
Chapter 3
Statistical Inference

3.1 Introduction

Inference about the values of parameters involved in statistical distributions is known
as estimation. The engineer might be interested in estimating the mean life of an
electronic device based on the failure times of a random sample placed on lifef test.
An interesting question that commonly would ask from many practitioners is: how
close this estimator would be the true value of the parameter being estimated from a
known distribution.

An estimator is a procedure which provides an estimate of a population param-
eter from a random sample. In other word, an estimator is a statistic and hence a
random variable, since it depends strictly on the sample. An estimator is called a
point estimator if it provides a single value as an estimate from a random sample.

In this chapter, it is assumed that the population distribution by type is known,
but the distribution parameters are unknown and they have to be estimated by using
collected failure data. This chapter is devoted to the theory of estimation and discusses
several common estimation techniques such as maximum likelihood, method of
moments, least squared, and Bayesian methods. We also discuss the confidence
interval estimates, tolerance limit estimates, sequential sampling and criteria for
model selection.

3.2 Statistical Inference

Statistical inference is the process of drawing conclusions about unknown character-
istics of a population from which data were taken. Techniques used in this process
include paramter estimation, confidence intervals, hypothesis testing, goodness of
fit tests, and sequential testing. As we know, any distribution function often involves
someparameters. The problemof point estimation is that of estimating the parameters
of a population. For example, parameter λ from an exponential distribution; μ and
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σ 2 from a normal distribution; or n and p from the binomial. For simplicity, denote
these parameters by the notation θ which may be a vector consisting of several distri-
bution parameters. Given a real life application and the observed data, the common
statistical problem will consist of how to determine the unknown distribution F or
pdf f . And if F is assumed to be known, then how can one determine the unknown
distribution parameters θ. If a statistic Y = h(X1, X2,…, Xn) is taken as an estimate
of the parameters θ, the first point to recognize is that in any particular sample the
observed value of h(X1, X2,…, Xn) may differ from θ. The performance of h(X1,
X2,…, Xn) as an estimate of θ is to be judged in relation to the sampling distribution
of h(X1, X2,…, Xn). For example, assume n independent samples from the exponen-
tial density f (x; λ) = λe−λx for x > 0 and λ > 0, then the joint pdf or sample density
(for short) is given by

f (x1, λ) · f (x1, λ) . . . f (x1, λ) = λne−λ
∑n

i−1 xi (3.1)

The problem here is to find a “good” point estimate of λ which is denoted by λ̂.
In other words, we shall find a function h(X1, X2,…,Xn) such that, if x1, x2, …, xn
are the observed experimental values of X1, X2, …., Xn, then the value h(x1, x2, …,
xn) will be a good point estimate of λ. By “good’ we mean the following properties
shall be implied:

• Unbiasedness
• Consistency
• Efficiency (i.e., minimum variance)
• Sufficiency
• Asymptotic efficiency.

In other words, if λ̂ is a good point estimate of λ, then one can select the function
h(X1, X2,…,Xn) such that h(X1, X2,…,Xn) is not only an unbiased estimator of λ

but also the variance of h(X1, X2,…,Xn) is a minimum. It should be noted that the
estimator λ̂ is a random variable where λ is a number.

The random variable h(X1, X2,…,Xn) is called a statistic and it represents
the estimator of the unknown parameters θ. We will now present the following
definitions.

Definition 3.1 For a given positive integer n, the statistic Y = h(X1, X2,…, Xn) is
called an unbiased estimator of the parameter θ if the expectation of Y is equal to a
parameter θ, that is,

E(Y ) = θ (3.2)

In other words, an estimator of θ is called unbiased if its expected value is equal
to the population value of the quantity it estimates.

An estimator Y is a best unbiased estimator of parameter θ if E(Y ) = θ for all

θ ∈ � and var(Y ) ≤ var
(
Ỹ
)
for any other unbiased estimator Ỹ such that.
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E
(
Ỹ
)

= θ. If an estimator is not unbiased we can define its bias by

b(θ) = E(Y ) − θ.

It sometimes happens that b(θ ) depends on the number of observations and
approaches to zero as n increases. In this case, Y is said to be asymptotically unbi-
ased. Note that the expectation represents a long-run average, bias is seen as an
average deviation of the estimator from the true value. When considering bias, care
needs to be taken with functions of parameters. In general, if E(Y ) = θ and g(θ ) is
some function of a parameter,

E[g(Y )] �= g(θ).

For the exponential distribution for example, assume X1,X2, …, Xn be a random
sample from the exponential distribution with pdf

f (x;μ) = 1

μ
e− x

μ x > 0, μ > 0

Let Y = 1
n

(
n∑

i=1
xi

)

. Using the maximum likelihood estimation (MLE) method

(seeSect. 3.3.2),we can show thatY is an unbiased estimator ofμ.That is, E(Y ) = μ.

Let g(Y ) = n∑n
i=1 xi

. It should be noted that E[g(Y )] �= 1
μ
.

Definition 3.2 The statistic Y is said to be a consistent estimator of the parameter
θ if Y converges stochastically to a parameter θ as n approaches infinity. If ∈ is an
arbitrarily small positive number when Y is consistent, then.

lim
n→∞ P(|Y − θ | ≤∈) = 1 (3.3)

In other words, we would like our estimators tend towards the true value when
the sample size n closes to infinity or to a very large number. It can be shown that
this will happen if the estimator Y is either unbiased or asymptotically unbiased and
also has a variance that tends to zero as n increases.

Example 3.1 Let X be a life time with mean μ which is unknown. One can easily
show that the statistic.

h(X1, X2, . . . , Xn) =
∑n

i=1 Xi

n

is unbiased and a consistent of μ.

Definition 3.3 If the limiting distribution of.
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√
n(Yn − θ)

a
∼ N (0, 1)

where Yn is an estimator of θ based on a sample of size n, the asymptotic efficiency
of Yn is defined as

AE = 1

a2 I (θ)
where I (θ) = − E

(
∂2 ln f

∂θ2

)

(3.4)

and f is the probability density function of the parent population. If AE = 1, the
sequence of estimators is said to be asymptotically efficient or best asymptotically
normal (BAN).

Definition 3.4 The statistic Y is said to be sufficient for θ if the conditional
distribution of X, given Y = y, is independent of θ.

Definition 3.5 The statistic Y will be called the minimum variance unbiased esti-
mator of the parameter θ if Y is unbiased and the variance of Y is less than or equal
to the variance of every other unbiased estimator of θ. An estimator that has the
property of minimum variance in large samples is said to be efficient.

In other words, among unbiased estimates of θ , the one that has smallest variance
is preferred. For the variance of any unbiased estimator Y of θ, we have the lower
limit

Var(Y ) ≥ 1

n I (θ)
(3.5)

where I (θ), defined by Eq. (3.4), is called the amount of information per observation
(also see Sect. 3.4).

Definition 3.5 is useful in finding a lower bound on the variance of all unbiased
estimators. In fact, a minimum variance unbiased estimator is one whose variance
is least for all possible choices of unbiased estimators. Let X be a random variable
of life time with mean μ which is unknown. Consider the following two statistics

h1(X1, X2, . . . , Xn) = 1

4
X1 + 1

2
X2 + 1

4
X3

and

h2(X1, X2, . . . , Xn) = 1

3
(X1 + X2 + X3)

We can easily show that both h1 and h2 give unbiased estimates of μ. However,
based on the unbiased estimates, we cannot tell which one is better, but we can tell
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which estimator is better by comparing the variances of both h1 and h2 estimators.
It is easy to see that var(h1) > var(h2), then h2 is a better estimator h1. Mainly, the
smaller the variance the better!

The mean squared error is also another criterion for comparing estimators by
combining the variance and the biased parts.

Definition 3.6 The mean squared error (MSE) is defined as the expected value of
the square of the deviation of the estimate from the parameter being estimated, and
is equal to the variance of the estimate plus the square of the bias. That is,

MSE = E
(
θ̂ − θ

)2 = var
(
θ̂
)

+ E
[
E
(
θ̂
)

− θ
]2 = var

(
θ̂
)

+ (bias)2.

Obviously, a small value of MSE is a desirable feature for an estimator. For
unbiased estimators case, seeking a smallMSE is identical to seeking a small variance
since the second term on the right hand side is equal to zero.

Example 3.2
Assume θ̂1 and θ̂2 are the two estimators of parameter θ. Suppose that

E
(
θ̂1

)
= 0.9θ ,E

(
θ̂2

)
= θ ,var(θ̂1) = 2, and var(θ̂2) = 3. Which estimator would

you prefer?
Solution: We have

MSE of θ1 = var
(
θ̂
)

+ (bias)2 = 2 + 0.01 θ2.

MSE of θ2 = var
(
θ̂
)

+ (bias)2 = 3 + 0 = 3.

Thus, if |θ | < 10 then θ̂1 would be prefered. If |θ | > 10 then θ̂2 is prefered.
We will later discuss how to establish a lower bound on the variance using an

inequality known as the Cramér-Rao inequality.We now discuss some basic methods
of parameter estimation.

3.3 Parameter Estimation

Once a distribution function is specified with its parameters, and data have been
collected, one is in a position to evaluate its goodness of fit, that is, how well it fits
the observed data. The goodness of fit is assessed by finding parameter values of
a model that best fits the data—a procedure called parameter estimation. There are
two general methods of parameter estimation. They are the methods of moments and
maximum likelihood estimate (MLE).
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3.3.1 The Method of Moments

The unknown distribution parameters usually can be estimated by their respective
moments, such as means, variances etc. In general, we can choose the simplest
moments to equate.

The expected value of a function g(X) under the distribution F(x) is given by

E(g(X)) =

⎧
⎪⎨

⎪⎩

∫ ∞

−∞
g(x) f (x)dx if X is continuous

∑n

i=0
g(xi )p(xi ) if X is discrete

(3.6)

The kth moment of F(x) is defined as follows:

μk = E(Xk) for k = 1, 2, . . . (3.7)

Obviously, when k = 1 it is the expected value of X, that is μ1 = E(X). When X
only assumes positive values and has a continuous pdf f (x) and cdf F(x), then

E(X) =
∞∫

0

x f (x)dx =
∞∫

0

⎛

⎝

x∫

0

dy

⎞

⎠ f (x)dx

=
∞∫

0

⎛

⎝

∞∫

y

f (x)dx

⎞

⎠dy =
∞∫

0

(1 − F(y))dy. (3.8)

The kth central moments around the mean, μc
k , is defined as follows:

μc
k = E[(X − μ1)

k] for k = 1, 2, . . . (3.9)

The 1st central moment is 0. The second central moment is exactly the variance
of F(x). That is,

μc
2 = E[(X − μ1)

2]. (3.10)

Example 3.3
Suppose that f (x) = λe−λx for x ≥ 0, λ >0. Then F(x) = 1 − e−λx and the
population mean (or the first moment) is.

μ1 =
∞∫

0

e−λxdx = 1

λ



3.3 Parameter Estimation 141

The sample mean is x̄ so the estimator λ̂ of λ that makes these two the same is

λ̂ = 1

x̄
= n

∑n
i=1 xi

Note that when X is discrete, assuming the values {1,2,…}, then we obtain

E(X) = 1 +
∞∑

i=1

[1 − F(i)].

Example 3.4
For a normal distribution with two unknown parameters pdf, i.e. N (μ, σ 2).

f (x) = 1

σ
√
2π

e− 1
2 (

x−μ

σ )
2 − ∞ < x < ∞

Then the first and second moments about the mean of the sample are

μ1 = x̄ =
∑n

i=1 xi
n

and

μc
2 = E[(X − μ1)

2] =

∑n
i=1 (xi − x̄)2

n
.

For the population of corresponding moments are

μ1 = μ and μc
2 = σ 2.

So the method of moments estimators are

μ̂ = x̄ and σ̂ 2 =
∑n

i=1 (xi − x̄)2

n
.

3.3.2 Maximum Likelihood Estimation Method

The method of maximum likelihood estimation (MLE) is one of the most useful
techniques for derivingpoint estimators.As a lead-in to thismethod, a simple example
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will be considered. The assumption that the sample is representative of the population
will be exercised both in the example and later discussions.

Example 3.5
Consider a sequence of 25Bernoulli trials (binomial situation)where each trial results
in either success or failure. From the 25 trials, 6 failures and 19 successes result. Let
p be the probability of success, and 1–p the probability of failure. Find the estimator
of p, p̂, which maximizes that particular outcome.

Solution: The sample density function can be written as

g(19) =
(
25

19

)

p19(1 − p)6.

The maximum of g(19) occurs when

p = p̂ = 19

25

so that

g

(

19|p = 19

25

)

≥ g

(

19|p �= 19

25

)

Now g(19) is the probability or “likelihood” of 6 failures in a sequence of 25 trials.
Select p = p̂ = 19

25 as the probability or likelihood maximum value and, hence, p̂ is
referred to as the maximum likelihood estimate. The reason for maximizing g(19)
is that the sample contained six failures, and hence, if it is representative of the
population, it is desired to find an estimate which maximizes this sample result. Just
as g(19) was a particular sample estimate, in general, one deals with a sample density:

f (x1, x2, . . . , xn) = f (x1; θ) f (x2; θ) · · · f (xn; θ) (3.11)

where x1, x2, …, xn are random, independent observation from a population with
density function f (x). For the general case, it is desired to find an estimate or
estimates,θ̂1, θ̂2, . . . , θ̂m (if such exist) where

f (x1, x2, . . . , xn; θ1, θ2, . . . , θm) > f (x1, x2, . . . , xn; θ ′1, θ ′2, . . . , θ ′m) (3.12)

Notation θ ’1, θ ’2,…, θ ’n refers to any other estimates different than θ̂1, θ̂2, . . . , θ̂m .
Once data have been collected and the likelihood function of amodel given the data

is determined, one is in a position to make statistical inferences about the population,
that is, the probability distribution that underlies the data.We are interested in finding
the parameter value that corresponds to the desired probability distribution. The
principle of maximum likelihood estimation (MLE), originally developed by R. A.
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Fisher in the 1920s, states that the desired probability distribution is the one that
makes the observed data “most likely,” which means that one must seek the value of
the parameter vector that maximizes the likelihood function.

Let us now discuss the method ofMLE. Consider a random sample X1, X2,…, Xn

from a distribution having pdf f (x; θ ). This distribution has a vector θ = (θ1, θ2, …,
θm)’of unknown parameters associated with it, where m is the number of unknown
parameters. Assuming that the random variables are independent, then the likelihood
function, L(X; θ ), is the product of the probability density function evaluated at each
sample point:

L(X, θ) =
n∏

i=1

f (Xi ; θ) (3.13)

where X = (X1, X2, …, Xn). The maximum likelihood estimator θ̂ is found by
maximizing L(X; θ ) with respect to θ. In practice, it is often easier to maximize
ln[L(X;θ )] to find the vector of MLEs, which is valid because the logarithm function
is monotonic. In other words, the maximum of L(X; θ ) will occur at the same value of
θ as that for ln[L(X; θ )]. The logarithm turns the multiplication of terms like f (Xi; θ )
into the addition of ln f (Xi; θ ). Thus, the log likelihood function, denoted as lnL(θ ),
is given by

ln L(θ) =
n∑

i=1

ln f (Xi ; θ) (3.14)

and is asymptotically normally distributed since it consists of the sum of n indepen-
dent variables and the implication of the central limit theorem. Since L(X; θ ) is a
joint probability density function for X1, X2, …, Xn, it must integrate equal to 1, that
is,

∞∫

0

∞∫

0

· · ·
∞∫

0

L(X; θ)dX = 1

Assuming that the likelihood is continuous, the partial derivative of the left-hand
side with respect to one of the parameters, θ i, yields

∂

∂θi

∞∫

0

∞∫

0

· · ·
∞∫

0

L(X; θ)dX =
∞∫

0

∞∫

0

· · ·
∞∫

0

∂

∂θi
L(X; θ)dX

=
∞∫

0

∞∫

0

· · ·
∞∫

0

∂ ln L(X; θ)

∂θi
L(X; θ)dX
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= E

[
∂ ln L(X; θ)

∂θi

]

= E[Ui (θ)] for i = 1, 2, . . . ,m (3.15)

whereU(θ)= (U1(θ ),U2(θ ),…Un(θ ))’ is often called the score vector and the vector
U(θ ) has components

Ui (θ) = ∂[ln L(X; θ)]
∂θi

for i = 1, 2, . . . ,m (3.16)

which, when equated to zero and solved, yields the MLE vector θ. In other words,
the MLE vector θ satisfy

∂[ln L(X; θ)]
∂θi

= 0 for i = 1, 2, . . . ,m

This means that if more than one parameter is to be estimated, the partial deriva-
tives with respect to each parameter are then set equal to zero and the resulting
differential equations are solved for the estimates. It is worth to note that one needs
to make sure whether the solution is actually a maximum and not a minimum or a
point of inflection. Often, the maximum likehood estimators are biased.

Suppose that we can obtain a non-trivial function of X1, X2, …, Xn, say h(X1, X2,
…, Xn), such that, when θ is replaced by h(X1, X2, …, Xn), the likelihood function
L will achieve a maximum. In other words,

L(X, h(X)) ≥ L(X, θ)

for every θ. The statistic h(X1,X2, …, Xn) is called a maximum likelihood estimator
of θ and will be denoted as

θ̂ = h(x1, x2, . . . , xn)

The observed value of θ̂ is called the MLE of θ. In other words, the MLE of θ is

θ̂ = argmax
θ∈�

ln L(θ) (3.17)

where� is the parameter space.Based on the asymptoticmaximum likelihood theory,
the MLE θ̂ is consistent and asymtotically efficient with limiting distribution

√
n
(
θ̂ − θ0

)
→ N

(
0, I−1(θ0)

)
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where θ0 is the true parameter value and I is the Fisher information matrix. The
asymptotic variance matrix I−1(θ0) can be estimated consistently by an empirical
variance matrix of the influence functions evaluated at θ̂ .

In general, the mechanics for obtaining the MLE can be obtained as follows:
Step 1. Find the joint density function L(X, θ ).
Step 2. Take the natural log of the join density, ln L(θ ).
Step 3. Take the partial derivatives of ln L(θ ) (or L(θ )) with respect to each

parameter.
Step 4. Set partial derivatives to “zero”.
Step 5. Solve for parameter(s).

Example 3.6
A sample of size n is drawn, without replacement, from a population of size N
composed of k individuals of type 1 and (N-k) individuals of type 2. Assume that a
population size N is unknown. The number X of individuals of type 1 in the sample
is a hypergeometric random variable with pdf.

P[X = x] =

(
k

x

)(
N − k

n − x

)

(
N

n

) x = 0, 1, 2, . . . , n (3.18)

Obtain the MLE of N when k and n are known.
Solution: Let

P(x, N ) =

(
k

x

)(
N − k

n − x

)

(
N

n

) .

Then

P(x, N )

P(x, N − 1)
=

⎛

⎝
k

x

⎞

⎠

⎛

⎝
N − k

n − x

⎞

⎠

⎛

⎝
N

n

⎞

⎠

⎛

⎝
k

x

⎞

⎠

⎛

⎝
N − k − 1

n − x

⎞

⎠

⎛

⎝
N − 1

n

⎞

⎠

.

After simplifications, we obtain
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P(x, N )

P(x, N − 1)
= N 2 − kN − nN + kn

N 2 − kN − nN + xN
.

Note that P(x, N) is greater than, equal to, or less than P(x, N−1) according to kn
is greater than, equal to, or less than xN, or equivalently, as N is less than, equal to,
or greater than kn/x. We can now consider the following two cases.

Case 1: when kn
x is not an integer.

The sequence {P(x,N), N= 1, 2,…} is increasing when N < kn
x and is decreasing

when N > kn
x . Thus, the maximum value of P(x, N) occurs when N = ⌊

kn
x

⌋
which

is the largest integer less than kn
x .

Case 2: when kn
x is an integer.

In this case the maximum value of P(x, N) occurs when both P(x,N) and P(x,
N−1) are equal. This implies that

kn

x
− 1 =

⌊
kn

x

⌋

as an estimate of the population. Therefore, the MLE of N is N̂ = ⌊
kn
x

⌋
where �y�

denotes the greatest integer less than y.

Example 3.7
Let X1, X2, …, Xn be a random sample from the exponential distribu- tion with pdf.

f (x; λ) = λe−λx x > 0, λ > 0

The joint pdf of X1, X2, …, Xn, is given by

L(X, λ) = λne−λ
∑n

i=1 xi

and

ln L(λ) = n ln λ − λ

n∑

i=1

xi

The function lnL can be maximized by setting the first derivative of lnL, with
respect to λ, equal to zero and solving the resulting equation for λ. Therefore,

∂ ln L

∂λ
= n

λ
−

n∑

i=1

xi = 0

This implies that
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λ̂ = n
∑n

i=1 xi
.

The observed value of λ̂ is the MLE of λ.

Example 3.8
Let X1, X2, …, Xn, denote a random sample from the normal distribution N(μ, σ 2)
with unknown mean μ and known σ 2 where pdf is.

f (x;μ) = 1

σ
√
2π

e− (x−μ)2

2σ2 − ∞ < x < ∞, μ ∈ (−∞,∞). (3.19)

Find the maximum likelihood estimator of μ.
Solution: The likelihood function of a sample of size n is

L
(
x
∼

, μ
)

=
n∏

i=1

f (xi ;μ) =
n∏

i=1

1
(
σ
√
2π

)e− (xi−μ)2

2σ2

= 1
(
σ
√
2π

)n e
− 1

2σ2

∑n
i=1 (xi−μ)2

.

The log of likelihood function is

ln L = −n ln(
√
2πσ) − 1

2σ 2

n∑

i=1

(xi − μ)2.

Thus we have

∂ ln L

∂μ
= 1

σ 2

n∑

i=1

(xi − μ) = 0.

Solving the above equation, we obtain

μ̂ =
∑n

i=1 xi
n

= x̄ .

Thus, the MLE of μ is x̄ .

Example 3.9
In an exponential censored case, the non-conditional joint pdf that r items have failed
is given by.

f (x1, x2, . . . , xr ) = λr e−λ
∑r

i=1 xi (r failed items) (3.20)
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and the probability distribution that (n−r) items will survive is

P(Xr+1 > t1, Xr+2 > t2, . . . , Xn > tn−r ) = e−λ
∑n−r

j=1 t j

Thus, the joint density function is

L(X, λ) = f (x1, x2, . . . , xr ) P(Xr+1 > t1, . . . , Xn > tn−r )

= n!
(n − r)!λ

r e−λ(
∑r

i=1 xi+
∑n−r

j=1 t j)

Let

T =
r∑

i=1

xi +
n−r∑

j=1

t j (3.21)

then

ln L = ln

(
n!

(n − r)!
)

+ r ln λ − λT

and

∂ ln L

∂λ
= r

λ
− T = 0.

Hence,

∧
λ = r

T
. (3.22)

Note that with the exponential, regardless of the censoring type or lack of
censoring, the MLE of λ is the number of failures divided by the total operating
time.

Example 3.10
Let X1, X2, …, Xn represent a random sample from the distribution with pdf.

f (x; θ) = e−(x−θ) for θ ≤ x ≤ ∞ and − ∞ < θ < ∞. (3.23)

The likelihood function is given by

L(θ; X) =
n∏

i=1

f (xi ; θ) for θ ≤ xi ≤ ∞ all i
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=
n∏

i=1

e−(xi−θ) = e−∑n
i=1 xi+nθ .

For fixed values of x1, x2,…, xn, we wish to find that value of θ which maximizes
L(θ; X). Here we cannot use the techniques of calculus to maximize L(θ; X). Note
that L(θ; X) is largest when θ is as large as possible. However, the largest value of θ

is equal to the smallest value of Xi in the sample. Thus, θ̂ = min{Xi } 1 ≤ i ≤ n.

Example 3.11
Let X1, X2, …, Xn, denote a random sample from the normal distribution N(μ,σ 2).
Then the likelihood function is given by.

L(X, μ, σ 2) =
(

1

2π

) n
2 1

σ n
e− 1

2σ2

∑n
i=1 (xi−μ)2

and

ln L = −n

2
log(2π) − n

2
log σ 2 − 1

2σ 2

n∑

i=1

(xi − μ)2.

Thus we have

∂ ln L

∂μ
= 1

σ 2

n∑

i=1

(xi − μ) = 0

∂ ln L

∂σ 2
= − n

2σ 2
− 1

2σ 4

n∑

i=1

(xi − μ)2 = 0.

Solving the two equations simultaneously, we obtain

μ̂ =
∑n

i=1 xi
n

and σ̂ 2 = 1

n

n∑

i=1

(xi − x̄)2. (3.24)

Note that the MLEs, if they exist, are both sufficient and efficient estimates. They
also have an additional property called invariance, i.e., for an MLE of θ, then μ (θ )
is the MLE of μ (θ ). However, they are not necessarily unbiased, i.e., E(θ̂) = θ . The
point in fact is σ 2:

E(σ̂ 2) =
(
n − 1

n

)

σ 2 �= σ 2

Therefore, for small n, σ 2 is usually adjusted for its bias and the best estimate of
σ 2 is
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∧
σ 2 =

(
1

n − 1

) n∑

i=1

(xi − x̄)2

Sometimes it is difficult, if not impossible, to obtain maximum likelihood esti-
mators in a closed form, and therefore numerical methods must be used to maximize
the likelihood function. For illustration see the following example.

Example 3.12
Suppose that X1,X2, …, Xn is a random sample from the Weibull distribution with
pdf.

f (x, α, λ) = αλxα−1e−λxα

(3.25)

The likelihood function is

L(X, α, λ) = αnλn

(
n∏

i=1

xα−1
i

)

e−λ
∑n

i=1 x
α
i

Then

ln L = n logα + n log λ + (α − 1)
n∑

i=1

log xi − λ

n∑

i=1

xα
i

∂ ln L

∂α
= n

α
+

n∑

i=1

log xi − λ

n∑

i=1

xα
i log xi = 0

∂ ln L

∂λ
= n

λ
−

n∑

i=1

xα
i = 0

As noted, solutions of the above two equations for α and λ are extremely difficult
and require either graphical or numerical methods.

Example 3.13
Let X1, X2, …, Xn be a random sample from the gamma distribution with pdf.

f (x, λ, α) = λ(α+1)xαe−λx

(α!)n (3.26)

then the likelihood function and log of the likelihood function, respectively, are

L(X, λ, α) =
λn(α+1)

n∏

i=1
xα
i e−λ

∑n
i=1 xi

(α!)n
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ln L = n(α + 1) log λ + α

n∑

i=1

log xi−λ

n∑

i=1

xi − n log(α!).

Taking the partial derivatives, we obtain

∂ ln L

∂α
= n log λ +

n∑

i=1

log xi−n
∂

∂α
[logα!] = 0

∂ ln L

∂λ
= n(α + 1)

λ
−

n∑

i=1

xi = 0 (3.27)

The solutions of the two equations at Eq. (3.27) for α and λ are extremely difficult
and require either graphical or numerical methods.

Example 3.14
Let t1, t2,…, tn be failure times of a random variable having the loglog distribution,
also known as Pham distribution (Pham 2002), with two parameters a and α as
follows (see also Eq. (2.82), Chap. 2):

f (t) = α ln(a) tα−1 at
α

e1−at
α

for t > 0, α > 0, a > 1 (3.28)

From Chap. 2, Eq. (2.83), the Pham cdf is given by:

F(t) = 1 − e1−at
α

We now estimate the values of a and α using the MLE method. From Eq. (3.28),
the likelihood function is

L(a, α) =
n∏

i=1

α ln a · tα−1
i e1−at

α
i at

α
i

= αn(ln a)n

(
n∏

i=1

ti

)α−1

a
∑n

i=1 t
α
i en−∑n

i=1 a
tαi

The log likelihood function is

log L(a, α) = n logα + n ln(ln a) + (α − 1)

(
n∑

i=1

ln ti

)

+ ln a ·
n∑

i=1

tαi + n −
n∑

i=1

at
α
i (3.29)
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The first derivatives of the log likelihood function with respect to a and α are,
respectively,

∂

∂a
log L(a, α) = n

a ln a
+ 1

a
·

n∑

i=1

tαi −
n∑

i=1

tαi a
tαi −1 (3.30)

and

∂

∂α
log L(a, α) = n

α
+

n∑

i=1

ln ti + ln a
n∑

i=1

ln ti t
α
i

−
n∑

i=1

tαi a
tαi ln a ln ti (3.31)

Setting eqs. (3.30) and (3.31) equal to zero, we can obtain the MLE of a and α by
solving the following simultaneous equations:

n
ln a +

n∑

i=1
tαi −

n∑

i=1
tαi a

tαi = 0

n
α

+
n∑

i=1
ln ti + ln a ·

n∑

i=1
ln ti · tαi

(
1 − at

α
i
) = 0

After rearrangements, we obtain

ln a
n∑

i=1
tαi

(
at

α
i − 1

) = n

ln a ·
n∑

i=1
ln ti · tαi · (atαi − 1

) − n
α

=
n∑

i=1
ln ti

Example 3.15
Let t1, t2,…, tn be failure times of a random variable having the vtub-shaped failure
rate function. The probability density function f (t) of its vtub-shaped failure rate is
given by (see Eq. (1) in Chap. 2):

f (t) =
(
at ln(bt) + a

b

)
e−{at[ t

2 ln(bt) − t
4 + 1

b ]} for t > 0, a > 0, b > 0

We now estimate the two unknown parameters a and b using the MLE method.
From the pdf above, the likelihood function is given by

L(a, b) =
n∏

i=1

(
ati ln(bti ) + a

b

)
e
−a

∑n
i=1 ti

[
ti
2 ln(bti )− ti

4 + 1
b

]

.

The log likelihood function is
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ln L(a, b) =
n∑

i=1

ln
(
ati ln(bti ) + a

b

)

− a
n∑

i=1

ti

[
ti
2
ln(bti ) − ti

4
+ 1

b

]

.

By taking the first derivatives of the log likelihood function above with respect to
a and b and equate them to zero, and after some algebra, the MLE of a and b can be
easily obtained by solving the following equations:

⎧
⎨

⎩

a = 2b
∑n

i=1
bxi−1

(bxi ln(bxi )+1)∑n
i=1 xi (bxi−2)

∑n
i=1

bxi ln(bxi )+1
abxi ln(bxi )+a = ∑n

i=1 xi
[ xi
2 ln(bxi ) − xi

4 + 1
b

]
.

Example 3.16
Suppose that X1, X2, …, Xn are independent random variable, each with the uniform
distribution on [a − d, a + d] where a is known and d is positive and unknown. Find
the maximum likelihood estimator of d.

Solution: For i = 1,2,…, n, the pdf of Xi is given by

f (d, xi ) =
⎧
⎨

⎩

1

2d
if a − d ≤ xi ≤ a + d

0 otherwise.
(3.32)

The likelihood function is

L(d) =

⎧
⎪⎨

⎪⎩

(
1

2d

)n

if a − d ≤ x1, x2, . . . , xn ≤ a + d

0 otherwise.

To maximize L(c,d) is the same as to minimize (2d)n . In other words, L(d) will be
maximized by the smallest possible d with L(d) > 0. This implies for all i = 1,2,…,n

d ≥ −xi + a and d ≥ xi − a. Thus, d̂ = max
1≤i≤n

{|xi − a|}.

3.4 Invariance and Lower Bound on the Variance

In this section we discuss some properties of MLEs and how to establish a lower
bound on the variance using an inequality known as the Cramér-Rao inequality.

Theorem 3.1 (Invariance Principle)
If θ̂ is the MLE of parameter θ then g(θ̂ ) is the MLE of parameter g(θ).
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In other words, if the likelihood L(X, θ) is maximized at the point.
θ̂ = h(x1, x2, . . . , xn) then the function L(X, g(θ)) is maximized at the point

g
(
θ̂
)

= g(h(x1, x2, . . . , xn)).

Example 3.17

If θ̂ is the MLE of the variance σ 2 then
√

θ̂ is the MLE of the standard deviation σ.

Theorem 3.2 (Likelihood Principle) Consider two sets of data, x and y, obtained
from the same population, although possibly according to different sampling plans.
If the ratio of their likelihoods, L1(x,θ)

L2(y,θ)
, does not depend on θ, then both data sets

provide the same information about the parameter θ and consequently should lead
to the same conclusion about θ.

Example 3.18
Assume that we want to estimate θ, the probability of success of Bernoulli trials. One
experimental design consists of fixing n, the number of observations, and recording
the number of successes. If we observe x successes, the likelihood is.

L1(x, θ) =
(
n

x

)

θ x (1 − θ)n−x .

Suppose that one decide to fix x and take observations until x successes are
recorded. The probability that the observations will end on the nth trial is given
by negative binomial distribution, and the likelihood is

L2(n, θ) =
(
n − 1

x − 1

)

θ x (1 − θ)n−x .

Note that in the first case x was random and n fixed; in the second it is the other
way around. Thus, the ratio of these two likelihoods is given by

L1(x, θ)

L2(n, θ)
=

(
n

x

)

(
n − 1

x − 1

) ,

which does not depend on the parameter θ. The MLE of θ is θ̂ = x
n in either case.

Hence the additional information that in the second case the last experiment led to
success does not affect our estimate of the parameter θ.
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Theorem 3.3 (Cramér-Rao inequality) Let X1, X2, …, Xn denote a random sample
from a distribution with pdf f (x; θ ) for θ1 < θ < θ2, where θ1 and θ2are known. Let
Y = h(X1, X2, …, Xn) be an unbiased estimator of θ. The lower bound inequality on
the variance of Y, Var(Y), is given by.

Var(Y ) ≥ 1

nE

{[
∂ ln f (x;θ)

∂θ

]2
} = − 1

nE
(

∂2 ln f (x;θ)

∂θ2

) (3.33)

or

Var(Y ) ≥ 1

n I (θ)
(3.34)

where

I (θ) = E

{[
∂ ln f (x; θ)

∂θ

]2
}

also known as Fisher’s Information (see Problem 15).

Theorem 3.4 An estimator θ̂ is said to be asymptotically efficient if
√
nθ̂ has a

variance that approaches the Cramér-Rao lower bound for large n, that is,

lim
n→∞ Var(

√
nθ̂ ) = − 1

nE
(

∂2 ln f (x;θ)

∂θ2

) . (3.35)

Example 3.19
Let X1, X2, …, Xn denote a random sample from the Bernoulli distribution with a
pdf.

f (x) = px (1 − p)1−x x = 0, 1 0 ≤ p ≤ 1

where p is the probability of success in each trial.
Let Y represents the number of successes in n independent trials, that is, Y =

n∑

i = 1
Xi then we can easily show that W = Y

n is an unbiased estimator of p. We now

determine ifW is the minimum variance unbiased estimator of p. The variance ofW
is given by

V (W ) = 1

n2
V (Y ) = 1

n2
np(1 − p) =

p(1 − p)

n
.
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To obtain the lower bound of the Cramer-Rao inequality, we need to compute the
following

ln f = x ln p + (1 − x)ln(1 − p)

∂

∂p
ln f = x

p
− (1 − x)

(1 − p)

∂2

∂p2
ln f = − x

p2
− (1 − x)

(1 − p)2
.

Then

E

{
∂2

∂p2
ln f

}

= − p

p2
− (1 − p)

(1 − p)2
= − 1

p(1 − p)
.

Thus,

Var(W ) ≥ − 1

nE
(

∂2 ln f (x;θ)

∂θ2

)

= − 1

n
(
− 1

p(1−p)

) = p(1 − p)

n
= Var(W ).

This means that W is the

minimum variance unbiased estimator of p.

Example 3.20
Let T 1,T 2, …, Tn denote a random sample from an exponential distribution with the
mean μ and its pdf is given by.

f (t) = 1

μ
e− t

μ t ≥ 0, μ > 0.

Note that, from example 3.5, the MLE of μ is 	
μ =

n∑

i=1
Ti

n . Define Y =
∑n

i=1 Ti
n . Is

Y the minimum variance unbiased estimator of μ?
The variance of Y is given by

Var(Y ) = Var

(∑n
i=1 Ti
n

)

= 1

n2

n∑

i=1

Var(Ti ) = 1

n2
(
nμ2) = μ2

n
.

We now compute the lower bound using the Cramer-Rao inequality.

ln f = − lnμ − t

μ

∂ ln f

∂μ
= − 1

μ
+ t

μ2
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∂2 ln f

∂μ2
= 1

μ2
− 2t

μ3
.

Then

E

{
∂2 ln f

∂μ2

}

= 1

μ2
− 2E(T )

μ3
= 1

μ2
− 2μ

μ3
= − 1

μ2
.

Thus,

Var(Y ) ≥ − 1

nE
(

∂2 ln f (x;θ)

∂θ2

)

= − 1

n
(
− 1

μ2

) = μ2

n
= Var(Y ).

This shows that Y is the minimum variance unbiased estimator of μ.

3.5 Maximum Likelihood Estimation with Censored Data

Censored data arises when an individual’s life length is known to occur only in a
certain period of time. In other words, a censored observation contains only partial
information about the random variable of interest. In this section, we consider two
types of censoring. The first type is called Type-I censoring where the event is
observed only if it occurs prior to some pre-specified time. The second type is Type-
II censoring in which the study continues until the failure of the first r units (or
components), where r is some predetermined integer (r < n).

Examples of Type-II censoring are often used in testing of equipment life. Here
items are put on test at the same time, and the test is terminated when r of the n items
have failed and without replacement. Such an experiment may, however, save time
and resources because it could take a very long time for all items to fail. Both Type-I
and Type-II censoring arise in many reliability applications.

For example, there is a batch of transistors or tubes; we put them all on test at t
= 0, and record their times to failure. Some transistors may take a long time to burn
out, and we will not want to wait that long to end the experiment. Therefore, we
might stop the experiment at a pre-specified time tc, in which case we have Type-I
censoring, or we might not know beforehand what value of the fixed censoring time
is good so we decide to wait until a pre-specified number of units have failed, r, of
all the transistors has burned out, in which case we have Type-II censoring.

Censoring times may vary from individual to individual or from application to
application. We now discuss a generalized censoring times case, call a multiple-
censored data.
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3.5.1 Parameter Estimate with Multiple-Censored Data

A sample of n units are drawn at random and put on test with a pdf f and cdf F. The
likelihood function for the multiple-censored data is given by

L = f (t1, f , . . . , tr, f , t1,s, . . . , tm,s) = n!
(n − r)!

r∏

i=1

f (ti, f )
m∏

j=1

[1 − F(t j,s)] (3.36)

where f (.) is the density function and F(.) is the distribution function. There are r
failures at times t1, f , . . . , tr, f and m units (here, m = n s− r) with censoring times
t1,s, . . . , tm,s . Note that this includes Type-I censoring by simply setting ti,f = ti, n
and tj,s = t0 in the likelihood function in Eq. (3.36). Also, the likelihood function
for Type-II censoring is similar to Type-I censoring except tj,s = tr in Eq. (3.36). In
other words, the likelihood function for the first r observations from a sample size n
drawn from the model in both Type-I and Type-II censoring is given by

L = f (t1,n, . . . , tr,n) = n!
(n − r)!

r∏

i=1

f (ti,n) [1 − F(t∗)]n−r (3.37)

where t∗ = t0, the time of cessation of the test for Type-I censoring and t∗ = tr , the
time of the rth failure for Type-II censoring.

Example 3.21
Consider a two-parameter probability density distribution with multiple-censored
data and distribution function with failure rate bathtub shape, as given by (Chen
2000):

f (t) = λβtβ−1 exp
[
tβ + λ(1 − et

β

)
]
, t, λ, β > 0 (3.38)

and

F(t) = 1 − exp
[
λ(1 − et

β

)
]
, t, λ, β > 0 (3.39)

respectively. Substituting the functions f (t) and F(t) in Eqs. (3.38) and (3.39) into
Eq. (3.37), we obtain the logarithm of the likelihood function:

ln L = ln
n!

(n − r)! + r ln λ + r ln β +
r∑

i=1

(β − 1) ln ti

+ (m + r)λ +
r∑

i=1

tβi −
⎛

⎝
r∑

i=1

λet
β

i +
m∑

j=1

λet
β

j

⎞

⎠. (3.40)
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The function lnL can be maximized by setting the partial derivative of lnL with
respect to λ and β, equal to zero and solving the resulting equations simul-taneously
for λ and β. Therefore, we obtain

∂ ln L

∂λ
= r

λ
+ (m + r) −

r∑

i=1

et
β

i −
m∑

j=1

et
β

j ≡ 0

∂ ln L

∂β
= r

β
+

r∑

i=1

ln ti +
r∑

i=1

tβi ln ti

− λ

⎡

⎣
r∑

i=1

et
β

i tβi ln ti +
m∑

j=1

et
β

j tβj ln t j

⎤

⎦ ≡ 0.

This implies that

λ̂ = r
(
∑r

i=1 e
t β̂i + ∑m

j=1 e
t β̂j

)

− m − r
(3.41)

and β̂ is the solution of

r

β̂
+

r∑

i=1

ln ti +
r∑

i=1

t β̂i ln ti

=
r

(
∑r

i=1 e
t β̂i + ∑m

j=1 e
t β̂j

)

− m − r

⎡

⎣
r∑

i=1

et
β̂

i t β̂i ln ti +
m∑

j=1

et
β̂

j t β̂j ln t j

⎤

⎦ (3.42)

We now discuss two special cases as follows.
Case I: Type-I or Type-II Censoring Data.
From Eq. (3.37), the likelihood function for the first r observations from a sample

size n drawn from the model in both Type-I and Type-II censoring is

L = f (t1,n, . . . , tr,n) = n!
(n − r)!

r∏

i=1

f (ti,n) [1 − F(t∗)]n−r

where t∗ = t0, the time of cessation of the test for Type-I censoring and t∗ = tr , the
time of the rth failure for Type-II censoring Eqs. (3.41) and (3.42) become

λ̂ = r
∑r

i=1 e
t β̂i + (n − r)et

β̂∗ − n
. (3.43)
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r

β̂
+

r∑

i=1

ln ti +
r∑

i=1

t β̂i ln ti

= r
∑r

i=1 e
t β̂i + (n − r)et

β̂∗ − n

⎡

⎣
r∑

i=1

et
β̂

i t β̂i ln ti +
m∑

j=1

et
β̂

j t β̂j ln t j

⎤

⎦. (3.44)

Case II: Complete Censored Data.
Simply replace r with n in Eqs. (3.41) and (3.42) and ignore the t j portions. The

maximum likelihood equations for the λ and β are given by

λ̂ = n
∑n

i=1 e
t β̂i − n

(3.45)

n

β̂
+

n∑

i=1

ln ti +
n∑

i=1

t β̂i ln ti = n
∑n

i=1 e
t β̂i − n

×
n∑

i=1

et
β̂

i t β̂i ln ti . (3.46)

3.5.2 Confidence Intervals of Estimates

The asymptotic variance-covariance matrix of the parameters (λ and β) is obtain- ed
by inverting the Fisher information matrix

Ii j = E

[

− ∂2L

∂θi∂θ j

]

, i, j = 1, 2 (3.47)

where θ1, θ2 = λ or β (Nelson et al.1992). This leads to

[
Var(λ̂) Cov(λ̂, β̂)

Cov(λ̂, β̂) Var(β̂)

]

=
⎡

⎣
E
(
− ∂2 ln L

∂2λ
|λ̂,β̂

)
E
(
− ∂2 ln L

∂λ∂β
|λ̂,β̂

)

E
(
− ∂2 ln L

∂β∂λ
|λ̂,β̂

)
E
(
− ∂2 ln L

∂2β
|λ̂,β̂

)

⎤

⎦

−1

(3.48)

We can obtain an approximate (1–α)100% confidence intervals on parameter λ

and β based on the asymptotic normality of theMLEs (Nelson et al. 1992) as follows:

λ̂ ± Zα/2

√

Var(λ̂) and β̂ ± Zα/2

√

Var(β̂) (3.49)

where Zα/2 is upper percentile of standard normal distribution.
Equation Sect. 1.
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3.5.3 Applications

Consider a helicopter main rotor blade part code xxx-015-001-107 based on the
system database collected from October 1995 to September 1999 (Pham 2002). The
data set is shown in Table 3.1. In this application, we consider several distribution
functions including Weibull, lognormal, normal, and loglog distribution functions.
From Example 3.14, the Pham pdf (see Eq. 3.28) with parameters a and α is.

f (t) = α · ln a · tα−1 · atα · e1−at
α

for t > 0, α > 0, a > 0
and its corresponding log likelihood function (see Eq. 3.30) is

log L(a, α) = n logα + n ln(ln a) + (α − 1)

(
n∑

i=1

ln ti

)

+ ln a ·
n∑

i=1

tαi + n −
n∑

i=1

at
α
i

We next determine the confidence intervals for parameter estimates a and α. For the
log-likelihood function given in Eq. (3.30), we can obtain the Fisher information

matrix H as H =
[
h11 h12
h21 h22

]

where h11 = E
[
− ∂2 log L

∂a2

]

Table 3.1 Main rotor blade
data (hour)

1634.3 2094.3 3318.2

1100.5 2166.2 2317.3

1100.5 2956.2 1081.3

819.9 795.5 1953.5

1398.3 795.5 2418.5

1181 204.5 1485.1

128.7 204.5 2663.7

1193.6 1723.2 1778.3

254.1 403.2 1778.3

3078.5 2898.5 2943.6

3078.5 2869.1 2260

3078.5 26.5 2299.2

26.5 26.5 1655

26.5 3180.6 1683.1

3265.9 644.1 1683.1

254.1 1898.5 2751.4

2888.3 3318.2

2080.2 1940.1
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h12 = h21 = E

[

−∂2 log L

∂a ∂α

]

and h22 = E

[

−∂2 log L

∂α2

]

The variance matrix, V, can be obtained as follows:

V = [H ]−1 =
[

v11 v12

v21 v22

]

(3.50)

The variances of a and α are

Var(a) = v11 Var(α) = v22

One can approximately obtain the 100(1–β)% confidence intervals for a and α

based on the normal distribution as [â − z β

2

√
v11, â + z β

2

√
v11] and [α̂ − z β

2

√
v22,

α̂ + z β

2

√
v22], respectively, where vi j is given in Eq. (3.50) and zβ is (1-β/2)100%

of the standard normal distribution. After we obtain â and α̂, the MLE of reliability
function can be computed as

R̂(t) = e1−ât
α̂

Let us define a partial derivative vector for reliability R(t) as

v[R(t)] =
[
∂R(t)

∂a

∂R(t)

∂α

]

then the variance of R(t) can be obtained as follows:

Var [R(t)] = v[R(t)] · V · (v[R(t)])T (3.51)

where V is given in Eq. (3.50).
One can approximately obtain the (1−β)100% confidence interval for R(t) as

[
R̂(t) − zβ

√
Var [R(t)], R̂(t) + zβ

√
Var [R(t)],

]
.

The MLE parameter estimations of Pham distribution using the data set in Table
3.1 are given as follows:

α̂ = 1.1075 Var[α̂] = 0.0162

95% CI for α̂ : [0.8577, 1.3573]
â = 1.0002 Var[â] = 2.782e−8

95%CI for a: [0.9998, 1.0005]
MTTF = 1608.324 MRL(t = MTTF) = 950.475
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Figure 3.1 shows the loglog reliability and its 95% confidence interval of main
rotor blade, respectively. Figure 3.2 shows the reliability comparisons between the
normal, the lognormal, Weibull, and the loglog distributions for the main rotor blade
data set.
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3.6 Statistical Change-Point Estimation Methods

The change-point problem has been widely studied in reliability applications such
as biological sciences, survival analysis, and environmental statistics.

Assume there is a sequence of random variables X1, X2, . . . , Xn , that represent
the inter-failure times and exists an index change-point τ , such that X1, X2, . . . , Xτ

have a common distribution F with density function f (t) and Xτ+1, Xτ+2, . . . , Xn

have the distribution G with density function g(t), where F �= G. Consider the
following assumptions:

1. There is a finite unknown number of units, N, to put under the test.
2. At the beginning, all of the units have the same lifetime distribution F. After τ

failures are observed, the remaining (N−τ ) items have the distribution G. The
change-point τ is assumed unknown.

3. The sequence {X1, X2, . . . , Xτ } is statistically independent of the sequence
{Xτ+1, Xτ+2, . . . , Xn}.

4. The lifetime test is performed according to the Type-II censoring plan in which
the number of failures, n, is pre-determined.

Note that in hardware reliability testing, the total number of units to put on the test
N can be determined in advance. But in software, the parameter N can be defined as
the initial number of faults, and therefore it makes more sense for it to be an unknown
parameter. Let T1, T2, . . . , Tn be the arrival times of sequential failures. Then

T1 = X1

T2 = X1 + X2

...

Tn = X1 + X2 + . . . Xn (3.52)

The failure times T1, T2, . . . , Tτ are the first τ order statistics of a sample of size
N from the distribution F. The failure times Tτ+1, Tτ+2, . . . , Tn are the first (n−τ )
order statistics of a sample of size (N−τ ) from the distribution G.

Example 3.22
The Weibull change-point model of given life time distributions F and G with
parameters (λ1, β1) and (λ2, β2), respectively, can be expressed as follows:

F(t) = 1 − exp
(−λ1t

β1
)

(3.53)

G(t) = 1 − exp
(−λ2t

β2
)
. (3.54)

Assume that the distributions belong to parametric families {F(t |θ1 ) , θ1 ∈ �1}
and {G(t |θ2 ), θ2 ∈ �2}. Assume T1, T2, . . . , Tτ are the first τ order statistics of a
sample with sizeN from the distribution {F(t |θ1 ) , θ1 ∈ �1} and Tτ+1, Tτ+2, . . . , Tn
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are the first (n−τ ) order statistics of a sample of size (N−τ ) from the distribu-
tion {G(t |θ2 ), θ2 ∈ �2} where N is unknown. The log likelihood function can be
expressed as follows (Zhao 2003):

L(τ, N , θ1, θ2|T1, T2, . . . , Tn)

=
n∑

i=1

(N − i + 1) +
τ∑

i=1

f (Ti |θ1)

+
n∑

i=τ+1

g(Ti |θ2) + (N − τ) log(1 − F(Tτ |θ1))

+ (N − n) log(1 − G(Tn|θ2)). (3.55)

If the parameter N is known where hardware reliability is commonly considered,
then the likelihood function is given by

L(τ, θ1, θ2|T1 , T2, . . . , Tn)

=
τ∑

i=1

f (Ti |θ1) +
n∑

i=τ+1

g(Ti |θ2)

+ (N − τ) log(1 − F(Tτ |θ1) ) + (N − n) log(1 − G(Tn|θ2) ).

The MLE of the change-point value τ̂ and (N̂ , θ̂1, θ̂2) can be obtained by taking
partial derivatives of the log likelihood function in Eq. (3.55) with respect to the
unknown parameters that maximizes the function. It should be noted that there is no
closed form for τ̂ but it can be obtained by calculating the log likelihood for each
possible value of τ , 1 ≤ τ ≤ (n − 1), and selecting as τ̂ the value that maximizes
the log-likelihood function.

3.6.1 Application: A Software Model with a Change Point

In this applicationwe examine the casewhere the sample sizeN is unknown.Consider
a software reliability model developed by Jelinski and Moranda (1972), often called
the Jelinski-Moranda model. The assumptions of the model are as follows:

1. There are N initial faults in the program.
2. A detected fault is removed instantaneously and no new fault is introduced.
3. Each failure caused by a fault occurs independently and randomly in time

according to an exponential distribution.
4. The functions F andG are exponential distributions with failure rate parameters

λ1 and λ2, respectively.
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Based on the assumptions, the inter-failure times X1, X2, . . . , Xn are indepen-
dently exponentially distributed. Specifically,Xi = Ti − Ti−1,i = 1, 2, . . . τ, are
exponen-tially distributed with parameter λ1(N − i + 1) where λ1 is the initial fault
detection rate of the first τ failures and X j = Tj − Tj−1, j = τ + 1, τ + 2, . . . n, are
exponentially distributed with parameter λ2(N − τ − j + 1) where λ2 is the fault
detection rate of the first (n− τ) failures. If λ1 = λ2 it means that each fault removal
is the same and the change-point model becomes the Jelinski-Moranda software
reliability model (Jelinski and Moranda 1972).

The MLEs of the parameters (τ, N , λ1, λ2) can be obtained by solving the
following equations simultaneously:

λ̂1 = τ
∑τ

i=1

(
N̂ − i + 1

)
xi

(3.56)

λ̂2 = (n − τ)
n∑

i=τ+1

(
N̂ − i + 1

)
xi

(3.57)

n∑

i=1

1

(N̂ − i + 1)
= λ̂1

τ∑

i=1

xi + λ̂2

n∑

i=τ+1

xi . (3.58)

To illustrate the model, we use the data set as in Table 3.2 to obtain the unknown
parameters (τ, N , λ1, λ2) using Eqs. (3.56)–(3.58). The data in Table 3.2 (Musa et al.
1987) shows the successive inter-failure times for a real-time command and control
system. The table reads from left to right in rows, and the recorded times are execution

Table 3.2 Successive inter-failure times (in seconds) for a real-time command system

3 30 113 81 115 9 2 91 112 15

138 50 77 24 108 88 670 120 26 114

325 55 242 68 422 180 10 1146 600 15

36 4 0 8 227 65 176 58 457 300

97 263 452 255 197 193 6 79 816 1351

148 21 233 134 357 193 236 31 369 748

0 232 330 365 1222 543 10 16 529 379

44 129 810 290 300 529 281 160 828 1011

445 296 1755 1064 1783 860 983 707 33 868

724 2323 2930 1461 843 12 261 1800 865 1435

30 143 108 0 3110 1247 943 700 875 245

729 1897 447 386 446 122 990 948 1082 22

75 482 5509 100 10 1071 371 790 6150 3321

1045 648 5485 1160 1864 4116
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Fig. 3.3 The log-likelihood function versus the number of failures

times, in seconds. There are 136 failures in total. Figure 3.3 plots the log-likelihood
function vs number of failures. The MLEs of the parameters (τ, N , λ1, λ2) with one
change-point are given by

τ̂ = 16, N̂ = 145, λ̂1 = 1.1 × 10−4, λ̂2 = 0.31 × 10−4.

If we do not consider a change-point in the model, the MLEs of the parameters N
and λ can be given as

N̂ = 142, λ̂ = 0.35 × 10−4.

From Fig. 3.3, we can observe that it is worth considering the change-points in
the reliability functions.

3.7 Goodness of Fit Tests

The problem at hand is to compare some observed sample distribution with a theo-
retical distribution. In fact, a practitioner often wonders how to test some hypoth-
esis about the distribution of a population. If the test is concerned with the agree-
ment between the distribution of a set of observed sample values and a theoretical
distribution, we call it a “test of goodness of fit".

The basic question in validating distribution models is whether the shape of the
fitted model corresponds to that of the data. To do that, we may just simply make a
direct comparison of the observed data with what we expect to see from the fitted
distribution model. In this section, two common tests of goodness of fit that will
be discussed are the Chi-square test, χ2, and the Kolmogorov-Smirnov (KS) test.
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Note that the chi-square test requires all cell frequencies to exceed 5, whereas this
restriction is no longer required for KS test because there is no need to classify the
observations in carrying out the KS test.

3.7.1 The Chi-Square Test

The chi-square test often requires large samples and is applied by comparing the
observed frequencydistributionof the sample to the expected value under the assump-
tion of the distribution. More specifically, consider a large sample of size N. Let a0
< a1 < … < ak be the upper points of k subintervals of the frequency distribution.
Basically, the statistic

χ2 =
k∑

i=1

(
xi − μi

σi

)2

(3.59)

has a chi-square (χ2) distribution with k degrees of freedom where μi and σ i.
are the mean and the standard deviation from the normal distribution in the ith

subinterval, i = 1,2,…, k.
Let f i and Ei, for i = 1, 2,…, k, be the observed frequency and the expected

frequency in the ith subinterval, respectively. The expected frequency Ei in the ith
subinterval is.

Ei = N (Fi−Fi−1).
The chi-square test statistic is defined as

S =
k∑

i=1

( fi − Ei )
2

Ei
. (3.60)

It should be noted that

k∑

i=1

fi =
k∑

i=1

Ei = N

where N is the sample size. Therefore, the chi-square statistic S can be rewritten as

S =
k∑

i=1

f 2i
Ei

− N . (3.61)

The value of S is approximately distributed of χ2
1−α,k−1. Thus, if S ≥ χ2

1−α,k−1.
then the distribution F(x) does not fit the observed data.



3.7 Goodness of Fit Tests 169

If the values of the parameters (some unknown parameters) of the distribution
have to be estimated from the sample, then we need to reduce the number of degrees
of freedom of χ2 by the number of estimated parameters. In other words, the degrees
of freedom are:

(the number of frequencies – 1 – number of parameters estimated with the same
data).

In this case, the distribution F(x) does not fit the observed data if S ≥ χ2
1−α,k−1−r

where r is the number of estimated parameters.
It should be noted that in order to get a good approximation the sample size N

needs to be large and values of Ei should not be small, not much less than 5. The
steps of chi-squared goodness of fit test are as follows:

1. Divide the sample data into the mutually exclusive cells (normally 8–12) such
that the range of the random variable is covered.

2. Determine the frequency, f i, of sample observations in each cell.
3. Determine the theoretical frequency, Ei, for each cell (area under density func-

tion between cell boundaries Xn—total sample size). Note that the theoreti-
cal frequency for each cell should be greater than 1. To carry out this step, it
normally requires estimates of the population parameters which can be obtained
from the sample data.

4. Form the statistic

S =
k∑

i=1

( fi − Ei )
2

Ei

where Ei = N (Fi − Fi−1).
5. From the χ2 tables, choose a value of χ2 with the desired significance level

and with degrees of freedom (=k–r−1), where r is the number of population
parameters estimated.

6. Reject the hypothesis that the sample distribution is the same as theoretical
distribution if

S ≥ χ2
1−α, k−r−1

where α is called the significance level.

Example 3.23
Given the data in Table 3.3, can the data be represented by the exponential distribution
with a significance level of α?

Solution: From the above calculation,
∧
λ = 0.00263, Ri = e−λti and Fi = 1−Ri.

Given that a value of significance level α is 0.1, from Eq. (3.60) we obtain
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Table 3.3 Sample
observations in each cell
boundary (N = 60)

Cell boundaries f i Qi = Fi ∗ 60 Ei = N(Fi−Fi−1) =
Qi−Qi−1

0–100 10 13.8755 13.8755

100–200 9 24.5422 10.6667

200–300 8 32.7421 8.1999

300–400 8 39.0457 6.3036

400–500 7 43.8915 4.8458

500–600 6 47.6168 3.7253

600–700 4 50.4805 2.8637

700–800 4 52.6819 2.2010

800–900 2 54.3743 1.6924

900–1,000 1 55.6753 1.3010

>1,000 1 60.0000 4.3247

S =
11∑

i=1

( fi − Ei )
2

Ei
= 8.7332

Here k = 11, r = 1. Then k–r–1 = 11–1–1 = 9. From Table A.3 in Appendix A,
the value of χ2 with nine degrees of freedom is 14.68, that is,

χ2
9d f (0.90) = 14.68

Since S = 8.7332 < 14.68, we would not reject the hypothesis of exponential with
λ = 0.00263.

Example 3.24
The number of defective soldering points found on a circuit board in a given day
is given in Table 3.4. Now the question here is: Can the data be represented by the
Poisson distribution with a significance level of α?

Solution: From Table 3.4, one can estimate the rate:
∧
λ = 56/33 = 1.7. The

expected frequency Ei is given by:

Table 3.4 Sample
observations in each cell
boundary (N = 33)

Number of
defective

Observed
frequency f i

Expected
frequency Ei

Total number
of defectives

0 6 6.04 0

1 8 10.26 8

2 12 8.71 24

3 4 4.92 12

4 or more 3 3.07 12

Total 33 56
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Ei = N P(D = i) = N
e−λλi

i!
.

Note that.
P(D = d) = e−λλd

d! for d = 0, 1, …, 4
Given that a value of significance level α is 0.1, from Eq. (3.60) we obtain

S =
4∑

i=0

( fi − Ei )
2

Ei
= 1.912

From Table A.3 in Appendix A, the value of χ2 with three degrees of freedom
(k−1–1 = 3) is

χ2
3d f (0.90) = 6.25

Since S = 1.912 < 6.25, we would not reject the hypothesis of Poisson model.

Example 3.25
Consider a sample of 100 failure times of electric generators (in hours). We now
determine whether the distribution of failure times is normal. Table 3.5 gives the
observed frequencies and expected frequencies over 8 intervals. Given that the esti-
mated values of the mean μ and standard deviation σ are μ = 0.122 and σ =
0.011.

we obtain

S =
8∑

i=1

( fi − Ei )
2

Ei
= 5.404

From Table A.3 in Appendix A, the value of χ2 with 5 degrees of freedom (i.e.,
k−1–r = 8–1–2 = 5) is

Table 3.5 Sample
observations of 100 failure
times (N = 100, k = 8)

Intervals Observed frequency f i Expected frequency Ei

325–400 7 6.10

400–475 9 7.70

475–550 17 12.60

550–625 12 16.80

625–700 18 18.10

700–725 11 15.90

725–800 12 11.40

>800 14 11.40

N = 100
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χ2
5d f (0.90) = 9.24

Since S = 5.404 < 9.24, we would not reject the hypothesis of normality.

3.7.2 Kolmogorov–Smirnov (KS) Test

Both the χ2 and KS tests are non-parameters. However, the χ2 assumes large sample
normality of the observed frequency about its mean while the KS test only assumes
a continuous distribution. Suppose the hypothesis is that the sample comes from a
specified population distribution with c.d.f. F0(x). The test statistic compares the
observed (empirical) distribution of the sample Fn(x), to F0(x) and considers the
maximum absolute deviation between the two cdfs (Fn(x) and F0(x)). Let X (1) ≤
X (2) ≤ X (3) ≤ … ≤ X(n) denote the ordered sample values. Define the observed
distribution function, Fn(x), as follows:

Fn(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for x ≤ x(1)

i

n
for x(i) < x ≤ x(i+1)

1 for x > x(n)

(3.62)

Assume the testing hypothesis

H0 : F(x) = F0(x)

where F0(x) is a given continuous distribution and F(x) is an unknown distribution.
The KS test statistic can be computed as follows:

Dn = max−∞<x<∞ |Fn(x) − F0(x)|. (3.63)

Since F0(x) is a continuous increasing function, we can evaluate |Fn(x)–F0(x)|
for each n. Table A.4 in Appendix A (Smirnov 1948) gives certain critical values
dn,α of the distribution of Dn, which is the maximum absolute difference between
sample and population cumulative distributions, for various sample sizes n and a is
the level of significance. For example, the critical value dn,α for n = 10 at a 0.05
level of significance is 0.409. This means that in 5 percent of random samples of
size 10, the maximum absolute deviation between the sample observed cumulative
distribution and the population cumulative distribtuion will be at least 0.409.

IfDn ≤ dn,α then we would not reject the hypothesis distribution Ho. IfDn > dn,α ,
then we reject the hypothetical distribution. The value dn,α can be found in Table
A.4 in Appendix A. This test implies that
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P{Dn > dn,α} = α.

Substituting for Dn and rearranging gives a 100(1–α)% confidence level for F(x)
as follows:

F̂(x) − dn,α ≤ F(x) ≤ F̂(x) + dn,α

or, equivalently, that

P{F̂(x) − dn,α ≤ F(x) ≤ F̂(x) + dn,α} = 1 − α.

Example 3.26
(Continued from Example 3.25) Can the data given in Table 3.4 be represented by
the Poisson distribution with a significance level of α using KS test?

To obtain the calculation in Table 3.6:
Fn(x): is the cumulative observed frequency/33.
F0(x): is the estimated from cumulative P(d) (see table below).

where
P(d) = e−λ λd

d! for d = 0, 1, …, 4
and λ = 1.7. Thus,

Table 3.6 KS test calculations (N = 33)

Number of
defective

Observed
frequency

Cum. observed
frequency

Fn(x) F0(x) |Fn(x)− F0(x)|

0 6 6 0.182 0.183 0.001

1 8 14 0.424 0.494 0.07

2 12 26 0.788 0.758 0.03

3 4 30 0.909 0.907 0.002

4 or more 3 33 1.000 1.000 0.000

Table 3.7 KS test Number of
defective

Observed
frequency
f i

P(d) CumulativeP(d)

0 6 0.183 0.183

1 8 0.311 0.494

2 12 0.264 0.758

3 4 0.149 0.907

4 or more 3 0.093 1.000

Total 33 1.000
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Dn = max−∞<x<∞ |Fn(x) − F0(x)| = 0.070

From Table A.4 in Appendix A, here N = 33 and α = 10% then we obtain dn,α =
0.21. Since 0.070 < 0.21 (Dn ≤ dn,α) therefore, the hypothesis of the Poisson model
is accepted.

Example 3.27
Determine whether the following failure data (in days) of a system:

10.50, 1.75, 6.10, 1.30, 15.00, 8.20, 0.50, 20.50, 11.05, 4.60.
be represented as a sample from an exponential population distribution with

constant rate λ = 0.20 failures per day at the (α = ) 5% level of the significance
using KS test?

Solution: Under the hypothesis that failure times are exponential distribution, so
the theoretical pdf and cdf are given by:

f (x) = 0.2e−0.2x for x >0

and

F(x) = 1 − e−0.2x

respectively. From Table 3.8, the maximum difference Dn is 0.2061. From Table
A.4 in Appendix A, here n = 10 and α = 5% then we obtain the critical value
dn,α = 0.409. Since Dn ≤ dn,α therefore, the null hypothesis, that failure times are
exponentially distributed with constant rate λ = 0.20, cannot be rejected at the 5%
level of significance.

Table 3.8 The observed and
theoretical cdf values

Failure time x Fn(x) F0(x) |Fn(x)–F0(x)|

0.50 0.10 0.0952 0.0048

1.30 0.20 0.2289 0.0289

1.75 0.30 0.2953 0.0047

4.60 0.40 0.6015 0.2015

6.10 0.50 0.7048 0.2048

8.20 0.60 0.8061 0.2061

10.50 0.70 0.8776 0.1776

11.05 0.80 0.8903 0.0903

15.00 0.90 0.9503 0.0503

20.50 1.00 0.9835 0.0165
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3.8 Test for Independence

The n elements of a sample may be classified according to two different criteria.
It is of interest to know whether the two methods of classification are statistically
independent. Assume that the firstmethod of classification has r levels and the second
method of classification has c levels. Let Oij be the observed frequency for level i
of the first classification method and level j of the second classification method as
shown in Table 3.9 for i = 1,2,…,r and j = 1,2,…,c.

We are interested in testing the hypothesis that the row and column methods of
classification are independent. If we reject this hypothesis, we conclude there is some
interaction between the two criteria of classification. The test statistic

λ2
vahe =

r∑

i=1

c∑

j=1

(
Oi j − Ei j

)2

Ei j
∼ λ2

(r−1)(c−1) (3.64)

andwewould reject the hypothesis of independence ifλ2
value > λ2

α,(r−1)(c−1) where
Eij, the expected number in each cell, is

Ei j = 1

n

(
r∑

i=1

Oi j

)⎛

⎝
c∑

j=1

Oi j

⎞

⎠.

For example,

Table 3.9 Observed frequency for level i and level j of classification

1 2 3 … c Total

1 O11 O12 O13 O1c c∑

j=1
O1 j

2 O21 O22 O23 O2c c∑

j=1
O2 j

3 O31 O32 O33 O3c c∑

j=1
O3 j

…

r Or1 Or2 Or3 Orc c∑

j=1
Or j

Total r∑

i=1
Oi1

r∑

i=1
Oi2

r∑

i=1
Oi3

r∑

i=1
Oic

n
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Table 3.10 A random sample of 395 people

Variable B

VarA/VarB Observed 15–20 21–30 31–40 41–65 Total

Yes 60 54 46 41 201

Variable A No 40 44 53 57 194

Total 100 98 99 98 395

E21 = 1

n

(
r∑

i=1

Oi1

)⎛

⎝
c∑

j=1

O2 j

⎞

⎠

E32 = 1

n

(
r∑

i=1

Oi2

)⎛

⎝
c∑

j=1

O3 j

⎞

⎠.

Example 3.28
A random sample of 395 people were surveyed. Each person was asked their interest
in riding a bicycle (Variable A) and their age (Variable B). The data that resulted
from the survey is summarized in Table 3.10.

Is there evidence to conclude, at the 0.05 level, that the desire to ride a bicycle
depends on age? In other words, is age independent of the desire to ride a bicycle?

Solution: Here r = 2 and c = 4. The expected number in each cell can be obtained
as shown in Table 3.11:

E11 = 1

395

(
2∑

i=1

Oi1

)⎛

⎝
4∑

j=1

O1 j

⎞

⎠ = 1

395
(100)(201) = 50.8861

E12 = 1

395

(
2∑

i=1

Oi2

)⎛

⎝
4∑

j=1

O1 j

⎞

⎠ = 1

395
(98)(201) = 49.8684

E13 = 1

395
(99)(201) = 50.3772

. . .

E23 = 1

395
(99)(194) = 48.6228

E24 = 1

395
(98)(194) = 48.1316

The test statistic value

λ2
value =

2∑

i=1

4∑

j=1

(
Oi j − Ei j

)2

Ei j
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Table 3.11 The expected values

Variable B

VarA/VarB Expected 15–20 21–30 31–40 41–65 Total

Yes 50.8861 49.8684 50.3772 49.8684 201

Variable A No 49.1139 48.1316 48.6228 48.1316 194

Total 100 98 99 98 395

= (60 − 50.8861)2

50.8861
+ (54 − 49.8684)2

49.8684
+ . . . + (57 − 48.1316)2

48.1316
= 8.0062

Here α = 0.05. So χ2
0.05,(2−1)(4−1) = χ2

0.05,3 = 7.815. Since χ2
value = 8.0062 >

7.815 we, therefore, reject the null hypothesis. That is, there is sufficient evidence,
at the 0.05 level, to conclude that the desire to ride a bicycle depends on age.

3.9 Statistical Trend Tests of Homogeneous Poisson Process

Let us assume that repairable units observe from time t = 0, with successive failure
times denoted by t1, t2, .... An equivalent representation of the failure process is
in terms of the counting process {N (t), t ≥ 0}, where N (t) equals the number of
failures in (0, t]. Repairable units are those units which can be restored to fully satis-
factory performance by a method other than replacement of entire system (Ascher
and Feingold 1984). It is assumed that simultaneous failures are not possible and
the repair times are negligible compared to times between failures. In other word, it
is assumed that repair times equal 0. The observed failure times during the interval
(0,T] for a specific unit are denoted by t1, t2, ...tN (T ).

Trend analysis is a common statistical method used to investigate the changes
in a system device or unit over time. Based on the historical failure data of a unit
or a group of similar units, one can test to determine whether the recurrent failures
exhibit an increasing or decreasing trend subject to statistical tests. In other words,
there are several methods to test whether the observed trend based on the failure data
is statistically significant or there is no trend. This implies that, for the case there is
no trend, the failure rate is constant or the failure process is homogeneous Poisson
process. A number of tests such as Laplace Test and Military Handbook Test have
been developed for testing the following null hypotheses (see Ascher and Feingold
1984):

H0:No trend (Failure times observed are independently and identically distributed
(iid), homogeneous Poisson process).

Against the alternative hypothesis.
H1: Monotonic trend, i.e. the process is nonhomogeneous Poisson process

(NHPP).



178 3 Statistical Inference

By rejection of null hypothesis, (case H1) failure rate is not constant and the
cumulative no of fault vs. time have concave or convex shape, respectively. Let ti
denote the running time of repairable item at the ith failure, i = 1,…,n and N (ti )
be the total number of failures observed till time tn(failure truncated case) or the
observation is terminated at time T censored time for time truncated case which is
discusses in the following subsections. Following we discuss the Laplace trend test
and Military Handbook test. These tests can be used to detect existence of trends in
the data set of successive failure times.

3.9.1 Laplace Trend Test

The Laplace trend test can be used to detect existence of trends in the failure data of
successive event times. Depend on the data type whether is time truncated or failure
truncated, we can calculate Laplace trend index as follows:

TimeTruncated Test: Suppose that observation is terminated at time T and N (tn)
failures are recorded at time t1 < t2 < ... < tn < T . The test statistic U of Laplace
trend test in this case is given by

U = √
12.N (tn)

( ∑n
1 ti

T .N (tn)
− 0.5

)

(3.65)

Failure Truncated Test: In the cases where the observation terminates at a failure
event, say tn , instead of T, the test statistics for failure truncated data is given by

U = √
12 N (tn−1)

( ∑n−1
1 ti

tn N (tn−1)
− 0.5

)

. (3.66)

In both test cases, the test statistic U is approximately standard normally N (0, 1)
distributed when the null hypothesis H0 is true.

At significance levelα of 5%for example, the lower andupper boundof confidence
interval are −1.96 and + 1.96, respectively. If U is less than lower bound or greater
than upper bound then there is a trend in the data. In these cases, we can reject the
null hypothesis of trend free at 5% and accept the alternative hypothesis. In the first
case, there is reliability growth (U is less than lower bound) and in second case (U
is greater than upper bound) there is reliability deterioration. Hence, in these cases,
one need to be some probability distributions that can fit to the failure data set, other
than exponential distribution.

In general, at significance level α, the rejection criteria of the null hypothesis is
given by.

Reject H0 : U < −zα/2 or U > zα/2 (3.67)
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where zα is (1 − α)th quantile of the standard normal distribution.

3.9.2 Military Handbook Test

This test is based on the assumption that a failure intensity of r(t) = λβ tβ−1 is
appropriate (MIL-HDBK-189 1981). When β = 1, the failure intensity reduces to
r(t) = λ, which means the failure process follows a HPP. Hence the test determines
whether an estimate of β is significantly different from 1 or not. The null hypothesis
test in this case is β = 1 i.e. no trend in data (HPP) vs. alternative hypothesis β �= 1,
there is trend in the failure history (NHPP):

Time Truncated Test: During a test period T suppose that n failure are recorded
at time t1 < t2 < ... < tn < T .The mathematical test in this case is given by:

S = 2
n∑

i=1

ln
T

ti
. (3.68)

According to (MIL-HDBK-189, 1981), S has chi-square distribution with 2n
degree of freedom. In this case, the rejection criteria is given by:

Reject H0 when S < χ2
2n, 1−α/2 or S > χ2

2n, α/2. (3.69)

In other words, the hypothesis (H0) of trend free is rejected for the values beyond
the interval boundaries. Low values of S correspond to deteriorating while large
values of S correspond to improving.

Failure Truncated Test: If the data are failure truncated at tn instead of time
truncated at T, S has chi-square distribution with 2(n−1) degree of freedom when
the null hypothesis H0 is true. The test statistic S of Military handbook test in this
case is given by:

S = 2
n−1∑

i=1

ln

(
tn
ti

)

. (3.70)

Here, the rejection criterion is given by:

Reject H0 when S < χ2
2(n−1), 1−α/2 or S > χ2

2(n−1), α/2. (3.71)

The hypothesis of HPP (H0) is rejected for the values beyond the following
interval:

[
χ2
2(n−1),1−α/2, χ

2
2(n−1),α/2

]
.
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3.10 Least Squared Estimation

A problem of curve fitting, which is unrelated to normal regression theory and MLE
estimates of coefficients but uses identical formulas, is called the method of least
squares. This method is based on minimizing the sum of the squared distance from
the best fit line and the actual data points. It just so happens that finding theMLEs for
the coefficients of the regression line also involves these sums of squared distances.

Normal Linear Regression

Regression considers the distributions of one variable when another is held fixed
at each of several levels. In the bivariate normal case, consider the distribution of
X as a function of given values of Z where X = α + βZ . Consider a sample of n
observations (xi, zi), we can obtain the likelihood and its natural log for the normal
distribution as follows:

f (x1, x2, . . . , xn) = 1

2π
n
2

(
1

σ 2

) n
2
e− 1

2σ2

∑n
i=1 (xi−α−βzi )2

ln L = −n

2
log 2π − n

2
log σ 2 − 1

2σ 2

n∑

i=1

(xi − α − βzi )
2. (3.72)

Taking the partial derivatives of lnL with respect to α and β, we have

∂ ln L

∂α
=

n∑

i=1

(xi − α − βzi )
2 = 0

∂ ln L

∂β
=

n∑

i=1

zi (xi − α − βzi ) = 0.

The solution of the simultaneous equations is

α̂ = X̄ − β Z̄

β̂ =
∑n

i=1 (Xi − X̄)(Zi − Z̄)
∑n

i=1 (Zi − Z̄)2
. (3.73)

Least Squared Straight Line Fit

Assume there is a linear relationship between X and E(Y/x), that is, E(Y/x) = a +
bx. Given a set of data, we want to estimate the coefficients a and b that minimize
the sum of the squares. Suppose the desired polynomial, p(x), is written as

m∑

i=0

ai x
i
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where a0, a1,…, am are to be determined. The method of least squares chooses as
the solutions those coefficients minimizing the sum of the squares of the vertical
distances from the data points to the presumed polynomial. This means that the
polynomial termed “best” is the one whose coefficients minimize the function L,
where

L =
n∑

i=1

[yi − p(xi )]2.

Here, we will treat only the linear case, where X = α + βZ. The procedure for
higher-order polynomials is identical, although the computations becomemuchmore
tedious. Assume a straight line of the form X = α + βZ. For each observation (xi,
zi): Xi = α + βZi, let

Q =
n∑

i=1

(xi − α − βzi )
2.

We wish to find α and β estimates such as to minimize Q. Taking the partial
differentials, we obtain

∂Q

∂α
= −2

n∑

i=1

(xi − α − βzi ) = 0

∂Q

∂β
= −2

n∑

i=1

zi (xi − α − βzi ) = 0.

Note that the above are the same as the MLE equations for normal linear
regression. Therefore, we obtain the following results:

α̂ = x̄ − β z̄

β̂ =
∑n

i=1 (xi − x̄)(zi − z̄)
∑n

i=1 (zi − z̄)2
. (3.74)

The above gives an example of least squares applied to a linear case. It follows
the same pattern for higher-order curves with solutions of 3, 4, and so on, from the
linear systems of equations.

3.11 Interval Estimation

A point estimate is sometimes inadequate in providing an estimate of an unknown
parameter since it rarely coincides with the true value of the parameter. An alternative
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way is to obtain a confidence interval estimation of the form [θL, θU ] where θL

is the lower bound and θU is the upper bound. A confidence interval (CI) is an
interval estimate of a population parameter that also specifies the likelihood that the
interval contains the true population parameter. This probability is called the level
of confidence, denoted by (1−α), and is usually expressed as a percentage.

Point estimates can become more useful if some measure of their error can be
developed, i.e., some sort of tolerance on their high and low values could be devel-
oped. Thus, if an interval estimator is [θL, θU ] with a given probability (1−α), then
θL and θU will be called 100(l−α)% confidence limits for the given parameter θ

and the interval between them is a 100(l−α)% confidence interval and (1−α) is also
called the confidence coefficient.

3.11.1 Confidence Intervals for the Normal Parameters

The one-dimensional normal distribution has two parameters: mean μ and variance
σ 2. The simultaneous employment of both parameters in a confidence statement
concerning percentages of the population will be discussed in the next section on
tolerance limits. Hence, individual confidence statements about μ and σ 2 will be
discussed here.

Confidence Limits for the Mean µ with Known σ 2.
It is easy to show that the statistic

Z = X̄ − μ

σ/
√
n

is a standard normal distribution where

X̄ = 1

n

n∑

i=1

Xi

Hence, a 100(l − α)% confidence interval for the mean μ is given by

P

[

X̄ − Z α
2

σ√
n

< μ < X̄ + Z α
2

σ√
n

]

= 1 − α (3.75)

In other words,

μL = X̄ − Z α
2

σ√
n

and μU = X̄ + Z α
2

σ√
n
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For the normal distribution, an empirical rule relates the standard deviation to the
proportion of the observed values of the variable in a data set that lie in an interval
around the sample mean can be approximately expressed as follows:

• 68% of the values lie within: x̄ ± sx
• 95% of the values lie within: x̄ ± 2sx
• 99.7% of the values lie within: x̄ ± 3sx

Example 3.29
Draw a sample of size 4 from a normal distribution with known variance = 9, say
x1 = 2, x2 = 3, x3 = 5, x4 = 2. Determine the location of the true mean (μ). The
sample mean can be calculated as.

x̄ =

n∑

i=1
xi

n
= 2 + 3 + 5 + 2

4
= 3

Assuming that α = 0.05 and from the standard normal distribution (Table A.1 in
Appendix A), we obtain

P

[

3 − 1.96
3√
4

< μ < 3 + 1.96
3√
4

]

= 0.95

P[0.06 < μ < 5.94] = 0.95

This example shows that there is a 95%probability that the truemean is somewhere
between 0.06 and 5.94. Now, μ is a fixed parameter and does not vary, so how do we
interpret the probability? If the samples of size 4 are repeatedly drawn, a different set
of limits would be constructed each time. With this as the case, the interval becomes
the random variable and the interpretation is that, for 95% of the time, the interval
so constructed will contain the true (fixed) parameter.

Confidence Limits for the Mean μ with Unknown σ 2.
Let

S =
√
√
√
√ 1

n − 1

n∑

i=1

(Xi − X̄)2 (3.76)

It can be shown that the statistic

T = X̄ − μ
S√
n

has a t distribution with (n−1) degrees of freedom (see Table A.2 in Appendix
A). Thus, for a given sample mean and sample standard deviation, we obtain



184 3 Statistical Inference

P
[
|T | < t α

2 ,n−1

]
= 1 − α

Hence, a 100(l − α)% confidence interval for the mean μ is given by

p

[

X̄ − t α
2 ,n−1

S√
n

< μ < X̄ + t α
2 ,n−1

S√
n

]

= 1 − α (3.77)

Example 3.30
A problem on the variability of a new product was encountered. An experiment was
run using a sample of size n = 25; the sample mean was found to be X̄ = 50 and the
variance σ 2 = 16. From Table A.2 in Appendix A, t α

2 ,n−1 = t.975,24 = 2.064. A 95%
confidence limit for μ is given by.

P

[

50 − 2.064

√
16

25
< μ < 50 + 2.064

√
16

25

]

= 0.95

P[48.349 < μ < 51.651] = 0.95

Note that, for one-sided limits, choose tα , or t1−α .

Example 3.31
Consider a normal distribution with unknown mean μ and unknown standard devia-
tion σ. Suppose we draw a random sample of size n = 16 from this population, and
the sample values are:

16.16 9.33 12.96 11.49

12.31 8.93 6.02 10.66

7.75 15.55 3.58 11.34

11.38 6.53 9.75 9.47

Compute the confidence interval for the mean μ and at confidence level 1− α =
0.95.

Solution: A C.I. for μ at confidence level 0.95 when σ is unknown is obtained
from the corresponding t-test. The C.I is

X̄ − t1− α
2 ,n−1

S√
n

≤ μ ≤ X̄ + t1− α
2 ,n−1

S√
n

The sample mean and sample variance, respectively, are:

X̄ = 10.20 and S2 = 10.977

The sample standard deviation is: S = 3.313. Also, t1− α
2 ,n−1 = t0.975,15 = 2.131.
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The 95% C.I. for μ is

10.20 − 2.131
3.313√

16
≤ μ ≤ 10.20 + 2.131

3.313√
16

or

8.435 ≤ μ ≤ 11.965

Confidence Limits on σ 2.

Note that n σ 2
∧

σ 2 has a χ2 distribution with (n−1) degrees of freedom. Correcting

for the bias in
∧
σ 2, then (n−1)

∧
σ 2/ σ 2 has this same distribution. Hence,

P

[

χ2
α
2 ,n−1

<
(n − 1)S2

σ 2
< χ2

1− α
2 ,n−1

]

= 1 − α

or

P

⎡

⎣
∑

(xi − x̄)2

χ2
1− α

2 ,n−1

< σ 2 <

∑
(xi − x̄)2

χ2
α
2 ,n−1

⎤

⎦ = 1 − α. (3.78)

Similarly, for one-sided limits, choose χ2(α) or χ2(1−α).

3.11.2 Confidence Intervals for the Exponential Parameters

The pdf and cdf of the exponential distribution are given as

f (x) = λe−λx x > 0, λ > 0

and

F(x) = 1 − e−λx

respectively. From Eq. (3.22), it was shown that the distribution of a function of
the estimate

∧
λ = r

∑r
i=1 xi + (n − r)xr

(3.79)
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derived from a test of n identical components with common exponential failure
density (failure rate λ), whose testing was stopped after the rth failure, was chi-
squared (X2), i.e.,

2r
λ

λ̂
= 2λT (χ2distribution with 2r degrees of freedom)

where T is the total accrued time on all units. Knowing the distribution of 2λT allows
us to obtain the confidence limits on the parameter as follows:

P

[

χ2
1− α

2 ,2r
< 2λT < χ2

α
2 ,2r

]

= 1 − α

or, equivalently, that

P

⎡

⎣
χ2
1− α

2 ,2r

2T
< λ <

χ2
α
2 ,2r

2T

⎤

⎦ = 1 − α

This means that in (1−α)% of samples with a given size n, the random interval

⎛

⎝
χ2
1− α

2 ,2r

2T
,

χ2
α
2 ,2r

2T

⎞

⎠ (3.80)

will contain the population of constant failure rate. In terms of θ = 1/λ or the
mean time between failure (MTBF), the above confidence limits change to

P

⎡

⎣ 2T

χ2
α
2 ,2r

< θ <
2T

χ2
1− α

2 ,2r

⎤

⎦ = 1 − α.

If testing is stopped at a fixed time rather than a fixed number of failures, the
number of degrees of freedom in the lower limit increases by two. Table 3.12 shows

Table 3.12 Confidence
limits for θ

Confidence limits Fixed number of
failures

Fixed time

One-sided lower
limit

2T
χ2

α,2r

2T
χ2

α,2r+2

One-sided upper
limit

2T
χ2
1−α,2r

2T
χ2
1−α,2r

Two-sided limits 2T
χ2

α/2,2r
, 2T

χ2
1−α/2,2r

2T
χ2

α/2,2r+2
, 2T

χ2
1−α/2,2r
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the confidence limits for θ, the mean of an exponential density.

Example 3.32
(Two-sided) From the goodness of fit example, T = 22,850, testing stopped after r
= 60 failures. We can obtain λ̂ = 0.00263 and θ̂ = 380.833. Assu-ming that α =
0.1, then, from the above formula, we obtain.

P

[
2T

χ2
0.05,120

< θ <
2T

χ2
0.95,120

]

= 0.9

P

[
45, 700

146.568
< θ <

45, 700

95.703

]

= 0.9

P[311.80 < θ < 477.52] = 0.9

Example 3.33
(One-sided lower) Assuming that testing stopped after 1,000 h with four failures,
then.

P

[
2T

χ2
0.10,10

< θ

]

= 0.9

P

[
2, 000

15.987
< θ

]

= 0.9

P[125.1 < θ] = 0.9

3.11.3 Confidence Intervals for the Binomial Parameters

Consider a sequence of n Bernoulli trials with k successes and (n − k) failures. We
now determine one-sided upper and lower and two-sided limits on the parameter p,
the probability of success. For the lower limit, the binomial sum is set up such that
the chance probability of k or more successes with a true p as low as pL is only α/2.
This means the probability of k or more successes with a true p higher than pL is(
1 − α

2

)
:

n∑

i=k

(
n

i

)

piL(1 − pL)
n−i = α

2

Similarly, the binomial sum for the upper limit is
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n∑

i=k

(
n

i

)

piU (1 − pU )n−i = 1 − α

2

or, equivalently, that

k−1∑

i=0

(
n

i

)

piU (1 − pU )n−i = α

2

Solving for pL and pU in the above equations,

P[pL < p < pU ] = 1 − α

For the case of one-sided limits, merely change α/2 to α.

Example 3.34
Given n = 100 with 25 successes, and 75 failures, an 80% two-sided confidence
limits on p can be obtained as follows:

100∑

i=25

(
100

i

)

piL(1 − pL)
100−i = 0.10

24∑

i=0

(
100

i

)

piU (1 − pU )100−i = 0.10

Solving the above two equations simultaneously, we obtain

pL ≈ 0.194 and pU ≈ 0.313

P[0.194 < p < 0.313] = 0.80

Example 3.35
Continuing with Example 3.34, find an 80% one-sided confidence limit on p.

Solution: We now can set the top equation to 0.20 and solve for pL. It is easy to
obtain pL = 0.211 and P[p > 0.211] = 0.80. Let us define p̄ = k/n, the number of
successes divided by the number of trials. For large values of n and if np > 5 and n(1
− p) > 5, and from the central limit theorem (Feller 1966, 1968), the statistic

Z = ( p̄ − p)
√

p̄(1− p̄)
n

(3.81)

approximates to the standard normal distribution. Hence,

P[−z α
2

< Z < z α
2
] = 1 − α
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Then

P

[

p̄ − z α
2

√
p̄(1 − p̄)

n
< p < p̄ + z α

2

√
p̄(1 − p̄)

n

]

= 1 − α (3.82)

Example 3.36
Given n = 900, k = 180, and α = 0.05. Then we obtain p = 180/900 = 0.2 and

P

[

0.2 − 1.96
√

0.2(0.8)
900 < p < 0.2 + 1.96

√
0.2(0.8)
900

]

= 0.95

P[0.174 < p < 0.226] = 0.95

3.11.4 Confidence Intervals for the Poisson Parameters

Limits for the Poisson parameters are completely analogous to the binomial except
that the sample space is infinite instead of finite. The lower and upper limits can be
solved simultaneously in the following equations:

∞∑

i=k

λi
Le

−λL

i ! = α

2
and

∞∑

i=k

λi
U e

−λU

i ! = 1 − α

2
(3.83)

or, equivalently

∞∑

i=k

λi
Le

−λL

i ! = α

2
and

k−1∑

i=0

λi
U e

−λU

i ! = α

2
.

Example 3.37
One thousand article lots are inspected resulting in an average of 10 defects per lot.
Find 90% limits on the average number of defects per 1000 article lots. Assume α

= 0.1,

∞∑

i=10

λi
Le

−λL

i ! = 0.05 and
9∑

i=0

λi
U e

−λU

i ! = 0.05.

Solving the above two equations simulteneously for λL and λU , we obtain.
P [5.45 < λ < 16.95] = 0.90.
The one-sided limits are constructed similarly to the case for binomial limits.
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3.12 Non-Parametric Tolerance Limits

Non-parametric tolerance limits are based on the smallest and largest observation
in the sample, designated as XS and XL, respectively. Due to their non-parametric
nature, these limits are quite insensitive and to gain precision proportional to the
parametric methods requires much larger samples. An interesting question here is to
determine the sample size required to include at least 100(l−α)% of the population
between XS and XL with given probability γ .

For two-sided tolerance limits, if (1−α) is the minimum proportion of the popula-
tion contained between the largest observation XL and smallest observation XS with
confidence (1−γ ), then it can be shown that

n(1 − α)n−1 − (n − 1)(1 − α)n = γ. (3.84)

Therefore, the number of observations required is given by

n =
⌊

(2 − α)

4α
χ2
1−γ,4 + 1

2

⌋

+ 1 (3.85)

where a value of χ2
1−γ,4 is given in Table A.3 of Appendix A.

Example 3.38
Determine the tolerance limits which include at least 90% of the population with
probability 0.95. Here,

α = 0.1, γ = 0.95 and χ2
0.05,4 = 9.488.

and therefore, a sample of size

n =
⌊

(2 − 0.1)

4(0.1)
(9.488) + 1

2

⌋

+ 1 = 46

is required. For a one-sided tolerance limit, the number of observations required
is given by

n =
⌊
log(1 − γ )

log(1 − α)

⌋

+ 1. (3.86)

Example 3.39
As in Example 3.38, we wish to find a lower tolerance limit, that is, the number of
observations required so that the probability is 0.95 that at least 90%of the population
will exceed XS is given by.

n =
⌊
log(1 − 0.95)

log(1 − 0.1)

⌋

+ 1 = 30.
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One can easily generate a table containing the sample size required to include a
given percentage of the population between XS and XL with given confidence, or
sample size required to include a given percentage of the population above or below
XS or XL, respectively.

3.13 Sequential Sampling

A sequential sampling scheme is one in which items are drawn one at a time and
the results at any stage determine if sampling or testing should stop. Thus, any
sampling procedure for which the number of observations is a random variable can
be regarded as sequential sampling. Sequential tests derive their name from the fact
that the sample size is not determined in advance, but allowed to “float” with a
decision (accept, reject, or continue test) after each trial or data point.

In general, let us consider the hypothesis

H0 : f (x) = f0(x) vs H1 : f (x) = f1(x)

For an observation test, sayX1, ifX1 ≤A, thenwewill accept the testing hypothesis
(H0: f (x) = f 0(x)); if X1 ≥ A, then we will reject H0 and accept HI: f (x) = f 1(x).
Otherwise, we will continue to perform at least one more test. The interval X1 ≤ A
is called the acceptance region. The interval X1 ≥ A is called the rejection or critical
region (see Fig. 3.4).

A “good” test is one that makes the α and β errors as small as possible where

P{Type I error} = P{Reject H0 | H0 is True} = α

P{Type II error} = P{Accept H0 | H0 is False} = β

Type I error, also known as a “false positive”, the error of rejecting a null hypoth-
esis Ho when it is actually true. In other words, this is the error of accepting an
alternative hypothesis H1 (the real hypothesis of interest) when the results can be
attributed to chance. So the probability of making a type I error in a test with rejection
region R is P(R | Ho is true).

Type II error, also known as a “false negative”, the error of not rejecting a null
hypothesis when the alternative hypothesis is the true state of nature. In other words,
this is the error of failing to accept an alternative hypothesis when you don‘t have

Fig. 3.4 A sequential
sampling scheme

f1(x)f0(x)

A
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adequate power. So the probability of making a type II error in a test with rejection
region R is 1-P(R | H1 is true). The power of the test can be P(R | H1 is true).

However, there is not much freedom to do this without increasing the sample
size. The common procedure is to fix the β error and then choose a critical region to
minimize the error or maximize the “power” (power= 1−β) of the test, or to choose
the critical region so as to equalize the α and β errors to reasonable levels.

A criterion, similar to the MLE, for constructing tests is called the “sequential
probability ratio”, which is the ratio of the sample densities under H1 over H0. The
sequential probability ratio is given by

λn =
∏n

i=1 f1(xi )
∏n

i=1 f0(xi )
> k (3.87)

Here, x1, x2, …, xn are n independent random observations and k is chosen to give
the desired error.

Recall from the MLE discussion in Sect. 3.3 that f 1(x1), f 1(x2),…, f 1(xn) are
maximized under H1 when the parameter(s), e.g., θ = θ1 and, similarly, f 0(x1),
f 0(x2),…, f 0(xn) are maximized when θ = θ0. Thus, the ratio will become large if
the sample favors H1 and will become small if the sample favors H0. Therefore, the
test will be called a sequential probability ratio test if we.

1. Stop sampling and reject H0 as soon as λn≥ A.
2. Stop sampling and accept H0 as soon as λn≤ B.
3. Continue sampling as long as B < λn < A, where A > B.

For example, the test will continue iff

β

1 − α
<λn <

1 − β

α

The choice of A and B with the above test, suggested by Wald (1947), can be
determined as follows:

B = β

1 − α
and A = 1 − β

α

The basis for α and β are therefore

P[λn ≥ A|H0] = α

P[λn ≤ B|H1] = β
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3.13.1 Exponential Distribution Case

Let

V (t) =
r∑

i=1

Xi +
n−r∑

j=1

t j

where Xi are the times to failure and tj are the times to test termination without
failure. Thus, V (t) is merely the total operating time accrued on both successful and
unsuccessful units where the total number of units is n. The hypothesis to be tested
is.

H0: θ = θ0 vs H1: θ = θ1.
For the failed items,

g(x1, x2, . . . , xr ) =
(
1

θ

)r

e−
∑r

i=1 xi
θ

For the non-failed items,

P(Xr+1 > t1, Xr+2 > t2, . . . , Xn > tn−r ) = e−
∑n−r

j=1 t j
θ

The joint density for the first r failures among n items, or likelihood function, is

f (x1, x2, . . . , xr , tr+1, . . . , tn) = n!
(n − r)!

(
1

θ

)r

e− 1
θ (

∑r
i=1 xi+

∑n−r
j=1 t j)

= n!
(n − r)!

(
1

θ

)r

e− V (t)
θ

and the sequential probability ratio is given by

λn =
∏n

i=1 f1(xi , θ1)
∏n

i=1 f0(xi , θ0)
=

n!
(n−r)!

(
1
θ1

)r
e− V (t)

θ1

n!
(n−r)!

(
1
θ0

)r
e− V (t)

θ0

=
(

θ0

θ1

)r

e
−V (t)

[
1
θ1

− 1
θ0

]

Now, it has been shown that for sequential tests, the reject and accept limits, A
and B, can be equated to simple functions of α and β. Thus, we obtain the following
test procedures:

Continue test: β

1−α
≡ B < λn < A ≡ 1−β

α
.

Reject H0: λn > A ≡ 1−β

α
.

Accept H0: λn < B ≡ β

1−α
.
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Working with the continue test inequality, we now have

β

1 − α
<

(
θ0

θ1

)r

e
−V (t)

[
1
θ1

− 1
θ0

]

<
1 − β

α

Taking natural logs of the above inequality, we obtain

ln

(
β

1 − α

)

<r ln

(
θ0

θ1

)

− V (t)

[
1

θ1
− 1

θ0

]

< ln

(
1 − β

α

)

The above inequality is linear in V (t) and r, and therefore the rejection line V (t),
say Vr(t), can be obtained by setting

r ln

(
θ0

θ1

)

− Vr (t)

[
1

θ1
− 1

θ0

]

= ln

(
1 − β

α

)

or, equivalently,

Vr (t) =
r ln

(
θ0
θ1

)

[
1
θ1

− 1
θ0

] −
ln

(
1−β

α

)

[
1
θ1

− 1
θ0

]

Similarly, the acceptance line V (t)), say Va(t), (see Fig. 3.5) can be obtained by
setting

r log

(
θ0

θ1

)

− Va(t)

[
1

θ1
− 1

θ0

]

= log

(
β

1 − α

)

This implies that

Fig 3.5 Test procedure V(t)

r

Accept H o

Reject H o

Continue test
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Va(t) =
r ln

(
θ0
θ1

)

[
1
θ1

− 1
θ0

] −
ln

(
β

1−α

)

[
1
θ1

− 1
θ0

]

Thus, continue to perform the test when

−h1 + rs < V (t) < h0 + rs

where

h0 = − ln( β

1−α )[
1
θ1

− 1
θ0

] , s = ln
(

θ0
θ1

)

[
1
θ1

− 1
θ0

] , h1 = ln
(

1−β

α

)

[
1
θ1

− 1
θ0

] , and

V (t) =
r∑

i=1

Xi +
n−r∑

j=1

t j

Example 3.40
Given that H0: θ = 500 vs H1: θ = 250 and α = β = 0.1. The acceptance and
rejection lines are given by

Va(t) = 346.6r + 1098.6

and

Vr (t) = 346.6r − 1098.6

respectively. Both are linear functions in terms of r, the number of first r failures
in the test. For an exponential distribution

θ P(A)

0 0
θ1 β

log
(

θ0
θ1

) log
(

1−β

α

)

[
1
θ1

− 1
θ0

] 1−β

log
(

1−β

α

)
−log( β

1−α )

θ1 1 − α

∞ 1

From the information given in the above example, we can obtain
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θ P(A)

0 0
250 0.10
346.5 0.5
500 0.90
∞ 1.0

Since there is no pre-assigned termination to a regular sequential test, it is
customary to draw a curve called the “average sample number” (ASN). This curve
shows the expected sample size as a function of the true parameter value. It is known
that the test will be terminated with a finite observation. It should be noted that “on
average”, the sequential tests utilizes significantly smaller samples than fixed sample
plans:

θ E(r) = ASN
0 0

θ1
θ0β log( β

1−α )+(1−β) log
(

1−β

α

)

[
log

(
θ0
θ1

)
−
(

θ0−θ1
θ1

)]
θ1

log
(

θ0
θ1

)

[
1
θ1

− 1
θ0

]
log

(
1−β

α

)
log( β

1−α )
[
log

(
θ0
θ1

)]2

θ0

[
(1−α) log( β

1−α )+α log
(

1−β

α

)]
θ1

[
log

(
θ0
θ1

)
−
(

θ0−θ1
θ1

)]
θ0

∞ 0

An approximate formula for E(t), the expected time to reach decision, is

E(t) ≡ θ log

(
n

n − E(r)

)

where n is the total number of units on test (assuming no replacement of failed units).
If replacements are made, then

E(t) = θ

n
E(r)

Occasionally, it is desired to “truncate” a sequential plan such that, if no decision
is made before a certain point, testing is stopped and a decision is made on the basis
of data acquired up to that point (Pham 2000, page 251). There are a number of rules
and theories on optimum truncation. In the reliability community, a V (t) truncation
point at 10θ0 is often used to determine the V (t) and r lines for truncation and the
corresponding exact α = β errors (these will in general be larger for truncated tests
than for the non-truncated). An approximate method draws the V (t) truncation line to
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the center of the continue test band and constructs the r truncation line perpendicular
to that point.

3.13.1.1 Bernoulli Distribution Case

H0: p = p0 vs H1: p = p1.
where p denotes the proportion defective units in the population, and α and β are

pre-determined. Let us define the following random variable X:

X =
{
0 if good

1 if defective

where p denotes the proportion defective items in the population. The Bernoulli
distribution is given by

P(x) = px (1 − p)1−x for x = 0, 1

The sequential probability ratio is given by

λn =
∏n

i=1 P(xi , p1)
∏n

i=1 P(xi , p0)
=

∏n
i=1 p

xi
1 (1 − p1)1−xi

∏n
i=1 p

xi
0 (1 − p0)1−xi

=
(
p1
p0

)∑n
i=1 xi

(
1 − p1
1 − p0

)n−∑n
i=1 xi

=
(
p1
p0

)dn(1 − p1
1 − p0

)n−dn

where dn =
n∑

i=1
xi is the cumulative number of defective units and n is the cumulative

sample size. As we know, sampling process will continue as long as

β

1 − α
< λn <

1 − β

α

Taking the natural log, we have

ln

(
β

1 − α

)

< ln(λn) < ln

(
1 − β

α

)

or equivalently that,

ln

(
β

1 − α

)

< dn ln

(
p1
p0

)

+ (n − dn) ln

(
1 − p1
1 − p0

)

< ln

(
1 − β

α

)

After simplifications, we can obtain
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sbn + b1 < dn < sbn + b0 (3.88)

where

sb = − log
(

1−p1
1−p0

)

log
(

p1(1−p0)

p0(1−p1)

) , b1 = log( β

1−α )

log
(

p1(1−p0)

p0(1−p1)

) , b0 = log
(

1−β

α

)

log
(

p1(1−p0)

p0(1−p1)

) .Thus the acceptance line

and rejection line are, respectively, as follows:

Acceptance line = sbn + b1 (3.89)

and

Rejection line = sbn + b0. (3.90)

Similar tests can be constructed for other distribution parameters following the
same general scheme.

Example 3.41
The following data were drawn one observation at a time in the order records:

g b g g b g b g b g g b g b g.

where b denotes a defective item and g denotes a good item. The experiment was
performed to test the following hypothesis:

H0: p = p0 = 0.10 versus H1: p = p1 = 0.2

where p denotes the proportion defective items in the population. It is desired to
reject H0 when it is true with probability 0.05 and to accept H0 when H1 is true with
probability 0.20. Using the sequential testing plan, we wish to determine whether
we would accept or reject a lot on the basis of the observations above.

Given p0 = 0.10, p1 = 0.20, α = 0.05, β = 0.20. From Eq. (3.88) we have

sb = −
ln

(
1−p1
1−p0

)

ln
(

p1(1−p0)
p0(1−p1)

) = − ln
(
1−0.20
1−0.10

)

ln
(

0.2(1−0.10)
0.10(1−0.20)

) = 0.1452

b1 =
ln

(
β

1−α

)

ln
(

p1(1−p0)
p0(1−p1)

) = ln
(

0.2
1−0.05

)

ln
(
0.2(1−0.1)
0.1(1−0.2)

) = −1.9214,

b0 =
ln

(
1−β

α

)

ln
(

p1(1−p0)
p0(1−p1)

) = ln
(
1−0.2
0.05

)

ln
(
0.2(1−0.1)
0.1(1−0.2)

) = 3.4190,

Thus,

sbn + b1 < dn < sbn + b0
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Table 3.13 The sampling procedure

n xn dn Acceptance # Rejection #

1 0 0 – –

2 1 1 – –

3 0 1 – –

4 0 1 – –

5 1 2 – 5

6 0 2 – 5

7 1 3 – 5

8 0 3 – 5

9 1 4 – 5

10 0 4 – 5

11 0 4 – 6

12 1 5 – 6

13 0 5 – 6

14 1 6 0 6

15 0 6 0 6

0.1452n − 1.9214 < dn < 0.1452n + 3.4190

The acceptance line is: 0.1452n − 1.9214.
The rejection line is: 0.1452n + 3.4190.
From Table 3.13, the cumulative number of defective units d14 = 6 falls above the

rejection linewhen n= 14. Therefore, the sampling is stopped at the 14th observation
and that the lot would be rejected. That is, reject the hypothesis H0: p = 0.10.

3.14 Bayesian Methods

The Bayesian approach to statistical inference is based on a theorem first presented
by the Reverend Thomas Bayes. To demonstrate the approach, let X have a pdf f (x),
which is dependent on θ. In the traditional statistical inference approach, θ is an
unknown parameter, and hence, is a constant. We now describe our prior belief in
the value of θ by a pdf h(θ ). This amounts to quantitatively assessing subjective
judgment and should not be confused with the so-called objective probability assess-
ment derived from the long-term frequency approach. Thus, θ will now essentially
be treated as a random variable θ with pdf h(θ ).

Consider a random sample X1, X2, …, Xn from f (x) and define a statistic Y as a
function of this random sample. Then there exists a conditional pdf g(y | θ ) of Y for
a given θ. The joint pdf for y and θ is
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f (θ, y) = h(θ)g(y|θ)

If θ is continuous, then

f1(y) =
∫

θ

h(θ)g(y|θ)dθ

is the marginal pdf for the statistic y. Given the information y, the conditional pdf
for θ is

k(θ |y) = h(θ)g(y|θ)

f1(y)
for f1(y) > 0

= h(θ)g(y|θ)
∫

θ

h(θ)g(y|θ)dθ

If θ is discrete, then

f1(y) =
∑

k

P(θk)P(y|θk)

and

P(θi |yi ) = P(θk)P(yi |θi )
∑

k
P(θk)P(y j |θk)

where P(θ j) is a prior probability of event θ i and P(θ j| yj) is a posterior probability of
event yj given θ i. This is simply a form of Bayes’ theorem. Here, h(θ ) is the prior pdf
that expresses our belief in the value of θ before the data (Y = y) became available.
Then k(θ | y) is the posterior pdf of given the data (Y = y).

Note that the change in the shape of the prior pdf h(θ) to the posterior pdf k(θ
| y) due to the information is a result of the product of g(y | θ ) and h(θ ) because
f l(y) is simply a normalization constant for a fixed y The idea in reliability is to take
“prior” data and combine it with current data to gain a better estimate or confidence
interval or test than would be possible with either singularly. As more current data
is acquired, the prior data is “washed out” (Pham 2000).

Case 1: Binomial Confidence Limits—Uniform Prior. Results from ten missile
tests are used to form a one-sided binomial confidence interval of the form

P[R ≥ RL ] = 1 − α

From subsection 3.11.3, we have
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Table 3.14 Lower limits as a
function of the number of
missile test successes

K RL Exact level

10 0.79 0.905

9 0.66 0.904

8 0.55 0.900

7 0.45 0.898

6 0.35 0.905

10∑

i=k

(
10

i

)

Ri
L(1 − RL)

10−i = α

Choosingα =0.1, lower limits as a function of the number ofmissile test successes
are shown in Table 3.14. Assume from previous experience that it is known that the
true reliability of the missile is somewhere between 0.8 and 1.0 and furthermore that
the distribution through this range is uniform. The prior density on R is then.

g(R) = 5 0.8 < R < 1.0
From the current tests, results are k successes out of ten missile tests, so for the

event A that contained k successes:

P(A|R) =
(
10

k

)

Rk(1 − R)10−k

Applying Bayes’ theorem, we obtain

g(R|A) = g(R)P(A|R)
∫
R g(R)P(A|R)dR

=
5

(
10

k

)

Rk(1 − R)10−k

∫ 1.0
0.8 5

(
10

k

)

Rk(1 − R)10−kd R

For the case of k = 10,

g(R|A) = R10

∫ 1.0
0.8 R10dR

11 R10

0.914
= 12.035 R10

To obtain confidence limits incorporating the “new” or current data,
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Table 3.15 Comparison
between limits applying the
Bayesian method and those
that do not

K RL (uniform [0.8,1] prior) RL (no prior) Exact level

10 0.855 0.79 0.905

9 0.822 0.66 0.904

8 0.812 0.55 0.900

7 0.807 0.45 0.898

6 0.805 0.35 0.905

∫ 1.0

RL

g(A|R)dR = 0.9

∫ 1.0

RL

12.035R10dR = 0.9

After simplifications, we have

R11
L = 0.177, RL = 0.855.

Limits for the 10/10, 9/10, 8/10, 7/10, and 6/10 cases employing the Bayesian
method are given in Table 3.15 along with a comparison with the previously calcu-
lated limits not employing the prior assumption. Note that the lower limit of 0.8 on
the prior cannot be washed out.

Case 2: Binomial Confidence Limits—Beta Prior. The prior density of the beta
function is

g(R) = (α + β + 1)!
α! β! Rα(1 − R)β

The conditional binomial density function is

P(A|R) =
(
10

i

)

Ri (1 − R)10−i

Then we have

g(R|A) =
(α+β+1)!

α! β! Rα(1 − R)β

(
10

k

)

Rk(1 − R)10−k

(α+β+1)!
α! β!

∫ 1
0 Rα(1 − R)β

(
10

k

)

Rk(1 − R)10−kd R

.

After simplifications, we obtain
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g(R|A) = Rα+k(1 − R)β+10−k

∫ 1
0 Rα+k(1 − R)β+10−kd R

.

Multiplying and dividing by

(α + β + 11)!
(α + β)!(β + 10 − k)!

puts the denominator in the form of a beta function with integration over the entire
range, and hence, equal to 1. Thus,

g(R|A) =
(

α + β + 10

α + k

)

R α+k(1 − R)β+10−k

which again is a beta density function with parameters

(α + k) = α′ and (β + 10 − k) = β ′

Integration over g(R|A) from RL to 1.0 with an integral set to 1−α and a solution
of RL will produce 100(l−α)% lower confidence bounds on R, that is,

1.0∫

RL

g(R|A)dR = 1 − α.

Case 3: Exponential Confidence Limits—GammaPrior.For this situation, assume
interest is in an upper limit on the exponential parameter X. The desired statement
is of the form

p[λ < λU ] = 1 − α

If 1000 h of test time was accrued with one failure, a 90% upper confidence limit
on λ would be

p[λ < 0.0039] = 0.9

From a study of prior data on the device, assume that λ has a gamma prior density
of the form

g(λ) = λn−1 e− λ
β

(n − 1)! βn
.

With an exponential failure time assumption, the current data in terms of hours
of test and failures can be expressed as a Poisson, thus,
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p(A|λ) = (λT )n e−λT

r !

where n = number of failures, T = test time, and A = event which is r failures in T
hours of test. Applying Bayes’ results, we have

g(λ|A) =
λn−1 e

− λ
β

(n−1)! βn
(λT )r e−λT

r !
∫ ∞
λ=0

λn−1 e
− λ

β

(n−1)! βn
(λT )r e−λT

r ! dλ

= λn+r−1e
−λ

(
1
β
+T

)

∫ ∞
0 λn+r−1 e

−λ
(

1
β
+T

)

dλ

.

Note that

∞∫

0

λn+r−1e
−λ

(
1
β
+T

)

dλ = (n + r − 1)!
(

1
β

+ T
)n+r

Hence,

g(λ|A) =
λn+r−1e

−λ
(

1
β
+T

)(
1
β

+ T
)n+r

(n + r − 1)!

Thus, g(λ|A) is also a gamma density with parameters (n + r−1) and 1(
1
β
+T

) . This

density can be transformed to the χ2 density with 2(n + r) degree of freedom by the
following change of variable. Let

λ′ = 2λ

(
1

β
+ T

)

then

dλ = 1

2

(
1

1
β

+ T

)

dλ′

We have

h(λ′|A) = (λ′)
2(n+r)

2 −1e− λ′
2

[
2(n+r)

2 − 1
]
! 2

2(n+r)
2
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To obtain a 100(l−α)% upper confidence limit on λ, solve for λ’ in the integral

λ′∫

0

h(s|A)ds = 1 − α

and convert λ’ to λ via the above transformation.

Example 3.42
Given a gamma prior with n = 2 and β = 0.0001 and current data as before (i.e.,
1000 h of test with one failure), the posterior density becomes.

g(λ|A) = λ2 e−λ(11,000)(11, 000)2

2

converting to χ2 via the transformation λ’ = 2λ (11,000) and

h(λ′|A) = (λ′) 6
2 −1e− λ′

2

[
6
2 − 1

]! 2 6
2

which is χ2 with six degrees of freedom. Choosing α = 0.1 then

χ2
6,1−α = χ2

6,0.9 = 10.6

and

p[λ′ < 10.6] = 0.9

But λ’ = 2λ(11,000), hence,

p
[
λ′ = 2λ(11, 000) < 10.6

] = 0.9

or

p[λ < 0.0005] = 0.9

The latter limit conforms to 0.0039 derived without the use of a prior density, i.e.,
an approximate eight fold improvement. The examples above involved the develop-
ment of tighter confidence limits where a prior density of the parameter could be
utilized.

In general, for legitimate applications and where prior data are available, employ-
ment of Bayesian methods can reduce cost or give results with less risk for the same
dollar value (Pham 2000).



206 3 Statistical Inference

3.15 Statistical Model Selection

In this section we discuss some common criteria that can be used for distribution
and model selections (Pham 2014, 2019,2020). Let yi be the observed data value and
ŷi is the fitted value from the fit for i = 1,2 ,…,n; and n and k are the number of
observations and number of estimated parameters, respectively.

Define the sum of squared error (SSE) and total sum of squares (SST) as follows:

SSE =
n∑

i=1

(
yi − ŷi

)2
(3.91)

and

SST =
n∑

i=1

(yi − ȳ)2

where

ȳ =

n∑

i=1
yi

n
.

Mean Squared Error (MSE). The mean squared error (MSE) measures the total
deviation of the response values from the fitted response values and is defined as:

MSE =
∑n

i=1

(
yi − ŷi

)2

n − k
= SSE

n − k
(3.92)

where yi is the observed data value; ŷi is the fitted value from the fit for i = 1,2 ,…,n;
and n and k are the number of observations and number of estimated parameters,
respectively. SSE is the sum of squared error. Note that MSE considers the penalty
term with respect to the degrees of freedom when there are many parameters and
consequently assigns a larger penalty to a model with more parameters. The smaller
the value MSE value, the better the model fit.

Root Mean Squared Error (RMSE). The RMSE is the square root of the variance
of the residuals or the MSE and is given as

RMSE = √
MSE =

√
SSE

n − k
(3.93)

The RMSE indicates the absolute fit of the model to the data–how close the
observed data points are to the model’s predicted values. Lower values of RMSE
indicate better fit.
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Coefficient of Determinations (R2). R2 is the square of the correlation between
the response values and the predicted response values. It measures the amount of
variation accounted for the fitted model. The R2 is defined as

R2 = 1 − SSE

SST
(3.94)

R2 assumes every independent variable in the model explains the variation in the
dependent variable. It gives the percentage of explained variation as if all independent
variables in the model affect the dependent variable. It is always increase with model
size. The larger R2, the better is the model’s performance.

Adjusted R2. Adjusted R2 takes into account the number of estimated parameters
in the model and is defined as:

R2
ad j = 1 −

(
n − 1

n − k

)
(
1 − R2

)
(3.95)

where n and k are the number of observations and number of estimated parameters,
respectively. The adjusted R2 gives the percentage of variation explained by only
those independent variables that actually affect the dependent variable. The larger
adjusted R2, the better is the model’s goodness-of-fit.

The predictive-ratio risk (PRR). PRRmeasures the total deviation of the response
values from the fit to the response values against the fitted values, and is defined as
(Pham 2006; Pham and Deng 2003):

PRR =
n∑

i=1

(
yi − ŷi

ŷi

)2

(3.96)

The predictive-power (PP). PPmeasures the total deviation of the response values
from the fit to the response values against the response values, and is defined as
follows:

PP =
n∑

i=1

(
yi − ŷi

yi

)2

(3.97)

For all these three criteria—MSE, PRR, and PP—the smaller the value, the better
the model fits.

Normalized-Rank Euclidean Distance criterion (RED). In general, let s denotes
the number of models with d criteria, Cij1 represents the ranking based on specified
criterion ofmodel iwith respect to (w.r.t.) criteria j, andCij2 the criteria value ofmodel
iw.r.t. criteria j where i = 1, 2,…,s and j = 1, 2,…,d. The normalized-rank Euclidean
distance value, Di, for i = 1, 2,…, s, measures the distance of the two-dimensional
normalized criteria from the origin for ith model using Euclidean distance function
(Pham 2019). The RED criteria function is defined as follows:
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Di =
d∑

j=1

⎧
⎨

⎩

⎛

⎝

√
√
√
√

[
2∑

k=1

(
Ci jk

∑s
i=1 Ci jk

)2
]⎞

⎠w j

⎫
⎬

⎭
(3.98)

where s = total number of models.
d = total number of criteria.
wj = the weight of the jth criteria for j = 1,2,…,d

k =
{
1 represent criteria j value
2 represent criteria j ranking.

Thus, the smaller the RED value, Di, it represents the better rank as compare to
higher RED value.

Akaike InformationCriterion (AIC). TheAIC is one of themost common criteria
has been used in past years to choose the best model from a set of candidate models.
It is defined as (Akaike 1973):

AIC = −2 log(L) + 2k (3.99)

where L is the maximum value of the likelihood function for the model and k is the
number of estimated parameters in the model. To select the best model, practitioners
should choose the model that minimizes AIC. In other words, the lower value of
AIC indicates better goodness-of-fit. By adding more parameters in the model, it
improves the goodness of the fit but also increases the penalty imposed by adding
more parameters.

Bayesian Information Criterion (BIC). The BIC was introduced by Schwarz
(1978) also known as Schwarz criterion, and is defined as

BIC = −2 log(L) + k log(n) (3.100)

As can be seen fromEqs. (3.5) and (3.6), the difference between these two criteria,
BIC and AIC, is only in the second term which depends on the sample size n that
show how strongly they impacts the penalty of the number of parameters in the
model. With AIC the penalty is 2 k whereas with BIC the penalty is k.log(n) that
penalizes large models. As n increases, the BIC tends to favor simpler models than
the AIC as k smaller. This implies when n > 8, k·log(n) exceeds 2 k.

SecondOrder InformationCriterion (AICc).When the sample size is small, there
is likely that AIC will select models that include many parameters. The second order
information criterion, often calledAICc, takes into account sample size by increasing
the relative penalty for model complexity with small data sets. It is defined as:

AICc = −2 log(L) + 2k + 2k(k + 1)

n − k − 1
(3.101)
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where n denotes the sample size and k denotes the number of estimated parameters.
As n gets larger, AICc converges to AIC so there’s really no harm in always using
AICc regardless of sample size.

Pham’s information criterion (PIC). In general, the adjusted R2 attaches a small
penalty for adding more variables in the model. The difference between the adjusted
R2 and R2 is usually slightly small unless there are too many unknown coefficients
in the model to be estimated from too small a sample in the presence of too much
noise. Pham (2019) presents a criterion, called Pham’s information criterion (PIC),
by taking into account a larger the penalty when adding too many coefficients in the
model when there is too small a sample, is as follows:

PIC = SSE + k

(
n − 1

n − k

)

(3.102)

where n is the number of observations in the model, k is the number of estimated
parameters or (k−1) explanatory variables in the model, and SSE is the sum of
squared error as given in Eq. (3.91).

Pham’s criterion (PC). Pham (2020) recently introduces a criterion, called Pham’s
criterion (PC), that measures the tradeoff between the uncertainty in the model and
the number of parameters in the model by slightly increasing the penalty when each
time adding parameters in the model when there is too small a sample. The criteria
is as follows (Pham 2020a):

PC =
(
n − k

2

)

log

(
SSE

n

)

+ k

(
n − 1

n − k

)

where SSE =
n∑

i=1

(
yi − ŷi

)2
(3.103)

Table 3.16 presents a summary of criteria for model selection.

3.15.1 Applications

In this section we demonstrate a couple of real applications such as advertising
budget products and heart blood pressure health using multiple regression models to
illustrate the model selection.

Application 1: Advertising Budget Analysis.
In this application,we use the advertising budget data set [Advertising] to illustrate

the model selection criteria where the sales for a particular product is a dependent
variable of multiple regression and the three different media channels such as TV,
Radio, and Newspaper are independent variables as shown in Table 3.17. The adver-
tising dataset consists of the sales of a product in 200 different markets (200 rows),
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Table. 3.16 A summary of some criteria model selection (Pham 2020a)

No Criteria Formula Brief description

1 SSE
SSE =

n∑

i=1

(
yi − ŷi

)2 Measures the total
deviations between the
estimated values and
the actual data

2 MSE MSE =
∑n

i=1 (yi−ŷi )
2

n−k Measures the
difference between the
estimated values and
the actual data

3 RMSE
RMSE =

√
∑n

i=1 (yi−ŷi )
2

n−k

The square root of the
MSE

4 R2
R2 = 1 −

∑n
i=1 (yi−ŷi )

2

∑n
i=1 (yi−ȳ)2

Measures the amount
of variation accounted
for the fitted model

5 Adj R2
R2
ad j = 1 −

(
n−1
n−k

)(
1 − R2

) Take into account a
small penalty for
adding more variables
in the model

6 AIC AIC = −2 log(L) + 2k Measure the goodness
of the fit considering
the penalty of adding
more parameters

7 BIC BIC = −2 log(L) + k log(n) Same as AIC but the
penalty term will also
depend on the sample
size

8 AICc AICc = −2 log(L) + 2k + 2k(k+1)
n−k−1 AICc takes into

account sample size
by increasing the
relative penalty for
model complexity
with small data sets

9 PIC
PIC = SSE + k

(
n − 1

n − k

)

where SSE =
n∑

i=1

(
yi − ŷi

)2

Take into account a
larger the penalty
when there is too
small a sample but too
many parameters in
the model

10 PRR
PRR =

n∑

i=1

(
m̂(ti )−yi
m̂(ti )

)2 Measures the distance
of model estimates
from the actual data
against the model
estimate

11 PP
PP =

n∑

i=1

(
m̂(ti )−yi

yi

)2 Measures the distance
of model estimates
from the actual data
against the actual data

(continued)
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Table. 3.16 (continued)

No Criteria Formula Brief description

12 PC
PC =

(
n − k

2

)

log

(
SSE

n

)

+ k

(
n − 1

n − k

)

where SSE =
n∑

i=1

(
yi − ŷi

)2

Increase slightly the
penalty each time
adding parameters in
the model when there
is too small a sample

Table 3.17 Advertising
Budget Data in 200 different
markets

TV Radio Newspaper Sales

230.1 37.8 69.2 22.1

44.5 39.3 45.1 10.4

17.2 45.9 69.3 9.3

151.5 41.3 58.5 18.5

180.8 10.8 58.4 12.9

8.7 48.9 75 7.2

57.5 32.8 23.5 11.8

120.2 19.6 11.6 13.2

8.6 2.1 1 4.8

together with advertising budgets for the product in each of those markets for three
different media channels: TV, Radio and Newspaper. The sales are in thousands of
units and the budget is in thousands of dollars. Table 3.17 shows just the first few
rows of the advertising budget data set.

Pham (2019) discusses the results of the linear regression model using this adver-
tising data. Figures 3.6 and 3.7 present the data plot and the correction coefficients
between the pairs of variables of the advertising budget data, respectively. It shows
that the pair of Sales and TV advertising have the highest positive correlation. From
Table 3.18, the values of R2 with all three variables and just two variables (TV and
Radio advertisings) in the model are the same. This implies that we can select the
model with two variables (TV and Radio) in the regression (Pham 2019). Based on
the PIC criterion, the model with the two advertising media channels (TV and Radio)
is the best model from a set of seven candidate models as shown in Table 3.18.

Application 2: Heart Blood Pressure Health Analysis.
The heart blood pressure health data (Pham2019) consists of the heart rate (pulse),

systolic blood pressure and diastolic blood pressure in 86 days with 2 data points
measured each day (172 rows) is used in this application. Blood pressure (BP) is one
of the main risk factors for cardiovascular diseases. BP is the force of blood pushing
against your artery walls as it goes through your body [Blood pressure]. The Systolic
BP is the pressure when the heart beats—while the heart muscle is contracting
(squeezing) and pumping oxygen-rich blood into the blood vessels. Diastolic BP is
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Fig. 3.6 The scatter plot of the advertising data with four variables

Fig. 3.7 The Correlation Coefficient between the Variables

the pressure on the blood vessels when the heart muscle relaxes. The diastolic pres-
sure is always lower than the systolic pressure [Systolic]. The Pulse or Heart rate
measures the heart rate by counting the number of beats per minute (BPM). The
first few rows of the data set are shown in Table 3.19. In the table, the first row of



3.15 Statistical Model Selection 213

Table 3.18 Criteria values of independent variables (TV, Radio, Newspaper) of regression models
(X1, X2, and X3 be denoted as the TV, radio and newspaper, respectively)

Criteria X1, X2,
X3

X1, X2 X1, X3 X2, X3 X1 X2 X3

MSE 2.8409 2.8270 9.7389 18.349 10.619 18.275 25.933

AIC 782.36 780.39 1027.8 1154.5 1044.1 1152.7 1222.7

AICc 782.49 780.46 1027.84 1154.53 1044.15 1152.74 1222.73

BIC 795.55 790.29 1037.7 1164.4 1050.7 1159.3 1229.3

RMSE 1.6855 1.6814 3.1207 4.2836 3.2587 4.2750 5.0925

R2 0.8972 0.8972 0.6458 0.3327 0.6119 0.3320 0.0521

Adjusted
R2

0.8956 0.8962 0.6422 0.3259 0.6099 0.3287 0.0473

PIC 5.7467 4.7118 6.1512 7.3141 5.2688 6.2850 7.1026

Table 3.19 Sample heart blood pressure health data set of an individual in 86 day interval (Pham
2019)

Day Time Systolic Diastolic Pulse

5 0 154 99 71

1 144 94 75

6 0 139 93 73

6 1 128 76 85

7 0 129 73 78

7 1 125 65 74

1 0 129 80 70

1 1 130 83 72

2 0 144 83 74

2 1 124 87 84

3 0 120 77 73

3 1 124 70 80

the data set can be read as follows: on a Thursday morning, the high blood, low
blood and heart rate measurements were 154, 99, and 71, respectively. Similarly,
on a Thursday afternoon (i.e., the second row of the data set in Table 3.19), the
high blood, low blood and heart rate measurements were 144, 94, and 75, respec-
tively.From Fig. 3.8, the systolic BP and diastolic BP have the highest correlation.
The model with only Systolic blood pressure variable seems to be the best model
from the set of seven candidate models based on PIC and BIC criteria as shown in
Table 3.20.
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Fig. 3.8 The correlation coefficient between the variables

Table 3.20 Criteria values of variables (day, systolic, diastolic) of regression models (X1, X2, and
X3 be denoted as the day, systolic, diastolic, respectively)

Criteria X1, X2, X3 X1, X2 X1, X3 X2, X3 X1 X2 X3

MSE 43.1175 43.7381 47.0101 43.5859 46.8450 44.1352 47.2311

AIC 1141.463 1142.942 1155.351 1142.342 1153.76 1143.511 1155.172

BIC 1154.053 1152.384 1164.793 1151.784 1160.055 1149.806 1161.467

RMSE 6.5664 6.6135 6.8564 6.6020 6.8443 6.6434 6.8725

R2 0.09997 0.0816 0.01287 0.08477 0.0105 0.0678 0.00236

Adj R2 0.08389 0.0707 0.00119 0.07394 0.00469 0.0623 −0.00351

PIC 10.6378 9.6490 9.8919 9.6375 8.8561 8.6552 8.8843

3.16 Problems

1. Let X1, X2, …, Xn represent a random sample from the Poisson distribution
having pdf

f (x; λ) = e−λλx

x ! for x = 0, 1, 2,… and λ ≥ 0.

Find the maximum likelihood estimator λ̂ of λ.

2. Let X1, X2, …, Xn be a random sample from the distribution with a discrete pdf

P(x) = px (1 − p)1−x x = 0, 1 and 0 < p < 1
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where p is the parameter to be estimated. Find the maximum likelihood estimator p̂
of p.

3. Assume that X1, X2, …, Xn represent a random sample from the Pareto
distribution, that is,

F(x; λ, θ) = 1 −
(

λ

x

)θ

for x ≥ λ, λ > 0, θ > 0

This distribution is commonly used as a model to study incomes. Find the
maximum likelihood estimators of λ and θ.

4. Let Y 1 < Y 2 < … < Y n be the order statistics of a random sample X1, X2, …, Xn

from the distribution with pdf

f (x; θ) = 1 if θ − 1

2
≤ x ≤ θ + 1

2
, − ∞ < θ < ∞

Show that any statistic h(X1, X2, …, Xn) such that

Yn − 1

2
≤ h(X1, X2, ..., Xn) ≤ Y1 + 1

2

is a maximum likelihood estimator of θ. What can you say about the following
functions?

(a)
(4Y1 + 2Yn + 1)

6

(b)
(Y1 + Yn)

2

(c)
(2Y1 + 4Yn − 1)

6

5. The lifetime of transistors is assumed to have an exponential distribution with
pdf

f (t; θ) = 1

θ
e− t

θ for t ≥ 0, θ > 0

A random sample of size n is observed. Determine the following:

(a) The maximum likelihood estimator of θ.
(b) The MLE of the transistor reliability function,R̂(t), of

R(t) = e− t
θ
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6. Suppose that X1, X2,…, Xn are independent random variable, each with the
uniform distribution on [c − d, c + d] where c is unknown and d is known
(−∞ < c < ∞, d > 0). Find the maximum likelihood estimator of c.

7. Suppose that X1, X2,…, Xn are independent random variable, each with the
uniform distribution on [c − d, c + d] where c and d are both unknown
(−∞ < c < ∞, d > 0).

(a) Find the maximum likelihood estimators of c and d.
(b) Given the following failure time data: 20, 23, 25, 26, 28, 29, 31, 33, 34,

and 35 days. Assuming that the data follow a uniform distribution on [c
− d, c + d], use the maximum likelihood method to obtain the unknown
parameters, c and d, of the uniform distribution.

8. Suppose that X1, X2, …, Xn are independent random variable, each with the
uniform distribution on [−d, d] where d is positive and unknown. Find the
maximum likelihood estimator of d.

9. Suppose on five consecutive days in a given month the number of customers
who enter services at a printing shop were 48, 60, 78, 56, and 73 Test the null
hypothesis that the expected numbers of customers per day were the same on
the five days at the 5% level of significance using the Chi-square test.

10. Suppose that a die is rolled 120 times and the number of times each face comes
up is recorded. The following results are obtained:

Face 1 2 3 4 5 6

ni 15 21 20 15 26 23

Test whether the die is fair at the 5% level of significance using the Chi-square
test.

11. Suppose that a die is rolled 250 times and the number of times each face comes
up is recorded. The following results are obtained:

Face 1 2 3 4 5 6

ni 45 37 60 55 29 24

Test whether the die is fair at the 5% level of significance using the Chi-square
test.

12. The proportion of components produced by a manufacturing process from last
year is as follows: 3% scrapped, 6% reworked, and 91% acceptable. This year,
inspection of 500 units showed that 20 units must be scrapped and 25 units
can be reworked. Can we say that the results this year are consistent with the
last year data at the 5% level of significance using the Chi-square test.

13. An engineer obtained the following data that shows the cycle time in hours for
the assembly of a certain electronic product:
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Cycle time (hours) Frequency

2.45 4

2.55 6

2.58 15

2.64 8

2.73 2

2.80 29

2.85 7

2.92 13

2.98 19

3.20 12

The engineer concludes that these data might represent like a sample from a
normal population at the 5% level of significance. What is your opinion. Is the
engineer correct? (Hint: using the KS test).

14. 27 units were placed on life test and the test was run until all units failed. The
observed failure times t1, t2, …, t27 were give below:

4.6 12.7 20.5

5.4 13.2 20.9

5.8 13.5 21.5

6.7 13.9 22.7

7.3 14.7 23.6

7.9 17.5 24.9

8.7 17.6 25.4

9.9 19.3 25.9

12.5 20.3 35.3

Test the hypothesis that the underlying distribution of life is exponential at the
5% level of significance using the Chi-square test.

15. Show that

I (θ) ≡ E

{[
∂ ln f (x; θ)

∂θ

]2
}

= −E

(
∂2 ln f (x; θ)

∂θ2

)

16. Suppose that we have k disjoint events A1, A2, …, Ak such that the probability
of Ai is pi for i = 1,2,…, k and

∑k
i=1 pi = 1. Let’s assume that among n

independent trials there are X1, X2, …, Xk outcomes associated with A1, A2,
…, Ak , respectively. The joint probability that X1 = x1, X2 = x2, …, Xk = xk
is given as follows by the likelihood function
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L(x, p) = n!
x1!x2! . . . xk ! p

x1
1 px11 . . . pxkk

where
∑k

i=1 xi = n. This is infact known as the multinomial distribution. Find the
MLE of p1, p2, …, pk by maximizing the likelihood function above.

17. Consider the binomial distribution with unknown parameter p given by

P(X = k) =
(
n

k

)

pk(1 − p)n−k k = 1, 2, . . . , n; 0 ≤ p ≤ 1

where n = number of trials; k = number of successes; p = single trial probability of
success. Find the maximum likelihood estimator of p.

18. (a) Find the maximum likelihood estimator of θ if t1, t2,…, tn are independent
observations from a population with the following probability density function

f (t; θ) = θ

tθ+1
for t ≥ 1, θ > 0

(b) Given the following failure time data: 200, 225, 228, 245, 250, 286, 290 h.
Assuming that the data follow the above pdf, obtain the MLE of θ.

19. (a) Find the maximum likelihood estimator of λ if the failure times t1, t2,…, tn
are independent observations from a population with the following probability
density function

f (t) = (1 + λ)tλ for 0 < t < 1.

(b) The failure times are: 0.2, 0.3, 0.35, 0.45, 0.5, 0.6, 0.7, 0.75, 0.8, and 0.95 h.
Obtain the MLE of λ.

20. Suppose that X1, X2,…, Xn are independent random variables, each with the
following probability density function:

f (x, α, β) =
{
0 if x < α
1
β
e− (x−α)

β if x ≥ α

where −∞ < α < ∞ and 0 < β < ∞ are both unknown.

(a) Find the maximum likelihood estimators (MLE) of α andβ, say α̂ and β̂,
respectively.

(b) Find E(α̂) and E(β̂).
(c) If n = 7 and x1 = 5.3, x2 = 3.2, x3 = 2.4, x4 = 3.8, x5 = 4.2, x6 = 3.4, x7 =

2.9, find the MLE of α and β
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21. Suppose on five consecutive days in a given month the number of customers
who enter services at a printing shop were 48, 60, 78, 56, and 73
Test the null hypothesis that the expected numbers of customers per day were
the same on the five days at the 5% level of significance using the Chi-square
test.

22. Suppose that X is a discrete random variable with the following probability
mass function:

X P(X)

0 2θ
3

1 θ
3

2 2(1−θ)
3

3 (1−θ)
3

where 0 ≤ θ ≤ 1 is a parameter. The following 10 independent observations were
taken from such a distribution:

3, 0, 2, 1, 3, 2, 1, 0, 2, 1.
What is the maximum likelihood estimate of θ?

23. Let X denote the proportion of allotted time that a randomly selected engineer
spends working on a certain project, and suppose that the probability density
function of X is

f (x) =
{

(θ + 1)xθ for 0 ≤ x ≤ 1

0 otherwise
.

where θ > − 1.
A random sample of 10 engineers yielded data

x1 = 0.92, x2 = 0.79, x3 = 0.90, x4 = 0.65, x5 = 0.86
x6 = 0.47, x7 = 0.73, x8 = 0.97, x9 = 0.94, x10 = 0.77

(a) Use the method of moments to obtain an estimator of θ, and then compute the
estimate for this data.

(b) Obtain the maximum likelihood estimator of θ, and then compute the estimate
for the given data.

24. Let X be uniformly distributed on the interval [0, θ ] and the probability density
function of X is

f (x) =
⎧
⎨

⎩

1

θ
for 0 ≤ x ≤ θ

0 otherwise.
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where θ >0.
A random sample of 5 inspectors yielded data
x1 = 10.52, x2 = 12.37, x3 = 8.90, x4 = 14.35, x5 = 9.66
Obtain an estimator of θ using (a) the method of moments and (b) the method of

maximum likelihood, and then compute the estimate for this data.

25. Suppose that mywaiting time for a train is uniformly distributed on the interval
[0, θ ], and that the results x1, x2,…, xn of a randomsample from this distribution
have been observed. If my waiting times are 4.5, 5.3, 1.2, 7.4, 3.6, 4.8, and 2.9,

(a) calculate the estimate of θ using the method of moments.
(b) calculate the estimate of θ using the method of maximum likelihood.

26. (a) Find the method of moments estimate for θ based on a random sample of
size n taken from the following probability density function

f (x) = (θ + 1)xθ for 0 < x < 1.

(b) Calculate the estimate of θ for the sample x1 = 0.7, x2= 0.4, x3 = 0.8, x4=
0.5

27. At time x = 0, twenty identical units are put on test. Suppose that the lifetime
probability density function of each unit with parameter λ is given by

f (x) = λe−λx for x ≥ 0, λ > 0

The quality manager then leaves the test facility unmonitored. On his return 24 h
later, the manager immediately terminates the test after noticing that y = 15 of the 20
units are still in operation (so five have failed). Determine the maximum likelihood
estimate of λ.

28. At time x = 0, forty identical units are put on test. Suppose that the lifetime
probability density function of each unit with parameter θ is given by

f (x) = x

θ2
e− x2

2θ2 for x ≥ 0, θ > 0

The quality manager then leaves the test facility unmonitored. On his return 8 h
later, the manager immediately terminates the test after noticing that 30 of the 40
units are still in operation (so ten have failed). Determine the maximum likelihood
estimate of θ .

29. The following data were drawn one observation at a time in the order records:

g g b g g b g g g b g b g g b b b g g g.

where b denotes a defective item and g denotes a good item. The experiment was
performed to test the following hypothesis:

H0: p = p0 = 0.10 versus H1: p = p1 = 0.20.
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where p denotes the proportion defective items in the population. It is desired to
reject H0 when it is true with probability 0.05 and to accept H0 when H1 is true with
probability 0.20. Using sequential testing plan, determine whether you would accept
or reject a lot on the basis of the observations above.

30. The following data were drawn one observation at a time in the order records:

b g b b g b g b.

where b denotes a defective item and g denotes a good item. The experiment was
performed to test the following hypothesis:

H0: p = p0 = 0.10 versus H1: p = p1 = 0.25.

where p denotes the proportion defective items in the population. It is desired to
reject H0 when it is true with probability 0.05 and to accept H0 when H1 is true with
probability 0.10. Using sequential testing plan, determine whether you would accept
or reject a lot on the basis of the observations above.

31. Let X represent a random variable of service time at a certain facility, and
suppose that the cumulative distribution function of X is

F(x) =

{
1 − e−λx − λxe−λx for x > 0

0 for x ≤ 0

where λ > 0. A random sample of 10 customers yielded data.

x1 = 12, x2 = 18, x3 = 8, x4 = 15, x5 = 11,

x6 = 9, x7 = 8, x8 = 10, x9 = 18, x10 = 21

(a) Use the method of moments to obtain an estimator of λ, and then compute the
estimate for this data.

(b) Obtain the maximum likelihood estimator of λ, and then compute the estimate
for the given data.

32. Let X represent a random variable of service time at a certain facility, and
suppose that the probability density function of X is

f (x) = 0.5 λ3x2e−λx for x > 0, λ > 0.

A random sample of 5 customers yielded data
x1 = 20, x2 = 16, x3 = 15, x4 = 18, x5 = 25
Use the method of moments to obtain an estimator of λ, and then compute the

estimate for this data.

33. A study of the relationship between facility conditions at gasoline stations
and aggressiveness in the pricing of gasoline reported the accompanying data
below based on a sample of n = 441 stations. At the 0.10 significance level,
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does the data suggest that facility conditions and pricing policy are independent
of one another?

Observed Pricing Policy

Facility conditions Aggressive Neutral Nonaggressive Total

Substandard 24 15 17 56

Standard 52 73 80 205

Modern 58 86 36 180

Total 134 174 133 441
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