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Abstract An exponential multigrid framework is developed and assessed with
a modal high-order discontinuous Galerkin method in space. The algorithm
based on a global coupling, exponential time integration scheme provides strong
damping effects to accelerate the convergence towards the steady-state, while
high-frequency, high-order spatial error modes are smoothed out with a s-stage
preconditioned Runge-Kutta method. Numerical studies show that the exponential
time integration substantially improves the damping and propagative efficiency of
Runge-Kutta time-stepping for use with the p-multigrid method, yielding rapid and
p-independent convergences to steady flows in both two and three dimensions.

1 Introduction

An important requirement for computational fluid dynamics is the capability to
predict steady flows such as the case of flow past a body, so that key performance
parameters, e.g., the lift and drag coefficients can be estimated. While the classical
second-order methods are still being used extensively, high-order spatial discretiza-
tions attract more attention. For steady-state computations, most of the spatial
discretizations have rested on the use of limited, traditional time discretizations
combining with various acceleration methods. Recently, as an alternative to
traditional time-marching methods, an exponential time integration scheme, the
predictor-corrector exponential time-integrator scheme (PCEXP) [1–5] has been
developed and successfully applied to the time stepping of fluid dynamics equations,
exhibiting some advantages in terms of accuracy and efficiency for solving the fluid
dynamics equations in both time-dependent and time-independent regimes.

In this paper, the exponential time integration is exploited in a multigrid
framework which consists of an exponential time marching method and a s-stage
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preconditioned Runge-Kutta method as an effective way to increase the feasibility
of arbitrarily p-order DG for the high-order simulations of steady-state flows. The
remainder of this paper is organized as follows. Section 2 presents the multigrid
algorithm which combines two stand-alone methods in a V-cycle p-multigrid
framework. Section 3 introduces the spatial discretization with a modal high-order
DG method. Section 4 discusses how to evaluate the time steps in the p-multigrid
framework. Section 5 presents the numerical results including two inviscid flow
problems: (a) flow past a circular cylinder; (b) flow flow over a sphere. The
numerical results obtained with the exponential p-multigrid method (eMG) are
compared directly with a fully implicit method solved with the Incomplete LU
preconditioned GMRES (ILU-GMRES) linear solver. Finally, Sect. 6 concludes
this work. The Appendix provides the details of Jacobian matrices for the DG space
discretization and time-step evaluations.

2 Exponential Multigrid Frame

In this section, a high-order (p) multigrid frame is detailed which is expected to
have comparable performance to implicit methods for steady flow computations.
The algorithm combines two stand-alone methods: the exponential time integration
method and a s-stage preconditioned Runge-Kutta method. The two methods are
introduced separately first and are finally integrated into a whole V-cycle multigrid
frame.

2.1 Exponential Time Integration

We start with the following semi-discrete system of ordinary differential equations
which may be obtained from a spatial discretization:

du
dt

= R(u), (1)

where u = u(t) ∈ RK denotes the vector of the solution variables and R(u) ∈ RK

the right-hand-side term which may be the spatially discretized residual terms of the
discontinuous Galerkin method used in this work. The dimension K is the degrees
of freedom which can be very large for 3-D problems. Without loss of generality,
we consider u(t) in the interval of one time step, i.e., t ∈ [tn, tn+1]. Applying the
term splitting method [6] to (1) leads to a different exact expression

du
dt

= Jnu + N(u), (2)
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where the subscript n indicates the value evaluated at t = tn, Jn denotes the Jacobian
matrix Jn = ∂R(u)

/
∂u |t=tn = ∂R(un)

/
∂u and N(u) = R(u) − Jnu denotes the

remainder, which in general is nonlinear. Equation (2) admits the following formal
solution:

un+1 = exp(�tJn)un +
�t∫

0

exp ((�t − τ )Jn)N(u(tn + τ )) dτ , (3)

where �t = tn+1 − tn and

exp(−tJn) =
∞∑

m=0

(−tJn)
m

m! . (4)

If using (3), the stiff linear term and the nonlinear integral term could be computed
separately. The linear term could be computed analytically for some specialized
equations but the nonlinear term is usually approximated numerically. In this paper,
we use its equivalent form (5) instead, in which the linear and nonlinear terms are
collected into a single term so that it can be efficiently approximated at one time.

Recently, a two-stage exponential scheme PCEXP [5] is shown to be effective
for computing various flow regimes. However, using only the first stage of PCEXP,
namely, the EXP1 scheme [1, 3] is shown to be more efficient for steady flows,
although it is incapable of solving unsteady flows. Considering the constant
approximation of the nonlinear term leads to the EXP1 scheme, namely

un+1 = exp(�tJn)un + �t�1(�tJn)Nn = un + �t�1(�tJn)Rn, (5)

where

�1(�tJ) := J−1

�t

[
exp(�tJ) − I

]
, (6)

and I denotes the K × K identity matrix.
The physical nature of such type of exponential schemes relies on the global

coupling feature via the global Jacobian matrix J, so that flow transportation
information can be broadcasted to the whole computational domain without a CFL
restriction. That is why the exponential schemes behave like a fully implicit method
but only depends on the current solution, i.e., in an explicit way as (5). Therefore,
the EXP1 scheme is curiously exploited in the p-multigrid framework for steady
flow computations.
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2.2 Realization of EXP1 with the Krylov Method

The implementation of exponential time integration schemes requires evaluations of
matrix-vector products, and in particular, the product of the exponential functions
of the Jacobian and a vector, e.g., �1(�tJn)N in (5). They can be approximated
efficiently using the Krylov method [7, 8]. Consider a m-dimensional Krylov
subspace

Km(J,N) = span
{
N, JN, J2N, . . . , Jm−1N

}
. (7)

The orthogonal basis matrixVm := (v1, v2, . . . , vm) ∈ R
K×m satisfies the so-called

Arnoldi decomposition [8]:

JVm = Vm+1H̃m, (8)

where Vm+1 := (v1, v2, . . . , vm, vm+1) = (Vm, vm+1) ∈ R
K×(m+1). The matrix

H̃m is the (m + 1) × m upper-Hessenberg matrix. Then (8) becomes

JVm = VmHm + hm+1,mvm+1eTm. (9)

Because VT
mVm = I, therefore

Hm = VT
mJVm, (10)

Hm is thus the projection of the linear transformation of J onto the subspace Km

with the basis Vm. Since VmVT
m �= I, (10) leads to the following approximation:

J ≈ VmVT
mJVmVT

m = VmHmVT
m, (11)

and exp(J) can be approximated by exp
(
VmHmVT

m

)
as below

exp(J)N ≈ exp
(
VmHmVT

m

)
N = Vm exp(Hm)VT

mN. (12)

The first column vector of Vm is v1 = N/‖N‖2 and VT
mN = ‖N‖2 e1, thus (12)

becomes

exp(J)N ≈ ‖N‖2Vm exp(Hm)e1. (13)

Consequently, �1 can be approximated by

�1(�tJ)N = 1

�t

∫ �t

0
exp((�t − τ )J)N dτ

≈ 1

�t

∫ �t

0
‖N‖2Vm exp((�t − τ )Hm)e1 d(τ ) .

(14)
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In general, the dimension of the Krylov subspace, m, is chosen to be much smaller
than the dimension of J, K , thus, Hm ∈ R

m×m can be inverted easily, so �1 can be
easily computed as the following

�1(�tJ)N ≈ 1

�t
‖N‖2Vm

∫ �t

0
exp((�t − τ )Hm)e1 dτ

= 1

�t
‖N‖2VmH−1

m

[
exp(�tHm) − I

]
e1, (15)

where the matrix-exponential exp(�tHm) can be computed efficiently by the
Chebyshev rational approximation (cf., e.g., [8, 9]) due to the small size of Hm.

2.3 Preconditioned Runge-Kutta Method

Consider a s-stage preconditioned Runge-Kutta (PRK) method of the following
form

u(0) = un

u(k) = un + βkP−1(un)R
(
u(k−1)

)
, k = 1, 2, . . . , s, (16)

un+1 = u(s)

where βk = 1/(s − k + 1). P is taken as the diagonal part of the global
residual Jacobian J = ∂R

/
∂u , representing the element-wise wave propagation

information. s = 4 is used for all the test cases of this work.
The physical nature of this type of RK method can be interpreted in two different

views which are helpful for us to see how does PRK make sense. First, we consider
the first-order spatial discretization of finite volume or discontinuous Galerkin
method to the i-th element surrounded by adjoined cells j (1 ≤ j ≤ N) with
the inter-cell surface area Sij , and the spatial residual using a upwinding flux can be
written as

Vi
�ui

�t
= Ri =

N∑

j=1

1

2

[
F(ui ) + F(uj )

]
nijSij + 1

2
|An

ij |
(
ui − uj

)
Sij . (17)

So P can be derived as

Pi = ∂Ri

∂ui

≈
N∑

j=1

1

2
|An

ij |Sij . (18)
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A matrix �t can be defined as

�t = ViP−1 = Vi
∑N

j=1
1
2 |An

ij |Sij

. (19)

One can uncover the relationship between the matrix �t and the traditional defini-
tion of time step by considering a cell-constant scalar spectral radius approximation
λmax

ij to |An
ij | , i.e.,

�t = 2Vi
∑N

j=1 λmax
ij Sij

1D−→ �xi

λmax
i

(20)

Therefore, P−1 is equivalent to a matrix time step and it is consistent to the usual
definition of time step in the scalar case. As demonstrated in [10], this matrix
is a kind of preconditioner which can provide effective clustering of convective
eigenvalues and substantial improvements to the convergence of RK time-stepping.
In this work, different from [10], an exact way of evaluating matrix time steps
with exact Jacobian is proposed in [3] so that all the stiffness effects from spatial
discretizations and boundary conditions can be exactly taken into account. Note that
such a matrix time stepping has no temporal order of accuracy, since the traditional
scalar, physical time step dose not show up at all. Therefore, the PRK scheme has
no temporal order of accuracy. The formula of PRK scheme can be considered as a
simplified fully implicit scheme or implicit-explicit Runge Kutta methods, but has
it own physical significance. To increase robustness, we recommend to increase
diagonal domination to P, namely, P = ∂R

/
∂u + I/δτ , where δτ is a pseudo time

step which is computed by (32).

2.4 The V-Cycle p-Multigrid Framework

The use of p-multigrid smoother with explicit RK or preconditioned RK methods
is observed inefficient at eliminating low-frequency error modes at lower orders of
accuracy. To provide a better smoother with stronger damping effects, the EXP1
scheme that exhibits fast convergence rates for Euler and Navier-Stokes equations
is considered. Unlike the explicit RK smoother that only produces weak damping
effects in a local, point-wise manner, the exponential scheme is a global method
that allows large time steps with strong damping effects to all the frequency modes
across the computational domain, as shown in the previous works [3].

In the exponential p-multigrid method (eMG), the EXP1 scheme is utilized on
the accuracy level p = 0 and the PRK method is used for accuracy levels p > 0,
contributing both memory deduction and efficiency enhancement. The smoothing
employs a V-cycle p-multigrid process, where a two-level algorithm is recursively
used. To illustrate the algorithm, let us consider a nonlinear problem A(up) = pp,
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where up is the solution vector, A(up) is the nonlinear operator and p denotes the
accuracy level of DG. Let vp be an approximation to the solution vector up and
define the residual r(vp) by

r(vp) = fp − Ap(vp).

In the eMG framework, the solution on the p−1 level is used to correct the solution
of p level in the following steps:

1. Conduct a time stepping with the PRK scheme on the highest accuracy level
pmax.

2. Restrict the solution and the residual of p to the p − 1 level (1 ≤ p ≤ pmax)

vp−1
0 = Rp−1

p vp, rp−1 = Rp−1
p rp(vp), (21)

where Rp−1
p is the restriction operator from the level p to the level p − 1.

3. Compute the forcing term for the p − 1 level

sp−1 = Ap−1(vp−1
0 ) − rp−1. (22)

4. Smooth the solution with the PRK scheme on the p − 1 level but switch to use
the EXP1 scheme on the lowest accuracy level p = 0,

Ap−1(vp−1) = Rp−1
p fp + sp−1. (23)

5. Evaluate the error of level p − 1

ep−1 = vp−1 − vp−1
0 . (24)

6. Prolongate the p − 1 error and correct the approximation of level p

vp = vp + Pp

p−1e
p−1, (25)

where Pp

p−1 is the prolongation operator.

3 Spatial Discretization

In this paper, the eMGmethod is applied to solve three-dimensional Euler equations
discretized by a modal discontinuous Galerkin method. Consider the Euler
equations in three-dimensional space

∂U
∂t

+ ∇ ·F = 0, (26)
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where U stands for the vector of conservative variables, F denotes the convective
flux

U =
⎛

⎝
�

�v

�E

⎞

⎠ , F =
⎛

⎝
�vT

�vvT + pI
� H vT

⎞

⎠ , (27)

where v = (u, v,w)T is the absolute velocity, �, p, and e denote the flow density,
pressure, and the specific internal energy;E = e+ 1

2‖v‖2 and H = E+p/� denote
the total energy and total enthalpy, respectively; I denotes the 3× 3 unit matrix; and
the pressure p is given by the equation of state for a perfect gas

p = �(γ − 1)e, (28)

where γ = 7/5 is the ratio of specific heats for perfect gas.

3.1 Modal Discontinuous Galerkin Method

Considering a computational domain 
 divided into a set of non-overlapping
elements of arbitrary shape, the modal discontinuous Galerkin method [3] seeks
an approximation Uh in each element E ∈ 
 with finite-dimensional space of
polynomial Pp of order p in the discontinuous finite element space

Vh :=
{

ψi ∈ L2(
) : ψi |E ∈ Pp(
), ∀E ∈ 

}
. (29)

The numerical solution of Uh can be approximated in the finite element space Vh

Uh(x, t) =
n∑

j=1

uj (t)ψj (x). (30)

In the weak formulation, the Euler equations (26) in an element E becomes:

∫

E

ψiψj dx
duj

dt
= −

∫

∂E

ψi F̃ · n̂ dσ +
∫

E

F · ∇ψi dx := Ri , (31)

where n̂ is the out-normal unit vector of the surface element σ with respect to
the element E, F̃ is the Riemann solver [11], which will be approximated by Roe
scheme [12], and the Einstein summation convention is used. For an orthonormal
basis {ψi}, the term on the left-hand side of (31) becomes diagonal, so the system is
in the standard ODE form of (1), thus avoiding solving a a linear system as required
for a non-orthogonal basis. More importantly, using an orthogonal basis would yield
more accurate solutions, especially for high-order methods, e.g., p = 6.
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4 Time-Stepping Strategy

In this section, the time-stepping strategy of the eMG framework is discussed as
a time-marching solver to compute the steady solutions of the Euler equations.
There are two different time steps needed to be determined. One for the PRK time
stepping δτ and the other for EXP1 smoothing which is empirically chosen as large
as (pmax + 1)δτ . As such, only δτ should be determined. δτ is determined by

δτ = CFL h3D

(2p + 1)(‖v‖ + c)
, h3D := 2d

|E|
|∂E| , (32)

where CFL is the global Courant-Friedrichs-Lewy (CFL) number, p the accuracy
level, v the velocity vector at the cell center, c the speed of sound, d the spatial
dimension, |E| and |∂E| are the volume and the surface area of the boundary of
E, respectively; and h3D represents a characteristic size of a cell in 3D defined by
the ratio of its volume and surface area. All the methods mentioned in this paper
have been implemented in the HA3D flow solver developed by the author, which
is for solving three-dimensional problems as its name indicates. So to support 2-D
computations, a 2-D mesh is extruded to a 3-D (quasi-2D) mesh by one layer of
cells and we use h2D instead of h3D to eliminate the effect of the z dimension on
obtaining the truly 2-D time step. Given the cell size �z in the z direction, h2D is
determined by

2

h2D
= 3

h3D
− 1

�z
. (33)

To enhance the computational efficiency for the steady problems, the CFL number
of both schemes are dynamically determined by the following formula

CFLn = min

{
CFLmax,max

[
‖R(�n)‖−1

2 , 1 + (n − 1)

(2p + 1)

]}
, (34a)

‖R(�n)‖2 := 1

|
|
[∫




R(�n)
2 dx

]1/2
, (34b)

where R(�n) denotes the residual of density, CFLmax is the user-defined maximal
CFL number, n is the number of iterations, and p is the spatial order of accuracy.
Such a variable CFL evolution strategy allows a robust code startup and good overall
computational efficiency in practices. In all the test cases considered, the upper-
bound CFL number of (34a) is taken as follows: CFLmax = 103 for the implicit BE
method; CFLmax = 102 for the eMG method.
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5 Numerical Results

In this section, we focus on the investigations of performance and convergence of
the eMG framework. The feasibility is of eMG is demonstrated and compared to
a fast fully implicit ILU preconditioned GMRES method. Two external flow cases
are considered: flows past a circular cylinder in quasi-2D and a sphere in 3D. Since
both eMG and GMRES are based on the Krylov subspace, the same Krylov space
parameters are used. The Krylov subspace dimension m is 30 and the tolerance of
Krylov subspace approximation error is 10−5, see Saad’s classic works [8, 13] for
more details about the error estimations. The fastest first-order backward Euler (BE)
discretization solved with the ILU preconditioned GMRES linear solver is used as
the performance reference solution.

5.1 Flow Over a Circular Cylinder in Quasi-2D

In this case, the results obtained for flow over a circular cylinder at Mach number
Ma = 0.3 is presented. The cylinder has a radius of 1 and is surrounded in a circular
computational domain of radius 15, as shown in Fig. 1. The quasi-2D mesh with
128×32 = 4096 quadratic curved hexahedral elements is generated by extruding the
2D mesh by one layer of grids. The final 3D mesh is used by the HA3D arbitrarily
high-order discontinuous Galerkin flow solver[1–5]. The total degree of freedoms
is up to 81,920 with DG at p = 3.

Fig. 1 Flow over a circular cylinder in quasi-2D: 128 × 32 = 4096 quadratic curved elements
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In Fig. 2, the L2 norm of density residual R(�n) is plotted versus the iteration by
using the eMG scheme, indicating convergence rates independent of spatial order
of accuracy p, or say p-independent. The results obtained with a fast, implicit
ILU preconditioned GMRES is computed in Fig. 3, which shows the convergence
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Fig. 2 Flow over a circular cylinder in quasi-2D: p-independent convergences with the eMG
method
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Fig. 3 Flow over a circular cylinder in quasi-2D: Convergence histories of the implicit method
with varying spatial accuracy
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Fig. 4 Flow over a circular cylinder in quasi-2D: Performance comparison between the eMG
method and the implicit method at different spatial accuracy

histories of the implicit method with varying spatial accuracy. The results show
rapid quadratic Newton convergences which are dependent on the spatial order of
accuracy p. To see how promising is the eMG performance comparing with the
fully implicit method, the two results are compared in Fig. 4, where the CPU time is
normalized by that of the eMG scheme. As we can see, the implicit method (IMP) is
faster for p = 1, 2 cases but is slower than the eMG scheme for the p = 3 case. So
for high-order computations, the eMG method is at least comparable to the implicit
method in terms of overall performance.

5.2 Flow Over a Sphere in 3D

The computational efficiency of the eMG scheme is investigated for the three-
dimensional flow past a sphere with the Mach number Ma = 0.3. The radius
of the sphere is 1 and the far-field spherical radius is 5. The sphere surface is
set as a slip wall boundary condition, and the outer boundary uses a far-field
characteristic boundary condition with Riemann invariants. The mesh respects
the flow symmetries of the horizontal and vertical planes, on which a symmetry
boundary condition is imposed. The generated curved mesh consists of 9778
tetrahedrons and 4248 prisms, 14,026 cells in total. A close-up view of the mesh
about the sphere and the velocity contour computed with the eMG scheme at p = 3
is illustrated in Fig. 5.
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Fig. 5 Flow contour computed for the flow past a sphere atMa = 0.3 with eMG and DG p = 3

Figure 6 shows the convergence histories of the eMG method for spatial order
of accuracy p = 1, 2, 3. Again, p-independent convergences do appear. In
Fig. 7, convergence histories of the implicit method (IMP) are shown with iteration
counts. Figure 8 compares both methods measured in CPU time. As one can see
that although IMP is fast in terms of iteration counts, the computational cost per
iteration is relatively high and the resulting CPU time is penalized. When using
high-order spatial schemes along with an implicit method, the high-order global
Jacobian matrix consumes a large amount of memory. The most significant part of
memory usage (M) of the two methods eMG and IMP are compared as follows

Memg = NE

[
5

3
(p + 1)(p + 2)(p + 3) + 150

]
,

Mimp = 6NE

[
5

6
(p + 1)(p + 2)(p + 3)

]2
.

(35)

For problems sized up to NE = 105 elements at p = 3, fourth-order spatial
accuracy, a fully implicit method requires 45GB memory only for storing the
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Fig. 6 Flow over a sphere in 3D: p-independent convergences with the eMG method
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Fig. 7 Flow over a sphere in 3D: convergence histories of the implicit method with varying spatial
accuracy

Jacobian matrix, while eMG only requires 0.03GB memory for storing the solution
vectors plus the first-order Jacobian matrix for the same sized problem. Therefore,
the eMG method is far more memory friendly compared with a fully implicit
method, providing a more practical while efficient strategy for solving steady
problems with high-order methods.
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Fig. 8 Flow over a sphere in 3D: performance comparison between the eMG method and the
implicit method at different spatial accuracy

6 Conclusions

The first-order exponential time integration scheme, EXP1 has been exploited to
increase the feasibility of arbitrarily p-order DG for high-order simulations of
steady-state flows. The algorithms and the physical natures of the methods are
presented. The performance and memory usage are investigated and compared
with a fast backward-Euler ILU preconditioned GMRES fully implicit method for
2-D and 3-D steady flow problems. The results show expected p-independent
convergence rates for p = 1, 2, 3 order of accuracy and the eMGmethod is up to 20
times faster than the p = 3 ILU-GMRES for the 3-D case. Comparing to the fully
implicit method, the eMG framework uses less memory but achieves comparable
computational efficiency. Although the eMG method shows promising results, the
PRK scheme inside has a time step restriction and thus affects the overall efficiency.
Further studies are needed to pursue a better high-frequency smoother and a more
efficient exponential scheme as well.
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