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Abstract Time integration of advection dominated advection–diffusion problems
on refined meshes can be a challenging task, since local refinement can lead to
a severe time step restriction, whereas standard implicit time stepping is usually
hardly suitable for treating advection terms. We show that exponential time
integrators can be an efficient, yet conceptually simple, option in this case. Our
comparison includes three exponential integrators and one conventional scheme,
the two-stage Rosenbrock method ROS2 which has been a popular alternative to
splitting methods for solving advection–diffusion problems.

1 Introduction

Time integration of unsteady advection–diffusion problems discretized in space on
locally refined meshes can be a challenging problem. This is especially the case
for advection dominated problems. On the one hand, requirements of accuracy,
monotonicity and total variation diminishing (TVD) usually rule out the use of
implicit time integration for advection terms [23, Chapter III.1.3] (for a notable
exception see [31]). On the other hand, locally refined meshes can impose a
severe CFL stability restriction on the time step, thus making explicit schemes very
inefficient.

Within the method of lines framework, i.e., when discretization in space is
followed by time integration, different approaches exist to cope with this problem. A
straightforward and widely used approach is operator splitting [23, Chapter IV],[43,
Chapter 3], when advection is usually treated explicitly in time and diffusion
implicitly. Though being conceptually simple and easy to apply in practice, splitting
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methods unavoidably lead to splitting errors, see, e.g., [10, 27]. Moreover, a proper
use of boundary conditions within the splitting is sometimes not trivial and may lead
to error order reduction [15, 38]. To reduce splitting errors many various approaches
have been proposed, with none being fully successful. Here we mention source
splitting techniques [42] and Rosenbrock schemes [23, Chapter IV.5].

Other possible approaches to integrate advection–diffusion problems efficiently
include implicit-explicit (IMEX) methods [23, Chapter IV.4] and multirate
schemes [9, 34, 35].

In this paper we show that in some cases exponential time integration schemes
can serve as an efficient yet simple way to integrate advection–diffusion problems
in time on locally refined meshes. Similar to implicit schemes, exponential
schemes have attractive stability properties. However, exponential schemes have
also excellent accuracy properties and in some cases, especially for linear ODE
(ordinary differential equation) systems, are able to produce exact solution to initial-
value problem (IVP) being solved. This is the property we exploit in this work. An
example of an IVP that can be solved exactly by an exponential solver is

y ′(t) = −Ay(t) + g, y(0) = v, t ∈ [0, T ], (1)

where v, g ∈ R
N are given and A ∈ R

N×N represents the advection–diffusion
operator discretized in space. Exponential solvers involve matrix-vector products
with the matrix exponential and related, the so-called ϕ functions. More specifically,
the exact solution y(t) of (1) can be written as

y(t) = v + tϕ(−tA)(g − Av), t � 0, (2)

where a matrix-vector product of the matrix function ϕ(−tA) and the vector g −Av

has to be computed. Here the function ϕ is defined as [21]

ϕ(z) =
⎧
⎨

⎩

ez − 1

z
, for z �= 0, z ∈ C,

1, for z = 0.

In case g ≡ 0 expression (2) reduces to a familiar relation y(t) = exp(−tA)v, t � 0.
Note that such an “all-at-once” exact solution of systems (1) is also possible if g is a
given vector function g(t) of time t , see [1]. Furthermore, to solve general nonlinear
IVPs within this approach, across-time iterations of the waveform relaxation type
can successfully be employed [25]. Then, at each waveform relaxation iteration, a
linear IVP of the type (1) is solved by an exponential scheme. Such an approach is
attractive because no time stepping is involved and solution can often be obtained
for the whole time interval t ∈ [0, T ].

Exponential time integration is a rapidly developing research area [21]. Two
classes of exponential schemes can be distinguished: (1) time-stepping schemes
having a certain accuracy order where the matrix exponential or related matrix
functions are evaluated within each time step and (2) schemes which, formally
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speaking, deliver an exact solution to the IVP, where the actions of the matrix
exponential or related matrix functions are employed across a certain time interval.
The former class includes extrapolated second order exponential Euler method
(EE2, discussed and tested below), exponential Rosenbrock schemes [22], and
predictor-corrector exponential schemes [30]. Examples of the latter class are the
scheme (2) applied to IVP (1), exponential waveform relaxation schemes [5] where
solution to (3) is sought by replacing A with a preconditioner M ≈ A and iterating,
and the exponential block Krylov (EBK) method discussed and tested below. Note
that exponential schemes of the both classes can handle nonlinear problems, in
particular, compressible [28, 29] and incompressible [26] Navier-Stokes equations.

In this work we present comparison results for three different exponential solvers.
All these methods are based on the Krylov subspace techniques discussed in [1, 6,
36]. Krylov subspace methods have been successfully used for evaluating matrix
exponential and related matrix functions since the eighties, see in chronological
order [11, 12, 20, 24, 32, 33, 39]. An attractive property of the Krylov subspace
methods, which distinguishes them from the other methods used for large matrix
function evaluations f (A)v, is their adaptivity with respect to the spectral properties
of A and the particular vector v, see [40]. To work efficiently, Krylov subspace
methods often need a restarting [14, 18], a mechanism allowing to keep Krylov
subspace dimension restricted while preserving convergence of the unrestarted
method.

The structure of this paper is as follows. In Sect. 2 the problem and methods
used for its solution are presented. Section 3 is devoted to numerical experiments,
here the methods are compared and comparison results are discussed. Finally, some
conclusions are drawn in Sect. 4.

2 Problem Formulation and Methods

In this paper we assume that a linear PDE of the advection–diffusion type is solved
by the method of lines and, after a suitable space discretization, the following IVP
has to be solved

y ′(t) = −Ay(t) + g(t), y(0) = v, t ∈ [0, T ]. (3)

Here A ∈ R
N×N represents the discretized advection–diffusion operator and

the given vector function g(t) accounts for time dependent sources or boundary
conditions.
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2.1 Exponential Time Integrators

Perhaps the simplest exponential integrator is exponential Euler method which,
applied to problem (3), reads

yn+1 = yn + �tϕ(−�tA)(gn − Ayn), (4)

where �t is the time step size, yn is numerical solution at time t = �tn and gn =
g(�tn). The method is inspired by relation (2) and for constant source term g is
exact. It is not difficult to check that it is first order accurate.

Using extrapolation [3, 44], i.e., by combining solutions obtained with different
time steps, higher order methods can be obtained. Globally extrapolated second
order exponential Euler method (EE2) is considered in [1],

(1) carry out T/�t steps of (4) with �t, set result to y�t (T ),

(2) carry out 2T/�t steps of (4) with �t/2, set result to y�t/2(T ),

(3) obtain solution by extrapolation: yEE2(T ) := 2y�t/2(T ) − y�t(T ),

(5)

where its combination with EXPOKIT [36], used to evaluate the ϕ matrix vector
products, is argued to be a competitive integrator. The phiv function of EXPOKIT
is able to efficiently compute actions of the ϕ matrix functions by a restarted Arnoldi
process, where the restarting is done by time stepping based on an error estimation.
In experiments presented below we show that EE2/EXPOKIT can be significantly
improved by introducing residual-based error control [4, 8, 13] and replacing the
restarting procedure by the residual-time (RT) restarting presented in [6, 7].

EE2 is an exponential integrator which evaluates matrix functions within a time
stepping procedure: at each time step ϕ is computed by a Krylov subspace method.
It is often more efficient [2, 5], if possible, to organize work in such a way that
numerical linear algebra work for matrix function evaluations is done across time
stepping, for a certain time interval. For instance, as shown in [1], if for a certain
time range g(t) allows an approximation

g(t) ≈ Up(t), U ∈ R
N×m, p : R → R

m, m � N, (6)

then (3) can be solved for this time range by a single projection on a block Krylov
subspace. The matrix U and function p in (6) can be easily constructed by truncated
singular value decomposition (SVD) of the vectors g(ti ), at a small additional
cost [1]. This procedure simultaneously provides an error estimation in (6), so that
a proper value for m can be chosen.
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To be more specific, consider problem (1), where for simplicity and without loss
of generality assume v = 0. A usual Krylov subspace solution of (1) constructs a
matrix Vk ∈ R

N×k , whose orthonormal columns span the Krylov subspace [40]

span(g,Ag, . . . , Ak−1g),

and, searching for an approximate solution yk(t) = Vku(t) ≈ y(t), reduces (1) to
its Galerkin projection

V T
k Vku

′(t) = −V T
k AVku(t) + V T

k g ⇔ u′(t) = −Hku(t) + βe1, (7)

where Hk = V T
k AVk, e1 = (1, 0, . . . , 0)T ∈ R

k is the first canonical basis vector
and β = ‖g‖. We have V T

k g = V T
k Vk(βe1) = βe1 because, by construction,

the first column of Vk is g/‖g‖. The small projected IVP (7) can be solved by
relation (2), evaluating ϕ(−tHk) with well developed matrix function techniques
for small matrices (see, e.g., [19]).

Now consider, still assuming v = 0, problem (3) where g(t) allows (6).
Projecting (3) on a block Krylov subspace [40]

span(U,AU, . . . , Ak−1U) = colspanVk, Vk ∈ R
N×km,

we can reduce (3) to its projected form

u′(t) = −Hku(t) + E1p(t), (8)

where we now have Hk ∈ R
km×km and E1 ∈ R

km×m is a matrix whose columns are
the first m columns of the km × km identity matrix. These observations lead to the
exponential block Krylov (EBK) method described in [1].

The EBK solver exploits a stopping criterion and restarting which are based on
the exponential residual concept [4, 8, 13]. In particular, EBK iterations stop as soon
as for the computed approximate solution yk(t) holds

‖rk(t)‖ � tol, rk(t) ≡ −Ayk(t) + g(t) − y ′
k(t), t ∈ [0, T ].

The EBK method can be summarized as follows (see [1] for details):

(1) form the approximation (6),

(2) carry out k = 1, . . . , kmax block Krylov steps, obtaining Vk, Hk,

(3) solve projected IVP (8), compute solution yk(T ) = Vku(T ).

(9)

Comparing the EE2 and EBK schemes, we note that an attractive feature of EE2
is its relative simplicity. On the other hand, a strong point for EBK is its potential
efficiency, as a single block Krylov subspace has to be constructed for the whole
time interval t ∈ [0, T ].
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2.2 ROS2 Method: Beyond Splitting

Rosenbrock schemes [23, Chapter IV.5] have been a popular alternative to splitting
methods, as they allow to reduce splitting errors and avoid other negative effects
related to splitting, such as order reduction. Let f (t, y) = −Ay(t) + g(t) be the
ODE right hand side in (3). The two-stage Rosenbrock method ROS2 reads

yn+1 = yn + 3

2
�tk1 + 1

2
�tk2,

(I − γ�tÂ)k1 = f (tn, yn),

(I − γ�tÂ)k2 = f (tn+1, yn + �tk1) − 2k1.

(10)

The method is second order consistent for any Â ∈ R
N×N and, to have good

stability properties, one usually takes Â ≈ A. Typically, Â corresponds to the
terms in A which have to be integrated implicitly in time. For instance in [41], for
advection-diffusion-reaction problems, Â is taken such that

I − γ�tÂ = (I − γ�tAdiff)(I − γ�tAreact),

where Adiff contains diffusion terms and Areact is the reaction Jacobian. In this work
we take Â to be either A or the diffusion part of A. Following suggestion in [23,
Chapter IV.5, Remark 5.2] we set γ = 1.

3 Numerical Experiments

Numerical experiments described here are carried in Matlab on a Linux PC with 6
Intel Core i5-8400 2.80 GHz CPUs with 16 GB RAM.

3.1 Test 1: Time Dependent Source and Boundary Conditions

In this test we solve (3) where A is a finite-element discretization of the two-
dimensional advection–diffusion operator:

L[u] = −ν∇2u + v · ∇u, u = u(x, y), (x, y) ∈ [−1, 1]× [−1, 1], (11)

where ν is the viscosity parameter and the velocity field is v = [v1(x, y), v2(x, y)],

v1(x, y) = y(1 − x2), v2(x, y) = x(y2 − 1).
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For this test, the function g(t) in (3) takes the form

g(t) ≡ y ′
ex(t) + Ayex(t),

where yex(t) is exact solution function chosen as

yex(t) = α(t)
(
A−1gbc + T ϕ(−T A)gpeak

)
,

α(t) = 1 − e−t/300 + e−t/100.
(12)

Here gbc ∈ R
N is a vector containing Dirichlet boundary values prescribed below

and the vector gpeak ∈ R
N consists of the values of function e−10x2−50y2

on the
mesh. The boundary conditions imposing by gbc are

u(−1, y) = u(1, y) = u(x,−1) = 5, u(x, 1) = 5 + 5e−50x2
.

Note that A−1gbc is the steady state solution of (3) for g(t) ≡ gbc and
T ϕ(−T A)gpeak is the solution of (3) with g(t) ≡ gpeak at time t = T . The
final time is T = 1000 in this test. In Fig. 1 the exact solution yex(T ) is plotted.

In this test the IFISS finite element discretization [16, 37] by bilinear quadri-
lateral (Q1) finite elements with the streamline upwind Petrov–Galerkin (SUPG)
stabilization is employed. We set viscosity to ν = 1/6400 and use nonuniform
Cartesian stretched 256 × 256 and 512 × 512 grids with default refinement
parameters, which get finer near the domain boundaries, see Table 1.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x

y

Fig. 1 Solution function (12) on the mesh 256 × 256 at final time T = 1000 as surface (left) and
contour (right) plots
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Table 1 Parameters of the IFISS stretched meshes

Ratio max.elem. Peclet
Mesh min hx = min hy max hx = max hy max hx,y/ min hx,y for ν = 1/6400

256 × 256 5.9804 × 10−4 0.0312 52.17 1.9989 × 102

512 × 512 2.0102 × 10−4 0.0176 87.5535 1.1248 × 102

When constructing an advection-diffusion matrix, the IFISS package provides
the value the maximum finite element grid Peclet number, evaluated per element as

1

2ν
min

{
hx

cos α
,

hy

sin α

}

‖v‖2, α = arctan
v2

v1
,

where hx,y and v1,2 are respectively the element sizes and the velocity components.
The maximum element Peclet numbers reported for these meshes are given in
Table 1. Due to the SUPG stabilization, the resulting matrices for both meshes are
weakly nonsymmetric: the ratio ‖A − AT ‖1/‖A +AT ‖1 amounts approximately to
0.022 (mesh 256 × 256) and 0.012 (mesh 512 × 512).

In addition to the requested accuracy tolerance, two input parameters have to
provided to EBK: the number of the truncated SVD terms m and the number of time
snapshots ns to construct approximation (6). From the problem description, we see
that yex(t) is a linear combination of two linearly independent vectors for any t .
Hence, g(t) is a linear combination of no more than four vectors and we should
take m � 4. The actual situation is displayed by the singular values available from
the thin SVD of the time samples: the largest truncated singular value σm+1 is an
upper bound for the truncation error ‖g(t) − Up(t)‖2, see, e.g., [17]. In this case
it turns out that taking m = 2 is sufficient. A proper snapshot number ns can be
estimated from given α(t) or by checking, for constructed U and p(t), the actual
error ‖g(t) − Up(t)‖ a posteriori, see (Table 2). Based on this, we set ns = 120
in all EBK runs in this test. This selection procedure for ns is computationally very
cheap and can be done once, before all the test runs.

As the problem is two-dimensional, linear systems with A can be solved
efficiently by sparse direct methods. Therefore to solve the linear systems in ROS2,
we use the Matlab standard sparse LU factorization (provided by UMFPACK)
computing it once and using at each time step.

Table 2 Error of approximation (6), 256 × 256 mesh. The EBK errors are obtained for
tol = 10−6

ns
max

s∈[0,T ]
‖g(s) − Up(s)‖

∫ T

0 ‖g(s) − Up(s)‖ ds
∫ T

0 ‖g(s)‖ ds EBK error (13)

30 2.37 × 10−3 1.82 × 10−5 2.24 × 10−5

60 1.27 × 10−4 9.83 × 10−7 1.23 × 10−6

120 7.40 × 10−6 5.73 × 10−8 7.90 × 10−8
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The error reported below for the test runs is measured as

error = ‖y(T ) − yex(T )‖2

‖yex(T )‖2
. (13)

The results of the test runs are presented in Tables 3 and 4. As we see, EBK turns out
to be more efficient than the other solvers. Within the EE2 integrator, the change of
the Krylov subspace solver from EXPOKIT’s phiv to the RT-restarted algorithm
leads to a significant increase in efficiency. Note that this gain is not due to the
restarting but due a more reliable residual-based error control. Restarting is usually
not done because, due to a sufficiently small �t , just a couple Krylov steps are
carried out in EE2 each time step. In both EE2/EXPOKIT and EE2/RT we should
be careful with setting a proper tolerance value, which is used at each time step for
stopping the Krylov subspace method evaluating the ϕ matrix function. Taking a
large tolerance value may lead to an accuracy loss. For increasingly small tolerance
values the same accuracy will be observed (as it is determined by the time step size)
at a higher cost: more matrix-vector multiplications per time step will be needed for
the ϕ matrix function evaluations.

From Tables 3 and 4 we also see that the ROS2 solver becomes less efficient
than EE2/RT on the finer mesh as the costs for solving linear systems become more
pronounced.

Table 3 Test 1. Results for the 256 × 256 mesh

Method CPU time, s Fevalsa l.s.s.b Error

EBK, tol = 10−4 0.36 20 — 8.01 × 10−8

EBK, tol = 10−6 0.40 24 — 7.90 × 10−8

EE2/RT, �t = 20, tol = 10−4 1.84 500 — 1.51 × 10−3

EE2/RT, �t = 10, tol = 10−4 3.52 900 — 3.79 × 10−4

EE2/RT, �t = 5, tol = 10−4 6.93 1800 — 9.50 × 10−5

EE2/EXPOKIT, �t = 20, tol = 10−4 17.99 9408 — 1.51 × 10−3

EE2/EXPOKIT, �t = 10, tol = 10−4 24.53 12,608 — 3.79 × 10−4

EE2/EXPOKIT, �t = 5, tol = 10−4 37.74 19,200 — 9.50 × 10−5

ROS2, Â = A, �t = 20 1.95 100 100 3.03 × 10−3

ROS2, Â = A, �t = 10 3.59 200 200 7.60 × 10−4

ROS2, Â = A, �t = 5 6.85 400 400 1.91 × 10−4

ROS2, Â = Adiff, �t = 2 19.55 1000 1000 8.49 × 10−4

ROS2, Â = Adiff, �t = 1 34.72 2000 2000 7.59 × 10−6

ROS2, Â = Adiff, �t = 0.5 68.33 4000 4000 1.90 × 10−6

a
Number of function evaluations or matvec (matrix-vector) products

b
Number of linear system solutions
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Table 4 Test 1. Results for the 512 × 512 mesh

Method CPU time, s Fevalsa l.s.s.b Error

EBK, tol = 10−4 1.26 4 — 3.08 × 10−8

EBK, tol = 10−6 1.31 8 — 2.33 × 10−8

EE2/RT, �t = 20, tol = 10−4 9.10 450 — 8.91 × 10−4

EE2/RT, �t = 10, tol = 10−4 17.97 900 — 2.40 × 10−4

EE2/RT, �t = 5, tol = 10−4 35.90 1800 — 8.07 × 10−5

ROS2, Â = A, �t = 20 11.82 100 100 1.90 × 10−3

ROS2, Â = A, �t = 10 22.68 200 200 5.46 × 10−4

ROS2, Â = A, �t = 5 36.91 400 400 1.85 × 10−4

ROS2, Â = Adiff, �t = 2 86.55 1000 1000 5.73 × 10−3

ROS2, Â = Adiff, �t = 1 167.95 2000 2000 4.44 × 10−6

ROS2, Â = Adiff, �t = 0.5 331.38 4000 4000 1.11 × 10−6

a
Number of function evaluations or matvec (matrix-vector) products

b
Number of linear system solutions

3.2 Test 2: Time Dependent Boundary Conditions

In the previous test we see that the EBK solver apparently profits from the specific
source function, exhibiting a very quick convergence. Although this is not an
unusual situation, we now consider another test problem which appears more
difficult for EBK. We take the same matrix A as in the first test and the following
initial value vector v and source function g(t):

g(t) = α(t)gbc, v = −T ϕ(−T A)gpeak,

where α(t) and gbc are the same as in (12). This test problem does not have a known
analytical solution and we compute a reference solution yref(t) by running EE2/RT
with a tiny time step size. The errors of computed numerical solutions y(t) reported
below are

error = ‖y(T ) − yref(T )‖2

‖yref(T )‖2

Note that yref(t) is influenced by the same space error as y(t), hence, the error shows
solely the time error.

From the problem definition we see that the number of SVD terms m can be at
most 2. Therefore, in this test EBK is run with the block size m = 2 and ns = 80
time snapshots (the value is determined in the same way as in Test 1). For this test
we include in comparisons the two solvers which come out as best in the first test,
EBK and EE2/RT. The results presented in Table 5 show that EBK does require
more steps for this test but is still significantly more efficient than EE2/RT.
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Table 5 Test 2. Results for the 256 × 256 mesh

Method CPU time, s Fevalsa l.s.s.b Error

EBK, tol = 10−4, ns = 80 0.77 36 — 1.83 × 10−5

EBK, tol = 10−6, ns = 80 1.32 50 — 1.91 × 10−7

EE2/RT, �t = 10, tol = 10−6 6.53 1306 — 8.91 × 10−5

EE2/RT, �t = 5, tol = 10−6 11.54 2406 — 5.58 × 10−5

a
Number of function evaluations or matvec (matrix-vector) products

b
Number of linear system solutions

4 Conclusions

We show that exponential time integrators can be an attractive option for integrating
advection–diffusion problems in time, as they possess good accuracy as well as
stability properties. In presented tests, they outperform state-of-the-art implicit-
explicit ROS2 solvers. Exponential solvers which are able to exploit their matrix
function evaluation machinery for a whole time interval (such as EBK in this paper)
appear to be preferable to exponential integrators where matrix functions have to be
evaluated at each time step.

Acknowledgement This work is supported by the Russian Science Foundation under grant
No. 19-11-00338.
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