
Chapter 5
Impact of Climate Change on Soil Microbes
Involved in Biogeochemical Cycling

Anjali Singhal, Soumya Pandey, Neeta Kumari, D. K. Chauhan, and
Pawan Kumar Jha

Abstract Anthropogenic activities have led to the emission of greenhouse gases
which have accumulated in the earth’s atmosphere over a period of time. The
increased concentration of greenhouse gases has increased earth’s temperature and
has changed weather patterns. The enhanced CO2 level, warming effect and chang-
ing soil moisture conditions have influenced soil microorganism. The microbial
communities present in soil and the interactions taking place in terrestrial environ-
ment are extremely diverse and complex. The effect of climate change on soil
microbial communities includes changes in microbial community composition,
species abundance, diversity, survival and resilience, changes in enzyme production,
and changes in interactions of microbes with roots of plants, production and seques-
tration of atmospheric gases (e.g. CO2, CH4, N2O), utilization of soil nutrients and
organic matter, etc. Further, the bidirectional nature of interactions where physical
environment influences microorganisms and microorganisms in turn can impact
environmental conditions, making it difficult to understand the effect of climate
change. These microorganisms are involved in various biological processes associ-
ated with biogeochemical cycle. Thus, any change in microbial communities also
affects the nutrient cycling through biogeochemical cycles. This chapter focuses on
the effect of climate change on soil microorganisms and the impact on various
microbial processes associated with carbon and nitrogen cycle.
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5.1 Introduction

Due to the increased emission of greenhouse gases, there is a change in the climate,
and it is predicted that the earth can become warmer by 5 �C by the end of this
century. This changing climate has a profound impact on natural environment and
human wellbeing. Climate change can strongly influence both abiotic and biotic
interactions taking place in the environment. Biogeochemical cycling of nutrients is
no exception (Frank et al. 2015). Climate change also affects terrestrial ecosystem.
The microorganisms play an important role in maintaining the structure and func-
tioning of terrestrial ecosystem. Climate change can affect soil microorganisms in
many ways, including changes in species composition, abundance and distribution.
It can also have direct and/or indirect effect on microorganisms causing changes in
microbial community composition and/or enhanced or reduced physiological func-
tions. Microbial communities in nature are complex and the interaction among
different microorganisms is also varied. Thus, the response of soil microbes to
changing environmental conditions is influenced by all these factors. Studies have
shown that there is a change in biodiversity and function of ecosystem due to the
impact of climate change. Soil microorganism interacts not only among themselves
but also with flora and fauna of the region; thus, the interactions are extremely
complex, making prediction of climate change-induced alteration very difficult. At
the same time, the importance of soil microbes, especially those involved in biogeo-
chemical cycles, stresses the need to do detailed analysis of the impact of climate
change (Classen et al. 2015).

The interaction in between climate change and soil microbes is bidirectional. The
soil acts as a sink for CO2, while microbial processes taking place in soil lead to the
emission of greenhouse gases like CO2, CH4, N2O, etc. The microbial communities
present in soil participate actively in various processes of biogeochemical cycles and
regulate the movements of essential nutrients like carbon and nitrogen (French et al.
2009). Emission of CO2 by various soil microbial processes can contribute up to
10% of total atmospheric CO2; thus, soil microbial processes can influence the
atmospheric factors at a global level (French et al. 2009; Mandal and Neenu 2012;
Gougoulias et al. 2014). Microorganisms differ in their physiology, sensitivity,
resilience and abundance; thus, changing physical conditions in terrestrial ecosystem
has both direct and indirect impacts on them. When microorganism involved in key
ecological processes like denitrification, nitrification, lignin degradation, etc. are
affected, the functioning of ecosystem is also affected (Classen et al. 2015).

Various biological processes occurring in the terrestrial ecosystem have signifi-
cant impact on the earth systems at a global scale. Carbon and nitrogen are the two
most important nutrients required to sustain life. Their cycling among the various
compartments of earth, atmosphere, lithosphere and hydrosphere is very important to
sustain life and its processes. These biogeochemical cycles involve a number of
biological processes mainly driven by soil microorganisms. The various processes
for carbon cycle are photosynthesis, respiration, methanogenesis, fermentation,
decomposition, etc. Nitrogen cycle involves biological processes like nitrification,

64 A. Singhal et al.



denitrification, ammonification, etc. The climatic conditions have strong influence
on the response and survival of soil microorganisms. These microbes, in turn, can
have significant impact on environment by controlling the source and sink activities
associated with carbon and nitrogen. Studies have shown that terrestrial ecosystem
serves as a sink for CO2. However, carbon sequestration also depends on the
nitrogen content of the soil. Soils poor in nitrogen show reduced carbon fixation,
and addition of nitrogen fertilizers promotes carbon sequestration as formation of
soil organic matter requires a suitable C/N ratio along with other nutrients (French
et al. 2009).

This chapter reviews the effect of climate change on microbial communities
associated with carbon and nitrogen biogeochemical cycles. The chapter deals
with the issue of the impact of changing abiotic conditions like increase in temper-
ature, change in precipitation or increased CO2 on structure and functioning of
microbial communities. Studies related to the effect of climate change on microbial
diversity, abundance, resilience and functioning are discussed. The changes in plant–
microbe interaction, soil enzymes, rhizosphere, plant–microbe symbiotic relation-
ships, pathogens and the associated changes in carbon and nitrogen cycles are also
discussed.

5.2 Carbon Cycle and Microorganisms

Carbon is the essential nutrient for all life forms. In nature, it exists in both inorganic
and organic forms. Microbes and plants interconvert the two forms of carbon and
bring about its circulation among different compartments of environment,
i.e. hydrosphere, atmosphere and lithosphere. The global carbon cycle is mainly
driven by microbial communities, involved in the processes of fixing atmospheric C,
plant growth and transformation and degradation of soil organic matter. Carbon is
present in the atmosphere as CO2 and CH4. It is also present in the earth’s crust in
many inorganic forms like limestone and kerogens and in organic forms in soil. The
process of converting C present in the atmosphere into organic form is called carbon
fixation. In aerobic environment, photosynthesis is the dominant process for fixing
atmospheric carbon. In this process, atmospheric CO2 is converted into organic
compounds and sunlight is used as a source of energy. Photosynthesis is performed
mainly by plants and photosynthetic algae. Apart from photosynthesis, chemoauto-
trophic microorganisms (cyanobacteria, bacteria and some protozoa) also convert
inorganic C compounds into organic compounds. The organic matter thus produced
is consumed by animals and microbes for growth and maintaining their metabolic
processes. As a result of these metabolic activities, CO2 is generated and released in
the environment. This process is called respiration. Terrestrial carbon cycle is a
balance in between CO2 fixed during photosynthesis and CO2 released during
respiration and organic matter decomposition. When living organisms die, their
cells are transformed and decomposed by heterotrophs and carbon is released
(mineralization). In anaerobic environment, microorganisms use organic compounds
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for obtaining energy and the process is called fermentation. Some of the commonly
occurring fermenters are green and purple sulphur bacteria, Thiobacillus
ferrooxidans, Bacteroides succinogenes, Clostridium butyricum, Syntrophomonas
sp., etc. Fermentation is responsible for the release of CO2 and CH4 in environment.
CO2 is the major source of carbon followed by methane (CH4). Methane exists in
anaerobic environments. Methanogens are anaerobic archaebacteria that convert
organic matter into methane by methanogenesis. Another group of bacteria,
methanotrophs or methane-oxidizing bacteria, is a special group of aerobic bacteria
capable of utilizing methane as an only source to satisfy carbon and energy require-
ments. Methanotrophs live at the boundary of aerobic and anaerobic environment so
that they can have easy access to methane from anaerobic side and oxygen is
available to them from aerobic side. The major microbial processes involved in
carbon cycle are CO2 fixation, methane production and utilization, respiration and
decomposition of organic matter (Abatenh et al. 2018). Figure 5.1 shows the details
of carbon cycle.

5.3 Effect of Climate Change on Soil Microorganisms
of Carbon Cycle

Climate has a strong influence on the abiotic factors in the ecosystem. The growth,
survival and activity of microbes are strongly regulated by abiotic conditions. Thus,
climate change-induced variation in abiotic conditions can regulate and alter dynam-
ics of microbial populations present. The two most important abiotic factors are
temperature and moisture. The changes they can induce include abundance, com-
position and function of microorganisms. The growth and activity of any microor-
ganism are its individual characteristics and can vary independently. Say, a change
in abiotic condition induced higher activity; however, the growth of microorganism
might reduce or might show lower biomass. Thus, growth and activity are two
independent aspects of microbes and can respond differently to same changes in
abiotic conditions (Mandal and Neenu 2012).

5.3.1 Effect of Enhanced CO2 on Carbon Cycle Microbes

The amount of carbon locked in soil in organic form is almost three times the carbon
available in the atmosphere. Annually, about 8% of carbon is circulated by carbon
biogeochemical cycle in between the atmosphere and lithosphere. If the process of
respiration and decomposition stops, then 100% of carbon present in the atmosphere
will be fixed to organic matter in soil in about 12 years (Gougoulias et al. 2014). At
present, the amount of carbon fixed by photosynthesis and autotrophic
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microorganism is almost 25% more than the carbon liberated during respiration.
Thus, terrestrial carbon sequestration acts as a sink for CO2.

Anthropogenic activities have disturbed the natural balance of the biogeochem-
ical cycles. Burning of fossil fuels and cultivation of land have increased the
emission of CO2, CO, etc. Increase in atmospheric CO2 content acts as fertilizer
for photosynthesis, thereby stimulating growth. More root exudates are produced by
plants and these organic substrates in turn enhance microbial activities in rhizo-
sphere. Studies have reported changes in microbial community composition and
activity. A study reported 121% increase in biomass of microorganism after treat-
ment with CO2 (690 ppm) in open top chambers for 22 weeks (French et al. 2009).
Some studies have reported increased dominance of Pseudomonas spp. at elevated
CO2, some studies using molecular techniques have confirmed changes in commu-
nity structure for bacteria as well as fungi, but some studies have reported no change
(French et al. 2009). Arbuscular mycorrhizal fungi (AMF) form symbiotic relation-
ship in between plants and fungi. Fungi colonize the roots of host plants and create
vast connections between roots of plant and surrounding soil. This increases the
surface area for nutrient uptake. An enhanced level of CO2 promotes photosynthesis.
More carbohydrates are available for roots. This promotes the growth of AMF. Thus,
enhanced ambient CO2 levels indirectly increase AMF development and promote
symbiotic relationship (Choi et al. 2005; French et al. 2009).

The microbial decomposition and respiration also increased (French et al. 2009;
Gougoulias et al. 2014). This in turn increases carbon mineralization, and more CO2

is released in the environment. These changes will disturb the balance between
carbon fixation and carbon mineralization. The processes are very diverse and
complex. Thus, the net effect of the increase in CO2 content in the atmosphere
might favour carbon sink (photosynthesis) as well as carbon sources (decomposition
and respiration). It is difficult to predict the outcome in the future. However, few
models have predicted that increase in atmospheric CO2 will lead to increased
carbon emission (Gougoulias et al. 2014). Studies have suggested that increase in
CO2 will lead to enhanced photosynthesis by plants. The amount of litter generated
by plants will also increase. This litter may alter the soil chemical and physical
properties. Such changes can alter not only composition but also function of the
microbial communities present there. Elevated CO2 also promotes root growth, thus
including changes in rhizosphere (Mandal and Neenu 2012). The published studies
have also reported that the increasing CO2 had no significant effect on microbial
growth and activity (Kandeler et al. 2006; Pinay et al. 2007). Drissner et al. (2007)
conducted a study to see the effect of elevated CO2 on the soil enzymes commonly
involved with biogeochemical cycles. In spring season, the activity of enzymes
increases, urease (23.8%), xylanase (22.9%), protease (40.2%), invertase (36.2%)
and alkaline phosphomonoesterase (54.1%) activities. However, in autumn season,
enzyme activity decreased by 3–12%.

The effect on climate change on microbes can be evaluated at individual, com-
munity or global level. A study by Collins et al. (2008) evaluated the effect of CO2

enrichment on phytoplankton community. Different microbial species respond dif-
ferently to changes in environment. Also, by analysing evolutionary or physiological
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traits, it is difficult to predict the microbial response. Same microbial species may
respond differently for single strain community and multi-strain community. For
single strain communities, long-term CO2 enrichment experiments enhanced bio-
mass production. However, in multi-strain communities, the long-term CO2 enrich-
ment experiments lead to decline in CO2 fixation. The difference in responses might
be due to competitive interactions present in multispecies communities (Collins et al.
2008).

5.3.2 Effect of Drought and Increased Moisture on Carbon
Cycle Microbes

The impact of climate change on biogeochemical cycle not only depends on the
diversity and abundance of microorganisms but also on the prevalent environmental
conditions in the ecosystem (Bardgett et al. 2008). In forest ecosystem, increase in
severity and frequency of droughts will make the soil water deficient and dry.
Various studies have shown that the moisture content may decrease to the level
that it negatively affects microbial activity. The rate of decomposition and respira-
tion reduces. The activity of phenol oxidase and amount of fungal and bacterial
biomass also reduce (Nardo et al. 2004; Krivtsov et al. 2006). However, if similar
changes occur in wetland or peatland, the effect will be opposite. Increased dry
conditions will lower the water table in the region, thereby converting anaerobic soil
into aerobic. This change will favour degradation and microbial respiration. Studies
have shown that the activity of phenol oxidases increases (Freeman et al. 2004;
Zibilske and Bradford 2007). Wetlands and peatlands have huge stock of organic
matter. If the dry condition prevails, the level of oxygen in soil increases and CO2

efflux increases. At the same time, the activity of methanogens is inhibited. These
changes might have significant impact on global carbon cycle (Bardgett et al. 2008).

Global warming is leading to abrupt climate changes like increase in severity and
frequency of drought, increased rainfall and increased episodes of extreme climate.
Such changes in climate affect the global pattern for production and decomposition
of organic matter. Drought can change the carbon allocation in between roots and
foliage and thus can affect below-ground cycling of carbon and other nutrients.
Rhizosphere is a zone where interactions in between roots and root-associated
microorganisms take place. Drought can disrupt the various processes taking place
in rhizosphere. Sanaullah et al. (2011) studied the changes in the microbial biomass
and enzyme activity (xylanase, β-cellobiosidase, β-glucosidase, chitinase) in rhizo-
sphere of grasses, grown as monoculture and mixed culture. It was observed that
lesser carbon was allocated to shoot as compared to root. No trend was observed for
changes in microbial biomass in monoculture conditions. However, in mixed cul-
ture, there was an increase in microbial biomass. Unplanted soil showed most
adverse drought response with severe decline in enzyme activity of all the enzymes
studied. The enzyme activity was lower in mixed plantations as compared with
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monoculture. The enzymes studied (xylanase, β-cellobiosidase, β-glucosidase,
chitinase) are involved in decomposition of organic matter, and we can say that
due to drought, the decomposition process will be slower in mixed plantations as
compared with monoculture.

The response of microbes for change in moisture content also varies from region
to region. The microbes inhabiting dry and arid place will have lower capability to
respond to higher moisture content (Meisner et al. 2013). Due to climate change,
there will be not only increasing episodes of drought and flood but also pulsed rain
events where wet and dry spell will alternate. Studies have shown that microbial
community and their functioning change with wet and dry spell with transition
phases. The microbial activity is high during wet spell and lower during dry spell.
However, some studies have indicated that dry spell exposes old C pools, and during
wet spell, the microbial activity becomes so high that it is able to compensate the
reduction in activity during dry spell (Collins et al. 2008; Evans et al. 2012; Meisner
et al. 2013).

The duration of the study also has profound influence on the results. A study was
conducted in Mediterranean-type grassland ecosystem. The effect of natural process
of rainfall and dry period was studied. Short-term effects were studied for changes in
the structure and function of microbial community. It was observed that microbial
communities, especially bacteria, respond quickly for the rewetting for soil after a
dry period. Rainfall was quickly followed by pulses of release of nutrients like
carbon and nitrogen. Most of the abundant microbial communities (Actinobacteria,
Acidobacteria, Proteobacteria, Bacteroidetes, Firmicutes, Cyanobacteria,
Verrucomicrobia) showed strong correlation for moisture and available carbon.
Many studies have reported that microbial communities are resilient to changes in
moisture; however, most of them involve longer durations. Results can vary signif-
icantly with duration of the study (Cruz-Martínez et al. 2012).

5.3.3 Effect of Rise in Temperature on Carbon Cycle
Microbes

One of the effects of climate change predicted is the overall temperature of earth will
increase by 1–5 �C (IPCC 2007). It is generally believed that global warming will
increase the degradation of organic matter, and thus the C flux from terrestrial
ecosystems to atmosphere will increase. Increase in temperature can affect microbial
community composition as well as physiological functioning. Studies have shown
that bacteria play more important role in determining the rate of respiration as
compared with fungi (Keiblinger et al. 2010). Most of the warming studies have
shown that there is not much effect on microbial biomass due to rise in temperature.
However, the changes in microbial community composition are varied. They can be
change in fungal abundance, change in abundance of gram-positive bacteria,
decrease in gram-negative bacteria or no change in microbial community structure
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(Schindlbacher et al. 2011). A 5-year warming study was conducted in forest of
Achenkirch, Austria. No change was observed in terms of microbial biomass or
community structure over the entire period of the study (Schindlbacher et al. 2011).
Zhang et al. (2005) studied warming effect on tall grass prairie for 2 years. The
increase in fungal abundance was observed. Similar results were also reported by
Castro et al. (2010). However, the increase in fungal abundance was an indirect
effect caused due to changes in plant community. Warming may also lead to gradual
decline in available decomposable matter. This change may also alter community
composition. Thus, there are many direct and indirect factors affecting microbial
processes (Schindlbacher et al. 2011). The soil respiration rate and thus CO2 release
increased as a result of warming of soil. This change can be linked to higher turnover
rate and changes in substrate utilization by microorganisms. It was also observed that
microbes were under stress and their respiration rate increased (Schindlbacher et al.
2011). Another study was conducted for 7 years (2002–2009) at deciduous forest in
New England to evaluate the heating effect on CO2 emission and sequestration. In
warmed plots, temperature was maintained 5 �C more than the ambient temperature.
Ambient temperature varied from 20 �C in summer to �6 �C in winter. Rainfall was
evenly distributed. Increase in temperature promoted microbial activity, higher
degradation of organic matter was observed and thus CO2 emission increased.
Warming also increased the storage of carbon in plants as compared with control
plots. By the end of 7 years, the increased amount of carbon stored in plants was able
to offset the increased CO2 emission effect (Melillo et al. 2011).

Rise in atmospheric temperature or global warming has greatly affected the
microbial functioning as the microbial processes are temperature sensitive. Many
studies have explored the impact of rising temperature on soil microbes. However,
there is no clear trend. Results also vary with experimental conditions like duration
of study (short term or long term), or lab study or field study, single factor or multiple
factors, etc. (Classen et al. 2015). Most of the studies have reported that the
decomposition of organic matter and microbial respiration increase with rising
temperature (Bradford et al. 2008; Sistla and Schimel 2013). Possible reasons for
these changes can be changes in the structure of microbial community, substrate
availability, quality and quantity of litter and relative abundance of labile carbon
versus soil organic carbon (French et al. 2009). However, these changes can be for
short duration. With time, as the labile C pool decreases in soil, the microbial activity
also reduces. There might be change in microbial composition and functioning.
Microbes respond to these changes by adaptation, evolution and interactions. The
changes are diverse and complex (Bradford et al. 2008; French et al. 2009; Mandal
and Neenu 2012; Sistla and Schimel 2013; Gougoulias et al. 2014).

An important indirect effect of rising temperature is greater loss of moisture from
soil, creating drought-like conditions. Lack of moisture may negatively impact the
availability of nutrients. The fast-growing bacterial community is more prone to
adverse effect as compared with slow-growing fungal community. The changes in
fungal community composition are usually more evident as compared with bacteria,
showing better adaptability of fungi (Blankinship et al. 2011).
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5.3.4 Combined Effect of Different Climate Change Factors
on Carbon Cycle Microbes

Most of the studies have evaluated the effect of single factor while studying climate
change and biological systems. However, in real scenario, there will be more than
one factor affecting the environment. The net effect might be additive, antagonistic
or no change. In nature, the changes in climatic conditions will not be individualistic.
That is, changes in temperature will be overlapped with changes in CO2 concentra-
tion, precipitation and so on. Thus, it is important to study the effect of microorgan-
isms with variation in more than one abiotic condition. Effects of variation in
temperature (ambient, 3 �C), precipitation (wet and dry) and CO2 concentration
(ambient, 300 ppm) were studied on bacterial and fungal diversity in oil field
ecosystem (Mandal and Neenu 2012). Bacterial diversity increased in case of high
temperature and high CO2 concentration. The plots with high temperature and
ambient CO2 concentration showed decreased bacterial diversity. Fungal diversity
increased in plots with high temperature (Mandal and Neenu 2012).

Studies combining the effect of stress due to climate change have often reported
that microbial communities experiencing stress often trade growth for stress toler-
ance traits. Combined effect of warming (5 �C above ambient) and four freeze–thaw
cycles on soil microorganisms was studies at Hubbard Brook Experimental Forest in
the northeastern United States. The brown rot fungi and plant pathogens were
favoured by rise in temperature, while growth of arbuscular mycorrhizal fungi
(AMF) especially Glomus reduced. Warming and freeze–thaw cycle together pro-
moted animal pathogens (genera Trichosporon and Metarhizium) and AMF recov-
ered. The copiotrophic and cellulose degrading bacteria were also suppressed
(Garcia et al. 2020). A study by Sheik et al. (2011) evaluated the combined effect
of high temperature and drought on microbial communities of Oklahoma prairie soil,
USA. It was observed that during the periods of normal rainfall and increase in
temperature (2 �C above ambient), the microbial biomass increased by 40–150% but
diversity decreased; thus, the composition changed. During the period of drought,
the slight increase of 2 �C lead to severe drying of the soil and microbial population
decreased by 50–80%. However, there was no long-term effect on community
composition as species diversity, richness and evenness improved. May be under
stressed conditions, fewer phylotypes were active (Sheik et al. 2011). All the
physiological functions of the microorganisms are mediated through enzymes.
Studies have shown that during stress, there might be a change in resource alloca-
tion, preference being given to enzyme production. This will help in optimizing the
use of limited resources available (Steinweg et al. 2013). Microbial enzymes and
microbial biomass were measured in a study conducted in an old abandoned field at
Boston-Area Climate Experiment (BACE), USA. Combined effect of higher tem-
perature (4 �C above ambient), lower rainfall (50% of normal) and higher rainfall
(150% of normal) was evaluated. It was observed that microbial enzyme production
increased with increasing temperature, while microbial biomass decreased. Possible
reason can be allocation of resources for enzyme production changed. Thus, the
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popular view that changes in microbial biomass are followed by changes in micro-
bial enzyme production was challenged (Steinweg et al. 2013).

5.3.5 Effect of Extreme Climatic Events on Carbon Cycle
Microbes

Studies have shown that the frequency and severity of extreme weather events have
increased due to climate change. This is in addition to the gradual effect climate
change has on environmental conditions. The extreme weather events include heat
waves, frosts, extreme drought, heavy precipitation, wind storms, etc. The past few
years have witnessed many incidences of extreme weathers worldwide and also in
India. Tables 5.1 and 5.2 summarize few events related to climate change and
extreme events that occur worldwide and in India, respectively. Extreme weather
events are considered as disturbances or pulse events that last for a short duration but
have a strong impact on the surroundings. The effect can be categorized into four
types: direct and concurrent like reduced productivity due to drought, indirect and
concurrent like change in organic matter composition of soil due to forest fire caused
by lightening, direct and lagged effect like reduced flowering and fruiting due to loss
of fertile soil during flash floods and indirect and lagged effect like reduced produc-
tivity due to increased pest and pathogen population (Frank et al. 2015).

The ecosystems may experience huge fluctuations in their structure and function
due to exposure to extreme climate events. These disturbances can sometimes be
strong enough to cause abrupt change from one ecosystem state to another. Some-
times, ecosystems show good resistance and resilience (recovery) and are able to
maintain their original state after extreme climate pulse disturbance. If these distur-
bances reoccur, then changes are inevitable. Different microorganisms adapt to
different strategies to deal with disturbances. Members of phylum Actinobacteria,
commonly found in soils of dry regions, have high tolerance for desiccation or are
resistant to drying, while bacteria belonging to phylum Acidobacteria survive
drought as they are more resilient and recover fast owing to fast growth strategy
(Bardgett and Caruso 2020). Actinobacteria has oligotrophic characters and shows
low growth rate and higher efficiency for resource utilization, but is resistant to
change. Acidobacteria is copiotrophic, characterized by higher growth rate and
lower efficiency for using resources, being resilient (Bardgett and Caruso 2020).
Since there are many different types of extreme weather events, their effects also
vary accordingly. For example, drought has direct concurrent effect on reduced
enzyme activity of microbes. Recurrent droughts might alter the regional microbial
community composition favouring drought-resistant species. This in turn will impact
CO2 sequestration and emission. If the extreme event is flash flood, then the top
fertile soil is washed off, and the change in ecosystem can be so drastic that it might
not be able to recover to its original state (Frank et al. 2015).
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5.3.6 Impact of Climate Change on Plant and Soil Microbe
Interactions

Climate change has led to increase in temperature and thus, at some places, the plants
are migrating to higher latitudes. The changes are drastic that the whole ecosystem
has changed. For example, in the Arctic, woody shrubs have been replaced by
grasses (Pearson et al. 2013). In soil, many microbial communities are closely
associated with plants. This relationship is mutually beneficial and sometimes can
have a great influence in terms of adaptation and survival. Changes in plant com-
munity in a region can affect microbial communities in many different ways. The
microbial community might follow the migration of plant species, or it might
migrate deep in soil, or there might also be redistribution of microorganism. In
some cases, the microbial community composition changes and the new species
emerge as dominant. Such changes in microbial communities affect not only soil
carbon balance but also functioning and survival of plants. Changes in microbial
community might also play some role in controlling the plant community structure
and its resistance to disturbances and resilience (Classen et al. 2015).

5.4 Nitrogen Cycle and Microorganisms

Nitrogen reserves are available in abundance in air, in rock deposits and from living
and dead organic matter. It is an important element required for synthesis of cellular
components for all living beings. Nitrogen cannot be utilized directly by plants in its
atmospheric form, hence requiring a more reactive form of nitrogen (Buresh et al.
1980).

The nitrogen cycle is one of the most important biogeochemical cycles on earth. It
cycles the flow of nitrogen from atmosphere into ecosystems, both marine and
terrestrial, through nitrogen fixation and finally returned to the atmosphere through
denitrification (Wan et al. 2005). The fixed nitrogen is subsequently converted into a
wide range of proteins and nucleic acids and oxidized compounds by microbes
(Arnone 1999; Wan et al. 2016). Nitrogen cycle involves six distinct processes,
mediated by microbes that proceed in an orderly fashion. Various processes like
nitrogen fixation, nitrification, assimilation, ammonification and denitrification form
the whole nitrogen cycle (Pajares and Bohannan 2016). Figure 5.2 shows details of
nitrogen cycle.

Nitrogen fixation may be natural or industrial. In the natural process, nitrogen-
fixing bacteria play a major role in nitrogen cycle as about 90% of nitrogen fixation
happens due to them (Hu et al. 2016). These microbes are divided majorly into two
groups. First, a symbiotic species that use root nodules of selective plants to live,
mainly legumes, for example, Rhizobium, Frankia and certain species of
Azospirillum. The second species live without host and freely and are found in soil
systems and aquatic biomes, for example, Cyanobacteria: Anabaena, Nostoc,
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Azotobacter, etc. (Allison and Treseder 2008). Nitrogen fixation and nitrification are
the processes leading to the formation of nitrate and ammonia. Nitrogen in the form
of nitrate and ammonia is utilized by the plants and animals and the process is called
assimilation. Plants absorb nitrogen through their roots and integrate them as pro-
teins and nucleic acids. Animal use these by eating plants (Barnard et al. 2005a, b).
Ammonification is the process where the organic nitrogen formed in the process of
assimilation is converted into ammonia and hence becomes available for further
nitrification and assimilation (Manning and Tiedemann 1995).

Nitrification is the biological conversion of ammonia to nitrate nitrogen. This
usually takes place in two steps. In the first step, the microbes called Nitrosomonas
convert ammonia and ammonium to nitrate, and then in the second step, the
microbes called Nitrobacter convert nitrite to nitrate. The process is very rapid as
these bacteria are aerobic and require dissolved oxygen of 1.0 mg/L or more for
conversion. Denitrification is an anaerobic process in which nitrates are biologically
reduced to nitrogen gas and released in air. The facultative and heterotrophic
microbes are required for the process. This process occurs when oxygen is almost
depleted (less than 0.5 mg/L). Nitrates act as oxygen source, are broken to gain
oxygen and are converted to nitrous oxide released into air (Jiang et al. 2019).

5.4.1 Effect of Human Activities on Nitrogen Cycle

Anthropogenic activities have influenced the nitrogen cycle. Alteration in available
nitrogen for plants has limited the growth of the plants as well as decreases its
nutrient content in some region, mainly temperate and boreal. This problem is
resolved by applying fertilizers into soil, which had initially increased the production
of crops and plants. However, the bulk (80%) of N fertilizer applied in the field is
washed off with run-off water or is lost as gas emissions and goes into the environ-
ment. At present, industrial fertilizers play a major role in providing nutrients to crop
plants and about 50% food production depends on them. Use of industrial fertilizers
and legume cultivation has increased the nitrogen addition to the environment to
double. These increased quantities of plants sequestered the atmospheric carbon into
the system and are believed to be the only positive effect of human activities on
nitrogen cycle (Rakshit et al. 2012). The dumping of nitrogen especially in the form
of fertilizers has led to the build-up of reactive N species in the environment and can
have a toxic effect on humans as well as plants and animals. Thus, it is important to
understand the various processes of nitrogen cycle so that agricultural practices can
be improved, thereby minimizing detrimental effect of dumping of N in environment
(Wallenstein and Hall 2012).
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5.4.2 Effect of Enhanced CO2 on N Cycle Microorganisms

In the process of plant growth and species diversity, CO2 plays a crucial role. Studies
reveal that rise in atmospheric CO2 concentration has led to increased carbon from
the atmosphere into the plants (Nie et al. 2014). It also enhanced the carbon content
into the soil through rhizodeposition, leading to an increase in the organic matter
content of soil. This would lead to further carbon sequestering causing simultaneous
increase in nitrogen sequestration. Sequestered nitrogen will not be available for
plant absorption and hence will gradually limit the plant productivity in terrestrial
ecosystem (Hoosbeek et al. 2004). However, some studies also reveal that the soil
carbon is not affected by change in CO2 despite higher C inputs (Jensen et al. 2003).
The impact of rising CO2 is hard to predict without a good knowledge of interaction
between carbon (C) and nitrogen (N) cycles (Phillips et al. 2012; Zang et al. 2015).
There have been cases in which CO2 has been responsible for enhanced N retention
and decrease in leaching of nitrates and denitrification process (Phillips et al. 2006,
2009). In some other cases, increase in CO2 has enhanced the process of leaching of
nitrates and denitrification (Phillips et al. 2006). This increased CO2 also increases
the length and density of roots of the plants, hence also improving the N intake
(nitrate and ammonium) of plants (Barnard et al. 2005a; Castro et al. 2010; Das and
Mangwani 2015) and altering the N pool in soils (Björsne et al. 2014). N cycle
processes like nitrification and denitrification are influenced by elevated CO2 con-
centrations and in turn impact inorganic N concentrations in soil, leaching of nitrate
and emission of N2O (Cantarel et al. 2011; De Vries and Shade 2013). It is also
important to understand the effect of elevated CO2 on microbial N biomass because
N immobilization in microbial biomass can have impact on plant productivity
especially in N-limited ecosystems (De Vries and Shade 2013). Elevated CO2 may
have a good effect or no effect on soil microbial biomass of N. Change in microbial
biomass is seen due to addition of fertilizers and hence the fertilizer-free soil has
microbes insensitive to elevated CO2 (Hartwig et al. 2002; Nowak et al. 2004;
Fuchslueger et al. 2014). Studies also reveal that elevation in CO2 is also responsible
for increased root exudation which leads to more N immobilized in microbial
biomass (Touceda-González et al. 2017). When the demand for N increases by
heterotrophic bacteria, it tends to decrease the ammonium availability for nitrifiers
and availability of soil nitrates (Cao et al. 2016). Root exudation results in miner-
alization of N as microbial cells and ammonium content in the soil increase (Paterson
et al. 1997). Increased rate of mineralization can also promote nitrification and as a
result soil nitrate concentration is modified (Zheng et al. 2008). Water availability is
also affected by change in CO2 concentration due to decrease in the rate of passage
of CO2 entering, or water vapour exiting from plants, also known as stomatal
conductance. When this occurs for long period, it results in increase in denitrification
process and loss in N reserves of soil (Zheng et al. 2008).

Due to human intervention and plants grown in fields, agricultural soils have a
huge impact on global carbon and nitrogen cycles. For example, emission of nitrous
oxide increases tenfold in cultivated soils as compared with conventional tillage
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practices (Robertson et al. 2000). From an agricultural viewpoint, elevated CO2

concentration can alter the crop productivity and sustainability by improving N-use
efficiency (Gamper et al. 2004; Nowak et al. 2004; Chen et al. 2017a, b). Due to
increased CO2, increase in fungal abundance and diversity has been observed in
semi-arid regions. In dryland agricultural systems, the N cycle processes continue
even under dry conditions, and the low N content of soil is the limitation for N
availability (Schimel 2018; Li et al. 2020).

5.4.3 Effect of Enhanced Temperature on N Cycle

Microbial growth and enzyme activity are influenced by changes in temperature.
Thus, change in temperature affects physiological processes like mineralization rate,
growth of plants especially roots, diversity of plants and their distribution. Water
occupies 70–90% of cell mass of microbes. Due to the warming and fluctuations in
water level, it affects the soil microbial community in arid and semi-arid ecosystems.
Warming induces water stress in soil microorganism and reduces their biomass. It is
also responsible for decrease in the growth of plants which hugely impact the growth
of soil microbes following which the nutrient content is reduced significantly
(Pendall et al. 2004; Abbasi and Müller 2011; Xu et al. 2019). Impact of nitrogen
on soil microbial communities also depends on water, as water and nitrogen have
collective impact on microbes of nitrogen cycle. Higher water availability can
improve the response of N cycle microbes. This is more prominently seen in
temperate grasslands as water is limited in such ecosystems. In a case study, it is
revealed that annual precipitation can drastically modify warming effects on
microbe’s community soil fungi in soil of meadows–steppe (Eckersten et al. 2001;
Arcand et al. 2013). The microbes were stimulated by N addition or warming only in
the presence of water and showed no response in the absence of it. This proves that
water is primarily a limiting factor, and the warming effect of the functioning of
microbes is dependent on the amount of water available (Kool et al. 2011; Rütting
and Andresen 2015). Water stresses offer a very adverse growing condition and
hinder activities in most organisms (Diao et al. 2020; Lafuente et al. 2020). Soil
microbes constantly undergo a water stress environment and may get better adapted
to drought environment. Hence, they become resistant to water stress. In semi-arid
and steep desert sites soil microbes do not respond to warming much. Also, if
microbes are not killed in the process of increased warming, it is seen that microor-
ganisms lead to higher enzyme activities and increase in assimilation of nutrients
(Chen et al. 2017a, b; Zhang et al. 2017). With the advancing world, high-latitude
biomes, such as boreal and temperate ecosystems, experience the swiftest rates of
impact of warming due to increased emission of harmful greenhouse gases. The
impact of warming is also seen in snow-prone areas (Magill et al. 2000; Garrett et al.
2006; Caldwell et al. 2007; Butterly et al. 2015).

Microbial taxa show resistance to climate change conditions such as warming
(Zak et al. 2011; Eldridge et al. 2020). Wood decay fungi which decompose the

84 A. Singhal et al.



components of dead plants, such as cellulose, hemicellulose and lignin, have higher
sensitivity to changes in temperature (Ainsworth and Long 2005; Choi et al. 2005;
Maestre et al. 2013). Mycorrhizal fungi which live in living plant roots, exchanging
nutrients from plant to soil, are comparatively less sensitive and can have both
positive and negative responses to rise in temperature depending upon how this
influences the soil and plant factors like nutrient and moisture present in soil and
physiology of plants (Iversen 2010). Decomposition rate of microbes also increases
with warming resulting in more soil carbon content (Garcia et al. 2020).

In snow-free months of a year, increases in carbon and nitrogen concentration
take place as organic matters of soil decompose. But these effects tend to reduce
during winter months under the increased freeze and thaw. It is also found that
increase in freeze and thaw cycle disturbs the microbial plant interaction in N cycle
processes and inorganic N availability is enhanced. Like warming, few microbial
taxa can acclimate to freezing conditions. Different species have different levels of
tolerance towards freezing. Since there are multiple functional groups of microbes
involved in various processes of N cycle, like decomposition, nitrification and
denitrification, it is hard to predict the behaviour of overall functional groups in
the influence of change in climate (Yergeau and Kowalchuk 2008; Dooley and
Treseder 2012). Most of the studies conducted are on biomes from artic, boreal or
temperate regions as they usually have more impact from global climatic change like
increase in temperature at higher elevation (French et al. 2009; Wan et al. 2016). A
study on shrub land ecosystems has showed that there is an increase in soil
respiration due to warming (French et al. 2009).

A high variability of mineralization of N is observed under the influence of
warming. But as there is a lack of direct connection among temperature and N
mineralization, the occurrence of processes on nitrogen cycle is terribly slow and has
little impact on the N cycle. The influence of temperature on soil respiration controls
carbon balance more in the short term rather than N mineralization controlled by
water. In extreme temperature as N mineralization becomes unresponsive due to lack
or excess of water, this promotes the N limitation process impacting both plant and
microbial growth and also limits carbon sequestering as mentioned before. Higher
increase in temperature may influence the soil moisture impacting the water-
dependent process of N mineralization which would further cause increased N
leaching and C sequestration.

Warming induces stress in microbial communities under various biogeochemical
cycling; thus, there are physiological trade-offs and there is reallocation of resources
in between growth and survival mechanisms. During growth seasons, the composi-
tion of soil microbial community tends to move towards fast-growing species that
use less carbon (CO2). These species are decomposers of cellulose and polysaccha-
rides from plants as C sources and release CO2 in huge amount in the atmosphere.
Microbial activity may also decline with the drop in soil moisture as the growth of
microbes is dependent on moisture availability. Higher temperature during growing
season and freeze–thaw cycles of winter combined together negatively impact the
biogeochemical cycles, by decreasing the amount of extractable organic C and N in
soils. Moreover, a reduction in enzyme activities, respiration and biomass of
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microbes is also seen. A compounded suppression under stressful temperature
conditions can occur, if there is biomass decrease in active microbes or if they
exchange their traits which help them decompose with traits allowing them to adapt
to temperature fluctuations. The traits which allow them to be more tolerant in these
stress conditions include dehydration capacity, osmolyte production, thick cell walls
and shock resistance proteins, C-storage vesicles. In the coming years, high grass-
land ecosystems are going to face more temperature rise, and by 2100 the temper-
ature is going to rise by 3–8 �C.

5.4.4 Effect of Drought and Increased Precipitation
on N Cycle

Droughts or lack of precipitation causes immense stresses in all living organisms
especially soil microbes. Sometimes, droughts or lack of precipitation is also
responsible for making them extinct (Fierer et al. 2005). The presence or lack of
water plays an important role in physiology of plant communities and in regulating
soil microbial activities. Drought and wet–dry cycles create immense challenge and
bring out physiological stress in microbes as microbial population vitality and
composition are altered by various factors like reduction in water and nutrient due
to warming. Soil microbes have tendency to adapt to their immediate surrounding by
undergoing osmosis when stressed due to drought, in the process of which they tend
to retain water in their cells as the surrounding dries up. Fungi, although more
drought-prone than bacteria, were found to be more repressed than bacteria in a
study of grassland ecosystem. This was seen mainly due to increase in salinity and
alkalinity of soil present as this change favours fungi growth. Also bacteria tend to be
better at tolerating high salt concentrations and hence are more resistant to drought
caused by warming (Niklaus et al. 2001; Bai et al. 2013). Other studies have revealed
that microbes have positive reaction in response to increase in nitrogen when there is
availability of water or lack of water stress; hence, this shows that although nitrogen
have power of limiting the growth of microbes, its effects are highly dependent on
change in precipitation. Increase in precipitation can incorporate nitrogen in soil and
enhance the enzyme activities of microbes as water is necessary for nutrient distri-
bution and renewal of soil (Rengel and Marschner 2005; Wan et al. 2016). Precip-
itation tends to release the microbes from there tensed state in drought conditions by
replenishing the soil with resources. Hence, precipitation and drought take place
alternatively.

The effect of drought can be seen on both nitrogen and carbon cycles although the
impact is different. Mineralization increases in nitrogen cycle as the dry soil is
wetted due to precipitation. The rewetted soils are rich in nitrogen and fuel the
re-growing microbes with excess nitrogen, leading to nitrogen mineralization. Bac-
terial osmolytes and dead microbes are responsible for nitrogen-rich substrates that
enhance the nitrogen content in soil. Fungi produce trehalose and polyols, which are
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nitrogen-free osmolytes that hinder the mobilization on rewetting (Robertson et al.
2000; Garrett et al. 2006; Butterly et al. 2015). Nitrification is sensitive to drought
conditions, and the available ammonia is constrained in dry soils, but with the
occurrence of precipitation, the rewetted soil generates a mass of nitrogen, showing
a saturated state in the soil surrounding. In dry soil, ammonia is the dominant form of
nitrogen, but post rewetting, a swift increase in nitrification is seen which allows a
flux of nitrogen in gaseous form. Hence, drying–rewetting changing aspects appear
to have disproportional effects on nitrogen losses (Ainsworth and Long 2005; Zak
et al. 2011; Delgado-Baquerizo et al. 2013; Eldridge et al. 2020).

Drylands (arid, semi-arid and dry–subhumid ecosystems) provide ecosystem
services like cattle raising and wool, meat and food production. Due to prevalent
dry conditions, these ecosystems are more vulnerable to climate change. The change
in precipitation and temperature rise has encouraged expansion of dryland and is
expected to cover 10% of earth’s surface by the end of this century (Smucker et al.
2007; Dong et al. 2010; Mueller et al. 2015). In these ecosystems, soils are generally
deficient in nutrients; thus, nitrogen concentration plays an important role in deter-
mining net primary production and decomposition of organic matter. Dryland
ecosystems are major contributor for gaseous N emissions and account for 30% of
global emissions. Surface soil communities of drylands are comprised of mosses,
lichens and cyanobacteria as they occupy open spaces between plant canopies
(Gruza et al. 1999; McMichael et al. 2006; Rajkumar et al. 2013). Water availability
is considered as an important parameter along with temperature for N cycle
microbial-mediated processes. The various processes of N biogeochemical cycle
like N fixation, production of dissolved organic N, nitrification and emission of gases
are mediated and influenced by microbes growing in dryland soils.

5.4.5 Effect of Extreme Weather Events on N Cycle
Microorganisms

Extreme weather events like waterlogging and extreme droughts put a severe impact
on biomes by changing patterns of water availability to plants and microbial
communities and also the physiochemical properties of soil. Changes in soil struc-
ture and pH brought by these weather events affect the availability of soil nutrients
and cause changes in microbially mediated processes in biogeochemical cycles
(Rosenzweig et al. 2001; Kumar et al. 2003; Coelho et al. 2013). According to
recent researches, the community and functions of microbes show variable response
to varying weather phenomena. Microbial community might be resistant to the
various changes brought out by extreme weather events, and the ecosystem func-
tioning is not believed to be affected by community changes in microbes. It is
important to understand the microbial responses in terms of both community and
functioning as these play a major role in the working of nutrient cycles and their
sinking and pooling of the nutrient compounds (Zepp et al. 2007; Bowker et al.
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2011; Castillo-Monroy et al. 2011). Along with weather events like drought and
floods, one extreme weather event is wildfires or fire in general. Wildfire caused by
extreme dry weather or any other anthropogenic activities also impacts the N cycle
processes channelized by microbes. Severe fire tends to modify the properties of soil
such as its biological, physical and chemical parameters, depending on temperature
peak and its duration and soil’s initial conditions, and negatively impacts the soil
microbes too. Ash accumulated post fire changes the pH of soil and nitrogen gets
volatized at temperature above 200 �C (Neary et al. 1999; Dooley and Treseder
2012). Nutrient availability is equally impacted and stays affected for many years
post fire destruction. In some researches, it is also seen that N mineralization actually
increases initially, increasing the inorganic N content in soil, but then tends to
decrease approx. after 6 months into its original state. N mobilizes, causing leaching
of nitrite oxide (NO3�) through soil later post any fire event (Moreno-Jiménez et al.
2020).

5.5 Conclusions

Microbial processes associated with biogeochemical cycles play an important role in
global fluxes of key greenhouse gases like CO2, CH4 and N2O. These microbial
processes are influenced greatly by climate change. These changes can be either
positive (increased cell biomass and/or enhanced physiological functioning) or
negative (decreased cell biomass/or reduced physiological functioning). Depending
upon the response of the microorganisms, they either can help in maintaining the
ecological balance and mitigating the effect of climate change or can aggravate the
problem. Thus, it is necessary to study the changes caused due to climate change on
microbial processes associated with biogeochemical cycles. This aspect must be
incorporated in the models predicting the impact of climate change and mitigation
measures, only then the results will be more realistic and meaningful. Most of the
studies conducted have taken into account the effect of one factor. However, in
nature, all the physical factors exert their influence at any given point of time. Thus,
it is necessary to conduct more studies that mimic natural conditions as much as
possible as the interactive effect of various climatic factors will be different from
single factor effect. Moreover, due to climate change, incidences of extreme weather
events have increased, but very few studies have been conducted in this direction.
Thus, future studies should also take into the account the effect of extreme weather
event.
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