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1 Introduction

Developing numerical models for practical simulations in science and engineering
usually results in problems regarding the presence of wide-range time scales. These
problems involve both slow and fast components leading to rapid variations in the
solution. This gives rise to the so-called stiffness phenomena. Typical examples
are models in molecular dynamics (see e.g. [36]), chemical kinetics, combustion,
mechanical vibrations (mass-spring-damper models), visual computing (specially
in computer animation), computational fluid dynamics, meteorology, etc., just to
name a few. They are usually formulated as systems of stiff differential equations
which can be cast in the general form

u′(t) = F(u(t)), u(t0) = u0, (1)

where u ∈ R
n is the state vector and F : Rn −→ R

n represents the vector field. The
challenges in solving this system are due to its stiffness by means of the eigenvalues
of the Jacobian matrix of F differing by several orders of magnitude. In the early
days of developing numerical methods for ordinary differential equations (ODEs),
classical methods such as the explicit Runge–Kutta integrators were proposed. For
stiff problems, however, they are usually limited by stability issues due to the CFL
condition leading to the use of unreasonable time steps, particularly for large-scale
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applications. The introduction of implicit methods such as semi-implicit, IMEX (see
[2]), and BDF methods (see [10, 14]) has changed the situation. Theses standard
methods require the solution of nonlinear systems of equations in each step. As the
stiffness of the problem increases, considerably computational effort is observed.
This can be seen as a shortcoming of the implicit schemes.

In the last 20 years, with the new developments of numerical linear algebra
algorithms in computing matrix functions [1, 25, 41], exponential integrators have
become an alternative approach for stiff problems (see the survey [24]; next
to physics simulations, exponential integrators are nowadays also employed for
different applications as for the construction of hybrid Monte Carlo algorithms, see
[7]). For the fully nonlinear stiff system (1), we mention good candidates, the so-
called explicit exponential Rosenbrock methods, which can handle the stiffness of
the system in an explicit and very accurate way. This class of exponential integrators
was originally proposed in [23] and further developed in [26, 30, 32, 34]. They have
shown to be very efficient both in terms of accuracy and computational savings. In
particular, the lower-order schemes were recently successfully applied to a number
of different applications [8, 15, 17, 46, 49] and very recently the fourth- and fifth-
order schemes were shown to be the method of choice for some meteorological
models (see [35]).

In this work, we show how the exponential Rosenbrock methods (particularly
higher-order schemes) can be also applied efficiently in order to solve problems in
computational modeling of elastodynamic systems of coupled oscillators (particle
systems) which are often used in visual computing (e.g. for computer animation). In
their simplest formulation, their dynamics can be described using Newton’s second
law of motion leading to a system of second-order ODEs of the form

miẍi +
∑

j∈N(i)

kij (‖xi − xj‖ − �ij )
xi − xj

‖xi − xj‖ = gi(xi, ẋi , ·), i = 1, 2, · · · , N,

(2)

where N is the number of particles, xi ∈ R
3, mi , kij , �ij denote the position of

particle i from the initial position, its mass, the spring stiffness, the equilibrium
length of the spring between particles i and j , respectively, and N(i) denotes
the set of indices of particles that are connected to particle i with a spring (the
neighborhood of particle i). Finally, gi represents the external force acting on
particle i which can result from an external potential, collisions, etc., and can
be dependent of all particle positions, velocities, or external forces set by user
interaction.

Our approach for integrating (2) is first to reformulate it in the form of (1)
(following a novel approach in [40]). The reformulated system is a very stiff one
since the linear spring forces usually possess very high frequencies. Due to the
special structure of its linear part (skew-symmetric matrix) and large nonlinearities,
we then make use of exponential Rosenbrock methods. Moreover, we propose
to use the improved algorithm in [35] for the evaluation of a linear combination
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of ϕ-functions acting on certain vectors v0, . . . , vp , i.e.
∑p

k=0 ϕk(A)vk which is
crucial for implementing exponential schemes. Our numerical results on a number
of complex models in visual computing indicate that this approach significantly
reduces computational time over the current state-of-the-art techniques while
maintaining sufficient levels of accuracy.

This chapter is organized as follows. In Sect. 2, we present a reformulation of
systems of coupled oscillators (2) in the form of (1) and briefly review previous
approaches used for simulating these systems in visual computing. In Sect. 3, we
describe the exponential Rosenbrock methods as an alternative approach for solving
large stiff systems (1). The implementation of these methods is discussed in Sect. 4,
where we also introduce a new procedure to further improve one of the state-
of-the-art algorithms. In Sect. 5 we demonstrate the efficiency of the exponential
Rosenbrock methods on a number of complex models in visual computing. In
particular, we address the simulation of deformable bodies, fibers including elastic
collisions, and crash scenarios including nonelastic deformations. These examples
focus on relevant aspects in the realm of visual computing, like stability and
energy conservation, large stiffness values, and high fidelity and visual accuracy.
We include an evaluation against classical and state-of-the-art methods used in this
field. Finally, some concluding remarks are given in Sect. 6.

2 Reformulation of Systems of Coupled Oscillators

We first consider the system of coupled oscillators (2). Let x(t) ∈ R
3N , M ∈

R
3N×3N , D ∈ R

3N×3N , K ∈ R
3N×3N and g(x) ∈ R

3N denote the vector of
positions, the mass matrix (often diagonal and thus nonsingular), the damping
matrix, the spring matrix (stiff), and the total external forces acting on the system,
respectively. Using these matrix notations and denoting A = M−1K , (2) can be
written as a system of second-order ODEs

x ′′(t) + Ax(t) = g(x(t)), x(t0) = x0, x ′(t0) = v0. (3)

Here x0, v0 are some given initial positions and velocities. For simplicity we neglect
damping and assume that A is a symmetric, positive definite matrix (this is a
reasonable assumption in many models, see [38]). Therefore, there exists a unique
positive definite matrix � such that A = �2 (and clearly �−1 exists).

Following our approach in [40], we introduce the new variable

u(t) =
[

�x(t)

x ′(t)

]
. (4)
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Using this one can reformulate (3) as a first-order system of ODEs of the form like
(1):

u′(t) = F(u(t)) = A u(t) + G(u(t)), u(t0) = u0, (5)

where

A =
[

0 �

−� 0

]
, G(u) =

[
0

g(x)

]
. (6)

Since the linear spring forces usually possess high frequencies (thus ‖K‖ � 1 and
so is ‖A‖), (5) becomes a very stiff ODE. Regarding the new formulation (5)–(6),
we observe the following two remarks.

Remark 1 Clearly, the new linear part associated with A , that is a skew-symmetric
matrix. We note that this significantly differs from the common way of refor-
mulating (3) that is to use the change of variable X(t) = [x(t), x ′(t)]T which
results in a non-symmetric matrix. The advantage here is that since A is a skew-
symmetric matrix, its nonzero eigenvalues are all pure imaginary and are in pairs
±λki. We also observe thatA is an infinitesimal symplectic (or Hamiltonian). This
is because, by definition of an infinitesimal symplectic matrix, we check whether

WA + A T W = O, where W is the anti-symmetric matrix W =
[

0 I

−I 0

]
. This

can be easily verified since

WA =
[−� 0

0 −�

]
,

which is clearly a symmetric matrix, i.e., WA = (WA )T .

Remark 2 If the Jacobian matrix F ′(u) = A + G′(u) is infinitesimal symplectic,
(5) is a Hamiltonian system. This can be fulfilled since a typical situation in
Hamiltonian systems is that g(x) = ∇f (x) for some function f (x) and thus
g′(x) = ∇2f (x) becomes a Hessian matrix, which is symmetric.

As seen, either using the common way (mentioned in Remark 1) or the new way
(4) for reformulating (3), one has to solve the stiff ODE (5). In visual computing
it is usually solved by explicit methods such as the fourth-order Runge–Kutta
methods, semi-implicit methods such as the Störmer–Verlet methods, the backward
differentiation formulas (BDF-1 and BDF-2) methods, or IMEX methods. In this
regard, we refer to some contributions in the context of interacting deformable
bodies, cloth, solids, and elastic rods, see [3, 4, 12, 16, 19, 47]. For large-scale
applications associated with stiff systems, however, both types of these time
integration techniques have their own limitations as mentioned in the introduction.
In recent years, exponential integrators have shown to be competitive for large-
scale problems in physics and for nonlinear parabolic PDEs, as well as for highly
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oscillatory problems (see [24]). They have attracted much attention by the broad
computational mathematics community since mid-1990s. At the time while solving
linear systems (I − αhJ )x = v with some Jacobian matrix J (required when
using implicit methods) is generally only of linear convergence, it was realized that
Krylov subspace methods for approximating the action of a matrix exponential on a
vector, ehJ v, offer superlinear convergence (see [21]). Unless a good preconditioner
is available, this is clearly a computational advantage of exponential integrators
over implicit methods. This has been addressed in the visual computing community
very recently through a number of interesting work on exponential integrators,
see e.g.[37–40]. Inspired by this interest, in the following sections we will show
how exponential Rosenbrock methods—one of the popular classes of exponential
integrators—can be applied for simulating systems of coupled oscillators.

3 Explicit Exponential Rosenbrock Methods

In this section, based on [23, 26, 29, 32, 34] we present a compact summary
of the introduction of exponential Rosenbrock methods and their derivations for
methods of order up to 5. We then display some efficient schemes for our numerical
experiments for some applications in visual computing.

3.1 Approach

Motivated by the idea of deriving Rosenbrock-type methods, see [18, Chap. IV.7],
instead of integrating the fully nonlinear system (1) (which has a large nonlinearity
for stiff problems), one can replace it by a sequence of semilinear problems

u′(t) = F(u(t)) = Jnu(t) + gn(u(t)), (7)

by linearizing the forcing term F(u) in each time step at the numerical solution un

(due to [42]) with

Jn = F ′(un), gn(u) = F(u) − Jnu (8)

are the Jacobian and the nonlinear remainder, respectively. An advantage of this
approach is that g′

n(un) = F ′(un) − Jn = 0 which shows that the new nonlinearity
gn(u) has a much smaller Lipschitz constant than that of the original one F(u).
The next idea is to handle the stiffness by solving the linear part Jnu exactly and
integrating the new nonlinearity gn(u) explicitly. For that, the representation of the
exact solution at time tn+1 = tn + h of (7) using the variation-of-constants formula

u(tn+1) = ehJnu(tn) +
∫ h

0
e (h−τ )Jngn(u(tn + τ ))dτ (9)
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plays a crucial role in constructing this type of integrators. As seen from (9),
while the linear part can be integrated exactly by computing the action of the
matrix exponential ehJn on the vector u(tn), the integral involving gn(u) can
be approximated by some quadrature. This procedure results in the so-called
exponential Rosenbrock methods, see [23, 26].

Remark 3 For the system of coupled oscillators (2), the forcing term F(u) has the
semilinear form (5), which can be considered as a fixed linearization. Therefore,
one can directly apply explicit the exponential Runge–Kutta methods (see [22])
to (5). The advantage of these methods is that the time-step h is not restricted
by the CFL condition when integrating the linear part A u. In our applications,
however, the nonlinearity G(u) is large in which the CFL condition usually serves
as a reference for setting the time-step. In particular, for the stability hLG should be
sufficiently small (LG is the Lipschitz constant ofG(u)). In this regard, the dynamic
linearization approach (7) applied to (5)

u′(t) = F(u) = A u + G(u) = Jnu + Gn(u) (10)

with

Jn = A + G′(un), (11)

offers a great advantage in improving the stability (in each step) when integrating
G(u). This is because instead of integrating the original semilinear problem with
large nonlinearity G(u), we only have to deal with a much smaller nonlinearity
Gn(u) (as mentioned above). Note that the new linear part Jnu with the Jacobian Jn

now incorporates both A and the Jacobian of the nonlinearity G(u), which can be
again solved exactly. It is thus anticipated that this idea of exponential Rosenbrock
methods opens up the possibility to take even larger time steps compared to
exponential Runge–Kutta methods.

3.2 Formulation of a Second-Order and General Schemes

In this subsection, we will illustrate the approach of exponential Rosenbrock meth-
ods by presenting a simple derivation of a second-order scheme and formulating
general schemes.

3.2.1 A Second-Order Scheme

First, expandingu(tn+τ ) in a Taylor series gives u(tn+τ ) = u(tn)+τu′(tn)+O(τ 2).
Then inserting this into gn(u(tn + τ )) and again expanding it as a Taylor series
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around u(tn) (using g′
n(u(tn)) = 0) leads to

gn(u(tn + τ )) = gn(u(tn)) + O(τ 2) . (12)

Inserting (12) into the integral of (9) and denoting ϕ1(hJn) = 1
h

∫ h

0 e (h−τ )Jndτ gives

u(tn+1) = ehJnu(tn) + hϕ1(hJn)gn(u(tn)) + O(h3). (13)

Neglecting the local error term O(h3) results in a second-order scheme, which can
be reformulated as

un+1 = un + hϕ1(hJn)F (un) (14)

by replacing gn(u(tn)) by (8) and using the fact that ϕ1(z) = (ez − 1)/z. This
schemewas derived before and named as exponential Rosenbrock-Eulermethod, see
[23, 26] (since when considering the formal limit Jn → 0, (14) is the underlying
Euler method). The derivation here, however, shows directly that this scheme has
an order of consistency three and thus it is a second-order stiffly accurate method
(since the constant behind the Landau notation O only depends on the regularity
assumptions on u(t) and gn(u), but is independent of ‖Jn‖).

3.2.2 General Schemes

For the derivation of higher-order schemes, one can proceed in a similar way as for
the construction of classical Runge–Kutta methods. Namely, one can approximate
the integral in (9) by using some higher-order quadrature rule with nodes ci in [0, 1]
and weights bi(hJn) which are matrix functions of hJn, yielding

u(tn+1) ≈ ehJnu(tn) + h

s∑

i=1

bi(hJn)gn(u(tn + cih)). (15)

The unknown intermediate values u(tn + cih) can be again approximated by using
(9) (with cih in place of h) with another quadrature rule using the same nodes cj ,
1 ≤ j ≤ i − 1, (to avoid generating new unknowns) and new weights aij (hJn),
leading to

u(tn + cih) ≈ ecihJnu(tn) + hn

i−1∑

j=1

aij (hJn)gn(u(tn + cjh)). (16)

Let us denote un ≈ u(tn) and Uni ≈ u(tn +cihn). As done for (14), using (12) (with
cih, h in place of τ , respectively) one can reformulate (15) and (16) in a similar
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manner, which yields the general format of s-stage explicit exponential Rosenbrock
methods

Uni = un + cihϕ1(cihJn)F (un) + h

i−1∑

j=2

aij (hJn)Dnj , (17a)

un+1 = un + hϕ1(hJn)F (un) + h

s∑

i=2

bi(hJn)Dni (17b)

with

Dni = gn(Uni) − gn(un), (17c)

As in (12), we have Dni = O(h2). Thus, the general methods (17) are small
perturbations of the exponential Rosenbrock–Euler method (14). Note that the
weights aij (hJn) and bi(hJn) are usually linear combinations of ϕk(cihJn) and
ϕk(hJn), respectively, where the ϕ functions (similar to ϕ1) are given by

ϕk(hZ) = 1

hk

∫ h

0
e (h−τ )Z τ k−1

(k − 1)! dτ, k ≥ 1 (18)

and satisfy the recursion relation

ϕk+1(z) = ϕk(z) − 1
k!

z
, k ≥ 1. (19)

It is important to note that these functions are bounded (uniformly) independently of
‖Jn‖ (i.e. the stiffness) so are the coefficients aij (hJn) and bi(hJn) (see e.g. [24]).

Clearly, using exponential Rosenbrock schemes (17) offers some good advan-
tages. First, they do not require the solution of linear or nonlinear systems of
equations. Second, as mentioned above, they offer a better stability when solving
stiff problems with large nonlinearities and thus allow to use larger time-steps.
Third, since the Jacobian of the new nonlinearity vanishes at every step (g′

n(un) =
0), the derivation of the order conditions and hence the schemes can be simplified
considerably. In particular, higher-order stiffly accurate schemes can be derived with
only a few stages (see the next section).

The convergence analysis of exponential Rosenbrock methods is usually carried
out in an appropriate framework (strongly continuous semigroup) under regularity
assumptions on the solution u(t) (sufficiently smooth) and gn(u) (sufficiently
Fréchet differentiable in a neighborhood of the solution) with uniformly bounded
derivatives in some Banach space. For more details, we refer to [26, 32].
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3.3 Selected Schemes for Numerical Simulations

First, we discuss some important points for the derivation of exponential Rosen-
brock schemes. Clearly, the unknown coefficients aij (hJn) and bi(hJn) have to be
determined by solving order conditions. For nonstiff problems, where the Jacobian
matrix has a small norm, one can expand those matrix functions using classical
Taylor series expansions, leading to nonstiff order conditions and in turn classical
exponential schemes (see e.g. [9, 27]). For stiff problems, however, one has to be
cautious when analyzing the local error to make sure that error terms do not involve
powers of Jn (which has a large norm). Recently, Luan and Ostermann [30, 33]
derived a new expansion of the local error which fulfills this requirement and thus
derived a new stiff order conditions theory for methods of arbitrary order (both for
exponential Runge–Kutta and exponential Rosenbrock methods). As expected, with
the same order, the number of order conditions for exponential Rosenbrockmethods
is significant less than those for exponential Runge–Kutta methods. For example, in
Table 1, we display the required 4 conditions for deriving schemes up to order 5
in [32] (note that for exponential Runge–Kutta methods, 16 order conditions are
required for deriving schemes of order 5, see [31]).

We note that with these order conditions one can easily derive numerous different
schemes of order up to 5. Taking the compromise between efficiency and accuracy
into consideration, we seek for the most efficient schemes for our applications.
Namely, the following two representative fourth-order schemes are selected.

exprb42 (a fourth-order 2-stage scheme which can be considered as a super-
convergent scheme, see [29]):

Un2 = un + 3
4hϕ1(

3
4hJn)F (un), (20a)

un+1 = un + hϕ1(hJn)F (un) + h 32
9 ϕ3(hJn)(gn(Un2) − gn(un)). (20b)

Table 1 Stiff order conditions for exponential Rosenbrock methods up to order five. Here Z and

K denote arbitrary square matrices and ψ3,i(z) = ∑i−1
k=2 aik(z)

c2
k

2! − c3i ϕ3(ciz)

No. Order condition Order

1
∑s

i=2 bi(Z)c2i = 2ϕ3(Z) 3

2
∑s

i=2 bi(Z)c3i = 6ϕ4(Z) 4

3
∑s

i=2 bi(Z)c4i = 24ϕ5(Z) 5

4
∑s

i=2 bi(Z)ciKψ3,i(Z) = 0 5
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pexprb43 (a fourth-order 3-stage scheme, which can be implemented in
parallel, see [34]):

Un2 = un + 1
2hϕ1(

1
2hJn)F (un), (21a)

Un3 = un + hϕ1(hJn)F (un), (21b)

un+1 = un + hϕ1(hJn)F (un) + hϕ3(hJn)(16Dn2 − 2Dn3)

+ hϕ4(hJn)(−48Dn2 + 12Dn3). (21c)

Note that the vectors Dn2 and Dn3 in (21) are given by (17c), i.e., Dn2 = gn(Un2)−
gn(un) and Dn3 = gn(Un3) − gn(un).

4 Implementation

In this section, we present the implementation of exponential Rosenbrock methods
for the new formulation (5) of the system of coupled oscillators. First, we discuss
on the computation of the matrix square root � needed for the reformulation. We
then briefly review some state-of-the-art algorithms for implementing exponential
Rosenbrock methods and introduce a new routine which is an improved version
of one of these algorithms (proposed very recently in [35]) for achieving more
efficiently. Finally, we specifically discuss applying this routine for implementing
the selected schemes exprb42 and pexprb43.

4.1 Computation of the Matrix Square Root � = √
A

For the computation of � = √
A used in (5), we follow our approach in [40].

Specifically, we use the Schur decomposition for moderate systems. For large
systems, the Newton square root iteration (see [20]) is employed in order to avoid an
explicit precomputation of�. Namely, one can use the following simplified iteration
method for approximating the solution of the equation �2 = A:

(i) choose �0 = A (k = 0),
(ii) update �k+1 = 1

2 (�k + �−1
k A).

This method offers unconditional quadratic convergence with much less cost com-
pared to the Schur decomposition. We note that �−1 can be computed efficiently
using a Cholesky decomposition since � is symmetric and positive definite and it
is given by �−1 = S−1S−T, where S is an upper triangular matrix with real and
positive diagonal entries. For more details, we refer to [20, 40].
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With � at hand, one can easily compute the Jacobian Jn as in (11) and
F(u),Gn(u) as in (10). As the next step, we discuss the implementation of the
exponential Rosenbrock schemes.

4.2 Implementation of Exponential Rosenbrock Methods

In view of the exponential Rosenbrock schemes in Sect. 3, each stage requires
the evaluation of a linear combination of ϕ-functions acting on certain vectors
v0, . . . , vp

ϕ0(M)v0 + ϕ1(M)v1 + ϕ2(M)v2 + · · · + ϕp(M)vp, (22)

where the matrixM here could be hJn or cihJn. Starting from a seminal contribution
by Hochbruck and Lubich [21] (which they analyzed Krylov subspace methods for
efficiently computing the action of a matrix exponential (with a large norm) on some
vector), many more efficient techniques have been proposed. A large portion of
these developments is concerned with computing the expression (22). For example,
we mention some of the state-of-the-art algorithms: expmv proposed by Al-Mohy
and Higham in [1] (using a truncated standard Taylor series expansion), phipm
proposed by Niessen and Wright in [41] (using adaptive Krylov subspace methods),
and expleja proposed by Caliari et al. in [5, 6] (using Leja interpolation). With
respect to computational time, it turns out that phipm offers an advantage. This
algorithm utilizes an adaptive time-stepping method to evaluate (22) using only
one matrix function (see Sect. 4.2.1 below). This task is carried out in a lower
dimensional Krylov subspace using standard Krylov subspace projection methods
i.e. the Arnoldi iteration. Moreover, the dimension of Krylov subspaces and the
number of substeps are also chosen adaptivity for improving efficiency.

Recently, the phipm routine was modified by Gaudreault and Pudykiewicz in
[13] (Algorithm 2) by using the incomplete orthogonalization method (IOM) within
the Arnoldi iteration and by adjusting the two crucial initial parameters for starting
the Krylov adaptivity. This results in the new routine called phipm/IOM2. It is
shown in [13] that this algorithm reduces computational time significantly compared
to phipm when integrating the shallow water equations on the sphere.

Very recently, the authors of [35] further improvedphipm/IOM2which resulted
in a more efficient routine named as phipm_simul_iom2. For the reader’s
convenience, we present the idea of the adaptive time-stepping method (originally
proposed in [41]) for evaluating (22) and introduce some new features of the new
routine phipm_simul_iom2.
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4.2.1 Computing of Linear ϕ-Combinations Based on Time-Stepping

It was observed that the following linear ODE

u′(t) = Mu(t) + v1 + tv2 + · · · + tp−1

(p − 1)!vp, u(0) = v0, (23)

defined on the interval [0, 1] has the exact solution at t = 1, u(1) to be the expression
(22). The time-stepping technique approximates u(1) by discretizing [0, 1] into
subintervals 0 = t0 < t1 < · · · < tk < tk+1 = tk + τk < · · · < tK = 1 with
a substepsize sequence τk (k = 0, 1, . . . ,K − 1) and using the following relation
between u(tk+1) and its previous solution u(tk):

u(tk+1) = ϕ0(τkM)u(tk) +
p∑

i=1

τ i
kϕi(τkM)

p−i∑

j=0

t
j
k

j !vi+j . (24)

Using the recursion relation (19) and (24) can be simplified as

u(tk+1) = τ
p
k ϕp(τkM)wp +

p−i∑

j=0

t
j
k

j !wj , (25)

where the vectors wj satisfy the recurrence relation

w0 = u(tk), wj = Mwj−1 +
p−j∑

�=0

t�k

�!vj+�, j = 1, . . . , p. (26)

Equation (25) implies that evaluating u(tK) = u(1) i.e. the expression (22) requires
only one matrix function ϕp(τkA)wp in each substep instead of (p + 1) matrix-
vector multiplications. As 0 < τk < 1, this task can be carried out in a Krylov
subspace of lower dimension mk , and in each substep only one Krylov projection is
needed. With a reasonable number of substeps K , it is thus expected that the total
computational cost of O(m2

1) + · · · +O(m2
K) for approximating ϕp(τkM)wp is less

than that of O(m2) for approximating ϕp(M)v in a Krylov subspace of dimension
m. If K is too large (e.g. when the spectrum of M is very large), this might be
not true. This case, however, is handed by using the adaptive Krylov algorithm in
[41] allowing to adjust both the dimension m and the step sizes τk adaptivity. This
explains the computational advance of this approach compared to standard Krylov
algorithms.
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4.2.2 New Routine phipm_simul_iom2 [35]

First, we note that the resulting routine phipm_simul_iom2 optimizes com-
putational aspects of phipm/IOM2 corresponding to the following two specific
changes:

1. Unlike (22), where each of the ϕk functions is evaluated at the same argument
M , the internal stages of exponential Rosenbrock schemes require evaluating the
ϕ functions at fractions of the matrix M:

wk =
p∑

l=1

ϕl(ck M)vl, k = 2, . . . , s, (27)

where now the node values c2, . . . , cs are scaling factors used for each vk

output. To optimize this evaluation, phipm_simul_iom2 computes all wk

outputs in (27) simultaneously, instead of computing only one at a time. This
is accomplished by first requiring that the entire array c2, . . . , cs as an input to
the function. Within the substepping process (24), each value cj is aligned with
a substep-size τk . The solution vector is stored at each of these moments and
on output the full set {wk}sk=1 is returned. Note that this approach is similar but
differs from [48] that it guarantees no loss of solution accuracy since it explicitly
stops at each ck instead of using interpolation to compute wk as in [48].

2. In view of the higher-order exponential Rosenbrock schemes (see also from
Sect. 3.3), it is realized that they usually use a subset of the ϕl functions. There-
fore, multiple vectors in (27) will be zero. In this case, phipm_simul_iom2
will check whether wj−1 �= 0 (within the recursion (26)) before computing
the matrix-vector product M wj−1. While matrix-vector products require O(n2)

work, checking u �= 0 requires only O(n). This can result in significant savings
for large n.

4.2.3 Implementation of exprb42 and pexprb43

Taking a closer look at the structures of the two selected exponential Rosenbrock
schemes exprb42 and pexprb43, we now make use of phipm_simul_iom2
for implementing these schemes. For simplicity, let us denote M = hJn and v =
hF(un).
Implementation of exprb42: Due to the structure of exprb42 given in (20), one
needs two calls to phipm_simul_iom2:

1. Evaluate y1 = ϕ1(
3
4M)w1 with w1 = 3

4v (so w0 = 0) to get Un2 = un + y1,
2. Evaluate w = ϕ1(M)v1 + ϕ3(M)v3 (i.e. v0 = v2 = 0) with v1 = v, v3 =

32
9 hDn2 to get un+1 = un + w.
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Implementation of pexprb43: Although pexprb43 is a 3-stage scheme, its
special structure (21) allows to use only two calls to phipm_simul_iom2:

1. Evaluate both terms y1 = ϕ1(
1
2M)v and z1 = ϕ1(M)v simultaneously to get the

two stages Un2 = un + 1
2y1 and Un3 = un + z1,

2. Evaluate w = ϕ3(M)v3 + ϕ4(M)v4 (i.e. v0 = v1 = v2 = 0) with v3 =
h(16Dn2 − 2Dn3), v4 = h(−48Dn2 + 12Dn3) to get un+1 = Un3 + w.

5 Numerical Examples

In this section we present several numerical examples to study the behavior of
the presented exponential Rosenbrock-type methods, in particular the fourth-order
scheme exprb42 using two stages and the fourth-order pexprb43 scheme using
three stages implemented in parallel.

In particular, we focus on relevant aspects in the realm of visual computing, like
stability and energy conservation, large stiffness, and high fidelity and visual accu-
racy. A tabular summary of the models that are used throughout this section can be
found in Table 2. Furthermore, our simulation includes important aspects like elastic
collisions and nonelastic deformations. The presented exponential Rosenbrock-type
methods are evaluated against classical and state-of-the-art methods used in visual
computing, in particular against the implicit-explicit variational (IMEX) integrator
(cf. [44, 45]), the standard fourth-order Runge–Kutta method (see [28, 43]), and
the implicit BDF-1 integrator (see [11]). All simulation results visualized here have
been computed using a machine with an Intel(R) Xeon E5 3.5 GHz and 32 GB
DDR-RAM. For each simulation scenario the largest possible time step size is used
which still leads to a desired visually plausible result.

5.1 Simulation of Deformable Bodies

In order to illustrate the accurate energy preservation of the presented exponential
Rosenbrock-type methods, we set up an undamped scene of an oscillating coil
spring, which is modeled as a deformable body composed of tetrahedra, in particular
of 8000 vertices corresponding to N = 24 000 equations of motion, which are
derived from a system of coupled oscillators with uniform spring stiffness of
k = 106. Since the coil spring is exposed to an external forces field, it starts to
oscillate as illustrated in Fig. 1. It can be seen that the top of the coil spring returns
to its initial height periodically during the simulation which can be seen as an
indicator for energy conservation. In fact when using the exponential Rosenbrock-
type methods exprb42 and pexprb43we observe that the discrete energy is only
slightly oscillating around the real energy without increasing oscillations over time.
In contrast, the standard fourth order Runge–Kutta method respectively the BDF-1
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Fig. 1 Simulation of an oscillating coil spring

integrator generate significant numerical viscosity leading to a loss of energy around
22% respectively 40% after 60 s of simulated time.

The exponential Rosenbrock-type methods exprb42 and pexprb43 show
their advantageous behavior since these methods can be applied with orders of
magnitude larger time steps compared to the other integrators. Even with a step
size of h = 0.05 the relative error is still below 2% for exprb42 and about a single
percent for pexprb43.1 From a point of view of computation time, we achieve
a speed up of a factor of around thirteen using exprb42 and of over fifteen using
pexprb43 compared to the second best method, the variational IMEX integrator as
illustrated in Table 2. Compared to the other methods, the exponential Rosenbrock-
type methods allow for accurate simulations in real-time.

5.2 Simulation of Fibers Including Elastic Collisions

Fibers are canonical examples for complex interacting systems. According to the
work of Michels et al. (see [39]), we set up a toothbrush composed of individual
bristles. Each bristle consists of coupled oscillators that are connected in such a
way that the fiber axis is enveloped by a chain of cuboid elements. For preventing
a volumetric collapse during the simulation, additional diagonal springs are used.
The toothbrush consists of 1500 bristles, each of 20 particles leading to 90 000
equations of motion. We make use of additional repulsive springs in order to
prevent from interpenetrations.2 Since the approach allows for the direct use of
realistic parameters in order to set up the stiffness values in the system of coupled
oscillators, we employ a Young’s modulus of 3.2 · 106 Ncm−2, a torsional modulus
of 105 Ncm−2, and segment thicknesses of 0.12mm.

1We estimated the error after 60 s of simulated time based on the accumulated Euclidean distances
of the individual particles in the position space compared to ground truth values which are
computed with a sufficiently small step size.
2In order to detect collisions efficiently, we make use of a standard bounding volume hierarchy.
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Fig. 2 Simulation of a brush cleaning a bronze-colored paperweight

Fig. 3 Simulations of two frontal nonelastic crash scenarios: a car with moderate velocity (top)
and high velocity (bottom)

We simulate 15 s of a toothbrush cleaning a paperweight illustrated in Fig. 2. This
simulation can be carried out almost in real-time which is not possible with the use
of classical methods as illustrated in Table 2.

5.3 Crash Test Simulation Including Nonelastic Deformations

As a very complex example with relevance in the context of special effects, we
simulate a frontal crash of a car into a wall as illustrated in Fig. 3. The mesh of the
car and its interior is composed of 120 000 vertices leading to 360 000 equations of
motion. The global motion (i.e. the rebound of the car) is computed by treating the
car as a rigid body. Using an appropriate bounding box, this can be easily carried out
in real-time. The deformation is then computed using a system of coupled oscillators
with structural stiffness values of k = 104 and bending stiffness values of k/100. If
the deformation reaches a defined threshold, the rest lengths of the corresponding
springs are corrected in a way, that they do not elastically return to their initial
shape. Using the exponential Rosenbrock-type methods, the whole simulation can
be carried out at interactive frame rates. Such an efficient computation can not be
achieved with established methods as illustrated in Table 2.
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6 Conclusion

We introduced the class of explicit exponential Rosenbrock methods for the time
integration of large systems of nonlinear differential equations. In particular, the
exponential Rosenbrock-type fourth-order schemes exprb42 using two stages
and pexprb43 using three stages were discussed and their implementation
were addressed. In order to study their behavior, a broad spectrum of numerical
examples was computed. In this regard, the simulation of deformable bodies, fibers
including elastic collisions, and crash scenarios including nonelastic deformations
was addressed focusing on relevant aspects in the realm of visual computing, like
stability and energy conservation, large stiffness values, and high fidelity and visual
accuracy. An evaluation against classical and state-of-the-art methods was presented
demonstrating their superior performance with respect to the simulation of large
systems of stiff differential equations.
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