
Chapter 6
Stochastic Processes

6.1 Introduction

Stochastic processes are used for the description of a systems operation over time.
There are two main types of stochastic processes: continuous and discrete. The
complex continuous process is a process describing a system transition from state
to state. The simplest process that will be discussed here is a Markov process.
Given the current state of the process, its future behavior does not depend on the
past. This chapter describes the concepts of stochastic processes including Markov
process, Poisson process, renewal process, quasi-renewal process, and nonhomo-
geneous Poisson process, and their applications in reliability and availability for
degraded systems with repairable components.

6.2 Markov Processes

In this section, we will discuss discrete stochastic processes. As an introduction to
the Markov process, let us examine the following example.

Example 6.1 Consider a parallel systemconsisting of two components (see Fig. 6.1).
From a reliability point of view, the states of the system can be described by.

State 1: Full operation (both components operating).
State 2: One component operating - one component failed.
State 3: Both components have failed.

Define

Pi (t) = P[X (t) = i] = P[system is in state i at time t]

and
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Fig. 6.1 A two-component
parallel system

Pi (t + dt) = P[X (t + dt) = i] = P[system is in state i at time t + dt].

Define a randomvariableX(t)which can assume thevalues 1, 2, or 3 corresponding
to the above-mentioned states. SinceX(t) is a randomvariable, one can discussP[X(t)
= 1], P[X(t) = 2] or conditional probability, P[X(t1) = 2 | X(t0) = 1]. Again, X(t)
is defined as a function of time t, the last stated conditional probability, P[X(t1) =
2 | X(t0) = 1], can be interpreted as the probability of being in state 2 at time t1,
given that the system was in state 1 at time t0. In this example, the “state space” is
discrete, i.e., 1, 2, 3, etc., and the parameter space (time) is continuous. The simple
process described above is called a stochastic process, i.e., a process which develops
in time (or space) in accordance with some probabilistic (stochastic) laws. There are
many types of stochastic processes. In this section, the emphasis will be on Markov
processes which are a special type of stochastic process.

Definition 6.1 Let t0 < t1 < · · · < tn. If.

P[X (tn) = An|X (tn−1) = An−1, X (tn−2) = An−2, . . . ., X (t0) = A0]
= P[X (tn) = An|X (tn−1) = An−1] (6.1)

then the process is called a Markov process. Given the present state of the process,
its future behavior does not depend on past information of the process.

The essential characteristic of a Markov process is that it is a process that has no
memory; its future is determined by the present and not the past. If, in addition to
having no memory, the process is such that it depends only on the difference (t + dt)
− t = dt and not the value of t, i.e., P[X(t + dt) = j | X(t) = i] is independent of t,
then the process is Markov with stationary transition probabilities or homogeneous
in time. This is the same property noted in exponential event times, and referring
back to the graphical representation of X(t), the times between state changes would
in fact be exponential if the process has stationary transition probabilities.

Thus, aMarkov process which is time homogeneous can be described as a process
where events have exponential occurrence times. The random variable of the process
is X(t), the state variable rather than the time to failure as in the exponential failure
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density. To see the types of processes that can be described, a review of the expo-
nential distribution and its properties will be made. Recall that, if X1, X2,…, Xn, are
independent random variables, each with exponential density and a mean equal to
1/λi then min { X1, X2, …, Xn} has an exponential density with mean

(∑
λi
)−1

.
The significance of the property is as follows:

1. The failure behavior of the simultaneous operation of components can be char-
acterized by an exponential density with a mean equal to the reciprocal of the
sum of the failure rates.

2. The joint failure/repair behavior of a system where components are operating
and/or undergoing repair can be characterized by an exponential density with a
mean equal to the reciprocal of the sum of the failure and repair rates.

3. The failure/repair behavior of a system such as 2 above, but further compli-
cated by active and dormant operating states and sensing and switching, can be
characterized by an exponential density.

The above property means that almost all reliability and availability models can
be characterized by a time homogeneous Markov process if the various failure times
and repair times are exponential. The notation for the Markov process is {X(t), t >
0}, where X(t) is discrete (state space) and t is continuous (parameter space). By
convention, this type of Markov process is called a continuous parameter Markov
chain.

From a reliability/availability viewpoint, there are two types ofMarkov processes.
These are defined as follows:

1. Absorbing Process: Contains what is called an “absorbing state” which is a state
from which the system can never leave once it has entered, e.g., a failure which
aborts a flight or a mission.

2. Ergodic Process: Contains no absorbing states such that X(t) can move around
indefinitely, e.g., the operation of a ground power plant where failure only
temporarily disrupts the operation.

Pham (2000) presents a summary of the processes to be considered broken down
by absorbing and ergodic categories. Both reliability and availability can be described
in terms of the probability of the process or system being in defined “up” states,
e.g., states 1 and 2 in the initial example. Likewise, the mean time between failures
(MTBF) can be described as the total time in the “up” states before proceeding to
the absorbing state or failure state.

Define the incremental transition probability as

Pi j (dt) = P[X (t + dt) = j |X (t) = i]

This is the probability that the process (random variable X(t)) will go to state j
during the increment t to (t + dt), given that it was in state i at time t. Since we
are dealing with time homogeneous Markov processes, i.e., exponential failure and
repair times, the incremental transition probabilities can be derived from an analysis
of the exponential hazard function. In Sect. 2.1, it was shown that the hazard function
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for the exponential withmean 1/λwas justλ. Thismeans that the limiting (as dt → 0)
conditional probability of an event occurrence between t and t + dt, given that an
event had not occurred at time t, is just λ, i.e.,

h(t) = lim
dt→0

P[t < X < t + dt |X > t]
dt

= λ

The equivalent statement for the random variable X(t) is

h(t)dt = P[X (t + dt) = j |X (t) = i] = λdt

Now, h(t)dt is in fact the incremental transition probability, thus the Pij(dt) can
be stated in terms of the basic failure and/or repair rates. Define.

Pi (t): the probability that the system is in state i at time t
rij (t): transition rate from state i to state j

In general, the differential equations can be written as follows:

∂Pi (t)

∂t
= −

∑

j

ri j (t)Pi (t) +
∑

j

r ji (t)Pj (t). (6.2)

Solving the above different equations, one can obtain the time-dependent
probability of each state.

Example 6.2 Returning to Example 6.1, a state transition can be easily constructed
showing the incremental transition probabilities for process between all possible
states:

State 1: Both components operating.
State 2: One component up - one component down.
State 3: Both components down (absorbing state).

The loops (see Fig. 6.2) indicate the probability of remaining in the present state
during the dt increment

Fig. 6.2 State transition diagram for a two-component system
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P11(dt) = 1 − 2λdt P12(dt) = 2λdt P13(dt) = 0
P21(dt) = 0 P22(dt) = 1 − λdt P23(dt) = λdt
P31(dt) = 0 P32(dt) = 0 P33(dt) = 1

“up” states before proceeding to the absorbing state or failure state.
The zeros on Pij, i > j, denote that the process cannot go backwards, i.e., this

is not a repair process. The zero on P13 denotes that in a process of this type, the
probability of more than one event (e.g., failure, repair, etc.) in the incremental time
period dt approaches zero as dt approaches zero.

Except for the initial conditions of the process, i.e., the state in which the process
starts, the process is completely specified by the incremental transition probabilities.
The reason for the latter is that the assumption of exponential event (failure or repair)
times allows the process to be characterized at any time t since it depends only on
what happens between t and (t + dt). The incremental transition probabilities can
be arranged into a matrix in a way which depicts all possible statewide movements.
Thus, for the parallel configurations,

[Pi j (dt)] =
⎡

⎣
1 − 2λdt 2λdt 0

0 1 − λdt λdt
0 0 1

⎤

⎦

for i, j = 1, 2, or 3. The matrix [Pij(dt)] is called the incremental, one-step transition
matrix. It is a stochastic matrix, i.e., the rows sum to 1.0. As mentioned earlier, this
matrix along with the initial conditions completely describes the process.

Now, [Pij(dt)] gives the probabilities for either remaining or moving to all the
various states during the interval t to t + dt, hence,

P1(t + dt) = (1 − 2λdt)P1(t)

P2(t + dt) = 2λdt P1(t)(1 − λdt)P2(t)

P3(t + dt) = λdt P2(t) + P3(t) (6.3)

By algebraic manipulation, we have

[P1(t + dt) − P1(t)]
dt

= −2λP1(t)

[P2(t + dt) − P2(t)]
dt

= 2λP1(t) − λP2(t)

[P3(t + dt) − P3(t)]
dt

= λP2(t)

Taking limits of both sides as dt → 0, we obtain (also see Fig. 6.3)

P ′
1(t) = −2λP1(t)
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Fig. 6.3 Markov transition
rate diagram for a
two-component parallel
system

P ′
2(t) = 2λP1(t) − 2λP2(t)

P ′
3(t) = λP2(t) (6.4)

The above system of linear first-order differential equations can be easily solved
for P1(t) and P2(t), and therefore, the reliability of the configuration can be obtained:

R(t) =
2∑

i=1

Pi (t)

Actually, there is no need to solve all three equations, but only the first two asP3(t)
does not appear and also P3(t) = 1 – P1(t) – P2(t). The system of linear, first-order
differential equations can be solved by various means including both manual and
machine methods. For purposes here, the manual methods employing the Laplace
transform (see Appendix B) will be used.

L[Pi (t)] =
∫ ∞

0
e−st Pi (t)dt = fi (s) (6.5)

L[P ′
i (t)] =

∫ ∞

0
e−st P ′

i (t)dt = s fi (s) − Pi (0)

The use of the Laplace transformwill allow transformation of the system of linear,
first-order differential equations into a system of linear algebraic equations which
can easily be solved, and by means of the inverse transforms, solutions of Pi(t) can
be determined.

Returning to the example, the initial condition of the parallel configuration is
assumed to be “full-up” such that

P1(t = 0) = 1, P2(t = 0) = 0, P3(t = 0) = 0

transforming the equations for P′
1(t) and P′

2(t) gives

s f1(s) − P1(t)|t=0 = −2λ f1(s)

s f2(s) − P2(t)|t=0 = 2λ f1(s) − λ f2(s)

Evaluating P1(t) and P2(t) at t = 0 gives
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s f1(s) − 1 = −2λ f1(s)

s f2(s) − 0 = 2λ f1(s) − λ f2(s)

from which we obtain

(s + 2λ) f1(s) = 1

− 2λ f1(s) + (s + λ) f2(s) = 0

Solving the above equations for f 1(s) and f 2(s), we have

f1(s) = 1

(s + 2λ)

f2(s) = 2λ

[(s + 2λ)(s + λ)]
From Appendix B of the inverse Laplace transforms,

P1(t) = e−2λt

P2(t) = 2e−λt − 2e−2λt

R(t) = P1(t) + P2(t) = 2e−λt − e−2λt (6.6)

The example given above is that of a simple absorbing process where we are
concerned about reliability If repair capability in the form of a repair rate μ were
added to the model, the methodology would remain the same with only the final
result changing.

Example 6.3 Continued from Example 6.2 with a repair rate μ added to the parallel
configuration (see Fig. 6.4), the incremental transition matrix would be

[Pi j (dt)] =
⎡

⎣
1 − 2λdt 2λdt 0

μdt 1 − (λ + μ)dt λdt
0 0 1

⎤

⎦

The differential equations would become

Fig. 6.4 Markov transition
rate diagram for a
two-component repairable
system
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P ′
1(t) = −2λP1(t) + μP2(t)

P ′
2(t) = 2λP1(t) − (λ + μ)P2(t)

(6.7)

and the transformed equations would become

(s + 2λ) f1(s) − μ f2(s) = 1

− 2λ f1(s) + (s + λ + μ) f2(s) = 0

Hence, we obtain

f1(s) = (s + λ + μ)

(s − s1)(s − s2)

f2(s) = 2λ

(s − s1)(s − s2)

where

s1 = −(3λ + μ) +√(3λ + μ)2 − 8λ2

2

s2 = −(3λ + μ) −√(3λ + μ)2 − 8λ2

2
(6.8)

Using the Laplace transform (see Appendix B), we obtain

P1(t) = (s1 + λ + μ)e−s1t

(s1 − s2)
+ (s2 + λ + μ)e−s2t

(s2 − s1)

P2(t) = 2λe−s1t

(s1 − s2)
+ 2λe−s2t

(s2 − s1)

Reliability function R(t), is defined as the probability that the system continues
to function throughout the interval (0,t). Thus, the reliability of two-component in a
parallel system is given by

R(t) = P1(t) + P2(t)

= (s1 + 3λ + μ)e−s1t − (s2 + 3λ + μ)e−s2t

(s1 − s2)
(6.9)
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6.2.1 Three-Non-Identical Unit Load-Sharing Parallel
Systems

Let f if(t), f ih(t), and f ie(t) be the pdf for time to failure of unit i, for i = 1, 2, and
3 under full load and half load and equal-load condition (this occurs when all three
units are working), respectively. Also let Rif(t), Rih(t), and Rie(t) be the reliability
of unit i under full load and half load condition, respectively. The following events
would be considered for the three-unit load-sharing parallel system to work:

Event 1: All the three units are working until the end of mission time t;
Event 2: All three units are working til time t1; at time t1 one of the three units
fails. The remaining two units are working til the end of the mission.
Event 3: All three units are working til time t1; at time t1 one of the three units
fails. Then at time t2 the second unit fails, and the remaining unit is working until
the end of mission t.

Example 6.4 Consider a three-unit shared load parallel system where.

λ0 is the constant failure rate of a unit when all the three units are operational;
λh is the constant failure rate of each of the two surviving units, each of which
shares half of the total load; and.
λ f is the constant failure rate of a unit at full load.

For a shared-load parallel system to fail, all the units in the system must fail.
We now derive the reliability of a 3-unit shared-load parallel system using the

Markov method. The following events would be considered for the three-unit load-
sharing system to work:

Event 1: All the three units are working until the end of the mission time t where
each unit shares one-third of the total load.
Event 2: All the three units are working until time t1 (each shares one-third of
the total load). At time t1, one of the units (say unit 1) fails, and the other two
units (say units 2 and 3) remain to work until the mission time t. Here, once a unit
fails at time t1, the remaining two working units would take half each of the total
load and have a constant rate λh . As for all identical units, there are 3 possibilities
under this situation.
Event 3: All the three units are working until time t1 (each shares one-third of
the total load) when one (say unit 1) of the three units fails. At time t2, (t2 > t1)
one more unit fails (say unit 2) and the remaining unit works until the end of the
mission time t. Under this event, there are 6 possibilities that the probability of
two units failing before time t and only one unit remains to work until time t.

Define State i represents that i components are working. Let Pi(t) denote the
probability that the system is in state i at time t for i = 0, 1, 2, 3. Figure 6.5 below
shows the Markov diagram of the system.

The Markov equations can be obtained as follows:
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Fig. 6.5 Markov diagram
for a three-unit shared load
parallel system i=3 i=0

i=2 i=1

1

2λh

1

λf3λ0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP3(t)
dt = −3λ0P3(t)

dP2(t)
dt = 3λ0P3(t) − 2λh P2(t)

dP1(t)
dt = 2λh P2(t) − λ f P1(t)

dP0(t)
dt = λ f P1(t)

P3(0) = 1
Pj (0) = 0, j �= 3
P0(t) + P1(t) + P2(t) + P3(t) = 1

Solving the above differential equations using the Laplace transform method, we
can easily obtain the following results:

P3(t) = e−3 λ0 t

P2(t) = 3λ0

2λh − 3λ0

(
e−3λ0t − e−2λht

)

P1(t) = 6λ0λh

(2λh − 3λ0)

[
e−3λ0t

(
λ f − 3λ0

) − e−2λht

(
λ f − 2λh

) + (2λh − 3λ0)e−λft

(
λ f − 3λ0

)(
λ f − 2λh

)

]

Hence, the reliability of a three-unit shared-load parallel system is

R(t) = P3(t) + P2(t) + P1(t)

= e−3λ0t + 3λ0

2λh − 3λ0

(
e−3λ0t − e−2λht

)
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+ 6λ0λh

(2λh − 3λ0)

[
e−3λ0t

(
λ f − 3λ0

) − e−2λht

(
λ f − 2λh

) + (2λh − 3λ0)e−λft

(
λ f − 3λ0

)(
λ f − 2λh

)

]

(6.10)

which is the same as Eq. (6.60) in Chapt. 4.

6.2.2 System Mean Time Between Failures

Another parameter of interest in absorbing Markov processes is the mean time
between failures (MTBF) (Pham et al. 1997). Recalling the previous Example 6.3
of a parallel configuration with repair, the differential equations P1

′(t) and P2
′(t)

describing the process were (see Eq. 6.7):

P ′
1(t) = −2λP1(t) + μP2(t)

P ′
2(t) = 2λP1(t) − (λ + μ)P2(t). (6.11)

Integrating both sides of the above equations yields

∞∫

0

P ′
1(t)dt = −2λ

∞∫

0

P1(t)dt + μ

∞∫

0

P2(t)dt

∞∫

0

P ′
2(t)dt = 2λ

∞∫

0

P1(t)dt − (λ + μ)

∞∫

0

P2(t)dt

From Chap. 1,

∞∫

0

R(t)dt = MTT F (6.12)

Similarly,

∞∫

0

P1(t)dt = mean time spent in state 1, and

∞∫

0

P2(t)dt = mean time spent in state 2

Designating these mean times as T 1 and T 2, respectively, we have
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P1(t)dt |∞0 = −2λT1 + μT2
P2(t)dt |∞0 = 2λT1 − (λ + μ)T2

But P1(t) = 0 as t → ∞ and P1(t) = 1 for t = 0. Likewise, P2(t) = 0 as t → ∞
and P2(t) = 0 for t = 0. Thus,

−1 = −2λT1 + μT2
0 = 2λT1 − (λ + μ)T2

or, equivalently,

[
−1

0

]

=
[−2λ μ

2λ −(λ + μ)

][
T1
T2

]

Therefore,

T1 = (λ+μ)

2λ2 T2 = 1
λ

MTT F = T1 + T2 = (λ+μ)

2λ2 + 1
λ

= (3λ+μ)

2λ2

(6.13)

The MTBF for non-maintenance processes is developed exactly the same way as
just shown. What remains under absorbing processes is the case for availability for
maintained systems. The difference between reliability and availability for absorbing
processes is somewhat subtle. A good example is that of a communica-tion system
where, if such a system failed temporarily, the mission would continue, but, if it
failed permanently, the mission would be aborted.

Example 6.5 Consider the following cold-standby configuration consisting of two
units: one main unit and one spare unit (see Fig. 6.6):

State 1: Main unit operating—spare OK.
State 2: Main unit out—restoration underway.
State 3: Spare unit installed and operating.
State 4: Permanent failure (no spare available).

Fig. 6.6 A cold-standby
system
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Fig. 6.7 State transition diagram for the cold-standby system

From Fig. 6.7, the incremental transition matrix is given by

[Pi j (dt)] =

⎡

⎢⎢
⎣

1 − λdt λdt 0 0
0 1 − μdt μdt 0
0 0 1 − λdt λdt
0 0 0 1

⎤

⎥⎥
⎦

We obtain

P ′
1(t) = −λP1(t)

P ′
2(t) = λP1(t) − μP2(t)

P ′
3(t) = μP2(t) − λP3(t)

Using the Laplace transform, we obtain

s f1(s) − 1 = −λ f1(s)

s f2(s) = λ f1(s) − μ f2(s)

s f3(s) = μ f2(s) − λ f3(s)

After simplifications,

f1(s) = 1

(s + λ)

f2(s) = λ

[(s + λ)(s + μ)]
f3(s) = λμ

[(s + λ)2(s + μ)]
Therefore, the probability of full-up performance, P1(t), is given by

P1(t) = e−λt (6.14)

Similarly, the probability of the system being down and under repair, P2(t), is
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P2(t) =
[

λ

(λ − μ)

](
e−μt − e−λt

)
(6.15)

and the probability of the system being full-up but no spare available, P3(t), is

P3(t) =
[

λμ

(λ − μ)2

]
[e−μt − e−λt − (λ − μ)te−λt ] (6.16)

Hence, the point availability, A(t), is given by

A(t) = P1(t) + P3(t) (6.17)

If average or interval availability is required, this is achieved by

(
1

t

)∫ T

0
A(t)dt =

(
1

t

)∫ T

0
[P1(t) + P3(t)]dt (6.18)

where T is the interval of concern.
With the above example, cases of the absorbing process (both maintained and

non-maintained) have been covered insofar as “manual” methods are concerned.
In general, the methodology for treatment of absorbing Markov processes can be
“packaged” in a fairly simplified formbyutilizingmatrix notation. Thus, for example,
if the incremental transition matrix is defined as follows:

[Pi j (dt)] =
⎡

⎣
1 − 2λdt 2λdt 0

μdt 1 − (λ + μ)dt λdt
0 0 1

⎤

⎦

then if the dts are dropped and the last row and the last column are deleted, the
remainder is designated as the matrix T:

[T ] =
[
1 − 2λ 2λ

μ 1 − (λ + μ)

]

Define [Q] = [T ]′ - [I], where [T ]′ is the transposition of [T ] and [I] is the unity
matrix:

[Q] =
[
1 − 2λ μ

2λ 1 − (λ + μ)

]
−
[
1 0
0 1

]

=
[−2λ μ

2λ −(λ + μ)

]

Further define [P(t)] and [P′(t)] as column vectors such that
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[P1(t)] =
[
P1(t)

P2(t)

]

, [P ′(t)] =
[
P ′
1(t)

P ′
2(t)

]

then

[
P ′(t)

] = [Q][P(t)]

At the above point, solution of the system of differential equations will produce
solutions to P1(t) and P2(t). If the MTBF is desired, integration of both sides of the
system produces

[
−1

0

]

= [Q]
[
T1
T2

]

[
−1

0

]

=
[−2λ μ

2λ −(λ + μ)

][
T1
T2

]

or

[Q]−1

[
1

0

]

=
[
T1
T2

]

where [Q]−1 is the inverse of [Q] and the MTBF is given by

MTBF = T1 + T2 = 3λ + μ

(2λ)2

In the more general MTBF case,

[Q]−1

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

−1

0

·
·
·
0

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

T1
T2
·
·
·

Tn−1

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

where
n−1∑

i=1

Ti = MTBF

and (n − 1) is the number of non-absorbing states.
For the reliability/availability case, utilizing the Laplace transform, the system of

linear, first-order differential equations is transformed to

s

[
f1(s)

f2(s)

]

−
[
1

0

]

= [Q]
[

f1(s)

f2(s)

]
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[s I − Q]
[

f1(s)

f2(s)

]

=
[
1

0

]

[
f1(s)

f2(s)

]

= [s I − Q]−1

[
1

0

]

L−1

[
f1(s)

f2(s)

]

= L−1

{

[s I − Q]−1

[
1

0

]}

[
p1(s)

p2(s)

]

= L−1

{

[s I − Q]−1

[
1

0

]}

Generalization of the latter to the case of (n − 1) non-absorbing states is
straightforward.

Ergodic processes, as opposed to absorbing processes, do not have any absorbing
states, and hence, movement between states can go on indefinitely For the latter
reason, availability (point, steady-state, or interval) is the only meaningful measure.
As an example for ergodic processes, a ground-based power unit configured in
parallel will be selected.

Example 6.6 Consider a parallel system consisting of two identical units each with
exponential failure and repair times with constant rates λ and μ, respectively (see
Fig. 6.8). Assume a two-repairmen capability if required (both units down), then.

State 1: Full-up (both units operating).
State 2: One unit down and under repair (other unit up).
State 3: Both units down and under repair.

It should be noted that, as in the case of failure events, two or more repairs cannot
be made in the dt interval.

[Pi j (dt)] =
⎡

⎣
1 − 2λdt 2λdt 0

μdt 1 − (λ + μ)dt λdt
0 2μdt 1 − 2μdt

⎤

⎦

Fig. 6.8 State transition diagram with repair for a parallel system
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Case I: Point Availability—Ergodic Process. For an ergodic process, as t → ∞
the availability settles down to a constant level. Point availability gives a measure
of things before the “settling down” and reflects the initial conditions on the
process. Solution of the point availability is similar to the case for absorbing
processes except that the last row and column of the transition matrix must be
retained and entered into the system of equations. For example, the system of
differential equations becomes

⎡

⎢
⎣

P ′
1(t)

P ′
2(t)

P ′
3(t)

⎤

⎥
⎦ =

⎡

⎣
−2λ μ 0
2λ −(λ + μ) 2μ
0 λ −2μ

⎤

⎦

⎡

⎢
⎣

P1(t)

P2(t)

P3(t)

⎤

⎥
⎦

Similar to the absorbing case, the method of the Laplace transform can be used
to solve for P1(t), P2(t), and P3(t), with the point availability, A(t), given by

A(t) = P1(t) + P2(t) (6.19)

Case II: Interval Availability—Ergodic Process. This is the same as the absorbing
case with integration over time period T of interest. The interval availability,A(T ),
is

A(T ) = 1

T

T∫

0

A(t)dt (6.20)

Case III: Steady State Availability—Ergodic Process. Here the process is exam-
ined as t → ∞ with complete “washout” of the initial conditions. Letting
t → ∞ the system of differential equations can be transformed to linear algebraic
equations. Thus,

lim
t→∞

⎡

⎢
⎣

P ′
1(t)

P ′
2(t)

P ′
3(t)

⎤

⎥
⎦ = lim

t→∞

⎡

⎣
−2λ μ 0
2λ −(λ + μ) 2μ
0 λ −2μ

⎤

⎦

⎡

⎢
⎣

P1(t)

P2(t)

P3(t)

⎤

⎥
⎦

As t → ∞, Pi (t) → constant and P ′
i (t) → 0. This leads to an unsolvable sys-tem,

namely

⎡

⎢
⎣

0

0

0

⎤

⎥
⎦ =

⎡

⎣
−2λ μ 0
2λ −(λ + μ) 2μ
0 λ −2μ

⎤

⎦

⎡

⎢
⎣

P1(t)

P2(t)

P3(t)

⎤

⎥
⎦
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To avoid the above difficulty, an additional equation is introduced:

3∑

i=1

Pi (t) = 1

With the introduction of the new equation, one of the original equations is deleted
and a new system is formed:

⎡

⎢
⎣

1

0

0

⎤

⎥
⎦ =

⎡

⎣
1 1 1

−2λ μ 0
2λ −(λ + μ) 2μ

⎤

⎦

⎡

⎢
⎣

P1(t)

P2(t)

P3(t)

⎤

⎥
⎦

or, equivalently,

⎡

⎢
⎣

P1(t)

P2(t)

P3(t)

⎤

⎥
⎦ =

⎡

⎣
1 1 1

−2λ μ 0
2λ −(λ + μ) 2μ

⎤

⎦

−1⎡

⎢
⎣

1

0

0

⎤

⎥
⎦

We now obtain the following results:

P1(t) = μ2

(μ + λ)2

P2(t) = 2λμ

(μ + λ)2

and

P3(t) = 1 − P1(t) − P2(t) = λ2

(μ + λ)2

Therefore, the steady state availability, A(∞), is given by

A3(∞) = P1(t) + P2(t) = μ(μ + 2λ)

(μ + λ)2
. (6.21)

Note that Markov methods can also be employed where failure or repair times are
not exponential, but can be represented as the sum of exponential times with identical
means (Erlang distribution or Gamma distribution with integer valued shape param-
eters). Basically, the method involves the introduction of “dummy” states which are
of no particular interest in themselves, but serve the purpose of changing the hazard
function from constant to increasing.



6.2 Markov Processes 367

Fig. 6.9 System state
diagram

Example 6.7 We now discuss two Markov models (Cases 1 and 2 below) which
allow integration of control systems of nuclear power plant reliabiltiy and safey
analysis. A basic system transition diagram for both models is presented in Fig. 6.9.
In both models, it is assumed that the control system is composed of a control rod and
an associated safety system. The following assumptions are applied in this example.

(i) All failures are statistically independent.
(ii) Each unit has a constant rate.
(iii) The control system fails when the control rod fails.

The following notations are assocaited with the system shown in Fig. 6.9.

i ith state of the system: i=1 (control and its associated safety systemoperating
normally); i = 2 (control operating normally, safety system failed), i = 3
(control failed with an accident), i = 4 (control failed safely); i = 5 (control
failed but its associated safety system operating normally).

Pi(t) probability that the control system is in state i at time t, i = 1,2, …, 5
λi ith constant failure rate: i = s (state 1 to state 2), i = ci (state 2 to state 3), i

= cs (state 2 to state 4), i = c (state 1 to state 5).
Pi(s) Laplace transform of the probability that the control system is in state i; i =

1,2, …, 5.
s Laplace transform variable.

Case 1: The system represented byModel 1 is shown in Fig. 6.9. Using theMarkov
approach, the system of differential equations (associated with Fig. 6.9) is given
below:

P ′
1(t) = −(λs + λc)P1(t)

P ′
2(t) = λs P1(t) − (λci + λcs)P2(t)
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P ′
3(t) = λci P2(t)

P ′
4(t) = λcs P2(t)

P ′
5(t) = λc P1(t)

Assume that at time t = 0, P1(0) = 1, and P2(0) = P3(0) = P4(0) = P5(0) = 0.
Solving the above system of equations, we obtain

P1(t) = e−At

P2(t) = λs

B

(
e−Ct − e−At

)

P3(t) = λsλci

AC

(
1 − Ae−Ct − Ce−At

B

)

P4(t) = λsλcs

AC

(
1 − Ae−Ct − Ce−At

B

)

P5(t) = λc

A

(
1 − e−At

)

where

A = λs + λc; B = λs + λc − λcs − λci ; C = λci + λcs .

The reliability of both the control and its safety system working normally, Rcs, is
given by

Rcs(t) = P1(t) = e−At .

The reliability of the control system working normally with or without the safety
system functioning successfully is

Rss(t) = P1(t) + P2(t) = e−At + λs

B

(
e−Ct − e−At

)
.

The mean time to failure (MTTF) of the control with the safety system up is

MTT Fcs =
∞∫

0

Rcs(t)dt = 1

A
.

Similarly, the MTTF of the control with the safety system up or down is

MTT Fss =
∞∫

0

Rss(t)dt = 1

A
+ λs

B

(
1

C
− 1

A

)
.
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Case 2: This model is the same as Case 1 except that a repair is allowed when the
safety system fails with a constant rate μ. The system of differential equations
for this model is as follows:

P ′
1(t) = μP2(t) − AP1(t)

P ′
2(t) = λs P1(t) − (λci + λcs + μ)P2(t)

P ′
3(t) = λci P2(t)

P ′
4(t) = λcs P2(t)

P ′
5(t) = λc P1(t)

We assume that at time t = 0, P1(0) = 1, and P2(0) = P3(0) = P4(0) = P5(0) = 0.
Solving the above system of equations, we obtain

P1(t) = e−At + μλs

[
e−At

(r1 + A)(r2 + A)
+ er1t

(r1 + A)(r1 − r2)
+ er2t

(r2 + A)(r2 − r1)

]

P2(t) = λs
er1t − er2t

(r1 − r2)

P3(t) = λsλci

r1r2

(
r1er2t − r2e−r1t

r2 − r1
+ 1

)

P4(t) = λsλcs

r1r2

(
r1er2t − r2e−r1t

r2 − r1
+ 1

)

P5(t) = λc

A

(
1 − e−At

)+ μλsλc

[
1

r1r2A
− e−At

A(r1 + A)(r2 + A)
+ er1t

r1(r1 + A)(r1 − r2)
+ er2t

r2(r2 + A)(r2 − r1)

]

where

r1, r2 = −a ± √
a2 − 4b

2
,

a = A + C + μ, b = λciλs + λcsλs + (λci + λcs + μ)λc.

The reliability of both the control and its associated safety system working
normally with the safety repairable system is.

Rcs(t) = e−At + μλs

[
e−At

(r1 + A)(r2 + A)
+ er1t

(r1 + A)(r1 − r2)
+ er2t

(r2 + A)(r2 − r1)

]
.

The reliability of the control operating normal with or without the safety system
operating (but having safety system repair) is
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Rss(t) = e−At + λs
(
er1t − er2t

)

(r1 − r2)

+ μλs

[
e−At

(r1 + A)(r2 + A)
+ er1t

(r1 + A)(r1 − r2)
+ er2t

(r2 + A)(r2 − r1)

]
.

The MTTF of the control with the safety system operating is

MTT Fcs =
∞∫

0

Rcs(t)dt = 1

A

(
1 + μλs

b

)
.

We can see that the repair process has helped to improve the system’s MTTF.
Similarly, the MTTF of the control with the safety system up or down but with
accessible repair is given by

MTT Fss =
∞∫

0

Rss(t)dt = 1

A

(
1 + μλs

b

)
+ λs

A
.

Example 6.8 A system is composed of eight identical active power supplies, at least
seven of the eight are required for the system to function. In other words, when two
of the eight power supplies fail, the system fails. When all eight power supplies are
operating, each has a constant failure rate λa per hour. If one power supply fails, each
remaining power supply has a failure rate λb per hour where λa ≤ λb We assume that
a failed power supply can be repaired with a constant rate μ per hour. The system
reliability function, R(t), is defined as the probability that the system continues to
function throughout the interval (0, t). Here we wish to determine the system mean
time to failure (MTTF).

Define.

State 0: All 8 units are working.
State 1: 7 units are working.
State 2: More than one unit failed and system does not work.

The initial condition:P0(0) = 1, P1(0) = P2(0) = 0.
The Markov modeling of differential equations (see Fig. 6.10) can be written as

follows:

P ′
0(t) = −8λa P0(t) + μP1(t)

P ′
1(t) = 8λa P0(t) − (7λb + μ)P1(t)

P ′
2(t) = 7λb P1(t) (6.22)

Using the Laplace transform, we obtain
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Fig. 6.10 Markov transition rate diagram for a 7-out-8 dependent system

⎧
⎨

⎩

sF0(s) − P0(0) = −8λa F0(s) + μF1(s)
sF1(s) − P1(0) = 8λa F0(s) − (7λb + μ)F1(s)
sF2(s) − P2(0) = 7λbF1(s)

(6.23)

When s = 0:

Fi (0) =
∞∫

0

Pi (t)dt .

Thus, the system reliability function and system MTTF, respectively, are

R(t) = P0(t) + P1(t). (6.24)

and

MTT F =
∞∫

0

R(t)dt =
∞∫

0

[P0(t) + P1(t)]dt =
2∑

i=1

Fi (0). (6.25)

From Eq. (6.23), when s = 0, we have

{−1 = −8λa F0(0) + μF1(0)
0 = 8λa F0(0) − (7λb + μ)F1(0)

(6.26)

From Eq. (6.26), after some arrangements, we can obtain

7λbF1(0) = 1 ⇒ F1(0) = 1

7λb

and

F0(0) = 7λb + μ

8λa
F1(0)
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= 7λb + μ

8λa

1

7λb
= 7λb + μ

56λaλb
.

From Eq. (6.25), the system MTTF can be obtained

MTT F =
∞∫

0

R(t)dt =
∞∫

0

[P0(t) + P1(t)]dt = F0(0) + F1(0)

= 7λb + μ

56λaλb
+ 1

7λb
= μ + 8λa + 7λb

56λa λb
.

Given λa = 3 × 10−3 = 0.003, λb = 5 × 10−2 = 0.05, and μ = 0.8, then the
system mean time to failure is given by:

MTT F = μ + 8λa + 7λb

56 λa λb

= 0.8 + 8(0.003) + 7(0.05)

56(0.003)(0.05)
= 1.174

0.0084
= 139.762 h.

Example 6.9 Asystemconsists of two independent components operating in parallel
(see Fig. 6.1) with a single repair facility where repair may be completed for a failed
component before the other component has failed. Both the components are assumed
to be functioning at time t = 0. When both components have failed, the system is
considered to have failed and no recovery is possible. Assuming component i has
the constant failure rate λi and repair rate μi for i = 1 and 2. The system reliability
function, R(t), is defined as the probability that the system continues to function
throughout the interval (0, t).

(a) Derive the system reliability function and systemmean time to failure (MTTF)
and calculate the MTTF.

(b) Assume that both components have the same failure rate λ and repair rate μ.

That is, λ1 = λ2 = λ and μ1 = μ2 = μ. Calculate the reliability function and
system MTTF when λ = 0.003 per hour, and μ = 0.1 per hour, and t = 25 h.

Define.

State 1: both components are working.
State 2: component 1 failed, component 2 is working.
State 3: component 2 failed, component 1 is working.
State 4: Both components 1 and 2 failed.

The initial conditions: P1(0) = 1, P2(0) = P3(0) = P4(0) = 0.FromFig. 6.11,
the Markov modeling of differential equations can be written as follows:
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Fig. 6.11 A degraded
system rate diagram i=1

i=2 i=3

1

λ3

1

λ1

λ2

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dP1(t)
dt = −(λ1 + λ2)P1(t) + μ1P2(t) + μ2P3(t)

dP2(t)
dt = λ1P1(t) − (λ2 + μ1)P2(t)

dP3(t)
dt = λ2P1(t) − (λ1 + μ2)P3(t)

dP4(t)
dt = λ2P2(t) + λ1P3(t)

P1(0) = 1, Pj (0) = 0, j �= 1.

(6.27)

Let �{Pi (t)} = Fi (s). Then �
{

∂Pi (t)
∂t

}
= sFi (s) − Fi (0). Using the Laplace

transform, we obtain

⎧
⎪⎪⎨

⎪⎪⎩

sF1(s) − 1 = −(λ1 + λ2)F1(s) + μ1F2(s) + μ2F3(s)
sF2(s) = λ1F1(s) − (λ2 + μ1)F2(s)
sF3(s) = λ2F1(s) − (λ1 + μ2)F3(s)
sF4(s) = λ2F2(s) + λ1F3(s)

(6.28)

From Eq. (6.28), we obtain

F1(s) = (s + a2)(s + a3)

s3 + b1s2 + c1s + c2

F2(s) = λ1

s + a2
F1(s)

F3(s) = λ2

s + a3
F1(s)

where
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a1 = λ1 + λ2; a2 = λ2 + μ1; a3 = λ1 + μ2;
a4 = λ1μ1; a5 = λ2μ2; b1 = a1 + a2 + a3;
b2 = a1a2 + a1a3 + a2a3; b3 = a1a2a3;
c1 = b2 − a4 − a5; c2 = b3 − a3a4 − a2a5.

Take the inverse of Laplace transform, that is Pi (t) = �−1{Fi (s)}, then the system
reliability function is

R(t) =
3∑

i=1

Pi (t). (6.29)

When s = 0:

Fi (0) =
∞∫

0

Pi (t).

Thus, the system MTTF is

MTT F =
∞∫

0

R(t)dt =
∞∫

0

[P1(t) + P2(t) + P3(t)]dt =
3∑

i=1

Fi (0).

Substitute s = 0 into Eq. (6.28), we have

⎧
⎪⎪⎨

⎪⎪⎩

−1 = −(λ1 + λ2)F1(0) + μ1F2(0) + μ2F3(0)
0 = λ1F1(0) − (λ2 + μ1)F2(0)
0 = λ2F1(0) − (λ1 + μ2)F3(0)
0 = λ2F2(0) + λ1F3(0)

Solving for Fi(0), we obtain

F1(0) = a2a3
a1a2a3 − a3a4 − a2a5

F2(0) = a2a3λ1

a1a22a3 − a2a3a4 − a22a5

F3(0) = a2a3λ2

a1a2a23 − a2a3a5 − a23a4
. (6.30)

Thus, the system MTTF is

MTT F =
3∑

i=1

Fi (0)
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= a2a3
a1a2a3 − a3a4 − a2a5

+ a2a3λ1

a1a22a3 − a2a3a4 − a22a5

+ a2a3λ2

a1a2a23 − a2a3a5 − a23a4
. (6.31)

When λ1 = λ2 = λ and μ1 = μ2 = μ, from Eq. (6.29) and (6.31), we can show
that the system reliability and the MTTF are given as follows:

R(t) = 2λ2

α1 − α2

(
e−α2t

α2
− e−α1t

α1

)
(6.32)

where

α1, α2 = (3λ + μ) ±√λ2 + 6λμ + μ2

2

and

MTT F = 3

2λ
+ μ

2λ2
(6.33)

respectively.
(b) Calculate the reliability function and system MTTF when λ1 = λ2 = λ =

0.003 per hour, and μ1 = μ2 = μ = 0.1 per hour, and t = 25 h.
Substitute λ = 0.003 and μ = 0.1 into Eq. (6.32), we obtain

α1 = 0.1088346, α2 = 0.0001654

thus, the system reliability at the mission time t = 25 h is

R(t = 25) = 0.99722

Similarly, from Eq. (6.33), we obtain the system MTTF is 6055.56 h.

6.2.3 Degraded Systems

In real life, there are many systems may continue to function in a degraded system
state (Pham et al. 1996, 1997; Li and Pham a, b). Such systems may perform its
function but not at the same full operational state. Define the states of a system,
where the transition rate diagram is shown in Fig. 6.11, are as follows:

State 1: operational state.
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State 2: degraded state.
State 3: failed state.

We denote the probability of being in state i at time t as Pi(t).
From the rate diagram (Fig. 6.11) we can obtain the following differential

equations:

⎧
⎪⎪⎨

⎪⎪⎩

dP1(t)
dt = −(λ1 + λ2)P1(t)

dP2(t)
dt = λ2P1(t) − λ3P2(t)

dP3(t)
dt = λ1P1(t) + λ3P2(t)

P1(0) = 1, Pj (0) = 0, j �= 1

(6.34)

From Eq. (6.34), we can obtain the solution

P1(t) = e−(λ1+λ2)t (6.35)

We can also show, from Eq. (6.34), that

P2(t) = λ2

(λ1 + λ2 − λ3)

(
e−λ3t − e−(λ1+λ2)t

)
(6.36)

Finally,

P3(t) = 1 − P1(t) − P2(t).

The system reliability is given by

R(t) = P1(t) + P2(t)

= e−(λ1+λ2)t + λ2

(λ1 + λ2 − λ3)

(
e−λ3t − e−(λ1+λ2)t

)
(6.37)

The system mean time to a complete failure is

MTT F =
∞∫

0

R(t)dt

= 1

λ1 + λ2
+ λ2

(λ1 + λ2 − λ3)

(
1

λ3
− 1

λ1 + λ2

)
. (6.38)

Example 6.10 A computer system used in a data computing center experiences
degrade state and complete failure state as follows:

λ1 = 0.0003 per hour, λ2 = 0.00005 per hour, and λ3 = 0.008 per hour.
Here for example, when the system is in degraded state, it will fail at a constant

rate 0.008 per hour. From Eqs. (6.35–6.36), we obtain the following results. Table
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Table 6.1 Reliability and
MTTF of degraded computer
system

Time (h) P1(t) P2(t) R(t)

10 0.996506 0.000480 0.996986

20 0.993024 0.000921 0.993945

50 0.982652 0.002041 0.984693

100 0.965605 0.003374 0.968979

6.1 shows the reliability results for various mission times.

P1(t) = e−(0.0003+0.00005)t

P2(t) = 0.00005

(0.0003 + 0.00005 − 0.008)

(
e−0.008t − e−(0.0003+0.00005)t

)

From Eq. (6.38), the system MTTF is given by

MTT F = 1

λ1 + λ2
+ λ2

(λ1 + λ2 − λ3)

(
1

λ3
− 1

λ1 + λ2

)
= 2875.

6.2.4 k-Out-Of-n Systems with Degradation

In some environments the components may not fail fully but can degrade and there
may exist multiple states of degradation. In such cases, the efficiency especially the
performance of the system may decrease (Pham et al. 1996; Yu et al. 2018). This
section discusses the reliability of the k-out-of-n systems considering that:

(1) The system consists of n independent and identically distributed (i.i.d.) non-
repairable components;

(2) Each component can have d stages of degradation; degradation stage (d + 1)
is a failed state and stage (d + 2) is a catastrophic failure state;

(3) The system functions when at least k out of n components function;
(4) The componentsmay fail catastrophically and can reach the failed state directly

from a good state as well as from a degraded state;
(5) A component can survive either until its last degradation or until a catastrophic

failure at any stage;
(6) All transition rates (i.e., catastrophic and degradation) are constant; and
(7) The degradation rate and catastrophic failure rate of a component depends on

the state of the component.

Let λi be a transition (degradation) rate of the component from state i to state (i
+ 1) for i = 1,2, …, d. Let μi be a transition rate of the component from state i to
state (d + 2), i.e. catastrophic failure stage. A component may fail catastrophically
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Fig. 6.12 A component flow diagram (Pham 1996)

while it is in any degraded state. A block diagram of such a component is shown in
Fig. 6.12.

In general, the system consists of n i.i.d. non-repairable components and at least k
components are required for the system to function. Each component starts in a good
state (“state 1”). The component continues to perform its function within the system
in all of its d level of degraded states of operation. The component no longer performs
it function when it reaches its last degradation state at (d + 1) at which point it has
degraded to a failed state or when it has failed catastrophically, i.e. state (d + 2), from
any of its operational states of degradation. The rate at which the components degrade
to a lower state of degradation or fail catastrophically increases as the components
degrades from one state to a lower state of degradation. Components that reached the
failed state either by degradation or by catastrophic failure cannot longer perform
their function and cannot be repaired. In other words, once a component has reached
a failed (either degradation or catastrophic) state, it cannot be restored to a good state
or any degradation state.

The successful operation of the entire system is expressed as a combination of
component success and failure events. We can formulate the component reliability
function using theMarkov approach. Denote Pi(t) as the probability that a component
is in state i at time t. From Fig. 6.12, we can easily obtain the following differential
equations using the Markov approach:

dP1(t)

dt
= −(λ1 + μ1)P1(t)

dPi (t)

dt
= λi−1Pi−1(t) − (λi + μi )Pi (t) for i = 2, 3, . . . , d

dPd+1(t)

dt
= λd Pd(t)
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dPd+2(t)

dt
=

d∑

j=1

μ j Pj (t). (6.39)

Solving the above system of differential equations, we obtain the state probability
as follows:

Pm(t) =
m∏

k=1

λk−1

⎛

⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

m∑

i=1

e−(λ1+μ2)t

m∏

j = 1
j �= i

(
λ j + μ j − λi − μi

)

⎞

⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

(6.40)

for m = 1, 2, …, d and λ0 = 1. Thus, the component reliability is

Rc(t) =
d∑

i=1

Bie
−(λi+μi )t (6.41)

where

Bi =
d∑

m=i

m∏

k=1
λk−1

m∏

j = 1
j �= i

(
λ j + μ j − λi − μi

) . (6.42)

The mean time to failure of the component (MTTFC) is given by

MTT FC =
∫ ∞

0
RC(t)dt

=
∫ ∞

0

d∑

i=1

(
Bie

−(λi+μi )t
)
dt

=
d∑

i=1

(
Bi

λi + μi

)
. (6.43)

The k-out-of-n system reliability is
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RS(t) =
n∑

i=k

(
n
i

)
[RC(t)]i [1 − RC(t)]n−i (6.44)

where RC(t) is in Eq. (6.41). After several algebra simplifications, we obtain the
system reliability (Pham et al., 1996):

Rs(t) =
n∑

i=k

i ! Ai

∑

d∑

j=1
i j=i

⎡

⎣
d∏

j=1

(
B
i j
j

i j !

)⎤

⎦ e
−

d∑

j=1
i j(λ j+μ j)t

(6.45)

where Ai = (−1)i−k

(
i − 1
k − 1

)(
n
i

)
. The MTTF of the system is

MTT FS =
∫ ∞

0
Rs(t)dt

where Rs(t) is given in Eq. (6.45). Therefore, system MTTF is

MTT FS =
n∑

i=k

i ! Ai

∑

d∑

j=1
i j=i

⎛

⎜⎜⎜
⎝

d∏

j=1

(
B
i j
j

i j !

)

d∑

j=1
i j
(
λ j + μ j

)

⎞

⎟⎟⎟
⎠

. (6.46)

For components without catastrophic failure. When there is no catastrophic
failure, the catastrophic failure rate μi in Eq. (6.45) becomes zero. From Eq. (6.41),
we obtain

RC(t) =
d∑

i=1

Bie
−λi t (6.47)

where

Bi =
d∏

j = 1
j �= i

λ j

λ j − λi
i = 1, 2, . . . , d

Similarly, the component MTTF is
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MTT FC =
d∑

i=1

Bi

λi
=

d∑

i=1

1

λi
(6.48)

The system reliability and MTTF for this special case are computed from the
general forms of the Eqs. (6.45) and (6.46), respectively:

Rs(t) =
n∑

i=k

i ! Ai

∑

d∑

j=1
i j=i

⎡

⎣
d∏

j=1

(
B
i j
j

i j !

)⎤

⎦ e
−

d∑

j=1
i jλ j t

(6.49)

where Ai = (−1)i−k

(
i − 1
k − 1

)(
n
i

)
and

MTT FS =
n∑

i=k

i ! Ai

∑

d∑

j=1
i j=i

⎡

⎢⎢⎢
⎣

d∏

j=1

(
B
i j
j

i j !

)

d∑

j=1
i jλ j

⎤

⎥⎥⎥
⎦

(6.50)

Example 6.11 Consider a 2-out-of-5 systemwhere components consist of two stages
of degradation (d = 2) with the following values:

λ1 = 0.015/h, μ1 = 0.0001/h, λ2 = 0.020/h, and μ2 = 0.0002/h

Given n = 5, k = 2, λ1 = 0.015, λ2 = 0.02, μ1 = 0.0001, μ2 = 0.0002, d = 2.
There are two cases as follows.

Case 1: From Eq. (6.42), components can fail by degradation and by catastrophic
events:

B1 = λ0 + λ1λ2

λ2 + μ2 − λ1 − μ1

= 1 + (0.015)(1)

0.02 + 0.0002 − 0.015 − 0.0001
= 3.94

B2 = λ0λ1

λ1 + μ1 − λ2 − μ2
= (1)(0.015)

0.015 + 0.0001 − 0.020 − 0.0002
= −2.94

MTTFC = B1

λ1 + μ1
+ B2

λ2 + μ2
= 115.4
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RC(t) =
2∑

i=1

Bie
−(λi+μi )t = B1e

−(λ1+μ1)t + B2e
−(λ2+μ2)t

For t = 1, then

RC(t = 1) = 3.94 e−(0.015+0.0001)(1) + (−2.94) e−(0.02+0.0002)(1) = 0.9998

Similarly,

RS(t) =
5∑

i=2

(
5
i

)
[RC(t)]i [1 − RC(t)]5−i

For t = 1, then Rs(t = 1) ≈ 1 and MTTF = ∫∞
0 RS(t)dt = 144.5 h. Tables 6.2

and 6.3 present the tabulated reliability of the 2-out-of-5 system with and without
catastrophic failures for varying mission time t, respectively.

Case 2: Components can only fail by degradation (no catastrophic failures (μ1 =
μ2 = 0)):

B1 = λ2

λ2 − λ1
= 0.02

0.02 − 0.015
= 4

B2 = λ1

λ1 − λ2
= 0.015

0.015 − 0.02
= −3

Then we can easily obtain as follows:

RC(t = 1) = 0.9999; RC(t = 5) = 0.9965

Table 6.2 Reliability of
2-out-of-5 system with
catastrophic failures for
varying time t

Time Component reliability System reliability

1 0.9998 1.0000

5 0.9959 1.0000

10 0.9856 1.0000

20 0.9502 1.0000

25 0.9269 0.9999

50 0.7812 0.9905

75 0.6235 0.9298

100 0.4805 0.7872

150 0.2671 0.4032

200 0.1406 0.1477

250 0.0715 0.0443
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Table 6.3 Reliability of
2-out-of-5 system without
catastrophic failures for
varying time t

Time Component reliability System reliability

1 0.9999 1.0000

5 0.9965 1.0000

10 0.9866 1.0000

20 0.9523 1.0000

25 0.9296 0.9999

50 0.7858 0.9913

75 0.6292 0.9335

100 0.4865 0.7952

150 0.2722 0.4140

200 0.1442 0.1542

250 0.0739 0.0469

MTTFC = 1

λ1
+ 1

λ2
= 1

0.015
+ 1

0.02
= 116.67 h

The system MTTF is: MTTF = 145.9 h. The catastrophic failure process has
decreased both the system reliability and component reliability.

6.2.5 Degraded Systems with Partial Repairs

In some environments, systems might not always fail fully, but can degrade and there
can be multiple stages of degradation. In such cases, the efficiency of the system
may decrease. After a certain stage of degradation the efficiency of the system may
decrease to an unacceptable limit and can be considered as a total failure (Pham
et al. 1997). In addition, the system can fail partially from any stage and can be
repaired. The repair action cannot bring the system to the good stage but can make
it operational and the failure rate of the system will remain the same as before the
failure. This section discusses a model for predicting the reliability and availability
of multistage degraded systems with partial repairs based on the results by Pham
et al. (Pham et al. 1997).

Initially, the system is considered to be in its good state. After some time, it can
either go to the first degraded state upon degradation or can go to a failed state upon
a partial failure. If the system fails partially, the repair action starts immediately, and
after repair the system will be restored to the good state, will be kept in operation
and the process will be repeated. However, if the system reaches the first degraded
state (state 3), it can either go to the second degraded state (state 5) upon degradation
or can go to the failed state upon a partial failure with increased transition rates.
If the system fails partially at this stage, after repair the system will be restored
back to the first degraded state, and will be kept in operation. Figure 6.13 shows the
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Fig. 6.13 A system state diagram (Pham 1997)

system flow diagram transition process where: State (i): State of the system; State
(1): Good; State (2i-1): Degraded; State (2i): Failed (Partially); and State (2d + 1)
Failed (Completely).

Assumptions

1. System can have d-stages of degradation (dth stage is complete failure state).
2. The system might fail partially from a good state as well as from any degraded

state.
3. System can be restored back from a partially failed state to its original state just

before the failure.
4. All transition rates are constant (i.e., degradation, partial failure, and partial

repair rates).
5. The degradation as well as repair rates of the system depend upon the state of

the system (i.e., degradation level).

Figure 1: System flow diagram.
Notation.

d: number of operational states.
State (2i): partially failed states; i = 1,2, …, d
State 1: good state.
State (2i − 1): degraded operational states; i = 2,3, …, d
αi: transition (degradation) rate from state (2i − 1) to (2i + 1).
λi: transition (partial failure) rate from state (2i − 1) to (2i).
μi: transition (partial repair) rate from state (2i) to (2i − 1).

Using the Markov approach, we can obtain the following equations:

dP1(t)

dt
= −(α1 + λ1)P1(t) + μ1P2(t)

dP(2i−1)(t)

dt
= −(αi + λ1)P(2i−1)(t) + μi P(2i)(t) + αi−1P(2i−3)(t) for i = 2, 3, . . . , d

dP(2i)(t)

dt
= −μi P(2i)(t) + λi P(2i−1)(t) for i = 1, 2, . . . , d

dP(2d+1)(t)

dt
= αd P(2d−1)(t). (6.51)
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Taking Laplace transformations of each of these equations and simplifications,
we obtain the following equations:

P(2i−1)(t) =
i∑

k=1

(
Aike

−βk t + Bike
−γi t
)

P(2i)(t) =
i∑

k=1

(
Cike

−βk t + Dike
−γk t
)

(6.52)

where

βi = (αi + λi + μi ) +
√

(αi + λi + μi )
2 − 4αiμi

2

γi = (αi + λi + μi ) −
√

(αi + λ1 + μi )
2 − 4αiμi

2
for i = 1, 2, . . . , d

and

Aik =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(μ1−β1)
(γ1−β1)

for i = 1, k = 1

(
i−1∏

m=1
αm

)(
i∏

m=1
μm − βk

)

⎛

⎜
⎜⎜⎜
⎜
⎝

i∏

m = 1
m �= k

1
(βm−βk)

⎞

⎟
⎟⎟⎟
⎟
⎠

(
i∏

m=1

1
(γm−βk)

)

for i = 2, . . . , d

Bik =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(μ1−γ1)
(β1−γ1)

for i = 1, k = 1

(
i−1∏

m=1
αm

)(
i∏

m=1
μm − γk

)

⎛

⎜⎜⎜
⎜⎜
⎝

i∏

m = 1
m �= k

1
(γm−γk)

⎞

⎟⎟⎟
⎟⎟
⎠

(
i∏

m=1

1
(βm−γk)

)

for i = 2, . . . , d

Cik =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1
(γ1−β1)

for i = 1, k = 1

λi

(
i−1∏

m=1
αm

)(
i∏

m=1
μm − βk

)

⎛

⎜
⎜⎜⎜
⎜
⎝

i∏

m = 1
m = k

1
(βm−βk)

⎞

⎟
⎟⎟⎟
⎟
⎠

(
i∏

m=1

1
(γm−βk)

)

for i = 2, . . . , d

Dik =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1
(β1−γ1)

for i = 1, k = 1

λi

(
i−1∏

m=1
αm

)(
i∏

m=1
μm − γk

)

⎛

⎜⎜
⎜⎜⎜
⎝

i∏

m = 1
m = 1

1
(γm−γk)

⎞

⎟⎟
⎟⎟⎟
⎠

(
i∏

m=1

1
(βm−γk)

)

for i = 2, . . . , d

(6.53)
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The availability A(t) of the system (i.e., the probability that system will be found
in an operational (either good or degraded) state at time t) is given by:

A(t) =
d∑

i=1

P(2i−1)(t) =
d∑

i=1

i∑

k=1

(
Aike

−βi t + Bike
−γi t
)
. (6.54)

The system unavailability due to partial failures is

D(t) =
d∑

i=1

P(2i)(t) =
d∑

i=1

i∑

k=1

(
Cike

−βk t + Dike
−γk t
)
. (6.55)

Thus, the probability that the system fails completely before time t is:

F(t) = 1 − A(t) − D(t)

= 1 −
d∑

i=1

i∑

k=1

[
(Aik + Cik)e

−βk t + (Bik + Dik)e
−γk t
]
. (6.56)

After simplifications, we obtain

F(t) = 1 −
d∑

i=1

(
Xie

−βi t + Yie
−γi t
)

(6.57)

where

Xi = 1

βi

(
d∏

m=1

αm(μm − βi )

(γm − βi )

)

⎛

⎜⎜⎜⎜⎜
⎜
⎝

d∏

m = 1
m �= i

1

(βm − βi )

⎞

⎟⎟⎟⎟⎟
⎟
⎠

Yi = 1

γi

(
d∏

m=1

αm(μm − γi )

(βm − γi )

)

⎛

⎜⎜⎜
⎜⎜⎜
⎝

d∏

m = 1
m �= i

1

(γm − γi )

⎞

⎟⎟⎟
⎟⎟⎟
⎠

. (6.58)
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If the repair time tends to infinity (or repair rate is zero), then the total operational
time becomes the time to first failure. Therefore, the system reliability R(t) can be
obtained from A(t) by substituting zeros for all repair rates. Thus, we obtain

R(t) =
d∑

i=1

Lie
−(αi+λi )t (6.59)

where

Li =
d∑

m=i

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜
⎝

m∏

k=1
αk−1

m∏

j = 1
j �= i

(
α j + λ j − αi − λi

)

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟
⎠

for i = 1, 2, . . . , d and α0 = 1.

(6.60)

The mean time to first failure of the system (MTTF) is given by

MTT F =
∫ ∞

0
R(t)dt =

∫ ∞

0

(
d∑

i=1

Lie
−(αi+λi )t

)

dt

=
d∑

i=1

Li

αi + λi
. (6.61)

Example 6.12 Consider a multistage repairable system with d = 2 (stages of degra-
dation) and degradation rates: α1 = 0.001, α2 = 0.002; with partial failure rates: λ1

= 0.01, λ2 = 0.05, and repairing rates: μ1 = 0.02, and μ2 = 0.01. Calculate the
system availability and reliability using Eqs. (6.54) and (6.59) (Fig. 6.14).

From Eqs. (6.54), (6.55), and (6.59), we obtain the reliability results as shown in
Table 6.4. The system mean time to first failure (MTTF) is 92.7 (units of time).

Fig. 6.14 System flow
diagram with d = 2
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Table 6.4 Reliability
measures for various time t

t A(t) D(t) R(t)

10 0.9120 0.0860 0.9032

20 0.8845 0.1489 0.8135

30 0.7929 0.1947 0.7313

40 0.7534 0.2280 0.6567

50 0.7232 0.2521 0.5892

100 0.6471 0.2992 0.3409

6.3 Counting Processes

Among discrete stochastic processes, counting processes in reliability engineering
are widely used to describe the appearance of events in time, e.g., failures, number of
perfect repairs, etc. The simplest counting process is a Poisson process. The Poisson
process plays a special role tomany applications in reliability (Pham 2000). A classic
example of such an application is the decay of uranium. Radioactive particles from
nuclear material strike a certain target in accordance with a Poisson process of some
fixed intensity. A well-known counting process is the so-called renewal process.
This process is described as a sequence of events, the intervals between which are
independent and identically distributed random variables. In reliability theory, this
type of mathematical model is used to describe the number of occurrences of an
event in the time interval. In this section we also discuss the quasi-renewal process
and the non-homogeneous Poisson process.

A non-negative, integer-valued stochastic process, N(t), is called a counting
process if N(t) represents the total number of occurrences of the event in the time
interval [0, t] and satisfies these two properties:

1. If t1 < t2, then N(t1) ≤ N(t2)
2. If t1 < t2, then N(t2) - N(t1) is the number of occurrences of the event in the

interval [t1 , t2].

For example, ifN(t) equals the number of personswho have entered a restaurant at
or prior to time t, then N(t) is a counting process in which an event occurs whenever
a person enters the restaurant.
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6.3.1 Poisson Processes

One of the most important counting processes is the Poisson process.

Definition 6.2 Acounting process,N(t), is said to be a Poisson processwith intensity
λ if.

1. The failure process, N(t), has stationary independent increments
2. The number of failures in any time interval of length s has a Poisson distribution

with mean λs, that is,

P{N (t + s) − N (t) = n} = e−λs(λs)n

n! n = 0, 1, 2, . . . (6.62)

3. The initial condition is N(0) = 0

This model is also called a homogeneous Poisson process indicating that the
failure rate λ does not depend on time t. In other words, the number of failures
occurring during the time interval (t, t + s] does not depend on the current time t but
only the length of time interval s. A counting process is said to possess independent
increments if the number of events in disjoint time intervals are independent.

For a stochastic process with independent increments, the auto-covariance
function is

Cov[X (t1), X (t2)] =
{
Var [N (t1 + s) − N (t2)] for 0 < t2 − t1 < s
0 otherwise

where

X (t) = N (t + s) − N (t).

If X(t) is Poisson distributed, then the variance of the Poisson distribution is

Cov[X (t1), X (t2)] =
{

λ[s − (t2 − t1)] for 0 < t2 − t1 < s
0 otherwise

This result shows that the Poisson increment process is covariance stationary. We
now present several properties of the Poisson process.

Property 6.1 The sum of independent Poisson processes, N1(t), N2(t), …., Nk(t),
with mean values λ1t, λ2t, …., λkt respectively, is also a Poisson process with mean(

k∑

i=1
λi

)
t . In other words, the sum of the independent Poisson processes is also

a Poisson process with a mean that is equal to the sum of the individual Poisson
process’ mean.
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Property 6.2 Thedifference of two independent Poisson processes,N1(t), andN2(t),
with mean λ1t and λ2t, respectively, is not a Poisson process. Instead, it has the
probability mass function.

P[N1(t) − N2(t) = k] = e−(λ1+λ2)t

(
λ1

λ2

) k
2

Ik(2
√

λ1λ2t), (6.63)

where Ik(.) is a modified Bessel function of order k.

Proof Define N(t) = N1(t) - N2(t). We have

P[N (t) = k] =
∞∑

i=0

P[N1(t) = k + i] P[N2(t) = i].

Since N i(t) for i = 1, 2 is a Poisson process with mean λit, therefore,

P[N (t) = k] =
∞∑

i=0

e−λ1t (λ1t)
k+i

(k + i)!
e−λ2t (λ2t)

i

i !

= e−(λ1+λ2)t

(
λ1

λ2

) k
2

∞∑

i=0

(√
λ1λ2t

)2i+k

i !(k + i)!

= e−(λ1+λ2)t

(
λ1

λ2

) k
2

Ik(2
√

λ1λ2t).

Property 6.3 If the Poisson process, N(t), with mean λt, is filtered such that every
occurrence of the event is not completely counted, then the process has a constant
probability p of being counted. The result of this process is a Poisson process with
mean λpt.

Property 6.4 LetN(t) be a Poisson process and Yi a family of independent and iden-
tically distributed random variables which are also independent of N(t). A stochastic
process X(t) is said to be a compound Poisson process if it can be represented as.

X (t) =
N (t)∑

i=1

Yi .

6.3.2 Renewal Processes

A renewal process is a more general case of the Poisson process in which the inter-
arrival times of the process or the time between failures do not necessarily follow the
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exponential distribution. For convenience, we will call the occurrence of an event a
renewal, the inter-arrival time the renewal period, and the waiting time or repair time
the renewal time.

Definition 6.3 A counting process N(t) that represents the total number of occur-
rences of an event in the time interval (0, t] is called a renewal process, if the time
between failures are independent and identically distributed random variables.

The probability that there are exactly n failures occurring by time t can be written
as

P{N (t) = n} = P{N (t) ≥ n} − P{N (t) > n} (6.64)

Note that the times between the failures are T 1, T 2,…, Tn so the failures occurring
at time Wk are

Wk =
k∑

i=1

Ti

and

Tk = Wk − Wk−1

Thus,

P{N (t) = n} = P{N (t) ≥ n} − P{N (t) > n}
= P{Wn ≤ t} − P{Wn+1 ≤ t}
= Fn(t) − Fn+1(t) (6.65)

where Fn(t) is the cumulative distribution function for the time of the nth failure and
n = 0,1,2, ….

Example 6.13 Consider a software testing model for which the time to find an error
during the testing phase has an exponential distribution with a failure rate of X. It
can be shown that the time of the nth failure follows the gamma distribution with
parameters k and n with probability density function. From Eq. (6.65) we obtain

P{N (t) = n} = P{N (t) ≤ n} − P{N (t) ≤ n − 1}

=
n∑

k=0

(λt)k

k! e−λt −
n−1∑

k=0

(λt)k

k! e−λt

= (λt)n

n! e−λt for n = 0, 1, 2, . . . . (6.66)

Several important properties of the renewal function are given below.
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Property 6.5 The mean value function of the renewal process, denoted by M(t), is
equal to the sum of the distribution function of all renewal times, that is,

M(t) = E[N (t)] =
∞∑

n=1

Fn(t)

Proof The renewal function can be obtained as

M(t) = E[N (t)]

=
∞∑

n=1

nP{N (t) = n}

=
∞∑

n=1

n[Fn(t)−Fn+1(t)]

=
∞∑

n=1

Fn(t). (6.67)

The mean value function, M(t), of the renewal process is also called the renewal
function. In other words, the mean value function represents the expected number of
renewals in [0, t].

Property 6.6 The renewal function, M(t), satisfies the following equation:

M(t) = F(t) +
t∫

0

M(t − s)dF(s) (6.68)

where F(t) is the distribution function of the inter-arrival time or the renewal period.
The proof is left as an exercise for the reader (see Problem 7).

In general, let y(t) be an unknown function to be evaluated and x(t) be any
non-negative and integrable function associated with the renewal process. Assume
that F(t) is the distribution function of the renewal period. We can then obtain the
following result.

Property 6.7 Let the renewal equation be.

y(t) = x(t) +
t∫

0

y(t − s)dF(s) (6.69)

then its solution is given by
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y(t) = x(t) +
t∫

0

x(t − s)dM(s)

where M(t) is the mean value function of the renewal process.
The proof of the above property can be easily derived using the Laplace transform.

It is also noted that the integral equation given in Property 6.6 is a special case of
Property 6.7.

Example 6.14 Let x(t) = a. Thus, from Property 6.7, the solution y(t) is given by

y(t) = x(t) +
t∫

0

x(t − s)dM(s)

= a +
t∫

0

a dM(s)

= a(1 + E[N (t)]).

6.3.3 Quasi-Renewal Processes

In this section, a general renewal process, namely, the quasi-renewal process, is
discussed. Let {N(t), t > 0} be a counting process and let Xn be the time between
the (n − 1)th and the nth event of this process, n ≥ 1.

Definition 6.4 (Wang and Pham 1996): If the sequence of non-negative random
variables {X1, X2, ….} is independent and.

Xi = aXi−1 (6.70)

for i ≥ 2 where α > 0 is a constant, then the counting process {N(t), t ≥ 0} is said
to be a quasi-renewal process with parameter and the first inter-arrival time X1.

When α = 1, this process becomes the ordinary renewal process as discussed
in Sect. 2.6.2. This quasi-renewal process can be used to model reliability growth
processes in software testing phases and hardware burn-in stages for α > 1, and in
hardware maintenance processes when α ≤ 1.

Assume that the probability density function, cumulative distribution function,
survival function, and failure rate of random variable X1 are f 1(x), F1(x), s1(x), and
r1(x), respectively. Then the pdf, cdf, survival function, failure rate of Xn for n = 1,
2, 3, … is respectively given below (Wang and Pham 1996):
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fn(x) = 1

αn−1
f1

(
1

αn−1
x

)

Fn(x) = F1

(
1

αn−1
x

)

sn(x) = s1

(
1

αn−1
x

)

fn(x) = 1

αn−1
r1

(
1

αn−1
x

)
. (6.71)

Similarly, the mean and variance of Xn is given as

E(Xn) = αn−1E(X1)

Var(Xn) = α2n−2Var(X1).

Because of the non-negativity of X1 and the fact that X1 is not identically 0, we
obtain

E(X1) = μ1 �= 0

Property 6.8 (Wang and Pham 1996): The shape parameters of Xn are the same for
n = 1, 2, 3, … for a quasi-renewal process if X1 follows the gamma, Weibull, or log
normal distribution.

This means that after “renewal”, the shape parameters of the inter-arrival time
will not change. In software reliability, the assumption that the software debugging
process does not change the error-free distribution type seems reasonable. Thus, the
error-free times of software during the debugging phase modeled by a quasi-renewal
process will have the same shape parameters. In this sense, a quasi-renewal process
is suitable to model the software reliability growth. It is worthwhile to note that

lim
n→∞

E(X1 + X2 + . . . + Xn)

n
= lim

n→∞
μ1(1 − αn)

(1 − α)n

= 0 if α < 1

= ∞ if α > 1

Therefore, if the inter-arrival time represents the error-free time of a software
system, then the average error-free time approaches infinity when its debugging
process is occurring for a long debugging time.

Distribution of N(t).

Consider a quasi-renewal process with parameter α and the first inter-arrival time
X1. Clearly, the total number of renewals, N(t), that has occurred up to time t and
the arrival time of the nth renewal, SSn, has the following relationship:
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N (t) ≥ n if and only if SSn ≤ t

that is, N(t) is at least n if and only if the nth renewal occurs prior to time t. It is
easily seen that

SSn =
n∑

i=1

Xi =
n∑

i=1

αi−1X1 for n ≥ 1 (6.72)

Here, SS0 = 0. Thus, we have

P{N (t) = n} = P{N (t) ≥ n} − P{N (t) ≥ n + 1}
= P{SSn ≤ t} − P{SSn+1 ≤ t}
= Gn(t) − Gn+1(t)

where Gn(t) is the convolution of the inter-arrival times F1, F2, F3, …, Fn. In other
words,

Gn(t) = P{F1 + F2 + . . . . + Fn ≤ t}

If the mean value of N(t) is defined as the renewal function M(t), then,

M(t) = E[N (t)]

=
∞∑

n=1

P{N (t) ≥ n}

=
∞∑

n=1

P{SSn ≤ t}

=
∞∑

n=1

Gn(t). (6.73)

The derivative of M(t) is known as the renewal density

m(t) = M ′(t).

In renewal theory, random variables representing the inter-arrival distributions
only assume non-negative values, and the Laplace transform of its distribution F1(t)
is defined by

L{F1(s)} =
∞∫

0

e−sxdF1(x)
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Therefore,

LFn(s) =
∞∫

0

e−an−1st dF1(t) = LF1(α
n−1s)

and

Lmn(s) =
∞∑

n=1

LGn(s)

=
∞∑

n=1

LF1(s)LF1(αs) · · · · LF1(α
n−1s)

Since there is a one-to-one correspondence between distribution functions and its
Laplace transform, it follows that.

Property 6.9 (Wang and Pham 1996): The first inter-arrival distribution of a quasi-
renewal process uniquely determines its renewal function.

If the inter-arrival time represents the error-free time (time to first failure), a
quasi-renewal process can be used to model reliability growth for both software and
hardware.

Suppose that all faults of software have the same chance of being detected. If
the inter-arrival time of a quasi-renewal process represents the error-free time of a
software system, then the expected number of software faults in the time interval [0,
t] can be defined by the renewal function, M(t), with parameter α > 1. Denoted by
Mr(t), the number of remaining software faults at time t, it follows that

Mr (t) = M(Tc) − M(t),

where M(Tc) is the number of faults that will eventually be detected through a
software lifecycle Tc.

6.3.4 Non-homogeneous Poisson Processes

The non-homogeneous Poisson process model (NHPP) that represents the number
of failures experienced up to time t is a non-homogeneous Poisson process {N(t), t
≥ 0}. The main issue in the NHPP model is to determine an appropriate mean value
function to denote the expected number of failures experienced up to a certain time
(Pham 2006a).

With different assumptions, the model will end up with different functional forms
of themeanvalue function.Note that in a renewal process, the exponential assumption
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for the inter-arrival time between failures is relaxed, and in the NHPP, the stationary
assumption is relaxed.

The NHPP model is based on the following assumptions:

• The failure process has an independent increment, i.e., the number of failures
during the time interval (t, t + s) depends on the current time t and the length of
time interval s, and does not depend on the past history of the process.

• The failure rate of the process is given by

P{exactly one failure in(t, t + �t)} = P{N (t + �t) − N (t) = 1}
= λ(t)�t + o(�t)

where λ(t) is the intensity function.

• During a small interval Δt, the probability of more than one failure is negligible,
that is,

P{two or more failure in(t, t + �t)} = o(�t)

• The initial condition is N(0) = 0.

On the basis of these assumptions, the probability of exactly n failures occurring
during the time interval (0, t) for the NHPP is given by

Pr{N (t) = n} = [m(t)]n
n! e−m(t) n = 0, 1, 2, . . . (6.74)

wherem(t) = E[N (t)] =
t∫

0
λ(s)ds and λ(t) is the intensity function. It can be easily

shown that the mean value function m(t) is non-decreasing.
Reliability Function.
The reliability R(t), defined as the probability that there are no failures in the time

interval (0, t), is given by

R(t) = P{N (t) = 0}
= e−m(t)

In general, the reliability R(x|t), the probability that there are no failures in the
interval (t, t + x), is given by

R(x |t) = P{N (t + x) − N (t) = 0}
= e−[m(t+x)−m(t)]

and its density is given by
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f (x) = λ(t + x)e−[m(t+x)−m(t)]

where

λ(x) = ∂

∂x
[m(x)]

The variance of the NHPP can be obtained as follows:

Var [N (t)] =
t∫

0

λ(s)ds

and the auto-correlation function is given by

Cor [s] = E[N (t)]E[N (t + s) − N (t)] + E[N 2(t)]

=
t∫

0

λ(s)ds

t+s∫

0

λ(s)ds +
t∫

0

λ(s)ds

=
t∫

0

λ(s)ds

⎡

⎣1 +
t+s∫

0

λ(s)ds

⎤

⎦ (6.75)

Example 6.15 Assume that the intensity λ is a random variable with the pdf f (λ).
Then the probability of exactly n failures occurring during the time interval (0, t) is
given by

P{N (t) = n} =
∞∫

0

e−λt (λt)
n

n! f (λ)dλ.

It can be shown that if the pdf f (λ) is given as the following gamma density
function with parameters k and m,

f (λ) = 1


(m)
kmλm−1e−kλ for λ ≥ 0

then

P(N (t) = n) =
(
n + m − 1

n

)

[p(t)]m[q(t)]n n = 0, 1, 2, . . . (6.76)

is also called a negative binomial density function, where
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p(t) = k

t + k
and q(t) = t

t + k
= 1 − p(t). (6.77)

Thus,

P(N (t) = n) =
(
n + m − 1

n

)(
k

t + k

)m( t

t + k

)n

n = 0, 1, 2, . . . (6.78)

The reader interested in a deeper understanding of advanced probability theory
and stochastic processes should note the following highly recommended books:

Devore, J. L., Probability and Statistics for Engineering and the Sciences, 3rd
edition, Brooks/Cole Pub. Co., Pacific Grove, 1991.

Gnedenko, B. V and I. A. Ushakov, Probabilistic Reliability Engineering, Wiley,
New York, 1995.

Feller,W.,An Introduction to Probability Theory and Its Applications, 3rd edition,
Wiley, New York, 1994.

6.4 Problems

1. Calculate the reliability and MTTF of k-out-of-(2 k − 1) systems when d = 3,

λ1 = 0.0025/h, λ2 = 0.005/h, λ3 = 0.01/h and μ1 = μ2 = μ3 = 0

where k = 1,2,3,4 and 5 for various time t. (Hints: using Eqs. (6.42) and (6.43)).
2. In a nuclear power plant there are five identical and statistically independent

channels tomonitor the radioactivity of air in the ventilation systemwith the aim
of alerting reactor operators to the need for reactor shutdown when a dangerous
level of radioactivity is present.When at least three channels register a dangerous
level of radioactivity, the reactor automatically shuts down. Furthermore, each
channel contains three identical sensors and when at least two sensors register
a dangerous level of radioactivity, the channel registers the dangerous level of
radioactivity. The failure rate of each sensor in any channel is 0.001 per day.
However, the common-cause failure rate of all sensors in a channel is 0.0005
per day. Obtain the sensor reliability, channel reliability, and the entire system
reliability for various time t.

3. A crucial system operates in a good state during an exponentially distributed
time with expected value 1

λ
After leaving the good state, the system enters a

degradation state. The system can still function properly in the degradation
state during a fixed time a > 0, but a failure of the system occurs after this time.
The system is inspected every T time units where T > a. It is replaced by a new
one when the inspection reveals that the system is not in the good state.
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(a) What is the probability of having a replacement because of a system
failure?

(b) What is the expected time between two replacements?

4. A system consists of two independent components operating in parallel with
a single repair facility where repair may be completed for a failed component
before the other component has failed. Both the components are assumed to be
functioning at time t = 0. When both components have failed, the system is
considered to have failed and no recovery is possible. Assuming component i
has the constant failure rate λi and repair rate μi for i = 1 and 2. The system
reliability function, R(t), is defined as the probability that the system continues
to function throughout the interval (0, t).

(a) Using the Eqs. (6.29) and (6.31) and the Laplace transform, derive the
reliability function for the system. Obtain the system mean time to failure
(MTTF)

(b) Calculate (a) with λ1 = 0.003 per hour, λ2 = 0.005 per hour, μ1 = 0.3
per hour, μ2 = 0.1 per hour, and t = 25 h.

5. A system is composed of 20 identical active power supplies, at least 19 of the
power supplies are required for the system to function. In other words, when 2
of the 20 power supplies fail, the system fails. When all 20 power supplies are
operating, each has a constant failure rate λa per hour. If one power supply fails,
each remaining power supply has a failure rate λb per hour where λa ≤ λb. We
assume that a failed power supply can be repaired with a constant rate μ per
hour. The system reliability function, R(t), is defined as the probability that the
system continues to function throughout the interval (0, t).

(a) Determine the system mean time to failure (MTTF).
(b) Given λa = 0.0005, λb = 0.004, and μ = 0.5, calculate the system

MTTF.

6. A system is composed of 15 identical active power supplies, at least 14 of the
power supplies are required for the system to function. In other words, when 2
of the 15 power supplies fail, the system fails. When all 15 power supplies are
operating, each has a constant failure rate λa per hour. If one power supply fails,
each remaining power supply has a failure rate λb per hour where λa ≤ λb. We
assume that a failed power supply can be repaired with a constant rate μ per
hour. The system reliability function, R(t), is defined as the probability that the
system continues to function throughout the interval (0, t).

(a) Determine the system mean time to failure (MTTF).
(b) Given λa = 0.0003, λb = 0.005, and μ = 0.6, calculate the system

MTTF.

7. Events occur according to an NHPP in which the mean value function is m(t)
= t3 + 3t2 + 6t t > 0.
What is the probability that n events occur between times t = 10 and t = 15?
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8. Show that the renewal function, M(t), can be written as follows:

M(t) = F(t) +
t∫

0

M(t − s)dF(s)

where F(t) is the distribution function of the inter-arrival time or the renewal period.
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