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Preface

In September 2017, the International Conference on Scientific Computation and
Differential Equations (SCICADE) took place at the University of Bath, UK. Within
this major meeting, the mini-symposium “Rosenbrock-Wanner-Type Methods:
Theory and Applications” was organized by Tim Jax and Gerd Steinebach. It
did attract 12 speakers underlining the research interest in this type of schemes.
With that gathering of scientists, the idea for this book was born. That is, a
monograph which summarizes current research and developments of Rosenbrock-
Wanner (ROW) related methods.

Unfortunately, this project could not be realized immediately. With some delay,
five still very relevant contributions are now available, which form this book.

Before we introduce the chapters, we recall that these methods are sometimes
referred to as Kaps-Rentrop schemes. Moreover, if approximations of the Jacobians
are incorporated directly into the design of these type of schemes, these techniques
are called W-methods.

Chapter “Rosenbrock-Wanner Methods: Construction and Mission.” Jens Lang
in his chapter “Rosenbrock-Wanner Methods: Construction and Mission” gives a
comprehensive overview of the development of the methods from the first ideas by
Howard H. Rosenbrock in 1963 to current research activities. This chapter is suitable
for newcomers in this field as well as for specialists. The reader gets an excellent
introduction, but also a detailed insight into the variety of Rosenbrock-Wanner-
derived methods. The complete bibliography provides an ideal starting point to
further explore the world of Rosenbrock-Wanner-type methods.

Chapter “Water and Hydrogen Flow in Networks: Modelling and Numerical
Solution by ROW Methods.” In the chapter by Gerd Steinebach and David Michael
Dreistadt, the focus is on the application of the methods. Infrastructure networks
are considered, which are used for the transportation and storage of water and
gas, and in particular hydrogen. These networks consist of individual components
such as pipes, pumps, valves, metal-hydride tank, and so on. The mathematical
modeling is based on conservation and reaction equations. In the case of spatially
one-dimensional consideration, a semidiscretization in space is proposed, so that the
modeling of all considered components leads to a large coupled DAE system. In two
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vi Preface

numerical case studies, the solution of the DAE systems by means of Rosenbrock-
Wanner methods is discussed. Aspects such as smoothing of characteristic curves
and switching processes, which play an important role in practice, are also dis-
cussed.

Chapter “Exponential Rosenbrock Methods and Their Application in Visual
Computing.” Vu Thai Luan and Dominik Michels introduce and apply explicit expo-
nential Rosenbrock methods to large, (very) stiff systems of ordinary differential
equations originating also from visual computing. Such systems can be coupled
oscillators for elastodynamic systems. They investigate how these methods can be
efficiently applied in this context. With numerical examples, they demonstrate the
reduction of computational time when compared against state-of-the-art techniques.

Chapter “W-methods and Approximate Matrix Factorization for Parabolic PDEs
with Mixed Derivative Terms.” In the chapter by S. González-Pinto and D.
Hernández-Abreu, W-methods are enriched with approximate matrix factorizations
and three different families of methods are introduced. These methods are used
for the time integration of parabolic partial differential equations, where mixed
derivatives occur in the related elliptic operator. By the means of a scalar test
equation, stability is investigated and demonstrated on numerical examples.

Chapter “Two-step W-methods.” Two-step W-methods are investigated by Mar-
cel Klinge, Helmut Podhaisky, and Rüdiger Weiner. These two-step schemes avoid
lower-stage orders of classical ROW schemes and thus order reduction for stiff
problems. In this chapter, the convergence theory is presented and order conditions
as well as stability are discussed. A new family of schemes is constructed, which can
be made stiffly accurate. Coefficient sets have been deduced for various convergence
orders. These coefficient sets are numerically analyzed for different stiff test cases
including Burgers’ equation. The efficiency with respect to traditional Rosenbrock-
Wanner schemes is demonstrated.

The editors would like to thank the publisher and authors of the individual
chapters for their very good cooperation.

Sankt Augustin, Germany Tim Jax
Wuppertal, Germany Andreas Bartel
Wuppertal, Germany Matthias Ehrhardt
Wuppertal, Germany Michael Günther
Sankt Augustin, Germany Gerd Steinebach
January 2021
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Rosenbrock-Wanner Methods:
Construction and Mission

Jens Lang

1 Introduction

Howard Harry Rosenbrock (1920–2010) suggested in his famous paper from 1963
[55] to replace the iterative process for the solution of nonlinear problems within
an implicit time integrator by a finite number of solutions of linear systems. He
summarized: Some general implicit processes are given for the solution of simul-
taneous first-order differential equations. These processes, which use successive
substitution, are implicit analogues of the (explicit) Runge-Kutta processes. They
require the solution in each time step of one or more sets of simultaneous linear
equations, usually of a special and simple form. Processes of any required order can
be devised, and they can be made to have a wide margin of stability when applied
to a linear problem. Thus, Rosenbrock methods avoid the problem of convergence
for the solution of systems of nonlinear equations, making them a good alternative
to fully implicit Runge-Kutta methods. In this note, I will give a brief historical
overview and explain main construction principles including widely used members
of the whole family of linearly implicit methods such as Rosenbrock-Wanner
methods, W-methods, and recently developed two-step Rosenbrock-Peer and W-
methods. Rosenbrock methods have made their way into real-life applications
and become part of very sufficient adaptive multilevel PDE-solvers, see e.g. [27].
Nowadays, there still is an increasing interest in these methods, which would
have delighted Rosenbrock who concluded his paper by expressing his wish: The
processes described above have been explored only cursorily, and it is hope that
this note may stimulate others to investigate their possibilities. It certainly did.

J. Lang (�)
Technische Universität Darmstadt, Darmstadt, Germany
e-mail: lang@mathematik.tu-darmstadt.de
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2 J. Lang

Who was Howard H. Rosenbrock? Rosenbrock was
born on December 16, 1920 in Ilford, England. He
graduated 1941 from University College London with
a 1st class honors degree in Electrical Engineering
and received his PhD from London University in
1955. During the 1960s he worked at the Cambridge
University and the MIT. In 1966, he became the
Chair of Control Engineering at the University of
Manchester, Institute of Science and Technology. He
died on 21 October 2010. Rosenbrock produced over
120 scientific papers, 7 books, and about 30 papers on
the philosophical basis of science and technology. An
obituary was published in [80].

© IEEE Control System [80].

2 The Original Idea of Rosenbrock

In what follows, I will first review the original ideas of Rosenbrock as described in
[55]. The writing is presented in a modern style, but a few text passages are included
as pictures.

As starting point in his paper, Rosenbrock took a look at the (spatial) semi-
discretization of the one-dimensional linear heat equation, i.e., formulas (1) and (2)
in Fig. 1. He stated: Any explicit numerical method of solving eqn. (2) (e.g. Runge-
Kutta) replaces the exponentials by their truncated Taylor’s series during one time
interval of the solution. The exponentials tend to zero as t becomes large, whereas
the truncated Taylor’s series tend to infinity. A severe limitation on the length of the
time intervals is thus introduced.

Fig. 1 © The Computer Journal, part of page 329 of [55]
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To illustrate these fundamental observations, let us consider the heat equation in
the form

∂tu = ∇ · (D∇u) , x ∈ Ω t ∈ (0, T ],
u(x, t) = 0, x ∈ ∂Ω, t ∈ (0, T ],
u(x, 0) = u0(x), x ∈ Ω,

(1)

with domain Ω ⊂ R
d (d ≥ 1) and a symmetric positive definite matrix D(x) ∈

R
d×d . We have the following stability results:

‖u(t)‖L2(Ω) ≤ ‖u0‖L2(Ω), t ∈ [0, T ], (2)

u(t) → 0 for t → ∞. (3)

A Method of Lines approach (let’s take finite differences for simplicity) yields the
system of ordinary differential equations

∂tU(t) = A U(t), t ∈ (0, T ],
U(0) = U0,

(4)

where the vector U(t) collects approximations at certain spatial points. The matrix
A is symmetric negative definite and therefore exhibits negative real eigenvalues—
the values −ki in the exponentials mentioned by Rosenbrock in Fig. 1. An explicit
Runge-Kutta methods computes approximations Un ≈ U(tn) with tn = nh, n ≥ 1
through

Un+1 = RERK(hA) Un, n = 0, 1, . . .

U0 = U0,
(5)

where

RERK(z) = 1 + z + . . . + zp

p! +
s∑

i=p+1

αiz
i = ez + O(zp+1). (6)

The stability requirements for the semi-discretized solution

‖Un+1‖2 ≤ ‖Un‖2, Un → 0 for n → ∞, (7)

request |RERK(z)| < 1 for z along the negative real axis. Due to the nature of the
approximation (6), small time steps h are necessary to guarantee stability. Moreover,
the finer the spatial discretization, the smaller the time steps must be, showing that
explicit methods, in general, are inefficient for the solution of such kind of (stiff)
problems.
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Fig. 2 © The Computer Journal, part of page 329 of [55]

An alternative is the implicit Crank-Nicolson method already proposed in 1947
[3], see also Fig. 2. It reads

Un+1 = RCN(hA) Un, n = 0, 1, . . .

U0 = U0,
(8)

with

RCN(z) = 1 + z/2

1 − z/2
= ez + O(z3). (9)

The method is unconditionally stable, since |RCN(z)| ≤ 1 for all z lying in the left
complex half plane. However, the damping properties at infinity are unsatisfactory.
This lack has been also mentioned by Rosenbrock: The procedure given in eqns.
(3) and (4) has been widely used. It is perhaps not widely known, however, that
instability can arise even with this process when the φ are non-linear functions of
x. This is hardly surprising, since ψi(t) → −1 as t → ∞, so that even in a linear
problem stability is only just maintained for large t .

However, his main observation was that when the functions φ are non-linear,
implicit equations such as eqn. (3) can in general be solved only by iteration. This
is a severe drawback, as it adds to the problem of stability, that of convergence of
the iterative process. As consequence, he set up a generalized implicit process with
linear equations that can be solved rapidly and easily. How is it done?
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Let us now consider the autonomous system of nonlinear ordinary differential
equations

∂tU(t) = F(U(t)), t ∈ (0, T ],
U(0) = U0.

(10)

and apply the Crank-Nicolson method to it, resulting in

Un+1 = Un + h
2 (F (Un) + F(Un+1)) , n = 0, 1, . . .

U0 = U0.
(11)

With Un as starting values, Newton’s method to approximate Un+1 gives the
sequence of linear equations

U
(0)
n+1 = Un,

(
I − h

2 F ′(U(k)
n+1)

)
K

(k+1)
n+1 = −

(
U

(k)
n+1 − Un − h

2

(
F(U

(k)
n+1) + F(Un)

))
,

U
(k+1)
n+1 = U

(k)
n+1 + K

(k+1)
n+1 , k = 0, 1, . . . .

(12)

The fundamental idea of Rosenbrock was to use only one step of Newton’s method,
which reads for k = 0

(
I − h

2
F ′(Un)

)
Kn+1 = hF(Un), (13)

or equivalently

Kn+1 = h
(
F(Un) + 1

2F ′(Un)Kn+1

)
. (14)

In his paper, Rosenbrock did not mention how he derived his formula (9), see Fig. 3,
and left it to the reader as an exercise.

Fig. 3 © The Computer Journal, part of page 329 of [55]
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Fig. 4 © The Computer Journal, part of page 329 of [55]

In a next step, he proposed to use Kopal’s treatment of the Runge-Kutta processes
[25] to design a generalized implicit process shown in Fig. 4. Note that the Jacobian
is evaluated at different solutions. Rosenbrock did a consistency analysis: By a
straightforward but tedious calculation it is possible to expand x ′

r − x ′
r−1 in eqn.

(14) as a power series in hr , and to compare this with the Taylor’s series. He derived
order conditions for two stages up to order four. Finally, I summarize his findings:

• There is no 2-stage third-order method with R(∞) = 0.
• He constructed a 2-stage third-order method with R(∞) = −0.8.
• He constructed a 2-stage second-order method with R(∞) = 0.

Compared to the second-order Crank-Nicolson method, Rosenbrock found a 2-stage
second-order method with optimal damping property at infinity and only two linear
equations that have to be solved in each time step. General s-stage Rosenbrock or
Rosenbrock-Runge-Kutta methods can be written in the (modern) form

(
I − hγiiF

′(Un +∑i−1
j=1 δijKj )

)
Ki = hF(Un +∑i−1

j=1 αijKj ), i = 1, . . . , s,

Un+1 = Un +∑s
i=1 biKi.

(15)

This formulation is the starting point for further improvements.

3 The Improvement by Wanner

Around 1973, Gerhard Wanner became interested in Rosenbrock schemes and added
his famous sum, hF ′(Un)

∑
j=1,...,i−1 γijKj , on the right hand side in (15), keeping

at the same time the Jacobian fixed, i.e., using F ′(Un) for all stages [77, 1977].
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Rosenbrock-Wanner methods (short ROW methods) with s stages have the general
form

(
I − hγiiF

′(Un)
)
Ki = hF(Un +∑i−1

j=1 αij Kj ) + hF ′(Un)
∑i−1

j=1 γijKj ,

i = 1, . . . , s,

Un+1 = Un +∑s
i=1 biKi.

(16)

In the spirit of Rosenbrock, they can be derived from diagonally implicit Runge-
Kutta methods (short DIRK methods), applying only one simplified Newton step
with the Jacobian F ′(Un) and using already calculated stage values as starting values
in the calculation of subsequent stages. Applied to (10), the nonlinear system for
the stage values Ki of a DIRK method with lower triangular coefficient matrix D =
(dij ) reads

Ki = hF(Un +∑i
j=1 dijKj ), i = 1, . . . , s. (17)

One-step of a Newton-like iteration

(I − hdiiF
′(Un))

(
Ki − K

(0)
i

)
= hF

(
Un +∑i−1

j=1 dijKj + diiK
(0)
j

)
− K

(0)
i

(18)

with starting values

K
(0)
1 = 0, K

(0)
i = −∑i−1

j=1
γij

dii
Kj , i = 2, . . . , s, (19)

yields the ROW method (16) with αij = dij − γij and γii = dii . Compared
to Rosenbrock’s original form (15), the coefficients δij were removed to avoid
recalculations of Jacobians and new coefficients γij were added to have enough
parameters for consistency and good stability properties.

A usual simplification is to set γii = γ for all i = 1, . . . , s. In case of
direct solvers, it allows to reuse an LU-decomposition of the linear system matrix
I − hγF ′(Un). It also simplifies iterative solvers, when matrix decompositions as
preconditioners are used. To avoid the matrix-vector multiplication, one introduces
Si =∑j=1,...,i γijKj and solves

(
I

hγ
− F ′(Un)

)
Si = F(Un +∑i−1

j=1 aijSj ) +∑i−1
j=1

cij

h
Sj ,

i = 1, . . . , s,

Un+1 = Un +∑s
i=1 miSi .

(20)
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Defining the matrix Γ = (γij )
s
i,j=1 with γii �= 0 for all i, the new parameters are

derived from

(aij )
s
i,j=1 = (αij )si,j=1Γ

−1, (cij )
s
i,j=1 = diag(γ −1

11 , . . . , γ −1
ss ) − Γ −1,

(m1, . . . ,ms) = (b1, . . . , bs)Γ
−1.

(21)

Further generalizations to non-autonomous systems and systems of the special
multiplicative form M(t,U)∂tU = F(t, U), where M might be singular, are also
possible [15, 36].

So far, the Jacobian has to be computed at every time step, which can be quite
costly. Steihaug and Wolfbrandt [67, 1979] developed so-called W-methods that
avoid exact Jacobians, i.e., F ′(Un) ≈ Tn with arbitrary matrix Tn. The idea is to
keep the Jacobian unchanged over several time steps while still ensuring stability.
Less restrictive time lagged approximations of the form Tn ≈ F ′(Un) + O(h)

were proposed by Scholz and Verwer [61, 1983], see also Scholz [58, 59, 1978/79],
and Kaps and Ostermann [21, 40, 1988/89]. Rahunanthan and Stanescu recently
discussed high-order W-methods [48, 2010]. They have been also applied to optimal
control problems in Lang and Verwer [31, 2013].

The linear equations in (20) can be successively solved. Order conditions were
derived by applying the theory of Butcher series. They can be found in Wolfbrandt
[83, 1977], Kaps [20, 1977], Nørsett and Wolfbrandt [39, 1979], and Kaps and
Wanner [23, 1981]. Further details and many more information are given in the
books of Van der Houven [72, 1976] and Hairer and Wanner [15, 1991].

For later use, I briefly recall the definition of a few fundamental stability
concepts. Applied to the famous scalar Dahlquist’s test equation y ′ = λy, y0 = 1
with λ ∈ C, a ROW method (as any other Runge-Kutta method) gives Un+1 =
R(z)Un, where z = λh. The function R(z) is called the stability function of the
method and the set S = {z ∈ C : |R(z)| ≤ 1} defines its stability domain. The
exact solution of the test equation is stable in the entire negative complex half plane
C− = {z : Re(z) ≤ 0}, and it seems likely that a numerical method should preserve
this stability property. Dahlquist [4, 1963] called a method A-stable if C− ⊂ S. If
in addition limz→−∞ R(z) = 0, the method is called L-stable—a property that was
introduced by Ehle [7, 1969] and guarantees a fast damping for those z having very
large negative real parts. A convenient way to ensure L-stability for ROW methods
is to require αsi + γsi = bi for i = 1, . . . , s, and

∑
j αsj = 1. Such methods are

called stiffly accurate. A weaker concept was established by Widlund [82, 1967]
who called a method A(α)-stable if the sector Sα = {z : | arg(−z)| ≤ α, z �= 0} is
contained in its stability region.

There are A-stable and L-stable ROW methods available. ROW methods share
their linear stability properties with (singly) diagonally implicit Runge-Kutta meth-
ods introduced by Alexander [1, 1977]. The role of the stability parameter γ was
studied in Wanner [78, 1980]. Continuous extensions of Rosenbrock-type methods
for a frequent graphical output were introduced by Ostermann [41, 1990].
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4 Development of Rosenbrock-Wanner Methods

First Solvers The theoretical investigation of Rosenbrock-Wanner methods at the
end of the 70s laid the starting point for a broad and fast development of efficient
solvers. The fourth-order codes GRK4A and GRK4T proposed by Kaps and Rentrop
[22, 1979] were equipped with a step size control based on embedded formulas of
order three. The first one is A-stable whereas the second is only A(89.3o)-stable,
but comes with smaller truncation errors. They were successfully tested on the
25 stiff test problems of Enright et al. [8, 1975]. Gottwald and Wanner presented
their back-stepping algorithm to improve the reliability of Rosenbrock methods
[12, 1981]. Time-lagged Jacobian matrices and a modified Richardson extrapolation
for variable steps size control within a fourth-order A-stable Rosenbock-Wanner
scheme (named RKRMC) were tested by Verwer et al. [76, 1983]. Further analysis
and experiments have been made by Verwer [74, 75, 1982]. Implementation issues
were discussed by Shampine [63, 1982]. Veldhuizen investigated the D-stability
of the Kaps-Rentrop methods [73, 1984]. There are two options to estimate local
errors: embedding and Richardson extrapolation. Kaps, Poon, and Bui did a careful
comparison of these two strategies in [24, 1985]. The performance of Rosenbrock
methods for large scale combustion problems discretized by the Method of Lines
was investigated by Ostermann et al. [42, 1986].

Partitioned Methods It is often useful to split the solution vector U(t) into stiff
and non-stiff components, say Us(t) and Un(t). After an appropriate reordering of
the original equations, this gives a partitioned system

U ′
s (t) = Fs(Us(t), Un(t)), Us(0) = U0

s ,

U ′
n(t) = Fn(Us(t), Un(t)), Un(0) = U0

n .
(22)

Now it is quite natural to apply a Rosenbrock-type scheme to the stiff part and
an explicit Runge-Kutta method to the non-stiff part. Rentrop combined an A-
stable Rosenbrock (3)4-pair with a common (4)5-Runge-Kutta-pair and studied
strategies for stiffness detection in [52, 1985]. A drawback of such an approach
is the occurrence of additional coupling conditions which usually does not allow
the simple combination of two favourite schemes. An alternative is to use the
setting of W-methods to directly incorporate the partitioning on the level of the
Jacobian calculation, e.g., only take into account derivatives of Fs and drop the
other ones. Such methods were analysed by Strehmel et al. [70, 1990] under the
heading partitioned linearly implicit Runge-Kutta methods including ROW- and
W-methods. Later on, Wensch designed an eight-stage fourth-order partitioned
Rosenbrock method for multibody systems in index-3 formulation [81, 1998].

The partitioning can be also used to set up multirate schemes, where different step
sizes for active and latent components are explicitly introduced in the discretization.
In Günther and Rentrop [13, 1993], multirate Rosenbrock-Wanner methods were
used for the simulation of electrical networks. One general shortcoming of multirate
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methods is the coupling between the components by interpolating and extrapolating
state variables. Stability of multirate Rosenbrock methods were studied in Savcenco
[56, 57, 2008/09] and Kuhn and Lang [26, 2014].

Differential-Algebraic Equations In the late 80s, Rosenbrock methods were also
applied to differential-algebraic equations (DAEs) of index one:

U ′(t) = F(U(t), Z(t)), U(0) = U0,

0 = G(U(t), Z(t)), Z(0) = Z0,
(23)

where it is assumed that (∂ZG)−1 exists and is bounded in a neighbourhood of the
solution. The main idea used by Roche [54, 1988] is to add εZ′(t) on the left hand
side of the second equation and consider the DAE (23) as a limit case of the stiff
singular perturbation problem for ε → 0. This limit typically destroys the classical
order of the Rosenbrock methods and gives rise to a new consistency theory derived
by means of a modified Butcher-like tree model for the U - and Z-components. Note
that the Kaps-Rentrop methods from [22] drop down to order two when applied to
(23). Similar observations have been made earlier by Verwer [75, 1982]. Two new
ROW-methods (named DAE34 and RKF4DA) with stepsize control and an index-1
monitor were proposed and tested by Rentrop et al. [53, 1989].

A desirable property when solving stiff or differential-algebraic equations is to
have an L-stable method, i.e., a method with R(∞) = 0. This is always the case for
stiffly accurate Rosenbrock methods which approximate the algebraic component
Z of the extreme DAEs, U ′ = 1 and 0 = G(U,Z), through one simplified
Newton iteration. This nicely meets the original idea of Rosenbrock. In their book,
Hairer and Wanner [15, 1991] constructed the famous stiffly accurate six-stage
fourth-order Rosenbrock solver RODAS with an embedded method of order three.
Special index-2 DAEs were treated in Lubich and Roche [36, 1990] and results for
index-3 multibody systems can be found in Wensch [81, 1998]. Günther, Hoschek,
and Rentrop constructed special index-2 Rosenbrock methods for electric circuit
simulations [14, 2000]. Recently, Jax and Steinebach [18, 2017] introduced a new
type of ROW methods for solving DAEs of the form (23). Taking ideas from W-
methods, they allow arbitrary approximations to Jacobian entries resulting from the
differential part.

Extrapolation An interesting, general approach to construct higher order methods
for differential as well as differential-algebraic equations is to use extrapolation.
Deuflhard and Nowak [6, 1987] proposed to extrapolate the linearly implicit Euler
discretization (as the simplest Rosenbrock method) to solve chemical reaction
kinetics and electric circuits and implemented the well-known variable-order LIMEX

code with step size control. They also provided the impetus for Lubich to explain
the error behaviour of such methods by perturbed asymptotic analysis [34, 1989].

B-Convergence and Order Reduction One-step methods and so Rosenbrock
schemes suffer from order reduction, especially when they are applied to nonlinear
parabolic partial differential equations. Sharp error estimates showing fractional
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orders of convergence for Rosenbrock and W-methods were first established by
Lubich et al. [35, 43, 1993/95]. This phenomenon is related to the B-convergence
of linearly implicit methods studied by Strehmel and Weiner [68, 1987]. Barriers
for the order of B-convergence were given by Scholz [60, 1989]. In their book,
Strehmel and Weiner [69, 1992] gave convergence results for spatial discretizations
of semilinear parabolic equations with constant operator and a Lipschitz continuous
non-linearity. However, the B-convergence technique does not give the sharp frac-
tional temporal convergence rates. It is now much better understood than before why
(lower) fractional orders occur. This reduction is not induced by lack of smoothness
of the solution but rather by the presence of powers of the spatial differential
operators in the local truncation error. Concerning W-methods, the order reduction
is more severe compared with Rosenbrock methods. Loss of accuracy happens long
before stability is affected. Fortunately, there are additional consistency conditions
that imply also higher order of convergence as shown in Lubich and Ostermann [35,
1995].

Using this theoretical framework, new methods were constructed. Steinebach
improved the RODAS code and designed his stiffly accurate RODASP scheme,
which satisfies the new conditions for linear parabolic problems to reach order
four. It was successfully applied to forecast transport in rivers, see Steinebach and
Rentrop [65, 2001]. New order-three methods with three, ROS3P, and four stages,
ROS3PL, were constructed in Lang and Verwer [29, 2001] and Lang and Teleaga
[28, 2008], respectively. The latter one is stiffly accurate and therefore suitable for
differential-algebraic equations. It also satisfies the condition of a W-method with
O(h)-disturbance of the Jacobian, which makes numerical differentiation for its
entries less sensitive with respect to roundoff errors. A bunch of newly designed
third-order Rosenbrock W-methods for partial differential-algebraic equations was
published in Rang and Angermann [51, 2005]. Further improved ROW methods can
be found in Rang [49, 50, 2014/15].

Exponential Rosenbrock-Type Methods Exponential integrators are based on a
continuous linearization of the nonlinearity F(U(t)) along the numerical solution.
This gives the linearized system

U ′(t) = F ′(Un)U(t)+Gn(U(t)), Gn(U(t)) = F(U(t))−F ′(Un)U(t). (24)

Exponential Rosenbrock methods make direct use of Jn := F ′(Un) and Gn(U(t)).
Hochbruck et al. [16, 2009] considered the following class of methods (here for
variable time steps hn):

Uni = ecihnJn Un + hn

∑i−1
j=1 aij (hnJn)gn(Unj ), i = 1, . . . , s,

Un+1 = ehnJn Un + hn

∑s
i=1 bi(hnJn)gn(Uni).

(25)

A key point is the efficient approximation of the matrix exponential times a vector
by Krylov subspace methods or methods based on direct polynomial interpolation.
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An interpolation method with real Leja points was tested by Caliari and Ostermann
[2, 2009] and showed a great potential for problems with large advection in
combination with moderate diffusion and mildly stiff reactions. Higher order and
parallel exponential Rosenbrock methods were proposed by Luan and Ostermann
[32, 33, 2014/16].

Miscellaneous Rosenbrock methods offer a simple usage due to their linear
structure. Methods up to order four perform well for low and medium tolerances
and work competitive in many applications. The code ode23s in the MATLAB ODE

SUITE is a typical Rosenbrock scheme, see Shampine and Reichelt [64, 1997]. The
Krylov-W-code ROWMAP based on the Rosenbrock method ROS4 of Hairer and
Wanner has demonstrated its efficiency for large stiff systems. Numerical tests were
performed in Weiner et al. [79, 1997]. Rosenbrock methods are the numerical kernel
in the adaptive multilevel PDAE-solver KARDOS, which is a well running working
horse for a broad range of real-life applications, see Lang [27, 2000]. Combined with
a linearized error transport equation based on first variational principles, they can
be accompanied with a cheap global error estimation and control through tolerance
proportionality. Such strategies were investigated in Lang and Verwer [30, 2007] for
initial value problems and in Debrabant and Lang [5, 2015] for semilinear parabolic
equations. Last but not least, a Rosenbrock code is listed in the second edition of
Numerical Recipes by Press et al. [47, 1996].

A lot of basic information about Rosenbrock methods can be found in the books
by Hairer and Wanner [15, 1991] and Strehmel and Weiner [69, 1992]. Newer
developments are highlighted in Strehmel et al. [71, 2012]. A tremendous source
of further interesting material are the proceedings of the numerous NUMDIFF-
conferences held at the Martin Luther University Halle-Wittenberg since the early
1980s.

5 Two-Step Rosenbrock-Peer and W-Methods

As explained above, Rosenbrock methods may suffer from order reduction for very
stiff problems. A closer inspection reveals that the low stage order (the first stage
value is computed by the linearly implicit Euler scheme) is one of the reasons. To
raise the stage order substantially, Podhaisky et al. [44, 45, 2002] studied a new class
of linearly implicit two-step methods, where the previously computed stage values
are taken into account. Such s-stage two-step W-methods have the form

Yni = Un + hn

∑s
j=1 aijUn−1,j + hn

∑i−1
j=1 ãijUnj ,

(I − γ hnTn)Uni = F(Yni) + hnTn

∑s
j=1 γijUn−1,j + hnTn

∑i−1
j=1 γ̃ijUnj ,

i = 1, . . . , s,

Un+1 = Un + hn

∑s
i=1

(
biUni + viUn−1,i

)
.

(26)
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Observe that aij = γij = vi = 0 recovers classical one-step ROW and W-methods.
The special setting ãij = γ̃ij = 0 treated in [44] allows to compute the stage values
Uni in parallel. Higher order parallel methods were studied by Jackiewicz et al.
[17, 2004]. Computer architectures of workgroup servers having shared memory
for quite a few processors are particularly suitable for these methods which have
been designed for the solution of large stiff systems in combination with Krylov
techniques. Methods with favorable stability properties have been constructed with
stage order q = s and order p = s for s ≤ 4. All methods are competitive with
state-of-the-art codes for stiff ODEs.

Within the class of two-step methods, Podhaisky et al. [46, 2005] also constructed
s-stage methods where all stage values have the stage order q = s − 1. They
considered the following methods:

(I − γ hnTn)Uni = ∑s
j=1 bijUn−1,j + hn

∑s
j=1 aij

(
F(Un−1,j ) − TnUn−1,j

)

+hnTn

∑i−1
j=1 gij Unj , i = 1, . . . , s.

(27)

Here, Uns ≈ U(tn+1) and the matrix Tn is supposed to be an approximation to the
Jacobian F ′(U(tn)) for stability reasons. The method is treated as a W-method, i.e.,
the order conditions are derived for arbitrary Tn. Due to their two-step and linear
structure, the methods are called two-step Rosenbrock-Peer methods, where peer
refers to the fact that all stage values have now one and same order. The methods
constructed in [46] for s = 4, . . . , 8 are zero-stable for arbitrary step size sequences
and L(α)-stable with large α. For constant time steps, these methods have order s.
Numerical experiments showed no order reduction and an efficiency superior to the
fourth-order RODAS for more stringent tolerances.

With this property, peer methods commend themselves as time-stepping schemes
for the solution of time-dependent partial differential equations. So they have been
implemented in the already mentioned finite element software package KARDOS,
see Gerisch et al. [9, 2009] and Schröder et al. [62, 2017]. They also performed
well for compressible Euler equations, demonstrated in Jebens et al. [19, 2012],
for shallow-water equations, reported in Steinebach and Weiner [66, 2012], and
for more complex fluid dynamics problems, see Gottermeier and Lang [10, 11,
2009/10]. More recently, linearly implicit two-step Peer methods of Rosenbrock-
type have shown their reliability, robustness, and accuracy for large eddy and direct
numerical simulations for turbulent unsteady flows in Massa et al. [37, 2018].

6 Summary

The idea of Rosenbrock is still alive. Avoiding the (often cumbersome) solution of
nonlinear equations has not lost its attractiveness and significance over the years.
The successive solution of linear equations is still a valuable option to efficiently
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solve systems of differential, differential-algebraic or partial differential equations.
Classical one-step Rosenbrock-Wanner methods up to order four have demonstrated
their good performance for low and medium tolerances. The new class of two-step
Rosenbrock-Peer methods allows the construction of even higher order methods
that overcome the disadvantage of order reduction and still exhibit good stability
properties. Recent numerical experiments with higher tolerances are very promising.

There is still an ongoing research activity in the field of Rosenbrock methods. A
recent search in the SCOPUS data base gave 753 documents. One of the last entries
is about Strong Convergence Analysis of the Stochastic Exponential Rosenbrock
Scheme for the Finite Element Discretization of Semilinear SPDEs Driven by
Multiplicative and Additive Noise by Mukam and Tambue [38, 2018]. This brings
me to my final remark. In view of the numerous contributions to Rosenbrock
schemes, I would like to apologize in advance to those who have made significant
further contributions to the topic but were not mentioned in my overview. I am
prepared to receive your emails.
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for their useful remarks.
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Water and Hydrogen Flow in Networks:
Modelling and Numerical Solution
by ROW Methods

Gerd Steinebach and David Michael Dreistadt

1 Flow Problems in Networks

In this chapter fluid flow problems within networks are considered. The fluid can
be water or gas, while the networks can be channels, rivers or pipes. Water flow in
channels or rivers is characterized by a free surface, whereas in pipes free surface or
pressurized flow may occur. Gas flow problems are restricted to pipe networks. In
addition to the actual flow behaviour, the transport of substances and heat can also
be modelled. Special attention is paid to a model of hydrogen storage that is based
on metal hydride.

Applications with extensive experience by the authors include river water level
forecast models [30], river alarm models for transport and dispersion of dangerous
substances [22, 29], process simulation in sewer systems [31] and water supply
network simulation [28, 32]. Further applications are e.g. gas flow through pipelines
[14] and heat flow in district heating networks [7].

A common feature of these applications is the consideration of large networks
where individual flow paths are modelled in one-dimension. These flow paths are
coupled to the network nodes by suitable coupling conditions. The modelling is
based on the conservation of mass, momentum and sometimes energy. This leads to
hyperbolic conservation laws. If transport and dispersion processes of substances or
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heat are to be considered, the conservation equations must be coupled with parabolic
advection-diffusion equations via the flow velocities.

In addition to the actual flow paths represented by pipes, rivers or channels,
other network elements can also be important (e.g. pumps, valves, storage tanks,
heat exchangers). Such elements are modelled by ordinary differential equations
(ODEs), or by algebraic equations. Together with the partial differential equations
(PDEs) derived from the flow equations, a coupled system of partial differential
algebraic equations (PDAEs) is given. Usually, the space derivatives of the PDEs are
approximated by suitable finite differences or finite volumes. This approach leads
to a large differential-algebraic equation (DAE) system, and consequently requires
efficient numerical methods for their solution.

In the next section the modelling approach is discussed. Since water and gas flow
problems are considered, a uniform approach for both is proposed. In Sect. 3 the
numerical solution strategy is presented, based on the method of lines (MOL) with
a conservative finite difference semidiscretization in space. For the solution of the
resulting DAE-system, any efficient solver can, in principle, be applied. Because the
models are often used in control rooms or forecasting centers, a reliable and robust
scheme is required. In Sect. 4 numerical examples are considered and the results
evaluated.

2 Unified Modelling Approach

To simplify the presented material, we will consider abstract networks that consist
solely of nodes and directed edges, as exemplified in Fig. 1. Since water and gas
flow is considered through the network, typical edges are pumps (or compressors),
valves, control valves, connections and pipes. Specific to this example, a metal
hydride hydrogen storage tank is also treated as an edge. Nodes can be simple

Tank
Pump

Node
Valve

Node

Node

Connection

Pipe Tank

Control Valve

Metal hydride hydrogen storage tank

Fig. 1 An example water/gas network that consists of five nodes (“Tank” and “Node”) and six
edges (“Pump,” “Valve,” “Pipe,” “Control Valve” and “Metal hydride hydrogen storage tank”)



Water and Hydrogen Flow in Networks 21

P1,T1
ṁ1, ė1

P2,T2
ṁ2, ė2

P3,T3

P4,T4

ṁ3, ė3

ṁL
4 , ė

L
4 ( A) j4, ṁ

j
4,(EA)

j
4 ṁR

4 , ė
R
4

j = 1, ...,n4 P5,T5

ṁ5, ė5

ṁL
6 , ė

L
6 ( g)

j
6,(u g)

j
6,T

j
6 ,( s)

j
6

j = 1, ...,n6

Fig. 2 Assignment of possible state variables to the network elements defined in Fig. 1. The lower
index of the state variables represent the number of the corresponding node or edge. See text for
variable definitions

coupling elements or tanks. A more detailed list of possible network elements can be
found in reference [6] for gas networks and references [12, 33] for water networks.

After defining the element types, state variables and other characteristic values
are assigned to the individual network elements. Characteristic values for nodes
can be, for example, geographical coordinates or elevation data. For tanks, volume
characteristics are required. Similarly, different characteristic values must be pro-
vided for the edges. Examples include pump characteristics, valve coefficients, pipe
diameters, and so on. An illustration of state variable assignments to a network’s
elements is shown in Fig. 2. In order to enable uniform modelling of water and gas
flows, the nodes are assigned the variables pressure P and temperature T . Moreover,
to each node i, source terms can be assigned that represent given external mass flow
ṁs,i and energy flux ės,i . The quantities mass flow ṁ = ρ q̇ with density ρ, volume
flow q̇ and energy flux ė are assigned to the edges. Usually, a spatially constant
mass and energy flux exists within an edge, see edges 1,2,3,5. For pipes, additional
spatially resolved inner states are possible (see edge 4). In addition to the left and
right side mass and energy flow, internal variables (ρA), ṁ = ρuA and (EA) with
pipe flow cross-sectional area A, flow velocity u and total specific energy E must
be present. Edge 6 represents a metal hydride hydrogen storage tank that can only
be connected to a node from the left side. Thus, there is no need for right side states
ṁR

6 , ėR
6 . Within this storage tank the densities ρs of the solid phase and ρg of the gas

phase must be distinguished. The total number of time-dependent unknowns within
Fig. 2’s example network is N = 24+3 n4 +4 n6, where n4 and n6 are the numbers
of the spatially resolved inner states of edges 4 and 6.

Up to now, the transport of chemical substance in the example network has not
been explicitly considered. To do so, additional state variable ci for the substance’s
concentration at each node i and mass flow (cq̇)j in each edge j could be
introduced. Its transport through the pipe system is described by advection-diffusion
equations.
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2.1 Node Equations for State Variables

For the most part, nodes have no physical function. They are only used to link
individual network elements preserving mass and energy conservation. Regarding
the nodes 2,3 and 4 the corresponding coupling conditions read

0 = ṁ1 − ṁ2 − ṁ3 + ṁs,2 (1)

0 = ė1 − ė2 − ė3 + ės,2 (2)

0 = ṁ2 + ṁ5 − ṁL
6 + ṁs,3 (3)

0 = ė2 + ė5 − ėL
6 + ės,3 (4)

0 = ṁ3 − ṁL
4 + ṁs,4 (5)

0 = ė3 − ėL
4 + ės,4 (6)

Exceptions are nodes with a storage function (e.g. tanks). Assuming that nodes 1
and 5 are tanks, the following equations result:

d

dt
M1 = −ṁ1 + ṁs,1 (7)

cv
d

dt
(M1T1) = −ė1 + ės,1 (8)

d

dt
M5 = ṁR

4 − ṁ5 + ṁs,5 (9)

cv
d

dt
(M5T5) = ėR

4 − ė5 + ės,5 (10)

To formulate these equations, it is assumed that the energy fluxes to a storage node
are completely converted into heat. Here, cv denote specific heat at constant fluid
volume and M1, M5 are the fluid mass within the two storage tanks.

When the fluid is water and it is assumed that the tank is cylindric with base area
A and a bottom elevation z over some reference level, the filling height h of the
water is given by the hydrostatic pressure law h = P

ρ g
and the piezometric pressure

height is H = z + h. The ρ symbol denotes a given constant density of water and g

is the gravitational constant. The total mass in the tank is then given by M = ρ A h.
When the fluid is a gas, the ideal gas law is assumed:

P = ρ Rs T (11)
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with known specific gas constant Rs = cp − cv , where cp is the specific heat
at constant pressure. The total mass is then given by M = P

Rs T
V , where V is

the specified tank volume. Natural gas can be considered by a real gas factor
z(P, T ) that depends on pressure and temperature, and by the corrected gas law
P = ρ Rs T z(p, T ) (see reference [6, 16]).

2.2 Edge Equations for State Variables

Once nodes are mathematically defined, the equations for the edges must be
specified. Each edge connects two nodes. The node to which the edge points is
referred to as the right (R) node and the other as the left (L) node. In case of edge
1 the left node variables are PL = P1, TL = T1 and the right ones are PR = P2,
TR = T2. An exception is edge 6, which represents a metal hydride hydrogen storage
tank and is connected to a node only on the left side. In the following, only a few
edge types are treated as examples.

2.2.1 Connections

A connection does not have any physical meaning. Nevertheless, connections can be
applied to define a desired constant pressure difference ΔP , which may be caused
by components which are not directly taken into account in the model, see references
[12, 33]. In this case, the edge is modelled by the two equations

PR − PL = ΔP , (12)

TL = TR . (13)

Here temperature effects due to the pressure difference are neglected. Since the
unknowns ṁ and ė of the edge are not explicitly present in Eqs. (12) and (13), the
DAEs of all node and edge equations might be of index two. This can easily be seen
when two tanks are combined by an edge of type connection.

Usually, the energy flux being transmitted by an edge, except in the case of pipes,
is restricted as heat flow. When the edge has no influence on the system’s energy,
the energy flux ė is known and Eq. (13) is replaced by

ė = cv
1

2
(|ṁ|(TL − TR) + ṁ(TL + TR)) . (14)

By this equation the heat flow between the connected left and right nodes has the
same direction as the mass flow.
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2.2.2 Pumps

Water pumps are used to increase pressure and generate flow. A pump can be
characterized by a relationship between pumping head ΔH and volume flow q̇,
also denoted as Q. Typically, a quadratic function is applied [33]:

ΔH = α0 − α2Q
2 . (15)

Since water density ρ is known, Q = ṁ
ρ

and the pumping head is given by:

ΔH = zR + PR

ρ g
− zL − PL

ρ g
.

The pumping process is assumed to be adiabatic and energy flux is given by Eq. (14).
For a gas, a compressor is similar to a water pump. Consequently, it can be

characterized by a relationship between pressure difference and volume flow. In
contrast to Eq. (15), this relation and the outflow temperature also depend on the
inflow temperature:

Q = f1(PL, PR, TL) with Q = ṁ

ρL

, (16)

TR = f2(PL, PR, TL) . (17)

Inflow density ρL can again be computed by the ideal gas law from PL and TL. For
details on the choice of functions f1 and f2 see [6, 16].

2.2.3 Valves

A valve leads to another type of pressure loss and Eq. (15) is replaced by:

s2(t)(HL(t) − HR(t)) = ζ |Q|Q . (18)

Here, parameter ζ is a given pressure loss coefficient and s(t) ∈ [0, 1] is the opening
degree of the valve, which may vary with time (see reference [12, 33]). Equation (18)
can be applied for both water and gas modelling. Usually, effects on temperature
caused by the valve are neglected leading to Eq. (14) for energy flux.

2.2.4 Pipes

Pipes are an edge type that require careful modelling. Edge 4 in Fig. 2 represents
a pipe. Pipe flow of gas is modelled in one-dimension space x ∈ [xL, xR] with
conservation of mass, momentum and energy leading to the Euler equations (see
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references [2, 10, 17]):

∂(ρA)

∂t
+ ∂(uρA)

∂x
= 0 , (19)

∂(uρA)

∂t
+ ∂(u2ρA)

∂x
+ A

∂P

∂x
= −gρA sin(φ) − 2f

ρA

D
|u|u , (20)

∂(AE)

∂t
+ ∂

∂x
(uA(E + P)) = Ω . (21)

A(x) denotes the known pipe cross-section with diameter D(x), which may vary
in space, and ṁ = uρA is the mass flow with velocity u. The source terms on the
right-hand side of the Euler equations describe the slope of the pipe with angle φ,
wall friction with friction coefficient f and power losses or inputs Ω per unit of
length.

The total specific energy E consists of internal, kinetic and potential energy. It is
assumed that internal energy is proportional to temperature, leading to [17]:

E = ρ(cvT + 1

2
u2 + gz) . (22)

In order to close the system, pressure P must be expressed as a function of the state
variables. From Eq. (11) it follows that T = P

ρ(cp−cv)
and inserting into Eq. (22)

yields

E = P

γ − 1
+ 1

2
ρu2 + ρgz with γ = cp

cv

. (23)

By discretizing the space interval [xL, xR] into xL < x1 < ... < xn < xR ,
the chosen inner state variables (ρA)i , ṁi , (AE)i , i = 1, ..., n become obvious.
Note, that the superscripts used in Fig. 2 appear as subscripts now. In order to
later approximate the space derivatives by finite differences, these state variables
must also be given on the boundaries xL and xR . The ṁL, ṁR variables are defined
separately and due to the neighboring nodes, TL, PL, TR, PR are given. Due to the
ideal gas law, one gets ρL, ρR and the remaining state variables (ρA)L, (AE)L,
(ρA)R, (AE)R can be computed. Finally, ėL = cvṁLTL and ėR = cvṁRTR are
defined.

In order to define ṁL and ṁR, a numerical boundary condition must be applied
to each side of the interval [xL, xR]. These boundary conditions can be derived from
the invariants of the Euler equations. When neglecting the source terms on the right-
hand side and assuming A(x) = A to be constant, two invariants are given by [10]:

IL(x(t), t) = u + 2c

γ − 1
= const for

d

dt
x(t) = u − c , (24)

IR(x(t), t) = u − 2c

γ − 1
= const for

d

dt
x(t) = u + c ; (25)
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where c =
√

γP
ρ

denotes the sound velocity. How these invariants are used for
implementing the numerical boundary conditions is described in the next section.

When free surface water flow with constant density ρ and hydrostatic pressure
law P = ρgh with water depth h is considered, Eqs. (19) and (20) are simplified to:

∂A

∂t
+ ∂Q

∂x
= 0 , (26)

∂Q

∂t
+ ∂

∂x

(
Q2

A

)
+ gA

∂h

∂x
= −gA sin(φ) − 2f

1

AD
|Q|Q. (27)

These equations are well known as the Saint-Venant equations [34]. It is assumed
that there is a unique relationship between the flowed cross-sectional area A(x, t)

and the water depth h(x, t). If the slope is small, the approximation sin(φ) = d
dx

z

with a bottom elevation z(x) can be used, and the terms gA∂h
∂x

+ gA d
dx

z = gA∂H
∂x

are summarized with H = z + h being the water surface level. The frequently used
Manning-Strickler friction formula with coefficient KSt is obtained, when factor f

is chosen as f = gD

2K2
Sth

4/3 . Moreover in case of water, only energy flux due to heat is

considered. When E = ρcvT is assumed, and source terms and temperature effects
due to the pressure difference are neglected, Eq. (21) simplifies to the transport
equation

∂(AT )

∂t
+ ∂(uAT )

∂x
= 0 . (28)

For pressure flow of water in pipes a Boussinesq assumption dP = c2dρ with
sound velocity c of water is applied [3]. When the piezometric pressure height H =
z+D+ P

gρ0
with constant water density ρ0 is introduced and a constant pipe diameter

D is considered, the following relationships hold:

∂H

∂t
= c2

gρ0

∂ρ

∂t
,

∂P

∂x
= gρ0

∂(H − z)

∂x
.

Dividing Eqs. (19) and (20) by constant A, neglecting the momentum term ∂(u2ρA)
∂x

,
using sin(φ) = d

dx
z and dividing again by ρ leads to the well known water-hammer

equations [1]:

∂H

∂t
+ c2

gA

∂Q

∂x
= 0 , (29)

∂Q

∂t
+ gA

∂H

∂x
= −λ(Q)

Q|Q|
2DA

. (30)

The friction term in this case is of type Darcy-Weisbach, [1]. As an example, this
system of equations is applied in numerical tests in Sect. 4. The invariants (24) and
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(25) now read as

IL(x(t), t) = gA H − c Q = const for
d

dt
x(t) = −c , (31)

IR(x(t), t) = gA H + c Q = const for
d

dt
x(t) = c . (32)

2.2.5 Special Case: Hydrogen Storage in Metal Hydride

With regards to using hydrogen as an energy carrier in gas networks, gas storage
facilities are important components. In addition to a physically bound storage form,
such as high-pressure gas or cryogenic storage, storage in a chemically bound
form in metal hydride tanks is suitable. In metal hydride storage tanks, a reversible
reaction occurs between the hydrogen gas and the metal, and thus binding the gas
chemically. This process depends on pressure and temperature. In order to integrate
hydrogen gas storage into a gas network model, the hydrogen flow is mathematically
described by one-dimensional conservation equations that take into account the
reaction kinetics. Mass conservation the hydrogen gas is described by Eq. (19),
whereby the metal hydride storage tank is defined as a one-sided closed pipe filled
with porous medium.

Introducing the porosity ε of the medium, gas density ρg and gas velocity ug in
pores, Eq. (19) becomes:

∂(εAρg)

∂t
+ ∂(ugεAρg)

∂x
= −ṁ

with mass flow ṁ per unit length generated by the storage of the gas. Since gas
velocity in pores ug is difficult to calculate, the Darcy velocity u is used to describe
the gas flow and the connection between these states is the Dupuit-Forchheimer
assumption [5]

ug = u

ε
.

Assuming the pipe cross-section A and porosity ε to be constant, the mass
conservation of the gas is given by

ε
∂(ρg)

∂t
+ ∂(uρg)

∂x
= − ˙̃m (33)

with specific mass flow ˙̃m = 1
A

ṁ. Since the hydride storage is assumed to be a
porous medium, the law of Darcy replaces the momentum Eq. (20):

u = −K

μ

∂P

∂x
(34)
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where K is the permeability of the porous material and μ the dynamic viscosity of
the gas. Pressure P can be calculated by applying the ideal gas law (Eq. (11)).

In the mass balance of the solid phase with density ρs , convection does not occur:

(1 − ε)
∂ρs

∂t
= ˙̃m . (35)

Due to the temperature dependence of the reaction kinetics, conservation of
energy must be taken into account. In contrast to Euler equations, nearly constant
pressure conditions are assumed and only heat energy is regarded. Thus, the total
specific energy is given by

E = ρcpT

where cp is the heat capacity at constant pressure. Moreover, gas and solid phases
are assumed to have equal temperature denoted by T . This leads to the energy
conservation (see reference [18]):

(ρcp)e
∂T

∂t
+ ρgcpgu

∂T

∂x
= λe

∂2T

∂x2 + ˙̃m
(

ΔH

Mg

+ T (cpg − cps)

)
+ Q̇ (36)

with averaged coefficients

(ρcp)e = ερgcpg + (1 − ε)ρscps and λe = ελg + (1 − ε)λs .

Here, thermal conductivities λg and λs of the gas and solid phases, reaction enthalpy
ΔH and energy flow Q̇ to the environment are taken into account. When a heat
exchanger is used, energy flow can be described as a function of the heat transfer
coefficient α:

Q̇ = αA(T − Ta) , (37)

where α depends, among other things, on the design of the heat exchanger and the
design of the hydride storage tank and Ta denotes temperature of the heat transfer
medium.

The specific mass flow ˙̃m depends on the reaction kinetics. Since only the
macroscopic observation of the reaction is of interest in terms of the network
simulation, it makes sense to use empirical models that are parameterized on the
basis of measurement data. In a simple form, the specific mass flow that results
from the reaction can be described by the following equations [11]:

ṁabs = Ca exp

(
− Ea

RT

)
ln

(
P

Peq

)
(ρss − ρs) , (38)

ṁdes = Cd exp

(
− Ed

RT

)
P − Peq

Peq

(ρs − ρsu) , (39)
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where ṁabs and ṁdes are the specific mass flow when absorbing or desorbing
hydrogen. Ca and Cd are experimentally measured reaction rates, Ea and Ed are
experimentally determined activation energies, R is the universal gas constant, ρss

is the saturated density and ρsu the unsaturated density of the solid phase. For
an ideal and reversible hydride formation process, the equilibrium pressure Peq is
assumed to be identical for both absorption and desorption. It can be compared to
the gas pressure P for deciding if an absorption or desorption process takes place.
In conclusion, the mass flow ṁ can be calculated using the following equation:

˙̃m = 1

2
sgn(P − Peq)(ṁabs − ṁdes) + 1

2
(ṁabs + ṁdes) . (40)

To calculate equilibrium pressure Peq for an ideal and reversible hydride formation
process, a correlation between the equilibrium pressure and the temperature must
be defined. Figure 3 shows this relationship and the phases of ideal metal hydride
formation [35].

In the first phase (α), hydrogen gas dissolves into the metal lattice under high
increase of pressure, until a saturated concentration is reached. In the second phase
(denoted as α + β) the hydride formation takes place. Within this phase, the
hydrogen concentration w in the solid phase increases at constant pressure (i.e. the
equilibrium pressure Peq ) until the entire metal is converted into metal hydride.
Notice that as Peq increases, the length of the corresponding hydrogen-formation
plateau decreases by increasing temperature until a critical temperature Tkr is
reached. The reaction heat generated during hydride formation usually is dissipated
so that the reaction does not come to a standstill. After complete absorption, only
metal hydride is present (β phase). The desorption process is the reverse of the
absorption process. It should also be noted that normally the pressure-plateaus

Fig. 3 Phases of hydride formation [35]



30 G. Steinebach and D. M. Dreistadt

in Fig. 3 show an incline and hysteresis between the course of absorption and
desorption. The van’t Hoff equation can be derived from the equilibrium pressures
that are present when the plateau is reached [4]:

ln(Peq) = ΔH

R

1

T
− ΔS

R
(41)

where R is the universal gas constant. ΔH denotes reaction enthalpy and ΔS the
entropy change, which both can be determined experimentally. This enables the
required equilibrium pressure to be determined for calculating the mass flow. Since
the van’t Hoff equation is a greatly simplified model for determining the equilibrium
pressure, there are numerous methods for determining the equilibrium pressure
more precisely [9].

Boundary conditions are required to complete the system, Eqs. (33)–(36). The
metal hydride hydrogen storage tank is connected only from the left side to the
network, see Fig. 1. Therefore, at the right end xR of the space interval, which
represents the bottom of the tank, conditions

u(xR) = 0 ,
∂T

∂x
(xR) = 0 (42)

are applied. Due to Eq. (34), the first condition of (42) implies

∂P

∂x
(xR) = 0 . (43)

At the inlet xL of the tank, temperature T (xL) and pressure P(xL) are given by
the connected node. Energy flux is ėL = cvṁLT (xL) and mass flow is ṁL =
u(xL)ρg(xL)εA. The gas density ρg(xL) can be computed from T (xL) and P(xL)

using the ideal gas law, and velocity u(xL) is defined by (34).

3 Numerical Solution Approach

The numerical solution approach consists of four steps, explained below:

1. Semidiscretization of PDEs in space

When a constant diameter of the pipe is assumed, the hyperbolic PDE systems
described by Eqs. (19)–(21) and (28)–(30) for gas and water flow through pipes
can be summarized by

∂q

∂t
+ ∂

∂x
f (q) = S(x, t, q) , x ∈ [xL, xR] (44)

with state vector q(x, t), flux function f (q) and source term S(x, t, q). For gas flow
the state vector is given by q = (ρ, uρ,E)T and for water flow by q = (H,Q, T )T .
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The space interval is discretized into xL = x1/2 < x3/2 < ... < xn+1/2 = xR with
constant stepsize Δx = xi+1/2 − xi−1/2, cell centers xi = 1

2 (xi−1/2 + xi+1/2) and
discrete state vectors qi(t) = q(xi, t).

The space derivatives at the cells’ center are approximated by ∂
∂x

f (qi) =
fi+1/2−fi−1/2

Δx
with suitable chosen flux values fi±1/2 leading to the semi-discretized

system of ODEs

d

dt
qi(t) + fi+1/2 − fi−1/2

Δx
= S(xi, t, qi) , i = 1, ..., n . (45)

In order to get stable discretizations, a local Lax-Friedrichs approach is applied
[17, 36]:

fi+1/2 = 1

2

(
f +

i+1/2 + f −
i+1/2 − |λi+1/2|(q+

i+1/2 − q−
i+1/2)

)
. (46)

λi+1/2 denotes the eigenvalue of df
dq

, which has locally around xi+1/2 the largest
absolute value. In the case of Euler equations this would be

|λi+1/2| = max

(
|ui | +

√
γPi

ρi

, |ui+1| +
√

γPi+1

ρi+1

)
.

A first order discretization is given by the choice

f +
i+1/2 = f (qi+1) , f −

i+1/2 = f (qi) , q+
i+1/2 = qi+1 , q−

i+1/2 = qi , i = 0, ..., n

with linear extrapolated variables

q0 = 2qL − q1 , qn+1 = 2qR − qn . (47)

The boundary values qL, qR are described in Sect. 2.2.4. Higher order can be
achieved by WENO methods (see references [13, 26]).

In case of the hydride storage tank—described by Eqs. (33)–(36)—parabolic
components are present. Moreover, the flow velocities are rather small such that
a full discretization by central differences is sufficient.

For the implementation of the numerical boundary conditions of the Euler or
water-hammer equations, the invariants given by Eqs. (24), (25) or (31), (32) are
considered. First, a locally constant ẋ is assumed and the invariants are continued to
the boundary, here stated for the left side:

IL(xL, t1) := IL(x1, t) with t1 = t − Δx

2ẋ
,

IL(xL, t2) := IL(x2, t) with t2 = t − 3Δx

2ẋ
.
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Next, IL(xL, t1), IL(xL, t2) are linear extrapolated to time t , resulting in the
boundary conditions, given for the left and right side

IL(xL, t) = 3

2
IL(x1, t) − 1

2
IL(x2, t) , (48)

IR(xR, t) = 3

2
IR(xn, t) − 1

2
IR(xn−1, t) . (49)

As an alternative to the invariants IL, IR , the mass flow variables ṁ(x1, t), ṁ(x2, t)

and ṁ(xn, t), ṁ(xn−1, t) may also be extrapolated to the boundaries xL and xR .
The implementation of the boundary conditions for the hydrogen storage tank

is straight forward when using central finite differences and extrapolated variables
according to Eq. (47).

2. Defining a DAE-system

In the next step, all equations for the different nodes and edges are combined
into one system. Coupling conditions, like Eqs. (1)–(6), or for connections, like
Eqs. (12) and (13), are linear equations. Pumps or valves are modelled by non-linear
equations, for example Eqs. (15) and (18). Numerical boundary conditions, like
Eqs. (48) and (49), are generally non-linear too since the invariants may depend non-
linearly on the state variables (e.g. Eqs. (24) and (25)). Nodes representing tanks are
defined by Eqs. (7)–(10). In this case it is preferable to change the state values of
such nodes to mass M and mass times temperature MT , instead of pressure P and
temperature T . Then Eqs. (7)–(10) are linear ODEs. Finally, the semi-discretized
pipe Eq. (45) and the equations for the hydrogen storage tank are non-linear ODEs.

Collecting all state variables in a large vector y(t) yields a monolithic DAE-
system of type

My ′ = f (t, y) , y(t0) = y0 , (50)

where M is a constant diagonal matrix with entries one, when the corresponding
state variable occurs on the left hand-side of an ordinary differential equation, and
entries zero otherwise.

3. Computation of consistent initial values

In order to solve Eq. (50), consistent initial values y(t0) = y0 at initial time t0
must be provided. y0 is consistent, when all algebraic equations belonging to entries
zero on the diagonal of M are fulfilled. One possibility would be the calculation
of a steady state solution 0 = f (t0, y0) of the whole system (Eq. (50)). But such
a solution might not exist. This can easily be explained as follows. When a water
network is considered and the water input by source terms does not coincide with
water consumption at time t0, resulting in no solution. Furthermore, a steady state
solution might have no physical relevance.

Therefore, the following approach is preferred: At initial time t0, all pressure
variables and temperature variables in the whole network are set to constant values
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Pi = P0, Ti = T0 ∀i and all mass and energy fluxes are set to zero ṁj = 0,
ėj = 0 ∀j . By doing so, most of the algebraic equations are fulfilled. Exceptions,
like Eq. (12), are modified according to

PR − PL = tscaleΔP (51)

by introducing a scaling time tscale = min(1, t−t0
ts

) with a relaxation time ts .
Within this time period the algebraic equation is adapted from a consistent one to
a physical relevant equation. Although all algebraic equations are now fulfilled at
time t = t0 + ts , the initial state of the network might not match measurements.
For example, in case of a water network the water levels in the storage tanks will
not correspond to measured values and therefore incorrect pressure conditions will
occur throughout the network. A possible solution to this problem is the usage of the
external sources ṁs,i in Eqs. (7)–(10), allowing one to adjust the simulated water
levels to the measured ones. An example is given in Eq. (77) of Sect. 4.

4. Solution of the DAEs by ROW methods

Finally, the DAE-system Eq. (50) must be solved. In general, any suitable solver
can be used. Special attention should be paid to the robustness of the methods. In
the practical applications discussed here, aspects such as very high accuracy are
often less important than obtaining reliable results. ROW methods have proven to
be good candidates for such problems in many applications (see references [14, 20,
22]). Such methods for DAEs were first introduced by Roche [23] for autonomous
systems of the form

y ′ = f (y, z) , y(t0) = y0 , (52)

0 = g(y, z) , z(t0) = z0 . (53)

It is assumed that ∂g
∂z

is non singular (also called index-1 assumption). ROW
methods applied to problems given by Eq. (50) are defined by (see reference [8]):

y1 = y0 +
s∑

i=1

biki, i = 1, ..., s (54)

(M − hγJ0) ki = hf (t0 + αih, y0 +
i−1∑

j=1

αijkj ) + hJ0

i−1∑

j=1

γij kj + h2γi
∂f

∂t
(t0, y0) .

(55)

y1 denotes an approximation to the solution of Eq. (50) at time t = t0 + h.
The method’s coefficients are γ, αij , γij , i = 1, . . . , s, j = 1, . . . , i − 1 with
αi = ∑i−1

j=1 αij , γi = γ +∑i−1
j=1 γij and the weights are bi . The Jacobian matrix is

evaluated at time t = t0 (i.e. J0 = ∂f
∂y

(t0, y0)).
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An advantage of these methods is that at each time step only s linear equation
systems with identical matrices have to be solved, where s is the stage number. A
disadvantage compared to, for example, implicit multi-step or Runge-Kutta methods
is that the Jacobian matrix must be recalculated at each time step.

There are a number of well known ROW methods for DAEs (see chapter by
J. Lang and references therein). From these, the methods ros3prl2 [21] and
rodasp [27] were selected. Both schemes are embedded methods of order 3(2) and
4(3), respectively. The embedding enables an error estimator and thus automatic step
size control. Furthermore, both methods are stiffly accurate and were constructed on
the basis of ros3pl[15] and rodas[8]. They fulfill additional order conditions,
required to avoid order reduction for the Prothero-Robinson equation and parabolic
problems.

In addition to ros3prl2 and rodasp, the standard integrators ode15s,
ode23t, ode15i of MATLAB [25] and implicit Runge-Kutta method radau5
[8] are applied in the numerical tests.

4 Numerical Examples

In the following, we provide three numerical examples—two for water supply
network modelling and one for a hydrogen flow problem. The first example is
very simple, but demonstrates some numerical difficulties arising in practical
applications. It is shown that a proper numerical simulation requires the preliminary
smoothing of input data and a robust integrator. The second example serves as
a benchmark problem for DAE solvers. In both problems, energy fluxes are not
considered. The third example shows the applicability of the introduced modelling
approach in particular for hydrogen storage in metal hydride.

1. Pumping between two tanks

We start with a system consisting of two tanks and a pump in between, as seen
in Fig. 4. The pump transports water from tank 1 to tank 2. Simultaneously, water
is removed from tank 2 by a given volume flow Qout (t). A pump is described by its
characteristic curve, which is the relationship between delivery head H and volume
flow Q (see the left-hand-side subfigure within Fig. 5).

A typical example of such a curve is

H(Q) = α0 − αrQ
r (56)

Fig. 4 Pumping between two
tanks

H1
Q

Qout

H2
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Fig. 5 Pump curves. Left H(Q), right Q(H) with extrapolation

with given positive coefficients α0, αr and coefficient r > 1. Since improper
physical conditions for pump usage can occur during a simulation, extrapolation of
the pump curve is required. Therefore, it is advantageous to extrapolate the inverse
curve

Q(H) =
(

α0 − H

αr

)1/r

, (57)

shown in right-hand-side of Fig. 5. In the given example below, the pump operates
around the maximum pumping head H = α0, where the function is not differen-
tiable and a singularity in its first derivative occurs. Numerical tests have shown that
Eq. (57) should be replaced by

Q(H) = (α0 − H)2

α
1/r
r

(α0 − H + ε)1/r−2 (58)

with a small parameter ε, see [33]. Now, the extrapolated curve is continuously
differentiable at H = α0. Regarding volume conservation of water, the model of the
system shown in Fig. 4 is given by equations

H ′
1(t) = − 1

A1
Q(t) , (59)

H ′
2(t) = 1

A2
(Q(t) − Qout (t)) , (60)

0 = Q(t) − i(t)
(α0 − ΔH)2

α
1/r
r

(α0 − ΔH + ε)1/r−2 , (61)

with water tank elevations of H1(t) and H2(t), and given tank base areas of A1 and
A2. Extrapolation of the pump curve is implemented by the delivery head ΔH =
min(max(H2(t) − H1(t), 0), α0), and function i(t) indicates when the pump is on
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Fig. 6 Total pump schedule (left), zoomed view (right) that shows smoothing by Eq. (62)

(i(t) = 1) or off (i(t) = 0). Since the network approach requires modelling by
DAEs, system (59)–(61) are treated as a DAE system too.

For this example, the following data was used: ε = 10−2, Qout (t) = 0.0005 (1+
sin( 2πt

4·3600)), A1 = 3, A2 = 4, α0 = 6, αr = 1000, r = 2 and a time interval
of t ∈ [0, 24 · 3600] was simulated. When the pump is off at initial time t = 0,
consistent initial values are given by H1(0) = H2(0) = 10, Q(0) = 0. The pump
schedule shown in Fig. 6 was chosen. After 2 h (i.e. t = 7200 s), the pump is
switched on, followed by alternating its on/off state every 2 h.

At switching times, i(t) should be smoothed in order to avoid discontinuities.
This smoothing near switch times tj is done by

i(t) = 1

2
sin(π

t − tj + ts

2ts
− π

2
) + 1

2
for t ∈ [tj − ts, tj + ts ] . (62)

In this case, switching in time interval [tj − ts, tj + ts ] from i(tj − ts ) = 0 to
i(tj + ts) = 1 is assumed, see Fig. 6. Switching from i = 1 to i = 0 is implemented
analogously. The time period ts = 60 for defining the length of the switching
interval has been chosen in the numerical tests.

The resulting behaviour is shown in Fig. 7. Due to the extraction of water by
Qout (t) the mean water levels in both tanks decrease. At each time when the pump
is switched on, the water level of tank 1 drops and that of tank 2 rises rapidly and a
sharp peak in the flow is generated. By zooming into the curve, one can see that the
pump generates a small flow during its entire operating time.

In an initial test, the integrators ode15s, ode23t, ode15i of MATLAB,
implicit Runge-Kutta method radau5 and Rosenbrock methods ros3prl2,
rodasp are applied to the problem. Results obtained with the usual tolerances
rtol = atol = 10−4 and 10−6 are given in Table 1. Although MATLAB’s multi-
step procedures require more time steps, their computing times are the shortest since
a lower number of Jacobian matrices evaluations are needed in comparison to the
one-step methods.

Next the pump curve is changed slightly by setting the coefficient r = 4 and
changing the smoothing parameter for the pump to ε = 10−3. Again, integrators
are ran with a tolerance tol = 10−4. Figure 8 shows that the multistep methods
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Fig. 7 Resulting model behavior, as given by Eqs. (59)–(61). Upper left: water elevations H1(t)

and H2(t), upper right and lower: flows Q(t) (denoted as Qpump(t)) and Qout (t), together with
zooms

Table 1 Numerical results for pumping problem. NSTEP = number of successful time steps,
NFAIL = number of rejected time-steps, NJAC = number of Jacobian evaluations, NFCN =
number of evaluations of the right-hand side of equation (50), CPU = computing time, ERR =
maximum absolute error at tend

Method tol NSTEP NFAIL NJAC NFCN CPU ERR

ode23t 10−4 464 165 63 1499 0.15 3.6e−3

ode15s 508 167 65 1581 0.15 4.6e−4

ode15i 593 144 48 1661 0.18 3.9e−3

radau5 227 16 185 4061 0.40 1.7e−6

ros3prl2 288 154 288 2324 0.30 7.1e−4

rodasp 202 97 202 2505 0.26 7.5e−5

ode23t 10−6 1612 121 51 3650 0.34 7.6e−4

ode15s 1097 255 64 2820 0.28 4.1e−4

ode15i 1572 236 58 3413 0.41 3.7e−4

radau5 301 34 248 5060 0.68 4.5e−7

ros3prl2 1527 173 1527 11,035 1.26 6.7e−5

rodasp 450 127 450 3462 0.51 2.6e−5
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H1

Hin

Q(1)
L Q(1)

R

H2
Q(2)
L Q(2)

R

H3

Qout

Ht

Qv Qp

Fig. 9 A tank and valve system

lose accuracy. When reducing tol further they may even fail to solve the problem
over the entire time interval. Only if the assigned tolerance is below the value of
tol = 10−6 they will deliver reliable results again.

This simple example demonstrated that a robust integration method is very
important, especially if the simulation model is applied operationally within a
forecast or optimization software. The operators in the control stations are not able
to evaluate the cause of program terminations or adjust parameters such as tolerance.

2. Tank and valve system

The second example, shown in Fig. 9, is slightly more complicated. A predefined
pressure Hin(t) is introduced into the system via node 1. This node could represent
the outlet of a waterworks. At a waterworks’ outlet, a defined pressure is usually
provided to deliver water to the supply area. Water is extracted from the system
at node 3 using term Qout(t). Therefore, node 3 should represent the supply area.
Water can be stored temporarily in the tank when the valve, represented in Fig. 9 as
the edge in the direction of the tank, is open. If pressure in the supply area drops
too far, the valve is closed and water from the reservoir is pumped into the supply
area to increase pressure. Nodes 1, 2 and 2, 3 are connected by pipes. The whole
DAE-system for modelling this water system is given by Eqs. (63)–(76).

0 = H1 − Hin (63)

0 = 2
(
gA1H1 − a Q

(1)
L

)
− 3

(
gA1H

(1)
1 − a Q

(1)
1

)
+
(
gA1H

(1)
2 − a Q

(1)
2

)
(64)

(H
(1)
i )′ = − a2

g A1

Q
(1)
i+1/2 − Q

(1)
i−1/2

Δx
+ a

H
(1)
i+1/2 − H

(1)
i−1/2

Δx
, i = 1, ..., n (65)

(Q
(1)
i )′ = −g A1

H
(1)
i+1/2 − H

(1)
i−1/2

Δx
+ a

Q
(1)
i+1/2 − Q

(1)
i−1/2

Δx
− λ(Q

(1)
i )

Q
(1)
i |Q(1)

i |
2D1A1

, (66)

i = 1, ..., n

0 = 2
(
gA1H2 + a Q

(1)
R

)
− 3

(
gA1H

(1)
n + a Q(1)

n

)
+
(
gA1H

(1)
n−1 + a Q

(1)
n−1

)
(67)
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0 = Q
(1)
R + Qp − Q

(2)
L − Qv (68)

0 = 2
(
gA2H2 − a Q

(2)
L

)
− 3

(
gA2H

(2)
1 − a Q

(2)
1

)
+
(
gA2H

(2)
2 − a Q

(2)
2

)
(69)

(H
(2)
i )′ = − a2

g A2

Q
(2)
i+1/2 − Q

(2)
i−1/2

Δx
+ a

H
(2)
i+1/2 − H

(2)
i−1/2

Δx
, i = 1, ..., n (70)

(Q
(2)
i )′ = −g A2

H
(2)
i+1/2 − H

(2)
i−1/2

Δx
+ a

Q
(2)
i+1/2 − Q

(2)
i−1/2

Δx
− λ(Q

(2)
i )

Q
(2)
i |Q(2)

i |
2D2A2

, (71)

i = 1, ..., n

0 = 2
(
gA2H3 + a Q

(2)
R

)
− 3

(
gA2H

(2)
n + a Q(2)

n

)
+
(
gA2H

(2)
n−1 + a Q

(2)
n−1

)
(72)

0 = Q
(2)
R − Qout (73)

0 = Qp − i(t)
(α0 − (H2 − Ht)

2

α
1/r
r

(α0 − (H2 − Ht) + εp)1/r−2 (74)

0 = Qv

√
ζ(|H2 − Ht | + εv) − s(t)(H2 − Ht) (75)

H ′
t = 1

At

(Qv − Qp + Qs) (76)

The state vector y(t) of this system is given by

y = (H1,Q
(1)
L ,H

(1)
1 ,Q

(1)
1 , ..., H (1)

n ,Q(1)
n ,Q

(1)
R ,H2,Q

(2)
L ,H

(2)
1 ,Q

(2)
1 , ...,

H (2)
n ,Q(2)

n ,Q
(2)
R ,H3,Qv,Ht ,Qp)T

Here H1, H2, H3, Ht are the pressure heads in the nodes and the tank, while Qv and
Qp are volume flows through the valve and the pump. Q(1)

L , Q
(1)
R , Q(2)

L and Q
(2)
R are

in- and outflows of pipes 1 and 2, while H
(j)
i and Q

(j)
i (i = 1, ..., n, j ∈ {1, 2}) are

the inner pressure and flow states of the pipes, which are discretized into n space
points.

Using Eq. (63), the given input pressure is defined, while Eqs. (68) and (73)
describe the conservation of volume flow at nodes 2 and 3. Flow through the pump
is defined by Eq. (74). The storage of water in the tank is described by Eq. (76).
Qs(t) is an external in- or outflow of the tank defined by

Qs(t) = At
H0 − Ht(t)

tre
. (77)

This term causes the water level in the storage tank to approach the target value H0,
and tre is the relaxation time. Normally, the external source term is only taken into
account in the first phase of the simulation in order to adapt the simulated water
levels in the storage tank to measured values. In this application, Qs is applied
during the first 8 h of simulation time with values H0 = 80 and tre = 100.
Equation (75) provides the flow Qv through the valve. Its square is proportional
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to the pressure loss. The valve coefficient is given by ζ = 1, and εv = 0.05 is a
smoothing parameter. The opening degree of the valve is governed by s(t) ∈ [0, 1].
Here, only discrete values s ∈ {0, 1} are assumed and smoothing is done in the same
way as the switch function i(t) of a pump.

Finally, Eqs. (65), (66), (70) and (71) are the semidiscretizations of the water
hammer equations, and (64), (67), (69) and (72) describe the numerical boundary
conditions. In order to make the model comprehensible, only first-order approxima-
tions are used for the space derivatives (i.e. Hi+1/2 = 1

2 (Hi + Hi+1), Qi+1/2 =
1
2 (Qi + Qi+1) with H0 = HL, Q0 = QL and Hn+1 = HR, Qn+1 = QR).
The friction coefficient λ is approximated by the Swamee-Jain-approximation of
the Colebrook and White formula [12, 24]:

λ(Q) = 0.25
(

log10

(
k

3.7D
+ 5.74

Re0.9

))2
(78)

with roughness parameter k of the pipe and the Reynolds number given by Re =
4|Q|
πDν

with a kinematic viscosity ν.
The following coefficients, all given in SI units, were chosen for this example:

Gravitational constant g = 9.81, sound velocity a = 1414 and kinematic viscosity
ν = 1.31 · 10−6. A roughness parameter k = 0.0005, length L1 = L2 = 5000 and
diameter D1 = D2 = 0.5 were given for the pipes. Each pipe is discretized into 100
points, leading to a total number of neq = 410 equations. Coefficients of the pump
are α0 = 50, αr = 4000 and r = 2, with a tank base area of At = 1000.

The time span for simulation was 3 days (i.e. t ∈ [0, 3·86400]). After the first 8 h,
external flow Qs(t) was shut off. The initial values were chosen as zero flow Q0 = 0
and a constant pressured head H0 = 52.5 for all variables. Unfortunately, these
values are not consistent because Eqs. (63), (73)–(75) are not fulfilled at initial time
t0 = 0. In order to prevent the simulator’s failing, a scaling time tscale = min(1, t

10 )

was introduced. By multiplying the second summand of Eqs. (73)–(75) by tscale and
replacing Eq. (63) by 0 = H1 − (1 − tscale)H0 − tscaleHin, an initial transient phase
of 10 s was introduced. Consequently, the initial values became consistent and the
desired conditions were achieved within this time period.

The extracted flow at node 3 is

Qout (t) = 0.15

(
1 + sin(2π

t − 7200

12 · 3600
)

)

and input pressure head is Hin = 80. During low water demand, each day from
8 am to 1 pm and from 8 pm to 1 am the valve is opened and water is entering
the tank. During high water demand, each day from 2 am to 7 am and from 2 pm
to 7 pm, the pump is operating and water from the tank is delivered back to the
system. For the rest of the time the valve is closed and the pump is switched off.
This behaviour is well demonstrated by the simulation results shown in Fig. 10.
Table 2 shows the numerical efforts for methods rodasp and radau5. Despite
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Table 2 Numerical results for second example problem. NSTEP = number of successful time
steps, NFAIL = number of rejected time-steps, NJAC = number of Jacobian evaluations, NFCN
= number of evaluations of the right-hand side, CPU = computing time

Method tol NSTEP NFAIL NJAC NFCN CPU

radau5 10−4 2767 133 1419 36,943 7.9

ros3prl2 10−4 4061 1015 4061 42,640 11.0

rodasp 10−4 3311 788 3311 46,983 11.7

radau5 10−5 Failed

ros3prl2 10−5 10,768 2401 10,768 112,482 27.8

rodasp 10−5 6757 1672 6757 96,201 23.1

Fig. 11 Test configuration
consisting of the pressure
tank, that is connected to the
hydride tank. The hydride
tank has a thermal connection
to a heat exchanger

radau5 is more efficient, it is not able to solve the system with tolerances lower
than tol = 10−4. Moreover, integrator ode15s, ode23t, ode15i fail as well
for all tested tolerances. Again, rodasp proves to be a very robust scheme.

Therefore, rodasp has been chosen as the standard integrator in many appli-
cations. It should be noted that the authors do not claim, that rodasp is the most
efficient or accurate, but it has proved to be very robust. There are also many cases
where rodasp is outperformed by radau5 with respect to efficiency.

3. Hydride storage

The third numerical example treats a hydride storage that is modeled as an edge
with only one connected node. Thus, the gas can only flow in or out from one
direction. The hydride storage is connected to a pressure tank (Eq. (7)) that supplies
or removes the tank’s gas such that the absorbing or desorbing process takes place.
The example can be conceptualized by Fig. 11.

The model consists of Eq. (7) for the pressure tank, Eq. (37) for the heat
exchanger and Eqs. (33)–(36) for the hydride tank. The pressure and hydride tanks
have volumes of V = 0.005 and V = 0.000326 m3, respectively. The pressure
tank is constantly refilled to hold a nearly constant mass of mtarget = 0.0061 kg
for absorption, which is given at a pressure of p = 15 bar and a temperature of
T = 298 K according to the ideal gas law. In the case of desorption the mass is
decreased to mtarget = 0.00041 kg at T = 298 K and p = 1 bar. The following
equation is used for the refilling process:

ṁin = mtarget − mtank

tre
(79)
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where mtank is the actual mass in the tank and tre is the refilling time. The energy
flux can be calculated by

Ėin = cvTin

mtarget − mtank

tre
(80)

with a constant inflow gas temperature of Tin = 298 K. To maintain the absorb-
ing/desorbing process, the temperature of the hydride tank’s solid phase is regulated
by an fictive heat exchanger, which has a constant temperature of Ta = 298 K when
absorbing or Ta = 363 K when desorbing. To keep it simple, this exchanger has a
constant heat transfer coefficient, allowing Eq. (37) to be used for calculating the
energy flow. All relevant simulation-parameters are given in Table 3.

For this model, simulation starts with absorption over tabs = 1100 s and followed
by desorption over tdes = 1000 s, and all results were obtained with the integrator
rodasp. The resulting absorption and desorption mass loading and temperature as
a function of simulation time are shown in Fig. 12. At the beginning of the absorbing
process (t ≈ 0.05 s) the reaction starts. There is a sharp increase of the mass load
from 0 to 0.15% over 6 s. Due to the generated reaction energy, the temperature
increases from 298 to 362.3 K. Because of the heat exchanger, the reaction continues
and mass load increases from 0.15 to 1.39% with a smaller but constant slope until
the saturation density is reached at t ≈ 1000 s. The development of the temperature
decreases from 362.3 K to 350 K over 780 s because of the decreasing reaction rate
and the cooling by the heat exchanger. When the saturation density of the hydride
is reached, the reaction stops and the slope of the temperature curve increase until

Table 3 Simulation parameters for modelling hydrogen storage in a metal hydride. For the
thermal-physical properties of materials see references [11, 19]

Parameters Value Unit Parameters Value Unit

ρss , Saturated density s 8314 kg
m3 ρsu, Unsaturated density s 8200 kg

m3

cpg , Specific heat hydrogen 14,304 J
kg K cps , Specific heat solid 419 J

kg K

λs , Thermal conductivity s 1.2 W
m2 K

R, Universal Gas constant 8.314 J
kg K

λg, Thermal conductivity g 0.1807 W
m2 K

ε, Porosity 0.5 −
Ea , Activation energy abs. 21,179.6 J

mol γ , Ratio of specific heats 1.4 −
Ed , Activation energy des. 16,450 J

mol Mg , Molecular weight gas 2.016 g
mol

Ca , Reaction constant abs. 59.187 1
s ΔH , Enthalpy of reaction 30,780 J

mol

Cd , Reaction constant des. 9.57 1
s ΔS, Entropy of reaction 107.2 J

mol K

ΔH , Enthalpy of reaction 30,780 J
mol K , Permeability 10−8 m2

r , Radius of tank 0.036 m h, High of tank 0.08 m

μ, Dynamic viscosity g 8.813 · 10−6 kg
ms α, Heat transfer coefficient 160 W

m2 K
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Fig. 12 Average mass loading and temperature profiles for the absorption and desorption process.
The average mass loading of hydrogen is defined as

mH2
msu

, where msu is the mass of the unsaturated
solid phase and mH2 is the mass of gas

a temperature of 312 K at 1100 s is reached. After that the desorption starts and a
similar but mirror-inverted curve characteristic can be seen.

The results show the desired behavior and are in good agreement to literature
[11, 19]. Therefore, the hydride storage can be handled as a network element when
setting up larger hydrogen networks for further applications.

5 Conclusion

The presented unified modelling approach for simulating flow networks seem well
suited for many applications. In addition to the ones presented, it is an easy task to
integrate further network elements as new edges. The numerical solution relies on a
proper semidiscretization of the PDEs. Since conservation laws must be discretized,
a local Lax-Friedrichs approach is used. Together with the proposed treatment of
the boundary conditions, the method of lines leads to large DAE systems. Algebraic
equations arise from the boundary conditions, the coupling conditions at nodes, and
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simple network elements (e.g pumps, valves). ODEs arise from the semidiscretized
PDEs and storage nodes (e.g tanks).

Special emphasis must be paid to the computation of consistent initial values.
For this task a simple approach was introduced. In practical applications it might be
important to perform a preliminary smoothing to given data or characteristic curves.
Examples of such problems were discussed in the first two numerical simulations.
It was shown that Rosenbrock method rodasp is very robust and reliable, but was
not the most efficient integrator in all cases.

In the final example, the integration of a metal hydride storage element into
the presented network approach was presented. The integration of such a storage
element demonstrates the flexibility of the overall methodology, and will allow
for further complex applications to be done within the field of energy network
modelling.

Acknowledgment The authors would like to thank the two reviewers and Karl Kirschner for many
helpful suggestions for improvement.
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Exponential Rosenbrock Methods
and Their Application in Visual
Computing

Vu Thai Luan and Dominik L. Michels

1 Introduction

Developing numerical models for practical simulations in science and engineering
usually results in problems regarding the presence of wide-range time scales. These
problems involve both slow and fast components leading to rapid variations in the
solution. This gives rise to the so-called stiffness phenomena. Typical examples
are models in molecular dynamics (see e.g. [36]), chemical kinetics, combustion,
mechanical vibrations (mass-spring-damper models), visual computing (specially
in computer animation), computational fluid dynamics, meteorology, etc., just to
name a few. They are usually formulated as systems of stiff differential equations
which can be cast in the general form

u′(t) = F(u(t)), u(t0) = u0, (1)

where u ∈ R
n is the state vector and F : Rn −→ R

n represents the vector field. The
challenges in solving this system are due to its stiffness by means of the eigenvalues
of the Jacobian matrix of F differing by several orders of magnitude. In the early
days of developing numerical methods for ordinary differential equations (ODEs),
classical methods such as the explicit Runge–Kutta integrators were proposed. For
stiff problems, however, they are usually limited by stability issues due to the CFL
condition leading to the use of unreasonable time steps, particularly for large-scale
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applications. The introduction of implicit methods such as semi-implicit, IMEX (see
[2]), and BDF methods (see [10, 14]) has changed the situation. Theses standard
methods require the solution of nonlinear systems of equations in each step. As the
stiffness of the problem increases, considerably computational effort is observed.
This can be seen as a shortcoming of the implicit schemes.

In the last 20 years, with the new developments of numerical linear algebra
algorithms in computing matrix functions [1, 25, 41], exponential integrators have
become an alternative approach for stiff problems (see the survey [24]; next
to physics simulations, exponential integrators are nowadays also employed for
different applications as for the construction of hybrid Monte Carlo algorithms, see
[7]). For the fully nonlinear stiff system (1), we mention good candidates, the so-
called explicit exponential Rosenbrock methods, which can handle the stiffness of
the system in an explicit and very accurate way. This class of exponential integrators
was originally proposed in [23] and further developed in [26, 30, 32, 34]. They have
shown to be very efficient both in terms of accuracy and computational savings. In
particular, the lower-order schemes were recently successfully applied to a number
of different applications [8, 15, 17, 46, 49] and very recently the fourth- and fifth-
order schemes were shown to be the method of choice for some meteorological
models (see [35]).

In this work, we show how the exponential Rosenbrock methods (particularly
higher-order schemes) can be also applied efficiently in order to solve problems in
computational modeling of elastodynamic systems of coupled oscillators (particle
systems) which are often used in visual computing (e.g. for computer animation). In
their simplest formulation, their dynamics can be described using Newton’s second
law of motion leading to a system of second-order ODEs of the form

miẍi +
∑

j∈N(i)

kij (‖xi − xj‖ − �ij )
xi − xj

‖xi − xj‖ = gi(xi, ẋi , ·), i = 1, 2, · · · , N,

(2)

where N is the number of particles, xi ∈ R
3, mi , kij , �ij denote the position of

particle i from the initial position, its mass, the spring stiffness, the equilibrium
length of the spring between particles i and j , respectively, and N(i) denotes
the set of indices of particles that are connected to particle i with a spring (the
neighborhood of particle i). Finally, gi represents the external force acting on
particle i which can result from an external potential, collisions, etc., and can
be dependent of all particle positions, velocities, or external forces set by user
interaction.

Our approach for integrating (2) is first to reformulate it in the form of (1)
(following a novel approach in [40]). The reformulated system is a very stiff one
since the linear spring forces usually possess very high frequencies. Due to the
special structure of its linear part (skew-symmetric matrix) and large nonlinearities,
we then make use of exponential Rosenbrock methods. Moreover, we propose
to use the improved algorithm in [35] for the evaluation of a linear combination
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of ϕ-functions acting on certain vectors v0, . . . , vp , i.e.
∑p

k=0 ϕk(A)vk which is
crucial for implementing exponential schemes. Our numerical results on a number
of complex models in visual computing indicate that this approach significantly
reduces computational time over the current state-of-the-art techniques while
maintaining sufficient levels of accuracy.

This chapter is organized as follows. In Sect. 2, we present a reformulation of
systems of coupled oscillators (2) in the form of (1) and briefly review previous
approaches used for simulating these systems in visual computing. In Sect. 3, we
describe the exponential Rosenbrock methods as an alternative approach for solving
large stiff systems (1). The implementation of these methods is discussed in Sect. 4,
where we also introduce a new procedure to further improve one of the state-
of-the-art algorithms. In Sect. 5 we demonstrate the efficiency of the exponential
Rosenbrock methods on a number of complex models in visual computing. In
particular, we address the simulation of deformable bodies, fibers including elastic
collisions, and crash scenarios including nonelastic deformations. These examples
focus on relevant aspects in the realm of visual computing, like stability and
energy conservation, large stiffness values, and high fidelity and visual accuracy.
We include an evaluation against classical and state-of-the-art methods used in this
field. Finally, some concluding remarks are given in Sect. 6.

2 Reformulation of Systems of Coupled Oscillators

We first consider the system of coupled oscillators (2). Let x(t) ∈ R
3N , M ∈

R
3N×3N , D ∈ R

3N×3N , K ∈ R
3N×3N and g(x) ∈ R

3N denote the vector of
positions, the mass matrix (often diagonal and thus nonsingular), the damping
matrix, the spring matrix (stiff), and the total external forces acting on the system,
respectively. Using these matrix notations and denoting A = M−1K , (2) can be
written as a system of second-order ODEs

x ′′(t) + Ax(t) = g(x(t)), x(t0) = x0, x ′(t0) = v0. (3)

Here x0, v0 are some given initial positions and velocities. For simplicity we neglect
damping and assume that A is a symmetric, positive definite matrix (this is a
reasonable assumption in many models, see [38]). Therefore, there exists a unique
positive definite matrix � such that A = �2 (and clearly �−1 exists).

Following our approach in [40], we introduce the new variable

u(t) =
[

�x(t)

x ′(t)

]
. (4)
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Using this one can reformulate (3) as a first-order system of ODEs of the form like
(1):

u′(t) = F(u(t)) = A u(t) + G(u(t)), u(t0) = u0, (5)

where

A =
[

0 �

−� 0

]
, G(u) =

[
0

g(x)

]
. (6)

Since the linear spring forces usually possess high frequencies (thus ‖K‖ � 1 and
so is ‖A‖), (5) becomes a very stiff ODE. Regarding the new formulation (5)–(6),
we observe the following two remarks.

Remark 1 Clearly, the new linear part associated with A , that is a skew-symmetric
matrix. We note that this significantly differs from the common way of refor-
mulating (3) that is to use the change of variable X(t) = [x(t), x ′(t)]T which
results in a non-symmetric matrix. The advantage here is that since A is a skew-
symmetric matrix, its nonzero eigenvalues are all pure imaginary and are in pairs
±λki. We also observe that A is an infinitesimal symplectic (or Hamiltonian). This
is because, by definition of an infinitesimal symplectic matrix, we check whether

WA + A T W = O, where W is the anti-symmetric matrix W =
[

0 I

−I 0

]
. This

can be easily verified since

WA =
[−� 0

0 −�

]
,

which is clearly a symmetric matrix, i.e., WA = (WA )T .

Remark 2 If the Jacobian matrix F ′(u) = A + G′(u) is infinitesimal symplectic,
(5) is a Hamiltonian system. This can be fulfilled since a typical situation in
Hamiltonian systems is that g(x) = ∇f (x) for some function f (x) and thus
g′(x) = ∇2f (x) becomes a Hessian matrix, which is symmetric.

As seen, either using the common way (mentioned in Remark 1) or the new way
(4) for reformulating (3), one has to solve the stiff ODE (5). In visual computing
it is usually solved by explicit methods such as the fourth-order Runge–Kutta
methods, semi-implicit methods such as the Störmer–Verlet methods, the backward
differentiation formulas (BDF-1 and BDF-2) methods, or IMEX methods. In this
regard, we refer to some contributions in the context of interacting deformable
bodies, cloth, solids, and elastic rods, see [3, 4, 12, 16, 19, 47]. For large-scale
applications associated with stiff systems, however, both types of these time
integration techniques have their own limitations as mentioned in the introduction.
In recent years, exponential integrators have shown to be competitive for large-
scale problems in physics and for nonlinear parabolic PDEs, as well as for highly
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oscillatory problems (see [24]). They have attracted much attention by the broad
computational mathematics community since mid-1990s. At the time while solving
linear systems (I − αhJ )x = v with some Jacobian matrix J (required when
using implicit methods) is generally only of linear convergence, it was realized that
Krylov subspace methods for approximating the action of a matrix exponential on a
vector, ehJ v, offer superlinear convergence (see [21]). Unless a good preconditioner
is available, this is clearly a computational advantage of exponential integrators
over implicit methods. This has been addressed in the visual computing community
very recently through a number of interesting work on exponential integrators,
see e.g.[37–40]. Inspired by this interest, in the following sections we will show
how exponential Rosenbrock methods—one of the popular classes of exponential
integrators—can be applied for simulating systems of coupled oscillators.

3 Explicit Exponential Rosenbrock Methods

In this section, based on [23, 26, 29, 32, 34] we present a compact summary
of the introduction of exponential Rosenbrock methods and their derivations for
methods of order up to 5. We then display some efficient schemes for our numerical
experiments for some applications in visual computing.

3.1 Approach

Motivated by the idea of deriving Rosenbrock-type methods, see [18, Chap. IV.7],
instead of integrating the fully nonlinear system (1) (which has a large nonlinearity
for stiff problems), one can replace it by a sequence of semilinear problems

u′(t) = F(u(t)) = Jnu(t) + gn(u(t)), (7)

by linearizing the forcing term F(u) in each time step at the numerical solution un

(due to [42]) with

Jn = F ′(un), gn(u) = F(u) − Jnu (8)

are the Jacobian and the nonlinear remainder, respectively. An advantage of this
approach is that g′

n(un) = F ′(un) − Jn = 0 which shows that the new nonlinearity
gn(u) has a much smaller Lipschitz constant than that of the original one F(u).
The next idea is to handle the stiffness by solving the linear part Jnu exactly and
integrating the new nonlinearity gn(u) explicitly. For that, the representation of the
exact solution at time tn+1 = tn + h of (7) using the variation-of-constants formula

u(tn+1) = ehJnu(tn) +
∫ h

0
e (h−τ )Jngn(u(tn + τ ))dτ (9)



54 V. T. Luan and D. L. Michels

plays a crucial role in constructing this type of integrators. As seen from (9),
while the linear part can be integrated exactly by computing the action of the
matrix exponential ehJn on the vector u(tn), the integral involving gn(u) can
be approximated by some quadrature. This procedure results in the so-called
exponential Rosenbrock methods, see [23, 26].

Remark 3 For the system of coupled oscillators (2), the forcing term F(u) has the
semilinear form (5), which can be considered as a fixed linearization. Therefore,
one can directly apply explicit the exponential Runge–Kutta methods (see [22])
to (5). The advantage of these methods is that the time-step h is not restricted
by the CFL condition when integrating the linear part A u. In our applications,
however, the nonlinearity G(u) is large in which the CFL condition usually serves
as a reference for setting the time-step. In particular, for the stability hLG should be
sufficiently small (LG is the Lipschitz constant of G(u)). In this regard, the dynamic
linearization approach (7) applied to (5)

u′(t) = F(u) = A u + G(u) = Jnu + Gn(u) (10)

with

Jn = A + G′(un), (11)

offers a great advantage in improving the stability (in each step) when integrating
G(u). This is because instead of integrating the original semilinear problem with
large nonlinearity G(u), we only have to deal with a much smaller nonlinearity
Gn(u) (as mentioned above). Note that the new linear part Jnu with the Jacobian Jn

now incorporates both A and the Jacobian of the nonlinearity G(u), which can be
again solved exactly. It is thus anticipated that this idea of exponential Rosenbrock
methods opens up the possibility to take even larger time steps compared to
exponential Runge–Kutta methods.

3.2 Formulation of a Second-Order and General Schemes

In this subsection, we will illustrate the approach of exponential Rosenbrock meth-
ods by presenting a simple derivation of a second-order scheme and formulating
general schemes.

3.2.1 A Second-Order Scheme

First, expanding u(tn+τ ) in a Taylor series gives u(tn+τ ) = u(tn)+τu′(tn)+O(τ 2).
Then inserting this into gn(u(tn + τ )) and again expanding it as a Taylor series
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around u(tn) (using g′
n(u(tn)) = 0) leads to

gn(u(tn + τ )) = gn(u(tn)) + O(τ 2) . (12)

Inserting (12) into the integral of (9) and denoting ϕ1(hJn) = 1
h

∫ h

0 e (h−τ )Jn dτ gives

u(tn+1) = ehJnu(tn) + hϕ1(hJn)gn(u(tn)) + O(h3). (13)

Neglecting the local error term O(h3) results in a second-order scheme, which can
be reformulated as

un+1 = un + hϕ1(hJn)F (un) (14)

by replacing gn(u(tn)) by (8) and using the fact that ϕ1(z) = (ez − 1)/z. This
scheme was derived before and named as exponential Rosenbrock-Eulermethod, see
[23, 26] (since when considering the formal limit Jn → 0, (14) is the underlying
Euler method). The derivation here, however, shows directly that this scheme has
an order of consistency three and thus it is a second-order stiffly accurate method
(since the constant behind the Landau notation O only depends on the regularity
assumptions on u(t) and gn(u), but is independent of ‖Jn‖).

3.2.2 General Schemes

For the derivation of higher-order schemes, one can proceed in a similar way as for
the construction of classical Runge–Kutta methods. Namely, one can approximate
the integral in (9) by using some higher-order quadrature rule with nodes ci in [0, 1]
and weights bi(hJn) which are matrix functions of hJn, yielding

u(tn+1) ≈ ehJnu(tn) + h

s∑

i=1

bi(hJn)gn(u(tn + cih)). (15)

The unknown intermediate values u(tn + cih) can be again approximated by using
(9) (with cih in place of h) with another quadrature rule using the same nodes cj ,
1 ≤ j ≤ i − 1, (to avoid generating new unknowns) and new weights aij (hJn),
leading to

u(tn + cih) ≈ ecihJnu(tn) + hn

i−1∑

j=1

aij (hJn)gn(u(tn + cjh)). (16)

Let us denote un ≈ u(tn) and Uni ≈ u(tn +cihn). As done for (14), using (12) (with
cih, h in place of τ , respectively) one can reformulate (15) and (16) in a similar
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manner, which yields the general format of s-stage explicit exponential Rosenbrock
methods

Uni = un + cihϕ1(cihJn)F (un) + h

i−1∑

j=2

aij (hJn)Dnj , (17a)

un+1 = un + hϕ1(hJn)F (un) + h

s∑

i=2

bi(hJn)Dni (17b)

with

Dni = gn(Uni) − gn(un), (17c)

As in (12), we have Dni = O(h2). Thus, the general methods (17) are small
perturbations of the exponential Rosenbrock–Euler method (14). Note that the
weights aij (hJn) and bi(hJn) are usually linear combinations of ϕk(cihJn) and
ϕk(hJn), respectively, where the ϕ functions (similar to ϕ1) are given by

ϕk(hZ) = 1

hk

∫ h

0
e (h−τ )Z τ k−1

(k − 1)! dτ, k ≥ 1 (18)

and satisfy the recursion relation

ϕk+1(z) = ϕk(z) − 1
k!

z
, k ≥ 1. (19)

It is important to note that these functions are bounded (uniformly) independently of
‖Jn‖ (i.e. the stiffness) so are the coefficients aij (hJn) and bi(hJn) (see e.g. [24]).

Clearly, using exponential Rosenbrock schemes (17) offers some good advan-
tages. First, they do not require the solution of linear or nonlinear systems of
equations. Second, as mentioned above, they offer a better stability when solving
stiff problems with large nonlinearities and thus allow to use larger time-steps.
Third, since the Jacobian of the new nonlinearity vanishes at every step (g′

n(un) =
0), the derivation of the order conditions and hence the schemes can be simplified
considerably. In particular, higher-order stiffly accurate schemes can be derived with
only a few stages (see the next section).

The convergence analysis of exponential Rosenbrock methods is usually carried
out in an appropriate framework (strongly continuous semigroup) under regularity
assumptions on the solution u(t) (sufficiently smooth) and gn(u) (sufficiently
Fréchet differentiable in a neighborhood of the solution) with uniformly bounded
derivatives in some Banach space. For more details, we refer to [26, 32].
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3.3 Selected Schemes for Numerical Simulations

First, we discuss some important points for the derivation of exponential Rosen-
brock schemes. Clearly, the unknown coefficients aij (hJn) and bi(hJn) have to be
determined by solving order conditions. For nonstiff problems, where the Jacobian
matrix has a small norm, one can expand those matrix functions using classical
Taylor series expansions, leading to nonstiff order conditions and in turn classical
exponential schemes (see e.g. [9, 27]). For stiff problems, however, one has to be
cautious when analyzing the local error to make sure that error terms do not involve
powers of Jn (which has a large norm). Recently, Luan and Ostermann [30, 33]
derived a new expansion of the local error which fulfills this requirement and thus
derived a new stiff order conditions theory for methods of arbitrary order (both for
exponential Runge–Kutta and exponential Rosenbrock methods). As expected, with
the same order, the number of order conditions for exponential Rosenbrock methods
is significant less than those for exponential Runge–Kutta methods. For example, in
Table 1, we display the required 4 conditions for deriving schemes up to order 5
in [32] (note that for exponential Runge–Kutta methods, 16 order conditions are
required for deriving schemes of order 5, see [31]).

We note that with these order conditions one can easily derive numerous different
schemes of order up to 5. Taking the compromise between efficiency and accuracy
into consideration, we seek for the most efficient schemes for our applications.
Namely, the following two representative fourth-order schemes are selected.

exprb42 (a fourth-order 2-stage scheme which can be considered as a super-
convergent scheme, see [29]):

Un2 = un + 3
4hϕ1(

3
4hJn)F (un), (20a)

un+1 = un + hϕ1(hJn)F (un) + h 32
9 ϕ3(hJn)(gn(Un2) − gn(un)). (20b)

Table 1 Stiff order conditions for exponential Rosenbrock methods up to order five. Here Z and

K denote arbitrary square matrices and ψ3,i(z) =∑i−1
k=2 aik(z)

c2
k

2! − c3
i ϕ3(ciz)

No. Order condition Order

1
∑s

i=2 bi(Z)c2
i = 2ϕ3(Z) 3

2
∑s

i=2 bi(Z)c3
i = 6ϕ4(Z) 4

3
∑s

i=2 bi(Z)c4
i = 24ϕ5(Z) 5

4
∑s

i=2 bi(Z)ciKψ3,i(Z) = 0 5
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pexprb43 (a fourth-order 3-stage scheme, which can be implemented in
parallel, see [34]):

Un2 = un + 1
2hϕ1(

1
2hJn)F (un), (21a)

Un3 = un + hϕ1(hJn)F (un), (21b)

un+1 = un + hϕ1(hJn)F (un) + hϕ3(hJn)(16Dn2 − 2Dn3)

+ hϕ4(hJn)(−48Dn2 + 12Dn3). (21c)

Note that the vectors Dn2 and Dn3 in (21) are given by (17c), i.e., Dn2 = gn(Un2)−
gn(un) and Dn3 = gn(Un3) − gn(un).

4 Implementation

In this section, we present the implementation of exponential Rosenbrock methods
for the new formulation (5) of the system of coupled oscillators. First, we discuss
on the computation of the matrix square root � needed for the reformulation. We
then briefly review some state-of-the-art algorithms for implementing exponential
Rosenbrock methods and introduce a new routine which is an improved version
of one of these algorithms (proposed very recently in [35]) for achieving more
efficiently. Finally, we specifically discuss applying this routine for implementing
the selected schemes exprb42 and pexprb43.

4.1 Computation of the Matrix Square Root � = √
A

For the computation of � = √
A used in (5), we follow our approach in [40].

Specifically, we use the Schur decomposition for moderate systems. For large
systems, the Newton square root iteration (see [20]) is employed in order to avoid an
explicit precomputation of �. Namely, one can use the following simplified iteration
method for approximating the solution of the equation �2 = A:

(i) choose �0 = A (k = 0),
(ii) update �k+1 = 1

2 (�k + �−1
k A).

This method offers unconditional quadratic convergence with much less cost com-
pared to the Schur decomposition. We note that �−1 can be computed efficiently
using a Cholesky decomposition since � is symmetric and positive definite and it
is given by �−1 = S−1S−T, where S is an upper triangular matrix with real and
positive diagonal entries. For more details, we refer to [20, 40].
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With � at hand, one can easily compute the Jacobian Jn as in (11) and
F(u),Gn(u) as in (10). As the next step, we discuss the implementation of the
exponential Rosenbrock schemes.

4.2 Implementation of Exponential Rosenbrock Methods

In view of the exponential Rosenbrock schemes in Sect. 3, each stage requires
the evaluation of a linear combination of ϕ-functions acting on certain vectors
v0, . . . , vp

ϕ0(M)v0 + ϕ1(M)v1 + ϕ2(M)v2 + · · · + ϕp(M)vp, (22)

where the matrix M here could be hJn or cihJn. Starting from a seminal contribution
by Hochbruck and Lubich [21] (which they analyzed Krylov subspace methods for
efficiently computing the action of a matrix exponential (with a large norm) on some
vector), many more efficient techniques have been proposed. A large portion of
these developments is concerned with computing the expression (22). For example,
we mention some of the state-of-the-art algorithms: expmv proposed by Al-Mohy
and Higham in [1] (using a truncated standard Taylor series expansion), phipm
proposed by Niessen and Wright in [41] (using adaptive Krylov subspace methods),
and expleja proposed by Caliari et al. in [5, 6] (using Leja interpolation). With
respect to computational time, it turns out that phipm offers an advantage. This
algorithm utilizes an adaptive time-stepping method to evaluate (22) using only
one matrix function (see Sect. 4.2.1 below). This task is carried out in a lower
dimensional Krylov subspace using standard Krylov subspace projection methods
i.e. the Arnoldi iteration. Moreover, the dimension of Krylov subspaces and the
number of substeps are also chosen adaptivity for improving efficiency.

Recently, the phipm routine was modified by Gaudreault and Pudykiewicz in
[13] (Algorithm 2) by using the incomplete orthogonalization method (IOM) within
the Arnoldi iteration and by adjusting the two crucial initial parameters for starting
the Krylov adaptivity. This results in the new routine called phipm/IOM2. It is
shown in [13] that this algorithm reduces computational time significantly compared
to phipm when integrating the shallow water equations on the sphere.

Very recently, the authors of [35] further improvedphipm/IOM2 which resulted
in a more efficient routine named as phipm_simul_iom2. For the reader’s
convenience, we present the idea of the adaptive time-stepping method (originally
proposed in [41]) for evaluating (22) and introduce some new features of the new
routine phipm_simul_iom2.
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4.2.1 Computing of Linear ϕ-Combinations Based on Time-Stepping

It was observed that the following linear ODE

u′(t) = Mu(t) + v1 + tv2 + · · · + tp−1

(p − 1)!vp, u(0) = v0, (23)

defined on the interval [0, 1] has the exact solution at t = 1, u(1) to be the expression
(22). The time-stepping technique approximates u(1) by discretizing [0, 1] into
subintervals 0 = t0 < t1 < · · · < tk < tk+1 = tk + τk < · · · < tK = 1 with
a substepsize sequence τk (k = 0, 1, . . . ,K − 1) and using the following relation
between u(tk+1) and its previous solution u(tk):

u(tk+1) = ϕ0(τkM)u(tk) +
p∑

i=1

τ i
kϕi(τkM)

p−i∑

j=0

t
j
k

j !vi+j . (24)

Using the recursion relation (19) and (24) can be simplified as

u(tk+1) = τ
p
k ϕp(τkM)wp +

p−i∑

j=0

t
j
k

j !wj , (25)

where the vectors wj satisfy the recurrence relation

w0 = u(tk), wj = Mwj−1 +
p−j∑

�=0

t�k

�!vj+�, j = 1, . . . , p. (26)

Equation (25) implies that evaluating u(tK) = u(1) i.e. the expression (22) requires
only one matrix function ϕp(τkA)wp in each substep instead of (p + 1) matrix-
vector multiplications. As 0 < τk < 1, this task can be carried out in a Krylov
subspace of lower dimension mk , and in each substep only one Krylov projection is
needed. With a reasonable number of substeps K , it is thus expected that the total
computational cost of O(m2

1) + · · · +O(m2
K) for approximating ϕp(τkM)wp is less

than that of O(m2) for approximating ϕp(M)v in a Krylov subspace of dimension
m. If K is too large (e.g. when the spectrum of M is very large), this might be
not true. This case, however, is handed by using the adaptive Krylov algorithm in
[41] allowing to adjust both the dimension m and the step sizes τk adaptivity. This
explains the computational advance of this approach compared to standard Krylov
algorithms.
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4.2.2 New Routine phipm_simul_iom2 [35]

First, we note that the resulting routine phipm_simul_iom2 optimizes com-
putational aspects of phipm/IOM2 corresponding to the following two specific
changes:

1. Unlike (22), where each of the ϕk functions is evaluated at the same argument
M , the internal stages of exponential Rosenbrock schemes require evaluating the
ϕ functions at fractions of the matrix M:

wk =
p∑

l=1

ϕl(ck M)vl, k = 2, . . . , s, (27)

where now the node values c2, . . . , cs are scaling factors used for each vk

output. To optimize this evaluation, phipm_simul_iom2 computes all wk

outputs in (27) simultaneously, instead of computing only one at a time. This
is accomplished by first requiring that the entire array c2, . . . , cs as an input to
the function. Within the substepping process (24), each value cj is aligned with
a substep-size τk . The solution vector is stored at each of these moments and
on output the full set {wk}sk=1 is returned. Note that this approach is similar but
differs from [48] that it guarantees no loss of solution accuracy since it explicitly
stops at each ck instead of using interpolation to compute wk as in [48].

2. In view of the higher-order exponential Rosenbrock schemes (see also from
Sect. 3.3), it is realized that they usually use a subset of the ϕl functions. There-
fore, multiple vectors in (27) will be zero. In this case, phipm_simul_iom2
will check whether wj−1 �= 0 (within the recursion (26)) before computing
the matrix-vector product M wj−1. While matrix-vector products require O(n2)

work, checking u �= 0 requires only O(n). This can result in significant savings
for large n.

4.2.3 Implementation of exprb42 and pexprb43

Taking a closer look at the structures of the two selected exponential Rosenbrock
schemes exprb42 and pexprb43, we now make use of phipm_simul_iom2
for implementing these schemes. For simplicity, let us denote M = hJn and v =
hF(un).
Implementation of exprb42: Due to the structure of exprb42 given in (20), one
needs two calls to phipm_simul_iom2:

1. Evaluate y1 = ϕ1(
3
4M)w1 with w1 = 3

4v (so w0 = 0) to get Un2 = un + y1,
2. Evaluate w = ϕ1(M)v1 + ϕ3(M)v3 (i.e. v0 = v2 = 0) with v1 = v, v3 =

32
9 hDn2 to get un+1 = un + w.
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Implementation of pexprb43: Although pexprb43 is a 3-stage scheme, its
special structure (21) allows to use only two calls to phipm_simul_iom2:

1. Evaluate both terms y1 = ϕ1(
1
2M)v and z1 = ϕ1(M)v simultaneously to get the

two stages Un2 = un + 1
2y1 and Un3 = un + z1,

2. Evaluate w = ϕ3(M)v3 + ϕ4(M)v4 (i.e. v0 = v1 = v2 = 0) with v3 =
h(16Dn2 − 2Dn3), v4 = h(−48Dn2 + 12Dn3) to get un+1 = Un3 + w.

5 Numerical Examples

In this section we present several numerical examples to study the behavior of
the presented exponential Rosenbrock-type methods, in particular the fourth-order
scheme exprb42 using two stages and the fourth-order pexprb43 scheme using
three stages implemented in parallel.

In particular, we focus on relevant aspects in the realm of visual computing, like
stability and energy conservation, large stiffness, and high fidelity and visual accu-
racy. A tabular summary of the models that are used throughout this section can be
found in Table 2. Furthermore, our simulation includes important aspects like elastic
collisions and nonelastic deformations. The presented exponential Rosenbrock-type
methods are evaluated against classical and state-of-the-art methods used in visual
computing, in particular against the implicit-explicit variational (IMEX) integrator
(cf. [44, 45]), the standard fourth-order Runge–Kutta method (see [28, 43]), and
the implicit BDF-1 integrator (see [11]). All simulation results visualized here have
been computed using a machine with an Intel(R) Xeon E5 3.5 GHz and 32 GB
DDR-RAM. For each simulation scenario the largest possible time step size is used
which still leads to a desired visually plausible result.

5.1 Simulation of Deformable Bodies

In order to illustrate the accurate energy preservation of the presented exponential
Rosenbrock-type methods, we set up an undamped scene of an oscillating coil
spring, which is modeled as a deformable body composed of tetrahedra, in particular
of 8000 vertices corresponding to N = 24 000 equations of motion, which are
derived from a system of coupled oscillators with uniform spring stiffness of
k = 106. Since the coil spring is exposed to an external forces field, it starts to
oscillate as illustrated in Fig. 1. It can be seen that the top of the coil spring returns
to its initial height periodically during the simulation which can be seen as an
indicator for energy conservation. In fact when using the exponential Rosenbrock-
type methods exprb42 and pexprb43we observe that the discrete energy is only
slightly oscillating around the real energy without increasing oscillations over time.
In contrast, the standard fourth order Runge–Kutta method respectively the BDF-1
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Fig. 1 Simulation of an oscillating coil spring

integrator generate significant numerical viscosity leading to a loss of energy around
22% respectively 40% after 60 s of simulated time.

The exponential Rosenbrock-type methods exprb42 and pexprb43 show
their advantageous behavior since these methods can be applied with orders of
magnitude larger time steps compared to the other integrators. Even with a step
size of h = 0.05 the relative error is still below 2% for exprb42 and about a single
percent for pexprb43.1 From a point of view of computation time, we achieve
a speed up of a factor of around thirteen using exprb42 and of over fifteen using
pexprb43 compared to the second best method, the variational IMEX integrator as
illustrated in Table 2. Compared to the other methods, the exponential Rosenbrock-
type methods allow for accurate simulations in real-time.

5.2 Simulation of Fibers Including Elastic Collisions

Fibers are canonical examples for complex interacting systems. According to the
work of Michels et al. (see [39]), we set up a toothbrush composed of individual
bristles. Each bristle consists of coupled oscillators that are connected in such a
way that the fiber axis is enveloped by a chain of cuboid elements. For preventing
a volumetric collapse during the simulation, additional diagonal springs are used.
The toothbrush consists of 1500 bristles, each of 20 particles leading to 90 000
equations of motion. We make use of additional repulsive springs in order to
prevent from interpenetrations.2 Since the approach allows for the direct use of
realistic parameters in order to set up the stiffness values in the system of coupled
oscillators, we employ a Young’s modulus of 3.2 · 106 Ncm−2, a torsional modulus
of 105 Ncm−2, and segment thicknesses of 0.12 mm.

1We estimated the error after 60 s of simulated time based on the accumulated Euclidean distances
of the individual particles in the position space compared to ground truth values which are
computed with a sufficiently small step size.
2In order to detect collisions efficiently, we make use of a standard bounding volume hierarchy.
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Fig. 2 Simulation of a brush cleaning a bronze-colored paperweight

Fig. 3 Simulations of two frontal nonelastic crash scenarios: a car with moderate velocity (top)
and high velocity (bottom)

We simulate 15 s of a toothbrush cleaning a paperweight illustrated in Fig. 2. This
simulation can be carried out almost in real-time which is not possible with the use
of classical methods as illustrated in Table 2.

5.3 Crash Test Simulation Including Nonelastic Deformations

As a very complex example with relevance in the context of special effects, we
simulate a frontal crash of a car into a wall as illustrated in Fig. 3. The mesh of the
car and its interior is composed of 120 000 vertices leading to 360 000 equations of
motion. The global motion (i.e. the rebound of the car) is computed by treating the
car as a rigid body. Using an appropriate bounding box, this can be easily carried out
in real-time. The deformation is then computed using a system of coupled oscillators
with structural stiffness values of k = 104 and bending stiffness values of k/100. If
the deformation reaches a defined threshold, the rest lengths of the corresponding
springs are corrected in a way, that they do not elastically return to their initial
shape. Using the exponential Rosenbrock-type methods, the whole simulation can
be carried out at interactive frame rates. Such an efficient computation can not be
achieved with established methods as illustrated in Table 2.
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6 Conclusion

We introduced the class of explicit exponential Rosenbrock methods for the time
integration of large systems of nonlinear differential equations. In particular, the
exponential Rosenbrock-type fourth-order schemes exprb42 using two stages
and pexprb43 using three stages were discussed and their implementation
were addressed. In order to study their behavior, a broad spectrum of numerical
examples was computed. In this regard, the simulation of deformable bodies, fibers
including elastic collisions, and crash scenarios including nonelastic deformations
was addressed focusing on relevant aspects in the realm of visual computing, like
stability and energy conservation, large stiffness values, and high fidelity and visual
accuracy. An evaluation against classical and state-of-the-art methods was presented
demonstrating their superior performance with respect to the simulation of large
systems of stiff differential equations.
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W-Methods and Approximate Matrix
Factorization for Parabolic PDEs
with Mixed Derivative Terms

Severiano González-Pinto and Domingo Hernández-Abreu

1 ADI and W-Methods

This chapter deals with the time integration of parabolic partial differential equa-
tions (PDEs) with mixed derivative terms discretized by means of the method of
lines (MoL). On an m-dimensional box, which for ease of presentation we take
Ω = (0, 1)m ⊂ R

m, and for t > 0 we consider the PDE problem

∂tu =∑m
i,j=1 αi,j (t, x) ∂2

xixj
u +∑m

j=1 ηj (t, x)∂xj u + g(t, x, u)

x = (x1, . . . , xm)� ∈ Ω, t ∈ (0, T ],
u(t, x) = β(t, x), (t, x) ∈ (0, T ] × ∂Ω,

u(0, x) = u0(x), x ∈ Ω,

(1)

where ∂Ω denotes the boundary of Ω (Ω̄ = Ω ∪ ∂Ω), g(t, x, u) stands for the
reaction terms, ηj (t, x) corresponds to advection terms on each space variable
and the diffusion terms are those corresponding to the coefficient matrix A =
(αi,j (t, x))mi,j=1, which is assumed to be symmetric and positive definite for each

(t, x) ∈ [0, T ] × Ω̄ . In the sequel A > 0 indicates that A is a positive
definite matrix. The PDE problem is provided with an initial condition and Dirichlet
boundary conditions.
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With a space discretization of (1) by means of Finite Differences (or Finite
Volumes) large systems of Ordinary Differential Equations (ODEs) arise

U̇ = F(t, U), U(0) = U0, t ∈ [0, T ], (2)

where U(t) is a real vector approximating the solution values at grid points, and
F(t, U) collects the terms of the spatial discretization, reaction terms, and the
contribution of inhomogeneous boundary conditions. Inspired by the Alternating
Direction Implicit (ADI) approach [2, 23], the function F(t, U) is typically split as

F(t, U) =
m∑

j=0

Fj (t, U), (3)

where for each j = 1, . . . ,m, Fj (t, U) contains the terms corresponding to space
derivatives with respect to xj (including boundary conditions). Here, it is assumed
that F0(t, U) includes the terms corresponding to the mixed derivatives and their
respective boundary conditions, as well as the discretization of the reaction terms,
which are assumed to be non-stiff or mildly stiff.

Alternating Direction Implicit schemes, in the absence of mixed derivatives,
were proposed by Peaceman, Rachford, and Douglas (see [23] and [2]) in order
to reduce the computational cost in the solution of the arising linear systems to the
level of one dimensional problems (with matrices having a banded structure with
small bandwidths). Craig and Sneyd [1] then came up with a second order scheme
for parabolic problems with mixed derivatives. More recently, other ADI schemes
of order two have become popular for the time integration of parabolic problems
with mixed derivatives, in particular in the context of applications in financial
mathematics. Examples of such schemes are the Hundsdorfer–Verwer (HV) method
[16, 17, 19]

Y0 = Un + τF (tn, Un),

Yj = Yj−1 + θτ
(
Fj (tn+1, Yj ) − Fj (tn, Un)

)
, j = 1, . . . ,m,

Ỹ0 = Y0 + μτ
(
F(tn+1, Ym) − F(tn, Un)

)
,

Ỹj = Ỹj−1 + θτ
(
Fj (tn+1, Ỹj ) − Fj (tn+1, Ym)

)
, j = 1, . . . ,m,

Un+1 = Ỹm,

(4)
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with μ = 1/2 to get classical order two (and θ > 0 for stability), and the modified
Craig-Sneyd (MCS) scheme [19, 20]

Y0 = Un + τF (tn, Un),

Yj = Yj−1 + θτ
(
Fj (tn+1, Yj ) − Fj (tn, Un)

)
, j = 1, . . . ,m,

Ŷ0 = Y0 + στ
(
F0(tn+1, Ym) − F0(tn, Un)

)
,

Ỹ0 = Ŷ0 + μτ
(
F(tn+1, Ym) − F(tn, Un)

)
,

Ỹj = Ỹj−1 + θτ
(
Fj (tn+1, Ỹj ) − Fj (tn, Un)

)
, j = 1, . . . ,m,

Un+1 = Ỹm,

(5)

with parameters σ = θ and μ = 1
2 − θ to get order two and θ > 0. The original

second order Craig–Sneyd scheme [1] is obtained from (5) when μ = 0 and σ =
θ = 1

2 . Above, τ > 0 stands for the time stepsize to advance from (tn, Un) to
(tn+1, Un+1).

Both schemes (4) and (5) are extensions of the Douglas scheme [2], which is
obtained by considering just the first two lines of either methods, but this latter
method is only order one when F0 �= 0. The HV scheme has been recently
considered together with space discretizations of order 4 in [3] and applied to
stochastic volatility models in financial option pricing in [4]. Compact schemes of
order 4 in space based on both the MCS and the HV schemes have been also recently
treated in [13, 14].

In this chapter our focus is on W-methods [27] and [11, Section IV.7], which
avoid the solution of nonlinear equations and only require an approximate solution
of linear systems with matrix I −θτW , where I is the identity, θ is a real parameter,
τ the time step size, and W is an approximation to the Jacobian matrix of the ODE.
W-methods do not require the solution of nonlinear systems and they allow the use
of non-exact approximations for the Jacobian of the vector field, providing both a
high classical order and good stability properties.

Considering time t as an independent variable, and augmenting (2) with ṫ = 1
yields for y = (t, U)� an autonomous system

ẏ = f (y), y(0) = y0, t ∈ [0, T ]. (6)

The splitting (3) leads to a splitting of the form

ẏ(t) = f (y) =
m∑

j=0

fj (y) =
(

1
F0(t, U)

)
+

m∑

j=1

(
0

Fj (t, U)

)
, (7)
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for which the corresponding splitting for the full Jacobian is then given by

∂yf (yn) =
m∑

j=0

∂yfj (yn) =
m∑

j=0

(
0 0

∂tFj (tn, Un) ∂UFj (tn, Un)

)
. (8)

Now, for the autonomous problem (6), let yn be a numerical approximation to y(t)

at tn. Then, with a stepsize τ > 0, the numerical approximation yn+1 provided by a
s-stage W-method at tn+1 = tn + τ is defined by

(I − θτW)K̃i = τf
(
yn +

i−1∑

j=1

ai,j K̃j

)
+

i−1∑

j=1

�i,j K̃j , i = 1, 2, . . . , s,

yn+1 = yn +
s∑

i=1

biK̃i .

(9)

The matrix W is arbitrary, but it is intended to approximate ∂yf (yn). For W =
∂yf (yn) we obtain the underlying ROW or Rosenbrock method. It is characterized
by the coefficients (A,L, b, θ), where A = (ai,j )j<i , L = (�i,j )j<i and b = (bi)i .
The coefficient matrix A(I − L)−1 and the weight vector bT (I − L)−1 define the
underlying explicit Runge-Kutta method associated to the W-method (see, e.g., [8]).

In the literature, several options for the selection of the matrix W have been
considered. Some methods up to order of consistency four under the assumption

W − ∂yf (yn) = O(τ ), τ → 0, (10)

have been introduced in [5, 8, 22, 25]. A more general situation where the
commutator satisfies

[W, ∂yf (yn)] := W∂yf (yn) − ∂yf (yn)W = O(τ ), τ → 0, (11)

was studied in [7] and some families of third order methods under such assumption
were presented. The construction of efficient W-methods of order ≥ 3 in the general
setting W − ∂yf (yn) = O(1) is a demanding task due to the high number of order
conditions to be satisfied, see e.g. [11, 21]. In [24] some W-methods of order four
and six stages have been built. It is worth to mention that the assumptions in (10) and
(11) are in ODE sense, since negative powers of the space resolutions are present in
the Jacobian matrices and in their approximations W .

In this chapter time integrators that can be applied to general problems of the
form (1) are considered, although the emphasis is on a stability analysis that gives
insight into the linear diffusion problem

∂tu =
m∑

i,j=1

αi,j ∂2
xixj

u (12)
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with homogeneous Dirichlet boundary conditions and a constant positive definite
coefficient matrix A = (αi,j )

m
i,j=1 so that the right-hand side represents an elliptic

operator. A standard central finite difference discretization yields U̇ = MU , where

M =
m∑

i=1

αi,i (Inxm
⊗ . . . ⊗ Dxixi ⊗ . . . ⊗ Inx1

)

+ 2
∑

1≤i<j≤m

αi,j (Inxm
⊗ . . . ⊗ Dxj ⊗ . . . ⊗ Dxi ⊗ . . . ⊗ Inx1

),

(13)

where Ip denotes the identity matrix of dimension p and Dxixi and Dxi are banded
differentiation matrices approaching the second and first order spatial derivatives,
respectively, placed in the (m − i + 1)th position of the tensor product. For the
usual second order central discretization Dxixi and Dxi are tridiagonal matrices with
entries (1,−2, 1)/Δx2

i and (−1, 0, 1)/(2Δxi), respectively, where Δxi = 1/(nxi +
1) is the spacing in the xi direction.

The analysis of unconditional stability on linear diffusion problems with constant
coefficients for the schemes (4)-(5) in the case of periodic boundary conditions and
some general finite difference discretizations for the mixed derivatives was carried
out in [19]. From [19, Table 1] we borrow the following Table 1 indicating the values
of θ ≥ θ0 for which the schemes (4) and (5) are unconditionally stable when applied
to problems of the form (12). We also point out that the second order Craig–Sneyd
scheme (obtained from (5) with μ = 0 and σ = θ = 1

2 ) is unconditionally stable
whenever m = 2, 3, but not for m ≥ 4.

In Sect. 2 three different options to produce W-methods based on the Approxi-
mate Matrix Factorization (AMF), see e.g. [17, 28], for the time integration of (2)
and (3) are introduced. These schemes are obtained in terms of the selection of
the preconditioner (I − θτW) in (9) and they slightly differ in computational cost,
stability properties and consistency order (in ODE sense). However, the compu-
tational costs are quite reasonable, since very few function evaluations and linear
systems solves with small bandwidth per integration step are required. In Sect. 3 the
unconditional stability for these AMF-type W-methods on linear parabolic problems
with mixed derivatives and constant coefficients (12) is analyzed.

Table 1 Values of θ ≥ θ0 providing unconditional stability for the schemes (4) and (5),
respectively, on the problem (12)

m 2 3 4 5 6 7 8 9

HV (4) 0.293 0.402 0.515 0.630 0.745 0.860 0.975 1.091

MCS (5) 0.333 0.462 0.593 0.726 0.860 0.994 1.128 1.262
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2 W-Methods Based on AMF-Type Splitting

To solve the linear equations in (9) we set

K̃i =
(

τρi

Ki

)
, ρi ∈ R, i = 1, . . . , s. (14)

According to (8), the matrix W approximating ∂yf (yn) will be required to have the
structure

W =
(

0 0
× X

)
.

Then, from (9) and (7), for each stage (i = 1, . . . , s) we deduce that

(I − θτW)

(
τρi

Ki

)
=
[
τ

(
1

F(tn + ciτ, Un +∑i−1
j=1 aijKj )

)
+∑i−1

j=1 �ij

(
τρj

Kj

)]
,

(
tn+1

Un+1

)
=
(

tn

Un

)
+∑s

i=1 bi

(
τρi

Ki

)
,

(15)

with

ρ = (ρi)
s
i=1 = (I − L)−11, c = (ci)

s
i=1 = Aρ. (16)

Observe that order of consistency one for W-methods implies bT ρ = 1, hence
tn+1 = tn + τ as expected. Henceforth, we use the following notations to describe
the methods

An,j := ∂UFj (tn, Un), an,j = ∂tFj (tn, Un), j = 0, 1, . . . ,m. (17)

Next, based on W-methods for the numerical solution of initial value problems in
ordinary differential equations (ODEs), three different families of AMF-type meth-
ods will be proposed. These families mainly differ in the choice of the W-matrix.
For the first family, denoted as AMF-W-methods, the corresponding W -choice
is directional (ADI-type) and is an order-zero approximation to the true ODE-
Jacobian. The second one, denoted as PDE-W-methods, was introduced in [10] and
represents an alternative to produce W -matrices with first order of approximation to
the ODE-Jacobian. The third family, denoted as AMFR-W-methods also provides
W -matrices with first order of approximation to the ODE-Jacobian, but allows the
introduction of a free parameter to improve the stability properties of the methods
and it is based on applying linear refinements to the stages of the first family of
methods.
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2.1 AMF-W Methods

In this case the choice for (I − τθW) in (15) is based on the Approximate Matrix
Factorization, but neglecting in it the Jacobian terms corresponding to the mixed
derivatives, i.e.,

(I − θτW) =∏m
j=1

(
1 0

−θτan,j (I − τθAn,j )

)
. (18)

Here, and in the rest of the chapter, the product of matrices is defined as
∏m

j=1 Mj =
Mm . . .M1.

By performing the calculations in (15) it is not difficult to check that the stages
are computed one after the other (for i = 1, . . . , s) by the formula

K
(0)
i = τF (tn + ciτ, Un +∑i−1

j=1 aijKj ) +∑i−1
j=1 �ijKj

(I − θτAn,j )K
(j)
i = K

(j−1)
i + θρiτ

2an,j , (j = 1, . . . ,m)

Ki = K
(m)
i .

(19)

The numerical solution after one step is then given by

Un+1 = Un +
s∑

i=1

biKi . (20)

2.2 PDE-W Methods

PDE-W-methods were introduced in [10, Section 5] and they represent a modifica-
tion of the AMF-W method (19) so that (10) is satisfied. Observe that ∂yf0(yn) has

large positive and negative eigenvalues, so that an application of
(
I−θτ∂yf0(yn)

)−1

would imply a step size restriction as for explicit time integrators. Moreover,
∂yf0(yn) is not a banded matrix with small band-width. Then, the idea is to
approximate the AMF factor

(
I − θτ∂yf0(yn)

)−1 ≈ I + θτ∂yf0(yn)

m∏

j=1

(
I − θτ∂yfj (yn)

)−1
. (21)

We then have
(
I − θτ∂yf0(yn)

)−1 ≈ I + θτ∂yf0(yn), but before applying the
operator ∂yf0(yn) the large eigenvalues are damped by applying successively

(
I −

θτ∂yfj (yn)
)−1

, 1 ≤ j ≤ m. Hence, with the notation (17), PDE-W-methods are
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obtained with the following choice in (15)

(I − θτW)−1 = P−1
m

(
I + θτ

(
0 0

an,0 An,0

)
P−1

m

)
,

Pm :=∏m
j=1

(
1 0

−θτan,j (I − θτAn,j )

)
.

(22)

The stages of the PDE-W method (A,L, b, θ) are computed for i = 1, . . . , s, as
follows:

K
(0)
i = τF (tn + ciτ, Un +∑i−1

j=1 aijKj ) +∑i−1
j=1 �ijKj

(I − θτAn,j )K
(j)

i = K
(j−1)

i + θρiτ
2an,j , (j = 1, . . . ,m)

K̂
(0)
i = K

(0)
i + θτAn,0K

(m)
i + θρiτ

2an,0

(I − θτAn,j )K̂
(j)

i = K̂
(j−1)

i + θρiτ
2an,j , (j = 1, . . . ,m)

Ki = K̂
(m)
i ,

(23)

with advancing solution after one step given by (20).

2.3 AMFR-W Methods

The AMFR-W methods have been recently introduced in [9] and they are based on
the iteration

(I − μτV )(x(p) − x(p−1)) = d̃ − (I − θτJ )x(p−1), p = 1, 2, 3, . . . (24)

to solve linear systems of the form,

(I − θτJ )x = d̃, θ > 0, τ > 0. (25)

The convergence of this iteration for an arbitrary initial approximation x(0) is
determined by the spectral radius (p) of the matrix P below,

P = τ (I − μτV )−1(θJ − μV ), p(P) < 1.

In [6, Sections 3-5] the authors followed this approach to derive some W-methods
and other kind of AMF-W methods (see Theorems 5 and 11 in [6]) based on one-
or two-stage ROW methods with orders of consistency two and three, respectively.
Only two iterations per stage and x(0) = 0 are needed to recover the full order of
convergence of the underlying ROW method in both cases. Here, we follow the same
approach for any W-method applied to parabolic problems with mixed derivatives,
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but treating the Jacobian for the mixed derivatives in an explicit way, i.e., it is not
included in the AMF-factorization. It is also important to remark that this iteration
introduces a new parameter μ, that will allow to improve the stability properties of
the method.

The second iteration (which is a refinement of the first approximation x(1)) in
(24) by taking as initial guess x(0) = 0 gives

x(2) = (I − θτW)−1d̃,

where

(I − θτW)−1 = (I − μτV )−1
(

2I − (I − θτJ )(I − μτV )−1
)

. (26)

It should be observed that this approach implies

J − W = O(τ ), τ → 0, ∀ μ, ∀ V.

The AMFR-W method can be seen as a refined AMF-W method and it is obtained
from (15) with the choice made in (26) and (27)

I − μτV =∏m
j=1

(
1 0

−μτan,j (I − μτAn,j )

)
,

J =
(

0 0
∂tF (tn, Un) ∂UF(tn, Un)

)
.

(27)

For a given ROW (A,L, b, θ), the corresponding AMFR-W method (A,L, b, θ, μ)

is then given by the following formulation. For i = 1, 2, . . . , s, compute Ki from:

K
(0)
i = τF (tn + ciτ, Un +∑i−1

j=1 aijKj ) +∑i−1
j=1 �ijKj

(I − μτAn,j )K
(j)

i = K
(j−1)

i + μρiτ
2an,j , (j = 1, . . . ,m)

K̂
(0)
i = 2K

(0)
i + θρiτ

2∂tF (tn, Un) − (I − θτ∂UF(tn, Un))K
(m)
i ,

(I − μτAn,j )K̂
(j)

i = K̂
(j−1)

i + μρiτ
2an,j , (j = 1, . . . ,m)

Ki = K̂
(m)
i .

(28)

The numerical solution after one step is then computed from (20).

Remark 1 For the same number of stages, the implementation of PDE-W- and
AMFR-W-methods requires a similar computational cost, and this is about twice
the cost associated to AMF-W-methods.
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3 Stability

The study of stability for W-methods gets complicated due to the fact that the
matrices W and ∂yf (yn) do not need to commute. In this section a scalar test
equation is proposed that is relevant for a large class of partial differential equations
for which the dominant part is an elliptic operator with constant coefficients
endowed either with periodic boundary conditions [19] or homogeneous Dirichlet
boundary conditions [10]. An analysis of unconditional stability for the families
of methods presented in Sect. 2 on linear problems with constant coefficients is
provided below. This stability analysis comprises some results that can also be found
in [9, 10]. Both AMF-W- and AMFR-W-methods will be seen to be unconditionally
stable regardless of the spatial dimension m at the expense of possibly increasing
the stability parameters of the particular method. This aspect is shared with
other classical ADI methods, like the Craig–Sneyd, Hundsdorfer–Verwer and the
modified Craig–Sneyd schemes [19] whose temporal order of convergence is at most
two. For PDE-W-methods, unconditional stability is only possible whenever m ≤ 3,
as it happens for the second order Craig–Sneyd scheme.

A standard second-order central space discretization of (12) leads to the linear
ordinary differential equation

U̇ = MU, U(0) = U0, (29)

where M is given by (13). The difficulty of studying the stability of time integrators
lies in the fact that the differentiation matrices Dxi =TriDiag(−1, 0, 1)/(2Δxi) and
Dxixi =TriDiag(1,−2, 1)/Δx2

i do not commute.

Theorem 1 If the coefficient matrixA = (αij )mi,j=1 in (12) is positive definite, then
the system (29) is asymptotically stable.

Proof The main idea is to approximate Dxixi by D2
xi

and to study the resulting
defect. The matrix M can be split as M = M0 +∑m

i=1 Mi with

Mi = αi,i (Inxm
⊗ . . . ⊗ (Dxixi − D2

xi

)⊗ . . . ⊗ Inx1
), i = 1, . . . ,m,

M0 =
m∑

i,j=1

αi,j (Inxm
⊗ . . . ⊗ Dxj ⊗ . . . ⊗ Dxi ⊗ . . . ⊗ Inx1

).

First, we observe the relation

Dxixi = D2
xi

− Δx2
i

4
D2

xixi
− 1

2Δx2
i

Diag (1, 0, . . . , 0, 1),

which implies that the logarithmic norm of the defect Dxixi − D2
xi

is negative for
i = 1, . . . ,m.
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Secondly, if we let vi be an eigenvector of Dxi (recall that the eigenvectors form
an orthogonal base of Cnxi , nxi = 1/Δxi−1) with eigenvalue iλi , then vm⊗. . .⊗v1
is an eigenvector of M0 corresponding to the eigenvalue

m∑

i,j=1

αij (−λiλj ) = −(λ1, . . . , λm)A (λ1, . . . , λm)T ≤ 0.

This proves the asymptotic stability of the system (29). ��
Motivated by Theorem 1 we replace Dxixi by D2

xi
in M , so that the system (29)

can be decoupled into scalar linear ODEs of the form

u̇ = −
( m∑

i,j=1

αi,j λiλj

)
u, λi ∈ R (i = 1, . . . ,m) (30)

where iλi represents an eigenvalue of Dxi and A = (αi,j )
m
i,j=1 is a symmetric

positive definite matrix. Let us now consider the change

λi ↔ λi
√

αi,i , ci,j = αi,j /
√

αi,i · αj,j , C = (ci,j )
m
i,j=1 > 0, (31)

which reduces the scalar test problem (30) to

u̇ = −
( m∑

i=1

λ2
i + 2

∑

1≤i<j≤m

ci,j λiλj

)
u, λi ∈ R (i = 1, . . . ,m). (32)

Observe that the diagonal elements of the matrix C > 0 satisfy ci,i = 1, and the
off-diagonal elements are bounded as |ci,j | <

√
ci,i · cj,j = 1 for 1 ≤ i, j ≤ m,

i �= j .
Now, applying an AMF-type W-method to (32) with the splitting

Fj (t, u) = −λ2
j u (j = 1, . . . ,m), F0(t, u) =

⎛

⎝−2
∑

i<j

ci,j λiλj

⎞

⎠u, (33)

yields a recursion un+1 = R(z, z1, . . . , zm)un, where R(z, z1, . . . , zm) is a rational
function of the real variables

z = z0 +
m∑

j=1

zj , z0 = −2τ
∑

1≤i<j≤m

ci,j λiλj , zj = −τλ2
j , 1 ≤ j ≤ m, τ > 0.

(34)
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This rational function is called the linear stability function of the method. For an
AMF-type W-method based on the coefficients (A,L, b, θ), it is given by

R(z, z1, . . . , zm) = 1 + zb�(Π̃m(θ) I − L − zA
)−11 (35)

where 1 := (1, . . . , 1)� ∈ R
s and for each AMF approximation (18), (22) and

(26)–(27) in Sect. 2, it holds that

(A)
1

Π̃m(θ)
= 1

Πm(θ)
, for AMF-W-methods,

(B)
1

Π̃m(θ)
= 1

Πm(θ)

(
1 + θz0

Πm(θ)

)
, for PDE-W-methods,

(C)
1

Π̃m(θ)
= 1

Π∗
m(μ, θ)

, for AMFR-W-methods,

where Πm(θ) :=∏m
j=1 (1 − θzj ),

1

Π∗
m(μ, θ)

:= 1

Πm(μ)

(
2 − 1 − θz

Πm(μ)

)
.

(36)

Of course, in case (C), the AMF factor Π̃m(θ) depends on the additional parameter
μ > 0.

It should be also noticed from (34) that z ≤ 0, for all λj ∈ R, τ > 0, because of
the positive definiteness of the matrix C .

Definition 1 A time integrator which, when applied to the test equation (32), yields
the recursion un+1 = R(z, z1, . . . , zm)un with stability function (35), is called
unconditionally stable for a given m ≥ 2, if

|R(z, z1 . . . , zm)| ≤ 1

for all z, z1 . . . , zm of (34) and each matrix C > 0.

The unconditional stability properties of AMF-type W-methods rely on the linear
stability of the underlying ROW method (A,L, b, θ), whose linear stability function
is obtained from (35) by replacing the AMF factor Π̃m(θ) by 1 − θz. Hence, it is
given by

Rθ(z) = 1 + zbT ((1 − θz)I − L − zA)−11, z ∈ C. (37)

The ROW-method (A,L, b, θ) is A0-stable when its stability function (37) fulfils

|Rθ(x)| ≤ 1, for all x ≤ 0.
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The range of values for θ ≥ θ0 providing A0-stable methods is known for many
Rosenbrock methods. The most simple one-stage W-method is given by, (see e.g.
[17, p. 398])

(
I − θτW

)
(yn+1 − yn) = τf (yn). (38)

It is of classical order 1, and for θ = 1/2 reaches order 2 if (10) holds. Its stability
function is

Rθ(z) = 1 + z

1 − θz
, (39)

and the method is A0-stable whenever θ ≥ 1/2.

For two-stage methods, there is a two-parameter family of W-methods of order
≥ 2 (see [17, p. 400]) with free parameters θ, b2 and coefficients given by

b1 = 2 − b2, a21 = 1

2b2
, �21 = − 1

b2
. (40)

It is not difficult to check that the stability function for the methods (40) only
depends on the stability parameter θ and is given by

Rθ(z) = 1 + 2z

1 − θz
+ z(z − 2)

2(1 − θz)2
(41)

and A0-stability is obtained as long as θ ≥ 1/4.
On the other hand, a family of 3-stage W-methods of order ≥ 3 under the special

assumption (11) was studied in [7, Theorem 1]. There it was shown that, under the
assumption (11), there exist two three-parametric families of 3-stage W-methods
of order three, with free parameters a32, a21 and θ , satisfying a32a21 �= 0, whose
coefficients are given by

b3 = 1

6a32a21
, �21 = ra21, �32 = 6

r
a32,

a2
31 + (−a21 + 2a32 + 2ra32a21) a31

+ [a32(a32 + a21(−3 + 2ra32) + a2
21(6/r + 9 + r2a32))

] = 0,

b2 = 3/2 − b3(a31 + a32)

a21
, �31 = −3 + b2�21 + b3�32

b3
, b1 = 3 − (b2 + b3)

(42)

and r = −3 ± √
3. All the methods in (42) have the same stability function

(depending only on θ ), which is given by

Rθ(z) = 1 + 3z

1 − θz
+ 3z(z − 2)

2(1 − θz)2 + z(z2 − 6z + 6)

6(1 − θz)3 . (43)
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In this case, A0-stability is obtained for θ ≥ 1/3. It must also be observed that there
do not exist 3-stage W -methods of order 3 without any restriction on W [27].

Further, a one-parameter family of four-stage fourth-order ROW-methods with
the classical Kutta’s 3/8-rule method as underlying explicit Runge-Kutta method
was introduced in [8, Section 6]. Its coefficients (9) are given by A = ÃΓ −1, L =
I4 − Γ −1 and bT = b̃T Γ −1, with

Γ =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 0 0 0

− 4
3 1 0 0

− 2
(−1−2θ+12θ2

)

3(−1+4θ)(−1+6θ)
− 2

(
1−6θ+12θ2

)

(−1+4θ)(−1+6θ)
1 0

24θ(−1+3θ)
(−1+4θ)(−1+6θ)

6
(
1−6θ+12θ2)

(−1+4θ)(−1+6θ)
−6 1

⎞
⎟⎟⎟⎟⎟⎟⎠

,

Ã =

⎛

⎜⎜⎝

0 0 0 0
1
3 0 0 0

− 1
3 1 0 0

1 −1 1 0

⎞

⎟⎟⎠ , b̃T =
(

1
8 , 3

8 , 3
8 , 1

8

)T

.

(44)

The associated linear stability function is then given by

Rθ(z) = 1 + q1z
1−θz

+ q2z

(1−θz)2 + q3z

(1−θz)3 + q4z

(1−θz)4 , with

q1 = 96θ2−42θ+5
(4θ−1)(6θ−1)

, q3 = (21−138θ+288θ2−14z+120θz−276θ2 z+2z2−19θz2+45θ2z2)
(3(4θ−1)(6θ−1))

,

q2 = 210θ2z−432θ2−90θz+198θ+10z−27
3(4θ−1)(6θ−1)

, q4 = (z−6)(z−4)
(
24θ2z−24θ2−10θz+12θ+z−2

)

24(4θ−1)(6θ−1)
,

(45)

and A0-stability is obtained whenever θ ≥ (3 + √
3)/12.

The A0-stability properties of the methods (38), (40), (42) and (44) above are
collected in Table 2, where s denotes the number of stages, and they have order of
consistency p ≥ s.

Observe that the linear stability functions (35) for the different AMF options (36)
are obtained from (39)–(45) by replacing the factor 1 − θz for the corresponding
AMF factor Π̃m(θ).

Table 2 Values of θ ≥ θ0 for some s−stage A0-stable ROW methods (A,L, b, θ) of order p ≥ s.

Method s = 1 s = 2 s = 3 (42) s = 4 (44)

θ0 1/2 1/4 1/3 (3 + √
3)/12



W-Methods and AMF for Parabolic PDEs with Mixed Derivative Terms 83

The following assumption (46) is the main ingredient to prove unconditional
stability for AMF-type W-methods. It relates the stability of such a method with the
A0-stability of the underlying ROW method. Here, θ∗ is some constant which may
depend on θ and m.

0 <
1

Π̃m(θ)
≤ 1

1 − θ∗z
, θ∗ ≥ 0, ∀C > 0, ∀z, z1 . . . , zm in (34). (46)

Theorem 2 Assume that the ROW method (A,L, b, θ) is A0-stable for any θ ≥
θ0 > 0, and consider an AMF-type W-method with stability function given by (35)–
(36). If for the given θ (and μ in case (C)) (46) holds with θ∗ ≥ θ0, then the AMF-
type W-method is unconditionally stable.

Proof Since z ≤ 0, taking into account (46) and the mean value theorem, it holds
that

1

Π̃m(θ)
= 1

1 − νz
(47)

for some ν ≥ θ∗ that may depend on θ , z, and zj , j = 1, . . . ,m. Therefore,

R(z, z1 . . . , zm) = Rν(z).

Now, the proof is concluded from the A0−stability of the ROW method together
with ν ≥ θ∗ ≥ θ0. ��

Theorem 2 will be considered in forthcoming subsections in order to show
unconditional stability for the AMF-type W-methods presented in Sect. 2. The
application of this result will depend on whether the assumption (46) is fulfilled
for such methods.

3.1 Stability of AMF-W-Methods

Theorem 3 For the stability function of the AMF-W-method (35) and (36)-(A) we
have that (46) holds with θ∗ = m−1θ > 0.

Proof The left inequality in (46) is trivial. To show the one on the right, let us define
the vector

v := (|y1|, |y2|, . . . , |ym|)T , with yj = √
θτλj , 1 ≤ j ≤ m.
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Since |ci,j | ≤ 1, 1 ≤ i, j ≤ m, it then holds that

Π̃m(θ) − (1 − m−1θz) = ∏m
j=1(1 + y2

j ) − 1 − m−1∑m
i,j=1 ci,j yiyj

≥ (1 +∑m
j=1 y2

j ) − 1 − m−1∑m
i,j=1 |yi | |yj |

= ∑m
j=1 y2

j − m−1(
∑m

j=1 |yj |)2

≥ ‖v‖2
2 − m−1m‖v‖2

2 = 0,

where the last inequality above follows from the Cauchy-Schwarz inequality. ��
Observe that the value θ∗ = m−1θ given in Theorem 3 is optimal since a right

inequality as in (46) for other θ∗ such that 0 ≤ θ∗ < m−1θ cannot be obtained.

Corollary 1 Assume that the ROW method (A,L, b, θ) is A0-stable for any θ ≥
θ0 > 0. Then, the AMF-W method (A,L, b, θ) (19)–(20) is unconditionally stable
as long as θ ≥ mθ0.

Proof It follows directly from Theorems 2 and 3. ��
The previous result allows to show the unconditional stability of several impor-

tant AMF-W methods considered in the literature.

Theorem 4 Consider a family of s-stage consistent AMF-W methods (A,L, b, θ)

(19)–(20).

1. For s = 1, the methods are unconditionally stable as long as θ ≥ m/2.
2. For s = 2 and order of consistency at least two for the underlying ROWmethods,

the corresponding AMF-W methods are unconditionally stable as long as θ ≥
m/4.

3. For s = 3, the AMF-W methods with coefficients given in (42) are uncondition-
ally stable as long as θ ≥ m/3.

4. For s = 4, the AMF-W methods based on the Kuttas’s 3/8-rule with coefficients
given in (44) are unconditionally stable as long as θ ≥ mθ0, with θ0 = (3 +√

3)/12.

Proof The θ -values that provide A0-stability for the family of s-stage consistent
ROW methods (A,L, b, θ), with θ ≥ θ0, are given in Table 2. The proof now
follows from Corollary 1. ��

3.2 Stability of PDE-W-Methods

The properties of unconditional stability of PDE-W-methods were studied in [10],
where it was seen that there exist unconditionally stable methods for m = 2, 3 but
not for m ≥ 4 on arbitrary linear parabolic problems with constant coefficients (12).
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Anyhow, let us first show that the right inequality in (46) holds with θ∗ = θ for all
m ≥ 2.

Theorem 5 Let λi ∈ R , 1 ≤ i ≤ m, and assume that C = (ci,j )
m
i,j=1 (with

ci,i = 1) is positive definite. With zi of (34) and z = z0 + z1 + . . . + zm, then the
AMF factor Π̃m(θ) (with θ ≥ 0) given by (36)-(B) satisfies

1

Π̃m(θ)
≤ 1

1 − θz
. (48)

Proof Let us take wi = −θzi for 0 ≤ i ≤ m, in such a way that w0 ∈ R, wi ≥ 0,
1 ≤ i ≤ m, satisfy 1 + w0 +∑m

i=1 wi > 0. Then (48) is equivalent to show that

1∏m
i=1(1 + wi)

(
1 − w0∏m

i=1(1 + wi)

)
≤ 1

1 + w0 +∑m
i=1 wi

.

Let us define Pm := ∏m
i=1(1 + wi) ≥ 1 and Sm := ∑m

i=1 wi ≥ 0. Then, it is not
difficult to check that

1

Pm

(
1 − w0

Pm

)
− 1

1 + w0 + Sm

=
−
(
w0 + 1

2 (1 + Sm − Pm)
)2 + 1

4 (1 + Sm + Pm)2 − P 2
m

P 2
m(1 + w0 + Sm)

.

In order to show that this expression is non positive, observe that

1

4
(1 + Sm + Pm)2 − P 2

m = 1

4

(
1 + Sm + 3Pm

)(
1 + Sm − Pm

)
≤ 0

since Pm ≥ 1 + Sm. This concludes the proof. ��
The stability analysis of PDE-W-methods also requires the positivity of Π̃m(θ)

so that the left inequality in (46) is fulfilled. However, this condition can only be
satisfied for all positive definite matrices C as long as m = 2, 3. To see this, we
rewrite the condition Π̃m(θ) > 0 as

m∏

j=1

(1 + y2
j ) −

∑

i �=j

ci,j yiyj > 0 for allyi ∈ R . (49)

Considering the change yi = √
θτλi , this inequality becomes equivalent to

the positivity of the factor Π̃m(θ) of (36)-(B). Unconditionl stability for PDE-W-
methods then requires (49) to hold for all positive definite matrices C . However, it
turns out that this is true in dimensions m = 2, 3, but not in general for m ≥ 4.
Observe that for m = 2, (49) follows immediately since |c1,2| < 1. For m = 3, we
have the following result.
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Theorem 6 Assume that C = (ci,j )
3
i,j=1 is positive definite, with ci,i = 1 for all i.

Then, (49) holds with m = 3.

Proof First observe that |ci,j | <
√

ci,i · cj,j = 1 (1 ≤ i, j ≤ 3, i �= j ). Then, for
all yj ∈ R

∏3
j=1(1 + y2

j ) −∑i �=j ci,j yiyj ≥ 1 +∑3
j=1 y2

j +∑i<j y2
i y2

j −∑i �=j |yi ||yj |
≥ −2 +∑3

j=1 y2
j +∑i<j (|yi ||yj | − 1)2.

Let us now consider the function

f (y1, y2, y3) = −2 + (y2
1 + y2

2 + y2
3) + (y1y2 − 1)2 + (y1y3 − 1)2 + (y2y3 − 1)2,

with y1, y2, y3 ≥ 0. It is then seen that the critical points of f (y1, y2, y3) fulfil
y1 = y2 = y3, and the minimum value of f is f ( 1√

2
, 1√

2
, 1√

2
) = 1

4 > 0. ��
Remark 2 The previous result for dimension m = 3 is not true in higher dimen-
sions, i.e., (49) does not hold for arbitrary positive definite matrices C = (ci,j )

m
i,j=1,

with ci,i = 1 (1 ≤ i ≤ m) whenever m ≥ 4. This can be seen by taking yj = y ≥ 0
(1 ≤ j ≤ m) in (49) and considering

f (y) = (1 + y2)m − Sy2, S =
∑

i �=j

ci,j .

If S ≥ m, f (y) attains a minimum at the point y∗ ≥ 0, with

(y∗)2 = −1 +
( S

m

)1/(m−1)

.

For this value, one has f (y∗) > 0 if and only if

S =
∑

i �=j

ci,j < m
( m

m − 1

)m−1
. (50)

Hence (50) is a necessary condition for (49).

Remark 3 A sufficient condition for (49) to hold in dimension m ≥ 4 is that the
matrix 2I − C is positive semi-definite. In fact, expanding the product in (49) and
neglecting the fourth and higher order terms shows that (49) holds if

y2
1 + . . . + y2

m −
∑

i �=j

ci,j yiyj ≥ 0, (51)

and, since ci,i = 1, this is equivalent to 2I − C ≥ 0.
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The stability of PDE-W-methods in dimension m ≥ 2 can be now established
under the assumption (49).

Corollary 2 Assume that the ROW method (A,L, b, θ) is A0-stable for any
θ ≥ θ0 > 0. If (49) holds, then the PDE-W method (A,L, b, θ) (23)–(20) is
unconditionally stable as long as θ ≥ θ0.

Proof Equation (46) follows from Theorem 5 and assumption (49). Now the proof
is a consequence of Theorem 2 with θ∗ = θ . ��
Theorem 7 Consider a family of s-stage consistent PDE-W methods (A,L, b, θ)

(23)–(20). Under the assumption (49),

1. for s = 1, the methods are unconditionally stable as long as θ ≥ 1/2.
2. For s = 2 and order of consistency at least two for the underlying ROWmethods,

the corresponding PDE-W methods are unconditionally stable as long as θ ≥
1/4.

3. For s = 3, the PDE-Wmethods with coefficients given in (42) are unconditionally
stable as long as θ ≥ 1/3.

4. For s = 4, the PDE-W methods based on the Kuttas’s 3/8-rule with coefficients
given in (44) are unconditionally stable as long as θ ≥ (3 + √

3)/12.

Proof The proof now follows from Corollary 2 and the θ -values in Table 2 that
provide A0-stability for the family of s-stage consistent ROW methods (A,L, b, θ),
with θ ≥ θ0. ��

3.3 Stability of AMFR-W-Methods

For each integer m ≥ 2 let us consider the polynomial

gm(x) = 2x
(m − x

m − 1

)m−1 − 1, (52)

and denote by κm the smallest positive zero of gm(x). These numbers play a relevant
role in the stability analysis for AMFR-W-methods as Theorems 8 and 9 below
reflect. We first state a Lemma showing some properties of these zeros.

Lemma 1

1. Let g(x) := 2x exp(1 − x) − 1, with x ≥ 0. Then

g(x) > 0 ⇐⇒ x ∈ (κ∗,K ∗), with κ∗ = 0.2319 . . . , K ∗ = 2.6783 . . .

(53)

2. Let gm(x) := 2x
(

m−x
m−1

)m−1 − 1, with x ∈ [0,m], m ∈ N, m ≥ 2. Then

gm(x) > 0 ⇐⇒ x ∈ (κm,Km), with κ∗ < κm < Km < K ∗. (54)
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3. For all m ∈ N, m ≥ 2, it holds that κm+1 < κm andKm < Km+1.

4. For all m ∈ N, m ≥ 2, it holds that

(m + 1)κm+1 > mκm. (55)

Proof First, in order to prove items 1–3, we observe that the functions gm(x) =
2x
(

m−x
m−1

)m−1 − 1, x ∈ [0,m], m ≥ 2, fulfil gm(0) = gm(m) = −1, gm(1) = 1 and

g′
m(x) > 0, for x ∈ (0, 1), and g′

m(x) < 0, for x ∈ (1,m). This shows that there
exist real numbers 0 < κm < 1 < Km < m such that

gm(x) > 0 ⇐⇒ x ∈ (κm,Km).

Moreover, it is readily checked that gm(1/2) > 0, for all m ≥ 2. Hence, κm <
1

2
,

for all m ≥ 2.
Now, we observe that gm+1(x) > gm(x), ∀x ∈ (0,m), x �= 1, and from here

it holds that gm+1(κm) > 0 and gm+1(Km) > 0, which implies κm+1 < κm and
Km < Km+1. To see that gm+1(x) > gm(x), ∀x ∈ (0,m), x �= 1, it is enough to
consider that

gm+1(x) − gm(x) = (2x)

((
1 + 1−x

m

)m −
(

1 + 1−x
m−1

)m−1
)

> 0

since

(
1 + 1−x

m

)m

(
1 + 1−x

m−1

)m−1 =
(

1 − 1−x
m(m−x)

)m (
m−x
m−1

)

>
(

1 − (m) 1−x
m(m−x)

) (
m−x
m−1

)
= 1

for all ∀x ∈ (0,m), x �= 1, by virtue of the Bernoulli’s inequality.
The proof of items 1-3 is concluded taking into account that the function g(x) =

(2x) exp(1 − x) − 1 is the pointwise limit of gm(x) as m → ∞, for all x ≥ 0.

To prove item 4, we shall next check that gm

(
m+1
m

x
)

> gm+1(x), for all m ≥ 2

and x ∈ (0, 1
2 ). Hence, the proof of item 4 follows just by evaluating this inequality

at x = κm+1 and considering the property stated in item 2.

To see that gm

(
m+1
m

x
)

> gm+1(x), for all m ≥ 2 and x ∈ (0, 1
2 ), from a direct

calculation we have that

gm

(
m + 1

m
x

)
− gm+1(x) = 2x

(m(m − 1))m
hm(x),
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with hm(x) = (m2 − 1)
(
m2 − (m + 1)x

)m−1 − ((m2 − 1) − (m − 1)x
)m

. Now we
have for m ≥ 2 and x ∈ (0, 1

2 ) that

hm(x) > ((m2 − 1) − (m − 1)x)
{(

m2 − (m + 1)x
)m−1 − ((m2 − 1) − (m − 1)x

)m−1
}

and the expression on the right hand side is positive since for all x ∈ (0, 1
2 ) we have

that (m2 − (m + 1)x) − ((m2 − 1) − (m − 1)x) = 1 − 2x > 0. ��
Theorem 8 Let m ≥ 2 be any given integer and θ > 0. If μ ≥ mκmθ then for the
stability function of the AMFR-W method (35) and (36)-(C) we have that (46) holds
with θ∗ = θ , i.e., for Π∗

m(μ, θ) defined in (36)-(C), it holds that

0 <
1

Π∗
m(μ, θ)

≤ 1

1 − θz
, ∀C > 0, ∀z, z1 . . . , zm in (34).

Proof The inequality on the right follows immediately taking into account that

1

1 − θz
− 1

Π∗
m(μ, θ)

= 1

1 − θz

(
1 − 1 − θz

Πm(μ)

)2

≥ 0.

The positivity of Π∗
m(μ, θ) is equivalent to show that 2Πm(μ) − (1 − θz) > 0,

and considering the change of variables yj = √
μτλj , this can be written as

D := 2
m∏

j=1

(
1 + y2

j

)
− 1 − θ

μ

m∑

i,j=1

ci,j yiyj > 0.

Using |ci,j | ≤ 1, we obtain the lower bound

D ≥ 2
m∏

j=1

(
1 + y2

j

)
− 1 − θ

μ

( m∑

j=1

|yj |
)2

. (56)

It follows from Lemma 2 below that this lower bound is non-negative, if μ ≥ mκmθ ,
and that it can be equal to 0 only if y1 = . . . = ym = y for some y �= 0. However,
in this latter case the inequality in (56) is strict. This completes the proof. ��
Lemma 2 Let m ≥ 2 be any given integer and κm given by (54). If δ ≤ 1

mκm

then

it holds that

2
m∏

j=1

(1 + y2
j ) − 1 − δ

⎛

⎝
m∑

j=1

yj

⎞

⎠
2

≥ 0, ∀ yj ≥ 0, 1 ≤ j ≤ m. (57)
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Moreover, the equality can only hold if and only if y1 = y2 = . . . = ym = y, for
some y �= 0.

Proof First observe from (53)-(54) that mκm > 1
2 , for all m ≥ 2, and hence δ < 2.

Let us now define, for yj > 0, 1 ≤ j ≤ m,

f (y1, . . . , ym) := 2
∏

m −1 − δ
(∑

m

)2
, with

∏
m := ∏m

j=1(1 + y2
j ),

∑
m =∑m

j=1 yj .

Since
∂f

∂yi
= 4yi

1 + y2
i

∏
m −2δ

∑
m, it follows that the components of a critical point

y = (y1, . . . , ym) for f must fulfil

yi

1 + y2
i

= δ
∑

m

2
∏

m

, 1 ≤ i ≤ m.

Since
a

1 + a2 = b

1 + b2 implies a = b or ab = 1, a critical point y = (y1, . . . , ym)

for f must fulfil that

∀i, j ∈ {1, . . . ,m}, i �= j : yi = yj or yi = 1

yj

.

We shall now see that all components yj must be equal. To this aim, let us assume
that a critical point y has m1 components equal to y > 1 and m − m1 components

equal to
1

y
, for a certain m1, 1 ≤ m1 ≤ m − 1. Then

∏
m = (1 + y2)(1 + 1

y2 )
∏̂

m

and
∑

m = y + 1
y

+ ∑̂m, with

∏̂
m

=
m1−1∏

k=1

(1 + y2)

m−m1−1∏

k=1

(1 + 1

y2
) ≥ 1 + (m1 − 1)y2 + (m − m1 − 1)

1

y2

and

∑̂
m

=
m1−1∑

k=1

y +
m−m1−1∑

k=1

1

y
= (m1 − 1)y + (m − m1 − 1)

1

y
.

Since δ < 2, we would have

∂f

∂yi

(y) = 4y

1 + y2

∏
m −2δ

∑
m

> 4

(
y

1 + y2

∏
m −∑m

)

≥ 4
(
(m1 − 1)y3 + (m − m1 − 1) 1

y3

)
≥ 0,
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and hence
∂f

∂yi

(y) > 0, which contradicts that y is a critical point for f . Therefore,

we must have m1 = 0 or m1 = m, that is, a critical point for f must have equal
components.

Let then y = (y, . . . , y) ∈ R
m be such a critical point. It must then hold that

4y(1 + y2)m−1 − 2mδy = 0

and from here it is readily seen that for δ ≤ 2

m
the only critical point is (0, . . . , 0),

for which f (0, . . . , 0) = 1. On the other hand, for δ >
2

m
there is also a nontrivial

critical point y = (y, . . . , y) ∈ R
m with

(1 + y2)m−1 = mδ

2
.

By making the change δ ↔ κ , δ := 1

m · κ
, it is readily seen that

2

m
< δ ≤ 1

mκm

gives κm ≤ κ <
1

2
(< Km). Hence, κ ∈ [κm,Km).

Furthermore, using the fact that (1 + y2)m =
(

1

2κ

) m
m−1

, a simple calculation

shows that

f (y, . . . , y) = 2(1 + y2)m − 1 − m

κ
y2

= 2(1 + y2)m − 1 − m

κ

(1 + y2)m

mδ
2

+ m

κ

= 1

κ

(
2κ(1 + y2)m(1 − m) + (m − κ)

)

= 1

(m − 1)κ(2κ)
1

m−1

(
−1 + (2κ)

1
m−1

(
m − κ

m − 1

))
≥ 0,

by virtue of Lemma 1 since κ ∈ [κm,Km).
Finally, an induction argument shows that f (y1, y2, . . . , ym) > 0 in case that

yj = 0 for some j ∈ {1, 2, . . . ,m}. In this case, it must be observed that from (55)
it holds that

δ ≤ 1

mκm

<
1

(m − 1)κm−1
< . . . <

1

2κ2
.

��
Remark 4 A natural option to select the additional parameter μ in AMFR-W-
methods is μ = θ . In that case unconditional stability holds in dimensions m = 2
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Table 3 Values for κm and Km in Lemma 1, 2 ≤ m ≤ 9, rounded up with 4 digits

m 2 3 4 5 6 7 8 9

κm 0.2929 0.2680 0.2576 0.2519 0.2482 0.2457 0.2439 0.2425

Km 1.7071 2 2.1572 2.2552 2.3223 2.3709 2.4079 2.4370

and m = 3, since mκm < 1 for m ≤ 3. However, for m ≥ 4, in order to guarantee
unconditional stability one has to take μ ≥ mκmθ > θ .

Corollary 3 Assume that the ROW method (A,L, b, θ) is A0-stable for any θ ≥
θ0 > 0. Then, the AMFR-W method (A,L, b, θ, μ) (28)-(20) is unconditionally
stable as long as μ ≥ κmmθ , with θ ≥ θ0.

Proof From Theorem 8 we get θ∗ = θ in (46) as long as μ ≥ κmmθ. The result
then follows from Theorem 2. ��
Theorem 9 Consider a family of s-stage consistent ROW methods (A,L, b, θ). If
μ ≥ κm mθ and θ ≥ θ0, then all consistent AMFR-W methods (A,L, b, θ, μ) are
unconditionally stable

1. for s = 1 and θ0 = 1/2.
2. For s = 2 with order of consistency at least two as ROW method and θ0 = 1/4.
3. For s = 3, θ0 = 1/3 and the family of ROW methods with coefficients given in

(42).
4. For s = 4, θ0 = (3 + √

3)/12 and the family of ROW methods based on the
Kuttas’s 3/8-rule considered in (44).

Proof It follows from Corollary 3, taking into account that the θ -values that provide
A0-stability for the family of consistent ROW-methods (A,L, b, θ), with θ ≥ θ0,
depending on the number of stages s, are given in Table 2. ��
Remark 5 For all m ≥ 2, the stability bounds in Table 1 for the Hundsdorfer–
Verwer scheme (4) coincide with the corresponding ones given in Theorem 9 for
the one-stage AMFR-W method with θ = 1/2, that is, μm = mκmθ with κm in
Table 3.

4 Numerical Experiments

The AMF-type W-methods of Sect. 2 will be compared to classical ADI schemes
like the Hundsdorfer–Verwer and the modified Craig–Sneyd schemes (4)–(5) in the
time integration of a linear diffusion model with constant coefficients in three and
four spatial dimensions (m = 3, 4) and the 2D Heston model (m = 2) from finance.
Fixed stepsize integrations are considered in Figs. 1, 2, 3, 4, 5, and 6 below so as
to check unconditional stability and observe the temporal order of convergence in
the �2-norm. The efficiency of the time integrators presented below is measured in
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relation to CPU time versus global errors. Moreover, each figure contains dashed
straight lines with slopes two and three, respectively, to compare the temporal
orders of convergence for the methods under consideration. Additional numerical
experiments on the above-mentioned problems can also be found in [9].

HV is the method (4) with parameters μ = 1/2 and θ > 0 to be selected
for stability requirements. The method is order two in ODE sense and it is

unconditionally stable for θ ≥ 1 −
√

2
2 , θ ≥ 0.4020 and θ ≥ 0.5152 when

m = 2, m = 3 and m = 4, respectively (see Table 1). For 2 ≤ m ≤ 4 we shall
consider θ = (3 + √

3)/6, θ = 0.4020 and θ = 0.5152, respectively.
MCS is the method (5) with parameters σ = θ , μ = 1/2 − θ and θ > 0

to be chosen for stability. This scheme is order two in ODE sense and it is
unconditionally stable for θ ≥ 1

3 , θ ≥ 6
13 and θ ≥ 54

91 when m = 2, m = 3

and m = 4, respectively (see Table 1). For 2 ≤ m ≤ 4 we shall consider θ = 1
3 ,

θ = 6
13 and θ = 54

91 , respectively.
AMFR-W1 is the 1-stage AMFR-W-method (A,L, b, θ, μ) with coefficients

A = L = 0, b = 1. (58)

where we have chosen μ = θ = 1/2 for m ≤ 3 and μ = 4κ4θ , θ = 1/2 for
m = 4 (with κ4 = 0.2576) to meet the stability bounds given in Theorem 9. This
method is order two in ODE sense.

AMF-W2 is the 2-stage AMF-W-method (A,L, b, θ) with coefficients taken
from [17, p. 155]

A =
(

0 0
2/3 0

)
, L =

(
0 0

−4/3 0

)
, b =

(
5/4
3/4

)
. (59)

We have chosen θ = (3 + √
3)/6 for m ≤ 3 and θ = 1 for m = 4 to ensure

stability according the stability bounds given in Theorem 4. The method is only
order two in ODE sense since (10) is not satisfied.

PDE-W2 is the 2-stage PDE-W-method (A,L, b, θ) based on the coefficients
(59) and stability parameter θ = (3 + √

3)/6. This method has only 2 stages, but
it is of order three in ODE sense since (10) is fulfilled.

AMFR-W2 is the 2-stage AMFR-W-method (A,L, b, θ, μ) with coefficients
(59), where we have chosen μ = θ = (3 + √

3)/6 for m ≤ 3 and μ = 4κ4θ ,
θ = (3+√

3)/6 for m = 4 (with κ4 = 0.2576) to meet the stability bounds given
in Theorem 9. The method is order three in ODE sense.
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4.1 Linear Diffusion Equation with Constant Coefficients

In order to illustrate the stability results for AMF-type W-methods in Sect. 3 let
us consider the linear diffusion reaction partial differential equation with constant
coefficients and mixed derivative terms

∂tu =
m∑

i,j=1

αi,j ∂2
xixj

u + g(t, x), x ∈ (0, 1)m, t ∈ (0, 1], (60)

with g(t, x) chosen such that

u(t, x) = ue(t, x) := et

(∏m
j=1 xj (1 − xj ) + κ

∑m
j=1(xj + 1

j+2 )2
)

(61)

is the exact solution of (60). The initial condition u(0, x) = ue(0, x) and Dirichlet
boundary conditions (BCs) are imposed. We restrict our attention to the cases
m = 3, 4. Observe that for κ = 0 we have homogeneous boundary conditions,
but non-homogeneous time-dependent Dirichlet BCs are obtained when κ = 1.
Furthermore, we take αi,i = 1, 1 ≤ i ≤ m, and αi,j = α, for i �= j , where α > 0 is
a parameter which will be selected in order to illustrate the stability of the AMF-type
W-methods introduced in Sect. 2. In all cases, α will be chosen so that the second
order differential operator is elliptic.

We apply the MOL approach on a uniform grid with meshwidth Δxi = 1/(N +
1), 1 ≤ i ≤ m, with N = 128 for m = 3 and N = 40 if m = 4. A semi-discretized
system

U̇ = MU + G(t) + b(t) (62)

of dimension Nm is obtained, where M is given in (13), Dxi and Dxixi are
the differentiation matrices corresponding to the first and second order central
differences in each spatial direction, G(t) denotes the discretization of the reaction
term g(t, x) and b(t) stores the terms due to non-homogeneousboundary conditions.
From here, the differential equation (62) also takes the form (2) and (3). Observe that
the exact solution (61) is et times a polynomial of degree 2 in each spatial variable
so that the global errors come only from the time discretization. Now, AMF-type
W-methods are applied to (62) with fixed stepsize τ = 2−j , 2 ≤ j ≤ 10, as detailed
in Sect. 2.

The time integrations of (62) for m = 3 and m = 4 spatial dimensions with
the methods presented above are summarized in Figs. 1, 2, 3, 4, 5, and 6 below.
Figure 1 deals with the three-dimensional case, and Figs. 2 and 3 correspond to the
case m = 4. The global errors are plotted in relation to both the stepsize τ -to check
the temporal order of the current method- and the CPU time in seconds -to measure
the efficiency of each integrator-.
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Regarding the elliptic operator in (60), we take diffusion parameters αi,j = α,
for i �= j , with α = 0.9. Observe that for the case of four spatial dimensions the
necessary condition (50) for stability of PDE-W-methods (23) is not fulfilled. In
order to meet this condition we also take α = 0.7 when m = 4.

For the case m = 3 in Fig. 1 the methods HV, MCS, AMFR-W1 and AMF-W2
are seen to be second order methods as expected, whereas PDE-W2 and AMFR-
W2 attain order three when κ = 0 (homogeneous boundary conditions). For κ = 1
the order of convergence of these two latter methods is more irregular, and it seems
to be two for larger stepsizes and around 2.5 for medium and small stepsizes.

On the other hand, for the four-dimensional case, when α = 0.9 the necessary
condition (50) for stability of PDE-W-methods is not fulfilled and, in fact, PDE-W2
is unstable in this case, see Fig. 2 (left). For the remaining methods, the selected
values for the parameters θ and μ ensure stability according to Theorems 4 and 9
and the observed temporal orders of convergence are similar to those obtained when
m = 3. When α = 0.7 and m = 4, the stability requirements are satisfied for
all the methods and this is illustrated in Fig. 2 (right), where a convergence order
around three is observed for the methods AMFR-W2 and PDE-W2 in case of
homogeneous boundary conditions.

In order to make a more fair comparison of the performance of the methods in a
constant time-step size framework, we have plotted in Fig. 3 the global error versus
the CPU time for the 4D-problem with α = 0.7, both with homogeneous and time-
dependent boundary conditions. We can observe that the HV is a good candidate
despite being a second order method. This latter method is only outperformed by
the AMFR-W2 and PDE-W2 methods when medium-high accuracies are required
and homogeneous BCs are imposed. This could be explained by the fact that
the HV-method has a reduced computational cost per integration step (similar to
AMFR-W1) and it also possesses small error constants. For time dependent BCs
it is possible to make a simple change in the PDE problem through multilinear
interpolation (see e.g. [10]) in order to reduce the problem to homogeneous BCs,
which is a more favorable situation for AMF-type W-methods.
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Fig. 1 3D Linear model (60)–(61) with α = 0.9. Error vs time stepsize in the case of
homogeneous boundary conditions κ = 0 (left) and in the case of time-dependent boundary
conditions κ = 1 (right). Δxi = 1/129, 1 ≤ i ≤ 3
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Fig. 2 4D Linear model (60) and (61) with homogeneous boundary conditions (k = 0) and Δxi =
1/41, 1 ≤ i ≤ 4: α = 0.9 (left) and α = 0.7 (right). Error vs time stepsize
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Fig. 3 4D Linear model (60)–(61) with α = 0.7. Error vs CPU time, with homogeneous boundary
conditions k = 0 (left) and time-dependent boundary conditions k = 1 (right). Δxi = 1/41,
1 ≤ i ≤ 4

4.2 The Heston Model

The Heston model [15] is a two-dimensional extension of the well-known Black-
Scholes equation from financial option pricing theory. The results obtained in
the experiments on this problem show that the proposed AMF-type schemes also
perform correctly on PDEs with variable coefficients, and they can be easily applied
on practical models that involve mixed derivatives terms.

This model predicts the fair price of a call option u(s, v, t) at time t > 0, when
the asset price is s > 0 and v > 0 represents its variance, by the following partial
differential equation

∂tu = 1

2
s2v ∂2

ssu + ρσsv ∂2
svu + 1

2
σ 2v ∂2

vvu

+(rd − rf )s ∂su + κ(η − v) ∂vu − rdu.

(63)
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Here t represents the days left until what it is called maturity time T > 0, so
t ∈ [0, T ], s > 0, v > 0. The parameter κ > 0 is the mean-reversion rate and η > 0
is the long-term mean, rd and rf represent respectively the domestic and foreign
interest rates, σ > 0 is the volatility of the variance and ρ ∈ [−1, 1] measures the
correlation between the two variables s and v.

The details of the derivation of this PDE (63) from the corresponding stochastic
model can be seen in [15]. Maximum values for the spatial variables (s, v) ∈
[0, S] × [0, V ] are prefixed and in the case of a European call option, the following
boundary conditions are imposed

s = 0 : u(0, v, t) = 0, t ∈ [0, T ]
s = S : ∂su(S, v, t) = e−rf t , t ∈ [0, T ]
v = V : u(s, V, t) = se−rf t , t ∈ [0, T ]

(64)

On the other hand, the initial condition

u(s, v, 0) = max(0, s − K) (65)

is considered, where K > 0 is the strike price of the option, i.e., the price that the
holder can buy the asset for when the option expires.

The values for the PDE parameters have been experimentally adjusted in many
different practical situations. Here we will consider three different cases. The first
one is the set of values proposed in [26]

κ = 0.6067, η = 0.0707, σ = 0.2928, ρ = −0.7571, rd = 0.03, rf = 0,

(66)

in such a way that the boundary conditions are time-independent. Secondly the set
of values in [29]

κ = 2.5, η = 0.06, σ = 0.5, ρ = −0.1, rd = 0.0507, rf = 0.0469, (67)

is considered, such that the boundary conditions are time-dependent with a small
correlation parameter ρ. Finally we also consider a time-dependent case with a
larger correlation parameter

κ = 1.5, η = 0.02, σ = 0.62, ρ = −0.67, rd = 0.01, rf = 0.02. (68)

In the case (66) the codes perform the time integration until T = 3, whereas T =
0.25 and T = 1 are considered in cases (67) and (68), respectively. In all cases, we
take K = 100, S = 30K and V = 15.

We apply the MOL approach on this model on a non-uniform spatial mesh
following the ideas given in [18], since it is known that uniform spatial grids are
not efficient on it, because the initial condition (65) has a differentiability problem
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at s = K and that for v close to 0 the PDE becomes advection-dominated. So we
build a rectangular non-uniform grid

s0 = 0 < s1 < · · · < sm = S, v0 = 0 < v1 < · · · < vn = V

where there are many more points close to s = K and v = 0 than in the rest of the
domain. We must take into account that, due to the boundary conditions (64), finite-
differences approximations are only applied at the nodes (si, vj ) with 1 ≤ i ≤ m

and 0 ≤ j ≤ n− 1. At each node of this grid, the partial derivatives of the PDE (63)
are approximated by the corresponding finite-difference formulation given in detail
in [18]. Roughly speaking, in the case of the derivatives ∂2

ssu, ∂2
vvu and ∂su, second-

order central differences are applied. However, due to a change in the direction
of the advection for v, different formulations are used to approximate ∂vu when
0 ≤ vj ≤ 1 and vj > 1. Finally, the mixed derivative (∂2

svu) is approximated
by second-order central differences for the first partial derivative at each spatial
direction.

Adding the initial and boundary conditions (64) and (65) and putting all the finite
differences together at each spatial point, we arrive at the following linear semi-
discrete IVP of dimension m · n of type (2) and (3)

U ′(t) = F(t, U) =
2∑

j=0

Fj (t, U), U(0) = U0, t ∈ [0, T ] (69)

where

Fj (t, U) = AjU + gj e
−rf t , (j = 1, 2), F0(t, U) = A0U + g0e

−rf t − rdU.

(70)

F0(t, U) represents the splitting term corresponding to the mixed derivatives
together with the reaction part G(U) = −rdU , whereas Fj (t, U), (j = 1, 2)

corresponds to the directional splitting terms. {gj }2
j=0 are constant vectors that come

from the time-dependent boundary conditions (64) and the constant matrices A1 and
A2 have simple structures

A1 = diag(A
(0)
1 , A

(1)
1 , . . . , A

(n−1)
1 ), A2 = Ã ⊗ Im

where each submatrix A
(k)
1 is a tridiagonal matrix of dimension m and Ã has dimen-

sion n with only five non-zero diagonals. The constant matrix A0 of dimension n ·m
has nine non-zero bands (parallel to the main diagonal) that are non-consecutive
but it is never used in the AMF (or ADI) factorizations. We mention that in
[18] the splitting (69)-(70) is not applied exactly in this way, since the reaction
term G(U) is included in the directional terms in the following way Fj (t, U) =
AjU + gj e

−rf t − (rd/2)U, j = 1, 2. However, this does not imply any significant
change in the numerical results below in Figs. 4, 5, and 6.

Figures 4, 5, and 6 show the results for the cases (66)–(68) of the Heston problem,
respectively. The time integrations have been carried out for τ = 2−j , 2 ≤ j ≤
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Fig. 4 Heston problem, case (66) with m = 200 and n = 100. Error vs time stepsize (left). Error
vs CPU time (right)
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Fig. 5 Heston problem, case (67) with m = 200 and n = 100. Error vs time stepsize (left). Error
vs CPU time (right)
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Fig. 6 Heston problem, case (68) with m = 200 and n = 100. Error vs time stepsize (left). Error
vs CPU time (right)
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10, and the global errors have been measured with respect to a reference solution
at the respective end-point T , obtained with the DOP853 code [12] with a very
stringent tolerance. In Figs. 4, 5, and 6 it is observed that all methods confirm the
achieved orders on the previous constant coefficient PDE (60), i.e, order around
two for HV, MCS, AMF-W2 and order three for AMFR-W2 and PDE-W2, but
with the important difference that in this case the order three is maintained even
in the case of time-dependent BCs. The observed order for AMFR-W1 and larger
stepsizes lies around 1.5, and order two can be observed when very small stepsizes
are considered. It is also noteworthy to observe that the global errors provided by
HV and AMF-W2 are very similar in the three cases.

Regarding the efficiency (plots in the right side) it can be appreciated that
the higher order methods, PDE-W2 and AMFR-W2, are the most efficient when
medium or small errors are required. For low accuracy (2 or 3 significant digits)
HV, MCS and AMF-W2 are better.

Acknowledgments The authors thank Ernst Hairer and Soledad Pérez-Rodríguez for the revision
and their scientific contribution to the content of the current chapter, which is collected in
references [9, 10].
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Two-Step W-Methods

Marcel Klinge, Helmut Podhaisky, and Rüdiger Weiner

1 Formulation of the Methods

For the numerical solution of stiff initial value problems

y ′ = f (t, y), y(t0) = y0, (1)

with right hand side f : R×R
n → R

n ROW-methods are applied frequently. There
exist A- and L-stable methods. Due to their linear-implicit structure these methods
are easy to implement, well-known codes are GRK4T ([2, 3]), RODAS [2] and
RODASP ([2, 9]). However, due to the low stage order, order reduction can occur for
very stiff problems, see e.g. [7]. Another drawback of ROW-methods is the need to
compute the Jacobian in every step. W-methods allow to keep the Jacobian constant
for several steps, however, because of additional order conditions, the construction
of higher order methods is rather difficult.

To overcome these problems, Podhaisky et al. introduced and investigated two-
step W-methods [5, 6, 10] which retain the linear-implicit structure. Recently these
methods were applied in combination with approximate matrix factorization (AMF)
for the solution of two-dimensional PDEs [4]. These methods can be derived from
implicit two-step Runge–Kutta methods by applying one step of Newton’s method.
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An s-stage two-step W-method (TSW-method) is given by

Ym,i = um + hm

s∑

j=1

aij km−1,j + hm

i−1∑

j=1

ãij km,j ,

(I − hmγTm)km,i = f (tm,i , Ym,i ) + hmTm

s∑

j=1

γij km−1,j + hmTm

i−1∑

j=1

γ̃ij km,j ,

um+1 = um + hm

s∑

j=1

(bj km,j + vj km−1,j ).

(2)

Here um is an approximation to the exact solution y(tm). The matrix Tm is arbitrary.
The order of the method is independent of the choice of Tm. For stability reasons it
should be an approximation to the Jacobian fy(tm, um), but it can be kept constant
for some steps in practical computations. The s stage values Ym,i are approximations
to y(tm,i), and km,i represent approximations to the corresponding stage derivatives.
We always assume that the nodes ci are pairwise distinct with tm,i = tm + cihm

and cs = 1. The coefficients aij , ãij , γij and γ̃ij with γ̃ii = γ > 0 can be collected
in matrices A = (aij )

s
i,j=1, Ã = (̃aij ), Γ = (γij ), Γ̃ = (γ̃ij ) and vectors b =

(bi)
s
i=1, v = (vi), c = (ci). Ã and Γ̃ are strictly lower triangular matrices. Note that

some of the coefficients will depend on the step size ratio σm = hm/hm−1. We will
omit the index m for a shorter notation, i.e., σ = σm and A = Am etc.

The methods are linearly implicit. For every stage i = 1, . . . , s a system of
linear equations has to be solved with a coefficient matrix which is constant within
the step, i.e., only one LU decomposition is required per step.

Due to the two-step character the methods require additional starting values k0,i ,
i = 1, . . . , s.

2 Order Conditions and Stability

Here we collect some results from [6] and [5]. Order conditions can be derived
by inserting the exact solution and studying the Taylor series expansions of the
residuals. The residual errors can be analysed with the help of the following
simplifying assumptions:

C(q) : σ lcl
i

l! = σ

s∑

j=1

aij (cj − 1)l−1

(l − 1)! + σ l
i−1∑

j=1

ãij c
l−1
j

(l − 1)! , (3)

l = 1, . . . , q, i = 1, . . . , s,
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Γ (q) : −γ σ lcl−1
i

(l − 1)! = σ

s∑

j=1

γij (cj − 1)l−1

(l − 1)! + σ l
i−1∑

j=1

γ̃ij c
l−1
j

(l − 1)! , (4)

l = 1, . . . , q, i = 1, . . . , s,

B(p) : σ l

l! = σ l
s∑

i=1

bic
l−1
i

(l − 1)! + σ

s∑

i=1

vi(ci − 1)l−1

(l − 1)! , (5)

l = 1, . . . , p.

The method is said to be of stage order q if C(q) and Γ (q) are satisfied. We denote
the errors of the starting values by

ε0 = ‖y(t0) − u0‖, ν0 = max
i=1,...,s

‖y ′(t0 + cih0) − k0,i‖.

Two-step W-methods are stable for h → 0 by design and hence convergence follows
without additional stability conditions. Analogously to [6] one shows the following
theorem.

Theorem 1 Assume that the initial errors satisfy ε0 = O(h
p
0 ) and ν0 = O(h

q
0 )

with p, q ∈ N. Let the coefficients of the method and the step size ratio be bounded,
i.e. σm = hm/hm−1 < σmax. If the method (2) satisfies the simplifying assumptions
C(q), Γ (q) and B(p), then for arbitrary matrices Tm it is convergent of order p∗ =
min(q + 1, p) for a sufficiently smooth right hand side f .

The simplifying conditions (3)–(5) are linear relations between the coefficient
matrices. The Vandermonde–type matrices constructed from the nodes are quadratic
(and non-singular) in the convenient case p = q = s. Then we can satisfy the order
conditions by solving for A, Γ and v�:

A = (CV0D
−1 − ÃV0)SV −1

1 (6)

Γ = −(γ I + Γ̃ )V0SV −1
1 (7)

v� = (1�D−1 − b�V0)SV −1
1 . (8)

Here we used the notation

V0 = (c
j−1
i ), V1 = ((ci − 1)j−1),D = diag(i), S = diag(σ i−1), C = diag(ci).

The system (6)–(8) is also used in the implementation to re-compute the coefficients
when the step size changes.
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To study stability, we apply the method (2) to the usual test equation y ′ = λy

with Tm = λ and obtain the matrix recursion

(
hmKm

um+1

)
= M(z)

(
hm−1Km−1

um

)
(9)

where the (s + 1) × (s + 1) amplification matrix M(z) is given by

M(z) =
(

σW(z)β W(z)1

σ(b�W(z)β + v�) 1 + b�W(z)1

)
(10)

with Km = [km1, . . . , kms ]�, β := A + Γ , β̃ := Ã + Γ̃ and W(z) = [(1 − zγ )I −
zβ̃]−1z.

We now consider constant step sizes. Then stability is characterized by the
spectral radius of M .

Definition 1 We call the set S = {z ∈ C : ρ(M(z)) < 1} stability domain of the
TSW-method. The method is called A(α)-stable if {z ∈ C : | arg(z)−π | ≤ α} ⊆ S̄ .
It is said to be A-stable if α = π

2 . We call a method stiffly accurate if for all fixed
um, km−1,i , i = 1, . . . , s, the condition

lim|z|→∞ um+1 = 0 (11)

holds. A method is called L(α)-stable if it is A(α)-stable and (11) is fulfilled. It is
said to be L-stable if α = π

2 .

Stiff accuracy is equivalent by a vanishing last row in the stability matrix M(z) for
|z| → ∞. This can also be achieved for variable step sizes. It is proved in [5] that a
TSW-method (2) with cs = 1 which satisfies the simplifying conditions C(s), Γ (s),
B(s) is stiffly accurate if and only if

b� = e�
s (γ I + Ã + Γ̃ ) (12)

v� = e�
s (A + Γ ) (13)

holds, where es denotes the s-th unit vector.
In [5] stiffly accurate methods of order p∗ = s with Γ̃ = 0 were constructed.

However, Theorem 1 shows that the method will have order of convergence p∗ =
s + 1 if we can satisfy B(s + 1) for variable σ . In the following section we will give
additional conditions which allow to construct stiffly accurate TSW-methods which
satisfy B(s + 1) and thus have convergence order p∗ = s + 1 for variable step sizes.
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3 Stiffly Accurate Methods of Order p∗ = s + 1

Assume that (6)–(8) are satisfied, i.e. we have a method of order p∗ = s. By (8) the
simplifying assumption B(s) is fulfilled. It remains to satisfy

σ s+1

(s + 1)! = σ s+1

s! b�cs + σ

s!v
�(c − 1)s ,

where cs = (cs
1, . . . , c

s
s )

�. Substituting (8) this leads to

σ s = (s + 1)σ sb�cs + (s + 1)(1�D−1 − b�V0)SV −1
1 (c − 1)s. (14)

Due to the appearance of S this condition must be satisfied for variable σ . This leads
to s + 1 conditions for the coefficients at powers σ l for l = 0, . . . , s. It turns out
that it is possible to find stiffly accurate methods which in addition to (6)–(8) also
satisfy (14) for all σ .

Theorem 2 Let the TSW-method satisfy the conditionsΓ (s), C(s) andB(s) and let
cs = 1. Then under the conditions

b� =
(

1

2
, . . . ,

1

s + 1

)
V −1

0 C−1 (15)

and

(γ̃s,1, . . . , γ̃s,s−1, γ ) =
(

1

2
, . . . ,

1

s + 1

)
V −1

0 C−1 − e�
s Ã (16)

the method satisfies B(s + 1) and is stiffly accurate.

Proof For B(s + 1) we have to show that (14) is satisfied. We denote x = V −1
1 (c −

1)s . Considering powers of σ condition (14) is equivalent to the s + 1 conditions

0 = (
1

l
− b�cl−1)xl, l = 1, . . . , s

0 = 1

s + 1
− b�cs. (17)

For l = 1 we have

x1 = e�
1 x = e�

1 V −1
1 (c − 1)s = e�

s (c − 1)s = 0

by the definition of V1 and because of cs = 1. It is

CV0 = (c, c2, . . . , cs)
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and

b�CV0 = (b�c, . . . , b�cs).

On the other hand with (15) it holds

b�CV0 = (
1

2
, . . . ,

1

s + 1
).

Consequently, the remaining s conditions of (17) for l = 2, . . . , s + 1 are fulfilled,
i.e. B(s + 1) holds.

To prove stiff accuracy we have to show that (12) and (13) are satisfied. It holds

e�
s (Ã + γ I + Γ̃ ) = e�

s Ã + (γ̃s,1, . . . , γ̃s,s−1, γ )

= e�
s Ã + (

1

2
, . . . ,

1

s + 1
)V −1

0 C−1 − e�
s Ã by (16)

= b� by (15),

i.e. (12) is fulfilled.
With (6) and (7) we have

e�
s (A + Γ ) = e�

s (CV0D
−1 − ÃV0 − γV0 − Γ̃ V0)SV −1

1

= (1�D−1 − b�V0)SV −1
1 (by e�

s CV0 = e�
s V0 = 1� and (12))

= v� by (8),

i.e. (13) is satisfied, and thus the method is stiffly accurate.

Corollary 1 A TSW–method which satisfies the assumptions of Theorem 2 is
convergent of order p∗ = s + 1 for variable step sizes if the initial errors
satisfy ε0 = O(hs+1

0 ), ν0 = O(hs
0), and the step size ratio is bounded, i.e.

σm = hm/hm−1 < σmax.

Proof Theorem 2 guarantees B(s + 1) and thus Theorem 1 can be applied.

Remark 1 By (15) b is uniquely defined by the nodes ci and is independent of the
step size ratio σ .

Despite the additional conditions (15) and (16) there are free parameters left, namely
c1, . . . , cs−1, Ã and Γ̃ (except the last row). In the next section we will use these
parameters to construct stiffly accurate methods of order s + 1 with good stability
properties.



Two-Step W-Methods 109

4 Construction of Methods with B(s + 1)

In this section we describe the construction of TSW-methods, which satisfy the
conditions (6)–(8), (15) and (16), i.e. the methods have the properties

C(s), Γ (s), B(s + 1), cs = 1, stiffly accurate.

The free parameters are Ã, γ̃ij , i = 1, . . . , s−1, j = 1, . . . , i−1 and c1, . . . , cs−1.
We search for suitable methods with large angle α of L(α)-stability, small error
constants and small spectral radius at infinity �(M(∞)) for σ = 1. For stiffly
accurate TSW-methods this is equivalent to �(G∞), where

G∞ := W∞β, with W∞ := W(∞) = −(γ I + β̃)−1.

We consider as error constant ferr the sum of the magnitude of the residual errors
in C(s + 1), Γ (s + 1) and B(s + 2). It is also our aim to have small coefficients of
the methods. The optimization is carried out for constant step sizes, i.e. for σ = 1
and we use fmincon from the optimization toolbox in MATLAB and for algebraic
computations the computer algebra system MAXIMA. In the following we discuss
the construction of TSW–methods for different numbers of stages s in detail.

4.1 Methods with s = 2 Stages

In this case we have only two free parameters, namely, c1 and ã21. One can
determine c1 with respect to the angle α and the spectral radius �(G∞) for σ = 1.
Figure 1 shows the angle α and �(G∞) as a function of the node c1. Note, that one
can find methods with α = 90◦ only for c1 > 1. With fixed c1 we determine ã21 of
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Fig. 1 Angle α of L(α)-stability vs. c1 (top) and �(G∞) vs. c1 (bottom), with c1 < 1 (left) and
c1 > 1 (right)
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corresponding methods to have small error constants and coefficients. We present
the following two methods:

2a:

c1 = 3.078214324506323200e−1, c2 = 1, ã21 = 2.069078866037454400e+0,

γ̃21 = −1.286853766869382900e+0, γ = 2.592143494752462400e−1.

2b:

c1 = 3.445020153831068200e−1, c2 = 1, ã21 = 1.766481521486239500e+0,

γ̃21 = −1.028431797882353400e+0, γ = 2.457403827655164100e−1.

4.2 Methods with s = 3 Stages

In the case of three stages we have six free parameters: ã21, ã31, ã32, γ̃21, c1 and
c2. Analogous to [5] we want to have methods with �(G∞) = 0 for σ = 1. The
characteristic polynomial is given by det(xI − G∞) = x3 + p2x

2 + p1x + p0.
We compute ã21, ã31 and ã32 so that p2 = p1 = p0 = 0 are satisfied. Note that
p2 = p1 = 0 is a linear system in ã31 and ã32. Inserting this into p0 = 0 yields
a condition for ã21. These calculations are done with the computer algebra system
MAXIMA. Note, that we have to add a further constraint in the optimization process
to satisfy condition (16). Then we optimize γ̃21, c1 and c2 with respect to the angle
α of L(α)-stability, error constant and the magnitude of the coefficients, whereby
we apply different heuristics to find appropriate methods. The following method 3b
has been found in this way:

3b:

c1 = 4.2451803798618165e−1, c2 = 1.2555618550820942e+0, c3 = 1,

ã21 = 5.1774789773658938e+0, ã31 = 6.3391015556851371e−1, ã32 = −4.0773189037882983e−2,

γ̃21 = −4.3034644907058750e+0, γ̃31 = −1.3659849627611041e−2, γ̃32 = −6.4041956977805674e−3,

γ = 2.9592668175830239e−1.

Additionally, we present a method, for which �(G∞) = 0 does not hold, but with
larger angle α than 3b, see Table 4. This method is obtained by numerical search
with fmincon and with respect to the described properties above. The coefficients
of the method are given by

3a:

c1 = 2.7585435173749423e−1, c2 = 1.2974145641639010e+0, c3 = 1,

ã21 = 4.6146103121913240e−1, ã31 = −6.3013501027799779e−1, ã32 = 3.3481277271620247e−1,

γ̃21 = 1.0038467404049227e+0, γ̃31 = 1.2814081673484539e+0, γ̃32 = −4.2958347323894375e−1,

γ = 4.4330035256651801e−1.
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4.3 Methods with s = 4 and s = 5 Stages

In the case of four and five stages we perform the numerical optimization with
different strategies to find good parameter sets. Here we have no explicit conditions
for �(G∞) = 0, but we want to satisfy �(G(∞)) < 1 for σ = 1. Again, we
optimize concerning the angle α for stability, error constants and coefficients. The
coefficients of the methods are shown in Tables 1, 2 and 3.

Table 1 Coefficients of method 4a
c1 = 3.4475069518575380e−1, c2 = −3.0199601869781884e−1, c3 = 1.2715954631040773e+0,

c4 = 1,

ã21 = −1.3807276352109585e−1, ã31 = 4.0288429533730259e+0, ã32 = −1.6608358550657365e+0,

ã41 = 5.5395665635891145e−1, ã42 = 5.7259556650406740e−1, ã43 = 1.7058748218129905e−2,

γ̃21 = −1.3109542641248575e−1, γ̃31 = −2.7740318778345143e+0, γ̃32 = 1.1944608079043511e+0,

γ̃41 = 1.4615607370092432e−1, γ̃42 = −5.4352839808888898e−1, γ̃43 = −7.4801424301146488e−2,

γ = 3.4083914367433077e−1.

Table 2 Coefficients of method 4b
c1 = 2.4902046482054652e − 1, c2 = 1.8463585014782384e + 0, c3 = 1.2904402196609168e + 0,

c4 = 1,

ã21 = 1.2369099563404959e+0, ã31 = 4.6203540002585880e−1, ã32 = −9.1462206621367961e−2,

ã41 = −2.7636893446018787e−2, ã42 = −1.6369452680547052e−2, ã43 = −6.4152678919227064e−3,

γ̃21 = 1.2850995505590568e+0, γ̃31 = 5.3577018410535193e−1, γ̃32 = −3.9108197137041377e−3,

γ̃41 = 6.2457914347561516e−1, γ̃42 = 3.4191540363782635e−2, γ̃43 = −2.1472697867924981e−1,

γ = 6.0381404956018603e−1.

Table 3 Coefficients of method 5a
c1 = 3.246587185388872300e−1, c2 = −5.720591706090348800e−1, c3 = −1.109921351135201300e−1,

c4 = 1.300474300552631400e+0, c5 = 1,

ã21 = 5.974835146040646800e−1, ã31 = 8.490019260372140600e−2, ã32 = 5.309451223111111300e−1,

ã41 = 8.882787859501643000e−1, ã42 = 4.914790217702752500e−1, ã43 = 1.267927289475134800e−2,

ã51 = 5.615346901779065800e−1, ã52 = 6.297421387214541300e−1, ã53 = −6.189311019415895100e−1,

ã54 = −1.341191447532984700e−1,

γ̃21 = −1.428149318299409800e−1, γ̃31 = −1.387781348022771900e−1, γ̃32 = −5.703644076283118600e−1,

γ̃41 = 1.063509214355987900e+0, γ̃42 = −3.033042031892074200e−1, γ̃43 = 7.049260816587147300e−1,

γ̃51 = 3.960037509580768300e−1, γ̃52 = −6.504398625148823900e−1, γ̃53 = 1.229735679813108700e+0,

γ̃54 = 9.975876229422198100e−2,

γ = 2.897657726225649800e−1.
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Table 4 Some properties of
TSW-methods: stages s, order
p, angle α of L(α)-stability,
spectral radius �(G∞), error
constant ferr and maximal
magnitude of the coefficients,
new methods (top) and
TSW-methods from [5]
(bottom)

Name s p α �(G∞) ferr maxcoeff

2a 2 3 81.85 0.1699 0.3354 2.0690

2b 2 3 83.00 0.4907 0.3459 1.7664

3a 3 4 88.68 0.1746 4.6259 4.7382

3b 3 4 76.81 0.0000 1.7578 5.3985

4a 4 5 86.09 0.4832 10.8643 4.8077

4b 4 5 89.87 0.4690 15.6969 16.0839

5a 5 6 74.27 0.5842 33.2437 12.4194

TSW2B 2 3 82.75 0.3333 1.7778 1.0000

TSW3A 3 3 90.00 0.0000 5.3590 3.2000

TSW3B 3 3 83.49 0.0000 2.7344 3.5000
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Fig. 2 Error constant ferr (top), spectral radius �(G∞) (middle), maximal magnitude of the
coefficients maxcoeff (bottom) vs. step size ratio σ , for method 3a (left) and 3b (right)

4.4 Properties of the Methods

Properties of the optimized methods are listed in Table 4. We include for comparison
the TSW-methods TSW2B, TSW3A and TSW3B from [5].

The numerical search is done for constant step sizes, i.e. σ = 1, but the
characteristics of the methods under step sizes changes are important, too. Therefore
we illustrate for 3a and 3b the error constant ferr, �(G∞) and the maximal
magnitude of the coefficients maxcoeff as function of σ with 0.2 ≤ σ ≤ 1.6, which
is the crucial range for practical computations, cf. Fig. 2.

5 Numerical Tests

In this section we test the methods in MATLAB. We compare them with the two-
step W-methods from [5] and with ode23s. The code ode23s from the MATLAB

ODE-suite [8] is based on a Rosenbrock formula of order two and uses a third order
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method for error estimation and step size control. Furthermore, for comparison, we
have implemented the ROW-method RODAS in MATLAB. RODAS is an L-stable
ROW-method of order four with an embedded method of order three [2].

First, we illustrate the effect of order reduction in ROW-methods. We consider
the van der Pol equation

y ′ = z

εz′ = (1 − y2)z − y, ε = 10−5, 0 ≤ t ≤ 0.5

y(0) = 2, z(0) = 0.

Figure 3 shows the error at the endpoints vs. the constant step size h. The order
reduction of RODAS is clearly observed as it behaves like second order numerically.
The TSW-methods, however, are not affected at all which can be explained with
their high stage order.

For the tests with step size control instead of (2) a transformed formulation

(I − hmγTm)(km,i + ξm,i ) = f (tm,i , Ym,i ) + ξm,i , (18)

where ξm,i = 1
γ

(∑s
j=1 γij km−1,j +∑i−1

j=1 γ̃ij km,j

)
is used which avoids matrix-

vector multiplications. In all cases considered we use LU decomposition for the

-14

-12

-10

-8

-6

-4

-2

1.010.0100.0

lg
(e
rr
)

step size h

2a
3a
4a
5a

rodas

Fig. 3 Illustration of order reduction
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solution of the linear systems. The Jacobian fy(tm, um) is computed numerically in
each step. The starting values are computed with RODAS. For error estimation we
follow [5]. We calculate the weights of an embedded method by

b�
e := 0.5b�, v�

e :=
((

1� + 0.2e�
s

)
SD−1 − b�

e V0S
)

V −1
1 (19)

and obtain an embedded solution

ũm+1 = um + hm

s∑

j=1

(be,j km,j + ve,j km−1,j ). (20)

Because of the term 0.2e�
s in Eq. (19) for ve, condition B(s) is not satisfied, i.e. the

embedded method is of order p∗
e = s − 1. Then the local error erremb is estimated

by

erremb = max
i=1,...,n

∣∣um+1,i − ũm+1,i

∣∣

atol + rtol
∣∣um,i

∣∣ , (21)

where atol and rtol denote the absolute and relative tolerances. In our tests we used
the tolerances atol = rtol = 10−2, . . . , 10−10. For ode23s and the two-stage
TSW-methods for some problems the tolerance 10−10 is omitted because of high
computing time.

We used the following test problems which can be found in [2]:

• HIRES, a stiff system of eight nonlinear ordinary differential equations with te =
321.8122,

• PLATE, a linear and nonautonomous system of differential equations of dimen-
sion n = 80 with te = 7,

• OREGO, a stiff system of three nonlinear ordinary differential equations with
te = 360,

• VDPOL, the van der Pol oscillator of two ordinary differential equations with
ε = 10−6 and two different endpoints te = 2 and te = 11.

Furthermore, we used a higher dimensional problem, i.e. the semidiscretized
Burgers equation (BURGERS) from [1]:

ut = νuxx + uux + ϕ(t, x), −1 ≤ x ≤ 1, 0 ≤ t ≤ 2

u(0, x) = sin(π(x + 1)), with homogeneous Dirichlet BC

ϕ(t, x) = r(x) ∗ sin(t), r(x) =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

0, −1 ≤ x ≤ −1/3

3(x + 1/3), −1/3 ≤ x ≤ 0

3(2/3 − x)/2, 0 ≤ x ≤ 2/3

0, 2/3 ≤ x ≤ 1



Two-Step W-Methods 115

with ν = 0.1. The central differences of second order with Δx = 1/2500 is used
for the spatial discretization. For the TSW-methods we used the discretization of the
diffusion part as constant Jacobian. RODAS needs the exact Jacobian in each time
step. We computed the Jacobian using Numjac were we exploit the band structure
by providing JPattern.

Reference solutions for all problems are computed with high accuracy with
ode15s. The errors are computed at the endpoint te in a weighted maximum norm

err = max
i=1,...,n

|um+1,i − yref,i|
1 + ∣∣yref,i

∣∣ (22)

In Figs. 4, 5, 6, 7, 8 and 9 we present the computation time vs. the logarithm of
the errors at the endpoint. The results show the potential of the TSW-methods.
The methods of order three are clearly superior to ode23s. RODAS is the best
method for crude tolerances, where it requires a small number of steps. Furthermore,
RODAS can quickly adjust the step size to the dynamics of the solution as the step
size can be enlarged by a factor 5 in a single step. For the TSW-method we need to
be more conservative and restrict this factor to 1.5 (for the 5-stage method to 1.1)
to avoid large changes in the coefficients A and Ã. For more stringent tolerances,
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Fig. 9 Results for BURGERS

however, the higher order TSW-methods become superior, especially for PLATE.
For the higher dimensional problem BURGERS the possibility to use a constant
Jacobian for the TSW-methods clearly pays off.

In theses tests, we computed for all methods the Jacobian at every step excepted
for BURGERS for the TSW-methods. This is necessary for RODAS and ode23s,
but not for the TSW-methods. Their order is independent of the choice of the
matrix Tm. Using the same Jacobian for several consecutive steps may reduce the
computing time. To illustrate this potential advantage Fig. 10 shows the results
for VDPOL with te = 11 when the Jacobian is computed each step (2b,3b,4b)
and when it is computed only every second step (2b-2,3b-2,4b-2). We note that a
more sophisticated strategy for the recomputation of the Jacobian requires further
investigations.

6 Conclusions

We have reviewed the construction of two-step W-methods. Using a new condition
to satisfy B(s + 1) a family of methods which are convergent of order p = s + 1
is derived. Furthermore, these methods can be stiffly accurate and L(α)-stable.
Methods with 2–5 stages have been constructed. Numerical tests show that the
new two-step W-methods are an efficient alternative to traditional ROW-methods.
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Fig. 10 Results for VDPOL with te = 11. For methods with suffix ‘-2’ the Jacobian was
computed only every second step

Rosenbrock-type peer methods introduced in [7] have some similarities (high stage
order, two-step scheme) with TSW-method but neither class can, in general, be
rewritten in terms of the other.
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