z, fN
n (z))

+
∫

Kn+1

γ(γ∞(Λ̃))q(dy|z, fN
n (z))

≤ u(z, fN
n (z)) +

∫

Kn+1

δ(UN−(n+1)(y))q(dy|z, fN
n (z)) + γ∞(Λ̃),

where the first inequality is by Lemma 4, the second inequality is by the following
consequence of Condition 1(b, ii): |δ(x1+x2)−δ(x1)| ≤ γ(|x2|) for all x1, x2 ∈ R,
and the last inequality is by Condition 1(b,i). Now

U(x) ≤ u(z, fN
n (z)) +

∫

Kn+1

δ(UN−(n+1)(y))q(dy|z, fN
n (z)) + 2γ∞(Λ̃)

+w(x)γ̃(N−n)(γ̃∞(||u||w)),
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and so

U(x) − 2γ∞(Λ̃) − w(x)γ̃(N−n)(γ̃∞(||u||w)) − ∣
∣u(x, fN

n (x)) − u(z, fN
n (z))

∣
∣

−
∣
∣
∣
∣

∫

X

δ(UN−n−1(y))q(dy|x, fN
n (x)) −

∫

X

δ(UN−n−1(y))q(dy|z, fN
n (z))

∣
∣
∣
∣

≤ u(z, fN
n (z)) +

∫

Kn+1

δ(UN−(n+1)(y))q(dy|z, fN
n (z))

+u(x, fN
n (x)) − u(z, fN

n (z))

+
∫

X

δ(UN−n−1(y))q(dy|x, fN
n (x)) −

∫

X

δ(UN−n−1(y))q(dy|z, fN
n (z))

= u(x, fN
n (x)) −

∫

X\Kn+1

δ(UN−n−1(y))q(dy|z, fN
n (z))

+
∫

X

δ(UN−n−1(y))q(dy|x, fN
n (x)). (12)

Note that
∣
∣u(x, fN

n (x)) − u(z, fN
n (z))

∣
∣

+
∣
∣
∣
∣

∫

X

δ(UN−n−1(y))q(dy|x, fN
n (x)) −

∫

X

δ(UN−n−1(y))q(dy|z, fN
n (z))

∣
∣
∣
∣

≤ Lu(dX(x, z) + dA(fN
n (x), fN

n (z)))
+ γ(LqLUN−n−1)(dX(x, z) + dA(fN

n (x), fN
n (z)))

= (Lu + γ(LqLUN−n−1))(dX(x, z) + inf
a∈A(x)

dA(a, fN
n (z)))

≤ (Lu + γ(LqLUN−n−1))(dX(x, z) + dH(A(x),B(z)))
≤ (Lu + γ(LqLUN−n−1))(1 + LA)dX(x, z)
≤ (Lu + γ(LqLUN−n−1))(1 + LA)ζX ≤ (Lu(1 + LA) + (1 + LA)γ(LqLU ))ζX

= (Λ + ϕ(ϕ∞(Λ)))ζX ,

where the first inequality is by Condition 2 applied to u and Condition 3 applied
to UN−n−1, which is Lipschitz and in Bw(X) by Lemma 3, the first equality
holds by the definition of fN

n , the second inequality holds by the definition
of the Hausdorff metric, the third inequality is by Condition 2 regarding the
multifunction A, the fourth inequality holds because of the definition of z, and
the fifth inequality is by Lemma 3. That is, applying Proposition 1 to ϕ, we
recognize

∣
∣u(x, fN

n (x)) − u(z, fN
n (z))

∣
∣

+
∣
∣
∣
∣

∫

X

δ(UN−n−1(y))q(dy|x, fN
n (x)) −

∫

X

δ(UN−n−1(y))q(dy|z, fN
n (z))

∣
∣
∣
∣

≤ ϕ∞(Λ)ζX = LUζX .
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Consequently, from (12) we see

U(x) − 2γ∞(Λ̃) − w(x)γ̃(N−n)(γ̃∞(||u||w)) − LUζX

≤ u(x, fN
n (x)) −

∫

X\Kn+1

δ(UN−n−1(y))q(dy|z, fN
n (z))

+
∫

Kn+1

δ(UN−n−1(y))q(dy|x, fN
n (x))

+
∫

X\Kn+1

δ(UN−n−1(y))q(dy|x, fN
n (x))

≤ u(x, fN
n (x)) + γ(γ̃∞(||u||w))

∫

X\Kn+1

w(y)q(dy|z, fN
n (z))

+
∫

Kn+1

δ(UN−n−1(y))q(dy|x, fN
n (x))

+ γ(γ̃∞(||u||w))
∫

X\Kn+1

w(y)q(dy|x, fN
n (x))

≤ u(x, fN
n (x)) + 2γ(γ̃∞(||u||w))ζX +

∫

Kn+1

δ(UN−n−1(y))q(dy|x, fN
n (x))

≤ u(x, fN
n (x)) + 2γ(γ̃∞(||u||w))ζX +

∫

Kn+1

δ(U(y))q(dy|x, fN
n (x))

+
∫

Kn+1

|δ(UN−n−1(y)) − δ(U(y))|q(dy|x, fN
n (x)),

where the third inequality is by (7), and the second inequality follows from the
calculation

δ(UN−n−1(y)) ≤ γ(||UN−n−1||ww(y)) ≤ w(y)γ(||UN−n−1||w)
≤ w(y)γ(γ̃∞(||u||w))

by Proposition 4. That is,

U(x) − 2γ∞(Λ̃) − 2γ(γ̃∞(||u||w))ζX − w(x)γ̃(N−n)(γ̃∞(||u||w)) − LUζX

≤ u(x, fN
n (x)) +

∫

Kn+1

δ(U(y))q(dy|x, fN
n (x))

+
∫

Kn+1

|δ(UN−n−1(y)) − δ(U(y))|q(dy|x, fN
n (x))

≤ u(x, fN
n (x)) +

∫

Kn+1

δ(U(y))q(dy|x, fN
n (x))

+
∫

Kn+1

γ(|(UN−n−1(y)) − U(y)|)q(dy|x, fN
n (x))
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≤ u(x, fN
n (x)) +

∫

Kn+1

δ(U(y))q(dy|x, fN
n (x))

+
∫

X

γ(γ̃(N−n−1)(γ̃∞(||u||w))w(y))q(dy|x, fN
n (x))

≤ u(x, fN
n (x)) +

∫

Kn+1

δ(U(y))q(dy|x, fN
n (x))

+ γ(γ̃(N−n−1)(γ̃∞(||u||w)))
∫

X

w(y)q(dy|x, fN
n (x))

≤ u(x, fN
n (x)) +

∫

Kn+1

δ(U(y))q(dy|x, fN
n (x))

+w(x)γ̃(N−n)(γ̃∞(||u||w)),

where the last two inequalities hold by Condition 1. Now the statement
follows. ��

In the next statement, let the function Ū on X be defined by

Ū(x) := U(x) ∀ x ∈
⋃

n≥0

Kn, Ū(x) := −w(x)γ̃∞(||u||w) ∀ x ∈ X \
⋃

n≥0

Kn.

Lemma 6. For each N ≥ 1,

Ū(x) − (LUζX + 3ζγ(γ̃∞(||u||w)) + 2γ∞(Λ̃)) − 2w(x)γ̃(N)(γ̃∞(||u||w))

≤ u(x, fN (x)) +
∫

X

Ū(y)q(dy|x, fN (x)) ∀ x ∈ X.

Proof. Note that |Ū(x)| ≤ w(x)γ̃∞(||u||w) for all x ∈ X, according to Proposi-
tion 4, and consequently Ū ∈ Bw(X).

For x ∈ X \ ⋃
n≥0 Kn = C∞, it holds that

u(x, fN (x)) +
∫

X

δ(Ū(y))q(dy|x, fN (x))

≥ −||u||ww(x) −
∫

X

γ(γ̃∞(||u||w))w(y)q(dy|x, fN (x))

≥ −||u||ww(x) − γ̃(γ̃∞(||u||w))w(x) = −w(x){||u||w + γ̃(γ̃∞(||u||w))}
= −w(x)γ̃∞(||u||w) = Ū(x),

where the second inequality is by Condition 1, and the last inequality is by
Proposition 1. Therefore, the claimed relation in the lemma holds for x ∈
X\ ⋃

n≥0 Kn = C∞.

Now let x ∈ Cn be fixed for some n ∈ {0, 1, . . . }. Since Cn ⊆ Kn, fN (x) =
fN+n

n (x), and we have from the definition of Ū and Lemma 5 with N +n in lieu
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of N therein that

Ū(x) − LUζX − 2ζγ(γ̃∞(||u||w)) − 2γ∞(Λ̃) − 2w(x)γ̃(N)(γ̃∞(||u||w))

≤ u(x, fN (x)) +
∫

Kn+1

δ(Ū(y))q(dy|x, fN (x))

= u(x, fN (x)) +
∫

Kn+1

δ(Ū(y))q(dy|x, fN (x)) −
∫

X

δ(Ū(y))q(dy|x, fN (x))

+
∫

X

δ(Ū(y))q(dy|x, fN (x)),

and so

Ū(x) − LUζX − 2ζγ(γ̃∞(||u||w)) − 2γ∞(Λ̃) − 2w(x)γ̃(N)(γ̃∞(||u||w))

−
∫

X\Kn+1

|δ(Ū(y))|q(dy|x, fN (x)) ≤ u(x, fN (x)) +
∫

X

δ(Ū(y))q(dy|x, fN (x)).

Observe that on the left hand side of the above inequality,
∫

X\Kn+1

|δ(Ū(y))|q(dy|x, fN (x))

≤ γ(γ̃∞(||u||w))
∫

X\Kn+1

w(y)q(dy|x, fN (x)) ≤ ζγ(γ̃∞(||u||w)).

Now the statement follows. ��
Lemma 7. If for some stationary policy f and constants R,Q ∈ [0,∞),

Ū(x) ≤ u(x, f(x)) +
∫

X

δ(Ū(y))q(dy|x, f(x)) + R + Qw(x) ∀ x ∈ X,

then

Ū(x) ≤ Tn
f Ū(x) + γ

n
(R) + γ̃

n
(Q)w(x) ∀ x ∈ X

for all n ≥ 1.

Proof. Let x ∈ X be fixed, and we prove the statement by induction, as follows.
When n = 1, the claimed relation holds because γ

1
(R) = R and γ̃

1
(Q) = Q.

Assume the claimed relation holds for n. Then

U(x) ≤ Tf Ū(x) + R + Qw(x)
≤ Tf (Tn

f Ū + γ
n
(R) + γ̃

n
(Q)w)(x) + R + Qw(x)

= u(x, f(x)) +
∫

X

δ(Tn
f Ū(y) + γ

n
(R) + γ̃

n
(Q)w(y))q(dy|x, f(x)) + R + Qw(x)
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≤ u(x, f(x)) +
∫

X

(δ(Tn
f Ū(y)) + γ(γ

n
(R) + γ̃

n
(Q)w(y)))q(dy|x, f(x))

+R + Qw(x)

≤ u(x, f(x)) +
∫

X

δ(Tn
f Ū(y))q(dy|x, f(x)) +

∫

X

(γ(γ
n
(R))

+ γ(γ̃
n
(Q)w(y)))q(dy|x, f(x)) + R + Qw(x)

≤ u(x, f(x)) +
∫

X

δ(Tn
f Ū(y))q(dy|x, f(x)) + (R + γ(γ

n
(R)))

+ (Q + γ̃(γ̃
n
(Q)))w(x),

where the second inequality is by the inductive supposition, the third, fourth
and fifth inequalities are all by Condition 1. That is, by (3) applied to γ and γ̃,

U(x) ≤ Tn+1
f Ū(x) + γ

n+1
(R) + γ̃

n+1
(Q)w(x),

as required. ��
Proof of Theorem 1. Lemma 6 asserts that

Ū(x) ≤ u(x, fN (x)) +
∫

X

δ(Ū(y))q(dy|x, fN (x)) + R + Qw(x) ∀ x ∈ X

with

R = (LUζX + 3ζγ(γ̃∞(||u||w)) + 2γ∞(Λ̃)), Q = 2γ̃(N)(γ̃∞(||u||w)).

By Lemma 7, for each x ∈ ⋃
n≥0 Kn,

U(x) = U(x) ≤ lim
n→∞

{
Tn+1

fN Ū(x) + γ
n+1

(R) + γ̃
n+1

(Q)w(x)
}

= UfN

(x) + γ∞(R) + γ̃∞(Q)w(x),

where the first equality is by the definition of Ū , and the last equality is by
Lemma 1 and Proposition 1. The statement follows now because UfN

(x) ≤ U(x)
for each x ∈ X. ��

5.2 Proof of Theorem 2

We now sketch the proof of Theorem 2.
Proof of Theorem 2. One can show that

|Tv(x) − Tv(y)| ≤ (Lu + LqLv)(1 + LA)dX(x, z) ∀ x, z ∈ X,

Un has a Lipschitz constant L′
Un

:= ϕ′
n
(Λ), and

sup
x∈Kn

|ÛN−1,n(x) − UN−n(x)| ≤ γ
N−n

(Λ̃N ) ∀ N ≥ 1, 0 ≤ n ≤ N. (13)
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The above relations correspond to and can be established as in Lemma 2, Lemma
3(a) and Lemma 4, and ϕ′ and Λ̃N correspond to ϕ and Λ̃.

Let 0 ≤ n ≤ N − 1 be fixed, and consider some x ∈ Kn for now. Let
z = pKn

Zn
(x). Then ÛN−1,n(x) = ÛN−1,n(z), and

UgN

N−n(x) − ÛN−1,n(x)

= u(x, fN
n (x)) +

∫

X

δ(UgN

N−(n+1)(y))q(dy|x, fN
n (x)) − u(z, fN

n (z))

−
∫

Kn+1

δ(ÛN−1,n+1(y))q(dy|z, fN
n (z))

= u(x, fN
n (x)) +

∫

X

δ(UN−(n+1)(y))q(dy|x, fN
n (x))

−
∫

X

δ(UN−(n+1)(y))q(dy|x, fN
n (x))

+
∫

X

δ(UgN

N−(n+1)(y))q(dy|x, fN
n (x)) − u(z, fN

n (z))

−
∫

Kn+1

δ(ÛN−1,n+1(y))q(dy|z, fN
n (z))

+
∫

Kn+1

δ(UN−1,n+1(y))q(dy|z, fN
n (z))

−
∫

X

δ(UN−1,n+1(y))q(dy|z, fN
n (z))

+
∫

X\Kn+1

δ(UN−1,n+1(y))q(dy|z, fN
n (z)).

Consequently,

|UgN

N−n(x) − ÛN−1,n(x)|
≤ |u(x, fN

n (x)) − u(z, fN
n (z))|

+
∣
∣
∣
∣

∫

X

δ(UN−(n+1)(y))q(dy|x, fN
n (x)) −

∫

X

δ(UN−1,n+1(y))q(dy|z, fN
n (z))

∣
∣
∣
∣

+
∫

X

∣
∣
∣δ(UgN

N−(n+1)(y)) − δ(UN−(n+1)(y))
∣
∣
∣ q(dy|x, fN

n (x))

+
∫

Kn+1

∣
∣
∣δ(ÛN−1,n+1(y)) − δ(UN−1,n+1(y))

∣
∣
∣ q(dy|z, fN

n (z))

+
∫

X\Kn+1

|δ(UN−1,n+1(y))|q(dy|z, fN
n (z)),
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where
∫

X

∣
∣
∣δ(UgN

N−(n+1)(y)) − δ(UN−(n+1)(y))
∣
∣
∣ q(dy|x, fN

n (x))

=
∫

X\Kn+1

∣
∣
∣δ(UgN

N−(n+1)(y)) − δ(UN−(n+1)(y))
∣
∣
∣ q(dy|x, fN

n (x))

+
∫

Kn+1

∣
∣
∣δ(UgN

N−(n+1)(y)) − δ(UN−(n+1)(y))
∣
∣
∣ q(dy|x, fN

n (x))

≤ γ(||UgN

N−(n+1) − UN−(n+1)||w)ζ + γ( sup
x∈Kn+1

|UN−(n+1)(x) − UgN

N−(n+1)(x)|)

by (7). Applying Condition 2 to u and Condition 4, we see

|UgN

N−n(x) − ÛN−1,n(x)|
≤ Lu(1 + LA)ζX + LqL

′
UN−(n+1)

(dX(x, z) + dA(fN
n (x), fN

n (z)))

+ γ(||UgN

N−(n+1) − UN−(n+1)||w)ζ + γ( sup
x∈Kn+1

|UN−(n+1)(x) − UgN

N−(n+1)(x)|)

+γ( sup
x∈Kn+1

|ÛN−(n+1)(y) − UN−(n+1)(y)|) + γ(||UN−(n+1)||w)ζ

≤ ζX(Lu + LqL
′
UN−(n+1)

)(1 + LA) + ζ(γ(||UgN

N−(n+1) − UN−(n+1)||w)

+ γ(||UN−(n+1)||w))

+ γ(γ
N−(n+1)

(Λ̃N )) + γ( sup
x∈Kn+1

|UN−(n+1)(x) − UgN

N−(n+1)(x)|)

≤ ϕ′
N−n

(Λ)ζX + 3ζγ̃
N

(||u||w) + γ
N

(Λ̃N )

+ γ( sup
x∈Kn+1

|UN−(n+1)(x) − UgN

N−(n+1)(x)|),

where the second inequality is by (13), and the third inequality is by
Proposition 2.

Now the previous inequality and (13) imply

sup
x∈Kn

|UgN

N−n(x) − UN−n(x)|

≤ sup
x∈Kn

|UN−n(x) − ÛN−1,n(x)| + sup
x∈Kn

|ÛN−1,n(x) − UgN

N−n(x)|

≤ ϕ′
N

(Λ)ζX + 3ζγ̃
N

(||u||w) + 2γ
N

(Λ̃N )

+ γ( sup
x∈Kn+1

|UN−(n+1)(x) − UgN

N−(n+1)(x)|)

= G + γ( sup
x∈Kn+1

|UN−(n+1)(x) − UgN

N−(n+1)(x)|),

and by iteration, we see

sup
x∈Kn

|UgN

N−n(x) − UN−n(x)| ≤ γ
N−n

(G) ≤ γ
N

(G).
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Finally,

sup
x∈K0

|UgN

(x) − U(x)|

≤ sup
x∈K0

|UgN

(x) − UgN

N (x)| + sup
x∈K0

|UgN

N (x) − UN (x)| + sup
x∈K0

|UN (x) − U(x)|

≤ 2γ̃(N)(γ̃∞(||u||w)) sup
x∈K0

w(x) + γ
N

(G),

where the last inequality is by Propositions 3 and 4. ��
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Abstract. We present a Defense/Attack resource allocation model,
where Defender has some number of “locks” to protect n vulnerable
boxes (sites), and Attacker is trying to destroy these boxes, having m
“bombs,” which can be placed into boxes. Similar models were studied
in game theory - (Colonel) Blotto games, but our model has a feature
absent in previous literature. Attackers test the vulnerability of all sites
before allocating their resources, and these tests are not perfect, i.e., a
test can give plus for a box without a lock and minus for a box with
a lock. We describe the optimal strategies for a version of this Locks-
Bombs-Testing (LBT) model when locks appear independently in each
box with the same probability.
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1 Introduction

The problem of allocation of limited resources between different tasks is a clas-
sical problem in many areas of Operations Research, Economics, Finance and
Engineering. This problem with a few players (participants) is an important
field in Game Theory. In a classical Blotto game, two players distribute limited
resources between different sites (battlefields) with the goal to win more sites,
winning a site if you have more resources on this site than your opponent. There
is substantial literature on this topic, with classic paper [13] and more recent
publications, such as [12], where a complete solution of the “continuous” version
was given, as well as [4], where some interesting extensions are discussed. In a
comprehensive and detailed survey [5] dedicated to Search Games, the Blotto
game is classified as an attack-defense game. There are even more papers dedi-
cated to these games and as in all of Operations Research all classifications have
many overlapping parts. As an example of an important paper on an attack-
defense game we mention [11].
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The inspiration for the model in this paper and some basic ideas can be
traced to the paper by K. Sonin and A. Wright [14], where they provided a
model of intelligence gathering in combat and used highly detailed data about
Afghan rebel attacks, insurgent-led spy networks, and counterinsurgency opera-
tions. This theoretical model was a novel version of the Colonel Blotto’s game.
First, the government allocates its scarce defense resources across possible tar-
gets. Then, each target is independently tested for vulnerability. Finally, the
rebels base their choice of the targets on the results of these tests. Empirically,
the paper demonstrated a robust link between local economic conditions and the
patterns of rebel attacks.

A more general and abstract mathematical model called the Locks, Bombs
and Testing (LBT) model was described in [15,16], where one important special
case was solved. The solution for the other important case was obtained in the
PhD thesis of Liu Li [8]. This thesis in a modified form is a substantial part of
this paper.

First, we describe a Symmetrical LBT model, where all boxes are identical. As
in most attack-defense games, the two players play quite different roles. We call
one of them Defender (DF) and the other, Attacker (AT). There are n “boxes”
(sites, battlefields, cells, targets, time slots, etc.) with equal values for both players.
AT is trying to destroy these boxes by placing “bombs” that can result in explo-
sions (destructions). One or more bombs can be placed into the same box. AT has
m,m = 1, 2, ..., bombs to allocate among n boxes. A box is destroyed if at least
one explosion occurs, and the explosions of different bombs in the same site or in
different sites are independent. We denote by p the probability of explosion.

DF is trying to protect the boxes by distributing “locks” among them. A
lock is a protection device which, when placed in a box, prevents its destruction
with any number of bombs in it. Obviously, locks and bombs are just the names
of discrete units of resources of protection and destruction. The number of locks
k, k < n, can be fixed, in which case it is an A(n, k) problem, the subject of
paper [16], or it can be a random variable obtained when a lock appears in site
i with probability λ independently of other boxes, in which case it is a B(n, λ)
problem, the main subject of this paper. The latter assumption can represent
either the uncertainty of DF about resources that will be available to her or the
uncertainty of AT about how many locks will be distributed.

The important feature of both models in contrast to classical Blotto games
is that AT can and will test every box, trying to find boxes without locks.
This testing is not perfect: a test of site i may have a positive result, Si = 1,
even if there is no lock at the site, Ti = 0, and negative, Si = 0, even if there
is a lock, Ti = 1. The probabilities of correct identification of both types, in
statistical language the sensitivity and specificity, P (Si = 1|Ti = 1) = a and
P (Si = 0|Ti = 0) = b, are known to both players. The result of testing is a
vector of signals s = (s1, ..., sn), where each si = 0, 1 is known to AT. Hereafter
we refer to this vector as signal s.

When the number of available locks k, 0 ≤ k ≤ n, became known to DF, then
her strategy is a probability distribution bk(γ) on a set of all possible positions
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of locks {γ}, where γ = (i1, i2, ..., ik) with 1 ≤ i1 < . . . < ik ≤ n. The case
k = 0 means that no locks are allocated. The collection of bk(γ), k = 0, 1, 2, ..., n
defines the strategy of DF, hereafter b(γ).

In our Bayesian setting we assume that the parameter k in problem A or
parameter λ specifying the distribution of the random number of locks K, and
prior distribution b(γ) are known to AT, although the positions of locks and
their actual number k in problem B are not. After the locks are allocated by
DF, AT tests all boxes, receives signal s, and then, using prior distribution
b(γ) and the probabilities of signals p(s) ≡ p(s|b(γ)), calculates the aposterior
distribution of the positions of locks (ADL) b(γ|s). Then for each signal s and
each m, AT solves the problem of optimal allocation of m bombs uopt(s|b(γ)) =
(u1(s), ..., un(s))|b(γ)),

∑
i ui = m, trying to maximize the expected number of

destroyed sites.
Note that our model for both problems has one special and important feature.

AT’s analysis and the solution consists of two parts. In the first part AT considers
a statistical problem to find the posterior distribution of locks, given signal s and
prior information. In this statistical problem the probability of explosion p and
the bombs allocation do not participate at all.

The second part is to optimize the allocation of m bombs among n sites.
Such allocation can be deterministic or use some randomization. WLOG, we
can assume that the allocation of bombs is deterministic and an optimal strat-
egy of AT πopt(b(γ)), with respect to the strategy of DF b(γ), is a collection of
her optimal deterministic responses uopt(s|b(γ)) ≡ uopt(s) = (u1(s), ..., un(s)) to
each signal s, where ui(s) is the number of bombs placed into site i, i = 1, ..., n,∑

i ui(s) = m. This optimal strategy πopt(b(γ)) together with the prior distribu-
tion b(γ) results in the corresponding total expected damage (loss), Lopt(b(γ).

The goal of DF is to select a prior distribution of locks b∗(γ) to minimize this
loss. We assume that DF knows the parameters of testing a and b and the number
of bombs m. Then the pair (b∗(γ), π∗), where π∗ = πopt(b∗(γ)) is an optimal
strategy of AT with respect to strategy b∗(γ), forms a classical Nash equilibrium
(NE) point. The corresponding value of the game is v∗ = L(b∗(γ), π∗)). Though
b∗(γ) are not unique, they all have common properties that result in a unique
(up to some randomization) AT strategy π∗, and thus a specific value of v∗.

We call this game the symmetrical LBT game (model) (S-LBT game) A(n, k)
or B(n, λ) with parameters (n, k,m, a, b), or correspondingly (n, λ,m, a, b), where
n is the number of sites, k is the fixed number of locks, and λ is the probability
of a lock being present in the box.

In a more general setting parameter λ can be replaced by vector Λ =
(λ1, λ2, ...λn), where λi is the probability of presence of a lock in box i, param-
eters a and b are replaced by vectors a = (ai), 1 ≤ i ≤ n and b = (bi), 1 ≤ i ≤ n,
and parameter ci = 1 by an n-dimensional vector c = (ci), 1 ≤ i ≤ n, where vec-
tors a, b, c represent the sensitivities and the specificities of testing, and the values
of all sites, i.e. P (Si = 1|Ti = 1) = ai and P (Si = 0|Ti = 0) = bi, 1 ≤ i ≤ n.
Hereafter we also refer to the general model as the general LBT model. The
additional justification to limit the consideration to the symmetrical case is the
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following. The general LBT game and the straightforward approach to solving
it, described above, have two basic drawbacks. First, the set of possible positions
for locks, i.e., the set of subsets of an n element set, generally has order 2n, and
so does the set of potential signals. As a result, the calculations of posterior
distributions b(γ|s) and their marginal distributions αi(s) = P (Ti = 0|s) which
play a crucial role in the description of optimal strategies, become cumbersome
for large n. The second problem is that the knowledge of detailed information
about the values of ci, ai, and bi in many cases is unrealistic. As a result, the
main focus in [8,16] was on the analysis of a simpler S-LBT model, where all
sites have identical values ci = 1, and all ai = a, bi = b.

The main goal of our paper is to present the complete solution of the B(n, λ)
S-LBT game. One of our main results about S-LBT is that the optimal strategy
of AT π(·|m, s) depends only on probability of an explosion p, value x of rv N ,
the number of minuses in a signal, and the ratio r ≡ rB = P (T=0|S=0)

P (T=0|S=1) . A similar

statement is true for problem A with the ratio r(x) ≡ rA(x) = P (T=0|S=0,x)
P (T=0|S=1,x) .

Both ratios depend on the parameters of the model, n, k, λ, a, b.
When the parameters of sensitivity a and specificity b are “informative”,

these ratios are more than one. We show later that “informative” means that
a + b > 1. This immediately implies that if there is only one bomb and signal
s has pluses and minuses then a bomb goes to a minus box. When the number
of bombs m exceeds x, optimal strategies can be expressed through rB , rA(x),
and other parameters.

As a result, the optimal strategy in both problems will have a much simpler
structure than in the general case, symmetrical with respect to all sites with
minus signals, and correspondingly for sites with plus signals. We describe this
strategy on a heuristic level immediately.

The optimal strategy in both problems depends on the number m of bombs
available and, given N = x, 0 ≤ x ≤ n, has the following structure. Initially,
all bombs are placed one by one into each of x minus boxes until the threshold
level d, dA(x) in Problem A or level dB in Problem B is reached in each of them
or the bombs are exhausted. Afterwards, the bombs are added one by one to
plus boxes until there is a bomb in each of them. Then, bombs are added one
by one into minus boxes until each of these boxes has d + 1 bombs in each of
them, then back to plus boxes until each has at least 2 bombs, etc. This “fill and
switch” process stops when AT runs out of bombs. We will call such a strategy
a d-uniform as possible strategy (hereafter, a “d-UAP strategy”). If x = 0 or
n, then all boxes are simply filled sequentially, and this is a 0-UAP strategy.
The outcome of this process will be an allocation in which either all plus boxes
will have the same number of bombs in each of them, and then all minus boxes
either also have the same number of bombs in each of them, or some minus
boxes have one extra bomb in comparison with the other minus boxes. A similar
symmetrical situation takes place when all minus boxes have the same number
of bombs in each of them. If all boxes with plus signals have no bombs, then
the number of bombs in minus boxes does not exceed d. Note that though in
problem B the ratio rB and the threshold value dB do not depend on the number
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of minus boxes x, the allocation of bombs and then the value function for each
signal do depend on that parameter. In a sense, the values N = x and rB(λ)
(rA(x)) play the role of sufficient statistics in the optimization problem. The
value of the threshold dB represents the “advantage level” of a minus box over
a plus box. A similar interpretation can be given to the threshold dA(x) given
that x minuses were observed.

In an example with n = 5, x = 3, m = 12, and d = 3, the 3-UAP strategy is
to place 3 bombs into 2 minus boxes, 4 into the third minus box, and 1 bomb
into each of the 2 plus boxes. When d = 2, each of the minus boxes has 3 bombs,
1 plus box has 1, and the second plus box has 2.

Though the solutions of both problems have certain similarities, some of their
features are very distinct. For example, an interesting and even counter intuitive
property is that in the problem A(n, k), the function rA(x) and therefore the
optimal strategy and the value function, depend on a and b only through the

value c =
a

1 − a

b

1 − b
, a combined characteristic of the quality of testing. In the

problem B(n, λ), this property does not hold with respect to the value rB(λ).
The other important distinction between these two problems is that in the former
problem the minuses and pluses in different boxes are not independent, but in
the latter problem they are.

Note that sites, locks, bombs and testing in this and more general models are
rather abstract terms and may have very different interpretations beyond our
initial exposition of the DF and AT defense-attack game. We refer to [14,15] for
a more detailed exposition. It is easy to extend the LBT model in many different
directions. Here we mention only that the dynamic version of the LBT model will
have common features and in a sense will be a very broad generalization of the
well-known model in Applied Probability—the Multi Armed Bandit problems.
This model was studied in many papers and a few books—D. Berry and B.
Fristedt (1985), E. Presman and I. Sonin (1987, 1990), J. Gittins (1989), J.
Gittins, K. Glazebrook and R. Weber (2011), and the current internet version
by T. Lattimore and C. Szepesvari (2019). The full solution of the general LBT
game is a difficult task though some special cases were presented in [15].

The structure of our paper is as follows. In Sect. 2 we present some prelim-
inary formulas and auxiliary results. In Sect. 3 we obtain optimal strategies for
problem B, and in Sect. 4 we consider corresponding examples.

We thank Michael Grabchak, Ernst Presman, Mark Whitmeyer and Fedor
Sandomirsky for their valuable remarks and helpful discussions, and patience
with reading numerous drafts.

2 Preliminary Formulas and Auxiliary Results

Though the main focus of our paper is on the problem B ≡ B(n, λ), we also pro-
vide for the comparison some details from [16] about model A ≡ A(n, k). Also
of possible interest is to compare the strategies and the value functions for both
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problems for the “matching” values of k and λ, i.e. when the expected number of
locks in n boxes is the same, λn = k. We present some numerical results in Sect. 4.

The following notation is used throughout the paper. Define random variable
Ti, Si, Ci, each taking two values 0 and 1: Ti = 1 if and only if the ith box is pro-
tected; Si = 1 if and only if the ith box test is positive, i.e. the protection is present,
(si = 1), and Ci = 1 if and only if the ith box is destroyed. The absence of subindex
i means that the formula applies to any box. Our assumptions imply the following
basic equations:

P (Si = 1Ti = 1) = a, P (Si = 0Ti = 0) = b,

P (Ci = 1Ti = 1) = 0, P (Ci = 1Ti = 0, ui) = p(ui), (1)

where ui is the number of bombs in box i, and p(u) is the success function, the
probability of at least one explosion in a box with u bombs. As we assumed that
the success is independent across bombs, p(u) = 1 − (1 − p)u. The function p(u)
is increasing and upward concave, and the function Δp(u) ≡ p(u + 1) − p(u) is
decreasing. The diminishing effect of each extra bomb will play an important role
in determining the optimal strategy.

2.1 Basic Notation and Lemma 1

Of possible interest in both models are the aposterior probabilities P (Ti =
0|s), s = (s1, ..., sn) and the aposterior distribution of locks (ADL) b(γ|s) =
P (Ti = 1, i ∈ γ, Ti = 0, i /∈ γ|Si = si, i = 1, ..., n).

To describe these distributions, given that the number of locks k is fixed, let
us introduce rvs N1, the number of minuses in locked boxes, i.e. the number of
false minuses, or equivalently, the number of locks in boxes with minuses, N2, the
number of minuses in unlocked boxes, i.e. the number of correct minuses, and N =
N1 + N2, the total number of minuses after testing. The rv N1 is a binomial rv
with k trials and probability of success 1−a, the rv N2 is a binomial rv with n− k
trials and probability of success b. These two random variables are independent,
and unless b �= 1−a, rv N = N1+N2, taking values 0, 1, ..., n, is not a binomial rv.
Sometimes the distribution of N is called the Poisson binomial distribution. The
signal s = (s1, ..., sn) and the value N = x are observable in contrast to the values
of N1 and N2, which are not. To stress this point, sometimes we use the notation
t = N1(γ, s), x = N(s).

We denote by pi(j) the pmf (probability mass function) of the binomial rvs
Ni, i = 1, 2 and p(j|r, p), j = 0, 1, ..., r, the pmf of a binomial distribution with r
trials and probability of success p. Thus p1(j) = p(j|k, 1 − a) and p2(j) = p(j|n −
k, b). Then the pmf of rv N in problem A, gA(x) ≡ gn,k(x), 0 ≤ x ≤ n, can be
calculated by standard discrete convolution formula, the first formula below.

In problem B the number of locks is rv K with a binomial distribution with
n trials and probability of success λ. Thus rv K has distribution p(k|n, λ), k =
0, 1, ..., n. Given K = k, rv N has conditional distribution gn,k(x), and then
gB(x) ≡ P (N = x) can be calculated by the second formula below
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gA(x) ≡ gn,k(x) =
∑

j
p1(j)p2(x − j) ≡

∑

t
p1(x − t)p2(t),

gB(x) =
∑n

k=0
p(k|n, λ)gn,k(x). (2)

The summation over j in the convolution formula above is taken over values j
such that 0 ≤ j ≤ k, 0 ≤ x − j ≤ n − k. Similar holds for the summation over t,
where 0 ≤ x − t ≤ k, 0 ≤ t ≤ n − k. Further in all convolution formulas we may
omit the exact range of summation assuming that all probabilities involved in the
sums are well defined.

The distribution of locks and the testing may be viewed as a two-stage ran-
dom experiment with outcomes represented by pairs (γ, s), where γk ≡ γ =
(i1, i2, ..., ik) with 1 ≤ i1 < . . . < ik ≤ n is a (vector) allocation of k locks and
s = (s1, ..., sn) is a (vector) signal about boxes vulnerability. In Problem A k is a
fixed number, and in Problem B, 0 ≤ k ≤ n is a result of a binomial experiment.
The probability of each outcome is P (γ, s) = b(γ)P (s|γ), where b(γ) is prior distri-
bution of locks, and P (s|γ) = P (S1 = s1, ..., Sn = sn|γ). Given γ = (i1, i2, ..., ik)
and the prior distributions of locks, AT, using Bayes’ formula can obtain the pos-
terior distributions of locks bk(γ|s) = P (Ti = 1, i ∈ γ, Ti = 0, i /∈ γ|s). The
collections of these probabilities for different signals s and k in Problem B give
b(γ) and b(γ|s).

In our model, DF has no information about the allocation of bombs by AT.
Therefore, her strategy in a Nash equilibrium point is straightforward: distribute
k available locks between n boxes uniformly, i.e. the prior distribution bk(γ) is uni-
form. In statistical physics, this distribution is called the Fermi-Dirac statistics:
any combination of k protected boxes has the same probability 1/

(
n
k

)
. It is easy to

see that the probability of protection for each individual box is t = k
n . The similar

probability for Problem B is λ. The substantial difference between models is that
the rvs Ti are independent in B but not in A.

Thus, our main interest is in AT’s strategy. Given signal s and prior distribu-
tion of locks b(γ), AT can obtain aposterior distribution of locks (ADL) b(γ|s).
To construct an optimal allocation for each signal s, AT has to obtain values
P (Ti = 0|si = 0, s−i) and P (Ti = 0|si = 1, s−i) and their ratios, where s−i is
an n − 1-dimensional vector s = (s1, ..., sn) without coordinate si. In both prob-
lems the symmetry of minus and plus boxes gives a hint that for S-LBT the only
information necessary besides the signal in a particular box is the total number of
minuses. To justify this assertion we need a few results.

We start with the following lemma with two intuitively appealing observations.
First, the posterior probability of signal distribution is uniform conditional on the
number x of minus signals, and second, the posterior probability that box i has no
lock conditional on the full vector signal s = (s1, ..., sn) is equal to the conditional
probability that box i has no lock conditional only on the individual signal si and
the total number of minus signals.
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Lemma 1. a) For problems A and B, for any signal s and any x = 0, 1, ..., n

P (s|N = x) = 1/
(

n

x

)

. (3)

b) For problem B, for any signal s and any x = 0, 1, ..., n

P (Ti = 0|s,N = x) = P (Ti = 0|si). (4)

c) For problem A, for any signal s and any x = 0, 1, ..., n

P (Ti = 0|s,N = x) = P (Ti = 0|si, N = x), (5)

Proof. a) The symmetry of signals and boxes implies that P (s|N = x) = c(x),
i.e. all signals with the same number x of signals s = 0 have the same prob-
ability. Let Σ(x) = {s : N(s) = x}. Then, since |Σ(x)| =

(
n
x

)
and∑

s∈Σ(x) P (s|N = x) = 1, we obtain that P (s|N = x) is given by the equality
in (3).

b) For Problem B, the equality in (4) is obvious since the result of the test of box i
does not depend on the presence of locks and the results of the testing in other
boxes.

c) The formal, non-trivial proof of the equality in (5), can be found in
paper [16]. ��

The formulas in Lemma 1 are at the heart of the intuition behind our main results.

2.2 Lemma 2 and Key Ratio rB

To find the optimal strategy of AT we need to know the probabilities of a destruc-
tion of a minus and plus boxes with u bombs in a box, i.e. P (Ci = 1|si, u), si = 0, 1.
These probabilities in turn depend on the probabilities of an absence of a lock in
minus and plus boxes, i.e. P (Ti = 0|si), si = 0, 1. The optimal strategy will be
defined by the likelihood ratio of the latter probabilities, rB = P (Ti = 0|si =
0)/P (Ti = 0|si = 1). They are all described in Lemma 2. This lemma shows that
in Problem B, in contrast to Problem A, the ratio rB does not depend on x but
does depend on parameters a, b, λ and is given by an explicit formula, where we
use the shorthand notation h = a + b − 1.

Lemma 2. a) The probabilities of an absence of a lock in a minus and plus boxes,
and the corresponding probabilities of destruction of a minus and plus boxes with
u bombs are

P (Ti = 0|si = 0) = p− =
(1 − λ)b

λ(1 − a) + (1 − λ)b
=

(1 − λ)b
b − λh

, (6)

P (Ti = 0|si = 1) = p+ =
(1 − λ)(1 − b)

λa + (1 − λ)(1 − b)
=

(1 − λ)(1 − b)
1 − b + λh

, (7)

P (Ci = 1|si = 0, u) = p−p(u), P (Ci = 1|si = 1, u) = p+p(u); (8)



256 L. Liu and I. M. Sonin

b) The ratio rB for Problem B is given by the formula

rB =
p−

p+
=

b

1 − b

1 − b + λh

b − λh
, 0 < λ < 1; (9)

c) If a + b > 1 then function rB(λ) is increasing from 1 to
a

1 − a

b

1 − b
= c1c2 =

c > 1, when λ is increasing from 0 to 1;
if a + b < 1 then function rB(λ) is decreasing from 1 to c < 1; and if a + b = 1
then rB(λ) = 1.

Proof. The conditional independence of testing and explosions, and equalities in
(1) and (4) imply that the probability of destruction of box i with ui = u ≥ 1
bombs, given signal s with N = x, Si = si, is

P (Ci = 1|s, x, u) = P (Ti = 0|s, x)P (Ci = 1|Ti = 0, u) = P (Ti = 0|si)p(u).(10)

We also have the equalities

p− = P (T = 0|S = 0) = P (T = 0)P (S = 0|T = 0)/P (S = 0)
= (1 − λ)b/P (S = 0),
P (S = 0) = P (T = 1)P (S = 0|T = 1) + P (T = 0)P (S = 0|T = 0)
= λ(1 − a) + (1 − λ)b,

p+ = P (T = 0|S = 1) = P (T = 0)P (S = 1|T = 0)/P (S = 1)
= (1 − λ)(1 − b)/P (S = 1),
P (S = 1) = P (T = 1)P (S = 1T = 1) + P (T = 0)P (S = 1T = 0)
= λa + (1 − λ)(1 − b).

Using these equalities and formula (10) with si = 0 and si = 1, we obtain all
formulas in points (a) and (b).

To prove c), note that it is easy to check that d
dλrB(λ) =

b

1 − b

h

f(λ)2
, where

f(λ) = b − λh for all 0 < λ < 1, and that rB(0) = 1, rB(1) =
a

1 − a

b

1 − b
=

c1c2 = c. It is easy to check that the inequality a + b > 1 is equivalent to c =
rB(1) > 1. Hereafter we assume that h = a + b − 1 > 0 and therefore rB(λ) > 1
for all λ > 0. ��
Note that c1 and c2 represent the quality of sensitivity and specificity, and c rep-
resent the combined quality of testing.

Remark 1. Lemma 2 implies that testing is not very informative if locks are rare,
i.e. λ is small, even when the parameters of the testing are very good, i.e. a and
b are close to 1. When there are many locks, i.e. λ is close to one, the “amount
of information” is limited by the combined characteristic of the quality of testing,
parameter c.
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Note also that parameters a and b in function rB are not symmetrical, i.e., though
rB(.5|a, b)rB(.5|b, a) = c and rB(λ|a, b) ≈ rB(λ|b, a) ≈ c for λ close to 1, generally
rB(a, b) �= rB(b, a) for all λ < 1. This asymmetry property is in sharp contrast to
the symmetry of a and b for rA(x) in Problem A.

3 Main Results and Their Proofs

Let B−(s) = {i : si = 0} and B+(s) = {i : si = 1} denote the sets of minus and
plus boxes for signal s. Using the equality in (4), we obtain that, given a strategy
π = (u1, ..., un) for m bombs, and any signal s with N(s) = x, the value of a
strategy π, i.e. the expected number of destroyed boxes, is

wπ(s) ≡ wπ(s, x) =
n∑

i=1

P (Ti = 0 si)p(ui)

= p− ∑

i∈B−(s)

p(ui) + p+
∑

i∈B+(s)

p(ui). (11)

Let U− ≡ U−(π|s) = {uj , j ∈ B−(s)} and U+ ≡ U+(π|s) = {uj , j ∈ B+(s)}
be the two possible sets of the values of uj at minus and plus boxes. Formula (11)
immediately implies that all strategies obtained by permutations of sets (U−, U+)
among corresponding boxes have the same value denoted as wπ(x) ≡ wπ(x,m),
where m is the number of available bombs. Hereafter we use notation wπ(s) =
wπ(x), where x = N(s).

We denote v(x,m) = supπ wπ(x,m), the value function over all strategies,
given m and x, and v(m), the value function over all strategies and all possible
values of x, i.e. v(m) =

∑
x gB(x)v(x,m), where gB(x) = P (N = x) is given by

the formula in (2).
Formula (11) gives a hint that the proportion of the number of bombs placed

into a minus site to the number of bombs placed into a plus site is defined by ratio
rB = p−/p+, given in formula (9).

Let us assume for simplicity that the number of bombs is the same in all minus
boxes, and a similar statement holds for all plus boxes, i.e.: ui = u−, i ∈ B−(s)
and ui = u+, i ∈ B+(s). Then the role of ratio r = rB becomes clear, since formula
(11) takes the form of

wπ(s, x) ≡ wπ(x) = p+[rBxp(u−) + (n − x)p(u+)],

where p+, p−, r are given by the formulas in (6), (7) and (9).
To obtain an optimal strategy, we use a natural and obviously necessary equi-

librium condition: with an optimal allocation of bombs it is impossible to increase
the payoff by moving essentially a bomb from one box to another. Essentially means
changing sets of the values of uj at minus and plus boxes, i.e. sets U−(π|s) and
U+(π|s).

We remind that in the Introduction we heuristically described the potential
structure of optimal strategies in both problems, namely that they should be d-
UAP strategies with some values of d = 0, 1, 2, .... We will prove the optimality of a
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d-UAP strategy by showing that any other strategy does not satisfy this condition.
Later we give formulas for the optimal value d = dB .

The following two lemmas describe the properties of optimal strategies. Lem-
ma 3 proves that an optimal strategy is nearly uniform inside of minus and plus
boxes: if the signals in two boxes have the same sign, then the optimal number of
bombs can differ at most by 1.

Lemma 3. Let π(x) = (ui, i = 1, 2, ..., n) be an optimal strategy. Then |ur −ut | ≤
1 when the signals in boxes r, t have the same sign, i.e. sr = st.

Proof. In proof of Lemma 2, see formula (10) and after, we obtained the equalities

P (Ct = 1|st = 1, u) = p+p(u), P (Ct = 1|st = 0, u) = p−p(u) = rBp+p(u). (12)

Suppose that Lemma 3 is not true—say for boxes 1 and 2 with s1 = s2 =
1, u1 = i, u2 = j and j − i ≥ 2. The concavity of function p(u) implies that
p(i + 1) + p(j − 1) > p(i) + p(j). Then, using the first equality in (12) for t = 1
and t = 2, we obtain

P (C1 = 1|s1 = 1, u1 = i + 1, x) + P (C2 = 1|s2 = 1, u2 = j − 1, x)
= p+[p(i + 1) + p(j − 1))] > p+[p(i) + p(j)]

= P (C1 = 1|s1 = 1, u1 = i, x) + P (C2 = 1|s2 = 1, u2 = j − 1, x). (13)

Thus the initial allocation of bombs is not optimal. The proof for s1 = s2 = 0 is
similar, using the second equality in (12) and replacing p+ by p− = rB(λ)p+. ��
Once we have established that the optimal numbers of bombs in boxes with the
same signal can differ by not more than 1, our next step is to find the optimal
values of m−, m+, the numbers of bombs in minus and plus boxes. Given N = x,
0 ≤ x ≤ n, the number m of bombs available and a d-UAP strategy, there is a
unique allocation of bombs, given by tuple (l−, e−, l+, e+), where l−, l+ are the
numbers of “complete layers” of bombs in minus and plus boxes, respectively, and
e−, e+ are the numbers of “extra” bombs in the “incomplete layers”. Hereafter we
use shorthand notation l− = l, e− = e. Note that e indicates also how many minus
boxes have an extra bomb among all minus boxes. The same is true for plus boxes.
Thus 0 ≤ e < x, 0 ≤ e+ < n − x and e × e+ = 0. All these terms depend on m,x
and d = dB but we do not indicate this explicitly. We have

m− = l × x + e, m+ = l+ × (n − x) + e+

Thus, if e+ > 0 then e = 0, and l − l+ = d, and if e > 0 then e+ = 0 and either
l+ = 0, l − l+ < d or l+ > 0, l − l+ = d.

Let us define the threshold levels d for Problem B by the formula

dB = min
i≥1

{
i : rB (1 − p)i

< 1
}

. (14)

The optimality of this level, and hence the optimality of the corresponding strategy
is proved in Lemma 4.
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Lemma 4. Let π(x) = (ui, i = 1, 2, ..., n) be an optimal strategy, 0 < x < n,
(u−, u+) a pair of bombs in some pair (minus box, plus box), and d = dB be defined
by formula (14). Then a d-UAP strategy with d = dB defined by formula (14) is an
optimal strategy.

Proof. As always, we assume that a+ b > 1 and then rB > 1, and hence u− ≥ u+.
We will show that if u− − u+ > d for this pair of minus and plus boxes, then a
transfer of one bomb from a minus box from this pair to a plus box will increase
the value of a strategies. Similarly, if u+ ≥ 1 and u− − u+ < d − 1 for such pair,
then the inverse transfer will also increase the value. Let u− = i, u+ = j, P (·|N =
x) = P (·|x), and denote the incremental utilities for minus and plus boxes as
ΔC−(i|x) = P (C = 1|i+1, S = 0, x)−P (C = 1|i, S = 0, x), ΔC+(j|x) = P (C =
1|j + 1, S = 1, x) − P (C = 1|j, S = 1, x). Then, using the formulas in (12) and
(13) with u = i and u = j, we obtain that their difference for 0 ≤ j ≤ i is with
q = 1 − p,

Δ(i, j|x) = ΔC−(i|x) − ΔC+(j|x) = pqirBp+ − pqjp+

= pqjp+(rBqi−j − 1). (15)

The definition of d = dB in (14) implies that Δ(i, j|x) is positive if j = 0, i < d,
or if j ≥ 1, i−j < d. Similarly, Δ(i, j|x) is negative if j = 0, i ≥ d, or if j ≥ 1, i−j ≥
d. The optimality of d-strategy is proven. ��
Note also, that if p = 1, i.e. q = 0, then d = 1 for all 0 < x < n, and if p is decreasing
to zero, then d tends to infinity. Now we are ready to formulate our main theorem
for Problem B. As usual we assume that a + b > 1 and hence rB > 1 and then
0 < x < n.

Theorem 1 (Value function forB(n, λ)). Suppose that, given signal s, the total
number of minus boxes, with the total number of minuses N = x, 0 ≤ x ≤ n.

a) If x = n, (or x = 0), then the optimal strategy is 0-UAP and the value function
v(m|n) = v(m|0) for m = n × l + e, l = 0, 1, ..., 0 ≤ e < n, (l = l−, e = e−) is
given by the formula

v(n|m) = v(0m) = (1 − λ)[ep(l + 1) + (n − e)p(l)]. (16)
b) If 0 < x < n, then the optimal strategy is d-UAP strategy, where d = dB is

defined by formula (14) and rB is defined by formula (9). The value function
v(x,m) for m = m− + m+ = l × x + e + l+ × (n − x) + e+, is given by formula

v(x,m) = p+(λ)[rB(λ)(ep(l+1)+(x−e)p(l))+(e+p(l++1)+(n−x−e+)p(l+))].
(17)

(c) The value function v(m),m = 1, 2, ... is given by formula

v(m) =
n∑

x=0

gB(x)v(x,m), where gB(x) = P (N = x), (18)

is given by formula in (2).
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Proof.(a) If x = 0 or n, i.e. all boxes have the same minus or plus sign, and signal
s brings no information, Lemma 4 implies that an optimal strategy is 0-UAP.
When m = n × l + e, where 0 ≤ e < n, then 0-UAP means that e boxes have
l + 1 bombs each, and n − e boxes have l bombs each. The probability that a
particular box has no lock is 1 − λ. Then the expected damage in all n boxes is

(1 − λ)[eP (C = 1|l + 1, T = 0) + (n − e)P (C = 1|l, T = 0)]
= (1 − λ)[ep(l + 1) + (n − e)p(l)].

i.e., v(n|m) = v(0|m) is given by formula (16).
(b) If 0 < x < n, then by Lemma 4, an optimal strategy is d-UAP, and hence m−,

m+ satisfy the equalities m− = l × x + e, m+ = l+ × (n − x) + e+, 0 ≤ e < x,
0 ≤ e+ < n−x, ee+ = 0. Then each of e minus boxes has l+1 bombs each, and
x − e minus boxes have l bombs each, and in plus boxes e+ boxes have l+ + 1
bombs each, and n − x − e+ boxes have l+ bombs each. Then using formulas
in Lemma 2 for the probabilities of destruction for minus and plus boxes of we
obtain formula (17). We proved b). The proof of (c) is straightforward. ��

Remark 2. For computational purpose, the formulas in (16), (17), and (18) can be
represented recursively in m.

Remark 3. By definition of dB , let dB = d, we have rBqd−1 ≥ 1. If rBqd−1 > 1,
then the d-UAP strategy is the unique optimal strategy. If there is an equality, then
there are other optimal strategies with the allocation of bombs obtained as follows.
When all minus sites are filled with d − 1 full layers, the next bomb, if available,
can be placed either in a minus site or in a plus site. The incremental utility will be
the same. And so on with other extra bombs. As a result, the difference between
the full layers in the minus and the plus sites can be either d or d − 1.

A theorem similar to Theorem 1 holds for the case A. The full version of this
theorem, with formulas for the value functions v(m,x) and v(m) for all 0 ≤ x ≤ n,
and m, can be found in [16].

4 Examples

We will analyze the following pairs of examples when the expected number of locks
in B(n, λ) matches the fixed number k in A(n, k), i.e. nλ = k.

Example 1 (Ratio r for B(n, λ) and A(n, k)). Let n = 2, a = 7
12 , b = 9

12 . For
B(2, λ), by formula (9), when λ = 1/2, we obtain rB(1/2) = 15

7 ≈ 2.143; when
λ = 1, rB(1) = 4.2 = c. With a = 9

12 , b = 7
12 , we obtain rB(1/2) = 49

25 = 1.96,
rB(1) = 4.2 = c. Hence rB(1/2|a, b)rB(1/2|b, a) = 21

5 = 4.2 = c. When a + b > 1,
ratio rB as a function of λ is increasing, while when a+b < 1, the ratio is decreasing,
as shown in Fig. 1.

Let n = 2, k = 1, a = 7
12 , b = 9

12 . For A(2, 1), we have rA(1) = 21
5 = 4.2 = c,

rA(0) is not defined, and rA(2) is also not defined. For any problem A(n, n− 1) we
have rA(1) = c = 21

5 = 4.2.
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Fig. 1. Ratio rB .

We skip the proof of the formula for rA(x) ≡ r(x) in Problem A, and the prop-
erties of this coefficient. Some details can be found in [9] and [16].

Example 2 (Optimal strategy for A(n, k) and B(n, λ)). In an example with n = 5,
x = 4, m = 7, a = 7/12, b = 9/12, for B(5, 0.4), we have dB = 1, l = 1, e = 2,
m− = 6, l+ = 1, e+ = 0, m+ = 1. Hence the optimal strategy is to place 1 bomb
in each of the 2 minus boxes, 2 bombs in each of the remaining 2 minus boxes and
1 bomb goes to the 1 plus box. Thus m− = (x − e)l + e(l + 1) = 2 ∗ 1 + 2 ∗ 2 = 6,
m+ = (n − x − e+)l+ + e+(l+ + 1) = 1 ∗ 1 + 0 = 1.

However, for A(5, 2), we have dA = 2, l = 1, e = 3, m− = 7, l+ = e+ = m+ =
0. Hence our optimal strategy is to put 1 bomb in the 1 minus box, 2 bombs in each
of the 3 minus boxes, and no bomb goes in the plus box. Thus m− = (x − e)l +
e(l + 1) = 1 ∗ 1 + 3 ∗ 2 = 7.

Assuming that the signals for the first 4 boxes are all minus, the signal for the
remaining box is plus, and the two locks are allocated among the boxes. The fol-
lowing table illustrates the idea of the bombs placement.

1 2 3 4 5

γ (Lock position) ⊗ ⊗
s (Observed signal) − − − − +

Bomb placement for B(5, 0.4) 2 2 1 1 1

Bomb placement for A(5, 2) 2 2 2 1 0

Example 3 (Value function for A(n, k) and B(n, λ)). Let a = 7/12, b = 9/12,
number of bombs m = 1, 2, ..., 7, and p = 0.6.

For B(n, λ), from Lemma 2, we know that p+, p− and ratio rB only depend on
λ, a and b, while dB only depends on rB and p. Hence we calculate these values
based on different λ (see Table 1).

Now we can compare the value function for:

1. A(2, 1) and B(2, 0.5).
For B(2, 0.5), according to Table 1, for λ = 0.5, we have d = 1, and rB = 2.143.
For A(2, 1), d is changing with respect to x, and so is r(x). The conditional value
function v(x,m) is shown in Table 2. With different number of bombs, the value
function is shown in Table 3. We also generate a comparison plot for A(2, 1) and
B(2, 0.5) with respect to different m, as shown in Fig. 2.
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Table 1. B(n, λ): ratio and d for different λ.

λ 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

rB(λ) 1 1.186 1.39 1.615 1.865 2.143 2.455 2.806 3.207 3.667 4.2

p− 1 0.942 0.878 0.808 0.73 0.643 0.545 0.435 0.31 0.167 0

p+ 1 0.794 0.632 0.5 0.391 0.3 0.222 0.155 0.097 0.046 0

dB 1 1 1 1 1 1 1 2 2 2 2

Table 2. Value function for B(2, 0.5) and A(2, 1) when m = 7.

Bomb placement and value function

x Problem d r l e m− l+ e+ m+ v(x, m) g(x) v(x, m)g(x)

0 B(2, 0.5) 1 2.143 0 0 0 3 1 7 0.955 0.174 0.166

A(2, 1) 1 None 0 0 0 3 1 7 0.955 0.312 0.298

1 B(2, 0.5) 1 2.143 4 0 4 3 0 3 0.907 0.486 0.441

A(2, 1) 2 4.2 4 0 4 3 0 3 0.967 0.542 0.524

2 B(2, 0.5) 1 2.143 3 1 7 0 0 0 0.955 0.34 0.325

A(2, 1) 1 None 3 1 7 0 0 0 0.955 0.146 0.139

Table 3. The value function for different number of bombs.

m 1 2 3 4 5 6 7

B(2, 0.5) vB(m) 0.483 0.583 0.72 0.817 0.871 0.91 0.932

A(2, 1) vA(m) 0.4 0.6 0.76 0.857 0.904 0.943 0.962

Thus, when m = 7, for B(2, 0.5), the value function equals

v(m) =
2∑

x=0

v(x,m)g(x) = 0.166 + 0.441 + 0.325 = 0.932;

for A(2, 1), the value function equals

v(m) =
2∑

x=0

v(x,m)g(x) = 0.298 + 0.524 + 0.139 = 0.962.
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Fig. 2. The value function for A(2, 1) and B(2, 0.5).

2. A(3, 1) and B(3, 0.33).
The conditional value function v(x,m) is shown in Table 4. With different num-
ber of bombs, we have the value function shown in Table 5. We also generate a
comparison plot for A(3, 1) and B(3, 0.33) with respect to different m, as shown
in Fig. 3. The expected damage is relatively higher in A(3, 1) than in B(3, 0.33),
except the case when there’s only one bomb.

Table 4. Value function for B(3, 0.33) and A(3, 1) when m = 7.

Bomb Placement and Value Function

x Problem d r l e m− l+ e+ m+ v(x,m) g(x) v(x,m)g(x)

0 B(3, 0.33) 1 1.688 0 0 0 2 1 7 1.753 0.047 0.082

A(3, 1) 1 None 0 0 0 2 1 7 1.744 0.13 0.227

1 B(3, 0.33) 1 1.688 3 0 3 2 0 4 1.517 0.249 0.377

A(3, 1) 1 1.615 3 0 3 2 0 4 1.766 0.408 0.72

2 B(3, 0.33) 1 1.688 2 1 5 2 0 2 1.785 0.442 0.79

A(3, 1) 2 2.6 3 0 6 1 0 1 1.764 0.377 0.664

3 B(3, 0.33) 1 1.688 2 1 7 0 0 0 1.753 0.262 0.459

A(3, 1) 1 None 2 1 7 0 0 0 1.744 0.085 0.148

Table 5. Value function for different number of bombs.

m 1 2 3 4 5 6 7

B(3, 0.33) v(m) 0.519 0.77 1.128 1.304 1.458 1.579 1.65

A(3, 1) v(m) 0.483 0.917 1.2 1.397 1.567 1.681 1.759
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Fig. 3. Value function for A(3, 1) and B(3, 0.33).

Fig. 4. Value function for A(5, 2) and B(5, 0.4).

3. A(5, 2) and B(5, 0.4).
Let’s check the value function forA(5, 2) andB(5, 0.4) for differentm. The value
function v(m) is shown in Table 6 and the plot of v(m) is on the left in Fig. 4.
We can see that A(5, 2) has a higher expected damage value than B(5, 0.4), but
then they are becoming more and more closer as m gets larger.
The comparison plot of the value function for relatively large m is shown on the
right in Fig. 4. The value function is clearly getting closer as m gets larger.

Table 6. Value function for different number of bombs

m 1 2 3 4 5 6 7

B(5, 0.4) v(m) 0.462 0.744 1.042 1.396 1.77 1.943 2.109

A(5, 2) v(m) 0.451 0.891 1.282 1.576 1.8 1.982 2.158

Conclusion: According to all three comparison plots, for the same small amount
of bombs m, A(n, k) usually has a higher expected damage value than B(n, k/n),
but when m is large, the difference becomes smaller and smaller.
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Abstract. Redundancy mechanisms consist in sending several copies of
a same job to a subset of servers. It constitutes one of the most promising
ways to exploit diversity in multi-servers applications. However, its pros
and cons are still not sufficiently understood in the context of realistic
models with generic statistical properties of service-times distributions
and correlation structures of copies. We aim at giving a survey of recent
results concerning the stability - arguably the first benchmark of perfor-
mance - of systems with cancel-on-completion redundancy. We also point
out open questions and conjectures.
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1 Introduction

While there are several variants of redundancy-based systems, the general notion
of redundancy is to dispatch multiple copies of each job to a subset of servers
and to consider the result of whichever copy completes service first. By allowing
for redundant copies, the aim is to minimize the system latency by exploiting
the variability in the queue lengths of the different queues. The potential of
redundancy mechanisms lies in finding the right trade-off between exploiting
variability and the waste of resources induced by having redundant copies.

Several empirical [2,3,11,12,38,41] and numerical studies [15,16,26,29,30]
suggest that redundancy might potentially improve the performance of real-
world computer system applications. In particular, Vulimiri et al. [41] consider
a 10 DNS servers system and compare the system where each arriving query
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dispatches 10 copies to all the 10 DNS servers, to an alternative system where
queries are assigned to a single server chosen uniformly at random. The authors
observe that the fraction of queries with a service time exceeding 500 ms is
reduced by a factor 6.5, and the fraction exceeding 1.5 is reduced by a fac-
tor 50. Another interesting study is provided by Dean and Barroso [12] who
underline that several redundancy techniques are applied in Google’s BigTable
in order to improve the latency of incoming queries. They show that a redun-
dancy system with two copies reduces the median response time by 16% and
the 99.9th-percentile of the tail of the response time distribution by nearly 40%
compared to the non-redundant system.

Broadly speaking, depending on when replicas are deleted, we can con-
sider two classes of redundancy systems: cancel-on-start (c.o.s.) and cancel-on-
completion (c.o.c.). In redundancy systems with c.o.c., once one of the copies
has completed service, the other copies are deleted and the job is said to have
received service. In redundancy systems with c.o.s., copies are deleted as soon
as one copy starts being served, and as a consequence, c.o.s. does not waste any
computation resources.

In this survey, we will provide an overview on stability results in redundancy
systems. From the point of view of stability, c.o.s. does not have any negative
impact, and for this reason we focus on stability results when c.o.c. is imple-
mented.

Let us illustrate through a simple example how redundancy affects the sta-
bility region. Consider a system with K homogeneous servers in which copies of
each arriving job are dispatched to d ≤ K servers chosen uniformly at random.
We assume that jobs arrive according to a Poisson process of rate λ and jobs
have general service times with unit mean. Without redundancy, i.e. d = 1, the
stability condition under any work-conserving policy is given by λ < μK, where
μ is the capacity of the servers. Now, let us assume that the service times are
exponentially distributed, that copies are i.i.d. and that d = K. In this case, the
system behaves as a single server system with arrival rate λ and server capac-
ity μK, and the stability condition is again λ < μK. However, if all the copies
had the same service time as the original job (identical copies), servers are syn-
chronized and the instantaneous departure rate is just μ. Therefore, the system
behaves as a single server system with arrival rate λ and server capacity μ, for
which the stability condition is λ < μ. This simple example illustrates how the
modeling assumptions and the degree of redundancy can dramatically impact
the stability condition of the system.

One of the main lessons we draw from the results available in the literature,
is that the stability region depends strongly on the scheduling policy employed
at the servers and the correlation structure of copies. Somewhat surprisingly,
we also identify situations for which it was shown that adding redundant copies
does not reduce the stability region. Overall, we believe more research is needed
in order to design efficient redundancy algorithms.

The rest of the survey is organized as follows. Section 2 describes the main
model assumptions and notation, Sect. 3 deals with the case in which the service
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times of the copies are i.i.d., and Sect. 4 with identical and correlated copies. In
Sect. 5, we present a brief account of results on redundancy that, even though not
directly related to stability, are relevant from the performance point of view. We
conclude with Sect. 6 where we discuss several open problems and state various
conjectures.

2 Model Description and Preliminaries

We consider a K parallel heterogeneous server system. That is, we have a set of
servers S = {1, . . . , K} and server s has capacity μs, for s ∈ S. Jobs arrive to the
system according to a Poisson process of rate λ. Arriving jobs have service times
that are independent across jobs and are identically distributed with mean 1.

Jobs are labeled by types c = {s1, . . . , si} ⊂ S, where i is the number of
copies and c is the set of servers to which this job will dispatch copies. We let
C be the set of all possible types. A job is of type c with probability pc, where∑

c∈C pc = 1.
We consider redundancy models that are c.o.c., that is, as soon as a copy is

fully served, the additional copies of that job are removed from the system. This
cancellation process induces a correlation in the departure process at the servers.
Thus, within a server s there is a departure of a copy due to the following two
events: i) a local copy departs due to completion in server s, or ii) a copy in
another server completes that induces a departure in server s.

Model Topology. A well-known symmetric topology is the one in which each
job sends a copy to d out of K servers. In case the server are chosen uniformly
at random, that is, pc = 1/

(
K
d

)
, and servers have the same capacity μ, we refer

to this model as the redundancy-d model, see Fig. 1 (a). The number of copies,
d, is referred to as the redundancy degree.

µ µ µ µ

λ

µ1 µ2

λ

µ1 µ2

λ

(a) (b) (c)

d

Fig. 1. (a) The redundancy-d model for K = 4 and d = 2. (b) The N -model. (c) The
W -model.

Two other examples of redundancy topologies are the so-called N -model
and W -model, see Fig. 1 (b) and (c). Both models are non-symmetric, with two
servers. The set of possible job types is C = {{2}, {1, 2}} in the N -model, and
C = {{1}, {2}, {1, 2}} in the W -model.
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When no specific structure is assumed, we refer to it in the sequel as a general
topology.

Scheduling Policy. A scheduling policy determines how copies are served
within each server. As we will see, the choice of the scheduling policy can have
a dramatic impact on the stability region. First-Come-First-Served (FCFS) and
Processor Sharing (PS) are widely implemented in real-world computer systems
[21], and are thus common policies considered in the literature on redundancy.
Random-Order-of-Service (ROS) is not a common discipline in systems, but as
we will see in the ensuing, it yields very good performance in terms of stabil-
ity for a redundancy system. These three policies represent the main focus of
our survey. To the best of our knowledge, other policies such as Last-Come-
First-Served (LCFS), Shortest-Remaining-Processing-Time (SRPT), and Least-
Attained-Service (LAS) have not been considered so far.

Correlation Structure Among Copies. This describes how the service times
of the copies of a given job are related. Formally, the service times X1, . . . , Xk of
the copies of one job can be sampled from a joint distribution F (x1, . . . , xk). Two
extreme cases are i.i.d. copies and identical copies. Under i.i.d. copies, all copies
have independent service times sampled from the same distribution, whereas
with identical copies, all the copies of a job have the same service time. Another
interesting framework is the so-called S&X model introduced in [16]. Here, the
service time of each copy is decomposed into two components; the inherent job
size, which is identical for all the copies of a job, and the experienced slowdown
on the server it is being served.

Existing Stability Results. Table 1 summarizes the main stability results for
c.o.c. redundancy models available in the literature and discussed in this survey.
The table is organized by scheduling policy, service time distribution, redun-
dancy topology and correlation structure. In brackets we specify the additional
assumptions that the authors consider in their respective paper. The term “red-
d” refers to the redundancy-d system and the term “gen.” refers to a general
redundancy topology.

Table 1. Stability results for c.o.c redundancy models.
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The stability condition when jobs have i.i.d. copies is the main topic of Sect. 3,
first for exponential service times (Sect. 3.1) and then for scaled Bernoulli dis-
tributions (Sect. 3.2). These are the results in the first two columns of Table 1.
Correlated copies are discussed in Sect. 4, first for identical copies (Sect. 4.1, mid-
dle two columns in Table 1) and then for general correlation structures (Sect. 4.2,
last two columns of Table 1). In Sect. 6, we discuss open problems and state var-
ious conjectures regarding stability conditions. In Table 1, these conjectures are
indicated with a X.

3 Independent and Identically Distributed Copies

In this section we assume that jobs have i.i.d. copies.

3.1 Exponential Service Times

We first discuss results on FCFS and exponentially distributed service times, a
setting studied by Gardner et al. [17,20] and Bonald and Comte [8]. It was shown
in [8] that this model fits the framework of Order Independent queues (see [28,
Chapter 2]), which is a large class of systems that have a product-form steady-
state distribution. This can be seen as follows. Since copies are i.i.d., we can
describe the system through the Markovian state descriptor (cn, cn−1, . . . , c2, c1).
Here, n is the number of jobs in the system, c1 is the type of the eldest job in
the system and ci is the type of the ith eldest job. Because of FCFS, the eldest
job is served in all of its compatible servers c1. The i-th eldest job is in service
at servers s ∈ ci\ ∪i−1

j=1 cj , for i = 1, . . . , n. Due to the exponentially distributed
service times and i.i.d. copies, the instantaneous departure rate of the ith job
is given by the sum of the rates in the servers where the job is in service, that
is,

∑
s∈ci\c1,...,ci−1

μs. Hence, the total instantaneous departure rate out of state
(cn, cn−1, . . . , c2, c1) is

∑
s∈∪n

j=1cj
μs, which depends on the set of classes present

in the system, but not on their ordering in the state descriptor, i.e., the so-called
order independent property.

The characterization of the steady-state distribution facilitates the derivation
of performance measures such as the stability condition and mean response times.
The proposition below states the stability result for this model.

Proposition 1 ([8,20]). For a redundancy system with general topology under
FCFS with exponentially distributed service times and i.i.d. copies, the system
is stable if for all C ⊆ C,

λ
∑

c∈C

pc <
∑

s∈S(C)

μs, (1)

where S(C) =
⋃

c∈C{s ∈ c}. The system is unstable if there exists C̃ ⊆ C such
that

λ
∑

c∈C̃

pc >
∑

s∈S(C̃)

μs.
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Informally, Eq. (1) states that the arrival rate to any subset of job types must
be less than the total capacity of the associated compatible servers. For expo-
nential service times, this is the maximum stability condition, i.e., the system
cannot be stable if one of these inequalities were not satisfied. Thus, we conclude
that the stability region is not reduced due to adding redundant copies. The lat-
ter might seem counter-intuitive at first, since even if servers waste resources
serving copies that are not fully served, the stability condition is as large as if
there was no redundancy (see also the simple example in the introduction).

Extending Proposition 1 to other scheduling policies is an important open
problem (see Sect. 6 for more details). To the best of our knowledge, this has
only been achieved for the redundancy-d model. In this case, it is easy to see that
Eq. (1) reduces to λ < μK, and it has been shown that this stability condition
remains valid when either PS or ROS is implemented.

Proposition 2 ([4]). For the redundancy-d model under either PS or ROS with
exponentially distributed service times and i.i.d. copies, the system is stable when
λ < Kμ and unstable when λ > Kμ.

Hence, under PS, ROS and FCFS, the redundancy-d model is maximum sta-
ble. This however does not hold true in general. In the example below (originally
in [4]), we describe priority policy that is not maximum stable, i.e., the system
can become unstable even though λ < Kμ.

Example: Priority Policy. Consider the redundancy-d system with K =
3, d = 2 and μ = 1. There are three different types of jobs: C =
{{1, 2}, {1, 3}, {2, 3}}. In server 1, FCFS is implemented. In server 2 and server 3,
jobs of types {1, 2} and {1, 3} have preemptive priority over jobs of type {2, 3},
respectively. Additionally, within a type, jobs are served in order of arrival.

In Fig. 2 we plot the sample-path of the number of jobs when λ = 2.9 < 3 =
μK. We observe that the number of type-{2, 3} jobs in the system grows large,
while the number of type-{1, 2} and type-{1, 3} jobs stay close to 0. Hence,
the system is clearly unstable, even though λ < μK. This can intuitively be
explained by the inefficiency induced by the priority mechanism as the type-
{2, 3} jobs are preempted by type-{1, 2} and type-{1, 3} jobs in servers 2 and 3,
respectively. We refer to [4] for more details.

3.2 General Service Times

To the best of our knowledge, no stability results exist for general service times
with i.i.d. copies. In this section, we present the stability result obtained for
scaled Bernoulli service times, defined as

{
X · M, with probability 1/M
0, with probability 1 − 1/M,

where M > 0 and X is a strictly positive random variable with E[X] = 1. In
this setting, Raaijmakers et al. [35] characterize the stability condition for the
redundancy-d model where FCFS is implemented and the number of servers
grows large.
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Fig. 2. The trajectory of the number of jobs per type when λ = 2.9.

Proposition 3 ([35]). Consider the redundancy-d model under FCFS with
scaled Bernoulli service times and i.i.d. copies. Then, λ < Md−1

E[min(X1,...,Xd)]
is

a sufficient stability condition for any M . In addition, for any ε, it holds that
(1 − ε)λ < Md−1

E[min(X1,...,Xd)]
is a necessary condition, for M sufficiently large.

We observe that the stability condition is independent of the number of
servers, but strongly depends on the number of copies d. The latter is in contrast
to the exponentially distributed service times, where the stability condition does
dependent on the number of servers but is independent of d (see Proposition 2).
Thus, we observe that when copies are i.i.d., the stability condition strongly
depends on the service time distribution. In addition, we observe that as M
grows large (and hence the variance of the service times grows large), the stability
region increases by a factor Md−1, by taking advantage of a greater diversity in
service times.

4 Correlated Copies

Several studies (e.g., [42]) have shown that the i.i.d. copies assumption can be
unrealistic, since large jobs remain large when replicated. Hence, having addi-
tional copies could lead to high response times and even instability. Motivated by
the latter, stability results with correlated copies have been the focus of recent
literature.

4.1 Identical Copies

In this section, we assume that jobs have identical copies, i.e., all copies belonging
to one job have the same size. This correlation makes that a job can only depart
due to its copy that has received most service so far. Thus, the instantaneous
departure rate of a job depends on its copy that has currently attained most
service.
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FCFS Policy. With FCFS, the eldest job in the system will be served at all of
its compatible servers. A job later in the queue will be served at its compatible
servers that are not engaged by earlier jobs in the queue.

The stability condition for the redundancy-d system with FCFS and expo-
nentially distributed service times is characterized in Anton et al. [4], through
the average departure rate per type in the so-called saturated system. The latter
assumes an infinite backlog of jobs waiting for service. The long-run time-average
number of jobs in service in the saturated system is denoted by �̄. A detailed
description of the saturated system and the characterization of �̄ can be found
in [4].

Proposition 4 ([4]). For the redundancy-d system under FCFS with exponen-
tially distributed service times and identical copies, the system is stable if λ < �̄μ
and unstable if λ > �̄μ.

The value of �̄, and hence the stability region, can be numerically obtained by
solving the balance equations of the saturated system, see [4] for more details.
We note that the instantaneous departure rate in the saturated system strongly
depends on the types in service. As a consequence, no expression has been derived
so far for �̄ for general K and d values.

�̄/K K = 2 K = 3 K = 4 K = 5 K = 6 K = 7 K = 8

d = 1 1 1 1 1 1 1 1

d = 2 0.5 0.66 0.71 0.74 0.76 0.77 0.77

d = 3 0.33 0.5 0.54 0.57 0.58 0.60

d = 4 0.25 0.4 0.43 0.46 0.47

d = 5 0.2 0.33 0.36 0.38

d = 6 0.16 0.28 0.31

d = 7 0.14 0.25

Fig. 3. The table and figure show the values of �̄/K for different values of d and K.

Note that the stability condition can equivalently be written as λ
Kμ < �̄

K ,
where λ

Kμ is the traffic load. In Fig. 3 (originally in [4]), we provide numerical

values for �̄
K , that is, the traffic supported by the system. The table (left) shows

�̄/K for small values of K and the figure (right) plots the value of �̄/K as K
grows large. To obtain the value of �̄ for d �= 1,K − 2,K − 1,K, the authors
simulate the saturated system, rather than solving the balance equations1. It
was proven in [4] that �̄/K, hence the amount of supported traffic, increases

1 When d = K−1, there are d servers that process copies of one job, and the remaining
K − d = 1 server serves one additional job, hence, �̄ = 2. When instead d = 1, there
is no redundancy and each server serves one job in the saturated system, i.e., �̄ = K.
When d = K, the system behaves as a single server with capacity μ, that is, �̄ = 1.
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when the number of servers (K) grows large, a property that can be observed in
Fig. 3.

PS Policy. Under PS and identical copies, the stability condition is character-
ized in [5]. There it is shown that the stability condition coincides with that of a
K parallel server system where each type-c job is only dispatched to its so-called
least-loaded servers. In order to state this result, we first need to define several
sets of servers and customer types. The first subsystem includes all servers, that
is S1 = S. We denote by L1 the set of least-loaded servers in the system S1 = S.
Thus,

L1 =

⎧
⎨

⎩
s ∈ S1 : s = arg min

s̃∈S1

⎧
⎨

⎩

1
μs̃

∑

c∈C(s̃)
pc

⎫
⎬

⎭

⎫
⎬

⎭
.

For i = 2, . . . ,K, we define recursively

Si := S\ ∪i−1
l=1 Ll,

Ci := {c ∈ C : c ⊂ Si},
Ci(s) := Ci ∩ C(s),

Li :=
{

s ∈ Si : s = arg mins̃∈Si

{
1

μs̃

∑
c∈Ci(s̃)

pc

}}
.

The Si-subsystem refers to the system consisting of the servers in Si, with
only jobs of types in the set Ci. The Ci(s) is the subset of types that are
served in server s in the Si-subsystem. We let C1 = C. The set Li repre-
sents the set of least-loaded servers in the Si-subsystem. Finally, we denote by
i∗ := arg maxi=1,...,K{Ci : Ci �= ∅} the last index i for which the subsystem Si

is not empty of job types.
The stability condition is now characterized in [5] by the least-loaded servers

that can serve each job type.

Proposition 5 ([5]). Assume that the service time distribution is such that it
has no atoms and is light-tailed in the following sense,

lim
r→∞ sup

a≥0
E[(X − a)1{X−a>r}|X > a] = 0. (2)

For a redundancy system with a general topology under PS with identical copies,
the system is stable if λ

∑
c∈Ci(s)

pc < μs, for all s ∈ Li, i = 1, . . . , i∗. The
redundancy system is unstable if there exists ι ≤ i∗ and s ∈ Lι such that
λ

∑
c∈Cι(s)

pc > μs.

It can be seen (as observed in [33]) that the light-tailed condition in (2) also
implies

sup
a≥0

E[(X − a)|X > a] ≤ Φ < ∞, (3)

which is a usual light-tailed condition (see [14]). Hence, (2) and (3) exclude
heavy tailed distributions like Pareto, but include large sets of distributions
such as phase type (which are dense in the set of all distributions on R

+),



Stability of Redundancy Systems 275

exponential and hyper-exponential distributions, as well as distributions with
bounded support.

For the redundancy-d model, the above stability condition simplifies into
λ < Kμ/d. The latter coincides with the stability condition of a system where
all the copies need to be served, that is, the worst possible stability condition.

ROS Policy. When ROS is implemented in the servers, it was shown in [4] that
the stability condition is not reduced when adding redundant copies. This was
proved for exponentially distributed service times and identical copies for the
redundancy-d model. However, as stated in Sect. 6, we believe that this holds
true for any redundancy structure and any correlation structure.

Proposition 6 ([4]). For the redundancy-d model under ROS with exponen-
tially distributed service times and identical copies, the system is stable if
λ < Kμ.

The intuition behind the above result is as follows. Whenever there are many
jobs in a server, the probability that this server serves a copy of a job that has
also a copy elsewhere in service will be close to zero. Hence, with a probability
close to 1, all highly-loaded servers are serving copies of different jobs and their
instantaneous departure rate equals the sum of their capacities.

4.2 Generally Correlated Copies

In this section, we consider redundancy models where the service times of the
copies of each job are correlated according to some general structure.

For FCFS, Raaijmakers et al. [34] consider a general workload model, which
subsumes the S&X model, introduced in [17]. The main difference is that in
[34] the server capacities are not fixed, but each job samples server capacities
from a discrete and finite distribution. The authors assume that the server speed
variations (slowdowns) are either distributed according to New-Better-than-Used
(NBU) or New-Worse-than-Used (NWU). See [37] for more details on NBU and
NWU distributions2.

Depending on the random variation in the server speed, the authors prove
that either no replication (d = 1) or full replication (d = K) provides a larger
stability region. Note that here the stability region refers to a wider concept
than what we considered before. That is, it refers to the set of arrival rates such
that there exists a static assignment rule that makes the system stable.

Proposition 7 ([34]). Consider the following model. Each job is routed to d
servers according to some static probabilistic assignment. Servers implement

2 X is said to be New-Better-than-Used (NBU) if for all t1, t2 ∈ R, F̄X(t1 + t2) ≤
F̄X(t1)F̄X(t2). X is said to be New-Worse-than-Used (NWU) if for all t1, t2 ∈ R,
F̄X(t1 + t2) ≥ F̄X(t1)F̄X(t2). A sufficient condition for X to be NBU (NWU) is to
have an increasing (a decreasing) hazard rate, i.e., r(x) is increasing (decreasing)
in x.
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FCFS. Every time a server starts serving a new copy, it samples a speed vari-
ation, which is independent across servers. The type of a job is determined by
the capacities it would obtain in each server. A job has a generally distributed
service time.

– If the probabilistic assignment can depend on the job type, and the speed vari-
ation follows an NBU distribution, then the stability region for d = 1 is larger
or equal than that for d > 1.

– If the probabilistic assignment does not depend on the job type, and the speed
variation follows an NWU distribution, then the stability region for d = K is
larger or equal than that for d = 1.

From the above we observe that the optimal redundancy degree does not
depend on the job size distributions, but rather on the random variation in the
server speeds for a given job among the servers.

A sufficient stability condition for the redundancy-d model with FCFS has
been obtained in Mendelson [32]. He considers that the service times of the
copies X1, . . . , Xd are identically distributed with mean 1 and sampled from a
joint distribution F (x1, . . . , xd).

Proposition 8 ([32]). Consider the redundancy-d model where FCFS is imple-
mented and the service times of the copies are sampled from a general joint dis-
tribution F (x1, . . . , xd). Then, λ < λlb is a sufficient stability condition, where

λlb :=
μK

∑d
m=0

(∑d−m
j=1 E[min(X1, . . . , Xj)] + mE[min(X1, . . . , Xd)]

)
Pm

,

and Pm =
(
K−d
d−m

)(
d
m

)
/
(
K
d

)
.

For the special cases d = 1 and d = K, the sufficient condition simplifies to
λ < λlb = Kμ and λ < λlb = μ/E[min(X1, . . . , Xd)], respectively, which are in
fact also the necessary stability conditions.

We now consider the redundancy-d model where PS is implemented. Raai-
jmakers et al. [36] characterize the stability condition under any service time
distribution through the minimum of the service times of the copies of a job.
The latter can be heuristically explained as follows: assume that all servers are
equally loaded. Then, due to PS, the copy that completes first is the one with
the smallest service time among all copies of the job.

Proposition 9 ([36]). For the redundancy-d model under PS where the service
times of the copies are sampled from a general joint distribution F (x1, . . . , xd),
a necessary stability condition is λdE[min(X1, . . . , Xd)] < Kμ.

In the particular case where copies are identical, the authors in [36] prove
that Proposition 9 gives a sufficient and necessary stability condition, which is
given by λd < Kμ. We note that the latter coincides with the stability condition
for light-tailed service times distributions provided in Proposition 5. Moreover,
[36] shows that the stability condition under NWU service time distributions,
respectively NBU service time distributions, is larger, respectively smaller, than
that for exponential service times.
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5 Related Work

In this section, we briefly overview relevant papers on redundancy. Even though
the results do not deal directly with stability, they are important pointers for
the reader who wishes to work on redundancy.

5.1 Response Time

The response time (a.k.a. delay) measures the time elapsed between arrival and
departure. It is together with stability the main performance measure, and it has
received considerable attention. The first performance analysis of a redundancy
model was for cancel-on-complete (c.o.c.) with exponentially distributed service
times, independent and identically distributed (i.i.d.) copies and FCFS. As dis-
cussed in Sect. 3.1, Gardner et al. [17,20] and Bonald and Comte [8] exploit the
link between this redundancy system and the Order Independent queue [28],
in order to show that the steady-state distribution has a product form. The
paper [17] showed that the mean response time in the system reduces as the
redundancy degree d increases. Redundancy c.o.s. with FCFS and exponentially
distributed job sizes has been analyzed in Ayesta et al. [7], where it was shown
that the steady-state distribution also has a product form. This was achieved by
showing that this model fits within the framework of multi-type jobs and multi-
type servers studied in Visschers et al. [40]. The above results have motivated
researchers to develop unifying frameworks to explain the emergence of product
form distributions in redundancy models. This is done in Ayesta et al. [6] and
Gardner and Righter [19] by extending the frameworks of Visschers et al. [40]
and Order Independent queues [28], respectively.

Comte and Dorsman [10] introduce the Pass-and-Swap queue, not included
in the above unifying frameworks, but for which the product-form of the steady-
state distribution is preserved. The authors provide several examples that fall
into this framework, including a loss variant of the c.o.s. redundancy model.

The response time has also been studied in limiting regimes such as heavy
traffic and mean field. Cardinaels et al. [9] consider both c.o.c. and c.o.s. and
establish that in heavy traffic the joint distribution of the number of jobs of the
various types converges to the product of an exponentially distributed random
variable times a deterministic vector, a phenomenon known as state-space col-
lapse. Hellemans et al. [24,25] consider the mean-field regime and characterize
the stationary workload distribution of c.o.c. with FCFS, general service times
and both identical and i.i.d. copies. In Hellemans et al. [22] the authors gener-
alize the previous result to other redundancy scheduling implementations such
as replication if above certain threshold, delayed replication policy or replicate
small jobs. Another mean-field result can be found in Hellemans et al. [23] where
the authors analyze the stationary response time and workload distributions of
JSW(d), JSQ(d) and redundancy-d under FCFS and general service times.
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5.2 Optimizing Redundancy

The stability results presented in this survey show that both the scheduling
policy and the degree of redundancy can have a big impact on the stability region
and hence on the performance of the system. Motivated by this, researchers
have aimed at i) characterizing what is the optimal scheduling policy in the
servers and ii) determining what is the optimum number of copies that should
be created.

One of the first papers studying redundancy was by Koole and Righter [27],
which considered a system where jobs can dispatch i.i.d. copies to any subset of
servers in the system. The authors showed that with FCFS and NWU service
time distributions, the best policy is to replicate to all the servers.

Several optimality results have been derived for the Least-Redundant-First
(LRF) scheduling policy, which serves jobs in lower priority as their number of
copies increases (jobs with the same number of copies are served according to
FCFS). In particular, Gardner et al. [15,18] consider nested redundancy models
with exponential service times and i.i.d. copies, and show that the mean response
time is minimized under LRF. We note that a redundancy model is nested if for
all c, c′ ∈ C, either i) c ⊂ c′ or ii) c′ ⊂ c or iii) c ∩ c′ = ∅.

Akgun et al. [1] consider a two-server system in which each server has dedi-
cated traffic, that is, each server is a unique compatible server for one job type.
The authors consider the DCF (Dedicated-Customers-First) scheduling policy
and analyze the efficiency and fairness for both dedicated and redundant jobs.

Sun et al. [39] consider various low-complexity redundancy scheduling tech-
niques for systems where jobs have i.i.d. copies, and investigate when these are
delay-optimal (or nearly-delay optimal) with respect to the stochastic ordering.
These new scheduling techniques are based on job replication and job cancella-
tion decision features. For instance, the authors show that the fewest unassigned
task first with low-priority replication and earliest due date first with replication
policies are nearly delay-optimal with NBU and NWU distributions, respectively.

5.3 Related Models

Redundancy as considered in this chapter is closely related to the (n, k) fork-join
system. In the latter, there exist n servers each one receiving one of the blocks,
and the job is completed once k < n blocks are served. If k = 1, this model
becomes equivalent to the redundancy-n model with c.o.c..

For the (n, k) fork-join model, Lee et al. [30] provide sequences of systems
that upper and lower bound the original one, and that converge to the original
system. Through these bounds, the authors characterize the mean response time
of the system. Li et al. [31] derive that in the mean-field regime, coding always
improves the mean response time compared to the redundancy model, i.e., (n, 1).

In [26], the authors consider the (n, r, k) partial fork-join system, where the
job is sent to r out of n servers uniformly chosen at random and waits for the
first k ≤ r to complete. They study effective replication strategies for various
scenarios. The authors show that both latency and cost are minimized when r
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increases for log-convex (high variable) service time distributions. Duffy et al. [13]
compare the tail response time of the (n, r, k) model to that of the redundancy-d
model (with batch arrivals of size r). The authors show that the tail distribution
of the response time under (n, r, k) partial fork-join is smaller than under the
redundancy-d model as long as r − k ≥ d, as the number of servers tend to
infinity.

In a recent paper, Zubeldia [43] considers the S&X model where the slow-
down experienced by each copy in service is independent across servers, but
not necessarily independent from the job’s service time. The author provides
a lower-bound on the mean delay for the (n, r, k) partial fork-join system, and
shows that when slowdowns are exponentially distributed and independent of
the service time of the job, the expected delay is minimized in the mean-field
limit for a constant r that only depends on the arrival rate and mean slowdown.

6 Conclusions, Open Problems and Conjectures

The literature on the stability analysis of redundancy systems is recent and
growing. However, there are many important cases that have not been analyzed
yet. In this section, we address some of the open problems related to stability,
and state several conjectures that are based on our intuitive understanding of
the system. It is our hope that this survey might encourage more research on
this relevant and timely topic.

6.1 I.i.d. Copies.

As shown in Proposition 1, FCFS is maximum stable with exponential service
times and i.i.d. copies. We believe that this result should remain valid for any
work-conserving scheduling policy with non-preferential treatment across types,
for instance PS, ROS, LCFS, LAS and SRPT. The reason for this is that the i.i.d
assumption combined with the non-preferential treatment across types permits
to take advantage of diversity when the system is close to saturation.

Conjecture 1. Consider a redundancy system with a general topology with
exponentially distributed service times and i.i.d. copies. For any work-conserving
non-preferential scheduling policy, the system is stable if for all C ⊆ C,

λ
∑

c∈C

pc <
∑

s∈S(C)

μs,

where S(C) =
⋃

c∈C{s ∈ c}.

Open Problem 1. If we relax the exponential service times to general service
time distribution, the stability condition is unknown.
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6.2 FCFS Scheduling Policy with Identical Copies

In Sect. 4.1, we saw that λ/μK < �̄/K is the stability condition of the
redundancy-d system where jobs have identical copies and exponential service
times.

Open Problem 2. If we relax the redundancy-d structure to general topolo-
gies, or the exponential service times to general service times, the stability con-
dition is unknown.

For exponential service times with the redundancy-d structure, we observed
in Fig. 3 that for a given number of copies d, lim

K→∞
�̄/K < 1. Note that λ/μK < 1

is the stability condition for a system with no redundancy. Hence, if it can be
proved that lim

K→∞
�̄/K < 1, this would imply that as the number of servers grows

large, the traffic load that a redundancy system can support is smaller than if
no redundancy was implemented.

Conjecture 2. Consider the redundancy-d model where FCFS is implemented
and jobs have exponentially distributed service times and identical copies. Then,
for fixed d, lim

K→∞
�̄/K < 1.

The limit should coincide with the stability condition given in [24], where
the authors develop a numerical method to derive the stability condition in the
mean-field limit.

We also observed the following monotonicity property in the number of
redundant copies. More precisely, we conjecture that as the degree of redun-
dancy increases, the stability region becomes smaller.

Conjecture 3. Consider the redundancy-d model where FCFS is implemented
and jobs have exponentially distributed service times and identical copies. Then,
for fixed K, �̄ is decreasing in d, and hence, the stability region is decreasing in d.

6.3 ROS Scheduling Policy with Generic Correlation Structure

In the particular case of ROS, we believe that Conjecture 1 will remain valid
even if copies follow a general correlation structure, including identical copies.
So far, this was only proved for the redundancy-d model with exponential dis-
tributed service times with identical copies, see Proposition 6.

Conjecture 4. Consider a redundancy system with a general topology with
exponentially distributed service times and an arbitrary correlation structure
among copies. ROS is stable if for all C ⊆ C,

λ
∑

c∈C

pc <
∑

s∈S(C)

μs,

where S(C) =
⋃

c∈C{s ∈ c}.
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The intuition would be the following. In principle, multiple copies of the same
job could be served simultaneously at various of its compatible servers. Due to
the heterogeneous capacities and the correlation among the copies, the departure
rate of that job depends on the residual service time of each copy. However, when
the number of jobs in the system grows large, the probability that more than one
copy of the same job is simultaneously in service goes to zero. Using fluid-limit
techniques, as done in [4], one then obtains that the fluid limit of the system
equals that of the system where jobs have i.i.d. copies. Hence, if Conjecture 1 is
valid, this would imply that Conjecture 4 is true as well.

6.4 Redundancy-Aware Scheduling

Another interesting, and so far unexplored area, is the impact of redundancy-
aware scheduling policies on the stability region and the performance of the
system. By redundancy-aware we refer to policies like LRF or Most-Redundant-
First that can use information on the number of copies when choosing which copy
to serve in a server. As discussed in Sect. 5.2, the authors of [15,18] consider the
nested model with exponentially distributed service times and i.i.d. copies and
show that LRF minimizes the mean response time. It would be interesting to
explore this further for more general redundancy settings.
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Abstract. We created the IBM Crew Pairing and Rostering Optimiza-
tion (C-PRO) solution for air crew scheduling. It was deployed at El Al
in 2013 and at Aeroflot in 2020. The core of the system is an optimiza-
tion flow, which models the problem using mixed integer linear program-
ming (MILP) with millions of integer variables. The solution is derived
iteratively using heuristics. Most recently, we applied Markov Decision
Process (MDP) in place of the heuristics orchestrator and realized a 30%
improvement in performance.
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1 Introduction

1.1 Airline Crew Pairing and Rostering Problem

Assigning airline crews to flights – what is commonly referred as pairing and
rostering – is an extremely complex problem that is also very well-studied [2,
9,10]. A pairing is a sequence of flight legs that start and end at the same
location where the crew members live (Fig. 1). It typically spans between one
and five days; however, in some cases it can be more than one week in duration.
To create assignments for crew members, airline planners start by generating
pairings to cover as many flight legs as possible, with a cost as low as possible.
For each pairing, they specify which types of crew members (e.g., captains,
first officers, flight attendants, etc.) are required and at what quantity, which
is known as a “crew complement” (Fig. 2). Once optimal pairings and their
crew complements are defined, the next phase is to assign crew members to
the pairings, while maintaining compliance with a variety of work regulations
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Fig. 1. Pairing Diagram. A ‘duty’ consists of four duties. In the ‘Deadhead Leg’, crew
members fly from their point of origin as regular passengers to the actual start of their
duty. In the “Standby Leg,” the crew members are in standby mode. Next, in the ‘2
Flight Legs’ duty, the crew members fly two flights with a short connection between
them. Finally, in the ‘Flight Leg’ duty, the crew arrives back to their point of origin.

and collective agreements. This part of the problem is called crew assignment.
To solve this problem properly, pairings, rest periods, training periods, annual
leaves, and so forth, must be taken into account to create working schedules
(rosters) for crew members (Fig. 3).

Technology that creates an optimized schedule for flight crews can provide
significant savings to airlines. The benefits go beyond cost savings. An equitable,
well-planned and efficient crew roster contributes to flight safety and employee
satisfaction. The challenge is that mainstream airline rostering solutions typ-
ically take days or weeks to generate a single plan for pairing and rostering,
which is typically generated ahead of every month. They also require optimiza-
tion experts to implement any changes to the optimization logic. Researchers at
IBM developed a solution that delivers optimized pairing and rostering (prod-
uct named, ‘C-PRO’) with unparalleled speed and flexibility. Planners can create
assignments and implement many types of changes without relying on optimiza-
tion experts. It is also faster: IBM’s C-PRO can execute multiple iterations in
a single day. This makes it easier to create the best option by enabling cus-
tomers to rapidly improve in quick increments. They can also support changing
business requirements, such as complying with new regulations, and meeting spe-
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cial requests from crew personnel. The optimized crew scheduling also supports
“what if” analysis to predict the impact of various changes; for example, working
hours, vacations, etc. It also provides intuitive explanations, which are presented
in terms of business objects and logic that ordinary users can understand.

Fig. 2. Pairing Diagram from C-PRO. The three fields ‘Required/Assigned/Open’ show
the values of ‘2/2/0’. This means crew complement requires two crew members, two
crew members have been assigned by the optimization engine already, and there are
zero open positions. Also shown here: 10.50 h is a flight duration, 159.33 is the total
pairing time in hours, P310320 is the pairing id, and ABC is the starting point.

1.2 Challenges We Faced Working on C-PRO

1. Extremely large size of the problem.
Crew scheduling is a very large problem in many aspects:

– There are hundreds of domain-related objects (e.g., stations, regions, legs,
shifts, etc.) that needed to be described mathematically.

– There are dozens of different types of requirements that must be described
mathematically and satisfied.

– MILP formulation of the problem consist of many millions of integer vari-
ables and constraints; and therefore, cannot be solved ‘as is’ by available
solvers.

2. Rapid turnaround of requests for update by clients.
Customers want to make changes quickly, but in existing solutions, modifying
rules and constraints typically can take weeks or even months. Optimization
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Fig. 3. Rostering from C-PRO. This figure shows the rostering for each crew member by
crew member ID. The summary fields represent (in order from left to right) number of
assignments, number of flights, flight time (credit), staying abroad time, average flights
durations performed, number of flight days, available days to work, and utilization per
scheduling period.

experts need to formulate new business rules as new constraints and incorpo-
rate the new model into the application. For the customer, this means waiting
until the next update to obtain the desired modification.

3. Explainability.
In the Enterprise Optimization domain, in order to be useful in real world
applications, optimization solution must be interpretable. The system which
cannot ‘explain’ to the end-user (who are domain experts) how tradeoffs were
made will not be able to earn trust and will not win adoption by customers.

4. Multi-problem solution capabilities.
Crew pairing and rostering is not a single type of problem. To address effec-
tively, several types of problems need to be considered, including:

– Coverage problem, which finds optimized set of pairings for covering all
activities.

– Assignment problem, which assigns crew members to the pairings.
– Routing problem, which finds optimal route for the airplanes, taking into

account their location and required maintenance.
– Shift scheduling problem, which schedules crew member to weekly shifts.
– Personal requests biddings, which optimizes assignment of crew mem-

bers according to personal preferences resolving conflicts in an optimized
manner.

5. Reusability.
Development of enterprise level optimization solution is a significant invest-
ment. Reusability of the solution for other clients in the same domain (or
clients in adjacent domains) is vital for the market success of the solution.
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2 MILP Problem Formulation

While creating pairings and assignments, we require that

– the cost of pairings should be kept in the minimum,
– pairings must be legal according to specified regulations,
– all flights and other activities must be assigned exactly once.

This optimization problem is modeled as a MILP problem where pairings are
the variables of the problem, which are either assigned zero (not selected) or one
(selected). Costs of the pairings are the coefficients of the variables. Covering the
flights exactly once is formulated as a constraint of the optimization. Therefore,

min
∑

j∈P

cj · xj

s.t.

xj ∈ {0, 1},∀j ∈ P
∑

j∈PFi

xj = 1,∀i ∈ F

where P is the set of all possible pairings, F is the set of all flights. ∀i ∈ F ,
PFi denotes set of pairings containing flight i ∈ F . cj is the cost of the pairing
j ∈ P . Notice that when xj is assigned to one, it means that pairing j was
selected. The objective is to minimize the total cost of selected pairings. The
constraints guarantee that each flight is covered only once. Although this is a
‘vanilla’ problem formulation, the problem is complicated. There is a significant
challenge to effectively build the set P of legal pairings. As the number of flights
increases, the number of potential pairings grows exponentially. To deal with
this, we apply different graph theory-based algorithms in the earlier stages to
remove candidates that have a small chance to be selected. Also, each pairing can
consist of a set of duties, each duty may consist of flights, and each flight may
appear only in one duty. Moreover, the crew (captain, first officer, etc.) required
for each duty may change according to different properties of the duty such as
flight duration, period of the day, airplane type, etc. For instance, duties with
durations more than 12 h that start in the morning may require two captains
and one first officer; whereas, similar duties at night require two captains and
two first officers. The formulation in this case is as follows:

min
∑

j∈P,r∈R

cj,r · zj,r

s.t.

zj,r ∈ Z
+,∀j ∈ P,∀r ∈ R

yk ∈ {0, 1},∀k ∈ D
∑

k∈Di

yk = 1,∀i ∈ F

∑

j∈PDk

zj,r = qk,r · yk,∀k ∈ D,∀r ∈ R
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where R is the set of all ranks, D is the set of all duties, Di denotes set of
duties containing flight i ∈ F , PDk denotes set of pairings containing duty
k ∈ D, c(j, r) is the cost of the pairing j ∈ P for rank r, q(k, r), is the number
(constant) of crew members of rank r required for duty k ∈ D. Notice that
when yk is assigned to one, it means that duty k was selected, and zj,r obtains a
positive value, which refers to the number of crew members of rank r scheduled
to pairing j. The objective is to minimize the total cost of the selected pairings
with respect to the ranks. The constraints guarantee that each flight is covered
exactly once by the duty and that each selected duty is covered by the pairings
according to the duty and rank requirements. Extended business rules may be
applied on top of these rules, which for example, may require certain number of
pairings with given properties. For instance, assuming property ‘start on base
B’ we may require a proper balance between staffing level on base B and the
number of created pairings starting from this base. Moreover, if we introduce
the conception of acclimatization, which means that qk,r will depend not only
on duty k, but also will be a function of the time passed after the previous duty
of the pairing.

After determining pairings, the next phase is to assign crew members to exe-
cute these pairing for a given time period, while complying with a variety of
work regulations and collective agreements. This is the crew assignment prob-
lem, where pairings, rest periods, training periods, annual leaves, etc., are com-
bined to form working schedules for crew members. The classical MILP problem
formulation for solving assignment problem is based on the assignment of ae,p

decision variable for one or zero, if employee e is assigned to pairing p or not,
respectively. The problem becomes more complicated when we need to satisfy
more advanced rules and constraints. For example, decision variables ae,p are
replaced by variables ae,p,r,k, where additional parameters of rank r and role k
of the assignment are introduced. In another example, we have a rule defining
duration of non-working period within a floating time window, or set of rules
asserting that if some crew member did pairing of type A in the middle of the
month, then they have to execute pairings of type C within the last day of the
same month. This problem is formulated as MILP. For the sake of compactness,
we skip its detailed formulation.

3 The Solution

In this paper we mostly address Challenge number 1. The core of the system is a
complex optimization flow which models a problem as a largescale mixed integer
linear programming problem (MILP) with millions of integer variables and solves
it using different type of algorithms. No MILP solver on the market can solve
a problem of this size in a reasonable time. To create a solution, we used an
approach [5] which allows incorporation of multiple heuristics, including ‘business
heuristics’ and ‘business decompositions’. The uniqueness of this approach, as
opposed to the well-known column generation, is that ‘business decompositions’
take into account a business characteristic of a client objects while the column
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generation would not. ‘Business heuristics’ leverage the structure of input data
to build the schedule in a more efficient way.

The novelty in our approach is applying machine learning as an automated
tool to continuously seek the best problem decomposition and modification strat-
egy. Each of the heuristics in the flow is important for the solve to succeed
overall. It starts from a heuristic that finds an initial feasible solution. Next, a
cruncher heuristic [6] improves the feasible solution iteratively as much as pos-
sible. Finally, polishing is run to improve the solution even further using more
‘delicate’ operations (see Appendix B for more details).

The entire flow is controlled by an orchestrator. The orchestration of the
optimization flow (e.g., which heuristic, when, and with what parameters to
run) is crucial. Finding the right strategy can be a very complex and time-
consuming process. Moreover, a new strategy may be required for each new
deployment in a new domain or even for a different type of problem in the same
domain. To address this, we automated the process by using Markov Decision
Process (MDP) framework (see Appendix A for more details). In doing so, we
changed our approach to the heuristics from the rules-based approach which
we implemented initially. In the rule-based approach, the three aforementioned
heuristics are run in series: feasible solution finder, the cruncher, and the polisher.
When we applied MDP to the process instead, the cruncher and the polisher are
modeled as a single MDP model with an extended set of actions. In this case,
there is no order between the cruncher and the polisher: the order is solely
prescribed by the policy.

The MDP state variables consists of CPLEX time per iteration, gap to opti-
mality, current objective value, and convergence rate. Action space consists of
the number of unfixed unassigned integers, the number of unfixed assigned inte-
gers and per iteration time upper bound. Immediate cost is defined as relative
objective improvement between consecutive iterations. Transition probability
matrix is estimated from the C-PRO runs using real data (see Appendix B for
the details) from clients, which is interpolated using math properties of the state
features (e.g., continuality, absorbing state knowledge). Reward per state-action
is the relative objective improvement between consecutive iterations. During the
run, the state of the run is estimated, and an optimal action is applied for the
next iteration using pre-solved MDP policy (Fig. 4).

4 Results and Conclusions

We applied the MDP flow orchestrator to the C-PRO deployment at Aeroflot
(see Appendix C). The MDP flow orchestrator was run on Airbus A320 and A321
fleets, which consists of over 100 aircraft and over 1,000 employees to be sched-
uled. The MDP flow orchestrator outperformed the existing rule-based orches-
trator by roughly 30% in speed. Additionally, it is more flexible to apply to new
domains or new problems in the same domain. Our future research directions are
focused on building more effective optimization flow concepts, including: a multi-
flow parallelism, incorporating advanced constraints formulations into MDP and
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Fig. 4. Snapshot of Running Trace. This snapshot showing a trace of the run using
MDP policy for orchestration applied for A320 and A321 instance of Aeroflot. The first
two columns show number of iteration and coverage of the requirements, respectively.
The next four columns correspond to state variables and last three columns correspond
to action variables.

Deep RL, and more automation (with less skill required) for optimization flow
generation and orchestration.

5 Discussion

In this section we describe what we learned from working with real customers
in enterprise optimization area.

– Lesson 1. Improving optimization means improving the entire stack.
Every component of the system needs to be tuned to deliver an effective solu-
tion in enterprise optimization. There is a big gap between an ‘academic’
optimization solution and the real-world. Solving real-world enterprise opti-
mization problem is a ‘multi-dimensional task’. It’s not just optimization,
it’s also: rules description, explainability, short turnaround process and user
interface. This is different from a strictly academic approach which mainly
focuses on optimization algorithms. To improve the whole solution, one must
improve the whole ‘stack’: extract, transform, load (ETL) process, flexibil-
ity rules description, and explainability features. Flexibility on rules means
that domain expert can add and modify rules that significantly change the
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optimization problem. For example, summer and winter have different rules
for crew scheduling. In C-PRO, we enabled configurable rules which end-
users (domain experts) could modify that would automatically update the
optimization problem.

– Lesson 2. Explainability.
The solution must be self-explainable. Customers will adopt systems not only
because they provide optimal solutions. Customers also demand that the
system can explain and “defend” its choices. Enterprise optimization cannot
be a black box. To achieve this, we applied multiple techniques, including a
verbosity engine, key performing indicators (KPIs) and monitoring tools.

– Lesson 3. Separation between business and algorithmic logic.
We need modularity for large-scale optimization. Input can frequently change
(e.g., format, new features) but this should be transparent to the math model.
Otherwise, the system becomes brittle in the face of change. In C-PRO, we
accomplished this with modules for ‘business objects’, ‘business logic’, and
‘math objects’. We also enabled interim explainability on these objects to
enable customers to see the results of the business logic separate from the
entire optimization. By adding simple declarations in our code, we make the
results of the business logic reviewable by users.

– Lesson 4. Optimization model manageability.
To handle the math model more effectively, we implemented the math model
as a type of database that includes constraints, variables, equations, collectors
(predefined construction for defining sums), indicators (predefined construc-
tion for defining lower and upper bounds), and penalties (predefined construc-
tion for defining objectives). We used business objects as a key for accessing
these math objects. We defined an Application Programming Interface (API)
to access and modify the math model. For instance, we can apply a query
which selects all variables associated with optimization flow orchestration.

– Lesson 5. Reusability.
From the beginning, reusability has been a goal. To recall, in the rule-based
flow orchestration all three heuristics – feasible solution finder, the cruncher,
and the polisher – must run and in a particular order. When moving to
a new problem, we would need to reconfigure a rule-based flow accordingly.
However, with the machine learning orchestration, the algorithm itself adjusts
automatically to the new problem using available data.

Acknowledgment. The authors would like to thank Donny Rose for numerous fruit-
ful discussions.

7 Appendix A - MDP Framework

7.1 Definition of MDP

An MDP [8] is a 4-tuple 〈X,U, P, c〉, where X = {0, . . . , n − 1} is a finite set
of states, U = {0, . . . , k − 1} is a finite set of actions, P : X2 × U → [0, 1] is
a transition probability function, and c : X × U → R is a cost function. The
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probability of transition from state x to state y when action u is chosen is
specified by the function P and denoted by P (y|x, u). The cost associated with
selecting the action u when in state x equals c(x, u). We often refer to the cost
function as a vector c ∈ R

nk. We denote initial states by x0. In fact [8], implies
that the initial state does not affect the optimal policy.

Time is discrete, and in each time unit t, let xt denote the random variable
that equals the state at time t. Similarly, let ut denote the random variable
that equals the action selected at time t. A non-stationary policy is a function
π : X × U × t → [0, 1], such that

∑
u π(x, t, u) = 1 for every x ∈ X for each

time unit t. A stationary policy is a function π : X × U → [0, 1], such that∑
u π(x, u) = 1 for every x ∈ X. A policy controls the action selected in each

state as follows: the probability of selecting action u in state x equals π(x, u).
A policy can be either randomized or deterministic. A randomized policy is a
policy with a state xi for which π(xi, u) > 0 for more than one action u. A
deterministic policy is a policy where for all states x ∈ X, there is exactly one
action u ∈ U such that π(x, u) = 1. The initial state together with a policy
determine a probability measure on states and actions. The goal is to find a
policy that minimizes the cost C(π) defined below. We consider a discounted
cost model with infinite horizon throughout the paper.

Discounted Cost Model. In the discounted cost model, the parameter β ∈ (0, 1)
specifies the rate by which future costs are reduced. Let Pπ(xt = x, ut = u)
denote the probability of the event xt = x and ut = u when the initial state
equals x0 (once set, remains unchanged and omitted from the notation) and the
policy is π. The infinite horizon discounted expected cost C(π) is defined by

C(π)
�
= (1 − β) ·

∞∑

t=0

βt · Eπ[c(xt, ut)].

Occupation Measures. Every policy π induces a probability measure over the
state-action pairs. We call this probability measure the occupation measure cor-
responding to π and denote it by ρπ such that ρπ(x, u)

�
=(1−β)·∑∞

t=0 βt ·Pπ(xt =
x, ut = u) (for simplicity we will omit π from the denotation of ρ).

Given an occupation measure ρ(x, u) over X ×U , the policy πρ induced by ρ

is defined by πρ(x, u)
�
=ρ(x, u)/

∑
u′ ρ(x, u′). (Note that if

∑
u′ ρ(x, u′) = 0, then

one may define πρ(x, u) arbitrarily as long as
∑

u πρ(x, u) = 1.) A cost can be
rewritten using occupation measure notations such as

C(π)
�
=

∑

x∈X,u∈U

c(x, u) · ρπ(x, u).

7.2 Transition Probability Matrix Estimation

We start with a data set from a client. The problems are large and take time to
solve (every iteration takes between 10 to 20 min); and therefore, the amount of
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data samples that can be collected in a reasonable time is limited. We interpolate
the client data using domain knowledge information. The augmentation is used
to generate a transition probability matrix [11] of MDP, combining available his-
torical data and domain knowledge information. Mainly due to continuality of
state variables, we use neighboring state interpolation for the domain knowledge
augmentation. We use an absorbing state check to help eliminate misleading
samples subject to shortage in data availability. We collect new data samples
every time the orchestrator is applied, which we use to augment the historical
batch of data and recalculate an MDP transition probability matrix. In Aeroflot
use-case, discretizing the variables, we got 24 states and 92 actions. This resulted
in 24 × 2208 matrix with total of around 53000 entries. These entries were esti-
mated by using just of around 500 ‘real’ samples from C-PRO.

7.3 Linear Programming (LP) Formulation

Publications from the 1960s [3,4,7] proved that MDP can be formulated as an
LP problem. They also proved that there is a stationary optimal deterministic
policy for MDP. Below we show an LP dual formulation for MDP, that appears
to be useful in real-life applications. To formulate the LP, we switch to vectorized
representation such that c and ρ are vectors of length of |X|·|U |, P is a transition
probabilities matrix with |X| rows and |X| · |U | columns, I is an identity matrix,
(1−β, 0, 0, 0 . . . , 0) is a vector that represents the initial states distribution where
1 − β corresponds to state x0, and |X| · |U | rows. To solve the LP problem we
used CPLEX solver.

min
ρ

cT · ρ

s.t.

(I − β · P ) · ρ = (1 − β, 0, 0, 0 . . . , 0)T

ρ ≥ 0

8 Appendix B - Building Blocks of the Optimization
Flow

There are three custom heuristics: feasible solution finder, the cruncher, and the
polisher.

The Feasible Solution Finder. The feasible solution finder consists of two parts:

– Labeling different types of constraints into groups (e.g., pairing cover con-
straints, fairness constraints, etc.).

– Iteratively adding constraints by label to MILP such that all are incorporated,
and a feasible solution is found.
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The Feasible Solution Finder is rule-based (rules how to apply labels and when
to add them to MILP) have been coded based on trail-and-error in creating the
C-PRO solution).

The Cruncher. The cruncher heuristic improves the feasible solution from the
previous stage. It fixes and unfixes assigned/unassigned integer variables itera-
tively. In C-PRO, the optimization problems is represented as matrix, in which
each resource (pilot, flight attendant) is either ‘assigned’ or ‘unassigned’ to a
duty. The ‘original’ Cruncher is rule-based and the number of fixed and unfixed
variables, run time per iteration, etc., is set by a rule-based orchestrator created
based on trail-and-error in creating the C-PRO solution.

Polisher. The polisher heuristic works similarly to the cruncher but with the
number of variables that are unfixed per iteration is generally smaller than in
the cruncher. Instead of working by percentage, it works with tasks which are
more ‘gentle’ (e.g., instead of ‘20% of assigned variables to be unfixed to the next
iteration’, the Polisher would say, ‘2 assigned tasks per employee to be unfixed
for the next iteration’). Like the Cruncher, the ‘original’ Polisher is operated by
a rule-based orchestrator.

In the rule-based application of three types of heuristics, called one after the
other as it appears on Fig. 5.

Fig. 5. Rule-based order of heuristics applied. First: Feasible solution finder, Second:
The Cruncher, Third: Polisher.

When MDP is used for orchestration, heuristics type and input configuration
are determined by the MDP.
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9 Appendix C - Aeroflot Letter

See Fig. 6.

Fig. 6. Aeroflot letter.
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due to their role in antibody response induction and their ability to
retain antigen for long periods. In this paper, a regulatory control model
is described which links persistence of humoral immunity with cellular
processes associated with FDCs. The model predicts universal and stable
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widely reported over a range of ages, observation times and vaccine types.

Keywords: Control model · Power-law decay · Homeostasis ·
Adaptive immune response

AMS(2020) Subject Classification: Primary 93C95 · Secondary
37N25 · 92C37

1 Introduction

The observation of humoral antibody (Ab) concentrations following vaccination
permits the estimation of post-challenge Ab kinetics, and many such studies
are reported in the literature. One important advantage of these studies is that
observations can be time synchronized to measure Ab decay from a common
challenge starting time. The dynamics of Ab response Ct in time t ≥ tmin are
commonly observed to be driven by a period of rapid increase to peak levels,
followed by prolonged periods of decay. This decay process is widely reported to
conform to a power-law decay model

Ct

Cs
=

[
t

s

]k

, s, t ≥ tmin, (1)

for some k < 0 (see [4,10,21,22]). Power-law decay of Ab response was formu-
lated as a model in some detail in [12], where it was noted that k was close to
−1 in the several examples given for which statistical estimates were available.
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In some cases, Ab decay appears to include a nonzero asymptote, probably
due to long-term Ab production by plasma cells which have migrated to bone
marrow (see [5,7,9]). In this case, observed Ab decay is probably a superposition
of two processes,

Ct

Cs
= hs(t) + ν, (2)

where hs(t) represents the adaptive immune response, which decays to zero, and
ν represents longer term Ab production due to plasma cells. Then the power-law
decay proposed in [12] would be represented by the component hs(t).

Thus, estimation of decay rates must anticipate a nonzero asymptote ν using
appropriate statistical methods. In [1] a literature review of Ab response studies
was undertaken with the purpose of validating the power-law decay model with
the inclusion of a nonzero asymptote ν. Of the 13 Ab time series examined, two
exhibited no variation over time (as a consequence of a poor vaccine response),
while the remaining 11 conformed very closely to the power-law decay model,
with exponent k = −1.

Identifying the regulatory principle by which the immune response terminates
is an important open problem, since unregulated Ab persistence is physiologi-
cally harmful, which is what characterizes auto-immune disease (for a recent
discussion of the issue see [15]). If the adaptive immune response possesses a sin-
gle decay rate for all infection types, this may be a fingerprint of an important
regulatory principle. On the other hand, empirical observations of power-law
decay are often the result of some artifact, rather than the direct observation of
a dynamic law deducible from first principles.

We give a brief outline of this paper. The question of the empirical observation
of power-law decay as artifact is considered in Sect. 2. If we were to accept power-
law or reciprocal-time decay as a true model of decay, the question then arises as
to the type of model that would be needed to predict that form of decay. In Sect. 3
we argue that the properties of power-law decay force a careful consideration of
the class of model which would be appropriate. In Sect. 4 we describe a control
model for the regulation of the adaptive immune response proposed in [1]. The
model is based on the functionality of follicular dendritic cells (FDC), which
are found in the B-cell follicles of secondary lymph nodes, the primary site of
the adaptive immune response. The model possesses reciprocal-time decay as a
stable attractor. While the attractor is maintained by homeostatic control, at
a higher level the control model does not rely on feedback. Rather, an FDC
population provides open-loop control by functioning as a timer. The model is
demonstrated by computer simulations in Sect. 5, with a discussion following in
Sect. 6.

2 Empirical Observations of Power-Law Decay

In the literature the term “power-law decay” is used to describe both decay in
a dynamic process Ct and a probability distribution. Of course, the two can be
equated. Given normalization Ct0 = 1, we may set survival curve P (T > t) = Ct
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as the population proportion surviving beyond time t, where T is the cell survival
time. The density function fT of T is the derivative of −P (T > t), so given
r > 0 in (1), we have fT (t) ∝ 1/tr+1. Therefore, under power-law decay of rate
r survival times possess a Pareto density with parameter r + 1. This means the
commentary on power-law frequencies is generally relevent to power-law decay,
with respective decay rates r + 1 and r.

There are many explanations of empirical power-law offered in the literature.
We next review a few of these.

A Consequence of Underpowered Statistical Analysis. A power-law
between two quantities y ∝ xα can be discerned from paired observations (xi, yi),
i = 1, . . . ,m by the double log transform log y = α log x + C, which under the
power-law hypothesis will be a straight line. Thus, a linear log-log plot is widely
accepted as a fingerprint of power-law decay. This means that the power-law is
widely accepted as a null hypothesis, if only implicitly. This is analogous to the
common practice of testing for normality in statistical modeling. The difference
here is that normality is theoretically justified by the central limit theorem as
the aggregation of additive noise, whereas there is often little first principles
justification for accepting the power-law as a null hypothesis. As argued in [6],
when data is compatible with a power-law, it may be compatible with any num-
ber of alternative heavy tailed distributions. Therefore, widespread reports of
power-law decay may be partly explained by its acceptance as a null hypothesis.
In [6] 24 data sets reported to conform to the power-law distribution were rean-
alyzed. The power-law was ruled out in 7 of these using a goodness-of-fit test. Of
the remaining data sets, only one (distribution of frequencies of word occurence
in the English language) was convincingly power-law, in the sense that a set of
alternative densities could be rejected.

A Consequence of Aggregation. The exponential model of decay is given
by

Ct

Cs
= e−μ(t−s) t > s, (3)

where μ is a positive constant. Some models accept (3), but explain empirical
power-law decay as an artifact of observation. One widely reported version of
this effect is the rate mixture model. If f(μ) is a gamma density with shape and
rate parameters α, τ then

∫ ∞

μ=0

e−μtf(μ)dμ =
1

(1 + τt)α
. (4)

In [17] it is assumed that human memory decays exponentially for individuals,
but with some population variation in rates. Thus, observed power-law decay at
the population level is simply an artifact of statistical averaging over a popula-
tion. Another version of this process is reported in [19], based on observations
of exponentially growing processes at random times. It is first noted that if we
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are given a deterministic exponential growth process X(t) = exp(μt) and T is
an exponentially distributed observation time, then X(T ) has a power-law dis-
tribution. The idea is extended to a number of stochastic processes commonly
used in modeling which exhibit exponential growth. This raises the possibility
that empirical power-law decay in Ab response studies is due to the averaging
of individual times series with imperfectly synchronized observation times. In [9]
the aggregation model of Eq. (4) was proposed to explain empirical power-law
decay in post-vaccine Ab concentrations, assuming significant heterogeneity of
decay rates within the immune response.

A Consequence of Partial Decay. Another reason that exponential decay
may resemble power-law decay is that some portion c of the original concentra-
tion Ctmin

is protected from decay. This yields the relationship

(Ct − c) = (Cs − c)e−μ(t−s) (5)

which would yield exponential decay with an asymptote other than 0. It is easy
to see how this may empirically resemble the much slower power-law decay. This
model was suggested as one of several possible explanations for the empirical
power-law decay of memory function in [26]. In that article (which can be espe-
cially recommended), it is also proposed that power-law observations may follow
from nonlinear measurement of memory function, in particular, that a measure-
ment scale may be less sensitive at lower function. Heterogeneous aggregation of
the type described above is also given as a putative explanation, as well as the
possibility that power-law decay truly is a first principles model of memory loss
(see [13,25]).

Thus, when given empirical observation of power-law decay, the possibilities
enumerated above must be considered. Regarding the question specifically of
Ab decay, it is always possible to model the asymptote ν in Eq. (2) in order
to study the remaining component hs(t) (see [1]). Regarding aggregation, that
effect would explain power-law decay, but not specifically reciprocal-time decay
implied by k = −1. However, ultimately, to accept power-law decay of the Ab
response, a plausible model must be proposed.

3 Autonomous versus Non-autonomous Dynamic
Systems

We take an autonomous dynamic system to be one in which the dynamic law
is unchanging in time. This characterizes models of biochemical systems with
static decay or interaction rates. This type of model is commonly used to model
the immune response.

For example, in [23] the effect of variable or dynamic vaccine dose admin-
istration on Ab response was studied experimentally, and compared to compu-
tational model predictions. The model includes as state variables CAg, CIgG,
CIgM , CIC and CPC , representing concentrations of antigen, immunoglobulin G
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(IgG) antibodies, immunoglobulin M (IgM) antibodies, immune complexes (IC)
and plasma cells (PC), respectively. The dynamic laws were defined by a sys-
tem of five ordinary differential equations. Apart from an endogenous input F (t)
of antigen, representing a designed vaccine schedule, the model is time homo-
geneous, and defined by static decay and interaction rates among the system
variables.

As another example, we consider the model proposed in [16]. It contains only
two state variables: T , the concentration of T-cells; and C, the concentration
of peptide-MHCs (pMHC), which transport antigen fragments for recognition
by T-cell receptors. This is required for stimulation of the adaptive immune
response, specifically, growth of the T-cell population requires interaction with
pMHC. The model equations are

dT

dt
= α

TC

K + T + C
− δT,

dC

dt
= −μC,

where K is a constant, and α, δ and μ are positive system parameters. We assume
α > δ. Initially, the environment is saturated with pMHC, so that C � K + T ,
and T ∝ e(α−δ)t. Then C decays exponentially at rate −μ, independently of the
other components of the system. Eventually, C � K + T , so that T-cells decay
exponentially at rate −δ. The model predicts an interesting relationship at the
time t∗ of peak T-cell concentration, in particular,

T (t∗)
T (0)

=
(

C(0)
T (0)

)(α−δ)/(α−δ+μ)

.

The prediction that the peak fold increase of T-cells is positively related to the
initial input of antigen, but inversely related to the initial T-cell concentration
was observed experimentally in [18].

However, if Ab decay is truly power-law, then it is difficult to see how it can
be driven by an autonomous dynamic system (we have noted that [9] models
power-law decay as a mixture of autonomous decay models, but this degree of
heterogeneity does not appear to be compatible with known immune response
function).

Cellular processes are believed to possess, in general, robustness properties
which ensure uniformity of outcomes under varying conditions (see, for exam-
ple, [2]). Robustness can take various forms, for example, insensitivity to model
parameter values, as defined in [20]. It seems reasonable, therefore, to model the
adaptive immune response as a control system relying on biologically plausible
control mechanisms. In fact, if Ab decay is not only consistently power-law, but
power-law specifically with rate ∝ 1/t, then the argument for this approach is
strengthened all the more.
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4 Control Model for FDC Decay

Follicular dendritic cells (FDC) are found in the B-cell follicles of secondary
lymph nodes, the primary site of the adaptive immune response. Their function
is to capture and retain antigen in immunogenic form, and to induce Ab response
by supporting germinal centers (GC), the sites of B-cell maturation. They are
nonmigratory, and form a reticula network which defines a microenvironment.
Under the conventional model of the adaptive immune response, it would be
reasonable to conjecture that humoral Ab levels are proportional to GC con-
centration, which is in turn proportional to FDC concentration (for example,
the ratio of FDC antigen retaining reticula and GCs was reported to be 1:1
in mouse lymph tissue in [24]). Therefore, it is plausible that a control model
for FDC concentration can explain reciprocal-time decay of humoral Ab levels
(see [1]).

4.1 Model Definition

A non-autonomous dynamic model which predicts reciprocal-time decay is quite
easy to construct. For example, if F = tCt is a balance equation for concentration
Ct, and F is held constant, then Ct = F/t. The question, of course, is whether
or not such a balance equation has any relevance to the problem at hand. In
fact, we will argue that the quite unique functionality of the FDC makes this
equation very relevant.

Suppose there exists a population of activated FDCs, the initial size being
a positive real number C0 = N ∈ IR. The model system S is partitioned into a
reservoir R and an FDC population F . Flow through S is given by:

External antigen source → R → F → Antigen clearance.

Antigen transport pathways exist in R, while antigen retained in FDCs exists
in F .

Let Ct, Ft be the population size of still active FDCs and the total amount
of antigen in F at time t ∈ [0,∞), respectively. We take Ct ∈ [0, N ], Ft ∈ [0,∞)
to be real valued, with initial values C0 = N , F0 = 0.

Define the following rules:

(A1) As long as a unit FDC remains active it ingests antigen at a rate of μ per
unit time.

(A2) A unit FDC may be deactivated at any time, at which point its total
ingested antigen is released.

(A3) No FDC can be created or reactivated.

Under rules (A1)–(A3) the balance equation

Ft = μtCt, t ≥ 0 (6)

must hold. Differentiating (6) then gives

dFt

dt
= μ

[
Ct + t

dCt

dt

]
. (7)
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The terms of Eq. (7) have an intuitive interpretation. Antigen is ingested at a
rate of μ per unit cell, giving the term μCt. At time t a unit FDC has ingested
μt units of antigen, therefore a decay rate of dCt/dt < 0 forces release of antigen
from F at the rate −μtdCt/dt. Thus, the system steady state dFt/dt = 0 is
characterized by both constant antigen retention Ft = F∞ and reciprocal-time
decay of the FDC population Ct = F∞/μt.

4.2 A Homeostatic Control Model

The next problem is to introduce a control effector into (7). Define the double-
logarithmic derivative

kt =
d log Ct

d log t
=

C−1
t dCt

t−1dt
.

The solution to kt ≡ k yields the power-law decay of Eq. (1). We may then
rewrite (7) as

dFt

dt
= μ · Ct [1 + kt] , (8)

from which a simple control effector emerges. Maintaining kt ≡ −1 forces
dFt/dt = 0, and kt > −1 or kt < −1 forces increase or decrease in Ft, respec-
tively. Thus, feedback control of kt, which determines the decay rate of Ct,
provides a mechanism for homeostatic maintenance of the system steady state.
Interestingly, the steady state is mathematically equivalent to reciprocal-time
decay of Ct, and therefore of humoral Ab levels. This would predict the univer-
sal observation of reciprocal-time decay reported in [1].

Of course, the problem remains of proposing a biologically plausible control
law for kt with the system steady state as an attractor. It would be reasonable
to assume that control is effected at the individual cell level, taking the form

dCt

dt
= −λ̄(Ft, Ct, t)Ct (9)

for some unit cell decay control function λ̄ ≥ 0. We can substitute the balance
Eq. eqrefeq.balance into (9) to obtain a first-order ordinary differential equation
(ODE):

dCt

dt
= −λ̄(μtCt, Ct, t)Ct. (10)

In this form, λ̄ could be interpreted as a stochastic FDC failure (deactivation)
rate.

4.3 Exponential Decay Cannot Yield Homeostatic Control

Suppose R always contains sufficient antigen for FDC ingestion, and the unit
cell decay rate is constant at λ̄(Ft, Ct, t) ≡ ρ > 0, resulting in exponential
population decay. The solution to (9) is Ct = C0 exp(−ρt), in which case Ft =
μtC0 exp(−ρt). This function possesses a global maximum at t = 1/ρ. Therefore,
Ft increases to peak level Fmax = (μ/ρ)C0 exp(−1) then converges to zero. Thus
a statistic decay rate for Ct cannot yield homeostatic control of the steady state.
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4.4 Balance Equations for Steady State Antigen Flow Through
System S

To construct a plausible homeostatic control we will expand the definition of
the system. We define the amount of antigen Et ∈ [0,∞) contained in R. This
is the antigen available for FDC ingestion. The initial reservoir level is then
E0 = R > 0. Let At be the total amount of additional antigen entering R by
time t. Then let Bt be the total antigen released by deactivated FDCs by time
t. We must have

dBt

dt
= −μt

dCt

dt
. (11)

Assuming Bt is lost to the system, the balance equation may be expanded to

Ft = μtCt,

R + Δt = Et + Ft, t ≥ 0 where Δt = At − Bt. (12)

If the net flow of antigen through S is zero, then the additional balance condition

Δt = 0 (13)

holds. Accepting (12) and (13), convergence to the steady state, Ft → F∞ can
be then expressed as:

lim
t→∞ Et = E∞ < R. (14)

In other words, under the system steady state R is indefintely depleted in part
or in full. In this case F∞ = R − E∞, forcing invariant reciprocal-time decay
Ct = (R − E∞)/μt.

The control functon λ̄ may depend on any of the quantities in (12), assuming
they satisfy the balance conditions, and so the system remains governed by the
control equation

dCt

dt
= −λ̄(At, Bt, Ct, Et, Ft, t)Ct. (15)

4.5 Control Based on Allocation of Available Antigen

A reasonable conjecture is that FDC deactivation is upregulated by antigen
scarcity, similar to the model proposed in [16] (Sect. 3). Suppose antigen is made
available to a single FDC by a Poisson arrival process of rate γ. A failure occurs
when an interarrival time exceeds some threshold κ. This failure results in the
deactivation of the FDC, and the release of its retained antigen. Since this failure
rate will depend on both antigen availability (∝ Et) and competition for antigen
(∝ Ct) this becomes a potential control effector.

A Poisson process is well approximated by a discrete time arrival process.
Independent binary random variables Xi, i = 1, 2, . . . with mean qδ are observed
at times δi, i = 1, 2, . . .. An arrival occurs at time δi if Xi = 1. The constraint
γδ = qδ forces an arrival rate of γ. A failure is initiated at time δi if Xi = 1 and
Xi+1 = . . . = Xi+nδ

= 0, where κ = nδδ (we lose no generality in choosing δ
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so that nδ is an integer). The expected number of failure initiations NF in time
interval [0, Nδ] is

E[NF ] =
N∑

i=1

P (Xi = 1,Xi+1 = . . . = Xi+nδ
= 0) = Nqδ(1 − qδ)nδ .

The rate of failure initiation is therefore

ρδ =
Nqδ(1 − qδ)nδ

Nδ
=

Nγδ(1 − γδ)κ/δ

Nδ
= γ(1 − γδ)κ/δ.

Finally, refining the discrete approximation gives failure rate

ρ = lim
δ→0

ρδ = γ exp(−γκ).

The argument is completed by noting that under general conditions the aggre-
gation of m arrival processes approaches in distribution a Poisson process as
m → ∞, so that the model will be reasonably robust with respect to assump-
tions (see [8]). Under the proposed model the antigen arrival rate per FDC is
proportional to Et/Ct, therefore the FDC failure rate would be

λ̄(Ct, Et) =
{

γEt/Ct exp(−γκEt/Ct) ; Et > 0
∞ ; Et = 0 , (16)

noting that the population is extinguished essentially instantaneously when Et =
0 (i.e. when R is depleted).

To remain active, the aggregate antigen arrival rate γ∗ for an individual FDC
must be larger than μ. Under these conditions, the neighborhood of an FDC is
essentially saturated with available antigen, and therefore able to maintain the
maximum ingestion rate μ. As antigen is depleted the quantity Et/Ct decreases,
forcing γ∗ to approach μ, making an ingestion failure event increasingly likely.
Thus, this failure model predicts property (A1). Convergence to reciprocal-
time decay under this control law when net antigen flow is zero is verified in the
following theorem (see [1] for proof).

Theorem 1. Suppose the control function λ̄ of Eq. (15) is given by Eq. (16).
Suppose balance Eqs. (12) and (13) hold. Then there exists a constant t∗, depen-
dent only on parameters (μ, γ, κ), for which the following statements hold:

(i) For any initial state (t, Ct) = (t0, Ct0) for which t0 > t∗ there exists a
positive constant r∗ such that for all large enough R∗ we have:

0 < Ct <
R∗

μt + r∗ ,

and therefore Et/Ct > r∗, t ≥ t0, where R∗ = E0 is taken to be the initial
reservoir quantity.

(ii) Given the initial conditions of statement (i), if E0 = R∗ then limt→∞ μtCt =
R∗.
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Thus, under the conditions of Theorem 1, Ct possesses reciprocal-time decay
in the limit, and steady state antigen retention limt→∞ Ft = R, with complete
reservoir depletion limt→∞ Et = 0. The steady state retention level F∞ therefore
depends on R but not on the model parameters (μ, γ, κ).

5 Computer Simulations

We next demonstrate the model using computer simulations reported in [1]. We
can observe the convergence of Ct to reciprocal-time decay, as the initial reservoir
R of antigen is depleted and retained in the FDC population F .

Balance Eqs. (12) and (13) are assumed to hold, and we use the control model
with failure rate λ̄ given by Eq. (16). We take time interval to be t ∈ [0, 1000],
with initial FDC population C0 = 103. The initial antigen level is varied by
setting R/C0 = 25000, 5000, 1000. The antigen ingestion rate is set to μ = 103.
To determine the parameters for λ̄ consider the case R/C0 = 1000. This gives an
antigen arrival rate per FDC at t = 0 of γE0/C0 = γR/C0 = γ1000. Equating
this to μ gives γ = 1. Given ingestion rate μ it would be reasonable to set κ to
be some factor of μ−1, so we set κ = μ−1 = 1/1000. The model was discretized
by time intervals Δt = 10−4.

Figure 1 shows model pathways for varying initial resource R/C0 = 25000,
5000, 1000 (columns 1–3). In row 1 plots of Ct and Et are shown with a vertical
log scale. Row 2 shows Ct and Et on a log-log scale. Grid lines parallel to t−1

are superimposed. For display E0, C0 are both normalized to equal 100% in rows
1–2. Row 3 gives the double logarithmic decay rate kt as a function of time. Row
4 gives the relative concentration of retained antigen Ft/R.

The behavior for each set of initial conditions is unvarying, and conforms to
the model’s prediction. Each example begins with a short period of decay at kt

close to 0, then approaches kt = −1 by times ranging from t ≈ 100 − 250 (rows
2–3). Ft quickly reaches its predicted steady state level R (row 4).

We next examine the robustness of the model to perturbation. Figure 2 is
based on the same model used for Fig. 1 (R/C0 = 25000) but with various
forms of stochastic noise introduced (columns 1–3). For the “random resource
spikes” model the reservoir R was supplemented by bulk arrivals of 500 antigen
units according to a Poisson process of rate 0.04. For the remaining models
multiplicative noise was incorporated by multiplying dCt/dt by a log-normal
random variable at each computation point (the exponentiated normal random
variates had mean μ = 0 and standard deviations σ = 0.1, 1).

In each case the models exhibit the same limiting behavior seen in Fig. 1,
despite persistent random perturbations. For the random resource spikes model
the assumption of constant system resource R is violated, but without apparent
effect on the approach to the predicted system steady state (Fig. 2 column 1).

For the multiplicative noise model with σ = 0.1 (Fig. 2, column 2), the
behavior differs little from the corresponding noiseless model (Fig. 1, column
1). What is of some interest is the stable fluctuation of kt about the steady state
value k = −1, suggesting an efficient negative feedback control able to maintain
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reciprocal-time decay. Setting σ = 1 results in considerably more noise (Fig. 2,
column 3). The decay rate kt no longer fluctuates about k = −1 in a stable
manner, but instead subjects the system to frequent and extremely large decay
rates. In this case, fluctuation of Et is more evident (rows 1, 2). Despite this,
the system steady state is maintained.

6 Discussion

The model proposed in [1] achieves a number of objectives. First, it predicts the
universal reciprocal-time decay that has been widely reported in the literature.
Furthermore, reciprocal-time decay was demonstrated to be a stable attractor.
Remarkably, the model conforms to the robustness principle of insensitivity to
model parameter values (see [20]) in the sense that the long-term behavior does
not depend on any model parameters other than the initial antigen level R,
provided this value is large enough (Theorem 1).

The remaining questions have to do with the biological plausibility of the
model. In fact, there is a striking concordance between cell properties required
by the model and those widely reported of FDCs, which are generally unique to
this cell type.

The ability of FDCs to retain intact antigen for extended periods has been
consistently reported. This property is frequently conjectured to be related to
long term persistence of Ab concentrations (see [11]).

Regarding properties (A1)–(A2), it was reported in [14] that maintenance
of FDC functionality requires continual lymphotoxin α/β (LT) signalling. Inhibi-
tion of LT signalling not only prevents FDC ingestion of antigen, but eliminates
previously ingested antigen. The authors write that “[a] surprising observation
is that the maintenance of pre-existing FDCs in a differentiated state requires
continual interaction with B lymphocytes expressing LTαβ”. These B lympho-
cytes (or B-cells) are responsible for transporting antigens to the FDCs, which
themselves produce the B-cell attractant CXCL13. This mechanism is part of
a positive feedback loop (see [3]). Therefore, the assumption that FDCs remain
active only as long as they are able to ingest antigen is well founded, and conforms
remarkably well with experimental observations. This motivates the control law
of Eq. (16), which models FDC deactivation as an interruption of the supply of
antigen.

Thus, the model of [1] is able to unify disparate observations of FDC func-
tion, providing a simple regulatory principle which predicts a robust, universal
reciprocal-time decay rate for any adaptive immune response. Remarkably, under
this principle no feedback is required to terminate the immune response. Rather,
at the highest level the control is open-loop, with the FDC population function-
ing collectively as an immune response timer.
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Fig. 1. Plots show model pathways for varying total resource R/C0 = 25000, 5000, 1000
(columns 1–3). See Sect. 5 for descriptions. In row 1 plots of Ct and Et are shown with
a vertical log-scale. Row 2 shows Ct and Et on a log-log scale. Grid lines parallel to
t−1 are superimposed. For display purposes E0, C0 are both normalized to equal 100%
in rows 1–2. Row 3 gives the double-logarithmic decay rate kt as a function of time. A
horizontal reference line is included at k = −1. Row 4 gives the relative concentration
of Ft/R. A horizontal reference line is included at Ft/R = 1.
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Fig. 2. Plots show model used for Fig. 1 with R/C0 = 25000 incorporating various
forms of stochastic noise (columns 1–3). See Sect. 5 for descriptions. In row 1 plots of
Ct and Et are shown with a vertical log-scale. Row 2 shows Ct and Et on a log-log
scale. Grid lines parallel to t−1 are superimposed. For display purposes E0, C0 are both
normalized to equal 100% in rows 1–2. Row 3 gives the double-logarithmic decay rate
kt as a function of time. A horizontal reference line is included at k = −1. Row 4 gives
the relative concentration of Ft/R. A horizontal reference line is included at Ft/R = 1.
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Abstract. In this chapter, we introduce the basic characteristics of
swarm intelligence, the path planning problem for robots, and how to
apply the self-organizing migrating algorithm, a representative of swarm
intelligence to solve that real-world problem. We set up simulations in
the Matlab environment with four common possible scenarios to demon-
strate the effectiveness of the solution.
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1 Introduction

Along with the development of artificial intelligence, swarm intelligence (SI)
increasingly prove its important role, participating in most of the real-world
technical problems. SI is derived from the observation of the intelligent behavior
of creatures to form algorithms that solve complex problems with simple rules.
The popular SI algorithms can be mentioned as particle swarm optimization
[9], artificial bee colony [8], firefly algorithm [12], ant colony optimization [5],
especially the self-organizing migrating algorithm [11,13] that will be focused on
in this chapter.

These algorithms have been applied to solve complex problems in many fields,
such as analysis of the performance of the fish school search algorithm running in
graphic processing units [10], training the radial basis function network for data
classification and disease diagnosis [7], adaptive routing in telecommunications
networks [6], resource allocation scheme for 5G C-RAN [1] and task scheduling
in cloud-based internet of things applications [3].

But what kind of problems can apply SI algorithm to solve? And how to solve
them? Most problems arise in practice that requires optimal solutions, which
are minimum or maximum values, or solutions that satisfy some constraint.
Accordingly, the optimization problems are the objects to be solved by the SI
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algorithms, and one of the most important things to do is modeling the given
problem into a mathematical model described by equations.

This chapter presents how to model the path planning problem for robots
avoiding detected obstacles towards the target by applying the self-organizing
migrating algorithm (SOMA), a representative of the SI. Section 2 presents the
main concept of the SI and introduces the SOMA algorithm. Section 3 deals with
the problem of path planning for robots. Details of the simulated settings in this
research are presented in Sect. 4. Section 5 shows the simulations that prove the
correctness of the solution. Finally, we conclude in Sect. 6.

2 Swarm Intelligence

2.1 General Concept

Swarm intelligence (SI) is a common name referring to the algorithms that oper-
ate on the mechanism simulating the collective intelligence behaviors of the crea-
tures. It works on a population (or some sub-populations) of many individuals
that interact with each other (both competing and cooperating) or with the
environment (migration and survival) to solve specific problems such as forag-
ing, protecting the nest or moving safely in the natural habitat.

Slightly different from the evolutionary algorithms, which operate on Dar-
win’s theory of evolution, individuals in the SI population do not inherit the
genetic properties from generation to generation, but rather will share the knowl-
edge with each other in the same generation under loops. This sharing of infor-
mation is the key for the SI algorithm to find the global optimal solution to the
given problems.

A flock of birds, for example, is searching for food in space, and one individual
alerts the remaining members to fly towards its cry (sharing information) when
it finds the food. On the way the others move to that food source, they can find
a more abundant source than the previous signal, they will share it again. And
that process is repeated until the whole flock meets together on where the most
food source is.

Inspired by those observations, the SI algorithms are designed to mimic these
behaviors. The next subsection will present the SOMA algorithm, a representa-
tive of the SI algorithm.

2.2 Self-Organizing Migrating Algorithm

The SOMA algorithm was first introduced in [14]. It bore all the characteristics
of the SI that we will analyze below.

The first operation of SOMA is to create an initial population containing a
predetermined number of individuals in a given search space, representing the
natural habitat in the foraging bird example above. These individuals are the
solutions to the optimization problem that have been encoded.

The population is then evaluated by the cost function (will be presented in
the next section), and the fitness value represents the amount of food as in the
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above example. The best individual is selected, and the remaining individuals
move towards that member. They will likely find better positions on the path
they move. At the end of each such migration, a new best individual is selected
again and the process continues until the algorithm has found a solution that
satisfies the given requirement [11,13].

In the problem to be addressed in this chapter, SOMA plays the role of
generating a dynamic set of next stops for the robot in real-time. At a specific
time, based on the necessary information such as the current position of the
robot, the position of the target, and the obstacles detected by sensors, SOMA
calculates the next best position that the robot should move to. These positions
are generated in real-time and become the moving path for the robot.

To execute that description, the algorithm first initializes a random group
of individuals around the current position of the robot (in the searching range)
based on Eq. (1). Then the best position is selected after evaluating all individ-
uals (named Leader), and the algorithm goes into the first migration loop.

Poindividualith = Poactual + rnd−1→1 rorange, (1)

where:

– Poindividualith : position of the ith individual,
– Poactual: actual position of robot,
– rorange: maximum moving range of robot,
– rnd−1→1: uniformly distributed random number from −1 to 1.

During this loop, the remaining members will one-by-one move towards the
Leader using the rule given in Eq. 2.

Ponew = Pocurrent + (Poleader − Pocurrent) n PRTV ectorj (2)

where:

– Ponew: the new position of the current individual,
– Pocurrent : the current position of the current individual,
– Poleader : the Leader position in this migration loop,
– PRTV ectorj : the perturbatively factor, created by Eq. 3,
– n: moving step, from 0 by Step to PathLength.

if rnd 0→1 < PRT ; PRTV ectorj = 1; else, PRTV ectorj = 0. (3)

After each individual completes its move, the best position on its path is
selected to be compared with the initial. It will replace the initial position if it
has a better fitness value. When the last member completes its job, a new best
individual throughout whole the population is then selected again to replace the
old Leader and a new migration loop begins.

Those processes are terminated when the entire population has achieved a
given number of migrations. And the final Leader is the position where the robot
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Fig. 1. The migration of individuals in a population of SOMA when the robot detects
obstacles.

will move. Figure 1 depicts the principle of the SOMA algorithm, where the hill
represents an obstacle, the blue points represent the initial individuals, the black
points represent the locations after the migration of the initial population, the
red point is the globally optimal location where the robot will move to.

The next section describes how to build the fitness function.

3 The Path Planning Problem of Swarm Robots

For any optimization problem, the fitness function is an important component, is
the object to solve. In some situations, the fitness function is already given. But
in some cases, we have to build the fitness function by modeling that problem.
In this section, we present how to turn the robot path planning problem into a
fitness function.

Starting with a simple rule, the robot is as close to the target and as far
away from the obstacles as possible. Equation 4 generally describes the elements
X stated, where n is the number of the target and obstacles detected by the
sensors. The goal is to minimize the function f(X).

f(X) =
n∑

i=1

Xi (4)

For the principle as close to the target as possible, we see that the value of
the function f(X) should be proportional to the distance from the robot to the
target. Equation 5 constructs the first element of the fitness function in detail,
where (xrobot, yrobot) and (xtarget, ytarget) are the current positions of the robot
and target respectively, and a1 is the equilibrium coefficient.

X1 = a1

√
(xtarget − xrobot)2 + (ytarget − yrobot)2 (5)



SOMA Algorithm 317

Similarly, with the rule that as far as possible from obstacles, the value of the
f(X) function should be inversely proportional to the distance from the robot to
detected obstacles. Equation 6 describes this in detail.

Xi = ai

nobstacle∑

0

e−(c−robstacle) disobstacle (6)

where:

disobstacle =
√

(xobstacle − xrobot)2 + (yobstacle − yrobot)2

– Xi: the obstacle elements of the f(X),
– ai: the equilibrium coefficient,
– nobstacle: the number of detected obstacles,
– c: the influential coefficient of obstacles,
– robstacle: the radius of detected obstacles,
– disobstacle: the distance from the robot to detected obstacles.

In the framework of this chapter, we do not go into details about robot
kinematics and dynamics. We assume that the robot can move smoothly from
point A to a nearby point without any problem, and the SOMA will generate
the dynamic set of that points [2].

Due to the robot’s physical limitations, the maximum distance between the
two points mentioned is limited, named dlimit. However, no matter how big the
dlimit is, the algorithm quality is completely independent of this distance.

4 Experiment Setup

To rigorously evaluate the feasibility of the proposed solution, we built 4 selective
scenarios, covering most of the basic situations that can occur in the real-world.

4.1 Selective Scenarios

The first scenario is the simplest one, having a robot (with a respective target)
and three static obstacles. The location of the obstacles is intentionally arranged
so that they are symmetrical and centered on the line connecting the robot to
the target. The gap between the three obstacles is calculated wide enough for
the robot to move through them. This scenario is set up to test the ability of the
robot to pass through sufficient gaps between obstacles (see Map 1 of Fig. 2).

The second scenario is similar to the first but the distance between the obsta-
cles has been changed so that they are smaller than the physical size of the robot
(it cannot move through those gaps). The aim is to trap the robot into the local
minima and observe how to escape from the trapped area of the robot (Map 2
of Fig. 2).
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Fig. 2. Selective scenarios to test the operability of robots.

In the third scenario, two robots with two respective targets were set. There
is no obstacle in this map, but robots will be obstacles to each other. All of them
were intentionally put in a straight line so that the robots will move in oppo-
site directions. This situation tests the possibility of mutual avoidance between
robots (Map 3 of Fig. 2).

The last one is the most complex scenario. Two robots, two respective targets,
and three obstacles were used. The robots are on the same side of the obstacles,
and the targets are on the opposite side but diagonally. The obstacles located
in the middle are not only to prevent the movement of the robots, but also trap
the robot to the local minimum associated with the other robot. This scenario
tests the generality of the proposed algorithm (Map 4 of Fig. 2).

Table 1. Locations of obstacles and robots in Cartesian coordinates - Map 1 and 2 (in
decimeter)

The object Obstacle 1 Obstacle 2 Obstacle 3 Robot Target

xmap1 04 11 13 01 20

ymap1 11 04 13 01 20

rmap1 03 03 03 – –

xmap2 06 13 11 01 20

ymap2 13 06 11 01 20

rmap2 02 02 02 – –

The detailed locations of robots, obstacles, and targets are shown in Tables 1,
2, and 3.
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Table 2. Locations of robots in Cartesian coordinates - Map 3 (in decimeter)

The object Robot 1 Robot 2 Target 1 Target 2

xmap3 06 17 20 03

ymap3 06 17 20 03

Table 3. Locations of obstacles and robots in Cartesian coordinates - Map 4 (in
decimeter)

The object Obs 1 Obs 2 Obs 3 Ro 1 Ro 2 Tar 1 Tar 2

xmap4 07 14 11 05 02 17 22

ymap4 14 07 11 02 05 22 17

rmap4 02 02 03 – – – –

4.2 Control Parameters

The objects were drawn using Matlab software R2020b version in Windows 10
Pro Edition 20H2 Version. The SOMA for each robot is also programmed using
Matlab. The control parameters of the algorithm are given in Table 4.

Popsize = 40; Migration = 20: for 2−Dimensional problem and the objective
function to solve is not too complicated, those values are suitable.

PRT = 0.1, Step = 0.11, Pathlength = 3: These options are common to
the SOMA algorithm, and it is selected based on the recommendation from the
original paper [11,13].

All robots used in simulations have a radius rrobot = 0.8 dm. The sensors
have a radius of active range rsensor = rrobot + 2.8 dm. The maximum step of
the robots is dlimit = 0.4 dm.

5 Simulation Results

The simulation results are presented in the form of selected figures captured
from the robot’s movement in form of 2D and 3D.

In those 2D figures, robots are plotted on Cartesian coordinates with obsta-
cles and targets also. The circle around the robot represents the working range
of the sensors. Obstacles are drawn in a dark color circle. As the robot moves,
obstacles detected in the sensor’s active area will be represented by bright colors.
These obstacles will turn bright colors when they are detected by sensors located
on the robot.

Table 4. The control parameter values of SOMA.

Migration PopSize Step PRT PathLength

20 40 0.11 0.1 3.0
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In 3D figures, the robot is represented as a big black dot, and the robot’s
path is represented by small black dots. Contour lines represent the surrounding
environment, they can change depending on the distance from the robot to the
target and the obstacles.

5.1 Results for Map 1
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Fig. 3. The movement process of the robot in Map 1: move through the gaps between
obstacles to hit the target.

Figures 3 and 4 show the robot’s movement in 2D and 3D, respectively. They
were captured at the step of 2nd, 13th, 32nd, 38th, 58th, and 78th. At the 2nd

step in Fig. 3, the robot has not detected the obstacles yet so they are in a dark
color, and the robot tends to move straight towards the target. At this moment,
the contours on the 3D map of Fig. 4 are also “flat” (without hills).
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Fig. 4. The movement process of the robot in Map 1 presented in 3D.

However, in steps 13th and 32nd, the obstacles are detected, and they have
changed color, hills appear respectively in the 3D contour maps. The robot will
move along these contour lines from high to low and avoid colliding on the rising
hills (which are obstacles).

In the simple situation of Map 1, the distance between obstacles is large
enough for the robot to pass, so the robot has no trapped between three obstacles.
The robot takes 78 steps to hit its target on this Map.



322 Q. B. Diep et al.

0 5 10 15 20 25
x

0

5

10

15

20

25

y

   ite 21

Obs 1

Obs 2

Obs 3

  Start 1

  Target 1

Ro1

0 5 10 15 20 25
x

0

5

10

15

20

25

y

   ite 26

Obs 1

Obs 2

Obs 3

  Start 1

  Target 1

Ro1

0 5 10 15 20 25
x

0

5

10

15

20

25

y

   ite 33

Obs 1

Obs 2

Obs 3

  Start 1

  Target 1

Ro1

0 5 10 15 20 25
x

0

5

10

15

20

25

y

   ite 40

Obs 1

Obs 2

Obs 3

  Start 1

  Target 1

Ro1

0 5 10 15 20 25
x

0

5

10

15

20

25

y

   ite 75

Obs 1

Obs 2

Obs 3

  Start 1

  Target 1

Ro1

0 5 10 15 20 25
x

0

5

10

15

20

25

y

   ite 83

Obs 1

Obs 2

Obs 3

  Start 1

  Target 1

Ro1

0 5 10 15 20 25
x

0

5

10

15

20

25

y

   ite 98

Obs 1

Obs 2

Obs 3

  Start 1

  Target 1

Ro1

0 5 10 15 20 25
x

0

5

10

15

20

25

y

   ite 129

Obs 1

Obs 2

Obs 3

  Start 1

  Target 1

Ro1

0 5 10 15 20 25
x

0

5

10

15

20

25

y

   ite 183

Obs 1

Obs 2

Obs 3

  Start 1

  Target 1
Ro1

Fig. 5. The movement process of the robot in Map 2: cannot move through the gaps,
escape from the trap to hit the target.
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Fig. 6. The movement process of the robot in Map 2 presented in contour map.

5.2 Results for Map 2

Scenario 2 is intentionally arranged so that the distance between obstacles is
not enough for the robot to move through. In this situation, the robot will be
trapped between obstacles and will not be able to move out of the trap zone. To
solve this problem, the equilibrium coefficient will change the value leading to
a change the width of the hill accordingly, thereby escaping the robot from the
trapped area [4].

Figures 5 and 6 show the entire operation of the robot, captured at steps
21st, 26th, 33rd, 40th, 75th, 83rd, 98th, 129th, and 183rd.

In step 21st, similar to map 1, the robot has not detected any obstacles so
it moves straight to the target. However, in step 26th, all three obstacles were
detected, at which time the robot was trapped in the contour as shown in steps
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26th and 33rd. As mentioned above, the equilibrium coefficients start to change,
resulting in the size of the hills growing up, the contour changing continuously.
The robot follows these contour lines, shown in steps 40th to 98th, and exits the
trap towards the target, shown in steps 129th, and 183rd.

The robot took 183 steps in this scenario to escape the trap and hit the
target.

5.3 Results for Map 3
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Fig. 7. The movement process of the robot in Map 3: face-to-face between two robots.

Different from map 1 and map 2, map 3 has two robots and two targets respec-
tively. There are no obstacles on this map. Instead, the positions of the robots
and the targets are intentionally arranged so that they are each other’s obstacles.

Figure 7 shows the movement of two robots, captured at steps 5th, 16th, 19th,
25th, 30th, and 53rd. At step 5th, the robots have not detected the other robot
yet so they move straight to their target. But in step 16th, both robots are in
the detection range of sensors, and they avoid each other as shown in steps 19th

to 30th. Finally, they finish their work on step 53rd.
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Fig. 8. The movement process of the robot in Map 4: a complex combination in a
single scenario.

5.4 Results for Map 4

The last scenario is the most complex one to test the general operability of
robots. Two robots, two respective targets, and three obstacles are present on
this map. They are arranged so that robots will be stuck between obstacles and
the remaining robot will be another obstacle, moving around, preventing each
other’s path.

Figure 8 reveals this operation process, captured at steps of 11th, 20th, 38th,
45th, 52nd, 61st, 70th, 88th, and 123rd.

At step 11th, three obstacles have not been detected and two robots are not
in each other’s path so they move towards the targets. However, in step 20th,
three obstacles are blocking the way of both robots. Furthermore, the remaining
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robot now becomes the fourth obstacle preventing the other robot’s path. In
step 38th, Robot 2 turned its head, moved backward to find a way out of the
trap zone, and Robot 1 moved along obstacles.

In steps 45th to 61st, the robots move around in the trap to find a way
to escape, and they start out of the trap in step 70th. Once out of the trap
zone, there are no obstacles left, so the robots approach their target without any
problem, as shown in step 88th. They hit the final target at step 123rd.

6 Conclusions

In this chapter, we have introduced a common practical application that is using
the self-organizing migrating algorithm to plan the path for the robot in real-
time. For this problem, SOMA plays a role in generating a dynamic set of moving
points from the starting position to the target that the robot must pass through.
When obstacles are detected by sensors, the inversely proportional components
appear in the fitness function and the algorithm will search a next point that
satisfies both the criteria of avoiding obstacles and towards the target. The
limitations of the solution such as the parameters in the model are fine-tuned
by experience will be overcome in the next studies.
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Abstract. Working towards the development of an evolvable can-
cer treatment simulator, the investigation of including evolutionary
optimization methods was considered. Namely, Differential Evolution
(DE) is studied here, motivated by the high efficiency of variations of
this technique in real-valued problems. A basic DE algorithm, namely
“DE/rand/1” was used to optimize in silico the design of a targeted
drug delivery system (DDS) for tumor treatment on PhysiCell simula-
tor. The suggested approach proved to be more efficient than a standard
Genetic Algorithm (GA), which was not able to escape local minima
after a predefined number of generations. The key attribute of DE that
enables it to outperform standard GAs, is the fact that it keeps the diver-
sity of the population high, throughout all the generations. This work
will be incorporated with ongoing research in a more wide applicability
platform that will design, develop and evaluate targeted DDSs aiming
cancer tumours.

Keywords: Differential evolution · Cancer treatment · Evolutionary
algorithm · PhysiCell simulator · Optimization
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92-08 · 90C27

1 Introduction

The vast diversity of cell types discovered in cancerous tumours [1,22] and their
ability to resist conventional treatment due the existence of subclonal popu-
lations [2,15], is motivating more complex treatment options. First steps into
using multitarget, multistage and multicomponent nanoparticles are promising
[17] and need to be further investigated as these techniques may hold the key
to effective cancer treatments. Consequently, building computational tools that
could discover the optimum design parameters of a treatment through efficiently
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explore and exploit large parameter search spaces, are of paramount importance.
In accordance with this concept, the evolutionary in silico optimization of a tar-
geted DDS was investigated utilizing a robust evolutionary algorithm (EA).

DE gained popularity over other well-established EAs, as it follows similar
algorithmic steps with standard EAs, but was able to surpass them in terms
of efficiency [16]. There have been several proposals on how to enhance its per-
formance [8,18] and these alternative algorithmic approaches, building on the
initial methodology, were tested in real problems, as well as numerical bench-
mark problems [5,6,14,23].

DE was initially proposed in [16], as an effective methodology of optimiza-
tion over continuous spaces of nonlinear and non differentiable functions. The
method was introduced as an alternative to previous direct search approaches,
aiming at three main objectives: the ability to find the global optimum, the fast
convergence to this optimum and the need of a small amount of control param-
eters for the procedure. Moreover, it was developed to be easily implemented
in parallel computing platforms. The methodology is population based, where
for every generation the new individuals are produced after applying the scaled
difference (hence the name differential evolution) of some predefined individuals
to another predefined base individual.

The ability to easily extract attributes of the population, such as the distance
of its members and their directions, through the aforementioned methodology,
is what makes DE so powerful. This characteristic is defined as self-referential
mutation [13]. Given the aforementioned advantages of DE compared with other
EAs, it was chosen to investigate the optimization of a targeted DDS on a cancer
tumour, when simulated with PhysiCell [10].

PhysiCell [10] is a multicellular, agent-based simulator that was designed to
extend the BioFVM [9] framework, to form a virtual laboratory. PhysiCell is
open source and offers several sample projects, one of which is the one studied
in this study. More specifically, sample project “anti-cancer biorobots” [10] was
developed as a possible tool to investigate the targeted cancer treatment, i.e.
with drugs transported by specialized nanoparticles that would target specific
cells of the cancer tumours.

Previously, PhysiCell was deployed as a virtual laboratory in the optimiza-
tion process of the design of nanoparticle carriers of cancer treating compounds
[12,19–21] and the process of mapping immunotherapies [11]. More specifically,
the use of PhysiCell led the training of surrogate-assisted evolutionary algo-
rithms exploring the efficient solutions of the design of nanoparticle-based drug
delivery systems for cancer [12]. A similar application of PhysiCell was exam-
ined in [19], where the optimization was achieved by a novel memetic algorithm
inspired by the fundamental haploid-diploid lifecycle of eukaryotic organisms
[3,4]. Moreover, active learning and genetic algorithms incorporated with the
PhysiCell simulator, enabled the efficient exploration of biological and clinical
constraints for cancer immunotherapy [11].
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2 Differential Evolution

The methodology of DE comprises of the following steps: initialization, mutation,
recombination (or crossover) and selection. At first, a population of individuals
(possible solutions) is formed by randomly picking values on the D-dimensional
search space of the problem to be optimized. The random function used is mainly
uniformly distributed to cover sufficiently the search space, which could be lim-
ited with lower and upper boundaries depending on the definition of the problem.

Then, the mutation operator is employed on the initial population. More
specifically, for every individual in the population a new individual is generated
(named the mutant individual) by a mathematical expression of the parameters
of randomly chosen or predefined individuals. For example, the mutant individual
(vi) can be the linear combination of three randomly selected individuals as
defined by the following equation, where xr1, xr2 and xr3 are randomly selected
individuals from the population and F is a scaling factor, which is a positive
number.

vi = xr1 + F · (xr2 − xr3)

Note here, that the variations of DE methodology are defined with a notation
in the form of “DE/base/num”. The “base” part of the notation refers to the
technique of choosing the individual that will be used as the base individual to
which the scaled difference will be added. The “num” part indicates the amount
of pairs of individuals that will produce a scaled difference each, to be added
on the base individual. Thus, the aforementioned DE variation is denoted as
“DE/rand/1”.

The produced mutant individuals, then, undergo the crossover operator, in
order to be recombined with individuals from the initial population. Each indi-
vidual chosen from the initial population is denoted as the target individual and
the produced individual after the crossover as the trial individual. Two crossover
strategies are mainly used, namely exponential and binomial. However, binomial
is dominant in the literature, where every parameter in the D-dimensional solu-
tion is treated separately to the others, and chosen from the mutant or the target
individual based on a probability defined as the CR parameter. This parameter
is known as the crossover rate.

The final step of the algorithm is then evaluation, by the use of the selection
operator. Similar to standard GAs, the trial individuals produced from the pre-
vious step, are evaluated with the fitness function. If their fitness is better than
the one of their target individual, they replace the target individual in the next
generation. Otherwise the target individual is retained. When all trial individu-
als are tested and the appropriate selection is made to form the population of the
next generation, the algorithm runs again the population through the mutation,
crossover and selection operators, until the termination criteria are met (i.e. the
computation budget).



Utilizing Differential Evolution into Optimizing Targeted Cancer Treatments 331

3 Methodology

The sample project from PhysiCell [10] framework that was investigated, is the
“anti-cancer biorobots”. In this simulation all entities are simulated as agents.
Namely, there are three different types of agents with different functionalities,
the cancer cells, the chemical compound (defined as cargo agents) and the func-
tionalized nanoparticles (defined as worker agents). The outputs of PhysiCell
include graphical representation of the agents in the simulated areas. An exam-
ple after 10 days of simulated growth and treatment of a tumour is depicted in
Fig. 1. The cancer cells are illustrated as green, the chemical compound as blue,
while the nanoparticles as red agents.

y
1112 agents 

Fig. 1. The graphical representation output of PhysiCell [10] after 10 days of simulated
growth and treatment of a cancer tumour.

The optimization problem here was defined as the discovery of the design of
nanoparticle agents in PhysiCell simulator (v.1.4.1) that will result in lower num-
ber of remaining cancer cells. Each possible solution is mapped in a 6-dimensional
space where the parameters studied and their boundaries are the attached worker
migration bias [0,1], the unattached worker migration bias [0,1], worker relative
adhesion [0,10], worker relative repulsion [0,10], worker motility persistence time
(min) [0,10] and the cargo release O2 threshold (mmHg) [0,20]. These parameters
are selected as they dictate the way the simulated nanoparticle agents behave,
namely the specifics of worker agent migration (deterministic for 1 and Brownian
for 0) are determined by the parameters attached and unattached worker migra-
tion bias. The simulated time that each worker agent moves in a direction before
changing to a new one is defined by the parameter worker motility persistence
time. The behaviour of the worker agents in accordance with the cargo agents
is described by the rest of the aforementioned parameters. For more details the
reader can refer to [10].
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Due to the stochastic nature of the simulator, each possible solution is eval-
uated after extracting the average value of the remaining cancer cells of 5 runs.
Each run executes 7 days of growing an initial 200 micron radius tumor and
3 days of applying the treatment. The execution of the simulation on an Intel R©
Xeon R© CPU E5-2650 at 2.20 GHz (using 8 of the 48 cores) and 64GB RAM was
completed after 5 min.

For comparison reasons, a generic GA was applied to optimize the afore-
mentioned problem. The parameters of the GA were chosen as population size
P = 20, tournament size T = 2 for selection and replacement operations, uniform
crossover with probability X = 80% and per allele mutation rate of µ = 20%
with random step size of s = [−5, 5]%.

On the other hand, the “DE/rand/1” strategy was implemented and tested
for the optimization of a targeted DDS on a cancer tumour, by simulating this
procedure with PhysiCell. The parameters of the DE algorithm were chosen as
population size P = 20, scaling factor F = 0.5 and crossover rate CR = 0.9.
Note that these parameters are not fine-tuned to enhance the performance of
the algorithm, but are most commonly used throughout the literature.

The rest of the parameters used to define the simulation of the tumour envi-
ronment by PhysiCell were retained unchanged and assigned the same values as
from the developers of the simulator [10]. More specifically these parameters are
listed in Table 1.

Note here that the computational budget for one test of each evolutionary
methodology was set to 1000 evaluations of the simulator. That translates to
an evaluation of 200 possible solutions, because of the 5 run average used to
partially alleviate the stochasticity effects of the simulator. Thus, having pop-
ulations of 20 individuals, it results to 10 generations. Moreover, note that the
total time required for an evolutionary test (1000 evaluations) reaches 5000 min
or c. 3.5 days. Consequently, the comparison of the minuscule possible overhead
of the DE, when compared to a GA, is not analysed in this application.

4 Results

Three comparison tests were run, each using the same initial population for the
GA and DE optimization. The results of the average fitness (remaining cancer
cells after 10 days of simulation) of all individuals of the population through out
the generations are depicted in Figs. 2, 3 and 4(a). Furthermore, the fitness of the
best individual for both GA and DE throughout the generations was illustrated
in Figs. 2, 3 and 4(b).

In Fig. 2(a) it is apparent that both approaches force the population to con-
verge towards a lower fitness. However, in Fig. 2(b) the fact that DE outperforms
the GA in finding better solutions from the first few generations is shown. More-
over, the GA seems to be stuck from the sixth generation in a local minimum.
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Table 1. Unaltered parameters of PhysiCell simulator.

Parameter Value

Damage rate 0.03333 min−1

Repair rate 0.004167 min−1

Drug death rate 0.004167 min−1

Elastic coefficient 0.05 min−1

Cargo O2 relative uptake 0.1 min−1

Cargo apoptosis rate 4.065e-5 min−1

Cargo relative adhesion 0

Cargo relative repulsion 5

Maximum relative cell adhesion distance 1.25

Maximum elastic displacement 50µm

Maximum attachment distance 18µm

Minimum attachment distance 14µm

Motility shutdown detection threshold 0.001

Attachment receptor threshold 0.1

Worker migration speed 2 µm/min

Worker apoptosis rate 0 min−1

Worker O2 relative uptake 0.1 min−1

Fig. 2. Average (a) and best fitness (b) of the populations evolved with GA and DE
in the first comparison run.
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Fig. 3. Average (a) and best fitness (b) of the populations evolved with GA and DE
in the second comparison run.

Fig. 4. Average (a) and best fitness (b) of the populations evolved with GA and DE
in the third comparison run.

In Fig. 3(a) the GA approach seems to converge the average fitness of the
population of solutions towards a lower fitness faster than the DE. Also, in
Fig. 3(b) the DE approach is outperformed by GA for the first six generations.
On the contrary, the GA is again stuck in a local optimum, while the DE is
continuously evolving towards better solutions and manages to find a better one
at the sixth generation.
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Fig. 5. Scatter plot of all individuals tested during the DE approach for the third run.
The red “X” mark denotes the best individual found.

Finally, the results from the third comparison run are presented in Fig. 4. As
in the previous runs, it can be claimed that DE outperforms the GA. Specifically,
in Fig. 4(b) the DE approach reaches a fittest individual than GA at the very
first generations. Furthermore, whereas the DE seems to be stuck in a local
minimum from the third generation and the GA reaches a solution quite similar
to this one, on the last generation the DE manages to escape its minimum and
provide an ever better solution.
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Fig. 6. Scatter plot of all individuals tested during the GA approach for the third run.
The red “X” mark denotes the best individual found.

The scatter plots of the parameters investigated during the evolution of DE
in the third comparison run are outlined in Fig. 5. It is clear that the individuals
produced with the DE approach cover the search space better than the ones
produced by GA (illustrated in Fig. 6). This is attributed to the fact that DE
is designed to tackle models defined in real-values search spaces, whereas GA
is not. As a result, the GA is heavily limited by the randomly produced initial
population, a disadvantage that is alleviated by the DE methodology.
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Fig. 7. Scatter plot of the individuals in the final population for the DE approach for
the third run. The red “X” mark denotes the best individual found.

In addition, to clearly portray the reason why GA is easily trapped in local
optima, while DE manages to escape them, Figs. 7 and 8 are given, that present
the final population of the DE and GA approaches for the third run, respectively.
The DE approach succeeds in maintaining a high diversity in the final population
as shown in Fig. 7, where no duplicate individuals can be spotted. On the other
hand, in Fig. 8 the final population of the GA approach is apparently comprised
by multiple copies of just two individuals, which are also very close to each
other. Consequently, the GA can not escape from these two individuals unless a
dramatic mutation happens (not possible as the mutation step size was set here
to s = [−5, 5]%).
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Fig. 8. Scatter plot of the individuals in the final population for the GA approach for
the third run. The red “X” mark denotes the best individual found.

5 Conclusion

The optimization of the design of targeted DDS on a cancer tumor, simulated by
PhysiCell, was studied by utilizing “DE/rand/1” approach. The DE approach
was compared with a standard steady state GA with the same computation
budget, namely 1000 evaluations. The results derived from the comparison runs
of both approaches equipped with the same initial population unveiled that DE
is a more robust algorithm to reach a better solution within the same amount
of generations. On top of that, DE enables the further exploration of the search
space as it maintains a high diversity of the individuals in the final population.
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As an aspect of future work, different variations of DE can be investigated
with PhysiCell and under alternative ultimate goals, for instance the ability
of niching is well documented in variants of DE [7]. Finally, the conclusions
driven from this study will be applied on ongoing research towards a more wide
applicability platform that will design, develop and evaluate DDSs aiming cancer
tumours.
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Abstract. In this paper, we consider the evaluation of periodic screen-
ing programme for woman breast cancer and formulate the model as
a partially observable Markov decision process (POMDP). We convert
a POMDP with finite state, observation state and action spaces to an
equivalent completely observable MDP with continuous state and finite
action spaces. By this approach, we have an optimal policy from dynamic
programming (DP) equation in an equivalent MDP, but we focus on con-
sidering the evaluation in scenarios of periodic screening for participants
with silent condition of breast cancer and seeking an answer which pro-
gramme is better than others for themselves. The aim of this paper is, by
using the data sets based on cancer registration and estimated param-
eters of survival rates and other ratios related to screening and diag-
noses in Japan, to evaluate some scenarios of breast cancer screening
programme in POMDP.

Keywords: Finite MDP · Evaluation of health care programme ·
POMDP · Practice by MDP
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1 Introduction

There are many papers of studying of the cost effectiveness analysis and guideline
principles from the standpoint of Markov decision model (e.g., [3,12,14,16,17],
and so on). It is important to consider not only the economic management for
medical treatment, surgery or other therapy, etc., but also to minimize risks
of harm to the patients and people who participate in the health care pro-
gramme such as periodic medical examination at work place, quarantine and
so on. In Japan mammography screening without clinical breast examination is
recommended for woman aged 40–74 years and mammography screening with
clinical breast examination is recommended for woman aged 40–64 years in the
breast cancer screening programme [5]. The recommendations are concluded by
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randomized controlled trial (RCT) and other experiments and comparing the
benefits and risks in method of screening and contents of the programme. From
the cancer statistics in Japan screening rate in periodic screening examination
is about 45% and medical examination rate of participants who recalled after
screening is about 80%. The government and municipal governments set numer-
ical targets for the rates to be more than 50% and 90% respectively in the
screening programme and examination, and moreover they engage in continuous
activities in order to achieve the rates of participants including other cancers,
colon, prostate, etc.

In this paper, we consider the evaluation of periodic screening programme
for woman breast cancer and formulate the model as a POMDP. We convert a
POMDP with finite state, observation state and action spaces to an equivalent
completely observable MDP with continuous state and finite action spaces. By
this approach, we have an optimal policy from DP equation in an equivalent
MDP, but we focus on considering the evaluation in scenarios of periodic screen-
ing for participants with silent condition of breast cancer and seeking an answer
which programme is better than others. We do not expect to be the main issue in
this paper to estimate the parameters of survival rates and other ratios related
to screening and diagnoses.

One of the aims of this paper is, by using the data sets based on cancer
registration and estimated parameters of survival rates and others in Japan,
to evaluate some scenarios of breast cancer screening programme in POMDP.
We also search for solution from another point of view to achieve the rate of
participants at least 50% coverage and at least 90% coverage those which are
mentioned above, we try to show the difference of risk in programme between no
screening and screening. From vital statistics [7,21], screening statistics [10,19]
and estimated value of parameters (KapWeb [9]) we set the estimated values to
our model parameters. We hope that our model in this paper will be an help
to improve the rates of breast cancer screening in recommended programme by
flexibility and benefits of MDP. It is difficult to have data related to untreated
and unscreened breast cancer patients, we use the data by public institution
like by SEER [8] including patients. Our approach is similar to the method
of evaluation of relative mortality risk by Maillert et al. [12]. There are some
recent papers related to breast cancer screening modeled as MDP, see [11,14,20].
Otten et al. [14] had considered the case to change the intervals of screening
dynamically, although we fix intervals of screening by one year. Steimle & Denton
[18] and Zhang & Denton [22] had considered the prostate cancer screening in
POMDP. Other type of economic evaluation in management of hospital, Sauré &
Puterman [16] had discussed on the problem of patient appointment scheduling.

In Sect. 2 we introduce the notation of POMDP and its converted MDP.
Section 3 presents some preliminaries for numerical examples in the next section.
In Sect. 4 we provides detailed numerical results by comparing the trajectories
of cost function and information of state at each step.

It is not our purpose to estimate and/or use the estimated parameters in the
middle of observing the states in dynamical system, because of our stand point
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of intending to promote participation in the screening, although if we have more
detailed data such as the false positive ratio etc. on clinical trials it is possible
and important to consider approaches with adaptive control based on preventive
intervention and/or avoiding the excessive treatment with regard to the result
of screening.

Before the beginning of each scenario, important elements to describe the
MDP, such as transition matrices and cost functions have been calculated by
estimated parameters from the population-based data set in advance. We do not
consider adaptive control model in this paper. This paper presents the desirable
scenarios and principles for woman breast screening by comparing the values of
relative mortality risks in every scenario in POMDP.

2 Partially Observed Markov Decision Process

In this section we define the sequential decision model to be examined by the
similar formulation taken in Monahan [13] (see the generalized and abstract
spaces case: refer to Rieder [15], Bäuelre and Rieder [1], Hinderer et al. [6]).

X = {0, 1, 2, . . . , N} is the finite state space and Xt ∈ X is the state at time
t = 0, 1, 2, . . .. We call the process {Xt} core process. Let A = {1, 2, . . . ,K} be
the finite action space and Y = {1, 2, . . . ,M} be the finite observation space. Let
Yt ∈ Y denote the observation state at time t = 1, 2, . . . and we call the process
{Yt} observation process. The observation state Yt = yt at time t represents the
information for the decision maker as imprecisely information of unobservable
state of core process. In other words, we cannot observe the state Xt = xt

directly and deduce it by delivering the information of observing state Yt = yt

to the decision maker and we have renewed the apriori belief probability on X
at the time t − 1 to the posteriori belief on X at the present time t by using the
updating operator based on Bayesian mechanism.

We denote by P(X) the set of all probability distributions on X. Pat
=

(pat
(j|i)) denotes the transition law of core process {Xt} and pat

(j|i) is the
probability of state transition from the present state Xt = i ∈ S to the next state
Xt+1 = j when an action at ∈ A is taken at time t. Let Hn = A×Y ×Hn−1, n =
1, 2, . . . where H0 is arbitrary. hn = (a0, y1, a1, y2, . . . , an−1, yn) ∈ Hn is the
history of action and observed state up to time n.

Ca(x, y) is the immediate cost function defined on X × Y × A to R. V0(i) is
the terminal cost function defined on X to R. Let πi(0) = Pr (X0 = i) , i ∈ S
the initial distribution of core process.

Let qa(y|i, j) be the transition kernel of observing state y from X × X × Y
to [0,∞) for a ∈ A when at the present time an action a is taken and the last
state i and the present state j are given.

A policy for finite horizon T is a sequence π = (f0, f1, . . . , fT−1) of functions
fk : Hk → A, 0 � k � T −1. The set of all policies for finite horizon T is denoted
by ΠT .

For each policy π ∈ ΠT and initial state X0 = x ∈ X, a probability measure
that describes the stochastic behavior of the partially observed system is defined
by usual way (cf. [2,4]).
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Define μt = (μt(i)) ∈ P(X) the information vector at time t, where we have
set

μt(i) = Pr (Xt = i|μ0, a0, y1, a1, y2, . . . , at−1, yt) = Pr (Xt = i|μ0, ht) , i ∈ X.

Let μ0 = (μ0(i)) ∈ P(X) be the apriori distribution of unobservable states
on X at the beginning period t = 0.

After knowing the information from observation Yt = yt at time t = 1, 2, . . .,
apriori distribution as the information of unobserved state xt is updated by the
operator Φat−1 , where

q̃a(j, y|μ) =
∑

i∈X

q̃a(j, y|i)μ(i) =
∑

i∈S

pa(j|i)qa(y|i, j)μ(i)

on X × Y given μ ∈ P(X) for each a ∈ A:

Φat−1(μt−1, yt)(j) =
q̃at−1(j, yt|μt−1)∑

j∈X

q̃at−1(j, yt|μt−1)

=

∑

i∈X

pat−1(j|i)qat−1(yt|i, j)μt−1(i)

∑

j∈X

∑

i∈X

pat−1(j|i)qat−1(yt|i, j)μt−1(i)
(1)

and we set μt(j) = Φat−1(μt−1, yt)(j), j ∈ X.
Let ht = (a0, y1, a1, y2, . . . , at−1, yt) ∈ Ht. Then, the posteriori distribution

μt(ht) is calculated recursively by the updating operator Φai
, i = 1, . . . , t as the

following:

μi(hi) = Φai−1(Φai−2(· · · Φa1(Φa0(μ0, y1), y2), · · · , yi−1), yi)

The following theorem is well-known for finite state and action partially
observable model.

Theorem 1. For any fixed policy π = (a0, a1, . . . , aT−1) the sequence of prob-
ability distributions {μi(·)} , i = 1, 2, · · · T is a Markov process, i.e., for any
measurable set Γ ∈ P(X),

Pr (μi ∈ Γ |μ0, a0, μ1, . . . , μt−1, at−1) = Pr (μi ∈ Γ |μi−1, ai−1) .

We can convert a partially observable Markov decision model to an equivalent
Markov decision model with continuous state space S = P(X).

By the requirement for describing the transitions of observation and unob-
served state in the system, we define the transition law Qa, a ∈ A with stochastic
kernel qa(y|x, x′) from X ×X ×Y to [0,∞) as follows. For μ ∈ P(X) and a ∈ A,

Qa(μ; y) =
∑

x′∈X

∑

x∈X

pa(x′|x)qa(y|x, x′)μ(x)
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and

Qa(μ;x′, y) =
∑

x∈X

pa(x′|x)qa(y|x, x′)μ(x).

The immediate cost function is defined by

Ca(μ) =
∑

x∈X

Ca(x)μ(x), for a ∈ A,μ ∈ P(X).

The terminal cost function is defined by

V0(μ) =
∑

x∈X

V0(x)μ(x), μ ∈ P(X).

We denote by VN,π(μ) as the minimum expected undiscounted total cost
function if there are N steps to go and the initial state is μ and policy π ∈ Π is
taken.

For history hN = (a0, y1, a1, y2, . . . , aN−1, yN ), an action ai ∈ A is taken and
the information of system yi is observed up to time N . Then we know transition
law Qa at time i and states transition of (μi, yi) ∈ P(X) × Y occurs according
to Qai−1(μi;x, yi), x ∈ X.

Note that the information vector μ = (μi), i ∈ X is updated by

μi(x′) = Φai−1(μi, yi)(x′) =
Qa(μ;x′, y)
Qa(μ; y)

.

Then we have the following Dynamic Programming equation:

Vn(μ) = min
a∈A

⎧
⎨

⎩Ca(μ) +
∑

y∈Y

Vn−1 (Φa(μ, y)) Qa(μ; y)

⎫
⎬

⎭ , n = 1, 2, . . . , N, (2)

where V0 is terminal cost function.
From the results of finite horizon MDP we have the optimal policy for an

equivalent MDP by solving DP equation recursively and backwards, from step
n = 1 to N .

Denote a∗
N−n the minimizer of (2) for each step n = 1, 2, . . . , N and let

π∗ = (a∗
0, a

∗
1, . . . , a

∗
N−1).

Theorem 2. The sequence of minimizer of (2) is an optimal policy for an equiv-
alent MDP, i.e., VN,π∗(μ0) = supπ∈Π VN,π(μ0).

3 POMDP for Evaluation of Health Care Programmes

We consider the evaluation of health care programme in mass screening of breast
cancer as a POMDP. The state transitions of core process is shown in Fig. 1 and
it is similar to the transition model of Maillart et al. [12]. In addition, we give
subtree of decision making at time n in Fig. 2.
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The state space is X = {0, 1, 2, 3, 4}. Each state x ∈ X represents the state
of health in which screening participant is. Five states are represented as follows:
State 0: no breast cancer, state 1: early breast cancer, state 2: later/advanced
breast cancer, state 3: breast cancer induced death and state 4: non-breast cancer
induced death. Transition matrix P = (pij) leads to the state transitions at each
time t = 1, 2, . . . , and satisfies the assumption:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

pii > 0 for i = 0, 1, 2, 3, 4,

pij > 0 if j = i + 1, i = 0, 1, 2,

pi4 > 0 if i = 0, 1, 2,

pij = 0 otherwise.

The action space is A = {a0(no screening), a1(screening)}. Every year in the
period of screening programme, participants have two alternatives of a0: no
screening and a1:screening, but for simplicity, under the scenario in this paper
participants are arranged in advance which alternative is selected in the pro-
gramme. The observing space is Y = {0, 1} where information (observed) state
0 is negative from the screening test and information state 1 is positive. The
parameters pij(α) = p(j|i)(α) of transition matrices P (α) = (pij(α)) are deter-
mined by the age α of participants. Hence the state transition of core process
occurs by Pa(α), a ∈ A and the Markov process of core state is non-stationary
(non-homogeneous) (cf. [2,4]). Let Ii = {n ∈ N|25 + 5(i − 1) ≤ n < 25 + 5i}. By
abuse of notation, we let [αi, αi) stand for Ii.

We set immediate cost functions Cα
a for participant who aged α years and

α ∈ Ii = [αi, αi).

Cα
a0

(μ) = μ(0)r0(α) + μ(1)r1(α) + μ(2)r2(α),
Cα

a1
(μ) = μ(0)d0(α)r0(α) + μ(1)d1(α)r1(α) + μ(2)d2(α)r2(α),

where r0(α): recall rate of screening participants who aged α years, r1(α): a
complementary rate of 10-year relative survival rate e1(α) of patients of breast
cancer who aged α years and is in category 1 of breast density (Breast Imaging
Reporting and Data System BI-RADS) category). Hence we define r1(α) =
1−e1(α). Also, we define r2(α) = 1−e2(α), where e2(α) is average (aggregation)
of the survival rates of category 2 and 3. d0(α) denotes predictive value of positive
screening results and d1(α) is the sensitivity of mammography in association with
breast densities in category 1, and d2(α) is average of sensitivities of patients
who is in category 2 or 3. The above values of parameters are surveyed and
estimated by authors as follows: r0, d0: [10,19], r1, r2(e1, e2): [9], d1, d2: [19].
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Fig. 1. Transition probabilities of core process

In order to update the information μ and calculate the value functions
VN,π, Vn, we set qat−1(y|i, j), t ≥ 1 in Eq. (1) when y = 0 (screening test was
negative) by

qat−1(0|0, 0) = qat−1(0|0, 1) = qat−1(0|0, 4) = 1 − r0(αt−1),
qat−1(0|1, 1) = qat−1(0|1, 2) = qat−1(0|1, 4) = 1 − d1(αt−1),
qat−1(0|2, 2) = qat−1(0|2, 3) = qat−1(0|2, 4) = 1 − d2(αt−1),
qat−1(0|i, j) = 0 otherwise,

where αt is age of participant for screening at the t-th period from the beginning
while in screening programme. Moreover, to deduce the transition probabilities
pij(α) = p(j|i)(α) for screening participants who aged α years, we follow the
estimated cancer relative survival rates K1 and K2 of 5 years whose rates are
defined similar to r1(α) and r2(α) respectively at clinical stages by KapWeb
[9] in Japan. We also used mortality rate a of excluding the patients cased
breast cancer and estimated incident rate b of breast cancer from vital and
cancer statistics [7,21] respectively in 2015 and the proportion c of early and non
infiltrating breast cancer found in the past screening programme from Annual
report on breast cancer screening in Japan in 2013 [10].
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information state: µn

A = {a0, a1}
a0: no screening
a1: screening

information state: µn+1

A = {a0, a1}
a0: no screening
a1: screening

further
screening

a0 or a1 is selected
Yn = 0(negative) is observed

a1 is selected, and
Yn = 1(positive) is observed

Fig. 2. Subtree of decision making at time n in POMDP

For the age α ∈ Ii = [αi, αi), the transition matrix P (α) = (pij(α)) is
required to satisfy the following equations: let p = p11(α), q = p22(α),

p5 + (1 − p − a)(p4 + p3q + p2q2 + pq3 + q4) = K1(α),
q5 = K2(α),

p12 = bc.

In this paper, we will restrict our attention to compare the scenarios of screen-
ing program for participants who has no symptom of breast cancer or never
develops symptoms within continued period of the screening program, the value
function represents the accumulated mortality risk of people in each scenario.
Hence let Qa0(μ; y) ≡ 1, Vn−1 (Φa1(μ; 1)) ≡ 0 and we do not suit the optimal
policy π∗ derived from Eq. (2) to the best recommendation for the screening
programme. Instead, under POMDP, we show the property of each programme
including the recommended one by public institution [5].
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4 Numerical Analysis

Almost of all statistical data used in this section are based on the aggregate
statistics every 5 or 10 years of age of screening participants, the transition
probability matrices and parameters for participants in the programme may
take different values at every five years old (the beginnings of interval are 25,
30, 35, 40, 45, 50, 55, 60, 65, 70, 75 and 80 years old).

We show 9 scenarios in Table 1 and consider the accumulative relative mortal-
ity risk in each scenario. For example, in scenario 1 the start age of participant
is at 40 years old and begins the screening test at the age and continue the
screening until at 84 years old. The duration of the scenario is N = 45. We give
below the transition matrices P (α) of core process for α ∈ Ii, i = 1, 2, . . . , 12.
The values of parameters are shown in Table 2 and 3. For each scenario, at
age of the programme begins for participant we set the information state vec-
tor μ′

0 = (1, 0, 0, 0, 0)′. The process of scenario 1 begins by transition matrix
P (α), α ∈ I4 = [40, 45), i.e., the first transition of state is occurred by P (40).
After updating the vector μt at time t (as information of participant to the
screening programme and in t-th year of the scenario) until the final piriod N ,
we calculate the values V1, V2, . . . , VN recursively from DP Eq. (2) by backward
induction.

Table 1. scenarios of screening programme

Scenario Age 25–39 Age 40–64 Age 65–84 Duration N(years)

1 − Screening 45
2 − Screening No screening 45
3 − No screening 45
4 No screening 60
5 No screening Screening 60
6 No screening Screening No screening 60
7 No screening 60
8 − Screening: aged 45–74 years 35
9 − Screening − 25

α ∈ I1 : P (α) =

⎛

⎜⎜⎜⎜⎝

0.9999291 0.0000645 0 0 0.0000064
0 0.9441060 0.0558876 0 0.0000064
0 0 0.9472137 0.0527799 0.0000064
0 0 0 1 0
0 0 0 0 1

⎞

⎟⎟⎟⎟⎠
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Table 2. Calues of the parameters (1)

α ∈ Ii I1 I2, I3 I4, I5 I6, I7 I8, I9 I10, I11 I12

r0(α) 0.04 0.053 0.116 0.095 0.072 0.048 0.048
r1(α) 0.947 0.951 0.971 0.969 0.992 1.000 1.000
r2(α) 0.626 0.728 0.768 0.743 0.758 0.801 0.796
d0(α) 0.007 0.016 0.019 0.025 0.041 0.069 0.105
d1(α) − − 1.000 0.875 0.912 − −
d2(α) − − 0.632 0.741 0.794 − −
K1(α) 0.955 0.981 0.992 0.986 1.000 1.000 1.000
K2(α) 0.7625 0.827 0.8785 0.848 0.866 0.894 0.914

Table 3. Values of parameters (2)

α ∈ Ii I1 I2 I3 I4 I5 I6

a 6.45 × 10−6 9.08 × 10−6 1.41 × 10−5 2.47 × 10−5 3.33 × 10−5 4.65 × 10−5

b 8.60 × 10−5 2.46 × 10−4 6.96 × 10−4 1.50 × 10−3 2.31 × 10−3 2.23 × 10−3

c 0.50 0.25 0.685
0.269

0.726
0.256

0.728 0.173

α ∈ Ii I7 I8 I9 I10 I11 I12

a 6.41 × 10−5 1.15 × 10−4 1.99 × 10−4 2.86 × 10−4 7.54 × 10−4 1.07 × 10−4

b 2.18 × 10−3 2.34 × 10−3 2.31 × 10−3 2.25 × 10−3 2.00 × 10−3 1.70 × 10−3

c 0.728 0.173 0.764
0.167

0.778
0.173

0.782 0.091

α ∈ I2 : P (α) =

⎛

⎜⎜⎜⎜⎝

0.9997562 0.0002347 0 0 0.0000091
0 0.9441060 0.0558849 0 0.0000091
0 0 0.9627225 0.0372685 0.0000091
0 0 0 1 0
0 0 0 0 1

⎞

⎟⎟⎟⎟⎠

α ∈ I3 : P (α) =

⎛

⎜⎜⎜⎜⎝

0.9993219 0.0006640 0 0 0.0000141
0 0.944171 0.0558149 0 0.0000141
0 0 0.9627225 0.0372634 0.0000141
0 0 0 1 0
0 0 0 0 1

⎞

⎟⎟⎟⎟⎠

α ∈ I4 : P (α) =

⎛

⎜⎜⎜⎜⎝

0.9985003 0.0014750 0 0 0.0000247
0 0.9672830 0.0326923 0 0.0000247
0 0 0.9744249 0.0255504 0.0000247
0 0 0 1 0
0 0 0 0 1

⎞

⎟⎟⎟⎟⎠
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α ∈ I5 : P (α) =

⎛

⎜⎜⎜⎜⎝

0.9976973 0.0022694 0 0 0.0000333
0 0.9412310 0.0587357 0 0.0000333
0 0 0.9744249 0.0255418 0.0000333
0 0 0 1 0
0 0 0 0 1

⎞

⎟⎟⎟⎟⎠

α ∈ I6 : P (α) =

⎛

⎜⎜⎜⎜⎝

0.9979370 0.0020164 0 0 0.0000465
0 0.9539420 0.0460115 0 0.0000465
0 0 0.9675628 0.0323907 0.0000465
0 0 0 1 0
0 0 0 0 1

⎞

⎟⎟⎟⎟⎠

α ∈ I7 : P (α) =

⎛

⎜⎜⎜⎜⎝

0.9979681 0.0019678 0 0 0.0000641
0 0.9542050 0.0457309 0 0.0000641
0 0 0.9675628 0.0323731 0.0000641
0 0 0 1 0
0 0 0 0 1

⎞

⎟⎟⎟⎟⎠

α ∈ I8 : P (α) =

⎛

⎜⎜⎜⎜⎝

0.9977112 0.0021739 0 0 0.0001149
0 0.9483570 0.0515281 0 0.0001149
0 0 0.9716360 0.0282491 0.0001149
0 0 0 1 0
0 0 0 0 1

⎞

⎟⎟⎟⎟⎠

α ∈ I9 : P (α) =

⎛

⎜⎜⎜⎜⎝

0.9976481 0.0021525 0 0 0.0001995
0 0.9498140 0.0499865 0 0.0001995
0 0 0.9716360 0.0281646 0.0001995
0 0 0 1 0
0 0 0 0 1

⎞

⎟⎟⎟⎟⎠

α ∈ I10 : P (α) =

⎛

⎜⎜⎜⎜⎝

0.9975742 0.0021398 0 0.0002860
0 0.9370820 0.0626320 0 0.0002860
0 0 0.9778393 0.0218746 0.0002860
0 0 0 1 0
0 0 0 0 1

⎞

⎟⎟⎟⎟⎠

α ∈ I11 : P (α) =

⎛

⎜⎜⎜⎜⎝

0.9976596 0.0019001 0 0 0.0004403
0 0.9405450 0.0590147 0 0.0004403
0 0 0.9778393 0.0217204 0.0004403
0 0 0 1 0
0 0 0 0 1

⎞

⎟⎟⎟⎟⎠

α ∈ I12 : P (α) =

⎛

⎜⎜⎜⎜⎝

0.9977629 0.0014832 0 0 0.0007538
0 0.9302950 0.0689512 0 0.0007538
0 0 0.9830340 0.0162122 0.0007538
0 0 0 1 0
0 0 0 0 1

⎞

⎟⎟⎟⎟⎠
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Fig. 3. Trajectories of accumulated lifetime mortality risks

Fig. 4. Trajectories of information µt(0)

Figure 3 shows the trajectories of value (accumulated lifetime mortality risk)
in each scenario. In Fig. 4, the trajectories of {μt(0)} in scenario 6 and 7
are shown. In contrast to choosing the option of no screening at each period
decreased the information probability μt(0) of no breast cancer in scenario 6,
continuous participation to screening brought almost flat tendency with few
decrease to the information probability μt(0) with respect to the time t. Trajec-
tories of {μt(0)} in other scenarios has similar tendency as the main factor of
those variations is whether the scenario itself has the duration of no screening
or not. So we omit to show trajectories {μt(0)} in the case of other variations.

From the trajectories in Fig. 3, if the longer duration of no screening time
is included in the scenario which participants select, the higher accumulated
risk VN of the scenario is brought. The scenario 8 (mammographic screening
without clinical breast examination) and 9 (mammographic screening without
clinical breast examination) are both recommended for people living in Japan
by National Cancer Center of Japan (NCCJ) (cf. [5]).
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