
Chapter 7
Maintenance Models

7.1 Introduction

It has been commonly known that reliability of any system including telecommuni-
cation, computers, aircraft, power plants etc., can be improved by applying the redun-
dancy or maintenance approaches. In general, the failure of such systems is usually
costly, if not very dangerous. Maintenance, replacement and inspection problems
have been extensively studied in the reliability, maintainability and warranty litera-
ture (PhamandWang, 1996;WangandPham,2006).Maintenance involves corrective
(unplanned) and preventive (planned). Corrective maintenance (CM) occurs when
the system fails. In other words, CM means all actions performed as a result of
failure, to restore an item to a specified condition. Some researchers also refer to CM
as repair. Preventive maintenance (PM) occurs when the system is operating. In other
words, PM means all actions performed in an attempt to retain an item in specified
condition from operation by providing systematic inspection, detection, adjustment,
and prevention of failures. Maintenance also can be categorized according to the
degree to which the operating conditions of an item are restored by maintenance as
follows (Wang and Pham, 2006):

a. Replacement policy: A system with no repair is replaced before failure with a
new one.

b. Preventive maintenance (pm) policy: A system with repair is maintained
preventively before failure.

c. Inspection policy: A system is checked to detect its failure.
d. Perfect repair or perfect maintenance: a maintenance action which restores the

system operating condition to ‘as good as new’, i.e., upon perfect maintenance,
a system has the same lifetime distribution and failure rate function as a brand
new one. Generally, replacement of a failed system by a new one is a perfect
repair.

e. Minimal repair or minimal maintenance: a maintenance action which restores
the system to the failure rate it had when it just failed. The operating state of the
system under minimal repair is also called ‘as bad as old’ policy in the literature.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
H. Pham, Statistical Reliability Engineering, Springer Series in Reliability Engineering,
https://doi.org/10.1007/978-3-030-76904-8_7

403

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76904-8_7&domain=pdf
https://doi.org/10.1007/978-3-030-76904-8_7


404 7 Maintenance Models

f. Imperfect repair or imperfect maintenance: a maintenance action may not make
a system ‘as good as new’ but younger. Usually, it is assumed that imperfect
maintenance restores the system operating state.

This chapter discusses a brief introduction in maintenance modeling with various
maintenance policies including age replacement, block replacement and multiple
failure degradation processes and random shocks. We also discuss the reliability
and inspection maintenance modeling for degraded systems with competing failure
processes.

Example 7.1 Suppose that a system is restored to “as good as new” periodically at
intervals of time T. So the system renews itself at time T, 2 T, …. Define system
reliability under preventive maintenance (PM) as.

RM (t) = Pr{failure has not occurred by time t} (7.1)

In other words, the system survives to time t if and only if it survives every PM
cycle {1,2,…,k} and a further time (t - kT ).

(a) For a system with a failure time probability density function

f (t) = λ2t e−λt for t > 0, λ > 0 (7.2)

obtain the system reliability under PM and system mean time to first failure.

(b) Calculate the systemmean time to first failure if PM is performed every 20 days
and λ = 0.005.

Solution: The system survives to time t if and only if it survives every PM cycle
{1,2,…,k} and a further time (t - kT ). Thus,

RM (t) = [R(T )]kR(t − kT ) for kT < t < (k + 1)T and k = 0, 1, 2, . . . (7.3)

Interval containing t Formula for RM(t)

0 < t < T R(t)
T < t < 2T R(T )R(t − T )

2T < t < 3T [R(T )]2R(t − 2T )

. . .

kT < t < (k + 1)T [R(T )]kR(t − kT )

Thus, system reliability under PM is

RM (t) = [R(T )]kR(t − kT ) for kT < t < (k + 1)T and k = 0, 1, 2, . . . (7.4)

Given the probability density function as from Eq. (7.1),
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f (t) = λ2te−λt for t > 0, λ > 0

then

R(t) =
∞∫

t

f (x)dx =
∞∫

t

λ2x e−λxdx = (1 + λt)e−λt . (7.5)

Thus, from Eq. (7.4), we have

RM (t) = [R(T )]kR(t − kT ) for k = 0, 1, 2, . . .

= [(1 + λT )e−λT
]k[

(1 + λ(t − kT ))e−λ(t−kT )
]
. (7.6)

The system mean time to first failure (MTTFF) is

MTTFF =
∞∫

0

RM (t)dt

=
T∫

0

R(t)dt +
2T∫

T

R(T )R(t − T )dt +
3T∫

2T

[R(T )]2R(t − 2T )dt + ...

=
∞∑
k=0

[R(T )]k
T∫

0

R(u)du

=

T∫
0
R(u)du

1 − R(T )
.

Thus,

MTTFF =

T∫
0
R(u)du

1 − R(T )
. (7.7)

Note that, from Eq. (7.5)

T∫

0

R(x)dx =
T∫

0

(1 + λx)e−λxdx

= 2

λ

(
1 − e−λT

)− Te−λT .

From Eq. (7.7), we have
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MTTFF =

T∫
0
R(u)du

1 − R(T )
=

2
λ

(
1 − e−λT

)− Te−λT

1 − (1 + λT )e−λT
.

(b) Here T = 20 days, and λ = 0.005 per day.

MTTFF =
2

0.005

(
1 − e−(0.005)20

)− (20)e−(0.005)20

1 − (1 + (0.005)(20))e−(0.005)(20)
= 19.9683

0.0047
= 4, 267.8 days.

7.2 Maintenance and Replacement Policies

A failed system is assumed to immediately replace or repair. There is a cost associated
with it. One the one hand, designer may want to maintain a system before its failure.
On the other hand, it is better not to maintain the system too often because the
cost involved each time. Therefore it is important to determine when to perform the
maintenance of the system that can minimize the expected total system cost.

Consider a one-unit system where a unit is replaced upon failure. Let.

c1 the cost of each failed unit which is replaced
c2(<c1) the cost of a planned replacement for each non-failed unit
N1 (t) the number of failures with corrective replacements (CM)
N2 (t) the number of replacements of non-failed units during (0, t] interval.

In general, the expected total system cost during (0,T ], Ec(T ), can be defined as
follows:

Ec[T ] = c1E[N1(T )] + c2E[N2(T )]. (7.8)

We now discuss the optimum policies which minimize the expected costs per unit
time of each replacement policy such as age replacement and block replacement.

7.2.1 Age Replacement Policy

A unit is replaced at time T or at failure, whichever occurs first. T is also called a
planned replacement policy. Let {Xk}∞k=1 be the failure times of successive operating
units with a density f and distribution F with finite mean μ. Let Zk ≡ min{Xk ,T }
represents the intervals between the replacements caused by either failure or planned
replacement for k = 1,2,… The probability of Zk can be written as follows:
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Pr(Zk ≤ t) =
{
F(t) t < T
1 t ≥ T .

(7.9)

The mean time of one cycle is

E(Zk) =
∫ T

0
tdF(t) + TR(T ) =

∫ T

0
R(t)dt. (7.10)

The expected total system cost per cycle is

Ec(T ) = c1F(T ) + c2R(T ) (7.11)

where R(T) = 1−F(T).
The expected total cost per unit time for an infinite time span, C(T ), is

C(T ) = c1F(T ) + c2R(T )∫ T
0 R(t)dt

. (7.12)

Let r(t) ≡ f (t)/R(t) be the failure rate. We wish to find the optimal replace-
ment policy time T ∗ which minimizes the expected total cost per unit time C(T ) in
Eq. (7.12).

Theorem 7.1 Given c1, c2, andμ. Assume the failure rate r(t) is a strictly increasing
function and A = c1

μ(c1−c2)
. The optimal replacement policy time T ∗ that minimizes

the expected total system cost per unit time C(T) can be obtained as follows:
If r(∞) > A then there exists a finite value

T ∗ = G−1

(
c2

c1 − c2

)
(7.13)

where G(T ) = r(T )
∫ T
0 R(t)dt − F(T ) and the resulting expected total system cost

per unit time C(T) is

C(T ∗) = (c1 − c2)r(T
∗).

(ii) If r(∞) ≤ A then the optimum replacement time T is at: T ∗ = ∞. This implies
that a unit should not be replaced unless it fails.

The above results can be obtained by differentiating the expected total cost func-
tion per unit time C(T ) from Eq. (7.12) with respect to T and setting it equal to 0.
We have

∂C(T )

∂T
= (c1 − c2)

(
r(T )

∫ T

0
R(t)dt − F(T )

)
− c2 ≡ 0 (7.14)
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or, equivalently, G(T ) = c2
c1−c2

. Since r(T ) is strictly increasing and G(0) = 0, we
can easily show that the function G(T ) is strictly increasing in T.

If r(∞) > A then G(∞) > c2
(c1−c2)

. This shows that there exists a finite value T ∗

where T* is given in Eq. (7.13) and it minimizes C(T ).
If r(∞) ≤ A then G(∞) ≤ c2

(c1−c2)
. This shows that the optimum replacement

time is T ∗ = ∞. This implies that a unit will not be replaced until it fails.

Example 7.2 Under an age replacement policy, the system is replaced at time T or
at failure whichever occurs first. The costs of a failed unit and a planned replacement
unit are respectively c1 and c2 with c1 ≥ c2. For systemswith a failure time probability
density function.

f (t) = λ2te−λt for t > 0, λ > 0

obtain the optimal planned replacement time T* that minimizes the expected total
cost per cycle per unit time. Given c1 = 10 and c2 = 1, what is the optimal planned
replacement time T* that minimizes the expected total cost per cycle per unit time?

Solution: The pdf is.

f (t) = λ2te−λt for t > 0, λ > 0

The reliability function

R(t) =
∞∫

t

f (x)dx =
∞∫

t

λ2xe−λxdx = (1 + λt)e−λt

The failure rate

r(t) = f (t)

R(t)
= λ2te−λt

(1 + λt)e−λt
= λ2t

(1 + λt)
. (7.15)

From Eq. (7.12), the expected total cost per cycle per unit time is

E(T ) = c1F(T ) + c2R(T )

T∫
0
R(t)dt

.

The derivative of the function E(T ) is given by
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∂E(T )

∂T
=
[
c1f (T ) − c2f (T )

] T∫
0
R(t)dt − [c1F(T ) + c2R(T )]R(T )

(
T∫
0
R(t)dt

)2 .

Setting the above equation to 0 we obtain the following:

∂E(T )

∂T
= 0 ⇔ (c1 − c2)f (T )

T∫

0

R(t)dt − [c1F(T ) + c2R(T )]R(T ) ≡ 0.

(c1 − c2)
f (T )

R(T )

T∫

0

R(t)dt = [c1F(T ) + c2R(T )]

(c1 − c2)r(T )

T∫

0

R(t)dt − (c1 − c2)F(T ) = c2

(c1 − c2)

⎧⎨
⎩r(T )

T∫

0

R(t)dt − F(T )

⎫⎬
⎭ = c2

or,

r(T )

T∫

0

R(t)dt − F(T ) = c2
(c1 − c2)

. (7.16)

Let

G(T ) = r(T )

T∫

0

R(t)dt − F(T ) and A1 =
c2

c1 − c2
. (7.17)

That is,G(T ) = A1. Since r(T ) is increasing andG(0) = 0 we can show thatG(T )
is increasing in T.

(a) If

r(∞) > A where A = c1
μ(c1 − c2)

and μ =

∞∫

0

R(t)dt. (7.18)

then G(∞) > A1. There exists a finite value T* where
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T∗ = G−1

(
c2

(c1 − c2)

)
. (7.19)

(b) If

r(∞) ≤ A then G(∞) ≤ c2
(c1 − c2)

(7.20)

then the optimum replacement time is T ∗ = ∞. This implies that a unit will not be
replaced until it fails.

We now calculate

T∫

0

R(t)dt =
T∫

0

(1 + λt) e−λtdt = 2

λ

(
1 − e−λT

)− Te−λT . (7.21)

Then

G(T ) = r(T )

T∫

0

R(t)dt − F(T )

= λ2T

(1 + λT )

[
2

λ

(
1 − e−λT

)− Te−λT

]
− [1 − (1 + λT )e−λT

]
(7.22)

Given c1 = 10, c2 = 1, and λ = 2, then

c2
c1 − c2

= 1

10 − 1
= 1

9

From Eq. (7.22),

G(T ) = λ2T

(1 + λT )

[
2

λ

(
1 − e−λT

)− Te−λT

]
− [1 − (1 + λT )e−λT

]

= 4T

(1 + 2T )

[
2

2

(
1 − e−2T

)− Te−2T

]
− [1 − (1 + 2T )e−2T

]

= 4T

(1 + 2T )

[
1 − e−2T − Te−2T

]− [1 − (1 + 2T )e−2T
]
.

Here we can find T * such as

G(T ∗) = 1

9
= 0.1111

The expected total cost per cycle per unit time, from Eq. (7.12), is:
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E(T ) = c1F(T ) + c2R(T )

T∫
0
R(t)dt

.

= c1
[
1 − (1 + λT ) e−λT

]+ c2
[
(1 + λT ) e−λT

]
[
2
λ

(
1 − e−λT

)− Te−λT
]

= 10
[
1 − (1 + 2T ) e−2T

]+ [(1 + 2T ) e−2T
]

[(
1 − e−2T

)− Te−2T
]

= 10 − 9(1 + 2T ) e−2T

1 − (1 + T ) e−2T
.

T G(T) E(T)

0.3 0.0930 7.3186

0.32 0.102 7.2939

0.33 0.1065 7.2883

0.335 0.1088 7.2870

0.34 0.1111 7.2865

0.35 0.1156 7.2881

0.5 0.1839 7.5375

Thus, the optimal planned replacement time T * that minimizes the expected total
cost per cycle per unit time is:

T ∗ = 0.34 and E
(
T ∗) = 7.2865.

7.2.2 Block Replacement

Consider that a unit begins to operate at time t = 0 and when it fails, it is discovered
instantly and replaced immediately by a new one. Under this block policy, a unit is
replaced at periodic times kT (k = 1, 2, · · · ) independent of its age. Suppose that
each unit has a failure time distribution F(t) with finite mean μ. The expected total
system cost per cycle Ec(T ) is given by

Ec(T ) = c1E[N1(T )] + c2E[N2(T )] = c1M (T ) + c2 (7.23)

where M(T ) = E(N1(T )) is differential and the expected number of failed units per
cycle. The expected total system cost per unit time for an infinite time span under
block replacement policy is defined as
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C(T ) = c1M (T )+c2
T . (7.24)

This indicates that there will be one planned replacement per period at a cost of
c2 and the expected number of failures with corrective replacement per period where
each corrective replacement has a cost of c1.

Theorem 7.2 Given c1 and c2. There exists a finite optimum planned replacement
time T ∗ that minimizes the expected total system cost per unit time C(T ):

T ∗ = D−1

(
c2
c1

)
. (7.25)

the resulting expected total system cost is C(T *) whereD(T ) = Tm(T )−M (T ) and
m(t) ≡ dM (t)/dt.

Similarly from Theorem 7.1, we can obtain the optimum planned replacement
time T ∗ given in Eq. (7.25) which minimizes the expected cost per unit time C(T )

by differentiating the function C(T ) with respect to T and setting it equal to zero,
we obtain

Tm(T ) − M (T ) = c2
c1

where m(t) ≡ dM (t)/dt. The results can immediately follow.

7.2.3 Periodic Replacement Policy

For some systems, we only need to perform minimal repair at each failure, and make
the planned replacement or preventive maintenance at periodic times.

Consider a periodic replacement policy as follows: A unit is replaced periodically
at periodic times kT (k = 1, 2, · · · ). After each failure, only minimal repair is
made so that the failure rate remains undisturbed by any repair of failures between
successive replacements (Barlow and Proschan, 1965). This policy is commonly used
with computers and airplanes. Specifically, a new unit begins to operate at t = 0,
and when it fails, only minimal repair is made. That is, the failure rate of a unit
remains undisturbed by repair of failures. Further, a unit is replaced at periodic times
kT (k = 1, 2, · · · ) independent of its age, and any units are as good as new after
replacement. It is assumed that the repair and replacement times are negligible.
Suppose that the failure times of each unit are independent, and have a cdfF(t) and the
failure rate r(t) ≡ f (t)/R(t)where f is a probability density function density andR(t)
is the reliability function. The failures of a unit occur that follow a nonhomogeneous
Poisson processwith amean-value functionH(t) whereH (t) ≡ ∫ t

0 r(u)du andR(t) =
e−H (t).
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Consider one cycle with a constant time T from the planned replacement to the
next one. Then, since the expected number of failures during one cycle isE(N1(T )) =
M (T ), the expected total system cost per cycle is

Ec(T ) = c1E(N1(T )) + c2E(N2(T )) = c1H (T ) + c2, (7.26)

where c1 is the cost of each minimal repair.
Therefore the expected total system cost per unit of time for an infinite time span

is

C(T ) ≡ 1

T
[c1H (T ) + c2]. (7.27)

If a unit is not replaced forever, i.e., T = ∞, then lim
T→∞R(T )/T = r(∞), which

may be possibly infinite, and C(∞) = c1r(∞).
Given c1 and c2. There exists a finite optimum replacement time T ∗ such that

Tr(T ) − H (T ) = c2
c1

(7.28)

thatminimizes the expected total systemcost per unit timeC(T ) as given inEq. (7.27).
Differentiating the function C(T ) in Eq. (7.27) with respect to T and setting it

equal to zero, we have.

Tr(T ) − H (T ) = c2
c1

If the cost of minimal repair depends on the age x of a unit and is given by c1(x),
the expected total system cost per unit time can be defined as

C(T ) = 1

T
[
∫ T

0
c1(x)r(x)dx + c2]. (7.29)

One can obtain the optimum replacement policy T that minimizes the expected
total system cost C(T ) by taking a derivative of the function C(T ) with respect to T
given the function c1(x).

7.2.4 Replacement Models with Two Types of Units

In practice, many systems are consisted of vital and non-vital parts or essential and
non-essential components. If vital parts fail then a system becomes dangerous or
suffers a high cost. It would be wise to make the planned replacement or overhaul at



414 7 Maintenance Models

suitable times. We may classify into two types of failures; partial and total failures,
slight and serious failures, or simply faults and failures.

Consider a system consists of unit 1 and unit 2which operate independently,where
unit 1 corresponds to non-vital parts and unit 2 to vital parts. It is assumed that unit
1 is replaced always together with unit 2. Unit i has a failure time distribution Fi(t),
failure rate ri(t) and cumulative hazard Hi(t)(i = 1, 2), i.e., Ri(t) = exp[−Hi(t)]
and Hi(t) = ∫ t

0 ri(u)du. Then, we consider the following four replacement policies
which combine age, block and periodic replacements:

(a) Unit 2 is replaced at failure or time T, whichever occurs first, and when unit
1 fails between replacements, it is replaced by a new unit. Then, the expected
total system cost per unit time is

C(T ) = c1
∫ T
0 f1(t)R2(t)dt + c2F2(T ) + c3∫ T

0 R2(t)dt
(7.30)

where c1 is a cost of replacement for a failed unit 1, c2 is an additional replacement
for a failed unit 2, and c3 is a cost of replacement for units 1 and 2.

(b) In case (a), when unit 1 fails between replacements, it undergoes only minimal
repair. Then, the expected total system cost per unit time is

C(T ) = c1
∫ T
0 r1(t)R2(t)dt + c2F2(T ) + c3∫ T

0 R2(t)dt
, (7.31)

where c1 is a cost of minimal repair for failed unit 1, and c2 and c3 are the same costs
as case (a).

(c) Unit 2 is replaced at periodic times kT (k = 1, 2, · · · ) and undergoes only
minimal repair at failures between planned replacements, and when unit 1 fails
between replacements, it is replaced by a new unit. Then, the expected total
system cost per unit time is

C(T ) = 1

T
[c1H1(T ) + c2H2(T ) + c3], (7.32)

where c2 is a cost of minimal repair for a failed unit 2, and c1 and c3 are the same
costs as case (a).

(d) In case (c), when unit 1 fails between replacements, it also undergoes minimal
repair. Then, the expected total system cost per unit time is

C(T ) = 1

T
[c1H1(T ) + c2H2(T ) + c3], (7.33)
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where c1 is a cost of minimal repair for a failed unit 1, and c2 and c3 are the same
costs as case (c).

7.3 Non-repairable Degraded System Modeling

Maintenance has evolved from simple model that deals with machinery breakdowns,
to time-based preventive maintenance, to today’s condition-based maintenance. It
is of great importance to avoid the failure of a system during its actual operating;
especially, when such failure is dangerous and costly. This section discusses a relia-
bility model and examines the problem of developing maintenance cost models for
determining the optimal maintenance policies of non-repairable degraded systems
with competing failure processes. The material in this section are based on Li and
Pham (2005a).

Notation

Cc Cost per CM action
Cp Cost per PM action
Cm Loss per unit idle time
Ci Cost per inspection
Y(t) Degradation process
Yi(t) Degradation process i, i = 1, 2
D(t) Cumulative shock damage value up to time t
S Critical value for shock damage
C(t) Cumulative maintenance cost up to time t.
E[C1] Average total maintenance cost during a cycle
E[W1] Mean cycle length
E[NI ] Mean number of inspections during a cycle
E[ξ ] Mean idle time during a cycle
{Ii}i∈N Inspection sequence
{Ui}i∈N Inter-inspection sequence
Pi+1 Probability that there are a total of (i + 1) inspections in a renewal cycle
Pp Probability that a renewal cycle ends by a PM action
Pc Probability that a renewal cycle ends by a CM action (Pc = 1- Pp)

Consider that:

• The system has the state space �U = {M , . . . , 1, 0,F} and it starts at state M at
time t = 0;

• System fails either due to degradation (Y(t) > G) or catastrophic failure(
D(t) =

N2(t)∑
i=1

Xi > S

)
. System may either goes from state i to the next degraded

state i-1 or directly goes to catastrophic failure state F, i = M,.0.1;
• No repair or maintenance is performed on the system; and
• The two processes Y(t) and D(t) are independent.



416 7 Maintenance Models

M-1M 01

D(t)>S F

Fig. 7.1 Flow diagram of the system with two competing failure processes (Li and Pham, 2005a,
b)

Figure 7.1 illustrates the case where systems are subject to two failure competing
processes: degradation process Y(t) and the random shocks process D(t) and
whichever process occurred first would cause the system to failure.

Suppose that the operating condition of the system at any time point could be
classified into one of a finite number of the states, say�U = {M , . . . , 1, 0,F}.Aone-
to-one relationship between the element of� = {M , . . . , 1, 0} and its corresponding
interval is defined as follows:

State M if Y (t) ∈ [0,WM ]
State M − 1 if Y (t) ∈ (WM ,WM−1

]
...

State i Y (t) ∈ (Wi+1,Wi
]

State 1 Y (t) ∈ (W2,W1]
State 0 Y (t) > W1

LetPi(t) be a probability that the value ofY(t)will fall within a pre-defined interval
corresponding to state i and D(t) ≤ S. From state i, the system will make a direct
transition to state (i-1) due to gradual degradation or to state F due to a random shock
(Fig. 7.1). The reliability function is defined as:

RM (t) =
M∑
i=1

Pi(t) = P(Y (t) ≤ G,D(t) ≤ S) (7.34)

where Pi(t) is the probability of being in state i. Let T be the time to failure of the
system. Then T can be defined as: T = inf{t > 0 : Y (t) > G or D(t) > S}. The
mean time to failure is given by:

E[T] =
∫ ∞

0
P(Y (t) ≤ G,D(t) ≤ S)dt
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=
∫ ∞

0
P(Y (t) ≤ G)

∞∑
j=0

(λ2t)je−λ2t

j! F (j)
X (S)dt (7.35)

or, equivalently,

E[T ] =
∞∑
j=0

F (j)
X (S)

j!
∫ ∞

0
P(Y (t) ≤ G)(λ2t)

je−λ2tdt (7.36)

Let FG(t) = P{Y (t) ≤ G}, then fG(t) = d
dt FG(t). The pdf of the time to failure,

fT (t) can be easily obtained:

fT (t) = − d

dt
[P(Y (t) ≤ G)P(D(t) ≤ S)]

= −
∞∑
j=0

F (j)
X (S)

j!
d

dt

[
P(Y (t) ≤ G)(λ2t)

je−λ2t
]

After simplifications, we have

fT (t) = −
∞∑
j=1

F (j)
X (S)

j!
[
fG(t)(λ2t)

je−λ2t + FG(t)jλ2(λ2t)
j−1e−λ2t − λ2FG(t)(λ2t)

je−λ2t
]

(7.37)

Assume that the degradation process is described as the function Y (t) = W eBt

A+eBt

where the two randomvariablesA andB are independent, and thatA follows a uniform
distribution with parameter interval [0,a] and B follows exponential distribution with
parameter β > 0. In short, A ∼ U [0, a], a > 0 and B ∼ Exp(β), β > 0.

The probability for the system of being in state M is as follows:

PM (t) = P(Y (t) ≤ WM ,D(t) ≤ S)

=
⎧⎨
⎩
∫

∀A
P

(
B <

1

t
ln

u1A

1 − u1
|A = x

)
fA(x)dx

⎫⎬
⎭P(D(t) ≤ S)

=
{
1 − 1

a

(
1 − u1
u1

) β

t
(

t

t − β

)(
a1−

β

t − 1
)}

e−λ2t
∞∑
j=0

(λ2t)j

j! F (j)
X (S)

(7.38)

Then the probability for the system of being in state i can be calculated as follows:

Pi(t) = P(Wi+1 < W
eBt

A + eBt
≤ Wi,D(t) ≤ S)
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=
{∫ a

0
P

(
1

t
ln

ui−1A

1 − ui−1
< B ≤ 1

t
ln

uiA

1 − ui
|A = x

)
fA(x)dx

}
e−λ2 t

∞∑
j=1

(λ2t)j

j! F (j)
X (S)

=
{
1

a

(
t

t − β

)(
a1−

β
t

)[( 1 − ui
ui

) β
t −

(
1 − ui−1

ui−1

) β
t
]}

e−λ2 t
∞∑
j=0

(λ2t)j

j! F (j)
X (S) (7.39)

where μi = Wi
W , i = M-1,..,1.

Similarly, the probability for the system of being in state 0 is as follows:

P0(t) = P(Y (t) = W
eBt

A + eBt
> G,D(t) ≤ S)

=
{
1

a

(
1 − uM
uM

) β

t
(

t

t − β

)(
a1−

β

t

)}
e−λ2t

∞∑
j=0

(λ2t)j

j! F (j)
X (S)

The probability for a catastrophic failure state F is given by:

PF(t) = P(Y (t) = W
eBt

A + eBt
≤ G,D(t) > S)

=
{
1 − 1

a

(
1 − u1
u1

) β

t
(

t

t − β

)(
a1−

β

t

)}⎧⎨
⎩1 − e−λ2t

∞∑
j=0

(λ2t)j

j! F (j)
X (S)

⎫⎬
⎭

Hence, the reliability RM(t) is given by:

RM (t) =
M∑
i=1

Pi(t)

=
{
1 − 1

a

(
1 − uM
uM a

) β

t
(

t

t − β

)(
a1−

β

t

)}⎧⎨
⎩e−λ2t

∞∑
j=0

(λ2t)j

j! F (j)
X (S)

⎫⎬
⎭
(7.40)

Example 7.3 Assume.

Y (t) = W eBt

A+eBt where A~U[0,5] and B~Exp(10); and critical values for the degra-
dation and the shock damage are: G = 500 and S = 200, respectively. The random

shocks function:D(t) =
N2(t)∑
i=1

Xi whereXi~Exp(0.3) andX ′
i s are i.i.d. Figure 7.2 shows

the reliability of the system using Eq. (7.40) for λ2 = .12 and λ2 = .20.
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Fig. 7.2 Reliability RM(t)
versus time t (Li and Pham,
2005a, b)
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7.4 Inspection-Maintenance Repairable Degraded System
Modeling

The system is assumed to be periodically inspected at times {I , 2I , . . . , nI , . . .} and
that the state of the system can only be detected by inspection. After a PM or CM
action the systemwill store it back to as-good-as-new state. Assuming that the degra-
dation {Y (t)}t≥0and random shock {D(t)}t≥0 are independent, and a CM action is
more costly than a PM and a PM costs much more than an inspection. In other
words, Cc > Cp > Ci.

From Sect. 7.3, T is defined as the time-to-failure T = inf{t > 0 : Y (t) >

G or D(t) > S} where G is the critical value for {Y (t)}t≥0 and S is the threshold
level for {D(t)}t≥0 (Li and Pham, 2005a, b).

The two threshold values L and G (G is fixed) effectively divide the system
state into three zones as shown in Fig. 7.3. They are: Doing nothing zone when
Y (t) ≤ L and D(t) ≤ S; PM zone when L < Y (t) ≤ G and D(t) ≤ S; and CM zone
Y (t) > G or D(t) > S. The maintenance action will be performed when either of
the following situations occurs:

13

Y(t)
G

L

CM Zone

PMZone

Doing
Nothing
Zone

Fig. 7.3 The evolution of the system (Li and Pham, 2005a, b)
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The current inspection reveals that the system condition falls into PM zone,
however this state is not found at previous inspection. At the inspection time iI,
the system falls into PM zone which means {Y ((i − 1)I) ≤ L,D((i − 1)I) ≤ S}
∩{L < Y (iI) ≤ G,D(iI) ≤ S}. Then PM action is performed and it will take a
random time R1. When the system fails at T, a CM action is taken immediately and
would take a random of time R2. Note that after a PM or a CM action is performed,
the system is renewed and end of the cycle.

The average long-run maintenance cost per unit time can be defined as follows:

EC(L, I) = E[C1]
E[W1] . (7.41)

The expected total maintenance cost during a cycle E[C1] is defined as:

E[C1] = CiE[NI ] + CpE[R1]Pp + CcE[R2]Pc (7.42)

Note that there is a probability Pp that the cycle will end by a PM action and
it will take on the average E[R1] amount of times to complete a PM action with
a corresponding cost CpE[R1]Pp. Similarly, if a cycle ends by a CM action with
probability Pc, it will take on the average E[R2] amount of times to complete a CM
action with corresponding cost CcE[R2]Pc. We next discuss the analytical analysis
of E[C1].
Calculate E[NI ].
Let E[NI ] denote the expected number of inspections during a cycle. Then

E[NI ] =
∞∑
i=1

(i)P{NI = i}

where P{NI = i} is the probability that there are a total of i inspections occurred in
a renewal cycle. It can be shown that

P(NI = i) = P(Y ((i − 1)I) ≤ L,D((i − 1)I) ≤ S) P(L < Y (iI) ≤ G,D(iI) ≤ S)

+ P{Y (iI) ≤ L,D(iI) ≤ S}P{iI < T ≤ (i + 1)I) (7.43)

Hence,

E[NI ] =
∞∑
i=1

i(P(Y ((i − 1)I) ≤ L,D((i − 1)I) ≤ S)P(L < Y (iI) ≤ G,D(iI) ≤ S)

+ P(Y (iI) ≤ L,D(iI) ≤ S)P(iI < T ≤ (i + 1)I)) (7.44)
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AssumeY (t) = A+Bg(t)whereA ∼ N (μA, σ
2
A),B ∼ N (μB, σ

2
B), andA andB are

independent.We now calculate the probabilitiesP(Y ((i−1)I) ≤ L,D((i−1)I) ≤ S)

and P(L < Y (iI) ≤ G,D(iI) ≤ S). Given g(t) = t.
D(t) =∑N (t)

i=0 Xi where X ′
i s are i.i.d. and N (t) ∼ Possion(λ).

Then

P(Y ((i − 1)I) ≤ L,D((i − 1)I) ≤ S)

= P(A + B(i − 1)I ≤ L)P(D((i − 1)I) =
N (i−1)I)∑

Xi ≤ S)

= �

⎛
⎝L − (μA + μB(i − 1)I)√

σ 2
A + σ 2

B((i − 1)I)2

⎞
⎠e−λ(i−1)I

∞∑
j=0

(λ(i − 1)I)j

j! F (j)
X (S)

and

P(L < Y (iI) ≤ G,D(iI) ≤ S)

=
⎧⎨
⎩�

⎛
⎝G − (μA + μBiI)√

σ 2
A + σ 2

B(iI)2

⎞
⎠− �

⎛
⎝L − (μA + μBiI)√

σ 2
A + σ 2

B(iI)2

⎞
⎠
⎫⎬
⎭e−λiI

∞∑
j=0

(λiI)j

j! F (j)
X (S)

Since T is T = inf{t > 0 : Y (t) > G or D(t) > S}, we have:

P(iI < T ≤ (i + 1)I) = P(Y (iI) ≤ L,Y ((i + 1)I) > G)P(D((i + 1)I) ≤ S)

+ P(Y ((i + 1)I) ≤ L) P(D(iI) ≤ S,D((i + 1)I) > S)

(7.45)

In Eq. (7.45), since Y (iI) and Y ((i+ 1)I) are not independent, we need to obtain
the joint p.d.f fY (iI),Y ((i+1)I)(y1, y2) in order to compute P(Y (iI) ≤ L,Y ((i + 1)I) >

G).
Assume that Y (t) = A + Bg(t) where A > 0 and B > 0 are two independent

random variables, g(t) is an increasing function of time t and A ∼ fA(a),B ∼ fB(b).
Let

{
y1 = a + bg(iI)

y2 = a + bg((i + 1)I)
(7.46)

After simultaneously solving the above equations in terms of y1 and y2, we obtain:

a = y1g((i + 1)I) − y2g(iI)

g((i + 1)I) − g(iI)
= h1(y1, y2)

b = y2 − y1
g((i + 1)I) − g(iI)

= h2(y1, y2)
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Then the random vector (Y (iI),Y ((i+1)I)) has a joint continuous p.d.f as follows

fY (iI),Y ((i+1)I)(y1, y2) = |J |fA(h1(y1, y2))fB(h2(y1, y2)) (7.47)

where the Jacobian J is given by

J =

∣∣∣∣∣∣∣∣

∂h1
∂y1

∂h1
∂y2

∂h2
∂y1

∂h2
∂y2

∣∣∣∣∣∣∣∣
=
∣∣∣∣ 1

g(iI) − g((i + 1)I)

∣∣∣∣. (7.48)

Note that D(iI) and D(Ii+1) are independent (Li and Pham, 2005a, b), therefore,

P(D(iI) ≤ S,D((i + 1)I) > S) = P(D(iI) ≤ S)P(D((i + 1)I) > S). (7.49)

Calculate Pp

Note that either a PM or CM action will end a renewal cycle. In other words,
PM and CM these two events are mutually exclusive at renewal time point. As a
consequence, Pp + Pc = 1. The probability Pp can be obtained as follows:

Pp = P(PM ending a cycle)

=
∞∑
i=1

P(Y (i − 1)I) ≤ L,L < Y (iI) ≤ G)P(D(iI) ≤ S) (7.50)

Expected Cycle Length Analysis

Since the renewal cycle ends either by a PM action with probability Pp or a CM
action with probability Pc, the mean cycle length E[W1] is calculated as follows:

E[W1] =
∞∑
i=1

E[(iI + R1)IPM occur in ((i−1)I ,iI ]] + E[(T + R2)1CM occur]

=
{ ∞∑

i=1

iIP(Y ((i − 1)I) ≤ L,D((i − 1)I) ≤ S)

P(L < Y (iI) ≤ G,D(iI) ≤ S)} + E[R1]Pp

+ (E[T ] + E[R2])Pc (7.51)

where IPM occurs in((i−1)I ,iI ] and ICM occurs are the indicator functions. The mean time
to failure, E[T ] is given by:
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E[T ] =
∫ ∞

0
P{T > t}dt

=
∫ ∞

0
P{Y (t) ≤ G,D(t) ≤ S}dt

=
∫ ∞

0
P{Y (t) ≤ G}

∞∑
j=0

(λ2t)je−λ2t

j! F (j)
X (S)dt (7.52)

or, equivalently, that

E[T ] =
∞∑
j=0

F (j)
X (S)

j!
∫ ∞

0
P{Y (t) ≤ G}(λ2t)

je−λ2tdt (7.53)

The expression E[T ] would depend on the probability P{Y (t) ≤ G} and
sometimes it cannot easy obtain a closed-form.

Optimization Maintenance Cost Rate Policy

We determine the optimal inspection time I and PM threshold L such that the long-
run average maintenance cost rate EC(L, I) is minimized. In other words, we wish
to minimize the following objective function (Li and Pham, 2005a):

EC(L, I)

=

∞∑
i=1

iP{Y (Ii−1) ≤ L,D(Ii−1) ≤ S}P{L < Y (Ii) ≤ G,D(Ii) ≤ S}
{∞∑
i=1

IiP{Y (Ii−1) ≤ L,D(Ii−1) ≤ S}P{L < Y (Ii) ≤ G,D(Ii) ≤ S

}
+ E[R1]Pp + E[R2]Pc

+

∞∑
i=1

iVi{P{Y (Ii) ≤ L,Y (Ii+1) > G}P{D(Ii+1) ≤ S} + P{Y (Ii+1) ≤ L}P{D(Ii) ≤ S,D(Ii+1) > S}}
{∞∑
i=1

IiP{Y (Ii−1) ≤ L,D(Ii−1) ≤ S}P{L < Y (Ii) ≤ G,D(Ii) ≤ S

}
+ E[R1]Pp + E[R2]Pc

+
CpE[R1]

∞∑
i=1

P{Y (Ii−1) ≤ L,D(Ii−1) ≤ S}P{L < Y (Ii) ≤ G,D(Ii) ≤ S}
{∞∑
i=1

IiP{Y (Ii−1) ≤ L,D(Ii−1) ≤ S}P{L < Y (Ii) ≤ G,D(Ii) ≤ S

}
+ E[R1]Pp + E[R2]Pc

+
CcE[R2]

{
1 −

∞∑
i=1

P{Y (Ii−1) ≤ L,D(Ii−1) ≤ S}P{L < Y (Ii) ≤ G,D(Ii) ≤ S}
}

{∞∑
i=1

IiP{Y (Ii−1) ≤ L,D(Ii−1) ≤ S}P{L < Y (Ii) ≤ G,D(Ii) ≤ S

}
+ E[R1]Pp + E[R2]Pc

(7.54)

where Ii−1 = (i−1)I , Ii = iI , Ii+1 = (i+1)I and Vi = P{Y (iI) ≤ L,D(iI) ≤ S}.
The above complex objective function is a nonlinear optimization problem. Li

and Pham (2005a, b) discussed a step-by-step algorithm based on the Nelder-Mead
downhill simplex method.

Example 7.4 Assume that the degradation process is described by Y (t) = A +
Bg(t) where A and B are independent, A~U(0, 4), B~Exp(−0.3t), respectively, and
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g(t) = √
te0.005t . Assume that the random shock damage is described by D(t) =∑N (t)

i=1 Xi where Xi follows the exponential distribution, i.e., Xi~Exp(−0.04t) and
N(t)~Poisson(0.1). Given G = 50, S = 100, Ci = 900/inspection, Cc = 5600/CM ,
Cp = 3000/PM , R1~Exp(−.1t), and R2~Exp(−.04t). We now determine both the
values of I and L that minimizes the average total system cost per unit time EC(I,L).

From Eq. (7.54), the optimal values are I∗ = 37.5,L∗ = 38 and the corre-
sponding cost value is EC∗(I ,L) = 440.7. See Li and Pham (2005a, b) for the
detailed calculations.

7.5 Warranty Concepts

A warranty is a contract under which the manufacturers of a product and/or service
agree to repair, replace, or provide service when a product fails or the service does not
meet intended requirements (Park and Pham, 2010a, 2010b, 2012a, 2012b, 2012c,
2016). These agreements exist because of the uncertainty present in the delivery
of products or services, especially in a competitive environment. Warranties are
important factors in both the consumers and manufacturers’ decision making. A
warranty can be the deciding factor on which item a consumer chooses to purchase
when different products have similar functions and prices. The length and type of
warranty is often thought of as a reflection of the reliability of a product as well as
the company’s reputation.

Warranty types are dependent on the kind of product that it protects. For larger
or more expensive products with many components, it may be cheaper to repair the
product rather than replacing it. These items are called repairable products. Other
warranties simply replace an entire product because the cost to repair it is either close
to or exceeds its original price. These products are considered non-repairable. The
following are the most common types used in warranties:

Ordinary Free Replacement - Under this policy, when an item fails before a
warranty expires it is replaced at no cost to the consumer. The new item is then
covered for the remainder of the warranty length. This is the most common type of
a warranty and often applies to cars and kitchen appliances.

Unlimited Free Replacement -This policy is the same as the ordinary free replace-
ment policy but each replacement item carries a new identical warranty. This type
of warranty is often used for electronic appliances with high early failure rates and
usually has a shorter length because of it.

Pro-rata Warranty - The third most common policy takes into account how much
an item is used. If the product fails before the end of the warranty length, then it
is replaced at a cost that is discounted proportional to its use. Items that experience
wear or aging, such as tires, are often covered under these warranties.

Different warranty models may include a combination of these three types as well
as offering other incentives such as rebates, maintenance, or other services that can
satisfy a customer and extend the life of their product. Bai and Pham (2006a,2006b,
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2004, 2005), Wang and Pham (2006), Pham (2003), Wang and Pham (2010, 2011,
2012), and Murthy and Blischke (2006) can be served as good references of papers
and books for further studies on maintenance and warranty topics.

7.6 Problems

1. Suppose that a system is restored to “as good as new” periodically at intervals of
time T. So the system renews itself at time T, 2 T, …. Define system reliability
under preventive maintenance (PM) as

RM (t) = Pr{failure has not occurred by time t}

In other words, the system survives to time t if and only if it survives every PM
cycle {1,2,…,k} and a further time (t - kT ).

(a) For a system with a failure time probability density function

f (t) = 1

β2
te− t

β for t > 0, β > 0

obtain the system reliability under PM and system mean time to first failure.
(b) Calculate the systemmean time to first failure if PM is performed every 25 days

and β = 2.

2. Suppose that a system is restored to “as good as new” periodically at intervals of
time T. So the system renews itself at time T, 2 T, …. Define system reliability
under preventive maintenance (PM) as

RM (t) = Pr{failure has not occurred by time t}

In other words, the system survives to time t if and only if it survives every PM
cycle {1,2,…,k} and a further time (t - kT ).

(a) For a system with a failure time probability density function

f (t) = 1

6
λ3t2e−λt for t > 0, λ > 0

obtain the system reliability under PM and system mean time to first failure.
(b) Calculate the systemmean time to first failure if PM is performed every 50 days

and λ = 0.035. (Hints: See Example 7.1)

3. Under an age replacement policy, the system is replaced at time T or at failure
whichever occurs first. The costs are respectively cp and cf with cf > cp. For
systems with a failure time probability density function

f (t) = 1

6
λ3t2e−λt for t > 0, λ > 0
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obtain the optimal planned replacement time T* that minimizes the expected
total cost per cycle per unit time. Given cp = 5 and cf = 25, what is the optimal
planned replacement time T* that minimizes the expected total cost per cycle
per unit time?
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