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Abstract Exciting developments have been made in understanding antibody-
mediated immunity, deepening understanding of antibody effector functions increas-
ingly recognized as critical mechanisms of action beyond antigen recognition, and
significantly broadening the evidence base for the importance of these effector
mechanisms across diverse infectious and autoimmune diseases. Because these
activities critically depend on the specific glycoforms present on a conserved site
of the IgG Fc domain, relationships between the Fc glycosylation profiles of antigen-
specific antibody pools and outcomes in infectious and autoimmune disease have

P. Bharadwaj
Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College,
Hanover, NH, USA

M. E. Ackerman (*)
Department of Microbiology and Immunology, Geisel School of Medicine, Dartmouth College,
Hanover, NH, USA

Thayer School of Engineering, Dartmouth College, Hanover, NH, USA
e-mail: Margaret.E.Ackerman@Dartmouth.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
M. Pezer (ed.), Antibody Glycosylation, Experientia Supplementum 112,
https://doi.org/10.1007/978-3-030-76912-3_18

565

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76912-3_18&domain=pdf
mailto:Margaret.E.Ackerman@Dartmouth.edu
https://doi.org/10.1007/978-3-030-76912-3_18#DOI


begun to be defined, pointing to the key role of this posttranslational modification as
a biomarker and mechanistic modifier of antibody-mediated immunity. Here we
summarize studies evaluating the profiles and activities of antigen-specific anti-
bodies elicited by infection and vaccination as well as within the context of allo-
and autoimmunity, and consider current approaches to rational modification of Fc
glycans in vivo.

Keywords Immunoglobulin · Antibody · Fc domain · Glycosylation · Vaccine ·
Allergy · Autoimmunity · IgG · Effector function

Abbreviations

ACPA Anti-citrullinated protein antibodies
ADCC Antibody-dependent cellular cytotoxicity
ADCP Antibody-dependent cellular phagocytosis
ADE Antibody-dependent enhancement
AMI Antibody-mediated immunity
ASA Antigen-specific antibody
CDC Complement-dependent cytotoxicity
COVID-19 Coronavirus disease 2019
CSR Class switch recombination
DC Dendritic cell
DENV Dengue virus
EndoS Endoglycosidase S
Fab Fragment antigen-binding
Fc Fragment crystallizable
FcR Fc receptor
FNAIT Fetal or neonatal allo-immune thrombocytopenia
Fv Fragment variable
GlcNAc N-acetylglucosamine
HPA-1a Human platelet antigen 1a
IdeS IgG digesting enzyme S
IgG Immunoglobulin G
IVIg Intravenous immunoglobulin
K Kell
mAb Monoclonal antibody
MAC Membrane attack complex
MBL Mannose-binding lectin
MHC Major histocompatibility complex
NK Natural killer
HIV Human immunodeficiency virus
RA Rheumatoid arthritis
RhD Rhesus D
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RSV Respiratory syncytial virus
SARS-CoV-2 Severe acute respiratory syndrome coronavirus 2

18.1 Introduction

Evidence of the critical importance of effector functions to antibody-mediated
immunity (AMI) has been accumulating across studies of diverse infectious and
autoimmune diseases. The ability to study and clinically leverage AMI was made a
much simpler task after Kohler and Milstein’s (Köhler and Milstein 1975) discovery
of an approach to generate consistent, reliable, and reproducible monoclonal anti-
body (mAb) preparations, which represented challenges to the use of polyclonal sera
prevalent at that time. Advanced molecular methods in antibody cloning (Wang et al.
2019; Hunter et al. 2019; Kim et al. 2014; Winzeler and Wang 2013; Chon and
Zarbis-Papastoitsis 2011) and engineering (Bruggeman et al. 2018; Dekkers et al.
2018; Crooks et al. 2018; Dekkers et al. 2016) have complemented the discovery of
diverse Fc receptors (FcR) (Bournazos and Ravetch 2017; Castro-Dopico and
Clatworthy 2016; Wu et al. 2014; Hirvinen et al. 2013; Nimmerjahn and Ravetch
2008a; Lazar et al. 2006; Hogarth 2002) and development of elegant knockout
mouse models (Walsh et al. 2016; Verkoczy 2017; Stackowicz et al. 2020) to enable
further basic science exploration and to support therapeutic optimization of AMI. In
parallel, higher resolution means of profiling serum antibodies have accompanied
these advances and greatly expanded the ability to interrogate polyclonal responses
in serum and tissue. The high throughput of many of these profiling approaches has
now turned the heterogeneity observed among polyclonal samples into a strength,
providing means to interrogate the features and activities of antibodies that are
associated with AMI.

18.2 Antibody Effector Functions

Antibodies play an important role in both effecting and regulating an immune
response. They have the capacity to either amplify or dampen an inflammatory
immune response based on their specificity, affinity, titer, isotype, and glycosylation
profile. While the antigen-binding fragment (Fab) domain confers antigen specific-
ity, the crystallizable fragment (Fc) domain is responsible for linking antigen
recognition to downstream effector functions (Schroeder and Cavacini 2010). Anti-
bodies can neutralize pathogens by directly binding through the Fab domain and
occluding the binding of the pathogen or its toxins to cognate receptors. Such
Fab-mediated antibody action is complemented by Fc domain engagement of com-
plement proteins and FcR (Fig. 18.1). There are broadly two categories of FcRs—
activating and inhibitory—that are ubiquitously expressed on human hematopoietic
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cells and play a key role in orchestrating potent antibody-mediated effector immune
responses in the context of both protective immunity to pathogens and pathogenic
immune responses to self (Fig. 18.2).

The most widely studied Fc-mediated antibody effector functions are antibody-
dependent cell-mediated cytotoxicity (ADCC) (Worley et al. 2018), antibody-
dependent cellular phagocytosis (ADCP) (Gerber and Mosser 2001), and
complement-dependent cytotoxicity (CDC) (Goldberg and Ackerman 2020).
These activities are induced by engagement of the FcγRs on innate effector cells,
or by soluble complement cascade initiators, such as C1q or Mannose Binding
Lectin (MBL), by the Fc domain of antibodies that are bound to a target antigen.
ADCC is characterized by FcγR engagement that causes the release of cytotoxic
granules that contain perforin and granzyme, resulting in the killing of target cells
(Smyth et al. 2005). FcγRIIIA-expressing Natural Killer (NK) cells are widely
considered to be an important contributor to ADCC and are often assayed in vitro.
However, in vivo, neutrophils, monocytes, and macrophages are also capable of
driving ADCC and have been found to make important contributions to antibody
mechanism of action (Smyth et al. 2005; van Erp et al. 2019).

ADCP or opsonophagocytosis is the uptake of immune complexes or antibody-
coated antigens by phagocytic cells including monocytes, macrophages, dendritic
cells (DCs), and others that express FcγRI, FcγRII, and/or FcαRI, each of which can

Fig. 18.1 Antibody glycosylation sites in IgG. Glycosylation sites can be present in the Fab region
(15–25% of IgGs), but are always present in the Fc region. There are distinct qualitative differences
among the glycans commonly found at these sites, however, the importance of the glycans in
mediating function via respective antibody domains is a shared characteristic. These glycans share
the core heptasaccharide (dotted line in the inset) to which extensions of specific sugars are
attached. Fc glycans tend to be heavily fucosylated whereas the Fab glycans have generally been
observed to exhibit relatively high levels of sialylation. Adapted from Bondt et al. (2014)
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mediate immune complex uptake (Li and Kimberly 2014). ADCP mediates clear-
ance of immune complexes by trafficking them to the lysosomes for degradation and
antigen processing for presentation on Major Histocompatibility Complex (MHC)
molecules on the cell surface (Mantegazza et al. 2013). Previous work on influenza
virus has shown that ADCP contributes to protection from infection in mice (Huber

Fig. 18.2 Antibody mechanisms of action. While the Fab domain functions are directly driven by
antigen recognition, Fc-mediated functions result from recruitment of various components of the
innate immune system
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et al. 2001; He et al. 2017) and potentially plays a role in recovery from severe
infections in humans (Vanderven et al. 2017; Ana-Sosa-Batiz et al. 2016). Associ-
ations between ADCP and improved outcomes in other disease settings such as HIV
(Barouch et al. 2013, 2015), West Nile Virus (Vogt et al. 2011) in humans, and
Respiratory Syncytial Virus (RSV) (Bukreyev et al. 2012) have also been recently
established.

Besides ADCC and ADCP, antibodies can also induce complement activation.
The complement cascade contributes to pathogen elimination either directly, by
means of complement-dependent cytotoxicity (CDC), or indirectly, through phago-
cytic clearance of complement-coated targets and the induction of an inflammatory
response (Goldberg and Ackerman 2020; van Erp et al. 2019; Grafals and Thurman
2019; Casadevall and Pirofski 2012). The complement cascade consists of a large
number of distinct plasma proteins that react with one another to opsonize patho-
gens, inducing a series of inflammatory responses that help to fight infection (Noris
and Remuzzi 2013). A number of complement proteins are proteases that are
themselves activated by proteolytic cleavage (Dunkelberger and Song 2010). The
terminal complement components assemble into the membrane attack complex
(MAC), resulting in lysis of the pathogen-infected cell. Complement has been
shown to have both protective and pathogenic effects in various disease conditions.
In HIV (Barouch et al. 2013, 2015; Pittala et al. 2019), influenza (Co et al. 2014; Wu
et al. 2015), and vaccinia (Benhnia et al. 2009) infection, antibody-mediated CDC
has been shown to correlate or mechanistically contribute to antibody antiviral
activity. Alternatively, complement-mediated activation has also been associated
with disease severity (Nascimento et al. 2009; Churdboonchart et al. 1983; Füst et al.
1994). Lastly, the binding of complement-coated immune complexes to complement
receptor 2 on B cells is reported to lower the B cell activation threshold, thereby
promoting long-lived adaptive immunity and higher antibody levels (van Erp et al.
2019; Hebell et al. 1991; Gonzalez et al. 2010).

18.3 Immunomodulatory Antibody Activities

In contrast, anti-inflammatory effects of antibodies can help in alleviating severe
immune damage. Based on this concept, administering intravenous immunoglobulin
(IVIg) to treat inflammatory conditions such as autoimmune disease has found an
important clinical application (Bayry 2016). While the underpinnings of IVIg
mechanisms have yet to be clearly elucidated (Schwab and Nimmerjahn 2013),
different mechanisms of action such as neonatal Fc receptor blockade resulting in
accelerated clearance of autoantibodies (Li and Kimberly 2014), direct interaction
with the inhibitory FcγRIIb (Nagelkerke and Kuijpers 2015), or occlusion of acti-
vating receptors and tempering the inflammatory effector responses (Nimmerjahn
and Ravetch 2008b) have been proposed. However, since IVIg treatment is used to
treat various diseases, it is likely that the mode of action differs per clinical setting.
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18.4 Induction and Regulation of Antigen-Specific
Antibodies

During an immune response, B cells are stimulated to mature and to undergo class
switch recombination (CSR) resulting in genetic modification of the IgH locus and
selection of the antibody isotype and subclass to be secreted (Stavnezer and Schrader
2014). Just as B cells undergo rounds of somatic hypermutation over the course of
affinity maturation as they migrate in and out of regions in the germinal center, CSR
can occur in rounds with repeated switching to downstream types (Mesin et al.
2016). This heterogeneity in the amino acid sequence of both variable fragment
(Fv) and Fc regions is coupled to further functional diversification via incorporation
of one of the >30 possible glycoforms (Jennewein and Alter 2017) in the conserved
N-linked glycosylation motif. While multiple isotypes are glycosylated in the Fc, we
will focus on glycosylation in the context of the four IgG subclasses (Vidarsson et al.
2014).

In the past 20 years, the role of antibody glycosylation as an important parameter
modulating the potency of effector functions has been firmly established through
advances in monoclonal antibody research and development, as well as in studies of
natural immune responses in the context of infectious and autoimmune disease. Here
we focus on recent research considering the glycosylation of antigen-specific anti-
bodies in these settings.

18.5 Importance of Ab Glycosylation

The Fc domain contains a consensus N-linked glycosylation site that is typically
occupied by a heptasaccharide core structure consisting of four N-acetylglucosamine
(GlcNAc) and three mannose moieties that form a biantennary complex (Liu 2015).
Additional glycosylation features such as fucose, galactose, sialic acid, and GlcNAc
can be added later to the core structure to produce over 30 distinct glycovariants. As
both heavy chains are glycosylated, a single IgG molecule can have a diverse array
of glycosylation heterogeneity (Jefferis 2009). Nuclear magnetic resonance (NMR)
studies have shown that variability in the glycans at this conserved position has a
profound effect on the hinge region conformation (Yamaguchi et al. 2006). Simi-
larly, interactions with Fcγ and other IgG and glycan receptors are entirely depen-
dent on or modified by glycan composition and conformation, thus the type of
glycan occupying this site modifies antibody effector function (Saunders and Con-
ceptual 2019). Unlike genetically templated factors that impact IgG activity, such as
Fv sequence and Fc subclass, antibody glycosylation is remarkably varied, resulting
in a high level of microheterogeneity that facilitates the fine tuning of antibody
function (Alter et al. 2018a). These dynamic changes in antibody glycosylation can
have a subtle or profound effect in their interactions or downstream functions.
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18.6 Typical Serum IgG Fc Glycan Composition

Given the importance of IgG Fc glycans, the composition of serum antibodies has
been evaluated in a number of populations, providing insight into changes associated
with age, sex, hormone levels, and disease status. Nonetheless, “typical” composi-
tions have been articulated among healthy individuals (Fig. 18.1), and deviations
from this profile suggest active processes regulating this posttranslational modifica-
tion at multiple levels.

Serum IgG Fc is typically overwhelmingly fucosylated (>90%) (Gudelj et al.
2018). However, skewed glycosylation variants, produced by chemoenzymatic
modifications or expressed in engineered cells, have been produced that lack this
fucose moiety, and as a result exhibit significantly improved effector function. For
example, an afucosylated form of an anti-CD20 IgG1 showed a 50-fold improve-
ment in binding to FcγRIIIa and enhanced ADCC activity (Shields et al. 2002).
Later, structural studies found that the fucose on the Fc glycan clashes with a
GlcNAc2 group of an FcγRIIIa glycan, thereby providing a structural rationale to
the improved ADCC activity of afucosylated antibody (Ferrara et al. 2011).

About 10% of all circulating IgGs in healthy human adults exhibit bisected Fc
glycans (Gudelj et al. 2018), which have been shown previously to relate to ADCC
activity (Hodoniczky et al. 2005). However, this amplification in ADCC, caused by
the increased engagement of the FcγRIII, is believed predominantly to be due to the
indirect role of bisection in decreasing fucosylation, rather than a direct consequence
of its presence in the antibody structure (Shinkawa et al. 2002).

Similarly, agalactosylated, monogalactosylated, and digalactosylated glycan
structures account for approximately 35%, 35%, and 15% of circulating IgG
Fc-glycans, respectively (Gudelj et al. 2018). A prominent bias towards
agalactosylated antibodies has been observed in people with active autoimmune
and inflammatory diseases (Parekh et al. 1989; Tomana et al. 1992; Rademacher
et al. 1994; Decker et al. 2016), however, a clear consensus on cause or consequence
is yet to be achieved (Alter et al. 2018a). Furthermore, there are conflicting reports
on the role of galactosylated antibodies in mediating proinflammatory activities,
with some reports observing the presence of galactosylation on the IgGs to enhance
the ADCC and complement binding (C1q) in vitro (Nimmerjahn et al. 2007; Peschke
et al. 2017; Thomann et al. 2015; Tsuchiya et al. 1989), while others have noted a
dampening of an inflammatory response by highly galactosylated immune com-
plexes (Karsten et al. 2012). A lack of correlation between the presence or absence of
galactosylation on IgGs and corresponding in vivo activity has also been reported
(Nimmerjahn et al. 2007), suggesting that the consequences of variable
galactosylation may be best investigated per disease model and per antibody.

Lastly, approximately 10% of circulating IgG Fc is sialylated (Gudelj et al. 2018).
Sialylated IgG Fc is associated with an anti-inflammatory profile of antibodies in
mouse models, in which neuraminidase-treated, asialylated pooled human IgG
(IVIg) has been observed to abrogate the normally anti-inflammatory activity of
IVIg (Kaneko et al. 2006). However, this mechanism of action remains controversial

572 P. Bharadwaj and M. E. Ackerman



in humans. Discrepant observations have been made as to the ability of IgG to
interact with the candidate receptor proposed on the basis of mouse studies (Anthony
et al. 2008; Temming et al. 2019), and sialylated IgG has shown slightly elevated
binding to activating FcγR and C1q, and associated effector functions (Dekkers et al.
2017; Subedi and Barb 2016), which would suggest a greater inflammatory capacity.

18.7 Variations in Ab Glycoprofiles

Deviations from these “typical” profiles have been associated with diverse physio-
logical and immunological states. For example, changes in total serum IgG Fc
glycosylation are observed in early life (Cheng et al. 2019), in adolescence (Gudelj
et al. 2018; de Haan et al. 2016), and in association with hormonal status (Ercan et al.
2017), as well as more gradual changes during immune senescence (Krištić et al.
2013), across a broad range of glycoforms and constituent sugar moieties. In the
context of ongoing inflammation, such as observed in chronic infection (Moore et al.
2005) or autoimmunity (Parekh et al. 1985), global IgG Fc glycosylation is often
modified, showing reduced galactose and sialic acid content (Lastra et al. 2009).

Beyond approaches to evaluate these global changes, the role of Fc glycans in
antibody function has also motivated the development of robust methods to define
the glycosylation profiles of antigen-specific antibodies (ASA) purified from serum.
Early questions about ASA fractions related to whether they are typically composed
of IgG Fc glycovariants with similar prevalence to those observed for total serum
IgG, and if not, whether glycoprofiles vary by pathogen, antigen, and epitope
specificity.

18.8 ASA Glycosylation in Infectious Disease

In the context of responses to the HIV envelope protein among chronically infected
individuals, HIV envelope glycoprotein-specific antibodies were found to exhibit
reduced galactosylation, fucosylation, and sialylation (Ackerman et al. 2013), even
when compared to global serum IgG Fc glycan profiles that were shifted in these
same directions as compared to uninfected and acutely infected individuals (Moore
et al. 2005). Among ASA, galactosylation levels correlated with Ab-dependent
inhibition of viral infection and replication and were consistent with
glycosyltransferase and glycosidase expression in peripheral B cells (Ackerman
et al. 2013). Perhaps surprisingly, these global and HIV-specific plasma IgG Fc
glycan changes were not resolved by either antiretroviral drug therapy or in the
context of spontaneous virus control. Subsequent studies have shown the contribu-
tion of HIV-specific IgG glycans to predicting HIV-specific antibody effector
functions (Alter et al. 2018b) and vaccine efficacy (Vaccari et al. 2016; Ackerman
et al. 2018).
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These and other early studies have firmly established that ASA can differ from
total serum IgG in their glycosylation states. As methods for analysis of ASA have
advanced, analysis of ASA targeting different proteins has become increasingly
feasible but not yet common. To the extent studies have addressed multiple target
antigens, there has been some evidence for consistent glycoforms across distinct
specificities and other cases in which different antigen-specificities, or even different
epitope-specificities within the same protein have shown distinct profiles. For
example, in tuberculosis, distinct ASA IgG Fc glycan profiles for two different
antigen types were reported to show similar glycan profiles to each other, but with
striking decreases in fucose and increases in galactose, sialic acid, and bisecting
GlcNac as compared to total serum IgG Fc (Lu et al. 2020). In contrast, Wang et al.
reported that the abundance of sialylation and fucosylation among influenza
hemagglutinin-specific (HA) IgG differed depending on specificity of the Fab
domain. Antibodies to the HA globular head were significantly more sialylated
and fucosylated than those directed against the HA stem domain (Wang and Ravetch
2019), though it may be important to keep in mind that the globular head functions as
a sialic acid-binding protein.

One of the most interesting examples of the effect of ASA Fc glycosylation
comes from the setting of flavivirus infection. This family of viruses has been
associated with a phenomenon called Antibody-Dependent Enhancement (ADE),
in which virus-specific antibodies increase infection of FcγR-bearing target cells.
Among these, dengue is a mosquito-borne pathogen caused by four distinct but
closely related dengue virus (DENV) types. Recovery from infection is believed to
typically provide immunity against infection from the same type. However, cross-
type immunity is partial and temporary. Subsequent (secondary) infection by another
serotype is associated with an increased risk of developing severe dengue via ADE
(Katzelnick et al. 2017; Guzman et al. 2013). While prior work has shown that
waning antibody titer is associated with severe disease upon secondary exposure
(Katzelnick et al. 2017), recent work has highlighted the potential importance and
clinical impact of the glycosylation of dengue-specific antibodies. As perhaps the
most elegant setting in which to evaluate ADE, severe disease of neonates is
associated with the level of passively transferred maternal dengue-specific antibody
that is afucosylated, resulting in dengue hemorrhagic fever or dengue shock syn-
drome (Wang et al. 2017; Thulin et al. 2020; Khandia et al. 2018). This potent ADE
response is thought to manifest via non-neutralizing, dengue-specific antibodies that
exhibit increased affinity to the activating FcγRIIIA receptor.

In the context of coronavirus disease 2019 (COVID-19), Fc glycans of IgG
antibodies to Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)
envelope spike and nucleocapsid proteins differ from those of total serum IgG
(Larsen et al. 2020). In this study, these profiles were observed to differ between
spike and capsid, and multiple studies have observed that spike-specific IgG Fc
afucosylation is correlated to disease severity (Larsen et al. 2020; Chakraborty et al.
2020), with some evidence that they may contribute to pathology via inducing
inflammatory responses from macrophages (Hoepel et al. 2020). Global serum IgG
glycans have also been reported to diverge according to COVID-19 severity, with
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decreased bisecting GlcNAc observed in multiple cohorts (Petrovic et al. 2020). The
role of IgG Fc glycosylation of ASA remains to be defined in many more infectious
disease settings. Like in COVID-19, HIV, and other settings in which ASAs have
been profiled, intriguing observations regarding differences in global IgG Fc glyco-
sylation abound—such as in meningococcal sepsis (Haan 2018), visceral leishman-
iasis (Haan 2018; Gardinassi et al. 2014), and tuberculosis (Lu et al. 2016, 2020)—
and have been found to relate to disease status or outcomes.

18.9 ASA Glycosylation in Allo/Autoimmunity

Rheumatoid arthritis (RA) is a common systemic inflammatory autoimmune disease
in which joint synovium is affected by a dysregulated immune system. RA is
typically associated with serological evidence of systemic autoimmunity as indicated
by the presence of autoantibodies in serum and synovial fluid (Coutant 2019; Song
and Kang 2010). Instead of being characterized by specific reactivity to a particular
autoantigen, RA is associated with antibodies reactive against a wide spectrum of
autoantigens, which can make the etiology of disease progression in RA patients
very different. Among various autoantigens targeted in RA, anti-citrullinated protein
antibodies (ACPA) have been identified as a useful marker in diagnosis (Coutant
2019) and predicting whether undifferentiated arthritis will progress to RA (Forslind
et al. 2004). ACPA are associated with an increased risk of developing bone erosions
(Rönnelid et al. 2005; Rycke et al. 2004), suggesting their potential to contribute to
joint pathology. Like total serum IgG, long known to show decreased
galactosylation, ACPA are observed to exhibit further reduction in sialylation and
galactosylation (Scherer et al. 2010; Ohmi et al. 2016), though there is some
evidence that the IgG subclasses may differ from each other in this regard
(Lundström et al. 2014). Reinforcing the controversy regarding the potentially
conflicting roles of sialylated IgG in different species, but supporting the role of
glycoengineered ASA as therapeutic interventions, sialylated ACPA have been
shown to reduce arthritis pathology in a mouse model (Ohmi et al. 2016).

Whether ACPA are a cause or consequence of RA status remains controversial,
but they have been reported to activate effector cells via FcγR (Clavel et al. 2008),
whose allotypic and copy number variation have sometimes but not always been
observed to associate with RA status and severity (Thabet et al. 2009; Kastbom and
Ahmadi 2005; Nieto et al. 2000; Radstake et al. 2003). Further, several longitudinal
studies have observed that galactosylation and sialylation levels of ACPAs
decreased shortly before symptom onset in patients who had ACPA but no evidence
of RA at baseline (Pfeifle et al. 2017; Harre et al. 2015; Rombouts et al. 2015),
suggesting the potential value of measuring the level of ACPA galactosylation/
sialylation as a biomarker to predict the risk of progression from pre-clinical disease
to chronic inflammatory disease. Beyond differences between ACPA and total IgG
Fc glycosylation, differences in ACPA Fc glycan profiles have also been noted
between individuals with and without rheumatoid factor, and between serum and
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synovial fluid (Scherer et al. 2010). While some have interpreted these differences to
potentially relate to active alteration of Fc glycans in affected joints, the lack of
differences in total serum and synovial fluid IgG1 agalactosylation suggests that
alternative mechanisms may be at play. To this end, ACPA-secreting plasma cells
have been reported to exist in synovial fluid (Rodríguez-Bayona et al. 2007),
suggesting the possibility that differences in systemic versus synovial ACPA Fc
glycosylation may be driven by differences associated with plasma cells in the
synovium and elsewhere.

Beyond these alterations in Fc glycosylation, ACPA have more recently been
reported to exhibit striking glycosylation of their Fab domains. Unlike total IgG, a
majority of ACPA variable domains are glycosylated (Lloyd et al. 2018;
Hafkenscheid et al. 2019; Hafkenscheid et al. 2017). Unlike their Fc domains,
these APCA Fab glycans are overwhelmingly sialylated (Hafkenscheid et al.
2017). Variable domain glycosylation has also been reported to modify antigen
binding among ACPA (Rombouts et al. 2016), suggesting the potential for antibody
glycosylation in both variable and crystallizable domains to contribute to RA
pathogenesis.

Functional consequences of variations in the profile of ASA have also been
reported in fetal or neonatal allo-immune thrombocytopenia (FNAIT). In this disease
condition, fetal allo-antigens induce production of maternal antibodies that are then
transported across the placenta and drive lysis of fetal cells. While allotypic variation
of a variety of maternal fetal antigens is possible, the best studied is that of rhesus D
(RhD) antigen incompatibility. Curiously, this incompatibility, which resulted in
hemolytic disease in 1% of babies born through the 1940s, 40% of which would die
as a result (Bowman 2003), is treated by administration of IVIG from
RhD-sensitized donors. While like IVIG used in other indications, the precise
mechanisms of this intervention remain unclear; prevention of sensitization, immu-
nomodulatory effects, and accelerated clearance of endogenous maternal IgG have
all been proposed as candidate mediators. To this end, the RhD-specific antibodies in
at least one commercial product show increased galactosylation and sialylation
relative to the entire mixture of antibodies in that product (Winkler et al. 2013),
suggesting their potential immunosuppressive character. Evaluations of the mecha-
nism of action have been hampered by the difficulty in recapitulating protective
effects of polyclonal RhD IgG with monoclonal antibodies. The difference in the
effect of polyclonal versus monoclonal antibody infusions may relate to differential
glycosylation of RhD-specific fraction or entire pool, differences in affinity and
avidity, altered red blood cell clearance capacity, or other factors, but have led to
observations of alternatively enhanced or inhibited maternal sensitization, leaving
many unanswered questions (Kumpel 2007; Kumpel et al. 1995). To this end, it has
been recently reported that RhD-specific monoclonal antibodies varied in their
ability to clear RhD+ target cells and prevent alloimmunization, dependent on
their fucosylation status and associated ADCC activity (Kumpel et al. 2020).
Similarly, in the context of seropositive mothers, IgG Fc fucosylation of
RhD-specific antibodies have been found to correlate with ADCC activity and low
fetal neonatal hemoglobin levels (Kapur et al. 2014a).
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Despite questions as to mechanism, RhD+ serum IgG has all but eliminated
pregnancy loss and neonatal death from RhD incompatibility in much of the
world. In contrast, other less frequently observed incompatibilities have no effective
preventative interventions. For a number of these antigens, maternal antibody titer is
a poor indicator of pathology, and in some of these settings, variation in ASA-Fc
glycosylation has been investigated for its predictive value. Here, more mixed results
as to the importance of glycosylation profiles of fetal antigen-specific antibodies
have been observed. As compared to RhD-specific antibodies, those recognizing red
blood cell antigens K, c, and E were less distinct from total plasma IgG Fc glycans
than those recognizing RhD, but nonetheless, afucosylation of Kell (K)-specific
antibodies and high galactosylation and sialylation of anti-c antibodies were corre-
lated with severe anemia of the fetus (Sonneveld et al. 2016a). In a small follow up
study of maternal K-specific antibodies, IgG1 and IgG3 fractions were shown to
exhibit similar glycoform prevalences, and while the previously observed relation-
ship between afucosylation and disease severity did not meet an arbitrary signifi-
cance threshold of p ¼ 0.05, galactose content was shown to correlate with disease
severity (Sonneveld et al. 2018).

Beyond red blood cell alloantigens, Fc glycoforms of human platelet antigen 1a
(HPA-1a)-specific antibodies have been analyzed. Like other maternal alloantibody
responses, HPA-1a-specific antibodies show markedly decreased levels of
fucosylation as compared to total serum IgG1 (Kapur et al. 2014b). These signifi-
cantly less fucosylated anti-HPA-1a antibodies showed enhanced phagocytosis of
platelets on account of higher binding affinity to FcγRIIIa and FcγRIIIb, but not to
FcγRIIa, compared with antibodies with a high amount of Fc fucose. Most critically,
the extent of HPA-1a-specific antibody Fc fucosylation was shown to correlate with
clinical disease severity. In a follow-up study, stability of ASA Fc glycans was
defined and correlations between bleeding severity and fucose, galactose, and
antibody titer were observed (Sonneveld et al. 2016b). Similarly, Jo1 anti-histidyl
tRNA synthetase autoantibodies, which are observed in idiopathic inflammatory
myopathy and anti-synthetase syndrome, have demonstrated similar reductions in
galactose, sialic acid, and fucose, with glycoprofiles relating to disease status
(Fernandes-Cerqueira et al. 2018).

Collectively, auto- and alloimmune responses have supported the importance of
Fc glycans of ASA to diverse antigens. These observations have motivated investi-
gation of deglycosylated IgGs to prevent FNAIT (Bakchoul et al. 2013), and
sialylated ACPA to treat RA (Ohmi et al. 2016). While similar evaluation of
alloantibodies in the setting of organ transplant has proven challenging, the role of
effector functions is well established, with assessment of complement deposition
associated with transplant- or donor-specific antibodies (DSA) forming part of the
basis for evaluation of suitability of transplant (Zeevi et al. 2013; Mohan et al. 2012;
Stegall et al. 2011; Lefaucheur et al. 2010), and enzymatic Fc restriction of serum
IgG showing potential in reducing transplant loss associated with DSA positive
organ recipients (Jordan et al. 2017).
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18.10 In vivo Fc Glycan Programming

The importance of IgG Fc glycans to Ab biology in vivo has motivated a number of
interventions that take advantage of this dependence. Beyond glycoengineering of
therapeutic antibodies to optimize their activity, sophisticated new approaches are
being explored to control antibody activity. These include leveraging B cell-
independent sialylation (Jones et al. 2016) by administration of exogenous galacto-
syl and sialyltransferase in order to accomplish in vivo sialylation and thereby
ameliorate autoimmune disease (Pagan et al. 2018). Similarly, changes in
sialyltransferase expression induced by estrogen therapy suggest alternatives to
exogenous enzyme therapy (Engdahl et al. 2018).

As opposed to extending IgG Fc glycans, glycan restriction is also being
employed toward the same goal of reducing autoimmunity. Glycosidase therapy,
most notably EndoS from S. pyogenes, the same organism that expresses the IgG
protease IdeS used to disarm HLA alloantibodies in kidney transplant, has been
investigated in diverse autoimmune conditions in animal models. These settings
include IgG-driven thrombocytopenia purpura (Collin et al. 2008), collagen auto-
immunity (Hirose et al. 2012), anti-neutrophil cytoplasmic autoantibody-mediated
glomerulonephritis (van Timmeren et al. 2010), and autoimmune hemolysis
(Allhorn et al. 2010). Challenges to clinical translation remain, including the con-
sequences of globally eliminating effector function non-specifically, as well as the
induction of anti-enzyme antibodies, but recent translation of the Fc protease IdeS
suggests that these barriers may be surmountable (Collin and Bjorck 2017).

Other possibilities, such as the ability to vaccinate to drive specific inflammatory
or anti-inflammatory antibody responses, also exist. A future in which allergen
therapy leverages B cell transcriptional programs to not only undergo CSR toward
less inflammatory IgG4 molecules but also toward anti-inflammatory glycans comes
to mind, as has been shown to lessen allergic reactions in a mouse model using a
recombinant glycoengineered antibody (Epp et al. 2017). To this end, Vestrheim
et al. considered four distinct bacterial and viral vaccines and observed that the IgG
subclass that dominated the response exhibited a temporal increase in
galactosylation and sialylation for most vaccinees (Vestrheim et al. 2014). Other
studies have observed this effect only within the ASA fraction (Selman et al. 2012).

With a more nuanced perspective, Larsen et al. compared and contrasted ASA
targeting enveloped and non-enveloped viral pathogens and found decreased fucose
content that is consistent with responses to infection by enveloped viruses, though to
varying extents (Larsen et al. 2020). Natural infection, at least in the case of Hepatitis
B Virus, was found to better induce afucosylated IgG1 as compared to immunization
with a protein subunit vaccine. In contrast, attenuated Mumps virus vaccination
induced a similar level of IgG1 afucosylation as natural infection. A study consid-
ering HIV-specific IgG Fc glycans observed that vaccination was able to overcome
the normally observed variations in total serum IgG associated with geography
(Mahan et al. 2016). ASA showed similar glycosylation patterns for a given vaccine,
but distinct vaccine regimens resulted in distinct ASA glycosylation profiles.
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These and complementary observations related to difference in induction of the
IgG subclasses mediated by distinct antigen, pathogen, or vaccine stimuli suggest
the existence of “rules” regulating the CSR and glycosylation processes in B cells.
While refined insight into these pathways continues to develop, using an in vitro
B-cell culture system resembling the in vivo T-cell-dependent antibody production,
Wang et al. showed that B-cells secreted variably glycosylated IgG1 when stimu-
lated with TLR ligands, metabolites, and cytokines (Wang et al. 2011). Indeed,
because the antibody Fc domain itself can regulate responses by antigen-presenting
cells and B-cells, manipulation of Fc glycans in the context of immune complex
vaccines has been used to intentionally influence subsequent Ab induction/matura-
tion (Lofano et al. 2018).

18.11 Summary and Future Perspectives

Distinctly different global IgG and ASA Fc profiles have been observed in both
infectious disease and auto- and alloimmune settings. Studying the Fc glycosylation
profile of ASA presents an excellent opportunity to understand the mechanistic
underpinnings and the in vivo regulation of the diverse adaptive immune processes
that define protective and pathological humoral responses. To this end, many
unanswered questions remain.
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