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Preface

In today’s technological world, nearly everyone depends upon the continued func-
tioning of a wide array of complex growing range of devices used in markets ranging
from driverless technology to 5G, the fifth-generation mobile network, from high-
speed rail to 6G, the next-generation mobile communication technology for our
everyday safety, security, mobility, and economic welfare. We expect our electric
appliances, electrical power grids, hospital monitoring control, fly-by-wire next-
generation aircraft, data exchange systems, and autonomous vehicle applications
to function wherever and whenever we need them. When they fail, the results can
be catastrophic. Internet of Everything (IoE) applications have quickly become a
huge part of how we live, communicate, and do business in recent years and coming
decades. All around the world, web-enabled devices are turning our world into a
more switched-on place to live. As our society grows in complexity, so do the critical
challenges in the area of reliability of such complex systems and devices.

In general, a system reliability is the probability that the system, including human-
machine-thing in IoE applications, will not fail for a specified period of time under
specified conditions. The greatest problem facing the industry today is, though given
the huge large database, how to assess quantitatively and timely monitoring the
reliability characteristics of such modern complex systems include IoE applications.

This book aims to present both the fundamental and the state-of-the-art method-
ology and methods of statistical reliability in theory and practice and recent research
on statistical reliability engineering. It is a textbook based mainly on the author’s
recent research and publications as well as experience of over 30 years in this field.
The topics covered are organized as follows. Chapter 1 provides a fundamental prob-
ability and statistics with which some readers are probably already familiar, but to
many others may be not. It also discusses basic concepts and measures in reliability
include path sets and cut sets, coherent systems, failure rate, mean time to failure,
conditional reliability, and mean residual life. Chapter 2 describes most common
discrete and continuous distributions such as binomial, Poisson, geometric, expo-
nential, normal, lognormal, gamma, beta, Rayleigh, Weibull, Vtub-shaped hazard
rate, etc. and its applications in reliability engineering and applied statistics. The
chapter also describes some related statistical characteristics of reliability measures
such as bathtub, Vtub shapes, increasingmean residual life, new better than used, etc.

vii
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Chapter 3 discusses statistical inference and common estimation techniques include
the maximum likelihood, method of moments, least squared, Bayesian methods,
and confidence interval estimates. It also discusses the tolerance limit estimates,
goodness-of-fit tests, sequential sampling, and model selection criteria.

Chapter 4 discusses the reliability modeling and calculations for various systems
including series-parallel, parallel-series, k-out-of-n, standby load-sharing, and
degradable systems. It also discusses several basic mathematical reliability optimiza-
tion methods and the reliability of systems with multiple failure modes. Chapter 5
discusses various system reliability estimation methods such as the maximum like-
lihood, uniform minimum variance unbiased, and bias-corrected estimates to esti-
mate the reliability of some systems including the k-out-of-n system and stress-
strength redundant systems. The chapter also discusses a concept of systemability
and life testing cost model. Chapter 6 describes the basic of stochastic processes
such asMarkovprocess, Poisson process, nonhomogeneousPoisson process, renewal
process, and quasi-renewal process, as the tools that can be applied in themaintenance
modeling.

Chapter 7 discusses some basic maintenance models with various maintenance
policies including age replacement, block replacement and multiple failure degra-
dation processes, and random shocks. It also discusses the reliability and inspec-
tion maintenance modeling for degraded systems with competing failure processes.
Chapter 8 aims to focus on an emergence trend in recent big data era in Industry 4.0
and the high demand of applying some statistical methods to various applications
in engineering and machine learning. This chapter is devoted to the basic concepts
of statistical machine learning. It first provides a brief basic linear algebra including
orthogonal matrix. It further discusses the concept of Singular Value Decomposition
(SVD) and its applications in the recommender systems. Finally, the chapter discusses
the linear regression models with applications in machine learning aspects.

Problems are included at the end of each chapter. A few projects are also included
in Chap. 4 that can be used for student group-project assignments. The detailed solu-
tions to selected problems of each chapter are provided toward the end of the book.
Appendix A contains various distribution tables. Appendix B contains some useful
Laplace transform functions. The book also provides brief definitions of common
glossary terms in the field of statistical reliability engineering and its related areas.

The text is suitable for a one-semester graduate course and advanced undergrad-
uate courses in reliability engineering and engineering statistics in various disciplines
including industrial engineering, systems engineering, operations research, computer
science and engineering, mechanical engineering, mathematics, statistics, and busi-
ness management. The instructor who wishes to use this book for a one-semester
course may omit the first six sections and Sects. 10 and 11 of Chap. 1 provided
that the students have had a basic probability and statistics knowledge. The book
will also be a valuable reference tool for practitioners and managers in reliability
engineering, data science, data analytics, applied statistics, machine learning, safety
engineering, and for researchers in thefield. It is also intended that the individual, after
having utilized this book, will be thoroughly prepared to pursue advanced studies in
reliability engineering, applied statistics, machine learning, and research in the field.



Preface ix

I have used an early draft version of this book as a textbook for graduate course in
system reliability engineering at Rutgers University as well as a referenced reading
material for a 3-day training seminar on statistical reliability modeling and its appli-
cations in machine learning. Similarly, researchers and data scientists can use the
first five chapters (i.e., Chaps. 1–5), together with Chap. 8 for a 2-day seminar on
statistical reliability engineering and machine learning.

I should appreciate it greatly if readers will bring to my attention any errors which
they detect. I acknowledge Springer for this opportunity and professional support.

Piscataway, NJ, USA
March 2021

Hoang Pham
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Chapter 1
Basic Probability, Statistics,
and Reliability

This chapter presents some fundamental elements of probability and statistics with
which some readers are probably already familiar, but others may be not. Statistics is
the study of howbest one can describe and analyze the data and then draw conclusions
or inferences based on the data available. The analysis of the reliability of a system
must be based on precisely defined concepts. Since it is readily accepted that a
population of supposedly identical systems, operating under similar conditions, fall
at different points in time, then a failure phenomenon can only be described in
probabilistic terms. Thus, the fundamental definitions of reliability must depend on
the concepts from probability theory.

This chapter discusses basic definitions and measures in probability, statistics and
reliability including probability axioms, basic statistics and reliability concepts and
its applications in applied sciences and engineering. These concepts provide the basis
for quantifying the reliability of a system. They allow precise comparisons between
systems or provide a logical basis for improvement in a failure rate.

1.1 Basic of Probability

In general, probability is the branch of science concerned with the study of mathe-
matical concepts for making quantitative inferences about uncertainty. Uncertainty
is a part of the society that we are living with which indeed can also make life inter-
esting. Uncertainty arises in every aspect of science, medicine, technology, and in
our daily life in particular. Probability can be used to quantify the uncertainty of an
event. A failure of an air conditioner or of an car engine can be described as a random
event. Probability is an important aspect that can be used to analyze the uncertainty
lifetimes of human being or lifetimes of electrical power systems.

The term probability refers to the number between zero and one that quantitatively
measures the uncertainty in any particular event, with a probability of one indicating
that the event is certain to occur and a probability of zero indicating that the event
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is certain not to occur. A set is merely an aggregate or collection of objects viewed
as a single entity. Two sets X and Y are said to be equal (or identical) if and only
if they consist of exactly the same elements, in which case we write X = Y. We
shall use capital letters A, B, C… to denote sets and small letters such as a, b, c… to
denote the element belonging to the set. For example, let A is the set of even positive
integers, that is A = {2, 4, 6, …}. Each even integer x is a member to the set A. We
can write: x ∈ A. If an object is not a member of the set A, then we write x /∈ A.

Again, if A is the set of even positive integer, then 3 /∈ A. The theory of sets invented
by the German mathematician, George Cantor in the late nineteenth century, has
provided a very useful terminology that today is widely used and applicable to all
the engineering, physical science and mathematics. This section will not discuss the
subject in depth but only provide a few very basic concepts in order to take advantage
of the set theory for topics that related to our focus in this book.

Definition 1.1 A ∪ B (A union B) is the set of elements that belong to at least one
of the sets A and B, i.e., to A or B.

Definition 1.2 A ∩ B (A intersection B) is the set of elements common to both A
and B.

Definition 1.3 Two sets are said to be disjoint or mutually exclusive if they have no
elements in common, i.e., if

P(A ∩ B) = 0

A ∩ B = ∅

Probability theory is fundamentally concerned with specific properties of random
phenomena. An experiment is defined as any clearly specified procedure, whereas a
trial is a single performance of the experiment. Each possible result of an experiment
that is of interset is called an outcome.

Example 1.1 Toss a coin twice. Let us assume “head” and “tail” as the only possible
outcomes. If we denote these outcomes by H and T, respectively, the possible
outcomes of the experiment are: {(H, H), (H, T), (T, H), (T, T)}.

Example 1.2 Roll two fair dice. Let us assume that the sum of the numbers on the
dice is of interest. The possible outcomes of the experiment are: {2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12}.

Example 1.3 Toss a coin until it falls tails for the first time. Let us assume that the
number of the toss that produced the first tail is of interest. We may obtain an infinite
sequence of heads until the first tail is obtained. Thus, if a tail is obtained, we specify
the outcome by recording the number of the toss that produced the first tail. The set
of the possible outcomes is: {1, 2, 3, 4, 5, …}.

The totality of outcomes associated with a real or conceptual experiment is called
the sample space (denoted by S). Thus, S is a set of outcomes. An outcome is
sometimes referred to as an element in the sample space.



1.1 Basic of Probability 3

In the Example 1.1 above, for example, the sample space can be written as

S = {(H,H), (H,T), (T,H), (T,T)}.

Suppose we are interested in the event (denoted by E) of heads occurring of the
first toss, again in the Example 1.1. This event consists of two elements and can be
written as

E = {(H,H), (H,T)}.

In the light of this discussion, we can define an event is as a set of outcomes. An
event E is said to have occurred if the outcome of the experiment corresponds to an
element of subset E.

A random event A can be characterized by the probability of the event occurring.
A random variable is any quantity with real values that depends in a well-defined
way on some process whose outcomes are uncertain. An indicator random variable,
for example, is a random variable whose only values with nonzero probability are 0
and 1. In other words, it indicates the occurrence of a specific event by assuming the
value 1 when the desired event happens and the value 0 otherwise.

The probability P(A) is the likelihood or chance that A is either the case or will
happen in the future. It is represented by a real number ranging from 0 to 1. P(A)
generally refers to a period of time T as follows:

P(A) = n A

n

where nA is the number of occurrences (chances) of event A in a period of time T
and n is the number of occurrences (chances) in T. In other words, event A is a set of
outcomes (a subset) to which a probability P(A) is assigned. The following equations
represent two main properties of random events:

P(A) + P(A) = 1

P(∅) = 0

where A is the negation of eventA and∅ is an eventwithout outcomes i.e. a setwithout
elements. In particular, the failure event is a random occurrence characterized by a
probability function that measures the chance of the event occurring in accordance
with a specific set of operating conditions.

Example 1.4 A fair coin is tossed three times.

(i) What is the sample space?
(ii) Find the probability of event E1 that at least one head occurs?
(iii) Find the probability of event E2 that at least two heads occur?
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Solution

(i) The sample space is given by

S = {(H,H,H), (H,H,T), (H,T,H), (T,H,H), (T,T,H),

(T,H,T), (H,T,T), (T,T,T)}.

(ii) The probability of event E1 that at least one head occurs is

E1 = {(H,H,H), (H,H,T), (H,T,H), (T,H,H),

(T,T,H), (T,H,T), (H,T,T)}.

We assign probability 1/8 to each element in the sample space. Thus,

P{E1} = 1/8 + 1/8 + 1/8 + 1/8 + 1/8 + 1/8 + 1/8 = 7/8

(iii) Similarly, the probability of event E2 that at least two heads occur is

E2 = {(H,H,H), (H,H,T), (H,T,H), (T,H,H)}

Thus,

P{E2} = 1/8 + 1/8 + 1/8 + 1/8 = 1/2

Let A and B be events. The conditional probability is defined as the probability
of A conditioned on B, or A given B, denoted P( A|B):

P(A|B) = P(A ∩ B)

P(B)

where A ∩ B is the intersection of events A and B. That is,

P(A ∩ B) = P(A|B) P(B)

Example 1.5 A fair die is thrown and the result is known to be an even number.
What is the probability that this number is divisible by 1.5?

Solution The sample space is given by S= {1, 2, 3, 4, 5, 6}. The event even numbers,
denoted by B, is the subset {2, 4, 6}. The event divisible by 1.5, denoted by A, is the
subset {3, 6}. Thus,

P(A|B) = P(A ∩ B)

P(B)
=

1/
6

3/
6

= 1

3
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We now discuss briefly the notation of independent events. It means there is no
relationship between the events.

The two events A and B are said to be statistically independent if

P(A ∩ B) = P(A) P(B).

If two events A and B are statistically independent and P(B) > 0 then

P(A|B) = P(A) (1.1)

Intuitively, two events are independent if the knowledge of one event already
happened does not influence the probability of the other happening. In general, if n
events A1, A2, … An, are mutually, statistically, independent, then

P

(
n⋂

i=1

Ai

)

=
n∏

i=1

P(Ai ) (1.2)

Example 1.6 A fair die is thrown twice. Let A, B and C denote the following events:

A first toss is odd
B second toss is even
C total number of spots is equal to seven.

(i) What is the sample space?
(ii) Computer P(A), P(B), P(C).
(iii) Show that A, B and C are independent in pairs.
(iv) Show that A, B and C are not independent.

Solution

(i) The sample space contains a total of 36 events such as
{(1, 1), (1, 2), ...(6, 5), (6, 6)}.

(ii) P(A) = 1/2; P{B} = 1/2;
P(C) = P{(1, 6), (6, 1), (2, 5), (5, 2), (3, 4), (4, 3)} = 1/6

(iii) Here
{A ∩ B} = {(1, 2), (1, 4), (1, 6), (3, 2), (3, 4), (3, 6), (5, 2), (5, 4), (5, 6)}
{A ∩ C} = {(1, 6), (3, 4), (5, 2)}
{B ∩ C} = {(5, 2), (3, 4), (1, 6)}.
Thus,

P(A ∩ B) = 1

4
= P(A) P(B)

P(A ∩ C) = 1

12
= P(A) P(C)

P(B ∩ C) = 1

12
= P(B) P(C).
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We conclude that events A and B are independent; A and C are independent;
and B and C are independent.

(iv) See Problem 2.

Example 1.7 Assume that the product failures from an assembly line are 5%.
Suppose that if a product that is defective, a diagnostic test indicates that it is defec-
tive 92% of the time, and if the product is good, the test indicates that it is good
96% of the time. Calculate the probability that the product is good given that the test
indicates defective?

Solution Let
A = product is good (not defective)
Ac = product is defective
B = a test indicates that it is good (not defective)
Bc = a test indicates it is defective
Then

P(A) = 0.95, P(Ac) = 0.05; P(B|A) = 0.96, P(Bc|Ac) = 0.92

The probability that the product is good given that the test indicates defective is:

P(A|Bc) = P(A ∩ Bc)

P(Bc)

= P(Bc|A)P(A)

P(Bc|A)P(A) + P(Bc|Ac)P(Ac)

= 0.04 ∗ 0.95

(0.04 ∗ 0.95) + (0.92 ∗ 0.05)
= 0.4524

1.2 Probability Axioms

It is commonly that we assign low probability to events that we do not expect to
happen. Thus, probability is a property assigned to events in an intuitive experimental
process. For example, if an event E is an impossibility, say E = A then P(A) = 0.
Similarly, if an event E is a certainty, say E = D, then P(D) = 1.

Let C be a event of the sample space (C ⊂ �). A probability of event function,
denoted P(C), has the following properties:

(i) P(�) = 1, P(C) ≥ 0

(ii) P

{
n⋃

i=1

Ci

}

=
n∑

i=1

P(Ci ).
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where the events Ci have no elements in common (i.e., they are multually disjoint
events). If the events A and B are not mutually exclusive, then

P(A ∪ B) = P(A) + P(B) − P(A ∩ B).

If A ⊂ B then P(A) ≤ P(B).
Two events are mutually (or statistically) exclusive in the case of:

P(A ∩ B) = 0

A ∩ B = ∅

Given the events A and B we can define two new sets as follows:
The intersection of A and B is the set of all elements which belong to both A and

to B—it is denoted A ∩ B. Similarly, the union of A and B is the set of all elements
which belong to A or to B or to both A and to B—it is denoted A ∪ B.

The probability of the union of events A and B is

P(A ∪ B) = P(A) + P(B) − P(A ∩ B) (1.3)

where A ∪ Bis the union of events A and B.
Now considering three independent events A, B, and C:

P(A ∪ B ∪ C) = P(A) + P(B) + P(C) − P(A) · P(B) − P(A) · P(C)

− P(B) · P(C) + P(A) · P(B) · P(C) (1.4)

In the case where the events are mutually exclusive:

P(
⋃

i

Ai ) =
∑

i

P(Ai ) (1.5)

where Ai is a generic random event.
By pairwise union or intersection, we can extend the definition to a finite number

of events A1, A2, …, An. That is,

n⋃

i=1

Ai = A1 ∪ A2 ∪ · · · ∪ An

and

n⋂

i=1

Ai = A1 ∩ A2 ∩ · · · ∩ An

The operations of union and intersection are given by:
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A ∪ B = B ∪ A Commutative
A ∩ B = B ∩ A Commutative
(A ∪ B) ∪ C = A ∪ (B ∪ C) Associative
(A ∩ B) ∩ C = A ∩ (B ∩ C) Associative
A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C) Distributive
A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C) Distributive

We also present the following properties, known as DeMorgan’s rule:

(A ∪ B)c = Ac ∩ Bc

(A ∩ B)c = Ac ∪ Bc

A finite union
⋃n

i=1 Ai is an event whose elements belong to at least one of the n
events. Similarly, a finite intersection

⋂n
i=1 Ai is an event whose elements belong to

all the n events.
If events A1, A2, …, An is a partition of S, then for any event C, we obtain

P(C) =
n∑

i=1

P(C ∩ Ai ) (1.6)

The Venn diagram is a useful visual representation of events. In such a diagram
events are represented as regions in the plane and elements which belong to a given
event are placed inside the region representing it. Frequently all the events in the
diagram are placed inside a box which represents the universal set. If an element
belongs to more than one event in the diagram, the two regions representing the
events concerned must overlap and the element is placed in the overlapping region.
In this way the picture represents the relationship between the events concerned.
For example, if A ⊆ B the region representing A would be enclosed inside the
region representing B to ensure that every element in the region representing A is
also inside that representing B (see Fig. 1.1). The problem with this Venn diagram
approach is that although it aids the intuition with three or fewer events, it use is
very limited for four or more events because we have to draw the events in all
the combination positions as is possible that include a relationship to one another

Fig. 1.1 Venn diagram for A
in B

B
A
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Fig. 1.2 Venn diagram for
A, B and C

A B

C

as regards intersections. This in fact is not a simple task to do with four events and
muchmore difficultwithfive.TheVenndiagram inFig. 1.2 represents the relationship
between three eventsA,BandC. It can be seen that the region representing A∩(B∪C)

can be obtained by the union of three elementary regions.
Let C1 and C2 be two events of the sample space �. The conditional probability

of getting an outcome in C2 given that an outcome from C1 is given by

P(C2|C1) = P(C2 ∩ C1)

P(C1)
(1.7)

Theorem 1.1 (Bayes’ Rule) Let C1, C2, …, Cn be n mutually disjoint subsets of the
sample space Z. Let C be a subset of the union of the Cis, that is

C ⊂
n⋃

i=1

Ci

Then

P(C) =
n∑

i=1

P(C |Ci )P(Ci ) (1.8)

and

P(Ci |C) = P(C |Ci )P(Ci )∑n
i=1 P(C |Ci )P(Ci )

This is also known as Bayes’ rule. Equation (1.8) is known as the Law of Total
Probability.

Example 1.8 Suppose the total inventory of a company is a collection of lots from
four different suppliers, A, B, C, and D, as indicated below:
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Supplier Percent of inventory
A 60
B 20
C 5
D 15

Furthermore, suppose that past records indicate that lots from suppliers A, B, C,
and D are 5, 3, 2, and 8% defective, respectively. Find the probability that a defective
item selected as random is from supplier B.

Solution Using the Bayes’ rule, we have

P(B|de f ective) = (0.2)(0.03)

(0.6)(0.05) + (0.2)(0.03) + (0.05)(0.02) + (0.15)(0.08)

= 0.122

Combinatorial Methods

In real life many interesting experiments yield sample spaces with large numbers of
possible outcomes. Thus, the computational procedures often are not simple, if not
difficult, to obtain. To overcome such difficulty,we need to derive some combinatorial
methods to provide a convenient way of facilitating the required counting. We now
discuss a few of these common techniques in this subsection.

Ordered samples. Samples can be drawn from a finite population according to
two procedures. First, sampling with replacement means the same element can be
selected more than once. Second, sampling without replacement means an element
once selected is removed from the population.

Permutation. The number of permutations of n elements chosen from a set of N
elements, denotes as P(N, n), is

P(N , n) = N (N − 1)(N − 2)...(N − n + 1)(N − n)!
(N − n)!

= N !
(N − n)! for n ≤ N (1.9)

Example 1.9 Suppose there are 6 objects and we consider permutations of 2 objects
at a time. Determine the total number of permutations?

Solution The total number of permutation of 2 objects from among 6 is equal to:

P(6, 2) = 6!
(6 − 2)! = 30.

Example 1.10 A product undergoes six operations that can be performed if any
sequence. In how many different ways can it be produced?
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Solution The number of different ways is N ! = 6! = 720.

Example 1.11 Howmanyways are there to rank n candidates for the job of corporate
chief executive? If the ranking is made at random (each ranking is equally likely),
what is the probability that the fifth candidate, Mr. Best, is in second place?

Solution One can easily show that the total number of rankings is n! and that Mr.
Best has probability 1/n of being second. (see Problem 29.)

Combinations. Suppose we have N distinct objects and wemust select n of them.
In how many ways can this be done? We also assume that the order in which the
choices are made is irrelevant. We call a group of n elements chosen at random from
N elements (without regard to order) a combination of n elements from N and denote
it by C(N, n), that is

C(N , n) = P(N , n)

n! = N !
n!(N − n)! =

(
N

n

)

(1.10)

Example 1.12 An urn contains one white, one black, one red, and one green sphere,
all of equal size. Three spheres are drawn at random. In how many ways can this be
done if the order in which the choice are made: (i) is relevant; (ii) is irrelevant?

In other words, we want to find the number of subsets with exactly three elements
from a set of four elements, provided that the order in which the choice are made:
(i) is relevant; (ii) is irrelevant?

Solution

(i) The number of permutations of three objects from a set of four objects (order
is relevant) is

P(4, 3) = 4!
(4 − 3)! = 24

(ii) The number of combinations of three objects from a set of four objects (order
is irrelevant) is

C(4, 3) = 4!
3!(4 − 3)! = 4

Example 1.13 Suppose that 3 people are chosen randomly from among 10 to form
a committee. In how many ways can such a committee be formed?

Solution In this case, the order in which the 3 people are drawn is not of importance.
The solution is to obtain the number of combinations of 3 people out of 10 people,
and is given by

C(10, 3) = 10!
3!(10 − 3)! = 120
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In general, the number of ways in which N distinct objects can be divided into ni
of type i (objects) such that

∑k
i=1 ni = N is given by

N !
n1! n2! ... nk !

This is also called the multinomial coefficients.

Theorem 1.2 If there are N distinct objects, ni of type i where
∑k

i=1 ni = N then
the number of arrangements of these objects, denoted C(N; n1, n2, …, nk) is

C(N; n1, n2, ..., nk) = C(N, n1) C(N − n1, n2)... C(N − n1−... − nk−1, nk)

= N !
n1! n2!... nk !

Example 1.14 An urn contains 20 balls of equal size: 5 red, 7 green, 2 black, and 6
white. Four balls are drawn at random (without replacement). What is the probability
that all of them are of different colors?

Solution The probability that all of them are of different colors is

(
5

1

)(
7

1l

)(
2

1

)(
6

1

)

(
20

4

) = 28

323

Example 1.15 How many ways are there to form a sequence of 10 letters from 4
a’s, 4 b’s, 4 c’s and 4 d’s if each letter must appear at least twice?

Solution There are two groups of letter frequencies that sum to 10 with each letter
appearing two or more times. The first group is four appearances of one letter and
two appearances of each remaining letter. The second is three appearances of two
letters and two appearances of the other two letters.

It is easy to show that the total number of ways to form a sequence of 10 letters
from 4 a’s, 4 b’s, 4 c’s and 4 d’s if each letter must appear at least twice is 226,800.

(See Problem 31.)

Fault Tree Analysis

Fault tree analysis (FTA) is a popular analytical technique for evaluating the failure
probability of a system. The fault tree technique is a graphical method that represents
logical relationships between events that lead to system failure. They provide a
systematic mathematical framework for analyzing potential causes of failure and it
roots cause analysis. From a design perspective, they allow the designer to understand
the ways in which a system may fail. Fault trees comprise basic events connected



1.2 Probability Axioms 13

by gates (such as AND gate, OR gate, priority gate etc.) in a logical path, to a
top node that represents system or subsystem failure. One approach used by this
standard, adopted by many industries, is largely quantitative, where FTA models an
entire product, process or system, and the events and failures have a probability of
an occurrence determined by analysis or test. The final result is the probability of
occurrence of a top event representing probability of failure of the system. One of
the advantages of FTA is that we focus on a specific hazardous state and identify
each of the preconditions that need to be satisfied in order to reach such a state.

1.3 Basic Statistics

Statistics is a recognized branch of the mathematical sciences, especially tools in the
theory of probability. Whenever data are collected with the purpose of studying a
phenomenon or understanding the data analysis, techniques are needed to properly
how to properly collect, analyze, estimate the parameters, and understand and present
the data. All of such aspects are together included in the definition of statistics. The
utimate goal of statistics is to gain understanding from data and make statistical
inferences about population from an analysis of information contained in sample
data. Any data analysis should contain following steps:

• Formulate the problem
• Define population and sample
• Collect the data
• Do descriptive data analysis
• Use appropriate statistical methods to solve the proposed problem, and
• Report the results.

Statistics is concerned with to: (1) collect data; (2) analyze data; (3) estimate the
parameters from the data; and (4) understand and present data. Such aspects are often
known as data collection, statistical analysis, statistical inference, and statistical find-
ings, respectively. In general, statistics is the methodology for collecting, analyzing,
interpreting and drawing conclusions from information. In other words, statistics is
the methodology which researchers and statisticians have developed for interpreting
and drawing conclusions from collected data. We will briefly discuss these aspects
in this chapter, except statistical inference will be discussed in Chap. 3.

A characteristic that varies from one person or thing to another is called a variable.
In otherwords, a variable is any characteristic that varies fromone individualmember
of the population to another. Examples of variables for human are weight, height,
sex, marital status, and eye color. The first two of these variables yield numerical
information and are examples of quantitative variables; the last three yield non-
numerical information and are examples of qualitative variables.

The cumulative distribution function (cdf) F is a unique function which gives the
probability that a random variable X takes on values less than or equal to some value
x. In other word, F(x) = P(X ≤ x).
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The probability density function (pdf) f is the probability that X takes on the value
x, that is, f (x) = P(X = x).

A function f(x) is a pdf of a continuous random variable X if and only if

a. f (x) ≥ 0 for all x
b.

∫∞
−∞ f (x)dx = 1

In words, probability that X will be in area may be obtained by integrating the
probability density function over the area.

If random variable is discrete, f(x) should be less than 1 because
∑

all x f (x) = 1.
But, if random variable is continuous, the necessary condition is

∫∞
−∞ f (x)dx = 1.

Example 1.16 A boy buys a local newspaper for $0.10 and sells it for $0.25.
However, unsold newspapers cannot be returned. The boy will have to decide how
many papers, denoted quantity M, that needs to order for the next day. Suppose the
demand for the newspaper is a random variable X. Then the random variable Y that
denotes his daily profit if the boy orders M number of papers is

YX =
{
$0.15M X ≥ M
$0.15X − $0.10(M − X) X < M

for X = 0, 1, 2, 3…
In the continuous case, the pdf is the derivative of the cdf:

f (x) = ∂ F(x)

∂x

Example 1.17 A sample of 3 units is drawn without replacement from a batch of
15 units, of which two are bad. Let X denote the number of bad units in the sample.

(i) Determine the probability function of X.
(ii) Determine the distribution function.

Solution

(i) P(X = 0) = 13

15
.
12

14
.
11

13
= 22

35

Let g and b denote good and bad units, respectively. We obtain

P(X = 1) = P{g, g, b} + P{g, b, g} + P{b, g, g}
= 13

15
.
12

14
.
2

13
+ 13

15
.
2

14
.
12

13
+ 2

15
.
13

14
.
12

13

= 12

35

Similarly,
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P(X = 2) = P{g, b, b} + P{b, g, b} + P{b, b, g}
= 13

15
.
2

14
.
1

13
+ 2

15
.
13

14
.
1

13
+ 2

15
.
1

14
.
13

13

= 1

35

Thus, the probability function of X is

P(X = x) =
⎧
⎨

⎩

22
35 x = 0
12
35 x = 1
1
35 x = 2

(ii) The probability function of X is

F(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 x < 0
22
35 0 ≤ x < 1
34
35 1 ≤ x < 2
1 x ≥ 2

Example 1.18 A vending machine usually provides candy on insertion of a coin.
Over a period of time it is found not to work on five ‘uses’ in every thousand. Suppose
we use X as an indicator variable so that x = 1 if the machine works and x = 0 if no
candy is obtained. Thus we have

Prob{machine works} = 0.995
Prob{machine does not work} = 0.005

or, the probability function of X can be written as

P(X = x) =
{
0.995 x = 1

0.005 x = 0
It is easy to see that if X is a continuous random variable with pdf f and y =

g(x) is a continous monotone function of x then the random variable Y has a density
function h as follows:

h(y) = f (x)

∣
∣∣∣
dx

dy

∣
∣∣∣

where x = g−1(y).

Common Measures in Statistics

Measures of central tendency andvariability play a fundamental role in characterizing
data. The statistics most commonly used to represent the properties of a distribution
or at least to analyze the data representation fall into some common measures: the
mean, standard deviation, variance, skewness, kurtosis, median, mode, and range.
Measures such as the mean and the median are frequently used as measures of
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location or measures of central tendency because they are central or middle values.
The variance and standard deviation are some popular measures of dispersion, scatter
or variability. These measures are described as follows.

The mean

Let x1, x2, …, xn be a finite set of values of the variable X. The mean or average of
this set of values is equal to the total of the values divided by the number of values.

The mean or average of a finite set of n values x1, x2, …, xn of a variable X is
equal to

x =
∑n

i=1 xi

n

If X is a random variable with probability density function f , then the expected
value of a random variable X, or the mean, is given by

E(X) =

⎧
⎪⎨

⎪⎩

∑

all x
x f (x) for X discrete

∞∫

−∞
x f (x)dx for X continuous.

(1.11)

If a new random variable Y is a function of X expressed as Y = g(X), then its
expectation is given by

E(g(X)) =

⎧
⎪⎨

⎪⎩

∑

all x
g(x) f (x) if g is discrete

∞∫

−∞
g(x) f (x)dx if g is continuous.

(1.12)

If a sample of n observations drawn randomly from a population, then the sample
mean

x =
∑n

i=1 xi

n
(1.13)

is the best available estimate of the population mean μ. As n increases, x becomes
a more and more precise estimate of the population mean μ.

Property 1.1 If two random variables X1 and X2 are independent, then

E(X1X2) = E(X1)E(X2).

The converse of this property is not true. In other words, if E(X1X2) =
E(X1)E(X2) we cannot conclude that X1 and X2 are independent.

Two other types of means play a role in some certain situations. They are the
geometric mean and the harmonic mean.



1.3 Basic Statistics 17

Definition 1.4 The geometric mean of a finite set of n positive values x1, x2, …, xn
of a variable X is equal to

xgm = n
√

x1x2...xn .

Definition 1.5 The harmonic mean of a finite set of n positive values x1, x2, …, xn
of a variable X is equal to

xhm = n
∑n

i=1
1
xi

.

The Variance

Definition 1.6 The variance of a random variable X, denoted as σ 2, with mean μ is
a measure of how the values of X are spread about the mean value and is given by

σ 2 = E(X − μ)2 (1.14)

It is calculated for discrete and continuous random variables, respectively, by

σ 2 =

⎧
⎪⎨

⎪⎩

∑

all x
(x − μ)2 f (x) for discrete variate

∞∫

−∞
(x − μ)2 f (x)dx for continuous variate.

(1.15)

If a new random variable Y is a function of X expressed as Y = g(X), then its
variance is given by

σ 2 =

⎧
⎪⎨

⎪⎩

∑

all x
(g(x) − E(g(x))2 f (x) for discrete variate

∞∫

−∞
(g(x) − E(g(x))2 f (x)dx for continuous variate.

(1.16)

The variance of the population is the mean squared deviation of the individual
values from the population mean. The standard deviation of X, denoted by σ , is the
square root of the variance. Of course, if the values of x are all identical, there are
no differences and the estimate of the variance is zero. Likewise, if they differ only
slightly from each other, the variance will be small. Obviously, the variance of any
random variable is always positive, whereas the mean may be positive or negative.

Property 1.2

• If k is an arbitrary constant, then: Var(k X) = k2Var(X)
• If X is a random variable, then: Var(X) = E

(
X2
) − [E(X)]2

• If X and Y are independent random variables, then:

Var(X + Y ) = Var (X) + Var(Y )
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• If X and Y are two random variables, then the covariance of X and Y is

Cov(X, Y ) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

E{[X − E(X)][Y − E(Y )]}
E(XY ) − E(X)E(Y )∑

all x,y
(x − E(x)(y − E(Y )) f (x, y) for discrete variate

∞∫

−∞

∞∫

−∞
(x − E(X)(y − E(Y )) f (x, y)dxdy for continuous variate.

• If X and Y are two random variables, then:

Var(X + Y ) = Var (X) + Var(Y ) + 2 E{[X − E(X)][Y − E(Y ]}

If a sample of n drawn from a population with mean μ then the sample variance of
the population is estimated by

S2 =
∑n

i=1 (xi − μ)2

n
(1.17)

In generalμ is not known and an estimate sample mean based on the sample must
be obtained. In this case, the sample variance is given by

S2 =
∑n

i=1 (xi − x)2

n − 1
=
∑n

i=1 x2
i − (

∑n
i=1 xi)

2

n

n − 1
(1.18)

This gives the best estimate of the population variance from the data available.
Similarly, the sample standard deviation is given by

S =
√∑n

i=1 (xi − x)2

n − 1
.

The more variation there is in the observed values, the larger is the standard
deviation for the variable in question. Thus the standard deviation satisfies the basic
criterion for a measure of variation. This is the most common used measure of
variation. However, the standard deviation does have its drawbacks. For instance, its
values can be strongly affected by a few extreme observations.

Suppose a number of samples are available and it is required to estimate the
variance from all samples assuming that the sample variance differ only because of
sampling fluctuations, but allowing for the possibility that the sample means may be
different, i.e., the samples are assumed to be drawn from population with the same
variance but different means. Let ni is the number of observations of the ith sample
for i = 1, 2, …, k. The sample variance can be obtained as follows:
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S2 =
∑k

j=1

∑n j

i=1

(
xi j − x j

)2

N − k
where N =

k∑

j=1

n j (1.19)

The coefficient of variation(CV) is the standard deviation expressed as a
percentage of the mean and the expression is given by

CV = σ

μ
100%

The coefficient of variance for a collection of data is equal to

CV = S

X
100%

or equivalently, that

CV =
√∑n

i=1 (xi −x)2

n−1
∑n

i=1 xi

n

.100%

This coefficient of variance measure can be used to relate the spread of obser-
vations resulting from two alternative ways of measuring the same response. The
main use of this measure is to compare the variability of groups of observations with
widely differing mean levels.

The range of a set of data in a sample is the simplest of all measures of dispersion.
It is simply the difference between the highest and lowest values of the data in a
sample. The sample range of the variable is easy to compute. However, in using the
range, a great deal of information is ignored, that is, only the largest and smallest
values of the variable are considered; the other observed values are disregarded.

Example 1.19 8 participants in bike race had the following finishing times in
minutes: 12, 10, 24, 31, 14, 21, 23, 15. The sample range of participants (10, 12, 14,
15, 21, 23, 24, 31) in bike race is 21 min.

Note that the range of a small sample conveys a large proportion of the information
on the variation in a sample. However, the range of a large sample perhaps conveys
little information since it says very little about the intermediate observations. The
range perhaps can be used to calculate an approximate estimate of the standard
deviation for a single set ofnobservations.A simple estimate of the standard deviation
can be obtained for samples of equal size:

S = w

dn
(1.20)
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where w is the mean range and dn is a constant depending on the size of the sample.
The factors dn are given in Table A.5 (Range values) in the Appendix A. It is inter-
esting to note that for n = 3-12, dn is very nearby equal to

√
n (within less than 5%).

Note that the Range method should not be used for samples of more than 12.

Example 1.20 Let mean range w = 25.7 and n = 4. Obtain an estimate of the
standard deviation σ using the mean range.

From the Table A.5, dn = 2.059, the estimate of σ is

S = 25.7

2.059
= 12.4818

The skewness coefficient of a random variable X is a measure of the symmetry
of the distribution of X about its mean value μ, and is defined as

Sc = E(X − μ)3

σ 3
(1.21)

A distribution will not in general be completely symmetrical; the frequency may
fall away more rapidly on one side of the mode than on the other. When this is the
case the distribution is said to be skew. Skewness is zero for a symmetric distribution,
negative for a left-tailed distribution, and positive for a right-tailed distribution. In
other words, skewness means lack of symmetry and measures of skewness show the
extent to which the distribution departs from symmetry.

Similarly, the kurtosis coefficient of a random variable X is a measure of how
much of the mass of the distribution is contained in the tails, and is defined as

Kc = E(X − μ)4

σ 4
(1.22)

Obviously, kurtosis is always positive, however, larger values represent heavier
tails of the distribution. The measure of kurtosis serves to differentiate between a flat
distribution curve and a sharply peaked curve.

If the data are arranged in order of magnitude, the median is the central point of
the series, i.e., there are equal numbers of observations greater than and less than the
medians. In case if n (the total number of observations) is even, it is usual to take the
mean of the two central values as the median.

Definition 1.7 Suppose that n values of a variable X are ordered in increasing order
of magnitute, i.e., we have x1, x2, …, xn such that x(1) ≤ x(2) ≤ · · · ≤ x(n) then the

median of a set of values is equal to x( n+1
2 ) if n is odd and 1

2

(
x( n

2 )
+ x( n

2 )+1

)
if n is

even.
In other words, arranging the observed values of variable in a data in increasing

order. If the number of observation is odd, then the sample median is the observed
value exactly in the middle of the ordered list. If the number of observation is even,
then the sample median is the number halfway between the two middle observed
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values in the ordered list. In both cases, if we let n denote the number of observations
in a data set, then the sample median is at position n+1

2 in the ordered list.

Definition 1.8 The median of a random variable X is the value m such that the cdf

F(m) = 1

2

The median always exists if the random variable is continuous whereas it may not
always exist if the random variable is discrete.

Example 1.21 8 participants in bike race had the following finishing times in
minutes: 12, 10, 24, 31, 14, 21, 23, 15. The median of participants (10, 12, 14,
15, 21, 23, 24, 31) in bike race is 18 min.

Example 1.22 The probability density function of a random variable X is

f (x) =
{
2x 0 ≤ x ≤ 1
0 otherwise.

Obtain the median of X.

Solution The cdf of X is given by

F(x) =
⎧
⎨

⎩

0 x < 0
x2 0 ≤ x ≤ 1
1 x > 1.

Set F(m) = 1/2, then the median of X is
√
2
2 .

Definition 1.9 The mode is the value of the variate which occurs most frequently
for which the frequency is a maximum.

In other words, the mode of a set of values of a variable is the most frequently
occurring value in the set. The use of the mode is most often associated with discrete
distributions where it is simple to count which value of the variate occurs most often.

Example 1.23 The density function of X is given by

f (x) =
{ 2

3 x 0 ≤ x ≤ 1
1
3 1 <x ≤ 3.

Obtain the median of X and the mode of X.
The cdf of X is

F(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 x <0
x2

3 0 ≤ x ≤ 1
x
3 1 <x ≤ 3
1 x >3.
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Since F
(
3
2

) = 1
2 , so the median of X is equal to 3

2 . Similary, the mode is equal to
1 since f(x) is a maximum when x = 1.

Whichmeasure to choose? Themode should be used when calculatingmeasure of
center for the qualitative variable. When the variable is quantitative with symmetric
distribution, then the mean is proper measure of center. In a case of quantitative
variable with skewed distribution, the median is good choice for the measure of
center. This is related to the fact that the mean can be highly influenced by an
obsevation that falls far from the rest of the data, called an outlier.

Samples versus Population

A distinction must be drawn between the mean of a set of observed values and
the mean of the underlying probability distribution or population. Population is
the collection of all individuals or items under consideration in a statistical study.
Sample is that part of the population from which information is collected. Often
the assumption is that the population is normally distributed with mean μ and stan-
dard deviation σ . Before the characteristics of a set of data are used to estimate the
corresonding properties of the population, it is necessary to know how the sample
has been obtained. A random sample is defined as a set of observations drawn from a
population in such away that every possible possible observation has an equal chance
of being drawn at every trial. In other words, the probability that any observation
will have a given value is proportional to the relative frequency with which that value
occurs in the population. In random values from a normal population, for example,
values of x near the mean will occur more frequently than those far from the mean.
The properties of individual small samples may deviate more or less widely from
those of the population. These variations in the properties of small samples due only
to chance causes, are known as random sampling variations. If it can be assumed that
sampling is random, the observations may be used to estimate the properties of the
population. However, if the sampling is not random then a bias may be introduced
and the properties of the population estimated may show systematic deviation from
the true properties. A parameter is an unknown numerical summary of the popula-
tion. A statistic is a known numerical summary of the sample which can be used to
make inference about parameters.

It is worth to note that if a distribution departs far from normality that it would
not be safe to apply the common statistical tests then it would be best, by a simple
transformation of the variable, to obtain an approximately normal distribution. If
such a transformation is not possible, an alternative class of statistical tests, known
as distribution-free methods such as the sign test and rank-sum test (Lehmann 1998),
may be applicable.

One can use a special plotting paper, known as normal probability paper, which is
manufactured with a probability scale transformed so that the cumulative normal
distribution curve becomes a straightline. So to test whether data are normally
distributed the cumulative proportional frequencies can be plotted on the normal
probability paper. If the points fall close to a straight line it can be concluded that
the data approximately follow a normal distribution.
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As the sample size increases, its properties resemble more and more closely those
of the population, provided that the sample values may be considered as randomly
selected from the population. The observed mean should be regarded as an estimate
of the true value which becomes better as the number of observations increases.

Given a random sample of size n from a distribution, again the sample mean and
sample variance are respectively,

x = 1

n

n∑

i=1

xi and S2 = 1

n − 1

n∑

i=1

(xi − x)2 (1.23)

Let μ be the population mean. X becomes a better estimate of μ as n (the number
of observations) increases, and it approaches to μ as n approaches to ∞. Similarly,
the sample standard deviation S (where S2 is the sample variance) becomes a better
estimate of σ as n increases where σ is the population standard deviation. In fact,
the most useful measure of the spread is the standard deviation which for a sample
of n observations is given by taking a square root, of the equation, S2 above.

The mean absolute deviation of a set of numbers is defined as the mean of the
deviations from the mean each with the absolute value:

M D =
∑n

i=1 |xi − x |
n

(1.24)

where x is the samplemean.Note thatwhen the original data vary so do the |xi − x |′s,
and if all the data are the same then every |xi − x | is equal to zero, so that the mean
absolute deviation is a measure of variability. In contrast to the range, the mean
absolute deviation takes into account the dispersion of the data about the mean.

The mean absolute deviation finds applications where the distribution has long
tails. It is less affected by outlying results than is the standard deviation. In fact, the
mean absolute deviation is of little practical use, and unless there are specific reasons
for using it the standard deviation is preferable.

Sometime a set of data may contain one or more observations which fall outside
the pattern exhibited by the majority of the observed values. In this case, should
we assume that the outlier is just as valid as the other observations and calculate
statistics based on all the observations or should we discard the odd value(s) as being
unrepresentative? A statistic test should be applied to confirm that a suspected outlier
is really as extreme as it appears. One can use the approach as follows:

An outlier may be regarded as significant if the outlier ratio value:

|Extreme value − overall mean|
overall standard deviation, s

exceeds a certain critical level. Table A.6 lists critical levels for various sample sizes
when it is assumed that the other (n − 1) observations are drawn form a normal
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distribution. In other words, the critical values in Table A.6 are based on the assump-
tion that the non-suspect results are normally distributed. Note that these test levels
should not be used when the base distribution is far from normal, i.e. if it is clearly
skew.

Example 1.24 Data representing the yearly gross income (in $105) of six workers
are given as follows:

0.657, 0.664, 0.655, 0.653, 0.686, 0.661

The 0.686 value is much higher than the other five incomes. We wish to test
whether the 0.686 value is as an outlier?

The overall mean is

overall mean = (0.657 + 0.664 + 0.655 + 0.653 + 0.686 + 0.661)/6

= 0.6627

Similarly, the overall standard deviation is: 0.0121. The outlier ratio value is

Outlier ratio value =
|0.686 − 0.6627|

0.0121
= 1.9256

The critical level corresponding to α = 0.05 for a sample of size 6 is 1.89 (see
Table A.6). Since the outlier ratio value exceeds the critical value, therefore we can
conclude that the outlying observation (0.686 value) may be regarded as significant.
On this basis, we may compute the mean and standard deviation from the other five
observations since the value 0.686 is as an outlier.

The moment-generating function (m.g.f.) of a distribution of X is definted as a
function of a real variable t:

M(t) = E(et X ). (1.25)

It should be noted that M(0) = 1 for all distributions. M(t) however may not exist
for some t �= 0.

Example 1.25 If X has a continuous distribution with pdf

f (x) = λe−λx for x ≥ 0 and λ > 0.

Then,

M(t) = E(et X ) = λ

∞∫

0

etx−λx dx = λ

λ − t
for t < λ.

This m.g.f. exists only for t < λ.
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1.4 Joint Density Functions of Random LifeTimes

Assume there are n random variables X1, X2, …, Xn which may or may not be
mutually independent. The joint cdf, if it exists, is given by

P(X1 ≤ x1, X2 ≤ x2, . . . Xn ≤ xn) =
xn∫

−∞

xn−1∫

−∞
..

x1∫

−∞
f (t1, t2, . . . , tn)dt1 dt2 . . . dtn

If the n random variables are mutually statistically independent then the joint pdf
can be rewritten as

f (x1, x2, ..., xn) =
n∏

i=1

f (xi ).

Consider two random variables of the lifetime, say X and Y, in which the joint
characteristic of both X and Y can be described by their joint density function f of
the two variables x and y. That is,

∞∫

0

∞∫

0

f (x, y) dx dy = 1 and f (x, y) ≥ 0.

Let F be the joint distribution function of X and Y and is defined as:

F(x, y) = P[X ≤ x, Y ≤ y]

=
x∫

0

y∫

0

f (s, t)ds dt for x ≥ 0, y ≥ 0

The joint pdf is simply by taking partial differentiations with respect to x and y:

f (x, y) = ∂2F(x, y)

∂x ∂y
.

The marginal (or simple) density function f X(x) and f Y(y) can be obtained from
the f (x,y) by taking integration as follows:

fX(x) =

∞∫

0

f (x, y)dy and fY(y) =

∞∫

0

f (x, y)dx

and also the marginal cdf
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FX(x) =

x∫

0

fX (s)ds and FY(y) =

y∫

0

fY (t)dt.

Similarly, if the random variables X and Y are independent, then the joint density
function f (x, y) is simply the product of the marginal densities f X(x) and f Y(y). That
is

f (x, y) = fX (x) × fY (y) for x ≥ 0 and y ≥ 0.

The independence rule can also be applied to the cdf as given by:

F(x, y) = FX (x) × FY (y) for all 0 ≤ x ≤ ∞ and 0 ≤ y ≤ ∞.

Convolutions of Density Functions

Let X and Y be two independent lifetimes with pdf f 1(x) and f 2(y), respectively. Let
Z= X + Y be the total lifetime having the pdf g(z) and cdf G(z). Using a convolution
approach, the pdf of z can be obtain

g(z) =
z∫

0

f1(x) f2(z - x) dx =

z∫

0

f1(z - y) f2(y) dy = f1(z)* f2(z) (1.26)

where * denotes the convolutions of the distributions. Similarly, the distribution
function of Z, G(z), is given by

G(z) = P[Z ≤ z]

=
¨

x+y≤z

f1(x) f2(y) dx dy

=
z∫

0

f1(x)dx

z - x∫

0

f2(y)dy.

Note that the two random variables X and Y are said to be independent if knowl-
edge of one of the variables has no effect on the distribution of probability for the
other.

Two random variables X and Y, with cdf F1(x) and F2(y) respectively, are said to
be identically distributed if they have the same distribution functions, that is, F1(t)
= F2(t) for all t. Being identically distributed does not mean that X = Y. Rather it
means that X and Y are equivalent in the sense that one should have no different to
choosing between them.

As for both life times X and Y are independent, the expected E(Z) and variance
V(Z) of total life time can be easily obtained, respectively,
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E(Z) = E(X) + E(Y )

and

V(Z) = V (X) + V (Y ).

Example 1.26 Suppose that X and Y are two independent life times having the pdf
as follows

f1(x) = λe−λx for x ≥ 0

f2(y) = λe−λy for y ≥ 0

The density g of Z where Z = X + Y is given by

g(z) =

z∫

0

λe−λxλe−λ(z−x)dx = λ2z e−λz

Therefore, the expected value of Z is

E(Z) =

∞∫

0

zg(z)dz =
∞∫

0

zλ2z e−λzdz = 2

λ
.

Example 1.27 Let X be a uniform r.v. over (0, a) with a pdf

f1(x) = 1

a
for 0 < x < a

and Y be an exponential r.v. with the following pdf

f2(x)=λe−λx for x ≥ 0

Obtain the distribution of (X + Y ) under the assumption of independence?

Solution It should be noted that although (X + Y ) has range (0,∞) the evalution
of the convolution integral using Eq. (1.26) requires separate consideration of the
ranges (0, a] and [a,∞).

Let Z = X + Y. In the first case, that is (0, a], the upper limit x is correct. But if
x ≥ a then upper limit must be replaced by a since the uniform distribution is zero
for all value x larger than a. Thus, for x ≥ a the density of Z is given by

g(x) =

a∫

0

1

a
λe−λ(x−t)dt =1

a
e−λx

(
eλa − 1

)
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Similarly, for x ≤ a the density of Z is given by

g(x) =

x∫

0

1

a
λe−λ(x−t)dt =1

a

(
1 − e−λx

)
.

Thus, the density of Z is

g(x) =
{ 1

a e
−λx
(
eλa − 1

)
for x ≥ a

1
a

(
1 − e−λx

)
for x ≤ a.

Obviously, if one consider the entire range in this case (0,∞) and from the
Eq. (1.26), the answer is not correct. In other word,

g(x)=
x∫

0

1

a
λe−λx dx =1

a

(
1 − e−λx

)
for 0 <x < ∞

which is not the correct answer.
Let Xi represents the lifetime of unit ith and f i be their densities, respectively, for

i = 1, 2, …, n and Sn be the total lifetime for n units having a density function gn.
That is

Sn =
n∑

i=1

Xi (1.27)

We can rewrite the function Sn in a recursive form as follows

Sn = Sn−1 + Xn (1.28)

where we can easily show that the life times Sn and Xn are independent. Similarly,
we can obtain as

gn(z) =

z∫

0

gn−1(z − x) fn(x)dx . (1.29)

1.5 Conditional Distributions

If (X, Y ) are two random variables having a joint pdf f (x, y) and marginal pdf f X(.)
and f Y(.), respectively, then the conditional pdf of Y given {X = x} is defined by
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fY,X(y|x) =
f(x,y)

fX(x)
(1.30)

where

fX (x) =
∞∫

−∞
f (x, y)dy

The conditional expectation of Y given {X = x} is the expected value of Y with
respect to the conditional pdf fY,X(y|x), that is

E(Y|X = x)=
∞∫

−∞
y fX,Y(y|x)dy (1.31)

If X and Y are independent, then

f(x,y) = fX(x) fY(y)

Consider E(Y |X) to be a random variable which is a function of X. It is interesting
to compute the expected value of this function of X. That is,

E{E(Y|X = x)}=
∫

E(Y|X = x) fX(x)dx

=
∫ {∫

y fX,Y (y|x)dy

}
fX (x)dx

=
¨

y
f (x, y)

fX (x)
fX (x) dy dx

We can interchange the order of integration and obtain

E{E(Y|X = x)}=
∫

y

{∫
f (x, y)dx

}
dy

=
∫

y fY (y)dy

= E(Y ) (1.32)

This result, known as the law of expected conditional mean, is very useful.
Consider the following example.

Example 1.28 Let (X, N) be a pair of random variables. The conditional distribution
of X given {N = n} is the binomial B(n, p). The marginal distribution of N is Poisson
with mean λ. Obtain the expected value of X.
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Solution
E(X) = E{E(X|N)} = E{Np} = pE(N ) = pλ.

Another interesting result is as follows. If (X, Y ) is a pair of random variables
having finite variances, then

V (X) = E{V (X|Y)} + V{E(X|Y)}. (1.33)

This is known as the law of total variance.
If X1, X2, …, Xn be random variables having a joint distribution, with joint pdf

f(x1, x2, …, xn). Let λ1, λ2..., λn be given constants. Then

W =
n∑

i=1

αi Xi

is a linear combination of the X’s. It is easily shown the expected value and variance
of W, respectively, that

E(W ) =
n∑

i=1

αi E(Xi )

and

V (W ) =
n∑

i=1

α2
i V (Xi ) +

∑∑

i �= j

αiα jcov(Xi , X j ) . (1.34)

1.6 Laplace Transformation Functions

Let X be a nonnegative life time having probability density function f . The Laplace
transform of a function f (x), denote f *, is defined as

�{ f (x)} = f ∗(s) =
∞∫

0

e−sx f (x)dx for s ≥ 0. (1.35)

The function f * is called the Laplace transform of the function f . The symbol � in
Eq. (1.35) is called the Laplace transform operator. Note that f ∗(0) = 1. By taking
a differential derivative of f *(s), we obtain
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∂ f ∗(s)
∂s

= −
∞∫

0

xe−sx f (x)dx .

Substitute s = 0 into the above equation, the first derivative of f *, it yields the
negative of the expected value of X or the first moment of X:

∂ f ∗(s)
∂s

∣∣∣∣
s=0

= −E(X).

Similarly, the second derivative yields the second moment of X when s = 0, that
is,

∂2f∗(s)
∂2s

∣∣∣∣
s = 0

=
∞∫

0

x2e−sx f (x)dx

∣∣∣∣∣
∣
s=0

= E(X2).

In general, it can be shown that

∂n f ∗(s)
∂ns

∣
∣∣∣
s = 0

=
∞∫

0

(−x)ne−sx f (x)dx

∣∣
∣∣∣∣
s=0

= (−1)n E(Xn)

Note that

e−sx =
∞∑

n=0

(−sx)n

n!

then f *(s) can be rewriten as

f ∗(s) =
∞∑

n=0

(−s)n

n! μn

where

μn = (−1)n
∂n f ∗(s)

∂ns

∣∣∣∣
s = 0

=
∞∫

0

xne−sx f (x)dx

∣∣∣∣∣
∣
s=0

= E(Xn)

We can easily show that � is a linear operator, that is

�{c1 f1(x) + c2 f2(x)} = c1�{ f1(x)} + c2�{ f2(x)}.
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If �{ f (t)} = f ∗(s), then we call f (t) the inverse Laplace transform of f *(s) and
write �−1{ f ∗(s)} = f (t).

A summary of some common Laplace transform functions is listed in Table B.1
in Appendix B.

Example 1.29 Use the Laplace transforms to solve the following

∂ f (t)

∂t
+ 3 f (t) = e−t (1.36)

with an initial condition: f (0) = 0. Obtain the solution f (t). Here the Laplace
transforms of ∂ f (t)

∂t , f (t), and e−t are

s f ∗(s) − f (0), f ∗(s), and
1

s + 1

respectively. Thus, the Laplace transform of Eq. (1.36) is given by

s f ∗(s) − f (0) + 3 f ∗(s)= 1

s + 1

Since f (0) = 0 we have

(s + 3) f ∗(s) = 1

s + 1
or f ∗(s) = 1

(s + 1)(s + 3)

From Table B.1 in Appendix B, the inverse transform is

f (t) = 1

3 − 1

(
e−t − e−3t

) = 1

2

(
e−t − e−3t

)

Example 1.30 Let X be an exponential random variable with constant failure rate
λ, that is, f (x) = λe−λx then we have

f ∗(s) =
∞∫

0

λe−sx e−λx dx = λ

s + λ
.

If X and Y are two independent random variables that represent life times with
densities f 1 and f 2, respectively, then the total life times Z of those two X and Y,
says Z = X + Y, has a pdf g that can be obtained as follows

g(z) =
z∫

0

f1(x) f2(z − x)dx .

The Laplace transform of g in terms of f 1 and f 2 can be written as
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g∗(s) =
∞∫

0

e−sz g(z)dz =
∞∫

0

z∫

0

e−sz f1(x) f2(z − x)dxdz

=
∞∫

0

e−sx f1(x)dx

∞∫

x

e−s(z−x) f2(z − x)dz

= f ∗
1 (s) f ∗

2 (s).

Example 1.31 If X and Y are both independent having the following pdfs: f1(x) =
λe−λx and f2(y) = λe−λy for x, y ≥ 0 and λ ≥ 0 then we have

g∗(s) = f ∗
1 (s) f ∗

2 (s) =
(

λ

s + λ

)2

.

From the Laplace transform Table B.1 in Appendix B, the inverse transform to
solve for g(z) is

g(z) = λ2t e−λt

�(2)

which is a special case of gamma pdf.
FromEq. (1.27), one can easily show the Laplace transformof the density function

gn of the total life time Sn of n independent life times Xi with their pdf f i for i = 1,
2, …, n, that

g∗
n(s) = f ∗

1 (s) f ∗
2 (s)... f ∗

n (s) =
n∏

i=1

f ∗
i (s) (1.37)

(see Problem 13).
If the pdf of n life time X1, X2, …, Xn are independent and identically distributed

(i.i.d.) having a constant failure rate λ, then

g∗
n(s) = ( f ∗(s)

)n =
(

λ

s + λ

)n

.

From the Laplace transform Table B.1 in Appendix B, we obtain the inverse
transform for the solution function g as follows

gn(z) = λntn−1e−λt

�(n)
(1.38)
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1.7 Reliability Concepts

1.7.1 Coherent Systems

In reliability theory, both the system and its components are commonly allowed to
take only two possible states or binary states: either working or failed. In a multistate
system, as will be discussed in Chaps. 4 and 6, both the system and its components
are allowed to experience more than two possible states, e.g. fully working, partially
or degraded working or failed. A multistate system reliability model provides more
flexibility for modeling of system’s conditions. The reliability can be defined for a
more general coherent structure. A coherent system with binary states can be simply
described as follows. Consider that a system consists of n components and define

xi =
{
1 if component i is functioning
0 if component i is failed

for i = 1, 2, ..., n

and

φ(x) =
{
1 if the system is functioning
0 if the system is failed

where x= (x1, x2, ..., xn). Binary indicators xi andφ(x) indicate the state of component
i and the state of the system, respectively. The function φ(x) is referred to as the
structure function of the system. Define

(0i , x) = (x1, x2, ..., xi−1, 0, xi+1, ..., xn)

(1i , x) = (x1, x2, ..., xi−1, 1, xi+1, ..., xn).

The structure function of the system indicates that the state of the system is
completely determined by the states of all components. A component is relevant if
its state does affect the state of the system.

Definition 1.10 A binary system with n components is said to be coherent if:

• the structure function φ is non-decreasing in each argument xi, i = 1, 2, ..., n;
• each component is relevant, i.e., there exists at least one vector x such that φ (1i,

x) = 1 and φ (0i, x) = 0; and
• φ (0) = 0 and φ (1) = 1.

For coherent systems, when x < y then φ (x) ≤ φ (y).

Example 1.32 For a series system consisting of n components to function, all its
components must function. Then structure function of the series system is given by

φ(x) =
n∏

i=1

xi = min(x1, x2, ..., xn)
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For the parallel system consisting of n components to work there is at least one
component to work. Then structure function of the parallel system is given by

φ(x) = 1 −
n∏

i=1

(1 − xi ) = max(x1, x2, ..., xn)

Similarly, the k out of n system is functioning if and only if at least k components
to function. Then structure function of the k out of n system is given by

φ(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 i f
n∑

i=1

xi ≥ k

0 i f
n∑

i=1

xi < k

We now discuss the minimal path and minimal cut sets. Let A1, A2, …, As denote
the minimal path sets of a given system.

Definition 1.11 A state vector x is called a path vector (or link vector) if φ (x) = 1.
A path set is a set of components whose functioning ensures the functioning of

the system.

Definition 1.12 A minimal path vector is a path vector for which the failure of any
functioning components results in system failure.

Definition 1.13 A minimal path set is a minimal set of components whose
functioning ensures the functioning of the system.

In other words, a minimal path vector is a path vector x such that φ (y) = 0 for
any y < x and its corresponding path set is, minimal path set. Let

α j (x) =
{
1 iff all the components of A j are functioning
0 otherwise

then

α j (x) =
∏

i∈A j

Xi

A system will function if and only iff all the components of at least one minimal
path sets are functioning. That is,

φ(x) = max
j

α j (x)

= 1 −
s∏

j=1

(
1 − α j (x)

)



36 1 Basic Probability, Statistics, and Reliability

1 −
s∏

j=1

⎛

⎝1 −
∏

i∈A j

Xi

⎞

⎠. (1.39)

Similarly, let C1, C2, …, Ck denote the minimal cut sets of a given system.

Definition 1.14 A state vector x is called a cut vector if φ (x) = 0.
A cut set is a set of components whose failure ensures the failure of the system.

Definition 1.15 A minimal cut vector is a cut vector for which the repair of any
failed component results in a functioning system.

Definition 1.16 A minimal cut set is a minimal set of components whose failure
ensures the failure of the system.

In other words, a minimal cut vector is a cut vector x such that φ (y) = 1 for any
y > x and its corresponding cut set is minimal cut set. Note that for a minimal path
set to work, each component in the set must work. For a minimal cut set to fail, all
components in the set must fail.

Let

β j (x) =

⎧
⎪⎨

⎪⎩

1 if at least one component in

the jth minimal cut set is functioning

0 otherwise for j = 1, 2,..., k

then

β j (x) = max
i∈C j

Xi

A system is not functioning (or system unreliability) if and only if all the compo-
nents of at least one minimal cut set are not functioning. In other words, a system
is functioning if and only if at least one component in each minimal cut sets is
functioning. Thus, the structure function based on the minimal cut sets is given by

φ(x) =
k∏

j=1

β j (x)

=
k∏

j=1

max
i∈C j

Xi

=
k∏

j=1

⎛

⎝
∐

i∈C j

Xi

⎞

⎠

=
k∏

j=1

⎛

⎝1 −
k∏

j=C j

(1 − Xi )

⎞

⎠.
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Let pi is the component i reliability. That is,

pi = P(Xi = 1) = E[Xi ].

The system reliability function can be defined as

r(p) = P(φ(x) = 1) = E[φ(x)].

Theorem 1.3 If φ is a coherent system of independent components with minimal
path set A1, A2, …, As and minimal cut sets C1, C2, …, Ck then

k∏

j=1

⎛

⎝1 −
∏

i∈C j

(1 − pi )

⎞

⎠ ≤ r(p) ≤ 1 −
s∏

j=1

⎛

⎝1 −
∏

i∈A j

pi

⎞

⎠. (1.40)

Example 1.33 A k-out-of-n systemworks if and only if at least k of the n components

work. In a k-out-of-n system, there are

(
n

k

)

minimal path sets and

(
n

n − k + 1

)

minimal cut sets. Each minimal path set contains exactly k different components and
each minimal cut set contains exactly (n − k + 1) components. Thus, all minimal
path sets and minimal cut sets are known. One can easily obtain the reliability of a
k-out-of-n system either in term of the minimal path sets or minimal cut sets.

1.7.2 Reliability Measures

In general, a system may be required to perform various functions, each of which
may have a different reliability. In addition, at different times, the system may have
a different probability of successfully performing the required function under stated
conditions. The term failure means that the system is not capable of performing a
function when required. The term capable used here is to define if the system is
capable of performing the required function. However, the term capable is unclear
and only various degrees of capability can be defined. The reliability definitions
given in the literature vary between different practitioners as well as researchers.
The generally accepted definition is as follows.

Definition 1.17 Reliability is the probability that the systemwill perform its intended
function under given conditions for a given time interval.

More specific, reliability is the probability that a product or part will operate prop-
erly for a specified period of time (design life) under the design operating conditions
(such as temperature, volt, etc.)without failure. In otherwords, reliabilitymaybeused
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as a measure of the system’s success in providing its function properly. Reliability
is one of the quality characteristics that consumers require from the manufacturer of
products.

Let T be a random variable denoting the failure time. Mathematically, relia-
bility R(t) can be defined as the probability that a system will be successful without
failure during a specified time interval (0, t) under given operating conditions and
environment. The reliability function can be written as

R(t) = P(T > t) t ≥ 0. (1.41)

It is also referred to as the survival function. In other words, reliability is the
probability that the system is still operating at time t.

Unreliability F(t), a measure of failure, is defined as the probability that the
sys-tem will fail by time t:

F(t) = P(T ≤ t) for t ≥ 0

In other words, F(t) is the failure distribution function. If the time-to-failure
random variable T has a density function f (t), then

R(t) =
∞∫

t

f (s)ds

or, equivalently,

f (t) = − d

dt
[R(t)] (1.42)

The density function can be mathematically described in terms of T:

lim
�t→0

P(t < T ≤ t + �t)

This can be interpreted as the probability that the failure timeT will occur between
the operating time t and the next interval of operation, t + �t.

Consider a new and successfully tested system that operates well when put into
service at time t = 0. The system becomes less likely to remain successful as the
time interval increases. The probability of success for an infinite time interval, of
course, is zero.

Thus, the system functions at a probability of one and eventually decreases to a
probability of zero. Clearly, reliability is a function of mission time. For example,
one can say that the reliability of the system is 0.995 for a mission time of 24 h.
However, a statement such as the reliability of the system is 0.995 is meaningless
because the time interval is unknown.
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Properties of Reliability Functions

Reliability functions have properties as follows:

1. R(t) is decreasing
2. lim

t→0
R(t) = 1 lim

t→∞ R(t) = 0

Example 1.34 A computer system has an exponential failure time density function.

f (t) = 1

9,000
e− t

9,000 t ≥ 0

What is the probability that the system will fail after the warranty (six months or
4380 h) and before the end of the first year (one year or 8760 h)?

Solution From Eq. (1.41) we obtain

P(4380 < T ≤ 8760) =
8760∫

4380

1

9000
e− t

9000 dt

= 0.237

This indicates that the probability of failure during the interval from six months
to one year is 23.7%.

If the time to failure is described by an exponential failure time density function,
then

f (t) = 1

θ
e− t

θ t ≥ 0, θ > 0

and this will lead to the reliability function

R(t) =
∞∫

t

1

θ
e− s

θ ds = e− t
θ t ≥ 0

Consider the Weibull distribution where the failure time density function is given
by

f (t) = βtβ−1

θβ
e
−
(

t
θ )

β

t ≥ 0, θ > 0, β > 0

Then the reliability function is

R (t) = e
−
(

t
θ )

β

t ≥ 0
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Thus, given a particular failure time density function or failure time distribution
function, the reliability function can be obtained directly. Section 2.2 provides further
insight for specific distributions.

Definition 1.18 Conditional reliability is the probability of surviving a mission of
length h under specified design limits given that the system has been survived up to
time t.

In other words, conditional reliability R(h|t) is the probability that a system will
be successful in the interval (t, t + h] given that it already survived more than t.
Mathematically,

R(h|t) = P(T > t + h|T > t) = R(t + h)

R(t)
t ≥ 0, h > 0 (1.43)

It is obviously that the probability of prolongation by additional mission length
h decreases with increasing h. Indeed the longer prolongation of life time required,
the smaller probability of such an event. It is also easy to see that the probability of
prolongation depends in general the time t.

Example 1.35 For the case of uniform life time density function

f (t) = 1

a
for 0 ≤ t ≤ a

then

R(t) = 1 − t

a
for 0 ≤ t ≤ a

Therefore, the probability of prolongation by h, R(h|t), is given by

R(h|t) = R(t + h)

R(t)
= a − t − h

a − t
1 − h

a − t
0 ≤ t ≤ a, 0 ≤ h ≤ a − t

It is worth noting that the reliability function R(t) and conditional reliability
function R(h|t) are relevant when the interest is in the probability of surviving a
mission of time length h. Of course, from Eq. (1.43) when t = 0, then the both
functions are the same. One can be more interested to determine t in Eq. (1.43) so
that R(h|t) is greater than R(t) for a given reliability function. In other words, if no
such h exists for that particular t, then burn-in is not needed and the system is said
to be new-better-than used (NBU) for a mission of length h.

The pth percentile point of a lifetime distribution F(t) for 0 < p < 1 is the value
of t, denoted by tp, such as F(t) = p. That is

F(tp) = p or tp = F−1(p)
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System Mean Time to Failure

Suppose that the reliability function for a system is given by R(t). The expected
failure time during which a component is expected to perform successfully, or the
system mean time to failure (MTTF), is given by

MT T F =
∞∫

0

t f (t)dt (1.44)

Substituting

f (t) = − d

dt
[R(t)]

into Eq. (1.44) and performing integration by parts, we obtain

MT T F = −
∞∫

0

td[R(t)]

= [−t R(t)] ∞|
0

+
∞∫

0

R(t)dt (1.45)

The first term on the right-hand side of Eq. (1.45) equals zero at both limits, since
the system must fail after a finite amount of operating time. Therefore, we must have
tR(t)→ 0 as t → ∞. This leaves the second term, which equals

MT T F =
∞∫

0

R(t)dt (1.46)

Thus, MTTF is the definite integral evaluation of the reliability function of the
reliability function In general, if λ(t) is defined as the failure rate function, then, by
definition, MTTF is not equal to 1/λ(t).

The MTTF should be used when the failure time distribution function is speci-
fied because the reliability level implied by the MTTF depends on the underlying
failure time distribution. Although theMTTFmeasure is one of the most widely used
reliability calculalations, it is also one of the most misused calculations, it has been
misinterpreted as “guaranteed minimum lifetime”. Consider the results as given in
Table 1.1 for a twelve-component life duration test.

Using a basic averaging technique, the componentMTTFof 3660 hwas estimated.
However, one of the components failed after 920 h. Therefore, it is important to note
that the system MTTF denotes the average time to failure. It is neither the failure
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Table 1.1 Results of a
twelve-component life
duration test

Component Time to failure
(h)

1 4510

2 3690

3 3550

4 5280

5 2595

6 3690

7 920

8 3890

9 4320

10 4770

11 3955

12 2750

time that could be expected 50% of the time, nor is it the guaranteed minimum time
of system failure.

A careful examination of Eq. (1.46) will show that two failure distributions can
have the same MTTF and yet produce different reliability levels. This is illustrated
in a case where the MTTFs are equal, but with normal and exponential failure
distributions. The normal failure distribution is symmetrical about its mean, thus

R(MT T F) = P(Z ≥ 0) = 0.5

where Z is a standard normal random variable.Whenwe compute for the exponential
failure distribution from Example 1.28, recognizing that θ = MTTF, the reliability
at the MTTF is

R(MT T F) = e− MT T F
MT T F = 0.368

Clearly, the reliability in the case of the exponential distribution is about 74% of
that for the normal failure distribution with the same MTTF.

Example 1.36 (Mixed truncated exponential distribution) Using the Eq. (1.46),
calculate the system MTTF where the random system lifetime T has a mixed
truncated exponentialdistribution with parameters λ and m?

Solution The reliability function can be obtained as follows

R(t) =
⎧
⎨

⎩

1 for t < 0
e−λt for 0 ≤ t < m
0 for t ≥ m
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The system MTTF is given by

MT T F =
m∫

0

R(t)dt =
m∫

0

e−λt dt

= 1

λ

(
1 − e−λm

)

Failure Rate Function

The probability of a system failure in a given time interval [t1, t2] can be expressed
in terms of the reliability function as

t2∫

t1

f (t)dt =
∞∫

t1

f (t)dt −
∞∫

t2

f (t)dt

= R(t1) − R(t2)

or in terms of the failure distribution function (or the unreliability function) as

t2∫

t1

f (t)dt =
t2∫

−∞
f (t)dt −

t1∫

−∞
f (t)dt

= F(t2) − F(t1)

The rate at which failures occur in a certain time interval [t1, t2] is called the
failure rate. It is defined as the probability that a failure per unit time occurs in the
interval, given that a failure has not occurred prior to t1, the beginning of the interval.
Thus, the failure rate is

R(t1) − R(t2)

(t2 − t1)R(t1)

Note that the failure rate is a function of time. If we redefine the interval as
[t, t + �t], the above expression becomes

R(t) − R(t + �t)

�t R(t)

The rate in the above definitions is expressed as failures per unit time, when in
reality, the time units might be in terms of miles, hours, etc.

In practice, we may compute the failure rate by testing or using a sample of
items until all fails, recording the time of failure for each item and use the following
formulas to estimate the constant failure rate λ:



44 1 Basic Probability, Statistics, and Reliability

λ = Number of failures

Total unit of operating hours

or

λ = Number of failures

(Units tested) * (Number of hours tested)
.

Example 1.37 Suppose that 15 units are tested over a 72-h period. Five units failed
with one unit each failing after 5, 15, 20, 50, and 68 h. The remaining 10 units have
survived at the end of the 72-h test period. Estimate the constant failure rate.

Solution The total unit operating hours, T total, are:

Ttotal = (5 + 15 + 20 + 50 + 68) + 10(72) = 878.

Thus,

λ = 5 failures

878 unit operating hours
= 0.0057 failures per hour.

In other words, on the average about 0.57% of the units would be expected to fail
in a one-hour period. Furthermore, over a 72-h period, about (0.0057 * 72) = 0.41
or 41% of the units would be expected to fail. In the actual test given above, only
33.33% failed (i.e., (5) (100)/15 = 33.33).

The hazard rate function is, sometimes referred to as the failure rate function,
defined as the limit of the failure rate as the interval approaches zero. Thus, the hazard
rate function h(t) is the instantaneous failure rate, and is defined by

h(t) = lim
�t→0

R(t) − R(t + �t)

�t R(t)

= 1

R(t)
[− d

dt
R(t)]

= f (t)

R(t)
(1.47)

The quantity h(t)dt represents the probability that a device of age t will fail in the
small interval of time t to (t + dt).Equivalently, the function h(t) can be defined as the
probability density of failure at time t, given survival up to that time. In other words,
the failure rate function h(t) can be defined as the probability that a device, which
has survived of age t, will fail in the small time interval (t, t + dt). The importance
of the hazard rate function is that it indicates the change in the failure rate over the
life of a population of components by plotting their hazard rate functions on a single
axis. For example, two designs may provide the same reliability at a specific point
in time, but the failure rates up to this point in time can differ.
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The death rate, in statistical theory, is analogous to the failure rate as the force
of mortality is analogous to the hazard rate function. Therefore, the hazard rate
function or failure rate function is the ratio of the probability density function (pdf)
to the reliability function. In reliability engineering, the survival function is often
referred to as the reliability function. In actuarial science, the hazard function is
known as the force of mortality.

By defintion, a mathematical reliability function is the probability that a system
will be successful in the interval from time 0 to time t, given by

R(t) =
∞∫

t

f (s)ds = e
−

t∫

0
h(s)ds

(1.48)

where f (s) and h(s) are, respectively, the failure time density and failure rate function.

Example 1.38 Consider the lifetime of a communication device, having a pdf

f (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 t ≤ t0
4(t−t0)
(t1−t0)2

t0 ≤ t ≤ t0+t1
2

4(t1−t)
(t1−t0)2

t0+t1
2 ≤ t ≤ t1

0 t1 ≤ t

Then the cdf is

F(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 t ≤ t0
2(t−t0)2

(t1−t0)2
t0 ≤ t ≤ t0+t1

2

1 − 2(t1−t)2

(t1−t0)2
t0+t1
2 ≤ t ≤ t1

1 t1 ≤ t

Mean Residual Life Function

Another important measure of reliability is the mean residual life μ(t), which is the
expected remaining life beyond the present age t . Mathematically, it is defined as

μ(t) = E[T − t |T ≥ t]

=
∞∫

t

(s − t)
f (s)

R(t)
ds

=
∫∞

t s f (s)ds

R(t)
− t

=
∫∞

t R(s)ds

R(t)
. (1.49)
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In other words, the mean residual life (MRL) is the expected remaining life, T-t,
given that the item has survived to time t. When t = 0, the MRL function becomes
the MTTF.

The mean residual life (MRL) from Eq. (1.49) can also be written as related to
the failure rate h(t) through

μ′(t) = μ(t)h(t) − 1

We can obtain the above equation by taking the derivative of Eq. (1.49) as follows

μ
′
(t) =

(∫∞
t s f (s)ds

R(t)
− t

)′

=
(∫∞

t R(s)ds
)′

R(t) − (∫∞
t R(s)ds

)
R

′
(t)

R2(t)

= − R2(t)

R2(t)
+ f (t)

(∫∞
t R(s)ds

)

R2(t)

= μ(t)h(t) − 1.

In industrial reliability studies of repair, replacement, and other maintenance
strategies, the mean residual life function may be proven to be more relevant than
the failure rate function. Indeed, if the goal is to improve the average system life-
time, then the mean residual life is the relevant measure. The function h(t) relates
only to the risk of immediate failure, whereas μ(t) summaries the entire residual life
distribution.

For generalized Weibull distributions, the mean residual life μ(t) is generally
difficult to obtain explicitly. Further analysis on the relationship between the mean
residual life, and the failure rate functions for various generalizations of Weibull
distributions is worth exploring.

1.8 Maintainability

Maintainability is another approach to measure a performance of any system. In
other words, some applications of our daily life, such as computer security systems
for example, can not tolerate any time to fail. Such failures are very costly or their
continuous function is on top priorities. Therefore, a maintenance policy to perform
preventive maintenance from time to time for the system to continous functioning
at low costs to reduce a significant impact of system failure would be worth to
carefully study. Acording to British Specifications, BS 3811:1974(1): Maintenance
is a combination of any actions carried out to retain an item in or restore it to an
acceptable standard.When a system fails to perform satisfactorily, repair is normally
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carried out to locate and correct the fault. The system is restored to operational
effectiveness by making an adjustment or by replacing a component.

Maintainability is defined as the probability that a failed system will be restored
to specified conditions within a given period of time when maintenance is performed
according to prescribed procedures and resources. In other words, maintainability
is the probability of isolating and repairing a fault in a system within a given time.
Maintainability engineers must work with system designers to ensure that the system
product can be maintained by the customer efficiently and cost effectively. This
function requires the analysis of part removal, replacement, tear-down, and build-up
of the product in order to determine the required time to carry out the operation, the
necessary skill, the type of support equipment and the documentation.

There are two common types of maintenance: preventive maintenance and correc-
tive maintenance. In preventive maintenance, the system is periodically and system-
atically inspected before the actual failure of the system. The maintenance action
can be performed without degrading in operation or by stopping the system during a
convenience time without any disruption of activities. The aim of preventive main-
tenance is to intentionally eliminate a severe impact when the system has failed as a
less total operating cost. In corrective maintenance, it is carried out when the system
has already failed in order to bring the system back to the working state as soon as
possible. The time spent on all such actions often called as corrective maintenance
down time.

Let T denote the random variable of the time to repair or the total downtime. If
the repair time T has a repair time density function g(t), then the maintainability,
V (t), is defined as the probability that a failed system will be back in service by time
t, i.e.,

V (t) = P(T ≤ t) =
t∫

0

g(s)ds (1.50)

For example, if g(t) = μe−μt where μ > 0 is a constant repair rate, then

V (t) = 1 − e−μt

which represents the exponential form of the maintainability function.

Example 1.39 Let T be the random variable of the time to repair for a system in
which it has a repair time density function g(t) as follows

g(t) = μ1e−μ1t + μ2e−μ2t − (μ1 + μ2)e
−(μ1+μ2)t

The maintainability of the system is given by
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V (t) =
t∫

0

g(s)ds

=
t∫

0

(
μ1e−μ1s + μ2e−μ2s − (μ1 + μ2)e

−(μ1+μ2)s
)

ds

= 1 − (e−μ1t + e−μ2t − e−(μ1+μ2)t
)
. (1.51)

The maintainability function given as in Eq. (1.51) above is, in fact, the cdf of a
two-component parallel system where component 1 and 2 are independent and has
constant failure rate μ1 and μ2, respectively.

Example 1.40 If T represents the random variable of the time to repair for a system
where the repair time density function g(t) is given by

g(t) = (μ1 + μ2)e
−(μ1+μ2)t

then the system maintainability can be easily obtained as follows

V (t) =
t∫

0

g(s)ds

=
t∫

0

(μ1 + μ2)e
−(μ1+μ2)sds

= 1 − e−(μ1+μ2)t . (1.52)

Similarly, the maintainability function as in Eq. (1.52) above is, easily to see later
in Chap. 4, that the cdf of a two-component series system where component 1 and 2
has constant failure rate μ1 and μ2, respectively.

An importantmeasure often used inmaintenance studies is themean time to repair
(MTTR) or the mean downtime. MTTR is the expected value of the random variable
repair time, not failure time, and is given by

MT T R =
∞∫

0

tg(t)dt

When the distribution has a repair time density given by g(t) = μe−μt , then,
from the above equation, MTTR = 1/μ. When the repair time T has the log normal
density function g(t), and the density function is given by

g(t) = 1√
2π σ t

e− (ln t−μ)2

2σ2 t > 0
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then it can be shown that

MT T R = m e
σ2

2

where m denotes the median of the log normal distribution.
In order to design and manufacture a maintainable system, it is necessary to

predict the MTTR for various fault conditions that could occur in the system. This
is generally based on past experiences of designers and the expertise available to
handle repair work.

The system repair time consists of two separate intervals: passive repair time and
active repair time. Passive repair time is mainly determined by the time taken by
service engineers to travel to the customer site. In many cases, the cost of travel time
exceeds the cost of the actual repair. Active repair time is directly affected by the
system design and is listed as follows:

1. The time between the occurrence of a failure and the system user becoming
aware that it has occurred.

2. The time needed to detect a fault and isolate the replaceable component(s).
3. The time needed to replace the faulty component(s).
4. The time needed to verify that the fault has been corrected and the system is

fully operational.

The active repair time can be improved significantly by designing the system
in such a way that faults may be quickly detected and isolated. As more complex
systems are designed, it becomes more difficult to isolate the faults.

1.9 Availability Measure

Reliability is a measure that requires system success for an entire mission time.
No failures or repairs are allowed. Space missions and aircraft flights are examples
of systems where failures or repairs are not allowed. Availability is a measure that
allows for a system to repair when failure occurs. A repairable system once put into
operation continues to operate till failure or it is stopped for a planned maintenance.
After repairs or maintenance action, the system assumes to return to the working
state. There are several types of availability measures as discussed in the following.

Definition 1.19 Availability is a point function describing the behavior of the system
at a specified epoch and it does not impose any restriction on the behavior of the
system before the time point.

Definition 1.20 Pointwise availability is the probability that the system will be able
to operate with tolerance at a given instant of time.

Definition 1.21 The point availability is defined as the probability that the system
is good at time point t and is denoted as A(t). Mathematically,
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A(t) = P{Z(t) = 1|Z(0) = 1}

where Z(t) is the state of the system.

Let

W (t) =
{
1 if the system is in operating state at time t
0 if the system is in failed state at time t

A(t) can also be defined as the probability that the system functions at time t
irrespective of its past history background, i.e., repairs:

A(t) = E{W (t)} = 1 × P{W (t) = 1} + 0 × P{w(t) = 0}
= P{W (t) = 1}.

Definition 1.22 Interval availability is defined as the system will be able to function
within a given interval of time. More specific, for the interval of time [t1, t2], the
interval availability is defined as

A(t1, t2) = 1

t2 − t1

t2∫

t1

A(t)dt (1.53)

In other words, the interval availability in the interval [0, T ] is given by

A(T ) = 1

T

T∫

0

A(t)dt (1.54)

Definition 1.23 The steady state availability of a system is defined as the probability
that the system is successful at time t as t is large. Mathematically, the steady state
availability is given by

A = A(∞) = lim
T →∞

1

T

T∫

0

A(t)dt (1.55)

The above steady state availability function can be shown as follows:

Availability = A ≡ A(∞) = System up time

System up time + System down time

= MTTF

MTTF + MTTR
(1.56)
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Availability is ameasure of success used primarily for repairable systems. For non-
repairable systems, availability, A(t), equals reliability, R(t). In repairable systems,
A(t) will be equal to or greater than R(t).

The mean time between failures (MTBF) is an important measure in repairable
systems. This implies that the system has failed and has been repaired. Like MTTF
andMTTR,MTBF is an expected value of the randomvariable time between failures.
Mathematically,

MTBF = MTTF + MTTR

The term MTBF has been widely misused. In practice, MTTR is much smaller
than MTTF, which is approximately equal to MTBF. MTBF is often incorrectly
substituted for MTTF, which applies to both repairable systems and non-repairable
systems. If the MTTR can be reduced, availability will increase, and the system will
be more economical.

A system where faults are rapidly diagnosed is more desirable than a system
that has a lower failure rate but where the cause of a failure takes longer to detect,
resulting in a lengthy system downtime. When the system being tested is renewed
through maintenance and repairs, E(T ) is also known as MTBF.

1.10 Mathematical Techniques

Delta Technique

Delta technique is an approach that uses the Taylor series expansion of a function of
one or more random variables to obtain approximations to the expected value of the
function and to its variance. For example, writing a variable x as x = μ + ε where
E(x) = μ and E(ε) = 0, Tayfor’s expansion gives

f (x) = f (μ)+ε
∂f(x)

∂x

∣∣
x = μ +ε2

2!
∂2f(x)

∂x2
∣∣
x = μ · · · + · · · (1.57)

If terms involving ε2, ε3 etc. are assumed to be negligible then

f (x) ≈ f (μ) + (x − μ) f
′
(μ) (1.58)

so that

var( f (x)) ≈
(

f
′
(μ)
)2
var(x) (1.59)

Beta functions. For m > 0, n > 0 (not necessarily integers)
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β(m, n) ≡
1∫

0

xm−1(1 − x)n−1dx = 2

π/2∫

0

(sin θ)2m−1(cos θ)2n−1dθ. (1.60)

The above transformation used was x = sin2 θ.

Gamma functions. For n > 0 (not necessarily an integer)

�(n) ≡
∞∫

0

xn−1 e−x dx = 2

∞∫

0

y2n−1e−y2dy. (1.61)

The above transformation used was x = y2. If n is a positive integer, then

�(n) = (n − 1)! �
(
1/
2

)
= √

π.

Factorials of large number can be obtained using Stirling’s formula as follows:

n! = √
2πn nn e−n

(
1 + 1

12n
+ 1

288n2
+ · · ·

)
.

Also, from Eqs. (1.60) and (1.61)

β(m, n) = �(m) �(n)

�(m + n)
.

Convex function

Definition 1.24 A function h(x) is called convex if

h(αx1 + (1 − α)x2) ≤ αh(x1) + (1 − α)h(x2) (1.62)

for all x1 and x2 and α ∈ (0, 1).

Definition 1.25 A function h(x) is also convex if h
′′
(x) ≥ 0.

On the other hand, h(x) is said to be concave if (−h(x)) is convex, or h
′′
(x) ≤ 0.

Indicator function

For any set S, the associated indicator function is

IS(x) =
{
1 if x ∈ S

0 if x /∈ S.
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1.11 Probability and Moment Inequalities

In statistics, we often deal with situations where the exact distribution function is
known. In other words, the distribution of the random variables X1, X2, …, Xn is
assumed to be known. However, in real-world problems one often has little or no
knowledge about the distribution underlying samples. In this section, we discuss
common statistical approaches that aim with partial or no information about the
distribution function of (X1, X2, …, Xn) in order to obtain bounds that can be given
on the distribution of (X1, X2, …, Xn).

Theorem 1.4 (Chebyshev’s inequality) . Letε > 0 be fixed. Let X be a r.v. with mean
μ and variance σ 2. Then

P{|X − μ| ≥ ε} ≤ σ 2

ε2
(1.63)

Corollary 1.1 Let ε > 0 be fixed. Let X be a r.v. with mean μ and variance σ 2.

Then

P

{∣∣
∣∣

X − μ

σ

∣∣
∣∣ ≥ ε

}
≤ 1

ε2
(1.64)

Theorem 1.5 (Markov’s inequality) Let t > 0, a ≥ 0 be fixed. Let X be a r.v. such
that P[X ≥ 0] = 1. Then

P[X ≥ t] ≤ E(Xa)

ta
. (1.65)

Example 1.41 A manufacturer has observed that over the course of 10 months, the
numbers of products demanded were T 1, T 2, …, T 10, respectively. If we assume that
these are i.i.d. observations of demand, what bound can be put on the probability that

their average T =
∑10

i=1 Ti

10 is more than 3σ products from the average demand μ?

Solution We obtain

E
(
T
) = μ, V ar

(
T
) = σ 2

10
.

From the Chebyshev’s inequality,

P
{∣∣T − μ

∣∣ ≥ 3σ
} = P

⎧
⎨

⎩

∣∣
∣∣∣∣

T − μ

σ
/√

10

∣∣
∣∣∣∣

≥ 3
√
10

⎫
⎬

⎭
≤ 1
(
3
√
10
)2 = 1

90

Let X1, X2, …, Xn and X be random variables on a probability space. We say that
Xn converges in probability to X if
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lim
n→∞ P(|Xn − X | < ε) = 1 for every ε > 0.

Similarly, Xn converges with probability 1 (or almost surely) to X if

P
(
lim

n→∞ Xn = X
)

= 1.

Moment Inequalities

The following moment inequalities are commonly used in applied statistics and
probability.

Theorem1.6 (Jensen’s Inequality)For any random variable X and a convex function
h(x),

h(E(X)) ≤ E[h(X)]. (1.66)

Example 1.42 Since the function f (x) = x2 is a convex function, using Jensen’s
inequality we obtain

f [E(X)] ≤ E( f (X))

or

[E(X)]2 ≤ E
(
X2
)

In other words, since var(X) = E
(
X2
)− [E(X)]2 ≥ 0 this implies that

E
(
X2
) ≥ [E(X)]2.

Theorem 1.7 (Cauchy-Schwarz Inequality) For any two random variables X and Y,

E |XY | ≤
√

E
(
X2
)
E
(
Y 2
)
. (1.67)

Theorem 1.8 (Holder’s Inequality) For any two random variables X and Y and two
positive real values a and b such that a + b = 1,

E |XY | ≤
√(

E

(
|X |1/a

))a(
E

(
|Y |1/b

))b

. (1.68)

Theorem 1.9 (Liapounov’s Inequality) If one takes Y ≡ 1 in Eq. (1.68), then the
Holder’s inequality reduces to:
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E |X | ≤
(

E

(
|X |1/a

))a

f or 0 < a ≤ 1. (1.69)

Theorem 1.10 (Minkowski’s Inequality) For any two random variables X and Y
and any real value a for 0 < a ≤ 1,

(
E

(
|X + Y |1/a

))a

≤
(

E

(
|X |1/a

))a

+
(

E

(
|Y |1/a

))a

. (1.70)

1.12 Order Statistics

Let X1, X2, …, Xn be a random sample of size n, each with cdf F(x) and pdf f (x).
Let X (i) be the ith order statistic of the sample where such characteristic values of a
sample of observations that have been sorted from smallest to largest. The rth order
statistic is the rth smallest value in the sample, say X (r). That is,

X(1) ≤ X(2) ≤ · · · ≤ X(r−1) ≤ X(r) ≤ · · · ≤ X(n)

are called the order statistics. Imagine we are building an elevator for example and
our random variable s are the weight on the elevator of various times during the day.
Wewould want to know howmuch weight it can bear. In this case, we will care about
the distribution of the maximum.

LetF(r)(x) denote the cdf of the rth order statisticX (r). Note that the order statistics
X(1), X(2), ..., X(n) are neither independent nor identically distributed. Let X (r) be the
rth order statistic. Then the cdf of X (r) is given by

F(r)(x) = P(X(r) ≤ x)

= P(at least r of X1, X2, ..., Xn are ≤ x)

=
n∑

i=r

P(exactly i of X1, X2, ..., Xn are ≤ x)

=
n∑

i=r

(
n

i

)

Fi (x)[1 − F(x)]n−i

= Fr (x)

n−r∑

j=0

(
r + j − 1

r − 1

)

[1 − F(x)] j

= r

(
n

r

) F(x)∫

0

tr−1(1 − t)n−r dt (1.71)
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The probability density function (pdf) of the rth order statistic X(r) is given by

fX(r)
(x) = n!

(r − 1)! (n − r)! f (x) Fr−1(x) [1 − F(x)]n−r (1.72)

The pdf of the smallest, i.e., 1st order statistic X (1), value of n independent randam
variables, is given by

fX(1) (x) = n f (x) [1 − F(x)]n−1 (1.73)

Similarly, the pdf of the largest, i.e., nst order statistic X (n), value is given by

fX(n)
(x) = n f (x) [F(x)]n−1 (1.74)

Example 1.43 Assume X1, X2, …, Xn are independent variables from the uniform
distribution on [0,1]. Then the pdf is given by

f (x) =
{
1 if 0 ≤ x ≤ 1

0 otherwise.

From Eq. (1.73), the pdf of the smallest value is given by

fX(1) (x) = n f (x) [1 − F(x)]n−1 = n [1 − x]n−1.

Similiarly, from Eq. (1.74), the pdf of the largest value is given by

fX(n)
(x) = n f (x) [F(x)]n−1 = n [x]n−1.

Note that if there are n random variables X1, X2, …, Xn which may or may not be
mutually independent, then joint cdf, if it exists, is given by

P(X1 ≤ x1, X2 ≤ x2, ...Xn ≤ xn)

=
xn∫

−∞

xn−1∫

−∞
..

x1∫

−∞
f (t1, t2, .., tn)dt1dt2..dtn (1.75)

If the n random variables are mutually statistically independent, then the joint pdf
can be rewritten as

f (x1, x2, ..., xn) =
n∏

i=1

f (xi )
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The Sample Distribution of the Median

Let X1, X2,…,Xn be a random sample of size n, each with cdf F(x) and pdf f (x). The
sample median is defined as

M =
{

X(n+1)/2 n odd
(X(n)/2 + X(n/2+1))/2 n even

(1.76)

where X(1), X(2), ..., X(r−1), X(r)...X(n) are the order stattistics.
Let a sample of size n = 2 m + 1 with n large be taken from an infinite population

with a density function f (x) having the population median μ̃. In other words, we have
n independent, identically distributed random variables with density f . The sampling
distribution of themedian is approximately normalwithmean μ̃ andvariance 1

8 f (μ̃)2m .

1.13 Problems

1. The probability of having various numbers of children in a family in a certain
community is given by

Number of children: 0 1 2 3
Probability: 0.20 0.50 0.25 0.05

Assume a 50–50 chance that a child born will be a boy or girl.

(i) Find the probability that the family has only one boy.
(ii) What is the probability that there are two children in the family given the

family has one boy?

2. A fair die is thrown twice. Let A, B and C denote the following events:

A: first toss is odd
B: second toss is even
C: total number of spots is equal to seven.

Show that A, B and C are not independent.
3. A batch of material consists of 120 units where 40 units are oversized, 20 are

undersized, and 60 conform to specification. Two units are drawn at random one
after the other (without replacement).What is the probability that both units will
be of the same category?

4. Suppose that the probability of successful launching of a special device is 0.5.
Suppose further that each trial is physically independent of preceding trials.
Determine the number of trials required to make the probability of a successful
launching at least 0.99.

5. Show that

P{A ∪ B ∪ C} = P{A} + P{B} + P{C} − P{A ∩ B}
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− P{A ∩ C} − P{B ∩ C} + P{A ∩ B ∩ C}

6. Let A, B and C be subsets of the sample space S defined by

S = {1, 2, 3, 4, 5, 6}
A = {1, 3, 5}; B = {1, 2, 3}; C = {2, 4, 6}

Find the events
(i) A ∩ (B ∩ C) (ii) A ∪ (B ∪ C)

7. A fair coin is tossed until for the first time heads occur. Find the probability
that the experiment ends on or before the sixth toss.

8. A consumer survey investigating the ownership of television sets and cars for
a sample of 1000 families in a certain community finds the following results:

TV No TV
Car 115 245
No Car 380 260

What is the probability that a family has

(i) a TV set?
(ii) a car?
(iii) both?
(iv) either a TV set or a car or both?

9. A fair coin is tossed three successive times.What is the probability of obtaining
at least two heads given that the first toss resulted in a head?

10. A group of 100 boys and 100 girls is divided into two equal groups. Find the
probability p that each group will be equally divided into boys and girls.

11. Assume that the hazard rate, h(t), has a positive derivative. Show that the hazard
distribution

H(t) =
t∫

0

h(x)dx

is strictly convex.
12. Consider the pdf of a random variable that is equally likely to take on any value

only in the interval from a to b.

(a) Show that this pdf is given by

f (t) =
⎧
⎨

⎩

1

b − a
for a < t < b

0 otherwise

(b) Derive the corresponding reliability function R(t) and failure rate h(t).
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(c) Think of an example where such a distribution function would be of
interest in reliability application.

13. From Eq. (1.37), show that the Laplace transform of the density function gn
of the total life time Sn of n independent life times Xi with their pdf f i for i =
1, 2, …, n, is given by

g∗
n(a) = f ∗

1 (a) f ∗
2 (a)... f ∗

n (a) =
n∏

i=1

f ∗
i (a)

14. Draw Venn diagrams to illustrate the identity below.

(a) A ∩ (B ∗ C) = (A ∩ B) ∗ (A ∩ C)

(b) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C)

15. One thousand new streetlights are installed in Saigon city. Assume that the
lifetimes of these streetlights follow the normal distribution. The average life
of these lamps is estimated at 980 burning-hours with a standard deviation of
100 h.

(a) What is the expected number of lights that will fail during the first 800
burning-hours?

(b) What is the expected number of lights that will fail between 900 and
1100 burning-hours?

(c) After how many burning-hours would 10% of the lamps be expected to
fail?

16. A fax machine with constant failure rate λ will survive for a period of 720 h
without failure, with probability 0.80.

(a) Determine the failure rate λ.
(b) Determine the probability that the machine, which is functioning after

600 h, will still function after 800 h.
(c) Find the probability that the machine will fail within 900 h, given that

the machine was functioning at 720 h.

17. A diesel is known to have an operating life (in hours) that fits the following
pdf:

f (t) = 2a

(t + b)2
t ≥ 0

(a) Determine a and b.
(b) Determine the probability that the diesel will not fail during the first 6000

operating-hours where a = 500.
(c) If the manufacturer wants no more than 10% of the diesels returned for

warranty service, how long should the warranty be?
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18. The failure rate for a hydraulic component

h(t) = t

t + 1
t > 0

where t is in years.

(a) Determine the reliability function R(t).
(b) Determine the MTTF of the component.

19. A 18-month guarantee is given based on the assumption that no more than 5%
of new cars will be returned.

(a) The time to failure T of a car has a constant failure rate. What is the
maximum failure rate that can be tolerated?

(b) Determine the probability that a new car will fail within three years
assuming that the car was functioning at 18 months.

20. Suppose that the lifetimeT (in hours) of a TV tube is described by the following
pdf:

f (t) =
{

at (b − t) for 0 <t < b
0 otherwise

where a is a constant to be determined and b is the maximum life time.

(a) Show that a = 6
b3 .

(b) Determine the probability that the tube will last more than k hours but
less than l hours.

(c) Determine the tube MTTF.
(d) Obtain the probability that the tube will last an additional s hours, given

it already lasted more than t hours.

21. Show that if

R1(t) ≥ R2(t) for all t

where Ri(t) is the system reliability of the structure i, thenMTTF of the system
structure 1 is always ≥ MTTF of the system structure 2.

22. Assume there are 10 identical units to place on test at the same time t = 0
where each unit has an exponential life distribution with MTTF μ = 5 h and
that the units operate independently. Let N3 be the number of failures during
the third hour, in the time interval [2, 3). Assume that the unit will not fail
during the first two hours (in the time interval [0, 2), obtain the distribution
of the number of failures and expected number of failures during (a) the third
time interval [2, 3); and (b) the fourth interval [3, 4).

23. The lifetime of a communication system (hours) has the pdf
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f (t) = 2 et

(et + 1)2
t >0

A random sample of n = 30 units from this density function is tested at the
same time t = 0 and that the units operate independently.

(a) What is the probability that at least 2 units will fail within the first hour?
Determine the expected, and the variance of the, number of failures
during the first hour.

(b) What is the probability that a unit will fail during the second hour of
testing, given that it has survived the first hour?

24. Consider the lifetime of a communication device, having a pdf

f (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 t ≤ t0
4(t−t0)
(t1−t0)2

t0 ≤ t ≤ t0+t1
2

4(t1−t)
(t1−t0)2

t0+t1
2 ≤ t ≤ t1

0 t1 ≤ t

(a) What is the failure rate function of this communication device?
(b) Graph of this failure rate function for to = 25 h and t1 = 75 h.

25. The pdf of the truncated exponential function is give by

f (t) =
{
0 t < t0
1
θ
e− t−t0

θ t ≥ t0

Show that the variance andMTTF of the life distribution are variance σ 2 = θ2

and MT T F = θ + t0.

26. Use the Laplace transforms to solve the following

∂2 f (t)

∂t2
− 3

∂ f (t)

∂t
+ 2 f (t) = 2e−t

with an initial conditions: f (0) = 2 and ∂ f (0)
∂t ≡ f

′
(0) = −1.

27. True or false:

(a) All populations in nature are finite.
(b) A sample of observations is a collection of individual observations from

a population.
(c) Parameters are sample quantities.
(d) Sample statistics provide estimates of parameters.
(e) Parameters are known when we use a sample rather than a complete

enumeration.

28. How many ways are there to arrange the seven letters in the word SYSTEMS?
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29. How many ways are there to rank n candidates for the job of corporate chief
executive? If the ranking is made at random (each ranking is equally likely),
what is the probability that the fifth candidate, Mr. Best, is in second place?

30. A committee of k people is to be chosen from a set of 7 women and 4 men.
How many ways are there to form the committee if:

(a) The committee has 5 people, 3 women and 2 men.
(b) The committee can be any positive size but must have equal numbers of

women and men.
(c) The committee has 4 people and at least 2 are women.
(d) The committee has 4 people and one of them must be Mr. Good.
(e) The committee has 4 people, two of each sex, and Mr. and Mrs. Good

cannot both be on the committee.

31. How many ways are there to form a sequence of 10 letters from 4 a’s, 4 b’s, 4
c’s and 4 d’s if each letter must appear at least twice?

32. The probability density function of a component is given by

f (t) =
{

3
a

(
1 − t

a

)2
for 0 ≤ t ≤ a

0 otherwise

Determine the following:

a. Reliability function, R(t).
b. Failure rate function, h(t).
c. The expected life of the component, MTTF.

33. The probability density function of the lifetime of an electric motor is given
by

f (t) = 0.25 te−0.5t t > 0

where t is in years.

(a) What is the probability of failure during the first year?
(b) What is the probability of the motor’s lasting at least 3 years?
(c) If no more than 3% of the motors are to require warranty services, what

is the maximum number of days for which the motor can be warranted?

34. Claim amounts for wind damage to insure homes are independent random
variables with common density function

f (x) =
{
3x−4 for x > 1
0 otherwise

where x is the amount of a claim in thousands. Suppose 3 such claims will be
made. What is the expected value of the largest of the three claims?
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35. A filling station is supplied with gasoline once a week. If its weekly volume
of sales in thousands of gallons is a random variable with probability density
function

f (x) =
{
5(1 − x)4 0 < x < 1
0 otherwise

(a) what need the capacity of the tankbe so that the probability of the supplies
being completely used up in a given week is no more than 0.01?

(b) what is the expected volume of sales in a given week? Show your work.

36. Liquid waste produced by a factory is removed once a week. The weekly
volume of waste in thousands of gallons is a continuous random variable with
probability density function

f (x) =
{
105x4(1−x)2 for 0 < x < 1
0 otherwise.

Assume that the storage tank has a capacity of 0.9 expressed in thousands of
gallons. The cost of removing x > 0 units of waste at the end of the week is:
(1.25 + 0.5x). Additional costs (5 + 10z) are incurred when the capacity of
the storage tank is not sufficient and an overflow of z > 0 units of waste occurs
during the week. What is the expected value of the weekly costs?

37. You have two light bulbs for a particular lamp. Let X = the lifetime of the
first bulb, and Y = the lifetime of the second bulb. Suppose that X and Y are
independent and that each has an exponential distribution with constant failure
rate parameter λ = 0.001 per hour.

(a) What is the probability that each bulb lasts at most 1000 h?
(b) What is the probability that the total lifetime of the two bulbs is at most

2000 h?
(c) Determine the expected total lifetime of the two bulbs.

38. Claim amounts for wind damage to insure homes are independent random
variables with common probability density function

f (x) =
{
3x−4 for x ≥ 1
0 otherwise

where x is the amount of a claim in thousands. Suppose 3 such claims will be
made. What is the expected value of the smallest of the three claims?

39. Claim amounts for wind damage to insure homes are independent random
variables with common probability density function

f (x) =
{
3x−4 for x ≥ 1
0 otherwise
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where x is the amount of a claim in thousands. Suppose 5 such claims will be
made. What is the expected value of the smallest of the five claims?

40. A system consisting of one original unit plus a spare can function for a random
amount of time X. If the density of X is given (in units of months) by

f (x) =
{

C x e− x
2 for x > 0

0 or x ≤ 0

where C is a constant, what is the probability that the system functions for at
least 5 months?

41. Claim amounts for wind damage to insure homes are independent random
variables with common probability density function

f (x) = 3e−3x for x > 0

where x is the amount of a claim in thousands. Suppose 4 such claims will be
made. What is the expected value of the smallest of the four claims?

42. A certain simulation experiment is to be performed until a successful result is
obtained. The trials are independent and the cost of performing the experiment
is $25,000; however, if a failure results, it costs $5,000 to “set up” for the next
trial. The experimenter would like to know the expected cost of the project. If
Y is the number of trials required to obtain a successful experiment, then the
cost function would be

C(Y ) = $25, 000Y + $5, 000(Y − 1)

(a) Determine the expected cost of the project.
(b) Assume the probability of success on a single trial is 0.25. Suppose that

the experimenter has a maximum of $500,000. What is the probability
that the experimental work would cost more than $500,000?

43. Assume that the product failures from an assembly line are 5%. Suppose that
if a product that is defective, a diagnostic test indicates that it is defective 92%
of the time, and if the product is good, the test indicates that it is good 96% of
the time. Calculate the probability that the test will indicate that the product is
defective?

44. A filling station is supplied with gasoline once a week. If its weekly volume
of sales in thousands of gallons is a random variable with probability density
function

f (x) =
{ 3

2

(
1 − x2

)
0 ≤ x ≤ 1

0 otherwise
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(a) what need the capacity of the tankbe so that the probability of the supplies
being completely used up in a given week is no more than 0.05? Show
your work.

(b) what is the expected volume of sales in a given week? Show your work.

45. The completion time X for a project has cumulative distribution function

F(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for x < 0
x3

3 for 0 ≤ x < 1
1 − 1

2

(
7
3 − x

)(
7
4 − 3

4 x
)
for 1 ≤ x < 7

3
1 for x ≥ 7

3 .

Calculate the expected completion time.
46. Claim amounts for wind damage to insure homes are independent random

variables with common density function

f (x) = 0.5 x2 e−x for x > 0

where x is the amount of a claim in thousands. What is the expected amount
of the claims?

47. The scheduled length of a management meeting is b (in minutes). It is unlikely
that the meeting will end before a (minutes), and it is impossible that it will
last more than L since another meeting is scheduled in the same room. Assume
that the cumulative distribution function F of the life time X (duration of the
meeting), corresponding to the above restrictions, is given by:

F(x) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 f or 0 ≤ x ≤ a

β
(

x−a
b−a

)2
f or a ≤ x ≤ b(

1−β

L−b

)
x + βL−b

L−b f or b ≤ x ≤ L

1 f or L ≤ x < ∞

where 0 < β < 1.

(a) Calculate the expected length of the meeting, E(X).
(b) Given a = 40, b = 50, L = 60, and β = 0.8. Compute E(X).

Reference

Lehmann EL, Casella G (1998) Theory of point estimation, 2nd ed. Springer



Chapter 2
Distribution Functions and Its
Applications

In some situations, particularly when evaluating reliability of a product in the field,
exact information on the failure times (Ts) is not possible to obtain, but the infor-
mation on the number of failures N(a, b) during the time interval [a, b) perhaps is
available. The difference between the actual time til failure, T, and the number of
failures, N, is that T is a continuous random variable while N is a discrete random
variable. Random variables can be discrete or continuous.

Discrete—Within a range of numbers, discrete variables can take on only certain
values. For example, suppose that we flip a coin and count the number of heads.
Therefore, the number of heads is a discrete variable. And because the number
of heads results from a random process—flipping a coin—it is a discrete random
variable.

Continuous—Continuous variables, in contrast, can take on any value within
a range of values. For example, suppose we randomly select an individual from a
population. The age of the person selected is determined by a chance event; so age
is a continuous random variable.

All probability distributions can be classified as discrete probability distribu-
tions or as continuous probability distributions, depending on whether they define
probabilities associated with discrete variables or continuous variables.

This chapter describes most common distribution functions such as binomial,
Poisson, geometric, exponential, normal, lognormal, student’s t, gamma, Pareto,
Beta, Rayleigh, Cauchy, Weibull, Pham, Vtub-shaped hazard rate, etc. and its appli-
cations and useful in engineering and applied statistics. The chapter also describes
the central limit theorem and some related statistical characteristics of reliability
measures including such as bathtub, Vtub shapes, increasing mean residual life, and
new better than used.
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2.1 Discrete Distributions

A discrete distribution function is a distribution function for a discrete random vari-
able. It consists of a list of the possible values the random variable can assume
along with the probability of assuming each possible value. In this section, we
discuss several discrete distributions such as the discrete uniform, Bernoulli, bino-
mial, Poisson, negative binomial, geometric, logarithmic series, and power series
that are commonly used to model an uncertain frequency in various applications.
Examples are given to illustrate how to apply each distribution in practice.

Discrete Uniform Distribution

The simplest of all discrete probability distributions is onewhere the random variable
assumes each of its values with an equal probability. Such a probability distribution
is called a discrete uniform distribution.

If the randomvariableX assumes the values x1, x2,…, xn, with equal probabilities,
then the discrete uniform distribution is given by

P(X = x) = 1

n
for x = x1, x2, ..., xn

The mean and variance of the discrete uniform distribution are

E(X) =
∑n

i=1 xi

n
≡ μ and V(X) =

∑n
i=1 (xi − μ)2

n

Example 2.1 Assume that a light bulb is select at random from a box that contain a
25-W bulb, a 40-W bulb, a 60-W bulb, a 75-W bulb, and a 100-W bulb, each occurs
with probability 1/5. Thus we have a uniform probability distribution function is

P(X = x) = 1

5
x = 25, 40, 60, 75, 100

Bernoulli Distribution

An experiment often consists of repeated trials, each with two possible outcomes
that may be labeled success or failure. One may consider the inspection of units as
they come out from the production assembly line where each test may indicate a
defective or nondefective unit.

A discrete random variable X with two possible outcomes either 0 or 1 (failure
or success) where p is the probability of success in each trial has the Bernoulli
distribution if, for any given p

P(X = x) = px (1 − p)1−x x = 0 or 1 (2.1)

In other words, let us assume that a trial results in one the two outcomes: success
(S) and failure (F) and that P(S)= p and P(F)= 1 − p. If we define a random variable
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X = 0 when F occurs and X = 1 when S occurs then

P(X = x) = px (1 − p)1−x x = 0 or 1

Example 2.2 Avendingmachine usually provides snack including soft drink, coffee
and cookies, on insertion of a coin. Over a period of time, it is found not to work
on three uses in every thousand times on the average. If we define X as a random
variable and that x = 1 if the machine works and x = 0 if it fails to work. Thus, we
obtain

P(X = x) =
{
0.997 for x = 1

0.003 for x = 0.

Binomial Distribution

The binomial distribution is one of the most widely used discrete random variable
distributions in reliability and quality inspection. It has applications in reliability
engineering, e.g., when one is dealing with a situation in which an event is either a
success or a failure.

The binomial distribution can be used to model a random variable X which repre-
sents the number of successes (or failures) in n independent trials (these are referred
to as Bernoulli trials), with the probability of success (or failure) being p in each
trial. The pdf of the binomial distribution, b(n, p), is given by

P(X = x) =
(

n

x

)

px (1 − p)n−x x = 0, 1, 2, ..., n

(
n

x

)

= n!
x !(n − x)! (2.2)

where n = number of trials.
x = number of successes.
p = single trial probability of success.
In fact, a binomial random variable can be considered as a sum of a Bernoulli

random variables, that is, as the number of successes for example, in n Bernoulli
trails.

The expected value and variance of the binomial random variable X are,
respectively

E(X) = np

and

V (X) = np(1 − p)



70 2 Distribution Functions and Its Applications

The coefficient of skewness is given by

Sc = E(X − μ)3

σ 3
= np(1 − p)(1 − 2p)

√
(np(1 − p))3

= 1 − 2p√
np(1 − p)

If p = 0.5 then Sc = 0 and the distribution is symmetric. If p < 0.5, the
distribution is positively skewed, and it is negatively skewed if p > 0.5.

The coefficient of kurtosis is

Kc = 3 − 6

n
+ 1

np(1 − p)

The reliability function, R(k), (i.e., at least k out of n items are good) is given by

R(k) =
n∑

x=k

(
n

x

)

px (1 − p)n−x (2.3)

Example 2.3 Suppose in the production of lightbulbs, 90% are good. In a random
sample of 20 lightbulbs, what is the probability of obtaining at least 18 good
lightbulbs?

Solution The probability of obtaining at least 18 good lightbulbs is given by

R(18) =
20∑

x=18

(
20

x

)

(0.9)x (0.1)20−x = 0.667

Example 2.4 A life insurance company is interested to predict in the coming year
on the number of claims that it may receive on a particular town due to the severe
weather such as floods. All of the policies in the town are written on floods. There are
currently 250 active policies in the town. The company estimates that the probability
of any flood occurs in the coming year is 0.002. Determine the probability that the
insurance company receivesmore than 4 claims in this town out of 250 active policies
assuming that the claims are independent.

Solution Let N be the number of claims in the coming year. Then N ~ binomial
(250, p = 0.002). Then the desired probability is given by

P(N > 4) = 1 −
4∑

n=0

(
250

n

)

(0.002)n(0.998)250−n = 1.6664 10−4

Example 2.5 Assume there are 10 identical units to place on test at the same time t
= 0 where each unit has an exponential life distribution with a mean time to failure
MTTF μ = 5 h and that the units operate independently.
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(a) Determine the expected and the variance of number of failures during the first
hour, i.e. interval [0, 1).

(b) What is the expected and the variance of the number of failures during the
interval [1, 2).

Solution

(a) Let N1 be the number of failures during the first hour, in the time interval [0,
1). The probability of failure of a unit in the time interval [0, 1) is

q1 = 1 − e− 1
5 = 0.1813

The distribution of N1 that the probability of exactly i failures in [0, 1) is

P(N1 = i) =
(
10

i

)

(0.1813)i (0.8187)10−i

The expected number of failures (N1) during the first hour is

E(N1) = n q1 = 10 (0.1813) = 1.813

The variance of N1 is

V (N1) = n q1 (1 − q1)

= 10 (0.1813)(0.8187) = 1.4843

Similarly, let N2 be the number of failures during the second hour, in the time
interval [1, 2). Assume that the unit will not fail during the first hour, the probability
of failure of a unit in the time interval [1, 2) is

q2 = P(1 < T ≤ 2) = P(T ≤ 2) − P(T ≤ 1)

= (1 − e− 2
5 ) − (1 − e− 1

5 ) = 0.1484

The distribution of N2 that the probability of exactly i failures during the time
interval [1, 2) is

P(N2 = i) =
(
10

i

)

(0.1484)i (0.8516)10−i

The expected number of failures (N2) during the interval [1, 2) is

E(N2) = n q2 = 10 (0.1484) = 1.484

The variance of N2 is
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V (N2) = n q2 (1 − q2)

= 10 (0.1484)(0.8516) = 1.2638

(b) Similarly, one can easily obtain the distribution of the number of failures and
expected number of failures during the third hour, the fourth hour (see Problem
22 in Chap. 1).

Example 2.6 An electronic manufacturer produces air cooling units for computer
systems. There is a 3% chance that any given cooling unit is defective, independent
of the other units produced. Determine the probability that more than 2 units in a
shipment of 100 are defective.

Solution Let X be the number of defectives in a shipment of 100, then X has a
binomial distribution with n = 100 and p = 0.97, i.e., X ~ b(100, 0.97) where p is
the probability of a non-defective unit. The desired probability is given by

P(X > 2) = 1 − P(X ≤ 2)

= 1 −
2∑

i = 0

(
100

i

)

(0.03)i (0.97)100−i

= 0.5802

Negative Binomial Distribution

A negative binomial distribution can be used to model the number of failures before
the rth success in repeated mutually independent Bernoulli trials, each with proba-
bility of success p. In other words, the random variable X that represents the number
of failures before the rth success, each with probability of failure (1 − p), has the
negative binomial distribution is given by

P(X = x) =
(

x + r − 1

r − 1

)

pr (1 − p)x x = 0, 1, 2, ... (2.4)

In fact, if x is a given positive integer and (X + r) is the number of independent
Bernoulli trials required to get r successes when the probability of success in a single
trial is p, then the random variable X has the probability distribution given in Eq.
(2.4). Applications include acceptance sampling in quality control and modeling of
demand for a product.

When r = 1, the negative binomial distribution becomes geometric distribution.
When r is a positive integer number, the negative binomial distribution function is
also known as the Pascal distribution. From Eq. (2.4), the mean and the variance of
the negative binomial distribution are

E(X) = r (1 − p)

p
(2.5)
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and

V (X) = r (1 − p)

p2

respectively.Wealso can consider the numberY ofBernoulli trials up to and including
the rth success. In this case, from Eq. (2.4)

P(Y = n) = P(X = n − r) =
(

n − 1

r − 1

)

pr (1 − p)n−r n = r, r + 1, r + 2, ...

(2.6)

Both X and Y are referred to as having a negative binomial distribution.

Example 2.7 A given event occurs (success) with probability p and failure with
probability (1 − p) and independent trials are performed. Let X be r fewer than the
number of trials needed to produce r successes. That is, X is the number of failures
encountered on the way to the first r successes, and therefore, X = x means we need
(x + r) trials in general. Then it is easy to obtain that

P(X = x) = p

(
x + r − 1

r − 1

)

pr−1qx x = 0, 1, 2, ...

or

P(X = x) =
(

x + r − 1

r − 1

)

pr qx x = 0, 1, 2, ...

Since the last trial must be a success and there are

(
x + r − 1

r − 1

)

possible ways

to order with (r − 1) successes. Here X is negative binomial with r. The geometric
distribution is a special case of negative binomial, that is when r = 1.

Example 2.8 An entrepreneurer of start-up company calls potential customers to
sale a new product. Assume that the outcomes of consecutive calls are independent
and that on each call he has 20% chance of making a sale. His daily goal is to make
5 sales and he can make only 25 calls in a day.

(a) What is the probability that he achieves his goal in 15 trials?
(b) What is the probability that he achieves his goal in between 15 and 20 trials?
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(c) What is the probability that he does not achieve his daily goal?

Solution

(a) We wish to find the probability that his fifth sale (success) will be at trial 15.
Note that in this case, the number of successes r = 5 is fixed. Thus the number
of calls is random, and we have the negative binomial distribution. Here p
= 0.20. Let Y be the number of trials up to and including the fifth success.
Therefore, from the negative binomial distribution below

P(Y = n) =
(

n − 1

r − 1

)

pr (1 − p)n−r n = 1, 2, ...

where

(
n

r

)

= n!
r !(n − r)!

we can obtain

P(Y = 15) =
(
14

4

)

(0.2)5(0.8)10 = 0.0344.

(a) see Problem 27.
(b) Let Sn be the number of successes in n trials. Here the number of trials is fixed.

(i.e., n = 20). We can then use the binomial distribution. The entrepreneurer
does not achieve his daily goal if Sn ≤ 2. Thus,

P(S20 ≤ 2) =
2∑

x=0

P(S20 ≤ x)

=
(
20

0

)

(0.2)0(0.8)20 +
(
20

1

)

(0.2)1(0.8)19

+
(
20

2

)

(0.2)2(0.8)18

= 0.1969

Truncated Binomial Distribution

The probability distribution

P(X = x) =

(
n

x

)

px (1 − p)n−x

1 − (1 − p)n
x = 1, 2, ..., n
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(
n

x

)

= n!
x !(n − x)! (2.7)

is known as the truncated binomial distribution, truncated below x = 1, where n =
number of trials; x = number of successes; and p = single trial probability of success.

This is the conditional distribution of the number of successes when it is known
that there are no failures. The mean of the truncated binomial distribution is given
by

E(X) = np

1 − (1 − p)n (2.8)

Compound Binomial Distribution

If the parameter p of the binomial distribution

P(X = x) =
(

n

x

)

px (1 − p)n−x x = 0, 1, 2, ..., n

(
n

x

)

= n!
x !(n − x)! (2.9)

behaves as a random variable with the density function

f (p) = 1

B(a, b)
pα−1(1 − p)β−1 0 ≤ p ≤ 1 (2.10)

where a and b are positive-valued parameters and

B(a, b) =
1∫

0

ya−1(1 − y)b−1dy

then the probability distribution of the number of successes X in n trials is given by

P(X = x) =

(
n

x

)

B(a + x, n + b − x)

B(a, b)
x = 0, 1, 2, ..., n (2.11)

Themean and the variance of the compound binomial distribution can be obtained
as follows:
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E(X) = na

a + b
(2.12)

and

V (X) = n a b

(a + b)(a + b + 1)

(

1 + n

a + b

)

(2.13)

respectively.

Multinomial Distribution

A random variable X = (X1, X2, …, Xk) has the multinomial distribution if for any
pi ≥ 0 for i = 1, 2, … , k and

∑k
i=1 pi = 1

P[X1 = x1, X2 = x2, ..., Xk = xk] =
⎧
⎨

⎩

n!
x1!x2! ... xk ! px1

1 px2
2 ...pxk

k

0 otherwise
(2.14)

where xi = 0, 1, …, n and
∑k

i=1 xi = n.

Example 2.9 Suppose an experiment of a new product can result in exactly m
possible outcomes and their corresponding probabilities are s1, …, sm and p1, …,
pm, respectively. Suppose the experiment is, independently, repeated n times and let
Xi be the number of outcomes of type si for i = 1, 2, …, m, then it has the multinomial
distribution as follows

P[X1 = s1, X2 = s2, ..., Xk = sm] =
⎧
⎨

⎩

n!
s1!s2! ... sm ! ps1

1 ps2
2 ...psk

m

0 otherwise

where si = 0, 1, …, n and
∑m

i=1 si = n.

Poisson Distribution

Although the Poisson distribution can be used in a manner similar to the binomial
distribution, it is used to deal with events in which the sample size is unknown. A
Poisson random variable is a discrete random variable distribution with probability
density function given by

P(X = x) = λx e−λ

x ! for x = 0, 1, 2, .... (2.15)

where λ is a constant failure rate and x is the number of events. In other words, P(X
= x) is the probability of exactly x failures occur.
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A Poisson random variable X, i.e. X ~ Poisson (λ), can interpret as follows: It is
the number of occurrences of a rare event during some fixed time period in which
the expected number of occurrences of the event is λ and individual occurrences of
the event are independent of each other. A Poisson distribution is used to model a
Poissonprocess and also is useful formodeling claim frequencyon individual policies
such as auto insurance, household insurance, customer services. A Poisson random
variable has mean and variance both equal to λ where λ is called the parameter of
the distribution. The skewness coefficient is

Sc = 1√
λ

and the kurtosis coefficient is

Kc = 3 + 1

λ

The reliability Poisson distribution by time t, R(k) (the probability of k or fewer
failures) can be defined as follows

R(k) =
k∑

x=0

(λt)x e−λt

x ! (2.16)

This distribution can be used to determine the number of spares required for the
reliability of standby redundant systems during a given mission.

Example 2.10 The number of X-ray machine failures per week in a laboratory has
a Poisson distribution with parameter λ = 2. Currently facilities at this laboratory
can repair two machines per week. Failures in excess of two will have to repair by
an outside specialist contractor. Determine

(a) the probability of having X-ray machines repaired by a specialist contractor
on any given week?

(b) the expected number of X-ray machines repaired by the specialist contractor
per week?

Solution The probability of having exactly x number of X-ray machine failures per
week is

P(X = x) = λx e−λ

x ! for x = 0, 1, 2, ....

(a) The probability of having X-ray machines repaired by a specialist contractor
is

P(X ≥ 3) = 1 − P(X ≤ 2)
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= 1 −
2∑

k=0

2k e−2

k! = 0.3232

(b) The expected number of X-ray machines repaired by the specialist contractor
is

∞∑

k=3

(k − 2)P(X = k) =
∞∑

k=3

(k − 2)
2k e−2

k! = 0.54

Example 2.11 A nuclear plant is located in an area susceptible to both high winds
and earthquakes. From the historial data, the mean frequency of large earthquakes
capable of damaging important plant structures is one every 50 years. The corre-
sponding frequency of damaging high winds is once in 25 years. During a strong
earthquake, the probability of structure damage is 0.1.During highwinds, the damage
probability is 0.05. Assume that earthquakes and high winds can be described by
independent Poisson random variables and that the damages caused by these events
are independent. Let us exercise the following questions:

(a) What is the probability of having strongwinds but not large earthquakes during
a 10-year period?

(b) What is the probability of having strong winds and large earthquakes in the
10-year period?

(c) What is the probability of building damage during the 10-year period?

Solution To begin with question (a), let the random variable X and Y represent the
number of earthquakes and the number of occurrences of high winds, respectively.
We assume that the two random variables are statistically independent. The mean of
X and Y are, respectively, given by

λX = 1

50years
(10years) = 0.2

and

λY = 1

25year
(10years) = 0.4

The conditional damage probabilities are given as follows:

P(damage/earthquake) = 0.1

and
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P(damage/wind) = 0.05

Let the event
A = {strong winds and no earthquakes}.
B = {strong winds and large earthquakes}.
C = {building damage}.
Assuming that winds and earthquakes are independents, the probability of having

strong winds but not earthquakes during the 10-year period can be written as

P(A) = P(winds) P(no earthquakes)

= [1 − P(no winds)]P(no earthquakes)

Therefore, we obtain

P(A) = (1 − e−0.4)(e−0.2) = 0.27

(b) The probability of having strong winds and earthquakes during the 10-year
period can be obtained

P(B) = P(winds) P(earthquakes)

= [1 − P(no winds)][1 − P(no earthquakes)]
= (1 − e−0.4)(1 − e−0.2) = 0.06

(c) We assume that there will not be multiple occurrences of earthquakes and high
winds during the 10-year period. Therefore, the probability of building damage
can be written as

P(C) = P(damage/earthquakes) P(earthquakes)

+ P(damage/wind)P(wind)

− P(damage/earthquakes and wind)P(earthquake and wind)

= P(damage/earthquakes) P(earthquakes)

+ P(damage/wind)P(wind)

− P(damage/earthquakes)P(damage/wind)P(earthquake and wind)

= (1 − e−0.2)(0.1) + (1 − e−0.4)(0.05) − (0.05)(0.1)(0.06)

= 0.0343

Lemma 2.1 An independent sum of Poisson random variables is also Poisson.

For example, if X1 ~ Poisson (λ1), X2 ~ Poisson (λ2), and X1 and X2 are
independent, then X1 + X2 ~ Poisson (λ1 + λ2).
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Suppose that for each time t, the number of arrivals in the interval [0, t] is Poisson
(λt). Then the waiting time until the first arrival is Exponential (λ) and the waiting
time until the nth arrival is Gamma (n, λ).

Example 2.12 The major accident of hospitalization tends to vary with the snow
storms over the winter season of a given year. Data from an ambulance emergency
center suggests that one should expect 2 hospitalization in October, 3 hospitalization
in November, 4 hospitalizations in December, and 6 hospitalizations in January.
Assume that hospitalizations are independent. Determine the probability that there
are more than 10 hospitalization over a period from October to January.

Solution Let X1 be the number of hospitalizations in October, X2 be the number of
hospitalizations in November, X3 be the number of hospitalizations in December,
and X4 be the number of hospitalizations in January. Let N be the total number of
hospitalizations over a period from October to January, then.

X1 ~ Poisson (2), X2 ~ Poisson (3), X3 ~ Poisson (4), X4 ~ Poisson (6).

and so,

N = X1 + X2 + X3 + X4 ∼ Poisson (2 + 3 + 4 + 6 = 15).

Then we obtain

P(N > 10) = 1 − P(N ≤ 10)

= 1 −
10∑

n=0

(15)n e−15

n! = 0.883

Truncated Poisson Distribution

The probability function

P(X = x) = λx

(
eλ − 1

)
x ! for x = 1, 2, .... (2.17)

is called the truncated Poisson density function below x = 1 where λ is the constant
failure rate and x is the number of events. The mean of the truncated Poisson
distribution is

E(X) = λ
(
1 − e−λ

) (2.18)

Compound Poisson Distribution

LetXk, k=1, 2,…be i.i.d. randomvariables and letN be a non-negative integer-value
random variable, independent of the Xk. Denote
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SN =
N∑

i=1

Xi (2.19)

and S0 = 0.
If N is a Poisson random variable, then SN is called a compound Poisson random

variable.

Theorem 2.1 Let E(X1) = μ and V ar(X1) = σ 2. If N is Poisson with parameter
λ then SN = ∑N

i=1 Xi has mean and variance.

E(SN ) = μλ (2.20)

and

V (SN ) = λ
(
μ2 + σ 2

)
. (2.21)

Geometric Distribution

Geometric distribution plays important roles inmany applications including finances,
manufacturing quality control, stock market, insurance, biology, and reliability.
Consider a sequence of independent trials in which each having the same proba-
bility for success, say p. Let N be a random variable that counts for the number of
trials until the first success. This distribution is called the geometric distribution. It
has a pdf given by

P(N = n) = p(1 − p)n−1 n = 1, 2, ... (2.22)

For the sakeof brevity,N is called a geometric randomvariable. In fact, a geometric
random variable N can be written in terms of a sequence {Xi} for i = 1, 2, … of
Bernouli independent identically random variable defined as follows:

N = min{i : Xi = 1} (2.23)

where

Xi =
{
1 with probability p
0 with probability 1 − p

i = 1, 2, ...

In other words, the right-hand side of Eq. (2.23) is the waiting time for the first
success in the Bernoulli trials with probability p of success at each trial. This waiting
time is equal to n, if first (n − 1) trials are not successful and the nth trial is successful.
From Eq. (2.22), the corresponding cdf is given by
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F(n) = P(N ≤ n) = p
n∑

i=1

(1 − p)i−1 = 1 − (1 − p)n n = 1, 2, ...

Thus,

P(N > n) = (1 − p)n n = 1, 2, ...

The expected value and variance are, respectively

E(N ) = 1

p
(2.24)

and

V (N ) = 1 − p

p2

The coefficient of skewness is given by

Sc = E(X − μ)3

σ 3
= 2 − p√

1 − p

Example 2.13 At busy time a telephone exchange is very near capacity, so callers
have difficult placing their calls. It may be of interest to know the number of attempts
necessary in order to gain a connection. Suppose thatwe letp=0.05be the probability
of a connection during busy time. We are interested in knowing the probability that
4 attempts are necessary for a successful call. What is the expected number of calls
necessary to make a connection?

Solution The probability that four attempts are necessary for a successful call is:

P(X = 4) = p(1 − p)3 = (0.05)(1 − 0.05)3 = 0.0429

The expected number of calls necessary to make a connection is

E(X) = 1

p
= 1

0.05
= 20

Application—Software Debugging: Suppose we have to test a complex software
program for the purpose of detecting and correcting errors. During debugging, we
load specific data into the program and force the program to run along the prescribed
path. If after several attempts, the program run correctly then it is considered as
debugged. But programmers know that almost all large programs are not free of
errors. Let the program to be debugged contain a fault. How long does it take to
detect this error? Suppose that the probability of detecting the error during any
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attempt is equal to p. Let Xi be the time needed to obtain the ith output for given
inputs. Given that all Xi are i.i.d. random variable, the total debugging time T can be
defined as

T = YN =
N∑

i=1

Xi

where N is a geometric random variable such that

P(N = n) = p(1 − p)n−1 n = 1, 2, ...

and the desired time T can be represented as a geometric sum.

Example 2.14 The probability of failure of a medical device when it is tested is
equal to 0.05. Assume independence of tests. What is the probability that failure
occurs in less than 15 tests?

Solution The required probability that failure occurs in less than 15 tests is

P(N ≤ 14) = 1 − (1 − p)14

= 1 − (0.95)14

= 0.5123

It should be noted that the geometric distribution is the only discrete distribution
having the memoryless property. In other words, mathematically, it is

P(N ≥ (n + s)|N > s ) = P(N ≥ n) n = 1, 2, ... (2.25)

This memoryless property can be shown as follows. We know that

P(N > n) = P(N ≥ n + 1) = (1 − p)n

Thus,

P(N ≥ (n + s)|N > s ) = P(N ≥ n + s)

P(N > s)

= (1 − p)n+s−1

(1 − p)s

= (1 − p)n−1

= P(N ≥ n).
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The Pascal Distribution

The random variable X for the Pascal distribution represents the number of trials
until the rth success where p is the probability of success of each trial. The Pascal
distribution of X is given by

P(X = n) =
(

n − 1

r − 1

)

pr (1 − p)n−r n = r , r + 1, r + 2, ... (2.26)

The Pascal distribution is the probability distribution of a certain number of
successes and failures in a series of independent and identically distributed Bernoulli
trials. For n Bernoulli trials with success probability p, the Pascal distribution gives
the probability of r successes and (n − r) failures, with a success on the last trial.
In other words, the Pascal distribution is the probability distribution of the number
of Bernoulli trials before the rth success in a Bernoulli process, with probability p
of successes on each trial. A Bernoulli process is a discrete time process, and so the
number of trials, failures, and successes are integers. The mean and the variance of
the Pascal distribution are

E(X) = r

p
(2.27)

and

V (X) = r(1 − p)

p2
(2.28)

respectively. When r = 1 the Pascal distribution becomes geometric distribution. It
should be noted that the Pascal distribution and the negative binomial distribution,
logically, are in the same logical form.

Hypergeometric Distribution

The hypergeometric distribution is obtained as follows. A sample of size n is drawn,
without replacement, from a population of sizeN composed of k number of successes
and (N − k) number of failures. Let X denote a random variable that represents the
number of successes in the sample. Then X is a hypergeometric random variable
with pdf as follows

P(X = x) =

(
k

x

)(
N − k

n − x

)

(
N

n

) x = 0, 1, 2, ..., n (2.29)
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Let p = k
N denote the probability of success prior to selecting the first unit.

The expected value and variance of the hypergeometric random variable X are,
respectively

E(X) = nk

N
= np

and

V (X) = n
k

N

(

1 − k

N

)
(N − n)

(N − 1)
= np(1 − p)

(N − n)

(N − 1)

Thus the expected number of successes in a sample of size n is np regardless
of whether we sample with or without replacement. The variance in the case of
sampling without replacement is smaller than the corresponding binomial variance
(see Eq. 2.2) by the factor N−n

N−1 . The behavior of the variances of binomial and hyper-
geometric distributions is different as the sample size, n, increases. In the binomial
distribution, each new unit of the sample contributes the same amount to variance, so
the latter grows linearly with n. In sampling without replacement, variance changes
in proportion to the product n(N − n); hence it initially grows to reach a maximum
when sampling exhausts half of the population and then declines to zero when n =
N. Variance for n = 1 is the same as for n = N − 1.

The following theorem connects the binomial and hypergeometric distributions
in the situation when the successes come from two sources where each follows the
binomial distribution and the total number of successes is fixed.

Theorem 2.2 Let X and Y be independent random variables with binomial
distribution X ~ b(m, p) and Y ~ b(n, p). Then

P(X = k|X + Y = s) =

(
m

k

)(
n

s − k

)

(
m + n

s

) . (2.30)

If n
N < 0.1, the hypergeometric distribution can be approximated by the binomial

b
(
n, k

N

)
, where the expected of the hypergeometric random variable is

E(X) = nk

N

Example 2.15 Suppose there are 500 items in the lot and their manufacturer claims
that no more than 5% are defective. Then when the shipment is received at an
assembly plant, a quality control manager asks his staff to take a random sample
of size 20 from it without replacement and will accept the lot if there are at most
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1defective item in the sample. If let say 5% are defective in the entire lot, then it
consists of 25 defective items. What is the probability that the manager will accept
the lot?

Solution Let X be the number of defective items in a sample of size 20, then it has
a hypergeometric distribution and it probability function is as follows

P(X = x) =

(
25

x

)(
475

20 − x

)

(
500

20

) x = 0, 1, 2, ..., 20

The probability that the manager will accept the lot, means that there will be at
most 1 defective item in a random sample of size 20, is as follows:

P(X ≤ 1) =

(
25

0

)(
475

20

)

(
500

20

) +

(
25

1

)(
475

19

)

(
500

20

)

= 0.3511941 + 0.3850813 = 0.7362754

Logarithmic Series Distribution

The probability mass function for this distribution is

P(X = x) = − θ x

x log(1 − θ)
x = 1, 2, ...,∞ (2.31)

where 0 < θ < 1 is a positive-valued parameter, is known as the logarithmic series
distribution. The logarithmic series distribution is useful in the analysis of various
kinds of data. A description of some of its applications can be found in Johnson and
Kotz (1970).

The mean and the variance of this distribution are, respectively,

E(X) = θ

−(1 − θ) log(1 − θ)
(2.32)

and

V (X) = θ

−(1 − θ)2 log(1 − θ)
(2.33)
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Power Series Distribution

The power series distribution, which was introduced by Kosambi (1949) represents
a family of discrete distributions, such as Poisson, binomial and negative binomial.
Its probability mass function is given by

P(X = x) = ax θ x

f (x)
x = 0, 1, 2,... (2.34)

where

ax ≥ 0, θ >0 and f(θ ) =
∞∑

ax θx.

This function is defined provided that θ falls inside the interval of convergence of
the series in Eq. (2.34) above. It can be seen that the logarithmic series distribution
and Poisson distribution are special cases of the power series distribution.

2.2 Continuous Distributions

The continuous distribution function is a distribution function for a continuous
random variable where it can take any value in any interval of real numbers or
the entire real values domain. In this section, we discuss various continuous distri-
butions—the exponential, the gamma, truncated exponential, Weibull, normal, log
normal, chi square, Student’s t, beta, log log, that commonly use to model the life-
time of system, products and in statistics, reliability engineering, and industrial
management applications.

Exponential Distribution

The exponential distribution plays an essential role in reliability engineering because
it has a constant failure rate. It represents the distribution of a random variable giving
the time interval between independent events. This distribution has been used to
model the lifetime of electronic and electrical components and systems. This distri-
bution is appropriate when a used component that has not failed is as good as a
new component—a rather restrictive assumption. Therefore, it must be used diplo-
matically since numerous applications exist where the restriction of the memoryless
property may not apply.

A random variable T is said to have an exponential distribution if its probability
density function (pdf) has the form

f (t) = λe−λt t ≥ 0, λ > 0 (2.35)
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Fig. 2.1 Exponential density function for various values of λ

where λ > 0 is a parameter of the distribution, also called the constant failure rate.
If a random variable T has this distribution, we write T ~ Exp(λ). Figure 2.1 shows
the exponential pdf for various values of λ The reliability function is given by

R(t) =
∞∫

t

λe−λsds = e−λt t ≥ 0 (2.36)

An alternate common used of the pdf of an exponential failure time density
function is given by

f (t) = 1

θ
e− t

θ t ≥ 0, θ > 0 (2.37)

and this will lead to the reliability function

R(t) =
∞∫

t

1

θ
e− s

θ ds = e− t
θ t ≥ 0 (2.38)
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where θ = 1/λ > 0 is a scale parameter of the distribution and λ ≥ 0 is a constant
failure rate. The pth percentile point of the exponential distribution with MTTF θ is

tp = −θ ln(1 − p).

Example 2.16 A certain manufacturing plant has five production lines, all making
use of a specific bulk product. The amount of product used in one day can bemodeled
as having an exponential distribution with a mean of 6 (measurements in thousands),
for each of the five lines. If the lines operate independently, find the probability that
exactly three of the five lines use more than 6 thousands on a given day.

Solution Let T be the amount used in a day. The probability that any given line uses
more than 6 thousands is

P(T > 6) =
∞∫

6

1

6
e− x

6 dx = e−1 = 0.3679

The probability that exactly three of the five lines use more than 6 thousands on
a given day is

P(exactly 3 usemore than 6) =
(
5

3

)

(0.3679)3 (1 − 0.3679)2 = 0.199

The hazard function or failure rate for the exponential density function is constant,
i.e.,

h(t) = f (t)

R(t)
=

1
θ
e− 1

θ

e− 1
θ

= 1

θ
= λ

The failure rate for this distribution is λ, a constant, which is the main reason
for this widely used distribution. Because of its constant failure rate property, the
exponential is an excellent model for the long flat “intrinsic failure” portion of the
bathtub curve. Since most parts and systems spend most of their lifetimes in this
portion of the bathtub curve, this justifies frequent use of the exponential (when
early failures or wear out is not a concern). The exponential model works well for
inter arrival times. When these events trigger failures, the exponential lifetime model
can be used.

The mean and variance of an exponentially distributed r.v. T with constant rate λ

are given, respectively,

E(T ) = 1

λ
and V (T ) = 1

λ2
.
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We note that the mean and standard deviation of the exponential distribution are
equal. We will now discuss some properties of the exponential distribution that are
useful in understanding its characteristics, when and where it can be applied.

Property 2.1 (Memoryless property) The exponential distribution is the only
continuous distribution satisfying.

P{T ≥ t} = P{T ≥ t + s|T ≥ s} for t > 0, s > 0 (2.39)

This result indicates that the conditional reliability function for the lifetime of
a component that has survived to time s is identical to that of a new component.
This term is the so-called “used-as-good-as-new” assumption. It is worth to note
that the exponential distribution and geometric distribution are the only momoryless
probability distribution functions. In other words, if time to failure of a unit follows
the exponential distribution, it is the lifetime of an item that does not age.

Example 2.17 Suppose the life of a certain security alarm system is exponential
distribution with constant failure rate λ = 0.00008 failures per hour.

(a) What is the probability that a security system will last at least 10,000 h?
(b) What is the probability that a security system will last at least 10,000 h given

that it has already survived 5,000 h?

Solution

(a) The probability that a security system will last at least 10,000 h is

P{T ≥ 10, 000} = e−λt e−(0.00008)(10,000) = e−0.8 = 0.4493

(b) The probability that a security system will last at least 10,000 h given that it
has already survived 5,000 h is

P{T ≥ 10, 000|T ≥ 5, 000 } = P{T ≥ 5, 000}
= e−λt = e−(0.00008)(5,000) = 0.6703

Property 2.2 If T1, T2, …, Tn, are independently and identically distributed
exponential random variables (r.v.’s) with a constant failure rate λ, then

2λ
n∑

i=1

Ti ∼ χ2(2n) (2.40)
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Fig. 2.2 Reliability function versus time

where χ2(2n) is a chi-squared distribution with degrees of freedom 2n. This result
is useful for establishing a confidence interval for λ in Chap. 3.

Example 2.18 A manufacturer performs an operational life test on ceramic capaci-
tors and finds they exhibit constant failure rate with a value of 3 × 10–6 failure per
hour. What is the reliability of a capacitor at 1000 h?

Solution The reliability of a capacitor at 1000 h is

R(t = 1000) = e−λt = e−3(10−6)(1000) = 0.997

The resulting reliability plot is shown in Fig. 2.2.

Property 2.3 If T1, T2, …, Tn are independently exponentially distributed
random variables (r.v.’s) with constant failure rate λ1, λ2, ..., λn, and let Y =
min{T1, T2, ..., Tn} then Y is also exponentially distributed with constant parameter
λ = ∑n

i=1 λi .

It is easy to show that if T1, T2, …, Tn, are independently exponentially
distributed random variables (r.v.’s) with constant failure rate λ1, λ2, ..., λn, and if
Y = max{T1, T2, ..., Tn} then Y is not exponentially distributed (see Problem 6).

Lower-bound Truncated Exponential Distributio

The lower-bound truncated exponential distribution is an exponential distribution
starting at t0. The model can be used when no unit fails before the time t0. The pdf
of a lower-bound truncated exponential function is give by
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f (t) =
{

0 t < t0
1
θ
e− t−t0

θ t ≥ t0
(2.41)

The parameters θ and t0 are the scale parameter and location parameter. Note that
the failure rate of this lower-bound truncated exponential distribution is a constant
for all t ≥ t0. This can be easily obtained as follows. The reliability function is given
by

R(t) =
∞∫

t

f (x)dx =
∞∫

t

1

θ
e− x−t0

θ dx = e− t−t0
θ (2.42)

Thus, the failure rate of truncated exponential distribution is

h(t) = f (t)

R(t)
=

1
θ
e− t−t0

θ

e− t−t0
θ

= 1

θ
. (2.43)

The variance and MTTF of the life distribution are (see Problem 25 in Chap. 1):

variance σ 2 = θ2

and

MT T F = θ + t0.

Upper-bound Truncated Exponential Distribution

For many applications, it is desired to consider to truncate a distribution on an upper
tail. Let us assume that the exponential density be truncated at time T. The truncated
density function is given by

f (t) =
{

0 t >T
λe−λt

1−e−λT 0 <t ≤ T
(2.44)

The reliability function is

R(t) =
T∫

t

f (x)dx =
T∫

t

λe−λx

1 − e−λT
dx = e−λt − e−λT

1 − e−λT
. (2.45)

Obviously as for the upper-bound truncated exponential distribution, the failure
rate is not a constant for all t > T . To see this, the failure rate of this upper-bound
truncated exponential distribution is
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h(t) = f (t)

R(t)
=

λe−λt

1−e−λT

e−λt −e−λT

1−e−λT

= λ

1 − e−λ(T −t)
. (2.46)

and is a function of t.

Mixed Truncated Exponential Distribution

The mixed distribution is one whose distribution function resembles both the contin-
uous on an interval and the discrete on another interval. A random variable X with a
continuous distribution function

F(x) =
{
1 − e−λx for 0 ≤ x < a

1 for x ≥ a
(2.47)

and has a pointmass of size e−λa at x = a is said to have amixed truncated exponential
distribution with parameters λ and a.

The mixed distribution has both discrete and continuous parts. If f X denotes the
density for the continuous part and pX denotes the mass function for the discrete part,
then the expected value of a random variable X can be obtained as follows:

E(X) =
∫

continuous part

x fx(x)dx+
∑

discrete part

x pX(x) (2.48)

Note that in this context,
∫
continuous part fx(x)dx+ ∫

discrete part pX(x) = 1 where the
integral is calculated over the continuous part and the sum is calculated over the
discrete part.

Note that the distribution is mixed with a point mass of size e−λa at x = a and
a continuous distribution on the interval 0 ≤ x < a, and using Eq. (2.48), we can
obtain the expected value of X as follows

E(X) =
∫

continuous part

x fx(x)dx+
∑

discrete part

x pX(x)

=

a∫

0

x λe−λx dx + a e−λa

=
1

λ

(
1 − e−λa

)
(2.49)

From the distribution function (see Eq. 2.47), the reliability function is given by
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R(t) =
⎧
⎨

⎩

1 for t < 0
e−λt for 0 ≤ t < a
0 for t ≥ a

The system MTTF is given by

MT T F =
a∫

0

e−λt dt =
1

λ

(
1 − e−λa

)
(2.50)

which is the same as with the expected value discussed here. Similarly, the variance
of a mixed truncated exponential distribution with parameters λ and a is

V (X) = 1

λ2

(
1 − 2λae−λa − e−2λa

)
. (2.51)

Detail is left to the reader. See Problem 12.

Uniform Distribution

This represents the distribution of a random variable whose values are completely
uncertain. It is used to represent when one knows nothing about the system. Let us
denote X be a random variable having a uniform distribution on the interval (a, b)
where a < b. The pdf is given by

f (x) =
{ 1

b−a a ≤ x ≤ b
0 otherwise.

(2.52)

The mean and the variance are, respectively,

E(X) = a + b

2
(2.53)

and

V (X) = (b − a)2

12
(2.54)

The cdf is

F(x) = x − a

b − a
for a ≤ x ≤ b

If a and b are unknown parameters, they are estimated respectively by the smallest
and the largest observations in the sample.
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Normal Distribution

Normal distribution, also known as Gaussian distribution, plays an important role
in classical statistics owing to the Central Limit Theorem, and, in fact, is the most
commonly used of the theoretical distribution. In production engineering, the normal
distribution primarily applies to measurements of product susceptibility and external
stress. This two-parameter distribution is used to describe systems in which a failure
results due to some wearout effect for many mechanical systems. The normal distri-
bution takes the well-known bell shape curve. This distribution is symmetrical about
the mean (expected value) and the spread is measured by variance. The larger the
value, the flatter the distribution. The pdf is given by

f (t) = 1

σ
√
2π

e− 1
2 (

t−μ

σ
)2 − ∞ < t < ∞ (2.55)

where μ is the location parameter (is also the mean) and σ is the scale parameter (is
also the standard deviation of the distribution, and σ is the variance. We will denote
a normal distribution by N(μ, σ 2). Most of the common statistical tests are based on
the assumption that the data are normally distributed, an assumption which cannot
often be verified, but since in most cases the quantities required are averages, the
tests are of general applicability.

The pth percentile point of the normal distribution N(μ, σ2) is

tp = μ + z p σ.

The cumulative distribution function (cdf) is

F(t) =
t∫

−∞

1

σ
√
2π

e− 1
2 (

s−μ

σ
)2ds

The reliability function is

R(t) =
∞∫

t

1

σ
√
2π

e− 1
2 (

s−μ

σ
)2ds

There is no closed form solution for the above equation. However, tables for the
standard normal density function are readily available (see Table A.1 in Appendix
A) and can be used to find probabilities for any normal distribution. If

Z = T − μ

σ
(2.56)
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is substituted into the normal pdf, we obtain

f (z) = 1√
2π

e− z2

2 − ∞ < Z < ∞

This is a so-called standard normal pdf, with a mean value of 0 and a standard
deviation of 1. The standardized cdf is given by

	(t) =
t∫

−∞

1√
2π

e− 1
2 s2ds (2.57)

where 	 is a standard normal distribution function. Thus, for a normal random
variable T, with mean μ and standard deviation σ,

P(T ≤ t) = P

(

Z ≤ t − μ

σ

)

= 	

(
t − μ

σ

)

where 	 yields the relationship necessary if standard normal tables are to be used.
It should be noted that the coefficient of kurtosis in the normal distribution is 3.

The hazard function for a normal distribution is a monotonically increasing function
of t. This can be easily shown by proving that h′(t) ≥ 0 for all t. Since

h(t) = f (t)

R(t)

then

h′(t) = R(t) f ′(t) + f 2(t)

R2(t)
≥ 0

One can try this proof by employing the basic definition of a normal density
function f.

Example 2.19 A component has a normal distribution of failure times with μ =
2,000 h and σ = 100 h. Obtain the reliability of the component at 1,900 h.

Note that the reliability function is related to the standard normal deviate z by

R(t) = P(Z >
t − μ

σ
)

where the distribution function for Z is given by Eq. (2.47). For this particular
application,
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R(1, 900) = P

(

Z >
1, 900 − 2, 000

100

)

= P(Z > −1).

From the standard normal table in Table A.1 in Appendix A, we obtain

R(1, 900) = 1 − 	(−1) = 0.8413.

Example 2.20 A part has a normal distribution of failure times with μ = 40,000
cycles and σ = 2000 cycles. Find the reliability of the part at 38,000 cycles.

Solution The reliability at 38,000 cycles

R(38000) = P

(

z >
38000 − 40000

2000

)

= P(z > −1.0)

= 	(1.0) = 0.8413

The resulting reliability plot is shown in Fig. 2.3.
The normal distribution is flexible enough to make it a very useful empirical

model. It can be theoretically derived under assumptions matching many failure
mechanisms. Some of these are corrosion, migration, crack growth, and in general,
failures resulting from chemical reactions or processes. That does not mean that the
normal is always the correct model for these mechanisms, but it does perhaps explain
why it has been empirically successful in so many of these cases.

The normal distribution is flexible enough to make it a very useful empirical
model. It can be theoretical derived under assumptions matching many failure mech-
anisms. Someof these are: corrosion,migration, crack growth, and in general, failures
resulting from chemical reactions or processes. That does not mean that the normal
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Fig. 2.3 Normal reliability plot versus time
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is always the correct model for these mechanisms, but it does perhaps explain why
it has been empirically successful in so many of these cases.

Truncated Normal Distribution

Truncated normal distribution plays an important role in modeling the distribution of
material strength and mechanical systems. The pdf of this truncated normal is given
by

f (t) = e− 1
2 ( t−μ

σ )
2

σ
√
2π

(
1 − 	

( t0−μ

σ

)) t0 ≤ t < ∞ (2.58)

If t0 > 0, the truncated normal distribution can be used inmodeling the distribution
of material strength.

The reliability function is given by

R(t) =
⎧
⎨

⎩

1−	( t−μ

σ )

1−	
(

t0−μ

σ

) for t ≥ t0

1 for 0 < t < t0
(2.59)

The failure rate is

h(t) = e− 1
2 (

t−μ

σ )
2

σ
√
2π

[
1 − 	

( t−μ

σ

)] for t ≥ t0 (2.60)

Log-normal Distribution

The log-normal lifetime distribution is a very flexible model that can empirically
fit many types of failure data. This distribution, with its applications in mechanical
reliability engineering, is able to model failure probabilities of repairable systems,
the compressive strength of concrete cubes, the tensile strength of fibers as well as
to model the uncertainty in failure rate information. The log-normal density function
is given by

f (t) = 1

σ t
√
2π

e− 1
2 (

ln t−μ

σ
)2 t ≥ 0 (2.61)

where μ and σ are parameters such that −∞ < μ < ∞, and σ > 0. Note that μ and
σ are not the mean and standard deviations of the distribution.

The relationship to the normal (just take natural logarithms of all the data and time
points and you have “normal” data) makes it easy to work with many good software
analysis programs available to treat normal data.

Mathematically, if a random variable X is defined as X = lnT, then X is normally
distributed with a mean of μ and a variance of σ2. In other word, if X ~ N(μ, σ2)
then T = eX ~ lognormal with parameters μ and σ That is,
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E(X) = E(ln T ) = −μ

and

V (X) = V (ln T ) = σ 2

Since T = eX , the mean of the log-normal distribution can be found by using the
normal distribution. Consider that

E(T ) = E(eX ) =
∞∫

−∞

1

σ
√
2π

e[x− 1
2 (

x−μ

σ
)2]dx

and by rearrangement of the exponent, this integral becomes

E(T ) = eμ+ σ2

2

∞∫

−∞

1

σ
√
2π

e− 1
2σ2

[x−(μ+σ 2)]2dx

Thus, the mean of the log normal distribution is

E(T ) = eμ+ σ2

2

Proceeding in a similar manner,

E(T 2) = E(e2X ) = e2(μ+σ 2)

thus, the variance for the log normal is

V (T ) = e2μ+σ 2 [eσ 2 − 1]

The coefficient of skewness of this distribution is

Sc = e3σ
2 − 3eσ 2 + 2
(
eσ 2 − 1

) 3
2

It is interesting that the skewness coefficient does not depend on μ and grows
very fast as the variance σ2 increases. The cumulative distribution function for the
log normal is

F(t) =
t∫

0

1

σ s
√
2π

e− 1
2 (

ln s−μ

σ
)2ds
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and this can be related to the standard normal deviate Z by

F(t) = P(T ≤ t) = P(ln T ≤ ln t)

= P

(

Z ≤ ln t − μ

σ

)

Therefore, the reliability function is given by

R(t) = P

(

Z >
ln t − μ

σ

)

(2.62)

and the hazard function would be

h(t) = f (t)

R(t)
= 	

( ln t−μ

σ

)

σ t R(t)

where 	 is a cdf of standard normal distribution function.

Example 2.21 The failure time of a certain component is log normal distributed
with μ = 5 and σ = 1. Find the reliability of the component and the hazard rate for
a life of 50 time units.

Solution Substituting the numerical values ofμ, σ, and t into Eq. (2.61), we compute

R(50) = P

(

Z >
ln 50 − 5

1

)

= P(Z > −1.09)

= 0.8621

Similarly, the hazard function is given by

h(50) = 	
(
ln 50−5

1

)

50(1)(0.8621)
= 0.032 failures/unit.

Thus, values for the log normal distribution are easily computed by using the
standard normal tables.

Example 2.22 The failure time of a part is log normal distributed with μ = 6 and σ

= 2. Find the part reliability for a life of 200 time units.

Solution The reliability for the part of 200 time units is Fig. 2.4.

R(200) = P

(

Z >
ln 200 − 6

2

)

= P(Z > −0.35)

= 0.6368
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Fig. 2.4 Log normal reliability plot versus time

The log normal lifetime model, like the normal, is flexible enough to make it
a very useful empirical model. Figure 2.4 shows the reliability of the log normal
vs time. It can be theoretically derived under assumptions matching many failure
mechanisms. Some of these are: corrosion, migration, crack growth, and in general,
failures resulting from chemical reactions or processes. That does not mean that the
log normal is always the correct model for these mechanisms, but it does perhaps
explain why it has been empirically successful in so many of these cases.

Chi-Square (χ2) Distribution

The chi-square distribution is in fact from a combination of a modified function
between normal distribution and gamma distribution. The chi-square probability
density function of a random variable T is given by:

f (t) = (t)
n
2 −1 e− t/2

2
n/2 


(
n
2

) t ≥ 0, n = 1, 2, ... (2.63)

where the parameter n is called the degrees of freedom (d.f.) of chi-square, i.e.,
T ~ χ2

n .Themean and the variance of chi-square r.v. T with n d.f. are, respectively,

E(T ) = n

and

V (T ) = 2n.

Property 2.4 As from the gamma pdf
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f (x) = βαtα−1


(α)
e−tβ

if β = 1
2 and α = 1

2 then the gamma distribution is equivalent to the chi-square
distribution with n = 1 from Eq. (2.63).

Property 2.5 If X is a standard normal r.v. with mean 0 and variance 1, i.e., N(0,
1), then the distribution of X2 is equivalent to a gamma distribution with β =
1
2 and α = 1

2 or chi-square distribution with parameter n = 1 from Eq. (2.63).

Property 2.6 If Xi ~ N(0, 1) for i = 1, 2, …, n then the distribution of the sum of the
squares of n independent standard normal r.v. (T ) is the chi-square. In other words,
T = ∑n

i=1 X2
i ∼ χ2

n with the pdf

f (t) = (t)
n
2 −1 e - t/2

2
n/2 


(
n
2

) for t ≥ 0

See Problem 20 in details.

Property 2.7 If Ti ∼ χ2
ni

are independent chi-square random variable with ni d.f.
for i = 1, 2, … k then the sum of these random variables of chi-square has chi-square
distribution with n degrees of freedom where n is the sum of all degrees of freedom.
In other words,

∑k
i=1 Ti ∼ χ2

ni
where n = ∑k

i=1 ni is the d.f .

Example 2.23 Four random variables have a chi-square distribution with 3, 7, 9,

and 10 d.f. (i.e., Ti ∼ χ2
ni
). Determine P

(
k∑

i=1
Ti ≤ 19.77

)

?

Solution From Table A.3 in the Appendix, since
k∑

i=1
Ti ∼ χ2

29 the probability that

P

(
k∑

i=1
Ti ≤ 19.77

)

= 0.90.

Student’s t Distribution

The Student’s t probability density function of a random variable T is given as
follows:

f (t) = 

(

r+1
2

)

√
πr 


(
r
2

)(
1 + t2

r

) r+1
2

for − ∞ < t < ∞ (2.64)

In other words, if a random variable T is defined as

T = W
√

V
r

(2.65)
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whereW is a standard normal random variable andV is distributed as chi-square with
r degrees of freedom, and W and V are statistically independent, then T is Student’s
t distributed with parameter r is referred to as the degrees of freedom (see Table A.2
in Appendix A). The mean and variance of the Student’s t distributed r.v. T with
parameter r are given, respetively,

E(T ) = 0

and

V (T ) = r

r − 2
.

The F Distribution

Let we define the random variable F is as follows

F =
U
r1
V
r2

(2.66)

where U is distributed as chi-square with r1 degrees of freedom, V is distributed as
chi-square with r2 degrees of freedom, and U and V are statistically independent,
then the probability density function of F is given by

f (t) =


( r1+r2

2

) ( r1
r2

) r1
2
(t)

r1
2 −1



( r1
2

)


( r2
2

) (
1 + r1t

r2

) r1+r2
2

for t >0 (2.67)

The F distribution is a two parameter, r1 and r2, distribution which are the degrees
of freedomof the underlying chi-square randomvariables (see TableA.3 inAppendix
A). The mean and variance of the F distribution with parameters, r1 and r2, are given,
respetively,

E(T ) = r2
r2 − 2

for r2 > 2

and

V (T ) = 2r22 (r1 + r2 − 2)

r1(r2 − 4)(r2 − 2)
for r2 > 4

It is worth to note that if T is a random variable with a t distribution and r degrees
of freedom, then the random variable T2 has an F distribution with parameters r1 =



104 2 Distribution Functions and Its Applications

1and r2 = r. Similarly, if F is F-distributed with r1 and r2 degrees of freedom, then
the random variable Y, defined as

Y = r1F

r2 + r1F

has a beta distribution with parameters r1/2 and r2/2.

Weibull Distribution

TheWeibull distribution (Weibull 1951) is a popular distribution for modeling failure
times because it reflects the physics of failure and it models either increasing or
decreasing failure rates simply. The Weibull is the preferred distribution for the time
effects due to fatigue, erosion and wear.

The exponential distribution is often limited in applicability owing to thememory-
less property. TheWeibull distribution is a generalization of the exponential distribu-
tion and is commonly used to represent fatigue life, ball bearing life, laser diodes, and
vacuum tube life. It is extremely flexible and appropriate for modeling component
lifetimeswith fluctuating hazard rate functions and to represent various types of engi-
neering applications such as electrical devices. It is also used as the distribution for
product properties such as strength (electrical ormechanical) and resistance. It is used
to describe the life or roller bearings, electronic components, ceramics, and capaci-
tors. The Weibull distribution is also used in biological and medical applications to
model the time to occurrence of tumors as well as human life expectancy.

The well known Weibull bathtub curve describes the failure rate for most elec-
trical devices. In the initial stage, the failure rate starts off high and decreases over
time. After this in the random failure stage, the failure rate is constant. The last
stage is the wearout period in which the failure rate steadily increases. The life-
time of equipment using semiconductors, for example, is much shorter than the
devices themselves which usually do not reach the wearout stage. Recent improve-
ments in laser diode technology have extended average lifetime to a level of typical
semiconductor devices. More importantly, the failure rate in the initial stage has
been reduced by upgrading materials, improvements in processing, and the use of
screening technology.

Many engineers prefer to model lifetime data by the two-parameter Weibull
distribution with shape parameter β and scale parameter θ while others prefer the
three-parameter Weibull distribution with shape parameter β, scale parameter θ , and
location parameter γ.

The three-parameter Weibull has the following probability density function:

f (t) = β(t − γ )β−1

θβ
e−(

t−γ

θ
)β t ≥ γ ≥ 0 (2.68)

where β > 0 is the shape parameter, θ > 0 is the scale parameter, γ ≥ 0 is the location
parameter.
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The corresponding reliability function R(t) and hazard function h(t) are, respec-
tively:

R(t) = e−(
t−γ

θ
)β for t ≥ γ ≥ 0, β > 0, θ > 0 (2.69)

and

h(t) = β(t − γ )β−1

θβ
t ≥ γ ≥ 0, β > 0, θ > 0 (2.70)

The scale-parameter, θ , has the same units as T, for example, second, minutes,
hours, days, or cycle. The scale parameter indicates the characteristic life of the
product, the time by which roughly 63.2% of the units are expected to fail. The
shape parameter β is a unit less number. For most products and material, β is in
the range 0.5–5. The parameter β determines the shape of the distribution, and θ

determines the spead.
Often the location parameter γ is not used. Its value can be set to zero to obtain the

two-parameter Weibull distribution. The latter can describe the failure of an element
throughout its lifecycle. The probability density function for a Weibull distribution
with two parameters (i.e., γ = 0) is given by

f (t) = βtβ−1

θβ
e−( t

θ )
β

t ≥ 0, β > 0, θ > 0 (2.71)

where β and θ are the shape parameter and the scale parameter, respectively. The
corresponding reliability function for the two-parameterWeibull distribution is given
by:

R(t) = e−( t
θ )

β

t ≥ 0 (2.72)

Furthermore, the MTTF for the two-parameter Weibull distribution is given by

MT T F = θ 


(

1 + 1

β

)

where 
 is the gamma function. The hazard function of the two-parameter Weibull
distribution is given by

h(t) = β tβ−1

θβ
t > 0, β > 0, θ > 0 (2.73)

It can be shown that the failure rate function is decreasing for β < 1, increasing
for β > 1, and constant when β = 1. A decreasing failure rate would imply infant
mortality and that the failure rate of a given product decreases as time progresses. A



106 2 Distribution Functions and Its Applications

0 5 10 15
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

t

f(t
)

Weibull Distribution

 

 
beta=1; theta=3
beta=2; theta=4
beta=3; theta=5

Fig. 2.5 Weibull pdf for various values of θ and β where γ = 0

constant failure rate implies that products are failing from random events. As for an
increasing failure rate, it would imply that, as wear-out, products will likely to fail
as time progresses.

For many products, such as computer processors, the hazard function graphical
representation resembles a bathtub,with a decreasing hazard rate early during product
life, accounting for infant mortality, a constant and low hazard rate accounting for the
product lifetime, and then increasing hazard function, accounting for rapid wear-out,
during the later age of the product. Figures 2.5, 2.6, 2.7 and 2.8 show the pdf of
two-parameter Weibull distribution for various values of θ and β (here γ = 0), and
various values of θ and β = 2 and γ = 0, respectively. Figure 2.9 illustrates a typical
bathtub curve function.

When β = 2, and θ = √
2 γ , the Weibull distribution becomes a Rayleigh

distribution as the pdf of Rayleigh distribution is given by

f (t) = t

γ 2
e
− t2

2γ 2 t ≥ 0

Example 2.24 The failure time of a certain component has a Weibull distribution
with β = 4, μ = 2000, and σ = 1000. Find the reliability of the component and the
hazard rate for an operating time of 1500 h.

Solution A direct substitution into Eq. (2.69) yields
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Fig. 2.9 Typical bathtub curve illustration

R(1500) = e−( 1500−1000
2000 )

4 = 0.996

Using Eq. (2.70), the desired hazard function is given by
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h(1500) = 4(1500 − 1000)4−1

(2000)4
= 3.13 × 10−5 failures/hour

Note that the Rayleigh and exponential distributions are special cases of the
Weibull distribution at β = 2, γ = 0, and β = 1, γ = 0, respectively. For example,
when β = 1 and γ = 0, the reliability of theWeibull distribution function in Eq. (2.69)
reduces to

R(t) = e− t
θ

and the hazard function given in Eq. (2.70) reduces to 1/θ, a constant. Thus, the
exponential is a special case of the Weibull distribution. Similarly, when β = 2 and
θ = √

2 α, the two-parameter Weibull distribution becomes the Rayleigh density
function as follows:

f (t) = t

α2
e− t2

2α2 t ≥ 0 (2.74)

The Weibull distribution again is widely used in engineering applications. It
was originally proposed for representing the distribution of the breaking strength
of materials. The Weibull model is very flexible and also has theoretical justification
successfully in many applications as a purely empirical model.

Gamma Distribution

The gamma distribution can be used as a failure probability function for components
whose distribution is skewed. Useful also for representation of times required to
perform a given task or accomplish a certain goal but more general. The failure
density function for a gamma distribution is

f (t) = tα−1

βα
(α)
e− t

β t ≥ 0, α, β > 0 (2.75)

where α is the shape parameter and β is the scale parameter. In this expression, 
(α)

is the gamma function, which is defined as


(α) =
∞∫

0

tα−1e−t dt for α > 0

Hence,

R(t) =
∞∫

t

1

βα
(α)
sα−1e− s

β ds
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When α is an integer, it can be shown by successive integration by parts that

R(t) = e− t
β

α−1∑

i=0

( t
β
)i

i ! (2.76)

and

h(t) = f (t)

R(t)
=

1
βα
(α)

tα−1e
− t

β

e
− t

β
α−1∑

i=0

(
t
β

)i

i !

The mean and variance of the gamma random variable are, respectively,

Mean (MTTF) E(T ) = α β

and

Variance V (T ) = α β2.

The gamma density function has shapes that are very similar to theWeibull distri-
bution. When α = 1, the gamma distribution is that of an exponential distribution
with the constant failure rate 1/ β. In general, if α is a positive integer, Eq. (2.74)
becomes

f (t) = tα−1

βα(α − 1)!e− t
β t ≥ 0, α is an integer, β > 0

and is known as the Erlang distribution.
The gamma distribution can also be used to model the time to the nth failure of a

system if the underlying failure distribution is exponential.
Suppose X1, X2, …, Xn are independent and identically distributed random vari-

ables. Furthermore, suppose that these random variables follows the exponential
distribution with parameter θ (= 1β as in Eq. 2.74) then the distribution of a new
random variable T where T = X1 + X2 + … + Xn is gamma distribution (or known
as Erlang distribution) with parameters θ and n (see Problem 10). The pdf of T is
given by (see Problem 10):

f (t) = θn tn−1


(n)
e−tθ t > 0
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Example 2.25 The time to failure of a component has a gamma distribution with α

= 3 and β = 5. Determine the reliability of the component and the hazard rate at 10
time-units.

Solution Using Eq. (2.75), we compute

R(10) = e− 10
5

2∑

i=0

( 105 )i

i ! = 0.6767

The hazard rate is given by

h(10) = f (10)

R(10)
= 0.054

0.6767
= 0.798 failures/unit time

Other form of Gamma distribution. The other form of the gamma probability
density function can be written as follows:

f (t) = βαtα−1


(α)
e−tβ t > 0 (2.77)

This pdf is characterized by two parameters: shape parameter α and scale param-
eter β. When 0 < α < 1, the failure rate monotonically decreases; when α > 1, the
failure rate monotonically increase; when α = 1 the failure rate is constant.

Themean, variance and reliability of the gamma random variable are, respectively

Mean (MTTF) E(T ) = α

β
.

Variance V (T ) = α

β2
.

Reliability R(t) =
∫ ∞

t

βαxα−1


(α)
e−xβdx .

The coefficient of skewness of this gamma distribution is given by

Sc = 2√
α

Example 2.26 Amechanical system time to failure is gamma distribution with α =
3 and 1/β = 120. What is the system reliability at 280 h?

Solution The system reliability at 280 h is given by

R(280) = e
−280
120

2∑

k=0

(
280
120

)2

k! = 0.85119
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Fig. 2.10 Gamma reliability function versus time

and the resulting reliability plot is shown in Fig. 2.10.

Example 2.27 Consider a communication network of having 10 stations where
the repair time for each station, in case a station is failed, follows the exponential
distribution with β = 19 h. If 10 stations have failed simultaneously and one repair
person is available, what is the probability that communication failure will last more
than 45 min?

Solution This problem can be formulated using a gamma distribution (see Eq. 2.77)
with α = 10 and β = 19. Thus (45 min is same as 0.75 h),

P(T > 0.75) = 1 − P(T ≤ 0.75)

= 1 −
.75∫

0

(19)10t9

(10 − 1)!e−19t dt ≈ 0.11

The gamma model is a flexible lifetime model that may offer a good fit to some
sets of failure data. It is not, however, widely used as a lifetime distribution model for
common failure mechanisms. A common use of the gamma lifetime model occurs
in Bayesian reliability applications.

Property 2.8 Let Xi follows gamma distributed with αi is the shape parameter and

common scale parameter β for i = 1, 2, …, k and is denoted as Xi ~ G(αi, β). If X1,
X2,…, Xn are independent random variables then the distribution of T, where T =
X1 + X2 + … + Xk„ is also gamma distributed, as T ~ G(α, β). with scale parameter
β and the shape parameter is α = ∑k

i=1 αi .
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Proof As exercise, see Problem 11.

Erlang Distribution

Erlang distribution is a special case of the gamma distribution. It represents the
distribution of a random variable which is itself the result of the sume of exponential
component processes. In fact, if α = n, an integer, the gamma distribution becomes
Erlang distribution. The failure density function for Erlang distribution is

f (t) = tn−1

βn (n − 1)! e− t
β t ≥ 0, n is an integer, β > 0 (2.78)

Hence, the reliability of the Erlang distribution is given by:

R(t) = e− t
β

n−1∑

i=0

( t
β
)i

i !

Example 2.28 Consider an electric power system consisting of n similar diesel
generators connected in a standby structure. When generator 1 (primary unit) fails,
standby unit 1 (generator 2) starts operating automatically, and so on until all n gener-
ators fail.Assume that each generator has an exponential life distributionwth constant
rate λ or MTTF β and that all the generators operate independently. Determine the
distribution function of the system life length.

Let Ti be the life length of generator i and a random variable T be the sum of the
life length of all n generators, that is

T =
n∑

i = 1

Ti

Thus, the distribution of T is the Erlang distribution with a pdf:

f (t) = tn−1

βn (n − 1)! e− t
β t ≥ 0, β > 0

Beta Distribution

The two-parameter Beta density function, f(t), is given by

f (t) = 
(α + β)


(α) 
(β)
tα−1(1 − t)β−1 0 ≤ t ≤ 1, α > 0, β > 0 (2.79)

where α and β are the distribution parameters. This two-parameter beta distribu-
tion has commonly used in many reliability engineering applications and also an
important role in the theory of statistics. This is a distribution of broad applicability
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restricted to bounded random variables. It is used to represent the proportion of
non-conforming items in a set. Note that the beta-distributed random variable takes
on values in the interval (0, 1), so the beta distribution is a natural model when
the random variable represents a probability. Likewise, when α = β = 1, the beta
distribution reduces to the uniform distribution.

The mean and variance of the beta random variable are, respectively,

E(T ) = α

α + β

and

V (T ) = αβ

(α + β + 1)(α + β)2

The coefficient of skewness of beta distribution is given by

Sc = 2(β − α)
√

(α + β + 1)

(α + β + 2)
√

αβ
.

Pareto Distribution

The Pareto distribution was originally developed to model income in a popula-
tion. Phenomena such as city population size, stock price fluctuations, and personal
incomes have distributionswith very long right tails. The probability density function
of the Pareto distribution is given by

f (t) = αkα

tα+1
k ≤ t ≤ ∞ (2.80)

The mean, variance and reliability of the Pareto distribution are, respectively,

Mean E(T ) = k/(α − 1) for α > 1.

Variance V (T ) = αk2/[(α − 1)2(α − 2)] for α > 2.

Reliability R(t) =
(

k

t

)α

.

The Pareto and log normal distributions have been commonly used to model the
population size and economical incomes. The Pareto is used to fit the tail of the
distribution, and the log normal is used to fit the rest of the distribution.

Rayleigh Distribution

The Rayleigh distribution is a flexible lifetime function that can apply to many
degradation process failure modes. The Rayleigh probability density function is
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f (t) = t

σ 2
exp

[−t2

2σ 2

]

(2.81)

where σ is the scale parameter. The mean, variance, and reliability of Rayleigh
function are, respectively,

Mean E(T ) = σ
(π

2

) 1
2

Variance V (T ) =
(
2 − π

2

)
σ 2

Reliability R(t) = e− t2

2σ2 .

Example 2.29 Rolling resistance is a measure of the energy lost by a tire under load
when it resists the force opposing its direction of travel. In a typical car, traveling at
sixty miles per hour, about 20% of the engine power is used to overcome the rolling
resistance of the tires. A tire manufacturer introduces a new material that, when
added to the tire rubber compound, significantly improves the tire rolling resistance
but increases the wear rate of the tire tread. Analysis of a laboratory test of 150 tires
shows that the failure rate of the new tire is linearly increasing with time (hours). It
is expressed as.

h(t) = 0.5 × 10−8t

Determine the reliability of the tire after one year.

Solution The reliability of the tire after one year (8760 h) of use is

R(1year) = e− 0.5
2 × 10−8× (8760)2 = 0.8254

Figure 2.11 shows the resulting reliability function.

Pham Distribution

A two-parameter distribution with a Vtub-shaped hazard rate curve was developed
by Pham (2002) known as loglog distribution with Vtub-shapedor Pham distribution
(Cordeiro et al. 2016).

Note that the loglog distribution with Vtub-shaped and Weibull distribution with
bathtub-shaped failure rates are not the same. As for the bathtub-shaped, after the
infant mortality period, the useful life of the system begins. During its useful life,
the system fails as a constant rate. This period is then followed by a wear out period
during which the system starts slowly increases with the on set of wear out. For the
Vtub-shaped, after the infant mortality period, the system starts to experience at a
relatively low increasing rate, but not constant, and then increasingly more failures
due to aging. Practitioners can debate among these two shapes such as the bathtub
shaped and Vtub shaped.
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Fig. 2.11 Rayleigh reliability function versus time

The behavior of those with Vtub shaped failure rate can be observed in many
practical applications and systems including human life expectancy, medical devices
and electronic system products. For example, suppose that you buy a new car and let
T be the time of the first breakdown. Typically the failure rate function h(t) is initially
high and then decline to a constant. It remains at this level for several years, eventually
beginning to increase. The reason is that early failures are typically caused by hidden
faults of material and electrical devices such as engines, undetected in manufacture
control. If they do not show up immediately, then there are probability of faults
and risk of failure remains constant for some time. This would well represent the
bathtub-shaped. On the other hand, often users may have experiences due to some
minor problems after a few months or so. In this case, the Vtub-shaped can be
represented the failure rate. The later case, which is failure rate begins to increase,
is due to the wearing out of various parts.

The Pham pdf is given as follows (Pham 2002):

f (t) = α ln(a) tα−1 atα

e1−atα

for t > 0, a > 1, α > 0 (2.82)

The corresponding cdf and reliability functions are given by

F(t) =
∫ t

0
f (x)dx = 1 − e1−atα

and
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Fig. 2.13 Probability density function for various values a with α = 1.5

R(t) = e1−atα

(2.83)

respectively. Figures 2.12 and 2.13 describe the density functions for various values
of a and α, respectively.

The corresponding failure rate of the Pham distribution is given by

h(t) = α ln a tα−1 atα

(2.84)

Figure 2.14 describes the failure rate curve for various values of a and α.
It is worth to note that for given a and α, the Pham distribution F (or Loglog

distribution) is decreasing failure rate (DFR) for t ≤ t0 and increasing failure rate
(IFR) for t ≥ t0 where

t0 =
(
1 − α

α ln a

) 1
α

.

(See Problem 13.)
When α ≥ 1, the Loglog distribution is an IFR. (See Problem 14.)
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Fig. 2.14 Failure rate h(t) for various values of a and α = 0.5

Two-Parameter Hazard Rate Function

This is a two-parameter function that can have increasing and decreasing hazard
rates. The hazard rate, h(t), the reliability function, R(t), and the pdf are, respectively,
given as follows

h(t) = nλtn−1

λtn + 1
for n ≥ 1, λ > 0, t ≥ 0

R(t) = e− ln(λt N +1)

(2.85)

and

f (t) = nλtn−1

λtn + 1
e− ln(λtn+1) n ≥ 1, λ > 0, t ≥ 0 (2.86)

where n = shape parameter; λ = scale parameter.

Three-Parameter Hazard Rate Function

This is a three-parameter distribution that can have increasing and decreasing hazard
rates. The hazard rate, h(t), is given as

h(t) = λ(b + 1)[ln(λt + α)]b

(λt + α)
b ≥ 0, λ > 0, α ≥ 0, t ≥ 0 (2.87)
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The reliability function R(t) for α = 1 is

R(t) = e−[ln(λt+α)]b+1

The probability density function f(t) is

f (t) = e−[ln(λt+α)]b+1 λ(b + 1)[ln(λt + α)]b

(λt + α)

where b = shape parameter; λ = scale parameter, and α = location parameter.

Vtub-Shaped Failure Rate Function

Pham (2019) present a distribution function that characterizes by a Vtub-shaped
failure rate function. As for the bathtub-shaped, during its useful life period the
failure rate is constant. For the Vtub-shaped, after the infant mortality period the
system will begin to experience a rather low increasing failure rate but never be at a
constant rate due to aging. The Vtub-shaped failure rate function h(t) is defined as
(Pham 2019):

h(t) = at ln(bt) + a

b
for t >0, a >0, b >0 (2.88)

respectively. Figure 2.15 shows the vtub-shaped of failure rate h(t) for a = 0.75 and
various values of b (i.e. 0.35, 0.45, 0.55).

Fig. 2.15 A vtub-shaped failure rate for a = 0.75 and various values of b (i.e. 0.35, 0.45, 0.55)
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The corresponding probability density function f (t) and reliability function R(t)
are as follows:

f (t) =
(

at ln(bt) + a

b

)
e−{at[ t

2 ln(bt) − t
4 + 1

b ]} for t >0, a >0, b > 0 (2.89)

and

R(t) = e−at[ t
2 ln(bt) − t

4 + 1
b ] for t >0, a >0, b >0

respectively.

Triangular Distribution

A triangular distribution (sometime called a triangle distribution) is a continuous
probability distribution shaped like a triangle. It is defined by

a: the minimum value.
c: the peak value (the height of the triangle).
b: the maximum value, where a ≤ c ≤ b.

The triangular probability density function is given by

f (t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 t < a
2(t−a)

(b−a)(c−a)
a ≤ t ≤ c

2(b−t)
(b−a)(b−c) c ≤ t ≤ b

0 t > b

(2.90)

The three parameters a, b and c change the shape of the triangle. The mean and
the variance for this distribution, respectively, are:

mean = 1

3
(a + b + c)

and

variance = 1

18

(
a2 + b2 + c2 − ab − ac − bc

)
.

Extreme-value Distribution

The extreme-value distribution can be used to model external events such as floods,
tornado, hurricane, high winds, in risk applications. The cdf of this distribution is
given by

F(t) = e−et
for − ∞ < t < ∞ (2.91)
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Cauchy Distribution

The Cauchy distribution can be applied in analyzing communication systems in
which two signals are received and one is interested in modeling the ratio of the two
signals. The Cauchy probability density function is given by

f (t) = 1

π(1 + t2)
for − ∞ < t < ∞ (2.92)

It is worth to note that the ratio of two standard normal random variables is a
random variable with a Cauchy distribution. Note that a Student’s t-distribution with
r = 1 degree of freedom (see Eq. 2.64) becomes a Cauchy distribution.

Logistic Distribution

The logistic distribution is a flexible function that has the form of logistic function.
It is widely used in the field of reliability modeling, especially population growth.
The logistic two parameter distribution function whose pdf is given as

f (t) = b(1 + β)e−bt

(
1 + βe−bt

)2 ; t ≥ 0, 0 ≤ b ≤ 1, β ≥ 0 (2.93)

The reliability function of logistic distribution can be easily obtained

R(t) = (1 + β)e−bt

1 + βe−bt

Half logistic distribution. Another type of logistic distribution known as half
logistic distribution can be defined, which is a one parameter continuous probability
distribution. The pdf of a half logistic distribution is given as

f (t) = 2be−2bt

(
1 + e−bt

)2 ; t ≥ 0, 0 ≤ b ≤ 1, (2.94)

and the reliability function is given as

R(t) = 2

1 + ebt

2.3 Characteristics of Failure Rate Functions

This section discusses briefly properties of some common related Weibull lifetime
distributions.
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Notation

T Lifetime random variable.
f (t) Probability density function (pdf) of T .
F(t) Cumulative distribution function (cdf).
h(t) hazard rate function.

H(t) Cumulative failure rate function [H(t) =
t∫

0
h(x)dx].

R(t) Reliability function [= 1 − F(t)].
μ(t) Mean residual life defined by E(T − t |T > t).
μ Mean lifetime.

Acronym

IFR Increasing failure rate.
DFR Decreasing failure rate.
BT Bathtub.
MBT Modified bathtub.
UBT Upside-down bathtub.
MRL Mean residual life.
IMRL Increasing mean residual life.
DMRL Decreasing mean residual life.
NBU New better than used.
NWU New worse than used.
NBUE New better than used in expectation.
BWUE New worse than used in expectation.
HNBUE Harmonic new better than used in expectation.
HBWUE Harmonic new worse than used in expectation.

In the context of reliability modelling, some well-known interrelationships
between the various quantities such as pdf, cdf, failure rate function, cumulative
failure rate function, and reliability function, for a continuous lifetime T, can be
summarized as

h(t) = f (t)

1 − F(t)
= f (t)

R(t)

H(t) =
∫ t

0
h(x)dx

R(t) = e−H(t)

A life distribution can be classified according to the shape of its h(t), or its μ(t).
For convenience sake, the life classes are often given by their abbreviations IFR,
DFR, BT, MBT, etc.
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Definition 2.1 The distribution F is IFR (DFR) if the failure rate h(t) is nonde-
creasing (nonincreasing) in t. That is,

h(t2) ≥ h(t1) for all t2 ≥ t1 ≥ 0

Definition 2.2 The distribution F is BT (UBT) if the failure rate h(t) has a bathtub
(upside-down bathtub) shape.

Definition 2.3 F is MBT (modified bathtub) if h(t) is first increasing, then followed
by a bathtub curve.

Definition 2.4 The distribution F has a Vtub-shaped failure rate if there exists a
change point t0 such that the distribution F is DFR for t < t0 and IFR for t > t0 and
h’(t0) = 0.

Definition 2.5 The distribution F has an upside-down Vtub-shaped failure rate if
there exists a change point t0 such that the distribution F is IFR for t < t0 and DFR
for t > t0 and h’(t0) = 0.

Definition 2.6 The distribution F is said to be IMRL (DMRL) if the mean residual
life function μ(t) is an increasing (decreasing) function of t. That is,

μ(t2) ≥ μ(t1) for all t2 ≥ t1 ≥ 0

where

μ(t) =
∫∞

t R(x)dx

R(t)
.

Birnbaum and Esary (1966a) introduced the concept of an increasing failure rate
average (IFRA) distribution.

Definition 2.7 The distribution F is said to be IFRA (DFRA) if

t∫

0
h(x)dx

t
is increasing (decreasing) in t. (2.95)

Definition 2.8 The distribution F is said to be NBU (NWU) if.

R(x + y) ≤ (≥) R(x)R(y)

Definition 2.9 The distribution F is said to be NBUE (NWUE) if.

∞∫

t

R(x)dx ≤ (≥) μR(t) where μ =
∞∫

0

R(x)dx .
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Definition 2.10 The distribution F is said to be HNBUE (HNWUE) if

∞∫

t

R(x)dx ≤ (≥) μe− t
μ where μ =

∞∫

0

R(x)dx .

It is well-known that if the distribution F is IFR (DFR) then F is DMRL (IMRL)
(see Birnbaum and Esary (1966b)).

That is,
F is IFR ⇒ F is DMRL.
F is DFR ⇒ F is IMRL.
Indeed, it can be easily to show that.
F is IFR ⇒ F is IFRA ⇒ F is NBU ⇒ F is NBUE ⇒ F is HNBUE.
F is DFR ⇒ F is DFRA ⇒ F is NWU ⇒ F is NWUE ⇒ F is HNWUE.

Theorem 2.3 Given a and α, the Pham distribution F (or Loglog distribution, see
Sect. 2.2) has a Vtub-shaped failure rate when

t0 =
(
1 − α

α ln a

) 1
α

.

(Also see Problem 13).

Corollary 2.1 For α ≥ 1, the Pham distribution F is a DMRL.

Proof

When α ≥ 1, Pham distribution F is IFR. This implies that F is a DMRL.

For more details concerning these and other ageing classes, see Pham (2006).
Table 2.1 offers a brief but by no means exhaustive summary of common lifetime
distributions with two or more parameters and their characteristics of failure rate
functions.

2.4 The Central Limit Theorem

The central limit theorem (CLT) is one of the most important theorem in reliability
application and probability in general.

Theorem 2.4 (Central Limit Theorem).Assume that there are n independent random
variables X1, X2,…, Xn drawn from the same distribution having mean μ and
variance σ 2. Define the sample mean as follows:

X̄n = 1

n
(X1 + X2 + ... + Xn)
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Table 2.1 Reliability functions for some parametric distributions that can be considered as
generalized Weibull distributions (Pham and Lai 2007)

Author Reliability function Characteristics

Gompertz R(t) = exp

{
θ

α

(
1 − eαt )

}

,

θ > 0,−∞ < α < ∞; t ≥ 0

IFR if α > 0
DFR if α < 0

Weibull R(t) = exp(−λtα), λ, α > 0; t ≥ 0 Exponential if α = 1
IFR if α > 1
DFR if α < 1

Smith and Bain (Exponential
power model)

R(t) = exp
{
1 − e(λt)α

}
, α, λ > 0; t ≥ 0 BT if 0 < α < 1

Special cases of Chen’s model

Xie and Lai R(t) = exp
{−(t/β1)

α1 − (t/β2)
α2
}

α1, α2, β1, β2 > 0; t ≥ 0

IFR if α1, α2 > 1
DFR if α1, α2 < 1
BT if α1 < 1, α2 > 1

Chen R(t) = exp
{
−λ

[
etβ − 1

]}
, λ, β > 0; t ≥ 0 BT if β < 1

IFR if β ≥ 1
Exponential power if λ = 1

Pham R(t) = exp
{
1 − atα

}; α > 0, a > 1; t ≥ 0 DFR for t ≤ t0
IFR for t ≥ t0

t0 = ( 1−α
α ln a

) 1
α

Xie, Tang and Goh R(t) = exp
{
λβ

[
1 − e(t/β)α

]}

α, β, λ > 0; t ≥ 0

Chen’s model if β = 1
IFR if α ≥ 1
BT if 0 < α < 1

Lai et al. (2003), Gurvich et al.
(1997)

R(t) = exp
{−atαeλt }

λ ≥ 0, α, a > 0; t ≥ 0

Weibull if λ = 0:
Exponential if β = 0, α = 1
IFR if α ≥ 1
BT if 0 < α < 1

Nadarajah and Kotz (2005) R(t) = exp
{
−atb

(
ectd − 1

)}

a, d > 0; b, c ≥ 0; t ≥ 0

Xie, Tang & Goh’s model if b = 0
Chen’s model if b = 0, c = 1

Bebbington et al. (2006) R(t) = exp
{−(

eαt−β/t
)}; α, β > 0; t ≥ 0 IFR iff αβ > (27/64)

MBT if αβ < (27/64)

Hjorth (1980) R(t) = exp
(−δt2/2

)

(1+βt)θ/β , δ, β, θ > 0; t ≥ 0 BT shape if 0 < δ < θβ

Slymen and Lachenbruch
(1984)

R(t) = exp

{

− exp

[

α + β(tθ − t−θ

2θ

]}

,

t ≥ 0

BT if

2{(θ + 1)t − θ − 2 − (θ − 1)tθ − 2}
×(tθ − 1 − t − θ − 1) − 2 bounded

Phani (1987) R(t) = exp
{
−λ

(t−a)β1

(b−t)β2

}

λ > 0, β ′s > 0,0 ≤ a ≤ t ≤ b < ∞
Kies (1958) [9] if β1 = β2 = β

IFR if β ≥ 1
BT if 0 < β < 1

Mudholkar and Srivastava
(1993) (Exponentiated
Weibull)

R(t) = 1 − [
1 − exp(−t/β)α

]θ
, t ≥ 0;

α, β > 0, θ ≥ 0

Weibull if θ = 1
Exponential if α = θ = 1
DFR if α, θ < 1
IFR if α, θ > 1
BT of IFR if α > 1, θ < 1 :
UBT of DFR if α < 1, θ > 1 :

Mudholkar et al. (1996)
R(t) = 1 −

[

1 −
(

1 − λ

(
t

β

)α)1/λ
]

,

α, β > 0; t ≥ 0

BT for α < 1, λ > 0
IFR for α ≥ 1, λ ≥ 0
DFR for α ≤ 1, λ ≥ 0
UBT for α > 1, λ > 0
Exponential for α = 1, λ = 0

Marshall and Olkin (1997) R(t) = ν exp[−(t/β)α ]

1 − (1 − ν) exp[−(t/β)α ]

α, β, ν > 0; t ≥ 0.

IFR if ν ≥ 1, α ≥ 1
DFR if ν ≥ 1, α ≤ 1
MBT α = 2, ν = 0.1 or 0.05

(continued)
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Table 2.1 (continued)

Author Reliability function Characteristics

Nikulin and Haghighi (2006) R(t) = exp
{
1 − (

1 + (t/β)α
)θ
}
,

t ≥ 0; α, β > 0, θ ≥ 0

Can achieve various shapes,
See Sect. 2.4 below

If X̄n is the sample mean of n i.i.d. random variables, then if the population
variance σ 2 is finite, the sampling distribution of X̄n is approximately normal as
n → ∞. Mathematically, if X1, X2,…, Xn is a sequence of i.i.d. random variables
with

E(X1) = μ and V (X1) = σ 2

then

lim
n→∞ P

{
X̄n − μ

σ√
n

≤ z

}

= 	(z) (2.96)

where 	(z) is the cdf of N(0,1).
It can easily show that the mean and variance of X̄n are μ and variance σ 2

n ,
respectively. Let Zn denote the standardized X̄n , that is

Zn = X̄n − μ

σ
/√

n

It follows from the Central Limit Theorem that if n is large enough,Zn has approx-
imately a standard normal distribution, i.e. N(0,1) distribution. This implies that the
cdf of Zn is given by

P(Zn ≤ z) = 1√
2π

z∫

−∞
e
−s2/

2ds.

Similary, X̄n has approximately a normal N
(
μ, σ

2/
n

)
distribution as n is large

enough. It can be shown that
∑n

i=1 Xi has approximately a normal N
(
nμ, nσ 2

)

distribution. Inmost cases, a sample size of 30 ormore gives an adequate approximate
normality.

Note that when n is large and p is small, the Poisson distribution can be used to
approximate the binomial distribution, b(n, p) where the pdf of binomial distribution
is
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P(X = x) =
(

n

x

)

px (1 − p)n−x

Normal Approximations

When n is large and p is not small, the Central Limit Theorem (above) allows us to
use the normal distribution to approximate the binomial b(n, p) distribution. In fact,
let ‘s consider that there are n independent Bernoulli random variables X1, X2,…,
Xn drawn from the same distribution each with p, the probability of success. Then
the sum of n Bernoulli random sample is the binomial distribution. Mathematically,
using the Central Limit Theorem we can write as follows:

Zn =

n∑

i=1
Xi − np

√
np(1 − p)

∼ N (0, 1) as n is large (2.97)

In practice, one can use the Central Limit Theorem for the approximation of
the binomial distribution b(n, p) by a normal distribution if: (1) values of n and p
satisfy np ≥ 10 and n(1 − p) ≥ 10 or (2) the values of p are between 0.4 and 0.75,
np ≥ 5 and n(1 − p) ≥ 5.

How large should n be to get a good approximation? A general rule is

n >
9

p(1 − p)

Example 2.30 The probability of a defective unit in a manufacturing process is q =
0.06. That means, the probability of a succesful unit is p = 0.94. Using the normal
approximation, obtain the probability that the number of defective units in a sample
of 1000 units is between 50 and 70.

Solution The probability that the number of defective units in a sample of 1000
units is between 50 and 70 is given by using the normal approximation:

P(50 ≤ X ≤ 70) � 	

(
70.5 − 60√

56.4

)

− 	

(
49.5 − 60√

56.4

)

as nq = 60 is large

= 0.8379

In general, for a < b we can obtain

P(a ≤ X ≤ b) � 	

(
b + 1/

2 − np√
np(1 − p)

)

− 	

(
a − 1/

2 − np√
np(1 − p)

)

where X is binomial b(n,p) with the expected of X is np for large n.
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2.5 Problems

1. An operating unit is supported by (n − 1) identical units on cold standby. When
it fails, a unit from standby takes its place. The system fails if all n units fail.
Assume that units on standby cannot fail and the lifetime of each unit follows
the exponential distribution with failure rate λ.

(a) What is the distribution of the system lifetime?
(b) Determine the reliability of the standby system for a mission of 100 h

when λ = 0.0001 per hour and n = 5.

2. Assume that there is some latent deterioration process occurring in the system.
During the interval [0, a − h] the deterioration is comparatively small so that
the shocks do not cause system failure. During a relatively short time interval [a
− h, a], the deterioration progresses rapidly and makes the system susceptible
to shocks. Assume that the appearance of each shock follows the exponential
distribution with failure rate λ. What is the distribution of the system lifetime?

3. Consider a series system of n Weibull components. The corresponding lifetimes
T1, T2,…, Tn are assumed to be independent with pdf

f (t) =
{

λ
β

i βtβ−1e−(λi t)β for t ≥ 0
0 otherwise

where λ > 0 and β > 0 are the scale and shape parameters, respectively.

(a) Show that the lifetime of a series system has the Weibull distribution with
pdf

fs(t) =

⎧
⎪⎨

⎪⎩

(
n∑

i=1
λ

β

i

)

βtβ−1e
−
(

n∑

i=1
λ

β

i

)

tβ

for t ≥ 0

0 otherwise

(b) Find the reliability of this series system.

4. The failure rate function, denoted by h(t), is defined as

h(t) = − d

dt
ln[R(t)]

Show that the constant failure rate function implies an exponential distribution.
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5. Show that if a random variable X is geometric for some p

P(X = x) =
{

(1 − p)px for x = 0, 1, ...

0 otherwise

Then it has the memoryless property for any positive integers i and j

P(X ≥ i + j/X ≥ i) = P(X ≥ j).

6. Show that if T1, T2, …, Tn, are independently exponentially distributed random
variables (r.v.’s) with constant failure rate λ1, λ2, ..., λn, and if.
Y = max{T1, T2, ..., Tn} then Y is not exponentially distributed.

7. The time to failure T of a unit is assumed to have a log normal distribution with
pdf

f (t) = 1√
2π

1

σ t
e− (ln t−μ)2

2σ2 t > 0

Show that the failure rate function is unimodal.

8. A diode may fail due to either open or short failure modes. Assume that the time
to failure T0 caused by open mode is exponentially distributed with pdf

f0(t) = λ0e−λ0t t ≥ 0

and the time to failure T1 caused by short mode has the pdf

fs(t) = λse−λs t t ≥ 0

The pdf for the time to failure T of the diode is given by

f (t) = p f0(t) + (1 − p) fs(t) t ≥ 0

(a) Explain the meaning of p in the above pdf function.
(b) Derive the reliability function R(t) and failure rate function h(t) for the

time to failure T of the diode.
(c) Show that the diode with pdf f(t) has a decreasing failure rate (DFR).

9. Events occur according to an NHPP in which the mean value function is

m(t) = t3 + 3t2 + 6t t > 0.

What is the probability that n events occur between times t = 10 and t = 15?
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10. Show that if Xi is exponentially distributed with parameter θ then T = X1 +
X2

+ … + Xn, is Erlang distribution with parameters θ and n where the pdf is
given.
by

f (t) = θn tn−1


(n)
e−tθ t > 0

11. Let Xi follows gamma distributed with αi is the shape parameter and common
scale parameter β for i = 1, 2, …, k and is denoted as Xi ~ G(αi, β). If X1,
X2,…, Xn are independent random variables, show that the distribution of T,
where T = X1 + X2 + … + Xk„ is also gamma distributed, as T ~ G(α, β).

with scale parameter β and the shape parameter is α =
k∑

i=1
αi

12. Show that the variance of a mixed truncated exponential distribution (see
Eq. 2.47) with parameters λ and a as

V ar(X) = 1

λ2

(
1 − 2λae−λa − e−2λa

)
.

13. Show that for any given a and α, the Pham distribution F (see Sect. 2.2) is
decreasing failure rate (DFR) for t ≤ t0 and increasing failure rate (IFR) for
t ≥ t0 where

t0 =
(
1 − α

α ln a

) 1
α

.

14. Show that when α ≥ 1, the Pham distribution is an IFR.
15. A physician treats 10 patients with elevated blood pressures. The drug admin-

istered has a probability of 0.9 of lowering the blood pressure in an indi-
vidual patient. What is the probability that at least 8 of the 10 patients respond
successfully to treatment?

16. Phone calls arrive at a business randomly throughout the day according to the
Poisson model at the rate of 0.5 calls per minute. What is the probability that
in a given five minute period not more than three calls arrive?

17. Suppose an electrical firm manufactures N fuses a week k of which are good
and (N − k) of which are defective. A sample of size n is inspected weekly,
x of which are good and (n − x) are defective. Determine the probability that
exactly x number of good fuses in the sample of size n.

18. In exploring for oil, an energy company has been recording the average number
of drilling excavations prior to locating a productive oil well. In 25 experiences,
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it was found that 4.5 drillings, on the average, were required before a well was
found. Let N be a random variable that counts for the number of drillings
necessary to find a productive well. Define p is the probability that a drilling
is a productive. Assuming that all drillings are mutually independent, obtain
the probability that exactly n number of drillings necessary in order to find a
productive well.

19. Suppose an item fails according to the exponential failure density function.

f (x) = λe−λx λ >0, x ≥ 0.

Let N(t) be the number of failures of a component during a given time interval
(0, t). Determine the probability of N(t).

20. Show that the pdf of the sum of squares of n independent standard normal
random variables Xi, i = 1, 2, …, n (i.e., Xi ~ N(0, 1) is the chi-square given
in Eq. (2.63).

21. The number of seeds (N) produced by a certain kind of plant has a Poisson
distribution with parameter λ. Each seed, independently of how many there
are, has probability p of forming into a developed plant. Find the mean and
variance of the number of developed plants.

22. A system has m locations at which the same component is used, each compo-
nent having an exponentially distributed failure time with mean 1

λ
. When a

component at any location fails it is replaced by a spare. In a given mission the
component at location k is required to operate for time tk .What is theminimum
number of components, n, (i.e.,moriginals and (n-m) spares) required to ensure
a successful mission with probability at least 0.96? Compute the minimum
number of components (n) when m = 3, tk = k, and λ = 0.5.

23. It has been observed that the number of claims received by an insurance
company in a week is Poisson distributed with constant failure parameter λ

where the value of the parameter is obtained by statistical estimation. What is
the probability that a week will pass without more than two claims? Obtain
this probability when λ = 10 per week.

24. The number of accidents per month in a factory has been found to have a
geometric distribution with parameter p (probability of an accident at each
month), where the parameter is estimated by statistical methods. Let random
variable X is defined as the number of accidents in a given month. What is the
probability that there will be more than two accidents on a month? Calculate
when p = 0.1.

25. There are nworkers in an assembly line factory and it is known that the number
of workers independently reporting for work on a given day is binomially
distributed with parameters n and p where p is the probability of an individual
who presents for work. What is the probability that there will be at least two
absentees on a given day selected at a random? Determine this probability
when p = 0.95 and n = 20.
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26. Show that the number of failures before n successes in Bernoulli trials is
negative binomial with parameters n and pwhere p is the probability of success
at each trial.

27. An entrepreneurer of start-up company calls potential customers to sale a new
product. Assume that the outcomes of consecutive calls are independent and
that on each call he has 20% chance of making a sale. His daily goal is to make
5 sales and he can make only 25 calls in a day. What is the probability that he
achieves his goal in between 15 and 20 trials?

28. Prove Theorem 2.1.
29. A class consists of 10 girls and 12 boys. The teacher selects 6 children at

random for group projects. Is it more likely that she chooses 3 girls and 3 boys
or that she chooses 2 girls and 4 boys?

30. Suppose the life of automobile batteries is exponentially distributed with
constant failure rate parameter λ = 0.0001 failures per hour.

(a) What is the probability that a battery will last more than 5,000 h?
(b) What is the probability that a battery will last more than 5,000 h given

that it has already survived 3,000 h?

31. The probability of failure of an equipment when it is tested is equal to 0.2.
What is the probability that failure occurs in less than four tests? Assume
independence of tests.

32. An electric network has N relays. If a relay is tripped the repair time is a
random variable that obeys the exponential distribution with constant failure
rate parameter λ = 19/h. If one repair man is available and ten relays have
tripped simultaneously, what is the probability that power failure will last more
than 3

4 h?
33. An instrument which consists of k units operates for a time t. The reliability

(the probability of failure-free performance) of each unit during the time t is p.
Units fail independently of one another.When the time t passes, the instrument
stops functioning, a technician inspects it and replaces the units that failed. He
needs a time s to replace one unit.

(a) Find the probability P that in the time 2 s after the stop the instrument
will be ready for work.

(b) Calculate P when k = 10, p = 0.9, t = 25 h, and s = 20 min.

34. Two types of coins are produced at a factory: a fair coin and a biased one that
comes up heads 55 percent of the time. A quality manager has one of these
coins but does not know whether it is a fair coin or a biased one. In order to
ascertain which type of coin he has, he shall perform the following statistical
test: He shall toss the coin 1000 times. If the coin lands on heads 525 or more
times, then he shall conclude that it is a biased coin, whereas, if it lands heads
less than 525 times, then he shall conclude that it is the fair coin. If the coin
is actually fair, use the Normal approximation to find the probability that he
shall reach a false conclusion?
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35. Consider a system of two independent components with failure time Ti for
component i, i = 1, 2, with corresponding probability density function fi and
distribution function Fi.

(a) Regardless of the connections between the two components, what is the
probability of component 1 failure before component 2 failure?

(b) If Ti has an exponential distribution with constant failure rate λi , i = 1,
2, what is the probability of component 1 failure before component 2
failure?

(c) Calculate (b) when λ1 = 0.05 failures per hour and λ2 = 0.03 failures
per hour.

36. Suppose there are 100 items in the lot and their manufacturer claims that no
more than 2% are defective. When the shipment is received at an assembly
plant, a quality control manager asks his staff to take a random sample of size
10 from it without replacement and will accept the lot if there are at most
1defective item in the sample. If let say 2% are defective in the entire lot, then
it consists of 2 defective items. What is the probability that the manager will
accept the lot?

37. An airport limousine can accommodate up to four passengers on any one
trip. The company will accept a maximum of six reservations for a trip and a
passenger must have a reservation. From previous records, 30% of all those
making reservations do not appear for the trip. Assume that passengers make
reservations independently of one another. If six reservations are made, what
is the probability that at least one individual with a reservation cannot be
accommodated on the trip?
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Chapter 3
Statistical Inference

3.1 Introduction

Inference about the values of parameters involved in statistical distributions is known
as estimation. The engineer might be interested in estimating the mean life of an
electronic device based on the failure times of a random sample placed on lifef test.
An interesting question that commonly would ask from many practitioners is: how
close this estimator would be the true value of the parameter being estimated from a
known distribution.

An estimator is a procedure which provides an estimate of a population param-
eter from a random sample. In other word, an estimator is a statistic and hence a
random variable, since it depends strictly on the sample. An estimator is called a
point estimator if it provides a single value as an estimate from a random sample.

In this chapter, it is assumed that the population distribution by type is known,
but the distribution parameters are unknown and they have to be estimated by using
collected failure data. This chapter is devoted to the theory of estimation and discusses
several common estimation techniques such as maximum likelihood, method of
moments, least squared, and Bayesian methods. We also discuss the confidence
interval estimates, tolerance limit estimates, sequential sampling and criteria for
model selection.

3.2 Statistical Inference

Statistical inference is the process of drawing conclusions about unknown character-
istics of a population from which data were taken. Techniques used in this process
include paramter estimation, confidence intervals, hypothesis testing, goodness of
fit tests, and sequential testing. As we know, any distribution function often involves
someparameters. The problemof point estimation is that of estimating the parameters
of a population. For example, parameter λ from an exponential distribution; μ and
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σ 2 from a normal distribution; or n and p from the binomial. For simplicity, denote
these parameters by the notation θ which may be a vector consisting of several distri-
bution parameters. Given a real life application and the observed data, the common
statistical problem will consist of how to determine the unknown distribution F or
pdf f . And if F is assumed to be known, then how can one determine the unknown
distribution parameters θ. If a statistic Y = h(X1, X2,…, Xn) is taken as an estimate
of the parameters θ, the first point to recognize is that in any particular sample the
observed value of h(X1, X2,…, Xn) may differ from θ. The performance of h(X1,
X2,…, Xn) as an estimate of θ is to be judged in relation to the sampling distribution
of h(X1, X2,…, Xn). For example, assume n independent samples from the exponen-
tial density f (x; λ) = λe−λx for x > 0 and λ > 0, then the joint pdf or sample density
(for short) is given by

f (x1, λ) · f (x1, λ) . . . f (x1, λ) = λne−λ
∑n

i−1 xi (3.1)

The problem here is to find a “good” point estimate of λ which is denoted by λ̂.
In other words, we shall find a function h(X1, X2,…,Xn) such that, if x1, x2, …, xn
are the observed experimental values of X1, X2, …., Xn, then the value h(x1, x2, …,
xn) will be a good point estimate of λ. By “good’ we mean the following properties
shall be implied:

• Unbiasedness
• Consistency
• Efficiency (i.e., minimum variance)
• Sufficiency
• Asymptotic efficiency.

In other words, if λ̂ is a good point estimate of λ, then one can select the function
h(X1, X2,…,Xn) such that h(X1, X2,…,Xn) is not only an unbiased estimator of λ

but also the variance of h(X1, X2,…,Xn) is a minimum. It should be noted that the
estimator λ̂ is a random variable where λ is a number.

The random variable h(X1, X2,…,Xn) is called a statistic and it represents
the estimator of the unknown parameters θ. We will now present the following
definitions.

Definition 3.1 For a given positive integer n, the statistic Y = h(X1, X2,…, Xn) is
called an unbiased estimator of the parameter θ if the expectation of Y is equal to a
parameter θ, that is,

E(Y ) = θ (3.2)

In other words, an estimator of θ is called unbiased if its expected value is equal
to the population value of the quantity it estimates.

An estimator Y is a best unbiased estimator of parameter θ if E(Y ) = θ for all

θ ∈ � and var(Y ) ≤ var
(
Ỹ
)
for any other unbiased estimator Ỹ such that.
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E
(
Ỹ
)

= θ. If an estimator is not unbiased we can define its bias by

b(θ) = E(Y ) − θ.

It sometimes happens that b(θ ) depends on the number of observations and
approaches to zero as n increases. In this case, Y is said to be asymptotically unbi-
ased. Note that the expectation represents a long-run average, bias is seen as an
average deviation of the estimator from the true value. When considering bias, care
needs to be taken with functions of parameters. In general, if E(Y ) = θ and g(θ ) is
some function of a parameter,

E[g(Y )] �= g(θ).

For the exponential distribution for example, assume X1,X2, …, Xn be a random
sample from the exponential distribution with pdf

f (x;μ) = 1

μ
e− x

μ x > 0, μ > 0

Let Y = 1
n

(
n∑

i=1
xi

)

. Using the maximum likelihood estimation (MLE) method

(seeSect. 3.3.2),we can show thatY is an unbiased estimator ofμ.That is, E(Y ) = μ.

Let g(Y ) = n∑n
i=1 xi

. It should be noted that E[g(Y )] �= 1
μ
.

Definition 3.2 The statistic Y is said to be a consistent estimator of the parameter
θ if Y converges stochastically to a parameter θ as n approaches infinity. If ∈ is an
arbitrarily small positive number when Y is consistent, then.

lim
n→∞ P(|Y − θ | ≤∈) = 1 (3.3)

In other words, we would like our estimators tend towards the true value when
the sample size n closes to infinity or to a very large number. It can be shown that
this will happen if the estimator Y is either unbiased or asymptotically unbiased and
also has a variance that tends to zero as n increases.

Example 3.1 Let X be a life time with mean μ which is unknown. One can easily
show that the statistic.

h(X1, X2, . . . , Xn) =
∑n

i=1 Xi

n

is unbiased and a consistent of μ.

Definition 3.3 If the limiting distribution of.



138 3 Statistical Inference

√
n(Yn − θ)

a
∼ N (0, 1)

where Yn is an estimator of θ based on a sample of size n, the asymptotic efficiency
of Yn is defined as

AE = 1

a2 I (θ)
where I (θ) = − E

(
∂2 ln f

∂θ2

)

(3.4)

and f is the probability density function of the parent population. If AE = 1, the
sequence of estimators is said to be asymptotically efficient or best asymptotically
normal (BAN).

Definition 3.4 The statistic Y is said to be sufficient for θ if the conditional
distribution of X, given Y = y, is independent of θ.

Definition 3.5 The statistic Y will be called the minimum variance unbiased esti-
mator of the parameter θ if Y is unbiased and the variance of Y is less than or equal
to the variance of every other unbiased estimator of θ. An estimator that has the
property of minimum variance in large samples is said to be efficient.

In other words, among unbiased estimates of θ , the one that has smallest variance
is preferred. For the variance of any unbiased estimator Y of θ, we have the lower
limit

Var(Y ) ≥ 1

n I (θ)
(3.5)

where I (θ), defined by Eq. (3.4), is called the amount of information per observation
(also see Sect. 3.4).

Definition 3.5 is useful in finding a lower bound on the variance of all unbiased
estimators. In fact, a minimum variance unbiased estimator is one whose variance
is least for all possible choices of unbiased estimators. Let X be a random variable
of life time with mean μ which is unknown. Consider the following two statistics

h1(X1, X2, . . . , Xn) = 1

4
X1 + 1

2
X2 + 1

4
X3

and

h2(X1, X2, . . . , Xn) = 1

3
(X1 + X2 + X3)

We can easily show that both h1 and h2 give unbiased estimates of μ. However,
based on the unbiased estimates, we cannot tell which one is better, but we can tell
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which estimator is better by comparing the variances of both h1 and h2 estimators.
It is easy to see that var(h1) > var(h2), then h2 is a better estimator h1. Mainly, the
smaller the variance the better!

The mean squared error is also another criterion for comparing estimators by
combining the variance and the biased parts.

Definition 3.6 The mean squared error (MSE) is defined as the expected value of
the square of the deviation of the estimate from the parameter being estimated, and
is equal to the variance of the estimate plus the square of the bias. That is,

MSE = E
(
θ̂ − θ

)2 = var
(
θ̂
)

+ E
[
E
(
θ̂
)

− θ
]2 = var

(
θ̂
)

+ (bias)2.

Obviously, a small value of MSE is a desirable feature for an estimator. For
unbiased estimators case, seeking a smallMSE is identical to seeking a small variance
since the second term on the right hand side is equal to zero.

Example 3.2
Assume θ̂1 and θ̂2 are the two estimators of parameter θ. Suppose that

E
(
θ̂1

)
= 0.9θ ,E

(
θ̂2

)
= θ ,var(θ̂1) = 2, and var(θ̂2) = 3. Which estimator would

you prefer?
Solution: We have

MSE of θ1 = var
(
θ̂
)

+ (bias)2 = 2 + 0.01 θ2.

MSE of θ2 = var
(
θ̂
)

+ (bias)2 = 3 + 0 = 3.

Thus, if |θ | < 10 then θ̂1 would be prefered. If |θ | > 10 then θ̂2 is prefered.
We will later discuss how to establish a lower bound on the variance using an

inequality known as the Cramér-Rao inequality.We now discuss some basic methods
of parameter estimation.

3.3 Parameter Estimation

Once a distribution function is specified with its parameters, and data have been
collected, one is in a position to evaluate its goodness of fit, that is, how well it fits
the observed data. The goodness of fit is assessed by finding parameter values of
a model that best fits the data—a procedure called parameter estimation. There are
two general methods of parameter estimation. They are the methods of moments and
maximum likelihood estimate (MLE).
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3.3.1 The Method of Moments

The unknown distribution parameters usually can be estimated by their respective
moments, such as means, variances etc. In general, we can choose the simplest
moments to equate.

The expected value of a function g(X) under the distribution F(x) is given by

E(g(X)) =

⎧
⎪⎨

⎪⎩

∫ ∞

−∞
g(x) f (x)dx if X is continuous

∑n

i=0
g(xi )p(xi ) if X is discrete

(3.6)

The kth moment of F(x) is defined as follows:

μk = E(Xk) for k = 1, 2, . . . (3.7)

Obviously, when k = 1 it is the expected value of X, that is μ1 = E(X). When X
only assumes positive values and has a continuous pdf f (x) and cdf F(x), then

E(X) =
∞∫

0

x f (x)dx =
∞∫

0

⎛

⎝

x∫

0

dy

⎞

⎠ f (x)dx

=
∞∫

0

⎛

⎝

∞∫

y

f (x)dx

⎞

⎠dy =
∞∫

0

(1 − F(y))dy. (3.8)

The kth central moments around the mean, μc
k , is defined as follows:

μc
k = E[(X − μ1)

k] for k = 1, 2, . . . (3.9)

The 1st central moment is 0. The second central moment is exactly the variance
of F(x). That is,

μc
2 = E[(X − μ1)

2]. (3.10)

Example 3.3
Suppose that f (x) = λe−λx for x ≥ 0, λ >0. Then F(x) = 1 − e−λx and the
population mean (or the first moment) is.

μ1 =
∞∫

0

e−λxdx = 1

λ
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The sample mean is x̄ so the estimator λ̂ of λ that makes these two the same is

λ̂ = 1

x̄
= n

∑n
i=1 xi

Note that when X is discrete, assuming the values {1,2,…}, then we obtain

E(X) = 1 +
∞∑

i=1

[1 − F(i)].

Example 3.4
For a normal distribution with two unknown parameters pdf, i.e. N (μ, σ 2).

f (x) = 1

σ
√
2π

e− 1
2 (

x−μ

σ )
2 − ∞ < x < ∞

Then the first and second moments about the mean of the sample are

μ1 = x̄ =
∑n

i=1 xi
n

and

μc
2 = E[(X − μ1)

2] =

∑n
i=1 (xi − x̄)2

n
.

For the population of corresponding moments are

μ1 = μ and μc
2 = σ 2.

So the method of moments estimators are

μ̂ = x̄ and σ̂ 2 =
∑n

i=1 (xi − x̄)2

n
.

3.3.2 Maximum Likelihood Estimation Method

The method of maximum likelihood estimation (MLE) is one of the most useful
techniques for derivingpoint estimators.As a lead-in to thismethod, a simple example
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will be considered. The assumption that the sample is representative of the population
will be exercised both in the example and later discussions.

Example 3.5
Consider a sequence of 25Bernoulli trials (binomial situation)where each trial results
in either success or failure. From the 25 trials, 6 failures and 19 successes result. Let
p be the probability of success, and 1–p the probability of failure. Find the estimator
of p, p̂, which maximizes that particular outcome.

Solution: The sample density function can be written as

g(19) =
(
25

19

)

p19(1 − p)6.

The maximum of g(19) occurs when

p = p̂ = 19

25

so that

g

(

19|p = 19

25

)

≥ g

(

19|p �= 19

25

)

Now g(19) is the probability or “likelihood” of 6 failures in a sequence of 25 trials.
Select p = p̂ = 19

25 as the probability or likelihood maximum value and, hence, p̂ is
referred to as the maximum likelihood estimate. The reason for maximizing g(19)
is that the sample contained six failures, and hence, if it is representative of the
population, it is desired to find an estimate which maximizes this sample result. Just
as g(19) was a particular sample estimate, in general, one deals with a sample density:

f (x1, x2, . . . , xn) = f (x1; θ) f (x2; θ) · · · f (xn; θ) (3.11)

where x1, x2, …, xn are random, independent observation from a population with
density function f (x). For the general case, it is desired to find an estimate or
estimates,θ̂1, θ̂2, . . . , θ̂m (if such exist) where

f (x1, x2, . . . , xn; θ1, θ2, . . . , θm) > f (x1, x2, . . . , xn; θ ′1, θ ′2, . . . , θ ′m) (3.12)

Notation θ ’1, θ ’2,…, θ ’n refers to any other estimates different than θ̂1, θ̂2, . . . , θ̂m .
Once data have been collected and the likelihood function of amodel given the data

is determined, one is in a position to make statistical inferences about the population,
that is, the probability distribution that underlies the data.We are interested in finding
the parameter value that corresponds to the desired probability distribution. The
principle of maximum likelihood estimation (MLE), originally developed by R. A.
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Fisher in the 1920s, states that the desired probability distribution is the one that
makes the observed data “most likely,” which means that one must seek the value of
the parameter vector that maximizes the likelihood function.

Let us now discuss the method ofMLE. Consider a random sample X1, X2,…, Xn

from a distribution having pdf f (x; θ ). This distribution has a vector θ = (θ1, θ2, …,
θm)’of unknown parameters associated with it, where m is the number of unknown
parameters. Assuming that the random variables are independent, then the likelihood
function, L(X; θ ), is the product of the probability density function evaluated at each
sample point:

L(X, θ) =
n∏

i=1

f (Xi ; θ) (3.13)

where X = (X1, X2, …, Xn). The maximum likelihood estimator θ̂ is found by
maximizing L(X; θ ) with respect to θ. In practice, it is often easier to maximize
ln[L(X;θ )] to find the vector of MLEs, which is valid because the logarithm function
is monotonic. In other words, the maximum of L(X; θ ) will occur at the same value of
θ as that for ln[L(X; θ )]. The logarithm turns the multiplication of terms like f (Xi; θ )
into the addition of ln f (Xi; θ ). Thus, the log likelihood function, denoted as lnL(θ ),
is given by

ln L(θ) =
n∑

i=1

ln f (Xi ; θ) (3.14)

and is asymptotically normally distributed since it consists of the sum of n indepen-
dent variables and the implication of the central limit theorem. Since L(X; θ ) is a
joint probability density function for X1, X2, …, Xn, it must integrate equal to 1, that
is,

∞∫

0

∞∫

0

· · ·
∞∫

0

L(X; θ)dX = 1

Assuming that the likelihood is continuous, the partial derivative of the left-hand
side with respect to one of the parameters, θ i, yields

∂

∂θi

∞∫

0

∞∫

0

· · ·
∞∫

0

L(X; θ)dX =
∞∫

0

∞∫

0

· · ·
∞∫

0

∂

∂θi
L(X; θ)dX

=
∞∫

0

∞∫

0

· · ·
∞∫

0

∂ ln L(X; θ)

∂θi
L(X; θ)dX
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= E

[
∂ ln L(X; θ)

∂θi

]

= E[Ui (θ)] for i = 1, 2, . . . ,m (3.15)

whereU(θ)= (U1(θ ),U2(θ ),…Un(θ ))’ is often called the score vector and the vector
U(θ ) has components

Ui (θ) = ∂[ln L(X; θ)]
∂θi

for i = 1, 2, . . . ,m (3.16)

which, when equated to zero and solved, yields the MLE vector θ. In other words,
the MLE vector θ satisfy

∂[ln L(X; θ)]
∂θi

= 0 for i = 1, 2, . . . ,m

This means that if more than one parameter is to be estimated, the partial deriva-
tives with respect to each parameter are then set equal to zero and the resulting
differential equations are solved for the estimates. It is worth to note that one needs
to make sure whether the solution is actually a maximum and not a minimum or a
point of inflection. Often, the maximum likehood estimators are biased.

Suppose that we can obtain a non-trivial function of X1, X2, …, Xn, say h(X1, X2,
…, Xn), such that, when θ is replaced by h(X1, X2, …, Xn), the likelihood function
L will achieve a maximum. In other words,

L(X, h(X)) ≥ L(X, θ)

for every θ. The statistic h(X1,X2, …, Xn) is called a maximum likelihood estimator
of θ and will be denoted as

θ̂ = h(x1, x2, . . . , xn)

The observed value of θ̂ is called the MLE of θ. In other words, the MLE of θ is

θ̂ = argmax
θ∈�

ln L(θ) (3.17)

where� is the parameter space.Based on the asymptoticmaximum likelihood theory,
the MLE θ̂ is consistent and asymtotically efficient with limiting distribution

√
n
(
θ̂ − θ0

)
→ N

(
0, I−1(θ0)

)
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where θ0 is the true parameter value and I is the Fisher information matrix. The
asymptotic variance matrix I−1(θ0) can be estimated consistently by an empirical
variance matrix of the influence functions evaluated at θ̂ .

In general, the mechanics for obtaining the MLE can be obtained as follows:
Step 1. Find the joint density function L(X, θ ).
Step 2. Take the natural log of the join density, ln L(θ ).
Step 3. Take the partial derivatives of ln L(θ ) (or L(θ )) with respect to each

parameter.
Step 4. Set partial derivatives to “zero”.
Step 5. Solve for parameter(s).

Example 3.6
A sample of size n is drawn, without replacement, from a population of size N
composed of k individuals of type 1 and (N-k) individuals of type 2. Assume that a
population size N is unknown. The number X of individuals of type 1 in the sample
is a hypergeometric random variable with pdf.

P[X = x] =

(
k

x

)(
N − k

n − x

)

(
N

n

) x = 0, 1, 2, . . . , n (3.18)

Obtain the MLE of N when k and n are known.
Solution: Let

P(x, N ) =

(
k

x

)(
N − k

n − x

)

(
N

n

) .

Then

P(x, N )

P(x, N − 1)
=

⎛

⎝
k

x

⎞

⎠

⎛

⎝
N − k

n − x

⎞

⎠

⎛

⎝
N

n

⎞

⎠

⎛

⎝
k

x

⎞

⎠

⎛

⎝
N − k − 1

n − x

⎞

⎠

⎛

⎝
N − 1

n

⎞

⎠

.

After simplifications, we obtain



146 3 Statistical Inference

P(x, N )

P(x, N − 1)
= N 2 − kN − nN + kn

N 2 − kN − nN + xN
.

Note that P(x, N) is greater than, equal to, or less than P(x, N−1) according to kn
is greater than, equal to, or less than xN, or equivalently, as N is less than, equal to,
or greater than kn/x. We can now consider the following two cases.

Case 1: when kn
x is not an integer.

The sequence {P(x,N), N= 1, 2,…} is increasing when N < kn
x and is decreasing

when N > kn
x . Thus, the maximum value of P(x, N) occurs when N = ⌊

kn
x

⌋
which

is the largest integer less than kn
x .

Case 2: when kn
x is an integer.

In this case the maximum value of P(x, N) occurs when both P(x,N) and P(x,
N−1) are equal. This implies that

kn

x
− 1 =

⌊
kn

x

⌋

as an estimate of the population. Therefore, the MLE of N is N̂ = ⌊
kn
x

⌋
where �y�

denotes the greatest integer less than y.

Example 3.7
Let X1, X2, …, Xn be a random sample from the exponential distribu- tion with pdf.

f (x; λ) = λe−λx x > 0, λ > 0

The joint pdf of X1, X2, …, Xn, is given by

L(X, λ) = λne−λ
∑n

i=1 xi

and

ln L(λ) = n ln λ − λ

n∑

i=1

xi

The function lnL can be maximized by setting the first derivative of lnL, with
respect to λ, equal to zero and solving the resulting equation for λ. Therefore,

∂ ln L

∂λ
= n

λ
−

n∑

i=1

xi = 0

This implies that
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λ̂ = n
∑n

i=1 xi
.

The observed value of λ̂ is the MLE of λ.

Example 3.8
Let X1, X2, …, Xn, denote a random sample from the normal distribution N(μ, σ 2)
with unknown mean μ and known σ 2 where pdf is.

f (x;μ) = 1

σ
√
2π

e− (x−μ)2

2σ2 − ∞ < x < ∞, μ ∈ (−∞,∞). (3.19)

Find the maximum likelihood estimator of μ.
Solution: The likelihood function of a sample of size n is

L
(
x
∼

, μ
)

=
n∏

i=1

f (xi ;μ) =
n∏

i=1

1
(
σ
√
2π

)e− (xi−μ)2

2σ2

= 1
(
σ
√
2π

)n e
− 1

2σ2

∑n
i=1 (xi−μ)2

.

The log of likelihood function is

ln L = −n ln(
√
2πσ) − 1

2σ 2

n∑

i=1

(xi − μ)2.

Thus we have

∂ ln L

∂μ
= 1

σ 2

n∑

i=1

(xi − μ) = 0.

Solving the above equation, we obtain

μ̂ =
∑n

i=1 xi
n

= x̄ .

Thus, the MLE of μ is x̄ .

Example 3.9
In an exponential censored case, the non-conditional joint pdf that r items have failed
is given by.

f (x1, x2, . . . , xr ) = λr e−λ
∑r

i=1 xi (r failed items) (3.20)
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and the probability distribution that (n−r) items will survive is

P(Xr+1 > t1, Xr+2 > t2, . . . , Xn > tn−r ) = e−λ
∑n−r

j=1 t j

Thus, the joint density function is

L(X, λ) = f (x1, x2, . . . , xr ) P(Xr+1 > t1, . . . , Xn > tn−r )

= n!
(n − r)!λ

r e−λ(
∑r

i=1 xi+
∑n−r

j=1 t j)

Let

T =
r∑

i=1

xi +
n−r∑

j=1

t j (3.21)

then

ln L = ln

(
n!

(n − r)!
)

+ r ln λ − λT

and

∂ ln L

∂λ
= r

λ
− T = 0.

Hence,

∧
λ = r

T
. (3.22)

Note that with the exponential, regardless of the censoring type or lack of
censoring, the MLE of λ is the number of failures divided by the total operating
time.

Example 3.10
Let X1, X2, …, Xn represent a random sample from the distribution with pdf.

f (x; θ) = e−(x−θ) for θ ≤ x ≤ ∞ and − ∞ < θ < ∞. (3.23)

The likelihood function is given by

L(θ; X) =
n∏

i=1

f (xi ; θ) for θ ≤ xi ≤ ∞ all i
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=
n∏

i=1

e−(xi−θ) = e−∑n
i=1 xi+nθ .

For fixed values of x1, x2,…, xn, we wish to find that value of θ which maximizes
L(θ; X). Here we cannot use the techniques of calculus to maximize L(θ; X). Note
that L(θ; X) is largest when θ is as large as possible. However, the largest value of θ

is equal to the smallest value of Xi in the sample. Thus, θ̂ = min{Xi } 1 ≤ i ≤ n.

Example 3.11
Let X1, X2, …, Xn, denote a random sample from the normal distribution N(μ,σ 2).
Then the likelihood function is given by.

L(X, μ, σ 2) =
(

1

2π

) n
2 1

σ n
e− 1

2σ2

∑n
i=1 (xi−μ)2

and

ln L = −n

2
log(2π) − n

2
log σ 2 − 1

2σ 2

n∑

i=1

(xi − μ)2.

Thus we have

∂ ln L

∂μ
= 1

σ 2

n∑

i=1

(xi − μ) = 0

∂ ln L

∂σ 2
= − n

2σ 2
− 1

2σ 4

n∑

i=1

(xi − μ)2 = 0.

Solving the two equations simultaneously, we obtain

μ̂ =
∑n

i=1 xi
n

and σ̂ 2 = 1

n

n∑

i=1

(xi − x̄)2. (3.24)

Note that the MLEs, if they exist, are both sufficient and efficient estimates. They
also have an additional property called invariance, i.e., for an MLE of θ, then μ (θ )
is the MLE of μ (θ ). However, they are not necessarily unbiased, i.e., E(θ̂) = θ . The
point in fact is σ 2:

E(σ̂ 2) =
(
n − 1

n

)

σ 2 �= σ 2

Therefore, for small n, σ 2 is usually adjusted for its bias and the best estimate of
σ 2 is
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∧
σ 2 =

(
1

n − 1

) n∑

i=1

(xi − x̄)2

Sometimes it is difficult, if not impossible, to obtain maximum likelihood esti-
mators in a closed form, and therefore numerical methods must be used to maximize
the likelihood function. For illustration see the following example.

Example 3.12
Suppose that X1,X2, …, Xn is a random sample from the Weibull distribution with
pdf.

f (x, α, λ) = αλxα−1e−λxα

(3.25)

The likelihood function is

L(X, α, λ) = αnλn

(
n∏

i=1

xα−1
i

)

e−λ
∑n

i=1 x
α
i

Then

ln L = n logα + n log λ + (α − 1)
n∑

i=1

log xi − λ

n∑

i=1

xα
i

∂ ln L

∂α
= n

α
+

n∑

i=1

log xi − λ

n∑

i=1

xα
i log xi = 0

∂ ln L

∂λ
= n

λ
−

n∑

i=1

xα
i = 0

As noted, solutions of the above two equations for α and λ are extremely difficult
and require either graphical or numerical methods.

Example 3.13
Let X1, X2, …, Xn be a random sample from the gamma distribution with pdf.

f (x, λ, α) = λ(α+1)xαe−λx

(α!)n (3.26)

then the likelihood function and log of the likelihood function, respectively, are

L(X, λ, α) =
λn(α+1)

n∏

i=1
xα
i e−λ

∑n
i=1 xi

(α!)n
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ln L = n(α + 1) log λ + α

n∑

i=1

log xi−λ

n∑

i=1

xi − n log(α!).

Taking the partial derivatives, we obtain

∂ ln L

∂α
= n log λ +

n∑

i=1

log xi−n
∂

∂α
[logα!] = 0

∂ ln L

∂λ
= n(α + 1)

λ
−

n∑

i=1

xi = 0 (3.27)

The solutions of the two equations at Eq. (3.27) for α and λ are extremely difficult
and require either graphical or numerical methods.

Example 3.14
Let t1, t2,…, tn be failure times of a random variable having the loglog distribution,
also known as Pham distribution (Pham 2002), with two parameters a and α as
follows (see also Eq. (2.82), Chap. 2):

f (t) = α ln(a) tα−1 at
α

e1−at
α

for t > 0, α > 0, a > 1 (3.28)

From Chap. 2, Eq. (2.83), the Pham cdf is given by:

F(t) = 1 − e1−at
α

We now estimate the values of a and α using the MLE method. From Eq. (3.28),
the likelihood function is

L(a, α) =
n∏

i=1

α ln a · tα−1
i e1−at

α
i at

α
i

= αn(ln a)n

(
n∏

i=1

ti

)α−1

a
∑n

i=1 t
α
i en−∑n

i=1 a
tαi

The log likelihood function is

log L(a, α) = n logα + n ln(ln a) + (α − 1)

(
n∑

i=1

ln ti

)

+ ln a ·
n∑

i=1

tαi + n −
n∑

i=1

at
α
i (3.29)
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The first derivatives of the log likelihood function with respect to a and α are,
respectively,

∂

∂a
log L(a, α) = n

a ln a
+ 1

a
·

n∑

i=1

tαi −
n∑

i=1

tαi a
tαi −1 (3.30)

and

∂

∂α
log L(a, α) = n

α
+

n∑

i=1

ln ti + ln a
n∑

i=1

ln ti t
α
i

−
n∑

i=1

tαi a
tαi ln a ln ti (3.31)

Setting eqs. (3.30) and (3.31) equal to zero, we can obtain the MLE of a and α by
solving the following simultaneous equations:

n
ln a +

n∑

i=1
tαi −

n∑

i=1
tαi a

tαi = 0

n
α

+
n∑

i=1
ln ti + ln a ·

n∑

i=1
ln ti · tαi

(
1 − at

α
i
) = 0

After rearrangements, we obtain

ln a
n∑

i=1
tαi

(
at

α
i − 1

) = n

ln a ·
n∑

i=1
ln ti · tαi · (atαi − 1

) − n
α

=
n∑

i=1
ln ti

Example 3.15
Let t1, t2,…, tn be failure times of a random variable having the vtub-shaped failure
rate function. The probability density function f (t) of its vtub-shaped failure rate is
given by (see Eq. (1) in Chap. 2):

f (t) =
(
at ln(bt) + a

b

)
e−{at[ t

2 ln(bt) − t
4 + 1

b ]} for t > 0, a > 0, b > 0

We now estimate the two unknown parameters a and b using the MLE method.
From the pdf above, the likelihood function is given by

L(a, b) =
n∏

i=1

(
ati ln(bti ) + a

b

)
e
−a

∑n
i=1 ti

[
ti
2 ln(bti )− ti

4 + 1
b

]

.

The log likelihood function is
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ln L(a, b) =
n∑

i=1

ln
(
ati ln(bti ) + a

b

)

− a
n∑

i=1

ti

[
ti
2
ln(bti ) − ti

4
+ 1

b

]

.

By taking the first derivatives of the log likelihood function above with respect to
a and b and equate them to zero, and after some algebra, the MLE of a and b can be
easily obtained by solving the following equations:

⎧
⎨

⎩

a = 2b
∑n

i=1
bxi−1

(bxi ln(bxi )+1)∑n
i=1 xi (bxi−2)

∑n
i=1

bxi ln(bxi )+1
abxi ln(bxi )+a = ∑n

i=1 xi
[ xi
2 ln(bxi ) − xi

4 + 1
b

]
.

Example 3.16
Suppose that X1, X2, …, Xn are independent random variable, each with the uniform
distribution on [a − d, a + d] where a is known and d is positive and unknown. Find
the maximum likelihood estimator of d.

Solution: For i = 1,2,…, n, the pdf of Xi is given by

f (d, xi ) =
⎧
⎨

⎩

1

2d
if a − d ≤ xi ≤ a + d

0 otherwise.
(3.32)

The likelihood function is

L(d) =

⎧
⎪⎨

⎪⎩

(
1

2d

)n

if a − d ≤ x1, x2, . . . , xn ≤ a + d

0 otherwise.

To maximize L(c,d) is the same as to minimize (2d)n . In other words, L(d) will be
maximized by the smallest possible d with L(d) > 0. This implies for all i = 1,2,…,n

d ≥ −xi + a and d ≥ xi − a. Thus, d̂ = max
1≤i≤n

{|xi − a|}.

3.4 Invariance and Lower Bound on the Variance

In this section we discuss some properties of MLEs and how to establish a lower
bound on the variance using an inequality known as the Cramér-Rao inequality.

Theorem 3.1 (Invariance Principle)
If θ̂ is the MLE of parameter θ then g(θ̂ ) is the MLE of parameter g(θ).
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In other words, if the likelihood L(X, θ) is maximized at the point.
θ̂ = h(x1, x2, . . . , xn) then the function L(X, g(θ)) is maximized at the point

g
(
θ̂
)

= g(h(x1, x2, . . . , xn)).

Example 3.17

If θ̂ is the MLE of the variance σ 2 then
√

θ̂ is the MLE of the standard deviation σ.

Theorem 3.2 (Likelihood Principle) Consider two sets of data, x and y, obtained
from the same population, although possibly according to different sampling plans.
If the ratio of their likelihoods, L1(x,θ)

L2(y,θ)
, does not depend on θ, then both data sets

provide the same information about the parameter θ and consequently should lead
to the same conclusion about θ.

Example 3.18
Assume that we want to estimate θ, the probability of success of Bernoulli trials. One
experimental design consists of fixing n, the number of observations, and recording
the number of successes. If we observe x successes, the likelihood is.

L1(x, θ) =
(
n

x

)

θ x (1 − θ)n−x .

Suppose that one decide to fix x and take observations until x successes are
recorded. The probability that the observations will end on the nth trial is given
by negative binomial distribution, and the likelihood is

L2(n, θ) =
(
n − 1

x − 1

)

θ x (1 − θ)n−x .

Note that in the first case x was random and n fixed; in the second it is the other
way around. Thus, the ratio of these two likelihoods is given by

L1(x, θ)

L2(n, θ)
=

(
n

x

)

(
n − 1

x − 1

) ,

which does not depend on the parameter θ. The MLE of θ is θ̂ = x
n in either case.

Hence the additional information that in the second case the last experiment led to
success does not affect our estimate of the parameter θ.
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Theorem 3.3 (Cramér-Rao inequality) Let X1, X2, …, Xn denote a random sample
from a distribution with pdf f (x; θ ) for θ1 < θ < θ2, where θ1 and θ2are known. Let
Y = h(X1, X2, …, Xn) be an unbiased estimator of θ. The lower bound inequality on
the variance of Y, Var(Y), is given by.

Var(Y ) ≥ 1

nE

{[
∂ ln f (x;θ)

∂θ

]2
} = − 1

nE
(

∂2 ln f (x;θ)

∂θ2

) (3.33)

or

Var(Y ) ≥ 1

n I (θ)
(3.34)

where

I (θ) = E

{[
∂ ln f (x; θ)

∂θ

]2
}

also known as Fisher’s Information (see Problem 15).

Theorem 3.4 An estimator θ̂ is said to be asymptotically efficient if
√
nθ̂ has a

variance that approaches the Cramér-Rao lower bound for large n, that is,

lim
n→∞ Var(

√
nθ̂ ) = − 1

nE
(

∂2 ln f (x;θ)

∂θ2

) . (3.35)

Example 3.19
Let X1, X2, …, Xn denote a random sample from the Bernoulli distribution with a
pdf.

f (x) = px (1 − p)1−x x = 0, 1 0 ≤ p ≤ 1

where p is the probability of success in each trial.
Let Y represents the number of successes in n independent trials, that is, Y =

n∑

i = 1
Xi then we can easily show that W = Y

n is an unbiased estimator of p. We now

determine ifW is the minimum variance unbiased estimator of p. The variance ofW
is given by

V (W ) = 1

n2
V (Y ) = 1

n2
np(1 − p) =

p(1 − p)

n
.
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To obtain the lower bound of the Cramer-Rao inequality, we need to compute the
following

ln f = x ln p + (1 − x)ln(1 − p)

∂

∂p
ln f = x

p
− (1 − x)

(1 − p)

∂2

∂p2
ln f = − x

p2
− (1 − x)

(1 − p)2
.

Then

E

{
∂2

∂p2
ln f

}

= − p

p2
− (1 − p)

(1 − p)2
= − 1

p(1 − p)
.

Thus,

Var(W ) ≥ − 1

nE
(

∂2 ln f (x;θ)

∂θ2

)

= − 1

n
(
− 1

p(1−p)

) = p(1 − p)

n
= Var(W ).

This means that W is the

minimum variance unbiased estimator of p.

Example 3.20
Let T 1,T 2, …, Tn denote a random sample from an exponential distribution with the
mean μ and its pdf is given by.

f (t) = 1

μ
e− t

μ t ≥ 0, μ > 0.

Note that, from example 3.5, the MLE of μ is 	
μ =

n∑

i=1
Ti

n . Define Y =
∑n

i=1 Ti
n . Is

Y the minimum variance unbiased estimator of μ?
The variance of Y is given by

Var(Y ) = Var

(∑n
i=1 Ti
n

)

= 1

n2

n∑

i=1

Var(Ti ) = 1

n2
(
nμ2) = μ2

n
.

We now compute the lower bound using the Cramer-Rao inequality.

ln f = − lnμ − t

μ

∂ ln f

∂μ
= − 1

μ
+ t

μ2
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∂2 ln f

∂μ2
= 1

μ2
− 2t

μ3
.

Then

E

{
∂2 ln f

∂μ2

}

= 1

μ2
− 2E(T )

μ3
= 1

μ2
− 2μ

μ3
= − 1

μ2
.

Thus,

Var(Y ) ≥ − 1

nE
(

∂2 ln f (x;θ)

∂θ2

)

= − 1

n
(
− 1

μ2

) = μ2

n
= Var(Y ).

This shows that Y is the minimum variance unbiased estimator of μ.

3.5 Maximum Likelihood Estimation with Censored Data

Censored data arises when an individual’s life length is known to occur only in a
certain period of time. In other words, a censored observation contains only partial
information about the random variable of interest. In this section, we consider two
types of censoring. The first type is called Type-I censoring where the event is
observed only if it occurs prior to some pre-specified time. The second type is Type-
II censoring in which the study continues until the failure of the first r units (or
components), where r is some predetermined integer (r < n).

Examples of Type-II censoring are often used in testing of equipment life. Here
items are put on test at the same time, and the test is terminated when r of the n items
have failed and without replacement. Such an experiment may, however, save time
and resources because it could take a very long time for all items to fail. Both Type-I
and Type-II censoring arise in many reliability applications.

For example, there is a batch of transistors or tubes; we put them all on test at t
= 0, and record their times to failure. Some transistors may take a long time to burn
out, and we will not want to wait that long to end the experiment. Therefore, we
might stop the experiment at a pre-specified time tc, in which case we have Type-I
censoring, or we might not know beforehand what value of the fixed censoring time
is good so we decide to wait until a pre-specified number of units have failed, r, of
all the transistors has burned out, in which case we have Type-II censoring.

Censoring times may vary from individual to individual or from application to
application. We now discuss a generalized censoring times case, call a multiple-
censored data.
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3.5.1 Parameter Estimate with Multiple-Censored Data

A sample of n units are drawn at random and put on test with a pdf f and cdf F. The
likelihood function for the multiple-censored data is given by

L = f (t1, f , . . . , tr, f , t1,s, . . . , tm,s) = n!
(n − r)!

r∏

i=1

f (ti, f )
m∏

j=1

[1 − F(t j,s)] (3.36)

where f (.) is the density function and F(.) is the distribution function. There are r
failures at times t1, f , . . . , tr, f and m units (here, m = n s− r) with censoring times
t1,s, . . . , tm,s . Note that this includes Type-I censoring by simply setting ti,f = ti, n
and tj,s = t0 in the likelihood function in Eq. (3.36). Also, the likelihood function
for Type-II censoring is similar to Type-I censoring except tj,s = tr in Eq. (3.36). In
other words, the likelihood function for the first r observations from a sample size n
drawn from the model in both Type-I and Type-II censoring is given by

L = f (t1,n, . . . , tr,n) = n!
(n − r)!

r∏

i=1

f (ti,n) [1 − F(t∗)]n−r (3.37)

where t∗ = t0, the time of cessation of the test for Type-I censoring and t∗ = tr , the
time of the rth failure for Type-II censoring.

Example 3.21
Consider a two-parameter probability density distribution with multiple-censored
data and distribution function with failure rate bathtub shape, as given by (Chen
2000):

f (t) = λβtβ−1 exp
[
tβ + λ(1 − et

β

)
]
, t, λ, β > 0 (3.38)

and

F(t) = 1 − exp
[
λ(1 − et

β

)
]
, t, λ, β > 0 (3.39)

respectively. Substituting the functions f (t) and F(t) in Eqs. (3.38) and (3.39) into
Eq. (3.37), we obtain the logarithm of the likelihood function:

ln L = ln
n!

(n − r)! + r ln λ + r ln β +
r∑

i=1

(β − 1) ln ti

+ (m + r)λ +
r∑

i=1

tβi −
⎛

⎝
r∑

i=1

λet
β

i +
m∑

j=1

λet
β

j

⎞

⎠. (3.40)
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The function lnL can be maximized by setting the partial derivative of lnL with
respect to λ and β, equal to zero and solving the resulting equations simul-taneously
for λ and β. Therefore, we obtain

∂ ln L

∂λ
= r

λ
+ (m + r) −

r∑

i=1

et
β

i −
m∑

j=1

et
β

j ≡ 0

∂ ln L

∂β
= r

β
+

r∑

i=1

ln ti +
r∑

i=1

tβi ln ti

− λ

⎡

⎣
r∑

i=1

et
β

i tβi ln ti +
m∑

j=1

et
β

j tβj ln t j

⎤

⎦ ≡ 0.

This implies that

λ̂ = r
(
∑r

i=1 e
t β̂i + ∑m

j=1 e
t β̂j

)

− m − r
(3.41)

and β̂ is the solution of

r

β̂
+

r∑

i=1

ln ti +
r∑

i=1

t β̂i ln ti

=
r

(
∑r

i=1 e
t β̂i + ∑m

j=1 e
t β̂j

)

− m − r

⎡

⎣
r∑

i=1

et
β̂

i t β̂i ln ti +
m∑

j=1

et
β̂

j t β̂j ln t j

⎤

⎦ (3.42)

We now discuss two special cases as follows.
Case I: Type-I or Type-II Censoring Data.
From Eq. (3.37), the likelihood function for the first r observations from a sample

size n drawn from the model in both Type-I and Type-II censoring is

L = f (t1,n, . . . , tr,n) = n!
(n − r)!

r∏

i=1

f (ti,n) [1 − F(t∗)]n−r

where t∗ = t0, the time of cessation of the test for Type-I censoring and t∗ = tr , the
time of the rth failure for Type-II censoring Eqs. (3.41) and (3.42) become

λ̂ = r
∑r

i=1 e
t β̂i + (n − r)et

β̂∗ − n
. (3.43)
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r

β̂
+

r∑

i=1

ln ti +
r∑

i=1

t β̂i ln ti

= r
∑r

i=1 e
t β̂i + (n − r)et

β̂∗ − n

⎡

⎣
r∑

i=1

et
β̂

i t β̂i ln ti +
m∑

j=1

et
β̂

j t β̂j ln t j

⎤

⎦. (3.44)

Case II: Complete Censored Data.
Simply replace r with n in Eqs. (3.41) and (3.42) and ignore the t j portions. The

maximum likelihood equations for the λ and β are given by

λ̂ = n
∑n

i=1 e
t β̂i − n

(3.45)

n

β̂
+

n∑

i=1

ln ti +
n∑

i=1

t β̂i ln ti = n
∑n

i=1 e
t β̂i − n

×
n∑

i=1

et
β̂

i t β̂i ln ti . (3.46)

3.5.2 Confidence Intervals of Estimates

The asymptotic variance-covariance matrix of the parameters (λ and β) is obtain- ed
by inverting the Fisher information matrix

Ii j = E

[

− ∂2L

∂θi∂θ j

]

, i, j = 1, 2 (3.47)

where θ1, θ2 = λ or β (Nelson et al.1992). This leads to

[
Var(λ̂) Cov(λ̂, β̂)

Cov(λ̂, β̂) Var(β̂)

]

=
⎡

⎣
E
(
− ∂2 ln L

∂2λ
|λ̂,β̂

)
E
(
− ∂2 ln L

∂λ∂β
|λ̂,β̂

)

E
(
− ∂2 ln L

∂β∂λ
|λ̂,β̂

)
E
(
− ∂2 ln L

∂2β
|λ̂,β̂

)

⎤

⎦

−1

(3.48)

We can obtain an approximate (1–α)100% confidence intervals on parameter λ

and β based on the asymptotic normality of theMLEs (Nelson et al. 1992) as follows:

λ̂ ± Zα/2

√

Var(λ̂) and β̂ ± Zα/2

√

Var(β̂) (3.49)

where Zα/2 is upper percentile of standard normal distribution.
Equation Sect. 1.
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3.5.3 Applications

Consider a helicopter main rotor blade part code xxx-015-001-107 based on the
system database collected from October 1995 to September 1999 (Pham 2002). The
data set is shown in Table 3.1. In this application, we consider several distribution
functions including Weibull, lognormal, normal, and loglog distribution functions.
From Example 3.14, the Pham pdf (see Eq. 3.28) with parameters a and α is.

f (t) = α · ln a · tα−1 · atα · e1−at
α

for t > 0, α > 0, a > 0
and its corresponding log likelihood function (see Eq. 3.30) is

log L(a, α) = n logα + n ln(ln a) + (α − 1)

(
n∑

i=1

ln ti

)

+ ln a ·
n∑

i=1

tαi + n −
n∑

i=1

at
α
i

We next determine the confidence intervals for parameter estimates a and α. For the
log-likelihood function given in Eq. (3.30), we can obtain the Fisher information

matrix H as H =
[
h11 h12
h21 h22

]

where h11 = E
[
− ∂2 log L

∂a2

]

Table 3.1 Main rotor blade
data (hour)

1634.3 2094.3 3318.2

1100.5 2166.2 2317.3

1100.5 2956.2 1081.3

819.9 795.5 1953.5

1398.3 795.5 2418.5

1181 204.5 1485.1

128.7 204.5 2663.7

1193.6 1723.2 1778.3

254.1 403.2 1778.3

3078.5 2898.5 2943.6

3078.5 2869.1 2260

3078.5 26.5 2299.2

26.5 26.5 1655

26.5 3180.6 1683.1

3265.9 644.1 1683.1

254.1 1898.5 2751.4

2888.3 3318.2

2080.2 1940.1
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h12 = h21 = E

[

−∂2 log L

∂a ∂α

]

and h22 = E

[

−∂2 log L

∂α2

]

The variance matrix, V, can be obtained as follows:

V = [H ]−1 =
[

v11 v12

v21 v22

]

(3.50)

The variances of a and α are

Var(a) = v11 Var(α) = v22

One can approximately obtain the 100(1–β)% confidence intervals for a and α

based on the normal distribution as [â − z β

2

√
v11, â + z β

2

√
v11] and [α̂ − z β

2

√
v22,

α̂ + z β

2

√
v22], respectively, where vi j is given in Eq. (3.50) and zβ is (1-β/2)100%

of the standard normal distribution. After we obtain â and α̂, the MLE of reliability
function can be computed as

R̂(t) = e1−ât
α̂

Let us define a partial derivative vector for reliability R(t) as

v[R(t)] =
[
∂R(t)

∂a

∂R(t)

∂α

]

then the variance of R(t) can be obtained as follows:

Var [R(t)] = v[R(t)] · V · (v[R(t)])T (3.51)

where V is given in Eq. (3.50).
One can approximately obtain the (1−β)100% confidence interval for R(t) as

[
R̂(t) − zβ

√
Var [R(t)], R̂(t) + zβ

√
Var [R(t)],

]
.

The MLE parameter estimations of Pham distribution using the data set in Table
3.1 are given as follows:

α̂ = 1.1075 Var[α̂] = 0.0162

95% CI for α̂ : [0.8577, 1.3573]
â = 1.0002 Var[â] = 2.782e−8

95%CI for a: [0.9998, 1.0005]
MTTF = 1608.324 MRL(t = MTTF) = 950.475
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Figure 3.1 shows the loglog reliability and its 95% confidence interval of main
rotor blade, respectively. Figure 3.2 shows the reliability comparisons between the
normal, the lognormal, Weibull, and the loglog distributions for the main rotor blade
data set.
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3.6 Statistical Change-Point Estimation Methods

The change-point problem has been widely studied in reliability applications such
as biological sciences, survival analysis, and environmental statistics.

Assume there is a sequence of random variables X1, X2, . . . , Xn , that represent
the inter-failure times and exists an index change-point τ , such that X1, X2, . . . , Xτ

have a common distribution F with density function f (t) and Xτ+1, Xτ+2, . . . , Xn

have the distribution G with density function g(t), where F �= G. Consider the
following assumptions:

1. There is a finite unknown number of units, N, to put under the test.
2. At the beginning, all of the units have the same lifetime distribution F. After τ

failures are observed, the remaining (N−τ ) items have the distribution G. The
change-point τ is assumed unknown.

3. The sequence {X1, X2, . . . , Xτ } is statistically independent of the sequence
{Xτ+1, Xτ+2, . . . , Xn}.

4. The lifetime test is performed according to the Type-II censoring plan in which
the number of failures, n, is pre-determined.

Note that in hardware reliability testing, the total number of units to put on the test
N can be determined in advance. But in software, the parameter N can be defined as
the initial number of faults, and therefore it makes more sense for it to be an unknown
parameter. Let T1, T2, . . . , Tn be the arrival times of sequential failures. Then

T1 = X1

T2 = X1 + X2

...

Tn = X1 + X2 + . . . Xn (3.52)

The failure times T1, T2, . . . , Tτ are the first τ order statistics of a sample of size
N from the distribution F. The failure times Tτ+1, Tτ+2, . . . , Tn are the first (n−τ )
order statistics of a sample of size (N−τ ) from the distribution G.

Example 3.22
The Weibull change-point model of given life time distributions F and G with
parameters (λ1, β1) and (λ2, β2), respectively, can be expressed as follows:

F(t) = 1 − exp
(−λ1t

β1
)

(3.53)

G(t) = 1 − exp
(−λ2t

β2
)
. (3.54)

Assume that the distributions belong to parametric families {F(t |θ1 ) , θ1 ∈ �1}
and {G(t |θ2 ), θ2 ∈ �2}. Assume T1, T2, . . . , Tτ are the first τ order statistics of a
sample with sizeN from the distribution {F(t |θ1 ) , θ1 ∈ �1} and Tτ+1, Tτ+2, . . . , Tn
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are the first (n−τ ) order statistics of a sample of size (N−τ ) from the distribu-
tion {G(t |θ2 ), θ2 ∈ �2} where N is unknown. The log likelihood function can be
expressed as follows (Zhao 2003):

L(τ, N , θ1, θ2|T1, T2, . . . , Tn)

=
n∑

i=1

(N − i + 1) +
τ∑

i=1

f (Ti |θ1)

+
n∑

i=τ+1

g(Ti |θ2) + (N − τ) log(1 − F(Tτ |θ1))

+ (N − n) log(1 − G(Tn|θ2)). (3.55)

If the parameter N is known where hardware reliability is commonly considered,
then the likelihood function is given by

L(τ, θ1, θ2|T1 , T2, . . . , Tn)

=
τ∑

i=1

f (Ti |θ1) +
n∑

i=τ+1

g(Ti |θ2)

+ (N − τ) log(1 − F(Tτ |θ1) ) + (N − n) log(1 − G(Tn|θ2) ).

The MLE of the change-point value τ̂ and (N̂ , θ̂1, θ̂2) can be obtained by taking
partial derivatives of the log likelihood function in Eq. (3.55) with respect to the
unknown parameters that maximizes the function. It should be noted that there is no
closed form for τ̂ but it can be obtained by calculating the log likelihood for each
possible value of τ , 1 ≤ τ ≤ (n − 1), and selecting as τ̂ the value that maximizes
the log-likelihood function.

3.6.1 Application: A Software Model with a Change Point

In this applicationwe examine the casewhere the sample sizeN is unknown.Consider
a software reliability model developed by Jelinski and Moranda (1972), often called
the Jelinski-Moranda model. The assumptions of the model are as follows:

1. There are N initial faults in the program.
2. A detected fault is removed instantaneously and no new fault is introduced.
3. Each failure caused by a fault occurs independently and randomly in time

according to an exponential distribution.
4. The functions F andG are exponential distributions with failure rate parameters

λ1 and λ2, respectively.
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Based on the assumptions, the inter-failure times X1, X2, . . . , Xn are indepen-
dently exponentially distributed. Specifically,Xi = Ti − Ti−1,i = 1, 2, . . . τ, are
exponen-tially distributed with parameter λ1(N − i + 1) where λ1 is the initial fault
detection rate of the first τ failures and X j = Tj − Tj−1, j = τ + 1, τ + 2, . . . n, are
exponentially distributed with parameter λ2(N − τ − j + 1) where λ2 is the fault
detection rate of the first (n− τ) failures. If λ1 = λ2 it means that each fault removal
is the same and the change-point model becomes the Jelinski-Moranda software
reliability model (Jelinski and Moranda 1972).

The MLEs of the parameters (τ, N , λ1, λ2) can be obtained by solving the
following equations simultaneously:

λ̂1 = τ
∑τ

i=1

(
N̂ − i + 1

)
xi

(3.56)

λ̂2 = (n − τ)
n∑

i=τ+1

(
N̂ − i + 1

)
xi

(3.57)

n∑

i=1

1

(N̂ − i + 1)
= λ̂1

τ∑

i=1

xi + λ̂2

n∑

i=τ+1

xi . (3.58)

To illustrate the model, we use the data set as in Table 3.2 to obtain the unknown
parameters (τ, N , λ1, λ2) using Eqs. (3.56)–(3.58). The data in Table 3.2 (Musa et al.
1987) shows the successive inter-failure times for a real-time command and control
system. The table reads from left to right in rows, and the recorded times are execution

Table 3.2 Successive inter-failure times (in seconds) for a real-time command system

3 30 113 81 115 9 2 91 112 15

138 50 77 24 108 88 670 120 26 114

325 55 242 68 422 180 10 1146 600 15

36 4 0 8 227 65 176 58 457 300

97 263 452 255 197 193 6 79 816 1351

148 21 233 134 357 193 236 31 369 748

0 232 330 365 1222 543 10 16 529 379

44 129 810 290 300 529 281 160 828 1011

445 296 1755 1064 1783 860 983 707 33 868

724 2323 2930 1461 843 12 261 1800 865 1435

30 143 108 0 3110 1247 943 700 875 245

729 1897 447 386 446 122 990 948 1082 22

75 482 5509 100 10 1071 371 790 6150 3321

1045 648 5485 1160 1864 4116
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Fig. 3.3 The log-likelihood function versus the number of failures

times, in seconds. There are 136 failures in total. Figure 3.3 plots the log-likelihood
function vs number of failures. The MLEs of the parameters (τ, N , λ1, λ2) with one
change-point are given by

τ̂ = 16, N̂ = 145, λ̂1 = 1.1 × 10−4, λ̂2 = 0.31 × 10−4.

If we do not consider a change-point in the model, the MLEs of the parameters N
and λ can be given as

N̂ = 142, λ̂ = 0.35 × 10−4.

From Fig. 3.3, we can observe that it is worth considering the change-points in
the reliability functions.

3.7 Goodness of Fit Tests

The problem at hand is to compare some observed sample distribution with a theo-
retical distribution. In fact, a practitioner often wonders how to test some hypoth-
esis about the distribution of a population. If the test is concerned with the agree-
ment between the distribution of a set of observed sample values and a theoretical
distribution, we call it a “test of goodness of fit".

The basic question in validating distribution models is whether the shape of the
fitted model corresponds to that of the data. To do that, we may just simply make a
direct comparison of the observed data with what we expect to see from the fitted
distribution model. In this section, two common tests of goodness of fit that will
be discussed are the Chi-square test, χ2, and the Kolmogorov-Smirnov (KS) test.
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Note that the chi-square test requires all cell frequencies to exceed 5, whereas this
restriction is no longer required for KS test because there is no need to classify the
observations in carrying out the KS test.

3.7.1 The Chi-Square Test

The chi-square test often requires large samples and is applied by comparing the
observed frequencydistributionof the sample to the expected value under the assump-
tion of the distribution. More specifically, consider a large sample of size N. Let a0
< a1 < … < ak be the upper points of k subintervals of the frequency distribution.
Basically, the statistic

χ2 =
k∑

i=1

(
xi − μi

σi

)2

(3.59)

has a chi-square (χ2) distribution with k degrees of freedom where μi and σ i.
are the mean and the standard deviation from the normal distribution in the ith

subinterval, i = 1,2,…, k.
Let f i and Ei, for i = 1, 2,…, k, be the observed frequency and the expected

frequency in the ith subinterval, respectively. The expected frequency Ei in the ith
subinterval is.

Ei = N (Fi−Fi−1).
The chi-square test statistic is defined as

S =
k∑

i=1

( fi − Ei )
2

Ei
. (3.60)

It should be noted that

k∑

i=1

fi =
k∑

i=1

Ei = N

where N is the sample size. Therefore, the chi-square statistic S can be rewritten as

S =
k∑

i=1

f 2i
Ei

− N . (3.61)

The value of S is approximately distributed of χ2
1−α,k−1. Thus, if S ≥ χ2

1−α,k−1.
then the distribution F(x) does not fit the observed data.
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If the values of the parameters (some unknown parameters) of the distribution
have to be estimated from the sample, then we need to reduce the number of degrees
of freedom of χ2 by the number of estimated parameters. In other words, the degrees
of freedom are:

(the number of frequencies – 1 – number of parameters estimated with the same
data).

In this case, the distribution F(x) does not fit the observed data if S ≥ χ2
1−α,k−1−r

where r is the number of estimated parameters.
It should be noted that in order to get a good approximation the sample size N

needs to be large and values of Ei should not be small, not much less than 5. The
steps of chi-squared goodness of fit test are as follows:

1. Divide the sample data into the mutually exclusive cells (normally 8–12) such
that the range of the random variable is covered.

2. Determine the frequency, f i, of sample observations in each cell.
3. Determine the theoretical frequency, Ei, for each cell (area under density func-

tion between cell boundaries Xn—total sample size). Note that the theoreti-
cal frequency for each cell should be greater than 1. To carry out this step, it
normally requires estimates of the population parameters which can be obtained
from the sample data.

4. Form the statistic

S =
k∑

i=1

( fi − Ei )
2

Ei

where Ei = N (Fi − Fi−1).
5. From the χ2 tables, choose a value of χ2 with the desired significance level

and with degrees of freedom (=k–r−1), where r is the number of population
parameters estimated.

6. Reject the hypothesis that the sample distribution is the same as theoretical
distribution if

S ≥ χ2
1−α, k−r−1

where α is called the significance level.

Example 3.23
Given the data in Table 3.3, can the data be represented by the exponential distribution
with a significance level of α?

Solution: From the above calculation,
∧
λ = 0.00263, Ri = e−λti and Fi = 1−Ri.

Given that a value of significance level α is 0.1, from Eq. (3.60) we obtain
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Table 3.3 Sample
observations in each cell
boundary (N = 60)

Cell boundaries f i Qi = Fi ∗ 60 Ei = N(Fi−Fi−1) =
Qi−Qi−1

0–100 10 13.8755 13.8755

100–200 9 24.5422 10.6667

200–300 8 32.7421 8.1999

300–400 8 39.0457 6.3036

400–500 7 43.8915 4.8458

500–600 6 47.6168 3.7253

600–700 4 50.4805 2.8637

700–800 4 52.6819 2.2010

800–900 2 54.3743 1.6924

900–1,000 1 55.6753 1.3010

>1,000 1 60.0000 4.3247

S =
11∑

i=1

( fi − Ei )
2

Ei
= 8.7332

Here k = 11, r = 1. Then k–r–1 = 11–1–1 = 9. From Table A.3 in Appendix A,
the value of χ2 with nine degrees of freedom is 14.68, that is,

χ2
9d f (0.90) = 14.68

Since S = 8.7332 < 14.68, we would not reject the hypothesis of exponential with
λ = 0.00263.

Example 3.24
The number of defective soldering points found on a circuit board in a given day
is given in Table 3.4. Now the question here is: Can the data be represented by the
Poisson distribution with a significance level of α?

Solution: From Table 3.4, one can estimate the rate:
∧
λ = 56/33 = 1.7. The

expected frequency Ei is given by:

Table 3.4 Sample
observations in each cell
boundary (N = 33)

Number of
defective

Observed
frequency f i

Expected
frequency Ei

Total number
of defectives

0 6 6.04 0

1 8 10.26 8

2 12 8.71 24

3 4 4.92 12

4 or more 3 3.07 12

Total 33 56
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Ei = N P(D = i) = N
e−λλi

i!
.

Note that.
P(D = d) = e−λλd

d! for d = 0, 1, …, 4
Given that a value of significance level α is 0.1, from Eq. (3.60) we obtain

S =
4∑

i=0

( fi − Ei )
2

Ei
= 1.912

From Table A.3 in Appendix A, the value of χ2 with three degrees of freedom
(k−1–1 = 3) is

χ2
3d f (0.90) = 6.25

Since S = 1.912 < 6.25, we would not reject the hypothesis of Poisson model.

Example 3.25
Consider a sample of 100 failure times of electric generators (in hours). We now
determine whether the distribution of failure times is normal. Table 3.5 gives the
observed frequencies and expected frequencies over 8 intervals. Given that the esti-
mated values of the mean μ and standard deviation σ are μ = 0.122 and σ =
0.011.

we obtain

S =
8∑

i=1

( fi − Ei )
2

Ei
= 5.404

From Table A.3 in Appendix A, the value of χ2 with 5 degrees of freedom (i.e.,
k−1–r = 8–1–2 = 5) is

Table 3.5 Sample
observations of 100 failure
times (N = 100, k = 8)

Intervals Observed frequency f i Expected frequency Ei

325–400 7 6.10

400–475 9 7.70

475–550 17 12.60

550–625 12 16.80

625–700 18 18.10

700–725 11 15.90

725–800 12 11.40

>800 14 11.40

N = 100
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χ2
5d f (0.90) = 9.24

Since S = 5.404 < 9.24, we would not reject the hypothesis of normality.

3.7.2 Kolmogorov–Smirnov (KS) Test

Both the χ2 and KS tests are non-parameters. However, the χ2 assumes large sample
normality of the observed frequency about its mean while the KS test only assumes
a continuous distribution. Suppose the hypothesis is that the sample comes from a
specified population distribution with c.d.f. F0(x). The test statistic compares the
observed (empirical) distribution of the sample Fn(x), to F0(x) and considers the
maximum absolute deviation between the two cdfs (Fn(x) and F0(x)). Let X (1) ≤
X (2) ≤ X (3) ≤ … ≤ X(n) denote the ordered sample values. Define the observed
distribution function, Fn(x), as follows:

Fn(x) =

⎧
⎪⎪⎨

⎪⎪⎩

0 for x ≤ x(1)

i

n
for x(i) < x ≤ x(i+1)

1 for x > x(n)

(3.62)

Assume the testing hypothesis

H0 : F(x) = F0(x)

where F0(x) is a given continuous distribution and F(x) is an unknown distribution.
The KS test statistic can be computed as follows:

Dn = max−∞<x<∞ |Fn(x) − F0(x)|. (3.63)

Since F0(x) is a continuous increasing function, we can evaluate |Fn(x)–F0(x)|
for each n. Table A.4 in Appendix A (Smirnov 1948) gives certain critical values
dn,α of the distribution of Dn, which is the maximum absolute difference between
sample and population cumulative distributions, for various sample sizes n and a is
the level of significance. For example, the critical value dn,α for n = 10 at a 0.05
level of significance is 0.409. This means that in 5 percent of random samples of
size 10, the maximum absolute deviation between the sample observed cumulative
distribution and the population cumulative distribtuion will be at least 0.409.

IfDn ≤ dn,α then we would not reject the hypothesis distribution Ho. IfDn > dn,α ,
then we reject the hypothetical distribution. The value dn,α can be found in Table
A.4 in Appendix A. This test implies that
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P{Dn > dn,α} = α.

Substituting for Dn and rearranging gives a 100(1–α)% confidence level for F(x)
as follows:

F̂(x) − dn,α ≤ F(x) ≤ F̂(x) + dn,α

or, equivalently, that

P{F̂(x) − dn,α ≤ F(x) ≤ F̂(x) + dn,α} = 1 − α.

Example 3.26
(Continued from Example 3.25) Can the data given in Table 3.4 be represented by
the Poisson distribution with a significance level of α using KS test?

To obtain the calculation in Table 3.6:
Fn(x): is the cumulative observed frequency/33.
F0(x): is the estimated from cumulative P(d) (see table below).

where
P(d) = e−λ λd

d! for d = 0, 1, …, 4
and λ = 1.7. Thus,

Table 3.6 KS test calculations (N = 33)

Number of
defective

Observed
frequency

Cum. observed
frequency

Fn(x) F0(x) |Fn(x)− F0(x)|

0 6 6 0.182 0.183 0.001

1 8 14 0.424 0.494 0.07

2 12 26 0.788 0.758 0.03

3 4 30 0.909 0.907 0.002

4 or more 3 33 1.000 1.000 0.000

Table 3.7 KS test Number of
defective

Observed
frequency
f i

P(d) CumulativeP(d)

0 6 0.183 0.183

1 8 0.311 0.494

2 12 0.264 0.758

3 4 0.149 0.907

4 or more 3 0.093 1.000

Total 33 1.000
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Dn = max−∞<x<∞ |Fn(x) − F0(x)| = 0.070

From Table A.4 in Appendix A, here N = 33 and α = 10% then we obtain dn,α =
0.21. Since 0.070 < 0.21 (Dn ≤ dn,α) therefore, the hypothesis of the Poisson model
is accepted.

Example 3.27
Determine whether the following failure data (in days) of a system:

10.50, 1.75, 6.10, 1.30, 15.00, 8.20, 0.50, 20.50, 11.05, 4.60.
be represented as a sample from an exponential population distribution with

constant rate λ = 0.20 failures per day at the (α = ) 5% level of the significance
using KS test?

Solution: Under the hypothesis that failure times are exponential distribution, so
the theoretical pdf and cdf are given by:

f (x) = 0.2e−0.2x for x >0

and

F(x) = 1 − e−0.2x

respectively. From Table 3.8, the maximum difference Dn is 0.2061. From Table
A.4 in Appendix A, here n = 10 and α = 5% then we obtain the critical value
dn,α = 0.409. Since Dn ≤ dn,α therefore, the null hypothesis, that failure times are
exponentially distributed with constant rate λ = 0.20, cannot be rejected at the 5%
level of significance.

Table 3.8 The observed and
theoretical cdf values

Failure time x Fn(x) F0(x) |Fn(x)–F0(x)|

0.50 0.10 0.0952 0.0048

1.30 0.20 0.2289 0.0289

1.75 0.30 0.2953 0.0047

4.60 0.40 0.6015 0.2015

6.10 0.50 0.7048 0.2048

8.20 0.60 0.8061 0.2061

10.50 0.70 0.8776 0.1776

11.05 0.80 0.8903 0.0903

15.00 0.90 0.9503 0.0503

20.50 1.00 0.9835 0.0165
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3.8 Test for Independence

The n elements of a sample may be classified according to two different criteria.
It is of interest to know whether the two methods of classification are statistically
independent. Assume that the firstmethod of classification has r levels and the second
method of classification has c levels. Let Oij be the observed frequency for level i
of the first classification method and level j of the second classification method as
shown in Table 3.9 for i = 1,2,…,r and j = 1,2,…,c.

We are interested in testing the hypothesis that the row and column methods of
classification are independent. If we reject this hypothesis, we conclude there is some
interaction between the two criteria of classification. The test statistic

λ2
vahe =

r∑

i=1

c∑

j=1

(
Oi j − Ei j

)2

Ei j
∼ λ2

(r−1)(c−1) (3.64)

andwewould reject the hypothesis of independence ifλ2
value > λ2

α,(r−1)(c−1) where
Eij, the expected number in each cell, is

Ei j = 1

n

(
r∑

i=1

Oi j

)⎛

⎝
c∑

j=1

Oi j

⎞

⎠.

For example,

Table 3.9 Observed frequency for level i and level j of classification

1 2 3 … c Total

1 O11 O12 O13 O1c c∑

j=1
O1 j

2 O21 O22 O23 O2c c∑

j=1
O2 j

3 O31 O32 O33 O3c c∑

j=1
O3 j

…

r Or1 Or2 Or3 Orc c∑

j=1
Or j

Total r∑

i=1
Oi1

r∑

i=1
Oi2

r∑

i=1
Oi3

r∑

i=1
Oic

n
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Table 3.10 A random sample of 395 people

Variable B

VarA/VarB Observed 15–20 21–30 31–40 41–65 Total

Yes 60 54 46 41 201

Variable A No 40 44 53 57 194

Total 100 98 99 98 395

E21 = 1

n

(
r∑

i=1

Oi1

)⎛

⎝
c∑

j=1

O2 j

⎞

⎠

E32 = 1

n

(
r∑

i=1

Oi2

)⎛

⎝
c∑

j=1

O3 j

⎞

⎠.

Example 3.28
A random sample of 395 people were surveyed. Each person was asked their interest
in riding a bicycle (Variable A) and their age (Variable B). The data that resulted
from the survey is summarized in Table 3.10.

Is there evidence to conclude, at the 0.05 level, that the desire to ride a bicycle
depends on age? In other words, is age independent of the desire to ride a bicycle?

Solution: Here r = 2 and c = 4. The expected number in each cell can be obtained
as shown in Table 3.11:

E11 = 1

395

(
2∑

i=1

Oi1

)⎛

⎝
4∑

j=1

O1 j

⎞

⎠ = 1

395
(100)(201) = 50.8861

E12 = 1

395

(
2∑

i=1

Oi2

)⎛

⎝
4∑

j=1

O1 j

⎞

⎠ = 1

395
(98)(201) = 49.8684

E13 = 1

395
(99)(201) = 50.3772

. . .

E23 = 1

395
(99)(194) = 48.6228

E24 = 1

395
(98)(194) = 48.1316

The test statistic value

λ2
value =

2∑

i=1

4∑

j=1

(
Oi j − Ei j

)2

Ei j
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Table 3.11 The expected values

Variable B

VarA/VarB Expected 15–20 21–30 31–40 41–65 Total

Yes 50.8861 49.8684 50.3772 49.8684 201

Variable A No 49.1139 48.1316 48.6228 48.1316 194

Total 100 98 99 98 395

= (60 − 50.8861)2

50.8861
+ (54 − 49.8684)2

49.8684
+ . . . + (57 − 48.1316)2

48.1316
= 8.0062

Here α = 0.05. So χ2
0.05,(2−1)(4−1) = χ2

0.05,3 = 7.815. Since χ2
value = 8.0062 >

7.815 we, therefore, reject the null hypothesis. That is, there is sufficient evidence,
at the 0.05 level, to conclude that the desire to ride a bicycle depends on age.

3.9 Statistical Trend Tests of Homogeneous Poisson Process

Let us assume that repairable units observe from time t = 0, with successive failure
times denoted by t1, t2, .... An equivalent representation of the failure process is
in terms of the counting process {N (t), t ≥ 0}, where N (t) equals the number of
failures in (0, t]. Repairable units are those units which can be restored to fully satis-
factory performance by a method other than replacement of entire system (Ascher
and Feingold 1984). It is assumed that simultaneous failures are not possible and
the repair times are negligible compared to times between failures. In other word, it
is assumed that repair times equal 0. The observed failure times during the interval
(0,T] for a specific unit are denoted by t1, t2, ...tN (T ).

Trend analysis is a common statistical method used to investigate the changes
in a system device or unit over time. Based on the historical failure data of a unit
or a group of similar units, one can test to determine whether the recurrent failures
exhibit an increasing or decreasing trend subject to statistical tests. In other words,
there are several methods to test whether the observed trend based on the failure data
is statistically significant or there is no trend. This implies that, for the case there is
no trend, the failure rate is constant or the failure process is homogeneous Poisson
process. A number of tests such as Laplace Test and Military Handbook Test have
been developed for testing the following null hypotheses (see Ascher and Feingold
1984):

H0:No trend (Failure times observed are independently and identically distributed
(iid), homogeneous Poisson process).

Against the alternative hypothesis.
H1: Monotonic trend, i.e. the process is nonhomogeneous Poisson process

(NHPP).
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By rejection of null hypothesis, (case H1) failure rate is not constant and the
cumulative no of fault vs. time have concave or convex shape, respectively. Let ti
denote the running time of repairable item at the ith failure, i = 1,…,n and N (ti )
be the total number of failures observed till time tn(failure truncated case) or the
observation is terminated at time T censored time for time truncated case which is
discusses in the following subsections. Following we discuss the Laplace trend test
and Military Handbook test. These tests can be used to detect existence of trends in
the data set of successive failure times.

3.9.1 Laplace Trend Test

The Laplace trend test can be used to detect existence of trends in the failure data of
successive event times. Depend on the data type whether is time truncated or failure
truncated, we can calculate Laplace trend index as follows:

TimeTruncated Test: Suppose that observation is terminated at time T and N (tn)
failures are recorded at time t1 < t2 < ... < tn < T . The test statistic U of Laplace
trend test in this case is given by

U = √
12.N (tn)

( ∑n
1 ti

T .N (tn)
− 0.5

)

(3.65)

Failure Truncated Test: In the cases where the observation terminates at a failure
event, say tn , instead of T, the test statistics for failure truncated data is given by

U = √
12 N (tn−1)

( ∑n−1
1 ti

tn N (tn−1)
− 0.5

)

. (3.66)

In both test cases, the test statistic U is approximately standard normally N (0, 1)
distributed when the null hypothesis H0 is true.

At significance levelα of 5%for example, the lower andupper boundof confidence
interval are −1.96 and + 1.96, respectively. If U is less than lower bound or greater
than upper bound then there is a trend in the data. In these cases, we can reject the
null hypothesis of trend free at 5% and accept the alternative hypothesis. In the first
case, there is reliability growth (U is less than lower bound) and in second case (U
is greater than upper bound) there is reliability deterioration. Hence, in these cases,
one need to be some probability distributions that can fit to the failure data set, other
than exponential distribution.

In general, at significance level α, the rejection criteria of the null hypothesis is
given by.

Reject H0 : U < −zα/2 or U > zα/2 (3.67)
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where zα is (1 − α)th quantile of the standard normal distribution.

3.9.2 Military Handbook Test

This test is based on the assumption that a failure intensity of r(t) = λβ tβ−1 is
appropriate (MIL-HDBK-189 1981). When β = 1, the failure intensity reduces to
r(t) = λ, which means the failure process follows a HPP. Hence the test determines
whether an estimate of β is significantly different from 1 or not. The null hypothesis
test in this case is β = 1 i.e. no trend in data (HPP) vs. alternative hypothesis β �= 1,
there is trend in the failure history (NHPP):

Time Truncated Test: During a test period T suppose that n failure are recorded
at time t1 < t2 < ... < tn < T .The mathematical test in this case is given by:

S = 2
n∑

i=1

ln
T

ti
. (3.68)

According to (MIL-HDBK-189, 1981), S has chi-square distribution with 2n
degree of freedom. In this case, the rejection criteria is given by:

Reject H0 when S < χ2
2n, 1−α/2 or S > χ2

2n, α/2. (3.69)

In other words, the hypothesis (H0) of trend free is rejected for the values beyond
the interval boundaries. Low values of S correspond to deteriorating while large
values of S correspond to improving.

Failure Truncated Test: If the data are failure truncated at tn instead of time
truncated at T, S has chi-square distribution with 2(n−1) degree of freedom when
the null hypothesis H0 is true. The test statistic S of Military handbook test in this
case is given by:

S = 2
n−1∑

i=1

ln

(
tn
ti

)

. (3.70)

Here, the rejection criterion is given by:

Reject H0 when S < χ2
2(n−1), 1−α/2 or S > χ2

2(n−1), α/2. (3.71)

The hypothesis of HPP (H0) is rejected for the values beyond the following
interval:

[
χ2
2(n−1),1−α/2, χ

2
2(n−1),α/2

]
.
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3.10 Least Squared Estimation

A problem of curve fitting, which is unrelated to normal regression theory and MLE
estimates of coefficients but uses identical formulas, is called the method of least
squares. This method is based on minimizing the sum of the squared distance from
the best fit line and the actual data points. It just so happens that finding theMLEs for
the coefficients of the regression line also involves these sums of squared distances.

Normal Linear Regression

Regression considers the distributions of one variable when another is held fixed
at each of several levels. In the bivariate normal case, consider the distribution of
X as a function of given values of Z where X = α + βZ . Consider a sample of n
observations (xi, zi), we can obtain the likelihood and its natural log for the normal
distribution as follows:

f (x1, x2, . . . , xn) = 1

2π
n
2

(
1

σ 2

) n
2
e− 1

2σ2

∑n
i=1 (xi−α−βzi )2

ln L = −n

2
log 2π − n

2
log σ 2 − 1

2σ 2

n∑

i=1

(xi − α − βzi )
2. (3.72)

Taking the partial derivatives of lnL with respect to α and β, we have

∂ ln L

∂α
=

n∑

i=1

(xi − α − βzi )
2 = 0

∂ ln L

∂β
=

n∑

i=1

zi (xi − α − βzi ) = 0.

The solution of the simultaneous equations is

α̂ = X̄ − β Z̄

β̂ =
∑n

i=1 (Xi − X̄)(Zi − Z̄)
∑n

i=1 (Zi − Z̄)2
. (3.73)

Least Squared Straight Line Fit

Assume there is a linear relationship between X and E(Y/x), that is, E(Y/x) = a +
bx. Given a set of data, we want to estimate the coefficients a and b that minimize
the sum of the squares. Suppose the desired polynomial, p(x), is written as

m∑

i=0

ai x
i
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where a0, a1,…, am are to be determined. The method of least squares chooses as
the solutions those coefficients minimizing the sum of the squares of the vertical
distances from the data points to the presumed polynomial. This means that the
polynomial termed “best” is the one whose coefficients minimize the function L,
where

L =
n∑

i=1

[yi − p(xi )]2.

Here, we will treat only the linear case, where X = α + βZ. The procedure for
higher-order polynomials is identical, although the computations becomemuchmore
tedious. Assume a straight line of the form X = α + βZ. For each observation (xi,
zi): Xi = α + βZi, let

Q =
n∑

i=1

(xi − α − βzi )
2.

We wish to find α and β estimates such as to minimize Q. Taking the partial
differentials, we obtain

∂Q

∂α
= −2

n∑

i=1

(xi − α − βzi ) = 0

∂Q

∂β
= −2

n∑

i=1

zi (xi − α − βzi ) = 0.

Note that the above are the same as the MLE equations for normal linear
regression. Therefore, we obtain the following results:

α̂ = x̄ − β z̄

β̂ =
∑n

i=1 (xi − x̄)(zi − z̄)
∑n

i=1 (zi − z̄)2
. (3.74)

The above gives an example of least squares applied to a linear case. It follows
the same pattern for higher-order curves with solutions of 3, 4, and so on, from the
linear systems of equations.

3.11 Interval Estimation

A point estimate is sometimes inadequate in providing an estimate of an unknown
parameter since it rarely coincides with the true value of the parameter. An alternative
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way is to obtain a confidence interval estimation of the form [θL, θU ] where θL

is the lower bound and θU is the upper bound. A confidence interval (CI) is an
interval estimate of a population parameter that also specifies the likelihood that the
interval contains the true population parameter. This probability is called the level
of confidence, denoted by (1−α), and is usually expressed as a percentage.

Point estimates can become more useful if some measure of their error can be
developed, i.e., some sort of tolerance on their high and low values could be devel-
oped. Thus, if an interval estimator is [θL, θU ] with a given probability (1−α), then
θL and θU will be called 100(l−α)% confidence limits for the given parameter θ

and the interval between them is a 100(l−α)% confidence interval and (1−α) is also
called the confidence coefficient.

3.11.1 Confidence Intervals for the Normal Parameters

The one-dimensional normal distribution has two parameters: mean μ and variance
σ 2. The simultaneous employment of both parameters in a confidence statement
concerning percentages of the population will be discussed in the next section on
tolerance limits. Hence, individual confidence statements about μ and σ 2 will be
discussed here.

Confidence Limits for the Mean µ with Known σ 2.
It is easy to show that the statistic

Z = X̄ − μ

σ/
√
n

is a standard normal distribution where

X̄ = 1

n

n∑

i=1

Xi

Hence, a 100(l − α)% confidence interval for the mean μ is given by

P

[

X̄ − Z α
2

σ√
n

< μ < X̄ + Z α
2

σ√
n

]

= 1 − α (3.75)

In other words,

μL = X̄ − Z α
2

σ√
n

and μU = X̄ + Z α
2

σ√
n
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For the normal distribution, an empirical rule relates the standard deviation to the
proportion of the observed values of the variable in a data set that lie in an interval
around the sample mean can be approximately expressed as follows:

• 68% of the values lie within: x̄ ± sx
• 95% of the values lie within: x̄ ± 2sx
• 99.7% of the values lie within: x̄ ± 3sx

Example 3.29
Draw a sample of size 4 from a normal distribution with known variance = 9, say
x1 = 2, x2 = 3, x3 = 5, x4 = 2. Determine the location of the true mean (μ). The
sample mean can be calculated as.

x̄ =

n∑

i=1
xi

n
= 2 + 3 + 5 + 2

4
= 3

Assuming that α = 0.05 and from the standard normal distribution (Table A.1 in
Appendix A), we obtain

P

[

3 − 1.96
3√
4

< μ < 3 + 1.96
3√
4

]

= 0.95

P[0.06 < μ < 5.94] = 0.95

This example shows that there is a 95%probability that the truemean is somewhere
between 0.06 and 5.94. Now, μ is a fixed parameter and does not vary, so how do we
interpret the probability? If the samples of size 4 are repeatedly drawn, a different set
of limits would be constructed each time. With this as the case, the interval becomes
the random variable and the interpretation is that, for 95% of the time, the interval
so constructed will contain the true (fixed) parameter.

Confidence Limits for the Mean μ with Unknown σ 2.
Let

S =
√
√
√
√ 1

n − 1

n∑

i=1

(Xi − X̄)2 (3.76)

It can be shown that the statistic

T = X̄ − μ
S√
n

has a t distribution with (n−1) degrees of freedom (see Table A.2 in Appendix
A). Thus, for a given sample mean and sample standard deviation, we obtain
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P
[
|T | < t α

2 ,n−1

]
= 1 − α

Hence, a 100(l − α)% confidence interval for the mean μ is given by

p

[

X̄ − t α
2 ,n−1

S√
n

< μ < X̄ + t α
2 ,n−1

S√
n

]

= 1 − α (3.77)

Example 3.30
A problem on the variability of a new product was encountered. An experiment was
run using a sample of size n = 25; the sample mean was found to be X̄ = 50 and the
variance σ 2 = 16. From Table A.2 in Appendix A, t α

2 ,n−1 = t.975,24 = 2.064. A 95%
confidence limit for μ is given by.

P

[

50 − 2.064

√
16

25
< μ < 50 + 2.064

√
16

25

]

= 0.95

P[48.349 < μ < 51.651] = 0.95

Note that, for one-sided limits, choose tα , or t1−α .

Example 3.31
Consider a normal distribution with unknown mean μ and unknown standard devia-
tion σ. Suppose we draw a random sample of size n = 16 from this population, and
the sample values are:

16.16 9.33 12.96 11.49

12.31 8.93 6.02 10.66

7.75 15.55 3.58 11.34

11.38 6.53 9.75 9.47

Compute the confidence interval for the mean μ and at confidence level 1− α =
0.95.

Solution: A C.I. for μ at confidence level 0.95 when σ is unknown is obtained
from the corresponding t-test. The C.I is

X̄ − t1− α
2 ,n−1

S√
n

≤ μ ≤ X̄ + t1− α
2 ,n−1

S√
n

The sample mean and sample variance, respectively, are:

X̄ = 10.20 and S2 = 10.977

The sample standard deviation is: S = 3.313. Also, t1− α
2 ,n−1 = t0.975,15 = 2.131.
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The 95% C.I. for μ is

10.20 − 2.131
3.313√

16
≤ μ ≤ 10.20 + 2.131

3.313√
16

or

8.435 ≤ μ ≤ 11.965

Confidence Limits on σ 2.

Note that n σ 2
∧

σ 2 has a χ2 distribution with (n−1) degrees of freedom. Correcting

for the bias in
∧
σ 2, then (n−1)

∧
σ 2/ σ 2 has this same distribution. Hence,

P

[

χ2
α
2 ,n−1

<
(n − 1)S2

σ 2
< χ2

1− α
2 ,n−1

]

= 1 − α

or

P

⎡

⎣
∑

(xi − x̄)2

χ2
1− α

2 ,n−1

< σ 2 <

∑
(xi − x̄)2

χ2
α
2 ,n−1

⎤

⎦ = 1 − α. (3.78)

Similarly, for one-sided limits, choose χ2(α) or χ2(1−α).

3.11.2 Confidence Intervals for the Exponential Parameters

The pdf and cdf of the exponential distribution are given as

f (x) = λe−λx x > 0, λ > 0

and

F(x) = 1 − e−λx

respectively. From Eq. (3.22), it was shown that the distribution of a function of
the estimate

∧
λ = r

∑r
i=1 xi + (n − r)xr

(3.79)
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derived from a test of n identical components with common exponential failure
density (failure rate λ), whose testing was stopped after the rth failure, was chi-
squared (X2), i.e.,

2r
λ

λ̂
= 2λT (χ2distribution with 2r degrees of freedom)

where T is the total accrued time on all units. Knowing the distribution of 2λT allows
us to obtain the confidence limits on the parameter as follows:

P

[

χ2
1− α

2 ,2r
< 2λT < χ2

α
2 ,2r

]

= 1 − α

or, equivalently, that

P

⎡

⎣
χ2
1− α

2 ,2r

2T
< λ <

χ2
α
2 ,2r

2T

⎤

⎦ = 1 − α

This means that in (1−α)% of samples with a given size n, the random interval

⎛

⎝
χ2
1− α

2 ,2r

2T
,

χ2
α
2 ,2r

2T

⎞

⎠ (3.80)

will contain the population of constant failure rate. In terms of θ = 1/λ or the
mean time between failure (MTBF), the above confidence limits change to

P

⎡

⎣ 2T

χ2
α
2 ,2r

< θ <
2T

χ2
1− α

2 ,2r

⎤

⎦ = 1 − α.

If testing is stopped at a fixed time rather than a fixed number of failures, the
number of degrees of freedom in the lower limit increases by two. Table 3.12 shows

Table 3.12 Confidence
limits for θ

Confidence limits Fixed number of
failures

Fixed time

One-sided lower
limit

2T
χ2

α,2r

2T
χ2

α,2r+2

One-sided upper
limit

2T
χ2
1−α,2r

2T
χ2
1−α,2r

Two-sided limits 2T
χ2

α/2,2r
, 2T

χ2
1−α/2,2r

2T
χ2

α/2,2r+2
, 2T

χ2
1−α/2,2r
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the confidence limits for θ, the mean of an exponential density.

Example 3.32
(Two-sided) From the goodness of fit example, T = 22,850, testing stopped after r
= 60 failures. We can obtain λ̂ = 0.00263 and θ̂ = 380.833. Assu-ming that α =
0.1, then, from the above formula, we obtain.

P

[
2T

χ2
0.05,120

< θ <
2T

χ2
0.95,120

]

= 0.9

P

[
45, 700

146.568
< θ <

45, 700

95.703

]

= 0.9

P[311.80 < θ < 477.52] = 0.9

Example 3.33
(One-sided lower) Assuming that testing stopped after 1,000 h with four failures,
then.

P

[
2T

χ2
0.10,10

< θ

]

= 0.9

P

[
2, 000

15.987
< θ

]

= 0.9

P[125.1 < θ] = 0.9

3.11.3 Confidence Intervals for the Binomial Parameters

Consider a sequence of n Bernoulli trials with k successes and (n − k) failures. We
now determine one-sided upper and lower and two-sided limits on the parameter p,
the probability of success. For the lower limit, the binomial sum is set up such that
the chance probability of k or more successes with a true p as low as pL is only α/2.
This means the probability of k or more successes with a true p higher than pL is(
1 − α

2

)
:

n∑

i=k

(
n

i

)

piL(1 − pL)
n−i = α

2

Similarly, the binomial sum for the upper limit is
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n∑

i=k

(
n

i

)

piU (1 − pU )n−i = 1 − α

2

or, equivalently, that

k−1∑

i=0

(
n

i

)

piU (1 − pU )n−i = α

2

Solving for pL and pU in the above equations,

P[pL < p < pU ] = 1 − α

For the case of one-sided limits, merely change α/2 to α.

Example 3.34
Given n = 100 with 25 successes, and 75 failures, an 80% two-sided confidence
limits on p can be obtained as follows:

100∑

i=25

(
100

i

)

piL(1 − pL)
100−i = 0.10

24∑

i=0

(
100

i

)

piU (1 − pU )100−i = 0.10

Solving the above two equations simultaneously, we obtain

pL ≈ 0.194 and pU ≈ 0.313

P[0.194 < p < 0.313] = 0.80

Example 3.35
Continuing with Example 3.34, find an 80% one-sided confidence limit on p.

Solution: We now can set the top equation to 0.20 and solve for pL. It is easy to
obtain pL = 0.211 and P[p > 0.211] = 0.80. Let us define p̄ = k/n, the number of
successes divided by the number of trials. For large values of n and if np > 5 and n(1
− p) > 5, and from the central limit theorem (Feller 1966, 1968), the statistic

Z = ( p̄ − p)
√

p̄(1− p̄)
n

(3.81)

approximates to the standard normal distribution. Hence,

P[−z α
2

< Z < z α
2
] = 1 − α
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Then

P

[

p̄ − z α
2

√
p̄(1 − p̄)

n
< p < p̄ + z α

2

√
p̄(1 − p̄)

n

]

= 1 − α (3.82)

Example 3.36
Given n = 900, k = 180, and α = 0.05. Then we obtain p = 180/900 = 0.2 and

P

[

0.2 − 1.96
√

0.2(0.8)
900 < p < 0.2 + 1.96

√
0.2(0.8)
900

]

= 0.95

P[0.174 < p < 0.226] = 0.95

3.11.4 Confidence Intervals for the Poisson Parameters

Limits for the Poisson parameters are completely analogous to the binomial except
that the sample space is infinite instead of finite. The lower and upper limits can be
solved simultaneously in the following equations:

∞∑

i=k

λi
Le

−λL

i ! = α

2
and

∞∑

i=k

λi
U e

−λU

i ! = 1 − α

2
(3.83)

or, equivalently

∞∑

i=k

λi
Le

−λL

i ! = α

2
and

k−1∑

i=0

λi
U e

−λU

i ! = α

2
.

Example 3.37
One thousand article lots are inspected resulting in an average of 10 defects per lot.
Find 90% limits on the average number of defects per 1000 article lots. Assume α

= 0.1,

∞∑

i=10

λi
Le

−λL

i ! = 0.05 and
9∑

i=0

λi
U e

−λU

i ! = 0.05.

Solving the above two equations simulteneously for λL and λU , we obtain.
P [5.45 < λ < 16.95] = 0.90.
The one-sided limits are constructed similarly to the case for binomial limits.
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3.12 Non-Parametric Tolerance Limits

Non-parametric tolerance limits are based on the smallest and largest observation
in the sample, designated as XS and XL, respectively. Due to their non-parametric
nature, these limits are quite insensitive and to gain precision proportional to the
parametric methods requires much larger samples. An interesting question here is to
determine the sample size required to include at least 100(l−α)% of the population
between XS and XL with given probability γ .

For two-sided tolerance limits, if (1−α) is the minimum proportion of the popula-
tion contained between the largest observation XL and smallest observation XS with
confidence (1−γ ), then it can be shown that

n(1 − α)n−1 − (n − 1)(1 − α)n = γ. (3.84)

Therefore, the number of observations required is given by

n =
⌊

(2 − α)

4α
χ2
1−γ,4 + 1

2

⌋

+ 1 (3.85)

where a value of χ2
1−γ,4 is given in Table A.3 of Appendix A.

Example 3.38
Determine the tolerance limits which include at least 90% of the population with
probability 0.95. Here,

α = 0.1, γ = 0.95 and χ2
0.05,4 = 9.488.

and therefore, a sample of size

n =
⌊

(2 − 0.1)

4(0.1)
(9.488) + 1

2

⌋

+ 1 = 46

is required. For a one-sided tolerance limit, the number of observations required
is given by

n =
⌊
log(1 − γ )

log(1 − α)

⌋

+ 1. (3.86)

Example 3.39
As in Example 3.38, we wish to find a lower tolerance limit, that is, the number of
observations required so that the probability is 0.95 that at least 90%of the population
will exceed XS is given by.

n =
⌊
log(1 − 0.95)

log(1 − 0.1)

⌋

+ 1 = 30.
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One can easily generate a table containing the sample size required to include a
given percentage of the population between XS and XL with given confidence, or
sample size required to include a given percentage of the population above or below
XS or XL, respectively.

3.13 Sequential Sampling

A sequential sampling scheme is one in which items are drawn one at a time and
the results at any stage determine if sampling or testing should stop. Thus, any
sampling procedure for which the number of observations is a random variable can
be regarded as sequential sampling. Sequential tests derive their name from the fact
that the sample size is not determined in advance, but allowed to “float” with a
decision (accept, reject, or continue test) after each trial or data point.

In general, let us consider the hypothesis

H0 : f (x) = f0(x) vs H1 : f (x) = f1(x)

For an observation test, sayX1, ifX1 ≤A, thenwewill accept the testing hypothesis
(H0: f (x) = f 0(x)); if X1 ≥ A, then we will reject H0 and accept HI: f (x) = f 1(x).
Otherwise, we will continue to perform at least one more test. The interval X1 ≤ A
is called the acceptance region. The interval X1 ≥ A is called the rejection or critical
region (see Fig. 3.4).

A “good” test is one that makes the α and β errors as small as possible where

P{Type I error} = P{Reject H0 | H0 is True} = α

P{Type II error} = P{Accept H0 | H0 is False} = β

Type I error, also known as a “false positive”, the error of rejecting a null hypoth-
esis Ho when it is actually true. In other words, this is the error of accepting an
alternative hypothesis H1 (the real hypothesis of interest) when the results can be
attributed to chance. So the probability of making a type I error in a test with rejection
region R is P(R | Ho is true).

Type II error, also known as a “false negative”, the error of not rejecting a null
hypothesis when the alternative hypothesis is the true state of nature. In other words,
this is the error of failing to accept an alternative hypothesis when you don‘t have

Fig. 3.4 A sequential
sampling scheme

f1(x)f0(x)

A
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adequate power. So the probability of making a type II error in a test with rejection
region R is 1-P(R | H1 is true). The power of the test can be P(R | H1 is true).

However, there is not much freedom to do this without increasing the sample
size. The common procedure is to fix the β error and then choose a critical region to
minimize the error or maximize the “power” (power= 1−β) of the test, or to choose
the critical region so as to equalize the α and β errors to reasonable levels.

A criterion, similar to the MLE, for constructing tests is called the “sequential
probability ratio”, which is the ratio of the sample densities under H1 over H0. The
sequential probability ratio is given by

λn =
∏n

i=1 f1(xi )
∏n

i=1 f0(xi )
> k (3.87)

Here, x1, x2, …, xn are n independent random observations and k is chosen to give
the desired error.

Recall from the MLE discussion in Sect. 3.3 that f 1(x1), f 1(x2),…, f 1(xn) are
maximized under H1 when the parameter(s), e.g., θ = θ1 and, similarly, f 0(x1),
f 0(x2),…, f 0(xn) are maximized when θ = θ0. Thus, the ratio will become large if
the sample favors H1 and will become small if the sample favors H0. Therefore, the
test will be called a sequential probability ratio test if we.

1. Stop sampling and reject H0 as soon as λn≥ A.
2. Stop sampling and accept H0 as soon as λn≤ B.
3. Continue sampling as long as B < λn < A, where A > B.

For example, the test will continue iff

β

1 − α
<λn <

1 − β

α

The choice of A and B with the above test, suggested by Wald (1947), can be
determined as follows:

B = β

1 − α
and A = 1 − β

α

The basis for α and β are therefore

P[λn ≥ A|H0] = α

P[λn ≤ B|H1] = β
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3.13.1 Exponential Distribution Case

Let

V (t) =
r∑

i=1

Xi +
n−r∑

j=1

t j

where Xi are the times to failure and tj are the times to test termination without
failure. Thus, V (t) is merely the total operating time accrued on both successful and
unsuccessful units where the total number of units is n. The hypothesis to be tested
is.

H0: θ = θ0 vs H1: θ = θ1.
For the failed items,

g(x1, x2, . . . , xr ) =
(
1

θ

)r

e−
∑r

i=1 xi
θ

For the non-failed items,

P(Xr+1 > t1, Xr+2 > t2, . . . , Xn > tn−r ) = e−
∑n−r

j=1 t j
θ

The joint density for the first r failures among n items, or likelihood function, is

f (x1, x2, . . . , xr , tr+1, . . . , tn) = n!
(n − r)!

(
1

θ

)r

e− 1
θ (

∑r
i=1 xi+

∑n−r
j=1 t j)

= n!
(n − r)!

(
1

θ

)r

e− V (t)
θ

and the sequential probability ratio is given by

λn =
∏n

i=1 f1(xi , θ1)
∏n

i=1 f0(xi , θ0)
=

n!
(n−r)!

(
1
θ1

)r
e− V (t)

θ1

n!
(n−r)!

(
1
θ0

)r
e− V (t)

θ0

=
(

θ0

θ1

)r

e
−V (t)

[
1
θ1

− 1
θ0

]

Now, it has been shown that for sequential tests, the reject and accept limits, A
and B, can be equated to simple functions of α and β. Thus, we obtain the following
test procedures:

Continue test: β

1−α
≡ B < λn < A ≡ 1−β

α
.

Reject H0: λn > A ≡ 1−β

α
.

Accept H0: λn < B ≡ β

1−α
.
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Working with the continue test inequality, we now have

β

1 − α
<

(
θ0

θ1

)r

e
−V (t)

[
1
θ1

− 1
θ0

]

<
1 − β

α

Taking natural logs of the above inequality, we obtain

ln

(
β

1 − α

)

<r ln

(
θ0

θ1

)

− V (t)

[
1

θ1
− 1

θ0

]

< ln

(
1 − β

α

)

The above inequality is linear in V (t) and r, and therefore the rejection line V (t),
say Vr(t), can be obtained by setting

r ln

(
θ0

θ1

)

− Vr (t)

[
1

θ1
− 1

θ0

]

= ln

(
1 − β

α

)

or, equivalently,

Vr (t) =
r ln

(
θ0
θ1

)

[
1
θ1

− 1
θ0

] −
ln

(
1−β

α

)

[
1
θ1

− 1
θ0

]

Similarly, the acceptance line V (t)), say Va(t), (see Fig. 3.5) can be obtained by
setting

r log

(
θ0

θ1

)

− Va(t)

[
1

θ1
− 1

θ0

]

= log

(
β

1 − α

)

This implies that

Fig 3.5 Test procedure V(t)

r

Accept H o

Reject H o

Continue test
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Va(t) =
r ln

(
θ0
θ1

)

[
1
θ1

− 1
θ0

] −
ln

(
β

1−α

)

[
1
θ1

− 1
θ0

]

Thus, continue to perform the test when

−h1 + rs < V (t) < h0 + rs

where

h0 = − ln( β

1−α )[
1
θ1

− 1
θ0

] , s = ln
(

θ0
θ1

)

[
1
θ1

− 1
θ0

] , h1 = ln
(

1−β

α

)

[
1
θ1

− 1
θ0

] , and

V (t) =
r∑

i=1

Xi +
n−r∑

j=1

t j

Example 3.40
Given that H0: θ = 500 vs H1: θ = 250 and α = β = 0.1. The acceptance and
rejection lines are given by

Va(t) = 346.6r + 1098.6

and

Vr (t) = 346.6r − 1098.6

respectively. Both are linear functions in terms of r, the number of first r failures
in the test. For an exponential distribution

θ P(A)

0 0
θ1 β

log
(

θ0
θ1

) log
(

1−β

α

)

[
1
θ1

− 1
θ0

] 1−β

log
(

1−β

α

)
−log( β

1−α )

θ1 1 − α

∞ 1

From the information given in the above example, we can obtain



196 3 Statistical Inference

θ P(A)

0 0
250 0.10
346.5 0.5
500 0.90
∞ 1.0

Since there is no pre-assigned termination to a regular sequential test, it is
customary to draw a curve called the “average sample number” (ASN). This curve
shows the expected sample size as a function of the true parameter value. It is known
that the test will be terminated with a finite observation. It should be noted that “on
average”, the sequential tests utilizes significantly smaller samples than fixed sample
plans:

θ E(r) = ASN
0 0

θ1
θ0β log( β

1−α )+(1−β) log
(

1−β

α

)

[
log

(
θ0
θ1

)
−
(

θ0−θ1
θ1

)]
θ1

log
(

θ0
θ1

)

[
1
θ1

− 1
θ0

]
log

(
1−β

α

)
log( β

1−α )
[
log

(
θ0
θ1

)]2

θ0

[
(1−α) log( β

1−α )+α log
(

1−β

α

)]
θ1

[
log

(
θ0
θ1

)
−
(

θ0−θ1
θ1

)]
θ0

∞ 0

An approximate formula for E(t), the expected time to reach decision, is

E(t) ≡ θ log

(
n

n − E(r)

)

where n is the total number of units on test (assuming no replacement of failed units).
If replacements are made, then

E(t) = θ

n
E(r)

Occasionally, it is desired to “truncate” a sequential plan such that, if no decision
is made before a certain point, testing is stopped and a decision is made on the basis
of data acquired up to that point (Pham 2000, page 251). There are a number of rules
and theories on optimum truncation. In the reliability community, a V (t) truncation
point at 10θ0 is often used to determine the V (t) and r lines for truncation and the
corresponding exact α = β errors (these will in general be larger for truncated tests
than for the non-truncated). An approximate method draws the V (t) truncation line to
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the center of the continue test band and constructs the r truncation line perpendicular
to that point.

3.13.1.1 Bernoulli Distribution Case

H0: p = p0 vs H1: p = p1.
where p denotes the proportion defective units in the population, and α and β are

pre-determined. Let us define the following random variable X:

X =
{
0 if good

1 if defective

where p denotes the proportion defective items in the population. The Bernoulli
distribution is given by

P(x) = px (1 − p)1−x for x = 0, 1

The sequential probability ratio is given by

λn =
∏n

i=1 P(xi , p1)
∏n

i=1 P(xi , p0)
=

∏n
i=1 p

xi
1 (1 − p1)1−xi

∏n
i=1 p

xi
0 (1 − p0)1−xi

=
(
p1
p0

)∑n
i=1 xi

(
1 − p1
1 − p0

)n−∑n
i=1 xi

=
(
p1
p0

)dn(1 − p1
1 − p0

)n−dn

where dn =
n∑

i=1
xi is the cumulative number of defective units and n is the cumulative

sample size. As we know, sampling process will continue as long as

β

1 − α
< λn <

1 − β

α

Taking the natural log, we have

ln

(
β

1 − α

)

< ln(λn) < ln

(
1 − β

α

)

or equivalently that,

ln

(
β

1 − α

)

< dn ln

(
p1
p0

)

+ (n − dn) ln

(
1 − p1
1 − p0

)

< ln

(
1 − β

α

)

After simplifications, we can obtain
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sbn + b1 < dn < sbn + b0 (3.88)

where

sb = − log
(

1−p1
1−p0

)

log
(

p1(1−p0)

p0(1−p1)

) , b1 = log( β

1−α )

log
(

p1(1−p0)

p0(1−p1)

) , b0 = log
(

1−β

α

)

log
(

p1(1−p0)

p0(1−p1)

) .Thus the acceptance line

and rejection line are, respectively, as follows:

Acceptance line = sbn + b1 (3.89)

and

Rejection line = sbn + b0. (3.90)

Similar tests can be constructed for other distribution parameters following the
same general scheme.

Example 3.41
The following data were drawn one observation at a time in the order records:

g b g g b g b g b g g b g b g.

where b denotes a defective item and g denotes a good item. The experiment was
performed to test the following hypothesis:

H0: p = p0 = 0.10 versus H1: p = p1 = 0.2

where p denotes the proportion defective items in the population. It is desired to
reject H0 when it is true with probability 0.05 and to accept H0 when H1 is true with
probability 0.20. Using the sequential testing plan, we wish to determine whether
we would accept or reject a lot on the basis of the observations above.

Given p0 = 0.10, p1 = 0.20, α = 0.05, β = 0.20. From Eq. (3.88) we have

sb = −
ln

(
1−p1
1−p0

)

ln
(

p1(1−p0)
p0(1−p1)

) = − ln
(
1−0.20
1−0.10

)

ln
(

0.2(1−0.10)
0.10(1−0.20)

) = 0.1452

b1 =
ln

(
β

1−α

)

ln
(

p1(1−p0)
p0(1−p1)

) = ln
(

0.2
1−0.05

)

ln
(
0.2(1−0.1)
0.1(1−0.2)

) = −1.9214,

b0 =
ln

(
1−β

α

)

ln
(

p1(1−p0)
p0(1−p1)

) = ln
(
1−0.2
0.05

)

ln
(
0.2(1−0.1)
0.1(1−0.2)

) = 3.4190,

Thus,

sbn + b1 < dn < sbn + b0
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Table 3.13 The sampling procedure

n xn dn Acceptance # Rejection #

1 0 0 – –

2 1 1 – –

3 0 1 – –

4 0 1 – –

5 1 2 – 5

6 0 2 – 5

7 1 3 – 5

8 0 3 – 5

9 1 4 – 5

10 0 4 – 5

11 0 4 – 6

12 1 5 – 6

13 0 5 – 6

14 1 6 0 6

15 0 6 0 6

0.1452n − 1.9214 < dn < 0.1452n + 3.4190

The acceptance line is: 0.1452n − 1.9214.
The rejection line is: 0.1452n + 3.4190.
From Table 3.13, the cumulative number of defective units d14 = 6 falls above the

rejection linewhen n= 14. Therefore, the sampling is stopped at the 14th observation
and that the lot would be rejected. That is, reject the hypothesis H0: p = 0.10.

3.14 Bayesian Methods

The Bayesian approach to statistical inference is based on a theorem first presented
by the Reverend Thomas Bayes. To demonstrate the approach, let X have a pdf f (x),
which is dependent on θ. In the traditional statistical inference approach, θ is an
unknown parameter, and hence, is a constant. We now describe our prior belief in
the value of θ by a pdf h(θ ). This amounts to quantitatively assessing subjective
judgment and should not be confused with the so-called objective probability assess-
ment derived from the long-term frequency approach. Thus, θ will now essentially
be treated as a random variable θ with pdf h(θ ).

Consider a random sample X1, X2, …, Xn from f (x) and define a statistic Y as a
function of this random sample. Then there exists a conditional pdf g(y | θ ) of Y for
a given θ. The joint pdf for y and θ is
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f (θ, y) = h(θ)g(y|θ)

If θ is continuous, then

f1(y) =
∫

θ

h(θ)g(y|θ)dθ

is the marginal pdf for the statistic y. Given the information y, the conditional pdf
for θ is

k(θ |y) = h(θ)g(y|θ)

f1(y)
for f1(y) > 0

= h(θ)g(y|θ)
∫

θ

h(θ)g(y|θ)dθ

If θ is discrete, then

f1(y) =
∑

k

P(θk)P(y|θk)

and

P(θi |yi ) = P(θk)P(yi |θi )
∑

k
P(θk)P(y j |θk)

where P(θ j) is a prior probability of event θ i and P(θ j| yj) is a posterior probability of
event yj given θ i. This is simply a form of Bayes’ theorem. Here, h(θ ) is the prior pdf
that expresses our belief in the value of θ before the data (Y = y) became available.
Then k(θ | y) is the posterior pdf of given the data (Y = y).

Note that the change in the shape of the prior pdf h(θ) to the posterior pdf k(θ
| y) due to the information is a result of the product of g(y | θ ) and h(θ ) because
f l(y) is simply a normalization constant for a fixed y The idea in reliability is to take
“prior” data and combine it with current data to gain a better estimate or confidence
interval or test than would be possible with either singularly. As more current data
is acquired, the prior data is “washed out” (Pham 2000).

Case 1: Binomial Confidence Limits—Uniform Prior. Results from ten missile
tests are used to form a one-sided binomial confidence interval of the form

P[R ≥ RL ] = 1 − α

From subsection 3.11.3, we have
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Table 3.14 Lower limits as a
function of the number of
missile test successes

K RL Exact level

10 0.79 0.905

9 0.66 0.904

8 0.55 0.900

7 0.45 0.898

6 0.35 0.905

10∑

i=k

(
10

i

)

Ri
L(1 − RL)

10−i = α

Choosingα =0.1, lower limits as a function of the number ofmissile test successes
are shown in Table 3.14. Assume from previous experience that it is known that the
true reliability of the missile is somewhere between 0.8 and 1.0 and furthermore that
the distribution through this range is uniform. The prior density on R is then.

g(R) = 5 0.8 < R < 1.0
From the current tests, results are k successes out of ten missile tests, so for the

event A that contained k successes:

P(A|R) =
(
10

k

)

Rk(1 − R)10−k

Applying Bayes’ theorem, we obtain

g(R|A) = g(R)P(A|R)
∫
R g(R)P(A|R)dR

=
5

(
10

k

)

Rk(1 − R)10−k

∫ 1.0
0.8 5

(
10

k

)

Rk(1 − R)10−kd R

For the case of k = 10,

g(R|A) = R10

∫ 1.0
0.8 R10dR

11 R10

0.914
= 12.035 R10

To obtain confidence limits incorporating the “new” or current data,
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Table 3.15 Comparison
between limits applying the
Bayesian method and those
that do not

K RL (uniform [0.8,1] prior) RL (no prior) Exact level

10 0.855 0.79 0.905

9 0.822 0.66 0.904

8 0.812 0.55 0.900

7 0.807 0.45 0.898

6 0.805 0.35 0.905

∫ 1.0

RL

g(A|R)dR = 0.9

∫ 1.0

RL

12.035R10dR = 0.9

After simplifications, we have

R11
L = 0.177, RL = 0.855.

Limits for the 10/10, 9/10, 8/10, 7/10, and 6/10 cases employing the Bayesian
method are given in Table 3.15 along with a comparison with the previously calcu-
lated limits not employing the prior assumption. Note that the lower limit of 0.8 on
the prior cannot be washed out.

Case 2: Binomial Confidence Limits—Beta Prior. The prior density of the beta
function is

g(R) = (α + β + 1)!
α! β! Rα(1 − R)β

The conditional binomial density function is

P(A|R) =
(
10

i

)

Ri (1 − R)10−i

Then we have

g(R|A) =
(α+β+1)!

α! β! Rα(1 − R)β

(
10

k

)

Rk(1 − R)10−k

(α+β+1)!
α! β!

∫ 1
0 Rα(1 − R)β

(
10

k

)

Rk(1 − R)10−kd R

.

After simplifications, we obtain
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g(R|A) = Rα+k(1 − R)β+10−k

∫ 1
0 Rα+k(1 − R)β+10−kd R

.

Multiplying and dividing by

(α + β + 11)!
(α + β)!(β + 10 − k)!

puts the denominator in the form of a beta function with integration over the entire
range, and hence, equal to 1. Thus,

g(R|A) =
(

α + β + 10

α + k

)

R α+k(1 − R)β+10−k

which again is a beta density function with parameters

(α + k) = α′ and (β + 10 − k) = β ′

Integration over g(R|A) from RL to 1.0 with an integral set to 1−α and a solution
of RL will produce 100(l−α)% lower confidence bounds on R, that is,

1.0∫

RL

g(R|A)dR = 1 − α.

Case 3: Exponential Confidence Limits—GammaPrior.For this situation, assume
interest is in an upper limit on the exponential parameter X. The desired statement
is of the form

p[λ < λU ] = 1 − α

If 1000 h of test time was accrued with one failure, a 90% upper confidence limit
on λ would be

p[λ < 0.0039] = 0.9

From a study of prior data on the device, assume that λ has a gamma prior density
of the form

g(λ) = λn−1 e− λ
β

(n − 1)! βn
.

With an exponential failure time assumption, the current data in terms of hours
of test and failures can be expressed as a Poisson, thus,
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p(A|λ) = (λT )n e−λT

r !

where n = number of failures, T = test time, and A = event which is r failures in T
hours of test. Applying Bayes’ results, we have

g(λ|A) =
λn−1 e

− λ
β

(n−1)! βn
(λT )r e−λT

r !
∫ ∞
λ=0

λn−1 e
− λ

β

(n−1)! βn
(λT )r e−λT

r ! dλ

= λn+r−1e
−λ

(
1
β
+T

)

∫ ∞
0 λn+r−1 e

−λ
(

1
β
+T

)

dλ

.

Note that

∞∫

0

λn+r−1e
−λ

(
1
β
+T

)

dλ = (n + r − 1)!
(

1
β

+ T
)n+r

Hence,

g(λ|A) =
λn+r−1e

−λ
(

1
β
+T

)(
1
β

+ T
)n+r

(n + r − 1)!

Thus, g(λ|A) is also a gamma density with parameters (n + r−1) and 1(
1
β
+T

) . This

density can be transformed to the χ2 density with 2(n + r) degree of freedom by the
following change of variable. Let

λ′ = 2λ

(
1

β
+ T

)

then

dλ = 1

2

(
1

1
β

+ T

)

dλ′

We have

h(λ′|A) = (λ′)
2(n+r)

2 −1e− λ′
2

[
2(n+r)

2 − 1
]
! 2

2(n+r)
2
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To obtain a 100(l−α)% upper confidence limit on λ, solve for λ’ in the integral

λ′∫

0

h(s|A)ds = 1 − α

and convert λ’ to λ via the above transformation.

Example 3.42
Given a gamma prior with n = 2 and β = 0.0001 and current data as before (i.e.,
1000 h of test with one failure), the posterior density becomes.

g(λ|A) = λ2 e−λ(11,000)(11, 000)2

2

converting to χ2 via the transformation λ’ = 2λ (11,000) and

h(λ′|A) = (λ′) 6
2 −1e− λ′

2

[
6
2 − 1

]! 2 6
2

which is χ2 with six degrees of freedom. Choosing α = 0.1 then

χ2
6,1−α = χ2

6,0.9 = 10.6

and

p[λ′ < 10.6] = 0.9

But λ’ = 2λ(11,000), hence,

p
[
λ′ = 2λ(11, 000) < 10.6

] = 0.9

or

p[λ < 0.0005] = 0.9

The latter limit conforms to 0.0039 derived without the use of a prior density, i.e.,
an approximate eight fold improvement. The examples above involved the develop-
ment of tighter confidence limits where a prior density of the parameter could be
utilized.

In general, for legitimate applications and where prior data are available, employ-
ment of Bayesian methods can reduce cost or give results with less risk for the same
dollar value (Pham 2000).
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3.15 Statistical Model Selection

In this section we discuss some common criteria that can be used for distribution
and model selections (Pham 2014, 2019,2020). Let yi be the observed data value and
ŷi is the fitted value from the fit for i = 1,2 ,…,n; and n and k are the number of
observations and number of estimated parameters, respectively.

Define the sum of squared error (SSE) and total sum of squares (SST) as follows:

SSE =
n∑

i=1

(
yi − ŷi

)2
(3.91)

and

SST =
n∑

i=1

(yi − ȳ)2

where

ȳ =

n∑

i=1
yi

n
.

Mean Squared Error (MSE). The mean squared error (MSE) measures the total
deviation of the response values from the fitted response values and is defined as:

MSE =
∑n

i=1

(
yi − ŷi

)2

n − k
= SSE

n − k
(3.92)

where yi is the observed data value; ŷi is the fitted value from the fit for i = 1,2 ,…,n;
and n and k are the number of observations and number of estimated parameters,
respectively. SSE is the sum of squared error. Note that MSE considers the penalty
term with respect to the degrees of freedom when there are many parameters and
consequently assigns a larger penalty to a model with more parameters. The smaller
the value MSE value, the better the model fit.

Root Mean Squared Error (RMSE). The RMSE is the square root of the variance
of the residuals or the MSE and is given as

RMSE = √
MSE =

√
SSE

n − k
(3.93)

The RMSE indicates the absolute fit of the model to the data–how close the
observed data points are to the model’s predicted values. Lower values of RMSE
indicate better fit.
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Coefficient of Determinations (R2). R2 is the square of the correlation between
the response values and the predicted response values. It measures the amount of
variation accounted for the fitted model. The R2 is defined as

R2 = 1 − SSE

SST
(3.94)

R2 assumes every independent variable in the model explains the variation in the
dependent variable. It gives the percentage of explained variation as if all independent
variables in the model affect the dependent variable. It is always increase with model
size. The larger R2, the better is the model’s performance.

Adjusted R2. Adjusted R2 takes into account the number of estimated parameters
in the model and is defined as:

R2
ad j = 1 −

(
n − 1

n − k

)
(
1 − R2

)
(3.95)

where n and k are the number of observations and number of estimated parameters,
respectively. The adjusted R2 gives the percentage of variation explained by only
those independent variables that actually affect the dependent variable. The larger
adjusted R2, the better is the model’s goodness-of-fit.

The predictive-ratio risk (PRR). PRRmeasures the total deviation of the response
values from the fit to the response values against the fitted values, and is defined as
(Pham 2006; Pham and Deng 2003):

PRR =
n∑

i=1

(
yi − ŷi

ŷi

)2

(3.96)

The predictive-power (PP). PPmeasures the total deviation of the response values
from the fit to the response values against the response values, and is defined as
follows:

PP =
n∑

i=1

(
yi − ŷi

yi

)2

(3.97)

For all these three criteria—MSE, PRR, and PP—the smaller the value, the better
the model fits.

Normalized-Rank Euclidean Distance criterion (RED). In general, let s denotes
the number of models with d criteria, Cij1 represents the ranking based on specified
criterion ofmodel iwith respect to (w.r.t.) criteria j, andCij2 the criteria value ofmodel
iw.r.t. criteria j where i = 1, 2,…,s and j = 1, 2,…,d. The normalized-rank Euclidean
distance value, Di, for i = 1, 2,…, s, measures the distance of the two-dimensional
normalized criteria from the origin for ith model using Euclidean distance function
(Pham 2019). The RED criteria function is defined as follows:
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Di =
d∑

j=1

⎧
⎨

⎩

⎛

⎝

√
√
√
√

[
2∑

k=1

(
Ci jk

∑s
i=1 Ci jk

)2
]⎞

⎠w j

⎫
⎬

⎭
(3.98)

where s = total number of models.
d = total number of criteria.
wj = the weight of the jth criteria for j = 1,2,…,d

k =
{
1 represent criteria j value
2 represent criteria j ranking.

Thus, the smaller the RED value, Di, it represents the better rank as compare to
higher RED value.

Akaike InformationCriterion (AIC). TheAIC is one of themost common criteria
has been used in past years to choose the best model from a set of candidate models.
It is defined as (Akaike 1973):

AIC = −2 log(L) + 2k (3.99)

where L is the maximum value of the likelihood function for the model and k is the
number of estimated parameters in the model. To select the best model, practitioners
should choose the model that minimizes AIC. In other words, the lower value of
AIC indicates better goodness-of-fit. By adding more parameters in the model, it
improves the goodness of the fit but also increases the penalty imposed by adding
more parameters.

Bayesian Information Criterion (BIC). The BIC was introduced by Schwarz
(1978) also known as Schwarz criterion, and is defined as

BIC = −2 log(L) + k log(n) (3.100)

As can be seen fromEqs. (3.5) and (3.6), the difference between these two criteria,
BIC and AIC, is only in the second term which depends on the sample size n that
show how strongly they impacts the penalty of the number of parameters in the
model. With AIC the penalty is 2 k whereas with BIC the penalty is k.log(n) that
penalizes large models. As n increases, the BIC tends to favor simpler models than
the AIC as k smaller. This implies when n > 8, k·log(n) exceeds 2 k.

SecondOrder InformationCriterion (AICc).When the sample size is small, there
is likely that AIC will select models that include many parameters. The second order
information criterion, often calledAICc, takes into account sample size by increasing
the relative penalty for model complexity with small data sets. It is defined as:

AICc = −2 log(L) + 2k + 2k(k + 1)

n − k − 1
(3.101)
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where n denotes the sample size and k denotes the number of estimated parameters.
As n gets larger, AICc converges to AIC so there’s really no harm in always using
AICc regardless of sample size.

Pham’s information criterion (PIC). In general, the adjusted R2 attaches a small
penalty for adding more variables in the model. The difference between the adjusted
R2 and R2 is usually slightly small unless there are too many unknown coefficients
in the model to be estimated from too small a sample in the presence of too much
noise. Pham (2019) presents a criterion, called Pham’s information criterion (PIC),
by taking into account a larger the penalty when adding too many coefficients in the
model when there is too small a sample, is as follows:

PIC = SSE + k

(
n − 1

n − k

)

(3.102)

where n is the number of observations in the model, k is the number of estimated
parameters or (k−1) explanatory variables in the model, and SSE is the sum of
squared error as given in Eq. (3.91).

Pham’s criterion (PC). Pham (2020) recently introduces a criterion, called Pham’s
criterion (PC), that measures the tradeoff between the uncertainty in the model and
the number of parameters in the model by slightly increasing the penalty when each
time adding parameters in the model when there is too small a sample. The criteria
is as follows (Pham 2020a):

PC =
(
n − k

2

)

log

(
SSE

n

)

+ k

(
n − 1

n − k

)

where SSE =
n∑

i=1

(
yi − ŷi

)2
(3.103)

Table 3.16 presents a summary of criteria for model selection.

3.15.1 Applications

In this section we demonstrate a couple of real applications such as advertising
budget products and heart blood pressure health using multiple regression models to
illustrate the model selection.

Application 1: Advertising Budget Analysis.
In this application,we use the advertising budget data set [Advertising] to illustrate

the model selection criteria where the sales for a particular product is a dependent
variable of multiple regression and the three different media channels such as TV,
Radio, and Newspaper are independent variables as shown in Table 3.17. The adver-
tising dataset consists of the sales of a product in 200 different markets (200 rows),
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Table. 3.16 A summary of some criteria model selection (Pham 2020a)

No Criteria Formula Brief description

1 SSE
SSE =

n∑

i=1

(
yi − ŷi

)2 Measures the total
deviations between the
estimated values and
the actual data

2 MSE MSE =
∑n

i=1 (yi−ŷi )
2

n−k Measures the
difference between the
estimated values and
the actual data

3 RMSE
RMSE =

√
∑n

i=1 (yi−ŷi )
2

n−k

The square root of the
MSE

4 R2
R2 = 1 −

∑n
i=1 (yi−ŷi )

2

∑n
i=1 (yi−ȳ)2

Measures the amount
of variation accounted
for the fitted model

5 Adj R2
R2
ad j = 1 −

(
n−1
n−k

)(
1 − R2

) Take into account a
small penalty for
adding more variables
in the model

6 AIC AIC = −2 log(L) + 2k Measure the goodness
of the fit considering
the penalty of adding
more parameters

7 BIC BIC = −2 log(L) + k log(n) Same as AIC but the
penalty term will also
depend on the sample
size

8 AICc AICc = −2 log(L) + 2k + 2k(k+1)
n−k−1 AICc takes into

account sample size
by increasing the
relative penalty for
model complexity
with small data sets

9 PIC
PIC = SSE + k

(
n − 1

n − k

)

where SSE =
n∑

i=1

(
yi − ŷi

)2

Take into account a
larger the penalty
when there is too
small a sample but too
many parameters in
the model

10 PRR
PRR =

n∑

i=1

(
m̂(ti )−yi
m̂(ti )

)2 Measures the distance
of model estimates
from the actual data
against the model
estimate

11 PP
PP =

n∑

i=1

(
m̂(ti )−yi

yi

)2 Measures the distance
of model estimates
from the actual data
against the actual data

(continued)
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Table. 3.16 (continued)

No Criteria Formula Brief description

12 PC
PC =

(
n − k

2

)

log

(
SSE

n

)

+ k

(
n − 1

n − k

)

where SSE =
n∑

i=1

(
yi − ŷi

)2

Increase slightly the
penalty each time
adding parameters in
the model when there
is too small a sample

Table 3.17 Advertising
Budget Data in 200 different
markets

TV Radio Newspaper Sales

230.1 37.8 69.2 22.1

44.5 39.3 45.1 10.4

17.2 45.9 69.3 9.3

151.5 41.3 58.5 18.5

180.8 10.8 58.4 12.9

8.7 48.9 75 7.2

57.5 32.8 23.5 11.8

120.2 19.6 11.6 13.2

8.6 2.1 1 4.8

together with advertising budgets for the product in each of those markets for three
different media channels: TV, Radio and Newspaper. The sales are in thousands of
units and the budget is in thousands of dollars. Table 3.17 shows just the first few
rows of the advertising budget data set.

Pham (2019) discusses the results of the linear regression model using this adver-
tising data. Figures 3.6 and 3.7 present the data plot and the correction coefficients
between the pairs of variables of the advertising budget data, respectively. It shows
that the pair of Sales and TV advertising have the highest positive correlation. From
Table 3.18, the values of R2 with all three variables and just two variables (TV and
Radio advertisings) in the model are the same. This implies that we can select the
model with two variables (TV and Radio) in the regression (Pham 2019). Based on
the PIC criterion, the model with the two advertising media channels (TV and Radio)
is the best model from a set of seven candidate models as shown in Table 3.18.

Application 2: Heart Blood Pressure Health Analysis.
The heart blood pressure health data (Pham2019) consists of the heart rate (pulse),

systolic blood pressure and diastolic blood pressure in 86 days with 2 data points
measured each day (172 rows) is used in this application. Blood pressure (BP) is one
of the main risk factors for cardiovascular diseases. BP is the force of blood pushing
against your artery walls as it goes through your body [Blood pressure]. The Systolic
BP is the pressure when the heart beats—while the heart muscle is contracting
(squeezing) and pumping oxygen-rich blood into the blood vessels. Diastolic BP is
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Fig. 3.6 The scatter plot of the advertising data with four variables

Fig. 3.7 The Correlation Coefficient between the Variables

the pressure on the blood vessels when the heart muscle relaxes. The diastolic pres-
sure is always lower than the systolic pressure [Systolic]. The Pulse or Heart rate
measures the heart rate by counting the number of beats per minute (BPM). The
first few rows of the data set are shown in Table 3.19. In the table, the first row of
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Table 3.18 Criteria values of independent variables (TV, Radio, Newspaper) of regression models
(X1, X2, and X3 be denoted as the TV, radio and newspaper, respectively)

Criteria X1, X2,
X3

X1, X2 X1, X3 X2, X3 X1 X2 X3

MSE 2.8409 2.8270 9.7389 18.349 10.619 18.275 25.933

AIC 782.36 780.39 1027.8 1154.5 1044.1 1152.7 1222.7

AICc 782.49 780.46 1027.84 1154.53 1044.15 1152.74 1222.73

BIC 795.55 790.29 1037.7 1164.4 1050.7 1159.3 1229.3

RMSE 1.6855 1.6814 3.1207 4.2836 3.2587 4.2750 5.0925

R2 0.8972 0.8972 0.6458 0.3327 0.6119 0.3320 0.0521

Adjusted
R2

0.8956 0.8962 0.6422 0.3259 0.6099 0.3287 0.0473

PIC 5.7467 4.7118 6.1512 7.3141 5.2688 6.2850 7.1026

Table 3.19 Sample heart blood pressure health data set of an individual in 86 day interval (Pham
2019)

Day Time Systolic Diastolic Pulse

5 0 154 99 71

1 144 94 75

6 0 139 93 73

6 1 128 76 85

7 0 129 73 78

7 1 125 65 74

1 0 129 80 70

1 1 130 83 72

2 0 144 83 74

2 1 124 87 84

3 0 120 77 73

3 1 124 70 80

the data set can be read as follows: on a Thursday morning, the high blood, low
blood and heart rate measurements were 154, 99, and 71, respectively. Similarly,
on a Thursday afternoon (i.e., the second row of the data set in Table 3.19), the
high blood, low blood and heart rate measurements were 144, 94, and 75, respec-
tively.From Fig. 3.8, the systolic BP and diastolic BP have the highest correlation.
The model with only Systolic blood pressure variable seems to be the best model
from the set of seven candidate models based on PIC and BIC criteria as shown in
Table 3.20.
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Fig. 3.8 The correlation coefficient between the variables

Table 3.20 Criteria values of variables (day, systolic, diastolic) of regression models (X1, X2, and
X3 be denoted as the day, systolic, diastolic, respectively)

Criteria X1, X2, X3 X1, X2 X1, X3 X2, X3 X1 X2 X3

MSE 43.1175 43.7381 47.0101 43.5859 46.8450 44.1352 47.2311

AIC 1141.463 1142.942 1155.351 1142.342 1153.76 1143.511 1155.172

BIC 1154.053 1152.384 1164.793 1151.784 1160.055 1149.806 1161.467

RMSE 6.5664 6.6135 6.8564 6.6020 6.8443 6.6434 6.8725

R2 0.09997 0.0816 0.01287 0.08477 0.0105 0.0678 0.00236

Adj R2 0.08389 0.0707 0.00119 0.07394 0.00469 0.0623 −0.00351

PIC 10.6378 9.6490 9.8919 9.6375 8.8561 8.6552 8.8843

3.16 Problems

1. Let X1, X2, …, Xn represent a random sample from the Poisson distribution
having pdf

f (x; λ) = e−λλx

x ! for x = 0, 1, 2,… and λ ≥ 0.

Find the maximum likelihood estimator λ̂ of λ.

2. Let X1, X2, …, Xn be a random sample from the distribution with a discrete pdf

P(x) = px (1 − p)1−x x = 0, 1 and 0 < p < 1



3.16 Problems 215

where p is the parameter to be estimated. Find the maximum likelihood estimator p̂
of p.

3. Assume that X1, X2, …, Xn represent a random sample from the Pareto
distribution, that is,

F(x; λ, θ) = 1 −
(

λ

x

)θ

for x ≥ λ, λ > 0, θ > 0

This distribution is commonly used as a model to study incomes. Find the
maximum likelihood estimators of λ and θ.

4. Let Y 1 < Y 2 < … < Y n be the order statistics of a random sample X1, X2, …, Xn

from the distribution with pdf

f (x; θ) = 1 if θ − 1

2
≤ x ≤ θ + 1

2
, − ∞ < θ < ∞

Show that any statistic h(X1, X2, …, Xn) such that

Yn − 1

2
≤ h(X1, X2, ..., Xn) ≤ Y1 + 1

2

is a maximum likelihood estimator of θ. What can you say about the following
functions?

(a)
(4Y1 + 2Yn + 1)

6

(b)
(Y1 + Yn)

2

(c)
(2Y1 + 4Yn − 1)

6

5. The lifetime of transistors is assumed to have an exponential distribution with
pdf

f (t; θ) = 1

θ
e− t

θ for t ≥ 0, θ > 0

A random sample of size n is observed. Determine the following:

(a) The maximum likelihood estimator of θ.
(b) The MLE of the transistor reliability function,R̂(t), of

R(t) = e− t
θ
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6. Suppose that X1, X2,…, Xn are independent random variable, each with the
uniform distribution on [c − d, c + d] where c is unknown and d is known
(−∞ < c < ∞, d > 0). Find the maximum likelihood estimator of c.

7. Suppose that X1, X2,…, Xn are independent random variable, each with the
uniform distribution on [c − d, c + d] where c and d are both unknown
(−∞ < c < ∞, d > 0).

(a) Find the maximum likelihood estimators of c and d.
(b) Given the following failure time data: 20, 23, 25, 26, 28, 29, 31, 33, 34,

and 35 days. Assuming that the data follow a uniform distribution on [c
− d, c + d], use the maximum likelihood method to obtain the unknown
parameters, c and d, of the uniform distribution.

8. Suppose that X1, X2, …, Xn are independent random variable, each with the
uniform distribution on [−d, d] where d is positive and unknown. Find the
maximum likelihood estimator of d.

9. Suppose on five consecutive days in a given month the number of customers
who enter services at a printing shop were 48, 60, 78, 56, and 73 Test the null
hypothesis that the expected numbers of customers per day were the same on
the five days at the 5% level of significance using the Chi-square test.

10. Suppose that a die is rolled 120 times and the number of times each face comes
up is recorded. The following results are obtained:

Face 1 2 3 4 5 6

ni 15 21 20 15 26 23

Test whether the die is fair at the 5% level of significance using the Chi-square
test.

11. Suppose that a die is rolled 250 times and the number of times each face comes
up is recorded. The following results are obtained:

Face 1 2 3 4 5 6

ni 45 37 60 55 29 24

Test whether the die is fair at the 5% level of significance using the Chi-square
test.

12. The proportion of components produced by a manufacturing process from last
year is as follows: 3% scrapped, 6% reworked, and 91% acceptable. This year,
inspection of 500 units showed that 20 units must be scrapped and 25 units
can be reworked. Can we say that the results this year are consistent with the
last year data at the 5% level of significance using the Chi-square test.

13. An engineer obtained the following data that shows the cycle time in hours for
the assembly of a certain electronic product:
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Cycle time (hours) Frequency

2.45 4

2.55 6

2.58 15

2.64 8

2.73 2

2.80 29

2.85 7

2.92 13

2.98 19

3.20 12

The engineer concludes that these data might represent like a sample from a
normal population at the 5% level of significance. What is your opinion. Is the
engineer correct? (Hint: using the KS test).

14. 27 units were placed on life test and the test was run until all units failed. The
observed failure times t1, t2, …, t27 were give below:

4.6 12.7 20.5

5.4 13.2 20.9

5.8 13.5 21.5

6.7 13.9 22.7

7.3 14.7 23.6

7.9 17.5 24.9

8.7 17.6 25.4

9.9 19.3 25.9

12.5 20.3 35.3

Test the hypothesis that the underlying distribution of life is exponential at the
5% level of significance using the Chi-square test.

15. Show that

I (θ) ≡ E

{[
∂ ln f (x; θ)

∂θ

]2
}

= −E

(
∂2 ln f (x; θ)

∂θ2

)

16. Suppose that we have k disjoint events A1, A2, …, Ak such that the probability
of Ai is pi for i = 1,2,…, k and

∑k
i=1 pi = 1. Let’s assume that among n

independent trials there are X1, X2, …, Xk outcomes associated with A1, A2,
…, Ak , respectively. The joint probability that X1 = x1, X2 = x2, …, Xk = xk
is given as follows by the likelihood function
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L(x, p) = n!
x1!x2! . . . xk ! p

x1
1 px11 . . . pxkk

where
∑k

i=1 xi = n. This is infact known as the multinomial distribution. Find the
MLE of p1, p2, …, pk by maximizing the likelihood function above.

17. Consider the binomial distribution with unknown parameter p given by

P(X = k) =
(
n

k

)

pk(1 − p)n−k k = 1, 2, . . . , n; 0 ≤ p ≤ 1

where n = number of trials; k = number of successes; p = single trial probability of
success. Find the maximum likelihood estimator of p.

18. (a) Find the maximum likelihood estimator of θ if t1, t2,…, tn are independent
observations from a population with the following probability density function

f (t; θ) = θ

tθ+1
for t ≥ 1, θ > 0

(b) Given the following failure time data: 200, 225, 228, 245, 250, 286, 290 h.
Assuming that the data follow the above pdf, obtain the MLE of θ.

19. (a) Find the maximum likelihood estimator of λ if the failure times t1, t2,…, tn
are independent observations from a population with the following probability
density function

f (t) = (1 + λ)tλ for 0 < t < 1.

(b) The failure times are: 0.2, 0.3, 0.35, 0.45, 0.5, 0.6, 0.7, 0.75, 0.8, and 0.95 h.
Obtain the MLE of λ.

20. Suppose that X1, X2,…, Xn are independent random variables, each with the
following probability density function:

f (x, α, β) =
{
0 if x < α
1
β
e− (x−α)

β if x ≥ α

where −∞ < α < ∞ and 0 < β < ∞ are both unknown.

(a) Find the maximum likelihood estimators (MLE) of α andβ, say α̂ and β̂,
respectively.

(b) Find E(α̂) and E(β̂).
(c) If n = 7 and x1 = 5.3, x2 = 3.2, x3 = 2.4, x4 = 3.8, x5 = 4.2, x6 = 3.4, x7 =

2.9, find the MLE of α and β
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21. Suppose on five consecutive days in a given month the number of customers
who enter services at a printing shop were 48, 60, 78, 56, and 73
Test the null hypothesis that the expected numbers of customers per day were
the same on the five days at the 5% level of significance using the Chi-square
test.

22. Suppose that X is a discrete random variable with the following probability
mass function:

X P(X)

0 2θ
3

1 θ
3

2 2(1−θ)
3

3 (1−θ)
3

where 0 ≤ θ ≤ 1 is a parameter. The following 10 independent observations were
taken from such a distribution:

3, 0, 2, 1, 3, 2, 1, 0, 2, 1.
What is the maximum likelihood estimate of θ?

23. Let X denote the proportion of allotted time that a randomly selected engineer
spends working on a certain project, and suppose that the probability density
function of X is

f (x) =
{

(θ + 1)xθ for 0 ≤ x ≤ 1

0 otherwise
.

where θ > − 1.
A random sample of 10 engineers yielded data

x1 = 0.92, x2 = 0.79, x3 = 0.90, x4 = 0.65, x5 = 0.86
x6 = 0.47, x7 = 0.73, x8 = 0.97, x9 = 0.94, x10 = 0.77

(a) Use the method of moments to obtain an estimator of θ, and then compute the
estimate for this data.

(b) Obtain the maximum likelihood estimator of θ, and then compute the estimate
for the given data.

24. Let X be uniformly distributed on the interval [0, θ ] and the probability density
function of X is

f (x) =
⎧
⎨

⎩

1

θ
for 0 ≤ x ≤ θ

0 otherwise.
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where θ >0.
A random sample of 5 inspectors yielded data
x1 = 10.52, x2 = 12.37, x3 = 8.90, x4 = 14.35, x5 = 9.66
Obtain an estimator of θ using (a) the method of moments and (b) the method of

maximum likelihood, and then compute the estimate for this data.

25. Suppose that mywaiting time for a train is uniformly distributed on the interval
[0, θ ], and that the results x1, x2,…, xn of a randomsample from this distribution
have been observed. If my waiting times are 4.5, 5.3, 1.2, 7.4, 3.6, 4.8, and 2.9,

(a) calculate the estimate of θ using the method of moments.
(b) calculate the estimate of θ using the method of maximum likelihood.

26. (a) Find the method of moments estimate for θ based on a random sample of
size n taken from the following probability density function

f (x) = (θ + 1)xθ for 0 < x < 1.

(b) Calculate the estimate of θ for the sample x1 = 0.7, x2= 0.4, x3 = 0.8, x4=
0.5

27. At time x = 0, twenty identical units are put on test. Suppose that the lifetime
probability density function of each unit with parameter λ is given by

f (x) = λe−λx for x ≥ 0, λ > 0

The quality manager then leaves the test facility unmonitored. On his return 24 h
later, the manager immediately terminates the test after noticing that y = 15 of the 20
units are still in operation (so five have failed). Determine the maximum likelihood
estimate of λ.

28. At time x = 0, forty identical units are put on test. Suppose that the lifetime
probability density function of each unit with parameter θ is given by

f (x) = x

θ2
e− x2

2θ2 for x ≥ 0, θ > 0

The quality manager then leaves the test facility unmonitored. On his return 8 h
later, the manager immediately terminates the test after noticing that 30 of the 40
units are still in operation (so ten have failed). Determine the maximum likelihood
estimate of θ .

29. The following data were drawn one observation at a time in the order records:

g g b g g b g g g b g b g g b b b g g g.

where b denotes a defective item and g denotes a good item. The experiment was
performed to test the following hypothesis:

H0: p = p0 = 0.10 versus H1: p = p1 = 0.20.
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where p denotes the proportion defective items in the population. It is desired to
reject H0 when it is true with probability 0.05 and to accept H0 when H1 is true with
probability 0.20. Using sequential testing plan, determine whether you would accept
or reject a lot on the basis of the observations above.

30. The following data were drawn one observation at a time in the order records:

b g b b g b g b.

where b denotes a defective item and g denotes a good item. The experiment was
performed to test the following hypothesis:

H0: p = p0 = 0.10 versus H1: p = p1 = 0.25.

where p denotes the proportion defective items in the population. It is desired to
reject H0 when it is true with probability 0.05 and to accept H0 when H1 is true with
probability 0.10. Using sequential testing plan, determine whether you would accept
or reject a lot on the basis of the observations above.

31. Let X represent a random variable of service time at a certain facility, and
suppose that the cumulative distribution function of X is

F(x) =

{
1 − e−λx − λxe−λx for x > 0

0 for x ≤ 0

where λ > 0. A random sample of 10 customers yielded data.

x1 = 12, x2 = 18, x3 = 8, x4 = 15, x5 = 11,

x6 = 9, x7 = 8, x8 = 10, x9 = 18, x10 = 21

(a) Use the method of moments to obtain an estimator of λ, and then compute the
estimate for this data.

(b) Obtain the maximum likelihood estimator of λ, and then compute the estimate
for the given data.

32. Let X represent a random variable of service time at a certain facility, and
suppose that the probability density function of X is

f (x) = 0.5 λ3x2e−λx for x > 0, λ > 0.

A random sample of 5 customers yielded data
x1 = 20, x2 = 16, x3 = 15, x4 = 18, x5 = 25
Use the method of moments to obtain an estimator of λ, and then compute the

estimate for this data.

33. A study of the relationship between facility conditions at gasoline stations
and aggressiveness in the pricing of gasoline reported the accompanying data
below based on a sample of n = 441 stations. At the 0.10 significance level,
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does the data suggest that facility conditions and pricing policy are independent
of one another?

Observed Pricing Policy

Facility conditions Aggressive Neutral Nonaggressive Total

Substandard 24 15 17 56

Standard 52 73 80 205

Modern 58 86 36 180

Total 134 174 133 441
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Chapter 4
System Reliability Modeling

4.1 Introduction

Assess the reliability during the development of a new product especially a complex
system is important to be able to predict how likely the product can be performed for
its customers throughout the time the customers plan to use it. This chapter presents
methods and techniques for calculating the reliability of complex systems consisting
of non-repairable independent components including series–parallel, parallel–series,
k-out-of-n, standby and degraded systems (Pham 1997, 2003, 2014; Pham et al.
1996, 1997). The chapter also discusses basic mathematical reliability optimization
methods and the reliability of systems with multiple failure modes.

4.2 Series Systems

A series system is comprised of n components, shown in Fig. 4.1, the failure of any
of which will cause a system failure. In other words, the series system fails if and
only if at least one component fails. Similarly, for the series system to function then
all its components must function. An example of a series system is in the area of
communication that a system consists of three subsystems: a transmitter, a receiver,
and a processor. The failure of any one of these three subsystems will cause a system
failure.

If all n component failures are independent, then the reliability of series system
is given by

R =
n∏

i=1

Ri. (4.1)

If the n components are identical with reliability R0, the system reliability is
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1 2 n

Fig. 4.1 A simplified series system

R = Rn
0.

If component i has failure time T i, for i = 1, 2, …, n then since the system will
fail as soon as one of its components fails, it follows that the system failure time is
given by

Ts = min
1≤i≤n

Ti

Let us define f i(t) andRi(t) are, respectively, the failure time density and reliability
function of the ith component, the failure time distribution function of the system is

F(t) = P(Ts ≤ t) = 1 − P(Ts > t)

= 1 −
n∏

i=1

P(Ti > t)

= 1 −
n∏

i=1

Ri(t) (4.2)

The system failure time density is given by

f (t) = dF

dt
=

n∑

i=1

fi(t)
n∏

j=1
j�=i

Rj(t) (4.3)

The system reliability is also given by

R(t) =
n∏

i=1

Ri(t) (4.4)

The system failure rate λS(t) is

λS(t) =
∑n

i=1 fi(t) ·
[∏

j �=i Rj(t)
]

R(t)
=
∑n

i=1 fi(t) ·
[∏

j Rj(t)
]

Ri(t)

R(t)
(4.5)

Example 4.1 Given that each of the n independent components has an exponential
failure time distribution with constant failure rate λi, that is Ri(t) = e−λi t , obtain the
reliability function of series system.
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Solution The system reliability is

R(t) = e
−
(

n∑
i=1

λi

)
t = e−λt

where λ = ∑n
i=1 λi which is just the sum of the failures of the components; that is

also an exponential distribution with constant failure rate λ. If each component has
99.99% reliability after a month in the field, a system consisting of 5 independent
components in series will have a reliability of (0.9999)5 or 0.9995. In fact, in a series
system high reliability can be achieved only if the individual component has very
high reliability.

In general, the fact that a system consisting of n independent components arranged
in series has failure rate equal to the sum of the component failure rates is general
true for any distribution other than the exponential. See Problem 1.

The mean time to failure of the system can be obtained

MTTF =
∞∫

0

R(t)dt = 1
n∑

i=1
λi

.

Example 4.2 Consider a communication systemwith three independent units such as
transmitting unit, receiving unit and a processing unit. Assume that the transmitter
has a constant failure rate of λT = 0.002 per hour, the receiver has a constant
failure rate of λR = 0.005 per hour, and the processor has a constant failure rate of
λP = 0.008 per hour. Obtain the system reliability for a mission of 25 h.

Solution The reliability of transmitting unit is given by

RT (25) = e−0.002(25) = 0.9512

The reliability of receiving unit is

RR(25) = e−0.005(25) = 0.8825

The reliability of processing unit is

RP(25) = e−0.008(25) = 0.8187.

The reliability of this communication system is given by

R(25) = (0.9512) ∗ (0.8825) ∗ (0.8187) = 0.6872
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4.3 Parallel Systems

A parallel system is composed of n components that perform independent functions,
shown in Fig. 4.2, the success of any of which will lead to system success. In other
words, a parallel system works if and only if at least one component works. Also,
the parallel system can fail only when all components have failed.

Assume that a parallel system consists of n components (see Fig. 4.2) and that the
failures are independent. Note that for the parallel system to fail, all n components
must fail. The unreliability function, F ( = 1 – R) can be written as

F =
n∏

i=1

(1 − Ri). (4.6)

The system reliability is

R = 1 −
n∏

i=1

(1 − Ri). (4.7)

If components are identical, that is Ri = R0, then

R = 1 − (1 − R0)
n (4.8)

where R0 is the reliability of a component. If Rs is of reliability requirement then the
minimum number of components required can be obtained by solving the following
inequality:

1 − (1 − R0)
n ≥ Rs

and, therefore, the minimum number of components is:

n = ln(1 − Rs)

ln(1 − R0)
.

Fig. 4.2 A simplified
parallel system

1

2

n

.

.

.
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Example 4.3 If a parallel system consists of 3 independent components, each having
0.95 reliability, then the system reliability is given by

R = 1 − (1 − 0.95)3 = 0.9999

If the ith component has failure time Ti for i = 1, 2, …, n and the parallel system
will fail only upon failure of all of its components, thus, the system failure time is

TP = max
1≤i≤n

Ti

Let us define f i(t), F i(t), and Ri(t) are, respectively, the failure time density, failure
time distribution function and reliability function of the ith component. The failure
time distribution function of the system is

F(t) = P(TP ≤ t) =
n∏

i = 1

Fi(t)

The system failure time density is

f (t) = dF

dt
=

n∑

i=1

fi(t)
n∏

j=1
j �=i

Fj(t)

The system reliability is

R(t) = 1 − F(t) = 1 −
n∏

i=1

(1 − Ri(t)) (4.9)

The system failure rate can be obtained:

r(t) = f (t)

R(t)
=
∑n

i=1 fi(t)
∏n

j=1
j �=i

Fj(t)

1 −∏n
j=1
j�=i

Fj(t)

If each of the n independent components has an exponential failure time distri-
bution with constant failure rate λi, that is Ri(t) = e−λi t , then the system reliability
is

R(t) = 1 −
n∏

i=1

(1−e−λi t) (4.10)

The mean time to failure of the system can be obtained
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Mtbf =
∞∫

0

R(t)dt =
∞∫

0

(
1 −

n∏

i=1

(1−e−λi t)

)
dt

After simplifications, we can obtain

Mtbf =
n∑

i=1

n∑

ji=1

n∑

ji−1 = 1
{j1 > j2 > ..,> ji}

. . .

n∑

j2=1

n∑

j1=1

(−1)i+1

(
i∑

k=1
λjk

) (4.11)

For n = 2, from the above formula we obtain the system MTTF

Mtbf =
2∑

i=1

2∑

j2 = 1
{j1 > j2}

2∑

j1=1

(−1)i+1

(
i∑

k=1
λjk

)

=
2∑

j2 = 1
{j1 > j2}

2∑

j1=1

(−1)1+1

(
1∑

k=1
λjk

) +
2∑

j2 = 1
{j1 > j2}

2∑

j1=1

(−1)2+1

(
2∑

k=1
λjk

)

= 1

λ1
+ 1

λ2
− 1

λ1 + λ2

Thus,

MTTF = 1

λ1
+ 1

λ2
− 1

λ1 + λ2
.

Similarly, it can be shown that for a 3-component parallel system, the system
MTTF is given by

MTTF = 1

λ1
+ 1

λ2
+ 1

λ3
− 1

λ1 + λ2
− 1

λ1 + λ3
− 1

λ2 + λ3
+ 1

λ1 + λ2 + λ3

Example 4.4 Consider a parallel system of n identical and independent components
with constant failure rate λ, then the component reliability is

R0(t) = e−λt,

and from Eq. (4.8), the system reliability is

R(t) = 1 − (1 − e−λt
)n

. (4.12)
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The mean time to failure (MTTF) is given by

MTTF =
∞∫

0

R(t)dt = 1

λ

n∑

i=1

1

i
. (4.13)

When n = 2, the 2-component system reliability and system MTTF are

R(t) = 1 − (1 − e−λt
)2 = 2e−λt − e−2λt

and

MTTF = 1

λ

2∑

i=1

1

i
= 3

2
λ

respectively. In general, the MTTF of a parallel system with n components is
∑n

i=1
1
i

times better than that of a single-component system.

4.4 Series–Parallel Systems

Consider a series–parallel system consists of n subsystems connected in series
where subsystem i with mi components in parallel, for i = 1, 2, …, n, as shown
in Fig. 4.3. Define Rij(t) is as the reliability of component j in subsystem i for i =
1, 2, …, n and j = 1, 2, …, mi. The series–parallel system operates successfully if
all of n subsystems work. In other words, there is at least one component in each
subsystem must function for the successful operation of the system. The reliability
of series–parallel systems can be obtained

1

2

m1

.

.

.

1

2

m2

.

.

.

1

2

mn

.

.

.

1 2 .     .     . n

Fig. 4.3 A series–parallel system
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R(t) =
n∏

i=1

⎡

⎣1 −
mi∏

j=1

(1 − Rij(t))

⎤

⎦ (4.14)

When all the components are identical and the numbers of components in each
subsystem are the same, then system reliability from Eq. (4.14) becomes

R(t) = [1 − (1 − R0(t))
m
]n

(4.15)

where R0(t) is a component reliability and m is the number of components in each
subsystem.

If each component has a constant failure rate, that is R0(t) = e−λt , then the system
MTTF is given by

MTTF =
∞∫

0

(
1 − (1 − R0(t))

m
)n

dt

=
∞∫

0

(
1 − (1 − e−λt)m

)n
dt

= 1

λ

1∫

0

(1 − um)n

1 − u
du

where u = 1 − e−λt . After simplifications, we obtain

MTTF = 1

λ

1∫

0

(1 − um)

1 − u

(
1 − um

)n−1
du

= 1

λ

m−1∑

i=0

1∫

0

(
1 − um

)n−1
uidu

= 1

mλ

m−1∑

i=0

1∫

0

x
i+1
m−1 (1 − x)n−1dx

Note that from the beta function

B(a, b) =
1∫

0

xa−1(1 − x)b−1dx = (a − 1)!(b − 1)!
(a + b − 1)!
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we have

MTTF = 1

mλ

m−1∑

i=0

B

(
i + 1

m
, n

)
= (n − 1)!

mλ

m−1∑

i=0

⌊
i+1
m − 1

⌋!
⌊

i+1
m + n − 1

⌋! (4.16)

where �x� denotes the largest integer not exceeding x.

4.5 Parallel–Series Systems

Consider a parallel–series system of m subsystems in parallel where subsystem i
with ni components in series, for i = 1, 2, …, m, as shown in Fig. 4.4. Define Rij(t)
is as the reliability of component j in subsystem i for i = 1, 2, …, m and j = 1, 2, …,
ni. The parallel–series system operates successfully if all of the components in any
subsystem m that functions. Thus, the reliability of parallel–series system is given
by

R(t) = 1 −
m∏

i=1

⎛

⎝1 −
ni∏

j=1

Rij(t)

⎞

⎠. (4.17)

If all components in the parallel–series system are identical and the numbers of
components in all subsystems are equal, the reliability of the system can be written
as

R(t) = 1 − [1 − (R0(t))
n
]m

(4.18)

where R0(t) is the reliability of an individual component, and n is the number of
components in each subsystem. If each component has a constant failure rate, that is
R0(t) = e−λt , then the system MTTF is given by

Fig. 4.4 A parallel–series
system

1

2

.     .     .

m

1 2 n1

1 2 n2

.     .     . . . . . . .

1 2 nm
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MTTF =
∞∫

0

R(t)dt =
∞∫

0

(
1 − [1 − e−nλt

]m)
dt

Let u = 1 − e−nλt then we obtain

MTTF = 1

nλ

1∫

0

1 − um

1 − u
du = 1

nλ

m∑

i=1

1

i
(4.19)

4.6 k-out-of-n Systems

A common form of redundancy is a k-out-of-n system in which at least k out of
n components must function properly for the successful functioning of the system
(Pham 1992b, 2003; Pham and Pham 1991, 1992; Pham et al. 1996). For example,
a four-engine plane in which two engines must work for the plane to fly is a 2-out-
of-4 system. Similarly, consider a hot standby system consisting of two statistically
identical buses. There is a primary bus and a standby bus, that is switched online upon
failure of the primary bus. Therefore, the system, which operates correctly so long
as one of the two buses operates correctly, is a 1-out-of-2 system. Another example
is that cables for a bridge at Station M where a minimum of 250 out of 275 cables
are necessary to support the structure.

Anelectrical power-generating systemconsisting offivegeneratorswill be consid-
ering to operate in a full mode if there are at least four generators to operate in
full mode in order to deliver sufficient power. Such system is a 4-out-of-5 system.
Furthermore, in an 8-cylinder engine automobile it may be possible to drive the car
if only five cylinders are firing but if less than five fire then the automobile cannot
be driven, therefore, the engine functions as a 5-out-of-8 system. This configura-
tion of a reliability system is a generalization of a parallel redundant system with a
requirement for k out of n (obviously k ≤ n) identical and independent components
to function in order for the whole system to function. When k = 1 the previously
discussed complete redundancy occurs as parallel systems, while if k = n the system
is comprised of n components in series.

The k-out-of-n system functions if and only if at least k of its n components must
function, where n is the total number of components in the system. By the definition,
a parallel system is a 1-out-of-n while a series system is an n-out-of-n system.

The reliability of a k-out-of-n system with independently and identically
distributed (i.i.d.) components is given by

R(k, n) =
n∑

i=k

(
n
i

)
piqn−i (4.20)
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where p is the reliability of a component. The above equation can be rewritten as

R(k, n) = pk
n∑

i=k

(
i − 1
k − 1

)
qi−k (4.21)

Example 4.5 An aircraft has four engines (i.e., two on each wing) but can land
using just any three or more engines. Assume that the reliability of each engine for
the duration of a mission is Re = 0.997 and that engine failures are independent.
Calculate the mission reliability of the aircraft.

Solution Given Re = 0.997. The mission reliability of the aircraft is given by

Rsystem =
4∑

i=3

(
4
i

)
(0.997)i(0.003)4−i = 0.9999462

Time-Dependent Reliability Function

If all the components have the same failure time distribution function F0(t) and R0(t)
= 1− F0(t), then the probability of having exactly k components operational is given
by

P(X = k) = (nk
)
(R0(t))

k(1 − R0(t))
n−k , k = 0, 1, . . . , n

where R0(t) is the reliability of a component. Therefore, the reliability of the k-out-
of-n system is given by

R(t) =
n∑

i=k

(
n
i

)
(R0(t))

i(1 − R0(t))
n−i. (4.22)

When k = 1, that is, the n components are in parallel, Eq. (4.22) becomes

R(t) = 1 − (1 − R0(t))
n

which is the same as Eq. (4.8). When k = n, that is, the n components are in series,
thus

R(t) = (R0(t))
n

If the time to failure is exponential, the reliability of the system is

R(t) =
n∑

i=k

(
n
i

)
e−λit(1 − e−λt)n−i (4.23)
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where λ is the component constant failure rate. It can be shown that the mean time
to failure (MTTF) of the k-out-of-n system is given by

MTTF =
∞∫

0

R(t)dt = 1

λ

n∑

i=k

1

i
. (4.24)

For a special casewhen k= 1 then it becomes a parallel system. In general, it is not
simple to write a reliability expression for a k-out-of-n system when the components
do not have identical failure time distributions. However, it is possible to derive the
desired reliability expressions when n and k are small. Let us look at the following
examples.

Example 4.6 Given components with an exponential failure time distribution such
that the ith component has constant failure rate λi then it can be shown that the
reliability and MTTF of a 2 out of 3 system are, respectively,

R(t) = e−(λ1+λ2)t + e−(λ1+λ3)t + e−(λ2+λ3)t − 2e−(λ1+λ2+λ3)t

and

Mtbf =
∞∫

0

(e−(λ1+λ2)t + e−(λ1+λ3)t + e−(λ2+λ3)t − 2e−(λ1+λ2+λ3)t)dt

= 1

λ1 + λ2
+ 1

λ1 + λ3
+ 1

λ2 + λ3
− 2

λ1 + λ2 + λ3

Similarly, one can easily obtain the reliability and MTTF of a 2 out of 4 system
are, respectively,

R(t) = e−(λ1+λ2)t + e−(λ1+λ3)t + e−(λ1+λ4)t + e−(λ2+λ3)t + e−(λ2+λ4)t

+ e−(λ3+λ4)t − 2e−(λ1+λ2+λ3)t − 2e−(λ1+λ2+λ4)t

− 2e−(λ1+λ3+λ4)t − 2e−(λ2+λ3+λ4)t + 3e−(λ1+λ2+λ3+λ4)t

and

MTTF = 1

λ1 + λ2
+ 1

λ1 + λ3
+ 1

λ1 + λ4
+ 1

λ2 + λ3
+ 1

λ2 + λ4

+ 1

λ3 + λ4
− 2

λ1 + λ2 + λ3
− 2

λ1 + λ2 + λ4
− 2

λ1 + λ3 + λ4

− 2

λ2 + λ3 + λ4
+ 3

λ1 + λ2 + λ3 + λ4
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Similarly, one can easily obtain the reliability and MTTF of a 3-out-of-4 system
are, respectively,

R(t) = e−(λ1+λ2+λ3)t + e−(λ1+λ2+λ4)t + e−(λ1+λ3+λ4)t

+ e−(λ2+λ3+λ4)t − 3e−(λ1+λ2+λ3+λ4)t

and

Mtbf = 1

λ1 + λ2 + λ3
+ 1

λ1 + λ2 + λ4
+ 1

λ1 + λ3 + λ4

+
1

λ2 + λ3 + λ4
− 3

λ1 + λ2 + λ3 + λ4

4.7 k-to-l-out-of-n Noncoherent Systems

A k-to-l-out-of-n system works if and only if no fewer than k and no more than l
out of its n components are to function for the successful operation of the system.
This class of noncoherent systems was first proposed by Heidtmann (1981). The k-
to-l-out-of-n system takes into account the failures caused by the underproduction of
units or services and the failures that are caused by overproduction as well. Examples
of noncoherent systems can be found in the area of avionics system. A space-shuttle
computer-complex systemhas 5 identical computers assigned to redundant operation.
During the critical mission phases such as boost, reentry, and landing, 4 of these
computers operate in an N-Modular Redundancy (NMR) mode, receiving the same
inputs and executing identical tasks. Computer 5 performs non-critical tasks. The
shuttle can tolerate up to 2 failures. If all 5 computers are functioning during the
critical mission phases, the technique to detect a failed computer might not be able to
identify the failure, given that a failure has occurred. This eventually causes the space
shuttle to fail (Upadhyaya and Pham 1992, 1993). It is therefore a 2-to-4-out-of-5
system.

A noncoherent system is any system that is not coherent; a system is coherent if
and only if: (a) it is good (bad) when all components are good (bad), and (b) it never
gets worse (better) when the number of good components increases (decreases).
Such a system is noncoherent because the system reliability can decrease when the
number of good components increases (Pham 1991). The generality of the k-to-l-out-
of-n system can be demonstrated as follows: (i) when k = l = n, the k-to-l-out-of-n
system becomes a series system; (ii) when k = 1 and l = n, the k-to-l-out-of-n system
becomes a parallel system.

If we assume that all the n components in the k-to-l-out-of-n system are i.i.d., then
the reliability of the k-to-l-out-of-n system is
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R(t) =
l∑

i=k

(
n
i

)
(R0(t))

i(1 − R0(t))
n−i (4.25)

where R0(t) is the reliability of a component. When k = 1 and l = n, then the above
system reliability function becomes

R(t) = 1 − (1 − R0(t))
n

which is the same as Eq. (4.8) the parallel system. Similarly, when k = l = n, the
above system reliability function becomes a series system and is

R(t) = (R0(t))
n

If the time to failure is exponential, the reliability of the k-to-l-out-of-n system is

R(t) =
l∑

i=k

(
n
i

)
e−λit(1 − e−λt)n−i

where λ is the component constant failure rate. It can be shown that the MTTF of
the k-to-l-out-of-n system is given by

MTTF =
∞∫

0

R(t)dt =
∞∫

0

(
l∑

i=k

(
n
i

)
e−λit(1 − e−λt)n−i

)
dt = 1

λ

l∑

i=k

1

i
. (4.26)

4.8 Standby Systems

In general standby systems can be divided into three categories:

• Cold-standby system
• Warm-standby system
• Hot-standby system.

In a cold-standby system unit 1 is powered up (or initially “on-line”) and oper-
ational, the remaining units are not powered (Pham 1992a). When unit 1 fails, the
switching device switches in component 2 which remain powered up until it fails.
Unlike the parallel systems where all units in the system are operating simultane-
ously, in the standby systems, one or more units are in standby mode waiting to
take over the operation from the primary (or “on-line”) operating unit as soon as
the failure of the primary unit occurs. If a standby unit is fully activated when the
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Fig. 4.5 A standby system
1

2

n

.

.

.

S

system is in use, it is said to be in hot standby. If a standby unit is fully activated
only when the primary unit fails, it is in cold standby. A cold standby system needs
a sensing mechanism to detect the failure of the primary unit and a switching device
to activate the standby unit when the failure occurs. If the standby unit is partially
activated where the system is in operating mode, the standby unit is said to be in
warm standby. Cold standby units are not subject to failure until activated where
a warm standby unit usually is subjected to a reduced level of stress, and may fail
before it is fully activated.

Consider the cold standby system with a switching device. The system consisting
of n components is shown in Fig. 4.5 where component 1 is the primary one, and S
represents the switching device.

The typical assumptions in considering the standby systems are:

1. The switching device is 100% reliable.
2. If switching is necessary due to failure in an active or primary component, the

time required is insignificant and will not affect the desired operation.
3. No warm up time is necessary for cold-standby components being switched in.
4. Failure can be detected by the failure sensing device with probability 1 and the

subsequent is then switched in automatically.

In this section, we will discuss reliability of various aspects of standby systems
including the above assumptions and others including imperfect switching device,
load-sharing standby units.

4.8.1 Cold Standby Systems with Perfect Switching Device

Consider a standby system consisting of n components (only one active and (n − 1)
components are in cold-standby), shown in Fig. 4.5. Here we assume that the switch
S functions perfectly and that components cannot fail while they are in standby, also
called as cold-standby. In other words, cold-standby components will not fail while
waiting to be activated. The component that is in operation is called the active (or
primary) component while the components are still in standby called standby (or
cold standby) components.

The standby system operates as follows: Component 1, called primary compo-
nent, is put into operation at time t = 0 and operates until failure. When it fails,
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component 2 is activated. If component 2 fails, component 3 is activated, and so
forth. Similarly, component (n − 1) operates until failure. When it fails, component
n is activated. When component n fails, the system fails. Let Ti denote the time to
failure of component i (i = 1, 2, …, n) and T be the system failure time, then we can
easily see that

T =
n∑

i=1

Ti. (4.27)

If T 1, T 2, …, Tn are independent and identically exponential distributed with
failure rate λ then the system failure time T follows a gamma distribution with
parameters n and λ, and the corresponding pdf is

f (t) = λn

�(n)
tn−1e−λt

The reliability of the system is given by

R(t) =
∞∫

t

λn

�(n)
sn−1e−λsds = e−λt

n−1∑

i=0

(λt)i

i! . (4.28)

The system MTTF can be easily obtained as follows

MTTF = n

λ

or, equivalently, using the sum of the mean,

MTTF = E(T ) =
n∑

i=1

E(Ti) =
n∑

i=1

1

λ
= n

λ
(4.29)

Two-Component Standby Systems

Consider the standby system with two independent components where component 1
is the primary component and component 2 is in standby. The system will survive at
time t if any of the following two events occurs.

• Event 1: The primary component (whose life T1) does not fail at time t; that is,
T1 ≥ t.

• Event 2: If the primary component fails at τ (τ < t), then the standby component
(whose life T2) must function at time τ and does not fail in the remaining time
(t − τ). The event can be described as {T1 < t and T2 ≥ t − τ }.
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Since the above two events are mutually exclusive, the reliability of the system
can be written as

R(t) = Pr{T1 ≥ t} + Pr{T1 < τ and T2 ≥ (t − τ)}

= R1(t) +
t∫

0

f1(τ ) R2(t − τ)dτ (4.30)

where Ri(t) and f i(t) are component i reliability and pdf, respectively. When the pdf
of component 1 and 2 are given, it can be easily obtained the reliability of the system
using Eq. (4.30).

For components with an exponential pdf having constant failure rate λi for the
ith component and the switching device is 100% reliable, from Eq. (4.30) we can
rewritten the system reliability as follows:

R(t) = P{component #1 does not fail at time t}
+ P{component #1 has failed before time t & component #2 was switched on and is

functioning until time t}

Therefore,

R(t) = e−λ1t +
t∫

0

λ1e
−λ1se−λ2(t−s)ds

=
{
e−λt + λte−λt if λ1 = λ2 = λ
λ1e−λ2 t−λ2e−λ1 t

λ1−λ2
if λ1 �= λ2

(4.31)

Three-Component Standby Systems

Consider the standby system consisting of three independent components where
component 1 is the primary component and two standby components (component 2
and 3) are in standby. Let Ri(t) and f i(t) be reliability and pdf of component i. From
Eq. (4.30), the system reliability can be obtained as follows:

R(t) = R1(t) +
t∫

0

f1(t1) R2(t − t1)dt1+
t∫

0

f1(t1)

⎛

⎜⎝

t−t1∫

0

f2(t2)R3(t − t1 − t2)dt2

⎞

⎟⎠dt1 (4.32)

If we assume that all the components are non-identical but exponentially
distributed with constant failure rate parameter λi for component i, then from
Eq. (4.32) we obtain
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R(t) = e−λ1t + λ1

λ2 − λ1

(
e−λ1t − e−λ2t

)

+ λ1λ2

(
e−λ1t

(λ1 − λ2)(λ1 − λ3)
+ e−λ2t

(λ2 − λ1)(λ2 − λ3)
+ e−λ3t

(λ3 − λ1)(λ3 − λ2)

)

(4.33)

It can be easily shown that for all non-identical n components in a standby system
where component i is exponentially distributed with constant failure rate parameter
λi, then the n-component standby system is given by

R(t) = λ2λ3 . . . λn e−λ1t

(λ2 − λ1)(λ3 − λ1) . . . (λn − λ1)
+ λ1λ3 . . . λn e−λ2t

(λ1 − λ2)(λ3 − λ2) . . . (λn − λ2)

+ · · · + λ1λ2 . . . λn−1 e−λnt

(λ1 − λn)(λ3 − λn) . . . (λn−1 − λn)

=
n∑

i=1

⎛

⎜⎜⎜⎜⎜⎜⎝

n∏

j = 1
j �= i

λj(
λj − λi

)

⎞

⎟⎟⎟⎟⎟⎟⎠
e−λi t (4.34)

The system MTTF then

MTTF =
∞∫

0

R(t)dt

=
∞∫

0

⎛

⎜⎜⎝
n∑

i=1

⎛

⎜⎜⎝
n∏

j=1
j �=i

λj(
λj − λi

)

⎞

⎟⎟⎠e−λi t

⎞

⎟⎟⎠dt

=
n∑

i=1

⎧
⎪⎪⎨

⎪⎪⎩

⎛

⎜⎜⎝
n∏

j=1
j �=i

λj(
λj − λi

)

⎞

⎟⎟⎠
1

λi

⎫
⎪⎪⎬

⎪⎪⎭
(4.35)

If λi = λ then from Eq. (4.34), it can be shown that the reliability of n-component
standby system is given by

R(t) = e−λt
n−1∑

i=0

(λt)i

i! (4.36)
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Generalization of Standby System Reliability Calculations

In general, we can obtain the reliability of standby systems directly from the system
pdf. Let gi (t) denotes the density function for T i and f(t) is the corresponding system
failure density function, then we can obtain the pdf of the 2-component standby
system as follows:

f (t) =
t∫

0

g1(x)g2(t − x)dx = (g1 ∗ g2)(t) (4.37)

where * is the convolution function.
The pdf of the 3-component standby system can also be obtained

f (t) =
t∫

0

t−t1∫

0

g1(t1) g2(t2) g3(t − t1 − t2) dt2 dt1 = (g1 ∗ g2 ∗ g3)(t) (4.38)

Similarly, the pdf of the 4-component standby system is given by

f (t) =
t∫

0

t−t1∫

0

t−t1−t2∫

0

g1(t1) g2(t2) g3(t3) g(t − t1 − t2 − t3)dt3 dt2 dt1 = (g1 ∗ g2 ∗ g3 ∗ g4)(t)

In general, the pdf of the n-component standby system is given by

f (t) =
t∫

0

t−t1∫

0

. . .

t−
n−2∑
i=1

ti
∫

0

g1(t1)g2(t2) . . . gn

(
t −

n−1∑

i=1

ti

)
dtn−1dtn−2 . . . dt1

= (g1 ∗ g2 ∗ · · · ∗ gn)(t) (4.39)

Therefore, the reliability of the n-component standby system can be written as

R(t) =
∞∫

t

f (x)dx

=
∞∫

t

(g1 ∗ g2 ∗ . . . ∗ gn)(t)dt (4.40)

Example 4.7 Consider a two-component standby system with an exponential pdf,
that is,

gi(t) = λie
−λi t for i = 1 and 2
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Using the convolution approach, then the pdf of the system can be written as

f (t) =
t∫

0

λ1λ2e
−λ1se−λ2(t−s)ds

=
{

λ2te−λt if λ1 = λ2 = λ
λ1λ2(e−λ2 t−e−λ1 t)

λ1−λ2
if λ1 �= λ2

(4.41)

The system reliability can be obtained as follows

R(t) =
∞∫

t

f (s)ds

=
{

(1 + λt)e−λt if λ1 = λ2 = λ
λ1e−λ2 t−λ2e−λ1 t

λ1−λ2
if λ1 �= λ2

(4.42)

is same as Eq. (4.31).
In general, if gi(t) = λie−λi t for i = 1, 2 . . . , n then we can show that the

reliability of n components standby system is given by

R(t) =
∞∫

t

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

t∫

0

t−t1∫

0

. . .

t−
n−2∑
i=1

ti
∫

0

g1(t1)g2(t2) . . . gn

(
t −

n−1∑

i=1

ti

)
dtn−1dtn−2 . . . dt1

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

dt

=
∞∫

t

{(g1 ∗ g2 ∗ · · · ∗ gn)(t)}dt

=
n∑

i=1

⎧
⎪⎪⎨

⎪⎪⎩

n∏

j=1
j �=i

λj(
λj − λi

)

⎫
⎪⎪⎬

⎪⎪⎭
e−λi t (4.43)

for if λi �= λj for i �= j. If λi = λ then from Eq. (4.43), it can be shown that

R(t) = e−λt
n−1∑

i=0

(λt)i

i! (4.44)
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4.8.2 Cold-Standby Systems with Imperfect Switching Device

Let us consider a switching device consisting of a failure detection mechanism and
a switching sensor that subject to failure with a pdf fs(t) and reliability Rs(t).

2-component Cold-Standby System with imperfect switching device

For a two-component cold standby system, the reliability of the system is given by

R(t) = R1(t) +
t∫

0

Rs(τ )f1(τ )R2(t − τ)dτ (4.45)

where Rs(τ ) is the reliability of the switching device at time τ . The first term R1(t)
in Eq. (4.45) represents the component 1 does not fail in (0, t]. The second term∫ t
0 Rs(τ )f1(τ )R2(t − τ)dτ indicates that component 1 fails at time τ with probability

f1(τ ) and the switch S does not fail at time τ and is able to activate component 2.
Component 2 then does not fail in (τ, t].

Assume that the two components are identically and exponentially distributed
with constant failure rate parameter λ, and that the life of a switching device follows
exponentially distributed with parameter λs, then from Eq. (4.45) the reliability of
the 2-component standby system is given by

R(t) = e−λt +
t∫

0

e−λsτ λe−λτ e−λ(t−τ)dτ = e−λt

[
1 + λ

λs

(
1 − e−λst

)]
.

The mean time to failure is

MTTF =
∞∫

0

R(t)dt = 1

λ
+ 1

λs
− λ

λs(λ + λs)
.

In case the reliability of switching device is independent of time. Let Rs(τ ) = ps.
Then from Eq. (4.45), we have

R(t) = e−λt + ps

t∫

0

λe−λτ e−λ(t−τ)dτ = (1 + psλt)e−λt .

The system MTTF is given by

MTTF =
∞∫

0

R(t)dt =1 + ps

λ
.
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Example 4.8 Consider a standby systemwith two identical valves eachwith constant
failure rate λ = 10−5 failures/hours.The probability ps that the switch S will activate
the standby valve is 0.995. What is the reliability of the system at time t = 8760 h
(or one year)?

Here ps = 0.995, from Eq. (4.48) the reliability that the system will survive one
year is,

R(8760) = (1 + psλt)e−λt

= (1 + (0.995)(10−5)8760
)
e−(10−5)8760

= 0.9960

The system MTTF is

MTTF = 1 + ps

λ

= 1 + 0.995

10−5
= 199, 500 hours

Non-identical components. Let us assume that the component 1 (active unit) and
component 2 (standby unit) have constant rate λ1 and λ2, respectively. Let ps is
the probability that the switching is successful. This implies that the switch S will
activate the standby unit with probability ps. From Eq. (4.45), we have

R(t) = e−λ1t + ps

t∫

0

λ1e
−λ1τ e−λ2(t−τ)dτ

= e−λ1t + psλ1

λ1 − λ2
e−λ2t − psλ1

λ1 − λ2
e−λ1t

The system MTTF is given by

MTTF =
∞∫

0

R(t)dt =
∞∫

0

(
e−λt + psλ1

λ1 − λ2
e−λ2t − psλ1

λ1 − λ2
e−λ1t

)
dt

= 1

λ1
+ ps

λ2
(4.46)

3-component Cold-Standby System with imperfect switching device

Let f i(.) be the probability density function of the ith active component, Rsi(.) is the
reliability of the switch when it is connected to the ith active component, and Ri(.) is
the reliability of the ith active component. Similarly, the reliability of a 3-component
cold-standby system with imperfect switching device is given by
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R(t) = R1(t) +
t∫

0

f1(t1)Rs1(t1) R2(t − t1)dt1

+
t∫

0

f1(t1)Rs1(t1)

⎛

⎝
t−t1∫

0

f2(t2)Rs2(t2)R3(t − t1 − t2)dt2

⎞

⎠dt1 (4.47)

n-component Cold-Standby System with imperfect switching device

In general, one can obtain the reliability of a cold-standby systemwith n components
as follows:

R(t) = R1(t) +
t∫

0

f1(t1)Rs1(t1) R2(t − t1)dt1

+
t∫

0

f1(t1)Rs1(t1)

⎛

⎝
t−t1∫

0

f2(t2)Rs2(t2)R3(t − t1 − t2)dt2

⎞

⎠dt1

+ · · · +
t∫

0

t−t1∫

0

. . .

t−t1−t2−···−tn−2∫

0

f1(t1)Rs1(t1)f2(t2)Rs2(t2) . . .

fn−1(tn−1)Rs(n−1)(tn−1)Rn(t − t1 − t2 − · · · − tn−1)dtn−1 . . . dt2dt1 (4.48)

where f i(.) is the failure function of the ith active component,Rsi(.) is the reliability of
the switch when it is connected to the ith active component, and Ri(.) is the reliability
of the ith active component. The mean time to failure of a cold-standby system with
imperfect switching device can be obtained as

MTTFsystem =
∞∫

0

R(t)dt

where R(t) is given in Eq. (4.48).
Assume that all n components are identically and exponentially distributed with

constant failure rate parameter λ, and that the failure time of the switching device
follows an exponential distribution with parameter λsi when it is connected to the ith
active component. The reliability of the n-component cold standby system is given
by

R(t) = e−λt +
t∫

0

λe−λt1 e−λs1 t1 e−λ
(
t−t1

)
dt1+

t∫

0

λe−λt1 e−λs1 t1

⎛

⎜⎝

t−t1∫

0

λe−λt2 e−λs2 t2 e−λ
(
t−t1−t2

)
dt2

⎞

⎟⎠dt1
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+ · · · +
t∫

0

t−t1∫

0

. . .

t−t1−t2−...−tn−2∫

0

λe−λt1 e−λs1 t1λe−λt2 e−λs2 t2 . . .

λe−λtn−1 e−λs(n−1) tn−1 e−λ
(
t−t1−t2−...−tn−1

)
dtn−1 . . . dt2dt1

After several calculations, we obtain

R(t) = e−λt +
[(

λ

λs1

)
e−λt −

(
λ

λs1
e−(λ+λs1

)
t
)]

+
[(

λ2

λs1λs2

)
e−λt −

(
λ2

λs1(λs2 − λs1)
e−(λ+λs1

)
t + λ2

λs2(λs1 − λs2)
e−(λ+λs2

)
t

)]

+ · · · +

⎡

⎢⎢⎢⎢⎣

⎛

⎜⎜⎜⎝
λn−1

n−1∏

i=1
λsi

⎞

⎟⎟⎟⎠e−λt −

⎛

⎜⎜⎜⎜⎝

n−1∑

i=1

⎛

⎜⎜⎜⎜⎝
λn−1

λsi
n−1∏

j=1∧j �=i

(
λsj − λsi

)

⎞

⎟⎟⎟⎟⎠
e−(λ+λsi

)
t

⎞

⎟⎟⎟⎟⎠

⎤

⎥⎥⎥⎥⎦
(4.49)

whereλ andλsi are the failure rates of all components in the active state and the failure
rate of the switchwhen it is connected to the ith active component, respectively. From
Eq. (4.49), the reliability of a non-repairable n-component cold-standby system with
an imperfect switching when all the failure rates of the n components follow an
exponential distribution can be rewritten as

R(t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

e−λt for n = 1
⎛

⎜⎜⎜⎜⎝

n−1∑

i=0

⎛

⎜⎜⎜⎜⎝

λi λs(i+1)
i+1∏

j=1
λsj

⎞

⎟⎟⎟⎟⎠
−

⎡

⎢⎢⎢⎢⎣

n−1∑

i=1

i+1∑

k=1

⎛

⎜⎜⎜⎜⎝

λi(λs(i+1) − λsk
)
e−λsk t

λsk

(
i+1∏

j=1∧j �=k

(
λsj − λsk

)
)

⎞

⎟⎟⎟⎟⎠

⎤

⎥⎥⎥⎥⎦

⎞

⎟⎟⎟⎟⎠
e−λt for n > 1

(4.50)

Thus, the system MTTF is given by

MTTFsystem =
∞∫

0

R(t)dt

=
∞∫

0

n−1∑

i=0

⎛

⎜⎜⎜⎜⎝

λi λs(i+1)e−λt

i+1∏

j=1
λsj

⎞

⎟⎟⎟⎟⎠
dt −

∞∫

0

⎡

⎢⎢⎢⎢⎣

n−1∑

i=1

i+1∑

k=1

⎛

⎜⎜⎜⎜⎝

λi(λs(i+1) − λsk
)
e−(λsk +λ)t

λsk

(
i+1∏

j=1∧j �=k

(
λsj − λsk

)
)

⎞

⎟⎟⎟⎟⎠

⎤

⎥⎥⎥⎥⎦
dt

=
n−1∑

i=0

⎛

⎜⎜⎜⎜⎝

λi−1 λs(i+1)
i+1∏

j=1
λsj

⎞

⎟⎟⎟⎟⎠
−

n−1∑

i=1

i+1∑

k=1

⎛

⎜⎜⎜⎜⎝

λi(λs(i+1) − λsk
)

λsk (λsk + λ)

(
i+1∏

j=1∧j �=k

(
λsj − λsk

)
)

⎞

⎟⎟⎟⎟⎠
(4.51)

From Eq. (4.51), when λsi = 0, the system MTTF yields

MTTFsystem = n

λ
.
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same as in Eq. (4.29).

2-component Hot-Standby System with imperfect switching device

If we assume that the standby component 2 may fail (in standby mode) before it is
activated with a pdf f0(t), then from Eq. (4.45), the reliability of the two-component
hot-standby system is given by

R(t) = R1(t) +
t∫

0

Rs(τ )R0(τ )f1(τ )R2(t − τ)dτ (4.52)

where R0(τ ) = ∫∞
τ

f0(s)ds represents that component 2 does not fail in (0, τ ], and
Rs(τ ) is the reliability of the switching device at time τ . The first term R1(t) in
Eq. (4.52) represents the component 1 does not fail in (0, t].

4.9 Load-Sharing Systems with Dependent Failures

A shared-load system refers to a parallel system whose units equally share the load
for the system to function (Pham 1992a). Here we assume that for the shared-load
parallel system to fail, all the units in the system must fail. In this section we will
derive the reliability of the two-unit and three unit of load-sharing systems. Other
higher number of units in the system can similarly be easily obtained the results.

Two-non-identical-unit load-sharing systems

Let f if(t) and f ih(t) be the pdf for time to failure of unit i, for i = 1, 2, under full load
and half load condition, respectively. Also let Rif(t) and Rih(t) be the reliability of
unit i under full load and half load condition, respectively. Thus the system will be
working if: (1) both units are working until the end of mission time t; (2) unit 1 fails
before time t then unit 2 takes the full load and is operating until the end of time t;
or (3) same as (2) but, instead, the unit 2 fails before time t then unit 1 takes the full
load and is operating until the end of time t.

Mathematically,we canobtain the reliability function of shared-load 2-unit system
as follows (Pham 2014):

R(t) = R1h(t)R2h(t) +
t∫

0

f1h(s)R2h(s)R2f (t − s)ds +
t∫

0

f2h(s)R1h(s)R1f (t − s)ds (4.53)

Three-non-identical unit load-sharing systems

Let fif(t), fih(t), and f ie(t)be the pdf for time to failure of unit i, for i = 1, 2, and 3
under full load and half load and equal-load condition (this occurs when all three
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units are working), respectively. Also let Rif(t), Rih(t), and Rie(t) be the reliability of
unit i under full load and half load condition, respectively.

The following events would be considered for the three-unit load-sharing system
to work:

Event 1: All the three units are working until the end of mission time t;
Event 2: All three units are working until time t1; at time t1 one of the three units
fails. The remaining two units are working until the end of the mission.
Event 3: All three units are working until time t1; at time t1 one of the three units
fails. Then at time t2 the second unit fails, and the remaining unit is working until
the end of mission t.

Prob {event 1} =
3∏

i=1

Rie(t) (4.54)

Prob {event 2} =
t∫

0

f1e(s)R2e(s)R3e(s)R2h(t − s)R3h(t − s)ds

+
t∫

0

f2e(s)R1e(s)R3e(s)R1h(t − s)R3h(t − s)ds

+
t∫

0

f3e(s)R1e(s)R2e(s)R1h(t − s)R2h(t − s)ds (4.55)

and

Prob {event 3} =
t∫

0

f1e(s)R2e(s)R3e(s)

t−t1∫

0

f2h(x)R3h(x)R3f (t − s − x)dx ds

+
t∫

0

f1e(s)R2e(s)R3e(s)

t−t1∫

0

f3h(x)R2h(x)R2f (t − s − x)dx ds

+
t∫

0

f2e(s)R1e(s)R3e(s)

t−t1∫

0

f1h(x)R3h(x)R3f (t − s − x)dx ds

+
t∫

0

f2e(s)R1e(s)R3e(s)

t−t1∫

0

f3h(x)R1h(x)R1f (t − s − x)dx ds

+
t∫

0

f3e(s)R1e(s)R2e(s)

t−t1∫

0

f1h(x)R2h(x)R2f (t − s − x)dx ds

+
t∫

0

f3e(s)R1e(s)R2e(s)

t−t1∫

0

f2h(x)R1h(x)R1f (t − s − x)dx ds. (4.56)
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The reliability of a three-unit load-sharing system is, from Eqs. (4.54–4.56):

R(t) = Prob{event 1} + Prob{event 2} + Prob{event 3}

where Prob {event 1}, Prob {event 2} and Prob {event 3} are given in Eqs. (4.54),
(4.55) and (4.56), respectively.

Example 4.9 Consider a three-unit load-sharing parallel system where λ0 be the
constant failure rate of a unit when all the three units are working; λh be the constant
failure rate of each of the two surviving units, each of which shares half of the total
load; and λf be the constant failure rate of a unit at full load. Then we obtain

Prob{event 1} =
3∏

i=1

Rie(t) = e−3λ0t (4.57)

Prob{event 2} =
t∫

0

f1e(s)R2e(s)R3e(s)R2h(t − s)R3h(t − s)ds

+
t∫

0

f2e(s)R1e(s)R3e(s)R1h(t − s)R3h(t − s)ds

+
t∫

0

f3e(s)R1e(s)R2e(s)R1h(t − s)R2h(t − s)ds

= 3

t∫

0

λ0e−λ0se−2λ0se−2λh(t−s)ds

= 3λ0

2λh − 3λ0

(
e−3λ0t − e−2λht

)
. (4.58)

And from Eq. (4.56), we obtain

Prob{event 3} = 6

t∫

0

λ0e−λ0 t1 e−2λ0 t1

t−t1∫

0

λhe−λht2 e−λht2 e
−λf

(
t−t1−t2

)
dt2dt1

= 6λ0λh

⎛

⎝ e−3λ0 t

(
3λ0 − 2λh

)(
3λ0 − λf

) + e−2λht

(
2λh − 3λ0

)(
2λh − λf

) + e
−λf t

(
λf − 3λ0

)(
λf − 2λh

)

⎞

⎠

(4.59)

The reliability of a three-unit load-sharing parallel system is

R(t) = Prob{event 1} + Prob{event 2} + Prob{event 3}

= e−3λ0 t + 3λ0
2λh − 3λ0

(
e−3λ0 t − e−2λht

)
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+ 6λ0λh

⎛

⎝ e−3λ0 t

(
3λ0 − 2λh

)(
3λ0 − λf

) + e−2λht

(
2λh − 3λ0

)(
2λh − λf

) + e
−λf t

(
λf − 3λ0

)(
λf − 2λh

)

⎞

⎠. (4.60)

The system MTTF can be easily obtained as follows

MTTF =
∞∫

0

R(t)dt = 1

3λ0
+ 1

2λh
+ 1

λf

Example 4.10 Continued from Example 4.8, given that λ0 = 0.001/hour, λh =
0.005/hour, λf = 0.05/hour then

MTTF =
1

3λ0
+ 1

2λh
+ 1

λf
= 1

3(0.001)
+ 1

2(0.005)
+ 1

(0.05)
= 453.33 hours.

Example 4.11 A Three-unit Load-Sharing System
A shared-load system refers to a parallel system whose units equally share the

system function. Therefore, for a shared-load parallel system to fail, all the units in
the system must fail. Determine the reliability and mean time to failure (MTTF) of
a 3-unit shared-load parallel system where

λ0 is the constant failure rate of a unit when all the three units are operational;
λh is the constant failure rate of each of the two surviving units, each of which

shares half of the total load; and.
λf is the constant failure rate of a unit at full load.

(a) Determine the reliability at t = 10 h where

λ0 = 0.001/hour; λh = 0.005/hour; and λf = 0.05/hour.

(b) What is the MTTF?

Solution Consider the following three events:

Event 1: All the three units are working until the end of the mission time t where
each unit shares one-third of the total load.
Event 2: All the three units are working until time t1 (each shares one-third of
the total load). At time t1, one of the units (say unit 1) fails, and the other two
units (say unit 2 and 3) remain to work until the mission time t. Here, once a unit
fails at time t1, the remaining two working units would take half each of the total
load and have a constant rate λh. As for all identical units, there are 3 possibilities
under this situation.
Event 3: All the three units are working until time t1 (each shares one-third of
the total load) when one (say unit 1) of the three units fails. At time t2, (t2 > t1)
one more unit fails (say unit 2) and the remaining unit works until the end of the
mission time t. Under this event, there are 6 possibilities that the probability of
two units failing before time t and only one unit remains to work until time t.
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Let T1, T2 and T3 be failure time of unit 1, 2 and 3, respectively. Let

R0(t) be the reliability of a unit when all the three units are operational
Rh(t) be reliability of each of the two remaining working units each of which
shares half of the total load
Rf(t) be the reliability of a unit at full load.

Then

P1(t) ≡ P{Event 1} = P{T1 > t, T2 > t, T3 > t}
= (R0(t))

3

= e−3 λ0 t (4.61)

Next,

P2(t) ≡ P{Event 2}
= 3 P{{T1 = t1 < t, T2 > t1, T3 > t1} and {T2 > (t − t1) and T3 > (t − t1)}}+

= 3

t∫

0

f0(t1)R
2
0(t1)R

2
h(t − t1)dt1 (4.62)

where f 0(t1) is the pdf of a unit with one-third of the total load when all three units
are functioning. For exponential distribution function, from Eq. (4.62) we have

P2(t) = 3

t∫

0

λ0 e
−λ0t1 e−2λ0t1 e−2λh(t−t1)dt1

= 3λ0

2λh − 3λ0

(
e−3λ0t − e−2λht

)
(4.63)

Finally,

P3(t) ≡ P{Event 3}
= 6 P{{T1 = t1 < t, T2 > t1, T3 > t1} ∩ {T2 = t2 > t1 and T3 > t2} ∩ {T3 > (t − t1 − t2)}}

= 6

t∫

0

f0(t1)R
2
0(t1)

⎧
⎪⎨

⎪⎩

t - t1∫

0

fh(t2)Rh(t2)Rf (t − t1 − t2)dt2

⎫
⎪⎬

⎪⎭
dt1 (4.64)

where fh(t2) is the pdf of a unit with a half of the total load.
For exponential distribution function, from Eq. (4.64) we obtain

P3(t) = 6

t∫

0

λ0e
−λ0 t1 e−2λ0 t1

⎧
⎪⎨

⎪⎩

t−t1∫

0

λh e−λh t2 e−λh t2 e−λf(t−t1−t2)dt2

⎫
⎪⎬

⎪⎭
dt1



252 4 System Reliability Modeling

= 6λ0λh

⎡

⎣ e−3λ0 t

(
3λ0 − 2λh

)(
3λ0 − λf

) + e−2λh t

(
2λh − 3λ0

)(
2λh − λf

) + e−λf t
(
λf − 3λ0

)(
λf − 2λh

)

⎤

⎦ (4.65)

Note that one can also calculate the P3(t) as follows:

P3(t) ≡ P{Event 3}

=
(
3

1

)(
2

1

)
P{{T1 = t1 < t, T2 > t1, T3 > t1} ∩ {T2 = t2 − t1 & T3 > t2 − t1} ∩ {T3 > (t − t2)}}

= 6

t∫

t1=0

f0(t1)R
2
0(t1)

⎧
⎪⎨

⎪⎩

t∫

t2=t1

fh(t2 − t1)Rh(t2 − t1)Rf (t − t2)dt2

⎫
⎪⎬

⎪⎭
dt1 (4.66)

which is the same as Eq. (4.64). For exponential distribution function, fromEq. (4.66)
we obtain as follows:

P3(t) = 6

t∫

0

λ0e
−λ0 t1 e−2λ0 t1

⎧
⎪⎨

⎪⎩

t∫

t2=t1

λh e−λh(t2−t1) e−λh
(
t2−t1

)
e
−λf (t−t2)

dt2

⎫
⎪⎬

⎪⎭
dt1

= 6λ0λh

⎡

⎣ e−3λ0 t

(
3λ0 − 2λh

)(
3λ0 − λf

) + e−2λh t

(
2λh − 3λ0

)(
2λh − λf

) + e−λf t
(
λf − 3λ0

)(
λf − 2λh

)

⎤

⎦

= 6λ0λh(
λf − 2λh

)

⎡

⎣ e−3λ0 t
(
2λh − 3λ0

) − e−2λh t
(
2λh − 3λ0

) − e−3λ0 t
(
λf − 3λ0

) + e−λf t
(
λf − 3λ0

)

⎤

⎦ (4.67)

where Eq. (4.67) is the same as Eq. (4.65). Thus, the reliability of a three-unit shared
load parallel system is

R(t) = P1(t) + P2(t) + P3(t)

= e−3λ0 t + 3λ0
2λh − 3λ0

(
e−3λ0 t − e−2λh t

)

+ 6λ0λh

⎡

⎣ e−3λ0 t

(
3λ0 − 2λh

)(
3λ0 − λf

) + e−2λh t

(
2λh − 3λ0

)(
2λh − λf

) + e−λf t
(
λf − 3λ0

)(
λf − 2λh

)

⎤

⎦. (4.68)

The system mean time to failure (MTTF) is

MTTF =
∞∫

0

R(t)dt

=
∞∫

0

⎧
⎪⎪⎨

⎪⎪⎩

e−3λ0 t + 3λ0
2λh−3λ0

(
e−3λ0 t − e−2λh t

)

+6λ0λh

[
e−3λ0 t

(
3λ0−2λh

)(
3λ0−λf

) + e−2λh t
(
2λh−3λ0

)(
2λh−λf

) + e−λf t(
λf −3λ0

)(
λf −2λh

)

]

⎫
⎪⎪⎬

⎪⎪⎭
dt

= 1

3λ0
+ 1

2λh
+ 1

λf
.

Given λ0 = 0.001/hour; λh = 0.005/hour; and λf = 0.05/hour. From
Eq. (4.68), the reliability at time t = 10 h is given by
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R(t) = e−3(0.001)(10) + 3(0.001)

2(0.005) − 3(0.001)

(
e−3(0.001)(10) − e−2(0.005)(10))

+ 6(0.001) (0.005)

⎡

⎢⎢⎣

e−3(0.001)(10)

(3(0.001)−2(0.005))(3(0.001)−0.05)

+ e−2(0.005)(10)

(2(0.005)−3(0.001))(2(0.005)−0.05)

+ e−(0.05)(10)

(0.05−3(0.001))(0.05−2(0.005))

⎤

⎥⎥⎦

= 0.9997.

The system mean time to failure (MTTF) is

MTTF = 1

3λ0
+ 1

2λh
+ 1

λf

= 1

3(0.001)
+ 1

2(0.005)
+ 1

(0.05)

= 453.33 hours.

An application: Consider a high-voltage load-sharing system consisting of
a power supply and two transmitters, say A and B, using mechanically tuned
magnetrons (Pham 1992a). Two transmitters are used, each tuning one-half the
desired frequency range; however, if one transmitter fails, the other can tune the
entire range with a resultant change in the expected time to failure. Suppose that for
this system to work, the power supply and at least one of the transmitters must work.
The system diagram that characterizes this functional behavior is shown in Fig. 4.6.
The transmitters operate independently when both are functional. An undetected
fault in either of the transmitters causes the system to fail.

Suppose that transmitter A has constant failure rate λA if transmitter B is operating
and failure rateλ′

A if transmitter B has failed. Similarly, suppose that transmitter B has
constant failure rate λB if transmitter A is operating and failure rate λ′

B if transmitter
A has failed. Denote λP and λC be the constant failure rate of power supply and fault
coverage, respectively.

The system works if and only if the power supply works and at least one
transmitters operate. Let

Event E1: Both transmitters and power supply operate by time T

Fig. 4.6 A simplified
high-voltage load-sharing
system

Transmitter B

Transmitter A

Power Supply
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Event E2: The power supply works by time T, transmitter A fails at time t for
0 ≤ t ≤ T , and transmitter B does not fail by by time T.
Event E3: The power supply works at time T, transmitter B fails at time t for
0 ≤ t ≤ T , and transmitter A does not fail by time T.

Then we have

P(E1) = e−(λA+λB+λP)t

P(E2) =
T∫

0

λAe−λAte−λBte−λC te−λ′
B(T−t)e−λPT dt

=
⎧
⎨

⎩

λA e
−(λP+λ′

B)T

(λA+λB+λC−λ′
B)

(
1 − e−(λA+λB+λC−λ′

B)T
)
if λA + λB + λC − λ′

B �= 0

λATe
−
(
λP+λ

′
B

)
T

if λA + λB + λC − λ′
B = 0

Similarly, we can obtain

P(E3) =
T∫

0

λBe−λBte−λAte−λC te−λ′
A(T−t)e−λPT dt

=
⎧
⎨

⎩
λBe

−(λP+λ′
A) T

(λA+λB+λC−λ′
A)

(
1 − e−(λA+λB+λC−λ′

A)T
)
if λA + λB + λC − λ′

A �= 0

λBT e−(λP+λ′
A)T if λA + λB + λC − λ′

A = 0

It can be shown (see Problem 3) that the reliability of this high-voltage load-
sharing system with dependent failures is given by (Pham 1992a):

R(t) = e−(λA+λB+λP)t + λAe−(λP+λ′
B)t

(
λA + λB + λC − λ′

B

)
(
1 − e−(λA+λB+λC−λ′

B)t
)

+ λBe−(λP+λ′
A)t

(
λA + λB + λC − λ′

A

)
(
1 − e−(λA+λB+λC−λ′

A)t
)

(4.69)

The system MTTF is

MTTF =
∞∫

0

R(t)dt

= 1

λA + λB + λP
+ λA(

λA + λB + λC − λ′
B
)
(

1

λP + λ′
B

− 1

λA + λB + λC + λP

)

+ λB(
λA + λB + λC − λ′

A

)
(

1

λP + λ′
A

− 1

λA + λB + λC + λP

)
(4.70)
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Table 4.1 Reliability values
R1, R2, R3 for
λC = 0.0001, λC =
0.0005, and λC = 0.001,
respectively

t R1 R2 R3

0 1.0000 1.0000 1.0000

5 0.9986 0.9985 0.9985

10 0.9950 0.9949 0.9948

15 0.9897 0.9895 0.9892

20 0.9829 0.9825 0.9820

25 0.9748 0.9742 0.9734

30 0.9656 0.9648 0.9638

35 0.9555 0.9544 0.9531

40 0.9446 0.9433 0.9416

45 0.9330 0.9314 0.9294

50 0.9209 0.9190 0.9166

55 0.9082 0.9060 0.9033

60 0.8952 0.8926 0.8895

65 0.8817 0.8789 0.8754

70 0.8680 0.8649 0.8610

75 0.8541 0.8506 0.8463

80 0.8399 0.8361 0.8314

85 0.8256 0.8215 0.8164

90 0.8112 0.8067 0.8013

95 0.7967 0.7919 0.7861

100 0.7821 0.7770 0.7708

Consider a high-voltage load-sharing system where, for example,

λA = 0.0005/h λB = 0.0001/h λ′
A = 0.005/h λ′

B = 0.001/h

λC = 0.000005/h λP = 0.000001/h

From Eqs. (4.69) and (4.70), Table 4.1 and Fig. 4.7 show the values of system
reliability for variousmission time t (in hours). The systemMTTF values are 249.4 h,
244.3 h and 238.7 h for λC = 0.0001, λC = 0.0005, and λC = 0.001, respectively.

4.10 Reliability Evaluation of Complex Systems Using
Conditional Probability

In practicemany systems, i.e., electric power station, telephonenetwork, communica-
tion and control systems, are complicated that perhaps cannot by easily decomposed
into thewell-systemstructures such as series, parallel, series–parallel, parallel–series,
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Fig. 4.7 System reliability
values for
λC = 0.0001, λC =
0.0005, and λC = 0.001,
respectively
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standby, or k-out-of-n. Reliability calculationof those complex systemswould require
more complicate approach. We now discuss the conditional probability approach,
also called the total probability theorem or Bayes’ method. The approach starts with
choosing a keystone component, say component X, which hopefully appears to bind
the system together. In general, an expression for the reliability of the system, R,
can be derived using the form of the total probability theorem as translated into the
language of reliability. Let X is the event that keystone component X is working, X̄
is the event that keystone component X has failed. Then

Pr{system works} = Pr{system works when unit X is good} · Pr{unit X is good}
+ Pr{system works when unit X fails} · Pr{unit X is failed}

or, equivalently,

R = Pr(system works|X) Pr(X ) + Pr(system works|X)Pr(X ) (4.71)

For example in Fig. 4.8, we can consider component 5 as a keystone component.
Note that one can just use any component in the system as keystone component, not
has to be component 5. The efficiency of the approach depends on the selection of the
keystone component. The reliability results obviously should be the same whatever
the selection of the keystone component. However, a careful choice of keystone
components would be of help to save lot of computational times.

Fig. 4.8 A bridge system 1 2

3 4

5
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The reliability of the bridge system (Fig. 4.8) can be written as

R = Pr(system works|component 5 works) Pr(component 5 works)

+ Pr(system works|comp. 5 has failed) Pr(comp. 5 has failed) (4.72)

Pr(systemworks|component 5 works) is the probability that the system is working
given that component 5 works, and Pr(system works|component 5 has failed) is the
probability that the system is working given that component 5 has failed.

Example 4.12 Consider the bridge system shown in Fig. 4.8. Suppose that the reli-
ability of component i is Ri, i = 1, 2, …, 5. To obtain the reliability of the system, let
us consider component 5 as the keystone component. From Eq. (4.72), the reduced
system is a series–parallel structure as shown in Fig. 4.9, given that the component
5 is working, and that

Pr(system works/component 5 works) = [1 − (1 − R1)(1 − R3)] · [1 − (1 − R2)(1 − R4)].

Similarly, the reduced system is a parallel–series structure as shown in Fig. 4.10,
given that the component 5 has failed. That is,

Pr(system works|component 5 has failed) = 1 − (1 − R1R2)(1 − R3R4).

Hence, the reliability of the bridge system is

R = [1 − (1 − R1)(1 − R3)
][
1 − (1 − R2)(1 − R4)

]
R5 + [1 − (1 − R1R2)(1 − R3R4)

](
1 − R5

)

= R1R2 + R3R4 + R1R4R5 + R2R3R5 − R1R2R4R5 − R2R3R4R5 − R1R2R3R5

− R1R3R4R5 − R1R2R3R4 + 2R1R2R3R4R5.

Fig. 4.9 The bridge system
when component 5 never
fails

1 2

3 4

Fig. 4.10 The bridge system
when component 5 has failed

27

1 2

3 4
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4.10.1 Applications of Fault-Tolerant Systems Using
Decomposition Method

In many critical applications of digital systems, fault tolerance has been an essential
architectural attribute for achieving high reliability. It is universally accepted that
computers cannot achieve the intended reliability in operating systems, application
programs, control programs, or commercial systems, such as in the space shuttle,
nuclear power plant control, etc., without employing redundancy. Several techniques
can achieve fault tolerance using redundant hardware or software. Typical forms
of redundant hardware structures for fault-tolerant systems are of two types: fault
masking and standby. Masking redundancy is achieved by implementing the func-
tions so that they are inherently error correcting, e.g. triple-modular redundancy
(TMR), N-modular redundancy (NMR), and self-purging redundancy. In standby
redundancy, spare units are switched into the system when working units break
down.

This section presents a fault-tolerant architecture to increase the reliability of a
special class of digital systems in communication (Pham and Upadhyaya 1989). In
this system, a monitor and a switch are associated with each redundant unit. The
switches and monitors can fail. The monitors have two failure modes: failure to
accept a correct result, and failure to reject an incorrect result. The scheme can be
used in communication systems to improve their reliability.

Consider a digital circuit module designed to process the incoming messages in
a communication system Pham and Upadhyaya (1989). This module consists of two
units: a converter to process the messages, and a monitor to analyze the messages for
their accuracy. For example, the converter could be decoding or unpacking circuitry,
whereas the monitor could be checker circuitry. To guarantee a high reliability of
operation at the receiver end, n converters are arranged in “parallel”. All, except
converter n, have a monitor to determine if the output of the converter is correct. If
the output of a converter is not correct, the output is cancelled and a switch is changed
so that the original input message is sent to the next converter. The architecture of
such a system has been proposed by Pham and Upadhyaya (1989). Systems of this
kind have useful applications in communication and network control systems and in
the analysis of fault-tolerant software systems.

We assume that a switch is never connected to the next converter without a signal
from the monitor, and the probability that it is connected when a signal arrives is ps.
We next present a general expression for the reliability of the system consisting of n
non-identical converters arranged in “parallel”. An optimization problem is formu-
lated and solved for the minimum average system cost. Let us define the following
notation, events, and assumptions.

The notation is as follows:

pc
i Pr{converter i works}

ps
i Pr{switch i is connected to converter (i + 1) when a signal arrives}

pm1
i Pr {monitor i works when converter i works} = Pr{not sending a signal to

the switch when converter i works}
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pm2
i Pr{i monitor works when converter i has failed} = Pr{sending a signal to

the switch when converter i has failed}
Rk

n−k reliability of the remaining system of size n − k given that the first k switches
work

Rn reliability of the system consisting of n converters.

The events are:

Cw
i , Cf

i converter i works, fails
M w

i , M f
i monitor i works, fails

Sw
i , Sf

i switch i works, fails
W system works.

The assumptions are:

1. The system, the switches, and the converters are two-state: good or failed.
2. The module (converter, monitor, or switch) states are mutually statistical

independent.
3. The monitors have three states: good, failed in mode 1, failed in mode 2.
4. The modules are not identical.

Reliability Evaluation

The reliability of the system is defined as the probability of obtaining the correctly
processed message at the output. To derive a general expression for the reliability of
the system, we use an adapted form of the total probability theorem as translated into
the language of reliability. Let A denote the event that a system performs as desired.
Let Xi and Xj be the event that a component X(e.g. converter, monitor, or switch) is
good or failed respectively. Then

Pr{system works} = Pr{system works when unit X is good} · Pr{ unit X is good}
+ Pr{system works when unit X fails} · Pr{unit X is failed}

The above equation provides a convenient way of calculating the reliability of
complex systems. Notice that R1 = pc

i and for n ≥ 2, the reliability of the system
can be calculated as follows:

Rn = Pr
{
W |Cw

1 and M w
1
}
Pr
{
Cw
1 and M w

1
}+ Pr

{
W |Cw

1 and M
f
1

}
Pr
{

Cw
1 and M

f
1

}

+ Pr
{

W |Cf
1 and M w

1

}
Pr
{

C
f
1 and M w

1

}
+ Pr

{
W |Cf

1 and M
f
1

}
Pr
{

C
f
1 and M

f
1

}

In order for the system to operate when the first converter works and the first
monitor fails, the first switch must work and the remaining system of size n − 1 must
work:

Pr{W |Cw
1 and M f

1 } = ps
1R1

n−1

Similarly:
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Pr{W |Cf
1 and M w

1 } = ps
1R1

n−1

then

Rn = pc
1pm1

1 + [pc
1(1 − pm1

1 ) + (1 − pc
1)p

m2
1 ]ps

1R1
n−1

The reliability of the system consisting of n non-identical converters can be easily
obtained:

Rn =
n−1∑

i=1

pc
i pm1

i πi−1 + πn−1pc
n for n > 1 (4.73)

and

R1 = pc
1

where

π
j
k =

k∏
i=j

Ai for k ≥ 1

πk ≡ π1
k for all k, and π0 = 1

and

Ai ≡ [pc
i (1 − pm1

i ) + (1 − pc
i )p

m2
i ] for all i = 1, 2, . . . , n

Assume that all the converters, monitors, and switches have the same reliability,
that is:

pc
i = pc, pm1

i = pm1, pm2
i = pm2, ps

i = ps for all i

then we obtain a closed form expression for the reliability of system as follows:

Rn = pcpm1

1 − A
(1 − An−1) + pcAn−1 (4.74)

where

A = [pc(1 − pm1) + (1 − pc)pm2]ps
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Redundancy Optimization

Assume that the system failure costs d units of revenue, and that each converter,
monitor, and switch module costs a, b, and c units respectively. Let Tn be system
cost for a system of size n. The average system cost for size n, E[Tn], is the cost
incurred when the system has failed, plus the cost of all n converters, n − 1 monitors,
and n − 1 switches. Therefore:

E[Tn] = an + (b + c)(n − 1) + d(1 − Rn) (4.75)

where Rn is given in Eq. (4.74). The minimum value of E[Tn] is attained at

n∗ =
{
1 if A ≤ 1 − pm1

�n0� otherwise

where

n0 = ln(a + b + c) − ln[dpc(A + pm1 − 1)]
lnA

+ 1

Example 4.13 (Pham and Upadhyaya 1989) Given a system with pc = 0.8, pm1 =
0.90, pm2 = 0.95, ps = 0.90, and a = 2.5, b = 2.0, c = 1.5, d = 1200. The optimal
system size is n* = 4, and the corresponding average cost (81.8) from Eq. (4.75) is
minimized.

4.11 Degradable Systems

In many applications, parallel redundant components are employed in order to guar-
antee a certain service level. In realitywith complex dynamic changing environments,
the state of reliability of the components can change due to the changing conditions
of complex environments (Pham 1992b, 2010; Pham and Galyean 1992; Pham et al.
1996, 1997). Tomany applications, a minimum number of units is needed to function
in order to guarantee the functioning of the systems, particular for the fault-tolerant
computing systems.

Consider a network of electric generators for example, there are at least 80%
of all generators must work in order to ensure a certain service level of the entire
station under normal conditions, called “goodmode”.Under a stress condition, called
“overloaded mode” or “degradation mode”, there are at least 90% of all generators
must work in order to ensure a full service level of the station. In the latter case, due
to a higher work load of each generator, the reliability of working generator will be
considerably decreased.
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In this section, we consider that the system consists of n statistically independent
and non-repairable units. The system and the units are either in a successful state
(working) or in a failed state (not working). What separates this system from other
two state systems is that the successful state contains two modes: a good mode and
a degradation mode.

Consider a power plant with four generators to provide electricity for town X for
example (Pham 2009). To fully power the town, it is recommended that at least three
generators must be working; though the plant could provide all necessary power with
only at least two working generators. Under non-peak (normal conditions) hours of
the day, that means any time of the day except from 5 p.m. to 8 p.m., the power
plant is in a good working mode if only two or more generators out of the four are
working. However during the peak (stress conditions) hours of the day between 5
and 8 p.m., there are at least three out of four generators must work for the plant to be
able to provide the town the full capacity with electricity; resulting in a degradation
in generator reliability (a different generator reliability than earlier) and thus being
in an overloaded mode. The power plant fails if any three generators break down, as
it will no longer be able to provide the town with electricity. This is an example of
degradable dual-system with competing operating modes: a 2-out-of-4 system under
a good mode and 3-out-of-4 system under overloaded mode.

An application of the power substations is another example. A faulty control that
improperly restricted power output was at the root of a massive power outage on the
May 25, 2006 incident that shut down theWashington-to-NewYork City rail corridor
for more than two hours during the morning rush hours. The events leading up to the
outage began several days before when the station reduced the power capacity at one
of the substations in order to perform the maintenance. The system was designed
to be able to keep operating during non-rush hours with one or two substations
in the maintenance status. After the problem was fixed, station employees tried to
restore output to full capacity to be ready for the morning rush hours. Unfortunately
a computerized control never implemented the command. So when they got into the
rush hours, the other substations, however, attempted to compensate for the one that
was limited, but were severely overloaded during peak-hour demand, which led them
to shut down.

Here, the system is composed of n independent units; the units and the system
are in one of two states: successful or failed; a successful system and all successful
units are either in good mode or in an overloaded mode. Define

n number of units in the system
p(i)
1 probability for the ith component to be successful when the system is in

good mode
p(i)
2 probability for the ith component to be successful when the system is in

overloaded mode
(

p(i)
1 ≥ p(i)

2

)

wi weight of unit i

w(J ) =
∑

i∈J

wi
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α(1 − α) probability for the system to be in good (overloaded) mode
R(n) system reliability
t1, t2 threshold for the cumulativeweight subject to goodmode andoverloaded

mode, respectively.

The system works in a good mode if and only if the cumulative weight of all
working units exceeds or equals t1 w(I). Similarly, the system works in overloaded
mode if and only if the cumulative weight of all working units exceeds or equals t2
w(I) where I is the set of indices representing all units.

Conditioning on the mode of the system, the system reliability can be expressed
as follows:

R(n) = P{system works/system is in good mode) · P{system is in good mode)

+ P{system works/system is in overloaded mode) · P{system is in overloaded mode)

The dual-system reliability can be obtained as follows (Pham 2009):

R(n) = α
∑

Sw ⊆ I
w(Sw) ≥ t1w(I)

∏

i∈Sw
p(i)
1

∏

i∈I\Sw

(
1 − p(i)

1

)

+ (1 − α)
∑

Sw ⊆ I
w(Sw) ≥ t2w(I)

∏

i∈Sw
p(i)
2

∏

i∈I\Sw

(
1 − p(i)

2

)
(4.76)

Systems with Identical Components

Assume that all the components in the system are statistically independent and iden-
tical and are defined as p(i)

1 = p1; p(i)
2 = p2; and wi = 1 for all i = 1, 2, …, n.

We also define as follows: t1w(I) = k and t2w(I) = m. Again the system works in
a good (overloaded) mode if and only if at least k (m) units are to function for the
successful operation of the system. Let Rg(n) and Ro(n) are the reliability functions
when the system is in good mode and overloaded mode, respectively. The reliability
of the system which is in good mode and in overloaded mode can be expressed as,
respectively,

Rg(n) = α

[
n∑

i=k

(
n
i

)
pi
1(1 − p1)

n−i

]
(4.77)

Ro(n) = (1 − α)

[
n∑

i=m

(
n
i

)
pi
2(1 − p2)

n−i

]
(4.78)
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Combining Eqs. (4.77) and (4.78), the reliability of degradable dual-systems is
given by

R(n) = α

[
n∑

i=k

(
n
i

)
pi
1(1 − p1)

n−i

]
+ (1 − α)

[
n∑

i=m

(
n
i

)
pi
2(1 − p2)

n−i

]
(4.79)

where k ≤ m ≤ n and p1 ≥ p2.

Example 4.14 Given k = 5, m = 7, α = 0.7, p1 = 0.5 and p2 = 0.4. From
Eq. (4.79), we obtain

n R(n)
8 0.2569
9 0.3575
10 0.4525
15 0.7757

Example 4.15 Given k = 5, m = 7, α = 0.7, p1 = 0.8 and p2 = 0.7. From
Eq. (4.79), we have

n R(n)
10 0.8908
15 0.9955
20 1.0000
25 1.0000

Example 4.16 Given k = 5, n = 10, α = 0.6, p1 = 0.8 and p2 = 0.7. From
Eq. (4.79),

m R(m)
5 0.9776
6 0.9364
7 0.8564
8 0.7496
9 0.6560
10 0.6076

4.12 Dynamic Redundant Systems with Imperfect
Coverage

Consider a system with dynamic redundancy which consists of several modules
but with only one operating at a time. Various fault detection schemes are used to
determine when a module has become faulty, and fault location is used to determine
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exactly which module, if any, is fault. If a fault is detected and located, the faulty
module is removed from operation and replaced by a spare. This section discusses a
dynamic redundancy requires consecutive actions of fault detection and fault recovery
(Pham and Pham 1992). The modules could be a processor in a multiprocessor
system, a generator in an electrical power system or a logic gate.

The system consists of (S + 1) modules where S is the total number of spare
modules. Examples of duplex (when S = 1) configurations are the UDET 7116
telephone switch system, the COMTRAC railway traffic controller, and the Bell
ESS (Pham and Pham 1992). It is assumed that the modules are i.i.d., both modules
and the system are two-state, i.e. either successful or unsuccessful (failed) and the
reliability of each module, active or spare, is p.

The reliability of the dynamic redundant system with S spares is given by

R(S) = 1 − (1 − p)S+1 (4.80)

The above reliability function is obtained assuming that the fault detection and
the switch over mechanism are perfect. This implies that the function R(S) is, of
course, an increasing function of the number of spare modules. Clearly adding spare
modules makes it more likely that the reliability of the system will increase, while
at the same time it also increases the cost of the system. In practice, the dynamic
redundant system may not be able to use the redundancy because it cannot identify
that a module is faulty, remove that fault module, and replace it with a fault-free one.
This section addresses the impact of the fault coverage in the dynamic redundant
system with S spares.

Denote c is the probability that the fault detection and switching mechanisms
operate correctly, given the failure of one of the modules. Then the reliability of a
dynamic redundant system with S spares is given by

Rc(S) =
S+1∑

i = 1

(
S + 1

i

)
pi
[
(1 − p)c

]S+1−i
(4.81)

where c is the probability that the fault detection and switching mechanisms operate
correctly, given the failure of one of the modules, and p is the reliability of each
module.

Theorem 4.1 (Pham and Pham 1992) For fixed p and c, the maximum value of Rc(S)
is attained at S*= S1+ 1 where

S1 =
ln
(

(1−p)(1−c)
1−(1−p)c

)

ln
(

(1−p)c
p+(1−p)c

) (4.82)

If S1 is an integer, S1 and S1+ 1 both maximize Rc(S).
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Fail-Safe Systems

A fail-safe system (FSS) consists of a fail-safe redundancy (FSR) core with an asso-
ciated bank of S spare units such that when one of the (N − 1) operating units fails,
the redundant unit immediately starts operating. The failed unit is then replaced by
a spare, which then becomes the new redundant unit restoring the FSR core to the
all-perfect state. The system survives provided at least (N − 1) out of (N + S) units
are operable. Therefore, the FSS can tolerate up to (S + 1) unit failures (i.e., all
spares plus the active redundant unit). Applications of such systems can be found
in the areas of safety monitoring and reactor trip function systems. For example, in
the areas of safety monitoring systems, nuclear plants often use three identical and
independently functioning counters to monitor the radioactivity of the air in venti-
lation systems, with the aim to initiating reactor shutdown when a dangerous level
of radioactivity is present. When two or more counters register a dangerous level of
radioactivity, the reactor automatically shuts down (Pham and Galyean 1992).

The system is characterized by the following properties:

1. The system consists of (N + S) independent and identical units
2. Each unit of the system has two states, operable and failed.
3. The systemworks if and only if at least (N − 1) out of (N + S) units are operable.

Suppose that each unit costs c dollars and system failure costs d dollars of revenue.
Let us define the average total system cost E(Ts) is as follows:

E(Ts) = c(N + S) + d [1 − R(S)] (4.83)

where

R(S) =
N+S∑

i=N−1

(
N + S

i

)
pi(1 − p)N+S−i =

S+1∑

i=0

(
N + S

i

)
(1 − p)ipN+S−i (4.84)

and p is a unit reliability.
The average total system cost of system size (N + S) is the cost incurred when

the system has failed plus the cost of all (N + S) modules. We determine the optimal
value of S, say S*, which minimizes the average total system cost.

Theorem 4.2 (Pham and Galyean 1992) Fix p, N, d and c. The optimal value S*

such that the FSS minimizes the average total system cost is as follows:

(1) If f(S0) < A then S*= 0
(2) If f(S0) ≥ A and f(0) ≥ A then S*= Sa

(3) If f(S0) ≥ A and f(0) < A then

S∗ =
{
0 if E(T0) ≤ E(TSa )

Sa if E(T0) > E(TSa )

}
(4.85)
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where

S0 = max{0, [S1] + 1}; S1 = (N + 1)q − 3

p
; q = 1 − p

A = c

dpN−1q2
; Sa = inf{S ∈ [S0,∞) : f (S) < A}

f (S) =
(

N + S
S + 2

)
sqS . (4.86)

Example 4.17 Consider a FSS with N = 5, p = 0.85, c = 10, and d = 300. Then
from Eq. (4.20), A = 2.84, S1 = −2.47, therefore, S0 = 0 and f (0) = 10. Because
f (S0) = f (0) > A, and from Theorem 4.2, it can be easily obtained that the optimal
value of S is S* = 2 and the corresponding average total system cost is 73.6.

Application 4.1 (Pham andGalyean 1992)A coolingwater system for a commercial
nuclear power plant (either service water or component cooling) will typically be a
two-train system, each with a dedicated pump. The system will usually have a third
‘swing’ pump that provides automatics backup to either of the two trains. Failure
to maintain both colling water trains operating cold result in a plant shutdown and
require the utility to buy replacement power at a cost of $1,000,000 per day. The
cost of a redundant pump is estimated at $20,000. The constant failure rate (from
random, independent faults) of the pumps is estimated at λ = 10−4/hour, a 30-day
pump postulated system failure (i.e. failure of second pump), if it were to occur, is
assumed midway in the replacement/repair time of the first failed pump (i.e. Tr

2 ), and
would result in the plant being shutdown for 15 days. We have

N = 3 pumps, c = $20, 000/pump d = $1, 000, 000 × 15 days = $15 × 106

λ = 10−4/hour; Tr = 30 days

q = 1 − e−λTr = 0.07

From Eq. (4.86), we have A = 0.315; S1 = −2.9; S0 = 0; f (S0) = f (0) = 3. Then
f (S0)= f (0) > A and S* = Sa. For S = 0 then f (0)= 3, S = 1 then f (1)= 0.28. Since
f (0) > A > f (1), then S* = 1.

Application 4.2 Same situation as in Application 4.1 above, except the time to
replace/repair (T r) a failed pumps is 7 days, and the average consequence of a system
failure is the plant being shutdown for 3.5 days. Therefore, q = 0.017, d = $3.5 ×
106. We obtain

A = 20.5, S1 = −3, S0 = 0, f ( S0) = f (0) = 3.

Then f (S0) < A and therefore, S* = 0.
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4.13 Noncoherent k-to-l-out-of-n Systems

A k-to-l-out-of-n system is a noncoherent system in which “no fewer than k and no
more than l” out of its n components are to function for the successful operation of the
system. This class of noncoherent systems was first proposed by Heidtmann (1981).
A noncoherent system is any system that is not coherent; a system is coherent if and
only if: (a) it is good (bad) when all components are good (bad), and (b) it never gets
worse (better) when the number of good components increases (decreases). Such a
system is noncoherent because the system reliability can decrease when the number
of good components increases. The generality of the k-to-l-out-of-n system can be
demonstrated as follows: (i) when k = l = n, the k-to-l-out-of-n system becomes
a series system; (ii) when k = 1 and l = n, the k-to-l-out-of-n system becomes a
parallel system.

Examples of noncoherent systems can be found in multiprocessor and commu-
nication (Pham 1991; Upadhyaya and Pham 1993). A multiprocessor system, for
example, shares resources such as memory, I/O units, and buses, among n proces-
sors. If less than kprocessors are being used, the systemdoes notwork to itsmaximum
capacity and the system efficiency is poor.On the other hand, ifmore than l processors
are being used then efficiency again is poor due to the traffic congestion caused by the
toomany processors in use. Both of these cases need to be avoided; this can be accom-
plished by modeling the system as failed for these cases. This multiprocessor system
is thus a k-to-l-out-of-n system. Another example is in the area of avionics system. A
space-shuttle computer-complex system has 5 identical computers assigned to redun-
dant operation. During the critical mission phases such as boost, reentry, and landing,
4 of these computers operate in an N-Modular Redundancy (NMR) mode, receiving
the same inputs and executing identical tasks. Computer 5 performs non-critical
tasks. The shuttle can tolerate up to 2 failures. If all 5 computers are functioning
during the critical mission phases, the technique to detect a failed computer might
not be able to identify the failure, given that a failure has occurred. This eventually
causes the space shuttle to fail. It is therefore a 2-to-4-out-of-5 system.

Reliability analysis

Consider a system composed of n components.We assume that both components and
the system are 2-state, i.e., either successful or failed and the component states are
independent and the component reliabilities are not necessarily equal (non-identical
components). Let pi (qi) be the reliability (unreliability) of component i. Let S(x, n)
be the probability that exactly x units out of the n units are successful. Let R(k: l, n)
denote the reliability of the k-to-l-out-of-n system. By definition, the reliability of
the k-to-l-out-of-n system is given by

R(k; l, n) =
l∑

x=k

S(x, n)
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Let us assume that the units are independent and identically distributed (i.i.d.
units) with pi = p for 1 ≤ i ≤ n.. The reliability of the k-to-l-out-of-n system
becomes

R(n) =
l∑

i=k

(
n
i

)
pi(1 − p)n−i

For fixed k, l and p, there exists an optimal value n* for n that maximizes the
system reliability R(n). The value n* is given by (Upadhyaya and Pham 1993):

n∗ = inf{n : f (n) < al+1−k}

where

f (n) =

(
n

k − 1

)

(
n
l

) and a = p

1 − p

Similarly, for fixed values of k, l and n, there exists an optimal value p* for p that
maximizes the system reliability R(p). The value p* is given by (Upadhyaya and
Pham 1993):

p∗ = 1

1 + 1
bk−l−1

where

b = l!(n − l − 1)!
(k − 1)!(n − k)! and m! = 0 for m < 0.

Profit Optimization

Let us consider a computer installation where a certain number of terminals are to
be connected to the system. We will look at what is the optimal number of terminals
that maximizes the mean profit of the terminal subsystem. If the number of terminals
is greater than, say l, then the response time might not be tolerable, causing loss
of profit. This is over-performance of work. If, on the other hand, the number of
terminals is less than, say k, then the computer is not being used to its maximum
capacity. This is under-performance of work and lower profit. Both cases are to be
avoided.
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Notation

f n(i) profit when i units are functioning
M(n) mean system-profit
Sn binomially distributed random variable with parameters p, n
p reliability of a unit.

Assumptions

(a) The units and the system are 2-state: either good or failed
(b) The states of the units are i.i.d.
(c) fn(i) < fn(j) and fn(r) < fn(j) for 0 < i < k, k ≤ j ≤ l, l < r ≤ n.

The mean system-profit is given by (Pham 1991):

M (n) =
n∑

i=0

(
n
i

)
pi(1 − p)n−ifn(i)

= E{fn(Sn)}. (4.87)

Theorem 4.3 (Pham 1991) Fix k, l and p. If the profit function f n is concave, then
there is an optimal value of n such that M(n) is maximized.

Proof Let fn be concave. Use the property of conditional expectation, we obtain

E{fn(Sn+1) − fn(Sn)} = E{E{fn(Sn+1) − fn(Sn)/Sn}}
= E{pfn(Sn + 1) + (1 − p)fn(Sn) − fn(Sn)}
= E{p[fn(Sn + 1) − fn(Sn)]} = E{gn(Sn)} (4.88)

where gn ≡ gn(i) = p[fn(i + 1) − fn(i)]. From Eq. (4.88), we have

E{[fn(Sn+2) − fn(Sn+1)] − [fn(Sn+1) − fn(Sn)]} = E{gn(Sn+1) − gn(Sn)} = E{hn(Sn)}

where hn(i) = p[gn(i + 1) − gn(i)]. Hence,

E{[fn(Sn+2) − fn(Sn+1)] − [fn(Sn+1) − fn(Sn)]} = p2[fn(i + 2) − 2fn(i + 2) + fn(i)] ≤ 0

for all i since f n is concave. This implies that M(n) is concave.

Example 4.18 Given k = 5, l = 8 and the profit function

fn(i) =
⎧
⎨

⎩

100i for 0 ≤ i < k
500 for k ≤ i ≤ l
500 − 10(i − l) for l < i ≤ n
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From the Theorem 4.3, the optimal number of units tomaximize themean system-
profit is 9 for p = 0.9. The mean system-profit corresponding to this optimum value
is 496. For a lower value of p, e.g., p = 0.7, the optimal number of units, 11, is higher.
If p is close enough to 1, it seems that the optimal n is very close to l (Pham 1991).

4.14 Mathematical Optimization

Let y = f (x1, x2, …, xn) be defined and differentiable in an n-dimensional domain
D. Define X̃

a = (
X a
1 , X a

2 , . . . , X a
n

)
be a point at which f(x1, x2, …, xn) attains its

optimal value is commonly referred to as a critical point of f (x̃), that is, the point
X̃ at which f (X̃ ) = 0. For every point X̃ ∈ D, f

(
X̃

a)
is called the global maximum

of f in x̃ ∈ D if f (x̃) ≤ f (x̃a). Similarly, f
(
X̃

a)
is called the global minimum of f in

x̃ ∈ D if f (x̃) ≥ f (x̃a).

The function f (x̃) is said to have a local minimum (maximum) at x̃a if f (x̃) ≥
(≤)f (x̃a)for all x̃ sufficiently close to x̃a. Note that while every local minimum and
maximum occurs at a critical point, a critical point need not to give either minimum
or maximum. One can easily show that

max
D

−f (x̃) = −min
D

f (x̃)

min
D

{f (x̃) + g(x̃)} ≥ min
D

f (x̃) + min
D

g(x̃)

max
D

{f (x̃) + g(x̃)} ≤ max
D

f (x̃) + max
D

g(x̃)θ

Assume that f (x) is differentiable and has a local minimum or a local maximum
at a point x0 then f ′(x0) = 0. However, when f ′(x0) = 0 it is not sufficient to deter-
mine whether f (x) has a maximum or minimum at x0. From elementary differential
calculus we have the well-known second derivative method to determine the suffi-
ciency condition. That is, if f (x) is a differential function of x and f ′(x0) = 0, then if
f ′′(x0) exists and is positive (negative), f (x) has a local minimum (maximum) at x0.

Example 4.19 Amanager has determined that, for a given product, the average cost
function C(x) (in dollars per unit) is given by

C(x) = 2x2 − 36x + 210 − 200

x
for 2 ≤ x ≤ 10, 000

where x represents the number of units produced.

(a) For which values of x in the interval [2, 10000] is the total cost function
increasing?

(b) At what level within the interval [2, 10000] should production be fixed in order
to minimize total cost? What is the minimum total cost?



272 4 System Reliability Modeling

(c) If production were required to lie within the interval [1000, 10000], what value
of x would minimize total cost? Show your work.

Solution

(a) Let x be the number of units produced and C(x) be the total cost function. The
total cost function C(x) can be written as

C(x) = x C(x) = 2x3 − 36x2 + 210x − 200 for 2 ≤ x ≤ 10,000

We have

∂C(x)

∂x
= 6x2 − 72x + 210 = 6(x − 5)(x − 7)

It can be shown that the total cost function increases when 2 ≤ x < 5 and
7 < x ≤ 10000.

(b) We have

∂2C(x)

∂x2
= 12x − 72 = 12(x − 6)

This implies that

∂2C(x)

∂x2
= 12x − 72 = 12(x − 6)

{
< 0 when x = 5: local maximum
> 0 when x = 7: local minimum.

Thus, we just need to compare the values of C(2) and C(7) where C(2) = 92 and
C(7) = 192. So x = 2 and the minimum total cost is C(2) = 92.

(c) Since the cost function C(x) is increasing in (7, 10000], the minimal total cost
would occur at x = 1000 and C(1000) = 1,964,209,800.

A function f (x̃) defined on an n-dimensional domain D is monotone increasing
(decreasing) in xj iff

∂f (x̃)

∂xj
≥ 0(≤ 0) for all xj, 1 ≤ j ≤ n.

If themonotonicity of the derivative holds on the entire domain, then the extremum
(maximum or minimum) is global.

A function f (x̃) defined on an n-dimensional domain D is said to be convex on D
if the following two conditions are satisfied:
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(i) D is convex set
(ii) For any two points x̃ and ỹ in D, we have

f (λx1 + (1 − λ)y1); λx2 + (1 − λ)y2); . . . , λxn + (1 − λ)yn))

≤ λf (x1, x2, . . . , xn) + (1 − λ)f (y1, y2, . . . , yn)

For all λ, 0 ≤ λ ≤ 1. Similarly, a function f (x̃) is called concave if −f (x̃) is
convex.

Discrete Derivative Variables

Let f (n) be defined only for positive integers of n and define

	f (n) = f (n + 1) − f (n) and 	2f (n) = 	(f (n + 1) − f (n)) = f (n + 2) − 2f (n + 1) + f (n)

The function f (n) has a local minimum at n = n0 if

f (n0 + 1) ≥ f (n0) and f (n0) ≤ f (n0 − 1) (4.89)

or, equivalently, if 	f (n0) ≥ 0 and 	f (n0 − 1) ≤ 0. Similarly, f (n) has a local
maximum at n = n0 if

	f (n0) ≤ 0 ≤ 	f (n0 − 1) ≤ 0. (4.90)

Note that a sufficient condition for f (n) to have a global minimum at n = n0 if
Eq. (4.89) hold and 	2f (n) ≥ 0.

Similarly, a sufficient condition for f (n) to have a global maximum at n = n0 is
that Eq. (4.90) hold and 	2f (n) ≤ 0. In other words, the function f (n) will have a
global minimum at n = n0 if f (n0) ≤ f (n) for all n in the domain of the function, and
a global maximum at n = n0 if f (n0) ≥ f (n) for all n in the domain of the function.

Lagrange Multiplier Method

Suppose f (x̃) and gj(x̃) for j = 1, 2, …, m are functions having continuous first
partial derivatives on a domain D. The maximization or minimization of an objective
function of n variables, say f (x̃), subject to m constraints of the forms gj(x̃) = aj for
j = 1, 2, …, m is discussed here called the Lagrange multiplier method,

H (x̃) = f (x̃) −
m∑

j=1

λjgj(x̃) (4.91)

where λj are arbitrary real numbers and called Lagrange multipliers. If the point x̃ is
a solution of the extreme problem, then it will satisfy the following system of (n +
m) equations:
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{
∂H (x̃)
∂xi

= 0 for i = 1, 2, . . . , n

gj(x̃) = aj for j = 1, 2, . . . , m
(4.92)

In other words, one attempts to solve the above system for the (n + m) unknown.
They are: x1, x2, …, xn and λ1, λ2, . . . , λm. The points (x1, x2, …, xn) obtained must
need to test to determine whether they yield a maximum, a minimum or not. Again,
the parameters λ1, λ2, . . . , λm which are introduced only help solve the system for
x1, x2, …, xn, are known as Lagrange’s multipliers.

Example 4.20 Consider a series–parallel system consisting of n subsystems in series
where subsystem i consists of mi components. The problem here is to determine the
system design that will yield a desired level of the entire system reliability but at a
minimum cost.

Let pi be the reliability of a component of type i and suppose that the number
of components of type i in the parallel subsystem is mi. The reliability of the ith
subsystem is given by

ri = 1 − (1 − pi)
mi

The system reliability is given by

Rs =
n∏

i=1

ri =
n∏

i=1

[
1 − (1 − pi)

mi
]

(4.93)

Let Ci be the cost of a component of type i. Consider the problem of minimizing
the total system cost

C(m1, m2, ..., mn) =
n∑

i=1

mici (4.94)

subject to a fixed system reliability level Rs

Rs =
n∏

i=1

[
1 − (1 − pi)

mi
]

We can use the Lagrange multiplier method to solve this optimization problem
with care since the variables m1, m2, . . . , mn are all positive integers. Denote

ai = log ri

logRs

then we have
∑n

i=1 ai = 1. From Eq. (4.93), we can rewrite
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ri = Rai
s for 0 ≤ ai ≤ 1 and mi = log

(
1 − Rai

s

)

log(1 − pi)

Then Eq. (4.94) can be rewritten the minimization function as

C(m1, m2, ..., mn) =
n∑

i=1

ci log(1 − Rai
s )

log(1 − pi)

where 0 ≤ ai ≤ 1 and
∑n

i=1 ai = 1.
Let’s assume that Rs to be close to 1, say Rs = 1 − ε where ε is very small. So,

logRs = log(1 − ε) � −ε

and

1 − Rai
s = −ai logRs = aiε

The Lagrange function can be written as

H (a1, a2, ..., an) �
n∑

i=1

Ci log(aiε)

log(1 − pi)
− λ1

n∑

i=1

ai

Then

∂H

∂ai
= Ci

ai log(1 − pi)
− λ1 for i = 1, 2, . . . , n

∂H

∂ai
= 0 ⇔ ai = Ci

λ1 log(1 − pi)

Since the constraint
∑n

i=1 ai = 1 we have

λ1 = 1
∑n

i=1
Ci

log(1−pi)

.

From Eq. (4.94), we obtain

ai =
Ci
∑n

j=1
Cj

log(1−pj)

log(1 − pi)
. (4.95)

Therefore, the solution is,
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mi =
{

ki if ki is an integer
�ki� + 1 if ki is not integer

where

ki = log(1 − Rai
s )

log(1 − pi)

where ai is given in Eq. (4.95).

Example 4.21 As given the reliability of series–parallel system is given by

R(m1, m2, ..., mn) =
n∏

i=1

(
1 − (1 − pi)

mi
)

Here is a reliability optimization that we will consider

Maximize R(m1, m2, . . . , mn)

subject to the cost constraint
∑n

i=1 cimi ≤ C. Note that to maximize
R(m1, m2, . . . , mn) is the same as to maximize its logarithm given by

logR(m1, m2, . . . , mn) =
n∑

i=1

log(1 − (1 − pi)
mi ).

Therefore, we now can rewrite the maximization problem is as follows:

H (m1, m2, . . . , mn) =
n∑

i=1

log(1 − (1 − pi)
mi ) − λ

n∑

i=1

cimi

=
n∑

i=1

{
log(1 − (1 − pi)

mi ) − λcimi
}
.

To maximize H (m1, m2, . . . , mn) is the same as to maximize f(mi) where

f (mi) = log(1 − (1 − pi)
mi ) − λcimi

Using an approximation as a continuous variable, we obtain

∂f (mi)

∂mi
= 0 iff mi = log λci − log(λci − log(1 − pi))

log(1 − pi)

So the solution can be considered as
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Table 4.2 Optimal solutions and their total system costs

λ m1 m2 m3 m4 Reliability Rs System cost

0.0003 5 6 5 4 0.997470 54.8

0.0004 5 6 5 4 0.997470 54.8

0.0005 5 6 5 4 0.997470 54.8

0.0006 5 6 5 4 0.997470 54.8

0.0007 5 6 5 3 0.994608 50.3

0.0008 5 5 5 3 0.992914 48.0

0.0009 5 5 4 3 0.990003 44.6

0.0002 6 7 6 4 0.998967 61.7

0.000210 6 7 6 4 0.998967 61.7

0.000215 5 7 6 4 0.998712 60.5

0.000220 5 7 5 4 0.997980 57.1

0.000225 5 6 5 4 0.997470 54.8

mi = �ki� or �ki� + 1

where

ki = log λci − log(λci − log(1 − pi))

log(1 − pi)

Example 4.22 Given n = 4 and

n Cost Ci pi

1 1.2 0.80

2 2.3 0.70

3 3.4 0.75

4 4.5 0.85

If we assume that the cost constraint is at most at 55, then the solution using
Lagrange approximation approach is m1 = 5, m2 = 6, m3 = 5, m4 = 4 at a total cost
of 54.8 with system reliability is 0.99747. See Table 4.2 for details.

4.15 Reliability of Systems with Multiple Failure Modes

A component is subject to failure in either open or closed modes. Networks of relays,
fuse systems for warheads, diode circuits, fluid flow valves, etc. are a few examples
of such components. Redundancy can be used to enhance the reliability of a system
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without any change in the reliability of the individual components that form the
system. However, in a two-failure mode problem, redundancy may either increase
or decrease the system’s reliability (Pham 1989). For example, a network consisting
of n relays in series has the property that an open-circuit failure of any one of the
relays would cause an open-mode failure of the system and a closed-mode failure of
the system. (The designations “closed mode” and “short mode” both appear in this
chapter, and we will use the two terms interchangeably.) On the other hand, if the n
relays were arranged in parallel, a closed-mode failure of any one relay would cause
a system closed-mode failure, and an open-mode failure of all n relays would cause
an open-mode failure of the system. Therefore, adding components in the system
may decrease the system reliability. Diodes and transistors also exhibit open-mode
and short-mode failure behavior (Pham 1989, 1999, 2003).

For instance, in an electrical system having components connected in series, if a
short circuit occurs in one of the components, then the short-circuited componentwill
not operate but will permit flow of current through the remaining components so that
they continue to operate. However, an open-circuit failure of any of the components
will cause an open-circuit failure of the system. As an example, suppose we have
a number of 5 W bulbs that remain operative in satisfactory conditions at voltages
ranging between 3 and 6 V. Obviously, on using the well-known formula in physics,
if these bulbs are arranged in a series network to form a two-failure mode system,
then the maximum and the minimum number of bulbs at these voltages are n = 80
and k = 40, respectively, in a situation when the system is operative at 240 V. In
this case, any of the bulbs may fail either in closed or in open mode till the system
is operative with 40 bulbs. Here, it is clear that, after each failure in closed mode,
the rate of failure of a bulb in open mode increases due to the fact that the voltage
passing through each bulb increases as the number of bulbs in the series decreases.

System reliability where components have various failure modes is covered in
(Barlow and Proschan 1965, 1975; Barlow et al. 1963; Pham 1989; Pham and Pham
1991; Pham and Malon 1994). Barlow and Proschan (1965) studied various system
configurations including series–parallel and parallel–series systems, where the size
of each subsystemwas fixed, but the number of subsystemswas varied aswell as k out
of n systems tomaximize the reliability of such systems. Ben-Dov (1986) determined
a value of k that maximizes the reliability of k-out-of-n systems. Jenney and Sherwin
(1986) considered systems in which the components are i.i.d. and subject to mutually
exclusive open and short failures. Sah and Stiglitz (1988) obtained a necessary and
sufficient condition for determining a threshold value that maximizes the mean profit
of k-out-of-n systems. Pham and Pham (1991) further studied the effect of system
parameters on the optimal k or n and showed that there does not exist a (k, n)
maximizing the mean system profit.

This section discusses in detail the aspects of the reliability optimization of
systems subject to two types of failure. It is assumed that the system component
states are statistically independent and identically distributed, and that no constraints
are imposed on the number of components to be used. Reliability optimization of
series, parallel, parallel–series, series–parallel, and k-out-of-n systems subject to two
types of failure will be discussed next.
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In general, the formula for computing the reliability of a system subject to two
kinds of failure is (Pham 1989):

System reliability = Pr{system works in both modes}
= Pr{system works in open mode} − Pr{system fails in closed mode}

+ Pr{system fails in both modes} (4.96)

When the open- and closed-mode failure structures are dual of one another, i.e.
Pr{system fails in both modes} = 0, then the system reliability given by Eq. (4.96)
becomes

System reliability = 1 − Pr{system fails in open mode} − Pr{system fails in closed mode} (4.97)

Notation

q0 the open-mode failure probability of each component (p0 = 1 − q0)
qs the short-mode failure probability of each component (ps = 1 − qs)
� implies 1 − � for any �

�x� the largest integer not exceeding x
* implies an optimal value.

4.15.1 The Series System

Consider a series system consisting of n components. In this series system, any one
component failing in an open mode causes system failure, whereas all components
of the systemmust malfunction in short mode for the system to fail. The probabilities
of system fails in open mode and fails in short mode are

F0(n) = 1 − (1 − q0)
n

and

Fs(n) = qn
s

respectively. From Eq. (4.97), the system reliability is:

Rs(n) = (1 − q0)
n − qn

s (4.98)

where n is the number of identical and independent components. In a series arrange-
ment, reliability with respect to closed system failure increases with the number of
components, whereas reliability with respect to open system failure decreases.
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Let q0 and qs be fixed. There exists an optimum number of components, say n*,
that maximizes the system reliability. If we define

n0 =
log
(

q0
1−qs

)

log
(

qs

1−q0

)

then the system reliability, Rs(n*), is maximum for (Barlow and Proschan 1965)

n∗ =
{ �n0� + 1 if n0 is not an integer

n0 or n0 + 1 if n0 is not an integer
(4.99)

Example 4.23 A switch has two failure modes: fail-open and fail-short. The prob-
ability of switch open-circuit failure and short-circuit failure are 0.1 and 0.2 respec-
tively. A system consists of n switches wired in series. That is, given q0 = 0.1 and
qs = 0.2. From Eq. (4.99)

n0 = log
(

0.1
1−0.2

)

log
(

0.2
1−0.1

) = 1.4

Thus, n∗ = �1.4� + 1 = 2. Therefore, when n* = 2 the system reliability Rs(n)
= 0.77 is maximized.

4.15.2 The Parallel System

Consider a parallel system consisting of n components. For a parallel configuration,
all the componentsmust fail in openmodeor at least one componentmustmalfunction
in short mode to cause the system to fail completely. The system reliability is

Rp(n) = (1 − qs)
n − qn

0 (4.100)

where n is the number of components connected in parallel. In this case, (1 − qs)n

represents the probability that no components fail in short mode, and q0
n represents

the probability that all components fail in open mode.
Let q0 and qs be fixed. If we define

n0 =
log
(

qs

1−q0

)

log
(

q0
1−qs

) (4.101)
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then the system reliability Rp(n*) is maximum for (Barlow and Proschan 1965):

n∗ =
{ �n0� + 1 if n0 is not an integer

n0 or n0 + 1 if n0 is not an integer
(4.102)

It is observed that, for any range of q0 and qs, the optimal number of parallel
components that maximizes the system reliability is one, if qs > q0. For most other
practical values of q0 and qs the optimal number turns out to be two. In general, the
optimal value of parallel components can be easily obtained using Eq. (4.102).

Suppose that each component costs d dollars and system failure costs c dollars
of revenue. We now wish to determine the optimal system size n that minimizes the
average system cost given that the costs of system failure in open and short modes
are known. Let Tn be a total of the system. The average system cost is given by

E[Tn] = dn + c[1 − Rp(n)]

where Rp(n) is defined as in Eq. (4.100). For given q0, qs, c, and d, we can obtain a
value of n, say n*, minimizing the average system cost.

Theorem 4.4 (Pham 1989) Fix q0, qs, c, and d. There exists a unique value n* that
minimizes the average system cost, and

n∗ = inf

{
n ≤ n1 : (1 − q0)q

n
0 − qs(1 − qs)

n <
d

c

}
(4.103)

where n1 = �n0� + 1 and n0 is given in Eq. (4.101).
Suppose that each component costs d dollars and system failure in open mode and

short mode costs c1 and c2 dollars of revenue respectively. Then the average system
cost is given by

E[Tn] = dn + c1qn
0 + c2[1 − (1 − qs)

n] (4.104)

In other words, the average system cost of system size n is the cost incurred
when the system has failed in either open mode or short mode plus the cost of all
components in the system. We can determine the optimal value of n, say n*, which
minimizes the average system cost as shown in the following theorem.

Theorem 4.5 (Pham 1989) Fix q0, qs, c1, c2, and d. There exists a unique value n*
that minimizes the average system cost, and

n∗ =
{
1 if na ≤ 0
n0 otherwise

where
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Table 4.3 The function h(n)
versus n

n h(n) Rp (n) E[Tn]

1 9.6 0.6 490.0

2 2.34 0.72 212.0

3 0.216 0.702 151.8

4 4.373 0.648 155.3

5 −0.504 0.588 176.5

6 −0.506 0.531 201.7

n0 = inf

{
n ≤ na : h(n) ≤ d

c2qs

}

and

h(n) = qn
0

[
1 − q0

qs

c1
c2

−
(
1 − qs

q0

)n]

na =
log
(
1−q0

qs

c1
c2

)

log
(
1−qs

q0

)

Example 4.24 Suppose d = 10, cl = 1500, c2 = 300, qs = 0.1, q0 = 0.3. Then

d

c2qs
= 0.333

From Table 4.3, h(3) = 0.216 < 0.333; therefore, the optimal value of n is n* = 3.
That is, when n* = 3 the average system cost (151.8) from Eq. (4.104) is minimized.

4.15.3 The Parallel–Series System

Consider a system of components arranged so that there are m subsystems operating
in parallel, each subsystem consisting of n identical components in series. Such an
arrangement is called a parallel–series arrangement. The components could be a
logic gate, a fluid-flow valve, or an electronic diode, and they are subject to two
types of failure: failure in open mode and failure in short mode. Applications of the
parallel–series systems can be found in the areas of communication, networks, and
nuclear power systems. For example, consider a digital circuit module designed to
process the incoming message in a communication system. Suppose that there are,
at most, m ways of getting a message through the system, depending on which of
the branches with n modules are operable. Such a system is subject to two failure
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modes: (1) a failure in open circuit of a single component in each subsystem would
render the system unresponsive; or (2) a failure in short circuit of all the components
in any subsystem would render the entire system unresponsive.

Notation

m number of subsystems in a system (or subsystem size)
n number of components in each subsystem
F0(m) probability of system failure in open mode
Fs(m) probability of system failure in short mode.

The systems are characterized by the following properties:

1. The system consists of m subsystems, each subsystem containing n i.i.d.
components.

2. A component is either good, failed open, or failed short. Failed components can
never become good, and there are no transitions between the open and short
failure modes.

3. The system can be (a) good, (b) failed open (at least one component in each
subsystem fails open), or (c) failed short (all the components in any subsystem
fail short).

4. The unconditional probabilities of component failure in open and short modes
are known and are constrained: qo, qs > 0; qo + qs < 1.

The probabilities of a system failing in open mode and failing in short mode are
given by

F0(m) = [1 − (1 − q0)
n]m (4.105)

and

Fs(m) = [1 − (1 − qs)
m]m (4.106)

respectively. The system reliability is

Rps(n, m) = (1 − qn
s )

m − [1 − (1 − q0)
n]m (4.107)

where m is the number of identical subsystems in parallel and n is the number
of identical components in each series subsystem. The term

(
1 − qn

s

)m
represents

the probability that none of the subsystems has failed in closed mode. Similarly,[
1 − (1 − q0)

n
]m

represents the probability that all the subsystems have failed in
open mode.

An interesting example in Barlow and Proschan (1965) shows that there exists no
pair n, m maximizing system reliability, since Rps be made arbitrarily close to one
by appropriate choice of m and n. To see this, let
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a = log qs − log(1 − q0)

log qs + log(1 − q0)
Mn = q−n/(1+a)

s mn = �Mn�

For given n, take m = mn; then one can rewrite Eq. (4.107) as:

Rps(n, mn) = (1 − qn
s )

mn − [1 − (1 − q0)
n]mn

A straightforward computation yields

lim
n→∞ Rps(n, mn) = lim

n→∞{(1 − qn
s )

mn − [1 − (1 − q0)
n]mn} = 1

For fixed n, q0, and qs, one can determine the value of m that maximizes Rps, and
this is given in Barlow and Proschan (1965).

Theorem 4.6 (Barlow and Proschan 1965) Let n, q0, and qs be fixed. The maximum
value of Rps(m) is attained at m∗ = �m0� + 1, where

m0 = n(log p0 − log qs)

log(1 − qn
s ) + log(1 − pn

0)
(4.108)

If mo is an integer, then mo and mo+ 1 both maximize Rps(m).

The Profit Maximization Problem

We now wish to determine the optimal subsystem size m that maximizes the average
system profit. We study how the optimal subsystem size m depends on the system
parameters. We also show that there does not exist a pair (m, n) maximizing the
average system profit.

Notation

A(m) average system profit
β conditional probability that the system is in open mode
1 − β conditional probability that the system is in short mode
c1, c3 gain from system success in open, short mode
c2, c4 gain from system failure in open, short mode; c1 > c2, c3 > c4.

The average system profit is given by

A(m) = β{c1[1 − F0(m)] + c2F0(m)} + (1 − β){c3[1 − Fs(m)] + c4Fs(m)}
(4.109)

Define

a = β(c1 − c2)

(1 − β)(c3 − c4)
and b = βc1 + (1 − β)c4 (4.110)

We can rewrite Eq. (4.109) as
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A(m) = (1 − β)(c3 − c4){[1 − Fs(m)] − aF0(m)} + b (4.111)

When the costs of the two kinds of system failure are identical, and the system
is in the two modes with equal probability, then the optimization criterion becomes
the same as maximizing the system reliability. Here, the following analysis deals
with cases that need not satisfy these special restrictions. For a given value of n, one
wishes to find the optimal number of subsystems m (m*) that maximizes the average
system profit. Of course, we would expect the optimal value of m to depend on the
values of both q0 and qs. Define

m0 =
ln a + n ln

(
1−q0

qs

)

ln
[

1−qn
s

1−(1−q0)n

] (4.112)

Theorem 4.7 (Pham 1989) Fix β, n, q0, qs, and ci for i = 1, 2, 3, 4. The maximum
value of A(m) is attained at

m0 =
{
1 if m0 < 0
�m0� + 1 if m0 ≥ 0

(4.113)

If mo is a non-negative integer, both mo and mo+ 1 maximize A(m).
The proof is straightforward. When m0 is a non-negative integer, the lower value

will provide the more economical optimal configuration for the system. It is of interest
to study how the optimal subsystem size m* depends on the various parameters q0

and qs.

Theorem 4.8 (Pham 1989) For fixed n, c1, c2, c3, and c4.

(a) If a ≥ 1, then the optimal subsystem size m* is an increasing function of q0.
(b) If a ≤ 1, then the optimal subsystem size m* is a decreasing function of q0.
(c) The optimal subsystem size m* is an increasing function of β.

The proof is left for an exercise. It is worth noting that we cannot find a pair (m,
n) maximizing average system profit A(m). Let

x = ln qs − ln p0
ln qs + ln p0

Mn = q−n/(1+x)
s mn = �Mn� (4.114)

For given n, take m = mn. From Eq. (4.111), the average system profit can be
rewritten as

A(mn) = (1 − β)(c3 − c4){[1 − Fs(mn)] − aF0(mn)} + b (4.115)

Theorem 4.9 For fixed q0, and qs

lim
n→∞ A(mn) = βc1 + (1 − β)c3 (4.116)
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This result shows that we cannot seek a pair (m, n) maximizing the average system
profit A(mn), since A(mn) can be made arbitrarily close to βc1+ (1 − β)c3.

Minimization Problem

We show how design policies can be chosen when the objective is to minimize the
average total system cost given that the costs of system failure in open mode and
short mode may not necessarily be the same.

Notation

d cost of each component
c1 cost when system failure in open
c2 cost when system failure in short
T (m) total system cost
E[T (m)] average total system cost.

Suppose that each component costs d dollars, and system failure in open mode
and short mode costs cl and c2 dollars of revenue, respectively. The average total
system cost is

E[T (m)] = dnm + c1F0(m) + c2Fs(m) (4.117)

In other words, the average system cost is the cost incurred when the system has
failed in either the open mode or the short mode plus the cost of all components in
the system. Define

h(m) = [1 − (p0)
n]m

[
c1pn

0 − c2qn
s

(
1 − qn

s

1 − pn
0

)m]
(4.118)

m1 = inf{m < m2 : h(m) < dn}

and

m2 =
⎡

⎢⎣
ln
[

c1
c2

(
p0
qs

)n]

ln
(
1−qn

s
1−pn

0

)

⎤

⎥⎦+ 1 (4.119)

From Eq. (4.118), h(m) > 0 if and only if

c1pn
0 > c2qn

s

(
1 − qn

s

1 − pn
0

)m

or equivalently, thatm <m2.Thus, the function h(m) is decreasing inm for allm <m2.
For fixed n, we determine the optimal value of m, m*, that minimizes the expected
system cost, as shown in the following theorem.
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Table 4.4 The values of
m versus expected total
system cost

m h(m) E[Tm]

1 110.146 386.17

2 74.051 326.02

3 49.784 301.97

4 33.469 302.19

5 22.499 318.71

6 15.124 346.22

7 10.166 381.10

8 6.832 420.93

9 4.591 464.10

10 3.085 509.50

Theorem 4.10 (Pham 1989) Fixed q0, and qs, d, c1, and c2. There exists a unique
value m* such that the system minimizes the expected cost, and

(a) If m2 > 0 then

m∗ =
{

m1 if E[T (m1)] ≤ E[T (m1)]
m2 if E[T (m1)] > E[T (m1)] (4.120)

(b) If m2 ≤ 0 then m* = 1.

Since the function h(m) is decreasing in m for m < m2, again the resulting
optimization problem in Eq. (4.118) is easily solved in practice.

Example 4.25 Suppose n = 5, d = 10, cl = 500, c2 = 700, qs = 0.1, and q0 =
0.2. From Eq. (4.119), we obtain m2 = 26. Since m2 > 0, we determine the optimal
value of m by using Theorem 4.10(a). The subsystem size m, h(m), and the expected
system cost E[T (m)] are listed in Table 4.4; from this table, we have

m1 = inf{m < 26 : h(m) < 50} = 3 and E[T (m1)] = 301.97

For m2 = 26, E[T (m2)] = 1300.20. From Theorem 4.10(a), the optimal value of
m required to minimize the expected total system cost is 3, and the expected total
system cost corresponding to this value is 301.97.

4.15.4 The Series–Parallel Systems

The series–parallel structure is the dual of the parallel–series structure in subsection
C. We study a system of components arranged so that there are m subsystems oper-
ating in series, each subsystem consisting of n identical components in parallel. Such
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an arrangement is called a series–parallel arrangement. Applications of such systems
can be found in the areas of communication, networks, and nuclear power systems.
For example, consider a digital communication system consisting of in substations in
series. A message is initially sent to substation 1, is then relayed to substation 2, etc.,
until the message passes through substation m and is received. The message consists
of a sequence of 0’s and 1’s and each digit is sent separately through the series of m
substations. Unfortunately, the substations are not perfect and can transmit as output
a different digit than that received as input. Such a system is subject to two failure
modes: errors in digital transmission occur in such a manner that either (1) a one
appears instead of a zero, or (2) a zero appears instead of a one.

Failure in open mode of all the components in any subsystem makes the system
unresponsive. Failure in closed (short)mode of a single component in each subsystem
also makes the system unresponsive. The probabilities of system failure in open and
short mode are given by

F0(m) = 1 − (1 − qn
0)

m (4.121)

and

Fs(m) = [1 − (1 − qn
s )]m (4.122)

respectively. The system reliability is

R(m) = (1 − qn
0)

m − [1 − (1 − qn
s )]m (4.123)

where m is the number of identical subsystems in series and n is the number of
identical components in each parallel subsystem.

Barlow and Proschan (1965) show that there exists no pair (m, n) maximizing
system reliability. For fixed m, q0, and qs however, one can determine the value of n
that maximizes the system reliability.

Theorem 4.11 (Barlow and Proschan 1965) Let n, q0, and qs be fixed. The maximum
value of R(m) is attained at m∗ = �m0� + 1, where

m0 = n(log ps − log q0)

log(1 − qn
0) − log(1 − pn

s )
(4.124)

If mo is an integer, then mo and mo+ 1 both maximize R(m).

Maximizing the Average System Profit

The effect of the system parameters on the optimal m is now studied. We also deter-
mine the optimal subsystem size that maximizes the average system profit subject to
a restricted type I (system failure in open mode) design error.
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Notation

β conditional probability (given system failure) that the system is in open
mode

1 − β conditional probability (given system failure) that the system is in short
mode

c1 gain from system success in open mode
c2 gain from system failure in open mode (c1 > c2)
c3 gain from system success in short mode
c4 gain from system failure in short mode (c3 > c4).

The average system-profit, P(m), is given by

P(m) = β{c1[1 − F0(m)] + c2F0(m)} + (1 − β){c3[1 − Fs(m)] + c4Fs(m)}
(4.125)

where F0(m) and Fs(m) are defined as in Eqs. (4.121) and (4.122), respectively. Let

a = β(c1 − c2)

(1 − β)(c3 − c4)

and

b = βc1 + (1 − β)c4

We can rewrite Eq. (4.125) as

P(m) = (1 − β)(c3 − c4)[1 − Fs(m) − aF0(m)] + b (4.126)

For a given value of n, one wishes to find the optimal number of subsystemsm, say
m*, that maximizes the average system-profit. We would anticipate that m* depends
on the values of both q0 and qs. Let

m0 =
n ln
(
1−qs

q0

)
− ln a

ln
[

1−qn
0

1−(1−qs)n

] (4.127)

Theorem 4.12 (Pham 1989) Fix β, n, q0, qs, and ci for i = 1, 2, 3, 4. The maximum
value of P(m) is attained at

m∗ =
{
1 if m0 < 0
�m0� + 1 if m0 ≥ 0

If mo ≥ 0 and mo is an integer, both mo and mo+ 1 maximize P(m).
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When both mo and mo+ 1 maximize the average system profit, the lower of the two
values costs less. It is of interest to study how m* depends on the various parameters
q0 and qs.

Theorem 4.13 For fixed n, ci for i = 1, 2, 3, 4.

(a) If a ≥ 1, then the optimal subsystem size m* is a decreasing function of q0.
(b) If a ≤ 1, the optimal subsystem size m* is an increasing function of qs.

This theorem states that when q0 increases, it is desirable to reduce m as close to
one as is feasible. On the other hand, when qs increases, the average system-profit
increases with the number of subsystems.

4.15.5 The k-out-of-n Systems

Consider a model in which a k-out-of-n system is composed of n identical and
independent components that can be either good or failed. The components are
subject to two types of failure: failure in open mode and failure in closed mode.
The system can fail when k or more components fail in closed mode or when (n −
k + 1) or more components fail in open mode. Applications of k-out-of-n systems
can be found in the areas of target detection, communication, and safety monitoring
systems, and, particularly, in the area of human organizations. The following is an
example in the area of human organizations. Consider a committee with n members
who must decide to accept or reject innovation-oriented projects. The projects are
of two types: “good” and “bad”. It is assumed that the communication among the
members is limited, and eachmember will make a yes–no decision on each project. A
committee member can make two types of error: the error of accepting a bad project
and the error of rejecting a good project. The committee will accept a project when
k or more members accept it, and will reject a project when (n − k + 1) or more
members reject it. Thus, the two types of potential error of the committee are: (1)
the acceptance of a bad project (which occurs when k or more members make the
error of accepting a bad project); (2) the rejection of a good project (which occurs
when (n − k + 1) or more members make the error of rejecting a good project). This
section determines the

• optimal k that minimizes the expected total system cost
• optimal n that minimizes the expected total system cost
• optimal k and n that minimizes the expected total system cost.

We also study the effect of the system’s parameters on the optimal k or n. The
system fails in closed mode if and only if at least k of its n components fail in closed
mode, and we obtain

Fs(k, n) =
n∑

i=k

(
n
i

)
qi

sp
n−i
s = 1 −

k−1∑

i=0

(
n
i

)
qi

sp
n−i
s (4.128)
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The system fails in openmode if and only if at least (n − k + 1) of its n components
fail in open mode, that is:

F0(k, n) =
n∑

i=n−k+1

(
n
i

)
qi
0pn−i

0 =
k−1∑

i=0

(
n
i

)
pi
0qn−i

0 (4.129)

Hence, the system reliability is given by

R(k, n) = 1 − F0(k, n) − Fs(k, n) =
k−1∑

i=0

(
n
i

)
qi

sp
n−i
s −

k−1∑

i=0

(
n
i

)
pi
0qn−i

0 (4.130)

Let

b(k; p, n) =
(

n
k

)
pk(1 − p)n−k

and

b inf(k; p, n) =
k∑

i=0

b(i; p, n)

We can rewrite Eqs. (4.128–4.130) as

Fs(k, n) = 1 − b inf(k − 1; qs, n)

Fs(k, n) = b inf(k − 1; p0, n)

R(k, n) = 1 − b inf(k − 1; qs, n) − b inf(k − 1; p0, n)

respectively. For a given k, we can find the optimumvalue of n, say n*, thatmaximizes
the system reliability.

Theorem 4.14 (Pham 1989) For fixed k, q0, and qs, the maximum value of R(k, n)
is attained at n∗ = �n0� where

n0 = k

⎡

⎣1 +
log
(
1−q0

qs

)

log
(
1−qs

q0

)

⎤

⎦

If n0 is an integer, both n0 and n0+ 1 maximize R(k, n).
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This result shows that when n0 is an integer, both n* − 1 and n* maximize the
system reliability R(k, n). In such cases, the lower value will provide the more econom-
ical optimal configuration for the system. If q0= qs the system reliability R(k, n) is
maximized when n = 2 k or 2 k − 1. In this case, the optimum value of n does not
depend on the value of q0 and qs and the best choice for a decision voter is a majority
voter; this system is also called a majority system (Pham 1997).

From the above Theorem 4.14 we understand that the optimal system size n*
depends on the various parameters q0 and qs. It can be shown the optimal value n* is
an increasing function of q0 and a decreasing function of qs. Intuitively, these results
state that when qs increases it is desirable to reduce the number of components in the
system as close to the value of threshold level k as possible. On the other hand, when
q0 increases, the system reliability will be improved if the number of components
increases.

Theorem 4.15 (Ben-Dov 1980) For fixed n, q0, and qs, it is straightforward to see
that the maximum value of R(k, n) is attained at k∗ = �k0� + 1, where

k0 = n
log
(

q0
ps

)

log
(

qsq0
psp0

)

If k0 is an integer, both k0 and k0+ 1 maximize R(k, n).
We now discuss how these two values, k* and n*, are related to one another.

Define α by

α =
log
(

q0
ps

)

log
(

qsq0
psp0

)

then, for a given n, the optimal threshold k is given by k∗ = �nα� and for a given k
the optimal n is n∗ = �k/α�. For any given q0 and qs, we can easily show that

qs < α < p0

Therefore, we can obtain the following bounds for the optimal value of the
threshold k:

nqs < k∗ < np0

This result shows that for given values of q0 and qs, an upper bound for the optimal
threshold k* is the expected number of components working in open mode, and a
lower bound for the optimal threshold k* is the expected number of components
failing in closed mode.
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Minimizing the Average System Cost

Notation

d each component cost
c1 cost when system failure is in open mode
c2 cost when system failure is in short mode.

b inf(k; qs, n) = 1 − b inf(k − 1; qs, n)

The average total system cost E[T (k, n)] is

E[T (k, n)] = dn + [c1F0(k, n) + c2Fs(k, n)] (4.131)

In other words, the average total system cost is the cost of all components in the
system (dn), plus the average cost of system failure in the openmode (c1F0(k, n)) and
the average cost of system failure in the short mode (c2Fs(k, n)). We now study the
problem of how design policies can be chosen when the objective is to minimize the
average total system cost when the cost of components, the costs of system failure
in the open, and short modes are given. We wish to find the

• optimal k(k*) that minimizes the average system cost for a given n
• optimal n(n*) that minimizes the average system cost for a given k
• optimal k and n (k*, n*) that minimize the average system cost.

Define

k0 =
log
(

c2
c1

)
+ n log

(
ps

q0

)

log
(

p0ps

q0qs

) (4.132)

Theorem 4.16 Fix n, q0, qs, c1, c2 and d. The minimum value of E[T(k, n)] is attained
at

k∗ =
{
max{1, �k0� + 1} if k0 < n
n if k0 ≥ n

If k0 is a positive integer, both k0 and k0+ 1 minimize E[T(k, n)].
It is of interest to study how the optimal value of k, k*, depends on the probabilities

of component failure in the open mode (q0) and in the short mode (qs).
It is worth noting that for fix n, f c1 ≥ c2, then k* is decreasing in q0; if c1 ≤ c2,

then k* is increasing in qs.
Intuitively, this result states that if the cost of system failure in the open mode

is greater than or equal to the cost of system failure in the short mode, then, as q0

increases, it is desirable to reduce the threshold level k as close to one as is feasible.



294 4 System Reliability Modeling

Similarly, if the cost of system failure in the open mode is less than or equal to the cost
of system failure in the short mode, then, as qs increases, it is desirable to increase
k as close to n as is feasible. Define

a = c1
c2

n0 =
⎢⎢⎢⎣
log a + k log

(
p0ps

q0qs

)

log
(

ps

q0

) − 1

⎥⎥⎥⎦

n1 =
⌈

k − 1

1 − q0
− 1

⌉

f (n) =
(

ps

q0

)n
(n + 1)qs − (k − 1)

(n + 1)p0 − (k − 1)

B = a

(
p0ps

q0qs

)k q0
ps

and

n2 = f −1(B) for k ≤ n2 ≤ n1.

Let

n3 = inf

{
n ∈ [n2, n0] : h(n) <

d

c2

}

where

h(n) =
(

n

k − 1

)
pk
0qn−k+1

0

[
a −

(
q0qs

psp0

)k( ps

q0

)n+1
]

(4.133)

It is easy to show that the function h(n) is positive for all k ≤ n ≤ n0, and is
increasing in n for n ∈ [k, n2] and is decreasing in n for n ∈ [n2, n0]. This result
shows that the function h(n) is unimodal and achieves a maximum value at n = n2.
Since n2 ≤ n1, and when the probability of component failure in the open mode q0 is
quite small, then n1 ≈ k; so n2 ≈ k. On the other hand, for a given arbitrary q0, one
can find a value n2 between the values of k and n1 by using a binary search technique.

Theorem 4.17 Fix q0, qs, k, d, c1, and c2. The optimal value of n, say n*, such that
the system minimizes the expected total cost is n* = k if n0 ≤ k. Suppose n0 > k Then

1. if h(n2) < d/c2, then n* = k
2. if h(n2) ≥ d/c2 and h(k) ≥ d/c2, then n* = n3

3. if h(n2) ≥ d/c2 and h(k) < d/c2, then
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n∗ =
{

k if E[T (k, k)] ≤ E[T (k, n3)]
n3 if E[T (k, k)] > E[T (k, n3)]

Proof Let ΔE[T (n)] = E[T (k, n + 1)] − ΔE[T (k, n)]. From Eq. (4.131), we obtain

	E[T (n)] = d − c1

(
n

k − 1

)
pk
0qn−k+1

0 + c2

(
n

k − 1

)
qk

s pn−k+1
s (4.134)

Substituting c1 = ac2 into Eq. (4.134), and after simplification, we obtain

	E[T (n)] = d − c2

(
n

k − 1

)
pk
0qn−k+1

0

[
a −

(
q0qs

p0ps

)k( ps

q0

)n+1
]

= d − c2h(n)

The system of size n + 1 is better than the system of size n if, and only if, h(n) ≥
d/c2. If n0 ≤ k, then h(n) ≤ 0 for all n ≥ k, so that E[T (k, n)] is increasing in n for all
n ≥ k. Thus n* = k minimizes the expected total system cost. Suppose n0 > k. Since
the function h(n) is decreasing in n for n2 ≤ n ≤ n0, there exists an n such that h(n) <
d/c2 on the interval n2 ≤ n ≤ n0. Let n3 denote the smallest such n. Because h(n) is
decreasing on the interval [n2, n0] where the function h(n) is positive, we have h(n)
≥ d/c2 for n2 ≤ n ≤ n3 and h(n) < d/c2 for n > n3. Let n* be an optimal value of n
such that E[T (k, n)] is minimized.

(a) If h(n2) < d/c2, then n3 = n2 and h(k) < h(n2) < d/c2, since h(n) is increasing
in [k, n2] and is decreasing in [n2, n0].
Note that incrementing the system size reduces the expected system cost only
when h(n) ≥ d/c2. This implies that n* = k such that E[T (k, n)] is minimized.

(b) Assume h(n2) ≥ d/c2 and h(k) ≥ d/c2. Then h(n) ≥ d/c2 for k ≤ n < n2, since
h(n) is increasing in n for k < n < n2. This implies that E[T (k, n + 1)]≤ E[T (k,
n)] for k ≤ n < n2. Since h(n2)≥ d/c2, then h(n)≥ d/c2 for n2 < n < n3 and h(n)
< d/c2 for n > n3. This shows that n* = n3 such that E[T (k, n)] is minimized.

(c) Similarly, assume that h(n2) ≥ d/c2 and h(n) < d/c2. Then, either n = k or n*
= n3 is the optimal solution for n.
Thus, n* = k if E[T (k, k)] ≤ E[T (k, n3)]; on the other hand, n* = n3 if E[T (k,
k)] > E[T (k, n3)].

In practical applications, the probability of component failure in the open mode
q0 is often quite small, and so the value of nj is close to k. Therefore, the number
of computations for finding a value of n2 is quite small. Hence, the result of the
Theorem 4.17 is easily applied in practice.

In the remaining section, we assume that the two system parameters k and n are
unknown. It is of interest to determine the optimum values of (k, n), say (k*, n*),
that minimize the expected total system cost when the cost of components and the
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costs of system failures are known. Define

α =
log
(

ps

q0

)

log
(

p0ps

q0qs

) β =
log
(

c2
c1

)

log
(

p0ps

q0qs

) (4.135)

We need the following lemma.

Lemma 4.1 For 0 ≤ m ≤ n and 0 ≤ p ≤ 1:

m∑

i=0

(
n
i

)
pi(1 − p)n−i <

√
n

2πm(n − m)

Theorem 4.18 (Pham and Malon 1994) Fix q0, qs, d, c1, and c2. There exists an
optimal pair of values (kn, n), say (kn*, n*), such that average total system cost is
minimized at (kn*, n*), and

kn∗ = �n ∗ α� and n∗ ≤
(1−q0−qs)

2π

( c1
d

)2 + 1 + β

α(1 − α)
(4.136)

Proof Define ΔE[T (n)] = E[T (kn+1, n + 1)] − E[T (kn, n)]. From Eq. (4.134), we
obtain

	E[T (n)] = d + c1[b inf(kn+1 − 1; p0, n + 1) − b inf(kn − 1; p0, n)]
− c2[b inf(kn+1 − 1; qs, n + 1) − b inf(kn − 1; qs, n)]

Let r = c2/cl, then

	E[T (n)] = d − c1g(n)

g(n) = r[b inf(kn+1 − 1; qs, n + 1) − b inf(kn − 1; qs, n)] − [b inf(kn+1 − 1; p0, n + 1) − b inf(kn − 1; p0, n)]
(4.137)

Case 1. Assume kn+1 = kn + 1. We have

g(n) =
(

n
kn

)
pkn
0 qn−k+1

0

[
r

(
q0qs

p0ps

)kn
(

ps

q0

)n+1

− 1

]

Recall that

(
p0ps

q0qs

)β

= r
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then

(
q0qs

p0ps

)nα+β( ps

q0

)n+1

= 1

r

ps

q0

since nα + β ≤ kn ≤ (n + 1)α + β, we obtain

r

(
q0qs

p0ps

)kn
(

ps

q0

)n+1

≤ r

(
q0qs

p0ps

)nα+β( ps

q0

)n+1

= ps

q0

Thus

g(n) ≤
(

n
kn

)
pkn
0 qn−kn+1

0

(
ps

q0
− 1

)
=
(

n
kn

)
pkn
0 qn−kn

0 (ps − q0)

From Lemma 4.1, and nα + β ≤ kn ≤ (n + 1)α + β, we obtain

g(n) ≤ (ps − q0)
1√

2πn kn
n

(
1 − kn

n

)

≤ (ps − q0)
1

√
2πn

(
α + β

n

)[
1 − α

(
n+1

n

)− β

n

]

≤ (1 − qs − qs)
1√

2πn[nα(1 − α) − α(α + β)] . (4.138)

Case 2. Similarly, if kn+1 = kn, then from Eq. 2.43, we have

g(n) =
(

n
kn − 1

)
qkn

s pn−kn+1
s

[(
p0ps

q0qs

)kn
(

q0
ps

)n+1

− r

]

since kn = [nα + β] ≤ nα + β + 1, and from Eq. (4.137) and Lemma 4.1, we have

g(n) = qs

(
n

kn − 1

)
qkn−1

s pn−kn+1
s

[(
p0ps

q0qs

)nα+β+1(q0
ps

)n+1

− r

]

= qs

√
n

2π(kn − 1)[n − (kn − 1)]

[(
p0ps

q0qs

)nα+β(q0
ps

)n+1(p0ps

q0qs

)
− r

]

≤ qs

√
n

2π(kn − 1)[n − (kn − 1)]
[

r

(
q0
ps

)(
p0ps

q0qs

)
− r

]
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≤
√

n

2π(kn − 1)[n − (kn − 1)] (1 − q0 − qs)

Note that kn+1 = kn, then nα − (l−α −β)≤ kn −1≤ nα +β.After simplifications,
we have

g(n) ≤ (1 − q0 − qs)
1√

2πn
( kn−1

n

)(
1 − kn−1

n

)

≤ (1 − q0 − qs)
1

√
2πn

(
α − 1−α−β

n

)[
1 − α − β

n

]

≤ 1 − q0 − qs√
2π [nα(1 − α) − (1 − α)2 − (1 − α)β] (4.139)

From the inequalities in Eqs. (4.138) and (4.139), set

(1 − qs − q0)
1√

2π [nα(1 − α) − α(α + β)] ≤ d

c1

and

(1 − qs − q0)√
2π [nα(1 − α) − (1 − α)2 − α(α + β)] ≤ d

c1

we obtain

(1 − q0 − qs)
2
( c1

d

)2 1

2π
≤ min{nα(1 − α) − α(α + β), nα(1 − α) − (1 − α)2 − (1 − α)β}

	E[T (n)] ≥ 0 when n ≥
(1−q0−qs)

2

2π

( c1
d

)+ 1 + β

α(1 − α)

Hence

n∗ ≤
(1−q0−qs)

2

2π

( c1
d

)+ 1 + β

α(1 − α)

The result in Eq. (4.139) provides an upper bound for the optimal system size.
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4.16 Problems

1. Shows that a system consisting of n independent components arranged in series
has failure rate equal to the sum of the component failure rates is general true
for any distribution other than the exponential.

2. Given components with an exponential failure time distribution such that the
ith component has constant failure rate λi, determine the reliability and MTTF
of a 2-out-of-4 system. (Hints: see Example 4.5 in Sect. 4.6)

3. Consider a high-voltage load-sharing system consisting of a power supply and
two transmitters, say A and B, using mechanically tuned magnetrons (Pham
1992a). Two transmitters are used, each tuning one-half the desired frequency
range; however, if one transmitter fails, the other can tune the entire range with
a resultant change in the expected time to failure. Suppose that for this system
to work, the power supply and at least one of the transmitters must work. The
transmitters operate independently when both are functional. An undetected
fault in either of the transmitters causes the system to fail.
Suppose that transmitter A has constant failure rate λA if transmitter B is
operating and failure rate λ′

A if transmitter B has failed. Similarly, suppose that
transmitterBhas constant failure rateλB if transmitterA is operating and failure
rate λ′

B if transmitter A has failed. Denote λP and λC be the constant failure
rate of power supply and fault coverage, respectively. Obtain the reliability and
MTTF of the high-voltage load-sharing system with dependent failures.

4. System XYZ consists of five water pumps for cooling a reactor. We assume
that the pumps function independently and the reliability of each pump, over a
period of 100,000 h, is 0.995. The systemXYZ functions if at least four pumps
must function. What is the reliability of the system?

5. An instrument which consists of k units operates for a time t. The reliability of
each unit during the time t is p. When the time t passes, the instrument stops
functioning, a technician inspects it and replaces the units that failed. He needs
a time s to replace one unit.

(a) Find the probability that in the time 2 s after the stop the instrument will
be ready for work.

(b) Calculate (a) when p = 0.9 and k = 10.

6. A device consists of m units of type I and n units of type II. The reliability
for an assigned time t of each type I unit is p1 and that of a type II unit is p2.
The units fail independently of one another. For the device to operate, no less
than two out of m type I units and no less than two out of n type II units must
operate simultaneously for time t.

(a) Find the reliability of the device.
(b) Calculate (a) when m = 5, p1 = 0.9, n = 7, p2 = 0.8.
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Fig. 4.11 Reliability block diagram for Problem 7

7. A system is composed of six independent components as shown in Fig. 4.11.

(a) If pi denotes the reliability of component i, find the reliability of the
system.

(b) Calculate (a) when pi = 0.95 for all i = 1, 2, 3, 4, 5, and 6.
(c) Suppose that each component in Fig. 4.11 has an exponential life

distribution with failure rate λ. Find the MTTF of the system.

8. A system is composed of three identical components, two ofwhich are required
to operate. The third is initially in standby. Assume that all components operate
independently. If we assume perfect sensing and switching, that the active
failure rate of each component is λ, and that the standby failure rate is zero:

(a) Find the reliability of the system.
(b) Determine the MTTF of the system.
(c) Calculate (a) and (b) when λ = 0.005 per hour and t = 10 h.

9. A cooling system for a reactor has four identical cooling loops. Each cooling
loop has two identical pumps connected in parallel. The cooling system
requires that at least 3 of the 4 cooling loops operate successfully. The reli-
ability of a pump over the life span of the plant is Rp = 0.75. Calculate the
reliability of the cooling system.

10. An aircraft has four engines (i.e., two engines on each wing) but can land
using just at least any two engines. Assume that the reliability of each engine
for the duration of a flight mission is Re = 0.98 and that engine failures are
independent.
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(a) Calculate the mission reliability of the aircraft.
(b) If at least one functioning engine must be on each wing, calculate the

mission reliability.

4.17 Projects

Project #1

Project Description

Today, computers are used in many areas for various applications including airlines,
hospitals, banks, security, automobiles, schools, etc. The impact of any such failure
is significant. In airlines for example, on Wednesday July 8, 2015, United Airlines
grounded 3,500 flights worldwide for less than an hour in the morning because of
the computer problems that were related to network connectivity issue, according to
NBC News. Delays affected 235 domestic and 138 international destinations, NBC
reports (http://www.nbcnews.com/business/travel). Form teams of 3 members and
select one as the team leader.

The tasks of your GROUP include:

Task 1: Discuss in detail, at least 15 computer related-failures or -problems since
2010, similar to the example given.
Task 2: Perform a comprehensive reliability/availability case study including

Distribution functions, failure rate function, MTTF, mean residual life based on
a failure data set from Task 1.

Group 1: Airlines
Group 2: Hospitals
Group 3: Banks
Group 4: Security Systems
Group 5: Automobiles

A project proposal (typed, no more than one-page) report is due in two weeks,
which includes names of your group members, and a brief direction of your project.

A typed final REPORT (no more than 10 double-space pages) is due in two
months.

PART I: Your Project Report must include the following:
Introduction; Objectives
System Failure Case Studies
Reliability Case Study; Results, Findings and Remarks

PART II: Project Presentations (to be determined)

http://www.nbcnews.com/business/travel
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Project #2

Form teams of three members and select one as the team leader. Following is a brief
project description.

Project Description

The system consists of n statistically identical, independent, and non-repairable units.
The system and the units are either in a successful state (working) or in a failed state
(not working). What separates this system from other two state systems is that the
successful state contains two modes: a good mode and a degradation mode (see
Sect. 4.11).

The system operates in a good mode with probability α; conversely, the system
operates in a degradationmodewith probability (1− α). For the system to beworking
in a good mode, at least k out of n units must work. In a good mode, the reliability
of the working units is p1. For the system to be working in a degradation mode, at
least m out of n units must work. In degradation mode, the reliability of the working
units is p2. Units in degradation mode are generally put under more stressed working
conditions than normal.

Your group has been asked to answer the following questions

1. Describe the problem.
2. Provide at least 3 applications in real life about this two-state degradable system.
3. Derive the system reliability function R(n).
4. Given arbitrary p1, p2, k, m, and α values, determine the optimal value of n, say

n*, that maximizes the system reliability function R(n).
5. The cost model for this system includes the cost of a unit having reliabilities

p1 and p2, represented as c(p1,p2); and two penalty costs: dg when the system
fails in good mode and ds when the system fails in degradation mode. Fs(n) and
Fg(n) are the cumulative distribution functions for the system in degradation
and good mode, respectively. The total system cost function can be written as
follows

E(n) = nc(p1, p2) + dsFs(n) + dgFg(n)

Given arbitrary p1, p2, ds, dg, k, m, and α values, determine the optimal value
of n that minimizes the expected total system cost E(n).

6. Given arbitrary p2, ds, dg, k, m, n, α values and any specific function c(p1,p2),
obtain the optimal unit reliability value p1, say p1*, that minimizes expected
total cost of the system. You need to define a specific function c(p1,p2).

7. Provide numerical examples and sensitivity analysis for all the problems above
(3 – 6). Draw the conclusions. Show your work.
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A typed final REPORT (no more than 12 double-space pages) is due in eight
weeks.

PART I: Your Project Report must include the following:
Introduction; Objectives
System Failure Case Studies
Reliability Analysis; Results, Findings and Remarks

PART II: Project Presentations (to be determined).

Project #3

Form teams of three members and select one as the team leader. Following is a brief
project description.

Project Description

A manager is interested in purchasing a new cooling system for a reactor if it can
meet the reliability requirement. The system information is as follows:

A cooling system for a reactor has four identical cooling loops. Each cooling loop
has two identical pumps connected in parallel. The cooling system requires that at
least 3 of the 4 cooling loops operate successfully.

A two-component parallel system is defined as if both components are working
then the system isworking. If either component 1 or 2 fails, the system is stillworking.
The system will fail if and only if both components fail.

The following values represent the lifetimes (in years) of the pump based on a
sample of historical data from the manufacture:

38.3 32.9 26.6 22.5 31.6 28.9 31.6 35.5 26.3 27.7 24.4 29.3
28.5 33.8 18.1 32.4 22.9 29.9 27.8 32.5 41.1 21.5 28.3 30.7

In this project, your group is asked to carefully study and obtain the analytical
solutions for the following questions based on the mean squared error, Akai informa-
tion criterion (AIC), and Bayesian information criterion (BIC) (Show all your works
in detail):

1. Compute the reliability of the cooling system for a mission of 5 years.
2. Obtain the expected lifetime of the cooling system.

A typed final REPORT (no more than 5 double-space pages) is due in four weeks.

PART I: Your Project Report must include the following:
Introduction; Objectives
Methodologies, Reliability Analysis; Results, Findings and Remarks

PART II: Project Presentations (to be determined).

Project #4

Form teams of four members and select one as the team leader. Following is a brief
project description.
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Project Description—How Coffee Makers Work

A. What exactly happens after adding the coffee and water into your coffee maker
(see Fig. 4.12).

In general, all the coffee makers consist of:

• A reservoir to hold the water
• A basic heating element
• Another smaller tube leading from the reservoir to the heating element
• A white tube leading up to the reservoir base, connecting the water to the drip

area.

The bottom of the coffee maker is home to the coffee machine’s electrical
equipment and the heating element. The heating element has two functions:

(i) When you first put the water in the coffee maker, the heating element heats it.
(ii) Once the coffee is made, the heating element keeps the coffee warm.

Fig. 4.12 A sample coffee machine
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B. What can go wrong with your coffee machines?

Some of the most common problems that can cause your coffee machines to stop
working include, but are not limited to the following:

• The power cord or switch: The power cord or on/off switch can go bad
• Clogged tubes: The tubes can get clogged with calcium
• Heating element failure.

Your group has been asked to study and answer the following questions:

1. Determine how reliable is the coffee machines with respect to reliability,
performability and risk factors, and

2. To buy or not to buy this brand of coffee machine? Conduct the test by making
the coffee of your own machine several times per day for a consecutive of
14 days based on your own criteria (i.e., Is the coffee machine noisy? How well
does the coffee machine make coffee? etc.). Analyze the data obtained from
your 14-day experiment and determine the reliability, mean time to failure and
mean residual life as well as the effects of various possible inspection intervals
on the reliability of this coffee machine brand

then present your results, findings as well as recommendations in two months. A
typed final Report (no more than 10 pages) is due in two months.

PART I: Your Final Project Report must include the following:
Introduction; Objectives/Goals;
System description (how the machine works etc.)
Reliability block diagram or Markov diagram
Methodologies/Approaches/Modeling; Data collection
Reliability analysis, Optimization, and Examples
Results, Findings, and Conclusions/Remarks

PART II: Project Presentations (in two months, TBD).
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Chapter 5
System Reliability Estimation

This chapter discusses a brief order statistics and various approaches such as MLE,
UMVUE and bias-corrected estimate to obtain the reliability estimation of some
form of systems including series, parallel and k-out-of-n systems for the uncen-
sored and censored failure time data (Pham 2010, Pham and Pham 2010). The
operating environments are, however, often unknown and yet different due to the
uncertainties of environments in the field (Pham and Xie 2002). The systemability
is the probability that the system must work in the uncertainty of the operational
environments. The chapter discusses a concept of systemability function and its
calculation for some system configurations and its applications in software relia-
bility engineering. The chapter also discusses some life testing cost model in deter-
mining the optimum sample size on test that minimizes the expected total cost.
Finally, the chapter discusses the stress-strength reliability estimation of k-out-of-n
interval-system. Several applications are also discussed.

5.1 Order Statistics and Its Application in Reliability

Let X1, X2, …, Xn be a random sample of size n, assuming that they are independent
and identically distributed, each with the cdf F(x) and pdf f (x). From Chap. 1,
Sect. 12, the rth order statistic is the rth smallest value in the sample, say X (r), and
can be written as

X(1) ≤ X(2) ≤ . . . ≤ X(r−1) ≤ X(r) ≤ . . . ≤ X(n)

LetF(r)(x) denote the cdf of the rth order statisticX (r). Note that the order statistics
X(1), X(2), ..., X(n) are neither independent nor identically distributed. Let X (r) be the
rth order statistic. From Chap. 1, Eq. (71), the cdf of X (r) is given by

F(r)(x) = P(X(r) ≤ x)
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=
n∑

i=r

(
n

i

)
Fi (x)[1 − F(x)]n−i

= Fr (x)
n−r∑

j=0

(
r + j − 1
r − 1

)
[1 − F(x)] j

= r

(
n

r

) F(x)∫

0

tr−1(1 − t)n−r dt (5.1)

Using the integration by parts, from Eq. (5.1) it can be rewritten as:

r

(
n

r

) F(x)∫

0

tr−1(1 − t)n−r dt =
(
n

r

)
Fr (x)[1 − F(x)]n−r

+ (r + 1)

(
n

r + 1

) F(x)∫

0

tr (1 − t)n−r−1dt

Thus, the cdf of X (r) also can be written as

F(r)(x) = r

(
n

r

) F(x)∫

0

tr−1(1 − t)n−r dt

=
(
n

r

)
Fr (x)[1 − F(x)]n−r + (r + 1)

(
n

r + 1

) F(x)∫

0

tr (1 − t)n−r−1dt

It is easy to show that the pdf of X (r) is given by

f(r)(x) = ∂

∂x
F(r)(x) = r

(
n

r

)
Fr−1(x)[1 − F(x)]n−r f (x) (5.2)

Let X(1) be the smallest order statistic, that is, X(1) = min{X1, X2, . . . , Xn}. The
cdf of X(1) can be obtained as follows:

F(1)(x) = P(min{X1, X2, . . . , Xn} ≤ x) = P(X(1) ≤ x)

= 1 − P(min{X1, X2, . . . , Xn} >x)

= 1 −
n∏

i=1

P(Xi > x) by independence

= 1 − (1 − F(x))n. (5.3)
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The cdf of X(1) also can be obtained from Eq. (5.1), we have

F(1)(x) = P(X(1) ≤ x)

=
n∑

i=1

(
n

i

)
Fi (x)[1 − F(x)]n−i

= 1 − [1 − F(x)]n

which is the same as Eq. (5.3). Likewise,

F(n)(x) = P(X(n) ≤ x) = P(all Xi ≤ x; i = 1, 2, . . . , n)

= Fn(x) by independence. (5.4)

Let Ri(x) be a reliability of component ith. As a definition from Chap. 4, the series
system works if and only if all of its components work. The reliability of a series
system of n components is given by

R(n:n)(x) = P(X(1) > x) =
n∏

i=1

Ri (x) (5.5)

Also fromChap. 4, the parallel systemworks if and only if at least one component
works. The reliability of the parallel system of n components is given by

R(1:n)(x) = P(X(n) > x) = 1 −
n∏

i=1

(1 − Ri (x)) (5.6)

Similarly, a k-out-of-n system, in which the system functions iff at least k
components function, has reliability

R(k:n)(x) = P(X(n−k+1) > x) =
n∑

i=k

(
n

i

)
Ri (x)(1 − R(x))n−i (5.7)

Example 5.1 A life test on n items with independent lifetime X i having exponential
pdf

f (x) = 1

μ
e− x

μ x > 0 (5.8)

is terminated as soon as N items (N ≤ n) have failed or after time T 0, whichever
comes first. It can be shown that:
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(a) The expected number of failures is

np
N−2∑

i = 0

(
n − 1
i

)
pi (1 − p)n−i−1 + N

n∑

i = N

(
n

i

)
pi (1 − p)n−i (5.9)

where p = 1 − e− T0
μ .

(b) The expected duration of the test is

N−1∑

i=1

(
n

i

)
pi (1 − p)n−i E

(
X(i)

) +
n∑

i=N

(
n

i

)
pi (1 − p)n−i E

(
X(N )

)
(5.10)

where

E
(
X(r)

) = μ

(
r−1∑

i=0

1

(n − i)

)
. (5.11)

and p = 1 − e− T0
μ

Example 5.2 Under the Type II censoring, a 100(1 − α)% confidence interval
for a reliability, with an exponential reliability function R(x) = e− x

μ , is given by
(e− x

μL ,e− x
μU ) where

μL =
2N

N∑
i=1

X(i)

N

χ2
2N , α

2

and μU =
2N

N∑
i=1

X(i)

N

χ2
2N , 1− α

2

(5.12)

Similarly, let X (n) be the largest order statistic, that is, X(n) =
max{X1, X2, . . . , Xn}. We can show that

E(X(n)) = E(X(n−1)) +
∞∫

0

[
Fn−1(x)

]
[1 − F(x)]dx for n = 2, 3, 4, . . . (5.13)

where X1, X2, . . . , Xn is a random sample of size n from a continuous distribution
function F(x). Note that

E
(
X(n)

) =
∞∫

−∞
nx[F(x)]n−1dF(x) (5.14)

The mean of the rth order statistic (r ≤ n) is given by:
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μ(r) =
∞∫

−∞
x f(r)(x) d(x) = n!

(r − 1)!(n − r)!
∞∫

−∞
x[F(x)]r−1[1 − F(x)]n−r f (x)d(x) (5.15)

It can also be shown that

E
[
X(r+1) − X(r)

] =
(
n

r

) ∞∫

−∞
[F(x)]r [1 − F(x)]n−r d(x) for r = 1, 2, . . . , n − 1

Let μr,n be the mean of the rth order statistic of the sample of size n. It can be
shown that

μr,n−1 = μr,n +
(
n − 1
r − 1

) ∞∫

−∞
[F(x)]r [1 − F(x)]n−r d(x)

μr+1,n = μr,n−1 +
(
n − 1
r

) ∞∫

−∞
[F(x)]r [1 − F(x)]n−r d(x)

Order Statistics for Independent Non-identically distributed

Suppose that X1, X2, . . . , Xn are independent randomvariables, Xi having cdfF i(x).
Then the cdf of X(r) is given by

F(r) =
n∑

i=r

∑

j1

∑

j2

∑

ji

(
i∏

k=1

[
Fjk (x)

]
)(

n∏

k=i+1

[
1 − Fjk (x)

]
)

{
j1 < j2 < . . . < ji
& ji+1 < ji+2 < . . . < jn

}
(5.16)

5.2 The k-Out-of-n Systems

Consider a system consisting of n identical components having distribution function
F(x) and pdf f(x). The k out of n system works if at least k of the n components are
working; that is, it works iff at most (n—k) components have failed. In particular,
the parallel and series systems are 1 out of n and n out of n systems, respectively.
The pdf of the k out of n system is the pdf of (n-k + 1)th order statistics in a sample
of size n and is given by

f(n−k+1)(x) = n!
(k − 1)!(n − k)! [F(x)]n−k[1 − F(x)]k−1 f (x) (5.17)
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The reliability of k out of n i.i.d. components system, Rs(t), is given by

Rs(t) = n!
(k − 1)!(n − k)!

∞∫

t

[F(x)]n−k[1 − F(x)]k−1 f (x) d(x)

=
n∑

i=k

(
n

i

)
[1 − F(t)]i [F(t)]n−i

= n!
(k − 1)!(n − k)!

n−k∑

j=0

(
n − k

j

)
(−1)n−k− j

(n − j)
[R(t)]n− j (5.18)

where R(t) = 1–F(t). From Eq. (5.18), when k = n then it becomes a series system
and

Rseries(t) = [R(t)]n (5.19)

Similarly, when k = 1, it is a parallel system and

Rparallel(t) = 1 − [1 − R(t)]n

= n
n−1∑

j=0

(
n − 1

j

)
(−1)n− j−1

(n − j)
(R(t))n− j (5.20)

5.2.1 k Out of n System Failure Rate

The failure rate of k out of n system, hs(t), is given by

hs(t) = − ∂

∂t
{ln[Rs(t)]}

= − ∂

∂t

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩
ln

⎡

⎢⎢⎢⎣
n!

(n − k)! (k − 1)!
n−k∑

j=0

(
n − k

j

)
(−1)n−k− j

(n − j)
[R(t)]n− j

⎤

⎥⎥⎥⎦

⎫
⎪⎪⎪⎬

⎪⎪⎪⎭
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=
λ(t)

n−k∑
j=0

(
n

j

)(
n − j − 1
k − 1

)
(n − j)(−1)n−k− j [R(t)]n− j

n−k∑
j=0

(
n

j

)(
n − j − 1
k − 1

)
(−1)n−k− j [R(t)]n− j

(5.21)

where λ(t) = f (t)
R(t) is the failure rate corresponding to the cdf F.

Special cases:
If k = n then hs(t) = n λ(t).
If k = 1 then

hs(t) =
λ(t)

n−1∑
j=0

(
n

j

)
(n − j)(−1)n− j−1[R(t)]n− j

n−1∑
j=0

(
n

j

)
(−1)n− j−1[R(t)]n− j

(5.22)

Theorem 5.1 (Abouammoh & El-Neweihi, 1986) Let X be a r.v. with the cdf F.
For a random sample of size n from the pdf f. Let F(k) denote the distribution function
of the kth order statistic. Then

(a) F is IFR (IFRA) ⇒ F(k) is IFR (IFRA)
(b) F is DFR (DFRA) �=⇒ F(k) is DFR (DFRA)
(c) F is NBUE ⇒ F(n) is NBUE
(d) F is DMRL ⇒ F(n) is DMRL

Theorem 5.2 (Abouammoh & El-Neweihi, 1986) Let X be a r.v. with the cdf F.
For a random sample of size n from the pdf f .

(a) If F is IFR (IFRA), then the distribution of the k out of n system is IFR (IFRA)
(b) If F is DFR (DFRA), it is not necessary that the distribution of the k out of n

system is DFR (DFRA)
(c) If F is NBUE, then the distribution of the parallel system is also NBUE.
(d) If F is DMRL, then the distribution of the parallel system is also DMRL.

5.3 Reliability Estimation of k-Out-of-n Systems

Consider a k out of n system which consists of n two-state (i.e., working or failed)
components and that the component failures are independent where R(t) denotes the
reliability of the component. The k-out-of-n system functions if and only if at least k of
its n components must function. In other words, as soon as (n-k + 1) components fail
the system fails. This section discusses various approaches such as MLE, UMVUE
and bias-corrected estimate (also called as delta method) for estimating the reliability
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of a k out of n systemwhen the failure times are distributed as an exponential function
for both the uncensored and censored failure cases.

Notation

R(t): component reliability
f(t): component failure probability density function
Rs(t): reliability of k out of n system
fs(t): system failure time density function
R
∧

S(t) MLE of Rs(t)
R̃S(t) UMVUE of Rs(t)
R̂
∼ S

(t) biased-corrected estimator (BCE) of Rs(t)

ˆ: implies a maximum likelihood estimate (MLE)
~ : implies a uniformly minimum variance unbiased estimate (UMVUE)

Consider a k out of n systemwhich consists of n subsystems and that the subsystem
failures are independent where R(t) denotes a subsystem reliability. The k-out-of-n
system functions if and only if at least k of its n subsystems function. The reliability
of the k-out-of-n system, Rs(t), is:

Rs(t) =
n∑

i=k

(
n
i

)
(R(t))i (1 − R(t))n−i . (5.23)

The k-out-of-n system reliability function above can be rewritten as:

RS(t) =
n∑

j=k

(−1) j−k

(
j − 1
k − 1

)(
n
j

)
R j (t) (5.24)

For example, when k = 2 and n = 4, from Eq. (5.23)

Rs(t) =
4∑

i=2

(
4
i

)
(R(t))i (1 − R(t))4−i

= (
4
2

)
(R(t))2(1 − R(t))2 + (

4
3

)
(R(t))3(1 − R(t)) + (R(t))4

= 6R2(t) − 8R3(t) + 3R4(t)

is the same as when using from Eq. (5.24), that is

RS(t) =
4∑

j=2

(−1) j−2

(
j − 1
1

)(
4
j

)
R j (t)

= 6R2(t) − 8R3(t) + 3R4(t)

If the lifetime, X, of each component has the exponential density function
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f (x) = 1

θ
e− x

θ for x > 0, θ > 0 (5.25)

where θ is the mean lifetime of the component, the component reliability, R(t), is

R(t) = e− t
θ for t > 0, θ >0 (5.26)

From Eq. (5.24), the reliability of the k out of n system is given by

RS(t) =
n∑

j=k

(−1) j−k

(
j − 1
k − 1

)(
n
j

)
e− j t

θ . (5.27)

5.3.1 Failure-Uncensored Case of One-Parameter
Exponential Distribution

Assuming that there arem units to put on test and then terminate the test when all the
units have failed (uncensored case). Let X1, X2,…, Xm be the random failure times
and suppose the failure times are exponentially distributed with density function as
given in Eq. (5.25), the MLE of θ can be easily obtained

θ̂ =

m∑
i=1

xi

m
= x̄ = Sm

m
(5.28)

where Sm =
m∑
i=1

xi . The fact that (Laurent 1963) θ̂ = x̄ = Sm
m is also the UMVUE

of θ . Thus, the MLE and UMVUE of one-unit component reliability are given by,
respectively (Basu 1964):

R
∧

(t) = e− t
x̄ (5.29)

and

R̃(t) =
{(

1 − t
Sm

)m−1
if t < Sm

0 if t ≥ Sm
(5.30)

It is worth to note that the MLE has an important invariance property of the
maximum likelihood estimator. However, the minimum variance unbiased estimator
does not, in general, posses the invariance property of theMLE (Lehmann andCasella
1998). From Eq. (5.24) and using the invariance property, the MLE of the reliability
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function of a k out of n system, Rs(t), are given by

R
∧

S(t) =
n∑

j=k

(−1) j−k

(
j − 1
k − 1

)(
n
j

)
e− j t

x̄ (5.31)

The UMVUE of function Rj(t) is given by (Rutemiller 1966):

R̃ j (t) =
{(

1 − jt
Sm

)m−1
if Sm ≥ j t

0 Otherwise
(5.32)

Based on the polynomial combination of UMVUE functions, we can easily show
that the UMVUE of reliability function of the k out of n systems, Rs(t), can be
obtained as follows (Pham 2010):

R̃S(t) =

⎧
⎪⎨

⎪⎩

n∑
j=k

(−1) j−k

(
j − 1
k − 1

)(
n
j

)(
1 − j t

Sm

)m−1

i f Sm ≥ j t

0 Otherwise

(5.33)

Bias-corrected Estimator (BCE) Approach

We wish to estimate the reliability using a bias-corrected estimator approach (Pham

2010) with R̂
∼

(t) = e− t
x̄ where x̄ =

m∑
i=1

xi

m .We can see that E(R̂
∼

(t)) �= e− t
θ So R̂

∼

(t) is

a biased estimate. Denote θ = E(X).
Delta method. Suppose the random variable Y has mean μ and variance

σ 2 (i.e., Y ∼ (μ, σ 2)) and suppose we want the distribution of some function g(Y).
Then

g(Y ) = g(μ) + (Y − μ) g′(μ) + (Y − μ)2

2! g′(μ) + . . . . (5.34)

Using the Delta method and from Eq. (5.34), we obtain (Pham and Pham 2010):

R̂
∼

(t) = e− t
X̄ = e− t

θ + (X − θ)
t

θ2
e− t

θ + 1

2
(X − θ)2

((
t

θ2

)2

− 2t

θ3

)
e− t

θ + . . .

Hence,

E
(
R̂
∼

(t)
)

	
[
1 + 1

2m

(
t2

θ2
− 2t

θ

)]
e− t

θ

So, the biased-corrected estimator of R̂
∼

(t) is (Pham 2010):
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R̂
∼

(t) = e− t
X̄

1 + 1
2m

(
t2

(X)
2 − 2t

X

)

Therefore, the reliability estimation function of the k out of n systems using the
biased-corrected estimator approach is given by (Pham 2010):

R̂
∼ S

(t) =
n∑

j=k

(−1) j−k

(
j − 1
k − 1

)(
n
j

)
⎛

⎝ e
−
(

j t
X

)

1 + j t
2mX

(
j t
X

− 2
)

⎞

⎠ (5.35)

where

x̄ =

m∑
i=1

xi

m
= Sm

m

5.3.2 Failure-Censored Case of One-Parameter Exponential
Distribution

Consider the case where we put m units on test and terminate the test when a pre-
assigned number of units, say r, of course r ≤ m, have failed. Then the MLE of Rs(t)
is given by:

R
∧

S(t) =
n∑

j=k

(−1) j−k

(
j − 1
k − 1

)(
n
j

)
e− j t

x̄ (5.36)

where

x̄ = Sr
r

Sr =
r∑

i=1

x(i) + (m − r)x(r)

The UMVUE of Rs(t) can be obtained:

R̃S(t) =

⎧
⎪⎨

⎪⎩

n∑
j=k

(−1) j−k

(
j − 1
k − 1

)(
n
j

)(
1 − j t

Sr

)r−1

i f Sr ≥ j t

0 otherwise

(5.37)
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where Sr is given in Eq. (5.36).
The biased-corrected estimator of Rs(t) is given by

R̂
∼ S

(t) =
n∑

j=k

(−1) j−k

(
j − 1
k − 1

)(
n
j

)
⎛

⎝ e
−
(

j t
X

)

1 + j t
2r X

(
j t
X

− 2
)

⎞

⎠. (5.38)

5.3.3 Applications

The power usages (in watts) of a computer system, with quad-core, 8 GB or ram, and
a GeForce 9800GX-2 graphics card, performing various from simple- to-complex
computing applications were recorded (every thirty-minute interval time for eleven
and half hours) as follows by (Pham and Pham 2010):

253 274 285 293 257 277 251 251 252 256 293 295 285 280 259

253 253 279 273 292 306 296 259

Assuming the power usage to be distributed exponentially with mean live θ. We
now calculate the MLE and UMVUE of reliability of the 2 out of 4 systems. From
Eq. (5.28), we obtain the MLE and UMVUE of θ as follows:

θ̂ = θ̃ =

23∑
i=1

xi

23
= 6272

23
= 272.7

The reliability estimation function of a 2 out of 4 system using the MLE is given
by

R
∧

S(t) =
4∑

j=2

(−1) j−2 4!
j !(4 − j)!

( j − 1)e− j t
272.7

The reliability estimation function of a 2 out of 4 system using the UMVUE is

R̃S(t) =
⎧
⎨

⎩

4∑
j=2

(−1) j−2
(

4!
j !(4−j)!

)
( j − 1)

(
1 − j t

6272

)22
i f 6272 ≥ j t

0 otherwise

The reliability estimation function of a 2 out of 4 system using the Biased-
Corrected estimator is
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Table 5.1 Reliability estimation of a 2-out-of-4 system

t R
∧

s(t) R̂
∼s

(t) R̃s(t)
(
R̃s(t) − R

∧

s(t)
)
100%

50 0.9836 0.9867 0.9867 0.31

100 0.9109 0.9237 0.9236 1.27

150 0.7932 0.8144 0.8144 2.12

200 0.6573 0.6807 0.6811 2.38

R̂
∼ S

(t) =
4∑

j=2

(−1) j−2

(
4!

j !(4 − j)!

)⎛

⎝ e
−
(

j t
272.7

)

1 + j t
12544

(
j t

272.7 − 2
)

⎞

⎠( j − 1)

Table 5.1 shows the numerical values of the reliability estimation of a 2-out-
of-4 system based on the MLE, UMVUE, and BCE methods for various values of
time t. It seems that: (i) the system reliability of both UMVUE and BCE methods
can produce the same results; and (ii) the difference (in term of percentage) between
the two estimates R̃S(t) and R

∧

S(t), that is (R̃S(t)− R
∧

S(t)), seems to be getting larger
as the time t increases.

5.3.4 Failure-Uncensored Case of Two-Parameter
Exponential Distribution

If the lifetime random variable, X, of each component has a two-parameter
exponential density function

f (x) = 1

θ
e− 1

θ
(x−μ) for x > μ > 0, θ >0 (5.39)

then the component reliability, R(t), is

R(t) = e− 1
θ
(t−μ) for t > μ, θ > 0 (5.40)

From Eq. (5.24), we obtain the reliability function of k-out-of-n system is

RS(t) =
n∑

j=k

(−1) j−k

(
j − 1
k − 1

)(
n
j

)
e− j (t−μ)

θ . (5.41)

Suppose m units are subjected to test and the test is terminated after all the units
have failed. Let X1, X2, …, Xm be the random failure times and suppose that the
failure times are two-parameter exponentially distributed with density function as
given in Eq. (5.39). Let
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x̄ =

m∑
i=1

xi

m
; x(1) = min(x1, x2, . . . , xm); Sm =

m∑

i = 2

(
x(i) − x(1)

)
. (5.42)

We now discuss the reliability estimation of a k-out-of-n system, Rs(t), based on
the MLE, UMVUE, and bias-corrected estimator methods.

Maximum Likelihood Estimator of Rs(t)

The likelihood function is

L(θ, μ) =
m∏

i=1

f (xi ) = 1

θm
e
− 1

θ

m∑
i=1

(xi−μ)

The MLE of μ and θ are

μ̂ = x(1) θ̂ = x̄ − x(1) (5.43)

It should be noted that μ̂ and θ̂ are biased. The MLE of component reliability is:

R
∧

(t) = e
−
(

t−x(1)
x̄−x(1)

)

for t > x(1) (5.44)

From the invariance property and Eq. (5.24), the MLE of the reliability function
of k out of n system, Rs(t), is given by

R
∧

S(t) =
n∑

j=k

(−1) j−k

(
j − 1
k − 1

)(
n
j

)
e
−
(

j (t−x(1))

x̄−x(1)

)

(5.45)

UMVUE of Rs(t)

The UMVUE of μ and θ can be easily obtained as follows:

μ̃ = m x(1) − x̄

m − 1
; θ̃ = m

(
x̄ − x(1)

)

m − 1
. (5.46)

It can be shown that μ̃ and θ̃ are unbiased. The UMVUE of component reliability
is:

R̃(t) =

⎧
⎪⎨

⎪⎩

1 if t ≤ μ̃
(
1 − 1

m

)(
1 − t−x(1)

Sm

)m−2
μ̃ < t ≤ Sm + x(1)

0 t > Sm + x(1)

(5.47)

Therefore, the UMVUE of function Rj(t) is given by:
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R̃ j (t) =
(
1 − j

m

)(
1 − j

(
t − x(1)

)

Sm

)m−2

μ̃ < t ≤ Sm + x(1)

Although the MLE has an important invariance property of the maximum like-
lihood estimator, the minimum variance unbiased estimator, in general, does not,
possess the invariance property of the MLE (Pham 2010). Based on the polynomial
combination of UMVUE functions, we can show that the UMVUE of reliability
function of k out of n systems, Rs(t), is (Pham and Pham 2010):

R̃S(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

1 if t ≤ μ̃

n∑
j=k

(−1) j−k

(
j − 1
k − 1

)(
n
j

)(
1 − j

m

)(
1 − j(t−x(1))

Sm

)m−2
if μ̃ < t ≤ Sm + x(1)

0 if t > Sm + x(1)

(5.48)

Bias-corrected Estimator Approach—Delta Method

We now estimate the reliability R̂
∼

(t) = e− 1
θ̃
(t−μ̃) using a bias-corrected estimator

approach. We obviously can see that E(R̂
∼

(t)) �= e− 1
θ
(t−μ). This implies that R̂

∼

(t)

is a biased estimate. Denote θ = E(X). Using the Delta method (Pham 2010),
the reliability estimation function of k out of n system using the biased-corrected
estimator approach is given by

R̂
∼ S

(t) =
n∑

j=k

(−1) j−k

(
j − 1
k − 1

)(
n
j

) e− j(t−μ̃)

θ̃

1 + j(t−μ̃)
[
j(t−μ̃)−2θ̃

]

2(m−1)θ̃2 − j
[
j(t−μ̃)−θ̃

]

m(m−1)θ̃
+ j2

2m(m−1)

(5.49)

where

μ̃ = m x(1) − x̄

m − 1
; θ̃ = m

(
x̄ − x(1)

)

m − 1
.

5.3.5 Applications

The power usages (in watts) of a computer system using NComputing approach
with quad-core, 8 GB of RAM, and a GeForce 9800GX-2 graphics card, performing
various simple- to-complex computing applications were recorded (after every two-
minutes interval) for computing the value of π including the first 32-million digits.
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From the data set as shown in Pham and Pham (2010, Table 5.1, data set 1), the two-
parameter exponential distribution will be considered. We now obtain the reliability
calculations for a 2 out of 3 computer system based on MLE, UMVUE and bias-
corrected estimation approach.

Reliability Computing – the MLE of μ and θ can be obtained as follows:

μ̂ = x(1) = 286 θ̂ = x̄ − x(1) = 289.6923 − 286 = 3.6923

From Eq. (5.45), the reliability estimation function of a 2 out of 3 system using
the MLE is

R
∧

S(t) =
n∑

j=k

(−1) j−k

(
j − 1
k − 1

)(
n
j

)
e
−
(

j (t−x(1))

x̄−x(1)

)

=
3∑

j=2

(−1) j−2

(
j − 1
1

)(
3
j

)
e
−
(

j (t−286)
7532
26 −286

)

= 3e
−
(

2(t−286)
7532
26 −286

)

− 2e
−
(

3(t−286)
7532
26 −286

)

The reliability estimation function of a 2 out of 3 system using the UMVUE from
Eq. (5.48) is

R̃S (t) =
n∑

j=k

(−1) j−k

(
j − 1

k − 1

)(
n
j

) (
1 − j

m

) (
1 − j

(
t − x(1)

)

Sm

)m−2

=
3∑

j=2

(−1) j−2

(
j − 1

1

)(
3
j

) (
1 − j

26

)

⎛

⎜⎜⎜⎝1 − j
(
t − x(1)

)

26∑

i=2

(
x(i) − x(1)

)

⎞

⎟⎟⎟⎠

26−2

= 3

(
12
13

)
⎛

⎜⎜⎜⎝1 − 2(t − 286)
26∑

i=2

(
x(i) − 286

)

⎞

⎟⎟⎟⎠

26−2

−
(
23

13

)
⎛

⎜⎜⎜⎝1 − 3(t − 286)
26∑

i=2

(
x(i) − 286

)

⎞

⎟⎟⎟⎠

26−2

The reliability estimation function of 2 out of 3 systems using bias-corrected
estimator approach (from Eq. 5.49) is

R̂
∼S

(t) =
3∑

j=2

(−1) j−2

(
j − 1

1

)(
3
j

) e− j(t−μ̃)

θ̃

1 + j(t−μ̃)
[
j(t−μ̃)−2θ̃

]

2(25)θ̃2
− j

[
j(t−μ̃)−θ̃

]

26(25)θ̃
+ j2

2∗26(25)

= 3e− 2(t−μ̃)

θ̃

1 + (t−μ̃)
[
2(t−μ̃)−2θ̃

]

25θ̃2
−

[
2(t−μ̃)−θ̃

]

325θ̃
+ 1

325

− 2e− 3(t−μ̃)

θ̃

1 + 3(t−μ̃)
[
3(t−μ̃)−2θ̃

]

50θ̃2
− 3

[
3(t−μ̃)−θ̃

]

650θ̃
+ 9

1300

where μ̃ = 26 x(1) − x̄

25
; θ̃ = 26

(
x̄ − x(1)

)

25
.

Table 5.2 shows the reliability calculations for various values of t, i.e., energy
consumption value, for given data set #1 based on the MLE, UMVUE and bias-
corrected estimation approach. Given the data set #1, the MLE, UMVUE, and BCE
of the 2 out of 3 system reliability estimation are 0.2661, 0.2713, and 0.2775 when
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Table 5.2 Reliability values
of a 2 out of 3 system for
MLE, UMVUE and
Bias-corrected versus t for
data set #1

t MLE UMVUE Bias

286 1.0000 1.000 0.989

287 0.858 0.845 0.822

288 0.622 0.621 0.609

289 0.416 0.422 0.421

290 0.266 0.271 0.278

291 0.166 0.168 0.176

292 0.101 0.100 0.108

Fig. 5.1 The 2 out of 3
system reliability function
vs. energy consumption t
based on MLE, UMVUE and
biased-corrected estimators
for data set #1 (Pham and
Pham 2010)
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t = 290 wh, respectively. Figure 5.1 shows a 2-out-of-3 system reliability estimation
versus the energy consumption. We observe that the UMVUE of R̃S(t) is larger than
theMLE R

∧

S(t) at the beginning time t, but getting smaller than theMLE R
∧

S(t)when
t is getting larger.

We observe that the actual values of system reliability based on the UMVUE and
BCE only differ slightly. In many cases, to obtain the UMVUE of complex system
reliability for distributions other than exponential is a lot more difficult. In general,
the BCE results such as the bias-corrected estimate (Eq. 5.49) are rather simple and
can be used to obtain the reliability estimation function of any complex system.

5.4 Systemability Measures

The traditional reliability definitions and its calculations have commonly been carried
out through the failure rate function within a controlled laboratory-test environment.
In other words, such reliability functions are applied to the failure testing data and
then utilized to make predictions on the reliability of the system used in the field



324 5 System Reliability Estimation

(Pham 2005). The underlying assumption for such calculation is that the field (or
operating) environments and the testing environments are the same.

By defintion, a mathematical reliability function is the probability that a system
will be successful in the interval from time 0 to time t, given by

R(t) =
∞∫

t

f (s)ds = e
−

t∫

0
h(s)ds

(5.50)

where f (s) and h(s) are, respectively, the failure time density and failure rate function.
The operating environments are, however, often unknown and yet different due

to the uncertainties of environments in the field (Pham and Xie 2003). A new
look at how reliability researchers can take account of the randomness of the field
environments into mathematical reliability modeling covering system failure in the
field is great interest. Pham (2005) introduced a new mathematical function called
systemability, considering the uncertainty of the operational environments in the
function for predicting the reliability of systems.

Notation

hi (t) ith component hazard rate function
Ri (t) ith component reliability function
λi Intensity parameter of Weibull distribution for ith component
λ− λ− = (λ1, λ2, λ3 . . . , λn)

γi Shape parameter of Weibull distribution for ith component
γ
−

γ = (γ1, γ2, γ3 . . . , γn)

η A common environment factor
G(η) Cumulative distribution function of η

α Shape parameter of Gamma distribution
β Scale parameter of Gamma distribution

Definition 5.1 (Pham 2005) Systemability is defined as the probability that the
system will perform its intended function for a specified mission time under the
random operating environments.

In a mathematical form, the systemabililty function is given by

Rs(t) =
∫

η

e
−η

t∫

0
h(s)ds

dG(η) (5.51)

where η is a random variable that represents the system operating environments with
a distribution function G.

This new function captures the uncertainty of complex operating environments
of systems in terms of the system failure rate. It also would reflect the reliability
estimation of the system in the field.
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If we assume that η has a gamma distribution with parameters α and β, i.e.,
η ∼ gamma(α, β) where the pdf of η is given by

fη(x) = βαxα−1e−βx

�(α)
for α, β > 0; x ≥ 0 (5.52)

then the systemability function of the system in Eq. (2.30), using the Laplace
transform (see Appendix B), is given by

Rs(t) =

⎡

⎢⎢⎢⎣
β

β +
t∫

0
h(s)ds

⎤

⎥⎥⎥⎦

α

(5.53)

5.4.1 Systemability Calculations

This subsection presents several systemability results and variances of some system
configurations such as series, parallel, and k-out-of-n systems (Pham2005). Consider
the following assumptions:

1. A system consists of n independent components where the system is subject to
a random operational environment η.

2. ith component lifetime is assumed to follow the Weibull density function, i.e.
Component hazard rate

hi (t) = λiγi t
γi−1 (5.54)

Component reliability

Ri (t) = e−λi tγi t > 0 (5.55)

Given common environment factor η ∼ gamma(α, β), the systemability
functions for different system structures can be obtained as follows.

Series System Configuration

In a series system, all components must operate successfully if the system is to
function. The conditional reliability function of series systems subject to an actual
operational random environment η is given by

RSeries( t |η, λ, γ ) = e

(
−η

n∑
i=1

λi tγi
)

(5.56)
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The series systemability is given as follows

RSeries( t |λ, γ ) =
∫

η

exp

(
−η

n∑

i=1

λi t
γi

)
dG(η) =

⎡

⎢⎢⎣
β

β +
n∑

i=1
λi tγi

⎤

⎥⎥⎦

α

(5.57)

The variance of a general function R(t) is given by

Var [R(t)] = E
[
R2(t)

] − (E[R(t)])2 (5.58)

Given η ∼ gamma(α, β), the variance of systemability for any system structure
can be easily obtained. Therefore, the variance of series systemability is given by

Var

[
RSeries( t |λ−, γ

−
)

]
=
∫

η

exp

(
−η

(
2

n∑

i=1

λi t
γi

))
dG(η)

−
(∫

η

exp

(
−η

n∑

i=1

λi t
γi

)
dG(η)

)2

(5.59)

or

Var

[
RSeries( t |λ−, γ

−
)

]
=

⎡

⎢⎢⎣
β

β + 2
n∑

i=1
λi tγi

⎤

⎥⎥⎦

α

−

⎡

⎢⎢⎣
β

β +
n∑

i=1
λi tγi

⎤

⎥⎥⎦

2α

(5.60)

Parallel System Configuration

A parallel system is a system that is not considered to have failed unless all compo-
nents have failed. The conditional reliability function of parallel systems subject to
the uncertainty operational environment η is given by Pham (2005)

RParallel( t |η, λ−, γ
−
) = exp(−ηλi t

γi ) −
n∑

i1,i2=1
i1 �=i2

exp
(−η

(
λi1 t

γi1 + λi2 t
γi2
))

+
n∑

i1,i2,i2=1
i1 �=i2 �=i3

exp
(−η

(
λi1 t

γi1 + λi2 t
γi2 + λi3 t

γi3
))−

. . . . . .

+ (−1)n−1 exp

(
−η

n∑

i=1

λi t
γi

)
(5.61)
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Hence, the parallel systemability is given by

Rparallel( t |λ, γ ) =
n∑

i=1

[
β

β + λi tγi

]α

−
n∑

i1,i2=1
i1 �=i2

[
β

β + λi1 t
γi1 + λi2 t

γi2

]α

+
n∑

i1,i2,i2=1
i1 �=i2 �=i3

[
β

β + λi1 t
γi1 + λi2 t

γi2 + λi3 tγi3

]α

−

. . .

+ (−1)n−1

⎡

⎢⎢⎣
β

β +
n∑

i=1
λi tγi

⎤

⎥⎥⎦

α

(5.62)

or

Rparallel( t |λ, γ ) =
n∑

k=1

(−1)k−1
n∑

i1,i2...,ik=1
i1 �=i2...�=ik

⎡

⎢⎣
β

β + ∑
j=i1,...ik

λ j tγ j

⎤

⎥⎦

α

(5.63)

To simplify the calculation of a general n-component parallel system, we only
consider here a parallel system consisting of two components. It is easy to see that
the second-order moments of the systemability function can be written as

E

[
R 2

Parallel( t |λ−, γ−)

]
=
∫

η
(e−2η λ1 t

γ1 + e−2η λ2 t
γ2 + e−2η(λ1 t

γ1+λ2 t
γ2 )

+ e−η(λ1 t
γ1+λ2 t

γ2 ) − e−η(2λ1 t
γ1+λ2 t

γ2 ) − e−η(λ1 t
γ1+2λ2 t

γ2 )) d G(η)

The variance of series systemability of a two-component parallel system is given
by

Var
[
RParallel ( t |λ, γ )

]
=
[

β

β + 2λ1tγ1

]α

+
[

β

β + 2λ2tγ2

]α

+
[

β

β + 2λ1tγ1 + 2λ2tγ2

]α

+
[

β

β + λ1tγ1 + λ2tγ2

]α

−
[

β

β + 2λ1tγ1 + λ2tγ2

]α

−
[

β

β + λ1tγ1 + 2λ2tγ2

]α

−
[[

β

β + λ1tγ1

]α

+
[

β

β + λ2tγ2

]α

−
[

β

β + λ1tγ1 + λ2tγ2

]α]2

(5.64)



328 5 System Reliability Estimation

K-out-of-n System Configuration

In a k-out-of-n configuration, the systemwill operate if at least k out of n components
are operating. To simplify the complexity of the systemability function, we assume
that all the components in the k-out-of-n systems are identical. Therefore, for a given
common environment η, the conditional reliability function of a component is given
by

R( t |η, λ, γ ) = e−ηλtγ (5.65)

The conditional reliability function of k-out-of-n systems subject to the uncer-
tainty operational environment η can be obtained as follows:

Rk−out−of −n( t |η, λ, γ ) =
n∑

j=k

(
n
j

)
e−η jλtγ (1 − e−ηλtγ )(n− j) (5.66)

Note that

(1 − e−ηλtγ )(n− j) =
n− j∑

l=0

(
n − j
l

)
(−e−ηλtγ )l

The conditional reliability function of k-out-of-n systems, from Eq. (5.66), can
be rewritten as

RK−out−of −N ( t |η, λ, γ ) =
n∑

j=k

(
n
j

) n− j∑

l=0

(
n − j
l

)
(−1)l e−η( j+l)λtγ

Then if η ∼ gamma(α, β) then the k-out-of-n systemability is given by

R(T11 ,...,Tn )( t |λ, γ ) =
n∑

j=k

(
n
j

) n− j∑

l=0

(
n − j
l

)
(−1)l

[
β

β + λ( j + l)tγ

]α

It can be easily shown that

R2
k−out−of −n( t |η, λ, γ ) =

n∑

i=k

(
n
i

) n∑

j=k

(
n
j

)
e−η(i+ j)λtγ (1 − e−ηλtγ )(2n−i− j)

(5.67)

Since

(1 − e−ηλtγ )(2n−i− j) =
2n−i− j∑

l=0

(
2n − i − j

l

)
(−e−ηλtγ )l
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we can rewrite Eq. (5.67), after several simplifications, as follows

R2
k−out−of −n( t |η, λ, γ ) =

n∑

i=k

(
n

i

) n∑

j=k

(
n

j

)
(−1)l

2n−i− j∑

l=0

(
2n − i − j

l

)
e−η(i+ j+l)λtγ (5.68)

Therefore, the variance of k-out-of-n system systemability function is given by

Var(Rk/n( t |λ, γ ) =
∫

η

R2
k/n(t |η, λ, γ )dG(η)−

[∫

η

Rk/n(t |η, λ, γ )dG(η)

]2

=
n∑

i=k

(
n

i

)
n∑

j=k

(
n

j

) 2n−i− j∑

l=0

(
2n − i − j

l

)
(−1)l

(
β

β + (i + j + l)λtγ

)2

−
⎛

⎝
n∑

j=k

(
n

j

) n− j∑

l=0

(
n − j

l

)
(−1)l

(
β

β + ( j + l)λtγ

)2
⎞

⎠
2

(5.69)

Example 5.3 Consider a k-out-of-n system where λ = 0.0001, γ = 1.5, n = 5,
and η ∼ gamma(α, β). Calculate the systemability of various k-out-of-n system
configurations.

Solution: The systemability of generalized k-out-of-5 system configurations is
given as follows:

Rk−out−of −n( t |λ, γ ) =
5∑

j=k

(
5
j

) 5− j∑

l=0

(
5 − j
l

)
(−1)l

[
β

β + λ( j + l)tγ

]α

(5.70)

Figure 5.2 shows the reliability function (conventional reliability function) and
systemability function (Eq. 5.70) of a series system (here k = 5) for α = 2, β = 3.
Figure 5.3 shows the reliability and systemability functions of a parallel system (here
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Fig. 5.2 Comparisons of series system reliability versus systemability functions for α = 2 and β

= 3 (Pham 2005)
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Fig. 5.3 Comparisons of parallel system reliability versus systemability function for α = 2 and β

= 3 (Pham 2005)
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Fig. 5.4 Comparisons of k-out-of-n system reliability versus systemability functions for α = 2 and
β = 3 (Pham 2005)

k = 1) for α = 2, β = 3. Similarly, Fig. 5.4 shows the reliability and systemability
functions of a 3-out-of-5 system for α = 2, β = 3.

5.4.2 Software Reliability Modeling Subject to Random
Operating Environments

Many existing software reliability models (Li and Pham 2017a, 2017b, 2019;
Pham 1996, 2003, 2006a, 2014, 2014a, 2019a; Pham et al. 2014b, Zhu and Pham
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2019a, b; Sharma et al. 2019; Song et al. 2018, 2019a, b) have been studied in the past
three decades and carried out through the fault intensity rate function and the mean
value functions within a controlled testing environment. These models can be used
to estimate reliability measures such as the number of remaining errors, failure inten-
sity, and reliability of software. In general most of existing models are applied to the
software failure data assuming that the operating environments and the developing
environments are about the same. This is often not the case because the operating
environments are usually unknown due to the uncertainty of environments in the
real world applications (Sgarbossa et al. 2015; Zhu and Pham 2020). In this section,
we discuss a software reliability model addressing the uncertainty of the operating
environments based on nonhomogeneous Poisson process (NHPP) models. Several
model selection criteria are also discussed.

Let η be a random variable that represents the uncertainty of software error
detection rate in the operating environments with the probability density function
g.

Notation

m(t) expected number of software failures detected by time t
N e expected number of faults that exist in the software before testing
b(t) time dependent fault detection rate per fault per unit of time

A generalized mean value function m(t) with the uncertainty of operating envi-
ronments can be formulated in the form of the following differential equation (Pham
2014):

dm(t)

dt
= ηb(t)[N − m(t)] (5.71)

The solution for the mean value function m(t) of Eq. (5.71), where the initial
condition m(0) = 0, is given by (Pham 2014):

m(t) =
∫

η

N

⎛

⎝1 − e
−η

t∫

0
b(x)dx

⎞

⎠ dg(η) (5.72)

Assuming that the random variable η has a probability density function g with
two parameters α ≥ 0 and β ≥ 0 so that the mean value function from Eq. (5.72)
can be obtained as the general form below:

m(t) = N

⎛

⎜⎜⎜⎝1 − β

β +
t∫

0
b(s)ds

⎞

⎟⎟⎟⎠

α

(5.73)
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Consider the fault detection rate function per fault per unit of time, b(t), is as
follows:

b(t) = c

1 + ae−bt
for a ≥ 0, b ≥ 0, c > 0.

Substitute the function b(t) above into Eq. (5.73), we can obtain the expected
number of software failures detected by time t subject to the uncertainty of the
environments, m(t):

m(t) = N

⎛

⎝1 − β

β + (
c
b

)
ln
(
a+ebt
1+a

)

⎞

⎠
α

Table 5.3 presents some existing models in the software reliability engineering
literature.

Example 5.4 Consider a system test data as given in Table 5.4, referred to as Phase
2 data set (Pham 2006). In this data set the number of faults detected in each week
of testing is found and the cumulative number of faults since the start of testing is
recorded for each week up to 21 weeks.

Table 5.3 A summary of existing software reliability models (Pham 2018)

Model m(t)

Goel-Okumoto
(G-O)

m(t) = a(1 − e−bt )

Delayed S-shaped m(t) = a(1 − (1 + bt)e−bt )

Inflection S-shaped m(t) = a(1−e−bt )

1+β e−bt

Yamada Imperfect debugging l m(t) = a[1 − e−bt ][1 − α
b ] + α a t

Pham Inflexion
m(t) = N

⎛

⎝1 − 1
(

β+ebt
1+β

) a
b

⎞

⎠

PNZ model m(t) = a
1+β e−bt

([1 − e−bt ][1 − α
b ] + αt

)

Pham-Zhang model m(t) =
1

1+βe−bt

(
(c + a)(1 − e−bt ) − ab

b−α
(e−αt − e−bt )

)

Dependent-parameter model m(t) = α(1 + γ t)(γ t + e−γ t − 1)

Vtub-shaped fault-detection rate model
m(t) = N

(
1 −

(
β

β+atb−1

)α)

Logistic fault detection model
m(t) = N

(
1 − β

β+( c
b ) ln

(
a+ebt
1+a

)

)α
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Table 5.4 Phase 2 system test data (Pham 2006)

Week index Exposure time (cum. system test hours) Fault Cum. fault

1 416 3 3

2 832 1 4

3 1248 0 4

4 1664 3 7

5 2080 2 9

6 2496 0 9

7 2912 1 10

8 3328 3 13

9 3744 4 17

10 4160 2 19

11 4576 4 23

12 4992 2 25

13 5408 5 30

14 5824 2 32

15 6240 4 36

16 6656 1 37

17 7072 2 39

18 7488 0 39

19 7904 0 39

20 8320 3 42

21 8736 1 43

Table 5.5 summarizes the results of the model parameter estimates using the least
square estimation (LSE) technique of all the 10 models from Table 5.3 based on
the data set as shown in Table 5.4 and three model selection criteria such as mean
squared error (MSE), predictive-ratio risk (PRR) and predictive power (PP). The
logistic fault detection model (model 10) in Table 5.5 seems to provides the best fit
based on those criteria (MSE, PRR, PP).

5.5 Life Testing Cost Model

Some highly reliable electronic products require long testing periods before useful
failure data can be obtained. This is an unrealistic situation in practice since manu-
facturers often need to deliver their products to the market as soon as possible. It
is desirable to find ways of speeding up testing. Accelerated testing can be accom-
plished by reducing the time required for testing by placingmany units on the test and
terminating the test after a pre-assigned number of failures occur. The appropriate
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Table 5.5 Model parameter estimation and model criteria

Model name LSEs MSE PRR PP

1. G -O Model â = 98295

b̂ = 5.2 10−8

6.61 0.69 1.10

2. Delayed S-shaped â = 62.3

b̂ = 2.85 10−4

3.27 44.27 1.43

3. Inflection S-shaped â = 46.6

b̂ = 5.78 10−4

β̂ = 12.20

1.87 5.94 0.90

4. Yamada imperfect debugging model â = 1.5

b̂ = 1.1 10−3

α̂ = 3.8 10−3

4.98 4.30 0.81

5. Pham Inflexion N = 45.8270

a = 0.2961

b = 0.2170

β = 13.6298

1.5108 3.1388 0.6800

6. PNZ model â = 45.99

b̂ = 6.0 10 -4

α̂ = 0

β̂ = 13.24

1.99 6.83 0.96

7. Pham-Zhang model â = 0.06

b̂ = 6.0 10−4

α̂ = 1.0 10−4

β̂ = 13.2

ĉ = 45.9

2.12 6.79 0.95

8. Dependent parameter model α̂ = 3.0 10 -6

γ̂ = 0.49

43.69 601.34 4.53

9. Vtub-shaped fault-detection rate model
(Pham Vtub model)

N
∧

= 43.25

â = 2.662

b̂ = 0.196

α̂ = 4.040

β̂ = 35.090

1.80 2.06 0.77

(continued)
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Table 5.5 (continued)

Model name LSEs MSE PRR PP

10. Logistic fault detection model N
∧

= 50.56

â = 10000

b̂ = 0.7364

ĉ = 0.2038

α̂ = 0.2554

β̂ = 1.778

0.9033 0.1163 0.1356

choice of the pre-assigned number of failures depends on economic considerations
and involves balancing the cost of increasing the waiting time with the gains due to
decreasing the risk of making an error in the products (Pham 1992b). The advantage
of this strategy is that testing decisions can be reached in less time than if we wait
for all items on test to fail. More specifically, to increase the testing information and
decrease the risk, we can increase the sample size used to reach a decision timely
and reduce the expected waiting time of the test. Obviously, it will increase the cost
due to placing more sample on test. This section we discuss a cost model that can be
used to determine the optimum sample size on test such that the expected total cost
in the non-replacement procedure is minimized.

Assume that:

(i) n units are drawn at random from the exponential probability density function
as follows:

f (x) = 1

μ
e− x

μ for x > 0, μ > 0

(ii) The observations become available in order so that x1,n ≤ x2,n ≤ . . . ≤ xr,n ≤
. . . ≤ xn,n

where xi,n is meant the ith smallest observation in a sample of n ordered
observations.

(iii) The experiment is terminated as soon as the rth failure occurs (r ≤ n).

Let

n be the number of units to be put on test in the non-replacement procedure
c1 be the cost of waiting per unit time until the test is completed
c2 be the cost of placing a unit on test.
c3 be the one-time set-up cost for the experiment
c4 be the cost due to the uncertainty of the test results based on the variance

measure
X r,n be a random variable that represents the waiting time to get the rth failure

in a sample of size n
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E(X r,n) be the expected waiting time to observe first r failures from a sample size
of n

Then the expected waiting time for the rth failure, E(X r,n), is

E
(
Xr,n

) = μ

r∑

i=1

1
(n−i+1) (5.74)

The variance of the random variable of Xi,n can be written as

V
(
Xr,n

) = μ2
r∑

i=1

1
(n−i+1)2

We can define the expected total cost function, C(n), as follows:

C(n) = c1E
(
Xr,n

) + c2n + c3 + c4V
(
Xr,n

)
(5.75)

In other words, the expected total cost is the expected cost of waiting time plus the
cost of all number of units placed on test, plus the set-up cost, and the cost due to the
uncertainty of the test results based on the variance measure. Clearly. the increasing
number of units on test N will on the one hand reduce the expected waiting time
and the variance of the test results, but will, on the other hand, increase the cost due
to placing more units on test. Therefore, we now wish to determine the optimum
number of units to place on test.

For given values of c1, c2, c3, c4, μ and r, we now show that there exists a unique
value n* that minimizes the expected total cost function C(n).

Theorem 5.3 For given values of c1, c2, c3, c4, μ and r, there exists a unique value
n* that minimizes the expected total cost function C(n) and

n∗ = inf

{
n ≥ r : f (n) <

c2
μr

}
(5.76)

where

f (n) =
(

1

(n + 1)(n − r + 1)

)(
c1 + c4μ

(
2n − r + 2

(n + 1)(n − r + 1)

))
(5.77)

If there exists a value n0 such that

f(n0) = c2
μ r

, that is, C(n0) = C(n0 + 1) − C(n0) = 0,

then both n0 and (n0 +1) minimize the expected total cost function C(n).
Proof: Define C(n) = C(n + 1) − C(n). We obtain
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C(n) = c1E
(
Xr,n

)
+ c2n + c3 + c4 V

(
Xr,n

)

= c1μ
r∑

i=1

1
(n−i+1) + c2n + c3 + c4 μ2

r∑

i=1

1
(n−i+1)2

and

C(n + 1) = c1E
(
Xr,n+1

)
+ c2(n + 1) + c3 + c4 V

(
Xr,n+1

)

= c1μ
r∑

i=1

1
(n−i+2) + c2(n + 1) + c3 + c4 μ2

r∑

i=1

1
(n−i+2)2

Then

C(n) = C(n + 1) − C(n)

=
[
c1μ

r∑

i=1

1
(n−i+2) + c2(n + 1) + c3 + c4 μ2

r∑

i=1

1
(n−i+2)2

]

−
[
c1μ

r∑

i=1

1
(n−i+1) + c2(n) + c3 + c4μ

2
r∑

i=1

1
(n−i+1)2

]

After simplifications, we obtain

C(n) = C(n + 1) − C(n)

= c1μ

[
1

n + 1
− 1

n − r + 1

]
+ c2 + c4 μ2

[
1

(n + 1)2
− 1

(n − r + 1)2

]

= c2 − μ r f (n)

where f(n) is given in Eq. (5.77). One has

C(n) ≤ 0 if and only if f(n) ≥ c2
μ r

It can be easily shown that the function f(n) is decreasing in n, then there exists a
value n such that

f(n) <
c2
μ r

.

Let n* denote the smallest value such n. Thus,

n∗ = inf

{
n ≥ r : f (n) <

c2
μ r

}
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Note that if there exists a value n0 such that

f(n0) = c2
μ r

, that is, C(n0) = C(n0 + 1) − C(n0) = 0,

then both n0 and (n0 +1) minimize the expected total cost function C(n).

Example 5.5 Given: c1 = $25/hour, c2 = $500 per unit, c3 = 100, c4 = 15,μ = 1500
and r = 10. Using the Theorem 1, obtain the optimal value n that minimizes the
expected total cost function, C(n) where C(n) is given in Eq. (5.74). We calculate the
optimal value of n, say n*, and C(n*). From Eq. (5.77), we have

f (n) =
(

1

(n + 1)(n − 10 + 1)

)(
25 + (15)(1500)

(
2n − 10 + 2

(n + 1)(n − 10 + 1)

))

=
(

1

(n + 1)(n − 9)

)(
25 + (22500)

(
2n − 8

(n + 1)(n − 9)

))

and

c2
μ r

= 500

(1500)(10)
= 0.03333

The number of units on test n, a function f (n) and the expected total cost C(n) are
listed in Table below. Since

f (117) = 0.033272 <
c2
μ r

therefore, the optimal value of n is n* = 117 and the corresponding expected total
cost is 88654.42.That is, C(n* = 117) = $ 88,654.42

N f(n) C(n)

115 0.035071

116 0.0341551 88,666.75

117 0.033272 88,654.42

118 0.032418 88,655.35

119 0.031594 88,669.08

120 0.030798 88,695.16
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5.6 Stress-Strength Interval-System Reliability

The interval-system is defined as a system with a series of chance events that occur
in a given interval of time (Pham 2020b). A k-out-of-n interval-system is a system
with a series of n events in a given interval of time which successes (or functions)
if and only if at least k of the events succeed (function). This section discusses
the reliability estimates of k-out-of-n interval-system based on stress-strength events
whereX (stress) andY (strength) are independent two-parameter exponential random
variables using the UMVUE and MLE methods. A numerical application in human
heart conditions is discussed to illustrate the model results.

Let X be the random variable that represents the stress placed on the system by
the operating environment and Y represents the strength of the system. A system is
able to perform its intended function if its strength is greater than the stress imposed
upon it. Reliability of the system is defined as the probability that the system is strong
enough to overcome the stress, that is R = P(Y > X),where X and Y are independent
random variables with the following two-parameter exponential pdf

fX (x) = 1

σx
e− (x−μx )

σx for x > μx ≥ 0, σx >0 (5.78)

and

fY (y) = 1

σy
e− (y−μy)

σy for y > μy ≥ 0, σy >0 (5.79)

respectively.

5.6.1 UMVUE and MLE of Reliability Function

We assume that σ x and σ y are known. We plan to report the modeling results when
both σ x and σ y are unknown in a near future The stress–strength reliability can be
obtained as follows.
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Reliability Function

When μy ≥ μx: The stress-strength R is given by

P(Y > X) = PX PY |X
(
Y > X |μx < X < μy

) + PX PY |X
(
Y > X |X > μy

)

= 1

σx

μy∫

μx

e
−
(

x−μx
σx

)

dx + 1

σy

∞∫

μy

e
−
(

x−μy
σy

)

e
−
(

x−μx
σx

)

dx

= 1 − σxe
(

μx−μy
σx

)

σx + σy
. (5.80)

When μy ≤ μx: The stress-strength R is given by

P(Y > X) = EX PY |X (Y > X |X)

= 1

σx

∞∫

μy

e
−
(

x−μy
σy

)

e
−
(

x−μx
σx

)

dx

= σy e
(

μy−μx
σy

)

σx + σy
. (5.81)

From Eqs. (5.80) and (5.81), the stress-strength reliability function R can be
written as,

R = P(Y > X) =

⎧
⎪⎨

⎪⎩

1 − σx e

(
μx−μy

σx

)

σx+σy
for μy ≥ μx

σy e

(
μy−μx

σy

)

σx+σy
for μy ≤ μx

(5.82)

Assume independent random samplesX1,X2,…,Xm andY1,Y2,…,Ya are drawn
from the stress pdf fX(x) and strength pdf f Y(y) given in Eq. (5.78) and Eq. (5.79),
respectively. Let X(1), X(2), …, X(m) and Y(1), Y(2), …, Y(a) be the corresponding
ordered statistics. It can be shown that X (1) and Y (1) are complete sufficient statistic
for μx and μy, respectively, when σ x and σ y are known.
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UMVUE of Rk

We now wish to obtain the statistical function T k, the UMVUE of Rk = (P(Y > X))k

where σ x and σ y are known. From Eq. (5.82), we have
When μy ≥ μx

Rk ≡ (P(Y > X))k =
(
1 − σx

σx + σy
e
−
(

μy−μx
σx

))k

=
k∑

i=0

(−1)i
(
k
i

)(
σx

σx + σy

)− (μy−μx )i
σx

.

When μy ≤ μx

Rk ≡ (P(Y > X))k =
(

σy

σx + σy
e
(

μy−μx
σy

))k

= σ k
y

(
σx + σy

)k e
(μy−μx )k

σy .

Thus, Rk can be written as

Rk =

⎧
⎪⎪⎨

⎪⎪⎩

k∑
i=0

(−1)i
(
k
i

)(
σx

σx+σy

)i
e− (μy−μx )i

σx for μy ≥ μx

σ k
y

(σx+σy)
k e

(μy−μx )k
σy for μy ≤ μx

(5.83)

Let W = Y (1)–X (1). An unbiased estimator of Rk is given by

Zk =
{
1 if Xi ≥ Yi
0 otherwise

for i = 1, 2, . . . , k

where k < min{m,a}.
In general, the method of finding the UMVUE is to search for any unbiased

statistic T (X1, X2,…,Xk) and a complete sufficient statistic θ̂ if one exists. Then the
UMVUE is given by

E
[
T (X1, X2, . . . , Xk)|θ̂

]
.

From Lehmann-Scheffe theorem (Lehmann and Casella (1988), the UMVUE of
Rk is

E
(
Zk |X(1), Y(1)

) = P
(
X1 < Y1, X2 < Y2, . . . , Xk < Yk |X(1), Y(1)

)
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= P
(
X1 − X(1) < Y1 − Y(1) + W, X2 − X(1) < Y2 − Y(1) + W, Xk − X(1) < Yk − Y(1) + W < Yk |W

)

which will be a function of W, σ x and σ y since the distribution of X i–X (1) and
Y i–Y (1) for i = 1,2, …, k do not involve μx and μy, respectively. Therefore, based on
Lehmann-Scheffe theorem, an unbiased estimator of Rk based onW is the UMVUE
of Rk. Note that, the pdf of W where W = Y (1) - X (1) is given by

fW (w) =
⎧
⎨

⎩

ma
(aσx+mσy)

e− (μy−μx−w)
σx for w <

(
μy − μx

)

ma
(aσx+mσy)

e− a(w−(μy−μx ))
σv for w ≥ (

μy − μx
)

Theorem 5.4 Pham (2020b): The statistic T k is the UMVUE of Rk where σ x and
σ y are known, k < min{m, a}, and.

Tk =

⎧
⎪⎪⎨

⎪⎪⎩

(a−k)(kσx+mσy)σ k−1
y

ma(σx+σy)
k e

(Y(1)−X(1))k
σy I

(
Y(1) < X(1)

)

+
k∑

i=0
(−1)i

(
k
i

)
(m−i)(aσx+iσy)σ i−1

x

ma(σx+σy)
i e− i(Y(1)−X(1))

σx I
(
Y(1) ≥ X(1)

) (5.84)

The Proof of Theorem 4 (see Problem 1).

MLE of Rk

It can be shown that the MLE of μx and μy where σ x and σ y are known from the
pdf f X(x) and f Y (y), respectively, are

μ̂x = X(1) and μ̂y = Y(1) (5.85)

From Eq. (5.82), we have

R j (t) = σ
j
y

(
σx + σy

) j e
(μy−μx ) j

σy I
(
μy ≤ μx

) +
j∑

i=0

(−1)i
(

j
i

)(
σx

σx + σy

)i

e− (μy−μx )i
σx I

(
μy ≥ μx

)
.

(5.86)

Thus, the MLE of Rj is

R
∧ j

(t) = σ
j
y

(
σx + σy

) j e
(Y(1)−X(1)) j

σy I
(
Y(1) ≤ X(1)

)

+
j∑

i=0

(−1)i
(
j
i

)(
σx

σx + σy

)i

e− (Y11)−X(1))i
σx I

(
Y(1) ≥ X(1)

)
. (5.87)
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5.6.2 Interval-System Reliability Estimation

This section we discuss the UMVUE and MLE of k-out-of-n interval-system relia-
bility based on stress-strength events where X (stress) and Y (strength) are indepen-
dent two-parameter exponential random variables. A system is able to perform its
intended function if its strength is greater than the stress imposed upon it. Reliability
of the system,R=P(Y >X), is the probability that the strengths of the unit are greater
than the stresses.

The k-out-of-n interval-system is a system with a series of n events in a given
interval of time which successes (or functions) if and only if at least k out of n
independent events success (function).

The reliability of the k-out-of-n interval-system is the probability that at least k
out of n events in a given interval of time success, and is given by

Rs(t) =
n∑

i=k

(
n
i

)
(R(t))i (1 − R(t))n−i . (5.88)

The reliability function of the k-out-of-n interval-system (as from Eq. 5.88) can
be rewritten as (Pham (2010) and Pham and Pham (2010)):

RS(t) =
n∑

j=k

(−1) j−k

(
j − 1
k − 1

)(
n
j

)
R j (t) (5.89)

where R(t) = P(Y > X).

UMVUE of Rs(t)

Let

R̃S(t) =
n∑

j=k

(−1) j−k

(
j − 1
k − 1

)(
n
j

)
R̃ j (t) (5.90)

where (from Eq. (5.84))

R̃ j (t) =

⎧
⎪⎪⎨

⎪⎪⎩

(a− j)( jσx+mσy)σ
j−1
y

ma(σx+σy)
k e

(Y(1)−X(1)) j

σy I
(
Y(1) < X(1)

)

+
j∑

i=0
(−1)i

(
j
i

)
(m−i)(aσx+iσy)σ i−1

x

ma(σx+σy)
i e− i(Y(1)−X(1))

σx I
(
Y(1) ≥ X(1)

)
.

(5.91)

Theorem 5.5 The statistic R̃S(t) is the UMVUE of system reliability RS(t) where
σ x and σ y are known and k < min{m,a}.
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Proof:

Based on the polynomial combination of UMVUE functions, we can show that the
UMVUE of reliability function of k out of n interval-system, Rs(t), is

R̃S(t) =
n∑

i=k

(−1) j−k

(
j − 1
k − 1

)(
n
j

)
R̃ j (t)

where R̃ j (t) is given in Eq. (5.84).

MLE of Rs(t)

Hence, the MLE of the system reliability RS(t), where σ x and σ y are known, is given
by

R
∧

S(t) =
n∑

j=k

(−1) j−k

(
j − 1
k − 1

)(
n
j

)
R
∧ j

(t) (5.92)

where (also from Eq. (5.87))

R
∧ j

(t) = σ
j
y

(
σx + σy

) j e
(Y(1)−X(1)) j

σy I
(
Y(1) < X(1)

) +
j∑

i=0

(−1)i
(

j

i

)(
σx

σx + σy

)i

e− (Y(1)−X(1))i
σx I

(
Y(1) ≥ X(1)

)
.

5.6.3 Applications

One in every four deaths in the United States occurs as a result of heart disease (CDC
NCHS 2015). Monitoring your heart rate can help prevent heart complications. The
heart rate is one of the important indicators of health in the human body. It measures
the number of times the heart beats per minute. Stress tests are carried out to measure
the heart’s ability to respond to external/emotion stress in a controlled environment.
The stresses induced by exercise on a treadmill monitoring the average heart rate in
12 15-s periods were found as follows (Pham 2020b):

15.1, 12.3, 19.8, 13.0, 12.5, 13.3, 18.6, 17.2, 18.7, 22.4, 14.6, and 15.1 (per 15 - second period)..

The values of normal heart rate of an individual on tests found by monitoring 15
15-s periods (multiply by four to obtain BPM) were:

19.2, 24.2, 21.1, 16.7, 17.6, 14.3, 22.4, 20.8, 14.6, 17.7, 22.7, 15.9, 19.2, 15.3, and 25.2 (per 15 - second period)
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Given m = 12, a = 15, k = 2, n = 3, σ x = 3.5, and σ y = 3.7. Here X (1) = 12.3,
Y (1) = 14.3. We now calculate the reliability of 2-out-of-3 interval-system in a given
interval of 45 s.

Calculate UMVUE

Since Y (1) = 14.30 > X (1) = 12.30, from Eq. (5.91),

R̃ j (t) =
j∑

i=0

(−1)i
(
j
i

)
(m − i)

(
aσx + iσy

)
σ i−1
x

ma
(
σx + σy

)i e− i(Y11)−X(1))
σx

=
j∑

i=0

(−1)i
(
j
i

)
(12 − i)(15(3.5) + i(3.7))(3.5)i−1

12(15)(3.5 + 3.7)i
e− i(14.3−12.3)

3.5

=
j∑

i=0

(−1)i
(
j
i

)
(12 − i)(52.5 + 3.7i)(3.5)i−1

180(7.2)i
e−0.5714i

So, we obtain

R̃ j (t) =
{
0.5328917 for j = 2
0.3880224 for j = 3

Thus, the reliability of 2-out-of-3 interval-system in a given interval of 45 s is

R̃S(t) =
3∑

j=2

(−1) j−2

(
j − 1
2 − 1

)(
3
j

)
R̃ j (t)

= 3R̃2(t) − 2R̃3(t)

= 3(0.5328917) − 2(0.3880224)

= 0.8226303

Calculate MLE

From Eq. (5.92), the MLE of 2-out-of-3 interval-system reliability RS(t) is given by

R
∧

S(t) =
3∑

j=2

(−1) j−2

(
j − 1
2 − 1

)(
3
j

)
R
∧ j

(t) = 3R
∧2

(t) − 2R
∧3

(t)

Since Y (1) = 14.30 > X (1) = 12.30 and from Eq. (5.87), we obtain

R
∧ j

(t) =
j∑

i=0

(−1)i
(
j
i

)(
3.5

3.5 + 3.7

)i

e− (14.3−12.3)i
3.5
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=
j∑

i=0

(−1)i
(
j
i

)
(0.486111)i e−0.5714286i .

then

R
∧ j

(t) =
{
0.5263275 for j = 2
0.3818423 for j = 3

Hence,

R
∧

S(t) = 3R
∧2

(t) − 2R
∧3

(t)

= 3(0.5263275) − 2(0.3818423)

= 0.8152979

Thus, the UMVUE and MLE reliability of 2-out-of-3 interval system RS(t) are
0.8226303 and 0.8152979, respectively. From the data on the stress and strength
tests measuring the heart rate conditions, the reliability estimates of stress-strength
2-out-of-3 interval-system based on the UMVUE and MLE are R̃S(t) = 0.8226303
and R

∧

S(t) = 0.8152979, respectively.

5.7 Problems

(Theorem 1) Show that the statistic T k is the UMVUE of Rk where σ x and σ y are
known, k < min{m, a}, and

Tk =

⎧
⎪⎪⎨

⎪⎪⎩

(a−k)(kσx+mσy)σ k−1
y

ma(σx+σy)
k e

(Y(1)−X(1))k
σy I

(
Y(1) < X(1)

)

+
k∑

i=0
(−1)i

(
k
i

)
(m−i)(aσx+iσy)σ i−1

x

ma(σx+σy)
i e− i(Y(1)−X(1))

σx I
(
Y(1) ≥ X(1)

)
.
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Chapter 6
Stochastic Processes

6.1 Introduction

Stochastic processes are used for the description of a systems operation over time.
There are two main types of stochastic processes: continuous and discrete. The
complex continuous process is a process describing a system transition from state
to state. The simplest process that will be discussed here is a Markov process.
Given the current state of the process, its future behavior does not depend on the
past. This chapter describes the concepts of stochastic processes including Markov
process, Poisson process, renewal process, quasi-renewal process, and nonhomo-
geneous Poisson process, and their applications in reliability and availability for
degraded systems with repairable components.

6.2 Markov Processes

In this section, we will discuss discrete stochastic processes. As an introduction to
the Markov process, let us examine the following example.

Example 6.1 Consider a parallel systemconsisting of two components (see Fig. 6.1).
From a reliability point of view, the states of the system can be described by.

State 1: Full operation (both components operating).
State 2: One component operating - one component failed.
State 3: Both components have failed.

Define

Pi (t) = P[X (t) = i] = P[system is in state i at time t]

and
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Fig. 6.1 A two-component
parallel system

Pi (t + dt) = P[X (t + dt) = i] = P[system is in state i at time t + dt].

Define a randomvariableX(t)which can assume thevalues 1, 2, or 3 corresponding
to the above-mentioned states. SinceX(t) is a randomvariable, one can discussP[X(t)
= 1], P[X(t) = 2] or conditional probability, P[X(t1) = 2 | X(t0) = 1]. Again, X(t)
is defined as a function of time t, the last stated conditional probability, P[X(t1) =
2 | X(t0) = 1], can be interpreted as the probability of being in state 2 at time t1,
given that the system was in state 1 at time t0. In this example, the “state space” is
discrete, i.e., 1, 2, 3, etc., and the parameter space (time) is continuous. The simple
process described above is called a stochastic process, i.e., a process which develops
in time (or space) in accordance with some probabilistic (stochastic) laws. There are
many types of stochastic processes. In this section, the emphasis will be on Markov
processes which are a special type of stochastic process.

Definition 6.1 Let t0 < t1 < · · · < tn. If.

P[X (tn) = An|X (tn−1) = An−1, X (tn−2) = An−2, . . . ., X (t0) = A0]
= P[X (tn) = An|X (tn−1) = An−1] (6.1)

then the process is called a Markov process. Given the present state of the process,
its future behavior does not depend on past information of the process.

The essential characteristic of a Markov process is that it is a process that has no
memory; its future is determined by the present and not the past. If, in addition to
having no memory, the process is such that it depends only on the difference (t + dt)
− t = dt and not the value of t, i.e., P[X(t + dt) = j | X(t) = i] is independent of t,
then the process is Markov with stationary transition probabilities or homogeneous
in time. This is the same property noted in exponential event times, and referring
back to the graphical representation of X(t), the times between state changes would
in fact be exponential if the process has stationary transition probabilities.

Thus, aMarkov process which is time homogeneous can be described as a process
where events have exponential occurrence times. The random variable of the process
is X(t), the state variable rather than the time to failure as in the exponential failure
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density. To see the types of processes that can be described, a review of the expo-
nential distribution and its properties will be made. Recall that, if X1, X2,…, Xn, are
independent random variables, each with exponential density and a mean equal to
1/λi then min { X1, X2, …, Xn} has an exponential density with mean

(∑
λi
)−1

.
The significance of the property is as follows:

1. The failure behavior of the simultaneous operation of components can be char-
acterized by an exponential density with a mean equal to the reciprocal of the
sum of the failure rates.

2. The joint failure/repair behavior of a system where components are operating
and/or undergoing repair can be characterized by an exponential density with a
mean equal to the reciprocal of the sum of the failure and repair rates.

3. The failure/repair behavior of a system such as 2 above, but further compli-
cated by active and dormant operating states and sensing and switching, can be
characterized by an exponential density.

The above property means that almost all reliability and availability models can
be characterized by a time homogeneous Markov process if the various failure times
and repair times are exponential. The notation for the Markov process is {X(t), t >
0}, where X(t) is discrete (state space) and t is continuous (parameter space). By
convention, this type of Markov process is called a continuous parameter Markov
chain.

From a reliability/availability viewpoint, there are two types ofMarkov processes.
These are defined as follows:

1. Absorbing Process: Contains what is called an “absorbing state” which is a state
from which the system can never leave once it has entered, e.g., a failure which
aborts a flight or a mission.

2. Ergodic Process: Contains no absorbing states such that X(t) can move around
indefinitely, e.g., the operation of a ground power plant where failure only
temporarily disrupts the operation.

Pham (2000) presents a summary of the processes to be considered broken down
by absorbing and ergodic categories. Both reliability and availability can be described
in terms of the probability of the process or system being in defined “up” states,
e.g., states 1 and 2 in the initial example. Likewise, the mean time between failures
(MTBF) can be described as the total time in the “up” states before proceeding to
the absorbing state or failure state.

Define the incremental transition probability as

Pi j (dt) = P[X (t + dt) = j |X (t) = i]

This is the probability that the process (random variable X(t)) will go to state j
during the increment t to (t + dt), given that it was in state i at time t. Since we
are dealing with time homogeneous Markov processes, i.e., exponential failure and
repair times, the incremental transition probabilities can be derived from an analysis
of the exponential hazard function. In Sect. 2.1, it was shown that the hazard function
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for the exponential withmean 1/λwas justλ. Thismeans that the limiting (as dt → 0)
conditional probability of an event occurrence between t and t + dt, given that an
event had not occurred at time t, is just λ, i.e.,

h(t) = lim
dt→0

P[t < X < t + dt |X > t]
dt

= λ

The equivalent statement for the random variable X(t) is

h(t)dt = P[X (t + dt) = j |X (t) = i] = λdt

Now, h(t)dt is in fact the incremental transition probability, thus the Pij(dt) can
be stated in terms of the basic failure and/or repair rates. Define.

Pi (t): the probability that the system is in state i at time t
rij (t): transition rate from state i to state j

In general, the differential equations can be written as follows:

∂Pi (t)

∂t
= −

∑

j

ri j (t)Pi (t) +
∑

j

r ji (t)Pj (t). (6.2)

Solving the above different equations, one can obtain the time-dependent
probability of each state.

Example 6.2 Returning to Example 6.1, a state transition can be easily constructed
showing the incremental transition probabilities for process between all possible
states:

State 1: Both components operating.
State 2: One component up - one component down.
State 3: Both components down (absorbing state).

The loops (see Fig. 6.2) indicate the probability of remaining in the present state
during the dt increment

Fig. 6.2 State transition diagram for a two-component system
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P11(dt) = 1 − 2λdt P12(dt) = 2λdt P13(dt) = 0
P21(dt) = 0 P22(dt) = 1 − λdt P23(dt) = λdt
P31(dt) = 0 P32(dt) = 0 P33(dt) = 1

“up” states before proceeding to the absorbing state or failure state.
The zeros on Pij, i > j, denote that the process cannot go backwards, i.e., this

is not a repair process. The zero on P13 denotes that in a process of this type, the
probability of more than one event (e.g., failure, repair, etc.) in the incremental time
period dt approaches zero as dt approaches zero.

Except for the initial conditions of the process, i.e., the state in which the process
starts, the process is completely specified by the incremental transition probabilities.
The reason for the latter is that the assumption of exponential event (failure or repair)
times allows the process to be characterized at any time t since it depends only on
what happens between t and (t + dt). The incremental transition probabilities can
be arranged into a matrix in a way which depicts all possible statewide movements.
Thus, for the parallel configurations,

[Pi j (dt)] =
⎡

⎣
1 − 2λdt 2λdt 0

0 1 − λdt λdt
0 0 1

⎤

⎦

for i, j = 1, 2, or 3. The matrix [Pij(dt)] is called the incremental, one-step transition
matrix. It is a stochastic matrix, i.e., the rows sum to 1.0. As mentioned earlier, this
matrix along with the initial conditions completely describes the process.

Now, [Pij(dt)] gives the probabilities for either remaining or moving to all the
various states during the interval t to t + dt, hence,

P1(t + dt) = (1 − 2λdt)P1(t)

P2(t + dt) = 2λdt P1(t)(1 − λdt)P2(t)

P3(t + dt) = λdt P2(t) + P3(t) (6.3)

By algebraic manipulation, we have

[P1(t + dt) − P1(t)]
dt

= −2λP1(t)

[P2(t + dt) − P2(t)]
dt

= 2λP1(t) − λP2(t)

[P3(t + dt) − P3(t)]
dt

= λP2(t)

Taking limits of both sides as dt → 0, we obtain (also see Fig. 6.3)

P ′
1(t) = −2λP1(t)
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Fig. 6.3 Markov transition
rate diagram for a
two-component parallel
system

P ′
2(t) = 2λP1(t) − 2λP2(t)

P ′
3(t) = λP2(t) (6.4)

The above system of linear first-order differential equations can be easily solved
for P1(t) and P2(t), and therefore, the reliability of the configuration can be obtained:

R(t) =
2∑

i=1

Pi (t)

Actually, there is no need to solve all three equations, but only the first two asP3(t)
does not appear and also P3(t) = 1 – P1(t) – P2(t). The system of linear, first-order
differential equations can be solved by various means including both manual and
machine methods. For purposes here, the manual methods employing the Laplace
transform (see Appendix B) will be used.

L[Pi (t)] =
∫ ∞

0
e−st Pi (t)dt = fi (s) (6.5)

L[P ′
i (t)] =

∫ ∞

0
e−st P ′

i (t)dt = s fi (s) − Pi (0)

The use of the Laplace transformwill allow transformation of the system of linear,
first-order differential equations into a system of linear algebraic equations which
can easily be solved, and by means of the inverse transforms, solutions of Pi(t) can
be determined.

Returning to the example, the initial condition of the parallel configuration is
assumed to be “full-up” such that

P1(t = 0) = 1, P2(t = 0) = 0, P3(t = 0) = 0

transforming the equations for P′
1(t) and P′

2(t) gives

s f1(s) − P1(t)|t=0 = −2λ f1(s)

s f2(s) − P2(t)|t=0 = 2λ f1(s) − λ f2(s)

Evaluating P1(t) and P2(t) at t = 0 gives
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s f1(s) − 1 = −2λ f1(s)

s f2(s) − 0 = 2λ f1(s) − λ f2(s)

from which we obtain

(s + 2λ) f1(s) = 1

− 2λ f1(s) + (s + λ) f2(s) = 0

Solving the above equations for f 1(s) and f 2(s), we have

f1(s) = 1

(s + 2λ)

f2(s) = 2λ

[(s + 2λ)(s + λ)]
From Appendix B of the inverse Laplace transforms,

P1(t) = e−2λt

P2(t) = 2e−λt − 2e−2λt

R(t) = P1(t) + P2(t) = 2e−λt − e−2λt (6.6)

The example given above is that of a simple absorbing process where we are
concerned about reliability If repair capability in the form of a repair rate μ were
added to the model, the methodology would remain the same with only the final
result changing.

Example 6.3 Continued from Example 6.2 with a repair rate μ added to the parallel
configuration (see Fig. 6.4), the incremental transition matrix would be

[Pi j (dt)] =
⎡

⎣
1 − 2λdt 2λdt 0

μdt 1 − (λ + μ)dt λdt
0 0 1

⎤

⎦

The differential equations would become

Fig. 6.4 Markov transition
rate diagram for a
two-component repairable
system
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P ′
1(t) = −2λP1(t) + μP2(t)

P ′
2(t) = 2λP1(t) − (λ + μ)P2(t)

(6.7)

and the transformed equations would become

(s + 2λ) f1(s) − μ f2(s) = 1

− 2λ f1(s) + (s + λ + μ) f2(s) = 0

Hence, we obtain

f1(s) = (s + λ + μ)

(s − s1)(s − s2)

f2(s) = 2λ

(s − s1)(s − s2)

where

s1 = −(3λ + μ) +√(3λ + μ)2 − 8λ2

2

s2 = −(3λ + μ) −√(3λ + μ)2 − 8λ2

2
(6.8)

Using the Laplace transform (see Appendix B), we obtain

P1(t) = (s1 + λ + μ)e−s1t

(s1 − s2)
+ (s2 + λ + μ)e−s2t

(s2 − s1)

P2(t) = 2λe−s1t

(s1 − s2)
+ 2λe−s2t

(s2 − s1)

Reliability function R(t), is defined as the probability that the system continues
to function throughout the interval (0,t). Thus, the reliability of two-component in a
parallel system is given by

R(t) = P1(t) + P2(t)

= (s1 + 3λ + μ)e−s1t − (s2 + 3λ + μ)e−s2t

(s1 − s2)
(6.9)
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6.2.1 Three-Non-Identical Unit Load-Sharing Parallel
Systems

Let f if(t), f ih(t), and f ie(t) be the pdf for time to failure of unit i, for i = 1, 2, and
3 under full load and half load and equal-load condition (this occurs when all three
units are working), respectively. Also let Rif(t), Rih(t), and Rie(t) be the reliability
of unit i under full load and half load condition, respectively. The following events
would be considered for the three-unit load-sharing parallel system to work:

Event 1: All the three units are working until the end of mission time t;
Event 2: All three units are working til time t1; at time t1 one of the three units
fails. The remaining two units are working til the end of the mission.
Event 3: All three units are working til time t1; at time t1 one of the three units
fails. Then at time t2 the second unit fails, and the remaining unit is working until
the end of mission t.

Example 6.4 Consider a three-unit shared load parallel system where.

λ0 is the constant failure rate of a unit when all the three units are operational;
λh is the constant failure rate of each of the two surviving units, each of which
shares half of the total load; and.
λ f is the constant failure rate of a unit at full load.

For a shared-load parallel system to fail, all the units in the system must fail.
We now derive the reliability of a 3-unit shared-load parallel system using the

Markov method. The following events would be considered for the three-unit load-
sharing system to work:

Event 1: All the three units are working until the end of the mission time t where
each unit shares one-third of the total load.
Event 2: All the three units are working until time t1 (each shares one-third of
the total load). At time t1, one of the units (say unit 1) fails, and the other two
units (say units 2 and 3) remain to work until the mission time t. Here, once a unit
fails at time t1, the remaining two working units would take half each of the total
load and have a constant rate λh . As for all identical units, there are 3 possibilities
under this situation.
Event 3: All the three units are working until time t1 (each shares one-third of
the total load) when one (say unit 1) of the three units fails. At time t2, (t2 > t1)
one more unit fails (say unit 2) and the remaining unit works until the end of the
mission time t. Under this event, there are 6 possibilities that the probability of
two units failing before time t and only one unit remains to work until time t.

Define State i represents that i components are working. Let Pi(t) denote the
probability that the system is in state i at time t for i = 0, 1, 2, 3. Figure 6.5 below
shows the Markov diagram of the system.

The Markov equations can be obtained as follows:
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Fig. 6.5 Markov diagram
for a three-unit shared load
parallel system i=3 i=0

i=2 i=1

1

2λh

1

λf3λ0

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

dP3(t)
dt = −3λ0P3(t)

dP2(t)
dt = 3λ0P3(t) − 2λh P2(t)

dP1(t)
dt = 2λh P2(t) − λ f P1(t)

dP0(t)
dt = λ f P1(t)

P3(0) = 1
Pj (0) = 0, j �= 3
P0(t) + P1(t) + P2(t) + P3(t) = 1

Solving the above differential equations using the Laplace transform method, we
can easily obtain the following results:

P3(t) = e−3 λ0 t

P2(t) = 3λ0

2λh − 3λ0

(
e−3λ0t − e−2λht

)

P1(t) = 6λ0λh

(2λh − 3λ0)

[
e−3λ0t

(
λ f − 3λ0

) − e−2λht

(
λ f − 2λh

) + (2λh − 3λ0)e−λft

(
λ f − 3λ0

)(
λ f − 2λh

)

]

Hence, the reliability of a three-unit shared-load parallel system is

R(t) = P3(t) + P2(t) + P1(t)

= e−3λ0t + 3λ0

2λh − 3λ0

(
e−3λ0t − e−2λht

)
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+ 6λ0λh

(2λh − 3λ0)

[
e−3λ0t

(
λ f − 3λ0

) − e−2λht

(
λ f − 2λh

) + (2λh − 3λ0)e−λft

(
λ f − 3λ0

)(
λ f − 2λh

)

]

(6.10)

which is the same as Eq. (6.60) in Chapt. 4.

6.2.2 System Mean Time Between Failures

Another parameter of interest in absorbing Markov processes is the mean time
between failures (MTBF) (Pham et al. 1997). Recalling the previous Example 6.3
of a parallel configuration with repair, the differential equations P1

′(t) and P2
′(t)

describing the process were (see Eq. 6.7):

P ′
1(t) = −2λP1(t) + μP2(t)

P ′
2(t) = 2λP1(t) − (λ + μ)P2(t). (6.11)

Integrating both sides of the above equations yields

∞∫

0

P ′
1(t)dt = −2λ

∞∫

0

P1(t)dt + μ

∞∫

0

P2(t)dt

∞∫

0

P ′
2(t)dt = 2λ

∞∫

0

P1(t)dt − (λ + μ)

∞∫

0

P2(t)dt

From Chap. 1,

∞∫

0

R(t)dt = MTT F (6.12)

Similarly,

∞∫

0

P1(t)dt = mean time spent in state 1, and

∞∫

0

P2(t)dt = mean time spent in state 2

Designating these mean times as T 1 and T 2, respectively, we have
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P1(t)dt |∞0 = −2λT1 + μT2
P2(t)dt |∞0 = 2λT1 − (λ + μ)T2

But P1(t) = 0 as t → ∞ and P1(t) = 1 for t = 0. Likewise, P2(t) = 0 as t → ∞
and P2(t) = 0 for t = 0. Thus,

−1 = −2λT1 + μT2
0 = 2λT1 − (λ + μ)T2

or, equivalently,

[
−1

0

]

=
[−2λ μ

2λ −(λ + μ)

][
T1
T2

]

Therefore,

T1 = (λ+μ)

2λ2 T2 = 1
λ

MTT F = T1 + T2 = (λ+μ)

2λ2 + 1
λ

= (3λ+μ)

2λ2

(6.13)

The MTBF for non-maintenance processes is developed exactly the same way as
just shown. What remains under absorbing processes is the case for availability for
maintained systems. The difference between reliability and availability for absorbing
processes is somewhat subtle. A good example is that of a communica-tion system
where, if such a system failed temporarily, the mission would continue, but, if it
failed permanently, the mission would be aborted.

Example 6.5 Consider the following cold-standby configuration consisting of two
units: one main unit and one spare unit (see Fig. 6.6):

State 1: Main unit operating—spare OK.
State 2: Main unit out—restoration underway.
State 3: Spare unit installed and operating.
State 4: Permanent failure (no spare available).

Fig. 6.6 A cold-standby
system
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Fig. 6.7 State transition diagram for the cold-standby system

From Fig. 6.7, the incremental transition matrix is given by

[Pi j (dt)] =

⎡

⎢⎢
⎣

1 − λdt λdt 0 0
0 1 − μdt μdt 0
0 0 1 − λdt λdt
0 0 0 1

⎤

⎥⎥
⎦

We obtain

P ′
1(t) = −λP1(t)

P ′
2(t) = λP1(t) − μP2(t)

P ′
3(t) = μP2(t) − λP3(t)

Using the Laplace transform, we obtain

s f1(s) − 1 = −λ f1(s)

s f2(s) = λ f1(s) − μ f2(s)

s f3(s) = μ f2(s) − λ f3(s)

After simplifications,

f1(s) = 1

(s + λ)

f2(s) = λ

[(s + λ)(s + μ)]
f3(s) = λμ

[(s + λ)2(s + μ)]
Therefore, the probability of full-up performance, P1(t), is given by

P1(t) = e−λt (6.14)

Similarly, the probability of the system being down and under repair, P2(t), is
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P2(t) =
[

λ

(λ − μ)

](
e−μt − e−λt

)
(6.15)

and the probability of the system being full-up but no spare available, P3(t), is

P3(t) =
[

λμ

(λ − μ)2

]
[e−μt − e−λt − (λ − μ)te−λt ] (6.16)

Hence, the point availability, A(t), is given by

A(t) = P1(t) + P3(t) (6.17)

If average or interval availability is required, this is achieved by

(
1

t

)∫ T

0
A(t)dt =

(
1

t

)∫ T

0
[P1(t) + P3(t)]dt (6.18)

where T is the interval of concern.
With the above example, cases of the absorbing process (both maintained and

non-maintained) have been covered insofar as “manual” methods are concerned.
In general, the methodology for treatment of absorbing Markov processes can be
“packaged” in a fairly simplified formbyutilizingmatrix notation. Thus, for example,
if the incremental transition matrix is defined as follows:

[Pi j (dt)] =
⎡

⎣
1 − 2λdt 2λdt 0

μdt 1 − (λ + μ)dt λdt
0 0 1

⎤

⎦

then if the dts are dropped and the last row and the last column are deleted, the
remainder is designated as the matrix T:

[T ] =
[
1 − 2λ 2λ

μ 1 − (λ + μ)

]

Define [Q] = [T ]′ - [I], where [T ]′ is the transposition of [T ] and [I] is the unity
matrix:

[Q] =
[
1 − 2λ μ

2λ 1 − (λ + μ)

]
−
[
1 0
0 1

]

=
[−2λ μ

2λ −(λ + μ)

]

Further define [P(t)] and [P′(t)] as column vectors such that
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[P1(t)] =
[
P1(t)

P2(t)

]

, [P ′(t)] =
[
P ′
1(t)

P ′
2(t)

]

then

[
P ′(t)

] = [Q][P(t)]

At the above point, solution of the system of differential equations will produce
solutions to P1(t) and P2(t). If the MTBF is desired, integration of both sides of the
system produces

[
−1

0

]

= [Q]
[
T1
T2

]

[
−1

0

]

=
[−2λ μ

2λ −(λ + μ)

][
T1
T2

]

or

[Q]−1

[
1

0

]

=
[
T1
T2

]

where [Q]−1 is the inverse of [Q] and the MTBF is given by

MTBF = T1 + T2 = 3λ + μ

(2λ)2

In the more general MTBF case,

[Q]−1

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

−1

0

·
·
·
0

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

=

⎡

⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

T1
T2
·
·
·

Tn−1

⎤

⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

where
n−1∑

i=1

Ti = MTBF

and (n − 1) is the number of non-absorbing states.
For the reliability/availability case, utilizing the Laplace transform, the system of

linear, first-order differential equations is transformed to

s

[
f1(s)

f2(s)

]

−
[
1

0

]

= [Q]
[

f1(s)

f2(s)

]
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[s I − Q]
[

f1(s)

f2(s)

]

=
[
1

0

]

[
f1(s)

f2(s)

]

= [s I − Q]−1

[
1

0

]

L−1

[
f1(s)

f2(s)

]

= L−1

{

[s I − Q]−1

[
1

0

]}

[
p1(s)

p2(s)

]

= L−1

{

[s I − Q]−1

[
1

0

]}

Generalization of the latter to the case of (n − 1) non-absorbing states is
straightforward.

Ergodic processes, as opposed to absorbing processes, do not have any absorbing
states, and hence, movement between states can go on indefinitely For the latter
reason, availability (point, steady-state, or interval) is the only meaningful measure.
As an example for ergodic processes, a ground-based power unit configured in
parallel will be selected.

Example 6.6 Consider a parallel system consisting of two identical units each with
exponential failure and repair times with constant rates λ and μ, respectively (see
Fig. 6.8). Assume a two-repairmen capability if required (both units down), then.

State 1: Full-up (both units operating).
State 2: One unit down and under repair (other unit up).
State 3: Both units down and under repair.

It should be noted that, as in the case of failure events, two or more repairs cannot
be made in the dt interval.

[Pi j (dt)] =
⎡

⎣
1 − 2λdt 2λdt 0

μdt 1 − (λ + μ)dt λdt
0 2μdt 1 − 2μdt

⎤

⎦

Fig. 6.8 State transition diagram with repair for a parallel system
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Case I: Point Availability—Ergodic Process. For an ergodic process, as t → ∞
the availability settles down to a constant level. Point availability gives a measure
of things before the “settling down” and reflects the initial conditions on the
process. Solution of the point availability is similar to the case for absorbing
processes except that the last row and column of the transition matrix must be
retained and entered into the system of equations. For example, the system of
differential equations becomes

⎡

⎢
⎣

P ′
1(t)

P ′
2(t)

P ′
3(t)

⎤

⎥
⎦ =

⎡

⎣
−2λ μ 0
2λ −(λ + μ) 2μ
0 λ −2μ

⎤

⎦

⎡

⎢
⎣

P1(t)

P2(t)

P3(t)

⎤

⎥
⎦

Similar to the absorbing case, the method of the Laplace transform can be used
to solve for P1(t), P2(t), and P3(t), with the point availability, A(t), given by

A(t) = P1(t) + P2(t) (6.19)

Case II: Interval Availability—Ergodic Process. This is the same as the absorbing
case with integration over time period T of interest. The interval availability,A(T ),
is

A(T ) = 1

T

T∫

0

A(t)dt (6.20)

Case III: Steady State Availability—Ergodic Process. Here the process is exam-
ined as t → ∞ with complete “washout” of the initial conditions. Letting
t → ∞ the system of differential equations can be transformed to linear algebraic
equations. Thus,

lim
t→∞

⎡

⎢
⎣

P ′
1(t)

P ′
2(t)

P ′
3(t)

⎤

⎥
⎦ = lim

t→∞

⎡

⎣
−2λ μ 0
2λ −(λ + μ) 2μ
0 λ −2μ

⎤

⎦

⎡

⎢
⎣

P1(t)

P2(t)

P3(t)

⎤

⎥
⎦

As t → ∞, Pi (t) → constant and P ′
i (t) → 0. This leads to an unsolvable sys-tem,

namely

⎡

⎢
⎣

0

0

0

⎤

⎥
⎦ =

⎡

⎣
−2λ μ 0
2λ −(λ + μ) 2μ
0 λ −2μ

⎤

⎦

⎡

⎢
⎣

P1(t)

P2(t)

P3(t)

⎤

⎥
⎦
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To avoid the above difficulty, an additional equation is introduced:

3∑

i=1

Pi (t) = 1

With the introduction of the new equation, one of the original equations is deleted
and a new system is formed:

⎡

⎢
⎣

1

0

0

⎤

⎥
⎦ =

⎡

⎣
1 1 1

−2λ μ 0
2λ −(λ + μ) 2μ

⎤

⎦

⎡

⎢
⎣

P1(t)

P2(t)

P3(t)

⎤

⎥
⎦

or, equivalently,

⎡

⎢
⎣

P1(t)

P2(t)

P3(t)

⎤

⎥
⎦ =

⎡

⎣
1 1 1

−2λ μ 0
2λ −(λ + μ) 2μ

⎤

⎦

−1⎡

⎢
⎣

1

0

0

⎤

⎥
⎦

We now obtain the following results:

P1(t) = μ2

(μ + λ)2

P2(t) = 2λμ

(μ + λ)2

and

P3(t) = 1 − P1(t) − P2(t) = λ2

(μ + λ)2

Therefore, the steady state availability, A(∞), is given by

A3(∞) = P1(t) + P2(t) = μ(μ + 2λ)

(μ + λ)2
. (6.21)

Note that Markov methods can also be employed where failure or repair times are
not exponential, but can be represented as the sum of exponential times with identical
means (Erlang distribution or Gamma distribution with integer valued shape param-
eters). Basically, the method involves the introduction of “dummy” states which are
of no particular interest in themselves, but serve the purpose of changing the hazard
function from constant to increasing.



6.2 Markov Processes 367

Fig. 6.9 System state
diagram

Example 6.7 We now discuss two Markov models (Cases 1 and 2 below) which
allow integration of control systems of nuclear power plant reliabiltiy and safey
analysis. A basic system transition diagram for both models is presented in Fig. 6.9.
In both models, it is assumed that the control system is composed of a control rod and
an associated safety system. The following assumptions are applied in this example.

(i) All failures are statistically independent.
(ii) Each unit has a constant rate.
(iii) The control system fails when the control rod fails.

The following notations are assocaited with the system shown in Fig. 6.9.

i ith state of the system: i=1 (control and its associated safety systemoperating
normally); i = 2 (control operating normally, safety system failed), i = 3
(control failed with an accident), i = 4 (control failed safely); i = 5 (control
failed but its associated safety system operating normally).

Pi(t) probability that the control system is in state i at time t, i = 1,2, …, 5
λi ith constant failure rate: i = s (state 1 to state 2), i = ci (state 2 to state 3), i

= cs (state 2 to state 4), i = c (state 1 to state 5).
Pi(s) Laplace transform of the probability that the control system is in state i; i =

1,2, …, 5.
s Laplace transform variable.

Case 1: The system represented byModel 1 is shown in Fig. 6.9. Using theMarkov
approach, the system of differential equations (associated with Fig. 6.9) is given
below:

P ′
1(t) = −(λs + λc)P1(t)

P ′
2(t) = λs P1(t) − (λci + λcs)P2(t)
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P ′
3(t) = λci P2(t)

P ′
4(t) = λcs P2(t)

P ′
5(t) = λc P1(t)

Assume that at time t = 0, P1(0) = 1, and P2(0) = P3(0) = P4(0) = P5(0) = 0.
Solving the above system of equations, we obtain

P1(t) = e−At

P2(t) = λs

B

(
e−Ct − e−At

)

P3(t) = λsλci

AC

(
1 − Ae−Ct − Ce−At

B

)

P4(t) = λsλcs

AC

(
1 − Ae−Ct − Ce−At

B

)

P5(t) = λc

A

(
1 − e−At

)

where

A = λs + λc; B = λs + λc − λcs − λci ; C = λci + λcs .

The reliability of both the control and its safety system working normally, Rcs, is
given by

Rcs(t) = P1(t) = e−At .

The reliability of the control system working normally with or without the safety
system functioning successfully is

Rss(t) = P1(t) + P2(t) = e−At + λs

B

(
e−Ct − e−At

)
.

The mean time to failure (MTTF) of the control with the safety system up is

MTT Fcs =
∞∫

0

Rcs(t)dt = 1

A
.

Similarly, the MTTF of the control with the safety system up or down is

MTT Fss =
∞∫

0

Rss(t)dt = 1

A
+ λs

B

(
1

C
− 1

A

)
.
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Case 2: This model is the same as Case 1 except that a repair is allowed when the
safety system fails with a constant rate μ. The system of differential equations
for this model is as follows:

P ′
1(t) = μP2(t) − AP1(t)

P ′
2(t) = λs P1(t) − (λci + λcs + μ)P2(t)

P ′
3(t) = λci P2(t)

P ′
4(t) = λcs P2(t)

P ′
5(t) = λc P1(t)

We assume that at time t = 0, P1(0) = 1, and P2(0) = P3(0) = P4(0) = P5(0) = 0.
Solving the above system of equations, we obtain

P1(t) = e−At + μλs

[
e−At

(r1 + A)(r2 + A)
+ er1t

(r1 + A)(r1 − r2)
+ er2t

(r2 + A)(r2 − r1)

]

P2(t) = λs
er1t − er2t

(r1 − r2)

P3(t) = λsλci

r1r2

(
r1er2t − r2e−r1t

r2 − r1
+ 1

)

P4(t) = λsλcs

r1r2

(
r1er2t − r2e−r1t

r2 − r1
+ 1

)

P5(t) = λc

A

(
1 − e−At

)+ μλsλc

[
1

r1r2A
− e−At

A(r1 + A)(r2 + A)
+ er1t

r1(r1 + A)(r1 − r2)
+ er2t

r2(r2 + A)(r2 − r1)

]

where

r1, r2 = −a ± √
a2 − 4b

2
,

a = A + C + μ, b = λciλs + λcsλs + (λci + λcs + μ)λc.

The reliability of both the control and its associated safety system working
normally with the safety repairable system is.

Rcs(t) = e−At + μλs

[
e−At

(r1 + A)(r2 + A)
+ er1t

(r1 + A)(r1 − r2)
+ er2t

(r2 + A)(r2 − r1)

]
.

The reliability of the control operating normal with or without the safety system
operating (but having safety system repair) is
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Rss(t) = e−At + λs
(
er1t − er2t

)

(r1 − r2)

+ μλs

[
e−At

(r1 + A)(r2 + A)
+ er1t

(r1 + A)(r1 − r2)
+ er2t

(r2 + A)(r2 − r1)

]
.

The MTTF of the control with the safety system operating is

MTT Fcs =
∞∫

0

Rcs(t)dt = 1

A

(
1 + μλs

b

)
.

We can see that the repair process has helped to improve the system’s MTTF.
Similarly, the MTTF of the control with the safety system up or down but with
accessible repair is given by

MTT Fss =
∞∫

0

Rss(t)dt = 1

A

(
1 + μλs

b

)
+ λs

A
.

Example 6.8 A system is composed of eight identical active power supplies, at least
seven of the eight are required for the system to function. In other words, when two
of the eight power supplies fail, the system fails. When all eight power supplies are
operating, each has a constant failure rate λa per hour. If one power supply fails, each
remaining power supply has a failure rate λb per hour where λa ≤ λb We assume that
a failed power supply can be repaired with a constant rate μ per hour. The system
reliability function, R(t), is defined as the probability that the system continues to
function throughout the interval (0, t). Here we wish to determine the system mean
time to failure (MTTF).

Define.

State 0: All 8 units are working.
State 1: 7 units are working.
State 2: More than one unit failed and system does not work.

The initial condition:P0(0) = 1, P1(0) = P2(0) = 0.
The Markov modeling of differential equations (see Fig. 6.10) can be written as

follows:

P ′
0(t) = −8λa P0(t) + μP1(t)

P ′
1(t) = 8λa P0(t) − (7λb + μ)P1(t)

P ′
2(t) = 7λb P1(t) (6.22)

Using the Laplace transform, we obtain
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Fig. 6.10 Markov transition rate diagram for a 7-out-8 dependent system

⎧
⎨

⎩

sF0(s) − P0(0) = −8λa F0(s) + μF1(s)
sF1(s) − P1(0) = 8λa F0(s) − (7λb + μ)F1(s)
sF2(s) − P2(0) = 7λbF1(s)

(6.23)

When s = 0:

Fi (0) =
∞∫

0

Pi (t)dt .

Thus, the system reliability function and system MTTF, respectively, are

R(t) = P0(t) + P1(t). (6.24)

and

MTT F =
∞∫

0

R(t)dt =
∞∫

0

[P0(t) + P1(t)]dt =
2∑

i=1

Fi (0). (6.25)

From Eq. (6.23), when s = 0, we have

{−1 = −8λa F0(0) + μF1(0)
0 = 8λa F0(0) − (7λb + μ)F1(0)

(6.26)

From Eq. (6.26), after some arrangements, we can obtain

7λbF1(0) = 1 ⇒ F1(0) = 1

7λb

and

F0(0) = 7λb + μ

8λa
F1(0)
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= 7λb + μ

8λa

1

7λb
= 7λb + μ

56λaλb
.

From Eq. (6.25), the system MTTF can be obtained

MTT F =
∞∫

0

R(t)dt =
∞∫

0

[P0(t) + P1(t)]dt = F0(0) + F1(0)

= 7λb + μ

56λaλb
+ 1

7λb
= μ + 8λa + 7λb

56λa λb
.

Given λa = 3 × 10−3 = 0.003, λb = 5 × 10−2 = 0.05, and μ = 0.8, then the
system mean time to failure is given by:

MTT F = μ + 8λa + 7λb

56 λa λb

= 0.8 + 8(0.003) + 7(0.05)

56(0.003)(0.05)
= 1.174

0.0084
= 139.762 h.

Example 6.9 Asystemconsists of two independent components operating in parallel
(see Fig. 6.1) with a single repair facility where repair may be completed for a failed
component before the other component has failed. Both the components are assumed
to be functioning at time t = 0. When both components have failed, the system is
considered to have failed and no recovery is possible. Assuming component i has
the constant failure rate λi and repair rate μi for i = 1 and 2. The system reliability
function, R(t), is defined as the probability that the system continues to function
throughout the interval (0, t).

(a) Derive the system reliability function and systemmean time to failure (MTTF)
and calculate the MTTF.

(b) Assume that both components have the same failure rate λ and repair rate μ.

That is, λ1 = λ2 = λ and μ1 = μ2 = μ. Calculate the reliability function and
system MTTF when λ = 0.003 per hour, and μ = 0.1 per hour, and t = 25 h.

Define.

State 1: both components are working.
State 2: component 1 failed, component 2 is working.
State 3: component 2 failed, component 1 is working.
State 4: Both components 1 and 2 failed.

The initial conditions: P1(0) = 1, P2(0) = P3(0) = P4(0) = 0.FromFig. 6.11,
the Markov modeling of differential equations can be written as follows:
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Fig. 6.11 A degraded
system rate diagram i=1

i=2 i=3

1

λ3

1

λ1

λ2

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

dP1(t)
dt = −(λ1 + λ2)P1(t) + μ1P2(t) + μ2P3(t)

dP2(t)
dt = λ1P1(t) − (λ2 + μ1)P2(t)

dP3(t)
dt = λ2P1(t) − (λ1 + μ2)P3(t)

dP4(t)
dt = λ2P2(t) + λ1P3(t)

P1(0) = 1, Pj (0) = 0, j �= 1.

(6.27)

Let �{Pi (t)} = Fi (s). Then �
{

∂Pi (t)
∂t

}
= sFi (s) − Fi (0). Using the Laplace

transform, we obtain

⎧
⎪⎪⎨

⎪⎪⎩

sF1(s) − 1 = −(λ1 + λ2)F1(s) + μ1F2(s) + μ2F3(s)
sF2(s) = λ1F1(s) − (λ2 + μ1)F2(s)
sF3(s) = λ2F1(s) − (λ1 + μ2)F3(s)
sF4(s) = λ2F2(s) + λ1F3(s)

(6.28)

From Eq. (6.28), we obtain

F1(s) = (s + a2)(s + a3)

s3 + b1s2 + c1s + c2

F2(s) = λ1

s + a2
F1(s)

F3(s) = λ2

s + a3
F1(s)

where
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a1 = λ1 + λ2; a2 = λ2 + μ1; a3 = λ1 + μ2;
a4 = λ1μ1; a5 = λ2μ2; b1 = a1 + a2 + a3;
b2 = a1a2 + a1a3 + a2a3; b3 = a1a2a3;
c1 = b2 − a4 − a5; c2 = b3 − a3a4 − a2a5.

Take the inverse of Laplace transform, that is Pi (t) = �−1{Fi (s)}, then the system
reliability function is

R(t) =
3∑

i=1

Pi (t). (6.29)

When s = 0:

Fi (0) =
∞∫

0

Pi (t).

Thus, the system MTTF is

MTT F =
∞∫

0

R(t)dt =
∞∫

0

[P1(t) + P2(t) + P3(t)]dt =
3∑

i=1

Fi (0).

Substitute s = 0 into Eq. (6.28), we have

⎧
⎪⎪⎨

⎪⎪⎩

−1 = −(λ1 + λ2)F1(0) + μ1F2(0) + μ2F3(0)
0 = λ1F1(0) − (λ2 + μ1)F2(0)
0 = λ2F1(0) − (λ1 + μ2)F3(0)
0 = λ2F2(0) + λ1F3(0)

Solving for Fi(0), we obtain

F1(0) = a2a3
a1a2a3 − a3a4 − a2a5

F2(0) = a2a3λ1

a1a22a3 − a2a3a4 − a22a5

F3(0) = a2a3λ2

a1a2a23 − a2a3a5 − a23a4
. (6.30)

Thus, the system MTTF is

MTT F =
3∑

i=1

Fi (0)
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= a2a3
a1a2a3 − a3a4 − a2a5

+ a2a3λ1

a1a22a3 − a2a3a4 − a22a5

+ a2a3λ2

a1a2a23 − a2a3a5 − a23a4
. (6.31)

When λ1 = λ2 = λ and μ1 = μ2 = μ, from Eq. (6.29) and (6.31), we can show
that the system reliability and the MTTF are given as follows:

R(t) = 2λ2

α1 − α2

(
e−α2t

α2
− e−α1t

α1

)
(6.32)

where

α1, α2 = (3λ + μ) ±√λ2 + 6λμ + μ2

2

and

MTT F = 3

2λ
+ μ

2λ2
(6.33)

respectively.
(b) Calculate the reliability function and system MTTF when λ1 = λ2 = λ =

0.003 per hour, and μ1 = μ2 = μ = 0.1 per hour, and t = 25 h.
Substitute λ = 0.003 and μ = 0.1 into Eq. (6.32), we obtain

α1 = 0.1088346, α2 = 0.0001654

thus, the system reliability at the mission time t = 25 h is

R(t = 25) = 0.99722

Similarly, from Eq. (6.33), we obtain the system MTTF is 6055.56 h.

6.2.3 Degraded Systems

In real life, there are many systems may continue to function in a degraded system
state (Pham et al. 1996, 1997; Li and Pham a, b). Such systems may perform its
function but not at the same full operational state. Define the states of a system,
where the transition rate diagram is shown in Fig. 6.11, are as follows:

State 1: operational state.
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State 2: degraded state.
State 3: failed state.

We denote the probability of being in state i at time t as Pi(t).
From the rate diagram (Fig. 6.11) we can obtain the following differential

equations:

⎧
⎪⎪⎨

⎪⎪⎩

dP1(t)
dt = −(λ1 + λ2)P1(t)

dP2(t)
dt = λ2P1(t) − λ3P2(t)

dP3(t)
dt = λ1P1(t) + λ3P2(t)

P1(0) = 1, Pj (0) = 0, j �= 1

(6.34)

From Eq. (6.34), we can obtain the solution

P1(t) = e−(λ1+λ2)t (6.35)

We can also show, from Eq. (6.34), that

P2(t) = λ2

(λ1 + λ2 − λ3)

(
e−λ3t − e−(λ1+λ2)t

)
(6.36)

Finally,

P3(t) = 1 − P1(t) − P2(t).

The system reliability is given by

R(t) = P1(t) + P2(t)

= e−(λ1+λ2)t + λ2

(λ1 + λ2 − λ3)

(
e−λ3t − e−(λ1+λ2)t

)
(6.37)

The system mean time to a complete failure is

MTT F =
∞∫

0

R(t)dt

= 1

λ1 + λ2
+ λ2

(λ1 + λ2 − λ3)

(
1

λ3
− 1

λ1 + λ2

)
. (6.38)

Example 6.10 A computer system used in a data computing center experiences
degrade state and complete failure state as follows:

λ1 = 0.0003 per hour, λ2 = 0.00005 per hour, and λ3 = 0.008 per hour.
Here for example, when the system is in degraded state, it will fail at a constant

rate 0.008 per hour. From Eqs. (6.35–6.36), we obtain the following results. Table
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Table 6.1 Reliability and
MTTF of degraded computer
system

Time (h) P1(t) P2(t) R(t)

10 0.996506 0.000480 0.996986

20 0.993024 0.000921 0.993945

50 0.982652 0.002041 0.984693

100 0.965605 0.003374 0.968979

6.1 shows the reliability results for various mission times.

P1(t) = e−(0.0003+0.00005)t

P2(t) = 0.00005

(0.0003 + 0.00005 − 0.008)

(
e−0.008t − e−(0.0003+0.00005)t

)

From Eq. (6.38), the system MTTF is given by

MTT F = 1

λ1 + λ2
+ λ2

(λ1 + λ2 − λ3)

(
1

λ3
− 1

λ1 + λ2

)
= 2875.

6.2.4 k-Out-Of-n Systems with Degradation

In some environments the components may not fail fully but can degrade and there
may exist multiple states of degradation. In such cases, the efficiency especially the
performance of the system may decrease (Pham et al. 1996; Yu et al. 2018). This
section discusses the reliability of the k-out-of-n systems considering that:

(1) The system consists of n independent and identically distributed (i.i.d.) non-
repairable components;

(2) Each component can have d stages of degradation; degradation stage (d + 1)
is a failed state and stage (d + 2) is a catastrophic failure state;

(3) The system functions when at least k out of n components function;
(4) The componentsmay fail catastrophically and can reach the failed state directly

from a good state as well as from a degraded state;
(5) A component can survive either until its last degradation or until a catastrophic

failure at any stage;
(6) All transition rates (i.e., catastrophic and degradation) are constant; and
(7) The degradation rate and catastrophic failure rate of a component depends on

the state of the component.

Let λi be a transition (degradation) rate of the component from state i to state (i
+ 1) for i = 1,2, …, d. Let μi be a transition rate of the component from state i to
state (d + 2), i.e. catastrophic failure stage. A component may fail catastrophically
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Fig. 6.12 A component flow diagram (Pham 1996)

while it is in any degraded state. A block diagram of such a component is shown in
Fig. 6.12.

In general, the system consists of n i.i.d. non-repairable components and at least k
components are required for the system to function. Each component starts in a good
state (“state 1”). The component continues to perform its function within the system
in all of its d level of degraded states of operation. The component no longer performs
it function when it reaches its last degradation state at (d + 1) at which point it has
degraded to a failed state or when it has failed catastrophically, i.e. state (d + 2), from
any of its operational states of degradation. The rate at which the components degrade
to a lower state of degradation or fail catastrophically increases as the components
degrades from one state to a lower state of degradation. Components that reached the
failed state either by degradation or by catastrophic failure cannot longer perform
their function and cannot be repaired. In other words, once a component has reached
a failed (either degradation or catastrophic) state, it cannot be restored to a good state
or any degradation state.

The successful operation of the entire system is expressed as a combination of
component success and failure events. We can formulate the component reliability
function using theMarkov approach. Denote Pi(t) as the probability that a component
is in state i at time t. From Fig. 6.12, we can easily obtain the following differential
equations using the Markov approach:

dP1(t)

dt
= −(λ1 + μ1)P1(t)

dPi (t)

dt
= λi−1Pi−1(t) − (λi + μi )Pi (t) for i = 2, 3, . . . , d

dPd+1(t)

dt
= λd Pd(t)
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dPd+2(t)

dt
=

d∑

j=1

μ j Pj (t). (6.39)

Solving the above system of differential equations, we obtain the state probability
as follows:

Pm(t) =
m∏

k=1

λk−1

⎛

⎜
⎜⎜⎜⎜⎜
⎜⎜⎜
⎝

m∑

i=1

e−(λ1+μ2)t

m∏

j = 1
j �= i

(
λ j + μ j − λi − μi

)

⎞

⎟
⎟⎟⎟⎟⎟
⎟⎟⎟
⎠

(6.40)

for m = 1, 2, …, d and λ0 = 1. Thus, the component reliability is

Rc(t) =
d∑

i=1

Bie
−(λi+μi )t (6.41)

where

Bi =
d∑

m=i

m∏

k=1
λk−1

m∏

j = 1
j �= i

(
λ j + μ j − λi − μi

) . (6.42)

The mean time to failure of the component (MTTFC) is given by

MTT FC =
∫ ∞

0
RC(t)dt

=
∫ ∞

0

d∑

i=1

(
Bie

−(λi+μi )t
)
dt

=
d∑

i=1

(
Bi

λi + μi

)
. (6.43)

The k-out-of-n system reliability is
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RS(t) =
n∑

i=k

(
n
i

)
[RC(t)]i [1 − RC(t)]n−i (6.44)

where RC(t) is in Eq. (6.41). After several algebra simplifications, we obtain the
system reliability (Pham et al., 1996):

Rs(t) =
n∑

i=k

i ! Ai

∑

d∑

j=1
i j=i

⎡

⎣
d∏

j=1

(
B
i j
j

i j !

)⎤

⎦ e
−

d∑

j=1
i j(λ j+μ j)t

(6.45)

where Ai = (−1)i−k

(
i − 1
k − 1

)(
n
i

)
. The MTTF of the system is

MTT FS =
∫ ∞

0
Rs(t)dt

where Rs(t) is given in Eq. (6.45). Therefore, system MTTF is

MTT FS =
n∑

i=k

i ! Ai

∑

d∑

j=1
i j=i

⎛

⎜⎜⎜
⎝

d∏

j=1

(
B
i j
j

i j !

)

d∑

j=1
i j
(
λ j + μ j

)

⎞

⎟⎟⎟
⎠

. (6.46)

For components without catastrophic failure. When there is no catastrophic
failure, the catastrophic failure rate μi in Eq. (6.45) becomes zero. From Eq. (6.41),
we obtain

RC(t) =
d∑

i=1

Bie
−λi t (6.47)

where

Bi =
d∏

j = 1
j �= i

λ j

λ j − λi
i = 1, 2, . . . , d

Similarly, the component MTTF is
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MTT FC =
d∑

i=1

Bi

λi
=

d∑

i=1

1

λi
(6.48)

The system reliability and MTTF for this special case are computed from the
general forms of the Eqs. (6.45) and (6.46), respectively:

Rs(t) =
n∑

i=k

i ! Ai

∑

d∑

j=1
i j=i

⎡

⎣
d∏

j=1

(
B
i j
j

i j !

)⎤

⎦ e
−

d∑

j=1
i jλ j t

(6.49)

where Ai = (−1)i−k

(
i − 1
k − 1

)(
n
i

)
and

MTT FS =
n∑

i=k

i ! Ai

∑

d∑

j=1
i j=i

⎡

⎢⎢⎢
⎣

d∏

j=1

(
B
i j
j

i j !

)

d∑

j=1
i jλ j

⎤

⎥⎥⎥
⎦

(6.50)

Example 6.11 Consider a 2-out-of-5 systemwhere components consist of two stages
of degradation (d = 2) with the following values:

λ1 = 0.015/h, μ1 = 0.0001/h, λ2 = 0.020/h, and μ2 = 0.0002/h

Given n = 5, k = 2, λ1 = 0.015, λ2 = 0.02, μ1 = 0.0001, μ2 = 0.0002, d = 2.
There are two cases as follows.

Case 1: From Eq. (6.42), components can fail by degradation and by catastrophic
events:

B1 = λ0 + λ1λ2

λ2 + μ2 − λ1 − μ1

= 1 + (0.015)(1)

0.02 + 0.0002 − 0.015 − 0.0001
= 3.94

B2 = λ0λ1

λ1 + μ1 − λ2 − μ2
= (1)(0.015)

0.015 + 0.0001 − 0.020 − 0.0002
= −2.94

MTTFC = B1

λ1 + μ1
+ B2

λ2 + μ2
= 115.4
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RC(t) =
2∑

i=1

Bie
−(λi+μi )t = B1e

−(λ1+μ1)t + B2e
−(λ2+μ2)t

For t = 1, then

RC(t = 1) = 3.94 e−(0.015+0.0001)(1) + (−2.94) e−(0.02+0.0002)(1) = 0.9998

Similarly,

RS(t) =
5∑

i=2

(
5
i

)
[RC(t)]i [1 − RC(t)]5−i

For t = 1, then Rs(t = 1) ≈ 1 and MTTF = ∫∞
0 RS(t)dt = 144.5 h. Tables 6.2

and 6.3 present the tabulated reliability of the 2-out-of-5 system with and without
catastrophic failures for varying mission time t, respectively.

Case 2: Components can only fail by degradation (no catastrophic failures (μ1 =
μ2 = 0)):

B1 = λ2

λ2 − λ1
= 0.02

0.02 − 0.015
= 4

B2 = λ1

λ1 − λ2
= 0.015

0.015 − 0.02
= −3

Then we can easily obtain as follows:

RC(t = 1) = 0.9999; RC(t = 5) = 0.9965

Table 6.2 Reliability of
2-out-of-5 system with
catastrophic failures for
varying time t

Time Component reliability System reliability

1 0.9998 1.0000

5 0.9959 1.0000

10 0.9856 1.0000

20 0.9502 1.0000

25 0.9269 0.9999

50 0.7812 0.9905

75 0.6235 0.9298

100 0.4805 0.7872

150 0.2671 0.4032

200 0.1406 0.1477

250 0.0715 0.0443
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Table 6.3 Reliability of
2-out-of-5 system without
catastrophic failures for
varying time t

Time Component reliability System reliability

1 0.9999 1.0000

5 0.9965 1.0000

10 0.9866 1.0000

20 0.9523 1.0000

25 0.9296 0.9999

50 0.7858 0.9913

75 0.6292 0.9335

100 0.4865 0.7952

150 0.2722 0.4140

200 0.1442 0.1542

250 0.0739 0.0469

MTTFC = 1

λ1
+ 1

λ2
= 1

0.015
+ 1

0.02
= 116.67 h

The system MTTF is: MTTF = 145.9 h. The catastrophic failure process has
decreased both the system reliability and component reliability.

6.2.5 Degraded Systems with Partial Repairs

In some environments, systems might not always fail fully, but can degrade and there
can be multiple stages of degradation. In such cases, the efficiency of the system
may decrease. After a certain stage of degradation the efficiency of the system may
decrease to an unacceptable limit and can be considered as a total failure (Pham
et al. 1997). In addition, the system can fail partially from any stage and can be
repaired. The repair action cannot bring the system to the good stage but can make
it operational and the failure rate of the system will remain the same as before the
failure. This section discusses a model for predicting the reliability and availability
of multistage degraded systems with partial repairs based on the results by Pham
et al. (Pham et al. 1997).

Initially, the system is considered to be in its good state. After some time, it can
either go to the first degraded state upon degradation or can go to a failed state upon
a partial failure. If the system fails partially, the repair action starts immediately, and
after repair the system will be restored to the good state, will be kept in operation
and the process will be repeated. However, if the system reaches the first degraded
state (state 3), it can either go to the second degraded state (state 5) upon degradation
or can go to the failed state upon a partial failure with increased transition rates.
If the system fails partially at this stage, after repair the system will be restored
back to the first degraded state, and will be kept in operation. Figure 6.13 shows the
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Fig. 6.13 A system state diagram (Pham 1997)

system flow diagram transition process where: State (i): State of the system; State
(1): Good; State (2i-1): Degraded; State (2i): Failed (Partially); and State (2d + 1)
Failed (Completely).

Assumptions

1. System can have d-stages of degradation (dth stage is complete failure state).
2. The system might fail partially from a good state as well as from any degraded

state.
3. System can be restored back from a partially failed state to its original state just

before the failure.
4. All transition rates are constant (i.e., degradation, partial failure, and partial

repair rates).
5. The degradation as well as repair rates of the system depend upon the state of

the system (i.e., degradation level).

Figure 1: System flow diagram.
Notation.

d: number of operational states.
State (2i): partially failed states; i = 1,2, …, d
State 1: good state.
State (2i − 1): degraded operational states; i = 2,3, …, d
αi: transition (degradation) rate from state (2i − 1) to (2i + 1).
λi: transition (partial failure) rate from state (2i − 1) to (2i).
μi: transition (partial repair) rate from state (2i) to (2i − 1).

Using the Markov approach, we can obtain the following equations:

dP1(t)

dt
= −(α1 + λ1)P1(t) + μ1P2(t)

dP(2i−1)(t)

dt
= −(αi + λ1)P(2i−1)(t) + μi P(2i)(t) + αi−1P(2i−3)(t) for i = 2, 3, . . . , d

dP(2i)(t)

dt
= −μi P(2i)(t) + λi P(2i−1)(t) for i = 1, 2, . . . , d

dP(2d+1)(t)

dt
= αd P(2d−1)(t). (6.51)
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Taking Laplace transformations of each of these equations and simplifications,
we obtain the following equations:

P(2i−1)(t) =
i∑

k=1

(
Aike

−βk t + Bike
−γi t
)

P(2i)(t) =
i∑

k=1

(
Cike

−βk t + Dike
−γk t
)

(6.52)

where

βi = (αi + λi + μi ) +
√

(αi + λi + μi )
2 − 4αiμi

2

γi = (αi + λi + μi ) −
√

(αi + λ1 + μi )
2 − 4αiμi

2
for i = 1, 2, . . . , d

and

Aik =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(μ1−β1)
(γ1−β1)

for i = 1, k = 1

(
i−1∏

m=1
αm

)(
i∏

m=1
μm − βk

)

⎛

⎜
⎜⎜⎜
⎜
⎝

i∏

m = 1
m �= k

1
(βm−βk)

⎞

⎟
⎟⎟⎟
⎟
⎠

(
i∏

m=1

1
(γm−βk)

)

for i = 2, . . . , d

Bik =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

(μ1−γ1)
(β1−γ1)

for i = 1, k = 1

(
i−1∏

m=1
αm

)(
i∏

m=1
μm − γk

)

⎛

⎜⎜⎜
⎜⎜
⎝

i∏

m = 1
m �= k

1
(γm−γk)

⎞

⎟⎟⎟
⎟⎟
⎠

(
i∏

m=1

1
(βm−γk)

)

for i = 2, . . . , d

Cik =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1
(γ1−β1)

for i = 1, k = 1

λi

(
i−1∏

m=1
αm

)(
i∏

m=1
μm − βk

)

⎛

⎜
⎜⎜⎜
⎜
⎝

i∏

m = 1
m = k

1
(βm−βk)

⎞

⎟
⎟⎟⎟
⎟
⎠

(
i∏

m=1

1
(γm−βk)

)

for i = 2, . . . , d

Dik =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

λ1
(β1−γ1)

for i = 1, k = 1

λi

(
i−1∏

m=1
αm

)(
i∏

m=1
μm − γk

)

⎛

⎜⎜
⎜⎜⎜
⎝

i∏

m = 1
m = 1

1
(γm−γk)

⎞

⎟⎟
⎟⎟⎟
⎠

(
i∏

m=1

1
(βm−γk)

)

for i = 2, . . . , d

(6.53)
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The availability A(t) of the system (i.e., the probability that system will be found
in an operational (either good or degraded) state at time t) is given by:

A(t) =
d∑

i=1

P(2i−1)(t) =
d∑

i=1

i∑

k=1

(
Aike

−βi t + Bike
−γi t
)
. (6.54)

The system unavailability due to partial failures is

D(t) =
d∑

i=1

P(2i)(t) =
d∑

i=1

i∑

k=1

(
Cike

−βk t + Dike
−γk t
)
. (6.55)

Thus, the probability that the system fails completely before time t is:

F(t) = 1 − A(t) − D(t)

= 1 −
d∑

i=1

i∑

k=1

[
(Aik + Cik)e

−βk t + (Bik + Dik)e
−γk t
]
. (6.56)

After simplifications, we obtain

F(t) = 1 −
d∑

i=1

(
Xie

−βi t + Yie
−γi t
)

(6.57)

where

Xi = 1

βi

(
d∏

m=1

αm(μm − βi )

(γm − βi )

)

⎛

⎜⎜⎜⎜⎜
⎜
⎝

d∏

m = 1
m �= i

1

(βm − βi )

⎞

⎟⎟⎟⎟⎟
⎟
⎠

Yi = 1

γi

(
d∏

m=1

αm(μm − γi )

(βm − γi )

)

⎛

⎜⎜⎜
⎜⎜⎜
⎝

d∏

m = 1
m �= i

1

(γm − γi )

⎞

⎟⎟⎟
⎟⎟⎟
⎠

. (6.58)
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If the repair time tends to infinity (or repair rate is zero), then the total operational
time becomes the time to first failure. Therefore, the system reliability R(t) can be
obtained from A(t) by substituting zeros for all repair rates. Thus, we obtain

R(t) =
d∑

i=1

Lie
−(αi+λi )t (6.59)

where

Li =
d∑

m=i

⎛

⎜⎜
⎜⎜⎜⎜⎜
⎜⎜
⎝

m∏

k=1
αk−1

m∏

j = 1
j �= i

(
α j + λ j − αi − λi

)

⎞

⎟⎟
⎟⎟⎟⎟⎟
⎟⎟
⎠

for i = 1, 2, . . . , d and α0 = 1.

(6.60)

The mean time to first failure of the system (MTTF) is given by

MTT F =
∫ ∞

0
R(t)dt =

∫ ∞

0

(
d∑

i=1

Lie
−(αi+λi )t

)

dt

=
d∑

i=1

Li

αi + λi
. (6.61)

Example 6.12 Consider a multistage repairable system with d = 2 (stages of degra-
dation) and degradation rates: α1 = 0.001, α2 = 0.002; with partial failure rates: λ1

= 0.01, λ2 = 0.05, and repairing rates: μ1 = 0.02, and μ2 = 0.01. Calculate the
system availability and reliability using Eqs. (6.54) and (6.59) (Fig. 6.14).

From Eqs. (6.54), (6.55), and (6.59), we obtain the reliability results as shown in
Table 6.4. The system mean time to first failure (MTTF) is 92.7 (units of time).

Fig. 6.14 System flow
diagram with d = 2
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Table 6.4 Reliability
measures for various time t

t A(t) D(t) R(t)

10 0.9120 0.0860 0.9032

20 0.8845 0.1489 0.8135

30 0.7929 0.1947 0.7313

40 0.7534 0.2280 0.6567

50 0.7232 0.2521 0.5892

100 0.6471 0.2992 0.3409

6.3 Counting Processes

Among discrete stochastic processes, counting processes in reliability engineering
are widely used to describe the appearance of events in time, e.g., failures, number of
perfect repairs, etc. The simplest counting process is a Poisson process. The Poisson
process plays a special role tomany applications in reliability (Pham 2000). A classic
example of such an application is the decay of uranium. Radioactive particles from
nuclear material strike a certain target in accordance with a Poisson process of some
fixed intensity. A well-known counting process is the so-called renewal process.
This process is described as a sequence of events, the intervals between which are
independent and identically distributed random variables. In reliability theory, this
type of mathematical model is used to describe the number of occurrences of an
event in the time interval. In this section we also discuss the quasi-renewal process
and the non-homogeneous Poisson process.

A non-negative, integer-valued stochastic process, N(t), is called a counting
process if N(t) represents the total number of occurrences of the event in the time
interval [0, t] and satisfies these two properties:

1. If t1 < t2, then N(t1) ≤ N(t2)
2. If t1 < t2, then N(t2) - N(t1) is the number of occurrences of the event in the

interval [t1 , t2].

For example, ifN(t) equals the number of personswho have entered a restaurant at
or prior to time t, then N(t) is a counting process in which an event occurs whenever
a person enters the restaurant.
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6.3.1 Poisson Processes

One of the most important counting processes is the Poisson process.

Definition 6.2 Acounting process,N(t), is said to be a Poisson processwith intensity
λ if.

1. The failure process, N(t), has stationary independent increments
2. The number of failures in any time interval of length s has a Poisson distribution

with mean λs, that is,

P{N (t + s) − N (t) = n} = e−λs(λs)n

n! n = 0, 1, 2, . . . (6.62)

3. The initial condition is N(0) = 0

This model is also called a homogeneous Poisson process indicating that the
failure rate λ does not depend on time t. In other words, the number of failures
occurring during the time interval (t, t + s] does not depend on the current time t but
only the length of time interval s. A counting process is said to possess independent
increments if the number of events in disjoint time intervals are independent.

For a stochastic process with independent increments, the auto-covariance
function is

Cov[X (t1), X (t2)] =
{
Var [N (t1 + s) − N (t2)] for 0 < t2 − t1 < s
0 otherwise

where

X (t) = N (t + s) − N (t).

If X(t) is Poisson distributed, then the variance of the Poisson distribution is

Cov[X (t1), X (t2)] =
{

λ[s − (t2 − t1)] for 0 < t2 − t1 < s
0 otherwise

This result shows that the Poisson increment process is covariance stationary. We
now present several properties of the Poisson process.

Property 6.1 The sum of independent Poisson processes, N1(t), N2(t), …., Nk(t),
with mean values λ1t, λ2t, …., λkt respectively, is also a Poisson process with mean(

k∑

i=1
λi

)
t . In other words, the sum of the independent Poisson processes is also

a Poisson process with a mean that is equal to the sum of the individual Poisson
process’ mean.
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Property 6.2 Thedifference of two independent Poisson processes,N1(t), andN2(t),
with mean λ1t and λ2t, respectively, is not a Poisson process. Instead, it has the
probability mass function.

P[N1(t) − N2(t) = k] = e−(λ1+λ2)t

(
λ1

λ2

) k
2

Ik(2
√

λ1λ2t), (6.63)

where Ik(.) is a modified Bessel function of order k.

Proof Define N(t) = N1(t) - N2(t). We have

P[N (t) = k] =
∞∑

i=0

P[N1(t) = k + i] P[N2(t) = i].

Since N i(t) for i = 1, 2 is a Poisson process with mean λit, therefore,

P[N (t) = k] =
∞∑

i=0

e−λ1t (λ1t)
k+i

(k + i)!
e−λ2t (λ2t)

i

i !

= e−(λ1+λ2)t

(
λ1

λ2

) k
2

∞∑

i=0

(√
λ1λ2t

)2i+k

i !(k + i)!

= e−(λ1+λ2)t

(
λ1

λ2

) k
2

Ik(2
√

λ1λ2t).

Property 6.3 If the Poisson process, N(t), with mean λt, is filtered such that every
occurrence of the event is not completely counted, then the process has a constant
probability p of being counted. The result of this process is a Poisson process with
mean λpt.

Property 6.4 LetN(t) be a Poisson process and Yi a family of independent and iden-
tically distributed random variables which are also independent of N(t). A stochastic
process X(t) is said to be a compound Poisson process if it can be represented as.

X (t) =
N (t)∑

i=1

Yi .

6.3.2 Renewal Processes

A renewal process is a more general case of the Poisson process in which the inter-
arrival times of the process or the time between failures do not necessarily follow the
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exponential distribution. For convenience, we will call the occurrence of an event a
renewal, the inter-arrival time the renewal period, and the waiting time or repair time
the renewal time.

Definition 6.3 A counting process N(t) that represents the total number of occur-
rences of an event in the time interval (0, t] is called a renewal process, if the time
between failures are independent and identically distributed random variables.

The probability that there are exactly n failures occurring by time t can be written
as

P{N (t) = n} = P{N (t) ≥ n} − P{N (t) > n} (6.64)

Note that the times between the failures are T 1, T 2,…, Tn so the failures occurring
at time Wk are

Wk =
k∑

i=1

Ti

and

Tk = Wk − Wk−1

Thus,

P{N (t) = n} = P{N (t) ≥ n} − P{N (t) > n}
= P{Wn ≤ t} − P{Wn+1 ≤ t}
= Fn(t) − Fn+1(t) (6.65)

where Fn(t) is the cumulative distribution function for the time of the nth failure and
n = 0,1,2, ….

Example 6.13 Consider a software testing model for which the time to find an error
during the testing phase has an exponential distribution with a failure rate of X. It
can be shown that the time of the nth failure follows the gamma distribution with
parameters k and n with probability density function. From Eq. (6.65) we obtain

P{N (t) = n} = P{N (t) ≤ n} − P{N (t) ≤ n − 1}

=
n∑

k=0

(λt)k

k! e−λt −
n−1∑

k=0

(λt)k

k! e−λt

= (λt)n

n! e−λt for n = 0, 1, 2, . . . . (6.66)

Several important properties of the renewal function are given below.
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Property 6.5 The mean value function of the renewal process, denoted by M(t), is
equal to the sum of the distribution function of all renewal times, that is,

M(t) = E[N (t)] =
∞∑

n=1

Fn(t)

Proof The renewal function can be obtained as

M(t) = E[N (t)]

=
∞∑

n=1

nP{N (t) = n}

=
∞∑

n=1

n[Fn(t)−Fn+1(t)]

=
∞∑

n=1

Fn(t). (6.67)

The mean value function, M(t), of the renewal process is also called the renewal
function. In other words, the mean value function represents the expected number of
renewals in [0, t].

Property 6.6 The renewal function, M(t), satisfies the following equation:

M(t) = F(t) +
t∫

0

M(t − s)dF(s) (6.68)

where F(t) is the distribution function of the inter-arrival time or the renewal period.
The proof is left as an exercise for the reader (see Problem 7).

In general, let y(t) be an unknown function to be evaluated and x(t) be any
non-negative and integrable function associated with the renewal process. Assume
that F(t) is the distribution function of the renewal period. We can then obtain the
following result.

Property 6.7 Let the renewal equation be.

y(t) = x(t) +
t∫

0

y(t − s)dF(s) (6.69)

then its solution is given by
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y(t) = x(t) +
t∫

0

x(t − s)dM(s)

where M(t) is the mean value function of the renewal process.
The proof of the above property can be easily derived using the Laplace transform.

It is also noted that the integral equation given in Property 6.6 is a special case of
Property 6.7.

Example 6.14 Let x(t) = a. Thus, from Property 6.7, the solution y(t) is given by

y(t) = x(t) +
t∫

0

x(t − s)dM(s)

= a +
t∫

0

a dM(s)

= a(1 + E[N (t)]).

6.3.3 Quasi-Renewal Processes

In this section, a general renewal process, namely, the quasi-renewal process, is
discussed. Let {N(t), t > 0} be a counting process and let Xn be the time between
the (n − 1)th and the nth event of this process, n ≥ 1.

Definition 6.4 (Wang and Pham 1996): If the sequence of non-negative random
variables {X1, X2, ….} is independent and.

Xi = aXi−1 (6.70)

for i ≥ 2 where α > 0 is a constant, then the counting process {N(t), t ≥ 0} is said
to be a quasi-renewal process with parameter and the first inter-arrival time X1.

When α = 1, this process becomes the ordinary renewal process as discussed
in Sect. 2.6.2. This quasi-renewal process can be used to model reliability growth
processes in software testing phases and hardware burn-in stages for α > 1, and in
hardware maintenance processes when α ≤ 1.

Assume that the probability density function, cumulative distribution function,
survival function, and failure rate of random variable X1 are f 1(x), F1(x), s1(x), and
r1(x), respectively. Then the pdf, cdf, survival function, failure rate of Xn for n = 1,
2, 3, … is respectively given below (Wang and Pham 1996):
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fn(x) = 1

αn−1
f1

(
1

αn−1
x

)

Fn(x) = F1

(
1

αn−1
x

)

sn(x) = s1

(
1

αn−1
x

)

fn(x) = 1

αn−1
r1

(
1

αn−1
x

)
. (6.71)

Similarly, the mean and variance of Xn is given as

E(Xn) = αn−1E(X1)

Var(Xn) = α2n−2Var(X1).

Because of the non-negativity of X1 and the fact that X1 is not identically 0, we
obtain

E(X1) = μ1 �= 0

Property 6.8 (Wang and Pham 1996): The shape parameters of Xn are the same for
n = 1, 2, 3, … for a quasi-renewal process if X1 follows the gamma, Weibull, or log
normal distribution.

This means that after “renewal”, the shape parameters of the inter-arrival time
will not change. In software reliability, the assumption that the software debugging
process does not change the error-free distribution type seems reasonable. Thus, the
error-free times of software during the debugging phase modeled by a quasi-renewal
process will have the same shape parameters. In this sense, a quasi-renewal process
is suitable to model the software reliability growth. It is worthwhile to note that

lim
n→∞

E(X1 + X2 + . . . + Xn)

n
= lim

n→∞
μ1(1 − αn)

(1 − α)n

= 0 if α < 1

= ∞ if α > 1

Therefore, if the inter-arrival time represents the error-free time of a software
system, then the average error-free time approaches infinity when its debugging
process is occurring for a long debugging time.

Distribution of N(t).

Consider a quasi-renewal process with parameter α and the first inter-arrival time
X1. Clearly, the total number of renewals, N(t), that has occurred up to time t and
the arrival time of the nth renewal, SSn, has the following relationship:
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N (t) ≥ n if and only if SSn ≤ t

that is, N(t) is at least n if and only if the nth renewal occurs prior to time t. It is
easily seen that

SSn =
n∑

i=1

Xi =
n∑

i=1

αi−1X1 for n ≥ 1 (6.72)

Here, SS0 = 0. Thus, we have

P{N (t) = n} = P{N (t) ≥ n} − P{N (t) ≥ n + 1}
= P{SSn ≤ t} − P{SSn+1 ≤ t}
= Gn(t) − Gn+1(t)

where Gn(t) is the convolution of the inter-arrival times F1, F2, F3, …, Fn. In other
words,

Gn(t) = P{F1 + F2 + . . . . + Fn ≤ t}

If the mean value of N(t) is defined as the renewal function M(t), then,

M(t) = E[N (t)]

=
∞∑

n=1

P{N (t) ≥ n}

=
∞∑

n=1

P{SSn ≤ t}

=
∞∑

n=1

Gn(t). (6.73)

The derivative of M(t) is known as the renewal density

m(t) = M ′(t).

In renewal theory, random variables representing the inter-arrival distributions
only assume non-negative values, and the Laplace transform of its distribution F1(t)
is defined by

L{F1(s)} =
∞∫

0

e−sxdF1(x)
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Therefore,

LFn(s) =
∞∫

0

e−an−1st dF1(t) = LF1(α
n−1s)

and

Lmn(s) =
∞∑

n=1

LGn(s)

=
∞∑

n=1

LF1(s)LF1(αs) · · · · LF1(α
n−1s)

Since there is a one-to-one correspondence between distribution functions and its
Laplace transform, it follows that.

Property 6.9 (Wang and Pham 1996): The first inter-arrival distribution of a quasi-
renewal process uniquely determines its renewal function.

If the inter-arrival time represents the error-free time (time to first failure), a
quasi-renewal process can be used to model reliability growth for both software and
hardware.

Suppose that all faults of software have the same chance of being detected. If
the inter-arrival time of a quasi-renewal process represents the error-free time of a
software system, then the expected number of software faults in the time interval [0,
t] can be defined by the renewal function, M(t), with parameter α > 1. Denoted by
Mr(t), the number of remaining software faults at time t, it follows that

Mr (t) = M(Tc) − M(t),

where M(Tc) is the number of faults that will eventually be detected through a
software lifecycle Tc.

6.3.4 Non-homogeneous Poisson Processes

The non-homogeneous Poisson process model (NHPP) that represents the number
of failures experienced up to time t is a non-homogeneous Poisson process {N(t), t
≥ 0}. The main issue in the NHPP model is to determine an appropriate mean value
function to denote the expected number of failures experienced up to a certain time
(Pham 2006a).

With different assumptions, the model will end up with different functional forms
of themeanvalue function.Note that in a renewal process, the exponential assumption
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for the inter-arrival time between failures is relaxed, and in the NHPP, the stationary
assumption is relaxed.

The NHPP model is based on the following assumptions:

• The failure process has an independent increment, i.e., the number of failures
during the time interval (t, t + s) depends on the current time t and the length of
time interval s, and does not depend on the past history of the process.

• The failure rate of the process is given by

P{exactly one failure in(t, t + �t)} = P{N (t + �t) − N (t) = 1}
= λ(t)�t + o(�t)

where λ(t) is the intensity function.

• During a small interval Δt, the probability of more than one failure is negligible,
that is,

P{two or more failure in(t, t + �t)} = o(�t)

• The initial condition is N(0) = 0.

On the basis of these assumptions, the probability of exactly n failures occurring
during the time interval (0, t) for the NHPP is given by

Pr{N (t) = n} = [m(t)]n
n! e−m(t) n = 0, 1, 2, . . . (6.74)

wherem(t) = E[N (t)] =
t∫

0
λ(s)ds and λ(t) is the intensity function. It can be easily

shown that the mean value function m(t) is non-decreasing.
Reliability Function.
The reliability R(t), defined as the probability that there are no failures in the time

interval (0, t), is given by

R(t) = P{N (t) = 0}
= e−m(t)

In general, the reliability R(x|t), the probability that there are no failures in the
interval (t, t + x), is given by

R(x |t) = P{N (t + x) − N (t) = 0}
= e−[m(t+x)−m(t)]

and its density is given by
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f (x) = λ(t + x)e−[m(t+x)−m(t)]

where

λ(x) = ∂

∂x
[m(x)]

The variance of the NHPP can be obtained as follows:

Var [N (t)] =
t∫

0

λ(s)ds

and the auto-correlation function is given by

Cor [s] = E[N (t)]E[N (t + s) − N (t)] + E[N 2(t)]

=
t∫

0

λ(s)ds

t+s∫

0

λ(s)ds +
t∫

0

λ(s)ds

=
t∫

0

λ(s)ds

⎡

⎣1 +
t+s∫

0

λ(s)ds

⎤

⎦ (6.75)

Example 6.15 Assume that the intensity λ is a random variable with the pdf f (λ).
Then the probability of exactly n failures occurring during the time interval (0, t) is
given by

P{N (t) = n} =
∞∫

0

e−λt (λt)
n

n! f (λ)dλ.

It can be shown that if the pdf f (λ) is given as the following gamma density
function with parameters k and m,

f (λ) = 1


(m)
kmλm−1e−kλ for λ ≥ 0

then

P(N (t) = n) =
(
n + m − 1

n

)

[p(t)]m[q(t)]n n = 0, 1, 2, . . . (6.76)

is also called a negative binomial density function, where
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p(t) = k

t + k
and q(t) = t

t + k
= 1 − p(t). (6.77)

Thus,

P(N (t) = n) =
(
n + m − 1

n

)(
k

t + k

)m( t

t + k

)n

n = 0, 1, 2, . . . (6.78)

The reader interested in a deeper understanding of advanced probability theory
and stochastic processes should note the following highly recommended books:

Devore, J. L., Probability and Statistics for Engineering and the Sciences, 3rd
edition, Brooks/Cole Pub. Co., Pacific Grove, 1991.

Gnedenko, B. V and I. A. Ushakov, Probabilistic Reliability Engineering, Wiley,
New York, 1995.

Feller,W.,An Introduction to Probability Theory and Its Applications, 3rd edition,
Wiley, New York, 1994.

6.4 Problems

1. Calculate the reliability and MTTF of k-out-of-(2 k − 1) systems when d = 3,

λ1 = 0.0025/h, λ2 = 0.005/h, λ3 = 0.01/h and μ1 = μ2 = μ3 = 0

where k = 1,2,3,4 and 5 for various time t. (Hints: using Eqs. (6.42) and (6.43)).
2. In a nuclear power plant there are five identical and statistically independent

channels tomonitor the radioactivity of air in the ventilation systemwith the aim
of alerting reactor operators to the need for reactor shutdown when a dangerous
level of radioactivity is present.When at least three channels register a dangerous
level of radioactivity, the reactor automatically shuts down. Furthermore, each
channel contains three identical sensors and when at least two sensors register
a dangerous level of radioactivity, the channel registers the dangerous level of
radioactivity. The failure rate of each sensor in any channel is 0.001 per day.
However, the common-cause failure rate of all sensors in a channel is 0.0005
per day. Obtain the sensor reliability, channel reliability, and the entire system
reliability for various time t.

3. A crucial system operates in a good state during an exponentially distributed
time with expected value 1

λ
After leaving the good state, the system enters a

degradation state. The system can still function properly in the degradation
state during a fixed time a > 0, but a failure of the system occurs after this time.
The system is inspected every T time units where T > a. It is replaced by a new
one when the inspection reveals that the system is not in the good state.
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(a) What is the probability of having a replacement because of a system
failure?

(b) What is the expected time between two replacements?

4. A system consists of two independent components operating in parallel with
a single repair facility where repair may be completed for a failed component
before the other component has failed. Both the components are assumed to be
functioning at time t = 0. When both components have failed, the system is
considered to have failed and no recovery is possible. Assuming component i
has the constant failure rate λi and repair rate μi for i = 1 and 2. The system
reliability function, R(t), is defined as the probability that the system continues
to function throughout the interval (0, t).

(a) Using the Eqs. (6.29) and (6.31) and the Laplace transform, derive the
reliability function for the system. Obtain the system mean time to failure
(MTTF)

(b) Calculate (a) with λ1 = 0.003 per hour, λ2 = 0.005 per hour, μ1 = 0.3
per hour, μ2 = 0.1 per hour, and t = 25 h.

5. A system is composed of 20 identical active power supplies, at least 19 of the
power supplies are required for the system to function. In other words, when 2
of the 20 power supplies fail, the system fails. When all 20 power supplies are
operating, each has a constant failure rate λa per hour. If one power supply fails,
each remaining power supply has a failure rate λb per hour where λa ≤ λb. We
assume that a failed power supply can be repaired with a constant rate μ per
hour. The system reliability function, R(t), is defined as the probability that the
system continues to function throughout the interval (0, t).

(a) Determine the system mean time to failure (MTTF).
(b) Given λa = 0.0005, λb = 0.004, and μ = 0.5, calculate the system

MTTF.

6. A system is composed of 15 identical active power supplies, at least 14 of the
power supplies are required for the system to function. In other words, when 2
of the 15 power supplies fail, the system fails. When all 15 power supplies are
operating, each has a constant failure rate λa per hour. If one power supply fails,
each remaining power supply has a failure rate λb per hour where λa ≤ λb. We
assume that a failed power supply can be repaired with a constant rate μ per
hour. The system reliability function, R(t), is defined as the probability that the
system continues to function throughout the interval (0, t).

(a) Determine the system mean time to failure (MTTF).
(b) Given λa = 0.0003, λb = 0.005, and μ = 0.6, calculate the system

MTTF.

7. Events occur according to an NHPP in which the mean value function is m(t)
= t3 + 3t2 + 6t t > 0.
What is the probability that n events occur between times t = 10 and t = 15?
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8. Show that the renewal function, M(t), can be written as follows:

M(t) = F(t) +
t∫

0

M(t − s)dF(s)

where F(t) is the distribution function of the inter-arrival time or the renewal period.
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Chapter 7
Maintenance Models

7.1 Introduction

It has been commonly known that reliability of any system including telecommuni-
cation, computers, aircraft, power plants etc., can be improved by applying the redun-
dancy or maintenance approaches. In general, the failure of such systems is usually
costly, if not very dangerous. Maintenance, replacement and inspection problems
have been extensively studied in the reliability, maintainability and warranty litera-
ture (PhamandWang, 1996;WangandPham,2006).Maintenance involves corrective
(unplanned) and preventive (planned). Corrective maintenance (CM) occurs when
the system fails. In other words, CM means all actions performed as a result of
failure, to restore an item to a specified condition. Some researchers also refer to CM
as repair. Preventive maintenance (PM) occurs when the system is operating. In other
words, PM means all actions performed in an attempt to retain an item in specified
condition from operation by providing systematic inspection, detection, adjustment,
and prevention of failures. Maintenance also can be categorized according to the
degree to which the operating conditions of an item are restored by maintenance as
follows (Wang and Pham, 2006):

a. Replacement policy: A system with no repair is replaced before failure with a
new one.

b. Preventive maintenance (pm) policy: A system with repair is maintained
preventively before failure.

c. Inspection policy: A system is checked to detect its failure.
d. Perfect repair or perfect maintenance: a maintenance action which restores the

system operating condition to ‘as good as new’, i.e., upon perfect maintenance,
a system has the same lifetime distribution and failure rate function as a brand
new one. Generally, replacement of a failed system by a new one is a perfect
repair.

e. Minimal repair or minimal maintenance: a maintenance action which restores
the system to the failure rate it had when it just failed. The operating state of the
system under minimal repair is also called ‘as bad as old’ policy in the literature.

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
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f. Imperfect repair or imperfect maintenance: a maintenance action may not make
a system ‘as good as new’ but younger. Usually, it is assumed that imperfect
maintenance restores the system operating state.

This chapter discusses a brief introduction in maintenance modeling with various
maintenance policies including age replacement, block replacement and multiple
failure degradation processes and random shocks. We also discuss the reliability
and inspection maintenance modeling for degraded systems with competing failure
processes.

Example 7.1 Suppose that a system is restored to “as good as new” periodically at
intervals of time T. So the system renews itself at time T, 2 T, …. Define system
reliability under preventive maintenance (PM) as.

RM (t) = Pr{failure has not occurred by time t} (7.1)

In other words, the system survives to time t if and only if it survives every PM
cycle {1,2,…,k} and a further time (t - kT ).

(a) For a system with a failure time probability density function

f (t) = λ2t e−λt for t > 0, λ > 0 (7.2)

obtain the system reliability under PM and system mean time to first failure.

(b) Calculate the systemmean time to first failure if PM is performed every 20 days
and λ = 0.005.

Solution: The system survives to time t if and only if it survives every PM cycle
{1,2,…,k} and a further time (t - kT ). Thus,

RM (t) = [R(T )]kR(t − kT ) for kT < t < (k + 1)T and k = 0, 1, 2, . . . (7.3)

Interval containing t Formula for RM(t)

0 < t < T R(t)
T < t < 2T R(T )R(t − T )

2T < t < 3T [R(T )]2R(t − 2T )

. . .

kT < t < (k + 1)T [R(T )]kR(t − kT )

Thus, system reliability under PM is

RM (t) = [R(T )]kR(t − kT ) for kT < t < (k + 1)T and k = 0, 1, 2, . . . (7.4)

Given the probability density function as from Eq. (7.1),
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f (t) = λ2te−λt for t > 0, λ > 0

then

R(t) =
∞∫

t

f (x)dx =
∞∫

t

λ2x e−λxdx = (1 + λt)e−λt . (7.5)

Thus, from Eq. (7.4), we have

RM (t) = [R(T )]kR(t − kT ) for k = 0, 1, 2, . . .

= [(1 + λT )e−λT
]k[

(1 + λ(t − kT ))e−λ(t−kT )
]
. (7.6)

The system mean time to first failure (MTTFF) is

MTTFF =
∞∫

0

RM (t)dt

=
T∫

0

R(t)dt +
2T∫

T

R(T )R(t − T )dt +
3T∫

2T

[R(T )]2R(t − 2T )dt + ...

=
∞∑
k=0

[R(T )]k
T∫

0

R(u)du

=

T∫
0
R(u)du

1 − R(T )
.

Thus,

MTTFF =

T∫
0
R(u)du

1 − R(T )
. (7.7)

Note that, from Eq. (7.5)

T∫

0

R(x)dx =
T∫

0

(1 + λx)e−λxdx

= 2

λ

(
1 − e−λT

)− Te−λT .

From Eq. (7.7), we have
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MTTFF =

T∫
0
R(u)du

1 − R(T )
=

2
λ

(
1 − e−λT

)− Te−λT

1 − (1 + λT )e−λT
.

(b) Here T = 20 days, and λ = 0.005 per day.

MTTFF =
2

0.005

(
1 − e−(0.005)20

)− (20)e−(0.005)20

1 − (1 + (0.005)(20))e−(0.005)(20)
= 19.9683

0.0047
= 4, 267.8 days.

7.2 Maintenance and Replacement Policies

A failed system is assumed to immediately replace or repair. There is a cost associated
with it. One the one hand, designer may want to maintain a system before its failure.
On the other hand, it is better not to maintain the system too often because the
cost involved each time. Therefore it is important to determine when to perform the
maintenance of the system that can minimize the expected total system cost.

Consider a one-unit system where a unit is replaced upon failure. Let.

c1 the cost of each failed unit which is replaced
c2(<c1) the cost of a planned replacement for each non-failed unit
N1 (t) the number of failures with corrective replacements (CM)
N2 (t) the number of replacements of non-failed units during (0, t] interval.

In general, the expected total system cost during (0,T ], Ec(T ), can be defined as
follows:

Ec[T ] = c1E[N1(T )] + c2E[N2(T )]. (7.8)

We now discuss the optimum policies which minimize the expected costs per unit
time of each replacement policy such as age replacement and block replacement.

7.2.1 Age Replacement Policy

A unit is replaced at time T or at failure, whichever occurs first. T is also called a
planned replacement policy. Let {Xk}∞k=1 be the failure times of successive operating
units with a density f and distribution F with finite mean μ. Let Zk ≡ min{Xk ,T }
represents the intervals between the replacements caused by either failure or planned
replacement for k = 1,2,… The probability of Zk can be written as follows:
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Pr(Zk ≤ t) =
{
F(t) t < T
1 t ≥ T .

(7.9)

The mean time of one cycle is

E(Zk) =
∫ T

0
tdF(t) + TR(T ) =

∫ T

0
R(t)dt. (7.10)

The expected total system cost per cycle is

Ec(T ) = c1F(T ) + c2R(T ) (7.11)

where R(T) = 1−F(T).
The expected total cost per unit time for an infinite time span, C(T ), is

C(T ) = c1F(T ) + c2R(T )∫ T
0 R(t)dt

. (7.12)

Let r(t) ≡ f (t)/R(t) be the failure rate. We wish to find the optimal replace-
ment policy time T ∗ which minimizes the expected total cost per unit time C(T ) in
Eq. (7.12).

Theorem 7.1 Given c1, c2, andμ. Assume the failure rate r(t) is a strictly increasing
function and A = c1

μ(c1−c2)
. The optimal replacement policy time T ∗ that minimizes

the expected total system cost per unit time C(T) can be obtained as follows:
If r(∞) > A then there exists a finite value

T ∗ = G−1

(
c2

c1 − c2

)
(7.13)

where G(T ) = r(T )
∫ T
0 R(t)dt − F(T ) and the resulting expected total system cost

per unit time C(T) is

C(T ∗) = (c1 − c2)r(T
∗).

(ii) If r(∞) ≤ A then the optimum replacement time T is at: T ∗ = ∞. This implies
that a unit should not be replaced unless it fails.

The above results can be obtained by differentiating the expected total cost func-
tion per unit time C(T ) from Eq. (7.12) with respect to T and setting it equal to 0.
We have

∂C(T )

∂T
= (c1 − c2)

(
r(T )

∫ T

0
R(t)dt − F(T )

)
− c2 ≡ 0 (7.14)
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or, equivalently, G(T ) = c2
c1−c2

. Since r(T ) is strictly increasing and G(0) = 0, we
can easily show that the function G(T ) is strictly increasing in T.

If r(∞) > A then G(∞) > c2
(c1−c2)

. This shows that there exists a finite value T ∗

where T* is given in Eq. (7.13) and it minimizes C(T ).
If r(∞) ≤ A then G(∞) ≤ c2

(c1−c2)
. This shows that the optimum replacement

time is T ∗ = ∞. This implies that a unit will not be replaced until it fails.

Example 7.2 Under an age replacement policy, the system is replaced at time T or
at failure whichever occurs first. The costs of a failed unit and a planned replacement
unit are respectively c1 and c2 with c1 ≥ c2. For systemswith a failure time probability
density function.

f (t) = λ2te−λt for t > 0, λ > 0

obtain the optimal planned replacement time T* that minimizes the expected total
cost per cycle per unit time. Given c1 = 10 and c2 = 1, what is the optimal planned
replacement time T* that minimizes the expected total cost per cycle per unit time?

Solution: The pdf is.

f (t) = λ2te−λt for t > 0, λ > 0

The reliability function

R(t) =
∞∫

t

f (x)dx =
∞∫

t

λ2xe−λxdx = (1 + λt)e−λt

The failure rate

r(t) = f (t)

R(t)
= λ2te−λt

(1 + λt)e−λt
= λ2t

(1 + λt)
. (7.15)

From Eq. (7.12), the expected total cost per cycle per unit time is

E(T ) = c1F(T ) + c2R(T )

T∫
0
R(t)dt

.

The derivative of the function E(T ) is given by
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∂E(T )

∂T
=
[
c1f (T ) − c2f (T )

] T∫
0
R(t)dt − [c1F(T ) + c2R(T )]R(T )

(
T∫
0
R(t)dt

)2 .

Setting the above equation to 0 we obtain the following:

∂E(T )

∂T
= 0 ⇔ (c1 − c2)f (T )

T∫

0

R(t)dt − [c1F(T ) + c2R(T )]R(T ) ≡ 0.

(c1 − c2)
f (T )

R(T )

T∫

0

R(t)dt = [c1F(T ) + c2R(T )]

(c1 − c2)r(T )

T∫

0

R(t)dt − (c1 − c2)F(T ) = c2

(c1 − c2)

⎧⎨
⎩r(T )

T∫

0

R(t)dt − F(T )

⎫⎬
⎭ = c2

or,

r(T )

T∫

0

R(t)dt − F(T ) = c2
(c1 − c2)

. (7.16)

Let

G(T ) = r(T )

T∫

0

R(t)dt − F(T ) and A1 =
c2

c1 − c2
. (7.17)

That is,G(T ) = A1. Since r(T ) is increasing andG(0) = 0 we can show thatG(T )
is increasing in T.

(a) If

r(∞) > A where A = c1
μ(c1 − c2)

and μ =

∞∫

0

R(t)dt. (7.18)

then G(∞) > A1. There exists a finite value T* where
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T∗ = G−1

(
c2

(c1 − c2)

)
. (7.19)

(b) If

r(∞) ≤ A then G(∞) ≤ c2
(c1 − c2)

(7.20)

then the optimum replacement time is T ∗ = ∞. This implies that a unit will not be
replaced until it fails.

We now calculate

T∫

0

R(t)dt =
T∫

0

(1 + λt) e−λtdt = 2

λ

(
1 − e−λT

)− Te−λT . (7.21)

Then

G(T ) = r(T )

T∫

0

R(t)dt − F(T )

= λ2T

(1 + λT )

[
2

λ

(
1 − e−λT

)− Te−λT

]
− [1 − (1 + λT )e−λT

]
(7.22)

Given c1 = 10, c2 = 1, and λ = 2, then

c2
c1 − c2

= 1

10 − 1
= 1

9

From Eq. (7.22),

G(T ) = λ2T

(1 + λT )

[
2

λ

(
1 − e−λT

)− Te−λT

]
− [1 − (1 + λT )e−λT

]

= 4T

(1 + 2T )

[
2

2

(
1 − e−2T

)− Te−2T

]
− [1 − (1 + 2T )e−2T

]

= 4T

(1 + 2T )

[
1 − e−2T − Te−2T

]− [1 − (1 + 2T )e−2T
]
.

Here we can find T * such as

G(T ∗) = 1

9
= 0.1111

The expected total cost per cycle per unit time, from Eq. (7.12), is:
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E(T ) = c1F(T ) + c2R(T )

T∫
0
R(t)dt

.

= c1
[
1 − (1 + λT ) e−λT

]+ c2
[
(1 + λT ) e−λT

]
[
2
λ

(
1 − e−λT

)− Te−λT
]

= 10
[
1 − (1 + 2T ) e−2T

]+ [(1 + 2T ) e−2T
]

[(
1 − e−2T

)− Te−2T
]

= 10 − 9(1 + 2T ) e−2T

1 − (1 + T ) e−2T
.

T G(T) E(T)

0.3 0.0930 7.3186

0.32 0.102 7.2939

0.33 0.1065 7.2883

0.335 0.1088 7.2870

0.34 0.1111 7.2865

0.35 0.1156 7.2881

0.5 0.1839 7.5375

Thus, the optimal planned replacement time T * that minimizes the expected total
cost per cycle per unit time is:

T ∗ = 0.34 and E
(
T ∗) = 7.2865.

7.2.2 Block Replacement

Consider that a unit begins to operate at time t = 0 and when it fails, it is discovered
instantly and replaced immediately by a new one. Under this block policy, a unit is
replaced at periodic times kT (k = 1, 2, · · · ) independent of its age. Suppose that
each unit has a failure time distribution F(t) with finite mean μ. The expected total
system cost per cycle Ec(T ) is given by

Ec(T ) = c1E[N1(T )] + c2E[N2(T )] = c1M (T ) + c2 (7.23)

where M(T ) = E(N1(T )) is differential and the expected number of failed units per
cycle. The expected total system cost per unit time for an infinite time span under
block replacement policy is defined as
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C(T ) = c1M (T )+c2
T . (7.24)

This indicates that there will be one planned replacement per period at a cost of
c2 and the expected number of failures with corrective replacement per period where
each corrective replacement has a cost of c1.

Theorem 7.2 Given c1 and c2. There exists a finite optimum planned replacement
time T ∗ that minimizes the expected total system cost per unit time C(T ):

T ∗ = D−1

(
c2
c1

)
. (7.25)

the resulting expected total system cost is C(T *) whereD(T ) = Tm(T )−M (T ) and
m(t) ≡ dM (t)/dt.

Similarly from Theorem 7.1, we can obtain the optimum planned replacement
time T ∗ given in Eq. (7.25) which minimizes the expected cost per unit time C(T )

by differentiating the function C(T ) with respect to T and setting it equal to zero,
we obtain

Tm(T ) − M (T ) = c2
c1

where m(t) ≡ dM (t)/dt. The results can immediately follow.

7.2.3 Periodic Replacement Policy

For some systems, we only need to perform minimal repair at each failure, and make
the planned replacement or preventive maintenance at periodic times.

Consider a periodic replacement policy as follows: A unit is replaced periodically
at periodic times kT (k = 1, 2, · · · ). After each failure, only minimal repair is
made so that the failure rate remains undisturbed by any repair of failures between
successive replacements (Barlow and Proschan, 1965). This policy is commonly used
with computers and airplanes. Specifically, a new unit begins to operate at t = 0,
and when it fails, only minimal repair is made. That is, the failure rate of a unit
remains undisturbed by repair of failures. Further, a unit is replaced at periodic times
kT (k = 1, 2, · · · ) independent of its age, and any units are as good as new after
replacement. It is assumed that the repair and replacement times are negligible.
Suppose that the failure times of each unit are independent, and have a cdfF(t) and the
failure rate r(t) ≡ f (t)/R(t)where f is a probability density function density andR(t)
is the reliability function. The failures of a unit occur that follow a nonhomogeneous
Poisson processwith amean-value functionH(t) whereH (t) ≡ ∫ t

0 r(u)du andR(t) =
e−H (t).
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Consider one cycle with a constant time T from the planned replacement to the
next one. Then, since the expected number of failures during one cycle isE(N1(T )) =
M (T ), the expected total system cost per cycle is

Ec(T ) = c1E(N1(T )) + c2E(N2(T )) = c1H (T ) + c2, (7.26)

where c1 is the cost of each minimal repair.
Therefore the expected total system cost per unit of time for an infinite time span

is

C(T ) ≡ 1

T
[c1H (T ) + c2]. (7.27)

If a unit is not replaced forever, i.e., T = ∞, then lim
T→∞R(T )/T = r(∞), which

may be possibly infinite, and C(∞) = c1r(∞).
Given c1 and c2. There exists a finite optimum replacement time T ∗ such that

Tr(T ) − H (T ) = c2
c1

(7.28)

thatminimizes the expected total systemcost per unit timeC(T ) as given inEq. (7.27).
Differentiating the function C(T ) in Eq. (7.27) with respect to T and setting it

equal to zero, we have.

Tr(T ) − H (T ) = c2
c1

If the cost of minimal repair depends on the age x of a unit and is given by c1(x),
the expected total system cost per unit time can be defined as

C(T ) = 1

T
[
∫ T

0
c1(x)r(x)dx + c2]. (7.29)

One can obtain the optimum replacement policy T that minimizes the expected
total system cost C(T ) by taking a derivative of the function C(T ) with respect to T
given the function c1(x).

7.2.4 Replacement Models with Two Types of Units

In practice, many systems are consisted of vital and non-vital parts or essential and
non-essential components. If vital parts fail then a system becomes dangerous or
suffers a high cost. It would be wise to make the planned replacement or overhaul at
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suitable times. We may classify into two types of failures; partial and total failures,
slight and serious failures, or simply faults and failures.

Consider a system consists of unit 1 and unit 2which operate independently,where
unit 1 corresponds to non-vital parts and unit 2 to vital parts. It is assumed that unit
1 is replaced always together with unit 2. Unit i has a failure time distribution Fi(t),
failure rate ri(t) and cumulative hazard Hi(t)(i = 1, 2), i.e., Ri(t) = exp[−Hi(t)]
and Hi(t) = ∫ t

0 ri(u)du. Then, we consider the following four replacement policies
which combine age, block and periodic replacements:

(a) Unit 2 is replaced at failure or time T, whichever occurs first, and when unit
1 fails between replacements, it is replaced by a new unit. Then, the expected
total system cost per unit time is

C(T ) = c1
∫ T
0 f1(t)R2(t)dt + c2F2(T ) + c3∫ T

0 R2(t)dt
(7.30)

where c1 is a cost of replacement for a failed unit 1, c2 is an additional replacement
for a failed unit 2, and c3 is a cost of replacement for units 1 and 2.

(b) In case (a), when unit 1 fails between replacements, it undergoes only minimal
repair. Then, the expected total system cost per unit time is

C(T ) = c1
∫ T
0 r1(t)R2(t)dt + c2F2(T ) + c3∫ T

0 R2(t)dt
, (7.31)

where c1 is a cost of minimal repair for failed unit 1, and c2 and c3 are the same costs
as case (a).

(c) Unit 2 is replaced at periodic times kT (k = 1, 2, · · · ) and undergoes only
minimal repair at failures between planned replacements, and when unit 1 fails
between replacements, it is replaced by a new unit. Then, the expected total
system cost per unit time is

C(T ) = 1

T
[c1H1(T ) + c2H2(T ) + c3], (7.32)

where c2 is a cost of minimal repair for a failed unit 2, and c1 and c3 are the same
costs as case (a).

(d) In case (c), when unit 1 fails between replacements, it also undergoes minimal
repair. Then, the expected total system cost per unit time is

C(T ) = 1

T
[c1H1(T ) + c2H2(T ) + c3], (7.33)
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where c1 is a cost of minimal repair for a failed unit 1, and c2 and c3 are the same
costs as case (c).

7.3 Non-repairable Degraded System Modeling

Maintenance has evolved from simple model that deals with machinery breakdowns,
to time-based preventive maintenance, to today’s condition-based maintenance. It
is of great importance to avoid the failure of a system during its actual operating;
especially, when such failure is dangerous and costly. This section discusses a relia-
bility model and examines the problem of developing maintenance cost models for
determining the optimal maintenance policies of non-repairable degraded systems
with competing failure processes. The material in this section are based on Li and
Pham (2005a).

Notation

Cc Cost per CM action
Cp Cost per PM action
Cm Loss per unit idle time
Ci Cost per inspection
Y(t) Degradation process
Yi(t) Degradation process i, i = 1, 2
D(t) Cumulative shock damage value up to time t
S Critical value for shock damage
C(t) Cumulative maintenance cost up to time t.
E[C1] Average total maintenance cost during a cycle
E[W1] Mean cycle length
E[NI ] Mean number of inspections during a cycle
E[ξ ] Mean idle time during a cycle
{Ii}i∈N Inspection sequence
{Ui}i∈N Inter-inspection sequence
Pi+1 Probability that there are a total of (i + 1) inspections in a renewal cycle
Pp Probability that a renewal cycle ends by a PM action
Pc Probability that a renewal cycle ends by a CM action (Pc = 1- Pp)

Consider that:

• The system has the state space �U = {M , . . . , 1, 0,F} and it starts at state M at
time t = 0;

• System fails either due to degradation (Y(t) > G) or catastrophic failure(
D(t) =

N2(t)∑
i=1

Xi > S

)
. System may either goes from state i to the next degraded

state i-1 or directly goes to catastrophic failure state F, i = M,.0.1;
• No repair or maintenance is performed on the system; and
• The two processes Y(t) and D(t) are independent.
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M-1M 01

D(t)>S F

Fig. 7.1 Flow diagram of the system with two competing failure processes (Li and Pham, 2005a,
b)

Figure 7.1 illustrates the case where systems are subject to two failure competing
processes: degradation process Y(t) and the random shocks process D(t) and
whichever process occurred first would cause the system to failure.

Suppose that the operating condition of the system at any time point could be
classified into one of a finite number of the states, say�U = {M , . . . , 1, 0,F}.Aone-
to-one relationship between the element of� = {M , . . . , 1, 0} and its corresponding
interval is defined as follows:

State M if Y (t) ∈ [0,WM ]
State M − 1 if Y (t) ∈ (WM ,WM−1

]
...

State i Y (t) ∈ (Wi+1,Wi
]

State 1 Y (t) ∈ (W2,W1]
State 0 Y (t) > W1

LetPi(t) be a probability that the value ofY(t)will fall within a pre-defined interval
corresponding to state i and D(t) ≤ S. From state i, the system will make a direct
transition to state (i-1) due to gradual degradation or to state F due to a random shock
(Fig. 7.1). The reliability function is defined as:

RM (t) =
M∑
i=1

Pi(t) = P(Y (t) ≤ G,D(t) ≤ S) (7.34)

where Pi(t) is the probability of being in state i. Let T be the time to failure of the
system. Then T can be defined as: T = inf{t > 0 : Y (t) > G or D(t) > S}. The
mean time to failure is given by:

E[T] =
∫ ∞

0
P(Y (t) ≤ G,D(t) ≤ S)dt
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=
∫ ∞

0
P(Y (t) ≤ G)

∞∑
j=0

(λ2t)je−λ2t

j! F (j)
X (S)dt (7.35)

or, equivalently,

E[T ] =
∞∑
j=0

F (j)
X (S)

j!
∫ ∞

0
P(Y (t) ≤ G)(λ2t)

je−λ2tdt (7.36)

Let FG(t) = P{Y (t) ≤ G}, then fG(t) = d
dt FG(t). The pdf of the time to failure,

fT (t) can be easily obtained:

fT (t) = − d

dt
[P(Y (t) ≤ G)P(D(t) ≤ S)]

= −
∞∑
j=0

F (j)
X (S)

j!
d

dt

[
P(Y (t) ≤ G)(λ2t)

je−λ2t
]

After simplifications, we have

fT (t) = −
∞∑
j=1

F (j)
X (S)

j!
[
fG(t)(λ2t)

je−λ2t + FG(t)jλ2(λ2t)
j−1e−λ2t − λ2FG(t)(λ2t)

je−λ2t
]

(7.37)

Assume that the degradation process is described as the function Y (t) = W eBt

A+eBt

where the two randomvariablesA andB are independent, and thatA follows a uniform
distribution with parameter interval [0,a] and B follows exponential distribution with
parameter β > 0. In short, A ∼ U [0, a], a > 0 and B ∼ Exp(β), β > 0.

The probability for the system of being in state M is as follows:

PM (t) = P(Y (t) ≤ WM ,D(t) ≤ S)

=
⎧⎨
⎩
∫

∀A
P

(
B <

1

t
ln

u1A

1 − u1
|A = x

)
fA(x)dx

⎫⎬
⎭P(D(t) ≤ S)

=
{
1 − 1

a

(
1 − u1
u1

) β

t
(

t

t − β

)(
a1−

β

t − 1
)}

e−λ2t
∞∑
j=0

(λ2t)j

j! F (j)
X (S)

(7.38)

Then the probability for the system of being in state i can be calculated as follows:

Pi(t) = P(Wi+1 < W
eBt

A + eBt
≤ Wi,D(t) ≤ S)
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=
{∫ a

0
P

(
1

t
ln

ui−1A

1 − ui−1
< B ≤ 1

t
ln

uiA

1 − ui
|A = x

)
fA(x)dx

}
e−λ2 t

∞∑
j=1

(λ2t)j

j! F (j)
X (S)

=
{
1

a

(
t

t − β

)(
a1−

β
t

)[( 1 − ui
ui

) β
t −

(
1 − ui−1

ui−1

) β
t
]}

e−λ2 t
∞∑
j=0

(λ2t)j

j! F (j)
X (S) (7.39)

where μi = Wi
W , i = M-1,..,1.

Similarly, the probability for the system of being in state 0 is as follows:

P0(t) = P(Y (t) = W
eBt

A + eBt
> G,D(t) ≤ S)

=
{
1

a

(
1 − uM
uM

) β

t
(

t

t − β

)(
a1−

β

t

)}
e−λ2t

∞∑
j=0

(λ2t)j

j! F (j)
X (S)

The probability for a catastrophic failure state F is given by:

PF(t) = P(Y (t) = W
eBt

A + eBt
≤ G,D(t) > S)

=
{
1 − 1

a

(
1 − u1
u1

) β

t
(

t

t − β

)(
a1−

β

t

)}⎧⎨
⎩1 − e−λ2t

∞∑
j=0

(λ2t)j

j! F (j)
X (S)

⎫⎬
⎭

Hence, the reliability RM(t) is given by:

RM (t) =
M∑
i=1

Pi(t)

=
{
1 − 1

a

(
1 − uM
uM a

) β

t
(

t

t − β

)(
a1−

β

t

)}⎧⎨
⎩e−λ2t

∞∑
j=0

(λ2t)j

j! F (j)
X (S)

⎫⎬
⎭
(7.40)

Example 7.3 Assume.

Y (t) = W eBt

A+eBt where A~U[0,5] and B~Exp(10); and critical values for the degra-
dation and the shock damage are: G = 500 and S = 200, respectively. The random

shocks function:D(t) =
N2(t)∑
i=1

Xi whereXi~Exp(0.3) andX ′
i s are i.i.d. Figure 7.2 shows

the reliability of the system using Eq. (7.40) for λ2 = .12 and λ2 = .20.
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Fig. 7.2 Reliability RM(t)
versus time t (Li and Pham,
2005a, b)
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7.4 Inspection-Maintenance Repairable Degraded System
Modeling

The system is assumed to be periodically inspected at times {I , 2I , . . . , nI , . . .} and
that the state of the system can only be detected by inspection. After a PM or CM
action the systemwill store it back to as-good-as-new state. Assuming that the degra-
dation {Y (t)}t≥0and random shock {D(t)}t≥0 are independent, and a CM action is
more costly than a PM and a PM costs much more than an inspection. In other
words, Cc > Cp > Ci.

From Sect. 7.3, T is defined as the time-to-failure T = inf{t > 0 : Y (t) >

G or D(t) > S} where G is the critical value for {Y (t)}t≥0 and S is the threshold
level for {D(t)}t≥0 (Li and Pham, 2005a, b).

The two threshold values L and G (G is fixed) effectively divide the system
state into three zones as shown in Fig. 7.3. They are: Doing nothing zone when
Y (t) ≤ L and D(t) ≤ S; PM zone when L < Y (t) ≤ G and D(t) ≤ S; and CM zone
Y (t) > G or D(t) > S. The maintenance action will be performed when either of
the following situations occurs:

13

Y(t)
G

L

CM Zone

PMZone

Doing
Nothing
Zone

Fig. 7.3 The evolution of the system (Li and Pham, 2005a, b)
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The current inspection reveals that the system condition falls into PM zone,
however this state is not found at previous inspection. At the inspection time iI,
the system falls into PM zone which means {Y ((i − 1)I) ≤ L,D((i − 1)I) ≤ S}
∩{L < Y (iI) ≤ G,D(iI) ≤ S}. Then PM action is performed and it will take a
random time R1. When the system fails at T, a CM action is taken immediately and
would take a random of time R2. Note that after a PM or a CM action is performed,
the system is renewed and end of the cycle.

The average long-run maintenance cost per unit time can be defined as follows:

EC(L, I) = E[C1]
E[W1] . (7.41)

The expected total maintenance cost during a cycle E[C1] is defined as:

E[C1] = CiE[NI ] + CpE[R1]Pp + CcE[R2]Pc (7.42)

Note that there is a probability Pp that the cycle will end by a PM action and
it will take on the average E[R1] amount of times to complete a PM action with
a corresponding cost CpE[R1]Pp. Similarly, if a cycle ends by a CM action with
probability Pc, it will take on the average E[R2] amount of times to complete a CM
action with corresponding cost CcE[R2]Pc. We next discuss the analytical analysis
of E[C1].
Calculate E[NI ].
Let E[NI ] denote the expected number of inspections during a cycle. Then

E[NI ] =
∞∑
i=1

(i)P{NI = i}

where P{NI = i} is the probability that there are a total of i inspections occurred in
a renewal cycle. It can be shown that

P(NI = i) = P(Y ((i − 1)I) ≤ L,D((i − 1)I) ≤ S) P(L < Y (iI) ≤ G,D(iI) ≤ S)

+ P{Y (iI) ≤ L,D(iI) ≤ S}P{iI < T ≤ (i + 1)I) (7.43)

Hence,

E[NI ] =
∞∑
i=1

i(P(Y ((i − 1)I) ≤ L,D((i − 1)I) ≤ S)P(L < Y (iI) ≤ G,D(iI) ≤ S)

+ P(Y (iI) ≤ L,D(iI) ≤ S)P(iI < T ≤ (i + 1)I)) (7.44)
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AssumeY (t) = A+Bg(t)whereA ∼ N (μA, σ
2
A),B ∼ N (μB, σ

2
B), andA andB are

independent.We now calculate the probabilitiesP(Y ((i−1)I) ≤ L,D((i−1)I) ≤ S)

and P(L < Y (iI) ≤ G,D(iI) ≤ S). Given g(t) = t.
D(t) =∑N (t)

i=0 Xi where X ′
i s are i.i.d. and N (t) ∼ Possion(λ).

Then

P(Y ((i − 1)I) ≤ L,D((i − 1)I) ≤ S)

= P(A + B(i − 1)I ≤ L)P(D((i − 1)I) =
N (i−1)I)∑

Xi ≤ S)

= �

⎛
⎝L − (μA + μB(i − 1)I)√

σ 2
A + σ 2

B((i − 1)I)2

⎞
⎠e−λ(i−1)I

∞∑
j=0

(λ(i − 1)I)j

j! F (j)
X (S)

and

P(L < Y (iI) ≤ G,D(iI) ≤ S)

=
⎧⎨
⎩�

⎛
⎝G − (μA + μBiI)√

σ 2
A + σ 2

B(iI)2

⎞
⎠− �

⎛
⎝L − (μA + μBiI)√

σ 2
A + σ 2

B(iI)2

⎞
⎠
⎫⎬
⎭e−λiI

∞∑
j=0

(λiI)j

j! F (j)
X (S)

Since T is T = inf{t > 0 : Y (t) > G or D(t) > S}, we have:

P(iI < T ≤ (i + 1)I) = P(Y (iI) ≤ L,Y ((i + 1)I) > G)P(D((i + 1)I) ≤ S)

+ P(Y ((i + 1)I) ≤ L) P(D(iI) ≤ S,D((i + 1)I) > S)

(7.45)

In Eq. (7.45), since Y (iI) and Y ((i+ 1)I) are not independent, we need to obtain
the joint p.d.f fY (iI),Y ((i+1)I)(y1, y2) in order to compute P(Y (iI) ≤ L,Y ((i + 1)I) >

G).
Assume that Y (t) = A + Bg(t) where A > 0 and B > 0 are two independent

random variables, g(t) is an increasing function of time t and A ∼ fA(a),B ∼ fB(b).
Let

{
y1 = a + bg(iI)

y2 = a + bg((i + 1)I)
(7.46)

After simultaneously solving the above equations in terms of y1 and y2, we obtain:

a = y1g((i + 1)I) − y2g(iI)

g((i + 1)I) − g(iI)
= h1(y1, y2)

b = y2 − y1
g((i + 1)I) − g(iI)

= h2(y1, y2)
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Then the random vector (Y (iI),Y ((i+1)I)) has a joint continuous p.d.f as follows

fY (iI),Y ((i+1)I)(y1, y2) = |J |fA(h1(y1, y2))fB(h2(y1, y2)) (7.47)

where the Jacobian J is given by

J =

∣∣∣∣∣∣∣∣

∂h1
∂y1

∂h1
∂y2

∂h2
∂y1

∂h2
∂y2

∣∣∣∣∣∣∣∣
=
∣∣∣∣ 1

g(iI) − g((i + 1)I)

∣∣∣∣. (7.48)

Note that D(iI) and D(Ii+1) are independent (Li and Pham, 2005a, b), therefore,

P(D(iI) ≤ S,D((i + 1)I) > S) = P(D(iI) ≤ S)P(D((i + 1)I) > S). (7.49)

Calculate Pp

Note that either a PM or CM action will end a renewal cycle. In other words,
PM and CM these two events are mutually exclusive at renewal time point. As a
consequence, Pp + Pc = 1. The probability Pp can be obtained as follows:

Pp = P(PM ending a cycle)

=
∞∑
i=1

P(Y (i − 1)I) ≤ L,L < Y (iI) ≤ G)P(D(iI) ≤ S) (7.50)

Expected Cycle Length Analysis

Since the renewal cycle ends either by a PM action with probability Pp or a CM
action with probability Pc, the mean cycle length E[W1] is calculated as follows:

E[W1] =
∞∑
i=1

E[(iI + R1)IPM occur in ((i−1)I ,iI ]] + E[(T + R2)1CM occur]

=
{ ∞∑

i=1

iIP(Y ((i − 1)I) ≤ L,D((i − 1)I) ≤ S)

P(L < Y (iI) ≤ G,D(iI) ≤ S)} + E[R1]Pp

+ (E[T ] + E[R2])Pc (7.51)

where IPM occurs in((i−1)I ,iI ] and ICM occurs are the indicator functions. The mean time
to failure, E[T ] is given by:
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E[T ] =
∫ ∞

0
P{T > t}dt

=
∫ ∞

0
P{Y (t) ≤ G,D(t) ≤ S}dt

=
∫ ∞

0
P{Y (t) ≤ G}

∞∑
j=0

(λ2t)je−λ2t

j! F (j)
X (S)dt (7.52)

or, equivalently, that

E[T ] =
∞∑
j=0

F (j)
X (S)

j!
∫ ∞

0
P{Y (t) ≤ G}(λ2t)

je−λ2tdt (7.53)

The expression E[T ] would depend on the probability P{Y (t) ≤ G} and
sometimes it cannot easy obtain a closed-form.

Optimization Maintenance Cost Rate Policy

We determine the optimal inspection time I and PM threshold L such that the long-
run average maintenance cost rate EC(L, I) is minimized. In other words, we wish
to minimize the following objective function (Li and Pham, 2005a):

EC(L, I)

=

∞∑
i=1

iP{Y (Ii−1) ≤ L,D(Ii−1) ≤ S}P{L < Y (Ii) ≤ G,D(Ii) ≤ S}
{∞∑
i=1

IiP{Y (Ii−1) ≤ L,D(Ii−1) ≤ S}P{L < Y (Ii) ≤ G,D(Ii) ≤ S

}
+ E[R1]Pp + E[R2]Pc

+

∞∑
i=1

iVi{P{Y (Ii) ≤ L,Y (Ii+1) > G}P{D(Ii+1) ≤ S} + P{Y (Ii+1) ≤ L}P{D(Ii) ≤ S,D(Ii+1) > S}}
{∞∑
i=1

IiP{Y (Ii−1) ≤ L,D(Ii−1) ≤ S}P{L < Y (Ii) ≤ G,D(Ii) ≤ S

}
+ E[R1]Pp + E[R2]Pc

+
CpE[R1]

∞∑
i=1

P{Y (Ii−1) ≤ L,D(Ii−1) ≤ S}P{L < Y (Ii) ≤ G,D(Ii) ≤ S}
{∞∑
i=1

IiP{Y (Ii−1) ≤ L,D(Ii−1) ≤ S}P{L < Y (Ii) ≤ G,D(Ii) ≤ S

}
+ E[R1]Pp + E[R2]Pc

+
CcE[R2]

{
1 −

∞∑
i=1

P{Y (Ii−1) ≤ L,D(Ii−1) ≤ S}P{L < Y (Ii) ≤ G,D(Ii) ≤ S}
}

{∞∑
i=1

IiP{Y (Ii−1) ≤ L,D(Ii−1) ≤ S}P{L < Y (Ii) ≤ G,D(Ii) ≤ S

}
+ E[R1]Pp + E[R2]Pc

(7.54)

where Ii−1 = (i−1)I , Ii = iI , Ii+1 = (i+1)I and Vi = P{Y (iI) ≤ L,D(iI) ≤ S}.
The above complex objective function is a nonlinear optimization problem. Li

and Pham (2005a, b) discussed a step-by-step algorithm based on the Nelder-Mead
downhill simplex method.

Example 7.4 Assume that the degradation process is described by Y (t) = A +
Bg(t) where A and B are independent, A~U(0, 4), B~Exp(−0.3t), respectively, and
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g(t) = √
te0.005t . Assume that the random shock damage is described by D(t) =∑N (t)

i=1 Xi where Xi follows the exponential distribution, i.e., Xi~Exp(−0.04t) and
N(t)~Poisson(0.1). Given G = 50, S = 100, Ci = 900/inspection, Cc = 5600/CM ,
Cp = 3000/PM , R1~Exp(−.1t), and R2~Exp(−.04t). We now determine both the
values of I and L that minimizes the average total system cost per unit time EC(I,L).

From Eq. (7.54), the optimal values are I∗ = 37.5,L∗ = 38 and the corre-
sponding cost value is EC∗(I ,L) = 440.7. See Li and Pham (2005a, b) for the
detailed calculations.

7.5 Warranty Concepts

A warranty is a contract under which the manufacturers of a product and/or service
agree to repair, replace, or provide service when a product fails or the service does not
meet intended requirements (Park and Pham, 2010a, 2010b, 2012a, 2012b, 2012c,
2016). These agreements exist because of the uncertainty present in the delivery
of products or services, especially in a competitive environment. Warranties are
important factors in both the consumers and manufacturers’ decision making. A
warranty can be the deciding factor on which item a consumer chooses to purchase
when different products have similar functions and prices. The length and type of
warranty is often thought of as a reflection of the reliability of a product as well as
the company’s reputation.

Warranty types are dependent on the kind of product that it protects. For larger
or more expensive products with many components, it may be cheaper to repair the
product rather than replacing it. These items are called repairable products. Other
warranties simply replace an entire product because the cost to repair it is either close
to or exceeds its original price. These products are considered non-repairable. The
following are the most common types used in warranties:

Ordinary Free Replacement - Under this policy, when an item fails before a
warranty expires it is replaced at no cost to the consumer. The new item is then
covered for the remainder of the warranty length. This is the most common type of
a warranty and often applies to cars and kitchen appliances.

Unlimited Free Replacement -This policy is the same as the ordinary free replace-
ment policy but each replacement item carries a new identical warranty. This type
of warranty is often used for electronic appliances with high early failure rates and
usually has a shorter length because of it.

Pro-rata Warranty - The third most common policy takes into account how much
an item is used. If the product fails before the end of the warranty length, then it
is replaced at a cost that is discounted proportional to its use. Items that experience
wear or aging, such as tires, are often covered under these warranties.

Different warranty models may include a combination of these three types as well
as offering other incentives such as rebates, maintenance, or other services that can
satisfy a customer and extend the life of their product. Bai and Pham (2006a,2006b,
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2004, 2005), Wang and Pham (2006), Pham (2003), Wang and Pham (2010, 2011,
2012), and Murthy and Blischke (2006) can be served as good references of papers
and books for further studies on maintenance and warranty topics.

7.6 Problems

1. Suppose that a system is restored to “as good as new” periodically at intervals of
time T. So the system renews itself at time T, 2 T, …. Define system reliability
under preventive maintenance (PM) as

RM (t) = Pr{failure has not occurred by time t}

In other words, the system survives to time t if and only if it survives every PM
cycle {1,2,…,k} and a further time (t - kT ).

(a) For a system with a failure time probability density function

f (t) = 1

β2
te− t

β for t > 0, β > 0

obtain the system reliability under PM and system mean time to first failure.
(b) Calculate the systemmean time to first failure if PM is performed every 25 days

and β = 2.

2. Suppose that a system is restored to “as good as new” periodically at intervals of
time T. So the system renews itself at time T, 2 T, …. Define system reliability
under preventive maintenance (PM) as

RM (t) = Pr{failure has not occurred by time t}

In other words, the system survives to time t if and only if it survives every PM
cycle {1,2,…,k} and a further time (t - kT ).

(a) For a system with a failure time probability density function

f (t) = 1

6
λ3t2e−λt for t > 0, λ > 0

obtain the system reliability under PM and system mean time to first failure.
(b) Calculate the systemmean time to first failure if PM is performed every 50 days

and λ = 0.035. (Hints: See Example 7.1)

3. Under an age replacement policy, the system is replaced at time T or at failure
whichever occurs first. The costs are respectively cp and cf with cf > cp. For
systems with a failure time probability density function

f (t) = 1

6
λ3t2e−λt for t > 0, λ > 0
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obtain the optimal planned replacement time T* that minimizes the expected
total cost per cycle per unit time. Given cp = 5 and cf = 25, what is the optimal
planned replacement time T* that minimizes the expected total cost per cycle
per unit time?
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Chapter 8
Statistical Machine Learning and Its
Applications

This chapter aims to discuss some ongoing statistical machine learning methods and
its applications by first providing a brief review of basic matrix calculations that
commonly used in machine learning algorithms and computations. The chapter will
then discuss the concept of singular value decomposition (SVD) and its applications
of SVD in the recommender systems such asmovie review ratings, and finally discuss
the linear regression models.

8.1 Introduction to Linear Algebra

8.1.1 Definitions and Matrix Calculations

A matrix A of order m × n or m by n matrix is a rectangular array of mn elements
having m rows and n columns. Denoting by aij, the element at the (i, j)th position,
we can write the matrix A as

⎡
⎣
a11 a12 . . . a1n
a21 a22 . . . a2n
am1 am2 . . . amn

⎤
⎦

A matrix having only one row is called a row vector. A matrix having only one
column is called a column vector. If the number of rows m and columns n are equal,
the matrix is called square matrix of order n × n.

If A = (ajk) is an m × n matrix while B = (bjk) is an n × p matrix then we define
the product A · B as the matrix C = (cjk) where

c jk =
r∑

i=1

a ji bik (8.1)
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and where C is of order m × p.
The sum A + B of two matrices is defined only if they have the same number

of rows and the same number of columns. The product A · B of two matrices A of
order m × n and B of order n × r is defined only if the number of columns of A is
the same as the number of rows of B. Thus,

• Associative laws: (A + B) + C = A + (B + C); (A · B)C = A(B · C)
• Distributive law: A · (B + C) = A · B + A · C

In general, A · B �= B · A

Example 8.1 Let

A =
(

2 1 4
−3 0 2

)
, B =

⎛
⎝
3 5
2 −1
4 2

⎞
⎠

then

A · B =
(
24 17
−1 −11

)

If A = (ajk) is an m × n matrix, the transpose of A is denoted by AT and AT =
(akj). Note that

(A + B)T = AT + BT

(A · B)T = BT · AT

(
AT)T = A (8.2)

Definition 8.1 A square matrix in which all elements of the main diagonal are equal
to 1 while all other elements are zero is called the unit matrix, and is denoted by I.
That is,

A · I = I · A = A (8.3)

Definition 8.2 A matrix for which all elements ajk of a matrix A are zero for j �= k
is called a diagonal matrix.

Definition 8.3 If for a given square matrix A there exists a matrix B such that A · B
= I then B is called an inverse of A and is denoted by A−1.

Definition 8.4 The determinant, defined only for a square matrix, is a function of
the elements of the matrix. The determinant of A = ((aij)), denoted by |A| or det(A),
is defined as
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|A| =
∑

± a1i1a2i2 ... anin (8.4)

where the summation extends over all the n! permutations i1, i2,…, in of the integers 1,
2,…, n. The sign before a summand is+(−) if an even (odd) number of interchanges
is required to permute 1, 2,…, n into i1, i2,…, in

A square matrix A such that det(A) = 0 is called a singular matrix. If det(A) �= 0
then A is a non-singular matrix.

Every non-singular matrix A has an inverse matrix by A−1 such as

AA−1 = A−1A = I. (8.5)

A minor of a matrix A is a matrix obtained from A by any one of the following
operations: (i) crossing out only certain rows of A; (ii) crossing out only certain
columns of A; (iii) crossing out certain rows and columns of A.

Definition 8.5 The rank of a matrix is defined as the largest integer r for which it
has a non-singular square minor with r rows.

Definition 8.6 Let v1, v2,…,vn represent row vectors (or column vectors) of a square
matrixA of order n. Then det(A)= 0 if and only if there exist constants λ1, λ2,…,λn,
not all zero such that

λ1v1 + λ2v2 + . . . + λnvn = 0 (8.6)

where 0 is the zero row matrix. If Condition (8.6) is satisfied, we say that the vectors
λ1, λ2,…,λn, are linear dependent. Otherwise, they are linearly independent.

Definition 8.7 A real matrix A is called an orthogonal matrix if its transpose is the
same as its inverse, i.e., if AT =A−1 or ATA= I where AT is the transpose of A and
I is the identify matrix.

In otherwords, an orthogonalmatrix is always invertible andAT=A−1. In element
form,

(
a−1

)
i j = a ji .

Example 8.2 The following matrices

A =
[

1√
2

1√
2

1√
2

− 1√
2

]

and
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B =
⎡
⎣

2
3 − 2

3
1
3

1
3

2
3

2
3

2
3

1
3 − 2

3

⎤
⎦

are orthogonal matrices, i.e., ATA = I, and BTB = I.

Orthogonal vectors: Two column vectors A and B are called orthogonal if ATB =
0.

The rows of an orthogonal matrix are an orthogonal basis. That is, each row has
length one and are mutually perpendicular. Similarly, the columns of an orthogonal
matrix are also an orthogonal basis.

Lemma 8.1 The determinant of an orthogonal matrix A is either 1 or −1.

If A is orthogonal matrix, then AT = A−1 . So, det(ATA) = det(I) = 1.
Since det(AT) = det(A), we have det(ATA) = det(AT) · det(A) = (det(A))2 = 1.

This implies that det(A) = ±1.

Eigenvalues: Let A = (ajk) be an n × n matrix and X a column vector. The equation
AX = λX where λ is a number can be written as

⎛
⎝
a11 a12 . . . a1n
a21 a22 . . . a2n
an1 an2 . . . ann

⎞
⎠

⎛
⎜⎜⎜⎝

x1
x2
. . .

xn

⎞
⎟⎟⎟⎠ = λ

⎛
⎜⎜⎜⎝

x1
x2
. . .

xn

⎞
⎟⎟⎟⎠ (8.7)

or

⎧⎪⎪⎨
⎪⎪⎩

(a11 − λ)x1 + a12x2 + . . . + a1nxn = 0
a21x1 + (a22 − λ)x2 + . . . + a2nxn = 0
. . .

an1x1 + an2x2 + . . . + (ann − λ)xn = 0

(8.8)

The Eq. (8.8) will have non-trivial solution if and only if

∣∣∣∣∣∣
a11 − λ a12 . . . a1n
a21 a22 − λ . . . a2n
an1 an2 . . . ann − λ

∣∣∣∣∣∣
= 0 (8.9)

which is a polynomial equation of degree n inλ. The roots of this polynomial equation
are called eigenvalues of the matrix A. Corresponding to each eigenvalue there will
be a solution X which is called an eigenvector. The Eq. (8.9) can be written as

det(A − λI ) = 0 (8.10)
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and the equation inλ is called the characteristic equation. Eigenvalues play an impor-
tant role in situations where the matrix is a transformation from one vector space
onto itself.

Example 8.3 Find the eigenvalues and eigenvectors of the matrix A

A =
⎛
⎝
5 7 −5
0 4 −1
2 8 −3

⎞
⎠

If

X =
⎛
⎜⎝
x1
x2
x3

⎞
⎟⎠

we obtain the equation AX = λX. That is,

⎛
⎝
5 7 −5
0 4 −1
2 8 −3

⎞
⎠
⎡
⎢⎣
x1
x2
x3

⎤
⎥⎦ = λ

⎡
⎢⎣
x1
x2
x3

⎤
⎥⎦

We can obtain

⎛
⎝
5x1+7x2 − 5x3

4x2 − x3
2x1+8x2 − 3x3

⎞
⎠ =

⎡
⎢⎣

λx1
λx2
λx3

⎤
⎥⎦

This implies

⎧⎨
⎩

(5 − λ)x1+7x2 − 5x3 = 0
(4−λ)x2 − x3 = 0

2x1+8x2 − (3+λ)x3 = 0
(8.11)

This system will have non-trivial solutions if

∣∣∣∣∣∣
(5 − λ) 7 −5

(4 − λ) −1
2 8 −(3+λ)

∣∣∣∣∣∣
= 0

Expansion of this determinant yields

λ3 − 6λ2 + 11λ − 6 = 0
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or

(λ − 1)(λ − 2)(λ − 3) = 0.

Thus, the eigenvalues are:

λ = 1; λ = 2; λ = 3.

When λ = 1, Eq. (8.11) yields

⎧⎨
⎩
4x1+7x2 − 5x3 = 0

3x2 − x3 = 0
2x1+8x2 − 4x3 = 0

Solving for x1, x2 and x3, we obtain x1 = 2 x2, x3 = 3 x2. Thus, an eigenvector is

⎛
⎜⎝
x1
x2
x3

⎞
⎟⎠=

⎛
⎜⎝
2x2
x2
3x2

⎞
⎟⎠ =

⎛
⎜⎝
2

1

3

⎞
⎟⎠

Similarly, for λ = 2, we obtain x1 = x2, x3 = 2 x2. Thus, an eigenvector is

⎛
⎜⎝
x1
x2
x3

⎞
⎟⎠=

⎛
⎜⎝

x2
x2
2x2

⎞
⎟⎠ =

⎛
⎜⎝
1

1

2

⎞
⎟⎠

Also, for λ = 3, we obtain x1 = −x2, x3 = x2 then an eigenvector is

⎛
⎜⎝
x1
x2
x3

⎞
⎟⎠=

⎛
⎜⎝

−x2
x2
x2

⎞
⎟⎠ =

⎛
⎜⎝

−1

1

1

⎞
⎟⎠.

The unit eigenvectors have the property that they have length 1, i.e., the sum of
the squares of their elements = 1. Thus the above eigenvectors become respectively:

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

2√
14
1√
14
3√
14

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

1√
6

1√
6
2√
6

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−1√
3

1√
3
1√
3

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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8.2 Singular Value Decomposition

The singular value decomposition (SVD) is a factorization of a real or complex
matrix. It allows an exact representation of any matrix and can be used to form a
subspace spanned by the columns of the matrix. SVD can be used to eliminate the
less important data in the matrix to produce a low-dimensional approximation.

Definition 8.8 Let A be anm × nmatrix and r be the rank of A, where r ≤min(m,n).
The singular-value decomposition of A is a way to factor A in the form as

A = UDV T (8.12)

where

U is an m × r column-orthonormal matrix, which is each of its columns is a unit
vector and the dot product of any two columns is 0;
D is a diagonal matrix where the diagonal entries are called the singular values
of A;
VT is an r × n row-orthonormal matrix which is each of its rows is a unit vector
and the dot product of any two columns is 0.

Here,

UTU = I and VTV = I.

Let ui and vi be the orthonormal column ith of matrix U and column ith of V,
respectively. Let d1, d2, …, dr be the singular values of A where d1≥ d2≥, …, ≥ dr
> 0. The singular values are the square root of positive eigenvalues. Singular values
play an important role where the matrix is a transformation from one vector space
to a different vector space, possibly with a different dimension.

Note that matrix U hold all the eigenvectors ui of AAT, matrix V hold all the
eigenvectors vi of ATA, and D hold the square roots of all eigenvalues of ATA. Thus,
the matrix A can be written as

A = [
u1 u2 . . . ur

]
⎡
⎣
d1 0 . . . 0
0 d2 . . . 0
0 0 . . . dr

⎤
⎦

⎛
⎜⎜⎜⎜⎝

vT
1

vT
2

. . .

vT
r

⎞
⎟⎟⎟⎟⎠

= u1d1v
T
1 + u2d2v

T
2 + . . . + urdrv

T
r

=
r∑

i=1

uidiv
T
i . (8.13)
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Since ui and vi have unit length, the most dominant factor in determining the
significance of each term is the singular value di where d1≥ d2≥, …, ≥ dr > 0.

If the eigenvalues become too small, we can ignore the remaining terms

⎛
⎝+

r∑
i= j

ui div
T
i

⎞
⎠.

Note that the singular values are the square root of positive eigenvalues of ATA.

Lemma 8.2 Let A = UDV T be a singular value decomposition of anm × nmatrix
of rank r. Then

(a)

AV = UD (8.14)

In other words, since V is orthogonal, we have

AV = (
UDV T

)
V = UD

(
V T V

) = UD

(b)

M = UDV T = u1d1v
T
1 + u2d2v

T
2 + . . . + urdrv

T
r =

r∑
i=1

uidiv
T
i

Example 8.4 Given matrix A

A =
[
3 2 2
2 3 −2

]

We can obtain the following results

AAT =
[
17 8
8 17

]

and the eigenvalues and the corresponding unit eigenvectors of matrix AAT are

λ1 = 25 λ2 = 9

u1 =
⎛
⎜⎝

1√
2
1√
2

⎞
⎟⎠ u2 =

⎛
⎜⎝

1√
2

− 1√
2

⎞
⎟⎠ .

Similarly, we obtain
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AT A =
⎡
⎣
13 12 2
12 13 −2
2 −2 8

⎤
⎦

and the eigenvalues and the corresponding unit eigenvectors of matrix ATA are

λ1 = 25

v1 =

⎛
⎜⎜⎜⎝

1√
2
1√
2

0

⎞
⎟⎟⎟⎠

λ2 = 9

v2 =

⎛
⎜⎜⎜⎜⎜⎝

1√
18

− 1√
18

4√
18

⎞
⎟⎟⎟⎟⎟⎠

λ3 = 0

v2 =

⎛
⎜⎜⎜⎜⎝

2

3
−2

3
−1

3

⎞
⎟⎟⎟⎟⎠

The rank of matrix A is: rank(A) = 2.
Note that the singular values are the square root of positive eigenvalues, i.e., 5

and 3. Therefore, the singular value decomposition matrix can be written as

A = UDV T

=

[
1√
2

1√
2

1√
2

− 1√
2

] [
5 0 0
0 3 0

] ⎡⎢⎣
1√
2

1√
2

0
1√
18

− 1√
18

4√
18

2
3 − 2

3 − 1
3

⎤
⎥⎦

≡ U ≡ D ≡ VT

Since 5 and 3 are the two positive singular values, therefore, we can rewrite the
singular value decomposition matrix as follows:

A = UDV T

=

[
1√
2

1√
2

1√
2

− 1√
2

] [
5 0
0 3

] [ 1√
2

1√
2

0
1√
18

− 1√
18

4√
18

]

≡ U ≡ D ≡ VT

Example 8.5 Let A =
[
1 1
1 0

]
.

Note that A is a symmetric matrix. We can obtain

AAT = AT A =
[
1 1
1 0

][
1 1
1 0

]
=
[
2 1
1 1

]

Rank(A) = 2. We can obtain the following results:
The two singular values are: d1 = 1.618034 and d2 = 0.618034 and the singular

value decomposition matrix is given by:
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A = UDV T

=
[
0.850651 0.525731
0.525731 −0.850651

] [
1.618034 0

0 0.618034

] [
0.850651 0.525731

−0.525731 0.850651

]

≡ U ≡ D ≡ VT

Example 8.6 Find the singular values and the singular value decomposition ofmatrix
A given as

A =
⎛
⎝
5 7 −5
0 4 −1
2 8 −3

⎞
⎠

From Example 8.3, the eigenvalues of the matrix A are: λ = 1; λ = 2; λ = 3.
Here, let us find the singular values of matrix A. Follow the same procedures from

Example 8.4, we can obtain the following results:
Rank(A) = 3.
The three singular values are:

d1 = 13.546948, d2 = 3.075623, and d3 = 0.144005

and the singular value decomposition of matrix A can be written as:

A = UDV T

=
≡ U⎡

⎣
0.719021 −0.660027 0.217655
0.276509 0.559003 0.781702
0.637614 0.501877 −0.584438

⎤
⎦

≡ D⎡
⎣
13.546948 0 0

0 3.075623
0 0 0.144005

⎤
⎦

⎡
⎣

0.359515 0.829714 −0.426993
−0.746639 0.530248 0.401707
−0.559714 −0.174390 −0.810129

⎤
⎦

≡ VT

8.2.1 Applications

Consider the following ratings of ten customers who provided the rating scores of
eight movies as shown in Table 8.1. We now discuss an application of singular
value decomposition to illustrate how to apply it in the marketing recommendation
strategies based on the users’movie reviewing scores. Table 8.1 shows the ratings
of 10 customers to each movie of all 8 movies. For example, the columns in Table
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Table 8.1 customer ratings versus movie

User/movie 1 2 3 4 5 6 7 8

John 3 4 3 1 3 0 0 0

Andy 3 4 5 3 4 0 0 0

Cindy 4 3 4 4 5 0 0 0

Dan 5 4 3 4 3 0 0 0

Debbie 3 4 3 4 4 0 0 0

Frank 4 3 3 3 4 0 0 0

Good 0 0 0 0 0 4 4 4

Hanna 0 0 0 0 0 4 3 4

Ing 0 0 0 0 0 5 4 4

Jan 0 0 0 0 0 5 4 4

8.1 are the ratings of each movie. Each row represents the ratings of the movies per
customer.

From the definition of the singular-value decomposition, we can obtain the
singular-value decomposition of the rating-movie matrix based on the data in Table
8.1 as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

3 4 3 1 3 0 0 0
3 4 5 3 4 0 0 0
4 3 4 4 5 0 0 0
5 4 3 4 3 0 0 0
3 4 3 4 4 0 0 0
4 3 3 3 4 0 0 0
0 0 0 0 0 4 4 4
0 0 0 0 0 4 3 4
0 0 0 0 0 5 4 4
0 0 0 0 0 5 4 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.322182 0
0.432183 0
0.455123 0
0.430322 0
0.408184 0
0.387930 0

0 0.485776
0 0.448523
0 0.530495
0 0.530495

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
19.68259 0

0 14.21969

]

[
0.457839 0.452209 0.438319 0.404268 0.479932 0 0 0

0 0 0 0 0 0.635889 0.529732 0.561275

]

where, from the definition, the matrices U, D and V are,
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U =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.322182 0
0.432183 0
0.455123 0
0.430322 0
0.408184 0
0.387930 0

0 0.485776
0 0.448523
0 0.530495
0 0.530495

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

D =
[
19.68259 0

0 14.21969

]

and

V =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.457839 0
0.452209 0
0.438319 0
0.404268 0
0.479932 0

0 0.635889
0 0.529732
0 0.561275

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

respectively.
Suppose there is a new customer, say Amanda, who only watches the movie #2

and rate this movie with 3. We can use the results above to recommend other movies
to Amanda by calculating the following:

(0, 3, 0, 0, 0, 0, 0, 0)VVT

More specifically,

(0, 3, 0, 0, 0, 0, 0, 0) V VT = (0, 3, 0, 0, 0, 0, 0, 0)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0.457839 0
0.452209 0
0.438319 0
0.404268 0
0.479932 0

0 0.635889
0 0.529732
0 0.561275

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
0.457839 0.452209 0.438319 0.404268 0.479932 0 0 0

0 0 0 0 0 0.635889 0.529732 0.561275

]
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= (
0.621117 0.613478 0.594635 0.548440 0.651088 0 0 0

)
.

The result indicates that Amanda would like movies 1, 2, 3, 4 and 5, but not movie
6, 7, and 8.

8.3 Linear Regression Models

We are often interested in whether there is a correlation between two variables, popu-
lations or processes. These correlationsmay give us information about the underlying
processes of the problem under considerations. Given two sets of samples, X and Y,
we usually ask the question, “Are the two variables X and Y correlated?” In other
words, can Y be modeled as a linear function of X?

We consider the modeling between the dependent Y and one independent variable
X. When there is only one independent variable in the linear regression model, the
model is called as simple linear regression model. When there are more than one
independent vairables in the models, then the linear model is termed as the multiple
linear regression model. The linear regression model is applied if we want to model a
numeric response variable and its dependency on at least one numeric factor variable.
Consider a simple linear regression model

y = α + βx + ε (8.15)

where

y = response or dependent variable

x = independent or predictor or explanatory variable

E = random error, assumed to be normally distributed with mean 0 and standard
deviation σ

β = slope parameter

α = intercept.
Note that the error term E represents the difference between the true and observed

value of Y. For a given value of X, the mean of the random variable Y equals the
deterministic part of the model with

μy = E(Y ) = α + βx (8.16)

and

Var(Y ) = σ 2.
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The parameters α, β and σ2 are generally unknown in practice and E is unob-
served. The determination of the linear regression model depends on the estimation
of parameters α, β and σ2.

Assume n pairs of observations (xi, yi) for i = 1,2,…, n are observed and are used
to determine the unknown parameters α and β. Various methods of estimation can
be used to determine the estimates of the parameters. The methods of least squares
and maximum likelihood are the common methods of estimation.

8.3.1 Least Squares Estimation

Suppose a sample of n pairs of observations (xi, yi) for i = 1,2,…, n are available
where they are assumed to satisfy the simple linear regression model as follows:

yi = α + βxi + εi i=1, 2, . . . , n (8.17)

The principle of least squares estimates the parameters α and β by minimizing
the sum of squares of difference between the observations and the line in the scatter
diagram. We want to estimate the parameters of the model based on sample data. We
will obtain the estimated regression line

ŷ = α
∧ + β

∧

x (8.18)

The sum of squared deviations for all n data points is

SSe =
n∑

i=1

ε2i =
n∑

i=1

(yi − α − βxi )
2 (8.19)

The derivatives of SSe with respect to α and β are

∂SSe
∂α

= −2
n∑

i=1

(yi − α − βxi ) (8.20)

and

∂SSe
∂β

= −2
n∑

i=1

(yi − α − βxi )xi (8.21)

respectively. The solutions of α and β are obtained by setting

∂SSe
∂α

= 0 and
∂SSe
∂β

= 0 (8.22)
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and the solution of these two equations in (8.22) are called the least squares estimates
(LSE) of α and β. Thus, the LSE of α and β are

α
∧ = y − β

∧

x (8.23)

β
∧

= SXY
SXX

(8.24)

where

SXY =
n∑

i=1

(xi − x)(yi − y)

SXX =
n∑

i=1

(xi − x)2

x = 1

n

n∑
i=1

xi , y = 1

n

n∑
i=1

yi . (8.25)

We also obtain

∂2SSe
∂α2

= 2n,
∂2SSe
∂β2

= 2
n∑

i=1

x2i ,
∂2SSe
∂α ∂β

= 2n x (8.26)

The Hessianmatrix which is the matrix of second order partial derivatives is given
by

H∗ =
(

∂2SSe
∂α2

∂2SSe
∂α ∂β

∂2SSe
∂α ∂β

∂2SSe
∂β2

)
= 2

⎛
⎝
n nx

nx
n∑

i=1
x2i

⎞
⎠

The matrix H* is positive definite if its determinant and the element in the first
row and column of H* are positive. The determinant of H is given by

∣∣H∗∣∣ = 2

(
n

n∑
i=1

x2i − n2 x2
)

= 2n
n∑

i=1

(xi − x)2 ≥ 0. (8.27)

Note that the predicted values are

ŷi = α
∧ + β

∧

x for i = 1, 2, . . . , n (8.28)

The difference between the observed value yi and the fitted (or predicted) value
is called as a residual. The ith residual is defined as
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ei = yi − ŷi = yi − α
∧ − β

∧

xi for i = 1, 2, . . . , n (8.29)

We now determine the unbiased estimators. We have

E
(
α
∧) = E

(
y − β

∧

x
)
=E

(
α + βx + ε − β

∧

x
)

= α + βx − βx = α. (8.30)

Thus, α
∧

is an unbiased estimator of α. Similarly, we can show that β
∧

is an unbiased
estimator of β (see Problem 1) where β

∧

is given in Eq. (8.24). That is

E
(
β
∧)

= E

(
SXY
SXX

)
= β. (8.31)

Calculate the Variances.

From Eq. (8.24) and since α
∧ = y − β

∧

x and β
∧

= SXY
SXX

, thus

β
∧

=
n∑

i=1

ki yi

where ki = xi−x
SXX

. The variance of β
∧

is

Var
(
β
∧)

=
n∑

i=1

k2i V ar(yi )+
n∑

i=1

n∑
i �= j

ki k jCov
(
yi , y j

)

= σ 2

n∑
i−1

(xi − x)2

S2XX

= σ 2 SXX

S2XX

= σ 2

SXX
(8.32)

where Cov(yi,yj) = 0 as y1, y2,…, yn are independent. The variance of α
∧

is

Var
(
α
∧) = Var(y) + x2Var

(
β
∧)

− 2xCov
(
β
∧

, y
)

(8.33)

Now,

Cov
(
β
∧

, y
)

= E
[
(y − E(y)

(
β
∧

− E
(
β
∧))]

= E

[
ε

(
n∑

i=1

ci yi − β

)]

= 1

n
E

[(
n∑

i=1

εi

)(
α

n∑
i=1

ci + β

n∑
i=1

ci xi +
n∑

i=1

ciεi

)
− β

n∑
i=1

εi

]
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= 0. (8.34)

So,

Var
(
α
∧) = σ 2

(
1

n
+ x2

SXX

)
(8.35)

The covariance between α
∧

and β
∧

is

Cov
(
α
∧

, β
∧)

= Cov
(
y, β

∧)
− xvar

(
β
∧)

= − x2

SXX
σ 2. (8.36)

Calculate the residual sum of squares.

The residual sum of squares is

SSres =
n∑

i=1

e2i =
n∑

i=1

(
yi − ŷi

)2

=
n∑

i=1

(
yi − α

∧ − β
∧

xi
)2

=
n∑

i=1

[
(yi − y) − β

∧

(xi − x)
]2

=
n∑

i=1

(yi − y)2 + β
∧2

n∑
i=1

(xi − x)2 − 2β
∧

n∑
i=1

(xi − x)(yi − y)

= SYY + β
∧2

S2XX − β
∧2

S2XX

= SYY − β
∧2

S2XX = SYY −
(
SXY
SXX

)2

SXX

= SYY − S2XY
SXX

= SYY − β
∧

SXY (8.37)

where

SYY =
n∑

i=1

(yi − y)2, y = 1

n

n∑
i=1

yi .

The estimators of variances of α
∧

and β
∧

are given by

V âr
(
α
∧) = S2

(
1

n
+ x2

SXX

)
(8.38)
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where

S2 = SSres
n − 2

. (8.39)

and

V âr
(
β
∧)

= S2

SXX
(8.40)

It should be noted that
n∑

i=1

(
yi − ŷ

) = 0 so
n∑

i=1
ei = 0 where ei can be regarded as

an estimate of unknown Ei for i = 1,2,…,n. Also, SSres has a chi-square distribution
with (n−2) degrees of freedom, i.e., SSres ∼ χ2

n−2. Thus,

E(SSres) = (n − 2)σ 2. (8.41)

Hence, s2 = SSres
n−2 is an unbiased estimator of σ2.

8.3.2 Maximum Likelihood Estimation

We assume that Ei’s for i = 1,2,…, n are independent and identically distributed
following a normal distribution N(0, σ2). We now obtain the parameter estimate of
the linear regression model:

yi = α + βxi + εi i = 1, 2, . . . , n (8.42)

The observation yi are independently distributed with N(α+βxi, σ2) for all i =
1,2,…, n. The likelihood function of the given observations (xi,yi) is

L(α, β) =
n∏

i=1

1√
2πσ

e− 1
2σ2

(yi−α−βxi )
2

(8.43)

The logL(α,β) is given by

ln L(α, β) = −n

2
ln(2π) − n

2
ln(σ 2) − 1

2σ 2

n∑
i=1

(yi − α − βxi )
2. (8.44)

The maximum likelihood of α, β, and σ2 can be obtained by taking a partial
differentiation of lnL(α, β) with respect to α, β, and σ2:
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∂ ln L(α,β)

∂α
= − 1

σ 2

n∑
i=1

(yi − α − βxi ) ≡ 0

∂ ln L(α,β)

∂β
= − 1

σ 2

n∑
i=1

(yi − α − βxi )xi ≡ 0

∂ ln L(α,β)

∂σ 2 = − n
2σ 2 + 1

2σ 4

n∑
i=1

(yi − α − βxi )
2 ≡ 0.

The solution of the above equations give the MLEs of α, β, and σ2 as

α̃ = y − β̃x

β̃ =

n∑
i=1

(xi − x)(yi − y)

n∑
i=1

(xi − x)2
= SXY

SXX
(8.45)

and

s̃2 =

n∑
i=1

(
yi − α̃ − β̃xi

)2

n
.

Note that the least squares andmaximum likelihood estimates of α, β are identical.
The least squares and MLE of σ2 are different. The LSE of σ2 is

s2 = 1

n − 2

n∑
i=1

(yi − y)2 (8.46)

so that it is related to MLE as

s̃2 = n − 2

n
s2. (8.47)

Thus, α̃ and β̃ are unbiased estimators of α and β where s̃2 is a biased estimate of
σ2.

8.4 Hypothesis Testing and Confidence Interval Estimation

8.4.1 For Intercept Coefficient

Case 1: When σ2 is known
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Suppose the null hypothesis under consideration is

H0 : α = α0

H1 : α �= α0

where σ2 is known, then using the result that

E
(
α
∧) = α, Var

(
α
∧) = σ 2

(
1

n
+ x2

sxx

)
(8.48)

where α
∧ = y − β

∧

x, the following statistic

z0 = α
∧ − α0√

σ 2
(
1
n + x2

sxx

) (8.49)

has a N(0,1) distribution when H0 is true. Thus, we reject H0 if |z0| > z αs
2
where

z αs
2
is the αs/2 percentage point on normal distribution. The 100(1−αs)% confidence

interval for α when σ2 is known using the z0 statistic from Eq. (8.49) as follows:

P
(−z αs

2
< z0 < z αs

2

) = 1 − αs

then

P

⎛
⎜⎜⎝−zαs/2 <

α
∧ − α√

σ 2
(
1
n + x2

sxx

) < zαs/2

⎞
⎟⎟⎠ = 1 − αs (8.50)

After simplifications, we have

P

⎛
⎝α
∧ − zαs/2

√
σ 2

(
1

n
+ x2

sxx

)
≤ α ≤ α

∧ + zαs/2

√
σ 2

(
1

n
+ x2

sxx

)⎞
⎠ = 1 − αs

(8.51)

So the 100(1−αs)% confidence interval of α is

⎡
⎣α
∧ − zαs/2

√
σ 2

(
1

n
+ x2

sxx

)
, α
∧ + zαs/2

√
σ 2

(
1

n
+ x2

sxx

)⎤
⎦. (8.52)
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Case 2: When σ2 is unknown

When σ2 is unknown, the following statistic

t0 = α
∧ − α0√

SSres
n−2

(
1
n + x2

sxx

) (8.53)

where SSres is in Eq. (8.37), which follows a t-distribution with (n−2) degrees of
freedom when H0 is true. Thus, we reject H0 if |t0| > t(n−2), αs

2
where t(n−2), αs

2
is

the αs/2 percentage point of the t-distribution with (n−2) degrees of freedom. The
100(1−αs)% confidence interval for α when σ2 is unknown is given by:

P
(−t(n−2), αs

2
< t0 < t(n−2), αs

2

) = 1 − αs

then

P

⎛
⎜⎜⎝−t(n−2),αs/2 <

α
∧ − α√

SSres
n−2

(
1
n + x2

sxx

) < t(n−2),αs/2

⎞
⎟⎟⎠ = 1 − αs

After simplifications, we have

P

⎛
⎝α
∧ − t(n−2),αs/2

√
SSres
n − 2

(
1

n
+ x2

sxx

)
≤ α ≤ α

∧ + t(n−2),αs/2

√
SSres
n − 2

(
1

n
+ x2

sxx

)⎞
⎠

= 1 − αs

The 100(1−αs)% confidence interval of α is

⎡
⎣α
∧ − t(n−2),αs/2

√
SSres
n − 2

(
1

n
+ x2

sxx

)
, α
∧ + t(n−2),αs/2

√
SSres
n − 2

(
1

n
+ x2

sxx

)⎤
⎦. (8.54)

8.4.2 For Slope Coefficient

Case 1: When σ2 is known

Consider a linear regression model
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yi = α + βxi + εi i = 1, 2, . . . , n

It is assumed that Ei’s are independent and identically distributed and normally
distributed with mean 0 and standard deviation σ. We develop a test for the null
hypothesis under consideration for the slope coefficient as follows:

H0 : β = β0

H1 : β �= β0

Assume σ2 to be known, we know that

E
(
β
∧)

= β, Var
(
β
∧)

= σ 2

sxx

and β
∧

is a linear combination of normally distributed yi’s. So, β
∧

∼ N
(
β, σ 2

sxx

)
and

the following statistic

z1 = β
∧

− β0√
σ 2

sxx

(8.55)

which is distributed as N(0,1) when H0 is true. Thus, we reject H0 if |z1| > z αs
2
where

z αs
2
is the αs/2 percentage point on normal distribution. The 100(1−αs)% confidence

interval for β when σ2 is known is as follows:

P
(−z αs

2
< z1 < z αs

2

) = 1 − αs

then

P

⎛
⎝−zαs/2 <

β
∧

− β√
σ 2

sxx

< zαs/2

⎞
⎠ = 1 − αs

After simplifications, we have

P

⎛
⎝β
∧

− zαs/2

√
σ 2

sxx
≤ β ≤ β

∧

+ zαs/2

√
σ 2

sxx

⎞
⎠ = 1 − αs

So the 100(1−αs)% confidence interval of β is
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⎡
⎣β
∧

− zαs/2

√
σ 2

sxx
, β
∧

+ zαs/2

√
σ 2

sxx

⎤
⎦ (8.56)

Case 2: When σ2 is unknown

When σ2 is unknown, we know that

SSres
σ 2

∼ χ2
n−2 and E

(
SSres
n − 2

)
= σ 2.

The following statistic

t0 = β
∧

− β√
σ 2

sxx

= β
∧

− β√
SSres

(n−2)sxx

(8.57)

which follows a t-distribution with (n−2) degrees of freedom when H0 is true. Thus,
we reject H0 if |t0| > t(n−2), αs

2
. The 100(1−αs)% confidence interval for β when σ2

is unknown is given by:

P
(−t(n−2), αs

2
< t0 < t(n−2), αs

2

) = 1 − αs

then

P

⎛
⎜⎜⎝−t(n−2),αs/2 <

β
∧

− β√
σ
∧2

sxx

< t(n−2),αs/2

⎞
⎟⎟⎠ = 1 − αs

After simplifications, we have

P

⎛
⎝β
∧

− t(n−2),αs/2

√
σ
∧2

sxx
≤ β ≤ β

∧

+ t(n−2),αs/2

√
σ
∧2

sxx

⎞
⎠ = 1 − αs

The 100(1−αs)% confidence interval of β is

[
β
∧

− t(n−2),αs/2

√
SSres

(n − 2)sxx
, β
∧

+ t(n−2),αs/2

√
SSres

(n − 2)sxx

]
(8.58)
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8.5 Multiple Regression Models

In many applications where regression analysis is considred, more than one inde-
pendent variable is needed in the regression model. A regression model that requires
more than one indpendent variable is called a multiple regression model. When this
model is linear in the coefficients, it is called a multiple linear regerssion model.
In general, the dependent variable or response Y may be related to k independent
variables, x1, x2,…, xk . The model

y = β0 + β1x1 + β2x2 + . . . + βk xk + ε (8.59)

is called a multiple linear regressionmodel with k independent variables. The param-
eters βj are the regression coefficients for j = 1,2,…, k and E is the random error
associated with the dependent variable y where E(E) = 0 and var(E) = σ2. From Eq.
(8.59), we can write the model in terms of the observations as

yi = β0 +
k∑
j=1

β j xi j + εi for i = 1, 2, . . . , n (8.60)

where Ei are the random errors associated with yi and that the {Ei } are uncorrelated
random variables.

Similarly to the simple linear regression, the least squares function can be written
as

L =
n∑

i=1

ε2i =
n∑

i=1

⎛
⎝yi − β0 −

k∑
j=1

β j xi j

⎞
⎠

2

(8.61)

We can obtain the estimated coefficients β0, βj for j = 1,2,…, k by minimizing
the least squares function L with respect to β0, β1, β2,…, βk. Differentiating L with
respect to β0, β1, β2,…, βk and equating to zero, we generate the set of (k+1) equations
for (k+1) unknown regression coefficients as follows:

nβ
∧

0 + β
∧

1

n∑
i=1

xi1 + β
∧

2

n∑
i=1

xi2 + . . . + β
∧

k

n∑
i=1

xik =
n∑

i=1

yi

β
∧

0

n∑
i=1

xi1 + β
∧

1

n∑
i=1

x2i1 + β
∧

2

n∑
i=1

xi1xi2 + . . . + β
∧

k

n∑
i=1

xi1xik =
n∑

i=1

xi1yi

. . .

β
∧

0

n∑
i=1

xik + β
∧

1

n∑
i=1

xik xi1 + β
∧

2

n∑
i=1

xik xi2 + . . . + β
∧

k

n∑
i=1

x2ik =
n∑

i=1

xik yi (8.62)
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In general, we can write the model in the matrix and vectors form as follows:

y
∼

= Xβ
∼

+ ε
∼

(8.63)

where

y
∼

=

⎡
⎢⎢⎢⎣

y1
y2
. . .

yn

⎤
⎥⎥⎥⎦, X =

⎛
⎜⎜⎝

1 x11 x12 . . . x1k
1 x21 x22 . . . x2k
. . .

1 xn1 xn2 . . . xnk

⎞
⎟⎟⎠, β

∼

=

⎡
⎢⎢⎢⎣

β0

β1

. . .

βk

⎤
⎥⎥⎥⎦, ε

∼

=

⎡
⎢⎢⎢⎣

ε1

ε2

. . .

εn

⎤
⎥⎥⎥⎦

where

y
∼

is an (n × 1) vector of the n observations,

X is an nx(k+1) matrix based on the number of unknown coefficients and
observations.
β
∼

is a (k+1) × 1 vector, and

ε
∼

is an (n × 1) vector of random errors.

We can find the vector of unknown coefficients β̂
∼

using the least squares estimated

method that minimizes

L =
n∑

i=1

ε2i = ε
∼

′ε
∼

=
(
y
∼

− Xβ
∼

)′(
y
∼

− Xβ
∼

)
. (8.64)

or equivalently,

L = y
∼

′y
∼

− 2β
∼

′X ′y
∼

+ β
∼

′X ′Xβ
∼

(8.65)

Differentiating L with respect to β
∼

and equating them equal zero, we can obtain

the least squares estimators of β
∼

called β̂
∼

, as follows:

∂L

∂β
∼

∣∣∣∣∣∣
β̂
∼

= −2X ′y
∼

+ 2X ′X β̂
∼

= 0 (8.66)

From Eq. (8.66), we obtain

X ′X β̂
∼

= X ′y
∼

(8.67)
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or, equivalently, the least squares estimator of β
∼

is

β̂
∼

= (
X ′X

)−1
X ′y

∼

(8.68)

It is easy to write out the system of equations in Eq. (8.67) as follows:

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

n
n∑

i=1
xi1

n∑
i=1

xi2 . . .
n∑

i=1
xik

n∑
i=1

xi1
n∑

i=1
x2i1

n∑
i=1

xi1xi2 . . .
n∑

i=1
xi1xik

. . . . . . ..
n∑

i=1
xik

n∑
i=1

xik xi1
n∑

i=1
xik xi2 . . .

n∑
i=1

x2ik

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎣

β
∧

0

β
∧

1

. . .

β
∧

k

⎤
⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

n∑
i=1

yi

n∑
i=1

xi1yi

. . .

n∑
i=1

xik yi

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(8.69)

We can obtain the following results:

1. 1. β̂
∼

is an unbiased estimator of β
∼

, that is,

E

(
β̂
∼

)
= β

∼

2. 2. The sum of squares of the residuals (SSe) is

SSe =
n∑

i=1

(
yi − ŷi

)2 =
n∑

i=1

ε2i = ε
∼

′ε
∼

= y
∼

′y
∼

− β̂
∼

′
X ′y

∼

(8.70)

3. The covariance matrix of β̂
∼

is

Cov

(
β̂
∼

)
= (

X ′X
)−1

σ 2 (8.71)

4. The mean square error (MSE) is

MSE = SSe
n − k − 1

(8.72)
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8.5.1 Applications

In this section we illustrate an application of advertising budget products using the
multiple regression. In this application,we use the advertising budget data set [Adver-
tising] for modeling the multiple regression where the sales for a particular product
is a dependent variable (Y ) of multiple regression and the three different media chan-
nels such as TV (X1), Radio (X2), and Newspaper (X3) are independent variables
as shown in Table 8.2. The advertising dataset consists of the sales of a product in
200 different markets (200 rows), together with advertising budgets for the product
in each of those markets for three different media channels: TV, Radio and News-
paper. The sales are in thousands of units and the budget is in thousands of dollars.
Table 8.2 below shows a small portion of the advertising budget data set. Table 8.5
in the appendix shows the entire advertising budget data set. Figures 3.6 and 3.7 (in
Chap. 3) present the data plot and the correction coefficients between the pairs of
variables of the advertising budget data, respectively. It shows that the pair of Sales
and TV advertising have the highest positive correlation.

We will fit the multiple linear regression model

y = β0 + β1x1 + β2x2 + β3x3 + ε

to this advertising data as shown in Table 8.2 where the variables X1, X2, X3, and Y
represent the TV, Radio, Newspaper advertising budgets, and the sales for a particular
product. From Table 8.3, the estimated regression model is

y = 2.93889 + 0.04577 x1 + 0.18853 x2 − 0.00104 x3

Table 8.2 Advertising budget data in 200 different markets

Market TV Radio Newspaper Sales

No. (X1) (X2) (X3) (Y)

1 230.1 37.8 69.2 22.1

2 44.5 39.3 45.1 10.4

3 17.2 45.9 69.3 9.3

4 151.5 41.3 58.5 18.5

5 180.8 10.8 58.4 12.9

6 8.7 48.9 75.0 7.2

… … … … …

197 94.2 4.9 8.1 9.7

198 177.0 9.3 6.4 12.8

199 283.6 42.0 66.2 25.5

200 232.1 8.6 8.7 13.4
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Table 8.3 Coefficient results of the multiple regression model

Coefficients: Estimate Std. Error t value Pr(>|t|)

(Intercept) 2.93889 0.311908 9.422 2e−16 ***

TV 0.04577 0.001395 32.809 2e−16 ***

Radio 0.18853 0.008611 21.893 2e−16 ***

Newspaper −0.00104 0.005871 −0.177 0.86

Residual standard error: 1.686 on 196 degrees of freedom
Multiple R-squared: 0.8972, Adjusted R-squared: 0.8956
F-statistic: 570.3 on 3 and 196 DF, p-value: 2.2e−16

FromTable 8.3, it seems that there is no linear relationship between the newspaper
budget (X3) and the sales (Y) for the product. This implies that we can select the
model with just two variables (TV and Radio) in the regression. Figures 8.1, 8.2,
and 8.3 show the confidence intervals about the regression line of the independent
variables TV, Radio, and Newspaper respectively and the Sales.

The final estimated regression model, as shown in Table 8.4, is given by

y = 2.92110 + 0.04575 x1 + 0.18799 x2

Fig. 8.1 The confidence interval about the regression line between the TV and sales
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Fig. 8.2 The confidence interval about the regression line between the radio and sales

Fig. 8.3 The confidence interval about the regression line between the newspaper and sales
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Table 8.4 Coefficient results of the multiple regression model

Coefficients Estimate Std. error t value Pr(>|t|)

(Intercept) 2.92110 0.29449 9.919 2e−16 ***

TV 0.04575 0.00139 32.909 2e−16 ***

Radio 0.18799 0.00804 23.382 2e−16 ***

Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
Residual standard error: 1.681 on 197 degrees of freedom
Multiple R-squared: 0.8972, Adjusted R-squared: 0.8962
F-statistic: 859.6 on 2 and 197 DF, p-value: <2.2e−16

8.6 Problems

1. Given

A =
(
2 −1
4 3

)
B =

(−1 1
2 −4

)
C =

(
1 4

−2 −1

)

using the associative law show that (A · B)C = A(B · C).

2. Show that A =
(
cos θ − sin θ

sin θ cos θ

)
is an orthogonal matrix.

3. Find the eigenvalues, eigenvectors and the unit eigenvectors of the matrix A
below

A =
⎛
⎝

2 0 −2
0 4 0

−2 0 5

⎞
⎠

4. Find the singular values and the singular value decomposition ofmatrixA below

A =
⎛
⎝

2 0 −2
0 4 0

−2 0 5

⎞
⎠

5. Show that β
∧

in equation (8.24) is an unbiased estimator of β. That is

E
(
β
∧)

= E

(
SXY
SXX

)
= β.
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Appendix

Table 8.5 shows the entire advertising budget data set with 200 different markets.

Table 8.5 Advertising budget data in 200 different markets

Market TV Radio Newspaper Sales

No. (X1) (X2) (X3) (Y)

1 230.1 37.8 69.2 22.1

2 44.5 39.3 45.1 10.4

3 17.2 45.9 69.3 9.3

4 151.5 41.3 58.5 18.5

5 180.8 10.8 58.4 12.9

6 8.7 48.9 75.0 7.2

7 57.5 32.8 23.5 11.8

8 120.2 19.6 11.6 13.2

9 8.6 2.1 1.0 4.8

10 199.8 2.6 21.2 10.6

11 66.1 5.8 24.2 8.6

12 214.7 24.0 4.0 17.4

13 23.8 35.1 65.9 9.2

14 97.5 7.6 7.2 9.7

15 204.1 32.9 46.0 19.0

16 195.4 47.7 52.9 22.4

17 67.8 36.6 114.0 12.5

18 281.4 39.6 55.8 24.4

19 69.2 20.5 18.3 11.3

20 147.3 23.9 19.1 14.6

21 218.4 27.7 53.4 18.0

22 237.4 5.1 23.5 12.5

23 13.2 15.9 49.6 5.6

24 228.3 16.9 26.2 15.5

25 62.3 12.6 18.3 9.7

(continued)
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Table 8.5 (continued)

Market TV Radio Newspaper Sales

No. (X1) (X2) (X3) (Y)

26 262.9 3.5 19.5 12.0

27 142.9 29.3 12.6 15.0

28 240.1 16.7 22.9 15.9

29 248.8 27.1 22.9 18.9

30 70.6 16.0 40.8 10.5

31 292.9 28.3 43.2 21.4

32 112.9 17.4 38.6 11.9

33 97.2 1.5 30.0 9.6

34 265.6 20.0 0.3 17.4

35 95.7 1.4 7.4 9.5

36 290.7 4.1 8.5 12.8

37 266.9 43.8 5.0 25.4

38 74.7 49.4 45.7 14.7

39 43.1 26.7 35.1 10.1

40 228.0 37.7 32.0 21.5

41 202.5 22.3 31.6 16.6

42 177.0 33.4 38.7 17.1

43 293.6 27.7 1.8 20.7

44 206.9 8.4 26.4 12.9

45 25.1 25.7 43.3 8.5

46 175.1 22.5 31.5 14.9

47 89.7 9.9 35.7 10.6

48 239.9 41.5 18.5 23.2

49 227.2 15.8 49.9 14.8

50 66.9 11.7 36.8 9.7

51 199.8 3.1 34.6 11.4

52 100.4 9.6 3.6 10.7

53 216.4 41.7 39.6 22.6

54 182.6 46.2 58.7 21.2

55 262.7 28.8 15.9 20.2

56 198.9 49.4 60.0 23.7

57 7.3 28.1 41.4 5.5

(continued)



Appendix 459

Table 8.5 (continued)

Market TV Radio Newspaper Sales

No. (X1) (X2) (X3) (Y)

58 136.2 19.2 16.6 13.2

59 210.8 49.6 37.7 23.8

60 210.7 29.5 9.3 18.4

61 53.5 2.0 21.4 8.1

62 261.3 42.7 54.7 24.2

63 239.3 15.5 27.3 15.7

64 102.7 29.6 8.4 14.0

65 131.1 42.8 28.9 18.0

66 69.0 9.3 0.9 9.3

67 31.5 24.6 2.2 9.5

68 139.3 14.5 10.2 13.4

69 237.4 27.5 11.0 18.9

70 216.8 43.9 27.2 22.3

71 199.1 30.6 38.7 18.3

72 109.8 14.3 31.7 12.4

73 26.8 33.0 19.3 8.8

74 129.4 5.7 31.3 11.0

75 213.4 24.6 13.1 17.0

76 16.9 43.7 89.4 8.7

77 27.5 1.6 20.7 6.9

78 120.5 28.5 14.2 14.2

79 5.4 29.9 9.4 5.3

80 116.0 7.7 23.1 11.0

81 76.4 26.7 22.3 11.8

82 239.8 4.1 36.9 12.3

83 75.3 20.3 32.5 11.3

84 68.4 44.5 35.6 13.6

85 213.5 43.0 33.8 21.7

86 193.2 18.4 65.7 15.2

87 76.3 27.5 16.0 12.0

88 110.7 40.6 63.2 16.0

89 88.3 25.5 73.4 12.9

(continued)
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Table 8.5 (continued)

Market TV Radio Newspaper Sales

No. (X1) (X2) (X3) (Y)

90 109.8 47.8 51.4 16.7

91 134.3 4.9 9.3 11.2

92 28.6 1.5 33.0 7.3

93 217.7 33.5 59.0 19.4

94 250.9 36.5 72.3 22.2

95 107.4 14.0 10.9 11.5

96 163.3 31.6 52.9 16.9

97 197.6 3.5 5.9 11.7

98 184.9 21.0 22.0 15.5

99 289.7 42.3 51.2 25.4

100 135.2 41.7 45.9 17.2

101 222.4 4.3 49.8 11.7

102 296.4 36.3 100.9 23.8

103 280.2 10.1 21.4 14.8

104 187.9 17.2 17.9 14.7

105 238.2 34.3 5.3 20.7

106 137.9 46.4 59.0 19.2

107 25.0 11.0 29.7 7.2

108 90.4 0.3 23.2 8.7

109 13.1 0.4 25.6 5.3

110 255.4 26.9 5.5 19.8

111 225.8 8.2 56.5 13.4

112 241.7 38.0 23.2 21.8

113 175.7 15.4 2.4 14.1

114 209.6 20.6 10.7 15.9

115 78.2 46.8 34.5 14.6

116 75.1 35.0 52.7 12.6

117 139.2 14.3 25.6 12.2

118 76.4 0.8 14.8 9.4

119 125.7 36.9 79.2 15.9

120 19.4 16.0 22.3 6.6

121 141.3 26.8 46.2 15.5

122 18.8 21.7 50.4 7.0

(continued)
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Table 8.5 (continued)

Market TV Radio Newspaper Sales

No. (X1) (X2) (X3) (Y)

123 224.0 2.4 15.6 11.6

124 123.1 4.6 12.4 15.2

125 229.5 32.3 74.2 19.7

126 87.2 11.8 25.9 10.6

127 7.8 38.9 50.6 6.6

128 80.2 0.0 9.2 8.8

129 220.3 49.0 3.2 24.7

130 59.6 12.0 43.1 9.7

131 0.7 39.6 8.7 1.6

132 265.2 2.9 43.0 12.7

133 8.4 27.2 2.1 5.7

134 219.8 33.5 45.1 19.6

135 36.9 38.6 65.6 10.8

136 48.3 47.0 8.5 11.6

137 25.6 39.0 9.3 9.5

138 273.7 28.9 59.7 20.8

139 43.0 25.9 20.5 9.6

140 184.9 43.9 1.7 20.7

141 73.4 17.0 12.9 10.9

142 193.7 35.4 75.6 19.2

143 220.5 33.2 37.9 20.1

144 104.6 5.7 34.4 10.4

145 96.2 14.8 38.9 11.4

146 140.3 1.9 9.0 10.3

147 240.1 7.3 8.7 13.2

148 243.2 49.0 44.3 25.4

149 38.0 40.3 11.9 10.9

150 44.7 25.8 20.6 10.1

151 280.7 13.9 37.0 16.1

152 121.0 8.4 48.7 11.6

153 197.6 23.3 14.2 16.6

154 171.3 39.7 37.7 19.0

155 187.8 21.1 9.5 15.6

156 4.1 11.6 5.7 3.2

157 93.9 43.5 50.5 15.3

158 149.8 1.3 24.3 10.1

(continued)



462 8 Statistical Machine Learning and Its Applications

Table 8.5 (continued)

Market TV Radio Newspaper Sales

No. (X1) (X2) (X3) (Y)

159 11.7 36.9 45.2 7.3

160 131.7 18.4 34.6 12.9

161 172.5 18.1 30.7 14.4

162 85.7 35.8 49.3 13.3

163 188.4 18.1 25.6 14.9

164 163.5 36.8 7.4 18.0

165 117.2 14.7 5.4 11.9

166 234.5 3.4 84.8 11.9

167 17.9 37.6 21.6 8.0

168 206.8 5.2 19.4 12.2

169 215.4 23.6 57.6 17.1

170 284.3 10.6 6.4 15.0

171 50.0 11.6 18.4 8.4

172 164.5 20.9 47.4 14.5

173 19.6 20.1 17.0 7.6

174 168.4 7.1 12.8 11.7

175 222.4 3.4 13.1 11.5

176 276.9 48.9 41.8 27.0

177 248.4 30.2 20.3 20.2

178 170.2 7.8 35.2 11.7

179 276.7 2.3 23.7 11.8

180 165.6 10.0 17.6 12.6

181 156.6 2.6 8.3 10.5

182 218.5 5.4 27.4 12.2

183 56.2 5.7 29.7 8.7

184 287.6 43.0 71.8 26.2

185 253.8 21.3 30.0 17.6

186 205.0 45.1 19.6 22.6

187 139.5 2.1 26.6 10.3

188 191.1 28.7 18.2 17.3

189 286.0 13.9 3.7 15.9

190 18.7 12.1 23.4 6.7

191 39.5 41.1 5.8 10.8

192 75.5 10.8 6.0 9.9

(continued)
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Table 8.5 (continued)

Market TV Radio Newspaper Sales

No. (X1) (X2) (X3) (Y)

193 17.2 4.1 31.6 5.9

194 166.8 42.0 3.6 19.6

195 149.7 35.6 6.0 17.3

196 38.2 3.7 13.8 7.6

197 94.2 4.9 8.1 9.7

198 177.0 9.3 6.4 12.8

199 283.6 42.0 66.2 25.5

200 232.1 8.6 8.7 13.4



Solutions to Selected Problems

Chapter 1

1. (i) P{1 boy} =
3∑

i=0
P{1 boy|i}P{i} = 0.3938.

(ii) Let A denote the event that there are two children in the family and B the
event that the family has one boy.

P{A|B} = P{A ∩ B}
P{B} = (0.5)(0.25)

0.3938
= 0.317

2. We obtain P{A ∩ B ∩ C} = 1
12 P{A}P{B}P{C} = 1

24 .

Events A, B and C are not independent.
3. The probability of the event E that both units selected will be of the same

category is

P{E} = 13

119
+ 19

714
+ 59

238
= 274

714
= 0.383

4. n = 7 trials.
5. It is straightforward to show

P{A ∪ B ∪ C} = P{A} + P{B} + P{C} − P{A ∩ B}
− P{A ∩ C} − P{B ∩ C} + P{A ∩ B ∩ C}

6. Let A, B and C be subsets of the sample space S defined by
S = {1,2,3,4,5,6} A = {1,3,5}; B = {1,2,3}; C = {2,4,6}.
Then (i) A ∩ (B ∩ C) = φ

(ii) A ∪ (B ∪ C) = S
7. 63

64
8. (i) 0.495 (ii) 0.36 (iii) 0.115 (iv) 0.74
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466 Solutions to Selected Problems

9. The probability of obtaining at least two heads given that the first toss resulted
in a head is: 0.75

10. p =

⎛

⎝
100

50

⎞

⎠

⎛

⎝
100

50

⎞

⎠

⎛

⎝
200

100

⎞

⎠

= 0.1132

16. (a) λ = 0.00031
(b) P(T >800 | T >600)=0.9399
(c) P(T ≤ 900 | T ≥ 720) = 0.0543

17. (a) a = b
2 .

(b) R(t = 6000) = 0.1429.
(c) The warranty period should be no more than 111.1 h.

18. (a) R(t) = (t + 1)e−t

(b) The system MTTF is MTT F = 2.
19. (a) λ ≤ 0.0342.

(b) P(T ≤ 3|T ≥ 1.5) = 0.0015.
20. (a) a = 6

b3 .

(b) P(k < T < l) = l−k
b3 [k(3b − 2k − l) + l(3b − 2l − k)] for 0 ≤ k ≤ l ≤

b.
(c) MTT F = b

2 .

(d) P(T > t + s|T > t) = 1−3( t+s
b )

2+2( t+s
b )

3

1−3( t
b )

2+2( t
b )

3 for s + t ≤ b.

21.
∞∫

0
R1(t)dt ≥

∞∫

0
R2(t)dt .

23. (a) Mean= 13.863, Variance = 7.457
(b) P(T ≤ 2|T > 1 ) = F(2)−F(1)

1−F(1) = 0.5568
24. The failure rate function of this communication device is

h(t) =

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

0 t ≤ t0
4(t−t0)

(t1−t0)2−2(t−t0)2
t0 ≤ t ≤ t0+t1

2
2

(t1−t)
t0+t1
2 ≤ t ≤ t1

undefined t1 ≤ t

26. f (t) = 1
3e

−t + 4et − 7
3e

2t .

27. (a) True (b) True (c) False (d) True (e) False.
28. P(7, 4) = 7!

(7−4)! = 840ways

29. Pr(Mr.Best second) = (n−1)!
n! = 1

n .

30. (a) 210 ways (b) 329 ways (c) 301 ways (d) 120 ways (e) 108.
31. 226,800 ways.
32. a. The reliability function, R(t):

R(t) =
(

1 − t

a

)3

.
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b. The failure rate function, h (t), is given by

h(t) = 3

a − t
.

c. The expected life of the component, MTTF, is given by

MTT F = a

4
.

33. (a) F(1) = 0.0902
(b) The probability of the motor’s lasting at least 3 years: R(t = 3) = 0.5578.
(c) The maximum number of days for which the motor can be warranted is
195.3 days.

34. 2025.
35. (a) a = 0.602

(b) a = 166.7 gallons.
36. The expected value of the weekly costs is: 1.6975.
37. (a) 0.3996 (b) 0.594 (c) 2.
38. The expected value of the smallest of the three claims is 1125.
39. The expected value of the smallest of the five claims is 1071.4.
40. The probability that the system functions for at least 5 months is 0.2873.
41. The expected value of the smallest of the four claims is $83.333

42. (a) The expected cost of the project is: E(C(Y )) = 30, 000
(

1
p

)
− 5, 000

(b) 0.01.
43. 0.084
44. (a) 0.81141 (b) $375.
45. The expected completion time is: 1.213
46. 3
47. (a) Calculate the expected length of the meeting, E(X). (b) 48.333

Chapter 2

10. By induction, we can conclude the pdf of Erlang distribution is f (t) =
βn tn−1

(n−1)!e
−tβ

12. Var(X) = 1
λ2

(
1 − 2λae−λa − e−2λa

)
.

13. Upon differentiation the the failure rate h(t) and set h′(t0) = 0, we obtain

t0 =
(
1 − α

α ln a

) 1
α

.

and it can be shown that the function h(t) is initially decreasing and then
increasing in t.

14. Upon differentiation of the failure rate function, we obtain
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h
′
(t) = α ln a

(
tα−2 at

α )[
(α − 1) + αtα ln a

] ≥ 0 forα ≥ 1.

Thus, h(t) is increasing in t. This implies the loglog distribution is IFR.
15. 0.9298
16. 0.758
17. Let X be a random variable that represents the number of good fuses in the

sample of size n.

P[X = x] =

(
k

x

)(
N − k

n − x

)

(
N

n

) x = 0, 1, 2, . . . , k

18. 0.1046
19. The expected number of failures during the interval (0,t) is λt .
20. It can show directly using Property 3 (Chi-square distribution).
21. Let SN = the number of developed plants. E(SN) = pλ and Var(SN) = λp.
22. Let n = the minimum number of components required to ensure a successful

mission. n = 6.
23. Let X be the number of claims received by a week.

P(X ≤ 2) =
2∑

x=0

(10)x e−10

x ! = 0.

24. Let X be a geometric random variable that represent the number of accidents
in a given month with parameter p. P(X > 2) = p3 = (0.1)3 = 0.001.

25. Let X be the number of present for work and Y the number of absentee. This
implies that n = X + Y.

P(Y ≥ 2) =
20∑

y=2

(
20

y

)

(0.05)y(0.95)20−y=0.000001.

26. Let X denote the number of failures before n successes; p is the probability of
success at each trial.

P(X = x) =
(
n + x − 1

x

)

pn(1 − p)x for x = 0,1,2, . . .

27. Let Y be the number of trials up to and including the 5th success. P(15 ≤ Y ≤
20) = 0.2405.
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28. Let X and Y denote independent random variables with binomial distribution

X ~ b(m,p) and Y ~ b(n,p), respectively. P(X=k)P(Y=s−k)
P(X+Y=s) =

⎛

⎝
m

k

⎞

⎠

⎛

⎝
n

s − k

⎞

⎠

⎛

⎝
m + n

s

⎞

⎠

.

29. Let X denote the number of girls in the selected number of children.

P(X = 2) =

(
10

2

)(
12

4

)

(
22

6

) = 0.2986

and

P(X = 3) =

(
10

3

)(
12

3

)

(
22

6

) = 0.3538.

30. (a) 0.6065 (b) 0.8187.
31. 0.488
32. 0.10
33. (a) P = pk + k(1 − p)pk−1 + k(k−1)

2 (1 − p)2 pk−2

(b) 0.9298092.
34. The probability that he shall reach a false conclusion is 0.057.

35. (a) P(T2 > T1) =
∞∫

t2=0
F1(t2) f2(t2)dt2.

(b) P(T2 > T1) = λ1
λ1+λ2

.

(c) P(T2 > T1) = 0.625.
36. 0.990909
37. 0.420175
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Chapter 3

1. see (Pham 2000a, page 330)
2. Let p is the parameter to be estimated. The maximum likelihood estimator, p̂,

is

p̂ =

n∑

i=1
xi

n
.

6. max{xi} − d ≤ ĉ ≤ min{xi} + d for i = 1, 2, . . . , n

7. (a) ĉ =
max
i≤xi≤n

{xi}+ min
i≤xi≤n

{xi}
2 .d̂ =

max
i≤xi≤n

{xi}− min
i≤xi≤n

{xi}
2 .

(b) ĉ = 27.5; d̂ = 7.5
8. d̂ = max

1≤i≤n
{|xi |}.

9. The number of customers who enter the restaurant per day were not the same
on the five days at the 5% level of significance.

10. We cannot reject the null hypothesis.
12. The results of current year are consistent with the results from last year at the

5% level of significance.
16. We can obtain the maximum likelihood estimates

p̂i = xi
n

for i = 1, 2, . . . , k

17. The MLE of p is p̂ = k
n .

18. (a) 0.1819
19. (a) λ̂ = −1 − n

n∑

i=1
ln(ti )

.

(b) λ̂ = 0.4739

20. E(β̂) = (α + β) −
(
α + β

n

)
= β

(
1 − 1

n

)
and E(α̂) = α + β

n .

(c) α̂ = 2.4 and β̂ = 1.2
21. The number of customers who enter the restaurant per day were not the same

on the five days at the 5% level of significance.
22. The maximum likelihood estimate of θ is θ̂ = 0.5.
23. (a) θ̂ = 3. (b) θ̂ = 3.116
24. (a) 22.32(b) 14.35
25. (a) 8.486 (b) 7.4
26. (a) θ̂ = 2x−1

1−x (b) θ̂ = 2(0.6)−1
1−0.6 = 0.5

27. The maximum likelihood estimate of λ = 0.012.
28. θ̂ = 10.54675
29. The sampling is stopped at the 16th observation and that the lot would be

rejected.
30. The sampling is stopped at the 6th observation and that the lotwould be rejected.
31. (a) λ̂ = 2

X
. (b) λ̂ = 2

X
.
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32. (a) λ̂ = 3
X
. (b) λ̂ = 0.1595745

33. We reject the null hypothesis. That is, there is sufficient evidence, at the 0.10
level, to conclude that facility conditions and pricing policy are dependent of
one another.

Chapter 4

1. Letting ri (t) denote the failure rate of the ith component, then r(t) =
n∑

i=1
ri(u)

is the system failure rate.
2. The reliability and MTTF of a 2-out-of-4 system are as follows:

R(t) = e−(λ1+λ2)t + e−(λ1+λ3)t + e−(λ1+λ4)t + e−(λ2+λ3)t + e−(λ2+λ4)t + e−(λ3+λ4)t

− 2e−(λ1+λ2+λ3)t − 2e−(λ1+λ2+λ4)t − 2e−(λ1+λ3+λ4)t

− 2e−(λ2+λ3+λ4)t + 3e−(λ1+λ2+λ3+λ4)t

and

MTT F = 1

λ1 + λ2
+ 1

λ1 + λ3
+ 1

λ1 + λ4
+ 1

λ2 + λ3
+ 1

λ2 + λ4
+ 1

λ3 + λ4

− 2

λ1 + λ2 + λ3
− 2

λ1 + λ2 + λ4
− 2

λ1 + λ3 + λ4
− 2

λ2 + λ3 + λ4

+ 3

λ1 + λ2 + λ3 + λ4
.

3. The reliability and theMTTF function of the high-voltage load-sharing system
are given as follows:

R(t) = e−(λA+λB+λP )t + λA e−(λP+λ′
B)t

(
λA + λB + λC − λ′

B

)
(
1 − e−(λA+λB+λC−λ′

B)t
)

+ λB e−(λP+λ′
A)t

(
λA + λB + λC − λ′

A

)
(
1 − e−(λA+λB+λC−λ′

A)t
)

The system MTTF is

MTT F = 1

λA + λB + λP
+ λA

(
λA + λB + λC − λ′

B

)

(
1

λP + λ′
B

− 1

λA + λB + λC + λP

)
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+ λB
(
λA + λB + λC − λ′

A

)

(
1

λP + λ′
A

− 1

λA + λB + λC + λP

)

4. The system reliability is 0.99975
5. (a)

R = pk + k(1 − p)pk−1 + k(k − 1)

2
(1 − p)2 pk−2

(b) R = 0.9298.
6. (a) The reliability of the device is

R = [
1 − (1 − p1)

m − mp1(1 − p1)
m−1

] [
1 − (1 − p2)

n − np2(1 − p2)
n−1

]

(b) R = 0.9992.
8. (a) The reliability of the system is

R(t) = (1 + 2λt)e−2λt .

(b) The MTTF of the system is

MTT F = 1

λ
.

(c) R(t = 10) = 0.9953. System MTT F = 200 hours.
9. Rsystem = 0.97847
10. (a) 0.9999685 (b) 0.9992

Chapter 5

1. (Theorem 4) Show that the statistic Tk is the UMVUE of Rk

where σ x and σ y are known, k < min {m, a}, and Tk =
⎧
⎪⎪⎨

⎪⎪⎩

(a−k)(kσx+mσy)σ k−1
y

ma(σx+σy)
k e

(Y(1)−x(1))k
σy I

(
Y(1) < X(1)

)

+
k∑

i=0
(−1)i

(
k
i

)
(m−i)(aσx+iσy)σ i−1

x

ma(σx+σy)
i e− i[Y(1)−X(1))

σx I
(
Y(1) ≥ X(1)

)
.

Chapter 6

1. Using Eqs. (42) and (43)), one can obtain the results.
2. Table below presents the results.

Reliability and MTTF for varying time t.

Time Sensor reliability Channel reliability System reliability

(continued)
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(continued)

Time Sensor reliability Channel reliability System reliability

10 0.9851 0.9947 1.0000

20 0.9704 0.9889 1.0000

30 0.9506 0.9826 0.9999

40 0.9418 0.9758 0.9999

MTTF 666.6 628.6 546.2

3. (a) Let the random variable X be the amount of time that the system functions is
in the good state. The probability of having a replacement because of a system
failure is given by:

∞∑

n=0

P{nT < X ≤ [(n + 1)T − a]} =
∞∑

n=0

(
e−λnT − e−λ[(n+1)T−a])

= (
1 − e−λ(T−a)

) ∞∑

n=0

e−λnT

=
(
1 − e−λ(T−a)

)

(
1 − e−λT

)

(b) The time between two replacements is equal to nT with probability

P{(n − 1)T < X ≤ nT } for n = 1, 2, . . .

Hence,

E(Time between two replacements) =
∞∑

n=1

nT
(
e−λ(n−1)T − e−λnT

)

= T
(
1 − e−λT

) .

5. (a) MTT F = μ+20λa +19λb

380λa λb
.

(b) MTTF = 683.5526 h.

6. MTT F = μ + 15λa+14λb

210λa λb
.

(b) MTTF = 2141.25 h.
8. Show that the renewal function, M(t), can be written as follows:
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M(t) = F(t) +
t∫

0

M(t − s)dF(s)

where F(t) is the distribution function of the inter-arrival time or the renewal
period.

Chapter 7

1. From example 1 in Chap. 7, substitute λ = 1
β
, we then obtain the results (based

on example 1).
2. Follow the same procedure from example 1 in Chap. 7, one can easily obtain

the results.
3. Follow the same procedure from example 2 in Chap. 7, one can easily obtain

the results.

Chapter 8

1. (AB)C =
(−16 −22

18 16

)

A(BC) =
(−16 −22

18 16

)

Hence (AB) C = A(BC).

2. AT A =
(

cos θ sinθ
− sin θ cosθ

)(
cos θ −sinθ
sin θ cosθ

)

=
(
1 0
0 1

)

= I

Thus A is an orthogonal matrix.
3. The eigenvalues are:

λ = 1; λ = 4; λ = 6.

For the eigenvalue λ = 1, the eigenvector can be obtained as

⎛

⎜
⎝

x1
x2
x3

⎞

⎟
⎠ =

⎛

⎜
⎝

2

0

1

⎞

⎟
⎠

Similarly, for λ = 4, we can obtain the eigenvector as

⎛

⎜
⎝

x1
x2
x3

⎞

⎟
⎠ =

⎛

⎜
⎝

0

1

0

⎞

⎟
⎠

Also, for λ = 6, the eigenvector is.
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⎛

⎜
⎝

x1
x2
x3

⎞

⎟
⎠ =

⎛

⎜
⎝

1

0

−2

⎞

⎟
⎠

.
The unit eigenvectors have the property that they have length 1, i. e., the sum
of the squares of their elements = 1. Thus the above eigenvectors become
respectively:

⎛

⎜
⎜
⎜
⎜
⎜
⎝

2√
5

0

1√
5

⎞

⎟
⎟
⎟
⎟
⎟
⎠

,

⎛

⎜
⎝

0

1

0

⎞

⎟
⎠,

⎛

⎜
⎜
⎜
⎜
⎜
⎝

1√
5

0

−2√
5

⎞

⎟
⎟
⎟
⎟
⎟
⎠

.

4. From problem 3, the eigenvalues of the matrix A are: λ = 1; λ = 4; λ = 6.
Note that matrix A is symmetric, so the eigenvalues and singular values are the
same. The three singular values are: d1 = 6, d2 = 4, and d3 = 1, and the singular
value decomposition of matrix A can be written as:

A = UDV T

=
⎡

⎣
−0.447214 0 0.894427
0 1 0
0.894427 0 0.447214

⎤

⎦

⎡

⎣
6 0 0
0 4 0
0 0 1

⎤

⎦

⎡

⎣
−0.447214 0 0.894427
0 1 0
0.894427 0 0.447214

⎤

⎦

≡ U ≡ D ≡ VT

5. β̂ =
n∑

i=1
ki yi where ki = xi−x

SXX

Note that

n∑

i=1

ki = 0,
n∑

i=1

ki xi = 1.

Hence,

E
(
β̂
)

= E

(
SXY
SXX

)

=
n∑

i=1

ki E(yi )

=
n∑

i=1

ki (α + βxi ) = α

n∑

i=1

ki+ β

n∑

i=1

ki xi = β.

Therefore, β̂ is an unbiased estimator of β.
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Distribution Tables

See Tables A.1, A.2, A.3, A.4, A.5, A.6, A.7, A.8

Table A.1 Cumulative areas under the standard normal distribution

Z 0 1 2 3 4 5 6 7 8 9

−3.0 0.0013 0.0010 0.0007 0.0005 0.0003 0.0002 0.0002 0.0001 0.0001 0.0000

−2.9 0.0019 0.0018 0.0017 0.0017 0.0016 0.0016 0.0015 0.0015 0.0014 0.0014

−2.8 0.0026 0.0025 0.0024 0.0023 0.0023 0.0022 0.0021 0.0021 0.0020 0.0019

−2.7 0.0035 0.0034 0.0033 0.0032 0.0031 0.0030 0.0029 0.0028 0.0027 0.0026

−2.6 0.0047 0.0045 0.0044 0.0043 0.0041 0.0040 0.0039 0.0038 0.0037 0.0036

−2.5 0.0062 0.0060 0.0059 0.0057 0.0055 0.0054 0.0052 0.0051 0.0049 0.0048

−2.4 0.0082 0.0080 0.0078 0.0075 0.0073 0.0071 0.0069 0.0068 0.0066 0.0064

−2.3 0.0107 0.0104 0.0102 0.0099 0.0096 0.0094 0.0091 0.0089 0.0087 0.0084

−2.2 0.0139 0.0136 0.0132 0.0129 0.0126 0.0122 0.0119 0.0116 0.0113 0.0110

−2.1 0.0179 0.0174 0.0170 0.0166 0.0162 0.0158 0.0154 0.0150 0.0146 0.0143

−2.0 0.0228 0.0222 0.0217 0.0212 0.0207 0.0202 0.0197 0.0192 0.0188 0.0183

−1.9 0.0287 0.0281 0.0274 0.0268 0.0262 0.0256 0.0250 0.0244 0.0238 0.0233

−1.8 0.0359 0.0352 0.0344 0.0336 0.0329 0.0322 0.0314 0.0307 0.0300 0.0294

−1.7 0.0446 0.0436 0.0427 0.0418 0.0409 0.0401 0.0392 0.0384 0.0375 0.0367

−1.6 0.0548 0.0537 0.0526 0.0516 0.0505 0.0495 0.0485 0.0475 0.0465 0.0455

−1.5 0.0668 0.0655 0.0643 0.0630 0.0618 0.0606 0.0594 0.0582 0.0570 0.0559

−1.4 0.0808 0.0793 0.0778 0.0764 0.0749 0.0735 0.0722 0.0708 0.0694 0.0681

−1.3 0.0968 0.0951 0.0934 0.0918 0.0901 0.0885 0.0869 0.0853 0.0838 0.0823

−1.2 0.1151 0.1131 0.1112 0.1093 0.1075 0.1056 0.1038 0.1020 0.1003 0.0985

−1.1 0.1357 0.1335 0.1314 0.1292 0.1271 0.1251 0.1230 0.1210 0.1190 0.1170

−1.0 0.1587 0.1562 0.1539 0.1515 0.1492 0.1469 0.1446 0.1423 0.1401 0.1379

−0.9 0.1841 0.1814 0.1788 0.1762 0.1736 0.1711 0.1685 0.1660 0.1635 0.1611

(continued)
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Table A.1 (continued)

Z 0 1 2 3 4 5 6 7 8 9

−0.8 0.2119 0.2090 0.2061 0.2033 0.2005 0.1977 0.1949 0.1922 0.1894 0.1867

−0.7 0.2420 0.2389 0.2358 0.2327 0.2297 0.2266 0.2236 0.2206 0.2177 0.2148

−0.6 0.2743 0.2709 0.2676 0.2643 0.2611 0.2578 0.2546 0.2514 0.2483 0.2451

−0.5 0.3085 0.3050 0.3015 0.2981 0.2946 0.2912 0.2877 0.2843 0.2810 0.2776

−0.4 0.3446 0.3409 0.3372 0.3336 0.3300 0.3264 0.3228 0.3192 0.3156 0.3121

−0.3 0.3821 0.3783 0.3745 0.3707 0.3669 0.3632 0.3594 0.3557 0.3520 0.3483

−0.2 0.4207 0.4168 0.4129 0.4090 0.4052 0.4013 0.3974 0.3936 0.3897 0.3859

−0.1 0.4602 0.4562 0.4522 0.4483 0.4443 0.4404 0.4364 0.4325 0.4286 0.4247

−0.0 0.5000 0.4960 0.4920 0.4880 0.4840 0.4801 0.4761 0.4721 0.4681 0.4641

0.0 0.5000 0.5040 0.5080 0.5120 0.5160 0.5199 0.5239 0.5279 0.5319 0.5359

0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753

0.2 0.5793 0.5832 0.5871 0.5910 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141

0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.6480 0.6517

0.4 0.6554 0.6591 0.6628 0.6664 0.6700 0.6736 0.6772 0.6808 0.6844 0.6879

0.5 0.6915 0.6950 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.7190 0.7224

0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549

0.7 0.7580 0.7611 0.7642 0.7673 0.7703 0.7734 0.7764 0.7794 0.7823 0.7852

0.8 0.7881 0.7910 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133

0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.8340 0.8365 0.8389

1.0 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621

1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.8770 0.8790 0.8810 0.8830

1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.8980 0.8997 0.9015

1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177

1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9278 0.9292 0.9306 0.9319

1.5 0.9332 0.9345 0.9357 0.9370 0.9382 0.9394 0.9406 0.9418 0.9430 0.9441

1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545

1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633

1.8 0.9641 0.9648 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9700 0.9706

1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.9750 0.9756 0.9762 0.9767

2.0 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817

2.1 0.9821 0.9826 0.9830 0.9834 0.9838 0.9842 0.9846 0.9850 0.9854 0.9857

2.2 0.9861 0.9864 0.9868 0.9871 0.9874 0.9878 0.9881 0.9884 0.9887 0.9890

2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916

2.4 0.9918 0.9920 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936

2.5 0.9938 0.9940 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952

2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.9960 0.9961 0.9962 0.9963 0.9964

2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.9970 0.9971 0.9972 0.9973 0.9974

2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.9980 0.9981

2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986

3.0 0.9987 0.9990 0.9993 0.9995 0.9997 0.9998 0.9998 0.9999 0.9999 1.000
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Table A.2 Percentage points of the t-distribution

ν\α 0.100 0.050 0.025 0.01 0.005 0.001

1 3.078 6.314 12.706 31.821 63.657 318.310

2 1.886 2.920 4.303 6.965 9.925 23.326

3 1.638 2.353 3.182 4.541 5.841 10.213

4 1.533 2.132 2.776 3.747 4.604 7.173

5 1.476 2.015 2.571 3.365 4.032 5.893

6 1.440 1.943 2.447 3.143 3.707 5.208

7 1.415 1.895 2.365 2.998 3.499 4.785

8 1.397 1.860 2.306 2.896 3.355 4.501

9 1.383 1.833 2.262 2.821 3.250 4.297

10 1.372 1.812 2.228 2.764 3.169 4.144

11 1.363 1.796 2.201 2.718 3.106 4.025

12 1.356 1.782 2.179 2.681 3.055 3.930

13 1.350 1.771 2.160 2.650 3.012 3.852

14 1.345 1.761 2.145 2.624 2.977 3.787

15 1.341 1.753 2.131 2.602 2.947 3.733

16 1.337 1.746 2.120 2.583 2.921 3.686

17 1.333 1.740 2.110 2.567 2.898 3.646

18 1.330 1.734 2.101 2.552 2.878 3.610

19 1.328 1.729 2.093 2.539 2.861 3.579

20 1.325 1.725 2.086 2.528 2.845 3.552

21 1.323 1.721 2.080 2.518 2.831 3.527

22 1.321 1.717 2.074 2.508 2.819 3.505

23 1.319 1.714 2.069 2.500 2.807 3.485

24 1.318 1.711 2.064 2.492 2.797 3.467

25 1.316 1.708 2.060 2.485 2.787 3.450

26 1.315 1.706 2.056 2.479 2.779 3.435

27 1.314 1.703 2.052 2.473 2.771 3.421

28 1.313 1.701 2.048 2.467 2.763 3.408

29 1.311 1.699 2.045 2.462 2.756 3.396

30 1.310 1.697 2.042 2.457 2.750 3.385

40 1.303 1.684 2.021 2.423 2.704 3.307

60 1.296 1.671 2.000 2.390 2.660 3.232

120 1.289 1.658 1.980 2.358 2.617 3.160

∞ 1.282 1.645 1.960 2.326 2.576 3.090
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Table A.3 Percentage points of the chi-squared distribution

ν\χ2
α χ2

0.99 χ2
0.975 χ2

0.95 χ2
0.90 χ2

0.10 χ2
0.05 χ2

0.025 χ2
0.01

1 0 0.00 0.00 0.02 2.71 3.84 5.02 6.64

2 0.02 0.05 0.10 0.21 4.61 5.99 7.38 9.21

3 0.12 0.22 0.35 0.58 6.25 7.82 9.35 11.35

4 0.30 0.48 0.71 1.06 7.78 9.49 11.14 13.28

5 0.55 0.83 1.15 1.61 9.24 11.07 12.83 15.09

6 0.87 1.24 1.64 2.20 10.65 12.59 14.45 16.81

7 1.24 1.69 2.17 2.83 12.02 14.07 16.01 18.48

8 1.65 2.18 2.73 3.49 13.36 15.51 17.54 20.09

9 2.09 2.70 3.33 4.17 14.68 16.92 19.02 21.67

10 2.56 3.25 3.94 4.87 15.99 18.31 20.48 23.21

11 3.05 3.82 4.58 5.58 17.28 19.68 21.92 24.73

12 3.57 4.40 5.23 6.30 18.55 21.03 23.34 26.22

13 4.11 5.01 5.89 7.04 19.81 22.36 24.74 27.69

14 4.66 5.63 6.57 7.79 21.06 23.69 26.12 29.14

15 5.23 6.26 7.26 8.57 22.31 25.00 27.49 30.58

16 5.81 6.91 7.96 9.31 23.54 26.30 28.85 32.00

17 6.41 7.56 8.67 10.09 24.77 27.59 30.19 33.41

18 7.02 8.23 9.39 10.87 25.99 28.87 31.53 34.81

19 7.63 8.91 10.12 11.65 27.20 30.14 32.85 36.19

20 8.26 9.59 10.85 12.44 28.41 31.41 34.17 37.57

21 8.90 10.28 11.59 13.24 29.62 32.67 35.48 38.93

22 9.54 10.98 12.34 14.04 30.81 33.92 36.78 40.29

23 10.20 11.69 13.09 14.85 32.01 35.17 38.08 41.64

24 10.86 12.40 13.85 15.66 33.20 36.42 39.36 42.98

25 11.52 13.12 14.61 16.47 34.38 37.65 40.65 44.31

26 12.20 13.84 15.38 17.29 35.56 38.89 41.92 45.64

27 12.88 14.57 16.15 18.11 36.74 40.11 43.19 46.96

28 13.57 15.31 16.93 18.94 37.92 41.34 44.46 48.28

29 14.26 16.05 17.71 19.77 39.09 42.56 45.72 49.59

30 14.95 16.79 18.49 20.60 40.26 43.77 46.98 50.89

35 18.48 20.56 22.46 24.81 46.03 49.80 53.21 57.36

40 22.14 24.42 26.51 29.07 51.78 55.76 59.35 63.71

50 29.69 32.35 34.76 37.71 63.14 67.50 71.42 76.17

60 37.47 40.47 43.19 46.48 74.37 79.08 83.30 88.39

70 45.43 48.75 51.74 55.35 85.50 90.53 95.03 100.44

80 53.53 57.15 60.39 64.30 96.55 101.88 106.63 112.34

90 61.74 65.64 69.12 73.31 107.54 113.15 118.14 124.13

100 70.05 74.22 77.93 82.38 118.47 124.34 129.57 135.81

120 86.92 91.58 95.70 100.62 140.23 146.57 152.21 158.95
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TableA.4 Critical values dn,α of themaximum absolute difference between sample and population
cumulative distribtuions for the Kolmogorov–Smirnov (KS) test (Smirnov 1948)

n\α 0.2 0.1 0.05 0.02 0.01

1 0.900 0.950 0.975 0.990 0.995

2 0.684 0.776 0.842 0.900 0.929

3 0.565 0.636 0.708 0.785 0.829

4 0.493 0.565 0.624 0.689 0.734

5 0.447 0.509 0.563 0.627 0.669

6 0.410 0.468 0.519 0.577 0.617

7 0.381 0.436 0.483 0.538 0.576

8 0.358 0.410 0.454 0.507 0.542

9 0.339 0.387 0.430 0.480 0.513

10 0.323 0.369 0.409 0.457 0.489

11 0.308 0.352 0.391 0.437 0.468

12 0.296 0.338 0.375 0.419 0.449

13 0.285 0.325 0.361 0.404 0.432

14 0.275 0.314 0.349 0.390 0.418

15 0.266 0.304 0.338 0.377 0.404

16 0.258 0.295 0.327 0.366 0.392

17 0.250 0.286 0.318 0.355 0.381

18 0.244 0.279 0.309 0.346 0.371

19 0.237 0.271 0.301 0.337 0.361

20 0.232 0.265 0.294 0.329 0.352

21 0.226 0.259 0.287 0.321 0.344

22 0.221 0.253 0.281 0.314 0.337

23 0.216 0.247 0.275 0.307 0.330

24 0.212 0.242 0.264 0.301 0.323

25 0.208 0.238 0.264 0.295 0.317

26 0.204 0.233 0.259 0.290 0.311

27 0.200 0.229 0.254 0.284 0.305

28 0.197 0.225 0.250 0.279 0.300

29 0.193 0.221 0.246 0.275 0.295

30 0.190 0.218 0.242 0.270 0.281

35 0.180 0.210 0.230 0.265 0.270

Over 35 1.07/
√
n 1.22/

√
n 1.36/

√
n 1.56/

√
n 1.63/

√
n
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Table A.5 Range values dn
for average value of w

n (number in sample) dn

2 1.128

3 1.693

4 2.059

5 2.326

6 2.534

7 2.704

8 2.847

9 2.970

10 3.078

11 3.173

12 3.258

Table A.6 Values of outlier
ratio for significant level
α = 0.05

No. in sample Critical value No. in sample Critical value

3 1.15 20 2.71

4 1.48 21 2.73

5 1.71 22 2.76

23 2.78

6 1.89 24 2.80

7 2.02

8 2.13 25 2.82

9 2.21 30 2.91

32 2.98

10 2.29 40 3.04

11 2.36 45 3.09

12 2.41

13 2.46 50 3.13

14 2.51 60 3.20

70 3.26

15 2.55 80 3.31

16 2.59 90 3.35

17 2.62 100 3.38

18 2.65

19 2.68
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Table A.7 Percentage points of the F-distribution—F0.05(ν1, ν2)

ν2\ν1 1 2 3 4 5 6 7 8 9

1 161.4 199.5 215.7 224.6 230.2 234.0 236.8 238.9 240.5

2 18.51 19.00 19.16 19.25 19.30 19.33 19.35 19.37 19.38

3 10.13 9.55 9.28 9.12 9.01 8.94 8.89 8.85 8.81

4 7.71 6.94 6.59 6.39 6.26 6.16 6.09 6.04 6.00

5 6.61 5.79 5.41 5.19 5.05 4.95 4.88 4.82 4.77

6 5.99 5.14 4.76 4.53 4.39 4.28 4.21 4.15 4.10

7 5.59 4.74 4.35 4.12 3.97 3.87 3.79 3.73 3.68

8 5.32 4.46 4.07 3.84 3.69 3.58 3.50 3.44 3.39

9 5.12 4.26 3.86 3.63 3.48 3.37 3.29 3.23 3.18

10 4.96 4.10 3.71 3.48 3.33 3.22 3.14 3.07 3.02

11 4.84 3.98 3.59 3.36 3.20 3.09 3.01 2.95 2.90

12 4.75 3.89 3.49 3.26 3.11 3.00 2.91 2.85 2.80

13 4.67 3.81 3.41 3.18 3.03 2.92 2.83 2.77 2.71

14 4.60 3.74 3.34 3.11 2.96 2.85 2.76 2.70 2.65

15 4.54 3.68 3.29 3.06 2.90 2.79 2.71 2.64 2.59

16 4.49 3.63 3.24 3.01 2.85 2.74 2.66 2.59 2.54

17 4.45 3.59 3.20 2.96 2.81 2.70 2.61 2.55 2.49

18 4.41 3.55 3.16 2.93 2.77 2.66 2.58 2.51 2.46

19 4.38 3.52 3.13 2.90 2.74 2.63 2.54 2.48 2.42

20 4.35 3.49 3.10 2.87 2.71 2.60 2.51 2.45 2.39

21 4.32 3.47 3.07 2.84 2.68 2.57 2.49 2.42 2.37

22 4.30 3.44 3.05 2.82 2.66 2.55 2.46 2.40 2.34

23 4.28 3.42 3.03 2.80 2.64 2.53 2.44 2.37 2.32

24 4.26 3.40 3.01 2.78 2.62 2.51 2.42 2.36 2.30

25 4.24 3.39 2.99 2.76 2.60 2.49 2.40 2.34 2.28

26 4.23 3.37 2.98 2.74 2.59 2.47 2.39 2.32 2.27

27 4.21 3.35 2.96 2.73 2.57 2.46 2.37 2.31 2.25

28 4.20 3.34 2.95 2.71 2.56 2.45 2.36 2.29 2.24

29 4.18 3.33 2.93 2.70 2.55 2.43 2.35 2.28 2.22

30 4.17 3.32 2.92 2.69 2.53 2.42 2.33 2.27 2.21

40 4.08 3.23 2.84 2.61 2.45 2.34 2.25 2.18 2.12

60 4.00 3.15 2.76 2.53 2.37 2.25 2.17 2.10 2.04

120 3.92 3.07 2.68 2.45 2.29 2.17 2.09 2.02 1.96

∞ 3.84 3.00 2.60 2.37 2.21 2.10 2.01 1.94 1.88

(continued)
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Table A.7 (continued)

ν2\ν1 10 12 15 20 24 30 40 60 120 ∞
1 241.9 243.9 245.9 248.0 249.1 250.1 251.1 252.2 253.3 254.3

2 19.40 19.41 19.43 19.45 19.45 19.46 19.47 19.48 19.49 19.50

3 8.79 8.74 8.70 8.66 8.64 8.62 8.59 8.57 8.55 8.53

4 5.96 5.91 5.86 5.80 5.77 5.75 5.72 5.69 5.66 5.63

5 4.74 4.68 4.62 4.56 4.53 4.50 4.46 4.43 4.40 4.36

6 4.06 4.00 3.94 3.87 3.84 3.81 3.77 3.74 3.70 3.67

7 3.64 3.57 3.51 3.44 3.41 3.38 3.34 3.30 3.27 3.23

8 3.35 3.28 3.22 3.15 3.12 3.08 3.04 3.01 2.97 2.93

9 3.14 3.07 3.01 2.94 2.90 2.86 2.83 2.79 2.75 2.71

10 2.98 2.91 2.85 2.77 2.74 2.70 2.66 2.62 2.58 2.54

11 2.85 2.79 2.72 2.65 2.61 2.57 2.53 2.49 2.45 2.40

12 2.75 2.69 2.62 2.54 2.51 2.47 2.43 2.38 2.34 2.30

13 2.67 2.60 2.53 2.46 2.42 2.38 2.34 2.30 2.25 2.21

14 2.60 2.53 2.46 2.39 2.35 2.31 2.27 2.22 2.18 2.13

15 2.54 2.48 2.40 2.33 2.29 2.25 2.20 2.16 2.11 2.07

16 2.49 2.42 2.35 2.28 2.24 2.19 2.15 2.11 2.06 2.01

17 2.45 2.38 2.31 2.23 2.19 2.15 2.10 2.06 2.01 1.96

18 2.41 2.34 2.27 2.19 2.15 2.11 2.06 2.02 1.97 1.92

19 2.38 2.31 2.23 2.16 2.11 2.07 2.03 1.98 1.93 1.88

20 2.35 2.28 2.20 2.12 2.08 2.04 1.99 1.95 1.90 1.84

21 2.32 2.25 2.18 2.10 2.05 2.01 1.96 1.92 1.87 1.81

22 2.30 2.23 2.15 2.07 2.03 1.98 1.94 1.89 1.84 1.78

23 2.27 2.20 2.13 2.05 2.01 1.96 1.91 1.86 1.81 1.76

24 2.25 2.18 2.11 2.03 1.98 1.94 1.89 1.84 1.79 1.73

25 2.24 2.16 2.09 2.01 1.96 1.92 1.87 1.82 1.77 1.71

26 2.22 2.15 2.07 1.99 1.95 1.90 1.85 1.80 1.75 1.69

27 2.20 2.13 2.06 1.97 1.93 1.88 1.84 1.79 1.73 1.67

28 2.19 2.12 2.04 1.96 1.91 1.87 1.82 1.77 1.71 1.65

29 2.18 2.10 2.03 1.94 1.90 1.85 1.81 1.75 1.70 1.64

30 2.16 2.09 2.01 1.93 1.89 1.84 1.79 1.74 1.68 1.62

40 2.08 2.00 1.92 1.84 1.79 1.74 1.69 1.64 1.58 1.51

60 1.99 1.92 1.84 1.75 1.70 1.65 1.59 1.53 1.47 1.39

120 1.91 1.83 1.75 1.66 1.61 1.55 1.50 1.43 1.35 1.25

∞ 1.83 1.75 1.67 1.57 1.52 1.46 1.39 1.32 1.22 1.00
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Table A.8 Percentage points of the F-distribution—F0.01(ν1, ν2)

ν2\ν1 1 2 3 4 5 6 7 8 9

1 4052 4999.5 5403 5625 5764 5859 5928 5981 6022

2 98.50 99.00 99.17 99.25 99.30 99.33 99.36 99.37 99.39

3 34.12 30.82 29.46 28.71 28.24 27.91 27.67 27.49 27.35

4 21.20 18.00 16.69 15.98 15.52 15.21 14.98 14.80 14.66

5 16.26 13.27 12.06 11.39 10.97 10.67 10.46 10.29 10.16

6 13.75 10.92 9.78 9.15 8.75 8.47 8.26 8.10 7.98

7 12.25 9.55 8.45 7.85 7.46 7.19 6.99 6.84 6.72

8 11.26 8.65 7.59 7.01 6.63 6.37 6.18 6.03 5.91

9 10.56 8.02 6.99 6.42 6.06 5.80 5.61 5.47 5.35

10 10.04 7.56 6.55 5.99 5.64 5.39 5.20 5.06 4.94

11 9.65 7.21 6.22 5.67 5.32 5.07 4.89 4.74 4.63

12 9.33 6.93 5.95 5.41 5.06 4.82 4.64 4.50 4.39

13 9.07 6.70 5.74 5.21 4.86 4.62 4.44 4.30 4.19

14 8.86 6.51 5.56 5.04 4.69 4.46 4.28 4.14 4.03

15 8.68 6.36 5.42 4.89 4.56 4.32 4.14 4.00 3.89

16 8.53 6.23 5.29 4.77 4.44 4.20 4.03 3.89 3.78

17 8.40 6.11 5.18 4.67 4.34 4.10 3.93 3.79 3.68

18 8.29 6.01 5.09 4.58 4.25 4.01 3.84 3.71 3.60

19 8.18 5.93 5.01 4.50 4.17 3.94 3.77 3.63 3.52

20 8.10 5.85 4.94 4.43 4.10 3.87 3.70 3.56 3.46

21 8.02 5.78 4.87 4.37 4.04 3.81 3.64 3.51 3.40

22 7.95 5.72 4.82 4.31 3.99 3.76 3.59 3.45 3.35

23 7.88 5.66 4.76 4.26 3.94 3.71 3.54 3.41 3.30

24 7.82 5.61 4.72 4.22 3.90 3.67 3.50 3.36 3.26

25 7.77 5.57 4.68 4.18 3.85 3.63 3.46 3.32 3.22

26 7.72 5.53 4.64 4.14 3.82 3.59 3.42 3.29 3.18

27 7.68 5.49 4.60 4.11 3.78 3.56 3.39 3.26 3.15

28 7.64 5.45 4.57 4.07 3.75 3.53 3.36 3.23 3.12

29 7.60 5.42 4.54 4.04 3.73 3.50 3.33 3.20 3.09

30 7.56 5.39 4.51 4.02 3.70 3.47 3.30 3.17 3.07

40 7.31 5.18 4.31 3.83 3.51 3.29 3.12 2.99 2.89

60 7.08 4.98 4.13 3.65 3.34 3.12 2.95 2.82 2.72

120 6.85 4.79 3.95 3.48 3.17 2.96 2.79 2.66 2.56

∞ 6.63 4.61 3.78 3.32 3.02 2.80 2.64 2.51 2.41

(continued)
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Table A.8 (continued)

ν2\ν1 10 12 15 20 24 30 40 60 120 ∞
1 6056 6106 6157 6209 6235 6261 6287 6313 6339 6366

2 99.40 99.42 99.43 99.45 99.46 99.47 99.47 99.48 99.49 99.50

3 27.23 27.05 26.87 26.69 26.60 26.50 26.41 26.32 26.22 26.13

4 14.55 14.37 14.20 14.02 13.93 13.84 13.75 13.65 13.56 13.46

5 10.05 9.89 9.72 9.55 9.47 9.38 9.29 9.20 9.11 9.02

6 7.87 7.72 7.56 7.40 7.31 7.23 7.14 7.06 6.97 6.88

7 6.62 6.47 6.31 6.16 6.07 5.99 5.91 5.82 5.74 5.65

8 5.81 5.67 5.52 5.36 5.28 5.20 5.12 5.03 4.95 4.86

9 5.26 5.11 4.96 4.81 4.73 4.65 4.57 4.48 4.40 4.31

10 4.85 4.71 4.56 4.41 4.33 4.25 4.17 4.08 4.00 3.91

11 4.54 4.40 4.25 4.10 4.02 3.94 3.86 3.78 3.69 3.60

12 4.30 4.16 4.01 3.86 3.78 3.70 3.62 3.54 3.45 3.36

13 4.10 3.96 3.82 3.66 3.59 3.51 3.43 3.34 3.25 3.17

14 3.94 3.80 3.66 3.51 3.43 3.35 3.27 3.18 3.09 3.00

15 3.80 3.67 3.52 3.37 3.29 3.21 3.13 3.05 2.96 2.87

16 3.69 3.55 3.41 3.26 3.18 3.10 3.02 2.93 2.84 2.75

17 3.59 3.46 3.31 3.16 3.08 3.00 2.92 2.83 2.75 2.65

18 3.51 3.37 3.23 3.08 3.00 2.92 2.84 2.75 2.66 2.57

19 3.43 3.30 3.15 3.00 2.92 2.84 2.76 2.67 2.58 2.49

20 3.37 3.23 3.09 2.94 2.86 2.78 2.69 2.61 2.52 2.42

21 3.31 3.17 3.03 2.88 2.80 2.72 2.64 2.55 2.46 2.36

22 3.26 3.12 2.98 2.83 2.75 2.67 2.58 2.50 2.40 2.31

23 3.21 3.07 2.93 2.78 2.70 2.62 2.54 2.45 2.35 2.26

24 3.17 3.03 2.89 2.74 2.66 2.58 2.49 2.40 2.31 2.21

25 3.13 2.99 2.85 2.70 2.62 2.54 2.45 2.36 2.27 2.17

26 3.09 2.96 2.81 2.66 2.58 2.50 2.42 2.33 2.23 2.13

27 3.06 2.93 2.78 2.63 2.55 2.47 2.38 2.29 2.20 2.10

28 3.03 2.90 2.75 2.60 2.52 2.44 2.35 2.26 2.17 2.06

29 3.00 2.87 2.73 2.57 2.49 2.41 2.33 2.23 2.14 2.03

30 2.98 2.84 2.70 2.55 2.47 2.39 2.30 2.21 2.11 2.01

40 2.80 2.66 2.52 2.37 2.29 2.20 2.11 2.02 1.92 1.80

60 2.63 2.50 2.35 2.20 2.12 2.03 1.94 1.84 1.73 1.60

120 2.47 2.34 2.19 2.03 1.95 1.86 1.76 1.66 1.53 1.38

∞ 2.32 2.18 2.04 1.88 1.79 1.70 1.59 1.47 1.32 1.00
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Laplace Transform

The Laplace transform of f (t) is the function f*(s) where

f ∗(s) =
∞∫

0

e−st f (t)dt

Often the Laplace transform is denoted as f *(s) or or . A summary
of some common Laplace transform functions is listed in Table B.1 below.
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Table B.1 List of common
Laplace transform functions

f (t) 
{ f (t)} = f ∗(s)
f(t)

f∗(s) =
∞∫

0
e−st f (t)dt

∂f(t)
∂t s f∗(s) − f(0)

∂2

∂t2
[ f (t)] s2f∗(s) − s f(0) − ∂

∂t f (0)

∂n

∂tn [ f (t)] sn f∗(s) − sn−1 f(0) − . . . − ∂n−1

∂tn−1 f (0)

f(at) 1
a f∗

( s
a

)

1 1
s

t 1
s2

a a
s

e−at 1
s +a

teat 1
(s−a)2

(1 + at)eat s
(s−a)2

1
a e

− t
a 1

(1+sa)

tp for p > −1 �(p+1)
s p+1 for s > 0

tn n = 1, 2, 3, ... n!
sn +1 s > 0

1
a

(
1 − e−at

) 1
s(s + a)

1
a

(
eat − 1

) 1
s(s − a)

1
a2

(
e− at + at − 1

) 1
s2(s + a)

1
b−a

(
e− at − e− bt

) 1
(s + a)(s + b) a �= b

(
aeat−bebt

)

a−b
s

(s − a)(s − a) a �= b

αk tk −1 e−αt

�(k)
(

α
α+ s

)k
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Index

A
Absorbing Markov processes, 362
Absorbing processes, 360
Absorbing states, 351
Accelerated testing, 333
Acceptance line, 198
Acceptance region, 191
Acceptance sampling, 72
Adjusted R2, 207
Advertising budget, 209
Age replacement, 404
Age replacement policy, 408, 425
AICc, 208
Air cooling, 72
Akaike Information Criterion (AIC), 208
AND gate, 13
Assembly line, 68
Asymptotically unbiased, 137
Availability, 49, 360
Availability measure, 49
Average heart rate, 344
Average life, 59
Average system profit, 285

B
Bathtub, 106
Bathtub curve, 89
Bathtub-shaped, 115
Bayesian Information Criterion (BIC), 208
Bayes’ method, 256
Bayes’ rule, 9
Bayes’ theorem, 200
Beats Per Minute (BPM), 212
Bell shape curve, 95
Bernoulli distribution, 68

Bernoulli trials, 69, 81, 84
Bessel function, 390
Beta density, 113
Beta distribution, 104, 113
Beta functions, 51, 203, 230
Bias-corrected, 313
Bias-corrected estimator, 316
Binary indicators, 34
Binomial distribution, 69, 126
Block replacement, 404
Block replacement policy, 411
Blood vessels, 211
Bridge system, 257
Building damage, 79

C
Candidates, 62
Cardiovascular diseases, 211
Catastrophic failure, 377, 418
Cauchy distribution, 121
Cauchy-Schwarz inequality, 54
Censored case, 147
Censored failure time, 307
Central limit theorem, 124
Central moments, 140
Change-point, 164
Characteristic equation, 431
Chebyshev’s inequality, 53
Chi-square distribution, 101
Chi-square statistic, 168
Closed mode failure, 278
Coefficient of determinations, 207
Coefficient of variation, 19
Coffee machines, 305
Coffee makers, 304
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Coherent systems, 34, 37
Cold-standby system, 236
Column-orthonormal, 433
Combination, 11
Communication device, 45, 61
Communication network, 112, 282
Communication system, 225
Complex systems, 259
Component reliability, 315
Compound binomial, 75
Compound Poisson distribution, 80
Compound Poisson process, 390
Computer system, 318
Concave, 52
Conditional distributions, 28
Conditional expectation, 29
Conditional probability, 4, 9, 255
Conditional reliability, 40
Condition-based maintenance, 415
Confidence interval, 182, 184, 310, 446
Confidence intervals, 160
Consecutive days, 216
Consistent estimator, 137
Constant failure rate, 33, 59, 88, 224
Continue sampling, 192
Continuous distribution, 87
Continuous variables, 67
Controlled environment, 344
Convex, 52
Convex function, 52, 54
Convolutions, 26
Cooling system, 300
Correcting errors, 82
Corrective maintenance, 403
Corrective replacement, 412
Correlation, 207
Counting process, 388
Cramér Rao inequality, 153, 155
Cramér Rao lower bound, 155
Critical region, 192
Cumulative distribution, 95
Cumulative weight, 263

D
Data collection, 13
Debugging time, 83
Decomposition method, 258
Decreasing failure rate, 105
Defective, 6
Defective item, 220
Defectives, 72
Defective units, 127, 197

Degradation mode, 262
Degradation stage, 377
Degraded states, 378
Degraded system, 375
Degrees of freedom, 103
Delta method, 321
Delta technique, 51
DeMorgan’s rule, 8
Dependent failures, 247
Desired probability, 70
Detected fault, 165
Determinant, 428
DFR, 117, 122, 313
DFRA, 124
Diagonal matrix, 428, 433
Diastolic blood pressure, 211
Digital systems, 258
Discrete derivative, 273
Discrete distribution, 68, 83
Discrete variables, 67
Distinct objects, 12
Distribution function, 13
DMRL, 124, 313
Dual-system, 262
Dynamic redundancy, 264

E
Early failures, 116
Earthquakes, 78
Eigenvalues, 430
Eigenvector, 430
Electronic manufacturer, 72
Electronic products, 333
Engine automobile, 232
Ergodic processes, 364
Erlang distribution, 110, 113
Estimator, 135
Expected conditional mean, 29
Expected cost, 412
Expected frequency, 168
Expected number of failures, 60
Expected remaining life, 45
Expected system cost, 286
Expected total cost, 294, 335, 336, 407, 408
Expected value, 16, 29
Exponential distribution, 87, 146, 165
Exponential failure, 39
Exponential lifetime, 89
Exponential parameters, 185
Extreme-value distribution, 120



Index 493

F
Failed open, 283
Failed system, 406
Fail-safe redundancy, 266
Failure competing processes, 416
Failure costs, 266
Failure distribution, 38
Failure in open, 283
Failure rate, 43, 122
Failure rate parameter, 63
Failure state, 353
Failure time density, 324
Fair coin, 3, 58
Fair dice, 2
False negative, 191
False positive, 191
Fault detection, 333
Fault tolerance, 258
Fault tree analysis, 12
F distribution, 103
Filling station, 63
Fisher, 143
Fisher’s information, 155
Fisher information matrix, 160
Full load, 357

G
Gamma distribution, 101, 109, 150, 325
Gamma functions, 52
Gamma Prior, 203
Gasoline stations, 221
Geometric distribution, 81
Geometric mean, 17
Geometric random variable, 81
George Cantor, 2
Global minimum, 271
Goodness of fit, 167, 207

H
Half logistic distribution, 121
Harmonic mean, 17
Hazard function, 351
Hazard rate, 44, 106
Heart beats per minute, 344
Heart blood pressure, 211
Heart conditions, 339
Heart disease, 344
Heart rate measures, 212
Heating element, 305
Hessian matrix, 441
Holder’s inequality, 54

Homogeneous Markov process, 351
Hot-Standby, 237, 247
Human life expectancy, 116
Hypergeometric, 84, 145

I
Identify matrix, 429
IFR, 122
IFRA, 123, 313
Imperfect coverage, 264
Imperfect switching, 244
IMRL, 123, 124
Increasing failure rate, 106
Independence, 27
Independence of tests, 83
Independent, 16
Independent components, 37
Independent events, 5
Independent increments, 389
Independent life times, 26, 27
Independent trials, 69, 73, 81
Indicator variable, 15
Inspection policy, 403
Intensity function, 397
Intersection, 4
Interval availability, 50, 362, 365
Interval-system, 339
Interval-system reliability, 343
Invariance principle, 153
Invariance property, 321
Inverse Laplace, 32

J
Jelinski-Moranda model, 165
Jensen’s inequality, 54
Joint density, 25
Joint density function, 25

K
Keystone component, 256
Kolmo¬gorov Smirnov, 167
K-out-of---n, 278
K-out-of-n configuration, 328
K-out-of-n interval-system, 343
K-out-of-n system, 35, 232, 290, 309, 311,

319
K-to-l-out-of-n system, 235, 269
KS test, 168, 172
Kth moment, 140
Kurtosis, 70
Kurtosis coefficient, 20, 77
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L
Lagrange multiplier method, 273
Laplace transform, 30, 32, 356, 395
Laplace trend test, 178
Law of total probability, 9
Least squares estimates, 440, 441
Lehmann-Scheffe theorem, 341
Liapounov’s inequality, 54
Life insurance, 70
Life test, 217
Lightbulbs, 63, 70
Likelihood function, 143, 150, 444
Likelihood principle, 154
Linear dependent, 429
Linearly independent, 429
Linear regression model, 439
Load-sharing, 237, 357
Load-sharing parallel system, 249
Load-sharing system, 247, 250, 299
Local maximum, 271
Local minimum, 271
Local newspaper, 14
Location parameter, 105
Logarithmic series, 86
Logistic distribution, 121
Log likelihood, 143
Loglog distribution, 115
Log-normal density, 98
Lower bound inequality, 155
Lower-bound truncated exponential, 91

M
Machine learning, 427
Maintainability, 46
Maintained systems, 360
Maintenance, 47, 403, 406
Maintenance cost, 420, 423
Maintenance policy, 46
Marginal cdf, 25
Markov’s inequality, 53
Markov process, 349
Material strength, 98
Maximization problem, 276
Maximum life time, 60
Maximum likelihood, 440
Mean, 16
Mean absolute deviation, 23
Mean downtime, 48
Mean lifetime, 315
Mean profit, 269
Mean residual life, 45
Mean squared error, 139, 206

Mean time between failures, 51, 359
Mean time to failure, 41
Mean time to repair, 48
Mean value function, 331, 392
Mechanical reliability, 98
Median, 20
Medical device, 83
Memoryless property, 83, 87, 90
MIL-HDBK-189, 179
Military Handbook, 177
Minimal cut, 35
Minimal cut set, 36
Minimal cut vector, 36
Minimal path, 35
Minimal path set, 35
Minimal path vector, 35
Minimal repair, 403, 412
Minimization problem, 286
Minimum variance unbiased, 315
Minimum variance unbiased estimator, 138,

157
Minkowski’s inequality, 55
Mission reliability, 233
Mission time, 38
Mixed distribution, 93
Mixed truncated exponential, 42, 93
MLE, 445
Mode, 21
Moment-generating function, 24
Moments, 140
Movie reviewing, 436
MTBF, 51, 351
MTTF, 41
MTTR, 49
Multinomial coefficients, 12
Multinomial distribution, 76
Multiple-censored data, 158
Multiple failure modes, 277
Multiple linear regerssion, 450
Multiple stages, 383
Multistate system, 34
Mutually exclusive, 2, 7

N
NBU, 123
NBUE, 313
NComputing, 321
Negative binomial, 72
Negative binomial density, 398
Negative binomial distribution, 154
Nelder-Mead downhill, 423
N-Modular Redundancy, 235
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Noncoherent system, 235, 268
Non homogeneous Poisson process (NHPP),

331, 396, 412
Nonlinear optimization, 423
Normal distribution, 22, 96, 444
Normal linear regression, 180
Number of failures, 310
Number of successes, 154

O
Objective probability, 199
Open mode, 282
Open mode failure, 278
Operating conditions, 37
Operating environments, 307, 324, 330, 331
Operating mode, 237
Optimal inspection, 423
Optimal replacement policy, 407
Optimal subsystem, 284
Optimal value, 285
Optimization, 271
Optimum sample size, 335
Order statistics, 55, 307
Ordinary free replacement, 424
Ordinary renewal, 393
OR gate, 13
Orthogonal basis, 430
Orthogonal matrix, 429
Outcome, 2
Outlier, 23
Overloaded mode, 261

P
Parallel series structure, 257, 287
Parallel-series system, 231
Parallel system, 35, 226, 234, 280, 312, 326,

349, 356
Pareto distribution, 114
Partial failure, 384
Partial repairs, 383
Pascal distribution, 84
Path vector, 35
Perform satisfactorily, 46
Periodic replacement policy, 412
Permutation, 10
Pham distribution, 115, 124, 151
Pham pdf, 116
Pham’s criterion (PC), 209
Pham’s Information Criterion (PIC), 209
Planned replacement, 408, 412
Point availability, 49, 362, 365
Point estimates, 182

Pointwise availability, 49
Poisson distribution, 76, 126
Poisson process, 389, 390
Polynomial combination, 316
Population, 22
Population mean, 140
Population variance, 18
Posterior probability, 200
Power series distribution, 87
Power supplies, 299, 370
Predicted values, 441
Predictive power, 333
Predictive-ratio risk, 333
Preventive maintenance, 47, 403
Prior probability, 200
Probability, 1
Probability axioms, 6
Probability density function, 56, 114
Probability of failure, 72
Probability of success, 84
Probability space, 53
Product failures, 6, 64
Product lifetime, 106
Profit function, 270
Profit optimization, 269
Proportion defective, 197, 221
Pro-rata Warranty, 424
PRR, 207

Q
Quality control, 72, 85
Quasi renewal process, 393

R
Random environment, 325
Random errors, 450
Random event, 3
Random sample, 22, 85
Random shock, 419
Random variable, 3, 17
Range, 19
Rank, 429
Rayleigh distribution, 106, 114
Recommendation strategies, 436
Recommender systems, 427
RED criteria, 207
Redundancy, 232
Redundancy optimization, 261
Redundant systems, 77
Regression line, 440
Rejection region, 192
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Reliability, 37, 310
Reliability concepts, 34
Reliability estimation, 313, 318
Reliability function, 37, 38, 121, 314, 324
Reliability growth, 393
Reliability optimization, 278
Renewal density, 395
Renewal equation, 392
Renewal process, 390
Renewal time, 391
Repairable system, 369
Replacement, 10
Replacement policy, 403, 406
Replacement time, 408
Residual, 441
Riding a bicycle, 176
Root mean squared error, 206
Rotor blade, 161
Rotor blade data, 161
Row-orthonormal, 433
Row vectors, 429

S
Safety system, 370
Sample density, 136
Sample mean, 23
Sample median, 57
Sample space, 2
Sample variance, 18, 23
Security alarm, 90
Sequential probability ratio, 197
Sequential sampling, 191
Sequential tests, 191, 196
Series–parallel system, 229, 276
Series system, 34, 223, 279, 312, 325
Shape parameter, 109
Shared-load system, 247
Shock damage, 418
Significance level, 169
Singular value decomposition, 433, 434
Skewness, 70
Skewness coefficient, 20, 77
Small sample, 19
Software debugging, 82
Software failures, 332
Software model, 165
Software reliability, 165, 330
Software reliability growth, 394
Square matrix, 427
Standard deviation, 17
Standard normal, 126
Standard normal distribution, 96

Standby system, 237
Statistical inference, 135, 199
Statistically independent, 5, 103, 175
Statistical trend tests, 177
Steady state availability, 50, 365, 366
Stirling’s formula, 52
Stochastic processes, 349
Storage tank, 63
Streetlights, 59
Stress-strength, 339, 343
Stress–strength reliability, 339
Structure function, 34
Student’s t distributed, 103
Student’s t-distribution, 121
Subsystem, 230
Subsystem reliability, 314
Success probability, 84
Sufficient, 138
Sufficient statistic, 341
Sum of squared error, 206
Sum of squares, 440, 443
Switching device, 237
Switching mechanisms, 265
Symmetry, 20
Systemability, 324
System availability, 387
System cost, 261, 281, 266, 406
System failure, 12, 43, 227, 261, 281
System failure rate, 324
System maintainability, 48
System mean time, 376, 405, 425
System MTTF, 228, 231
System profit, 284
System reliability, 223, 227, 269, 274, 291,

344, 387, 425
System reliability under PM, 404
Systolic blood pressure, 211

T
Taylor series, 51
Television sets, 58
Test for independence, 175
Testing environment, 331
Test statistic, 172
Thomas Bayes, 199
Three parameter distribution, 118
Three-parameter Weibull, 104
Time to failure, 39
Time truncated test, 179
Total lifetime, 28
Total load, 357
Total system cost, 293
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Transition matrix, 355
Transition probabilities, 350
Transition probability, 351
Trend analysis, 177
Triangular distribution, 120
Triple modular redundancy, 258
Truncated exponential, 92
Truncated normal distribution, 98
Truncated Poisson distribution, 80
Two kinds of failure, 279
Two-parameter hazard rate, 118
Type I error, 191
Type II censoring, 310
Type-II censoring, 157, 159
Type II error, 191

U
UMVUE, 313, 339
Unbiased, 136
Unbiased estimator, 136, 341, 442
Uncer-tainty, 328
Uniform distribution, 27, 68, 94, 153, 417
Union of events, 7
Unit eigenvectors, 435
Unit matrix, 428

Units on test, 317, 338
Unlimited free replacement, 424
Unreliability, 38
Upper-bound truncated exponential, 92

V
Variance, 17, 94
Variance-covariance matrix, 160
Variance measure, 336
Vending machine, 15, 69
Venn diagram, 8, 59
Vtub-shaped, 115, 123
Vtub-shaped failure rate, 119

W
Waiting time, 80, 335
Warm-standby, 236
Warranty, 424
Wear-out, 106
Weibull density, 325
Weibull distribution, 39, 104, 105, 150
Weibull lifetime, 121
Wind damage, 62
Without replacement, 10, 57, 85, 145
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