
Vladimir A. Garanzha 
Lennard Kamenski · Hang Si Editors

Numerical Geometry, 
Grid Generation 
and Scientif ic 
Computing

Editorial Board
T. J. Barth
M. Griebel
D. E. Keyes

R. M. Nieminen
D. Roose

T. Schlick

143



Lecture Notes in Computational Science
and Engineering

Volume 143

Series Editors

Timothy J. Barth, NASA Ames Research Center, Moffett Field, CA, USA

Michael Griebel, Institut für Numerische Simulation, Universität Bonn, Bonn,
Germany

David E. Keyes, Applied Mathematics and Computational Science, King Abdullah
University of Science and Technology, Thuwal, Saudi Arabia

Risto M. Nieminen, Department of Applied Physics, Aalto University School of
Science & Technology, Aalto, Finland

Dirk Roose, Department of Computer Science, Katholieke Universiteit Leuven,
Leuven, Belgium

Tamar Schlick, Courant Institute of Mathematical Sciences, New York University,
New York, NY, USA



This series contains monographs of lecture notes type, lecture course material,
and high-quality proceedings on topics described by the term “computational
science and engineering”. This includes theoretical aspects of scientific computing
such as mathematical modeling, optimization methods, discretization techniques,
multiscale approaches, fast solution algorithms, parallelization, and visualization
methods as well as the application of these approaches throughout the disciplines of
biology, chemistry, physics, engineering, earth sciences, and economics.

More information about this series at http://www.springer.com/series/3527

http://www.springer.com/series/3527


Vladimir A. Garanzha • Lennard Kamenski •
Hang Si
Editors

Numerical Geometry, Grid
Generation and Scientific
Computing
Proceedings of the 10th International
Conference, NUMGRID 2020 / Delaunay
130, Celebrating the 130th Anniversary
of Boris Delaunay, Moscow, Russia,
November 2020



Editors
Vladimir A. Garanzha
Dorodnicyn Computing Centre, Federal
Research Center of Informatics and Control
Russian Academy of Sciences Moscow
Moscow, Russia

Lennard Kamenski
Berlin, Germany

Hang Si
Weierstrass Institute for Applied Analysis
and Stochastics (WIAS)
Berlin, Germany

ISSN 1439-7358 ISSN 2197-7100 (electronic)
Lecture Notes in Computational Science and Engineering
ISBN 978-3-030-76797-6 ISBN 978-3-030-76798-3 (eBook)
https://doi.org/10.1007/978-3-030-76798-3

Mathematics Subject Classification (2010): 65-xx (65Dxx, 65Fxx, 65Kxx, 65Lxx, 65Mxx, 65Nxx,
65Yxx, 65Zxx), 30Cxx, 30Fxx, 49Mxx, 52Cxx, 53xx

© Springer Nature Switzerland AG 2021
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
The publisher, the authors, and the editors are safe to assume that the advice and information in this book
are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or
the editors give a warranty, expressed or implied, with respect to the material contained herein or for any
errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional
claims in published maps and institutional affiliations.

This Springer imprint is published by the registered company Springer Nature Switzerland AG.
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

https://doi.org/10.1007/978-3-030-76798-3


Dedicated to
Boris Nikolayevich Delaunay (1890–1980)
on the occasion
of his 130th birthday



Foreword

This volume presents the proceedings of the NUMGRID 2020/Delaunay 130
International Conference dedicated to the 130th birthday of B. N. Delaunay (1890–
1980). Since Boris Nikolayevich was my teacher, I will take this nice opportunity to
have another look at certain moments in the life and work of this unique personality.

Delaunay triangulation, Delaunay partition, and their theory is the most impor-
tant part of his research from an application point of view. This is, however, merely
one facet in his multifaceted work, a facet to which B. N. Delaunay came not
by chance. There is a deeper meaning in the fact that the name of Delaunay is
forever inscribed in science next to that of G. F. Voronoi, a prominent representative
of the St. Petersburg school of number theory. Even more so, because Georgy
Feodosievich was a close friend of the Delaunay family. As a teenager, Boris often
witnessed his father’s late evening conversations with Voronoi.

Voronoi was not and could not be Delaunay’s scientific supervisor: he died
unexpectedly in 1908, the year Boris entered university. Nevertheless, his influence
on Delaunay was considerable. Delaunay’s breakthrough results on the cubic
Diophantine equations, which are, by his own admission, his most outstanding
work, used the famous Voronoi algorithm for finding fundamental units in cubic
fields. This celebrated work of Voronoi once made a stunning impression on A. A.
Markov (Voronoi’s teacher) himself.

In the early 1920s, Delaunay was invited by A. A. Markov to the Petrograd1

University as a professor and wrote a remarkable paper revealing the geometrical
essence of the Voronoi algorithm. In the late 1920s, Delaunay published a
major work on 4-dimensional parallelohedra, where he continued the research
of H. Minkowski and G. Voronoi on the theory of parallelohedra. At the same
time, Delaunay elegantly introduced the important concepts of the (r, R)-system
and the L-partition corresponding to this system and published an extensive paper
“Geometry of positive quadratic forms”. The concepts laid down in Delaunay’s
works in the 1920s and 1930s, influenced by Voronoi’s work, proved to be useful

1The name of St. Petersburg in 1914–1924.

vii



viii Foreword

in computational geometry, crystallography, structural chemistry, biology, and other
fields. As for the terms (r, R)-system and L-partition, much later, in the second half
of the twentieth century, the professional community abandoned them in favor of
the terms Delaunay set and Delaunay partition, largely thanks to H. S. M. Coxeter
and C. A. Rogers.

As for the NUMGRID 2020 conference, I would like to acknowledge the high
professional level of the participants and thank its organizers Vladimir Garanzha,
Hang Si, and Lennard Kamenski.

Steklov Mathematical Institute RAS, Moscow, Russia Nikolay Dolbilin
February 2021



Preface

This volume presents a selection of papers presented at the 10th International
Conference on Numerical Geometry, Grid Generation, and Scientific Computing
celebrating the 130th anniversary of B. N. Delaunay (NUMGRID 2020/Delau-
nay 130), held November 25–27, 2020. The conference is bi-annual (since 2002)
and it is one of the well-known international conferences in the area of mesh
generation. The main topic of this conference, grid (mesh) generation, is about
how to create a geometric discretization of a given domain. It is an indispensable
tool for solving field problems in nearly all areas of applied mathematics.

The book includes an overview of the current progress in numerical geometry,
grid generation, and adaptation in terms of mathematical foundations, algorithm
and software development, and applications. In focus are the Voronoi-Delaunay
theory and algorithms for tilings and partitions, mesh deformation and optimization,
equidistribution principle, error analysis, discrete differential geometry, duality
in mathematical programming and numerical geometry, mesh-based optimization
and optimal control methods, iterative solvers for variational problems, as well as
algorithm and software development. The applications of the discussed methods
are multidisciplinary and include problems from mathematics, physics, biology,
chemistry, material science, and engineering.

The presented 25 papers were selected from 31 submissions. The main selection
criteria are based on the recommendations of anonymous peer reviews from experts
of the corresponding fields as well as the presentation of the paper at the conference.
All accepted papers are revised according to the comments of reviewers and the
program committee.

The organizers would like to thank all who submitted papers and all who
helped to evaluate the contributions by providing reviews for the submissions. The

ix



x Preface

reviewers’ names are acknowledged in the following pages. The organizers would
like to thank all participants of NUMGRID for making it a successful and interesting
experience.

Moscow, Russia Vladimir A. Garanzha
Berlin, Germany Lennard Kamenski
Berlin, Germany Hang Si
February 2021



Contents

Part I Delaunay-Voronoi Theory and Applications

Local Groups in Delone Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Nikolay Dolbilin

Manifolds of Triangulations, Braid Groups of Manifolds,
and the Groups �k

n . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Denis A. Fedoseev, Vassily O. Manturov, and Igor M. Nikonov

A Proof of the Invariant-Based Formula for the Linking Number
and Its Asymptotic Behaviour . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
Matt Bright, Olga Anosova, and Vitaliy Kurlin

The Singularity Set of Optimal Transportation Maps . . . . . . . . . . . . . . . . . . . . . . . 61
Zhongxuan Luo, Wei Chen, Na Lei, Yang Guo, Tong Zhao,
and Xianfeng Gu

Polygonal and Polyhedral Delaunay Meshing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
Vladimir Garanzha and Liudmila Kudryavtseva

On Decomposition of Embedded Prismatoids in R
3

Without Additional Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
Hang Si

Out-of-core Constrained Delaunay Tetrahedralizations for Large
Scenes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113
Ziya Erkoç, Aytek Aman, Uğur Güdükbay, and Hang Si

Part II Adaptive Meshing

Size Gradation Control for Anisotropic Hybrid Meshes . . . . . . . . . . . . . . . . . . . . 127
Lucille-Marie Tenkes and Frédéric Alauzet

xi



xii Contents

Adjoint Computation on Anisotropic Meshes in High-fidelity
RANS Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
Francesco Clerici and Frédéric Alauzet

Moving Deforming Mesh Generation Based
on the Quasi-Isometric Functional . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Vladimir A. Garanzha and Liudmila Kudryavtseva

Adaptive Grids for Non-monotone Waves and Instabilities
in a Non-equilibrium PDE Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Paul A. Zegeling

RBF-VerBSS Hybrid Method for Mesh Deformation . . . . . . . . . . . . . . . . . . . . . . . . 199
Jihai Chang, Fei Yu, Jie Cao, and Zhenqun Guan

A Uniform Convergence Analysis for a Bakhvalov-Type Mesh
with an Explicitly Defined Transition Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Thái Anh Nhan

On a Comprehensive Grid for Solving Problems Having
Exponential or Power-of-First-Type Layers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
V. D. Liseikin, S. Karasuljic, A. V. Mukhortov, and V. I. Paasonen

Preserved Structure Constants for Red Refinements of Product
Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 241
Sergey Korotov and Jon Eivind Vatne

Part III Meshing and CAD

Global Parametrization Based on Ginzburg-Landau Functional . . . . . . . . . . 251
Victor Blanchi, Étienne Corman, Nicolas Ray, and Dmitry Sokolov

Parametrization of Plane Irregular Regions: A Semi-automatic
Approach I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 263
Pablo Barrera and Iván Méndez

A Hybrid Approach to Fast Indirect Quadrilateral Mesh Generation . . . . . 281
Daniel Zint and Roberto Grosso

Hexahedral Mesh Generation Using Voxel Field Recovery . . . . . . . . . . . . . . . . . 295
Alexander Sergeevich Karavaev and Sergey Petrovich Kopysov

Generation of Boundary Layer Meshes by the Enhanced
Jump-and-Walk Method with a Fast Collision Detecting Algorithm . . . . . . 307
Jie Cao, Fei Yu, Zhonghai Gao, S.H. Lo, and Zhenqun Guan



Contents xiii

Part IV Numerical Geometry and Applications

An Improved Algorithm for Scattered Data Interpolation Using
Quartic Triangular Bézier Surfaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 327
Krassimira Vlachkova

On Integral-Based (Transfinite) Laplace Coordinates . . . . . . . . . . . . . . . . . . . . . . . 341
Alexander G. Belyaev and Pierre-Alain Fayolle

Part V Numerical Methods

Fully-Implicit Collocated Finite-VolumeMethod for the Unsteady
Incompressible Navier–Stokes Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361
Kirill M. Terekhov

Efficient Steady Flow Computations with Exponential Multigrid
Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Shu-Jie Li

Exponential Time Integrators for Unsteady Advection–Diffusion
Problems on Refined Meshes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Mikhail A. Botchev

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405



Conference Organization

Organizers

Dorodnicyn Computing Center FRC CSC RAS, Moscow, Russia
http://www.ccas.ru

Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany
https://www.wias-berlin.de

Lennard Kamenski, Berlin, Germany
https://gitlab.com/lkamenski

Organizing Committee

V. A. Garanzha (Chair)
Dorodnicyn Computing Center FRC CSC RAS, Moscow, Russia

L. Kamenski (Vice chair)
Berlin, Germany

A. I. Belokrys-Fedotov
Dorodnicyn Computing Center FRC CSC RAS, Moscow, Russia

I. E. Kaporin
Dorodnicyn Computing Center FRC CSC RAS, Moscow, Russia

L. N. Kudryavtseva
Dorodnicyn Computing Center FRC CSC RAS, Moscow, Russia

Yu. O. Trusova
Dorodnicyn Computing Center FRC CSC RAS, Moscow, Russia

I. A. Zonn
Dorodnicyn Computing Center FRC CSC RAS, Moscow, Russia

xv

http://www.ccas.ru
https://www.wias-berlin.de
https://gitlab.com/lkamenski


xvi Conference Organization

Program Committee

Yu. G. Evtushenko (Chair)
Dorodnicyn Computing Center FRC CSC RAS, Moscow, Russia

H. Si (Vice Chair)
Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany

A. Belyaev
Heriot-Watt University, Edinburgh, UK

H. Borouchaki
Inria Paris-Rocquencourt, France

N. P. Dolbilin
Steklov Mathematical Institute RAS, Moscow, Russia

V. P. Dymnikov
Institute of Numerical Mathematics RAS, Moscow, Russia

H. Edelsbrunner
Institute of Science and Technology, Klosterneuburg, Austria

S. K. Godunov
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia

R. Jain
Argonne National Laboratory, Lemont, IL, USA

V. F. Kuropatenko
All-Russian Scientific Research Institute of Technical Physics, Snezhinsk, Russia

P. Laug
Inria Paris-Rocquencourt, France

N. Lei
Dalian University of Technology, Dalian, China

V. D. Liseikin
Institute of Computing Technologies RAS, Novosibirsk, Russia

Yu. V. Nesterenko
Moscow State University, Moscow, Russia

R. V. Polozov
Institute of Cell Biophysics, Puschino, Russia

X. Roca
Barcelona Supercomputing Center, Barcelona, Spain



Conference Organization xvii

D. V. Sokolov
Université de Lorraine, CNRS, Inria, LORIA, Nancy, France

S. K. Vodopyanov
Sobolev Institute of Mathematics SB RAS, Novosibirsk, Russia

Web Site

http://www.ccas.ru/gridgen/numgrid2020

http://www.ccas.ru/gridgen/numgrid2020


Reviewers

Igor Baburin Technische Universität Dresden, Dresden, Germany

Pavel Bakhvalov Keldysh Institute of Applied Mathematics RAS, Moscow,
Russia

Alexander Belyaev Heriot-Watt University, Edinburgh, UK

Matthew Bright University of Liverpool, Liverpool, UK

Michail Botchev Keldysh Institute of Applied Mathematics RAS, Moscow,
Russia

Andrey Chernikov Old Dominion University, Norfolk, VA, USA

Kristian Debrabant University of Southern Denmark, Odense, Denmark

Vladimir A. Garanzha Dorodnicyn Computing Center FRC CSC RAS, Moscow,
Russia

Alexander Golikov Dorodnicyn Computing Center of FRC CSC RAS, Moscow,
Russia

Roberto Grosso Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen,
Germany

Xianfeng Gu Stony Brook University, Stony Brook, NY, USA

Zhenqun Guan Dalian University of Technology, Dalian, China

Ronald D. Haynes Memorial University of Newfoundland, St. John’s, NL,
Canada

Nancy Hitschfeld University of Chile, Santiago, Chile

Rajeev Jain Argonne National Laboratory, Lemont, IL, USA

xix



xx Reviewers

George Kamenev (The author and reviewer of the NUMGRID conferences,
passed away on November 3rd 2020.) Federal Research Center of Informatics
and Management RAS, Moscow, Russia

Lennard Kamenski Berlin, Germany

Jiří Kosinka Rijksuniversiteit Groningen, Groningen, The Netherlands

Na Lei Dalian University of Technology, Dalian, China

Shu-Jie Li Beijing Computational Science Research Center, Beijing, China

Alexander Linke Weierstrass Institute for Applied Analysis and Stochastics,
Berlin, Germany

Vladimir Liseikin Institute of Computational Technologies, Siberian Branch
RAS, Novosibirsk, Russia

Yang Liu Microsoft Research Asia, Beijing, China

Xiaoming Liu Cadence Design Systems, Inc., San Jose, CA, China

Vassily Manturov Moscow Institute of Physics and Technology, Moscow, Russia

Yulong Pan University of California, Berkeley, CA, USA

Per-Olof Persson University of California, Berkeley, CA, USA

Egon Schulte Northeastern University, Boston, MA, USA

Alexander Skovpen NUMECA International, Brussels, Belgium

Kirill Terekhov Marchuk Institute of Numerical Mathematics RAS, Moscow,
Russia

Vladimir Titarev Dorodnicyn Computing Center FRC CSC RAS, Moscow,
Russia

Sergey Utyuzhnikov The University of Manchester, Manchester, UK

Yuri Vassilevski Marchuk Institute of Numerical Mathematics RAS, Moscow,
Russia

Krassimira Vlachkova Sofia University St. Kliment Ohridski, Sofia, Bulgaria

Rhaleb Zayer Max-Planck-Institut für Informatik, Saarbrücken, Germany

Paul Zegeling Universiteit Utrecht, Utrecht, The Netherlands

Xiaopeng Zheng Dalian University of Technology, Dalian, China

Victor Zhukov Keldysh Institute of Applied Mathematics RAS, Moscow, Russia

Daniel Zint Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen, Ger-
many



Part I
Delaunay-Voronoi Theory

and Applications



Local Groups in Delone Sets

Nikolay Dolbilin

Abstract We prove that in an arbitrary Delone set X in the three-dimensional
space, the subset X6 of all points from X at which the local group has no rotation
axis of order larger than 6 is also a Delone set. Here, under the local group at
point x ∈ X we mean the symmetry group Sx(2R) of the cluster Cx(2R) of x with
radius 2R, where R is the radius of the largest ball free of points of X (according to
Delone’s empty sphere theory).

The main result seems to be the first rigorously proved statement for absolutely
generic Delone sets which implies substantial statements for Delone sets with strong
crystallographic restrictions. For instance, an important observation of Shtogrin
on the boundedness of local groups in Delone sets with equivalent 2R-clusters
immediately follows from the main result.

Further, we propose a crystalline kernel conjecture and its two weaker versions.
According to the crystalline kernel conjecture, in an arbitrary Delone set, points with
locally crystallographic axes only (i.e., of order 1, 2, 3, 4, or 6) inevitably constitute
the essential part of the set. These conjectures significantly generalize the famous
crystallography statement on the impossibility of a (global) fivefold symmetry in a
three-dimensional lattice.

1 Introduction and Basic Definitions

This work grew out of the local theory for regular systems (Delone sets with very
strong requirements). In this paper, however, we consider arbitrary Delone sets in
R

3 without any additional assumptions. For example, we do not require typical
conditions of the local theory such as sameness of clusters of certain radius as we
did in numerous papers (e.g., [1–3]). Another feature of the paper is as follows: for

N. Dolbilin (�)
Steklov Mathematical Institute of the Russian Academy of Sciences, Moscow, Russia
e-mail: dolbilin@mi-ras.ru

© Springer Nature Switzerland AG 2021
V. A. Garanzha et al. (eds.), Numerical Geometry, Grid Generation and Scientific
Computing, Lecture Notes in Computational Science and Engineering 143,
https://doi.org/10.1007/978-3-030-76798-3_1

3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76798-3_1&domain=pdf
mailto:dolbilin@mi-ras.ru
https://doi.org/10.1007/978-3-030-76798-3_1


4 N. Dolbilin

a Delone set, we consider local groups operated over clusters of a particular radius,
namely 2R (see the definitions below).

In [4], A.L. Mackay says:

In an infinite crystal there may be extra elements of symmetry which operate over a limited
range. These may be seen by non-space-group extinctions in diffraction pattern. . . . The
local operations need not to be ‘crystallographic’.

Nevertheless, the main result of this paper implies that the character of local groups
is essentially predetermined for a quite wide class of Delone sets in R

3, the so-called
2R-isometric sets, and, in particular, for regular systems (i.e., for Delone sets with
transitive groups). Here, a very significant role is played by the successful choice of
the range of action of the local group. It is chosen as 2R, R being the parameter of
the Delone set (for details see below). To accurately formulate the main result and
some open hypotheses we will need several definitions.

Let |x, x ′| denote the Euclidean distance between points x and x ′ in the Euclidean
space R

d and d(z,X) := infx∈X |z, x| the distance from a point z ∈ R
d to the set

X ⊂ R
d .

Definition 1 (Delone Set) Given positive real numbers r and R, a point subset X
of Rd is called a Delone set of type (r, R) if the following two conditions hold:

(1) an open d-ball Bo
z (r) of radius r centered at any point z of space contains at

most one point of X;
(2) a closed d-ball Bz(R) of radius R centered at any point z of space contains at

least one point of X.

Obviously, a Delone set X of type (r, R) is a Delone set of type (r ′, R′) if r ′ ≤ r and
R′ ≥ R. Therefore, we can adopt the following convention: for a given Delone set
X, we choose r as the largest possible value satisfying Condition (1) of Definition 1,
and R as the smallest value satisfying Condition (2).

We will also need the following interpretation of the parameters r and R:

inf
x,x ′∈X

|x, x ′| = 2r and sup
z∈Rd

d(z,X) = R. (1)

Thus, the value of r equals to the half of the smallest (infimum) inter-point distance
in X. The value of R is the distance from X to a point of Rd farthest away from X.

In the local theory of Delone sets, the key concept is that of a cluster.

Definition 2 (ρ-Cluster) Let x be a point of a Delone set X of type (r, R) and
Bz(ρ) a ball of radius ρ ≥ 0 centered at a point z ∈ R

d . We call a point set

Cx(ρ) := X ∩ Bx(ρ)

the cluster of radius ρ at point x or, simply, the ρ-cluster at x.

Definition 3 (Equivalent Clusters) Two clusters Cx(ρ) and Cx ′(ρ) of the same
radius ρ at points x and x ′ are said to be equivalent if there is an isometry



Local Groups in Delone Sets 5

g ∈ Iso(R3) such that

g(x) = x ′ and g(Cx(ρ)) = Cx ′(ρ).

Definition 4 (Cluster Group) Given a point x ∈ X and its ρ-cluster Cx(ρ), a
group Sx(ρ) of all isometries s ∈ Iso(Rd) which leave x fixed and the cluster Cx(ρ)

invariant is called the cluster group:

Sx(ρ) :=
{
s ∈ Iso(Rd) | s(x) = x, s(Cx(ρ)) = Cx(ρ)

}
.

Groups of equivalent clusters Cx(ρ) and Cx ′(ρ) are conjugate in the full group
Iso(Rd ) of isometries: Sx(ρ) = g−1 Sx ′(ρ) g, where g is determined by the
conditions of Definition 3. Clearly, as the radius ρ increases, the cluster Cx(ρ)

expands but the cluster group Sx(ρ) never increases and sometimes can only
contract. Further, if 0 ≤ ρ < 2r then Cx(ρ) = Ox(3), i.e., it is the full point group
of all isometries that leave the point x fixed. On the other hand, it is well-known
that the group Sx(2R) is finite for any x ∈ X.

Since the main result grew up ideologically from the local theory of regular
systems, we briefly recall the basic concepts of this theory. Modern in form, the
following definitions of a regular system and a crystal are equivalent to those going
back to E.S. Fedorov.

Definition 5 (Regular System, Crystal) A Delone set X is called a regular system
if it is an orbit of some point x with respect to a certain space group G ⊂ Iso(Rd ):

X = G · x = { g(x) | g ∈ G }.

A Delone set X is a crystal if it is a union of a finite number of orbits:

X =
m⋃
i=1

G · xi.

The notion of a regular system is an essential case of a crystal (which is a
multi-regular system) and generalizes the concept of a lattice. In fact, a lattice is
a particular case of a regular system when G is a group of translations generated
by d linearly independent translations. Moreover, due to a celebrated theorem
by Schoenflies and Bieberbach, any regular system is a union of congruent and
mutually parallel lattices.

The local theory of regular systems began with the Local Criterion in [1].

Theorem 1 (Local Criterion [1]) A Delone set X is a regular system if and only if
there is some ρ0 > 0 such that the following two conditions hold:

(1) all ρ0 + 2R-clusters are mutually equivalent;
(2) Sx(ρ0) = Sx(ρ0 + 2R) for x ∈ X.

In [5, 6], this criterion has been generalized for crystals (multi-regular systems).



6 N. Dolbilin

From now on, we restrict ourselves only to the three-dimensional case. One of
the central problems of the local theory of regular systems is the estimation of an
upper (and a lower) bound for the regularity radius, i.e., the smallest value ρ̂3 > 0
such that the equivalence of ρ̂3-clusters in a Delone set X implies the regularity
of the set X ⊂ R

3. A proof of the upper bound ρ̂3 ≤ 10R was given in [2, 3].
The long proof starts with a selection of a special finite list of finite subgroups of
O(3). Groups from this list have a chance to occur in Delone sets with equivalent
2R-clusters as local groups Sx(2R). The list of selected groups is provided by the
following Theorem 2. It was discovered by Shtogrin in the late 1970’s but published
only in 2010 [7].

Theorem 2 ([7]) If all 2R-clusters in a Delone set X ∈ R
3 are mutually equivalent,

then the order of any rotational axis of Sx(2R) does not exceed 6.

Recently [8], it was realized for the first time that an important statement about
groups in Delone sets with significant requirements on equivalent clusters may
follow from a certain statement which is true for general Delone sets. Namely, the
following Theorem 3 was proved.

Theorem 3 ([8]) In a Delone set X ⊂ R
3 there is at least one point x with nx ≤ 6,

nx being the maximal order of a rotational axis in the group Sx(2R).

Obviously, Theorem 3 immediately implies Theorem 2. In fact, the subset X6 of all
points in a Delone set X with nx ≤ 6 is always very rich. Due to the following main
result (Theorem 4), the subset X6 is a Delone set itself.

2 Main Result and Conjectures

Theorem 4 (Main Result) Given a Delone set X ⊂ R
3 of type (r, R), let X6 ⊆ X

be the subset of all points x ∈ X such that the maximal order nx of a rotation axis in
Sx(2R) does not exceed 6. Then X6 is a Delone set of a certain type (r ′, R′), where
r ≤ r ′ ≤ R′ ≤ kR for some k which is independent of X.

At the moment, we do not care for the upper bound kR on the parameter R′ of
the X6. So far, it is more important to establish that the subset X6 is a Delone set as
well.

From now on, we will focus on clusters Cx(2R) of radius 2R and their groups
Sx(2R). It is well-known that all 2R-clusters for a Delone setX are full-dimensional
(i.e., the dimension of their convex hulls is d). Hence, the cluster groups Sx(2R)
are necessarily finite. At the same time, 2R is the smallest radius value which
guarantees the finiteness of the group of a 2R-cluster for any Delone set with
parameter R. In other words, for an arbitrary ε > 0, there are a Delone set X
(with parameter R) and its point x ∈ X such that the group Sx(2R − ε) is infinite.

By virtue of the above, we will single out the group Sx(2R) and call it a local
group at x.



Local Groups in Delone Sets 7

Theorem 4 immediately implies Theorem 2 about a Delone set X with mutually
equivalent 2R-clusters. For such a Delone set X, the local groups at all points are
pairwise conjugate and existence of points x with nx ≤ 6 implies ny ≤ 6 for all
points y ∈ X.

Now, among points of X6 ⊆ X we select points x with nx 	= 5, i.e., all points
of X whose local groups contain axes of only ‘crystallographic’ orders 2, 3, 4, or 6.
We call the subset of all such points in X a crystalline kernel of X and denote it
by K .

Conjecture 1 (Crystalline Kernel Conjecture) The crystalline kernelK of a Delone
set X is a Delone subset with some parameter R′ ≤ kR, where k is some constant
which is independent of X.

Let Y denote the subset of all points x ∈ X at which local groups Sx(2R) do
not contain the pentagonal axis. Clearly, K ⊆ Y and if K is a Delone set then Y

is a Delone set, too. Therefore, Conjecture 1, if proven, immediately implies the
following Conjectures 2 and 3.

Conjecture 2 (5-Gonal Symmetry Conjecture) For a given Delone set X ⊂ R
3, the

subset Y of points x whose groups Sx(2R) are free of fivefold axes is also a Delone
set.

Conjecture 2, in turn, implies the following statement which seems to be much
easier to prove.

Conjecture 3 (Weak 5-Gonal Symmetry Conjecture) For a given Delone set
X ⊂ R

3 with mutually equivalent 2R-clusters, the local group Sx(2R) contains
no fivefold axis.

Obviously, these hypotheses relate to a celebrated crystallographic theorem on
the impossibility of the global fivefold symmetry in a three-dimensional lattice.
Conjectures 1–3 significantly reinforce the classical statement on the famous
crystallographic restrictions.

For a three-dimensional lattice, it is well-known that there is no fivefold
symmetry even in the group Sx(r1), where r1 = 2r ≤ 2R is the minimum inter-
point distance in the lattice. In contrast to lattices, in three-dimensional regular
systems the pentagonal symmetry can locally manifest itself on clusters of a certain
radius less than 2R. For instance, there are regular systems where even the group
Sx(r3) contains the fivefold axis but the local group Sx(2R) does not (r3 being the
third-smallest inter-point distance in X: r1 < r2 < r3 < 2R). It is still unknown,
however, whether there are regular systems with fivefold symmetric 2R-clusters.

Since the regularity radius for dimension 3 is not less than 6R [9], there are
non-regular and even non-crystallographic sets among Delone sets X with mutually
equivalent 2R-clusters. Thus, even the weakest Conjecture 3 is relevant for a wide
class of these non-regular sets.



8 N. Dolbilin

3 Proof of the Main Result

Generally speaking, in the local group Sx(2R) ⊂ O(3), x ∈ X, there are several
axes of the maximal order nx . Bearing in mind the well-known list of all finite
subgroups of O(3), we see that more than one axes of the maximal order nx in
Sx(2R) cannot happen provided nx > 5. Let �x be one of these axes. Since
rk(Cx(2R)) = 3, i.e., the convex hull of the 2R-cluster is three-dimensional, there
are necessarily points off the �x in Cx(2R).

Since X6 is a subset of X, the minimal inter-point distance 2r ′ in X6 (in fact,
the infimum of such distances) is not less than 2r = infx,x ′∈X |x, x ′|. In order to
prove that X6 is a Delone set with a certain parameter R′, we will prove that the
distance from a given point z ∈ R

3 to the nearest point of X6 does not exceed R′:
minx∈X′ |z, x| ≤ R′ (due to the interpretation (1) for r and R in Sect. 1). We will
be looking for the point x ∈ X6 nearest to z ∈ R

3 by walking along a special finite
point sequence in X6.

Definition 6 (Off-Axial Chain) A sequence of points [x1, x2, x3, . . . ] ∈ X (finite
or infinite) is called an off-axial chain if for any i = 1, 2, . . . the point xi+1 ∈ X

is the nearest point to xi among all points of X that are off the axis �xi of the
local group Sxi (2R) of the maximal order nxi . If the subgroup of all (orientation-
preserving) rotations of Sxi (2R) is trivial (that is, in the local group at xi there are
no axes through x1), any point of X nearest to xi can be chosen as xi+1.

Note that for any point x1 ∈ X there are off-axial sequences [x1, x2, x3, . . . ].
Lemma 1 Given a Delone setX and an off-axial sequence [x1, x2,. . . , xm,. . . ]⊂X,
assume that xi /∈ X6 for all i ∈ 1,m. Then for all m and all i ∈ 1,m

|xi, xi+1| < 0.868i−1 · 2R and |x1, xm| < 7.6 · 2R = 15.2R. (2)

Proof Let [x1, x2, , . . . , xm, . . . ] be an off-axial chain and assume that it belongs to
X \X6. By construction, the length r∗i of each link xi, xi+1 in this chain is less than
2R. Hence, xi+1 ∈ Cxi (2R) and the rotation gxi ∈ Sxi (2R) can be applied to xi+1,
too.

By assumption, x1 /∈ X6, that is, nx1 ≥ 7. Let x2 be the nearest to x1 point that
is off the axis lx1 and gx1 a rotation around the axis �x1 by 2π/nx1 . Since r∗1 ≤ 2R,
the cluster Cx1(2R) necessarily contains vertices of a regular nx1 -gon P1 which is
generated by the rotation gx1 ∈ Sx1(2R) applied to the point x2. The polygon P1 is
located in a plane orthogonal to the �x1 . The center of P1 is on lx1 (see Fig. 1).

Denote the side-length of P1 by a1. Since the circumradius of P1 does not exceed
r∗x1

and nx1 ≥ 7, we have the following estimate for a1 and r∗x2
:

r∗x2
≤ a1 ≤ 2r∗x1

sin
π

nx1

≤ 2r∗x1
sin

π

7
< 0.868 r∗x1

< 0.868 · 2R. (3)



Local Groups in Delone Sets 9

Fig. 1 Polygon P1 and the
beginning of an off-axial
chain [x1, x2, . . . ]

Assuming now that x2 /∈ X6 (i.e., nx2 ≥ 7), we will construct the next point
x3 in the off-axial chain [x1, x2, . . . ] and obtain upper estimates for rx3 and a2
(inequalities (4) below).

The rotation gx2 about the axis �x2 is assumed to belong to the local group
Sx2(2R). Since x3 ∈ Cx2(2R), gx2 can be applied to the point x3. Hence, the
cluster Cx2(2R) necessarily contains vertices of a regular nx2 -gon P2 generated by
rotation gx2 applied to the point x3. Denote the side-length of P2 by a2 and note that
a2 ≤ r∗2 ≤ 2R.

Point x3, as a vertex of the regular nx2 -gon P2, has two adjacent vertices in P2
at a distance a2 from x3. Vertex x3 and the two adjacent vertices of P2 form a non-
collinear triple. Therefore, no matter how the axis �x2 passes through the point x2,
at least one of the two neighboring points is off this axis. It follows that the distance
r∗x3

from x3 to the nearest point x4 ∈ X \ �x3 does not exceed a2. Since we bear in
mind that, in the set X \ �x2 , there may be points closer to x3 than distance a1 we
have r∗x2

≤ a2 .
Since nx2 ≥ 7, by the same argument as in (3) above, we obtain

r∗x3
< a2 ≤ 2r∗x2

sin
π

nx2

≤ 2r∗x2
sin

π

7
< 0.868 r∗x1

< 0.8682 · 2R. (4)

This can be repeated over and over again. Under condition nxi ≥ 7 for all i ∈ 1,m,
we obtain the off-axial chain [x1, x2, . . . ] for which the sequence of inter-point
distances r∗xi = |xi, xi+1| is dominated by a geometric progression,

r∗xi+1
< 0.868 r∗xi < (0.868)ir∗x1

< (0.868)i · 2R.

From this, we obtain the required inequalities (2). ��



10 N. Dolbilin

Now we are going to complete the Proof of Theorem 4. Given a Delone set X,
Lemma 1 implies that an off-axial chain is finite if nxi ≥ 7. Moreover, the length
m of such an off-axial chain in X is bounded from above by a constant depending
only on R/r . This implies that the chain [x1, x2, . . . ] has points xm with nxm ≤ 6,
i.e., xm ∈ X6. By Lemma 1, the length of a segment satisfies |x1, xm| < 15.2.

Now we set up upper boundedness of the distance from an arbitrary space point z
to the nearest point of the subset X6. Let x1 be the nearest point ofX to z (see Fig. 1)
and xm ∈ X6 (by Lemma 1). Then |z, x1| ≤ R and

min
x∈X6

|z, x| ≤ |z, xm| ≤ |z, x1| + |x1, xm| = 16.2R. (5)

Hence, Theorem 4 is proved with k = 16.2.

4 Concluding Remarks

The upper bound for the parameterR′ established here is far from the optimal. Soon
we will be able to present a sharper bound [10, 11]. The purpose of this paper is to
present the result which is, in our opinion, of a new type.

The result suggests a few conjectures which should be interesting both in itself
and in the context of the theory of quasicrystals. For instance, in Penrose patterns,
in structures of real Shechtman quasicrystals, the centers of 2R-clusters with local
fivefold symmetry constitute a rich Delone subset. At the same time, in these
known quasicrystalline structures, there are also Delone subsets of points with local
crystallographic axes (including identical). However, according to Conjecture 1,
not only in these structures but in any other possible Delone sets, points with local
crystallographic axes inevitably constitute an essential part of the structure. Thus,
an arbitrary Delone set in R

3 has a kind of a crystallographic matrix.

Acknowledgement This work is supported by the Russian Science Foundation under grant
20-11-19998.

References

1. Delone, B.N., Dolbilin, N.P., Shtogrin, M.I., Galiulin, R.V.: A local criterion for regularity of
a system of points. Dokl. Akad. Nauk SSSR 227(1), 19–21 (1976)

2. Dolbilin, N.P.: Delone sets in R
3 with 2R-regularity conditions. Topology and physics. volume

dedicated to the 80th anniversary of academician Sergey Petrovich Novikov. Proc. Steklov Inst.
Math. 302, 161–185 (2018)

3. Dolbilin, N., Garber, A., Leopold, U., Schulte, E., Senechal, M.: On the regularity radius of
Delone sets in R

3. Discrete Comput. Geom. (2021, online). https://doi.org/10.1007/s00454-
021-00292-6

https://doi.org/10.1007/s00454-021-00292-6
https://doi.org/10.1007/s00454-021-00292-6


Local Groups in Delone Sets 11

4. Mackay, A.L.: Generalized crystallography. Comput. Math. Appl. Part B 12(1–2), 21–37
(1986)

5. Dolbilin, N.P., Shtogrin, M.I.: A local criterion for a crystal structure. In: Abstracts of the IXth
All-Union Geometrical Conference (in Russian), p. 99. Kishinev (1988)

6. Dolbilin, N.P., Lagarias, J.C., Senechal, M.: Multiregular point systems. Discrete Comput.
Geom. 20(4), 477–498 (1998)

7. Shtogrin, M.I.: On a bound of the order of a spider’s axis in a locally regular Delone system.
In: Abstracts of the International Conference “Geometry, Topology, Algebra and Number
Theory, Applications” dedicated to the 120th anniversary of B.N. Delone (1890–1980)
(in Russian), Moscow, August 16–20, 2010, pp. 168–169 (2010). http://delone120.mi.ras.ru/
delone120abstracts.pdf

8. Dolbilin, N.P.: From local identity to global order. In: Materials of the XIII Lupanov
International Seminar, MSU, June 17–22, 2019, pp. 13–22 (2019)

9. Baburin, I., Bouniaev, M., Dolbilin, N., Erokhovets, N.Yu., Garber, A., Krivovichev, S.V.,
Schulte, E.: On the origin of crystallinity: a lower bound for the regularity radius of Delone
sets. Acta Crystallogr. Sect. A 74(6), 616–629 (2018)

10. Dolbilin, N.P., Shtogrin, M.I.: On crystallographicity of local groups of Delone sets in
Euclidean plane. Comput. Math. and Math. Physics (submitted)

11. Dolbilin, N.P., Shtogrin, M.I.: Local groups in Delone sets in 3-dimensional Euclidean space
(in preparation)

http://delone120.mi.ras.ru/delone120abstracts.pdf
http://delone120.mi.ras.ru/delone120abstracts.pdf


Manifolds of Triangulations, Braid
Groups of Manifolds, and the Groups �k

n

Denis A. Fedoseev, Vassily O. Manturov, and Igor M. Nikonov

Abstract The spaces of triangulations of a given manifold have been widely
studied. The celebrated theorem of Pachner (Eur J Comb 12:129–145, 1991) says
that any two triangulations of a given manifold can be connected by a sequence
of bistellar moves, or Pachner moves, see also Gelfand et al. (Discriminants,
Resultants, and Multidimensional Determinants. Birkhäuser, Boston (1994)),
Nabutovsky (Comm Pure Appl Math 49:1257–1270, 1996). In the present paper we
consider groups which naturally appear when considering the set of triangulations
with fixed number of simplices of maximal dimension. There are three ways
of introducing this groups: the geometrical one, which depends on the metric,
the topological one, and the combinatorial one. The second one can be thought
of as a “braid group” of the manifold and, by definition, is an invariant of the
topological type of manifold; in a similar way, one can construct the smooth version.
We construct a series of groups �k

n corresponding to Pachner moves of (k − 2)-
dimensional manifolds and construct a canonical map from the braid group of any
k-dimensional manifold to �k

n thus getting topological/smooth invariants of these
manifolds.

D. A. Fedoseev (�)
Moscow State University, Moscow, Russia

Moscow Center for Fundamental and Applied Mathematics, Moscow, Russia

V. O. Manturov
Moscow Institute of Physics and Technology, Moscow, Russia

Kazan Federal University, Kazan, Russia

I. M. Nikonov
Moscow State University, Moscow, Russia

© Springer Nature Switzerland AG 2021
V. A. Garanzha et al. (eds.), Numerical Geometry, Grid Generation and Scientific
Computing, Lecture Notes in Computational Science and Engineering 143,
https://doi.org/10.1007/978-3-030-76798-3_2

13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76798-3_2&domain=pdf
https://doi.org/10.1007/978-3-030-76798-3_2


14 D. A. Fedoseev et al.

1 Introduction

Returning back to 1954, J.W. Milnor in his first paper on link groups [9] formulated
the idea that manifolds which share lots of well known invariants (homotopy type,
etc.) may have different link groups.

In 2015, the second named author [7] defined a series of groups Gk
n for natural

numbers n > k and formulated the following principle:

The Main Principle
If dynamical systems describing the motion of n particles possess a nice
codimension one property depending exactly on k particles, then these
dynamical systems admit a topological invariant valued in Gk

n.

We shall define braids on a manifold as loops in some configuration space related
to the manifold. Following Gk

n-ideology, we mark singular configurations, while
moving along a loop in the configuration space, in order to get a word—an element
of a “Gk

n-like” group �k
n. Singular configurations will arise here from the moments

of transformation of triangulations spanned by the configuration points; and in this
case the good property of codimension one is “k points of the configuration lie on a
sphere of dimension k − 3 and there are no points inside the sphere”.

In the present paper, we shall consider an arbitrary closed d-manifold Md and
for n large enough we shall construct the braid group Bn(M

d) = π1(Cn(M
d))

(see Definitions 1–3), where Cn(M
d) is the space of generic (in some sense)

configurations of points in Md which are dense enough to span a triangulation of
M . This braid group will have a natural map to the group �d+2

n . We shall consider
point configurations for which the Delaunay triangulation exists, see [1].

The idea of this work comes from the second named author, and the third named
author defined the constructions of �k

n, k ≥ 5, given in Sect. 3.

2 The Manifold of Triangulations

In the present section we define three types of manifold of triangulations: a
geometrical one, a topological one, and a combinatorial one. We begin with
geometrical approach, considering a manifold with a Riemannian metric.



Manifolds of Triangulations, Braid Groups of Manifolds, and the Groups �k
n 15

2.1 Geometrical Manifold of Triangulations

Fix a smooth manifold M of dimension d with a Riemannian metric g on it. Let
n  d be a large natural number. Consider the set of all Delaunay triangulations
of M with n vertices x1, . . . , xn (if such triangulations exist). Such Delaunay
triangulations are indexed by sets of vertices, hence, the set of such triangulation
forms a subset of the configuration space, which we denote by C(M, n). The above
subset will be an open (not necessarily connected) manifold of dimension dn: if
some n pairwise distinct points (x1, . . . , xn) form a Delaunay triangulation then
the same is true for any collection of points (x ′

1, . . . , x
′
n) in the neighbourhood

of (x1, . . . , xn). We call a set of points x1, . . . , xn admissible if such a Delaunay
triangulation exists.

Hence, we get a non-compact (open) manifold Mdn
g . We call two sets of points

(x1, . . . , xn) and (x ′
1, . . . , x

′
n) adjacent if there is a path (x1,t , . . . , xn,t ) for t ∈ [0, 1]

such that (x1,0, . . . , xn,0) = (x1, . . . , xn) and (x1,1, . . . , xn,1) = (x ′
1, . . . , x

′
n) and

there exists exactly one t0 ∈ [0, 1] such that when passing through t = t0 the
Delaunay triangulation (x1,t , . . . , xn,t ) undergoes a flip (also called Pachner moves
or bistellar moves).

The flip (Pachner move) corresponds to a position when some d + 2 points
(xi1,t0, . . . , xid+2,t0) belong to the same (d−1)-sphere Sd−1 such that no other point
xj lies inside the ball B bounded by this sphere.

Every manifold of triangulations described above has a natural stratification.
Namely, every point of Mdn

g is given by a collection (x1, . . . , xn). Such a collection

is generic if there is no sphere Sd−1 such that exactly d+ 2 points among xk belong
to this sphere without any points inside the sphere.

We say that a point (x1, . . . , xn) is of codimension 1, if there exists exactly
one sphere with exactly d + 2 points on it and no points inside it; analogously,
codimension 2 strata correspond to either one sphere with d + 3 points or two
spheres containing d + 2 points each.

In codimension 2 this corresponds to either one point of valency five in Voronoï
tiling or two points of valency four in Voronoï tiling.

Hence, we have constructed a stratified (open) manifold Mdn
g . We call it the

geometrical manifold of triangulations.
Note that the manifold Mdn

g may be not connected, i.e., there can exist non-
equivalent triangulations. On the other hand, if one considers the spines of some
manifold, they all can be transformed into each other by Matveev–Piergallini
moves [8].

Denote the connected components of Mdn
g by (Mdn

g )1, . . . , (M
dn
g )p.

Definition 1 The geometrical n-strand braid groups of the manifold Mg are the
fundamental groups

Bg(Mg, n)j = π1((M
dn
g )j ), j = 1, . . . , p.



16 D. A. Fedoseev et al.

2.2 Topological Manifold of Triangulations

The definition of geometrical manifold of triangulations heavily depends on the
metric of the manifold M . For example, if we take M to be the torus glued from the
square 1×10, the combinatorial structure of the manifold of triangulations will differ
from the combinatorial structure for the case of the manifold of triangulations for
the case of the torus glued from the square 1 × 1. Its analogue which is independent
on the metric is the topological manifold of triangulations. We shall construct the
2-frame of this manifold. The idea is to catch all simplicial decompositions which
may eventually happen for the manifold of triangulations for whatever metrics, and
glue them together to get an open (non-compact) manifold.

Consider a topological manifold Md . We consider all Riemannian metrics
gα on this manifold. They give manifolds Mdn

gα
as described in Sect. 2.1, which

are naturally stratified. By a generalised cell of such a stratification we mean a
connected component of the set of generic points of Mdn

gα
.

We say that two generalised cells C1 and C2 are adjacent it there exist two
points, say, x = (x1, . . . , xn) in C1 and x ′ = (x ′

1, . . . , x
′
n) in C2, and a path

xt = (x1(t), . . . , xn(t)), such that xi(0) = xi and xi(1) = x ′(i) such that all points
on this path are generic except for exactly one point, say, corresponding to t = t0,
which belongs to the stratum of codimension 1.

We say that two generic strata of Mdn
gα
,Mdn

gβ
are equivalent if there is a

homeomorphism of Mdn
gα

→ Mdn
gβ

taking one stratum to the other.
A generalised 0-cell of the manifold of triangulations is an equivalence class of

generic strata.
Analogously, we define generalised 1-cells (Fig. 1) of the manifold of triangula-

tions as equivalence classes of pairs of adjacent vertices for different metrics Mdn
gα

.
In a similar manner, we define generalised 2-cells (Fig. 2) as equivalence classes

of discs for metrics Mdn
gα

such that:

1. vertices of the disc are points in 0-strata;
2. edges of the disc connect vertices from adjacent 0-strata; each edge intersects

codimension 1 set exactly in one point;
3. the cycle is spanned by a disc which intersects codimension 2 set exactly at one

point;
4. equivalence is defined by homeomorphism taking disc to disc, edge to an

equivalent edge and vertex to an equivalent vertex and respects the stratification.

C C'
Fig. 1 Codimension 1 corresponds to a flip



Manifolds of Triangulations, Braid Groups of Manifolds, and the Groups �k
n 17

Fig. 2 Codimension 2 corresponds to a pentagon

Thus, we get the 2-frame of the manifold Mdn
top. This manifold might be

disconnected.

Definition 2 The topological n-strand braid groups of the manifold M are the
fundamental groups

Bt (M, n)j = π1((M
dn
top)j ), j = 1, . . . , q.

2.3 Combinatorial Manifold of Triangulations

In Sects. 2.1 and 2.2 we constructed manifolds of triangulations basing on the
notion of Delaunay triangulation. We did not actually discuss the existence of such
triangulation for a given manifold and a given set of points, requesting only that the
number of points is sufficiently large and points are sufficiently dense. It turns out
that this condition is not always sufficient, as shows in [1]. Even for a large number
of points and a Riemannian manifold with metric arbitrary close to Euclidian one,
there may not exist a Delaunay triangulation.

One may impose additional restrictions on the vertex set or on the manifold
itself to overcome this difficulty, but to work with the most general situation we
shall consider the third notion of manifolds of triangulations: the combinatorial



18 D. A. Fedoseev et al.

manifold of triangulations which we denote by Mdn
comb. We construct the 2-frame of

the manifold Mdn
comb which is needed to get the fundamental group.

First, we fix n points on the manifold Md and consider triangulations of the
manifold with vertices in those points. Now we do not restrict ourselves to
Delaunay triangulations, but consider all triangulations of the manifold. Moreover,
we work with equivalence classes of triangulations modulo the following relation:
two triangulations T1, T2 with (fixed) vertices v1, . . . , vn are said to be equivalent
if and only if for each pair (i, j) ∈ n̄ the vertices vi, vj are connected by an
edge of the triangulation T1 if and only if they are connected by an edge of the
triangulation T2. From now on saying “triangulation” we mean such equivalence
class of triangulations. Those triangulations are the vertices (0-cells) of the frame
of the manifold Mdn

comb.
Two triangulations are connected by an edge (a 1-cell of the frame) if and only if

they differ by a flip—a Pachner move [11].
Finally, the 2-cells of the frame are chosen to correspond to the relations of

the groups �k
n (see Sect. 3). There are two types of such relations. One relation

corresponds to the far commutativity, i.e., for any two independent flips α, β (flips
related to different edges) we define a quadrilateral consisting of subsequent flips
corresponding to α, β, α−1, β−1. The other relations correspond to all possible
simplicial polytopes with d + 3 vertices inscribed in the unit sphere. With each
polytope of such sort, we associate a relation of length d + 3 as shown in Sect. 3.

Definition 3 The combinatorial n-strand braid groups of the manifold M are the
fundamental groups

Bc(M, n)j = π1((M
dn
comb)j ), j = 1, . . . , q.

3 The Groups �k
n

In the present section we consider the case of the manifold Md = R
d being a

vector space. The case of Euclidian space gives groups which are important for the
general case. In the present paper we deal mostly with the case of d ≥ 3. The very
interesting initial case d = 2 is studied in [4]. We start with the case d = 3.

3.1 The Case d = 3

Consider a configuration of n points in general position in R
3. We can think of these

points as lying in a fixed tetrahedron ABCD. The points induce a unique Delaunay
triangulation of the tetrahedron: four points form a simplex of the triangulation if
and only if there is no other points inside the sphere circumscribed over these points.
The triangulation transforms when the points move in the space.



Manifolds of Triangulations, Braid Groups of Manifolds, and the Groups �k
n 19

In order to avoid degenerate Delaunay triangulations we exclude configurations
where four points lie on one circle (intersection of a plane and a sphere).

Transformations of the combinatorial structure of the Delaunay triangulation
correspond to configurations of codimension 1 when five points lie on a sphere
which does not contain any points inside. At this moment two simplices of the
triangulation are replaced with three simplices as shown in Fig. 3 (or vice versa).
This transformation is called a 2-3 Pachner move.

To trace the evolution of triangulations that corresponds to a dynamics of the
points we attribute a generator to each Pachner move. For the move that replace
the simplices iklm, jklm with the simplices ijkl, ijkm, ij lm in Fig. 3 we use the
generator aij,klm. Note that (1) we can split the indices into two subsets according
to the combinatorics of the transformation; (2) the generator aij,klm is not expected
to be involutive because it changes the number of simplices of the triangulation.

The relations on generators aij,klm correspond to configurations of codimension
2 which occurs when either (1) six points lie on the same sphere with empty interior,
or (2) there are two spheres with five points on each of them, or (3) five points on
one sphere compose a codimension 1 configuration.

The last case means that the convex hull of the five points has a quadrilateral face
(Fig. 4). The vertices of this face lie on one circle so we exclude this configuration.

i

j

k l m

Fig. 3 A Pachner move

i

k

l

m
n

Fig. 4 A quadrilateral pyramid



20 D. A. Fedoseev et al.

If there are two different spheres with five points on each of them, then there
is no simplex inscribed into the both spheres (otherwise its vertices would belong
to one plane which contains the intersection of the spheres). Hence, the simplices
inscribed into the first spheres and the simplices inscribed into the second one have
no common internal points. For each sphere we can suppose that the faces of the
convex hull of the inscribed simplices has only triangular faces; in the other case,
that would be a configuration of codimension greater than two. So the convex hulls
can have at most one common face, so we can transform them independently. This
gives us a commutation relation

aij,klmai′j ′,k′l′m′ = ai′j ′,k′l′m′aij,klm, (1)

where

∣∣{i, j, k, l,m} ∩ {i ′, j ′, k′, l′,m′}∣∣ < 4, (2)
∣∣{i, j } ∩ {i ′, j ′, k′, l′,m′}∣∣ < 2,

and

∣∣{i ′, j ′} ∩ {i, j, k, l,m}∣∣ < 2. (3)

Consider now the case of six points on one sphere. The convex hull of these
points is a convex polyhedron. The polyhedron must have only triangular faces;
otherwise, there is an additional linear condition (four points lie on one plane) which
raises the codimension beyond 2. There are two such polyhedra (Fig. 5).

For the octahedron on the left we specify the geometrical configuration assuming
that the orthogonal projection along the direction ij maps the points i and j near

i

j

k l
m

n

i

j

k l
mn

Fig. 5 Convex polyhedra with triangular faces and 6 vertices



Manifolds of Triangulations, Braid Groups of Manifolds, and the Groups �k
n 21

k

n

m

l

i=j

4
1

5

3
6

2

akm,ijn aln,ijm

aij,klnaij,klm

aln,ikm akm,jln

Fig. 6 Orthogonal projection and the triangulation graph for the octahedron

the projection of the edge kl and the line ln is higher than km if you look from i to
j (Fig. 6 (left)). Note that we live in R

3 which we may consider as oriented. In this
case we have six triangulations:

1. ijkl, ijkn, ij lm, ijmn;
2. iklm, ikmn, jklm, jkmn;
3. ikln, ilmn, jkln, j lmn;
4. ijkl, ijkm, ij lm, ikmn, jkmn;
5. ijkl, ijkn, ij ln, ilmn, j lmn;
6. ikln, ilmn, jklm, jkmn, klmn.

The first three have four simplices each, the last three have five simplices each.
The Pachner moves between the triangulations are shown in Fig. 6 (right). Thus, we
have the relation

akm,ijna
−1
ij,klmaln,ikma

−1
km,jlnaij,klna

−1
ln,ijm = 1. (4)

In the case of the shifted octahedron (Fig. 5 (right)) we assume the line ln

lies higher than the line km when one looks from the vertex i to the vertex j

(Fig. 7 (left)). Then we have six triangulations:

1. ijkl, ijkm, ijmn;
2. ijkl, ij ln, ilmn, j lmn;
3. ijkm, ijmn, iklm, jklm;
4. ijkn, ikln, ilmn, jkln, j lmn;
5. ijkn, iklm, ikmn, jklm, jkmn;
6. ijkn, ikln, ilmn, jklm, jkmn, klmn.

The Pachner moves between the triangulations are shown in Fig. 7 (right). This
gives us the relation

aln,ijmakn,ij lakm,jln = akm,ij lakn,ijmaln,ikm. (5)



22 D. A. Fedoseev et al.

i=j

4

1

5
6

32
aln,ijm

akn,ijmakn,ijl

akm,jln aln,ikm

akm,ijl

k

lm

n

Fig. 7 Orthogonal projection and the triangulation graph of the shifted octahedron

Definition 4 The group �5
n is the group with generators

{
aij,klm | {i, j, k, l,m} ∈ n̄, |{i, j, k, l,m}| = 5

}

and relations

1. aij,klm = aji,klm = aij,lkm = aij,kml ,
2. aij,klmai′j ′,k′l′m′ = ai′j ′,k′l′m′aij,klm, for

∣∣{i, j } ∩ {i ′, j ′, k′, l′,m′}∣∣ < 2,
∣∣{k, l,m} ∩ {i ′, j ′, k′, l′,m′}∣∣ < 3,

and

∣∣{i ′, j ′} ∩ {i, j, k, l,m}∣∣ < 2,
∣∣{k′, l′,m′} ∩ {i, j, k, l,m}∣∣ < 3

3. akm,ijna
−1
ij,klmaln,ikma

−1
km,jlnaij,klna

−1
ln,ijm = 1 for distinct i, j , k, l, m, n,

4. aln,ijmakn,ij lakm,jln = akm,ij lakn,ijmaln,ikm for distinct i, j , k, l, m, n.

The group �5
n can be used to construct invariants of braids and dynamic

systems. Consider the configuration space C̃n(R
3) which consists of nonplanar

n-tuples (x1, x2, . . . , xn) of points in R
3 such that for all distinct i, j, k, l the points

xi, xj , xk, xl do not lie on the same circle.
We construct a homomorphism from π1(C̃n(R

3)) to �5
n. Let

α = (x1(t), . . . , xn(t)), t ∈ [0, 1],

be a loop in C̃n(R
3). For any t the set x(t) = (x1(t), . . . , xn(t)) determines a

Delaunay triangulation T (t) of the polytope convx(t). If α is in general position
there will be a finite number of moments 0 < t1 < t2 < . . . < tN < 1 when the
combinatorial structure of T (t) changes, and for each p the transformation of the
triangulation at the moment tp will be the Pachner move on simplices with vertices
ip, jp, kp, lp,mp. We assign to this move the generator aipjp,kplpmp or a−1

ipjp,kplpmp

and denote φ(α) = ∏N
p=1 aipjp,kplpmp ∈ �5

n.



Manifolds of Triangulations, Braid Groups of Manifolds, and the Groups �k
n 23

Theorem 1 The homomorphism φ : π1(C̃n(R
3)) → �5

n is well defined.

Proof We need to show that the element φ(α) does not depend on the choice of
the representative α in a given homotopy class. Given a homotopy in general
position α(τ), τ ∈ [0, 1], of loops in C̃n(R

3), the transformations of the words
φ(α(τ)) correspond to point configurations of codimension 2, considered above the
definition of �5

n, and thus are counted by the relations in the group �5
n. Therefore,

the element φ(α(τ)) of the group �5
n remains the same when τ changes. ��

3.2 General Case

The braids in higher dimensional Euclidean spaces were defined by the second
named author in [5, 6]. For our needs we modify that definition slightly.

Consider the configuration space C̃n(R
k−2), 4 ≤ k ≤ n, consisting of n-point

configurations x = (x1, x2, . . . , xn) in R
k−2, such that dim conv x = k−2 and there

are no k− 1 points which lie on one (k− 4)-dimensional sphere (the intersection of
a (k − 3)-sphere and a hyperplane in in R

k−2).
A configuration x = (x1, x2, . . . , xn) ∈ C̃n(R

k−2) determines a Delaunay
triangulation of convx which is unique when x is in general position. If the vertices
xi1, . . . , xik−1 span a simplex of the Delaunay triangulation then the interior of
the circumscribed sphere over these points does not contain other points of the
configuration. The inverse statement is true when x is generic. The condition that
no k − 1 points lie on one (k − 4)-dimensional sphere ensures that there are no
degenerate simplices in the Delaunay triangulation.

Let α = (x1(t), . . . , xn(t)), t ∈ [0, 1], be a loop in C̃n(R
k−2). For any t the

configuration x(t) = (x1(t), . . . , xn(t)) determines a Delaunay triangulation T (t)

of the polytope convx(t). If α is generic then there will be a finite number of
moments 0 < t1 < t2 < . . . < tL < 1 when the combinatorial structure of T (t)
changes. We shall call such configurations singular.

For each singular configuration x(ti ), either one simplex degenerates and
disappears on the boundary ∂ conv x(t) or the Delaunay triangulation is not unique.
That means that there is a sphere in R

k−2 which contains k points of x on it and no
points of x inside. Assuming x is generic, the span of these k points is a simplicial
polytope. Below we shall count only the latter type of singular configurations.

The simplicial polytopes in R
k−2 with k vertices are described in [3]. Each of

them is the join �P ∗ �Q of simplices �P = conv(xp1, . . . , xpl ) of dimension
l − 1 ≥ 1 and �Q = conv(xq1, . . . , xqk−l ) of dimension k − l − 1 ≥ 1 such that the
intersection relint(xp1, . . . , xpl ) ∩ relint(xq1, . . . , xqk−l ) consists of one point.

We recall that the join of two sets X,Y ⊂ R
m is defined as

X ∗ Y = {λx + (1 − λ)y | x ∈ X, y ∈ Y, λ ∈ [0, 1] }



24 D. A. Fedoseev et al.

and the relative interior of a finite set X ⊂ R
m is defined as

relintX =
{∑

x∈X
λxx | ∀x λx > 0,

∑
x∈X

λx = 1

}
.

The polytope �P ∗�Q has two triangulations:

TP = {
xP∪Q \ {xp}

}
p∈P = {

xp1 · · · xpi−1xpi+1 · · · xplxq1 · · · xqk−l
}l
i=1

and

TQ = {
xP∪Q \ {xq}

}
q∈Q = {

xp1 · · · xplxq1 · · · xqi−1xqi+1 · · · xqk−l
}k−l
i=1.

Here P = {p1, . . . , pl}, Q = {q1, . . . , qk−l} and xJ = {xj }j∈J for any
J ⊂ {1, . . . , n}.

The condition relint(xP ) ∩ relint(xQ) = {z} implies P ∩ Q = ∅. Thus, when
the configuration x(t) goes over a singular value ti , i = 1, . . . , L, in the Delaunay
triangulation simplices TPi are replaced by simplices TQi for some subsets Pi,Qi ⊂
{1, . . . , n}, Pi∩Qi = ∅, |Pi |, |Qi | ≥ 2, |Pi ∪Qi | = k. This transformation is called
a Pachner move. The pair of subsets (Pi,Qi) we call the type of the Pachner move.
We assign to the transformation the letter aPi,Qi .

Hence, the loop α produces a word

�(α) =
L∏
i=1

aPi,Qi (6)

in the alphabet

Ak
n = {

aP,Q | P,Q ⊂ {1, . . . , n}, P ∩Q = ∅, |P ∪Q| = k, |P |, |Q| ≥ 2
}
.

Now let us consider a generic homotopy αs, s ∈ [0, 1] between two generic loops
α0 and α1. A loop αs = {x(s, t)}t∈[0,1] can contain a configuration of codimension
2. This means that for some t the configuration x(s, t) has two different k-tuples of
points, such that each of them lies on a sphere whose interior contains no points of
x(s, t). If these spheres do not coincide then their intersection contains at most k−2
points (the intersection can not contain k − 1 points because x(s, t) ∈ C̃n(R

k−2)).
Hence, the simplices involved in one Pachner move can not be involved in the other
one, so the Pachner moves can be fulfilled in any order.

If the k-tuples of points lie on one sphere, there is a sphere with k + 1 points of
x(s, t) on it and its interior contains no points of x(s, t). These k + 1 points span a
simplicial polytope in R

k−2. Such polytopes are described in [3]. The description
uses the notion of Gale transform.



Manifolds of Triangulations, Braid Groups of Manifolds, and the Groups �k
n 25

Let X = {x1, . . . , xn} be a set of n points in R
d such that dim convX = d . Then

n ≥ d + 1. Let xi = (x1i, . . . , xdi) ∈ R
d , i = 1, . . . , n, be the coordinates of the

points of X. The matrix

M =

⎛
⎜⎜⎜⎜⎜⎝

x11 x12 · · · x1n

x21 x22 · · · x2n

· · · · · · · · · · · ·
xd1 xd2 · · · xdn
1 1 · · · 1

⎞
⎟⎟⎟⎟⎟⎠

has rank d + 1. Then the dimension of the space kerM = { b ∈ R
n | Mb = 0 }

of dependencies between columns of M is equal to n − (d + 1). Take any basis
bj = (bj1, bj2, . . . bjn), j = 1, . . . , n− d − 1, of kerM and write it in matrix form

B =
⎛
⎝

b11 · · · b1n

· · · · · · · · ·
bn−d−1,1 · · · bn−d−1,n

⎞
⎠ . (7)

The columns of the matrix B form a set Y = y1, . . . , yn, yi = (b1i , . . . , bn−d−1,i),
in R

n−d−1. The set Y is called a Gale transform of the point set X. Gale transforms
which correspond to different bases of kerM are linearly equivalent. The vectors of
the Gale transform Y may coincide.

Let Y = y1, . . . , yn be a Gale transform of X. The set

Ȳ = {ȳ1, . . . , ȳn}, ȳi =
{

yi‖yi‖ , yi 	= 0,

0, yi = 0

is called a Gale diagram of the point set X. It is a subset of Sn−d−2 ∪ {0}.
Denote N = {1, . . . , n}. Two subsets Ȳ = {ȳ1, . . . , ȳn} and Ȳ ′ = {ȳ ′

1, . . . , ȳ
′
n}

in Sn−d−2 ∪ {0} are called equivalent if there is a permutation σ of N such that for
any J ⊂ N

0 ∈ relint ȲJ ⇐⇒ 0 ∈ relint Ȳ ′
σ(J ).

Here we denote ȲJ = {ȳi}i∈J and Ȳ ′
J = {ȳ ′

i}i∈J .
The properties of Gale diagrams can be summarized as follows [3].

Theorem 2

1. Let X be a set of n points which are vertices of some polytope P in R
d and Ȳ be

its Gale diagram. Then the set of indices J ⊂ N defines a face of P if and only
if 0 ∈ relintYN\J .



26 D. A. Fedoseev et al.

2. Let X and X′ be sets of vertices of polytopes P and P ′, |X| = ∣∣X′∣∣, and Ȳ and
Ȳ ′ be their Gale diagrams. Then P and P ′ are combinatorially equivalent if and
only if Ȳ and Ȳ ′ are equivalent.

3. For any n-point set Ȳ ∈ Sn−d−2 ∪{0} such that Ȳ spans Rn−d−1 and 0 lies in the
interior of conv Ȳ , there is an n-point set X in R

d such that Ȳ is a Gale diagram
of X.

The theorem implies (see [3]) that simplicial polytopes with k + 1 vertices in
R
k−2 are in a bijection with standard Gale diagrams in R

2 (defined uniquely up to
isometries of the plane).

A standard Gale diagram of order l = k+1 is a subset Ȳ ,
∣∣Ȳ ∣∣ = l, of the vertices

set {eπ ip/l} 2l−1
p=0 of the regular 2l-gon inscribed in the unit circle S1, such that:

1. any diameter of S1 contains at most one point of Ȳ ;
2. for any diameter of S1, any open half-plane determined by it contains at least two

points of Ȳ .

The first property means the corresponding polytope is simplicial, the second
means any of the k + 1 vertices of the polytope is a face.

The number cl of standard Gale diagrams of order l is equal to

cl = 2[(l−3)/2] −
[
l + 1

4

]
+ 1

4l

∑

h : 2�h|l
ϕ(h)× 2l/h,

where l = 2a0
∏t

i=1 p
ai
i is the prime decomposition of l, and ϕ is Euler’s function.

For small l the numbers are c5 = 1, c6 = 2, c7 = 5, see Fig. 8.
Let us describe the triangulations of the simplicial polytopes with k + 1 vertices

in R
k−2.

= 5l l

l

= 6

= 7

Fig. 8 Standard Gale diagrams of small order



Manifolds of Triangulations, Braid Groups of Manifolds, and the Groups �k
n 27

Let X = {x1, . . . , xn} be a subset in R
d , so xi = (xi1, . . . , xid ), i = 1, . . . , n.

Let P = convX be the convex hull of X, assume that dimP = d . A triangulation
T of the polytope P with vertices in X is called regular if there is a height function
h : X → R such that T is the projection of the lower convex of the lifting Xh =
{xh1 , . . . , xhn } ⊂ R

d+1, where xhi = (xi, h(xi)). This means that a set of indices
J ⊂ {1, . . . , n} determines a face of T if and only if there exists a linear functional
φ on R

d+1 such that φ(0, . . . , 0, 1) > 0 and J = {
i | φ(xhi ) = minxh∈Xh φ(xh)

}
.

In case T is regular we write T = T (X, h). Any generic height function induces a
regular triangulation.

The Delaunay triangulation of X is regular with the height function h : Rd → R,
h(z) = ‖z‖2 = ∑d

i=1 z
2
i if z = (z1, . . . , zd ) ∈ R

d .
A height function h : X → R can be regarded as a vector h = (h1, . . . , hn) ∈ R

n

where hi = h(xi). Denote β(h) = Bh ∈ R
n−d−1 where B is the matrix (7) used

to define a Gale transform of X. Let Ȳ = {ȳ1, . . . , ȳn} be a Gale diagram of X.
Convex cones generated by the subsets of Ȳ split the space R

n−d−1 into a union of
conic cells. A relation between the triangulation T (X, h) and the Gale diagram Ȳ

can be described as follows.

Theorem 3

1. If T (X, h) is a regular triangulation of X then β(h) belongs to a conic cell of
maximal dimension in the splitting of Rn−d−1 induced by Ȳ .

2. Let J ⊂ N = {1, . . . , n}. The set XJ spans a cells of the triangulation T (X, h)
if and only if β(h) ∈ concone(ȲN\J ), where concone(XN\J ) is the convex cone
spanned by the set ȲN\J .

Let P be a simplicial polytopes with l = k + 1 vertices in R
l−3 and Ȳ =

{ȳ1, . . . , ȳl} be the corresponding standard Gale diagram. By Theorem 3 there are
l different regular triangulation which correspond to open sectors between the rays
spanned by the vectors of Ȳ . The graph whose vertices are combinatorial classes of
triangulations of P and the edges are Pachner moves, is a cycle. Let us find which
Pachner moves appear in this cycle.

We change the order of vertices of P (and, hence, the order of the points of Ȳ ) so
that the points ȳ1, . . . , ȳl appear in this sequence when one goes counterclockwise
on the unit circle. For each i denote RȲ (i) (respectively,LȲ (i)) be the set of indices
j of vectors ȳj that lie in the right (respectively, left) open half-plane incident to
the oriented line spanned by the vector ȳi . Then the Pachner move which occurs
when the vector β(h) passes ȳi from right to left, will be marked with the letter
aRȲ (i),LȲ (i)

∈ Al−1
l . The Pachner moves of the whole cycle of triangulation give

the word wȲ = ∏l
i=1 aR(i),L(i).

Thus, we have the relation wȲ = 1 that we should impose in order to make the
words like �(α) independent on resolutions of configurations of codimension 2.



28 D. A. Fedoseev et al.

Fig. 9 Standard Gale
diagram of order 5

1

2

3

4

5

Example 1 Consider the standard Gale diagram of order 5 (Fig. 9). Then we have
R(1) = { 4, 5 }, L(1) = { 2, 3 }, R(2) = { 1, 5 }, L(2) = { 3, 4 } etc. The
corresponding word is equal to

w = a45,23a15,34a12,45a23,15a34,12.

We can give now the definition of �k
n groups.

Definition 5 Let 4 ≤ k ≤ n. The group �k
n is the group with the generators

aP,Q, P,Q ⊂ {1, . . . , n}, P ∩Q = ∅, |P ∪Q| = k, |P |, |Q| ≥ 2,

and the relations:

1. aQ,P = a−1
P,Q;

2. far commutativity: aP,QaP ′,Q′ = aP ′,Q′aP,Q for each generators aP,Q, aP ′,Q′
such that

∣∣P ∩ (P ′ ∪Q′)
∣∣ < |P |, ∣∣Q ∩ (P ′ ∪Q′)

∣∣ < |Q|,
∣∣P ′ ∩ (P ∪Q)

∣∣ < ∣∣P ′∣∣, ∣∣Q′ ∩ (P ∪Q)
∣∣ < ∣∣Q′∣∣;

3. (k + 1)-gon relations: for any standard Gale diagram Ȳ of order k + 1 and any
subset M = {m1, . . . ,mk+1} ⊂ {1, . . . , n}

k+1∏
i=1

aMR(Ȳ ,i),ML(Ȳ ,i)
= 1,

where MR(Ȳ , i) = {mj }j∈RȲ (i)
, ML(Ȳ , i) = {mj }j∈LȲ (i)

.

Example 2 Let us write the (k + 1)-gon relations in �k
n for small k.

The group �4
n has one pentagon relation

am4m5,m2m3am1m5,m3m4am1m2,m4m5am2m3,m1m5am3m4,m1m2 = 1.



Manifolds of Triangulations, Braid Groups of Manifolds, and the Groups �k
n 29

Our definition of �4
n differs slightly from the definition of these groups in [4]. To

obtain the groups defined in [4] we should add relations a2
m1m2,m3m4

= 1 and

am1m2,m3m4am1m2,m5m6 = am1m2,m5m6am1m2,m3m4,

am1m2,m3m4am1m5,m2m6 = am1m5,m2m6am1m2,m3m4,

where |{m3,m4} ∩ {m5,m6}| ≤ 1.
The group �5

n has two hexagon relations

am5m6,m2m3m4am1m5m6,m3m4am1m2,m4m5m6am1m2m3,m5m6 ·
am3m4,m1m2m6am3m4m5,m1m2 = 1,

am5m6,m2m3m4am1m5m6,m3m4am1m2m6,m4m5am1m2m3,m5m6 ·
am3m4,m1m2m6am4m5,m1m2m3 = 1,

as we have seen in the previous subsection.

Theorem 4 Formula (6) defines a correct homomorphism

� : π1(C̃n(R
k−2)) → �k

n.

Proof We need to show that the element �(α) does not depend on the choice of the
representative α in a given homotopy class. Given a generic homotopy α(τ), τ ∈
[0, 1], of loops in C̃n(R

k−2), the transformations of the words �(α(τ)) correspond
to point configurations of codimension 2, considered above the definition of �k

n, and
thus are counted by the relations in the group �k

n. Therefore, the element �(α(τ))
of the group �k

n remains the same when τ changes. ��

4 Main Results

4.1 �k
n-Valued Invariant of Braids on Manifolds

Theorem 5 Let (Md, g) be a manifold with a Riemannian metric and B(Mg, n)j ,
j = 1, . . . , p be its geometrical braid groups. Then for any j there is a well defined
mapping B(Mg, n)j → �d+2

n .

Proof By Definition 1, the space of geometrical braids on the manifold Md is the
fundamental group of the manifold of triangulations: B(Mg, n)j = π1((M

dn
g )j ).

Hence, we need to construct a mapping from homotopy classes of loops in (Mdn
g )j

into the group �d+2
n .



30 D. A. Fedoseev et al.

Let us fix a number j and consider a loop α = (x1(t), . . . , xn(t)), t ∈ [0, 1] in
(Mdn

g )j , where for each i = 1, . . . , n the point xi(t) ∈ Md . For each t the collection
of points (x1(t), . . . , xn(t)) defines a Delaunay triangulation T (t) of the manifold
M . If the loop α is in general position, then there is a finite number of moments
0 < t1 < . . . < tN < 1 when the combinatorial structure of the triangulation T (t)

changes. Each of those moments tp corresponds to a codimension 1 configuration
of points of the manifold Md , and at each of them the triangulation undergoes some
Pachner move, which transforms the triagulation simplices TPp into simplices TQp ,
where Pp,Qp ⊂ {1, . . . , n}, Pp∩Qp = ∅,

∣∣Pp
∣∣, ∣∣Qp

∣∣ ≥ 2 and
∣∣Pp ∪Qp

∣∣ = d+2.
To each of those moments we attribute the element aPp,Qp of the group �d+2

n .

Thus a loop α produces a word �(α) = ∏N
p=1 aPp,Qp .

Now we need to prove that this mapping� : π((Mdn
g )j ) → �d+2

n is well defined:
the element �(α) does not depend on the choice of a representative in a given
homotopy class.

Let α(τ) be a generic homotopy, where τ ∈ [0, 1] and α(0) = α. With it
we associate a family of words �(α(τ)) ∈ �d+2

n . Note that the word �(α(τ))

changes whenever the loop passes through a point of codimension 2 in the manifold
of triangulations Mdn

g . But such configurations of points in Md exactly correspond

to the relations of the group �d+2
n . Therefore the element �(α(τ)) of the group

�d+2
n remains the same when τ changes. ��

Quite analogously, we get the following

Theorem 6 Let Md be a smooth manifold of dimension d and B(M, n)j , j =
1, . . . , q , be its topological braid groups. Then for any j there is a well defined
mapping B(M, n)j → �d+2

n .

Proof By Definition 2, the topological braids group on the manifold Md is the
fundamental group of the manifold of triangulations: B(M, n)j = π1((M

dn
top)j ).

Consider a loop γ in the manifold Mdn
top and let γ be in general position. There is

a finite number of intersections x1, . . . , xk between the loop γ and the codimension
1 stratum of the manifold of triangulations, where the triangulation undergoes a flip.
Consider an intersection point xi and its neighbourhood U . The intersection point
xi is a set of points x1,i, . . . , xn,i ∈ M .

Consider two metrics gα and gβ on the manifold M , yielding a structure of
geometrical manifold of triangulations on the neighbourhood U . Let us denote
the neighbourhood U equipped with the corresponding metric by Ugα and Ugβ ,
respectively. As it was described in Sect. 2, equivalence of strata of the manifolds
of triangulation Mdn

gα
and Mdn

gβ
is defined by an existence of a homeomorphism

h : Mdn
gα

→ Mdn
gβ

with certain properties.

The arc l = γ ∩U ⊂ Mdn
top gives rise to an arc l1 ⊂ Ugα and an arc l2 ⊂ Ugβ , and

l2 = h(l1) where h is the homeomorphism from the definition of cell equivalence.
Likewise, the intersection point Xi ∈ U gives a point X′

i ∈ Ugα and a point X′′
i ∈

Ugβ . Naturally, those points are the intersections between the codimension 1 stratum
of the corresponding manifold and the arcs l1, l2, respectively.



Manifolds of Triangulations, Braid Groups of Manifolds, and the Groups �k
n 31

At the point xi a certain Pachner move occurs. The type of this move is
independent of the choice of metric on the manifold. Therefore, the Pachner
moves occurring in the points x′

i , x
′′
i of the manifolds Ugα ,Ugβ are one and the

same. Choosing the numbering of the n points which form the vertices of the
triangulations, we hence obtain the same generator of the group�d+2

n corresponding
to this intersection point. Therefore the letter which appears in the word �(γ ) does
not depend on the choice of the metric.

Therefore the mapping � is defined on the fundamental group of the topological
manifold of triangulations Mdn

top and due to Theorem 5 it does not depend on the
choice of a representative in the homotopy class of a loop. Hence, it is a well
defined mapping from B(M, n)j to the group �d+2

n . ��
Hence, we get invariants of smooth metrical manifolds and of topological

manifolds: these invariants are the corresponding images of the fundamental group
of the manifold of triangulations in the corresponding group �k

n.

4.2 Triangulations of Polyhedra and Groups �k
n

Triangulations of a given convex polyhedra are well studied. If we deal with stable
triangulations, the set of those form a simplicial complex [2]. In the present section
we show that they can be treated as elements of a certain group provided that some
fixed triangulation plays the role of the unit element.

Let x = {x1, . . . , xn} ⊂ R
d , n > d , be the vertex set of a polytope W in general

position, namely, any d + 1 points of x do not belong to one hyperplane. Let T be
the set of regular triangulations of W (see page 27). We can consider T as a graph
whose vertices are regular triangulations and whose edges are Pachner moves. This
graph is connected, see [8].

Choose a regular triangulation T0 ∈ T . For any other triangulation T ∈ T there
is a path γ = e1e2 . . . el from T0 to T where each edge ei is a Pachner move of
type (Pi,Qi), see page 24. We assign the word ϕ(T ) = ∏l

i=1 aPi,Qi ∈ �d+2
n to the

triangulation T .
Let Cay(�d+2

n ) be the Cayley graph of the group �d+2
n corresponding to the

group presentation given in Definition 5.

Theorem 7 The correspondence T �→ ϕ(T ) defines an embedding of the graph T
into the graph Cay(�d+2

n ).

Proof We must show first that the map ϕ is well-defined, i.e., that the element ϕ(T )
does not depend on the choice of a path connecting T0 with T .

It follows from the theory of I.M. Gelfand, M.M. Kapranov, and A.V. Zelevin-
sky [2, Chapter 7] (see also [10]) that the graphT is the edge graph of some polytope
�(W) (called the secondary polytope of W ), see Fig. 10. The faces of �(W)

correspond to triangulations which coincide everywhere except for divisions of two
subpolytopes with d + 2 vertices or a subpolytope with d + 3 vertices in W . Hence,



32 D. A. Fedoseev et al.

Fig. 10 A pentagon and its secondary polytope

the faces give exactly the relations in �d+2
n which appear in Definition 5. Thus, two

different paths γ and γ ′, connecting T0 with some triangulation T , produce words
ϕ(γ ) and ϕ(γ ′) which differ by relations in �d+2

n , so ϕ(γ ) = ϕ(γ ′) ∈ �d+2
n .

In order to proof that ϕ is injective we construct a left inverse map to it. A
formal l-dimensional simplex is any subset P ⊂ {1, . . . , n}, |P | = l + 1. Let
Cl(n) be the linear space over Z2 whose basis consists of all the l-dimensional

formal simplices. We can identifyCl(n) � Z
( n
l+1)

2 with the space of l-chains of the
simplicial complex for a (n − 1)-dimensional simplex whose vertices are marked
with numbers 1, 2, . . . , n. The differential ∂ : Cl(n) → Cl−1(n) of this complex is
defined by the formula ∂(P ) = ∑

p∈P P \ {p}.
Any triangulation T of W defines a d-chain c(T ) = ∑

P : xP∈T P such that
∂c(T ) = ∂W where ∂W is the formal sum of (d − 1)-dimensional faces forming
the boundary of the polytope W . The triangulation T can be restored from its chain
c(T ) as the support of the chain. Thus, we can identify triangulations of W with a
subset of Cd(n).

If a triangulation T ′ differs form a triangulation T by applying a Pachner move of
type (P,Q) then c(T ′)− c(T ) = ∂(P ∪Q). Define a homomorphismψ : �d+2

n →
Cd(n) by the formula

ψ(aP,Q) = ∂(P ∪Q) =
∑

i∈P∪Q
(P ∪Q) \ {i}.

The map ψ annihilates the relations of �d+2
n because they come from cycles of

triangulations of some polytope with d + 3 vertices (or two polytopes with d + 2
vertices). The image of a relation is equal to the difference of the chains for the final
triangulation and the initial one. But these triangulations coincide so the image is

zero. Thus, ψ defines a correct homomorphism from �d+2
n to Cd(n) � Z

( n
d+1)

2 .



Manifolds of Triangulations, Braid Groups of Manifolds, and the Groups �k
n 33

Fig. 11 Associahedron K5

For any regular triangulation T consider a path γ = e1e2 . . . el which connects
T0 with T in T . Any edge ei of γ corresponds to a Pachner move of type (Pi,Qi).
Then

c(T )− c(T0) =
l∑

i=1

∂(Pi ∪Qi) =
l∑

i=1

ψ(aPi ,Qi ) = ψ(ϕ(T )).

Thus, the element ϕ(T ) determines the chain c(T ), hence, it uniquely determines
the triangulation T . ��
Example 3 Let W ⊂ R

2 be a convex n-gon. Its secondary polytope �(W) is
the associahedron (Stasheff polytope) Kn−1 [12], see Fig. 11. Thus, we have the
following statement:

Corollary 1 The graph Cay(�4
n) contains a subgraph isomorphic to the edge

graph of the associahedron Kn−1.

5 Other Developments: The Groups �̃k
n

In the present section we provide constructions resembling the �k
n groups but

different in some aspects, which prove useful in certain situations where the �k
n

groups are not sufficient. Geometrically speaking, here we consider oriented
triangulations. Therefore, the indices of the generators of the groups are not
independent and do not freely commute as was seen, for example, in the groups
�5
n (see Definition 4, first relation).



34 D. A. Fedoseev et al.

To be precise, we introduce the following:

Definition 6 Let 5 ≤ k ≤ n. The group �̃k
n is the group with the generators

{
aP,Q | P,Q—cyclically ordered subsets of {1, . . . , n},

P ∩Q = ∅, |P ∪Q| = k, |P |, |Q| ≥ 2
}
,

and the following relations:

1, 2, 3. the relations 1, 2, 3 from Definition 5;
4. aQ,P = aQ′,P ′ , whereQ = Q′, P = P ′ as unordered sets, and as cyclically

ordered sets Q differs from Q′ by one transposition and P differs from P ′
by one transposition.

These groups have the same connection to geometry and dynamics as the groups
�k
n defined above. To illustrate that, consider the following dynamical system.

Example 4 Let us have a dynamical system describing a movement of a point
around the configuration of four points on one circle, see Fig. 12. Such system
may be presented as the word in the group �̃5

6

w = a35,164a
−1
46,253a46,135a

−1
35,246.

1

2
3

45

6

1

2

3

45

6

1

2

3

45

6

1

2

3

45

6

a35,164

a 1
46,253

a46,135

a 1 ––
35,246

Fig. 12 A movement of a point around the configuration of four points on one circle



Manifolds of Triangulations, Braid Groups of Manifolds, and the Groups �k
n 35

We can show that φ(α) is nontrivial in the abelianisation (�̃5
6)ab = �̃5

6

/[�̃5
6, �̃

5
6 ]

of the group �̃5
6. Computer calculations show that the group (�̃5

6)ab can be presented
as the factor of a free commutative group with 120 generators modulo 2×6! = 1440
relations that span a space of rank 90 if we work over Z2. Adding the element w
to the relations increases the rank to 91, so the element w is nontrivial in (�̃5

6)ab,
therefore it is nontrivial in �̃5

6.
Hence, we have encountered a peculiar new effect in the behaviour of �̃5

n which
is not the case of Gk

n. Certainly, the abelianisation of Gk
n is non-trivial and very easy

to calculate since any generator enters each relation evenly many times. However,
this happens not only for relations but for any words which come from braids. Thus,
any abelianisations are trivial in interesting cases. For �̃k

n, it is an interesting new
phenomenon, and the invariants we have demonstrated so far are just the tip of the
iceberg to be investigated further.

Note that both for the groups�k
n and �̃k

n we have many invariants since the corank
of those groups is big.

Acknowledgments The authors are very grateful to S. Kim for extremely useful discussions and
comments.

The first named author was supported by the Russian Foundation for Basic Research (grant
No. 19-01-00775-a, grant No. 20-51-53022). The second named author was supported by the
Russian Foundation for Basic Research (grant No. 20-51-53022, grant No. 19-51-51004). The
third named author was supported by the Russian Foundation for Basic Research (grant No. 18-
01-00398-a, grant No. 19-51-51004). The work of V.O.M. was also funded by the development
program of the Regional Scientific and Educational Mathematical Center of the Volga Federal
District, agreement No. 075-02-2020.

References

1. Boissonnat, J.D., Dyer, R., Ghosh, A., Martynchuk, N.: An obstruction to Delaunay
triangulations in Riemannian manifolds. Discrete Comput. Geom. 59(1), 226–237 (2018)

2. Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants, and Multidimen-
sional Determinants. Birkhäuser, Boston (1994)

3. Grünbaum, B.: Convex Polytopes, 2nd edn. Spriger, Berlin (2003)
4. Kim, S., Manturov, V.O.: Artin’s braids, Braids for three space, and groups �4

n and Gk
n (2019).

arXiv:1902.11238
5. Manturov, V.O.: The Groups Gk

n and fundamental groups of configuration spaces. J. Knot
Theory Ramifications 26(6), 1742004 (2017)

6. Manturov, V.O.: The groups Gk
k+1 and fundamental groups of configuration spaces. In:

Zelmanov, E.I., Shum, K.P., Kolesnikov, P.S. (eds.) Proceedings of the 3rd International
Congress on Algebra and Combinatorics, pp. 310–323. World Scientific, Singapore (2019)

7. Manturov, V.O., Nikonov, I.M.: On braids and groups Gk
n. J. Knot Theory Ramifications

24(13), 1541009 (2015)
8. Matveev, S.V.: Algorithmic Topology and Classification of 3-Manifolds. Springer, Berlin

(2007)



36 D. A. Fedoseev et al.

9. Milnor, J.: Link groups. Ann. Math. 59(2), 177–195 (1954)
10. Nabutovsky, A.: Fundamental group and contractible closed geodesics. Comm. Pure Appl.

Math. 49(12), 1257–1270 (1996)
11. Pachner, U.: P.L. homeomorphic manifolds are equivalent by elementary shellings. Eur. J.

Comb. 12(2), 129–145 (1991)
12. Stasheff, J.D.: Homotopy associativity of H-spaces. I, II. Trans. Amer. Math. Soc. 108, 293–

312 (1963)



A Proof of the Invariant-Based Formula
for the Linking Number
and Its Asymptotic Behaviour

Matt Bright, Olga Anosova, and Vitaliy Kurlin

Abstract In 1833 Gauss defined the linking number of two disjoint curves in
3-space. For open curves this double integral over the parameterised curves
is real-valued and invariant modulo rigid motions or isometries that preserve
distances between points, and has been recently used in the elucidation of molecular
structures. In 1976 Banchoff geometrically interpreted the linking number between
two line segments. An explicit analytic formula based on this interpretation was
given in 2000 without proof in terms of 6 isometry invariants: the distance and
angle between the segments and 4 coordinates specifying their relative positions.
We give a detailed proof of this formula and describe its asymptotic behaviour that
wasn’t previously studied.

1 The Gauss Integral for the Linking Number of Curves

For any vectors u, v,w ∈ R
3, the triple product is (u, v,w) = (u× v) ·w.

Definition 1 (Gauss Integral for the Linking Number) For piecewise-smooth
curves γ1, γ2 : [0, 1] → R

3, the linking number can be defined as the Gauss
integral [7]

lk(γ1, γ2) = 1

4π

1∫

0

1∫

0

(γ̇1(t), γ̇2(s), γ1(t)− γ2(s))

|γ1(t)− γ2(s)|3
dt ds , (1)

where γ̇1(t), γ̇2(s) are the vector derivatives of the 1-variable functions γ1(t), γ2(s).

M. Bright · O. Anosova · V. Kurlin (�)
University of Liverpool, Liverpool, UK
e-mail: sgmbrigh@liverpool.ac.uk

© Springer Nature Switzerland AG 2021
V. A. Garanzha et al. (eds.), Numerical Geometry, Grid Generation and Scientific
Computing, Lecture Notes in Computational Science and Engineering 143,
https://doi.org/10.1007/978-3-030-76798-3_3

37

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76798-3_3&domain=pdf
mailto:sgmbrigh@liverpool.ac.uk
https://doi.org/10.1007/978-3-030-76798-3_3


38 M. Bright et al.

The formula in Definition 1 gives an integer number for any closed disjoint
curves γ1, γ2 due to its interpretation as the degree of the Gauss map

�(t, s) = γ1(t)− γ2(s)

|γ1(t)− γ2(s)| : S
1 × S1 → S2, i.e., deg� = area(�(S1 × S1))

area(S2)
,

where the area of the unit sphere is area(S2) = 4π . This integer degree is the linking
number of the 2-component link γ1 � γ2 ⊂ R

3 formed by the two closed curves.
Invariance modulo continuous deformation of R3 follows easily for closed curves—
indeed, the function under the Gauss integral in Definition 1, and hence the integral
itself, varies continuously under perturbations of the curves γ1, γ2. This should keep
any integer value constant.

For open curves γ1, γ2, the Gauss integral gives a real but not necessarily
integer value, which remains invariant under rigid motions or orientation-preserving
isometries, see Theorem 1. In R

3 with the Euclidean metric these are rotations,
translations and reflections. The isometry invariance of the real-valued linking
number for open curves has found applications in the study of molecules [1].

Any smooth curve can be well-approximated by a polygonal line, so the
computation of the linking number reduces to a sum over line segments L1, L2.
In 1976 Banchoff [3] has lk(L1, L2) in terms of the endpoints of each segment, see
details of this and other past work in Sect. 3.

In 2000 Klenin and Langowski [8] proposed a formula for the linking number
lk(L1, L2) of two straight line segments in terms of 6 isometry invariants of L1, L2,
referring to a previous paper in which it was used without any detailed proof [17].
The paper [8] also does not provide details of the form’s derivation.

The usefulness of an invariant based formula can be seen by considering the
analogy with the simpler concept of the scalar (dot) product of vectors. The
algebraic or coordinate-based formula expresses the scalar product of two vectors
u = (x1, y1, z1) and v = (x2, y2, z2) as u · v = x1x2 + y1y2 + z1z2, which in turn
depend on the co-ordinates of their endpoints. However, the scalar product for high-
dimensional vectors u, v ∈ R

n can also expressed in terms of only 3 parameters
u · v = |u| · |v| cos 	 (u, v). The two lengths |u|, |v| and the angle 	 (u, v) are
isometry invariants of the vectors u, v. This second geometric or invariant-based
formula makes it clear that u · v is an isometry invariant, while it is harder to show
u · v = x1x2 + y1y2 + z1z2 is invariant under rotations. It also provides other
geometric insights that are hard to extract from the coordinate-based formula—for
example, u · v oscillates as a cosine wave when the lengths |u|, |v| are fixed, but the
angle 	 (u, v) is varying.

In this paper, we provide a detailed proof of the invariant-based formula for the
linking number in Theorem 2 and new corollaries in Sect. 6 formally investigating
the asymptotic behaviour of the linking number, which wasn’t ptreviously studied.

Our own interest in the asymptotic behaviour is motivated by the definition of
the periodic linking number by Panagiotou [13] as an invariant of networks that are
infinitely periodic in three directions, by calculating the infinite sum of the linking
number between one line segment and all copies of another such segment. In [13]



The Invariant-Based Formula for the Linking Number and Its Asymptotic Behaviour 39

there is a complex proof that this sum is convergent for 3-periodic structures, which
could be simplified and improved by a new asymptotic analysis of the closed form.

2 The Outline of the Invariant-Based Formula
and Consequences

We list key properties of lk(γ1, γ2) below which are frequently assumed without
proof in other literature—we have provided a proof for these in the appendices.

Theorem 1 (Properties of the Linking Number) The linking number defined by
the Gauss integral in Definition 1 for curves γ1, γ2 has the following properties:

(a) the linking number is symmetric: lk(γ1, γ2) = lk(γ2, γ1);
(b) lk(γ1, γ2) = 0 for any curves γ1, γ2 that belong to the same plane;
(c) lk(γ1, γ2) is independent of parameterisations of γ1, γ2 with fixed endpoints;
(d) lk(−γ1, γ2) = −lk(γ1, γ2), where −γ1 has the reversed orientation of γ1;
(e) the linking number lk(γ1, γ2) is invariant under any scaling v → λv for λ > 0;
(f) lk(γ1, γ2) is multiplied by detM under any orthogonal map v �→ Mv.

Our main Theorem 2 will prove an analytic formula for the linking number of
any line segments L1, L2 in terms of 6 isometry invariants of L1, L2, which are
introduced in Lemma 1. Simpler Corollary 1 expresses lk(L1, L2) for any simple
orthogonal oriented segments L1, L2 defined by their lengths l1, l2 > 0 and initial
endpointsO1,O2, respectively, with the Euclidean distance d(O1,O2) = d > 0, so

that L1,L2,
−−−→
O1O2 form a positively oriented orthogonal basis whose signed volume

(L1,L2,
−−−→
O1O2) = l1l2d is the product of the lengths, see the first picture in Fig. 1.

Fig. 1 Each line segment Li is in the plane
{
z = (−1)id/2

}
, i = 1, 2. Left: signed distance

d > 0, the endpoint coordinates a1 = 0, b1 = 1 and a2 = 0, b2 = 1, the lengths l1 = l2 = 1.
Right: signed distance d < 0, the endpoint coordinates a1 = −1, b1 = 1 and a2 = −1, b2 = 1, so
l1 = l2 = 2. In both middle pictures α = π/2 is the angle from prxy(L1) to prxy(L2) with x-axis
as the bisector



40 M. Bright et al.

Corollary 1 (Linking Number for Simple Orthogonal Segments) For any
simple orthogonal oriented line segments L1, L2 ⊂ R

3 with lengths l1, l2 and
a distance d as defined above, the linking number is

lk(L1, L2) = − 1

4π
arctan

⎛
⎝ l1l2

d

√
l21 + l22 + d2

⎞
⎠.

The above expression is a special case of general formula (3) for a1 = a2 = 0
and α = π/2.

If l1 = l2 = l, the linking number in Corollary 1 becomes

lk(L1, L2) = − 1

4π
arctan

l2

d
√

2l2 + d2
.

If l1 = l2 = d , then

lk(L1, L2) = − 1

4π
arctan

1√
3

= − 1

24
.

Corollary 1 implies that the linking number is in the range (−1/8, 0) for any
simple orthogonal segments with d > 0, which wasn’t obvious from Definition 1.

If L1, L2 move away from each other, then

lim
d→+∞ lk(L1, L2) = − 1

4π
arctan 0 = 0.

Alternatively, if segments with l1 = l2 = l become infinitely short, the limit is again
zero:

lim
l→0

lk(L1, L2) = 0

for any fixed d . The limit

lim
x→+∞ arctan x = π

2

implies that if segments with l1 = l2 = l become infinitely long for a fixed
distance d ,

lim
l→+∞ lk(L1, L2) = − 1

4π
arctan

l2

d
√

2l2 + d2
= −1

8
.



The Invariant-Based Formula for the Linking Number and Its Asymptotic Behaviour 41

If we push segments L1, L2 of fixed (possibly different) lengths l1, l2 towards each
other, the same limit similarly emerges:

lim
d→0

lk(L1, L2) = −1

8
.

See more general corollaries in Sect. 6.

3 Past Results about the Gauss Integral for the Linking
Number

The survey [15] reviews the history of the Gauss integral, its use in Maxwell’s
description of electromagnetic fields [12], and its interpretation as the degree of a
map from the torus to the sphere. In classical knot theory lk(γ1, γ2) is a topological
invariant of a link consisting of closed curves γ1 � γ2, whose equivalence relation
is ambient isotopy. This relation is too flexible for open curves which can be
isotopically unwound, and hence doesn’t preserve the Gauss integral for open curves
γ1, γ2.

Computing the value of the Gauss integral directly from the parametric equation
of two generic curves is only possible by approximation, but this problem is
simplified when we consider simply straight lines. The first form of the linking
number between two straight line segments in terms of their geometry is described
by Banchoff [3]. Banchoff considers the projection of segments on to a plane
orthogonal to some vector ξ ∈ S2. The Gauss integral is interpreted as the fraction
of the unit sphere covered by those directions of ξ for which the projection will have
a crossing.

This interpretation was the foundation of a closed form developed by Arai [2],
using van Oosterom and Strackee’s closed formula for the solid angle subtended by
a tetrahedron given by the origin of a sphere and three points on its surface.

An alternative calculation for this solid angle is given in [14] as a starting point
for calculating further invariants of open entangled curves. This form does not
employ geometric invariants, but was used in [8] to claim a formula (without a
proof) similar to Theorem 2, which is proved in this paper with more corollaries in
Sect. 6.

4 Six Isometry Invariants of Skewed Line Segments
in 3-Space

This section introduces 6 isometry invariants, which uniquely determine positions
of any line segments L1, L2 ⊂ R

3 modulo isometries of R3, see Lemma 1.



42 M. Bright et al.

It suffices to consider only skewed line segments that do not belong to the same
2-dimensional plane. If L1, L2 are in the same plane �, for example if they are
parallel, then L̇1(t) × L̇2(s) is orthogonal to any vector L1(t) − L2(s) in the plane
�, hence lk(L1, L2) = 0. We denote by L̄1, L̄2 ⊂ R

3 the infinite oriented lines
through L1, L2 respectively. In a plane with fixed coordinates x, y, all angles are
measured anticlockwise from the positive x-axis.

Definition 2 (Invariants of Line Segments) Let α ∈ [0, π] be the angle between
oriented line segments L1, L2 ⊂ R

3. Assuming that L1, L2 are not parallel, there
is a unique pair of parallel planes �i , i = 1, 2, each containing the infinite line L̄i

through the line segment Li . We choose orthogonal x, y, z coordinates in R
3 so

that

(a) the horizontal plane {z = 0} is in the middle between �1,�2, see Fig. 1;
(b) (0, 0, 0) is the intersection of the projections prxy(L̄1), prxy(L̄2) to {z = 0};
(c) the x-axis bisects the angle α from prxy(L̄1) to prxy(L̄2), the y-axis is chosen

so that α is anticlockwisely measured from the x-axis to the y-axis in {z = 0};
(d) the z-axis is chosen so that x, y, z are oriented in the right hand way, then d is

the signed distance from �1 to �2 (negative if
−−−→
O1O2 is opposite to the z-axis

in Fig. 1).

Let ai, bi be the coordinates of the initial and final endpoints of the segments Li in
the infinite line L̄i whose origin is Oi = �i ∩(z-axis) = (

0, 0, (−1)id/2
)
, i = 1, 2.

The case of segments L1, L2 lying in the same plane � ⊂ R
3 can be formally

covered by Definition 2 if we allow the signed distance d from �1 to �2 to be 0.

Lemma 1 (Parameterisation) Any oriented line segments L1, L2 ⊂ R
3 are

uniquely determined modulo a rigid motion by their isometry invariants α ∈ [0, π]
and d , a1, b1, a2, b2 ∈ R from Definition 2. For li = bi − ai , i = 1, 2, each line
segment Li is

Li(t) =
(
(ai + li t) cos

α

2
, (−1)i(ai + li t) sin

α

2
, (−1)i

d

2

)
, t ∈ [0, 1]. (2)

If t ∈ R in Lemma 1, the corresponding point Li(t) moves along the line L̄i .

Lemma 2 (Formulae for Invariants) Let L1, L2 ⊂ R
3 be any skewed oriented

line segments given by their initial and final endpoints Ai,Bi ∈ R
3 so that Li =−−→

AiBi , i = 1, 2. Then the isometry invariants of L1, L2 in Lemma 1 are computed
as follows: the lengths

li =
∣∣∣−−→AiBi

∣∣∣,

the signed distance

d = [L1,L2,
−−−→
A1A2]

|L1 × L2| ,



The Invariant-Based Formula for the Linking Number and Its Asymptotic Behaviour 43

the angle

α = arccos
L1 · L2

l1l2
,

a1 =
(
L2

l2
cosα − L1

l1

)
·
−−−→
A1A2

sin2 α
, a2 =

(
L2

l2
− L1

l1
cosα

)
·
−−−→
A1A2

sin2 α
,

bi = ai + li , i = 1, 2.

Lemma 3 guarantees that the linking number behaves symmetrically in d ,
meaning that we may confine any particular analysis to cases where d > 0 or d < 0.

Lemma 3 (Symmetry) Let L1, L2 ⊂ R
3 be parameterised as in Lemma 1. Under

the central symmetry CS : (x, y, z) �→ (−x,−y,−z) with respect to the origin
(0, 0, 0) ∈ R

3, the line segments keep their invariants α, a1, b1, a2, b2. The signed
distance d and the linking number change their signs: lk(CS(L1),CS(L2)) =
−lk(L1, L2).

5 Invariant-Based Formula for the Linking Number
of Segments

This section proves main Theorem 2, which expresses the linking number of any
line segments in terms of their 6 isometry invariants from Definition 2. In 2000
Klenin and Langowski claimed a similar formula [8], but gave no proof, which
requires substantial lemmas below. One of their 6 invariants differs from the signed
distance d .

Theorem 2 (Invariant-Based Formula) For any line segments L1, L2 ⊂ R
3 with

invariants α ∈ (0, π), a1, b1, a2, b2, d ∈ R from Definition 2, we have

lk(L1, L2) =
AT(a1, b2; d, α)+ AT(b1, a2; d, α)− AT(a1, a2; d, α)− AT(b1, b2; d, α)

4π
,

(3)

where

AT(a, b; d, α) = arctan

(
ab sin α + d2 cotα

d
√
a2 + b2 − 2ab cosα + d2

)
.



44 M. Bright et al.

For α = 0 or α = π , we set

AT(a, b; d, α) = sign(d)
π

2
.

We also set lk(L1, L2) = 0 when d = 0.

a2 + b2 − 2ab cosα gives the squared third side of the triangle with the first
two sides a, b and the angle α between them, hence is always non-negative. Also
a2 + b2 − 2ab cosα = 0 only when the triangle degenerates for a = ±b and
cosα = ±1. For α = 0 or α = π when L1, L2 are parallel, lk(L1, L2) = 0 is
guaranteed by AT(a, b; d, α) = sign(d)π/2 = 0 when d = 0 holds in addition to
α = 0 or α = π .

The symmetry of the AT function in a, b, i.e. AT(a, b; d, α) = AT(b, a; d, α)
implies that lk(L1, L2) = lk(L2, L1) by Theorem 2. Since the AT function is odd
in d , i.e. AT(a, b; −d, α) = −AT(b, a; d, α), Lemma 3 is also respected.

Figure 2 shows how the function AT(a, b; d, α) from Theorem 2 depends on 2
of 4 parameters when others are fixed. For example, if α = π/2, then

AT(a, b; d, π/2) = arctan

(
ab

d
√
a2 + b2 + d2

)
.

If also a = b, then the surface

AT(a, a; d, π/2) = arctan

(
a2

d
√

2a2 + d2

)

in the first picture of Fig. 2 has the horizontal ridge

AT(0, 0; d, π/2) = 0 and lim
d→0

AT(a, a; d, π/2) = sign(d)
π

2
for a 	= 0.

If d, α are free, but a = 0, then

AT(0, 0; d, α) = arctan

(
d2 cotα

d
√
d2

)
= sign(d) arctan(cotα) = sign(d)

(π
2

− α
)
.

Similarly,

lim
d→∞ AT(0, 0; d, α) = sign(d)

(π
2

− α
)
,

see the lines AT = π/2 − α on the boundaries of the AT surfaces in the middle
pictures of Fig. 2.



The Invariant-Based Formula for the Linking Number and Its Asymptotic Behaviour 45

Fig. 2 Graph of AT(a, b; d, α) = arctan
(
(ab sinα + d2 cot α)/(d

√
a2 + b2 − 2ab cos α + d2)

)
,

where 2 of 4 parameters are fixed

Lemma 4 (lk(L1, L2) Is an Integral in p, q) In the notations of Definition 2 we
have

lk(L1, L2) = − 1

4π

b1/d∫

a1/d

b2/d∫

a2/d

sin α dp dq(
1 + p2 + q2 − 2pq cosα

)3/2
for d > 0.



46 M. Bright et al.

Lemma 5 (The Linking Number as a Single Integral) In the notations of
Definition 2 we have

lk(L1, L2) = I (a2/d)− I (b2/d)

4π
,

where the function I (r) is defined as the single integral

I (r) =
b1/d∫

a1/d

sin α(r − p cosα) dp(
1 + p2 sin2 α

)√
1 + p2 + r2 − 2pr cosα

for d > 0.

Lemma 6 (I (r) via Arctan) The integral I (r) in Lemma 5 can be found as

∫
sin α(r − p cosα) dp(

1 + p2 sin2 α
)√

1 + p2 + r2 − 2pr cosα

= arctan
pr sinα + cotα√

1 + p2 + r2 − 2pr cosα
+ C.

Proof (Theorem 2) Consider the right hand side of the equation in Lemma 6 as the
3-variable function

F(p, r; α) = arctan

(
pr sin2 α + cosα√

1 + p2 + r2 − 2pr cosα

)
.

The function in Lemma 5 is I (r) = F(b1/d, r; α)− F(a1/d, r; α). By Lemma 5

lk(L1, L2) = (F (b1/d, a2/d; α)− F(a1/d, a2/d; α))
4π

− (F (b1/d, b2/d; α)− F(a1/d, b2/d; α))
4π

.

Rewrite a typical function from the numerator above as follows:

F(a/d, b/d; α) = arctan

(
ab/d2

)
sin2 α + cosα√

1 + (a/d)2 + (b/d)2 − 2
(
ab/d2

)
cosα

= arctan
ab sin α + d2 cotα

d
√
a2 + b2 − 2ab cosα + d2

.

If we denote the last expression as AT(a, b; d, α), required formula (3) follows.
In Lemma 4, Lemma 5 and above we have used that the signed distance d is

positive. By Lemma 3 the signed distance d and lk(L1, L2) simultaneously change



The Invariant-Based Formula for the Linking Number and Its Asymptotic Behaviour 47

their signs under a central symmetry, while all other invariants remain the same.
Since AT(a, b; −d, α) = −AT(a, b; d, α) due to the arcsin function being odd,
formula (3) holds for d < 0. The formula remains valid even for d = 0, when
L1, L2 are in the same plane. The expected value lk(L1, L2) = 0 needs an explicit
setting, see the discussion of the linking number discontinuity around d = 0 in
Corollary 4. ��

6 The Asymptotic Behaviour of the Linking Number
of Segments

This section discusses how the linking number lk(L1, L2) in Theorem 2 behaves
with respect to the six parameters of line segments L1, L2. Figure 3 shows how
the linking number between two equal line segments varies with different pairs of
parameters.

Corollary 2 (Bounds of the Linking Number) For any line segments L1, L2 ⊂
R

3, the linking number lk(L1, L2) is between ±1/2.

Corollary 3 (Sign of the Linking Number) In the notation of Definition 2,

lim
α→0

lk(L1, L2) = 0 = lim
α→π

lk(L1, L2).

Any non-parallel L1, L2 have

sign(lk(L1, L2)) = − sign(d).

So lk(L1, L2) = 0 if and only if d = 0 or α = 0 or α = π .

Corollary 4 (lk for d → 0) If d → 0 and L1, L2 remain disjoint, formula (3) is
continuous and

lim
d→0

lk(L1, L2) = 0.

If d → 0 and L1, L2 intersect each other in the limit case d = 0, then

lim
d→0

lk(L1, L2) = − sign(d)

2
,

where d → 0 keeps its sign.

Corollary 5 (lk for d → ±∞) If the distance d → ±∞, then lk(L1, L2) → 0.



48 M. Bright et al.

Fig. 3 The linking number lk(a, a + l; a, a + l; d, α) from formula (3), where 2 of 4 parameters
are fixed

Corollary 6 (lk for ai, bi → ∞) If the invariants d, α of line segments L1, L2 ⊂
R

3 remain fixed, but ai → +∞ or bi → −∞ for each i = 1, 2, then lk(L1, L2)→ 0.

Corollary 7 (lk for ai → bi) If one of segments L1, L2 ⊂ R
3 becomes infinitely

short so that its final endpoint tends to the fixed initial endpoint (or vice versa), while
all other invariants of L1, L2 from Definition 2 remain fixed, then lk(L1, L2) → 0.



The Invariant-Based Formula for the Linking Number and Its Asymptotic Behaviour 49

7 Example Computations of the Linking Number
and a Discussion

If curves γ1, γ2 ⊂ R
3 consist of straight line segments, then lk(γ1, γ2) can be

computed as the sum of lk(L1, L2) over all line segments L1 ⊂ γ1 and L2 ⊂ γ2.
Figure 4 shows polygonal links whose linking numbers were computed by our
Python code at https://github.com/MattB-242/Closed_Lk_Form.

The asymptotic linking number introduced by Arnold converges for infinitely
long curves [16], while our initial motivation was a computation of geometric
and topology invariants to classify periodic structures such as textiles [4] and
crystals [5].

Theorem 2 allows us to compute the periodic linking number between a segment
J and a growing finite lattice Ln whose unit cell consists of n copies of two
oppositely oriented segments orthogonal to J . This periodic linking number is
computed for increasing n in a lattice extending periodically in one, two and three
directions, see Fig. 5. As n increases, the lk function asymptotically approaches an
approximate value of 0.30 for 1- and 3-periodic lattice and 0.29 for the 2-periodic
lattice.

The invariant-based formula has allowed us to prove new asymptotic results of
the linking number in Corollaries 2–7 of Sect. 6. Since the periodic linking number
is a real-valued invariant modulo isometries, it can be used to continuously quantify
similarities between periodic crystalline networks [5]. One next possible step is to
use formula (3) to prove asymptotic convergence of the periodic linking number for
arbitrary lattices, so that we can show that the limit of the infinite sum is a general
invariant that can be used to develop descriptors of crystal structures.

The Milnor invariants generalise the linking number to invariants of links with
more than two components. An integral for the three component Milnor invariant [6]
may be possible to compute in a closed form similarly to Theorem 2. The interesting
open problem is to extend the isometry-based approach to finer invariants of knots.

Fig. 4 1st: The Hopf link as two square cycles has lk = −1 and vertices with coordinates L1 =
(−2, 0, 2),(2, 0,−2),(2, 0, 2),(−2, 0, 2) and L2 = (−1,−2, 0),(−1, 2, 0),(1, 2, 0),(1,−2, 0).
2nd: The Hopf link as two triangular cycles has lk = +1, L1 = (−1, 0,−1), (−1, 0, 1), (1, 0, 0)
and L2 = (0, 0, 0), (2, 1, 0), (2,−1, 0). 3rd: Solomon’s link has lk = +2, L1 = (−1, 1, 1),
(−1,−1, 1), (3,−1, 1), (3, 1,−1), (1, 1,−1), (1, 1, 1) and L2 = (−1,−2, 0), (−1, 2, 0),
(1, 2, 0), (1,−2, 0). 4th: Whitehead’s link has lk = 0, L1 = (−3,−2,−1), (0,−2,−1), (0, 2, 1),
(0, 0, 1), (0, 0, 0), (3, 0, 0), (3, 1, 0), (−3, 1, 0), (−3,−2,−1) and L2 = (−1, 0,−3), (−1, 0, 3),
(1, 0, 3), (−1, 0, 3)

https://github.com/MattB-242/Closed_Lk_Form


50 M. Bright et al.

Fig. 5 Left: the line segment J = (0, 0,−1) + t (0, 0, 2) in red and the periodic lattice L(nk)

derived from n copies of the ‘unit cell’ L = {(−1,−1, 0) + t (0, 2, 0), (−1, 1, 0) + s(0,−2, 0)},
t, s ∈ [0, 1], translated in k linearly independent directions for increasing n ∈ Z. Right: the
periodic linking number lk(J, L(nk)) is converging fast for n → +∞



The Invariant-Based Formula for the Linking Number and Its Asymptotic Behaviour 51

The Gauss integral in (1) was extended to the infinite Kontsevich integral
containing all finite-type or Vassiliev’s invariants of knots [9]. The coefficients
of this infinite series were explicitly described [10] as solutions of exponential
equations with non-commutative variables x, y in a compressed form modulo
commutators of commutators in x, y. The underlying metabelian formula for
ln(exey) has found an easier proof [11] in the form of a generating series in the
variables x, y.

In conclusion, we have proved the analytic formula for the linking number based
on 6 isometry invariants that uniquely determine a relative position of two line
segments in R

3. Though a similar formula was claimed in [8], no proof was given.
Hence this paper fills an important gap in the literature by completing the proof via
three non-trivial lemmas in Sect. 5, see detailed computations in the arXiv version
of this paper.

Appendix 1: Proofs of Lemmas about Isometry Invariants

Appendices 1, 2, and 3 provide extra details that are not included into the main
paper.

Proof (Lemma 1) Any line segments L1, L2 ⊂ R
3 that are not in the same plane

are contained in distinct parallel planes. For i = 1, 2, the plane �i is spanned by Li

and the line parallel to L3−i and passing through an endpoint of Li . Let L′
i be the

orthogonal projection of the line segment Li to the plane �3−i . The non-parallel
lines through the segments Li and L′

3−i in the plane �i intersect at a point, say Oi .
Then the line segment O1O2 is orthogonal to both planes �i , hence to both Li for
i = 1, 2.

By Theorem 1, to compute lk(L1, L2), one can apply a rigid motion to move
the mid-point of the line segment O1O2 to the origin O = (0, 0, 0) ∈ R

2 and
make O1O2 vertical, i.e., lying within the z-axis. The signed distance d can be
defined as the difference between the coordinates of O2 = �2 ∩ (z-axis) and
O1 = �1 ∩ (z-axis) along the z-axis. Then Li lies in the horizontal plane
�i = {

z = (−1)id/2
}
, i = 1, 2.

An extra rotation around the z-axis guarantees that the x-axis in the
horizontal plane � = {z = 0} is the bisector of the angle α ∈ [0, π] from
prxy(L̄1) to prxy(L̄2), where prxy : R

3 → � is the orthogonal projection.
Then the infinite lines L̄i through Li have the parametric form (x, y, z) =(
t cos(α/2), (−1)i t sin(α/2), (−1)id/2

)
with s ∈ R.

The point Oi can be considered as the origin of the oriented infinite line L̄i . Let
the line segment Li have a length li > 0 and its initial point have the coordinate
ai ∈ R in the oriented line L̄i . Then the final endpoint of Li has the coordinate
bi = ai + li . To cover only the segment Li , the parameter t should be replaced by
ai + li t , t ∈ [0, 1]. ��



52 M. Bright et al.

Proof (Lemma 2) The vectors along the segments are Li = vi − ui , hence the

lengths are li = |Li | = |−−→AiBi | , i = 1, 2. The angle α ∈ [0, π] between
L1,L2 can be found from the scalar product L1 · L2 = |L1| · |L2| cosα as
α = arccos((L1 · L2)/(l1l2)), because the function arccos x : [−1, 1] → [0, π] is
bijective.

Since L1 and L2 are not proportional, the normalised vector product e3 =
(L1 × L2)/(|L1 × L2|) is well-defined and orthogonal to both L1,L2. Then e1 =
L1/|L1|, e2 = L2/|L2| and e3 have lengths 1 and form a linear basis of R3, where
the last vector is orthogonal to the first two.

Let O be any fixed point of R3, which can be assume to be the origin (0, 0, 0)

in the coordinates of Lemma 1, though its position relative to
−−→
AiBi is not yet

determined. First we express the points Oi = (0, 0, (−1)id/2) ∈ L̄i from Fig. 1

in terms of given vectors
−−→
AiBi . If the initial endpoint Ai has a coordinate ai in the

line L̄i through Li , then
−−→
OiAi = aiei and

−−−→
O1O2 = −−→

OO2 −−−→
OO1 = (

−−→
OA2 −−−−→

O2A2)− (
−−→
OA1 −−−−→

O1A1) = −−−→
A1A2 +a1e1 −a2e2.

By Definition 2,
−−−→
O1O2 is orthogonal to the line L̄i going through the vector ei =

Li/|Li | for i = 1, 2. Then the product [e1, e2,
−−−→
O1O2] = (e1 × e2) · −−−→

O1O2 equals

|e1 × e2|d , where
−−−→
O1O2 is in the z-axis, the signed distance d is the z-coordinate of

O2 minus the z-coordinates O1.
The product [e1, e2,

−−−→
O1O2] = (e1×e2)·(−−−→

A1A2+a1e1−a2e2) = (e1×e2)·−−−→
A1A2

doesn’t depend on a1, a2, because e1 × e2 is orthogonal to both e1, e2. Hence the
signed distance is

d = [e1, e2,
−−−→
A1A2]

|e1 × e2| = [L1,L2,
−−−→
A1A2]

|L1 × L2| ,

which can be positive or negative, see Fig. 1.
It remains to find the coordinate ai of the initial endpoint of Li relative to the

origin Oi ∈ L̄i , i = 1, 2. The vector
−−−→
O1O2 = −−−→

A1A2 + a1e1 − a2e2 is orthogonal to

both ei if and only if the scalar products vanish:
−−−→
O1O2 · ei = 0. Due to |e1| = 1 =

|e2| and e1 · e2 = cosα, we get

{
e1 · −−−→

A1A2 + a1 − a2(e1 · e2) = 0,

e2 · −−−→
A1A2 + a1(e1 · e2)− a2 = 0,

↔
(

1 − cosα
cosα −1

)(
a1

a2

)
= −

(
e1 · −−−→

A1A2

e2 · −−−→
A1A2

)
.

The determinant of the 2 × 2 matrix is cos2 α − 1 = − sin2 α 	= 0, because L1, L2
are not parallel. Then

(
a1

a2

)
= 1

sin2 α

( −1 cosα
− cosα 1

)(
e1 · −−−→

A1A2

e2 · −−−→
A1A2

)



The Invariant-Based Formula for the Linking Number and Its Asymptotic Behaviour 53

and

a1 = −e1 · −−−→
A1A2 + cosα(e2 · −−−→

A1A2)

sin2 α
= (e2 cosα − e1) · −−−→

A1A2

sin2 α

=
(
L2

l2
cosα − L1

l1

)
·
−−−→
A1A2

sin2 α
,

a2 = cosα(e1 · −−−→
A1A2)− e1 · −−−→

A1A2

sin2 α
= (e2 − e1 cosα) · −−−→

A1A2

sin2 α

=
(
L2

l2
− L1

l1
cosα

)
·
−−−→
A1A2

sin2 α
.

The coordinates of the final endpoints are obtained as bi = ai + li , i = 1, 2. ��
Proof (Lemma 3) Under the central symmetry CS, in the notation of Lemma 2 the

vectors L1,L2,
−−−→
A1A2 change their signs. Then the formulae for α, a1, b1, a2, b2

gives the same expression, but the triple product [L1,L2,
−−−→
A1A2] and d change their

signs.
Since the central symmetry CS is an orthogonal map M with detM = −1, the

new linking number changes its sign as follows:

lk(CS(L1),CS(L2)) = lk(CS(L2), CS(L1)) = −lk(L1, L2),

where we also make use of the invariance of lk under exchange of the segments
from Theorem 1 (f). ��

Appendix 2: Proofs of Lemmas for the lk Formula
in Theorem 2

Proof (Lemma 4) The following computations assume that a1, a2, l1, l2, α are
given and t, s ∈ [0, 1].

L1(t) = ((a1 + l1t) cos
α

2
,−(a1 + l1t) sin α,−d

2
),

L2(s) = ((a2 + l2s) cos
α

2
, (a2 + l2s) sinα,

d

2
),

L̇1(t) = (l1 cos
α

2
,−l1 sin

α

2
, 0),

L̇2(s) = (l2 cos
α

2
, l2 sin

α

2
, 0),



54 M. Bright et al.

L̇1(t)× L̇2(s) = (0, 0, 2l1l2 sin
α

2
cos

α

2
) = (0, 0, l1l2 sinα),

L1(t)− L2(s) = ((a1 − a2 + l1t − l2s) cosα,−(a1 + a2 + l1t + l2s) sin α,−d),
(
L̇1(t), L̇2(s), L1(t)− L2(s)

) = −dl1l2 sinα,

lk(L1, L2) = 1

4π

1∫

0

1∫

0

(L̇1(t), L̇2(s), L1(t)− L2(s))

|L1(t)− L2(s)|3 dt ds

= 1

4π

1∫

0

1∫

0

−dl1l2 sinα dt ds
(
d2 + (a1 − a2 + l1t − l2s)

2 cos2 α
2 + (a1 + a2 + l1t + l2s)

2 sin2 α
2

)3/2

= −dl1l2 sinα

4π

1∫

0

1∫

0

dt ds
(
d2 + (a1 − a2 + l1t − l2s)

2 cos2 α
2 + (a1 + a2 + l1t + l2s)

2 sin2 α
2

)3/2 .

To simplify the last integral, introduce the variables p = (a1 + l1t)/d and q =
(a2 + l2s)/d . In the new variables p, q the expression under the power 3/2 in the
denominator becomes

d2 + (pd − qd)2 cos2 α

2
+ (pd + qd)2 sin2 α

2

= d2
(

1 + (p2 − 2pq + q2) cos2 α

2
+ (p2 − 2pq + q2) cos2 α

2

)

= d2
(

1 + p2
(

cos2 α

2
+ sin2 α

2

)
+ q2 − 2pq

(
cos2 α

2
− sin2 α

2

))

= d2(1 + p2 + q2 − 2pq cosα).

The old variables are expressed as t = (pd − a1)/ l1, ts = (pd − a2)/ l2 and have
the differentials dt = d/l1 dp, ds = d/l2 dq. Since t, s ∈ [0, 1], the new variables
p, q have the ranges [a1/d, b1/d] and [a2/d, b2/d], respectively. Then the linking
number has the required expression in the lemma:

lk(L1, L2) = −dl1l2 sin α

4π

b1/d∫

a1/d

b2/d∫

a2/d

d2

l1l2

dd dq

d3(1 + p2 + q2 − 2pq cosα)3/2

= − 1

4π

b1/d∫

a1/d

b2/d∫

a2/d

sin α dp dq

(1 + p2 + q2 − 2pq cosα)3/2
.

Due to Lemma 3, the above computations assume that the signed distance d > 0.
��



The Invariant-Based Formula for the Linking Number and Its Asymptotic Behaviour 55

Proof (Lemma 5) Complete the square in the expression under power 3/2 in
Lemma 4:

1 + p2 + q2 − 2pq cosα = 1 + p2 sin2 α + (q − p cosα)2.

The substitution (q − p cosα) = (1 + p2 sin2 α) tan2 ψ for the new variable ψ

simplifies the sum of squares to 1 + tan2 ψ = 1/ cos2 ψ . Since q varies within
[a2/d, b2/d], for any fixed p ∈ [a1/d, b1d], the range [ψ0, ψ1] of ψ satisfies

tanψ0 =
a2
d

− p cosα√
1 + p2 sin2 α

and tanψ1 =
b2
d

− p cosα√
1 + p2 sin2 α

.

Since we treat p,ψ as independent variables, the Jacobian of the substitution
(p, q) �→ (p,ψ) equals

∂q

∂ψ
= ∂

∂ψ

(
p cosα + tanψ

√
1 + p2 sin2 α

)
=
√

1 + p2 sin2 α

cos2 ψ
.

In the variables p,ψ the expression under the double integral of Lemma 4 becomes

sinα dp dq

(1 + p2 + q2 − 2pq cosα)3/2 = sinα dq

((1 + p2 sin2 α)+ (1 + p2 sin2 α) tan2 ψ)3/2

∂q

∂ψ
dψ

= sinα dp

(1 + p2 sin2 α)3/2(1 + tan2 ψ)3/2

dψ
√

1 + p2 sin2 α

cos2 ψ

= sinα dp cosψ dψ

1 + p2 sin2 α
.

lk(L1, L2) = − 1

4π

b1/d∫

a1/d

sin α dp

1 + p2 sin2 α

ψ1∫

ψ0

cosψ dψ

= 1

4π

b1/d∫

a1/d

sinα dp

1 + p2 sin2 α
(sinψ0 − sinψ1).



56 M. Bright et al.

Express the sin functions for the bounds ψ0, ψ1 in terms of tan as sinψ0 =
tanψ0/

√
1 + tan2 ψ0. Using tanψ0 = (a2/d − p cosα)/(

√
1 + p2 sin2 α)

obtained above, we get

√
1 + tan2 ψ0 =

√
(1 + p2 sin2 α) + ( a2

d
− p cosα)2

1 + p2 sin2 α

=
√

1 + p2 + ( a2
d
)2 − 2 a2

d
p cosα

1 + p2 sin2 α
.

sinψ0 =
a2
d

− p cosα√
1 + p2 sin2 α

√
1 + p2 sin2 α

1 + p2 + ( a2
d
)2 − 2 a2

d
p cosα

=
a2
d

− p cosα√
1 + p2 + ( a2

d
)2 − 2 a2

d
p cosα

.

Then sinψ1 has the same expression with a2 replaced by b2. After substituting these
expressions in the previous formula for the linking number, we get

lk(L1, L2) = 1

4π

b1/d∫

a1/d

sin α dp

1 + p2 sin2 α

⎛
⎝

a2
d

− p cosα√
1 + p2 + ( a2

d
)2 − 2 a2

d
p cosα

−
b2
d

− p cosα√
1 + p2 + ( b2

d
)2 − 2 b2

d
p cosα

⎞
⎠

=S(a2/d)− S(b2/d)

4π
,

where

I (r) =
b1/d∫

a1/d

sin α(r − p cosα) dp

(1 + p2 sin2 α)
√

1 + p2 + r2 − 2pr cosα
.

��
Proof (Lemma 6) The easiest way is to differentiate the function arctanω for

ω = pr sin2 α + cosα

sin α
√

1 + p2 + r2 − 2pr cosα



The Invariant-Based Formula for the Linking Number and Its Asymptotic Behaviour 57

with respect to the variable p remembering that r, α are fixed parameters. For
notational clarity, we use an auxiliary symbol for the expression under the square
root: R = 1 + p2 + r2 − 2pr cosα. Then

ω = pr sin2 α + cosα

sinα
√
R

and

dω

dp
= 1

R sinα

(
r sin2 α

√
R − (rp sin2 α + cos α)

2p − 2r cos α

2
√
R

)

= 1

R
√
R sinα

(
r sin2 α(1 + p2 + r2 − 2pr cos α)− (rp sin2 α + cosα)(p − r cos α)

)

= rp2 sin2 α + r3 sin2 α − 2pr2 cos α sin2 α − rp2 sin2 α + pr2 cos α sin2 α − p cos α + r

R
√
R sinα

= r3 sin2 α − pr2 cos α sin2 α − p cos α + r

R
√
R sinα

= (r − p cos α)(1 + r2 sin2 α)

R
√
R sinα

.

d

dp
arctanω = 1

1 + ω2
× dω

dp
= (sin α

√
R)2

(sin α
√
R)2 + (pr sin2 α + cos α)2

× dω

dp

= R sin2 α

R sin2 α + (p2r2 sin4 α + 2pr sin2 α cos α + cos2 α)
× (r − p cos α)(1 + r2 sin2 α)

R
√
R sinα

= sinα√
R

× (r − p cos α)(1 + r2 sin2 α)

sin2 α(1 + p2 + r2 − 2pr cosα) + (p2r2 sin4 α + 2pr sin2 α cos α + cos2 α)

= sin α(r − p cos α)(1 + r2 sin2 α)

(1 + p2 sin2 α + r2 sin2 α + p2r2 sin4 α)
√
R

= sin α(r − p cos α)(1 + r2 sin2 α)

(1 + p2 sin2 α)(1 + r2 sin2 α)
√
R

= sinα(r − p cos α)

(1 + p2 sin2 α)
√
R

= sinα(r − p cosα)

(1 + p2 sin2 α)
√

1 + p2 + q2 − 2pq cos α
.

Since we got the required expression under the integral I (r), Lemma 6 is
proved. ��

Appendix 3: Proofs of Corollaries of Main Theorem 2

Proof of Corollary 1 By definition any simple orthogonal segments L1, L2 have
α = π/2 and initial endpoints a1 = 0 = a2, hence b1 = l1, b2 = l2. Substituting
the values above into (3) gives

AT(0, l2; d, π
2
) = 0, AT(l1, 0; d, π

2
) = 0, AT(0, 0; d, π

2
) = 0.



58 M. Bright et al.

Then

lk(L1, L2) = − 1

4π
AT(l1, l2; d, α) = − 1

4π
arctan

⎛
⎝ l1l2

d

√
l21 + l22 + d2

⎞
⎠ .

��
Proof (Corollary 2) By Theorem 2 lk(L1, L2) is a sum of 4 arctan functions divided
by 4π . Since each arctan is strictly between ±π/2, the linking number is between
±1/2. ��
Proof (Corollary 3) If α = 0 or α = π , then cotα is undefined, so Theorem 2 sets
AT(a, b; d, α) = sign(d)π/2. Then lk(L1, L2) = sign(d)π/2(1 + 1 − 1 − 1) = 0.

Theorem 2 also specifies that lk(L1, L2) = 0 for d = 0. If d 	= 0 and α → 0
within [0, π] while all other parameters remain fixed, then d2 cotα → +∞. Hence
each of the 4 arctan functions in Theorem 2 approaches π/2, so lk(L1, L2) → 0.
The same conclusion similarly follows in the case α → π when d2 cotα → −∞.

If L1, L2 are not parallel, the angle α between them belongs to (0, π). In d > 0,
Lemma 4 says that

lk(L1, L2) = − 1

4π

b1/d∫

a1/d

b2/d∫

a2/d

sinα dp dq

(1 + p2 + q2 − 2pq cosα)3/2 .

Since the function under the integral is strictly positive, lk(L1, L2) < 0. By
Lemma 3 both lk(L1, L2) simultaneously change their signs under a central
symmetry. Hence, the formula sign(lk(L1, L2)) = − sign(d) holds for all d
including d = 0 above. ��
Proof (Corollary 4) Recall that lim

x→±∞ arctan x = ±π/2. By Corollary 3 assume

that α 	= 0, α 	= π , so α ∈ (0, π). Then sin α > 0, a2+b2−2ab cosα > (a−b)2 ≥
0 and

lim
d→0

AT(a, b; d, α) = lim
d→0

arctan

(
ab sinα + d2 cotα

d
√
a2 + b2 − 2ab cosα + d2

)

= sign(a) sign(b) sign(d)
π

2
,

so Theorem 2 gives

lim
d→0

lk(L1, L2) = sign(d)

8
(sign(a1)− sign(b1))(sign(b2)− sign(a2)).

In the limit case d = 0, the line segments L1, L2 ⊂ {z = 0} remain disjoint in
the same plane if and only if both endpoint coordinates ai, bi have the same sign



The Invariant-Based Formula for the Linking Number and Its Asymptotic Behaviour 59

for at least one of i = 1, 2, which is equivalent to sign(ai) − sign(bi) = 0, i.e.,
lim
d→0

lk(L1, L2) = 0 from the product above. Hence formula (3) is continuous under

d → 0 for any non-crossing segments. Any segments that intersect in the plane
{z = 0} when d = 0 have endpoint coordinates ai < 0 < bi for both i = 1, 2 and
have the limit

lim
d→0

lk(L1, L2) = sign(d)

8
(−1 − 1)(1 − (−1)) = − sign(d)

2

as required. ��
Proof (Corollary 5) If d → ±∞, while all other parameters of L1, L2 remain
fixed, then the function

AT(a, b; d, α) = arctan

(
ab sinα + d2 cotα

d
√
a2 + b2 − 2ab cosα + d2

)

from Theorem Theorem 2 has the limit arctan(sign(d) cotα) = sign(d) (π/2 − α).
Since the four AT functions in Theorem 2 include the same d, α, their limits cancel,
so lk(L1, L2) → 0. ��
Proof (Corollary 6) If ai → +∞, then ai ≤ bi → +∞, i = 1, 2. If bi → −∞,
then bi ≥ ai → −∞, i = 1, 2. Consider the former case ai → +∞, the latter is
similar.

Since d, α are fixed,

a2 + b2 − 2ab cosα + d2 ≤ (a + b)2 + d2 ≤ 5b2

for large enough b. Since arctan(x) increases,

AT(a, b; d, α) ≥ arctan

(
ab sin α + d2 cotα

db
√

5

)
→ sign(d)

π

2

as b ≥ a → +∞. Since the four AT functions in Theorem 2 have the same limit
when their first two arguments tend to + ± ∞, these 4 limits cancel and we get
lk(L1, L2) → 0. ��
Proof (Corollary 7) lk(L1, L2) = 0 for d = 0. It’s enough to consider the case
d 	= 0. Then

AT(a, b; d, α) = arctan

(
ab sinα + d2 cotα

d
√
a2 + b2 − 2ab cosα + d2

)

from Theorem 2 is continuous. Let (say for i = 1) a1 → b1, the case b1 → a1 is
similar. The continuity of AT implies that AT(a1, b2; d, α) → AT(b1, b2; d, α) and
AT(a1, a2; d, α) → AT(b1, a2; d, α). In the limit all terms in Theorem 2 cancel,
hence lk(L1, L2) → 0. ��



60 M. Bright et al.

References

1. Ahmad, R., Paul, S., Basu, S.: Characterization of entanglements in glassy polymeric
ensembles using the gaussian linking number. Phys. Rev. E 101(2), 022503 (2020)

2. Arai, Z.: A rigorous numerical algorithm for computing the linking number of links. Nonlinear
Theory Appl. 4(1), 104–110 (2013)

3. Banchoff, T.: Self-linking numbers of space polygons. Indiana U. Math. J 25, 1171–1188
(1976)

4. Bright, M., Kurlin, V.: Encoding and topological computation on textile structures. Comput.
Graph. 90, 51–61 (2020)

5. Cui, P., McMahon, D., Spackman, P., Alston, B., Little, M., Day, G., Cooper, A.: Mining
predicted crystal structure landscapes with high throughput crystallisation: old molecules, new
insights. Chem. Sci. 10, 9988–9997 (2019)

6. DeTurck, D., Gluck, H., Komendarczyk, R., Melvin, P., Shonkwiler, C., Vela-Vick, D.:
Pontryagin invariants and integral formulas for Milnor’s triple linking number (2011).
arXiv:1101.3374

7. Gauss, C.F.: Integral formula for linking number. Zur Mathematischen Theorie der Electrody-
namischen Wirkungen, Collected Works 5, 605 (1833)

8. Klenin, K., Langowski, J.: Computation of writhe in modeling of supercoiled DNA.
Biopolymers Original Res. Biomol. 54(5), 307–317 (2000)

9. Kontsevich, M.: Vassiliev’s knot invariants. Adv. Soviet Math. 16, 137–150 (1993)
10. Kurlin, V.: Compressed Drinfeld associators. J. Algebra 292, 184–242 (2005)
11. Kurlin, V.: The Baker-Campbell-Hausdorff formula in the free metabelian lie algebra. J. Lie

Theory 17(3), 525–538 (2007)
12. Maxwell, J.C.: A Treatise on Electricity and Magnetism. I. Clarenton Press Series, Oxford

(1873)
13. Panagiotou, E.: The linking number in systems with periodic boundary conditions. J. Comput.

Phys. 300, 533–573 (2015)
14. Panagiotou, E., Kauffman, L.H.: Knot polynomials of open and closed curves. Proc. Roy. Soc.

A. 476, 20200124 (2020). arxiv:2001.01303
15. Ricca, R.L., Nipoti, B.: Gauss’ linking number revisited. J. Knot Theory Ramif. 20(10), 1325–

1343 (2011)
16. Vogel, T.: On the asymptotic linking number. Proc.Amer. Math. Soc. 131, 2289–2297 (2003)
17. Vologodskii, A., Anshelevich, V.V., Lukashin, A., Frank-Kamenetskii, M.D.: Statistical

mechanics of supercoils and the torsional stiffness of the DNA double helix. Nature 280(5720),
294–298 (1974)



The Singularity Set of Optimal
Transportation Maps

Zhongxuan Luo, Wei Chen, Na Lei, Yang Guo, Tong Zhao, and Xianfeng Gu

Abstract Optimal transportation plays an important role in many engineering
fields, especially in deep learning. By Brenier theorem, computating optimal
transportation maps is reduced to solving Monge–Ampère equations, which in
turn is equivalent to construct Alexandrov polytopes. Furthermore, the regularity
theory of Monge–Ampère equation explains mode collapsing issue in deep learning.
Hence, computing and studying the singularity sets of OT maps become important.
In this work, we generalize the concept of medial axis to power medial axis, which
describes the singularity sets of optimal transportation maps. Then we propose
a computational algorithm based on variational approach using power diagrams.
Furthermore, we prove that when the measures are changed homotopically, the
corresponding singularity sets of the optimal transportation maps are homotopic
equivalent as well.

Z. Luo
Key Laboratory for Ubiquitous Network and Service Software of Liaoning Province, Dalian,
China
e-mail: zxluo@dlut.edu.cn

W. Chen
School of Software Technology, Dalian University of Technology, Dalian, China
e-mail: wei.chen@mail.dlut.edu.cn

N. Lei (�)
DUT-RU ISE, Dalian University of Technolog, Dalian, China
e-mail: nalei@dlut.edu.cn

Y. Guo · X. Gu
Department of Computer Science, Stony Brook University, Stony Brook, NY, USA
e-mail: yangguo@cs.stonybrook.edu; tong.zhao@inria.fr

T. Zhao
INRIA Sophia-Antipolis and Telecom Paris, Paris, France
e-mail: gu@cs.stonybrook.edu

© Springer Nature Switzerland AG 2021
V. A. Garanzha et al. (eds.), Numerical Geometry, Grid Generation and Scientific
Computing, Lecture Notes in Computational Science and Engineering 143,
https://doi.org/10.1007/978-3-030-76798-3_4

61

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76798-3_4&domain=pdf
mailto:zxluo@dlut.edu.cn
mailto:wei.chen@mail.dlut.edu.cn
mailto:nalei@dlut.edu.cn
mailto:yangguo@cs.stonybrook.edu
mailto:tong.zhao@inria.fr
mailto:gu@cs.stonybrook.edu
https://doi.org/10.1007/978-3-030-76798-3_4


62 Z. Luo et al.

1 Introduction

Recently, optimal transportation theory plays an important role in deep learn-
ing, especially for generative models, such as Generative Adverseral Networks
(GANs) [10], variational autoencoders (VAEs) [13] and so on. In deep learning, one
of the major tasks is to transform a prescribed distribution to the data distribution,
another is to measure the Wasserstein distance between two distributions. Both of
them require computing optimal transportation maps.

The Brenier theorem reduces the computation of optimal transportation map
to solving Monge–Ampère equation, which is equivalent to solve the Alexandrov
problem in convex geometry. The construction of the Alexandrov polytope is
converted to the computing of power diagram and weighted Delaunay. Therefore,
the geometric approach to solve optimal transportation problem becomes valuable
for deep learning tasks as in [2, 17].

Furthermore, one of the major challenges in deep learning is mode collapsing,
which makes the training process unstable and difficult to converge. The regularity
theory of optimal transportation map discovers the intrinsic reason for mode
collapsing. Basically, if the support of the target measure is not simply connected or
concave, the optimal transportation map may be discontinuous at the singularities.
Therefore, computing and studying the singularity sets of optimal transportation
maps become crucial.

Contributions In this work, we generalize the concept of medial axis to power
medial axis, which describes the singularity sets of optimal transportation maps.
Then we propose a computational algorithm based on a variational approach using
power diagrams. Furthermore, we prove that when the measures are changed
homotopically, the corresponding singularity sets of the optimal transportation maps
are homotopic equivalent as well.

Outline The article is organized as follows: Sect. 2 explains how optimal trans-
portation is applied for generative model in deep learning, and why singularity set
is crucial to avoid mode collapsing. Section 3 introduces the convex geometric
view of optimal transportation, including the Alexandrov and Minkowski theorems,
Yau’s geometric variational approach and Gelfand’s secondary polytope theorem.
Section 4 proves the main theorem, which shows the homotopy equivalence relation
between the singularities of an optimal transportation map and the medial axis of
the support of the target measure. The work is concluded in Sect. 5.

2 Generative Models and Optimal Transportation

GAN Model Generative modeling is an unsupervised learning task in machine
learning, which is capable of automatically discovering and learning the pattern in
input data, so that the model can be applied to generate new samples that plausibly



Singularity of Optimal Transportation 63

encoder
decoder

Generator

Training Data Generated SamplesLatent Distribution

white noise

Discriminator

transporter

Fig. 1 Generative adversarial networks (GAN) model

could have been drawn from the original data set. Generative adversarial networks
(GANs) [10] and variational autoencoders (VAEs) [13] emerge as the dominant
approaches for unconditional image generation.

Figure 1 shows the general framework of GAN models. Each training sample,
e.g., a human facial image, is treated as a point in the high dimensional image space.
The natural class of images, e.g., human facial photos, is treated as a point cloud,
which is close to a low dimensional manifold �, the so-called data manifold. The
data set is modeled as a probability distribution μ on the data manifold �. The data
manifold is mapped to the parameter domain by an encoding map, the parameter of
each image is called the latent code, the parameter domain is called the latent space
or the feature space �, the mapping is called the encoding map ϕ : � → �. The
data distribution μ is push-forwarded by ϕ to the latent data distribution ϕ#μ. The
decoding map is the inverse of the encoding map, ϕ−1 : � → �, which maps the
latent code to the image on the data manifold.

In the latent space, there is a known probability distribution, the so-called
white noise ν, which is usually uniform distribution or Gaussian distribution. A
transporter maps the white noise to the latent data distribution, the transportation
map is denoted as T : ν → ϕ#μ.

The composition of the transporter and the decoder is called a generator, ϕ−1◦T ,
which maps a white noise sample to a generated image. Equivalently, the generator
transports the white noise distribution to the generated data distribution on the data
manifold. A discriminator computes the distance between the real data distribution
μ and the generated data distribution

(
ϕ−1 ◦ T )#ν. The generator optimizes the

transportation map to minimize the distance between the real distribution and the
generated distribution; the discriminator maximizes some type of functional to



64 Z. Luo et al.

Fig. 2 Left: input MNIST data set. Right: the generated images

differentiate the two distributions. The competition between the generator and
the discriminator reaches the Nash equilibrium eventually, at that state human
beings can not tell the difference between the real images and the generated ones.
Recently, optimal transportation has been broadly applied for generative models. In
many models, the generator computes the optimal transportation map between the
white noise distribution and the latent code distribution; the discriminator computes
Wasserstein distance between the real data distribution and the generated data
distribution.

Figure 2 shows one example of a generative model, the left frame shows the
MNIST data set of hand-written digit images, the right frame shows the generated
images. The MNIST data set is encoded by a UMap model, the latent data
distribution is shown in Fig. 3 (left). Each digit corresponds to one cluster. We
put 10 × 10 samples on the latent space, and the decoded images are shown in the
right frame in Fig. 3. It is clear that if a generated latent code falls into a cluster, then
the generated image is clean and sharp; otherwise, if the generated code falls into
the gaps among the clusters, the generated image is obscure and like the mixture of
two digits.

Mode Collapsing/Mode Mixture Despite GANs’ advantages, they have critical
drawbacks. (1) Training of GANs is tricky and sensitive to hyperparameters. (2)
GANs suffer from mode collapse, in which the generator only learns to generate few
modes of data distribution while missing others, although samples from the missing
modes occur throughout the training data (see, e.g., [9]). While for the VAEs, the
encoder is used to map the data distribution to a Gaussian latent distribution, which
is then mapped back to the data distribution by the decoder. While standard VAEs
tend to capture all modes, they often generate ambiguous images on multimodal real
data distributions.

In the work of Yau et al. [2, 15], the intrinsic reason for mode collapsing/mode
mixture has been explained from the geometric point of view. By Brenier’s polar



Singularity of Optimal Transportation 65

Fig. 3 Left: latent codes of the MNIST data set encoded by a UMap model. Right: the latent
codes are decoded and mapped back to the images

factorization theorem [4, 5, 5] and Figalli’s regularity theorem [6, 7] (Theorem 5 in
Appendix B), if the support of the target distribution is not convex, then there will be
singularity sets on the support of the source distribution, such that the transportation
map is discontinuous on these sets. Generally, the generators/decoders are expressed
by deep neural networks, which can only represent continuous mappings, thus they
can’t approximate the transport maps with high fidelity. This intrinsic conflict
induces the mode collapsing and mode mixture in conventional generative models.
Figure 4 shows the optimal transportation map from the uniform distribution on the
disk to the latent distribution of MNIST data set, i.e., Fig. 3 (left). Since the latent

Fig. 4 Optimal transportation map from the uniform distribution on the disk to the latent data
distribution of MNIST data set, Fig. 3 (left)



66 Z. Luo et al.

distribution has 10 modes (connected components), the singularity set partitions the
disk into ten segments, each segment is mapped onto one cluster. The mapping itself
is discontinuous on the singularity set, therefore can’t be represented by a neural
network. The right frame shows the Brenier potential, which is continuous and
differentiable almost everywhere. The projection of the non-differential points is
the singularity set. Therefore, the neuron network can present the Brenier potential.
The image of the optimal transportation map will cover all the modes, so no mode
collapsing will happen. Furthermore, the image of the transportation map won’t fall
into the gaps among the modes, this will eliminate the mode mixture. Therefore, it
is important to study the singularity of optimal transportation maps.

3 Convex Geometric View of Optimal Transportation

There is a close relation between the Alexandrov theorem in convex geometry and
the Brenier theorem in optimal transportation. This section will explain this intrinsic
relation.

3.1 Optimal Transportation Map

Suppose �,�∗ ⊂ R
d are domains in Euclidean space, with probability measures μ

and ν respectively, satisfying the equal total mass condition

μ(�) = ν(�∗).

The transportation map T : � → �∗ is measure preserving, if for any Borel set
B ⊂ �∗,

∫

T −1(B)

dμ(x) =
∫

B

dν(y) .

We denote measure preserving condition as T#μ = ν.
Monge raised the optimal transportation map problem: given a transportation

cost function c : � × �∗ → R
+, find a transportation map T : � → �∗ that

minimizes the total transportation cost,

(MP) min

{∫

�

c(x, T (x)) : T : � → �∗, T#μ = ν

}
.

The minimizer is called the optimal transportation map. The transportation cost
of the optimal transportation map is called the Wasserstein distance between the
measures.



Singularity of Optimal Transportation 67

Theorem 1 (Brenier[5]) Given a compact domain � ⊂ R
d , with absolutely

continuous probability measures μ and ν, ∂� has zero Lebesgue-measure. The
transportation cost is c(x, y) = |x − y|2/2, then there exists a convex function
u : � → R unique upto a constant, the so-called Brenier potential, and the optimal
transportation map is given by the gradient of u, T = ∇u.

The Brenier potential satisfies the Monge–Ampère equation

detD2u(x) = dμ(x)

dν ◦ ∇u(x), (1)

with the boundary condition ∇u(�) = �∗. The unique optimal transportation map
is given by T = ∇u.

3.2 Alexandrov Solution

For numerical computation, the Brenier potential is approximated by a piecewise
linear convex function, whose graph is a convex polytope. The sub-gradient of a
convex function u at x is defined as

∂u(x) :=
{
p ∈ R

d : u(z) ≥ 〈p, z − x〉 + u(x) ∀z ∈ �
}
.

The sub-gradient defines a set-valued map ∂u : � → �∗, x �→ ∂u(x). We can use
the sub-gradient map to replace the gradient map in the Monge–Ampère equation
(1) and rewrite it as

(∂u)#μ = ν, (2)

or, equivalently, ∀ Borel B ⊂ �∗, μ((∂u)−1(B)) = ν(B). Thus, here, u is
called the Alexandrov solution. In fact, the Alexandrov solution is equivalent to
the Alexandrov polytope, and the Brenier theorem is equivalent to the Alexandrov
theorem in convex geometry.

3.3 Minkowski and Alexandrov Theorems

In this subsection, we briefly recall the basic concepts and theorems of Minkowski
and Alexandrov theorems in convex geometry, which can be described by Monge–
Ampère equation and closely related to power diagrams and weighted Delaunay
triangulations in computational geometry. This intrinsic connection gives the
theoretical tool to study the Alexandrov polytope space. Details can be found in [1]
and [11].



68 Z. Luo et al.

ni

FiAi

(a)

Ω
Wi

Fi

πj

uh(x)

(b)

Fig. 5 Minkowski and Alexandrov theorems for convex polytopes with prescribed normals and
face areas. (a) Minkowski theorem. (b) Alexandrov theorem

Minkowski proved the existence and the uniqueness of convex polytope with
prescribed face normals and face areas (see Fig. 5).

Theorem 2 (Minkowski) Suppose n1, . . . , nk are unit vectors which span R
n and

ν1, . . . , νk > 0 such that
∑k

i=1 νini = 0. There exists a compact convex polytope
P ⊂ R

n with exactly k codimension-1 faces F1, . . . , Fk so that ni is the outward
normal vector to Fi and νi is the volume of Fi . Furthermore, such P is unique up
to a translation.

Minkowski’s proof is variational and suggests an algorithm to find the polytope.
Minkowski theorem for unbounded convex polytopes was considered and solved by
A.D. Alexandrov and his student A. Pogorelov. In his book on convex polyhedra,
Alexandrov proved the following fundamental theorem [1, Theorem 7.3.2 and
Theorem 6.4.2]:

Theorem 3 (Alexandrov [1]) Suppose � is a compact convex polytope with non-
empty interior in R

n, n1, . . . , nk ⊂ R
n+1 are distinct k unit vectors, the (n+ 1)-th

coordinates are negative, and ν1, . . . , νk > 0 so that
∑k

i=1 νi = vol(�). Then there
exists a convex polytopeP ⊂ R

n+1 with exact k codimension-1 faces F1, . . . , Fk , so
that ni is the normal vector to Fi and the intersection between � and the projection
of Fi is with volume νi . Furthermore, such P is unique up to vertical translation.

Alexandrov’s proof is based on the algebraic topology and is non-constructive.
Aurenhammer [3] gave a constructive proof using the power diagram. Gu et al. [11]
gave another variational proof for the generalized Alexandrov theorem stated in
terms of convex functions. The energies in [3] and [11] are Legendre dual to each
other.



Singularity of Optimal Transportation 69

Definition 1 (Alexandrov Polytope) Given Y = {y1, . . . , yk}, yi ∈ R
n, i =

1, 2, . . . , k, and h = (h1, . . . , hk) ∈ R
k, the upper envelope of the hyper-planes

πi(x) = 〈x, yi〉 − hi is

uh(x) = k
max
i=1

{πi(x)} = k
max
i=1

{〈yi, x〉 − hi}. (3)

The graph of uh is called the Alexandrov Polytope, denoted as P(Y, h).

The projection of the Alexandrov polytope induces a power diagram of Rn, each
cell Wi(h) is a closed convex polytope,

R
d =

⋃
Wi(h) =

k⋃
i=1

{
x ∈ R

d | πi(x) ≥ πj (x), i 	= j
}
, (4)

whereWi(h)’s are called power cells. The power diagram can be reformulated using
power distance

Wi(h) =
{
x ∈ R

d | powh(x, yi) ≤ powh(x, yj ), i 	= j
}
,

where the power distance between x and yi is defined as

powh(yi, x) := 1

2
|x − yi |2 − r2

i , (5)

where r2
i is the power associated with yi , defined as

r2
i := 1

2
|yi |2 − hi . (6)

Given a probability measure μ defined on �, the volume of Wi(h) is defined as

wi(h) := μ(Wi(h) ∩�) =
∫

Wi(h)∩�
dμ .

Gu et al. gave a constructive proof for the Alexandrov theorem.

Theorem 4 (Gu et al. [11]) Let � be a compact convex domain in R
n, Y =

{y1, . . . , yk} be a set of distinct points in R
n andμ a probability measure on�. Then

for any ν1, . . . , νk > 0 with
∑k

i=1 νi = μ(�), there exists h = (h1, . . . , hk) ∈ R
k ,

unique up to adding a constant (c, . . . , c), so that wi(h) = νi , for all i. The vectors
h are exactly maximum points of the concave function

E(h) =
∫ h

0

k∑
i=1

wi(η) dηi −
k∑

i=1

hiνi , (7)



70 Z. Luo et al.

Fig. 6 Experiment one: the 3D face (1st) is mapped to the unit disk by a Riemann mapping (2nd).
The optimal transportation map from uniform distribution to the measure induced by the Riemann
mapping is computed, the image is in (3rd), the Brenier potential is in (4th)

on the open convex set (admissible height space)

H�(Y ) =
{
h ∈ R

k | wi(h) > 0 ∀i
}
. (8)

Furthermore, ∇uh minimizes the quadratic cost

∫

�

|x − T (x)|2 dμ(x)

among all transportation maps T#μ= ν with the Dirac measure ν= ∑k
i=1 νiδ(y −

yi).

Figure 6 demonstrates an optimal transportation map obtained by Alexandrov
polytope method. A male facial surface is digitized to a triangle mesh M (first
frame). The surface is conformally mapped onto the planar unit disk by a
Riemann mapping (second frame), the planar images of the vertices are denoted
as y1, y2, . . . , yk . For each vertex vi , the total area of the triangular faces adjacent
to it is denoted as νi . By scaling, the total area

∑k
i=1 νi = π . Then we compute

the optimal transportation map (third frame) from the unit disk with the uniform
distribution to ν = ∑k

i=1 νiδ(y − yi). The Brenier potential is shown in the fourth
frame.

3.4 Secondary Polytope and Secondary Power Diagram

In this subsection, we briefly recall the basic concepts and theorems of Gelfand’s
secondary polytope theory, and its dual secondary power diagram, details can be
found in [8, 14] and [16]. This shows the admissible solution space H�(Y ) has a
cell decomposition.



Singularity of Optimal Transportation 71

Secondary Polytope Let Y = {y1, y2, . . . , yk} be a point configuration, a finite
set of distinct points in R

d , Conv(Y ) is the convex hull of Y . A triangulation T of
(Y,Conv(Y )) decomposes the interior volume bounded by Conv(Y ) into simplices
with vertices in Y . Some yi ∈ Y may not appear as a vertex of a simplex.

Given a triangulation T , a piecewise linear function g : Conv(Y ) → R is affine-
linear on every simplex of T . Furthermore, g is concave, if for any x, y ∈ Conv(Y ),
g(tx + (1 − t)y) ≥ tg(x)+ (1 − t)g(y).

Definition 2 (Coherent Triangulation) A triangulation T of (Y,Conv(Y )) is
called coherent if there exists a concave piecewise linear function whose domains
of linearity are precisely (maximal) simplices of T .

Let T be a triangulation of (Y,Conv(Y )). The characteristic function of T ,
ϕT : Y → R, is defined as follows:

ϕT (ω) =
∑
ω∼σ

vol(σ ), (9)

where the summation is over all (maximal) simplices of T for which ω is a vertex.
If ω is not a vertex of any simplex of T , then ϕT (ω) = 0.

Definition 3 (Secondary Polytope) The secondary polytope �(Y ) is the convex
hull in the space RY of the vectors φT for all the triangulations T of (Y,Conv(Y )).

The secondary polytope has the following properties:

Theorem 5

(a) The secondary polytope �(Y ) has dimension k − n− 1 where k = #(Y ).
(b) Vertices of �(Y ) are precisely the characteristic functions got for all coher-

ent triangulations T of (Y,Conv(Y )). If T is a coherent triangulation of
(Y,Conv(Y )) then ϕT 	= ϕT ′ for any other triangulation T ′ of (Y, Conv(Y)).

Secondary Power Diagram Primal weighted Delaunay triangulations are dual to
power diagrams; secondary polytopes are dual to secondary power diagrams. The
secondary power diagram is the cell decomposition of the admissible height space
in (8), where each cell corresponds to a weighted Delaunay triangulation (coherent
triangulation) of Y . Details can be found in the secondary power diagram theory
in [16].

Fixing a triangulation T of (Y,Conv(Y )), a simplex σ ∈ T has volume vol(σ ).
Given a height vector h, a linear function πT (h) is defined by

πT (h) = 1

n+ 1

∑
yi∈Y

∑
yi∼σ,σ∈T

vol(σ )hi. (10)



72 Z. Luo et al.

Theorem 6 (Secondary Power Diagram) Given a point configuration
Y = {y1, y2, . . . , yk} ⊂ R

n, a convex domain � ⊂ R
n containing the origin,

1. For each non-degenerated weighted Delaunay triangulation T ∈ T (Y ), if the
cell DT is non-empty, then it is convex. Furthermore, if h ∈ DT , then λh ∈ DT

for all 0 < λ < 1.
2. The cell decomposition of the Alexandrov power diagram space

H�(Y ) =
⋃

T ∈T (Y )

DT (11)

is a power diagram, produced by the projection of the upper envelope

U(Y ) = max
T ∈T (Y )

{−πT (h)}, (12)

where the hyper-planes πT (h) ⊂ R
k+1 is the triangulation volume of T in (10).

3. Suppose T is a non-degenerated coherent triangulation T ∈ T (Y ), then DT is
non-empty.

4 Singularity Set of Optimal Transportation Map

The optimal transportation maps may not be globally continuous.The discontinuity
singularity set plays an important role in generative models in deep learning.

4.1 Singularity Set

Theorem 7 (Figalli Regularity [7]) Let �,� ⊂ R
d be two bounded open sets,

let f, g : Rd → R
+ be two probability densities, that are zero outside �,�

and are bounded away from zero and infinity on �,� respectively. Denote
T = ∇u : (�, f dx) → (�, gdy) the optimal transportation map provided by Bre-
nier theorem. Then there exists two relatively closed sets �� ⊂ � and �� ⊂ �

with |��| = |��| = 0 such that T : � \ �� → � \ �� is a homeomorphism of
class C0,α

loc for some α > 0.

As shown in Fig. 7, the domain � is the unit disk, the range � has two
connected components. Both the density functions f and g are constants, namely
the probability measures are uniform distributions. The optimal transportation map
T is the gradient map of the Brenier potential u : � → R. The singularity set �� is
a loop inside �, the image of � \�� covers �. From the bottom view, it is easy to
see that the Brenier potential is C1 almost everywhere, except at the ��, where the
potential is only C0. The singularity set �� is a graph, which can be decomposed



Singularity of Optimal Transportation 73

(a) (b) (c) (d)

Fig. 7 The singularity set of an optimal transportation map from the uniform distribution on a
disk to the island shape. The blue curves show the singularities on the domain, the red curves show
the non-differentiable points on the Brenier potential. (a) Power diagram. (b) Weighted delaunay
triangulation. (c) Brenier potential (bottom view). (d) Brenier potential (top view)

into arcs and branching points. Take a point in the singularity set, x ∈ ��, if x is in
the interior of an arc, the sub-differential ∂u(x) is a line segment; if x is a branching
point, ∂u(x) is a two-dimensional convex set.

The singularity set can be formulated by the generalized medial axis concept.

Definition 4 (Power Medial Axis) Suppose � ⊂ R
d is a domain in the Euclidean

space, h : � → R is a convex function, which defines the power distance as in (5),

powh(x, y) := 1

2
|x − y|2 −

(
1

2
|y|2 − h(y)

)
.

For each point x ∈ R
d , the closest point of x to � is defined as

Cl�(p, h) := arg inf
y∈� powh(p, y),

the power medial axis is defined as

M�(h) :=
{
x ∈ R

d | |Clλ(p, h)| > 1
}
.

Proposition 1 (Singularity Set) Suppose �,� ⊂ R
d are compact domains, with

absolutely continuous measures μ and ν, ∂� has zero Lebesgue-measure. The
transportation cost is quadratic Euclidean distance. Suppose u : � → R is the
Brenier potential, ∇u : � → � is the optimal transportation map. u∗ : � → R is
the Legendre dual of u, then the singularity set of the optimal transportation map is
given by

�� = M�(u
∗) ∩�. (13)



74 Z. Luo et al.

Proof Let the cost function c(x, y) = 〈x, y〉. Suppose x0 ∈ ω, y0 ∈ �, and
y0 ∈ ∂u, then

u(x0)+ u∗(y0) = 〈x0, y0〉,
u(x0)+ u∗(y) ≥ 〈x0, y〉 ∀y ∈ �.

Therefore, for any y ∈ �,

u∗(y0)− 〈x0, y0〉 ≤ u∗(y)− 〈x0, y〉,
1

2
|x0 − y0|2 −

(
1

2
|y0|2 − u∗(y0)

)
≤ 1

2
|x0 − y|2 −

(
1

2
|y|2 − u∗(y)

)
,

this means ∀y ∈ �, powu∗(x0, y0) ≤ powu∗(x0, y) and therefore y0 ∈ Cl�(x0, u
∗).

Namely, y0 is the closest point in � (under the power distance) to x0, the optimal
transportation map T maps each point x0 in � to its closest point y0 in �. Inversely,
if y0 ∈ � is the closest point to x0 ∈ �, then y0 ∈ ∂u(x0).

Suppose x ∈ � and x is in the power medial axis of �, x ∈ M�(u
∗), then it has

two closest points y1, y2 ∈ �, hence y1, y2 ∈ ∂u(x). u is not differentiable at x, x
is a singularity of u, this shows

M�(u
∗) ∩� ⊂ ��.

Inversely, suppose x ∈ ��, then ∂u(x) has at least two points y1, y2 ∈ �, which
are closest to x and with equal power distances. Hence, x is in the power medial
axis of �, this shows

�� ⊂ M�(u
∗) ∩�.

Thus, (13) holds. ��

4.2 Algorithm for Singularity Set

Suppose �,� ⊂ R
d are compact domains, � is convex. We densely sample the

boundary and the interior of �, the samples are denoted as Y = {y1, y2, . . . , yn}.
The boundary samples are triangulated to form a polyhedral hyper-surface, denoted
as ∂Y . Then ∂Y approximates the boundary surface of �, ∂�. Given the powers
{w1, w2, . . . , wn}, or, equivalently, the height h = (h1, h2, . . . , hn), the power
diagram is denoted as DY (h) as defined in (4). The power medial axis is given
by the union of co-dimension 1 faces fij , which are the intersections of two power
Voronoi cells Wi(h) and Wj(h), the corresponding yi and yj are in the boundary



Singularity of Optimal Transportation 75

(a) (b) (c) (d)

Fig. 8 The blue planar graph shows the medial axis of the island-shaped polygon. The red curve
shows the non-differential points on the Brenier potential. (a) Voronoi diagram. (b) Delaunay
triangulation. (c) Breiner potential (bottom view). (d) Breiner potential (top view)

polyhedron ∂Y , but not adjacent yi 	∼ yj in ∂Y ,

MY (h) =
⋃

yi ,yj∈∂Y,yi 	∼yj

{
Wi(h) ∩Wj(h)

}
. (14)

The singularity set of the discrete optimal transportation map is

��(h) = MY (h) ∩�. (15)

Figure 8 illustrates the power medial axis obtained by this algorithm, where � is
the unit disk, � is an island-shaped planar polygon with two connected components.
We densely sample the interior and the boundary of � to get a discrete point set
Y = {yi}ni=1. The boundary samples are connected consecutively to form ∂Y .
We set all the powers to be zeros, {ri = 0}ni=1, equivalently,

{
hi = |yi |2/2

}n
i=1.

Then frame (a) shows the Voronoi diagram of Y , the blue graph is the conventional
medial axis. Frames (c) and (d) show the non-differential points on the graph of
the Brenier potential as the red curves. If the height is changed, the power medial
axis (singularities of the optimal transportation map) can be obtained by the same
algorithm.

4.3 Singularity Set Homotopy Equivalence

For the optimal transportation map, T = ∇u : (�,μ) → (�, ν), if we change the
target measure ν, the optimal transportation map T will be changed accordingly. We
can show that the singularity sets of the optimal transportation maps are homotopic
to each other. We first show this in the discrete setting, then generalize it using the
stability of optimal transportation maps.



76 Z. Luo et al.

Definition 5 (Minkowski Sum) Suppose A and B are subsets on R
n, the

Minkowski sum of them is defined as

A⊕ B := {p + q | p ∈ A, q ∈ B }.

Theorem 8 (Singular Set Homotopy) Given a convex domain � ⊂ R
d and the

discrete point set Y = {yi}ni=1, fix the source measure μ, whose density function
is absolutely continuous. The target measure ν = ∑n

i=1 νiδ(y − yi), νi > 0,
i = 1, 2, . . . , n, such that μ(�) = ∑n

i=1 νi . Given two target measures ν0 and ν1,
the corresponding heights are h0 and h1 respectively, then their singularity sets are
homotopic equivalent to each other:

��(h0) ∼ ��(h1).

Proof Theorem 4 shows that admissible height space HY in (8) is convex, therefore
the line segment connecting h0 and h1 is contained in HY , γ (t) := (1 − t)h0 +
th1. According to the Secondary Power Diagram Theorem 6, HY has a cell
decomposition, HY = ⋃

T ∈T (Y )DT , each cell corresponds to a weighted Delaunay
triangulation (also a combinatorial structure of the power diagram of �). Suppose
the line γ (t) crosses a set of cells corresponding to triangulations T0, T1, . . . , Tk .
Then the unit interval is divided into segments, 0 = t0 < t1 < t2 · · · < tk = 1,
satisfying the following conditions:

1. γ (t) ∈ DTi , ∀t ∈ [ti , ti+1];
2. γ (ti ) ∈ DTi ∩ DTi+1 . ��
Step 1. For any t ∈ (ti , ti+1), all the weighted Delaunay triangulations T (γ (t))
have the same combinatorial structure. All the corresponding power diagrams
share the same combinatorial structure as well. The Brenier potential uγ (t)(x) =
maxki=1

{〈yi, r〉 − γ (t)i
}

can be written as the linear combination

uγ (t) = (1 − λ)uγ (ti) + λuγ (ti+1).

where λ = (ti+1 − t)/(ti+1 − ti ). The graph of the Brenier potential can be written
as a linear combination using Minkowski sum,

G(γ (t)) = λG(γ (ti ))⊕ (1 − λ)G(γ (ti+1)),

where G(γ (t)) is the graph of the function uγ (t). Therefore, as the projection of
the graphs of the Brenier potentials, each power cell can be represented as the
Minkowski sum

Wi(γ (t)) = λWi(γ (ti))⊕ (1 − λ)Wi(γ (ti+1)),



Singularity of Optimal Transportation 77

This implies the singularity set also satisfies the linear combination relation

��(γ (t)) = λ��(γ (ti))⊕ (1 − λ)��(γ (ti+1)).

Step 2. At the critical point ti , we want to show

lim
t→t−i

��(γ (t)) = lim
t→t+i

��(γ (t)). (16)

As shown in Fig. 9, we prove it for the two-dimensional case first; the proofs
for the general dimensional cases are very similar. Fix a weighted Delaunay
triangulation T , we choose two adjacent triangles [vi, vj , vk] and [vj , vi , vl ]. The
power circle associated with vertex vi is c(vi, ri ), the power is r2

i . Then, for each
triangle, there is a unique circle c(o, r) (red one) orthogonal to all three vertex
circles, the so-called power circle of the face. The power center o and the power
radius r satisfy

|vi − o|2 = r2
i + r2,

∣∣vj − o
∣∣2 = r2

j + r2, |vk − o|2 = r2
k + r2.

vi

vj

vk vlok ol

Fig. 9 Power diagram configuration



78 Z. Luo et al.

As shown in Fig. 9, the power centers for the two faces are ok and ol respectively.
The line segment connecting the two power centers [ok, ol] in the power diagram is
dual to the edge [vi, vj ] in the weighted Delaunay triangulation.

Along the curve γ (t), the vertex powers change continuously. Suppose when
t < ti and approaches to ti , the two power centers ok and ol get closer and closer.
At the critical point ti , ok coincides with ol , and the triangulation is changed by
swapping edge [vi, vj ] to [vk, vl]. When t increases further, t > ti , the power center
of [vk, vi , vl ] and that of [vl, vj , vk] diverge. This shows at the critical time ti , the
power diagram edge [vi, vj ] shrinks to a point, and grows to a new edge [vk, vl].
Therefore, the power diagram changes continuously. Hence, the singularity set also
changes continuously, namely (16) holds. For higher dimensional cases, the edge
swap is replaced by a bistellar transformation [12], and the proof is exactly the same.

Combining Steps 1 and 2, we obtain for 0 ≤ i < k,

��(γ (t
+
i )) ∼ ��(γ (t

−
i+1)) = ��(γ (t

+
i+1)).

Hence,

��(γ (t0)) ∼ ��(γ (t
−
1 )) = ��(γ (t

+
1 )) ∼ · · · ∼ ��(γ (tk)).

Figures 7 and 8 show the homotopy relation between the singularity sets of
optimal transportation maps for different target measures. We see that minor
branches may disappear, but the loops and major branches are well preserved.
Figure 10 shows the homotopy deformation between the singularity sets of the
optimal transportation maps from the unit disk to a sea-horse shaped domain with
different target measures. In the beginning, we compute the conventional medial
axis, and the target measure on each yi equals to the corresponding cell area. The
final target measure is uniform distribution.

A more complicated example is illustrated in Fig. 11, the optimal transportation
maps from a planar spiral shape to the unit disk are computed, and the corresponding
singularity sets are extracted. We can see that the singularity sets (power medial
axes) are homotopic equivalent to each other.

Fig. 10 Singularity sets of the optimal transportation maps between the unit disk and the sea-horse
shape with different measures



Singularity of Optimal Transportation 79

Fig. 11 Power medial axes are homotopic for a complicated planar domain

In deep learning applications, the training data set is encoded to the latent
space, as shown in Fig. 3, the latent data distribution is the sum or Dirac measures
ν = 1/n

∑n
i=1 δ(y − ϕ(xi)), where n is the number of samples, xi the training

sample. The optimal transportation map can be computed using the proposed
algorithm as shown in Fig. 4. The singularity on the support of the white noise
distribution, and the non-differential points on the Brenier potential can be easily
detected. The generated results can be seen in Fig. 2, the mode collapse and mode
mixture have been eliminated by carefully handling the singularities of the optimal
transportation map.

5 Conclusion

In this work, we focus on studying the singularity sets of Brenier optimal trans-
portation maps. First, we generalize the concept of medial axis to power medial
axis, which describes the singularity sets of semi-discrete optimal transportation
maps. Second, we propose an algorithm based on a geometric variational principle
using power diagrams to compute the power medial axis. Third, we prove that
when the measures are changed continuously, the corresponding singularity sets of
the optimal transportation maps are deformed homotopically.

In the future, we will study the sufficient and necessary conditions for the
existence of singularity sets, both topologically and geometrically, and generalize
the cost function from quadratic Euclidean distance to strictly convex functions.

Acknowledgments This research was supported by the National Natural Science Foundation of
China under Grant Nos. 61720106005, 61772105, 61936002, and 61907005.



80 Z. Luo et al.

References

1. Alexandrov, A.D.: Convex Polyhedra. Translated from the 1950 Russian edition by N. S.
Dairbekov, S. S. Kutateladze and A. B. Sossinsky. Springer Monographs in Mathematics.
Springer, Berlin (2005)

2. An, D., Guo, Y., Lei, N., Luo, Z., Yau, S.T., Gu, X.: Ae-ot: a new generative model
based on extended semi-discrete optimal transport. In: International Conference on Learning
Representations (2020)

3. Aurenhammer, F.: Power diagrams: properties, algorithms and applications. SIAM J. Comput.
16(1), 78–96 (1987)

4. Brenier, Y.: Polar decomposition and increasing rearrangement of vector fields. C. R. Acad.
Sci. Paris Sr. I Math. 305(19), 805–808 (1987)

5. Brenier, Y.: Polar factorization and monotone rearrangement of vector-valued functions.
Commun. Pure Appl. Math. 44(4), 375–417 (1991)

6. Chen, S., Figalli, A.: Partial w2,p regularity for optimal transport maps. J. Funct. Anal. 272,
4588–4605 (2017)

7. Figalli, A.: Regularity properties of optimal maps between nonconvex domains in the plane.
Commun. Partial Differ. Equ. 35(3), 465–479 (2010)

8. Gel’fand, I., Kapranov, M., Zelevinsky, A.: Discriminants, Resultants, and Multidimensional
Determinants. Birkhäuser, Boston (1994)

9. Goodfellow, I.: NIPS 2016 tutorial: generative adversarial networks. arXiv:1701.00160 (2016)
10. Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville,

A., Bengio, Y.: Generative adversarial nets. In: Advances in Neural Information Processing
Systems (NIPS 2014), pp. 2672–2680 (2014)

11. Gu, X., Luo, F., Sun, J., Yau, S.T.: Variational principles for minkowski type problems, discrete
optimal transport, and discrete monge-ampere equations. Asian J. Math. 20(2), 383–398 (2016)

12. Joe, B.: Construction of three-dimensional delaunay triangulations using local transformations.
Comput. Aided Geom. Des. 8(2), 123–142 (1991)

13. Kingma, D.P., Welling, M.: Auto-encoding variational bayes. arXiv:1312.6114 (2013)
14. Leal, F.S., De Loera, J.A., Rambau, J.: Triangulations, Structures for Algorithms and

Applications. Springer, Berlin (2010)
15. Lei, N., Su, K., Cui, L., Yau, S.T., Gu, D.X.: A geometric view of optimal transportation and

generative model. Comput. Aided Geom. Des. 68, 1–2 (2019)
16. Lei, N., Chen, W., Luo, Z., Si, H., Gu, X.: Secondary power diagram, dual of secondary

polytope. Comput. Math. Math. Phys. 59(12), 1965–1981 (2019)
17. Lei, N., An, D., Guo, Y., Su, K., Liu, S., Luo, Z., Yau, S.T., Gu, X.: A geometric understanding

of deep learning. Engineering 6(3), 361–374 (2020)



Polygonal and Polyhedral Delaunay
Meshing

Vladimir Garanzha and Liudmila Kudryavtseva

Abstract We consider construction of a polyhedral Delaunay partition as a limit
of the sequence of radical partitions (power diagrams), while the dual Voronoi
diagram is obtained as a limit of sequence of weighted Delaunay partitions. Using a
lifting analogy, this problem is reduced to the construction of a pair of dual convex
polyhedra, inscribed and superscribed around circular paraboloid, as a limit of
the sequence of pairs of general dual convex polyhedra. The sequence of primal
polyhedra should converge to the superscribed polyhedron, while the sequence
of dual polyhedra converges to the inscribed polyhedron. Different rules can be
used to build sequences of dual polyhedra. We are mostly interested in the case
when the vertices of primal polyhedra can move or glue together, meaning that
no new faces are allowed for dual polyhedra. These rules essentially define the
transformation of the set of initial spheres defining power diagram into the set of
Delaunay spheres using sphere movement, radius variation, and sphere elimination
as admissible operations. Even though rigorous foundations (existence theorems)
for this problem are still unavailable, we suggest a functional which measures
deviation of the convex polyhedron from the one inscribed into paraboloid. This
functional is the discrete Dirichlet functional for the power function which is a
linear interpolant of the vertical distance of the dual vertices from paraboloid.
The absolute minimizer of this functional is attained on the constant power field,
meaning that the inscribed polyhedron can be obtained by means of a simple
translation. This formulation of the Dirichlet functional for the dual surface is not
quadratic since the unknowns are the vertices of the primal polyhedron, hence, the
transformation of the set of spheres into Delaunay spheres is not unique. Numerical

V. Garanzha (�)
Dorodnicyn Computing Center FRC CSC RAS, Moscow, Russia
e-mail: garan@ccas.ru
http://www.ccas.ru/gridgen/lab

L. Kudryavtseva
Moscow Institute of Physics and Technology, Moscow, Russia
e-mail: liukudr@yandex.ru

© Springer Nature Switzerland AG 2021
V. A. Garanzha et al. (eds.), Numerical Geometry, Grid Generation and Scientific
Computing, Lecture Notes in Computational Science and Engineering 143,
https://doi.org/10.1007/978-3-030-76798-3_5

81

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76798-3_5&domain=pdf
mailto:garan@ccas.ru
http://www.ccas.ru/gridgen/lab
mailto:liukudr@yandex.ru
https://doi.org/10.1007/978-3-030-76798-3_5


82 V. Garanzha and L. Kudryavtseva

examples illustrate polygonal Delaunay meshing in planar domains. In this work
we concentrate on the experimental confirmation of the viability of suggested
approach putting aside mesh quality problems. The gradient of the above functional
defines a manifold describing evolution of Delaunay spheres hence one can optimize
Delaunay-Voronoi meshes using this manifold as a constraint.

1 Introduction

In his famous talk “Sur la sphere vide” at Toronto geometry congress in 1924 [5] and
his paper [6], Boris Nikolaevich Delaunay (Delone) introduced a spatial partition of
a prescribed discrete vertex set consisting of d-dimensional simplices with empty
circumspheres, empty in the sense that they do not contain any vertices inside. His
famous “Delaunay Lemma” states that if the empty circumsphere condition holds
locally for any adjacent pair of simplices with a common d − 1 dimensional face
then all circumspheres are empty.

In 1937, Delaunay introduced the so-called “L-partition” [7] which can be
obtained by moving, contracting, and inflating an empty sphere among the vertices
of discrete set in R

d (Fig. 1a). In such a way, all empty spheres with a d-dimensional
set of vertices on the surface are identified. The convex envelope of the set of
vertices lying on such an L-sphere is a convex polyhedron called by Delaunay an
L-polyhedron (Fig. 1b). The set of these polyhedra defines a normal partition of
the space called the L-partition. The Delaunay lemma is naturally generalized for
this polyhedral partition. These days, the L-partition is called Delaunay partition,
while the spheres with d-dimensional set of vertices on their surfaces are called
Delaunay spheres. The convex envelope of the spheres passing through a vertex
defines a Voronoi polyhedron for this vertex. Note that both Delaunay and Voronoi
partitions for a prescribed vertex set are unique. Duality relations between Delaunay
and Voronoi partitions are simple and elegant, which is not the case for Delaunay
triangulations.

(a) (b)

Fig. 1 (a) Empty sphere moving through the point set, (b) spheres with d-dimensional point sets



Polygonal and Polyhedral Delaunay Meshing 83

Each Delaunay polyhedron can be split into simplices, creating a simplicial
partition which is generally called a Delaunay triangulation. Note that this
construction excludes flat simplices (slivers). Strictly speaking, a sliver is a
degenerate simplex with a d − m-dimensional vertex set, m > 0, meaning that
it is just an incorrect triangulation of the d − m-dimensional face of the Delaunay
partition. This problem is aggravated if approximate computations are used. In
such a case, the difference between a correct but an almost flat simplex and an
incorrect triangulation of a Delaunay polyhedron face has to be clearly identified.
A natural identification is provided by the power diagram or a radical partition for
the set of spheres. The radical partition goes back to René Descartes’ work. It is
the set of convex polyhedra constructed as intersections of half-spaces defined by
d − 1-dimensional planes orthogonal to segments connecting centers for all pairs of
spheres (see Sect. 2 for details). For a pair of intersecting spheres, the radical plane
always passes through the common set. Hence, given a set of Delaunay spheres as
an input, the radical partition would coincide with the Delaunay partition.

The equivalence of the radical and the Delaunay partitions provides a natural
way to introduce a polyhedral approximation of a Delaunay partition for a disturbed
point set. Let us add a small perturbation to the vertex positions and consider an
arbitrary simplicial Delaunay partition for this vertex set, allowing for slivers. In
this case, the numbers, centers, and radii of the Delaunay spheres evidently would
change. However, since the volume of each Delaunay polyhedron was strictly
positive initially, the centers and radii of the Delaunay spheres are stable with respect
to perturbations. Hence, what we get is the cluster of spheres approximating each
Delaunay sphere of the initial partition. A new sphere is the circumsphere of a
certain new Delaunay simplex. We can find the best fit for the center of each cluster
of spheres using averaging of circumcenters with volume of the corresponding
Delaunay simplices as weights. In this case, a sliver would evidently provide a
zero contribution to the averaged sphere parameters. The simplest way to compute
the average radius for a cluster of spheres is to use least squares for distances
between the new center and the disturbed vertices. A sliver may produce an isolated
circumsphere which does not fit into the cluster of spheres. Such a sliver should be
ignored when constructing the radical partition. The elimination criterion is simple:
if the circumsphere is unstable, then the almost flat simplex is too badly conditioned
to contribute to the set of spheres. As soon as a radical partition is computed, a
stable triangulation of the resulting polyhedral partition can be found which may
serve as an approximate Delaunay triangulation. Note that the radical partition for
the disturbed point set may produce another point set as a set of partition vertices.
It may produce a cluster of close vertices instead of each input vertex potentially
creating needle-type simplices. These clusters also should also be glued together.

It is well known that an annoying feature of modern advanced tools for Delaunay
triangulation such as TetGen [13] is the creation of artificial slivers. A simplest
test set when the vertices of a cubic lattice are triangulated generally produces a
huge number of flat tetrahedra. The logic of a Delaunay triangulation via a radical
partition is more complicated but it allows to get rid of artificial slivers. Note,
however, that the same notation “sliver” is sometimes used for a badly shaped



84 V. Garanzha and L. Kudryavtseva

simplex which is not far from being flat but the computation of its circumcenter
and circumradius is stable. Then it is a legitimate badly shaped Delaunay simplex
and it should not be eliminated from the triangulation.

Delaunay triangulations have numerous applications in quite different fields [4].
One of the properties which is very important for numerical simulations is the
maximum principle for the discrete Laplacian on Delaunay meshes [11].

They key ingredient of algorithms for constructing truly Voronoi computational
meshes is the ability to control the location of Delaunay spheres in the key regions
of the computational domain, in particular on and near boundaries [1, 12]. We
propose a computational framework which, potentially, can serve as a tool of
controlling placement of Delaunay spheres and provides a top-to-bottom Delaunay-
Voronoi construction when the set of spheres generates the set of seeds for Delaunay
meshing.

2 Power Diagram and Lifting Procedure

The idea of lifting goes back to the works of G.F. Voronoi [14] who has shown that
a Delaunay triangulation in R

d is the projection of faces of a convex polyhedron
P ∈ Rd+1 inscribed into a circular paraboloid�. The convex body P ∗, constructed
as the intersection of the upper half-spaces for tangent planes to � at the vertices
of P , is called the Voronoi generatrice. Projection of its faces onto R

d defines a
Voronoi diagram. A more general lifting concept [8, 9] is based on the construction
of a pair P , P ∗ of convex polyhedra which satisfy the polarity relation [3] with
respect to the paraboloid �.

Consider the system of balls B = {B1, . . . , Bn} defined by centers and radii
ci, Ri , ci ∈ R

d , Ri ≥ 0. According to the lifting operation, one can consider the
lifted point system El = {p1, . . . , pn} in R

d+1, where

pTi =
(
cTi

1

2
(|ci |2 − R2

i )

)
= (cTi hi).

Consider the lower convex envelope of El defined by the convex function xd+1 =
v(x1, . . . , xd). The Legendre-Young-Fenchel dual [10] of v is denoted by v∗. To
be mathematically precise, the function v(x) is equal to +∞ outside the convex
envelope conv(c1, . . . , cn) and its epigraph is a closed set. The dual function
v∗(x) is defined everywhere and its graph contains unbounded faces. Further, we
will consider constrained problems where unbounded faces are excluded from the
problem setting.

Projection of faces of the graph of v defines a weighted Delaunay triangulation
W in R

d [8]. Vertices of the graph of v are pairs ci, hi and vertices of the weighted
Delaunay triangulation are ci . Tk denotes the k-th weighted Delaunay polyhedron.

Projection of faces of the graph of v∗ defines a radical partition (power diagram)
R for a system of balls in R

d [8], as shown in Fig. 2. Projection of the k-th vertex



Polygonal and Polyhedral Delaunay Meshing 85

Fig. 2 A weighted Delaunay triangulation, the power diagram, and dual polyhedra from lifting.
The figure is constructed with the help of detri2 by Hang Si

of the graph of v∗ onto xd+1 = 0 is denoted by vk . This point is dual to Tk ∈ W,
while the vertex ci is dual to the cell Di of R.

3 Ball Movement as a Transformation of Dual Polyhedra

Our objective is to move the balls B in such a way that all vertices of graph of
v∗ converge to the surface of paraboloid xd+1 = �(x) = 1

2 (x
2
1 + · · · + x2

d). It
means that the projection of the graph of v∗ will eventually converge to the Delaunay
partition. Note that the number of vertices vk may vary during the ball movement.
Further, it is convenient to use notation xT , xd+1 for an arbitrary point in R

d+1,
where xT = {x1, . . . , xd}.

For the set of balls B, we build primal P and dual polyhedra P ∗ defined by the
convex piecewise-linear functions v(x) and v∗(x), respectively. According to the
polarity relation [3], the vertex ci, hi defines the dual plane of the face of the graph
of v∗(x),

cTi x = hi + xd+1.

The vertex vk, zk of the graph of v∗(x) is the intersection of at least d + 1 such
planes:

vTk (ci − cp) = hi − hp, (1)



86 V. Garanzha and L. Kudryavtseva

where i 	= p are indices of all planes intersecting in the point vk, zk . Hence,

zk = vTk ci − hi = vTk ci −
1

2
c2
i + 1

2
R2
i = −1

2

(
|ci − vk|2 − R2

i

)
+ 1

2
v2
k .

In another words,

zk −�(vk) = −1

2
τi(vk). (2)

Here,

τi(y) = |ci − y|2 − R2
i

is the power of the point y with respect to the ball Bi . Hence, the vertical distance
of the vertex vk, zk from the paraboloid � is fully defined by the value of power.
Another interpretation of the equality (1) is that for a vertex vk dual to the weighted
Delaunay polyhedron Tk the equality

τi(vk) = τp(vk)

is satisfied for all vertices of Tk . It means that for the setting we use it is possible to
omit indices and just use notation τ (vk) for the value of power.

From (1) it follows that the gradient of v∗(x) at the i-th face of its graph is
equal to ci . The dual statement is true as well: the gradient of v(x) at the k-th
face of its graph is equal to vk . For any convex polyhedron Tk one can find d

linear independent vectors ci − cp. In 2d, when Tk is a triangle, this set is simply
c2 − c1, c3 − c1, as shown in Fig. 3a. When τ (vk) > 0, one can associate with vk the
sphere with radius

√
τ (vk) which is called the orthosphere. In the section devoted

h2

c3

2D

c1

c2

3D

h3

h1

1D

kT kv

(a)

ci
s4

s3
s2

T4

T2

T3

D

s1

~
~

~

~

T1
i

(b)

Fig. 3 (a) A weighted Delaunay triangle Tk , the dual vertex vk and orthocircle, (b) a radical cell is
split into 4 Delaunay triangles. Center ci is approximated by a cloud of 4 Delaunay circumcenters



Polygonal and Polyhedral Delaunay Meshing 87

to numerical experiments we draw artificial “orthospheres” with radius defined by√|τ (vk)|. As shown below, these spheres visualize the deviation of radical partition
from the Delaunay partition.

Denote by ṽ∗ projected version of function v∗ which is constructed as follows:
consider the set of vertices {vj zj } of the graph of v∗ and project them on paraboloid
� just by setting

z̃j = 1

2
|vj |2, ṽj = vj .

As shown above, this projection changes the “vertical component” zj by 1
2τ (zj ).

Computing the lower convex envelope of the system of points ṽk, z̃k , k = 1, nv ,
we get the graph of function ṽ∗.

4 Dirichlet Functional for Power Function

In order to measure how far the current radical partition is from the Delaunay
partition we consider the Dirichlet functional for the difference of v∗ and ṽ∗,

F(X) = 1

2

∫

�

|∇v∗ − ∇ṽ∗|2 dx . (3)

Here, X is the vector of unknowns, consisting of ci, Ri , and � is the bounded
definition domain of function ṽ∗. From (2) it follows that

F(X) = 1

8

∫

�

|∇τ (x)|2 dx .

We denote by τ (x) the piecewise linear function which coincides with τ (vk) at vk
and is linear on each cell T̃j of the auxiliary Delaunay partition. F(X) can be
rewritten as

F(X) = 1

2

∑
i

∑

T̃j∈Di

|ci − sj |2 vol T̃j , (4)

where sj is the circumcenter of the Delaunay simplex T̃j . The above equality is the
obvious consequence of the fact that

∇v∗ |Di = ci , ∇ṽ∗ |T̃j∈Di
= sj .



88 V. Garanzha and L. Kudryavtseva

To clarify this formula, consider a Delaunay simplex T̃j with vertices v1, . . . , vd+1.
The gradient gj of ṽ∗ is defined by

(vm − vl)
T gj = 1

2
(v2

m − v2
l ), m, l ≤ d + 1,

or

1

2
|gj − vm|2 = 1

2
|gj − vl |2,

which is precisely the set of equations for the circumcenter sj of T̃j .
Equality F(X) = 0 implies that for each radical polyhedron Di its dual vertex

ci coincides with all circumcenters of Delaunay triangulation of its set of vertices,
meaning that Di is Delaunay polyhedron.

Consider the following algorithm:

For n = 0, 1, . . .
• Given the set of balls Bn, compute the primal and dual functions vn and vn∗ using

the lifting operation. These functions define a weighted Delaunay triangulation
Wn and a radical partition Rn, respectively.

• Compute the projected function ṽn∗. This function defines a Delaunay triangula-
tion T̃ n of the set of vertices of radical partition Rn.

• Do gradient search minimization step for Dirichlet functional F(x), obtaining
the set of balls Bn+1.
Repeat until convergence.

In this algorithm, the sequence of weighted Delaunay triangulations Wn con-
verges to a Voronoi diagram V while the sequence of radical partitions Rn to a
Delaunay partition T . Note that the limit Delaunay triangulation T̃ consists of
Delaunay simplices, while T consists of polyhedral Delaunay cells for the same
point set.

One can formulate a simplified version of the algorithm when cumbersome
gradient computation is avoided. Let us try to find ci using local minimization
of the functional (4) considering it as a quadratic function of ci ,

cnewi =
⎛
⎜⎝
∑

T̃j∈Di

sj vol T̃j

⎞
⎟⎠
/ ∑

T̃j∈Di

vol T̃j ,

while Ri is computed using simple least squares approximation

Rnew
i = 1√

M

(
M∑
m=1

∣∣cnewi − vm
∣∣2
) 1

2

, (5)



Polygonal and Polyhedral Delaunay Meshing 89

where v1, . . . , vM is the set of vertices of Di . Note that (5) is equivalent to

M∑
m=1

τ (vm) = 0,

which, in turn, is the necessary minimum condition with respect to Ri for the local
functional

M∑
m=1

τ 2(vm).

New positions and radii are computed using a certain damping parameter 0<θ < 1,

cn+1
i = cni (1 − θ)+ cnewi θ and Rn+1

i = Rn
i (1 − θ)+ Rnew

i .

This heuristic algorithm is quite efficient for initial iterations. Eventually, it slows
down and should be replaced by the gradient search technique in order to converge
to the exact solution.

One can consider constrained problem where some of the balls are fully or
partially fixed: ball centers are allowed to move along a prescribed manifold, radii
constraints are added, etc.

Currently, there is no existence theorem for this problem. In principle, an
overdetermined constrained problem can be defined such that the set of Delaunay
spheres cannot be constructed without allowing introduction of new spheres.

5 Numerical Experiments

We made an attempt to generate polygonal Delaunay meshes for a relatively simple
test setting. Consider a square with a circle inside. We cover boundary curves
by the protecting circles. For the outer boundary, we fix the circle centers, thus,
defining an approximation of the external boundary by Voronoi edges. For the inner
boundary (the internal circle) we fix both the position of circle centers and the radii.
Additional two lines of circles defining the initial layer of quadrilateral Delaunay
cells near the internal boundary are added. The centers of these additional circles
are fixed but the radii are allowed to change. We allow for a small radius change
on the outer boundary as well. Since the outer boundary is covered by Delaunay
cells, we essentially set zero boundary conditions for the power function τ (x). A
lattice set of circles is created inside the domain and random disturbance is added
to the centers and the radii. All centers which get inside the protecting circles are
eliminated.

Figure 4 shows the general view of the initial radical partition and the final
Delaunay partition. It can be observed that the constraints are satisfied by allowing



90 V. Garanzha and L. Kudryavtseva

Fig. 4 Initial radical partition R0 and the final Delaunay partition T

Fig. 5 Initial radical partition R0 with the initial set of circles and the final Delaunay partition T
with circumcircles

larger cells near the fixed circles which, in turn, compresses some circles almost to
zero.

Note that the nice regular layered pattern of Delaunay and Voronoi cells near
the internal boundary is disturbed due to introduction of small Delaunay edges. In
the current version of the algorithm, there is no mechanism to eliminate these small
edges.

Figure 5 adds the set of circles Bi to Fig. 4.
Initial weighted Delaunay triangulation W0 and the final Voronoi mesh are

shown in Fig. 6. Again, we observe quality problems in final Voronoi triangulation.
Note that two layers of the Voronoi cells near the internal circle are in fact
quadrilateral layers.



Polygonal and Polyhedral Delaunay Meshing 91

Fig. 6 Initial weighted Delaunay mesh W0 and the final Voronoi triangulation

Fig. 7 Fragments of the initial radical and the final Delaunay partitions

Fig. 8 Fragments of the initial radical and the final Delaunay partitions

Enlarged fragments in Figs. 7 and 8 allow to see clearly how the algorithm works.
Figure 9 show the evolution of the mesh fragment where “orthocircles” are

added, meaning the circles centered at the dual vertices vk with radii equal to√|τ (vk)|. When τ (vk) < 0, the red circles are no longer real orthocircles; they
are just to evaluate the deviation of the radical cells from the Delaunay cells.



92 V. Garanzha and L. Kudryavtseva

Fig. 9 Converging sequence of radical partitions (a)–(d) with square roots of absolute values of
powers shown as red circles

6 Discussion

We have shown numerically in the 2d case that a radical partition can evolve into
the polygonal Delaunay partition via evolution of the set of circles. The problem
setting is multi-dimensional, hence, it is expected that the algorithm is applicable in
the 3d case as well. While there is no existence theorem for the problem, we do not
consider this as a crucial drawback. As soon as the addition of new balls becomes
an admissible operation, the existence result become trivial, since the projected
function ṽ∗ in each iteration already provides a solution. However, the problem
of the minimal addition of balls in order to construct a solution is an open one.
Numerical experiments suggest that the ability to add new circles/balls locally also
can be important in order to attain mesh quality in the presence of constraints.

Note that the concept of lifting allows to create nontrivial computational
algorithms. In [2], the balls with unknown radii were assigned to the vertices of
surface triangulation in order to solve the recovery problem when the weighted
Delaunay tetrahedralization of the point set is constructed which matches prescribed
boundary triangles. In [2], a similar existence problem is encountered. Evidently, it
is possible to define a surface triangulation which cannot be matched by weighted
Delaunay faces. In this case, the surface mesh should be refined: new vertices are
added, which alleviates the existence problem.

In practice, the mesh quality functionals should be optimized by using manifold
∇F = 0 as a constraint. Obvious quality requirements are related to elimination of
small Delaunay and Voronoi edges and faces. This is subject of ongoing research.



Polygonal and Polyhedral Delaunay Meshing 93

In order to build good Delaunay-Voronoi meshes, one has to follow the sizing
function, eliminate small Delaunay edges/faces, eliminate small balls, and eliminate
small Voronoi edges/faces, trying to create a polyhedral Voronoi mesh.

Acknowledgments This work is supported by the Ministry of Science and Higher Education of
the Russian Federation, project No. 075-15-2020-799.

References

1. Abdelkader, A., Bajaj, C., Ebeida, M., Mahmoud, A., Mitchell, S., Owens, J., Rushdi, A.:
VoroCrust: Voronoi meshing without clipping. ACM Trans. Graph. 39(3), 23 (2020)

2. Alexa, M.: Conforming weighted Delaunay triangulation. ACM Trans. Graph. 39 (6) (2020).
https://doi.org/10.1145/3414685.3417776

3. Alexandrov, A.D.: Convex Polyhedra. Moscow-Leningrad (in Russian) (1950)
4. Aurenhammer, F., Klein, R., Lee, D.-T.: Voronoi Diagrams and Delaunay Triangulations.

World Scientific, Singapore (2013)
5. Delone (Delaunay), B.N.: Sur la sphere vide. In: Proc. Internat. Congr. Math. (Toronto 1924),

vol. 1, pp. 695–700. Univ. Toronto Press, Toronto (1928)
6. Delaunay, B.N.: Sur la sphere vide. Bull. Acad. Sci. URSS, VII. Ser. 1934 6, 793–800 (1934)
7. Delone, B.N.: The geometry of positive quadratic forms. Uspekhi. Mat. Nauk 3, 16–62 (1937).

4, 102–164 (1938)
8. Edelsbrunner, H.: Geometry and Topology for Mesh Generation. Cambridge Monographs on

Applied and Computational Mathematics. Cambridge University Press, Cambridge (2001)
9. Edelsbrunner, H., Seidel, R.: Voronoi diagrams and arrangements. Discrete Comput. Geom. 1,

25–44 (1986)
10. Fenchel, W.: On conjugate convex functions. Canad. J. Math. 1, 73–77 (1049)
11. Gärtner K., Kamenski L.: Why do we need Voronoi cells and Delaunay meshes? Essential

properties of the Voronoi finite volume method. Comput. Math. Math. Phys. 59(12), 1930–
1944 (2019)

12. Garanzha, V.A., Kudryavtseva, L.N., Tsvetkova, V.O.: Hybrid Voronoi mesh generation:
algorithms and unsolved problems. Comput. Math. Math. Phys. 59(12), 1945–1964 (2019)

13. Si, H.: TetGen, a Delaunay-based tetrahedral mesh generator. ACM Trans. Math. Softw. 41(2),
11:1–11:36 (2015)

14. Voronoi, G.F.: Nouvelles applications des paramètres continus a la théorie de formes
quadratiques. J. Reine Angew. Math. 134, 198–287 (1908)

https://doi.org/10.1145/3414685.3417776


On Decomposition of Embedded
Prismatoids in R

3 Without Additional
Points

Hang Si

Abstract This paper considers embedded three-dimensional prismatoids. A sub-
class of this family is twisted prisms, which includes the family of non-triangulable
Schönhardt polyhedra (Schönhardt, Math Ann 98:309–312, 1928; Rambau, On a
generalization of Schönhardt’s polyhedron. In: Goodman, J.E., Pach, J., Welzl, E.
(eds.) Combinatorial and Computational Geometry, vol. 52, pp. 501–516. MSRI
Publications, Chicago, 2005). We call a prismatoid decomposable if it can be cut
into two smaller prismatoids (which have smaller volumes) without using additional
points. Otherwise, it is indecomposable. The indecomposable property implies the
non-triangulable property of a prismatoid but not vice versa.
In this paper, we prove two basic facts about the decomposability of embedded
prismatoid in R

3 with convex bases. Let P be such a prismatoid, call an edge
interior edge of P if its both endpoints are vertices of P , and its interior lies inside
P . Our first result is a condition to characterize indecomposable twisted prisms. It
states that a twisted prism is indecomposable without additional points if and only
if it allows no interior edge. Our second result shows that any embedded prismatoid
in R

3 with convex base polygons can be decomposed into the union of two sets (one
of them may be empty): a set of tetrahedra and a set of indecomposable twisted
prisms, such that all elements in these two sets have disjoint interiors.

1 Introduction

Decomposing a geometric object into simpler parts is one of the most fundamental
problems in computational geometry.

In 2d, this problem is well solved. Given a polygonal region whose boundary
is a planar straight-line graph G = (V ,E), there are many efficient algorithms to
create a constrained triangulation whose vertex set is V and it contains all edges

H. Si (�)
Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany
e-mail: si@wias-berlin.de

© Springer Nature Switzerland AG 2021
V. A. Garanzha et al. (eds.), Numerical Geometry, Grid Generation and Scientific
Computing, Lecture Notes in Computational Science and Engineering 143,
https://doi.org/10.1007/978-3-030-76798-3_6

95

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76798-3_6&domain=pdf
mailto:si@wias-berlin.de
https://doi.org/10.1007/978-3-030-76798-3_6


96 H. Si

of E. Moreover, no additional vertices are needed. Lee and Lin [8] and Chew [4]
independently proved that there exists a triangulation of G, called the constrained
Delaunay triangulation, such that it is as close as to the Delaunay triangulation of
V while preserveing all edges of E. Moreover, Chew showed that this triangulation
can be constructed in optimal O(n logn) time [4].

The problem of triangulating polyhedra is complicated even we restrict ourselves
to only consider simple polyhedra (without holes). It is known that not all simple
polyhedra can be triangulated without adding new vertices, so-called Steiner points.
The famous example of Schönhardt [12] (known as the Schönhardt polyhedron)
shows that a twisted non-convex triangular prism cannot be triangulated without
adding new vertices, see Fig. 1 (left). Other examples of non-triangulable polyhedra
are presented, e.g., in [1–3, 6, 10, 13].

The existence of non-triangulable polyhedra is a significant difficulty in many
3d problems. Ruppert and Seidel [11] proved that the problem to determine
whether a simple non-convex polyhedron can be triangulated without Steiner points
is NP-complete. It is necessary to use additional points, so-called Steiner points,
to triangulate polyhedra. Chazelle [3] constructed a family of polyhedra and
proved that they require a large number of Steiner points to be triangulated, see
Fig. 1 (right).

There are not many studies about the geometry and topology of such polyhedra.
Rambau [10] first showed that any non-convex twisted prisms over an n-gon (n ≥ 3)
cannot be triangulated without Steiner points. Furthermore, he showed that the non-
triangulability of such polyhedra does not depend on how much it is twisted. His
result generalized the Schönhardt polyhedron into a family of polyhedra with such
a property. We call polyhedra from this family Rambau polyhedra. The Schönhardt
polyhedron is the simplest case of a Rambau polyhedron.

Geometrically, a Rambau polyhedron is a special prism such that its top and base
polygons are (i) planar, (ii) congruent, and (iii) parallel to each other. In general, a
twisted prism is not necessarily a Rambau polyhedron. Indeed, a slightly perturbed
Rambau polyhedron whose base polygon has more than three vertices might become
triangulable. On the other hand, if a prism (not necessarily a Rambau polyhedron) is

x

z
y

Fig. 1 Left: the Schönhardt polyhedron. Right: a Chazelle polyhedron



On Decomposition of Embedded Prismatoids in R
3 Without Additional Points 97

twisted sufficiently much, it won’t be triangulable without Steiner points. The proof
of this fact is rather simple. A basic fact (proved in Sect. 3) is that for a prism having
a base polygon with more than five vertices, interior edges have to be decomposed.
When a prism is twisted sufficiently large, it will reach a state an interior edge can’t
be inserted. Hence, it is non-triangulable. Note that a Rambau polyhedron might
allow insertion of interior edges. Motivated by this phenomenon, we want to find the
critical conditions between the existence and non-existence of a tetrahedralisation
for this kind of polyhedra.

This paper considers three-dimensional prismatoids which can be embedded in
R

3. A subclass of this family are twisted prisms, which includes the family of non-
triangulable Schönhardt polyhedra [10, 12].

We call a prismatoid decomposable if it can be cut into two smaller prismatoids
(which have smaller volumes) without using additional points. Otherwise it
is indecomposable. The indecomposable property implies the non-triangulable
property of a prismatoid but not vice versa.

In Sect. 3, we prove two basic facts about the decomposability of embedded
prismatoid in R

3 with convex bases. Let P be such a prismatoid, call an edge
interior edge of P if its both endpoints are vertices of P , and its interior lies inside
P . Our first result is a condition to characterize indecomposable twisted prisms. It
states that a twisted prism is indecomposable without additional points if and only
if it allows no interior edge. Our second result shows that any embedded prismatoid
in R

3 with convex base polygons can be decomposed into the union of two sets (one
of them may be empty): a set of tetrahedra and a set of indecomposable twisted
prisms, such that all elements in these two sets have disjoint interiors.

2 Preliminaries

This section provides the necessary definitions of the family of prismatoids and
twisted prismatoids studied in this paper.

2.1 Prisms, Antiprisms, and Prismatoids

In geometry, a prism is a solid that has two polygonal faces that are parallel
and congruent [7, 14]. In other words, it is a polyhedron comprising an n-sided
polygonal base (possibly non convex), a second base which is a translated copy
(rigidly moved without rotation) of the first, and n other faces (necessarily all
parallelograms) joining corresponding sides of the two bases. All cross-sections
parallel to the bases are translations of the bases.

Antiprisms are similar to prisms except the bases are twisted relative to each
other, and that the side faces are triangles, rather than quadrilaterals. Formally,
an n-sided antiprism is a polyhedron composed of two parallel copies of an



98 H. Si

frustum

triangular prism cuboid oblique prism

pentagonal prism      star prism

pyramid          wedge

cupola       pentagonal cupola

prisms antiprisms
non-convex antiprisms

convex antiprisms

not prismatoids
icosahedron

truncated prism
Jenssen polyhedron(a wedge)

Bagemihl polyhedron

Bezdek & Carrigan
polyhedron

Fig. 2 The family of prismatoids. Right-bottom: some common figures which are not prisma-
toids4

n-sided polygonal base (possibly non-convex), connected by an alternating band
of triangles.

Both prisms and antiprisms are subclasses of prismatoids. A prismatoid is a
polyhedron whose vertices all lie in two parallel planes; its lateral faces can be
trapezoids or triangles [7, 14]. The family of prismatoids includes many common
geometric shapes, e.g., pyramids, wedges, prisms, antiprisms, and frusta (truncated
pyramids). Figure 2 shows various examples as well as some common solids which
are not prismatoids.

2.2 Sn,m-Prismatoids

This section defines a family of prismatoids considered in this paper. In brief, these
prismatoids have convex bases which are connected by a band of triangular facets.
Additionally, they can be embedded in R

3 without self-intersections.

4Here and hereafter: cupola figure (from Wikipedia) used under CC BY-SA 3.0; antiprisms created
with Robert Webb’s Stella software, https://www.software3d.com/Stella.php; Jessen’s polyhedron
© 2021 Springer Nature Switzerland AG.

https://en.wikipedia.org/wiki/Prismatoid#/media/File:Pentagonal_cupola.png
https://creativecommons.org/licenses/by-sa/3.0
https://www.software3d.com/Stella.php


On Decomposition of Embedded Prismatoids in R
3 Without Additional Points 99

Without loss of generality, we will place a prismatoid in such a way such that the
two base facets are parallel to the horizontal plane H0 := { (x, y, 0) | x, y ∈ R }.
Moreover, one of its facets, called bottom facet, lies inH0, and the other facet, called
top facet, lies in the plane Hh := { (x, y, h) | x, y, h ∈ R, h > 0 }.
Definition 1 Let n,m be two integers satisfying n,m ≥ 1, n + m ≥ 4. A Sn,m-
prismatoid P (in short Sn,m) is a three-dimensional solid such that

(i) its top facet is a convex n-gon in Hh, its bottom facet is a convex m-gon in H0;
(ii) the side facets of P between its bottom and top facets are all triangles; and

(iii) P is topologically a 3-ball embedded in R
3.

Many prismatoids are Sn,m-prismatoids. For example, S1,m (m ≥ 3) are
pyramids. S2,m (m ≥ 2) are wedges with triangular facets. In particular, both
S1,3 and S2,2 are tetrahedra. Antiprisms which can be embedded in R

3 with no self-
intersected facets are Sn,n-prismatoids, see Fig. 3 (left). However, all prisms and
many of other prismatoids are not Sn,m-prismatoids, see Fig. 3 (right). If a non Sn,m-
prismatoid satisfies (iii), i.e., it can be embedded in R

3 without self-intersection, it
will become an Sn,m by a slight perturbation in its vertex set.

Given an Sn,m-prismatoid P , there are n + m triangles in its band. There is a
bijection between the band of triangles and a binary string of n+m 0/1 bits. In [5]
a first construction of this transformation is given.

We first construct a flattened band D of triangles in the plane. It is done by
cutting the band of P along one of its edges and then flatten it into the plane.
There are n + 1 vertices and n edges on the top of D and m + 1 vertices and m

edges on the bottom of D. These edges are in one-to-one correspondence to the
boundary edges of the top and bottom facets of P . The two vertical boundary edges
of D are identified as the same edge, which we cut open. The band’s triangles are
bijectively mapped into the triangles of D, i.e., the images of the triangles of the
band triangulate D. We label each triangle in D as 0 if it has an edge on the top
and a vertex on the bottom and as 1 if it has an edge on the bottom and a vertex on

Sn,m-prismatoids
non-convex bases not embedded

not all triangular facets
Schönhardt polyhedron a Rambau polyhedron

pyramid pentagonal cupola

non-convex antiprism

convex antiprism

Fig. 3 Prismatoids on the left are Sn,m-prismatoids, while those on the right are not



100 H. Si

a1

a2 a3

a4

b1
b2 b3

b4

b5b6

a1 a2 a3 a4 a1

b1 b2 b3 b4 b5 b6 b1

0

1

0 0 0

1 1 1 1 1

“0110101011”

Fig. 4 An S4,6-prismatoid is shown in the left and the binary string corresponds to its band of
triangles is shown in the right

the top. Now, the set of triangles from left to the right corresponds to a string like
0100101. An example of such transformation is shown in Fig. 4.

With this transformation, the combinatorial structure of an Sn,m can be char-
acterized by a binary string. It does not, however, recognize the geometry of the
prismatoid. For example, a convex and a non-convexSn,m may have the same binary
string.

2.3 Twisted Prisms

We use the above transformation to define a special class of Sn,n-prismatoids. Recall
that an antiprism can be obtained by twist a prism. There are two directions,
clockwise or counterclockwise, in the plane. Depending on which direction
it is twisted, we obtain two non-convex antiprisms which are similar but with
combinatorially different boundary facets (Fig. 5). We call an Sn,n-prismatoid a
twisted prism if the band of its triangles corresponds to a binary string which
contains no two consecutive 0’s or 1’s, i.e., a string like 01010101 or 10101010.

The degree of a vertex of an Sn,m-prismatoid is the number of edges shared at
this vertex. An equivalent definition of a twisted prism is: a twisted prism is an
Sn,n-prismatoid whose vertices all have a degree of 4.

Note that a twisted prism might be convex or non-convex. We are interested in
a special type of non-convex twisted prisms. Let P be a non-convex twisted prism
whose base is an n-gon. We call P a pure non-convex twisted prism if there are
exactly n non-convex edges in its boundary. For examples, the two non-convex
prisms in Fig. 5 are pure. In particular, all Rambau’s non-convex twisted prisms are
pure.



On Decomposition of Embedded Prismatoids in R
3 Without Additional Points 101

a1

a2

a3a4

a5
a6

b1 b2
b3

b4

b6

a1 a2

a3

a4a5

a6

b5

a1
a2

a3

a4a5

a6

b1 b2
b3

b4
b6

b5 b2b3

b4

b6b5
b1

a1 a2 a3 a4 a5 a6 a1

b1 b2 b3 b4 b5 b6b1

“101010101010”

a1 a2 a3 a4 a5 a6a6

b1 b2 b3 b4 b5 b6 b1

“010101010101”

a1 a2 a3 a4 a5 a6 a1

b1 b2 b3 b4 b5 b6 b6

“101010101010”

Fig. 5 Twisted prisms (top), bands (middle), and strings (bottom). Left: a convex hexagonal
antiprism. Right: two non-convex antiprisms resulted by twisting the top facet of left counter-
clockwise or clockwise, respectively

Note that our definition of twisted prisms is slightly more general than Rambau’s
definition [10] by not requiring the top and the bottom facets to be strictly congruent.
They may be two different convex n-gons.

2.4 Decompositions of Sn,m-Prismatoids

A triangulation T of a prismatoid P is a geometric simplicial complex such that
the union of all simplices of T is P , i.e., the underlying space of T is P . A
triangulation of P may contain additional vertices, which are not vertices of P .
These vertices are called Steiner points of P . In this paper, we are only interested
in those triangulations of P , which have no Steiner points. We say a prismatoid
is triangulable if it admits a triangulation without Steiner points. Otherwise, it is
non-triangulable. It is well-known that some prismatoids are non-triangulable, e.g.,
the Schönhardt polyhedron and Rambau polyhedra.

For two Sn,m-prismatoids P1 and P2 let Vert(P1) and Vert(P2) be their vertex
sets and Vol(P1) and Vol(P2) their volumes, respectively. We say that P1 is smaller
than P2 if

Vert(P1) ⊆ Vert(P2), (1)

Vol(P1) < Vol(P2). (2)



102 H. Si

triangulable not triangulable

indecomposable
decomposable

Rambau polyhedra

Schönhardt polyhedron

Fig. 6 The difference of being triangulable and being decomposable

Condition (1) means that P1 and P2 share the same vertex set of P2, while (2) means
that the volume of P1 is strictly less than that of P2. Note that (2) necessarily holds if
the number of vertices of P1 is strictly less than that of P2, i.e., Vert(P1) ⊂ Vert(P2)

Note that if P1 and P2 have different vertices, than they are not comparable.
We say that an Sn,m-prismatoid is decomposable if it is either a single tetrahedron

(i.e., an S1,3 or S2,2) or there exists a partition of it into two smaller Sn,m-
prismatoids without using Steiner point such that the two prismatoids share no
interior points, i.e., they only share at their common boundary facets. Otherwise, it
is indecomposable.

The difference between being triangulable and being decomposable for a given
prismatoid is that a triangulable prismatoid is also decomposable but not vice versa
(Fig. 6). A non-triangulable prismatoid might still be decomposable. In contrast, an
indecomposable prismatoid must be non-triangulable.

3 New Results on Decomposition of Sn,m-Prismatoids

We prove the following two theorems about the decomposability of Sn,m.

Theorem 1 A twisted prism is indecomposable if and only if it does not contain
interior edges.



On Decomposition of Embedded Prismatoids in R
3 Without Additional Points 103

Theorem 2 An Sn,m-prismatoid P can be decomposed with no Steiner points into
the union of two sets T and P, where T is a set of tetrahedra and P is a set of
indecomposable twisted prisms. All elements in T and P have disjoint interiors.

3.1 Outline of the Proof

An ear of a two-dimensional polygon is a vertex v of this polygon such that the
line segment between the two neighbors of v lies entirely in the interior of the
polygon. The two-ears-theorem [9] states that every simple polygon with more than
three vertices has at least two ears, vertices that can be removed from the polygon
without introducing any crossings. This theorem can be used to show that every
two-dimensional simple polygon can be triangulated.

The analogue of an ear for a polyhedron is a degree 3 vertex, which has precisely
three boundary edges of this polyhedron connecting to it (Fig. 7 left). The following
lemma shows that if an Sn,m contains a degree 3 vertex, it can be reduced to a smaller
prismatoid, which does not contain that vertex. In other words, a degree 3 vertex
can be removed from it (Fig. 7 right).

Lemma 1 If an Sn,m-prismatoid with more than 5 vertices contains a degree 3
vertex, then it can be dissected into a tetrahedron and a smaller Sn,m-prismatoid
without Steiner points.

Proof Let P be an Sn,m. A triangular face is an interior face of P if its three
vertices are vertices of P , and it is not a boundary facet of P . We prove this lemma
in two steps:

1. A degree 3 vertex defines an interior face of P ,
2. P can be separated by cutting along this interior face.

Without loss of generality, we assume that P contains a degree 3 vertex ai in its
top facet and the three boundary edges of P containing ai are {ai, ai−1}, {ai, ai+1},
and {ai, bj }. Then the face {ai−1, ai+1, bj } is an interior face (Fig. 7 left).

ai ai

ai−1

ai+1

bj

ai−1

ai+1

bj

Fig. 7 Left: an Sn,m-prismatoid contains a degree 3 vertex ai . Right: this prismatoid is separated
by the tetrahedron {ai−1, ai , ai+1, bj } and a (n− 1,m)-prismatoid



104 H. Si

Our proof of step 2 follows the following observation. Let our eye be at ai , and
we are looking into the interior of P . Our viewing volume is restricted by a cone
with apex ai and three boundary faces f1 := {ai, ai−1, bj }, f2 := {ai, ai+1, bj },
and f3 := {ai, ai−1, ai+1}. Note that f1 and f2 are original boundary facets of P .
Since the edge {ai−1, ai+1} lies in the interior of the top facet, the triangle f3 is an
ear in top facet. The property (iii) of P (Definition 1) requires that P contains no
self-intersected boundary facets.

The above facts together imply that all interior points of the tetrahedron
{ai−1, ai, ai+1, bj } are interior points of P . Furthermore, the visibility to the four
corners from any interior point of {ai−1, ai, ai+1, bj } is not blocked by a boundary
facet of P .

Therefore, the tetrahedron {ai−1, ai, ai+1, bj } can be separated from P which
results in an Sn−1,m-prismatoid P ′ with {ai−1, ai+1, bj } as its boundary facet. ��

By the above lemma, as long as an Sn,m-prismatoid contains a degree 3 vertex,
it is decomposable. Since a wedge cannot be a twisted prism, the above lemma
immediately implies the following fact.

Corollary 1 All S2,m-prismatoids, m ≥ 2, can be triangulated without Steiner
points.

If a twisted prism is not pure, it must be decomposable by removing a
tetrahedron. Therefore we can quickly get the following corollary.

Corollary 2 All Sn,m-prismatoids except pure non-convex twisted prisms are de-
composable.

Since not all pure non-convex twisted prisms are indecomposable, we still need
to find the condition to characterize whether a pure non-convex twisted prism is
indecomposable or not. Consider a twisted prism P . Call an edge {ai, bj } an
interior edge of P if both ai and bj are vertices of P and {ai, bj } is not a boundary
edge of P , and the interior of {ai, bj } lies in P (see Fig. 8 left). The following

ai

bj

ai

bj

au

bv

ai

bj

au

bv

Fig. 8 A twisted prism (left) (an S8,8) contains an interior edge {ai , bj } (shown in pink). It is
decomposed into two prismatoids, an S4,5 and an S5,6 (right) at this interior edge {ai , bj } and two
chosen interior faces {ai , au, bj } and {ai , bv, bj } of the prism



On Decomposition of Embedded Prismatoids in R
3 Without Additional Points 105

Lemma 2 is crucial to reach this condition. It shows that P is decomposable as long
as there is an interior edge of P (see Fig. 8 (right) for an example). The proof of this
lemma is given in Sect. 3.2.

Lemma 2 If a pure non-convex twisted prism contains an interior edge, then it can
be decomposed into two smaller prismatoids without Steiner point.

Theorem 1 is then proved by the reserve of Lemma 2. Theorem 2 can be proven
by combining Lemmas 1 and 2 as follows.

Proof of of Theorem 2 Given an Sn,m, as long as it is not a twisted prism, it can be
dissected into a set of tetrahedra and a twisted prism. If the twisted prism admits at
least one interior edge, it can be dissected into two smaller simplicial prismatoids.
The above process can be repeated until either no twisted prism remains or the
remaining twisted prisms are indecomposable. ��

3.2 Proof of Lemma 2

We will prove this lemma by showing that if an interior edge exists, then there must
exist four interior faces which share at this edge, and the original twisted prism can
be separated into two smaller prismatoids by these faces on their boundary.

Let P be a pure non-convex twisted prism whose base is a convex n-gon,
n > 3. Without loss of generality, we assume that the top facet of P is twisted
counterclockwise against its bottom facet (Fig. 9). Also, we label the vertices of

ai

bj

bi

bi+1

aj aj−1

ai

bj

bi

bi+1

aj aj−1

aian a1 an−1 an

bjb1 bnbi bi+1

ajaj−1ai−1

bj+1 b1

· · ·

· · ·

· · ·· · ·

· · · · · ·

an

an−1
· · ·

a1
· · · · · ·

· · ·

Fig. 9 The labelling of vertices of a pure non-convex twisted prism (top) and its transformed band
in the plane (bottom). Red edges are locally non-convex edges of this prism. The edge {ai , bj } is
an interior edge. Left: the four edges in the band of the prism. Right: the four faces at the interior
edge {ai , bj }



106 H. Si

the top and bottom facets of P in such a way that the edge {ai, bi} is locally a
non-convex edge of P , i = 1, . . . , n (Fig. 9).

Let {ai, bj } be an interior edge of P . The indices i and j are within the cyclic
sequence {1, . . . , n}. By our specific labelling of the vertices, i.e., {ai, bi} refers
to a non-convex edge, i and j must satisfy the following condition (additions and
subtractions of indices are all modulo n):

j 	∈ { i, i + 1, i + 2 } (equivalently, i 	∈ { j, j − 1, j − 2 }). (3)

Consider the edges connecting at vertices ai and bj in the band:

ai : {ai, bi}, {ai, bi+1},
bj : {bj , aj−1}, {bj , aj }.

(4)

Each of these boundary edges forms a face that shares at the edge {ai, bj }. There
are four faces, which can be sorted into two groups, Fai which are faces containing
two vertices in the top facet, and Fbj which are faces containing two vertices in the
bottom facet (Fig. 9), i.e.,

Fai : {ai, aj−1, bj }, {ai, aj , bj },
Fbj : {ai, bi, bj }, {ai, bi+1, bj }.

(5)

Given a pair of distinct indices i, j ∈ { 1, . . . , n } satisfying (3), the four faces in
(5) exist and they are distinct.

We prove that these four faces in (5) are interior faces of P . It is sufficient to
show that all these faces satisfy the following two facts:

(I) they do not intersect any boundary facet of P in its interior, and
(II) all interior vertices of these faces are interior vertices of P .

Our proof of these two facts is based on observation, which suggests an intuitive
geometric proof.

We project the prism P along the line containing the edge aibj onto a plane
further than bj , see Fig. 10. The edge vector defines the normal of this plane. Let
a′
i be the projection of ai in this plane and the same for other vertices of P . This

projection of P (in the plane) has the following properties:

• P is projected into a (non-convex) region, denoted as R, in this plane, i.e, the
shaded area in Fig. 10.

• The projection of the edge {ai, bj } is coincident at one point in R. The four faces
in Eq. (5) are projected into the four edges, shown in blue in Fig. 10.

• Each side facet of P is projected into either a triangle or a line segment in R, an
example of the facet {aj−2, bj−2, bj−1} and its projection {a′

j−2, b
′
j−2, b

′
j−1} is

highlighted in Fig. 10. In particular, a facet is projected into a line segment if it
is parallel to the edge {ai, bj }.



On Decomposition of Embedded Prismatoids in R
3 Without Additional Points 107

ai

bj

ajaj+1

a ′
j

a ′
j+

1

a ′
i , b ′

j

bj−1bj−2

aj−1

a ′
j−

1

b ′
j−1

b ′
j−2

bj+1

b ′
j+1

Fig. 10 Projecting the twisted prism P onto a plane orthogonal to the edge {ai , bj }

By this particular projection, we can verify that if the projection of a side facet
of P in R does not cross the projection of the four faces, they do not intersect
in their interior in R

3. Observe the image of the projection of P (Fig. 10 right):
the four edges {a′

j , b
′
j }, {a′

j−1, b
′
j }, {a′

i , b
′
j }, and {a′

i+1, b
′
j } are not overlapping any

other projected triangles in the plane. This phenomenon implies that the interior of
these two faces does not intersect any other boundary facets of P in R

3. From this
observation, let us formally prove this fact.

The projections of the top and bottom polygons of P in the plane are two convex
polygons that must intersect each other. In general, there are two intersection points,
one of them must be the double-point, a′

i and b′
j , which is the projection of the edge

{ai, bj }, see Fig. 11. These two polygons may intersect at only one point. In this
case, this point must be the double-point; see Fig. 10. Based on this double-point,
a′
i and b′

j , we can divide the projected vertices of P into four sets:

A1 := {a′
j , a

′
j+1, . . . , a

′
n−1, a

′
n, . . . , a

′
i};

A2 := {a′
i , a

′
i+1, . . . , a

′
j−1};

B1 := {b′
j , b

′
j+1, . . . , b

′
n−1, b

′
n, . . . , b

′
i};

B2 := {b′
i+1, b

′
i+2, . . . , b

′
j };



108 H. Si

x

yz bi bi+1
x

y

ai

bj

aj aj−1

bn

an

an−1 a′
n

a′
n−1

a′
j

a′
j−1

a′
i, b

′
j

b′
i b′

i+1

ak

bk

bk+1
b′
k+1

b′
k

a′
k

b′
n

Fig. 11 Proof of Lemma 2. Projecting a pure non-convex twisted prism (left) onto a plane
orthogonal to the edge {ai , bj } (right)

We prove that any projected boundary facet of P does not cross the four edges
{a′

i, b
′
i}, {a′

i , b
′
i+1}, {a′

j , b
′
j }, and {a′

j , b
′
j−1}. Let t be a boundary triangular facet of

P , and t ′ be the projected triangle (may be an edge) in the plane. The vertices of t ′
must be one of the following cases:

1. The vertices of t ′ are in A1 ∪B1. All vertices are on the projected base polygons
of P . Due to the convexity of the base polygons of P , t ′does not cross any of the
four edges.

2. The vertices of t ′ are in A1 ∪ B2. This case is impossible. Without less of
generality, let t ′ := {a′

u, b
′
u, b

′
u−1}, see Fig. 12. Since a′

u ∈ A1, then j ≤ u′ ≤
i + n. Since b′

u ∈ B2, then i ≤ u′ ≤ j , a contradiction.

x

yz bi bi+1
x

y

ai

bj

aj aj−1

bn

an

an−1 a′
n

a′
n−1

a′
j

a′
j−1

a′
i, b

′
j

b′
i b′

i+1

b′
n

au

bu
bu+1 b′

u+1

b′
u

a′
u

Fig. 12 Proof of Lemma 2. The facet {au, bu, bu+1} cannot exist in the boundary of P



On Decomposition of Embedded Prismatoids in R
3 Without Additional Points 109

x

yz bi bi+1
x

y

ai

aj aj−1

bn

an

an−1 a′
n

a′
n−1

a′
j

a′
j−1

a′
i, b

′
j

b′
i b′

i+1

b′
nbj

av

bv
bv+1

b′
v+1

b′
v

a′
v

Fig. 13 Proof of Lemma 2. Since {ai , bj } is an interior edge of P , the facet {av, bv, bv+1} whose
interior intersects {ai , bj } cannot exist in the boundary of P

3. The vertices of t ′ are in A2 ∪B1. This case is impossible with the same reasoning
as in case 2.

4. The vertices of t ′ are in A2 ∪ B2. Assume t ′ is a triangle (not an edge). We
show that t ′ does not intersect any of these four edges. Assume the contrary, t ′
does cross these edges. Without loss of generally, let t ′ := {a′

v, b
′
v, b

′
v+1}, where

a′
v ∈ A2 and b′

v, b
′
v+1 ∈ B2, and assume t ′ intersect the edges {b′

i+1, a
′
i} and

{a′
j−1, b

′
j }, see Fig. 13. If this happens, there exist a boundary facet of P , which

cuts the edge {ai, bj }, which implies that {ai, bj } is not an interior edge of P , a
contradiction.

Hence the projection of these two faces in the plane must be two edges that are
not crossed by any other projected facets of P . By the property (iii) in Definition 1
of an Sn,m (P is embedded in R

3) it contains no self-intersected boundary faces.
This shows that the two faces {ai, aj , bj , } and {ai, aj−1, bj , } do not intersect other
side facets of P in their interiors. This proves (I).

Observe that the edges {a′
j , b

′
j } and {a′

j−1, b
′
j } lie inside the image of the

projection of P . This shows that all interior points of the faces {ai, aj , bj } and
{ai, aj+1, bj } must lie inside P . This proves (II).

Therefore the four faces in (5) must be interior faces of P .
Indeed, we also proved that the interiors of the two triangles {a′

i , b
′
i , b

′
i+1} and

{a′
j , a

′
j−1, b

′
j } do not intersect any projected triangles of P . This shows that the

interiors of the two tetrahedra

{ai, aj , aj−1, bj } and {ai, bi, bi+1, bj }

do not intersect any boundary facets of P . Hence they can be removed from P .
This shows that P is decomposable. Our goal, however, is to separate P into two
prismatoids with convex bases.



110 H. Si

ai

bj

bi

bi+1

aj aj−1

ai

bj
bj

ai

n1-gon
n2-gon

m1-gon

m2-gon

bv

bv

au

auan

an−1
· · ·

a1
· · · · · ·

· · · · · ·

· · ·

an

an−1

a1

· · ·

· · ·

Fig. 14 Decomposition of a non-convex twisted prism Sn,n (left) along an interior edge {ai , bj }
results in two prismatoids Sn1,m1 and Sn2,m2 , respectively (right)

It is easy to show that any combination of two faces, one from Fai and one from
Fbj , dissects the prism P into two smaller prismatoids. For example, choose

{ai, au, bj } ∈ Fai and {ai, bv, bj } ∈ Fbj ,

where u = {j−1, j } and v = {i, i+1}. The edge {ai, au} will divide the top facet (a
n-gon) into two convex polygons, an n1-gon and an n2-gon. The edge {bv, bj } will
divide the bottom facet (a n-gon) into another two convex polygons, an n1-gon and
an n2-gon. Therefore, the original prism is cut into two smaller twisted prismatoids
Sn1,m1 and Sn2,m2 (see Fig. 14 for an example). Without loss of generality, assume
i < u and v < j , then n1, n2,m1,m2 ≤ n can be calculated as

n1 := u− i + 1, n2 := n− n1 + 2,

m1 := j − v + 1, m2 := n−m1 + 2,
(6)

where u = {j − 1, j } and v = {i, i + 1}.
Since there are four possible combinations of faces from Fai and Fbj , there are

four possible dissections of this prism.

References

1. Bagemihl, F.: On indecomposable polyhedra. Am. Math. Month. 55(7), 411–413 (1948)
2. Bezdek, A., Carrigan, B.: On nontriangulable polyhedra. Contrib. Algebra Geom. 57(1), 51–66

(2016). http://dx.doi.org/10.1007/s13366-015-0248-4
3. Chazelle, B.: Convex partition of polyhedra: a lower bound and worst-case optimal algorithm.

SIAM J. Comput. 13(3), 488–507 (1984)
4. Chew, P.L.: Constrained Delaunay triangulation. Algorithmica 4, 97–108 (1989)
5. Hurtado, F., Noy, M., Urrutia, J.: Flipping edges in triangulations. Discrete Comput. Geom.

22(3), 333–346 (1999). http://dx.doi.org/10.1007/PL00009464

http://dx.doi.org/10.1007/s13366-015-0248-4
http://dx.doi.org/10.1007/PL00009464


On Decomposition of Embedded Prismatoids in R
3 Without Additional Points 111

6. Jessen, B.: Orthogonal icosahedra. Nordisk Mat. Tidskr 15, 90–96 (1967)
7. Kern, W.F., Bland, J.R.: Solid Mensuration. Wiley, London (1934)
8. Lee, D.T., Lin, A.K.: Generalized delaunay triangulations for planar graphs. Discrete Comput.

Geom. 1, 201–217 (1986)
9. Meisters, G.H.: Polygons have ears. Am. Math. Month. 82(6), 648–651 (1975). http://www.

jstor.org/stable/2319703
10. Rambau, J.: On a generalization of Schönhardt’s polyhedron. In: Goodman, J.E., Pach, J.,

Welzl, E. (eds.) Combinatorial and Computational Geometry, vol. 52, pp. 501–516. MSRI
Publications, Chicago. (2005)

11. Ruppert, J., Seidel, R.: On the difficulty of triangulating three-dimensional nonconvex
polyhedra. Discrete Comput. Geom. 7, 227–253 (1992)

12. Schönhardt, E.: Über die zerlegung von dreieckspolyedern in tetraeder. Math. Ann. 98, 309–
312 (1928)

13. Si, H., Goerigk, N.: Generalised Bagemihl polyhedra and a tight bound on the number of
interior Steiner points. Comput. Aid. Des. 103, 92–102 (2018). https://doi.org/10.1016/j.cad.
2017.11.009. http://www.sciencedirect.com/science/article/pii/S0010448517302324

14. Wikipedia contributors: prismatoid (2019). https://en.wikipedia.org/wiki/Prismatoid. Ac-
cessed 20 May 2019

http://www.jstor.org/stable/2319703
http://www.jstor.org/stable/2319703
https://doi.org/10.1016/j.cad.2017.11.009
https://doi.org/10.1016/j.cad.2017.11.009
http://www.sciencedirect.com/science/article/pii/S0010448517302324
https://en.wikipedia.org/wiki/Prismatoid


Out-of-core Constrained Delaunay
Tetrahedralizations for Large Scenes

Ziya Erkoç, Aytek Aman, Uğur Güdükbay, and Hang Si

Abstract Tetrahedralization algorithms are used for many applications such as Ray
Tracing and Finite Element Methods. For most of the applications, constrained
tetrahedralization algorithms are chosen because they can preserve input triangles.
The constrained tetrahedralization algorithms developed so far might suffer from
a lack of memory. We propose an out-of-core near Delaunay constrained tetrahe-
dralization algorithm using the divide-and-conquer paradigm to decrease memory
usage. If the expected memory usage is below the user-defined memory limit, we
tetrahedralize using TetGen. Otherwise, we subdivide the set of input points into
two halves and recursively apply the same idea to the two halves. When compared
with the TetGen, our algorithm tetrahedralizes the point clouds using less amount of
memory but takes more time and generates tetrahedralizations that do not satisfy the
Delaunay criterion at the boundaries of the merged regions. We quantify the error
using the aspect-ratio metric. The difference between the tetrahedralizations that
our approach produce and the Delaunay tetrahedralization are small and the results
are acceptable for most applications.

1 Introduction

Tetrahedralization has many applications, ranging from finite element simulations
to ray tracing accelerations. There are notable tetrahedralization algorithms in the
literature. Yet, these algorithms are not appropriate for applications that require
the use of very large meshes that do not fit into the memory. Besides, some
of these applications require the faces of the input mesh to be preserved after

Z. Erkoç · A. Aman · U. Güdükbay (�)
Department of Computer Engineering, Bilkent University, Ankara, Turkey
e-mail: ziya.erkoc@bilkent.edu.tr; aytek.aman@cs.bilkent.edu.tr; gudukbay@cs.bilkent.edu.tr

H. Si
Weierstrass Institute for Applied Analysis and Stochastics, Berlin, Germany
e-mail: si@wias-berlin.de

© Springer Nature Switzerland AG 2021
V. A. Garanzha et al. (eds.), Numerical Geometry, Grid Generation and Scientific
Computing, Lecture Notes in Computational Science and Engineering 143,
https://doi.org/10.1007/978-3-030-76798-3_7

113

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76798-3_7&domain=pdf
mailto:ziya.erkoc@bilkent.edu.tr
mailto:aytek.aman@cs.bilkent.edu.tr
mailto:gudukbay@cs.bilkent.edu.tr
mailto:si@wias-berlin.de
https://doi.org/10.1007/978-3-030-76798-3_7


114 Z. Erkoç et al.

the tetrahedralization is complete. This kind of tetrahedralization algorithm is
called constrained tetrahedralization. Constrained tetrahedralization algorithms
guarantee that the input mesh is contained in the surface of the output tetrahedral
mesh. This property is especially important for tetrahedralization-based ray tracing
accelerators, not to disturb the surface geometry [4]. Although these algorithms
are quite powerful and can complete the tetrahedralization process in a reasonable
amount of time, their usage is limited by the available memory. These algorithms
might fail when the tetrahedralization of an object requires a large amount of
memory. For instance, a bridge model consisting of tens-of-millions of vertices
can be analyzed using the Finite Element Method. Besides, a ray-traced scene may
contain up to a few hundred million faces [8]. Those examples might require an
excessive amount of memory.

We propose an out-of-core divide-and-conquer constrained tetrahedralization
algorithm that will take the memory-constraint specified by the user into account
and will not exceed it. Our algorithm divides the mesh into two pieces recursively
as long as the expected memory usage is above the given constraint. When the given
mesh is small enough to satisfy memory requirement it is tetrahedralized. Since our
algorithm does not guarantee satisfying Delaunay property for every tetrahedron,
it is a near Delaunay tetrahedralization algorithm. Yet, this approximation may be
reasonable for applications such as tetrahedralizations as acceleration structures for
Ray Tracing [4]. In their paper, Lagae and Dutré show that if tetrahedralization
algorithms that are used in ray tracing relax the Delaunay criterion, the construction
time decreases but the rendering time increases. Hence, our algorithm offers a trade-
off between these two timings.

2 Related Works

There are many triangulation algorithms in the literature. However, these algorithms
cannot tetrahedralize large models that do not fit into the memory in a constrained
fashion.

Smolik and Skala put forth a divide-and-conquer tetrahedralization algorithm
that works both in CPU and GPU [6]. They also develop an out-of-core version
of their algorithm and observe a decrease in memory usage, thereby being able to
tetrahedralize large objects with the same available memory. Yet, their algorithm
is not a constrained tetrahedralization. They divide the input point cloud into a 3D
grid and simultaneously tetrahedralize each grid cell and finally merge the cells.
Our approach is different because we, before all, have developed a constrained
tetrahedralization algorithm. Yet, dividing the object into grids may not be possible
for constrained tetrahedralization because triangles should not extend to more than
one grid cell, which is not possible with their algorithm. Hence, we divide the object
into two at any time instead of dividing it into many small pieces.

Cignoni et al. propose a divide-and-conquer algorithm to triangulate meshes
of any dimension [3]. However, they do not describe an out-of-core extension of



Out-of-core Constrained Delaunay Tetrahedralizations for Large Scenes 115

their algorithms. Besides, their algorithm is not a constrained tetrahedralization
algorithm. Our divide-and-conquer algorithm differs from DeWall in the non-
recursive part. Their algorithm applies a merge step before recurring. In this
early-merge step, their algorithm uses a dividing plane, and by selecting the
closest vertices at either side of this plane, it creates an initial tetrahedralization.
Specifically, they choose these vertices so that the generated tetrahedra has the
smallest circumsphere radius to satisfy the Delaunay criterion. Therefore, at this
step, all the tetrahedra generated intersects that virtual plane. Then, it applies the
same recursively for the other two sides. Our method is different from theirs in
the sense that we do not select an area to be initially tetrahedralized; we just cut the
mesh into two and tetrahedralize the parts. DeWall performs three tetrahedralization
operations at each recursive step, one for around the plane, one for the left, and one
for the right side. However, we only tetrahedralize left and right without allocation a
middle region to be tetrahedralized. This approach comes with a cost for us because
we do not have a middle-region like DeWall. Hence, we cannot guarantee that the
Delaunay criterion is satisfied for the tetrahedra around the cutting plane.

Blelloch et al. [1] present a parallel Delaunay triangulation algorithm. Their
algorithm uses the divide-and-conquer paradigm like ours. They utilize parallelism
at the pre-recursive step to reduce the overall run-time cost. They experimented on
various point distributions and observed significant improvements. Our algorithm
is different because ours is a constrained triangulation algorithm that takes into
account not only the input points but also the input triangles. Besides, while we
aim to reduce the memory usage by compromising run-time, Blelloch et al. want to
improve the run-time performance. Since they introduce parallelism, they need to
include new data structures, which require an extra set of data stored in the main
memory. Therefore, developing a parallel algorithm might defy our purpose of
creating a memory-efficient algorithm.

Si developed a constrained Delaunay tetrahedralization algorithm [5]. This
algorithm is both fast and robust. However, it requires a significant amount of
memory for the tetrahedralization process because it is not an out-of-core algorithm.
We compare our algorithm to TetGen because our algorithm depends, at its core, on
it. We aim to create a memory-efficient version of TetGen to tetrahedralize large
meshes that do not fit into the memory by applying an out-of-core approach on top
of it.

3 Algorithm

3.1 Overview

Our algorithm is an out-of-core divide-and-conquer algorithm for constrained
tetrahedralization. It, at its core, makes use of the TetGen software [5]. Our
algorithm divides the input mesh into two as long as the memory is not enough



116 Z. Erkoç et al.

Algorithm 1 Our algorithm
1: procedure TETRA(vertices, faces)
2: if CALCULATE_EXPECTED_MEMORY(vertex_count) ≤ memory_limit then
3: TETGEN(vertices, faces)
4: else
5: left_vertices, left_triangles, right_vertices, right_triangles
6: = CLIP(vertices, faces)
7: left_mesh_file = TETRA(left_vertices, left_triangles)
8: right_mesh_file = TETRA(right_vertices, right_triangles)
9: output_mesh_file = MERGE(left_mesh_file, right_mesh_file)

10: return output_mesh_file
11: end if
12: end procedure

for it. We calculate the expected memory usage using linear regression. If the
mesh fits into the memory, then we use TetGen with the mesh as input to generate
the tetrahedral mesh. Otherwise, we divide the mesh into two pieces by a plane
passing through the mean of the most variant axis. We then recursively apply the
same procedure to the two parts. When the tetrahedralizations of the parts are
complete, we merge these tetrahedral meshes into one tetrahedral mesh as the last
step. Algorithm 1 provides thee pseudo-code of the algorithm.

Further, our algorithm can generate a bounding box for the input object so that
the space around the object can be tetrahedralized, which is especially convenient
for Ray Tracing accelerators.

3.2 Expected Memory Calculation

We observe the memory consumption of TetGen with several models and generated
a linear regression model to predict the memory consumption of an input object.
The first two columns of Table 1 show the vertex count of each object and the real

Table 1 Memory requirement observations for TetGen in Megabytes (MB). We provide the actual
memory requirements and the estimated values for various models of different vertex counts using
our linear regression model

Vertex count Actual memory requirement Expected memory requirement

1440 7.03 9.70

2880 13.97 16.28

34,560 167.67 161.04

112,220 514.80 515.91

172,971 792.97 793.51



Out-of-core Constrained Delaunay Tetrahedralizations for Large Scenes 117

memory usage when that object is tetrahedralized. We set up a linear regression
model using this data and we ended up with the following equation:

y = 4.57 × 10−3X + 3.12,

where y is the expected memory requirement in Megabytes (MB), and X is the
number of vertices of the input mesh. In the table, the last column corresponds to
the expected memory requirement calculated using the above equation.

3.3 Subdivision Stage

To decrease the problem size, the input mesh must be divide into two pieces at
each recursion level. We are dividing the input using the plane that passes through
the mean of the most variant axis. Dividing the object requires a significant effort
because after the division the cut surfaces of each object must match so that the
resulting tetrahedral mesh of each side matches. Matching triangles will guarantee
a match in the resulting tetrahedral mesh because we are applying constrained
tetrahedralization.

To this end, we use the clip function of CGAL [7]. It takes input mesh and a
plane as input, and slices the mesh using the plane and returns the positive side. It
also allows us to triangulate the open-surface. We use it the following way: we first
clip the object and get the surface triangulation. Then, for the second half, we again
clip the object but not triangulate the surface. Instead, we just copy the triangulation
of the first part and paste it to the second part. In that way, we guarantee that the
triangulation at both sides will match. However, copy-pasting may lead to duplicate
vertices and open borders. Therefore, we propose a repairing algorithm to eliminate
these defects.

The way we clip the object prevents the tetrahedra near the clipping plane to
breach the Delaunay criterion. This is because after each part is tetrahedralized
we cannot guarantee that the circumsphere of the tetrahedra around the plane will
contain points from the other side. Since while one half is tetrahedralized the other
half is not considered, the Delaunay criterion might be violated. Yet, the magnitude
of the violation depends on the number of tetrahedra around the plane and the
number of times the object is divided. While choosing the plane, we make sure that
the most variant axis is chosen, to also decrease the number of tetrahedra around the
plane.

3.4 Repairing Stage

We introduce steps that we apply to eliminate defects in the meshes produced during
the subdivision stage. Two defects that may arise during the clipping stage are



118 Z. Erkoç et al.

overlapping vertices and overlapping edges. Specifically, both problems occur
because of copying the triangulation of the left side and pasting it to the right side.
Faces cannot overlap because we copy the triangles generated for the left side to the
open-boundary of the right side.

Overlapping vertices occur because when we copy the triangulation, the vertices
of the left surface triangulation might coincide with the border vertices of the right
mesh. We can repair overlapping vertices by iterating through all of the triangles
around the dividing plane and checking if any of its vertices have any duplicates.
If this is the case, we keep only one of the vertex and ignore the other one.

Edges may overlap after copying the triangulation from one side to the other.
When a vertex from the left side does not have the corresponding vertex at the right
side; then, this vertex would coincide with one of the edges of the right side. The clip
function does not insert the same vertices to both sides, which causes this problem.

Figure 1a shows an example of overlapping edges. There are three triangles:
ABC, BED, and DEC. Here ABC is an existing triangle of the mesh, but during
the clipping operation, we can add the other two faces so that two halves match as
described above. The problem here is the edge BC overlaps both the edges BD and
DC. To fix this, we form triangles ABD and ADC and remove ABC (see Fig. 1b).
We repair only the right side because we copy the triangles of the left side over the
right side. Hence, only the topology of the right side is disturbed.

We repair overlapping edges as follows. We iterate over all edges in the right
mesh that are close to the dividing plane. For each face in this region, we iterate over
all of the vertices of the mesh on the right. If the edge contains a vertex between its
terminal points, it means that this vertex is leading to an overlapping edge. We make
use of the point-line segment distance to find the overlapping between a vertex and
edge. Afterward, the triangle containing this edge is fixed, as shown in Fig. 1.

Fig. 1 Handling overlapping edges. (a) Overlapping edges. (b) After repairing overlapping edges



Out-of-core Constrained Delaunay Tetrahedralizations for Large Scenes 119

Algorithm 2 Merge procedure
procedure MERGE(left_mesh_file, right_mesh_file)

# Concatenate vertices and tets
CONCATENATE_VERTICES(left_mesh_file, right_mesh_file, output_mesh_file)
CONCATENATE_TETS(left_mesh_file, right_mesh_file,output_mesh_file)
# Find missing neighbors
left_centroids = GET_CENTROIDS(left_mesh_file)
left_centroids_grid = GENERATE_GRID(left_centroids)
right_centroids = GET_CENTROIDS(right_mesh_file)
for each right_centroid ∈ right_centroids do

if right_centroid ∈ left_centroids_grid then
ADD_NEIGHBOUR(right_tet, left_tet, output_mesh_file)

end if
end for
return output_mesh_file

end procedure

3.5 Merging Stage

The merge step is another non-trivial step for our algorithm because it is the place
where we finally produce the resulting tetrahedral mesh. In the merge step, we first
merge two tetrahedral meshes into one mesh as depicted in Algorithm 2. That step
simply involves concatenating two text files. Secondly, we also extract neighbor
relations between tetrahedra. In the end, we generate a final output_mesh_file
consisting of vertex locations, tetrahedra, and neighborhood information between
tetrahedra. We put a non-trivial effort to find neighborhood information across the
two pieces of the object after subdivision. After we cut the object into two pieces
and tetrahedralize each piece, the neighbor relations around the cut faces are missing
and we find those as well.

3.5.1 Spatial Hashing

We use three-dimensional Spatial Hashing. Specifically, the dimensions of the hash
grid we have used are 50 × 50 × 50 corresponding to 125,000 cells. We begin by
putting the centroid of faces of the left piece that coincide with the cut plane, into the
3D grid. Then, we iterate over the faces of the right piece and find if their centroids
match any of the centroids of the left piece by finding the corresponding cell and
iterating through the centroids inside of it. If there is a match, it means that two
tetrahedra share a common triangle and they must be neighbors. Then, we save this
new neighborhood information.



120 Z. Erkoç et al.

3.5.2 Merging Time Complexity

Let VL, VR be the number of vertices, FL, FR be the number of faces and TL,
TR be the number of tetrahedra of left and right pieces. Merging files will
take θ(VL + VR + TL + TR) time. The time complexity of finding missing
neighbour relations through Spatial Hashing will take θ(FL +FR) time on average.
Specifically, we, first, iterate through all faces of left piece to putting the centroids
in the grid taking θ(FL) time. Then, we iterate through all faces in the right piece,
θ(FR) time, and for each face we search the centroid inside the grid which takes
θ(1) time thanks to hash structure. Hence, overall, it takes θ(FR) ∗ θ(1) = θ(FR)

time. As a result, overall time complexity of, merge step is θ(VL +VR +TL+TR +
FL + FR). The time complexity function can be further simplified using the fact
that V <= 3 ∗ F and V <= 4 ∗ T to end up with θ(VL + VR).

4 Experimental Results

4.1 Runtime and Memory Results

In this section, we present the results of constrained tetrahedralization of several
objects using both our algorithm and TetGen to provide the statistics of memory
consumption and execution times. Our algorithm performs differently based on the
intersection of the cutting plane with any object in the input mesh. If the plane
touches an object, then our algorithm will run a repairing procedure. Otherwise,
it skips the repairing procedure. We conduct the experiments on a high-end
computer with an Intel Xeon E5-2620 2.10 GHz processor and 64 GB of RAM.
In the experiments, for simplicity, we divide the input mesh into two parts but not
further. For each experiment, we monitor the Windows Task Manager and record
the peak memory usage. Hence, we report the physical memory usage.

Table 2 shows the statistics of computation time and memory consumption where
each row contains the results of the experiment specified in the first column. We
provide details about each experiment in the sequel.

Experiment 1: In that scene, because the plane that divides the scene into two
halves intersects the armadillo, we apply the time-costly repairing step. This scene
can be tetrahedralized with both methods. Figure 2a shows the resulting mesh.

Experiment 2: In this experiment, we encapsulate the armadillo with a bounding
box so that the space around the armadillo can be tetrahedralized. This experiment
also requires a repair step because the plane intersects the bounding box. Figure 2b
shows the resulting mesh where the armadillo is at the center of the bounding box.

Experiments 3, 4, and 5: In these three experiments, the plane does not intersect
any object, and hence the repairing stage is not applied. Consequently, both methods
can tetrahedralize this scene. Figure 2c–e show the resulting mesh for Experiments
3, 4, and 5, respectively.



Out-of-core Constrained Delaunay Tetrahedralizations for Large Scenes 121

Table 2 Experimental results on the computer with Intel Xeon E5-2620 2.10 GHz processor and
64 GB of RAM. Execution time is in seconds (s) and the memory usage is in Megabytes (MB)

Experiment No. No. TetGen Ours

no. vertices faces Time Memory Time Memory

1 172,969 345,938 37.26 850 429.44 483

2 172,969 345,938 66.54 947 456.67 564

3 345,938 691,876 43.96 1 700 138.20 922

4 1,346,688 2,693,376 294.93 6605 727.89 3584

5 1,704,146 3,408,292 380.74 8359 642.10 4537

6 17,682,248 35,364,496 91,101.46 53,160 7047.26 46,614

7 27,164,160 54,328,320 N/A N/A 22,221.27 58,964

(a) (b) (c)

(d) (e)

Fig. 2 Generated tetrahedral meshes. (a) Experiment 1. (b) Experiment 2. (c) Experiment 3.
(d) Experiment 4. (e) Experiment 5

Experiment 6: This experiment takes around 117 min and consumes 47 GB
of RAM with our algorithm. On the other hand, TetGen tetrahedralizes in 25 h
using around 53 GB of memory. TetGen frequently make use of virtual memory to
complete its task. Memory footprint shows that its virtual memory usage goes up to
90 GB (out of 130 GB). Yet, this requires an abundance of disk accesses that slows
down the process. We observe that TetGen made around 200 page-faults per second,
which is the main reason for the slowdown.



122 Z. Erkoç et al.

Experiment 7: This experiment takes around 6 h and consumes around 59 GB
of RAM with our algorithm. Yet, TetGen cannot successfully tetrahedralize after 4
days of execution and force the computer to restart. TetGen uses almost all of the
physical memory and consumes all of the 130 GB of virtual memory, which still is
not sufficient for its execution. Hence, it cannot achieve to complete the task.

In our experiments, we observe that our method can tetrahedralize using less
memory than TetGen. In some experiments, TetGen either takes more time to
complete than ours or cannot complete its execution at all. TetGen continuously
allocates memory as much as it needs without considering the availability. Hence,
the operating system consistently provides it with memory as long as it fits into
physical and virtual memory. There are two memory thresholds for TetGen. These
are available physical and virtual memories. When these memories are sufficient,
TetGen runs fast, as expected. If the physical memory is exhausted, the operating
system allocates from virtual memory. In this case, TetGen starts making page faults
because its working set cannot fit into physical memory. It directs a large portion
of memory accesses to disk, which slows down TetGen. Finally, if the memory
requirement of TetGen exceeds even the virtual memory, then the operating system
can no longer provide memory to the TetGen, and the computer freezes and restarts
itself. This phenomenon happens because TetGen lacks a mechanism to track the
expected memory usage and readjust itself to stay below the memory threshold,
whereas our algorithm has this mechanism.

4.2 Quality Results

In this section, we present results on the quality of the tetrahedra generated by our
algorithm by comparing it with the results of TetGen. We use the aspect ratio
metric used to measure the quality of tetrahedron in TetGen [5]. We calculate
this metric by dividing the longest edge by the smallest height. A low aspect ratio
implies high-quality tetrahedralization. As seen in Table 3, the average tetrahedron
quality of TetGen is higher than our method in all cases. In torus knot, the result
of TetGen is around three times better than ours, while in Armadillo, it is 1.76
times, and in Neptune, 1.48 times better on the average. Although our algorithm
could generate better quality tetrahedra for Armadillo and Neptune according to the

Table 3 Experimental results on the quality of the tetrahedral mesh based on the aspect ratio
metric

Model No. No. TetGen Ours

name vertices faces Min. Max. Ave. Min. Max. Ave.

Torus knot 1440 2880 1.90 125.74 7.52 2.01 10,365.34 22.20

Neptune 112,224 224,448 1.30 536.49 8.72 1.28 250,088.04 12.92

Armadillo 172,969 345,938 1.30 262,232.06 7.31 1.27 260,203.69 12.84



Out-of-core Constrained Delaunay Tetrahedralizations for Large Scenes 123

minimum aspect ratios, overall, our tetrahedral meshes seem to be of worse quality.
We expect this quality degradation because of the increase in the surface area of the
object and the number of tetrahedra on the surface as we divide the point cloud into
two parts. The circumspheres of these tetrahedra might extend outside the object
boundary because it will not contain any point, thereby satisfying the Delaunay
criterion. Hence, the quality of these tetrahedra might be reduced without breaching
the constrained Delaunay criterion (see [2] for constrained Delaunay criterion).

5 Discussion and Future Work

We propose an out-of-core constrained tetrahedralization algorithm for tetrahedral-
izing large three-dimensional scenes. We have shown that our algorithm uses the
memory more efficiently than TetGen and can tetrahedralize meshes that TetGen is
unable to do because of insufficient memory. In essence, TetGen does not aim to use
memory efficiently. Its main goal is computational efficiency. Therefore, TetGen
tetrahedralizes meshes faster than our method if the main memory is sufficient. Our
algorithm uses a divide-and-conquer approach and TetGen. In this way, we could
create a memory-optimized version of TetGen by compromising the execution time.

Our algorithm divides the scene into two halves at each step, tetrahedralizes
them, and finally merges them into a single tetrahedral mesh. Yet, our algorithm
does not guarantee that the tetrahedra around the cut region satisfy the Delaunay
criterion. In other words, the circumspheres of some tetrahedra around the cut
region might contain vertices of other tetrahedra. In fact, we observed that the
overall quality of the tetrahedral meshes generated by our algorithm is lower than
TetGen. Hence, We are looking forward to adding a refinement process to satisfy the
Delaunay criterion around the division region. When we add this step, tetrahedral
mesh construction time will be longer, but the quality of the tetrahedra around the
cut region will increase.

Although we use TetGen to apply constrained tetrahedralization, the clip proce-
dure may introduce new vertices and faces on the objects in the scene where they
intersect the plane. Nevertheless, it only divides a face into smaller parts, and hence
the faces on the final tetrahedral mesh cover the input triangle soup.

Our algorithm works faster if the dividing plane does not intersect with any
of the objects. If the dividing plane intersects the objects in the input mesh, the
tetrahedralization requires costly repairing operation. If we choose the dividing
plane carefully, we can tetrahedralize the mesh faster. Hence, a better dividing plane
finding algorithm would be employed to avoid the intersection of the dividing plane
with the objects in the scene. The dividing plane does not need to be planar; it could
be an arbitrary polynomial surface or a curved surface.

Currently, our algorithm does not take the mesh density into account. Its
performance in the case of a mesh with high varying density is dependent on the
behavior of TetGen. A possible extension to tetrahedralize meshes of highly varying



124 Z. Erkoç et al.

density is to take the mesh density function as input and balance the partitions during
the subdivision stage in terms of mesh density.

Acknowledgments This research is supported by The Scientific and Technological Research
Council of Turkey (TÜBİTAK) under Grant No. 117E881.

References

1. Blelloch, G.E., Miller, G.L., Talmor, D.: Developing a practical projection-based parallel
Delaunay algorithm. In: Proceedings of the 12th Annual Symposium on Computational
Geometry, SCG ’96, pp. 186–195. ACM, New York (1996)

2. Chew, L.P.: Constrained Delaunay triangulations. Algorithmica 4(1–4), 97–108 (1989)
3. Cignoni, P., Montani, C., Scopigno, R.: DeWall: a fast divide and conquer Delaunay

triangulation algorithm in Ed . Comput.-Aided Des. 30(5), 333–341 (1998)
4. Lagae, A., Dutré, P.: Accelerating ray tracing using constrained tetrahedralizations. Comput.

Graph. Forum 27(4), 1303–1312 (2008)
5. Si, H.: TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw.

41(2), 1–36 (2015)
6. Smolik, M., Skala, V.: Fast parallel triangulation algorithm of large data sets in E2 and E3 for

in-core and out-core memory processing. In: Proceedings of the International Conference on
Computational Science and Its Applications, ICCSA ’14, pp. 301–314. Springer, Berlin (2014)

7. The CGAL Project: CGAL User and Reference Manual, 5.0.2 edn. (2020). https://doc.cgal.org/
5.0.2/Manual/packages.html

8. Woop, S., Schmittler, J., Slusallek, P.: RPU: a programmable ray processing unit for realtime
ray tracing. ACM Trans. Graph. 24(3), 434–444 (2005)

https://doc.cgal.org/5.0.2/Manual/packages.html
https://doc.cgal.org/5.0.2/Manual/packages.html


Part II
Adaptive Meshing



Size Gradation Control for Anisotropic
Hybrid Meshes

Lucille-Marie Tenkes and Frédéric Alauzet

Abstract Metric-based generation methods provide high-quality anisotropic
meshes. Yet, it is necessary to ensure the smoothness of the metric field in the
first place. This is achieved through the so-called “metric gradation” process,
that is the correction of the size growth throughout the mesh. The smallest size
prescriptions are spread using a metric intersection algorithm. In this paper, we
demonstrate the relevance of size gradation control in metric-based hybrid mesh
generation using a metric-orthogonal point placement. We also show how to design
a gradation process that maximizes the number and quality of structured elements
in these hybrid meshes.

1 Introduction

Mesh adaptation has proven to strongly improve numerical simulations, both in
terms of accuracy and CPU performance. In particular, metric-based generation
is a mathematically well-posed framework, that enables to generate automatically
highly anisotropic, adapted, unstructured meshes. However, there is still a strong
demand for structured meshes, since many numerical schemes favor quadrilateral
or hexahedral elements, for example in boundary layers to simulate viscous and
turbulent flows. Since structured mesh adaptation is not as developed and reliable
as unstructured meshes, hybrid meshes are considered as a suitable alternative
solution. A hybrid mesh is a mesh that shows both structured and unstructured
areas. The following work focuses on the formation of quad-dominant meshes
from quasi-structured triangular meshes, which are generated through so-called
metric-orthogonal methods [3, 6]. This process highly depends on the quality of
the metric-field, particularly its smoothness. Indeed, it sometimes shows some
very strong size variations, which results in flaws in the generated mesh. For

L.-M. Tenkes (�) · F. Alauzet
INRIA Saclay Ile-de-France, Palaiseau, France
e-mail: lucille-marie.tenkes@inria.fr; frederic.alauzet@inria.fr

© Springer Nature Switzerland AG 2021
V. A. Garanzha et al. (eds.), Numerical Geometry, Grid Generation and Scientific
Computing, Lecture Notes in Computational Science and Engineering 143,
https://doi.org/10.1007/978-3-030-76798-3_8

127

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76798-3_8&domain=pdf
mailto:lucille-marie.tenkes@inria.fr
mailto:frederic.alauzet@inria.fr
https://doi.org/10.1007/978-3-030-76798-3_8


128 L.-M. Tenkes and F. Alauzet

example, an abrupt size variation causes the formation of obtuse angles as illustrated
in Fig. 1, which unnecessarily breaks the alignment of the elements. These size
discontinuities are likely to hinder the formation of quadrilaterals. More generally
speaking, the results of metric-based meshing and re-meshing processes highly
depend on the quality of the provided metric. Consequently, it is relevant to control
the size variation. Such correction consists in providing a minimal reduction of the
metric at each vertex, such that the size growth is bounded.

Section 2 recalls the framework of metric-based mesh generation, then Sect. 3
details the process and algorithms of size gradation control. Numerical results and
the effect of the method on hybrid mesh generation are discussed in Sect. 4.

2 Metric and Mesh Generation

This section briefly gathers some useful definitions and properties about Riemannian
metric fields. These fields are used in mesh generation to prescribe size over the
domain. More complete information about metric fields and the concept of unit
mesh is detailed in [2, 4, 5].

A metric tensor in R
n, n ∈ {2, 3}, is a symmetric, positive-definite tensor

of size n that allows to define a scalar product. The notation M in this paper
most of the time refers to a metric. A vector space (Rn,M) supplied with such
scalar product is called a Euclidian metric space. The distance between two points
p and q is the distance induced by the scalar product and norm defined by M,
determining as well the length of the segment pq denoted �M(pq). The notions
of angles and volumes are extended to an Euclidian metric field. In the case of a
varying metric field, a Riemannian metric space can be defined. It consists in a
continuous manifold � supplied with a continuous metric field M(·) denoted by
(M(x)). In this case, the field (M(x)) does not define a scalar product but changes
the computation of distances, angles and volumes. The length of an edge pq is
computed using a straight line parametrization γ (t) = p+ tpq, t ∈ [0, 1], therefore
�M(pq) = ∫ 1

0 ‖γ (t)‖M dt = ∫ 1
0

√
pqTM(p + tpq)pq dt .

This framework gives a continuous equivalent of the mesh adaptation problem.
Instead of finding the best discrete mesh for a given solution, we seek its continuous
equivalent metric field. A mesh is then generated using this metric field as a size
prescription field, however this adapted mesh is very dependent from the quality of
the metric field, hence the need of a size gradation correction beforehand.

The metric field provides intrinsic directional information through its eigenvec-
tors. Metric-orthogonal approach[3, 6] aim at exploiting this direction field to
generate right-angled elements. The points are iteratively inserted following an
advancing front point placement. Metric-orthogonal meshes are quasi-structured in
areas where the anisotropy ratio of the metric is high enough. Right-angled triangles
are then combined into quadrilaterals to get the final hybrid mesh. To prevent the
formation of poor-quality quadrilaterals, the combination step starts from highest



Size Gradation Control for Anisotropic Hybrid Meshes 129

aspect ratio triangles and stops at a given threshold. This method gives satisfying
results in areas where the metric is highly anisotropic, however when it is isotropic,
the orientation of eigenvectors is not defined, so it doesn’t necessarily form right-
angled elements.

The process is illustrated with the example of a cross-shaped analytical metric
field,

Mcross =
(
h−2
x 0

0 h−2
y

)
, where

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

hx = min(2αx × hmin, hmax),

hy = min(2αy × hmin, hmax),

hmin = 0.005, hmax = 0.1,

αx = 20 × |x − 0.5|, and αy = 20 × |y − 0.5|.

Figure 1 shows generated meshes with standard (right) mesh adaptation and metric-
orthogonal point-placement (left). No size gradation control has been applied.
Consequently, an alignment break can be observed in the close-up view of the
metric-orthogonal mesh (bottom right).

Fig. 1 Adapted meshes with metric-orthogonal (left) and standard (right) processes



130 L.-M. Tenkes and F. Alauzet

3 Size Gradation Control for Anisotropic Meshes

Previous section has introduced the relevance of size gradation control to improve
metric-orthogonal meshes quality. This section details the principle of this process.
To introduce the definitions and notations, the method is first described in 1D. Then
it is extended to a two (or three)-dimensional isotropic metric fields, and finally, to
anisotropic metric fields.

Let M be an isotropic metric field defined in the entire domain �. The metric
field can be rewritten M = h(x)−2I , x ∈ � where I is the identity matrix. Let p
and q be two points of the domain with associated sizes hp and hq . To quantify size
variation, we define H-shock or size gradation c(pq) related to the segment pq of �
as the value

c(pq) = max

(
hp

hq
,
hq

hp

)1/�M(pq)

.

It represents the spatial geometric progression of the size prescription in the
metric.

This notion generalizes the classical geometrical element size progression: if it is
bounded by a coefficient β, the next element is β times larger than the previous one.
Accordingly, if they have a size prescription h and we ask for an increase of β, at a
distance �M the size prescription is hβ�M . The isotropic size correction consists in
providing a minimal (optimal) reduction M̃ of M such that, for all points, the size
gradation is bounded by a given threshold β. This correction regularizes the metric
field and bounds the variations. In what follows, it is assumed that hp < hq so p is
the vertex that corrects the size at q.

The metric field is only known at the vertices of the mesh. To compute
the correction numerically, the choice of an interpolation law has to be made.
Depending on this choice, the coefficient r(pq) = β�M(pq) can be computed directly
or using a Newton algorithm. This aspect is detailed in [1]. For example, using the
linear interpolation on h, it becomes r(pq) = 1 + �p(pq) ln(β). To rewrite the
computations in terms of metrics instead of sizes, the coefficient η2(pq) = r(pq)−2

is introduced. Using the same interpolation, η2(pq) = (
1 + �p(pq)(β − 1)

)−2.

Therefore, the metric of spanned size constraints from p to q, denoted by M̃p(q) is
obtained from Mp as

M̃p(q) = η2(pq)Mp. (1)

Equation (1) also holds to formalize size gradation control in 2D and 3D domains
if the metric field is isotropic, i.e., M = h(x)−2I . In the case of a mesh H supplied
with a discrete metric field given at its vertices, each vertex provides a metric for
all the other vertices that imposes its size constraints in all directions. The reduced



Size Gradation Control for Anisotropic Hybrid Meshes 131

metric at vertex q is given by the intersection of the corrected metrics, which is the
largest metric taking all the constraints in account.

M̃(q) =
⎛
⎝⋂

p∈H
M̃p(q)

⎞
⎠ ∩ M(q).

Unfortunately, we face a quadratic complexity algorithm. To avoid this, it
is possible to approximate the mesh gradation problem with a linear complexity
algorithm, as presented in [1]. It is an iterative process, each iteration being a
correction loop on the mesh edges. This algorithm is fast and has given nice results
in most cases but it is sensitive to mesh topology.

Metric gradation is quite intuitive when the metric field is isotropic. However
anisotropy adds some difficulty, mostly in the metric spanning step. Indeed, with
anisotropic metric fields, different size constraints in all directions are involved, so
the previously described gradation process cannot be straightforwardly extended. A
choice must be made to determine how the size constraints are spanned to bound
the size variation correctly. Two options are considered here.

In the first option, the metric is spanned according to a scalar growth factor. That
is,

M̃p(q) = η2(pq)Mp,

where η2(pq) = (
1 + �p(pq)(β − 1)

)−2 in the h-linear interpolation. The resulting
growth is homogeneous in the metric space, since the anisotropic ratio is constant.
This method is referred to in the remaining as “metric space growth”.

The second option is to apply a growth that depends on the direction, by setting
a different growth factor to each eigenvalue. In this case, the constraint metric is

M̃p(q) = RTN(pq)�R,

where � = diag((λi)i=1,...,n) is the diagonal matrix containing the eigenvalues of
Mp, R is the orthogonal matrix of its eigenvectors, N(pq) = diag((η2

i )i=1,...,n) and

η2
i (pq) = (

1 + √
λi‖pq‖2(β − 1)

)−2
. The factor

√
λi makes the growth faster in

directions of small sizes. As a consequence, M̃p(q) tends to an isotropic tensor
when the distance between p and q increases. This processed is called in the
remaining “physical space growth”.

The difference between the two growth process is illustrated in Fig. 2. The choice
of either method has a strong effect on the resulting metric-orthogonal mesh, as
shown in the next section.



132 L.-M. Tenkes and F. Alauzet

Fig. 2 Metric-space growth (left) and physical space growth (right)

4 Numerical Results

This section compares the two processes of metric growth on two analytical
examples and two numerical simulations around a NACA airfoil. The adequacy
of the resulting metric-orthogonal meshes is quantified by analyzing the size jumps
and the angles repartition. The size jump indicator is evaluated at each vertex as
the ratio between the largest and the smallest area of the surrounding triangles. The
quality of quadrilaterals is evaluated using the following quality function from [7]
based on the quadrilateral’s angles

η(q) = max

(
1 − 2

π
max
k

(∣∣∣π
2

− αk

∣∣∣
)
, 0

)
.

4.1 Line

This first case is an analytical straight metric field on a square domain
� = [0, 1] × [0, 1]. The initial metric is deliberately discontinuous to highlight
the difference between the two processes:

Mline =
(
h1

−2 0
0 h2

−2

)
if y = 0, and

(
h0

−2 0
0 h0

−2

)
elsewhere.

The prescribed sizes are h1 = 0.1, h2 = 0.001, and h0 = 0.5. A gradation
correction with β = 1.1 is applied. The resulting metric-orthogonal meshes are
displayed in Fig. 3. As expected, this example shows clearly the difference between
the two methods. The physical space growth seems to favor the formation of
quadrilaterals in this case. Indeed, the histograms show that the proportion of size
jumps and obtuse angles is higher in the metric-space mesh. This is corroborated by



Size Gradation Control for Anisotropic Hybrid Meshes 133

Fig. 3 Metric-orthogonal adapted mesh from the ‘line’ metric. On the left side, a large scale view
of each mesh is displayed, respectively top and bottom result from a metric-space and physical-
space growth. On the right side, the top part shows close-up views corresponding to the red
rectangles, and the bottom part displays the angles and size jumps histograms

the corresponding hybrid meshes, since the proportion of quadrilaterals is 93.8% in
the metric space case and 70.5% in the physical space case.

4.2 Circle

This example is meant to study how metric curvature is handled by the process.
Our method is applied to an analytical metric field representing a curved anisotropic
feature having the shape of a circle:

M(x, y) =
⎛
⎝h−2

1 cos2 θ + h−2
2 sin2 θ

(
h−2

1 − h−2
2

)
cos θ sin θ(

h−2
1 − h−2

2

)
cos θ sin θ h−2

1 sin2 θ + h−2
2 cos2 θ

⎞
⎠ ,

with θ = arctan(x, y), h1 = min(0.002 × 5α, hmax), h2 = min(0.05 × 2α, hmax),
hmax = 0.1, and α = 10 × |0.75 −√

x2 + y2|.



134 L.-M. Tenkes and F. Alauzet

Fig. 4 Metric-orthogonal adapted mesh from the circle metric. On the left side, a large scale view
of each mesh is displayed, respectively top and bottom result from a metric-space and physical-
space growth. On the right side, the top part shows close-up views corresponding to the red
rectangles, and the bottom part displays the angles and size jumps histograms for these two meshes
and a no-gradation mesh

Here, β = 1.2 and a numerical artifact is added to improve the results of metric-
space growth: as presented in [1], the dependency on mesh topology creates some
‘rays’ that are tangent to the curved areas, the metric field is wrongfully modified
and so are the resulting meshes. To overcome this issue, the threshold β is multiplied
by a coefficient δ (here δ = β = 1.2) at each iteration. The results are gathered in
Fig. 4 and details of the hybrid meshes are shown on Fig. 5.

Again, both growth processes give satisfying results: metric-space growth gives
90.9% quadrilaterals and physical-space growth gives 92.3%. However, the metric’s
curvature is handled differently and physical-space growth shows less size jumps
in the radial direction. Consequently, quadrilateral-only areas are more easily
formed, as observed in Fig. 5, which is more suitable for numerical simulations.
The results for metric-space growth are somehow not as good as the mesh obtained
without gradation, although the histogram on Fig. 5 shows that the proportion of best
quality quadrilaterals is higher for the corrected meshes, which was expected since
poor quality elements are formed in low-anisotropy areas, and gradation correction



Size Gradation Control for Anisotropic Hybrid Meshes 135

Fig. 5 Hybrid meshes following metric-space growth (left) and physical space growth (right)
gradation. The histogram at the bottom shows the repartition of the quadrilateral’s quality

induces a propagation of anisotropy. Moreover, the initial metric is quite smooth
and bounded, so the improvement due to size gradation correction is limited.

4.3 Inviscid Flow Simulation

This example is an inviscid flow simulation on a NACA 0012, modeled by the
incompressible Euler equations. A supersonic flow is considered with a Mach
number M = 1.6 and an angle of attack α = 8°. For both growth process, a
gradation correction was performed with β = 1.5 and a coefficient δ = 1.5 was
added for metric-space growth.

Adapted metric-orthogonal meshes for both growth processes are shown in
Fig. 6, and the histograms for comparison can be found in Fig. 7. Histograms reveal
that physical space growth is clearly the best option for this test case: the proportion
of size jumps and wrong angle is considerably smaller. The close-up views of the
hybrid meshes also demonstrate that this growth process also favors the formation
of larger all-quadrilateral areas. Although metric-space growth captures the shock
more precisely [1], it is not the best option for hybrid meshing.



136 L.-M. Tenkes and F. Alauzet

Fig. 6 Supersonic inviscid flow NACA case. Top part shows large scale views of the adapted
metric-orthogonal meshes (top is physical-space and bottom is metric-space growth), and the
respective close-up views after combination into quadrilaterals

Fig. 7 Supersonic inviscid flow NACA case. Histograms comparing the metric-orthogonal
meshes from metric-space and physical-space growth



Size Gradation Control for Anisotropic Hybrid Meshes 137

4.4 Turbulent Flow Simulation

The last example is a turbulent flow simulation on a NACA0012 modeled by
the Reynolds-Averaged Navier-Stokes equations, where we consider the Spalart-
Allmaras one equation turbulence model. The simulated flow is subsonic with a
Mach number M = 0.5, a Reynolds number Re = 105 and an incidence angle
α = 0°. The adapted meshes are shown in Fig. 8 and the angles and size jumps
histograms are presented in Fig. 9. This case is again better handled by the metric
gradation with physical-space growth. The effect is particularly observable in the
boundary layer region, where the smoothness of the transitions is essential. The
small size prescribed at the boundary is propagated throughout almost the entire
zone, whereas numerous transitions break the alignment when using the metric-

Fig. 8 Subsonic turbulent flow NACA case. Comparison of the two growth processes. Respec-
tively large scale views of the metric-orthogonal mesh and close-up views of the hybrid mesh in
the boundary layer region, for physical-space (top and left), and metric-space growth (bottom and
right)



138 L.-M. Tenkes and F. Alauzet

Fig. 9 Subsonic turbulent flow NACA case. Histograms comparing the metric-orthogonal meshes
from metric-space and physical-space growth

space growth gradation. This is a promising lead for the purpose of generating
hybrid meshes in which the boundary layer is entirely meshed with quadrilaterals.

5 Conclusion

Metric gradation control is an essential step in a metric-based mesh adaptation
process. In the standard adaptation, it improves consequently the quality of the
mesh and its performances, as shown in previous work. This process is even
more important for metric-orthogonal meshes: the metric has to be even smoother
since size variations are likely to break the alignment of the mesh and prevent the
formation of quadrilaterals in the combination step.

For this purpose, our current metric gradation method has been analyzed to
determine how it could favor the formation of good quality orthogonal meshes, and
hybrid mesh afterward, i.e., increase the proportion of quadrilaterals and reduce the
number of size jumps and obtuse angles. The most crucial step is the metric growth
phase, in which the metric at a certain vertex is spanned throughout the domain, such
that it mainly affects the closest vertices. Two possibilities have been considered.
First, the metric-space homogeneous growth, conserving the anisotropic ratio as it
spans. Then, the physical-space homogeneous growth, imposing a faster growth on
the smallest prescribed size and tending to become isotropic as it spans. In previous
work on the subject, it has been observed that the first growth process leads to better
meshes for the considered CFD simulations. However, for the purpose of quad-
dominant meshes, the second growth process is more effective since the resulting
meshes show smoother size transitions and more potential all-quadrilateral zones.
To perfect the quad-dominant meshing procedure, some improvement remains to be
made on the re-meshing and combining steps.

References

1. Alauzet, F.: Size gradation control of anisotropic meshes. Finite Elem. Anal. Des. 46, 181–202
(2010). https://doi.org/10.1016/j.finel.2009.06.028

2. Hecht, F., Mohammadi, B., Hecht, F., Mohammadi, B.: Mesh adaption by metric control for
multi-scale phenomena and turbulence. In: 35th Aerospace Sciences Meeting and Exhibit
(1997). https://arc.aiaa.org/doi/abs/10.2514/6.1997-859

https://doi.org/10.1016/j.finel.2009.06.028
https://arc.aiaa.org/doi/abs/10.2514/6.1997-859


Size Gradation Control for Anisotropic Hybrid Meshes 139

3. Loseille, A.: Metric-orthogonal anisotropic mesh generation. Procedia Eng. 82, 403–415
(2014). https://doi.org/10.1016/j.proeng.2014.10.400, https://www.sciencedirect.com/science/
article/pii/S1877705814016798. 23rd International Meshing Roundtable (IMR23)

4. Loseille, A., Alauzet, F.: Continuous mesh framework part I: well-posed continuous interpola-
tion error. SIAM J. Numer. Anal. 49, 38–60 (2011). https://doi.org/10.1137/090754078

5. Loseille, A., Alauzet, F.: Continuous mesh framework part II: validations and applications.
SIAM J. Numer. Anal. 49, 61–86 (2011). https://doi.org/10.2307/23074390

6. Marcum, D., Alauzet, F.: 3D metric-aligned and orthogonal solution adaptive mesh generation.
Procedia Eng. 203, 78–90 (2017). https://doi.org/10.1016/j.proeng.2017.09.790, https://
www.sciencedirect.com/science/article/pii/S1877705817343485. 26th International Meshing
Roundtable, IMR26, 18–21 September 2017, Barcelona, Spain

7. Remacle, J.F., Lambrechts, J., Seny, B., Marchandise, E., Johnen, A., Geuzainet, C.: Blossom-
quad: a non-uniform quadrilateral mesh generator using a minimum-cost perfect-matching
algorithm. Int. J. Numer. Methods Eng. 89(9), 1102–1119 (2012). https://doi.org/10.1002/
nme.3279

https://doi.org/10.1016/j.proeng.2014.10.400
https://www.sciencedirect.com/science/article/pii/S1877705814016798
https://www.sciencedirect.com/science/article/pii/S1877705814016798
https://doi.org/10.1137/090754078
https://doi.org/10.2307/23074390
https://doi.org/10.1016/j.proeng.2017.09.790
https://www.sciencedirect.com/science/article/pii/S1877705817343485
https://www.sciencedirect.com/science/article/pii/S1877705817343485
https://doi.org/10.1002/nme.3279
https://doi.org/10.1002/nme.3279


Adjoint Computation on Anisotropic
Meshes in High-fidelity RANS
Simulations

Francesco Clerici and Frédéric Alauzet

Abstract In the context of high-fidelity RANS simulation, anisotropic mesh
adaptation turns out to be an excellent tool to get mesh-independent solutions on
complex geometries. In particular, anisotropic mesh adaptation is used to predict
accurately dimensionless quantities such as the lift and the drag coefficients, and,
in general, functionals depending on the solution field. However, in order to get
the optimal adapted mesh with respect to the accuracy of an output functional, it is
necessary to solve an adjoint system providing the sensitivity of the goal functional
with respect to the residuals of the equations. The linear system associated to the
adjoint problem revealed to be stiff for RANS equations with a standard solver such
as the GMRES preconditioned with several SGS iterations, and hence an alternative
method has been developed, which is based on the transient simulation of the RANS
adjoint state.

1 Introduction

Anisotropic mesh adaptation is an efficient tool to deal with CFD simulations.
It can automatically handle meshing operations on complex geometries without
heavy computational effort, while getting accurate results on inviscid, viscous and
turbulent flows [1–5]. In particular, here we will make use of the Navier-Stokes
equations in conservative form and the Spalart-Allmaras turbulence model [6]. The
resulting RANS model can be written in a vector form of the type

Wt + ∇ · F E = ∇ · F V + ∇ · F S, (1)

F. Clerici (�) · F. Alauzet
INRIA Saclay Ile-de-France, Palaiseau, France
e-mail: francesco.clerici@inria.fr; frederic.alauzet@inria.fr

© Springer Nature Switzerland AG 2021
V. A. Garanzha et al. (eds.), Numerical Geometry, Grid Generation and Scientific
Computing, Lecture Notes in Computational Science and Engineering 143,
https://doi.org/10.1007/978-3-030-76798-3_9

141

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76798-3_9&domain=pdf
mailto:francesco.clerici@inria.fr
mailto:frederic.alauzet@inria.fr
https://doi.org/10.1007/978-3-030-76798-3_9


142 F. Clerici and F. Alauzet

by defining the primal state

W = (ρ, ρu, ρv, ρw, ρE, ρν̃),

with ρ the density, u = (u, v,w)T the velocity,E the specific energy, ν̃ the turbulent
kinematic viscosity, the Euler fluxes vector being

F E(W) = (ρu, ρuu + pe1, ρvu + pe2, ρwu + pe3,u(ρE + p), ρν̃u)T , (2)

with { ei }3
i=1 the canonical basis in R3, the viscous fluxes vector being

F V(W) =
(

0,T1,T2,T3,T · u + λ∇T , ρ
σ
(ν + ν̃)∇ν̃

)T
, (3)

with {Ti }3
i=1 the rows of the stress tensor T , λ the laminar conductivity, ν the

kinematic viscosity, σ = 2/3, and the source term vector F S(W) contains the
production and the destruction terms of the turbulent kinematic viscosity ν̃ of the
Spalart-Allmaras turbulence model [6].

Having defined the primal problem at hand, in the next section we will briefly
describe its implementation.

2 Flow Solver

The discretization of Eqs. (1) is made by using a mixed finite element—finite
volume discretization on triangular (2D) or tetrahedral (3D) meshes [7, 8]. In
particular, the viscous fluxes are discretized by means of finite element, while the
convective fluxes by means of finite volume. The convective fluxes at each cell
interface are computed using an HLLC approximate Riemann solver [9], and the
gradients are constructed using a second order MUSCL extrapolation scheme [10]
using the gradients of W on the upwind and the centered elements, ensuring a low
dissipation, possibly coupled to a slope limiter. Note that we are interested in the
steady state to Eq. (1), and in the sequel this is reached by means of a pseudo-
transient algorithm: for this reason the time derivative is kept and discretized in
a proper way. The solution W is attached to each vertex of the mesh H , and the
convective fluxes are computed by using a dual mesh to H , where its elements are
made by the median cells of the mesh H . For instance, in 2D, a median cell Ci

associated with a vertex Pi is built using the segments of medians of all triangles
sharing Pi . The resulting semi-discretized system reads as

|Ci |dWi

dt
+ Fi = Si + Qi + �i ∀i = 1, . . . , NV , (4)



Adjoint Computation on Anisotropic Meshes in High-fidelity RANS Simulations 143

where |Ci | is the measure of the cell Ci , Wi the mean value of W on Ci , NV the
number of vertices, Fi , Si , Qi , �i are respectively the numerical convective, viscous
and source flux and boundary terms defined as

Fi =
∫

∂Ci

F (Wi) · ni d� , Si =
∫

∂Ci

S(Wi) · ni d� ,

Qi =
∫

Ci

Q(Wi) d�, �i =
∫

∂Ci

⋂
∂�

G(Wi) d� ,

where F , S, Q are defined following the definitions of the fluxes (2), (3), and
F S(W), and G is a function depending on the chosen boundary conditions. The
system (4) is discretized in time by using the backward Euler scheme, getting

|Ci |
δtni

δWi = −Fn+1
i + Sn+1

i + Qn+1
i + �n+1

i , (5)

where δWi = Wn+1
i − Wn

i and δtni is the local time step at time iteration n, given
by

δtni = CFLi
h2

h(c + ‖u‖)+ 2 λ+λt
ρ

, (6)

where h is the smallest height of the elements sharing Pi and CFLi is the local CFL
number. The system (5) is linearized with respect toW , and an approximating linear
system for each time step is found

AnδWn = Rn, (7)

where

An = |C|
δtn

1 − ∂R̃
n

∂W
, (8)

and Rn = −Fni + Sni + Qn
i + �n

i are the residuals, while R̃
n = −F̃

n

i + Sni + Qn
i +

�n
i are the residuals computed by using a first order scheme the convective terms.

This is done in order to reduce the memory requirement to store the matrix An.
The resolution process usually makes use of a starting solution W 0, and the linear
system (7) is solved by using several iterations of the symmetric Gauss-Seidel (SGS)
algorithm [11, 12] at each time step. Depending on the convergence of the linear
system, the local CFLi number is increased or reduced; notice that for CFL → ∞,
the system (7) is equivalent to the Newton method to solve (5). Wolf is a CFD
solver written in C implementing the procedures described above [13, 14]. For
further details about the discretization and implementation see [5].



144 F. Clerici and F. Alauzet

3 Adjoint System

Once the norm of the residuals R has reached a proper threshold, we end up with a
solution Wh, where the subscript h indicates that this is a discrete finite element
function. Such solution can be used to compute the value of a functional, for
instance the lift or the drag coefficient. By introducing the pressure and the skin
friction coefficients respectively given by

Cp(x) = p(x)− p∞
1
2ρ∞‖u∞‖2

n(x), Cf (x) = (μ+ μt )τ (x) · n(x)
1
2ρ∞‖u∞‖2

n(x) (9)

with τ defined as

τ =
(
∇ ⊗ u + ∇ ⊗ uT

)
− 2

3
∇ · u1,

and the subscript ∞ referring to a far field quantity, the aerodynamic coefficient
vector can be computed by integration on the considered body S up to a rotation as

⎛
⎝
Cx

Cy

Cz

⎞
⎠ = 1

Sref

∫

S

(
Cp(x)+ Cf (x)

)
dx , (10)

with Sref a reference surface area. The aim of this analysis is to find a mesh H̃
which minimizes the error committed on a functional of the solution, such as (9) or
(10). More in detail, given a functional J (W), we want to measure (and bound) the
quantity

|J (W)− J (Wh)| ≈
∣∣∣∣
(
∂J

∂W
,W −Wh

)∣∣∣∣ (11)

with W the solution to the continuous problem (1), assuming

W ∈ V =
[
H 1(�) ∩ C3(�̄)

]
×
[
H 1

0 (�) ∩ C3(�̄)
]3 ×

[
H 1(�) ∩ C3(�̄)

]
.

After some manipulations [5], one gets an upper bound to (11) of the type

|J (W)− J (Wh)| ≤
∫

�

∑
i

|G(Wi,W
∗
i )| |Wi −�hWi | , (12)

where G(Wi,W
∗
i ) are weights to the interpolation errors |Wi −�hWi | depending

on the primal state W and, most of all, on the adjoint state W∗, which is defined by



Adjoint Computation on Anisotropic Meshes in High-fidelity RANS Simulations 145

the following problem

(
∂R̃
∂W

)T
W∗ =

(
∂J

∂W

)
. (13)

This kind of analysis can also be applied on Euler or laminar flow [2, 3]. After
the actual computation of the quantities involved in (12), we use them to create a
new mesh H̃ by means of metric-based anisotropic mesh adaptation [15], and for
this reason it is necessary to compute carefully the adjoint state W∗. We first note

several facts on the system (13). The matrix
(
∂R̃
∂W

)T
is obtained by transposing

the Jacobian of the residual. Hence, the stiffness of the system (13) is equivalent
to the one of the system (7) for an infinite time step: one of the main difficulties
to solve system (13) is that it is particularly stiff, specially when the mesh H is
highly anisotropic. This difficulty is circumvented in the primal state computation,
as its matrix has more diagonal dominance thanks to the presence of the term |C|

δtn
1,

and this dominance can be properly tuned by setting the CFL, while this cannot be
done a priori for the problem (13). In the next section we will discuss how these
drawbacks can be bypassed with the application of a pseudo-transient algorithm to
the problem (13). For further details on the error estimation see [5], while for further
details regarding mesh adaptation see [15].

4 Numerical Implementation

When employing an adaptive procedure with the methodology of Sect. 3, it is
important to measure the independency of the flow field from the computational
mesh. This is usually reached by studying the convergence of the solution with
respect to the number of vertices of a mesh, but the rise of the number of vertices
leads in general to a high anisotropy in the mesh. This could be a drawback for
the resolution of the primal problem and, most of all, of the adjoint problem,
as it has been experienced a high dependency of the problems stiffness and the
amount of anisotropy of the mesh. In Wolf, a GMRES algorithm [16] with
an SGS preconditioner is by default devoted to the solution of the linear system
(13). Usually we set a Krylov space size around 200, with 1000 total number of
iterations, and with 20–40 SGS iterations in the preconditioning phase. With a high
anisotropy of the computational mesh, even Krylov spaces of dimension 1000 are
not enough to reach the convergence, and the residual of the system (13) stalls on
high values, providing non-consistent solutions and a waste of computational time.
In particular, a non-consistent adjoint solution has a negative impact on the mesh
adaptation procedure. We underline that a Krylov space size greater than 1000
requires prohibitive computational resources. The idea behind a pseudo-transient
adjoint solver is that if the algorithm for the computation of the primal state reaches
the convergence, then the same algorithm (characterized by the same time accuracy,



146 F. Clerici and F. Alauzet

CFL, relaxation strategies, cells measure . . . ) applied to a transient adjoint equation
should provide a steady state [17–19]. The transient adjoint equation reads as

M
∂W∗

∂t
+ ∂R̃

∂W

T

W∗ − ∂J

∂W
= 0, (14)

where M is the mass matrix including the area or volume information of the cells
and the time step.

Since the mass matrix M is trivially invertible, Eq. (14) can be interpreted as a
system of linear ODEs of the form

ẋ + Ax = b. (15)

The solution of (15), when A is invertible and x(0) 	= 0, reads as

x(t) = xs + e−At(x(0)− xs
)
, (16)

where xs is the searched stationary solution, Axs = b, and

eB :=
∞∑
m=0

1

k!B
k. (17)

Hence, the convergence depends on the eigenvalues of the matrix A. All the eigen-
values must be positive. For an ill-conditioned matrix, we could have at least one
small eigenvalue that will slow down the convergence to a steady state.

In the most extreme case, that is when the matrix A is singular, the general
solution to (15) reads as (provided x(0) 	= 0)

x(t) = e−Atx(0)+
∫ t

0
e−Asb ds . (18)

Hence, any solution (if existing) satisfying Ax = b will depend on the initial
value x(0). This fact is particularly important as we will always start out adjoint
computation from an initial guess. If we discretize (14) by means of a backward
Euler scheme, we get

M

dt

([
W∗]n+1 − [

W∗]n)+ ∂R̃
∂W

T [
W∗]n+1 − ∂J

∂W
= 0, (19)

and, hence,

(
M

dt
1 + ∂R̃

∂W

T)[
δW∗]n = ∂J

∂W
− ∂R̃

∂W

T [
W∗]n. (20)



Adjoint Computation on Anisotropic Meshes in High-fidelity RANS Simulations 147

We remark that

[
W∗]n =

n−1∑
k=1

(
M

dt
1 + ∂R̃

∂W

T
)−k

∂J

∂W
, (21)

hence, (21) converges to a steady state if

∀i, λi

(
M

dt
1 + ∂R̃

∂W

T)
> 1. (22)

The condition (22) can be reached by setting a proper CFL. Hence, this suggests to
start from a low CFL value, and then increase it until the residual at step n, given by

Rn
adj =

∥∥∥∥∥
∂J

∂W
− ∂R̃

∂W

T [
W∗]n

∥∥∥∥∥, (23)

becomes bigger than the residual at step n − 1 (meaning that the solution is
diverging). This is done also on the primal solver. Note, anyway, that no divergence

should happen when the Jacobian ∂R̃
∂W is not ill-conditioned. In any case, provided

that the system (20) is solved exactly, the convergence to a steady state is guaranteed.
If this is the case, the difference between two consecutive solutions at step n and
n− 1 is given by

∥∥[δW∗]n∥∥ =
∥∥∥∥∥∥

(
M

dt
1 + ∂R̃

∂W

T
)−n

∂J

∂W

∥∥∥∥∥∥
, (24)

hence, provided all the hypothesis, we expect ‖[δW∗]k‖ to converge to zero
monotonically. The linear system (20) is solved using several SGS iterations, which
does not ensure the convergence to a steady state and does not ensure (24) to
converge to zero monotonically. In any case, one can choose a rather low CFL in

order to enforce the diagonal dominance of the matrix M
dt 1+ ∂R̃

∂W

T
and hence reach

a high accuracy in the SGS solver by using a fixed number of iterations, but this will
slow down the convergence of the quantity (23). Because of these considerations,
the CFL should be chosen in order to reach a proper balance between the rate of
convergence to a steady state (high CFL) and an accurate resolution given by the
SGS solver (low CFL).

A preliminary test of the pseudo-transient adjoint solver has been made on a
NACA airfoil by solving an inviscid subsonic flow, and on a turbulent flow on a
multi-element airfoil in a high-lift configuration using the Navier Stokes equations
with the Spalart-Allmaras turbulence model. The computational mesh, the physical
parameters (Mach number Ma, angle of attack α, Reynolds number Re and number



148 F. Clerici and F. Alauzet

Fig. 1 NACA inviscid subsonic test adapted mesh case. Ma = 0.3, α = 2°, NV = 1.18 × 103.
(a) Density adjoint field. (b) Adapted mesh

of verticesNV) and the adjoint density fields are shown in Figs. 1 and 2, respectively.
Such results have been obtained by applying at most 10 SGS iterations for each time
step, with a tolerance of 0.01 on the residual of the system (20). The stopping
criterion on the time increment is based on the adjoint system residual, with a
threshold of 10−12. Both the solutions can also be easily obtained with few GMRES
iterations. The CFL law is geometric, using a multiplication factor of mcfl = 1.025,



Adjoint Computation on Anisotropic Meshes in High-fidelity RANS Simulations 149

Fig. 2 Multi-element airfoil turbulent flow test case. Ma = 0.175, α = 16.21°, Re = 15.1 × 106,
NV = 3.85 × 104. (a) Density adjoint field. (b) Adapted mesh

and it is modified as follows

CFLn =
⎧⎨
⎩
mcflCFLn−1, if Rn

sgs ≤ Rn−1
sgs ,

CFLn−1

m4
cfl

, if Rn
sgs > Rn−1

sgs .
(25)

That is, we multiply once the CFL by mcfl if the SGS solver properly reduces the
residual of the time step system, otherwise we divide it by m4

cfl. In order to speed
up the computation, exclusively for these two simulations, the initial CFL is set to
its maximum allowed value. The convergence history is shown in Fig. 3, having



150 F. Clerici and F. Alauzet

1 2 3 4 5 6
10−19

10−13

10−7

10−1

iteration number

re
sid

ua
l

NACA
adj
sgs

Δ

0 100 200 300 400 500
10−13

10−8

10−3

102

iteration number

re
sid

ua
l

Multi-element airfoil
adj
sgs

Δ

Fig. 3 Convergence of Rn
adj, R

n
sgs, and �Rn

defined the residual of the linear system (20) as

Rn
sgs =

∥∥∥∥∥
∂J

∂W
− ∂R̃

∂W

T [
W∗]n −

(
M

dt
1 + ∂R̃

∂W

T
)
[
δW∗]n

∥∥∥∥∥, (26)

and the norm of the difference between the residual vector relative to the adjoint
system and the residual vector relative to the system (20) given by

�Rn =
∥∥∥∥∥

(
M

dt
1 + ∂R̃

∂W

T
)
[
δW∗]n

∥∥∥∥∥. (27)



Adjoint Computation on Anisotropic Meshes in High-fidelity RANS Simulations 151

The convergence in the NACA case is extremely fast, with a reduction of the
residual by two order of magnitude at each iteration, while it takes almost 500
iteration in the case of the multi-element airfoil. This can be related to the mesh size,
which is widely different between the two benchmarks. The multi-element airfoil
mesh, furthermore, has been adapted using a goal (lift) oriented mesh adaptation
procedure. The CFL remains fixed to its maximal value, meaning that the SGS
solver is able to solve efficiently the system (20) at each time step. Since we
are not using an exact solver for the system (20), we remark that in general[
δW∗]n 	= [

W∗]n+1 − [
W∗]n. Hence, the difference (27) highly depends on the

CFL. In the NACA case the value of (27) overlaps on the line of Radj, meaning that
the time discretization is responsible of the main difference between Rsgs and Radj.
In the multi-element airfoil case, the term (27) is smaller than the residuals Rsgs
and Radj, which are comparable in magnitude. This means that the main source of
error is given by the SGS solver: since, in general, we are able to control the SGS
residual, for this reason we will keep it as small as possible (usually between 10−10

and 10−12). Note that at the end of the simulation, the term (27) is almost stalling,
meaning that we are adding the same quantity to the solution W∗. Referring to
the multielement airfoil case, proceeding with the time advancement, the residual
of the adjoint system stalls on a value around 4 × 10−13, while with the GMRES,
the adjoint system residual stalls on a value of 4 × 10−12. Eventually, we remark
that the results obtained with the GMRES and with the pseudo-transient adjoint are
equivalent for both the cases.

5 Numerical Results

In this section, we assess the performance of the pseudo-transient adjoint solver by
comparing it with the GMRES linear solver. To this aim, we set up 15 simulations
of a multi element airfoil, using always the same parameters with the exception
of the angle of attack α, which varies from −2° to 26° with an interval length of
2°. For all the simulations, we have used the compressible Navier-Stokes equations
coupled to the Spalart-Allmaras model, the Mach number is set to Ma = 0.2 and
the Reynolds number Re = 5.0 × 106. Each simulation consists in a sequence
of meshes of increasing complexity: we first start from a coarse mesh of 4000
vertices, then we adapt it using Wh and W∗, and we recompute the solution Wh

and W∗ on the new mesh, until the lift coefficient of the airfoil becomes stationary
using a relative threshold of 1% among three consecutive values. After that, we
double the complexity and we restart all the computations. The number of vertices
increase continues until the mesh reaches a complexity of four million vertices:
in this way we are able to support the solution independence with respect to the
computational mesh. We perform the computations on a new mesh by restarting
with the solutions Wh and W∗ of the previous mesh, suitably interpolated [20]: this
feature is particularly advantageous when employing the pseudo-transient adjoint,



152 F. Clerici and F. Alauzet

as we are able to stay close to the initial solution even when the problem is stiff. On
the other hand, it seems that there is no advantage to restart the adjoint solution for
the SGS-GMRES solver, and in this case W∗ is set to zero before the resolution.
Algorithm 3 depicts the described procedure.

Algorithm 3 Anisotropic mesh adaptation algorithm

Init: Wold
h , W ∗,old , H

for NV = 4000, 8000, . . . , 4, 096, 000 do
n = 0
while (Cn

L − Cn−1
L )/Cn−1

L > 0.01 or (Cn−1
L − Cn−2

L )/Cn−2
L > 0.01 do

Compute Wnew
h , W ∗,new starting from Wold

h , W ∗,old
Compute Cn

L from Wnew
h

Adapt H with NV vertices using Wnew
h , W ∗,new

Interpolate Wnew
h , W ∗,new on H

Wold
h ← Wnew

h , W ∗,old ← W ∗,new
n ← n+ 1

end while
end for

We show the plots of the adjoint density fields for an angle of attack α = 8°. We
only show the lift-converged solutions at complexities of one, two, and four million
vertices in Figs. 4, 5, and 6.

As we can see, the GMRES is able to reach a proper convergence for a
complexity of one million vertices (it succeeds also for lower complexities), but
it starts degrading the adjoint solution after this point. The pseudo-transient
algorithm, on the contrary, is not able to reach a proper convergence (also for
lower complexities), but it is able to preserve the solution structure thanks to the
restarting from a previous solution. Furthermore, the pseudo-transient algorithm
is more efficient in terms of the cpu time and storage, as it does not require to
store hundreds of Krylov vectors. The behaviour for the other angles of attack is
similar to the one shown for α = 8°, meaning that after a certain complexity, usually
around one to two million vertices, the GMRES degrades while the pseudo-transient

Fig. 4 Comparison between the GMRES and the PSTR algorithm: adjoint density field for the
multi-element airfoil with one million vertices. (a) GMRES, Radj = 3.79 × 10−13, cpu time = 1 h
18 min 6 s. (b) PSTR, Radj = 7.18 × 10−3, cpu time = 10 min 53 s



Adjoint Computation on Anisotropic Meshes in High-fidelity RANS Simulations 153

Fig. 5 Comparison between the GMRES and the PSTR algorithm: adjoint density field for the
multi-element airfoil with two million vertices. (a) GMRES, Radj = 4.07 × 10−2, cpu time = 1 h
22 min 57 s. (b) PSTR, Radj = 5.365 × 10−3, cpu time = 24 min 49 s

Fig. 6 Comparison between the GMRES and the PSTR algorithm: adjoint density field for the
multi-element airfoil with four million vertices. (a) GMRES, Radj = 2.29 × 10−2, cpu time = 2 h
29 min 13 s. (b) PSTR, Radj = 4.08 × 10−3, cpu time = 53 min 21 s

algorithm preserves the solution. Since the adjoint density fields obtained with the
GMRES and the pseudo-transient algorithm are structurally different, we perform
a crossed simulation by running a pseudo-transient algorithm on a mesh with one
million vertices obtained by using the GMRES from the beginning, and using the
corresponding converged GMRES solution as its initial value. This check is done in
order to verify whether the pseudo-transient algorithm is able to keep the solution
in the same basin of attraction of the previous valid solution. The result is presented
in Fig. 7, together with the original result obtained with a psuedo-transient adjoint
algorithm from the beginning, for a mesh complexity of one million vertices.

We note that the pseudo-transient adjoint restarted on a GMRES converged
solution still stalls, even on a lower residual, but it is able to preserve the structure
of the converged solution obtained in the previous iteration.



154 F. Clerici and F. Alauzet

Fig. 7 Comparison between a full pseudo-transient adjoint simulation and a restarted simulation.
(a) PSTR result, Radj = 7.18 × 10−3, cpu time = 10 min 53 s. (b) PSTR restarted on a converged
solution obtained with GMRES, Radj = 1.49 × 10−3, cpu time = 9 min 45 s

6 Conclusions

A pseudo-transient algorithm for the resolution of the adjoint system in the context
of goal-oriented mesh adaptation for RANS has been presented. It turned out to
be more efficient in terms of cpu time and storage with respect to the GMRES
algorithm, but less robust to converge to the machine zero. Anyway, it revealed to
be more accurate on meshes with a high number of vertices, preserving the structure
of the adjoint, in contrast to the GMRES, which starts to stall and to degradate the
solution after a certain complexity.



Adjoint Computation on Anisotropic Meshes in High-fidelity RANS Simulations 155

References

1. Venditti, D.A., Darmofal, D.L.: Grid adaptation for functional outputs: application to two-
dimensional inviscid flows. J. Comput. Phys. 176, 40–69 (2002)

2. Loseille, A., Dervieux, A., Alauzet, F.: Fully anisotropic goal-oriented mesh adaptation for 3D
steady Euler equations. J. Comput. Phys. 229, 2866–2897 (2010)

3. Menier, V.: Mesh adaptation for the high fidelity prediction of viscous phenomena and their
interactions. application to aeronautics. PhD Thesis, Université Pierre et Marie Curie, Paris
(2015)

4. Alauzet, F., Loseille, A.: A decade of progress on anisotropic mesh adaptation for computa-
tional fluid dynamics. Comput.-Aided Des. 72, 13–39 (2016)

5. Frazza, L.: 3D anisotropic mesh adaptation for Reynolds averaged Navier-Stokes simulations.
PhD Thesis, Sorbonne Université UPMC, Paris (2018)

6. Spalart, P.R., Allmaras, S. R.: A one-equation turbulence model for aerodynamic flows. In:
30th AIAA Aerospace Sciences Meeting and Exhibit, Reno (1992)

7. Cournède, P.H., Koobus, B., Dervieux, A.: Positivity statements for a Mixed-Element-Volume
scheme on fixed and moving grids. Eur. J. Comput. Mech. 15, 767–798 (2006)

8. Debiez, C. Dervieux, A.: Mixed Element-Volume MUSCL methods with weak viscosity for
steady and unsteady flow calculations. Comput. Fluids 29, 89–118 (2000)

9. Batten, P., Clarke, N., Lambert, C., Causon, D.M.: On the choice of wavespeeds for the HLLC
Riemann solver. SIAM J. Sci. Comput. 18, 1553–1570 (1997)

10. Van Leer, B.: Towards the ultimate conservative difference scheme I. The quest of monotonic-
ity. In: Proceedings of the Third International Conference on Numerical Methods in Fluid
Mechanics. Lecture notes in physics, pp. 18–163. Springer, Berlin (1972)

11. Jameson, A., Yoon, S.: Lower-Upper implicit schemes with multiple grids for the Euler
equations. AIAA J. 25, 929–935 (1987)

12. Sharov, D., Luo, H., Baum, J.D., Löhner., R.: Implementation of unstructured grid
GMRES+LU-SGS method on shared-memory, cache-based parallel computers. AIAA Paper,
vol. 2000-0927 (2000)

13. Alauzet, F., Loseille, A.: High order sonic boom modeling by adaptive methods. J. Comput.
Phys. 229, 561–593 (2010)

14. Menier, V., Loseille, A., Alauzet, F.: CFD validation and adaptivity for viscous flow
simulations. 44th AIAA Fluid Dynamics Conference, AIAA Paper, Atlanta (2014)

15. Loseille, A., Löhner, A.: Cavity-based operators for mesh adaptation. In: 51th AIAA
Aerospace Sciences Meeting, AIAA Paper, vol. 2013-0152 (2013)

16. Saad, Y., Schultz, H.M.: GMRES: A generalized minimal residual algorithm for solving
nonsymmetric linear systems. SIAM J. Sci. Stat. Comput. 7, 856–869 (1986)

17. Pini, M.: Turbomachinery design optimization using adjoint method and accurate equations of
state. PhD Thesis, Politecnico di Milano, Milan (2013)

18. Giles, M., Duta, M., Müller, J.D., Pierce, N.: Algorithm developments for discrete adjoint
methods. AIAA J. 41, 198–205 (2003)

19. Nielsen, E., Lu, J., Park, M., Darmofal, D.: An implicit, exact dual adjoint solution method for
turbulent flows on unstructured grids. Comput. Fluids 33, 1131–1155 (2004)

20. Alauzet, F., Mehrenberger, M.: P 1-conservative solution interpolation on unstructured
triangular meshes. Int. J. Numer. Meth. Eng. 84(13), 1552–1588 (2010)



Moving Deforming Mesh Generation
Based on the Quasi-Isometric Functional

Vladimir A. Garanzha and Liudmila Kudryavtseva

Abstract We suggest an algorithm which allows for generation of a moving
adaptive mesh with a fixed topology according to the time-dependent control metric
in the computational domain using a quasi-isometric mesh quality functional. For
each time step, we use the preconditioned gradient search technique for the mesh
quality functional in order to compute large displacements of each mesh vertex.
Intermediate meshes interpolating between the initial and the displaced states
are nonsingular deformations of the initial mesh and can be used for numerical
simulations with small time steps, which greatly improves the efficiency of the
remeshing algorithm.

1 Introduction

The equidistribution principle [6] is a basic component of moving adapting mesh
algorithms [3, 11]. Its idea is to compute the distribution of the mesh size using
information from a certain PDE or from the estimate of the interpolation error. In 1d,
the equidistribution principle results in the solution of a second order linear elliptic
equation with a scalar control function. Note that for time-dependent problems one
generally has to use adaptive filters to suppress moving mesh instabilities which
were described in the seminal paper by Coyle, Flaherty, and Ludwig, 1986 [5].

V. A. Garanzha (�)
Dorodnicyn Computing Center FRC CSC RAS, Moscow, Russia
e-mail: garan@ccas.ru
http://www.ccas.ru/gridgen/lab

L. Kudryavtseva
Moscow Institute of Physics and Technology, Moscow, Russia

Keldysh Institute of Applied Mathematics RAS, Moscow, Russia

© Springer Nature Switzerland AG 2021
V. A. Garanzha et al. (eds.), Numerical Geometry, Grid Generation and Scientific
Computing, Lecture Notes in Computational Science and Engineering 143,
https://doi.org/10.1007/978-3-030-76798-3_10

157

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76798-3_10&domain=pdf
mailto:garan@ccas.ru
http://www.ccas.ru/gridgen/lab
https://doi.org/10.1007/978-3-030-76798-3_10


158 V. Garanzha and L. Kudryavtseva

The generalization to multiple dimensions still remains controversial. A widely
used generalization is based on the solution of the Laplacian-like equations for the
mesh coordinates using a scalar control function [15, 17].

In the beginning of 1990s, S.K. Godunov formulated the following basic
principles of optimal variational meshing:

• a mesh should be quasi-isometric deformation by itself and converge to a certain
quasi-isometric mapping upon refinement;

• a quasi-isometric mapping should be a unique and stable solution of a variational
problem;

• the variational problem should use distortion measures based on the principal
invariants of the deformation metric tensor;

• the discretized variational problem should also have a unique and stable solution;

Note that these principles are not reachable in theory and practice of mesh
generation.

By definition, the ratio of the length of any simple rectifiable curve to the length
of its image under a quasi-isometric mapping is bounded from above by a certain
constant K > 1 and below by 1/K .

The implementation of these ideas was first presented in [10] using the conformal
mapping technique in a relatively simple 2d setting. These ideas inspired a series of
papers including [7, 9], where the variational principle for a construction of multi-
dimensional quasi-isometric mappings was suggested and justified theoretically and
numerically.

In this paper, we suggest a new algorithm which allows for generation of a
moving adaptive mesh with a fixed topology using a time-dependent control metric
in the computational domain. We are focused on the methods for constructing
the control metric and meshes allowing to improve the accuracy of the immersed
boundary conditions (IBC) flow solver [1] for a system of moving bodies defined
by the distance-like implicit function.

Each cell of the ideal mesh at a given time after local transformation into
uniform coordinates related to the metric should be congruent to the same cell
at the initial time level. The quasi-isometric functional [7] is used to measure
and control the matching between the real and the ideal mesh. We have found
that, when global large deformations of the initial mesh are necessary in order to
satisfy the mesh compression criteria inside thin moving layers near boundaries
of domains, simple explicit mesh optimization methods fail to follow the metric
precisely. Unfortunately, the preconditioned gradient search algorithm for a quasi-
isometric functional is quite expensive and, thus, coupling it directly with the flow
solver is highly inefficient. Another problem is that, due to the non-linearity of
the Euler-Lagrange equations, we cannot assume that the norm of the functional
residual is reduced to zero at each time step. Thus, the time continuity of the
moving mesh is not guaranteed because the iterative functional minimization with
the changed metric may result in a considerable displacements even for infinitely
small time steps and the space-time trajectories of the mesh cells may become
extremely inclined. In order to solve this problem, we suggest a very simple



Moving Deforming Mesh Generation Based on the Quasi-Isometric Functional 159

and efficient algorithm which is based on the direct mesh interpolation. Using
the ideas of the preconditioned gradient search algorithm from [8] we compute
the predictor, which defines the minimization direction (displacement field) for
each mesh vertex for a large time increment. Every intermediate mesh computed
with the help of this displacement is guaranteed to be correct. We have found
that the length of the computed displacement field is very large compared to the
displacements allowed by the flow solver [1], hence the number of costly implicit
minimizations can be greatly reduced. Assuming that the time dependence of the
metric is defined by a smooth function, we obtain a mesh deformation/adaptation
algorithm which requires onelinear solve per, say, 5–10 time steps, making it a
quite efficient component of the moving mesh flow solver. We have found that the
linear solver based on the so-called second order incomplete Cholesky factorization
(IC2) [13, 14] is a very efficient component of the nonlinear solver, especially for
the parallel version of the algorithm. Our experience with simpler algorithms,
such as the Conjugate Gradient technique with the standard incomplete Cholesky
factorization IC(k) as a preconditioner was quite disappointing.

2 Quasi-Isometric Functional

The quasi-isometric functional was suggested in [7, 9]. Here, we use a simplified
version of this functional for a controlled mesh deformation.

Let ξ1, ξ2, . . . , ξd denote the Lagrangian coordinates associated with an elastic
material and x1, x2, . . . , xd denote the Eulerian coordinates of a material point. The
spatial mapping x(ξ, t) : Rd → R

d depending on the parameter t defines a time-
dependent elastic deformation. Here, the parameter t denotes the time and ξi are
associated the domain with the initial mesh. Namely, ξi are frozen into cells of the
initial mesh, while the Eulerian coordinates are fixed Cartesian coordinates in the
computational domain.

The Jacobian matrix of the mapping x(ξ, ·) is denoted by C, where cij =
∂xi/∂ξj .

Let Gξ(ξ, t) and Gx(x, t) denote the metric tensors defining linear elements and
lengths of curves in Lagrangian and Eulerian coordinates in the domains �ξ and
�x , respectively. Then, x(ξ, t) is the mapping between the metric manifolds Mξ

and Mx .
Let us define the following polyconvex elastic potential (internal energy) which

serves as the distortion measure and is written as a weighted sum of the shape and
the volume distortion measures [7]:

W(C) = (1 − θ)

(
1
d

tr(CT C)
)

detC2/d
+ 1

2
θ

(
1

detC
+ detC

)
. (1)



160 V. Garanzha and L. Kudryavtseva

Evidently,

W(U) = 1, UT U = I, and detU = 1 (2)

for a arbitrary orientation-preserving orthogonal matrix U . As suggested in [7], we
set θ = 4/5. This value provides a reasonable balance between the shape and the
volume distortions.

We are looking for the mesh deformation x(ξ, t) being the solution of the
variational problem

F(x(ξ, t)) =
∫

�ξ

W
(
Q(x, t)∇ξ x(ξ, t)H(ξ)−1

)
detH dξ . (3)

In the current version of the mesh deformation algorithm, we do not consider the
variation of functional (3) with respect to the time t .

Matrices H(ξ) and Q(x, t) are certain matrix factorizations of the metric tensors
Gξ and Gx , respectively, defined by

HTH = Gξ, detH > 0, QT Q = Gx, detQ > 0.

We assume that the singular values of the matrices Q and H are uniformly
bounded from below and above.

The time-dependent mesh deformation is introduced via a time-dependent metric
tensor Gx(x, t) = QT (x, t)Q(x, t). It follows from (2) that the absolute minimum
of the functional (3) is equal to

vol�ξ =
∫

�ξ

detH dξ

and is attained for Q(x, t)∇ξ x(ξ, t)H(ξ)−1 = U , where U is an orthogonal matrix.
It means that, in the uniform coordinate frame y = Qx associated with the local
value of the metric Gx(x, t), the mapping x(x, t) is locally isometric to the mapping
x(ξ, 0) when H(ξ) = ∇ξ x(ξ, 0).

Suppose that the domain �ξ can be partitioned into convex polyhedra Dk . We
construct a continuous piecewise-smooth deformation xh(ξ, ·), which is regular
on each polyhedron. In practice, we use linear and poly-linear finite elements in
order to assemble the global deformation. We call the integral F(xh(ξ), t) over this
deformation a semi-discrete functional.



Moving Deforming Mesh Generation Based on the Quasi-Isometric Functional 161

In order to approximate the integral over a convex cell Dk , certain quadrature
rules are required. As a result, the semi-discrete functional is replaced by the
discrete functional:

F(xh(ξ, t), t) ≈
∑
k

vol(Uk)

Nk∑
q=1

βqW(Cq) = Fh(xh(ξ, t), t).

Here, Nk is the number of the quadrature nodes per cell Dk , Cq denotes the Jacobian
matrix in the q-th quadrature node of Uk , and βq are the quadrature weights (see [9]
for details). We use only such quadrature rules which guarantee the majorization
property

F(xh(ξ, t), t) ≤ Fh(xh(ξ, t), t). (4)

This property can be used to prove that all intermediate deformations xh(ξ, t)

providing the finite values of the discrete functional are homeomorphisms [9].
In order to derive the discrete mesh functional, special quadrature rules are

applied which guarantee the global invertibility of the deformation mapping for
finite values of the discrete functional [9].

3 Preconditioned Minimization Algorithm and the Moving
Mesh Interpolation Strategy

It is convenient to write our discrete functional as a function F(Z, Y, t) with the
spatial argumentZT = (zT1 zT2 . . . zTnv ) where zk ∈ R

d , k = 1, . . . , nv , are the mesh
vertex positions. Dependence on the time t is introduced via the time-dependent
metric Gx(y, t). The vector Y corresponds to the argument y of the metric Gx .

The Hessian matrix H̃ of the function F with respect to Z is built of d×d blocks

H̃ij = ∂2F

∂zi∂z
T
j

.

Here, the matrix H̃ij is placed on the intersection of i-th block row and j -th block
column. We filter the Hessian matrix during the finite element assembly procedure
to make it positive definite and to reduce number of nonzero elements by a factor
of 2 [8]. Below, we use the same notation H̃ for the filtered Hessian matrix. The
gradient of F with respect to Z is denoted by R. This vector consists of d-sized
subvectors ri . It is the approximate gradient of the functional since we do not
differentiate the metric Gx , hence, the dependence on Y is not taken into account.

Since solving the variational problem on the time level tn+1 = tn +�tn exactly
is too expensive, we are using 1- or 2-step heuristic schemes.



162 V. Garanzha and L. Kudryavtseva

One step of the Newton-type method for finding a function stationary point can
be written as

nv∑
j=1

H̃ij (Z
n,Zn, tn+1)δzj + ri(Z

n,Zn, tn+1) = 0. (5)

This set of equalities can be written in brief as

H̃ (Zn,Zn, tn+1)δZ + R(Zn,Zn, tn+1) = 0 (6)

and

Z̃ = Zn + τnδZ. (7)

Here, the parameter τn is found as a approximate solution of the one-dimensional
problem

τn = arg min
τ

F (Zn + τδZ,Zn, tn+1). (8)

The standard golden-section search is used to find the approximate minimum.
The preconditioned conjugate gradient technique is used for an approximate

solution of (6) with an approximate second order Cholesky factorization [13] as
a preconditioner. For a parallel version of a solver we use the additive version of an
approximate second order Cholesky factorization based on domain decomposition
with overlaps [14]. The resulting nonlinear scheme was found to be very stable and
quite efficient.

One can try to simplify the structure of the Hessian matrix by setting H̃ij = 0
when i 	= j [12] or even by considering only the diagonal part of Hessian matrix as
a preconditioner. We have found that if global large deformations of the initial mesh
are necessary in order to satisfy the mesh compression criteria inside thin moving
layers, simple explicit methods of mesh optimization fail to follow the metric
precisely. Our observation is that “explicit” solvers are not efficient in the case of
global deformations. Our linear solver is based on the extraction of d independent
linear systems with symmetric positive definite nv × nv matrices [8] from the linear
system (6), which are closely resembling finite element approximations of the scalar
Poisson equations with a tensor coefficients.

The simplest 1-step algorithm is formulated as

Zn+1 = Zn + min(1/2, τn)δZ. (9)

The observed paradox of the variational method is that we may assign any
reasonable constant K in the range (0, 1/2) to τn and, after a short transient period,
the algorithm would eventually scale the increment δZ in such a way, that the value
τn|δZ| is almost invariant since, otherwise, the mesh layer would lag behind the



Moving Deforming Mesh Generation Based on the Quasi-Isometric Functional 163

prescribed position. Setting K = 1/2 was found to be a good compromise between
the accuracy and the stability. In order to improve the accuracy the following two-
step algorithm was tested:

• compute

Zn+ 1
2 = Zn + 1

2
τnδZ, (10)

• find the new increment δZ̃ such that

H̃ (Zn+ 1
2 , Zn+ 1

2 , tn+1)δZ + R(Zn+ 1
2 , Zn+ 1

2 , tn+1) = 0, (11)

• assign

Zn+1 = Zn + τnδZ̃. (12)

In order to ensure the stability of the algorithm in case when resulting Zn+1 is not
an admissible solution, one should find the new τn via

τn = arg min
τ

F (Zn + τδZ̃, Zn+ 1
2 , tn+1). (13)

and repeat the steps (10)–(12) with the new τn which by construction should be
smaller than the previous one. The resulting algorithm resembles the standard 2-
stage Runge–Kutta scheme associated with a single time step along the space-time
trajectory. More precisely, Runge–Kutta predictor stage looks like the minimization
step of the Newton-type algorithm, while Runge–Kutta corrector stage may serve
as an additional iterative step. Resulting scheme would not provide quadratic
convergence even in the model cases. However we have found that this 2-step
scheme sharply improves the accuracy of the localization of the mesh layers.
Moreover, it produces smooth space-time trajectories of cells and allows to run
the mesh deformation solver with much larger time steps. From the minimization
strategy it follows that the function F has finite values for any vector Zα defined by

Zα = αZn + (1 − α)Zn+1, 0 	= α 	= 1,

which, in turn, means that all intermediate mesh deformations are non-degenerate.

4 Mesh Stretching and Size Gradation Control

System of single or multiple moving and deforming bodies which are denoted as a
domain B ∈ R

d defined by implicit function ds(x, t) in such a way that the function
ds is negative inside body, positive outside it, and isosurface ds(x, t) = 0 defines the



164 V. Garanzha and L. Kudryavtseva

boundary ∂B at the time t . We assume that ds(x, t) resembles the signed distance
function for the instant domain boundary. In theory, one can assume the existence of
the quasi-isometric mapping x(y) : Rd → R

d such that the function ds(x(y), t) is
precisely the signed distance function. In practice, we assume that when the vector
∇xds in the vicinity of the boundary is defined and its norm is bounded from below
and above by certain global constants.

The metric tensor G(x, t) is defined as a function of ds(x, t) such that it attains
its largest value on the domain boundary and decreases inside and outside body
(using different laws). The Mmesh inside the body is in general quite coarse since
the immersed boundary solver solution inside the body does not have a physical
meaning.

In order to attain a smooth mesh size gradation, we use a logarithmic auxiliary
mapping which allows to attain an almost constant mesh size growth factor.
Consider the one-dimensional auxiliary mapping y(ξ) : [0, 1] → [0, 1]. We define a
uniform mesh in ξ coordinates with the mesh size h = 1/N , where N is the number
of cells. Vertices yi are distributed assuming a constant growth rate

yi+1 − yi = (yi − yi−1)(1 + ε).

This equality can be considered as the finite difference approximation of the
equation

hÿ = εẏ.

Interchanging dependent and independent variables we obtain

−ξ̈h = εξ̇2.

The solution of this ODE is defined by

ξ = φ(y) = h

ε
ln

(
1 + Aε

h
(y − δ)

)
+ δA.

We split the “computational domain” into three subregions: “boundary layer”
0 <= y <= δ, transition zone δ ≤ y ≤ D < 1, and the outer zone D ≤ y ≤ 1.
Since we apply mesh adaptation for better implementation of immersed boundary
method for moving bodies, inside the boundary layer we simply assign the constant
maximal mesh compression coefficientA. For the outer zone, we also imply a linear
distribution with the constant compression coefficient κ = (1−D)/(1−φ(D)) ≤ 2.
The function φ controls the transition between the smallest and the largest scales.
Figure 1, left, shows the overall result (note that the transposed graph is shown).



Moving Deforming Mesh Generation Based on the Quasi-Isometric Functional 165

ξ

x

ξ(D)δA
δ

D

1

1 ξ

x

δA
δ

D

1

1 (1)

Fig. 1 Left: the auxiliary one-dimensional mapping defining the stretching. Right: the target
mesh compression ratio A is too large and should be reduced

The derivatives of this mapping are defined by

γ (y, δ,A) = φ̇ = 1
1
A

+ ε
h
(y − δ)

, φ̈ = − ε

h

1
( 1
A

+ ε
h
(y − δ)

)2 .

The mesh compression coefficient is defined by the function φ̇. Its graph is a
hyperbola.

The set of control parameters δ, A, κ , h can be contradictory since for too large
values of the compression factor A one may get φ−1(1) > 1, or even φ−1(D) > 1.
In this case, we iteratively reduce the value of A with κ = 2 until the equality
φ−1(1) = 1 is satisfied.

In order to compute the dimensionless control parameters of the function φ, we
use the radius Rmax of the influence zone of the body, the true mesh layer thickness
δR, and the average mesh size lR in the direction normal to the body.

Then,

h = 3

2

lR

Rmax
, δ = max

(
δR

Rmax
,
h

A

)
.

Suppose that the body is a zero isosurface of the signed distance function ds(x, t).
We compute the normal compression function as follows

σ1(x, t) = γ (|ds(x, t)|/Rmax, δ, An). (14)

where An is the compression factor in the normal direction to the boundary.
Denote by u1 = ∇ds/|∇ds | a unit vector of the normal direction. We can obtain a

full orthonormal basis U = (u1, . . . , ud) using vectors u2, . . . , ud defining the local
tangent basis on the isosurface of ds . The metric tensor Gx(x, t) can be defined by

Gx = U�UT , � = diag(σi). (15)



166 V. Garanzha and L. Kudryavtseva

Fig. 2 Isotropic metric: an internal layer in the computational domain and its preimage in the
parametric domain

The choice of the “tangential” stretches, namely, the stretches in the directions
orthogonal to the gradient of the implicit function, is not trivial and very important
in order to obtain a mesh deformation without size jumps and ruptures. Here,
“rupture” means appearance of long and skewed mesh cells which resembles an
approximation of an elastic material rupture.

The isotropic choice σi = σ1 or Gx = σ 2
1 I seems to be the simplest one.

Unfortunately, its applicability is very limited, since the preimage of the boundary
layer in the initial coordinates ξ is scaled by a factor An, as shown in Fig. 2 for
An = 6. An enlarged preimage may cover the whole initial domain or even get
outside of the boundary meaning that most of the mesh cells will travel into the
boundary layer making the resulting mesh unusable. The mesh in Fig. 2 contains
22 531 vertices and 44 610 triangles, however, the enlargement is almost mesh
independent.

If we specify the maximal tangential compression At , then the linear size of the
preimage would increase by the factor At , while the thickness of the preimage layer
will increase by the factor An, as shown in Fig. 3 for An = 6, At = 2, and the same
initial mesh.

We assign the maximal anisotropy ratioAn/At in the boundary layer and build σi
to gradually reduce the anisotropy away from the layer. In some cases, the constant
factor At does not allow to resolve the boundary features, in particular if sharp or
highly curved boundary fragments are present. The general argument is that when
the tangential resolution is not enough, one should use smart values of the tangential
stretches A∗

t i , i = 2, . . . , d in different directions in the range At ≤ A∗
t i ≥ An.

Let us denote the metric with constant stretches in the boundary layer by G1, and
consider the metric introduced around surface features by G2. We use the same
representation (14) and (15) for G2, the main difference being the influence radius



Moving Deforming Mesh Generation Based on the Quasi-Isometric Functional 167

Fig. 3 Anisotropic metric: an internal layer in the computational domain and its preimage in the
parametric domain

M2

M

(M  , M  )

1

21max

M3

Fig. 4 Illustration of the maximum operation for two metrics

R2, which should be smaller compared to the global influence radius Rmax for G1.
Then final metric is defined by

Gx = G3 = max(G1,G2).

The maximum operation is based on the common circum-ellipsoid construction
which is close to the one suggested in [4] (see Fig. 4). Consider two concentric el-
lipsoids M1 and M2 defined by the quadratic forms xT G−1

1 x = 1 and xT G−1
2 x = 1,

respectively. The common circum-ellipsoidM3 defines the matrixG3. Construction
of the ellipsoid M3 is simple: find an affine map which transforms one of the
ellipsoids into a sphere. In transformed coordinates, the circum-ellipsoid is trivially
constructed and mapped back into the original coordinates. Since each of the



168 V. Garanzha and L. Kudryavtseva

metrics is defined by its spectral decomposition, this construction is reduced to a
number of products of orthogonal and diagonal matrices.

5 MPI-Based Parallel Implementation

We use the spatial mesh decomposition in order to build a parallel algorithm. Since
the degrees of freedom defining the mesh deformation are the mesh vertices, we
build a consistent partitioning of mesh cells and vertices: the parametric domain
�xi is split into connected subdomains consisting of full mesh cells. Mesh vertices
belonging to boundaries between subdomains are distributed between subdomains.
We use the parallel ILU2-based iterative solver [13, 14] to compute the minimization
direction. The solver input data are the right hand side (partitioned into blocks) and
the sparse matrix (partitioned into block rows). Each block corresponds precisely to
the partitioning of the mesh vertices. Our implementation of the iterative scheme is
based on the extended subdomains defining the two-cell-wide subdomain overlap.
At the beginning of each minimization iteration (7), we use data exchange to create
the current guess at each of the extended subdomains. Such an extension makes
the cell-by-cell assembly of functional, its gradient, the Hessian matrix and its
subsequent double scaling completely local operations. Additional data exchanges
in order to find the optimal value of τ by an approximate solution of the one-
dimensional minimization problem (8) are not necessary, merely the global sums
should be computed. All operations of the mesh generation algorithm are fully
scalable. Hence, one can expect that the overall scalability is defined by that of the
parallel linear solver. Note that the linear solver uses its own overlaps and a data
exchange scheme [14].

6 Numerical Experiments

We apply the mesh deformation solver for the geometric adaptation of a computa-
tional mesh in order to improve the resolution of the NOISETTE flow solver [16] for
numerical modelling of turbulent flow around a quadrocopter propeller. The flow
solver is based on the Immersed Boundary Conditions (IBC). We test the numerical
technology in two dimensions using the two-dimensional projection of the realistic
propeller geometry [2] with the main goal to extend it to the case of a real three-
dimensional propeller modeling. At this stage, we run simple three-dimensional
tests in order to check the initial geometric adaptation, to compare the computed
position of the mesh layer with the target moving position, as well as to check the
efficiency and scalability of the three-dimensional algorithm. Figure 5 (left) shows
the propeller geometry. Due to the natural geometrical limitations, the mesh is
deformed only inside a circle which is 10% larger then the propeller itself, meaning
that the mesh adaptation near the blade tip becomes a nontrivial task. The propeller



Moving Deforming Mesh Generation Based on the Quasi-Isometric Functional 169

Fig. 5 A two-dimensional propeller model and the initial adapted mesh

Fig. 6 Circles are the influence zones of the isotropic metric near sharp corners

is defined by an implicit signed distance-like function. We impose compression
factor of 30 in the normal direction inside the thin layer near the blades. In order to
initiate the time-dependent deformation, we start from an initial mesh adaptation to
a fixed shape (Fig. 5, right).

In order to resolve the corners and the highly curved boundary fragment, we
introduce locally isotropic metric influence zones, shown as circles in Fig. 6. The
isotropic metric is defined by the same law in (14), where the distance to the circle
center is considered and Rmax is the circle radius. The coefficient An is the same as
for the global metric and σ2 = σ1. The maximum operation for metrics is applied
in order to compute Gx .

Figure 7 shows fragments of the initial mesh near the influence zones of the
anisotropic metric.

Figure 8 shows the general mesh outline after the first and second propeller
rotations.

Figures 9 and 10 show mesh fragments after the first and second rotations.
Computation of the long term mesh deformation demonstrates a behaviour which

is close to the periodic one. Figure 11 show trajectories of selected cells in the



170 V. Garanzha and L. Kudryavtseva

Fig. 7 Fragments of the initial adapted mesh near the sharp corners

Fig. 8 Mesh after the first and second rotations

Fig. 9 Mesh fragment after the first and second rotations



Moving Deforming Mesh Generation Based on the Quasi-Isometric Functional 171

Fig. 10 Mesh fragment after the first and second rotations

Fig. 11 Space-time trajectories of three selected triangles for 14 propeller rotations shown from
different viewpoints

variables x1, x2, and t . We select several triangles, save their coordinates every 500
time steps and connect the consecutive positions creating space-time prisms. The
resulting triangular beams illustrate the space-time deformation of the mesh.

Figure 12 shows the deformation of mesh subdomains when propeller spans a
quarter of the rotation.

Note that we use a vertex-based domain decomposition, so mesh vertices lying
on the boundaries of colored regions actually are assigned to the one or another
subdomain.

Figure 13 shows the mesh deformation and the movement of the subdomain
boundaries in the propeller-related reference frame. The number of subdomains is
larger than in Fig. 12. Distinct one-cell-wide layers show the triangles with vertices
belonging to different subdomains.



172 V. Garanzha and L. Kudryavtseva

Fig. 12 Deformation of subdomains for a quarter of the rotation, subdomains are marked by
distinct colors

Figure 14 shows the target σ1 distribution in the rotating reference frame for two
different time levels. Red color denotes the maximal value. One can observe that
the position of the mesh layer follows the controls quite closely. A quite interesting
effect is related to the bands of mesh cells which are attracted to the blade, then travel
for some time along the boundary layer in the compressed state, and, eventually,
leave the propeller. Another group of cells in the middle of the domain is attracted
to the blades, cross them, and go out at the other side. Figure 14 (right) is slightly
inclined in the coordinates x1, x2, and t to make the cell trajectories more visible.

In order to evaluate the scalability of the parallel implementation, we run several
two and three-dimensional test cases. In 2d, we consider a “small” problem with
357,781 vertices and 713,760 triangles and a “moderate” problem with 1,429,321
vertices and 2,855,040 triangles. In 3d, we consider a deformation of a tetrahedral
mesh with 9,586,347 vertices and 56,715,408 tetrahedra.



Moving Deforming Mesh Generation Based on the Quasi-Isometric Functional 173

Fig. 13 Mesh deformation and movement of subdomains in the rotating reference frame

Fig. 14 Mesh layer localization compared to σ1 distribution and cell trajectories in the rotating
reference frame

The scalability experiments were ran on the parallel cluster of the Moscow
Institute of Physics and Technology. It is an Intel CPU-based cluster having 24
cores per board and the Infiniband interconnect. Figure 15 illustrates the scalability
of the mesh deformation algorithm. A separate graph is devoted to the linear solver.
As one can expect, the overall scalability is defined by the linear solver. Note that
the scalability with respect to a single core is not impressive, while results scale
very well with respect to 24 cores. We were not able to explain this observation.
In principle, it may be a drawback of the algorithm or a cluster software/hardware
misconfiguration artefact.

Figure 16a shows the speed-up for a small 2d problem where the saturation is
quite pronounced for more then 120 cores, while for the 3d case in Fig. 16b the
scalability is quite reasonable and the saturation is not observed until 600 cores.
Note that a superacceleration is observed which can be attributed to the lower
performance of the 3d code for a small number of vertices. We plan to run the
3d algorithm on larger configurations.

Figure 17 illustrates subdomains for the 3d problem in the case of 144 cores.
We show the trace of the subdomains on the boundary, a cross-section of the initial
uniform mesh, and a cross-section of the mesh adapted to a moving sphere.



174 V. Garanzha and L. Kudryavtseva

Fig. 15 Speed-up versus number of computational cores for a moderate-sized 2d problem: (top)
the speed-up with respect to a single core and (bottom) the speed-up with respect to 24 cores

Figure 18a shows the initial adapted mesh and the target σ1 distribution.
Figure 18b shows the preimage of the compressed boundary layer on the initial
uniform 3d mesh. In this example, in the boundary layer, σ1 = 30 and σ2,3 ≈ 3.



Moving Deforming Mesh Generation Based on the Quasi-Isometric Functional 175

Fig. 16 Speed-up versus number of computational cores: (a) The small 2d problem and (b) The
3d problem



176 V. Garanzha and L. Kudryavtseva

Fig. 17 Subdomains for the initial uniform mesh and for the instant moving deformed 3d mesh

Fig. 18 Distribution of mesh compression factor in normal direction and its preimage on the initial
mesh

Fig. 19 Two positions of moving layer with imposed distribution of mesh compression factor

Figure 19 shows fragments of the mesh with two positions of the computed mesh
layer in the process of the sphere movement.

Figure 20 shows two positions of the mesh layer extracted from the global meshes
using a threshold of 20 for the target σ1 distribution.



Moving Deforming Mesh Generation Based on the Quasi-Isometric Functional 177

Fig. 20 Two positions of the compressed layer extracted using a threshold of 20 for the normal
compression factor

7 Conclusions and Discussion

We describe an algorithm which allows to construct high quality time-dependent
mesh deformations via the approximate minimization of a quasi-isometric func-
tional. The presented algorithm is still slower if compared to mesh solvers based
on linear elliptic equations, see, e.g., [15]. The difference, however, is no longer
crucial since we use d linear solves with linear systems corresponding to FE
approximations of scalar Laplace-like equations per several time steps. It is well
known that algorithms based on a linear elliptic solver can attain reasonable mesh
quality via a careful choice of the metric tensor/weight functions [17], so it may
happen that the advantage of presented method in terms of the mesh quality does
not overweight computational overhead. However, unlike linear mesh solvers, the
presented algorithm does not impose any limitation on the domain shape and the
mesh elements type. It can be applied in the case of multiple dimensions and for
high-order elements. Due to the advanced parallel linear solver, a reasonable parallel
scalability of the numerical algorithm was demonstrated.

Acknowledgments Research of the second author is supported by the Russian Science Founda-
tion, Project 20-41-09018_ANR (acronym NORMA).

References

1. Abalakin, I., Bakhvalov, P., Kozubskaya, T.: Edge-based reconstruction schemes for unstruc-
tured tetrahedral meshes. Int. J. Numer. Methods. Fluids 81(6), 331–356 (2016)

2. Brandt, J.B.: Small-scale propeller performance at low speeds. PhD Thesis. University of
Illinois at Urbana-Champaign (2005)



178 V. Garanzha and L. Kudryavtseva

3. Budd, C.J., Huang, W., Russell, R.D.: Adaptivity with moving grids. Acta Numer. 18, 111–241
(2009)

4. Castro-Díaz, M.J., Hecht, F., Mohammadi, B., Pironneau, O.: Anisotropic unstructured mesh
adaption for flow simulations. Int. J. Numer. Methods. Fluids 25(4), 475–491 (1997)

5. Coyle, J.M., Flaherty, J.E., Ludwig, R.: On the stability of mesh equidistribution strategies for
time-dependent partial differential equations. J. Comput. Phys. 62, 26–39 (1986)

6. de Boor, C: Good approximation by splines with variable knots II. In: Spline Functions and
Approximation Theory. Springer Lecture Notes Series, vol. 363. Springer, Berlin (1973)

7. Garanzha, V.A.: The barrier method for constructing quasi-isometric grids. Comput. Math.
Math. Phys. 40, 1617–1637 (2000)

8. Garanzha, V.A., Kudryavtseva, L.N.: Hyperelastic springback technique for construction of
prismatic mesh layers. Proc. Eng. 203, 401–413 (2017)

9. Garanzha, V.A., Kudryavtseva, L.N., Utyzhnikov, S.V.: Untangling and optimization of spatial
meshes. J. Comput. Appl. Math. 269, 24–41 (2014)

10. Godunov, S.K., Gordienko, V.M., Chumakov, G.A.: Quasi-isometric parametrization of a
curvilinear quadrangle and a metric of constant curvature. Siberian Adv. Math. 5(2), 1–20
(1995)

11. Huang, W., Ren, Y., Russell, R.D.: Moving mesh partial differential equations (MMPDES)
based on the equidistribution principle. SIAM J. Numer. Anal. 31(3), 709–730 (1994)

12. Ivanenko, S.A.: Construction of nondegenerate grids. Comput. Math. Math. Phys. 28, 141–146
(1988)

13. Kaporin, I.E.: High quality preconditioning of a general symmetric positive definite matrix
based on its UTU+UTR+RTU-decomposition. Numer. Linear. Algebra. Appl. 5(6), 483–509
(1998)

14. Kaporin, I.E., Milyukova, O.Yu.: MPI+OpenMP parallel implementation of explicitly precon-
ditioned conjugate gradient method. Keldysh Institute preprints, 008 (Mi ipmp2369) (2018)

15. Tang, H.Z., Tang, T.: Adaptive mesh methods for one- and two-dimensional hyperbolic
conservation laws. SIAM J. Numer. Anal. 41(2), 487–515 (2003)

16. Tsvetkova, V.O., Abalakin, I.V., Bobkov, V.G., Zhdanova, N.S., Kozubskaya, T.K., Kudryavt-
seva, L.N.: Simulation of flow near rotating propeller on adaptive unstructured meshes using
immersed boundary method. Math. Models Comput. Simul. (accepted for publication, 2021)

17. Van Dam, A., Zegeling, P.A.: Balanced monitoring of flow phenomena in moving mesh
methods. Commun. Comput. Phys. 7(1), 138–170 (2010)



Adaptive Grids for Non-monotone Waves
and Instabilities in a Non-equilibrium
PDE Model

Paul A. Zegeling

Abstract In this paper, the importance of both the analysis and computation is
emphasized, in relation to a bifurcation problem in a non-equilibrium Richard’s
equation from hydrology. The extension of this PDE model for the water
saturation S, to take into account additional dynamic memory effects gives rise
to an extra third-order mixed space-time derivative term in the PDE of the form
τ ∇ · [f (S)∇(St )]. In one space dimension, travelling wave analysis is able to
predict the formation of steep non-monotone waves depending on the parameter
τ . In two space dimensions, the parameters τ and the frequency ω of a small
perturbation term, predict that the waves may become unstable, thereby initiating
so-called gravity-driven fingering structures. For the numerical experiments of the
time-dependent PDE model, we have used a sophisticated adaptive grid r-refinement
technique based on a scaled monitor function.

1 Introduction

Space-time evolution described by nonlinear PDE models involves patterns and
qualitative changes induced by parameters. In this report I will emphasize the
importance of both the analysis and computation in relation to a bifurcation problem
in a non-equilibrium Richard’s equation from hydrology. The extension of this PDE
model for the water saturation S, to take into account additional dynamic memory
effects, was suggested by Hassanizadeh and Gray [7] in the nineties of the last
century. This gives rise to an extra third-order mixed space-time derivative term
in the PDE of the form τ ∇ · [f (S)∇(St )]. In one space dimension, travelling wave
analysis is able to predict the formation of steep non-monotone waves depending on
the parameter τ . It is shown that, in this framework, theory from applied analysis,
accurate numerical PDE solutions and also the experimental observations from the

P. A. Zegeling (�)
Utrecht University, Utrecht, The Netherlands
e-mail: P.A.Zegeling@uu.nl

© Springer Nature Switzerland AG 2021
V. A. Garanzha et al. (eds.), Numerical Geometry, Grid Generation and Scientific
Computing, Lecture Notes in Computational Science and Engineering 143,
https://doi.org/10.1007/978-3-030-76798-3_11

179

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76798-3_11&domain=pdf
mailto:P.A.Zegeling@uu.nl
https://doi.org/10.1007/978-3-030-76798-3_11


180 P. A. Zegeling

laboratory [5, 14] can be nicely matched. In two space dimensions, the parameters
τ and the frequency ω (appearing in a small perturbation term), predict that the
waves may become unstable, thereby initiating so-called gravity-driven fingering
structures. This phenomenon can be analysed with a linear stability analysis and
its effects are supported by the numerical experiments of the 2D time-dependent
PDE model. For this purpose, we have used an efficient adaptive grid r-refinement
technique based on a scaled monitor function. The numerical experiments in
one and two space dimensions confirm the theoretical predictions and show the
effectiveness of the adaptive grid solver.

2 The Non-equilibrium PDE Model

The PDE model describing non-equilibrium effects in a two-phase porous medium
is given by [4, 7–9, 21, 22]:

St = ∇ · (D(S)∇S)+ [f (S)]z + τ∇ · [f (S)∇(St )],
with (x, z, t) ∈ [xL, xR] × [zL, zR] × (0, T ], (1)

where τ is a non-equilibrium parameter, D(S) is a nonlinear diffusion function and
f (S) is a fractional flow function, respectively.

2.1 The One-Dimensional Case

Assuming a constant diffusion and a linearized non-equilibrium term, respectively,
in one space dimension, PDE model (1) can be reduced to:

St = D Szz + [f (S)]z + τSzzt , (z, t) ∈ [zL, zR] × (0, T ], (2)

with initial condition S(z, 0) = S0(z). The water saturation is represented by
the variable S(z, t) ∈ [0, 1], D > 0 is a diffusion coefficient and τ ≥ 0
the non-equilibrium parameter (see also [7, 21, 22]). The function f satisfies:
f (0) = 0, f (1) = 1, f ′(S) > 0 and is related to a fractional flow function in
the porous media model [22]. In particular, two choices for the function f are
considered. The first one is a convex-shaped function, representing a one phase
situation (only water), i.e.,

f (S) = S2

2
,



Adaptive Grids for Non-monotone Waves and Instabilities 181

and the second one is a convex-concave function, indicating two phases (both water
and air are present):

f (S) = S2

S2 + (1 − S)2
.

Dirichlet conditions are imposed at the spatial boundaries: S(zL, t) = S− and
S(zR, t) = S+. The initial water saturation S0(z), the boundaries of the spatial
domain, the final time T and the values for 0 ≤ S− < S+ ≤ 1, D and τ will be
specified in the description of the numerical experiments.

2.2 Travelling Waves: A Bifurcation Diagram

This section discusses special types of solutions in PDE model (2): we are interested
in travelling wave (TW) solutions. For simplicity of the analysis, we assume that
f (S) = S2. The convex-concave case is treated in [21, 22] which gives rise to an
even richer structure of the dynamics. The TW Ansatz, assuming a positive constant
speed ν, can be written as:

S(z, t) = ϕ(z+ ν t) := ϕ(ζ ), ζ ∈ (−∞,+∞), ν > 0.

Substituting this Ansatz in PDE (2), yields the third-order ODE:

ν ϕ′ = D ϕ′′ + [ϕ2]′ + ν τ ϕ′′′, (3)

where the ′ stands for taking derivatives with respect to the TW-variable ζ .
Integrating (3) between −∞ and ζ and using the fact that
ϕ(−∞) = S−, ϕ′(−∞) = ϕ′′(−∞) = 0, gives the second-order ODE:

ν (ϕ − S−) = D ϕ′ + ϕ2 − S2− + ν τ ϕ′′, (4)

which can be re-written as a system of first-order ODEs:

{
ϕ′ = ψ,

ψ ′ = ν(ϕ−S−)+S2−−ϕ2−D ψ

ν τ
.

(5)

A TW for (2) in the coordinate system (x, t) is represented by a trajectory in the
(ϕ,ψ)-plane connecting an unstable stationary point (at ζ = −∞) of (5) with
a stable one (at ζ = +∞). There are only two stationary points in system (5):



182 P. A. Zegeling

(ϕ,ψ) = (S−, 0), and (ϕ,ψ) = (S+, 0). The eigenvalues of the linearized system
of (5) can easily be calculated:

λ1,2 = −D
2τν

±
√

D2

4τ 2ν2 + S+ − S−
2τν

. (6)

From (6) it follows that the point (S−, 0) is an unstable (saddle) point in all cases,
since λ1λ2 < 0. Depending on the PDE parameters D and τ , we distinguish
between two cases for the second stationary point (S+, 0). Non-monotone TWs
exist for τ > τc = D2/(S+ − S−) since the saddle point is then connected to
a spiral point (a focus). This situation is clarified in terms of the PDE solutions
(Fig. 1), a bifurcation diagram (left panel in Fig. 2) and a phase plane plot (right
panel in Fig. 2). For τ = 0, it is known that only monotone waves satisfy the PDE
model [4]. Since we are looking also for non-monotone waves, we need the extra
τ -term in PDE (2) to describe such phenomena. Note again that the convex-concave
case is treated in [22], for which there may exist plateau-type waves as well. In
that case three stationary points appear in the dynamical system with a much more
complicated behaviour in the phase plane. These plateau-waves will be detected in

Fig. 1 The one-dimensional saturation profile for various values of the non-equilibrium parameter
τ : (a) τ = 0 (monotone TW); (b) τ = 1 (mildly non-monotone TW); (c) τ = 5 (oscillating non-
monotone TW)



Adaptive Grids for Non-monotone Waves and Instabilities 183

−→ φ

−→
ψ

0 0.2 0.4 0.6 0.8 1

−0.8

−0.4

0

0.4

0.8

τ = 5

τ = 1

τ = 0.4

(S−, 0)

(S+, 0)

—
—
—
—
—
—
–

Fig. 2 A bifurcation diagram (left) indicating the existence of monotone waves and non-monotone
waves depending on the parameters D and τ . The black curve is defined by: D = √

τ(S+ − S−).
The right panel shows, for three different values of the parameter τ , trajectories in the phase plane
(ϕ,ψ). The red and blue curves correspond to non-monotone waves (τ > τc > 0) and the black
curve denotes a monotone wave (τ = 0)

the numerical experiments, where we will use an adaptive moving grid method to
solve the PDE model (2).

2.3 The Adaptive Moving Grid in 1D

For the numerical simulations of PDE model (2) we will apply an adaptive moving
grid technique that is based on a coordinate transformation (for more details: [2, 8,
10, 11, 19, 24, 25]):

{
z = z(ξ, ϑ),

t = t (ξ, ϑ) = ϑ.
(7)

Then, PDE model (2) is transformed to the following form:

υϑ − (υ + zϑ)

J
υξ = D

J

(
υξ

J

)

ξ

+ υξ

J
f ′(υ)

+ τ

J

⎡
⎣J

(
1

J

(
υξ

J

)

ξ

)

ϑ

− zϑ

(
1

J

(
υξ

J

)

ξ

)

ξ

⎤
⎦,

(8)



184 P. A. Zegeling

with υ(ξ, ϑ) := S(z(ξ, ϑ), ϑ) and the Jacobian of transformation (7): J := zξ .
The adaptive grid transformation that defines the time-dependent non-uniform grid
has to satisfy the adaptive grid PDE;

[(σ (J)+ τs Jϑ )M]ξ = 0, τs ≥ 0.

Here, M := √
1 + [Sz]2 is the monitor function, reflecting the dependence of the

non-uniform grid on the spatial derivative of the PDE solution.
The operator

σ := I + κs(κs + 1)
∂2

∂ξ2

is applied to obtain a smoother grid transformation in space. The first adaptivity
constant κs > 0 is a spatial smoothing (or filtering) parameter. Further, the second
adaptivity constant τs takes care of the smoothness in the time-direction. For κs > 0
and τs > 0, after semi-discretization, it can be shown [10] that the spatial grid
satisfies the condition

κs

κs + 1
≤ �zi+1

�zi
≤ κs + 1

κs

for all gridpoints zi and all time t > 0. Note that, for κs = τs = 0 (no smoothing),
we return to the basic equidistribution principle [zξM]ξ = 0. For more details
on the adaptive grid and the smoothing operators we refer to [10, 24, 25]. The
transformed PDE and the adaptive grid PDE are simultaneously semi-discretized in
the spatial direction following a method-of-lines approach. A central, second-order,
uniform approximation for the transformed derivative terms in the ξ -direction is
used. The time-integration of the resulting coupled ODE-system is done by a BDF
method with variable time-steps in DASSL [16].

2.4 Numerical Results

In this section, we perform some numerical experiments to show the accuracy and
effectiveness of the adaptive moving grid. This will also illustrate and confirm
the TW analysis in Sect. 2.2. The adaptive grid parameters are chosen as follows:
κs = 2 and τs = 0.001 and the time-integration a tolerance in DASSL is set to the
value 10−4. The initial condition is a steep wave starting at the right boundary of
the domain and reads:

S(z, 0) = S0(z) = S− + 1

2
(S+ − S−)(1 + tanh(R(z − z0))),



Adaptive Grids for Non-monotone Waves and Instabilities 185

 Z

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 S
(Z

,T
)

 fixed uniform grid; 101 grid points

 Z

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 S
(Z

,T
)

 adaptive moving grid; 51 grid points

 Z

0

0.5

1

1.5

2

2.5

3

 T

0 0.2 0.4 0.6 0.8 1 1.2 1.4 0 0.2 0.4 0.6 0.8 1 1.2 1.4

0 0.2 0.4 0.6 0.8 1 1.2 1.4 0.25 0.3 0.35 0.4 0.45

 Z

2.3

2.4

2.5

2.6

2.7

2.8

2.9

 T

Fig. 3 Upper two panels for the case τ = 0: oscillating uniform (N = 101) grid solutions (left)
and non-oscillating adaptive grid solutions with N = 51 (right). The lower two plots (with a close-
up in the right panel) display the time-history of the adaptive grid. In these experiments, we have
chosen: τ = 3 × 10−4, D = 2 × 10−3. The red lines indicate the exact (asymptotic) wave speed

where zL = 0, zR = 1.4, S− = 0, S+ = 0.6, R = 50 and PDE parameters:
τ = 10−4 and D = 10−3. In Fig. 3 we show, for τ = 0, in which case we know that
only monotone solutions exist, numerical solutions with N = 101 fixed uniform
grid points and with N = 51 adaptive moving grid points. It is clearly observed that
the uniform grid produces an unwanted non-monotone wave, whereas the adaptive
grid nicely keeps the wave monotone. Also, the plot with the time history of the
adaptive grid illustrates the smooth distribution and time-behaviour of the grid with
a constant wave velocity. Figure 4 displays the difference between the convex and
the convex-concave case: non-monotone TWs and plateau-waves. These waves are
predicted by the analysis in Sect. 2.2 and [22].

From ODE (4) it can easily be derived that the asymptotic travelling-wave speed
ν satisfies:

ν = f (S+)− f (S−)
S+ − S−

. (9)



186 P. A. Zegeling

Z

-0
.10

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

S(Z,T)

 Z

0

0.
51

1.
52

2.
53

 T

0
0.

2
0.

4
0.

6
0.
8

1
1.

2
1.

4
0

0.
2

0.
4

0.
6

0.
8

1
1.

2
1.

4

0
0.

2
0.

4
0.

6
0.
8

1
1.

2
1.

4
0

0.
2

0.
4

0.
6

0.
8

1
1.

2
1.

4

0.
25

0.
3

0.
35

0.
4

0.
45

0.
5

 Z

2.
552.

6

2.
652.

7

2.
752.
8

2.
852.

9

2.
95

 T

Z

0

0.
2

0.
4

0.
6

0.
81

1.
2

S(Z,T)

 Z

0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
91

 T

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

 Z

0.
5

0.
550.
6

0.
650.
7

0.
750.
8

0.
850.
9

0.
95

 T

F
ig
.4

T
he

ti
m

e
hi

st
or

y
of

th
e

ad
ap

tiv
e

gr
id

(r
ig

ht
,

w
it

h
a

cl
os

e-
up

ar
ou

nd
th

e
st

ee
p

pa
rt

s
of

th
e

w
av

es
),

th
e

so
lu

ti
on

s
at

fo
ur

po
in

ts
of

ti
m

e
(l

ef
t)

fo
r

tw
o

ch
ar

ac
te

ri
st

ic
ca

se
s

in
th

e
po

ro
us

m
ed

ia
m

od
el

:
a

co
nv

ex
f

(t
op

)
an

d
a

co
nv

ex
-c

on
ca

ve
f

(b
ot

to
m

).
T

he
re

d
st

ra
ig

ht
li

ne
s

in
di

ca
te

th
e

ex
ac

t(
as

ym
pt

ot
ic

)
w

av
e

sp
ee

ds
fo

r
th

e
tw

o
ca

se
s,

as
pr

ed
ic

te
d

by
fo

rm
ul

a
(9

)



Adaptive Grids for Non-monotone Waves and Instabilities 187

This yields, respectively, for the convex case ν = 0.3 and for the convex-concave
case ν ≈ 1.1538. In Figs. 3 and 4 the red lines indicate these constant TW speeds.
We observe that the adaptive moving grid follows the waves very accurately.

3 The Two-Dimensional Case

Next, we consider the two-dimensional version of model (1) for the special choices:

f (S) = Sα, D(S) = βSα−β−1, α > β + 1. (10)

3.1 Non-monotone Waves and Instabilities

In contrast with the 1D case, for which both the monotone and non-monotone waves
are stable under small perturbations, the 2D model may give rise to instabilities
(‘finger’ structures). It can be shown that for specific values of τ > 0, the non-
monotone waves may become unstable. The analysis is based on the following
observations, also mentioned in [6] and [15].

First, the non-equilibrium PDE (1) is re-written as a system of two equations,
one for the saturation S and one for the pressure p:

{
St = ∇ · (D(S)∇p) + [f (S)]z,
τSt = p − P(S),

(11)

where P(S) is an equilibrium pressure. Next, the PDEs are written in a travelling
wave coordinate, similar as in done in Sect. 2.2. The saturation and pressure waves
are then perturbed in the following form:

{
S = S0(ζ )+ εeiωx+iωz+kt S1(ζ )+ O

(
ε2
)
,

p = p0(ζ )+ εeiωx+iωz+ktp1(ζ )+ O
(
ε2
)
.

(12)

These perturbed quantities are substituted in the system of two travelling wave
equations, higher-order terms are being neglected, and equations for the linear
stability analysis are set up. For these, it can be derived, that, for τ = 0, the growth
factor k will always be negative, whereas, for τ > 0 and for certain frequencies ω,
the growth factor can be positive, thereby initiating unstable waves. These can be
related to so-called fingering structures, as we will see in Sect. 3.3.



188 P. A. Zegeling

3.2 The Adaptive Moving Grid in 2D

The adaptive grid method in two dimensions follows similar principles, with some
extra features and differences, compared to the 1D situation. More details can
be found in, for example, the references [10, 18–20], and [23]. Summarizing the
procedure, the 2D grid transformation reads:

⎧
⎪⎪⎨
⎪⎪⎩

x = z(ξ, η, ϑ),

z = z(ξ, η, ϑ),

t = t (ξ, η, ϑ) = ϑ.

(13)

As an example, the first term of the nonlinear diffusion on the righthand side in PDE
model (1) transforms to:

(D(S)Sx)x = 1

J

⎡
⎣
(
D(S)z2

η

J
Sξ

)

ξ

−
(
D(S)zξ zη

J
Sη

)

ξ

−
(
D(S)zξ zη

J
Sξ

)

η

+
(
D(S)z2

ξ

J
Sη

)

η

⎤
⎦ ,

(14)

where J = xξ zη − xηzξ denotes the determinant of the Jacobian of transformation
(13). The one-dimensional basic equidistribution principle, [Mzξ ]ξ = 0, is
extended to a system of two coupled nonlinear elliptic PDEs:

⎧
⎨
⎩

∇ · (M∇x) = 0, ∇ :=
[
∂
∂ξ
, ∂
∂η

]T
,

∇ · (M∇z) = 0,

where the monitor function M is now defined by

M = γ (t)+ √∇S · ∇S, with γ (t) =
∫∫

�c

√∇S · ∇S dξ dη .

It is obvious that more sophisticated monitor functions could be used, but, for
the PDE model in this paper, this relatively simple monitor function has shown
to be sufficiently effective. Note that we have added a time-dependent adaptivity
function γ (t) which is automatically calculated during the time-integration process.
It provides additional smoothing to the grid distribution and takes care of the scaling
in the space and solution directions (see [20] for more information about this
choice). It can be shown that the adaptive grid transformation, following this 2D
equidistribution principle with the mentioned monitor function M, remains non-
singular:



Adaptive Grids for Non-monotone Waves and Instabilities 189

Theorem 1 (For Details of the Proof: [3]) Let M > 0, M ∈ C1(�c) and
Mξ ,Mη ∈ Cγ (�̄c) for γ ∈ (0, 1). Then there exists a unique solution
(x, z) ∈ C2(�̄c), which is a bijection from �̄c into itself. Moreover, the determinant
of the Jacobian J satisfies

J = xξzη − xηzξ > 0.

Some important ingredients of their proof include the Jordan curve theorem, the
Carleman-Hartman-Wintner theorem and the maximum principle for elliptic PDEs.

In reference [1] a deep analysis of the invertibility of more general, so-called σ -
harmonic, mappings is given. The transformed PDE model is spatially discretized
uniformly in the ξ and η coordinates. For the numerical time-integration of the
transformed 2D non-equilibrium PDE and the adaptive grid equations, we have used
an IMplicitEXplicit-approach [12, 17]. As an example, the diffusion term (14) is
numerically approximated as follows:

(D(S)Sx)x |ni,j

≈ 1

Jn
i,j

[
C1|ni+1,j + C1|ni,j

2

Sn+1
i+1,j − Sn+1

i,j

(�ξ)2
− C1|ni,j + C1|ni−1,j

2

Sn+1
i,j − Sn+1

i−1,j

(�ξ)2

− C2|ni+1,j

Sn+1
i+1,j+1 − Sn+1

i+1,j−1

4�ξ�η
+ C2|ni−1,j

Sn+1
i−1,j+1 − Sn+1

i−1,j−1

4�ξ�η

− C2|ni,j+1

Sn+1
i+1,j+1 − Sn+1

i−1,j+1

4�ξ�η
+ C2|ni,j−1

Sn+1
i+1,j−1 − Sn+1

i−1,j−1

4�ξ�η

+C3|ni,j+1 + C3|ni,j
2

Sn+1
i,j+1 − Sn+1

i,j

(�η)2
− C3|ni,j + C3|ni,j−1

2

Sn+1
i,j − Sn+1

i,j−1

(�η)2

]
,

(15)

where C1 := 1
JD(S)z2

η, C2 := 1
JD(S)zξ zη, and C3 := 1

JD(S)z2
ξ , respectively.

Instead of the ‘smart’ smoothing operators in space and time, as being used in 1D,
here, a filter, as in [18, 23], on the monitor function is applied several times in each
time step in the following way:

M̃i,j = 1

4
Mi,j + 1

8

[
Mi−1,j + Mi+1,j + Mi,j−1 + Mi,j+1

]

+ 1

16

[
Mi−1,j−1 + Mi+1,j−1 + Mi−1,j+1 + Mi+1,j+1

]
.

(16)

This modification yields even smoother grid distributions and enhances the time-
integration process as well.



190 P. A. Zegeling

3.3 Numerical Results

To support the main results of the analysis in Sect. 3.1, we perform some numerical
experiments for the 2D model. The spatial domain is defined by the rectangle
[0, 10] × [0, 60] and the initial solution is a ‘tanh’-type function as in 1D, but
now situated around the value z = 55. We add a small periodic perturbation
with frequency ω to test the stability of the two-dimensional waves. The numerical
experiments, unless specified differently, make use of a spatial grid with 41 × 121
grid points.

Figure 5 indeed confirms and illustrates the stability analysis by Egorov et al. [6]
and Nieber et al. [15], also briefly described in Sect. 3.1. The left panel shows
the numerically calculated growth factor k of the perturbation as a function of the
initial frequency ω for several values of the non-equilibrium parameter τ , using the
adaptive grid method from Sect. 3.2. The right panel is taken from [6] and depicts a
very similar dependence of k(ω).

τ=9
τ=7
τ=5
τ=3
τ=1
τ=0

0 1 2 3 4 5 6 7 8 9 10
−0.1

−0.08

−0.06

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1
τ = 9
τ = 7
τ = 5
τ = 3
τ = 1
τ = 0

−→ ω

−→
k

M
ax

im
um

gr
ow

th
fa
ct
or
,
k
0

Wave number, ω
0 1 2 3 4 5

−0.1

0

0.1

0.2

1

2

3

4

5

6

Fig. 5 Left: the growth factor k, numerically determined, as a function of the wave number ω of
the perturbation for various values of τ . Right: the theoretical prediction, taken from [6]. Note that
the scales on both axes in the two figures are different. The ω on the left is a numerical frequency
added to the initial condition, whereas the ω on the right comes from a theoretical analysis. The
global behaviour is the same, but the exact values are different. A similar remark holds for the
growth factor k



Adaptive Grids for Non-monotone Waves and Instabilities 191

Fig. 6 The water saturation profile and corresponding grid at different times for τ = 0 and β =
0.5 on a 41 × 121-grid

In Fig. 6 we show a stable travelling wave in two dimensions for τ = 0, α = 3
and β = 0.5: the initial perturbation disappears quickly and the adaptive moving
grid follows the steep parts of the wave efficiently and accurately. Figure 7 displays
close-ups of the adaptive grid for the solutions in Fig. 6.

Next, in Fig. 8 a similar situation is displayed, but now for τ = 10, α = 3
and β = 0.5: the initial perturbation grows in time and the wave becomes unstable
creating the shape of a ‘finger’. Again, the 2D adaptive grid is situated nicely around
the steep parts of the irregularly shaped travelling wave. Figure 9 shows close-ups
of the adaptive grids for the solutions in Fig. 8.



192 P. A. Zegeling

100 100

100 100

Fig. 7 Close-ups of the adaptive grid near the steep parts of the travelling wave in Fig. 6 at four
different points of time for τ = 0 and β = 0.5

Figure 10 demonstrates the convergence of the adaptive grid solution to an
unstable finger with steep transitions. Here, the number of grid points is increased
from 21×41 up to 81×241. Note the extra smoothing of the grid distribution. This
is due to the time-dependent function γ (t) in the monitor function, which becomes
more visible for denser grids. Also, it must be mentioned that the non-uniform grid
has an important effect of the accuracy of the fingering structure. This phenomenon
has also been observed and described in reference [13].

In Fig. 11, the values τ = 10, α = 3 and β = 0.2 are chosen. The smaller value
of the parameter β has clearly the effect of producing a more profound fingering
structure. Figure 12 shows close-ups of the adaptive grids for these numerical
solutions in Fig. 11.



Adaptive Grids for Non-monotone Waves and Instabilities 193

Fig. 8 The water saturation profile and corresponding grid at different times for τ = 10 and
β = 0.5 on a 41 × 121-grid



194 P. A. Zegeling

100 100

100 100

Fig. 9 Close-ups of the adaptive grid near the steep parts of the fingering solution in Fig. 8 for
τ = 10 and β = 0.5



Adaptive Grids for Non-monotone Waves and Instabilities 195

0
0 10 0 10 0 10 0 10

0 10 0 10 0 10 0 10

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 10 Adaptive grids and solutions for the case τ = 10 and β = 0.5 for an increasing number
of spatial grid points: 21 × 61 (top left), 41 × 121 (top right), 61 × 181 (bottom left) and 81 × 241
(bottom right). Note the additional smoothing effect for denser grids of the function γ (t) in the
monitor function. See also [13] for similar conclusions on the effects of the grid distribution on the
fingering structure



196 P. A. Zegeling

Fig. 11 The water saturation profile and corresponding grid at different times for τ = 10 and
β = 0.2. The instability of the solution, creating a fingering structure, is now more profound than
in the previous case. This is due to the smaller value of the parameter β



Adaptive Grids for Non-monotone Waves and Instabilities 197

010 010

010 010

Fig. 12 Close-ups of the adaptive grid near the steep parts of the fingering solution in Fig. 11 for
τ = 10 and β = 0.2

References

1. Alessandrini, G., Nesi, V.: Univalent σ -harmonic mappings. Arch. Rational Mech. Anal. 158,
155–171 (2001)

2. Budd, C.J., Huang W., Russell R.D.: Adaptivity with moving grids. Acta Numer. 18, 111–241
(2009)

3. Clement, Ph., Hagmeijer, R., Sweers, G.: On the invertibility of mappings arising in 2D grid
generation problems. Numer. Math. 73(1), 37–52 (1996)

4. Cuesta, C., van Duijn, C.J., Hulshof, J.: Infiltration in porous media with dynamic capillary
pressure: travelling waves. Eur. J. Appl. Math 11, 397 (2000)

5. DiCarlo, D.: Experimental measurements of saturation overshoot on infiltration. Water Resour.
Res. 40, W04215 (2004)

6. Egorov, A.G., Dautov, R.Z., Nieber, J.L., Sheshukov, A.Y.: Stability analysis of gravity-driven
infiltrating flow. Water Resour. Res. 39, 1266 (2003)

7. Hassanizadeh, S.M., Gray, W.G.: Thermodynamic basis of capillary pressure on porous media.
Water Resour. Res. 29, 3389–3405 (1993)

8. Hilfer, R., Doster, F., Zegeling, P.A. Nonmonotone saturation profiles for hydrostatic equilib-
rium in homogeneous porous media. Vadose Zone J. 11(3), 201 (2012)

9. Hu, G., Zegeling, P.A.: Simulating finger phenomena in porous media with a moving finite
element method. J. Comput. Phys. 230(8), 3249–3263 (2011)

10. Huang, W., Russell, R.D.: Analysis of moving mesh partial differential equations with spatial
smoothing. SIAM J. Numer. Anal. 34, 1106–1126 (1997)



198 P. A. Zegeling

11. Huang, W., Russell, R.D.: Adaptive Moving Mesh Methods. Springer, New York (2011)
12. Hundsdorfer, W., Verwer, J.: Numerical Solution of Time-Dependent Advection-Diffusion-

Reaction Equations. Springer, Berlin (1993)
13. Kampitsis, A.E., Adam, A., Salinas, P., Pain, C.C., Muggeridge, A.H., Jackson, M.D.:

Dynamic adaptive mesh optimisation for immiscible viscous fingering. Comput. Geosci. 24,
1221–1237 (2020)

14. Nicholl, M.J., Glass, R.J.: Infiltration into an analog fracture: experimental observations of
gravity-driven fingering. Vadose Zone J. 4, 1123–1151 (2005)

15. Nieber, J.L., Dautov, R.Z., Egorov, A.G., Sheshukov, A.Y.: Dynamic capillary pressure
mechanism for instability in gravity-driven flows; review and extension to very dry conditions.
Transp. Porous Media 58, 147–172 (2005)

16. Petzold, A.G.: A description of DASSL: a differential/algebraic system solver. In: Stepleman,
R.S., et al. (eds.) IMACS Trans. Sci. Comput., pp. 65–68. North-Holland, Amsterdam (1983)

17. Ruuth, S.J.: Implicit-explicit methods for reaction-diffusion problems in pattern formation. J.
Math. Biol. 34, 148–176 (1995)

18. Tang, T., Tang, H.: Adaptive mesh methods for one- and two-dimensional hyperbolic
conservation laws. SIAM J. Numer. Anal. 41(2), 487–515 (2003)

19. van Dam, A., Zegeling, P.A.: A robust moving mesh finite volume method applied to 1d
hyperbolic conservation laws from magnetohydrodynamics. J. Comput. Phys. 216, 526–546
(2006)

20. van Dam, A., Zegeling, P.A.: Balanced monitoring of flow phenomena in moving mesh
methods. Commun. Comput. Phys. 7, 138–170 (2010)

21. van Duijn, C.J., Hassanizadeh, S.M., Pop, I.S., Zegeling, P.A.: Non-equilibrium models for
two-phase flow in porous media: the occurrence of saturation overshoot. In: Proc. of the 5th
Int. Conf. on Appl. of Porous Media, Cluj-Napoca (2013)

22. van Duijn, C.J., Fan, Y., Peletier, L.A., Pop, I.S.: Travelling wave solutions for a degenerate
pseudo-parabolic equation modelling two-phase flow in porous media. Nonlinear Anal. Real
World Appl. 14, 1361–1383 (2013)

23. Zegeling, P.A.: On resistive MHD models with adaptive moving meshes. J. Sci. Comput. 24(2),
263–284 (2005)

24. Zegeling, P.A.: Theory and application of adaptive moving grid methods. In: Adaptive
Computations: Theory and Algorithms, pp. 279–332. Science Press, Beijing (2007)

25. Zegeling, P.A., Lagzi, I., Izsak, F.: Transition of Liesegang precipitation systems: simulations
with an adaptive grid PDE method. Commun. Comput. Phys. 10(4), 867–881 (2011)



RBF-VerBSS Hybrid Method for Mesh
Deformation

Jihai Chang, Fei Yu, Jie Cao, and Zhenqun Guan

Abstract The mesh deformation method has been widely applied to numerical
simulation of time-variant problems. In the present study, we proposed a hybrid
mesh deformation method based on radial basis functions (RBF) method and
vertex-ball-spring-smoothing (VerBSS) method. Firstly, a coarse background mesh
which is consistent with the boundary of the computational mesh was generated
and deformed by RBF. The internal nodal displacements were duplicated to the
corresponding nodes of computational mesh. The perturbated nodes and the
boundary nodes were then utilized together to calculate the deformation of the
computational mesh by employing VerBSS. By such means, better convergence
performance was achieved. Results of numerical examples indicate that the
proposed method has higher efficiency and better robustness than conventional RBF
method or background mesh method for large scale problem.

1 Introduction

Mesh deformation is a widely used method to solve unsteady fluid problems with
moving boundary. Mesh deformation methods preserve the topology of the mesh,
and avoid rebuilding the flow field data frequently. These methods can be broadly
classified into two categories: physical analogy methods and interpolation analogy
methods [13].

Physical analogy methods include spring analogy and elastic solid analogy.
Batina et al. [1] proposed spring method first. In this method, each edge of the mesh
is replaced by a tension spring with the spring stiffness inversely proportional to the
edge length. Farhat et al. [5] and Bottasso et al. [2] improved the spring method by
introducing the torsional spring and ball-vertex spring, respectively. For the elastic
method [15], the whole computational domain is considered as an elastic solid and

J. Chang · F. Yu · J. Cao, · Z. Guan (�)
Dalian University of Technology, Dalian, China
e-mail: fei.yu@mail.dlut.edu.cn; caojie@mail.dlut.edu.cn; guanzhq@dlut.edu.cn

© Springer Nature Switzerland AG 2021
V. A. Garanzha et al. (eds.), Numerical Geometry, Grid Generation and Scientific
Computing, Lecture Notes in Computational Science and Engineering 143,
https://doi.org/10.1007/978-3-030-76798-3_12

199

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76798-3_12&domain=pdf
mailto:fei.yu@mail.dlut.edu.cn
mailto:caojie@mail.dlut.edu.cn
mailto:guanzhq@dlut.edu.cn
https://doi.org/10.1007/978-3-030-76798-3_12


200 J. Chang et al.

the mesh deformation is governed by the classical laws of elastic theory. The elastic
method improves the deformation capability comparing with the spring analogy but
also introduces considerable computational cost. The main draw-back of physical
analogy methods is that they preserve connectivity and large systems of equations,
implying a higher computational cost. Lin et al. [8] proposed the VerBSS method
by decomposing the linear equations into sub-spring systems. It can improve the
computational efficiency and the required memory is greatly reduced. This method
will be discussed in the following sections.

Compared with the physical method, the interpolation analogy methods do
not require connectivity information and can be applicable to arbitrary mesh
types. The displacements of the internal nodes of the mesh are regarded as the
interpolation problem of the boundary nodes. The interpolation methods include
RBF interpolation [4] and Delaunay graph interpolation [9] mainly.

The RBF can be used as an interpolation function to transfer the displacements
known at the boundaries of the mesh to the interior nodes. It produces high-quality
meshes with reasonable orthogonality preservation near deforming boundaries.
However, for large-scale problems, RBF method is also expensive since a system
of linear equations which dimension is equal to the number of the mesh boundary
points. Rendall et al. [11] proposed an efficient data reduction algorithm along
with interpolation. Sheng and Allen [14] investigated two greedy algorithms to
reduce the number of the control points. Selim et al. [12] introduced the concept of
solving the RBF system incrementally within the greedy algorithm. However, the
reduction of the control points caused that the boundary geometry precision declines
and interpolation error is brought in.

Delaunay graph interpolation is a very efficient method. The coarse Delaunay
graph is used as an intermediate map. Each interior node is assigned to the
Delaunay element which belongs to, and its interpolation based on surface or
volume ratios is utilized to map from the original position to its new position.
Nevertheless, intersections occur occasionally for complex geometry with large
relative movements.

The moving submesh algorithm (MSA) was proposed by Lefrancois et al. [7]
who uses better quality background mesh to control the deformation. More auxiliary
nodes are added to improve the quality of the background mesh by Zhou et al. [17].
Although these methods improve the deformation quality of the background mesh,
it is still difficult to avoid the problem of collapsed elements.

Simple physical methods or interpolation methods have their own advantages
and disadvantages, so some hybrid mesh deformation methods can achieve better
deformation combine the advantages of different methods [16]. Liu et al. [10]
proposed a hybrid method combining MSA with RBF, which makes a deformed
mesh more uniform, but the domain of each submesh is discontinuous and some
elements may collapse.

In recent years, the multigrid method has been widely concerned [3, 6]. This
method can reduce the iteration times effectively. Inspired by the multigrid method,
this paper proposes a hybrid deformation method combining the VerBSS method
and RBF. Firstly, the coarse mesh is deformed by RBF. The deformed nodal



RBF-VerBSS Hybrid Method for Mesh Deformation 201

displacements of the coarse mesh are duplicated to the approximate nodes of the
computational mesh. Then the VerBSS method is used to smooth the computational
mesh, so as to accelerate the convergence. On the one hand, this method uses the
idea of the multigrid method to improve the efficiency of VerBSS method; on the
other hand, it improves the robustness of the background mesh method.

The rest of the paper is organized as follows: Sect. 2 briefly recalls the
methodology of the RBF-based mesh deformation and the VerBSS method. And the
robustness of background mesh is also introduced. The hybrid RBF-VerBSS method
is presented in Sect. 3. Numerical examples are presented in Sect. 4 to demonstrate
the efficacy of the proposed methods. At last, the concluding remarks are drawn in
Sect. 5.

2 Related Work

2.1 RBF Interpolation Method

The RBF method interpolates the displacement of the surface mesh to all the
nodes of the flow mesh. The displacement of any of these interior nodes could
be calculated by:

s(r) =
Nb∑
i=1

ωiφ(‖r − ri‖), (1)

where ri is the coordinate of the ith boundary node, Nb is the number of the
boundary nodes, ωi is the weight coefficient of the ith boundary node. φ is the RBF
as function of the Euclidean distance ‖r‖, We choose the Wendland’s C2 function,
which is suitable for the mesh deformation interpolation:

φ (η) =
{
(1 − η)4(4η + 1), when η ≤ 1,

0, when η > 1,
(2)

where η = ‖r − ri‖/R, and R is the support radius. The displacements of the
boundary nodes are predefined as known values:

s(rb) = �rb, (3)

where rb is the coordinate of the j -th boundary node and �rb is the prescribed
displacement of it. The function coefficients could be calculated as follows:

ω = �−1
b,b�rb, (4)



202 J. Chang et al.

where �b,b is an Nb ×Nb matrix which carries the RBF evaluations:

�b,b(i, j) = φ
(∥∥rbi − rbj

∥∥). (5)

2.2 VerBSS Method

The edges of the mesh are considered as spring with stiffness inversely proportional
to its length. The force on vertex i exerted by vertex j can be written as

fEdge
ij = kij (uj − ui ) · nijnij , (6)

where kij is the stiffness of edge eij , nij is the unit vector from i to j . The
displacement of vertices i and j are denoted by ui and uj , respectively. To prevent
elements inversion, additional perpendicular linear springs are added in the ball-
vertex method. Perpendicular spring Sip is constructed with the stiffness inversely
proportional to its length. Similarly to the previous spring equilibrium equations,
the resulting force of spring Sip can be expressed as

fball-vertex
ip = kip(up − ui ) · nipnip, (7)

where kip is the stiffness of the new spring, nip is the unit vector from i to p. The
displacement of vertex i and p are denoted respectively by ui and up. Its edge
springs and the ball-vertex spring can form a new spring system as:

n∑
j=1

fEdge
ij +

m∑
p=1

fball-vertex
ip = 0. (8)

Following the vertex-ball spring system, a sub-system for a vertex i is formed
by edge springs together with the ball-vertex springs as shown in Fig. 1. The global
system of equations Ku = b is reduced to a series of d × d sub-systems, where d
is the spatial dimension. The right-hand vector bi is written as:

bi =
n∑

j=1

kijuj · nijnij +
m∑

p=1

kipup · nipnip = Biu
′
i , (9)

where u
′
i is the nodal displacement vector of the ball, n and m are the number of

nodes and elements of the ball. Bi is a matrix of constant coefficients. Introduction
of a relaxation factor ξ can further speed up convergence as follow:

unew
i = ξunew

i + (1 − ξ)uold
i , (10)



RBF-VerBSS Hybrid Method for Mesh Deformation 203

Fig. 1 A sub-system of the
VerBSS algorithm

Numerical example show that ξ can be set between 1.5 and 1.7 (over-relaxation).
The termination criterion is:

d ·N∑
i=1

∣∣ui − uprev
i

∣∣/(d ·N) < εq, (11)

where uprev
i is the result from the previous iteration step, N is the number of interior

nodes. For a given tolerance εq ∈ R
+, when the mean value of the difference

between two adjacent iteration results falls below a prescribed value εq , the mesh
smoothing will terminate.

The procedure of the VerBSS is given as follows [8]:

Step 1: Import the initial mesh and store the topological data of all nodes;
Step 2: Construct the vertex-ball spring system of interior node i so as to form

stiffness matrix K and coefficient matrix B, and decompose matrix K

into L and D using LDLT solver, and store the matrix LD and B for
subsequent steps;

Step 3: Set displacements of boundary nodes to the specified values;
Step 4: Solve the equations by LDLT matrix decomposition and update the

displacements;
Step 5: Repeat Step 4 until the result of displacements meets the computational

accuracy requirements.

2.3 Robustness of the Delaunay Graph and the MSA Method

The fundamental principle of Delaunay graph interpolation method is to divide and
interpolate. A Delaunay graph is generated by using all or parts of the boundary
nodes as the background mesh for the original mesh. Every node in the whole



204 J. Chang et al.

Fig. 2 The barycentric coordinates of node P

Fig. 3 Deformation of the background mesh. Left original triangle. Right: collapsed triangle

computational mesh can be split into the Delaunay triangles (2D) or tetrahedrons
(3D). The new position can be achieved by the surface or volume ratios. For 2D
case, the node P is inside the triangle 'ABC as shown in Fig. 2, and its barycentric
coordinates e1, e2, e3 with respect to A, B, C are calculated by:

ei = Si

S
. (12)

However, for large deformation, especially for deformation with large rotation,
the mesh quality could degrade suddenly since the lack of controlling mechanisms.
The quality of deformed mesh depend on the quality of Delaunay mesh.

The MSA method can be considered as an extension of the Delaunay graph
interpolation method. The main difference between the two methods is that in the
MSA the background mesh is not a Delaunay graph anymore and have more interior
nodes.

In the MSA, the submesh can only control its interior nodes. If the three nodes
of a triangle are in different submesh as shown in Fig. 3, then the background mesh



RBF-VerBSS Hybrid Method for Mesh Deformation 205

elements do not collapsed after deformation, but the computational mesh elements
collapsed.

3 RBF-VerBSS Hybrid Mesh Deformation Method

In this paper, in order to overcome the weakness of background mesh and keep the
benefits of RBF interpolation and VerBSS, a hybrid method of RBF and VerBSS
mesh deformation is proposed.

Firstly, a coarsen background mesh whose boundary is consistent with the
computational mesh is given as shown as Fig. 4a. The nodes of the computational
mesh are partitioned according to their coordinates. The triangle element in which
the node of the coarse background mesh is located, can be found quickly by the
partition blocks. The whole computational domain is considered as an elastic solid
for the VerBSS method. Therefore, the displacements of node C nearest to node P
could supposed to be equal to the node P approximately as shown as Fig. 4b.

uc = up (13)

Then, the background mesh is deformed by RBF interpolation and the specific
process is the steps in Sect. 2.1. The displacements of deformed nodes of the
background mesh are duplicated to their corresponding computational nodes.

Finally, according to the VerBSS method in Sect. 2.2, all nodes of the computa-
tional mesh are smoothed. This method includes the following steps:

Step 1: Generate the background mesh;
Step 2: Locate the background mesh nodes on the computational mesh element

and find the nearest element;

Fig. 4 RBF-VerBSS hybrid method. (a) Locating the nodes. (b) Enlarged view of a part of mesh



206 J. Chang et al.

Step 3: Deform the background mesh by RBF and update the coordinates of the
approximate node of the computational mesh;

Step 4: Take the pre-deformation displacements of the approximate nodes and the
boundary nodes as boundary conditions to solve the computational mesh
by VerBSS;

Step 5: Update the coordinates of computational mesh nodes and repeat Step 3 to
Step 4 until the end of computation.

4 Results and Discussions

4.1 NACA 0012 Airfoil Rotation

The NACA 0012 airfoil rotated in 2D flow field. The computational mesh and the
background mesh are shown in Fig. 5. The computational mesh has 66,527 nodes
and 131,786 elements. The background mesh has 1659 nodes and 3175 elements.
The performances is measured on a single core Intel i7 3.4 GHz processor.

As can be seen from the figures, the RBF-VerBSS method have more shape-
shifting. The maximum number of deformation steps of the two methods are 62 and
92, respectively. Figure 6 illustrates the minimum angle of the mesh changed with
time steps in the deformation process of the two methods when the mesh deformed
to the 60th step, the quality of the mesh using the VerBSS and the RBF-VerBSS
is shown in Table 1. The RBF-VerBSS method can keep a better quality than the
VerBSS method.

Fig. 5 Airfoil rotation: computational and background meshes. (a) Computational mesh. (b)
Background mesh



RBF-VerBSS Hybrid Method for Mesh Deformation 207

Fig. 6 Airfoil rotation: the minimum interior angle by VerBSS and RBF-VerBSS

Table 1 Airfoil rotation:
comparison of mesh quality
for the rotation of 1.2 rad

Quality VerBSS RBF-VerBSS

0.00–0.02 13 0

0.02–0.10 27 1

0.10–0.40 235 547

0.40–0.70 646 12,578

0.70–1.00 130,865 118,660

The wing rotates clockwise with a rotation step of 0.02 rad by using the VerBSS
and the RBF-VerBSS methods. The number of iterations of the VerBSS and RBF-
VerBSS methods is 558 and 121, respectively. The meshes are shown in Fig. 7
when the airfoil rotates to the 62nd step. CPU time for a deformation step for the
two methods is shown in Table 2. As expected, preprocessing of the background
mesh optimizes the condition number of the VerBSS method’s matrix and clearly
reduces the corresponding computational time for the deformation (Table 2).

4.2 3D Moving Aircraft

For a fluid mesh with a large number of elements, Fig. 8 illustrates two cross-
sectional views of an aircraft in a 3D fluid mesh. One is the computational mesh
and the other is the background mesh. The number of the nodes is 594,980 and the



208 J. Chang et al.

Fig. 7 Airfoil rotation: deformed meshes after the 62nd step. (a) VerBSS. (b) RBF-VerBSS

Table 2 Airfoil rotation: CPU time (s) comparison for a single mesh update step

Pre-processing of Construction of

Method the background mesh the VerBSS matrix Solve Total

VerBSS 0.34 5.32 5.66

RBF-VerBSS 0.04 0.33 1.26 1.63

number of the elements is 3,416,966 in the computational mesh. The number of the
nodes is 25,885 and the number of the elements is 143,919 in the background mesh.

The fluid mesh is deformed by RerBSS, RBF-VerBSS, and RBFs-MSA, re-
spectively. CPU time for a deformation step for the three methods is shown in
Table 3. The number of iterations of the VerBSS method is 379, while the number
of iterations of the RBF-VerBSS method is 76. The preprocessing time of RBF-
VerBSS is 913 s while that of RBFs-MSA is 9543 s, and the computational cost is
too expensive.

As shown in Fig. 9, the maximum number of deformation steps of the three
methods are 43, 84, and 73, respectively. Figure 10 illustrates the minimum angle of
the mesh changed with time steps in the deformation process of the three methods.
When the mesh deformed to the 43th step, the quality is shown in Table 4. The
RBF-VerBSS method can keep a better quality than the VerBSS method. Although
the quality of the RBFs-MSA method is better than that of the other two, it would
suddenly encounter the collapse of an element.



RBF-VerBSS Hybrid Method for Mesh Deformation 209

Fig. 8 3D aircraft: cross-sectional views of the computational and background meshes. (a)
Computational mesh. (b) Background mesh

Table 3 3D aircraft: CPU time(s) comparison between different methods in one step

Pre-processing of Construction of

Method the background mesh the VerBSS matrix Solve Total

VerBSS 56.64 166.94 223.58

RBF-VerBSS 10.29 53.41 32.13 95.99

RBFs-MSA 10.19 1.94 12.28



210 J. Chang et al.

Fig. 9 3D aircraft: deformed
meshes using different
methods. (a) VerBSS (43
steps). (b) RBF-VerBSS (84
steps). (c) RBFs-MSA (73
steps)



RBF-VerBSS Hybrid Method for Mesh Deformation 211

Fig. 10 3D aircraft: the minimum interior angle for different methods

Table 4 3D aircraft: quality
comparison between different
methods after deformation to
the 43th step

Quality VerBSS RBFs-MSA RBF-VerBSS

0.000–0.001 6 0 0

0.001–0.050 135 7 1

0.050–0.100 248 40 39

0.100–0.400 17,330 1926 39,937

0.400–0.700 319,510 364,133 682,063

0.700–1.000 3,079,737 3,040,860 2,694,926

5 Conclusions

The proposed method is based on a background mesh, which is a significant
improvement to the original VerBSS method. The pre-deformation of the back-
ground mesh improves the initial motion condition of the computational mesh and
accelerates the convergence speed. Compared with the RBFs-MSA method, this
method retains the connectivity of the mesh. Therefore, it is more robust than the
MSA method using ratio of surface or volume to interpolate. The background mesh
was calculated by the RBF method because of its less number of elements. In a
word, the method in this paper is not limited to interpolation or physical methods,
but to exploit the advantages of various methods as much as possible. The various



212 J. Chang et al.

methods can be combined to achieve a better balance between the efficiency and the
robustness as much as possible.

References

1. Batina, J.T.: Unsteady Euler airfoil solutions using unstructured dynamic meshes. AIAA J.
28(8), 1381–1388 (1990)

2. Bottasso, C.L., Detomi, D., Serra, R.: The ball-vertex method: a new simple spring analogy
method for unstructured dynamic meshes. Comput. Methods Appl. Mech. Eng. 194(39–41),
4244–4264 (2005)

3. Chen, J., Bao, H., Wang, T., Desbrun, M., Huang, J.: Numerical coarsening using discontinu-
ous shape functions. ACM Trans. Graph. 37(4CD), 1–12 (2018)

4. De Boer, A., Van der Schoot, M., Bijl, H.: Mesh deformation based on radial basis function
interpolation. Comput. Struct. 85(11–14), 784–795 (2007)

5. Farhat, C., Degand, C., Koobus, B., Lesoinne, M.: Torsional springs for two-dimensional
dynamic unstructured fluid meshes. Comput. Methods Appl. Mech. Eng. 163(1–4), 231–245
(1998)

6. Krishnan, D., Fattal, R., Szeliski, R.: Efficient preconditioning of Laplacian matrices for
computer graphics. ACM Trans. Graph. 32(4), 142:1–142:15 (2013)

7. Lefrançois, E.: A simple mesh deformation technique for fluid–structure interaction based on
a submesh approach. Int. J. Numer. Methods Eng. 75(9), 1085–1101 (2008)

8. Lin, T., Guan, Z., Chang, J., Lo, S.: Vertex-ball spring smoothing: an efficient method for
unstructured dynamic hybrid meshes. Comput. Struct. 136, 24–33 (2014)

9. Liu, X., Qin, N., Xia, H.: Fast dynamic grid deformation based on Delaunay graph mapping.
J. Comput. Phys. 211(2), 405–423 (2006)

10. Liu, Y., Guo, Z., Liu, J.: RBFs-MSA hybrid method for mesh deformation. Chinese J.
Aeronaut. 25(4), 500–507 (2012)

11. Rendall, T.C., Allen, C.B.: Efficient mesh motion using radial basis functions with data
reduction algorithms. J. Comput. Phys. 228(17), 6231–6249 (2009)

12. Selim, M.M., Koomullil, R.: Incremental matrix inversion approach for radial basis function
mesh deformation. In: Proceedings of the Fifteenth Annual Early Career Technical Confer-
ence, The University of Alabama at Birmingham (2015)

13. Selim, M., Koomullil, R., et al.: Mesh deformation approaches–a survey. J. Phys. Math. 7(2),
181 (2016)

14. Sheng, C., Allen, C.B.: Efficient mesh deformation using radial basis functions on unstructured
meshes. AIAA J. 51(3), 707–720 (2013)

15. Stein, K., Tezduyar, T., Benney, R.: Mesh moving techniques for fluid-structure interactions
with large displacements. J. Appl. Mech. 70(1), 58–63 (2003)

16. Wang, Y., Qin, N., Zhao, N.: Delaunay graph and radial basis function for fast quality mesh
deformation. J. Comput. Phys. 294, 149–172 (2015)

17. Zhou, X., Li, S., Chen, B.: Spring-interpolation approach for generating unstructured dynamic
meshes. Acta Aeronaut. Astronaut. Sin. 31(7), 1389–1395 (2010)



A Uniform Convergence Analysis
for a Bakhvalov-Type Mesh with
an Explicitly Defined Transition Point

Thái Anh Nhan

Abstract For singularly perturbed convection-diffusion problems, the truncation
error and barrier-function technique for proving parameter-uniform convergence is
well-known for finite-difference methods on Shishkin-type meshes (Roos and Linß
in Computing, 63 (1999), 27–45). In this paper, we show that it is also possible
to generalize this technique to a modification of the Bakhvalov mesh, such that the
transition point between the fine and crude parts of the mesh only depends on the
perturbation parameter and is defined explicitly. We provide a complete analysis for
1D problems for the simplicity of the present paper, but the analysis can be easily
extended to 2D problems. With numerical results for 2D problems we show that the
finite-difference discretization on the Bakhvalov-type mesh performs better than the
Bakhvalov-Shishkin mesh.

1 Introduction

We consider numerical methods for solving the linear singularly perturbed
convection-diffusion problem,

Lu := − εu′′ − b(x)u′ + c(x)u = f (x), x ∈ (0, 1), u(0) = u(1) = 0, (1)

where ε is a small positive perturbation parameter, 0 < ε ( 1. We assume that the
functions b, c, and f are sufficiently smooth, and that b and c satisfy

b(x) ≥ β > 0, c(x) ≥ 0 for x ∈ I := [0, 1].

Then, the boundary value problem (1) has a unique solution, u ∈ C2(I), which,
generally speaking, exhibits an exponential layer at x = 0.

T. A. Nhan (�)
Department of Mathematics and Science, Holy Names University, Oakland, CA, USA
e-mail: nhan@hnu.edu

© Springer Nature Switzerland AG 2021
V. A. Garanzha et al. (eds.), Numerical Geometry, Grid Generation and Scientific
Computing, Lecture Notes in Computational Science and Engineering 143,
https://doi.org/10.1007/978-3-030-76798-3_13

213

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76798-3_13&domain=pdf
mailto:nhan@hnu.edu
https://doi.org/10.1007/978-3-030-76798-3_13


214 T. A. Nhan

It is well known that in order to achieve ε-uniform convergence with the standard
upwind discretization of the problem (1), one should use layer-adapted meshes.
Fifty years ago, in 1969, Bakhvalov [4] was the first researcher to introduce the idea
of layer-adapted meshes. We refer the reader to a recent comprehensive survey [19],
dedicated the 50th anniversary of the original Bakhvalov mesh, in which Roos
reviews the important concepts and the development of layer-adapted meshes over
last five decades. The monographs [7, 21] are recommended to those who want to
explore these meshes and the field of numerical methods for singularly perturbed
problems in general.

There are several modifications of the original Bakhvalov mesh, see [5, 7, 19,
20, 25] for instance. When these Bakhvalov-type meshes are used with the upwind
finite-difference scheme for the problem (1), one can prove an optimal convergence
result,

‖u− WN‖ ≤ CN−1, (2)

where WN is the upwinding approximation obtained using a mesh with N subinter-
vals, C is a generic positive constant independent of both ε and N , and ‖·‖ denotes
the discrete maximum norm. On the other hand, using a simpler piecewise uniform
Shishkin mesh [23], we can prove

‖u−WN‖ ≤ CN−1 lnN. (3)

Among special techniques to prove ε-uniform convergence results like (3) for
finite-difference methods on the Shishkin mesh, the barrier-function technique is
the most frequently used one. In 1997, Stynes and Roos [24] used this method to
prove an almost-second-order convergence for a hybrid central-midpoint scheme.
Two years later, the concept of Shishkin-type meshes was introduced in [20] and
the barrier-function analysis was extended to these meshes. However, the extension
of this technique to Bakhvalov-type meshes has been elusive until recently. This
made Linß state the following in his 2003 survey [6] of layer-adapted meshes:

We are not aware of any results for Bakhvalov-type meshes that make use of this truncation
error and barrier function technique.

At that time, it was also known that the estimate (2) for Bakhvalov-type meshes
could be proved by another method, the hybrid-stability approach [1, 2, 8], which
made this theoretical gap even more puzzling (another way to prove the same result
is to use the relatively new preconditioning method [12, 13, 17, 26]).

However, we have recently found in the research literature the first uniform
convergence proof by Liseikin, appeared in [9, Section 7.2], that makes use
of the barrier function for the semilinear problems of type (1) in the context
of layer-resolving grids for which the result can be deduced to the Bakhvalov
mesh. A general theory of grid generation and its analysis can be found in
the monograph [10]; whereas a comprehensive characteristic comparison between



Analysis for a Bakhvalov-Type mesh 215

various well-known and novel layer-resolving grids is discussed by Liseikin and
Karasuljić in [11].

The original Bakhvalov mesh and its modifications by Vulanović [25] are
generated by C1[0, 1]-functions which redistribute uniformly spaced points so that
a mesh dense in the boundary layer is created. Due to the smooth mesh-generating
function, the mesh gradually transitions from a fine part in the layer to the coarse part
outside the layer. The corresponding transition point is defined implicitly, although
in the case of the simplest Vulanović’s mesh-generating function, the transition point
can be found by solving a quadratic equation. As opposed to this, the Bakhvalov-
type meshes of [5, 7, 20] have a pre-defined transition point, which is similar, or
even identical, to the transition point of the Shishkin mesh. The mesh-step size of
such meshes changes abruptly around the transition point, but depending on how the
fine part of the mesh is defined, the optimal ε-uniform accuracy (2) of the upwind
scheme may be preserved.

The purpose of this paper is to show that the truncation error and barrier-function
technique used for Shishkin-type meshes from [20] can be generalized to the
Bakhvalov-type meshes with an explicitly defined transition point. We demonstrate
this by considering the mesh from [5], which was also used in [3, 18]. Because of
some characteristics, this mesh is closer to the original Bakhvalov mesh than the
Bakvalov-Shishkin mesh of [7, 20]. It is worth noting that the proof technique and
the barrier function we use here defer from that of Liseikin (cf. [9, Section 7.2]). The
key ingredient of our approach is the novel analysis, recently presented in [15, 16],
which is specially designed for the Bakhvalov meshes with smooth mesh-generating
functions.

Furthermore, the most significant advantage of our new barrier-function ap-
proach is that its analysis can be extended to 2D problems:

−ε�u− b1(x, y)ux − b2(x, y)uy + c(x, y)u = f (x, y) on � = (0, 1)2,

u = 0 on � = ∂�.

(4)

More importantly, to our best knowledge, this is the only technique which can be
used to analyze a finite-difference scheme on a Bakhvalov-type mesh for a higher-
dimensional problems like (4) (see [16]). For the simplicity and the purpose of this
proceeding, we present only a detailed analysis for 1D problems because this can be
easily extended to 2D by following the approach proposed recently in [16]. We then
report numerical performance for a 2D test problem for which the computed errors
by the upwind discretization on the Bakhvalov-type mesh is convergent uniformly
for all values of ε.

In the next section, we list some preliminary facts about the solution u of the
problem (1) and introduce the upwind scheme for discretizing the problem. The
discretization mesh is described in Sect. 3. Then, in Sect. 4, we highlight the
distinguishable improvements of our new approach by comparing our assumptions
to those used in the existing barrier-function proof by Roos and Linß [20] for
Shishkin-type meshes. In Sect. 5, we provide the truncation error analysis and



216 T. A. Nhan

the barrier-function choice to obtain the main result (2) for 1D problems. Finally,
numerical results for a 2D test problem are presented in Sect. 6 together with a brief
concluding remark in the last section.

2 Preliminaries

The following decomposition of u, [7, Theorem 3.48], is often used in the error
analysis of numerical methods for (1):

u(x) = s(x)+ y(x),

|s(k)(x)| ≤ C
(

1 + ε2−k), |y(k)(x)| ≤ Cε−ke−βx/ε, (5)

x ∈ I, k = 0, 1, 2, 3.

Moreover, the layer component, y, satisfies a homogeneous differential equation,

Ly(x) = 0, x ∈ (0, 1). (6)

Let IN denote an arbitrary mesh with mesh points xi , i = 0, 1, . . . , N , such that
0 = x0 < x1 < . . . < xN = 1. Let hi = xi − xi−1, i = 1, 2, . . . , N , be the
mesh-step sizes and let h̄i = (hi + hi+1)/2, i = 1, 2, . . . , N − 1. Mesh functions
on IN are denoted by WN = (

WN
i

)
, UN = (

UN
i

)
, etc. If g is a function defined on

I , we write gi instead of g(xi) and gN for the corresponding mesh function.
The upwind finite-difference scheme is used to discretize the problem (1) on IN ,

UN
0 = 0,

LNUN
i := −εD′′UN

i − biD
+UN

i + ciU
N
i = fi , i = 1, 2, . . . , N − 1, (7)

UN
N = 0,

where

D′′WN
i = 1

h̄i

(
D+WN

i −D−WN
i

)
,

and

D+WN
i = WN

i+1 −WN
i

hi+1
, D−WN

i = WN
i −WN

i−1

hi
.



Analysis for a Bakhvalov-Type mesh 217

It is easy to see that the operator LN satisfies the discrete maximum principle.
Therefore, the discrete problem (7) has a unique solution UN .

Let

τi [g] = LNgi − (Lg)i , i = 1, 2, . . . , N − 1,

for any C2(I)-function g. In particular, τi[u] is the truncation error of the finite-
difference operator LN and

τi [u] = LNui − LNWN
i = LN

(
u−WN

)
i
.

By Taylor’s expansion we get that

|τi [u]| ≤ Chi+1
(
ε
∥∥u′′′∥∥

i
+ ∥∥u′′∥∥

i

)
, (8)

where ‖g‖i := maxxi−1≤x≤xi+1 |g(x)| for any g ∈ C(I). Recall from the
introduction that C is a positive generic constant independent of ε and N . Some
specific constants of this kind will be subscripted below.

3 A Bakhvalov-Type Mesh with an Explicitly Defined
Transition Point

The specific Bakhvalov-type mesh we are interested in is defined by

xi =
{
aεφ(ti), i = 0, 1, . . . , J,

σ + 2(1 − σ)(ti − 1/2), i = J + 1, J + 2, . . . , N,
(9)

with a positive constant a, φ(t) = φB(t) := − ln [1 − 2(1 − ε)t], ti = i/N ,
J = N/2, and

σ = σB := aε ln(1/ε) = xJ , (10)

cf. [3, 5, 18]. This mesh shares the following characteristics with the original
Bakhvalov mesh: a logarithmic function to generate the points in the layer, and
a transition point (defined in (10)) of the order O(−ε ln ε). Furthermore, the last
mesh step, hJ , in the layer region grows logarithmically as ε → 0, and not like
O(ε), which is the case with the Bakhvalov-Shishkin mesh (or other Shishkin-type
meshes in [7, 20]). The Bakhvalov-Shishkin mesh is like in (9), where

φ(t) = φBS(t) := − ln [1 − 2(1 − 1/N)t] and σ = σS := aε lnN = xJ ,

σS being the standard Shishkin transition point.



218 T. A. Nhan

The mesh sizes in the layer region of the mesh (9)–(10) are estimated in the
following lemma. This is what makes this Bakhvalov-type mesh different from
Shishkin-type meshes.

Lemma 1 The mesh widths in the layer regions of the Bakhvalov-type mesh defined
by (9) and (10) satisfy

hi−1 ≤ hi ≤ CN−1, i = 2, 3, . . . , J, (11)

and in particular

hi ≤ aε, i = 1, 2, . . . , J − 1. (12)

Furthermore,

e−βxJ−1/ε =
(
ε + 2(1 − ε)N−1

)aβ ≤
(
ε + 2N−1

)aβ
(13)

and

e−βxJ /ε = (ε)aβ. (14)

Proof By the definition of φB(t), we have φ′
B(t) = 2(1 − ε)

1 − 2(1 − ε)t
, thus,

φB(t) is monotonically increasing for t ∈ [0, 1/2]. Therefore, hi−1 ≤ hi ,
i = 2, 3, . . . , J − 1, and

hJ = aε

∫ tJ

tJ−1

φ′(s) ds ≤ aε

N
φ′(tJ ) = aε

N
× 2(1 − ε)

1 − 2(1 − ε)tJ
≤ aε

N
× 2

ε
= 2aN−1,

which gives (11).
For the estimate in (12), we have

hi = aε

∫ ti

ti−1

φ′(s) ds ≤ aε

N
max

t∈[ti−1,ti ]
φ′(t) = aε

N
× 2(1 − ε)

1 − 2(1 − ε)ti

≤ aε

N
× 2

1/(1 − ε)− 2tJ−1/(1 − ε)
≤ aε

N
× N = aε.

It is an easy calculation to get the inequalities (13) and (14). ��



Analysis for a Bakhvalov-Type mesh 219

4 The Barrier-Function Analysis of Roos and Linß
for Shishkin-Type Meshes

Here, we only list the assumptions used in [20] to prove ε-uniform convergence on
Shishkin-type meshes. The proof is based on the barrier-function technique. In [20],
Shishkin-type meshes are defined as generated in the layer by a function φ which
satisfies the following conditions:

φ′ > 0, maxφ′ ≤ CN (15)

and

∫ 1/2

0

[
φ′(s)

]2
ds ≤ CN. (16)

The transition point of Shishkin-type meshes is σS . An additional assumption is that

ε ≤ CN−1, (17)

which, together with (15), is crucial for obtaining

hi ≤ aε[φ(ti )− φ(ti−1)] ≤ aεN−1 maxφ′ ≤ Cε ≤ CN−1, i = 1, 2, . . . , J.

The property

hi ≤ Cε, i = 1, 2, . . . , J, (18)

is also important for Shishkin-type meshes and is used in later stages of the error
analysis in [20].

Strictly speaking, the Shishkin-type meshes do not provide ε-uniform conver-
gence because (17) is assumed. More precisely, in the case of the Bakhvalov-
Shishkin mesh, for instance, one can only prove that

‖u− uN‖ ≤ C
(
ε +N−1

)
, (19)

cf. [7]. As opposed to this, all mesh steps in the layer region of the Bakhvalov-type
mesh defined in Sect. 3 are of order O(N−1), without the assumption (17), as shown
in (11). Therefore, the mesh with a Bakhvalov-type transition point is a theoretically
favored choice.

However, the Bakhvalov-type mesh in Sect. 3 does not fulfill (16) and (18). This
is because

∫ 1/2

0

[
φ′
B(s) ds

]2 = 2

ε
− 4 + ε = O(ε−1), and hJ = aε ln

(
1 + 2

1 − ε

εN

)
.



220 T. A. Nhan

As a result, a new barrier function approach is needed for the Bakhvalov-type mesh.
We present this in the next sections.

5 The Error Analysis

We first estimate the truncation error τi[u] for i = 1, 2, . . . , N − 1. This is done
in Lemma 2. Then, the barrier function is introduced in Lemma 3 and the discrete
maximum principle is applied on the entire interval [0, 1].

Let

ȳNi :=
i∏

j=1

(
1 + βhj

2ε

)−1

.

It holds that

ȳNi ≥
i∏

j=1

e−βhj /(2ε) = e−βxi/(2ε), i = 1, 2, . . . , N.

Lemma 2 Let aβ ≥ 2. The truncation error of the upwind discretization of
the problem (1) on the Bakhvalov-type mesh defined in (9) and (10) satisfies the
following.

• For i ≥ J ,

|τi[u]| ≤ CN−1. (20)

• For i ≤ J − 2,

|τi[u]| ≤ C
(
N−1 + ε−1ȳNi N

−1
)
. (21)

• For i = J − 1,

|τi[u]| ≤
⎧
⎨
⎩
C
(
N−1 + ε−1ȳNi N

−1
)
, when hi+1 ≤ ε,

C
(
N−1 + h−1

i+1ȳ
N
i N

−1
)
, when hi+1 > ε.

(22)

Proof We only provide the proof for the singular component y of u, since |τi[s]| is
easy to estimate. To prove (20) for i ≥ J + 1, we apply (8) to y. Then we have

|τi[y]| ≤ Chi+1
(
ε
∥∥y ′′′∥∥

i
+ ∥∥y ′′∥∥

i

) ≤ CN−1ε−2e−βxJ /ε ≤ CN−1,

where we have used (14) and aβ ≥ 2 in the last inequality.



Analysis for a Bakhvalov-Type mesh 221

To prove (20) for i = J , we consider two cases, ε ≤ N−1 and ε > N−1. For
i = J and ε ≤ N−1, we use the truncation error estimate in the form of
τi[y] = LNy, which is valid because of (6). Thus, we have

|τi[y]| ≤ Pi +Qi + Ri,

where

Pi = ε
∣∣D′′yi

∣∣, Qi = bi
∣∣D′yi

∣∣, and Ri = ci |yi |.

We can bound PJ from above as follows. Since h̄J ≥ hJ+1/2 ≥ CN−1, we get
h̄−1
J ≤ CN and, invoking (13),

PJ ≤ Ch̄−1
J e−βxJ−1/ε ≤ CN

(
ε + 2N−1

)aβ ≤ CN−1. (23)

Analogous arguments apply to QJ and RJ , implying that |τJ [y]| ≤ CN−1.
For i = J and ε > N−1, we get that hJ ≤ Cε because of (11). Therefore, we

continue as follows:

|τJ [y]| ≤ ChJ+1
(
ε
∥∥y ′′′∥∥

J
+ ∥∥y ′′∥∥

J

) ≤ CN−1ε−2e−βxJ−1/ε

≤ CN−1ε−2e−βxJ /ε ≤ CN−1,

where (14) is used in the last step.
We can combine the estimates in (21) and the first case of (22) as follows. For

i ≤ J − 1, we have hi ≤ aε because of (12) and hJ ≤ Cε by the first case of (22).
Hence,

|τi[y]| ≤ Chi+1
(
ε
∥∥y ′′′∥∥

i
+ ∥∥y ′′∥∥

i

) ≤ N−1εφ′(ti+1)
(
ε−2e−βxi−1/ε

)

≤ Cε−1N−1
[
φ′(ti+1)e−βxi+1/2ε

]
e−βxi/2ε

≤ Cε−1N−1[1 − 2(1 − ε)ti+1]aβ−1e−βxi/2ε

≤ Cε−1N−1e−βxi/2ε ≤ Cε−1N−1ȳNi .

Lastly, when i = J − 1 and hJ > ε, this means that max{ε, hJ } = hJ . Then,
ε ≤ CN−1, again because of (11), and we can modify the approach in (23) and
use (13) to get

PJ−1 ≤ Ch̄−1
J−1e−βxJ−2/ε ≤ Ch−1

J e−βxJ−1/(2ε)e−βxJ−1/(2ε)

≤ Ch−1
J ȳNJ−1

(
ε + 2N−1

)aβ/2 ≤ Ch−1
J ȳNJ−1N

−1.



222 T. A. Nhan

The same argument applied to RJ−1 and QJ−1 gives

|τJ−1[y]| ≤ Ch−1
J ȳNJ−1N

−1,

which completes the proof. ��
We next form the barrier function γi (see also in [14, 15]),

γi = γ
(1)
i + γ

(2)
i , i = 0, 1, . . . , N,

with

γ
(1)
i = C1N

−1(1 − xi) and γ
(2)
i = C2ȳ

N
i N

−1.

Lemma 3 There exist sufficiently large constants C1 and C2 such that

LNγi ≥ κi ≥ |τi[u]|, i = 1, 2, . . . , N − 1, (24)

where

κi = C1N
−1 + C2[max{ε, hi+1}]−1ȳNi N

−1.

Proof It is an easy calculation (see, e.g., [14]) to verify the first inequality in (24),

LNγi ≥ κi.

Then, from Lemma 2, it is clear that

|τi[u]| ≤ CN−1 ≤ C1N
−1 ≤ κi ≤ LNγi, i = J, J + 1, . . . , N − 1.

For i ≤ J − 2, we have from (12) that hi+1 ≤ Cε and

|τi[u]| ≤ C
(
N−1 + ε−1ȳNi N

−1
)

≤ C1N
−1 + C2ε

−1ȳNi N
−1 ≤ κi ≤ LNγi.

(25)

It remains to consider i = J − 1. If hi+1 ≤ ε, we have the same situation as above
and the estimate (25) is achieved for i = J − 1. On the other hand, when hi+1 > ε,
it is clear from (22) that

|τJ−1[u]| ≤ C
(
N−1 + h−1

J ȳNi N
−1
)
.



Analysis for a Bakhvalov-Type mesh 223

Therefore,

|τJ−1[u]| ≤ C
(
N−1 + h−1

J ȳNJ−1N
−1
)

≤ C1N
−1+C2h

−1
J ȳNJ−1N

−1 ≤ κJ−1 ≤ LNγJ−1,

which completes the proof. ��
Combining Lemmas 2 and 3 together with the discrete maximum principle, we
arrive at the main result.

Theorem 1 Let u be the solution of the continuous problem (1) and let UN be the
solution of the discrete problem (7) on the Bakhvalov-type mesh (9)–(10). Then the
following error estimate is satisfied:

|ui − UN
i | ≤ CN−1, i = 0, 1, . . . , N.

6 Numerical Results for 2D Problems

For the two-dimensional problem (4), we employ the natural extension of the
method (7): an upwind finite-difference scheme on a tensor-product grid of the one-
dimensional Bakhvalov-type meshes defined in Sect. 3. Although we do not provide
an analysis for the two-dimensional problem (4), it is an easy extension from the
above 1D analysis to its 2D analogue in light of the newly tailored barrier-function
technique for the original Bakhvalov mesh given in [16]. Therefore, we only
present, in this section, the numerical results obtained by the upwind discretization
on the Bakhvalov-type mesh to the following test problem taken from [16, Example
1],

−ε�u− (x + 2)ux − (y3 + 3)uy + u = f (x, y) on � = (0, 1)2,

u = 0 on � = ∂�,
(26)

where f (x, y) is chosen so that

u(x, y) = cos
(πx

2

)(
1 − e−2x/ε

)
(1 − y)3

(
1 − e−3y/ε

)

is the exact solution. The discretization errors, EN , and the rate of convergence,
ρ ≈ (lnEN − lnE2N)/ ln 2, are shown in Table 1. We compare this result to the
one generated on the Bakhvalov-Shishkin mesh—shown in Table 2. As we can
clearly observe, the uniform convergence can be seen in Table 1 for all values of ε.
This agrees with the theoretical justification. By contrast, in Table 2 the rate of
convergence deteriorates when N increases for ε = 0.1 and ε = 0.01 because
of (19).



224 T. A. Nhan

Table 1 Problem (26): errors (top row) and convergence rates (below row) for the upwind
discretization on the modification of the Bakhvalov mesh with a = 2

ε N = 26 N = 27 N = 28 N = 29 N = 210 N = 211

10−1 2.079e−02 1.063e−02 5.377e−03 2.704e−03 1.356e−03 6.787e−04

0.97 0.98 0.99 1.00 1.00 –

10−2 2.834e−02 1.419e−02 7.092e−03 3.543e−03 1.771e−03 8.851e−04

1.00 1.00 1.00 1.00 1.00 –

10−3 2.981e−02 1.534e−02 7.787e−03 3.922e−03 1.968e−03 9.857e−04

0.96 0.98 0.99 0.99 1.00 –

10−4 3.038e−02 1.567e−02 7.949e−03 4.003e−03 2.008e−03 1.006e−03

0.96 0.98 0.99 0.99 1.00 –

10−5 3.049e−02 1.571e−02 7.971e−03 4.014e−03 2.014e−03 1.009e−03

0.96 0.98 0.99 1.00 1.00 –

10−6 3.068e−02 1.572e−02 7.974e−03 4.015e−03 2.014e−03 1.009e−03

0.96 0.98 0.99 1.00 1.00 –

Table 2 Problem (26): errors (top row) and convergence rates (below row) for the upwind
discretization on the Bakhvalov mesh with a Shishkin-type transition point with a = 2

ε N = 26 N = 27 N = 28 N = 29 N = 210 N = 211

10−1 1.984e−02 1.856e−02 1.729e−02 1.572e−02 1.385e−02 1.178e−02

0.10 0.10 0.14 0.18 0.23 –

10−2 2.797e−02 1.427e−02 7.175e−03 3.553e−03 1.930e−03 1.154e−03

0.97 0.99 1.01 0.88 0.74 –

10−3 2.957e−02 1.537e−02 7.803e−03 3.926e−03 1.968e−03 9.856e−04

0.94 0.98 0.99 1.00 1.00 –

10−4 3.001e−02 1.563e−02 7.949e−03 4.005e−03 2.009e−03 1.006e−03

0.94 0.98 0.99 1.00 1.00 –

10−5 3.005 02 1.565e−02 7.964e−03 4.013e−03 2.014e−03 1.009e−03

0.94 0.97 0.99 0.99 1.00 –

10−6 3.005e−02 1.566e−02 7.966e−03 4.014e−03 2.014e−03 1.009e−03

0.94 0.97 0.99 0.99 1.00 –

7 Conclusion

We presented an alternative barrier-function approach for uniform convergence
analysis of the finite-difference discretization on a Bakhvalov-type mesh. In
particular, the transfer of our analysis to 2D problems answered an open question
recently posed in [22, Question 6]. Numerical experiments show that, from
the theoretical and computational view, a Bakhvalov-type transition point is the
favoured choice because the computed errors by the upwind scheme on this mesh
are convergent, uniformly for all values of ε as seen in Sect. 6.



Analysis for a Bakhvalov-Type mesh 225

Acknowledgments This research was supported by the Faculty Development Program, Holy
Names University. The author would like to thank an anonymous referee for his suggestions that
brought my attention to the barrier-function uniform convergence proof of Liseikin.

References

1. Andreev, V.B., Kopteva, N.V.: On the convergence, uniform with respect to a small parameter,
of monotone three-point finite difference approximations. Differ. Equ. 34(7), 921–929 (1998)

2. Andreev, V.B., Savin, I.A.: The uniform convergence with respect to a small parameter of
A. A. Samarskii’s monotone scheme and its modification. Comput. Math. Phys. 35, 581–591
(1995)

3. Apel, Th., Lube, G.: Anisotropic mesh refinement for a singularly perturbed reaction diffusion
model problem. Appl. Numer. Math. 26, 415–433 (1998)

4. Bakhvalov, N.S.: The optimization of methods of solving boundary value problems with a
boundary layer. USSR Comput. Math. Math. Phys. 9, 139–166 (1969)

5. Boglaev, I.P.: The numerical solution of a nonlinear boundary value problem with a small
parameter effecting the highest derivative (in Russian). Zh. Vychisl. Mat. Mat. Fiz. 24, 1649–
1656 (1984)

6. Linß, T.: Layer-adapted meshes for convection-diffusion problems. Comput. Methods Appl.
Mech. Eng. 192(9–10), 1061–1105 (2003)

7. Linß, T.: Layer-Adapted Meshes for Reaction-Convection-Diffusion Problems. Lecture Notes
in Mathematics, vol. 1985. Springer, Berlin (2010)

8. Linß, T., Roos, H.-G., Vulanović, R.: Uniform pointwise convergence on Shishkin-type meshes
for quasilinear convection-diffusion problems. SIAM J. Numer. Anal. 38, 897–912 (2001)

9. Liseikin, V.D.: Layer Resolving Grids and Transformations for Singular Perturbation Prob-
lems, p. 284. VSP, Utrecht (2001)

10. Liseikin, V.D.: Grid Generation Methods, 3rd edn, p. 530. Springer, Berlin (2017)
11. Liseikin, V.D., Karasuljić, S.: Numerical analysis of grid-clustering rules for problems with

power of the first type boundary layers. Comput. Technol. 25(1), 49–65 (2020)
12. Nhan, T.A., Vulanović, R.: Uniform convergence on a Bakhvalov-type mesh using precondi-

tioning approach. Technical report (2015). arXiv: 1504.04283 math.NA
13. Nhan, T.A., Vulanović, R.: Preconditioning and uniform convergence for convection-diffusion

problems discretized on Shishkin-type meshes. Adv. Numer. Anal. 2016, Article ID 2161279
(2016)

14. Nhan, T.A., Vulanović, R.: A note on a generalized Shishkin-type mesh. Novi Sad J. Math.
48(2), 141–150 (2018). https://doi.org/10.30755/NSJOM.07880

15. Nhan, T.A., Vulanović, R.: Analysis of the truncation error and barrier-function technique for
a Bakhvalov-type mesh. Electron. Trans. Numer. Anal. 51, 315–330 (2019)

16. Nhan, T.A., Vulanović, R.: The Bakhvalov mesh: a complete finite-difference analysis of
two-dimensional singularly perturbed convection-diffusion problems. Numer. Algor. (2020).
https://doi.org/10.1007/s11075-020-00964-z

17. Nhan, T.A., Stynes, M., Vulanović, R.: Optimal uniform-convergence results for convection-
diffusion problems in one dimension using preconditioning. J. Comput. Appl. Math. 338, 227–
238 (2018). https://doi.org/10.1016/j.cam.2018.02.012

18. Roos, H.-G.: Error estimates for linear finite elements on Bakhvalov-type meshes. Appl. Math.
51, 63–72 (2006)

19. Roos, H.-G.: Layer-adapted meshes: Milestones in 50 years of history, Sept 2019. arXiv:
1909.08273v1 math.NA

20. Roos, H.-G., Linß, T.: Sufficient conditions for uniform convergence on layer-adapted grids.
Computing 63, 27–45 (1999)

https://doi.org/10.30755/NSJOM.07880
https://doi.org/10.1007/s11075-020-00964-z
https://doi.org/10.1016/j.cam.2018.02.012


226 T. A. Nhan

21. Roos, H.-G., Stynes, M., Tobiska, L.: Numerical Methods for Singularly Perturbed Differential
Equations. Springer Series in Computational Mathematics, vol. 24, 2nd edn. Springer, Berlin
(2008)

22. Roos, H.-G., Stynes, M.: Some open questions in the numerical analysis of singularly
perturbed differential equations. Comput. Methods Appl. Math. 15, 531–550 (2015)

23. Shishkin, G.I.: Grid approximation of singularly perturbed elliptic and parabolic equations (in
Russian). Second Doctoral Thesis, Keldysh Institute, Moscow (1990)

24. Stynes, M., Roos, H.-G.: The midpoint upwind scheme. Appl. Numer. Math. 23, 361–374
(1997)

25. Vulanović, R.: On a numerical solution of a type of singularly perturbed boundary value
problem by using a special discretization mesh. Univ. u Novom Sadu Zb. Rad. Prir. Mat. Fak.
Ser. Mat. 13, 187–201 (1983)

26. Vulanović, R., Nhan, T.A.: Uniform convergence via preconditioning. Int. J. Numer. Anal.
Model. Ser. B 5, 347–356 (2014)



On a Comprehensive Grid for Solving
Problems Having Exponential
or Power-of-First-Type Layers

V. D. Liseikin, S. Karasuljic, A. V. Mukhortov, and V. I. Paasonen

Abstract This paper describes an explicit approach for generating layer-resolving
grids in problems having exponential or power-of-first-type layers. The grids are
generated on the basis of qualitative estimates of solution derivatives in the layers
of one-dimensional singularly perturbed problems. The paper presents results of
numerical experiments, using appropriate grids and high-order schemes, for two-
point boundary-value problems and two-dimensional Navier–Stokes equations.

1 Introduction

The paper aims at developing high-order ε-uniform adaptive algorithms suitable for
solving a singularly perturbed problem of the type

− [ε + d(x)]αu′′ + a(x, u)u′ + f (x, u) = 0 α > 0, d(x) ≥ 0 , 0 < x < 1 ,

u(0) = A0 , u(1) = A1 ,

(1)

and Navier–Stokes equations modelling a viscous gas flow over a flat plate. Problem
(1) for d(x) = 0 is analyzed analytically in [1–3], where it is shown that its solutions
for the specific functions a(x, u) and f (x, u) may have exponential boundary and
power-of-type-2 interior layers; while in [4] it is demonstrated that its solutions for
the more arbitrary functions d(x), a(x, u), and f (x, u) may also have other layers,
in particular, power-of-type-1, logarithmic, and mixed boundary and interior layers.

V. D. Liseikin (�) · V. I. Paasonen
Institute of Computational Technologies SB RAS, Novosibirsk, Russia

S. Karasuljic
Faculty of Sciences and Mathematics, University of Tuzla, Tuzla, Bosnia and Herzegovina

A. V. Mukhortov
Novosibirsk State University, Novosibirsk, Russia

© Springer Nature Switzerland AG 2021
V. A. Garanzha et al. (eds.), Numerical Geometry, Grid Generation and Scientific
Computing, Lecture Notes in Computational Science and Engineering 143,
https://doi.org/10.1007/978-3-030-76798-3_14

227

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76798-3_14&domain=pdf
https://doi.org/10.1007/978-3-030-76798-3_14


228 V. D. Liseikin et al.

The algorithms advocated in this paper for solving (1) are based on layer-
damping coordinate transformations x(ξ, ε) : [0, 1] → [0, 1] in compliance with a
basic principle: they are to eliminate singularities of high order of solutions u(x, ε);
i.e., the high-order derivatives of any concrete solution with respect to the new
coordinate ξ are to have the following bounds:

∣∣∣∣
dj

dξj
u[x(ξ, ε), ε]

∣∣∣∣ ≤ M , j ≤ n , 0 ≤ ξ ≤ 1 , (2)

where the constant M is independent of the parameter ε, and the number n is
dependent on the order of the approximation of the problem: the higher the order,
the larger the number n will be. The layer-damping coordinate transformations
x(ξ, ε) : [0, 1] → [0, 1], which eliminate singularities, by formula xi = x(i/N, ε)

generate the layer-resolving grids xi , i = 0, . . . , N , x0 = 0, xN = 1, whose
nodes cluster in the layers. This principle for n ≤ 3 is implemented in [4] for
solving problem (1) with the functions d(x), a(x, u), and f (x, u) by using a simple
upwind scheme of first order. It is proven in this publication that the ε-uniform
first order convergence of numerical solutions to some problems having diverse
types of layers is achieved using an upwind scheme of first order and corresponding
diverse layer-resolving grids. However, for guaranteeing higher-order ε-uniform
convergence of solutions by high-order algorithms, the transformations developed
for the upwind scheme are not suitable; first, they do not provide grid clustering
on the entire layers for the higher derivatives of solutions presented in errors of
discretizations by schemes of higher order, as these layers are wider than the layers
for lower derivatives of solutions; and, second, in contrast to the upwind scheme,
many schemes of high order are not subject to the principle of inverse monotonicity,
which allows one to establish a connection between the solution and truncation
errors, and so to prove high-order ε-uniform convergence. Moreover, convergence
for non-monotone problems, in particular quasi-linear problems, can, in general,
be demonstrated by numerical experiments only, although it is quite likely that, for
these cases, coordinate transformations for generating grids providing high-order
ε-uniform convergence can be found among those satisfying (2) for large n.

Estimates (2) may guarantee high-order ε-uniform convergence in the logical
domain ξ , as the truncation errors will be ε-uniformly bounded when n ≥ p + 2,
where p is the order of the scheme. It is proposed that by using the layer-
resolving grids obtained by the transformations satisfying (2), ε-uniform high-order
convergence will be demonstrated for schemes of high-order in the physical interval
x. Moreover, the numerical solution can be interpolated ε-uniformly with high-
order accuracy on the entire interval [0, 1]. One such transformation, complying
with (2) for an arbitrarily specified n, is presented in the paper for exponential and
power-of-first-type layers by updating some mapping demonstrated in [4] for the
upwind scheme.

The layer-damping coordinate mapping described in the paper for both ex-
ponential and power-of-first-type layers produces other forms of layer-resolving
grids—grids above and beyond those already well known and broadly accepted,



On a Comprehensive Grid for Solving Problems Having Exponential or Power-. . . 229

namely, those developed by Bakhvalov [1] and Shishkin [5]. The grids developed
by Bakhvalov and Shishkin have been efficiently applied to diverse singularly
perturbed problems, but to problems having only exponential-type layers, typically
represented by functions exp

(−bx/εk). These grids are not suitable for tackling
important problems, the solutions of which have wider layers: power, logarithmic,
and mixed-type boundary and interior layers (see [6]), and also require knowledge
of the constant b affecting the width of the exponential layer. Such knowledge is
not always available, for example, for the boundary layers in viscous-gas flows or
the interior layers in solutions to the quasi–linear problems discussed in the current
paper. In addition, the very popularity of the grids contrived by Bakhvalov and
Shishkin seems to hinder researchers from considering other problems with non-
exponential layers, which are not handled by these grids. As a result, this very
important area of problems with non-exponential layers remains at present nearly an
unexplored area to the SPP community (here and below, SPP stands for “singular–
perturbation problems”). This paper demonstrates an attempt to break out of this
narrow circle. It is hoped that the updated layer-resolving grid described in this
paper should strengthen and encourage researchers of the SPP community to solve
broader and more important classes of problems having not only exponential, but
other boundary and interior layers.

Section 2 formulates a coordinate transformation and theoretically substantiates
that it eliminates both exponential and power-of-first-type singularities. Section 3
presents numerical experiments with the grid generated on linear problems approxi-
mated by high-order schemes. It also presents numerical experiments on non-linear
problems approximated by a first-order scheme. The section further discusses
application of the grid to two-dimensional Navier–Stokes equations modelling a
viscous-gas flow over a flat plate.

2 Transformation for Eliminating High-Order Singularities

This section describes a basic coordinate transformation eliminating exponential
and power-of-first-type singularities of arbitrary order in the vicinity of a boundary
layer near the point x0 = 0. It can be applied to specify layer-damping
transformations and corresponding layer-resolving grids on the entire interval [0, 1]
with randomly located exponential or power-of-first-type layers, by creating local
mappings via procedures of scaling, shifting, inverting the basic transformation,
and then matching them with themselves and polynomials. When using high-order
approximations of equations, such transformations may be suitable for generating
layer-resolving grids which provide both high-order ε-uniform convergence and
high-order ε-uniform interpolations.

Let us first consider an exponential boundary layer function u(x, ε) whose j th
derivative is estimated by an exponential function and M , i.e.,

∣∣∣u(j)(x, ε)
∣∣∣ ≤ M

[
ε−kj exp

(
−bx/εk

)
+ 1

]
, b > 0 , 1 ≤ j ≤ n , 0 ≤ x ≤ 1 .

(3)



230 V. D. Liseikin et al.

This singularity can be eliminated by a coordinate transformation x(ξ, ε, a, k) ∈
Cl[0, 1], n ≥ l ≥ 0 in the following form:

x(ξ, ε, a, k) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

cεk
(
(1 − dξ)−1/a − 1

)
, 0 ≤ ξ ≤ ξ0 ,

c

[
εk(1−β/a) − εk

+
(

εk

(1 − dξ)1/a

)′
(ξ0)(ξ − ξ0)

+ 1

2

(
εk

(1 − dξ)1/a

)′′
(ξ0)(ξ − ξ0)

2 + . . .

+ 1

l!
(

εk

(1 − dξ)1/a

)(l)
(ξ0)(ξ − ξ0)

l

+ c0(ξ − ξ0)
l+1
]
,

ξ0 ≤ ξ ≤ 1 ,

(4)

where d = (
1 − εkβ

)
/ξ0; 0 < m2 ≤ β ≤ a/(1 + na); a is an arbitrary positive

constant; 1 > ξ0 ≥ m3 > 0, (for example ξ0 = 1/2); and c > 0 is such that the
necessary boundary condition x(1, ε, a, k) = 1 is satisfied. This transformation is a
generalization of the mapping proposed in [7] and [8]. A specific transformation of
this kind for a = 1 was introduced by Vulanovic in [9].

Theorem 1 The transformation (4) eliminates singularity (3) up to order n, i.e.,
estimate (2) is valid.

This theorem was proved in [10] (Sect. 6.3.2).
In the same manner it was proved in [10] that, in order to eliminate the

exponential singularity (3) of the function u(x, ε) up to order n in a new coordinate
ξ , we can rely on the basic local logarithmic contraction function x1(ξ, ε, a, k) on
the corresponding interval [0, ξ0]:

x1(ξ, ε, a, k) = −
(
εk ln(1 − dξ)

)
/a , 0 ≤ ξ ≤ ξ0 , d =

(
1 − εk/n

)
/ξ0 ,

(5)

but with the restriction b/n2 ≥ a > 0, by prolongating it smoothly on the interval
[0, 1]. The transformation of this type was introduced by Bakhvalov [1].

The transformation (4) is more convenient for eliminating exponential singulari-
ties than the transformation based on (5), since the constant a in (4) is not dependent
on b in (3), so that, with an arbitrary fixed constant a > 0, this transformation alone



On a Comprehensive Grid for Solving Problems Having Exponential or Power-. . . 231

is valid for all constants b ∈ (0,∞) in (3) for eliminating singularities of u(x, ε) up
to order n. Another popular piecewise uniform transformation

x(ξ, ε, b) =
{

2σξ , 0 ≤ ξ ≤ 1/2 ,

σ + 2(1 − σ)ξ , 1/2 ≤ ξ ≤ 1 ,
(6)

where σ = min{0.5, (n/b)ε lnN}, proposed by Shishkin [5] for generating grids for
solving problems with exponential layers, also being dependent on fixed constant b
in (3), will not be suitable for all b ∈ (0,∞) in (3).

The power transformation (4) with a proper choice of constant a > 0 is also
suitable for eliminating power singularities of type 1 near x0 = 0, i.e., when solution
derivatives are estimated by the following function:

∣∣∣u(j)(x, ε)
∣∣∣ ≤ M

[
εkb/

(
εk + x

)b+j + 1

]
, 1 ≤ j ≤ n , 0 ≤ x ≤ 1 . (7)

Here, the boundary layer interval, where all the derivatives up to n of u(x, ε) are not
uniformly bounded over ε, is [0, xn2 ], xn2 = m2ε

kb/(b+n)  xn1 = (kn/b)εk ln
(
ε−1

)
for sufficiently small ε, so that the transformations (5) and (6) are not suitable for
generating layer-resolving grids when such singularities have incomparably wider
layers than any exponential layer.

Theorem 2 The transformation (4), with the restrictions 0 < a ≤ b/n2 and
β = a/(1 + na), eliminates singularity (7) up to order n.

The proof of this theorem can easily be restored from [10] (Sect. 6.3.2), namely, by
adding in that proof the following restriction: β = a/(1 + an), without which the
theorem is not valid.

3 Numerical Experiments

This section presents results of numerical experiments with problems having
exponential or power-of-type-1 boundary and interior layers.

3.1 Numerical Experiments with High-Order Schemes

This subsection compares results of calculations for problem (1) with d(x) = x

through the compact schemes of high-order approximations O(hp), (p = 1; 2; 3),
formulations of which were described in [11] for d(x) = 0. The compact schemes
for the case d(x) = x are easily obtained from those formulations by substituting
ε+x for ε. Problems of this type with α = 1 were discussed in the monograph [12]



232 V. D. Liseikin et al.

for modeling a flow of liquid in the vicinity of a circular orifice of a small radius
r = ε; those with α = 2, for simulating the motions of charges viewed as classical
particles in [13]. Solutions to this problem may have layers of exponential, power,
and logarithmic types [4]. Numerical solutions of problem (1) with d(x) = 0, using
high-order approximations and layer-resolving grids, were discussed in [11].

The exact solution was unknown for the test problems being solved. In the figures
given below, the exact solution means the numerical solution obtained on a very
fine grid (N = 1600); in all the tables, the estimates of the error δ and order p
have subscripts 1, 2, and 3, corresponding to the orders of accuracy of the schemes
used to obtain the results. We calculate δk and pk in this subsection and the next as
in [11], i.e., δk = maxNi=0

∣∣u2N
2i − uNi

∣∣, pk = log2
(
δ2N
k /δNk

)
, k = 1, 2, 3.

For generating layer-resolving grids for both exponential and power-of-type-1
layers near the boundary point x0 = 0, we use a comprehensive transformation of
the class Cl[0, 1] in the form (4), assuming ξ0 = 1/2, l = 2, n = p + 1, where p
is the order of the scheme.

Exponential Boundary Layer Letting in (1) d(x) = x, α ≥ 2, a(x, u) = a(x),
b = −a(0) > 0, we have from [4]

∣∣∣u(j)(x, ε)
∣∣∣ ≤ M

[
1 + ε−jα exp

(−mbx/εα)
]
,

j ≤ n+ 1 , 0 < m < 1 , 0 ≤ x ≤ 1 ,

(8)

where m is an arbitrary constant from interval (0, 1) independent of ε. With the
solution having a single exponential boundary layer of scale α near x = 0, an
explicit transformation for generating a layer-resolving grid can be defined by the
mapping x(ξ, ε, a, k) from (4) for k = α and an arbitrary a ≥ m > 0.

Example 1 As an example, we shall assume in (1) d(x) = x, α = 2, a(x, u) =
−1, f (x, u) = u − 2 sin(4πx), u(0) = 0, and u(1) = 1. Figure 1 and Table 1
demonstrate the numerical solution and characteristics for the layer-resolving grid
xi = x(ih, ε, 2, 2), i = 1, . . . , N , h = 1/N .

Fig. 1 Exponential boundary layer. Numerical solutions (left); fragment of the solution (right)



On a Comprehensive Grid for Solving Problems Having Exponential or Power-. . . 233

Table 1 Data for exponential layer for ε = 0.01

N δ1 p1 δ2 p2 δ3 p3

40 6.47 × 10−2 3.95 6.03 × 10−2 4.05 2.30 × 10−1 2.12

80 3.67 × 10−2 0.82 9.84 × 10−3 2.61 1.02 × 10−2 4.50

160 1.98 × 10−2 0.89 1.99 × 10−3 2.31 6.18 × 10−4 4.04

320 1.03 × 10−2 0.94 4.75 × 10−4 2.07 3.83 × 10−5 4.01

640 5.25 × 10−3 0.97 1.17 × 10−4 2.02 2.39 × 10−6 4.00

1280 2.65 × 10−3 0.99 2.91 × 10−5 2.01 1.49 × 10−7 4.00

Table 1 presents a comparison of calculations using three schemes on a sequence
of grids for ε = 0.01: in the first column, the number of grid points; in the next
columns, a posteriori estimates in C-norms of the error δk and the order of accuracy
pk obtained in two successive calculations by using the scheme of the k-order
approximation. Although ε = 0.01 in accordance with (8), the first derivative of
the solution of (1) is estimated in the center of the boundary layer by 104 ×M .

In the calculations which follow, the order of accuracy pk for k = 1, k = 2,
and k = 3 being similar to the order of accuracy in Example 1, this characteristic is
omitted in the tables presented.

Power Boundary Layer of Type 1 Letting in (1) d(x) = x, α = 1,
b = −a(0) > 1, we have from [4] for b > 1

∣∣∣u(i)(x, ε)
∣∣∣ ≤ M

[
1 + εb−1(ε + x)1−b−i

]
, i ≤ n+ 1 , 0 ≤ x ≤ 1 , (9)

i.e., the solution has a single power boundary layer of type 1 and scale 1 near x = 0.
Thus, an explicit transformation for generating a layer-resolving grid can be defined
by the mapping x(ξ, ε, a, k) from (4) for k = 1 and a = (b − 1)/n2.

Example 2 As an example, we shall assume α = 1, a(x) = −4, F(x, u) =
u− 8 sin(4πx), u(0) = 0, and u(1) = 0.5, in which case a = 3/n2. The results are
presented in Table 2 and Fig. 2.

3.2 Experiments with Autonomous Equations

This subsection presents results of numerical experiments with an idealized problem
simulating some shock-wave structures of a steady heat-conducting gas flow [4]
(pages 9–10). To calculate the numerical solutions, we use approximations of the
autonomous singularly perturbed boundary value problems by the standard iterative
upwind finite difference scheme [10, pp. 257] and the scheme of the second order of
accuracy [11] on the appropriate modifications [10, pp. 247, pp. 263] of the adaptive
layer-resolving grid (4). The characteristics δk and pk , k = 1, 2, are calculated in



234 V. D. Liseikin et al.

T
ab

le
2

D
at

a
fo

r
po

w
er

la
ye

r
of

ty
pe

1
fo

r
va

ri
ou

s
ε

δ 1
δ 2

δ 3
δ 1

δ 2
δ 3

δ 1
δ 2

δ 3

N
/
ε

10
−2

10
−2

10
−2

10
−4

10
−4

10
−4

10
−6

10
−6

10
−6

40
3.

5
×

10
−2

4.
5

×
10

−2
5.

7
×

10
−2

4.
8
×

10
−2

7.
3

×
10

−2
2.

4
×

10
−1

6.
1
×

10
−2

8.
3

×
10

−2
1.

3

80
1.

8
×

10
−2

7.
9

×
10

−3
2.

4
×

10
−3

2.
6
×

10
−2

1.
2

×
10

−2
6.

4
×

10
−3

3.
8
×

10
−2

1.
4

×
10

−2
9.

1
×

10
−3

16
0

9.
4
×

10
−3

1.
9

×
10

−3
1.

5
×

10
−4

1.
4
×

10
−2

2.
9

×
10

−3
3.

6
×

10
−4

2.
1
×

10
−2

3.
2

×
10

−3
4.

7
×

10
−4

32
0

4.
8
×

10
−3

4.
9

×
10

−4
9.

7
×

10
−6

7.
5
×

10
−3

7.
1

×
10

−4
2.

4
×

10
−5

1.
2
×

10
−2

7.
9

×
10

−4
3.

0
×

10
−5

64
0

2.
4
×

10
−3

1.
2

×
10

−4
6.

1
×

10
−7

3.
8
×

10
−3

1.
8

×
10

−4
1.

5
×

10
−6

6.
1
×

10
−3

2.
0

×
10

−4
1.

9
×

10
−6

12
80

1.
2
×

10
−3

3.
0

×
10

−5
3.

8
×

10
−8

1.
9
×

10
−3

4.
5

×
10

−5
9.

6
×

10
−8

3.
1
×

10
−3

4.
9

×
10

−5
1.

2
×

10
−7



On a Comprehensive Grid for Solving Problems Having Exponential or Power-. . . 235

Fig. 2 Power boundary layer of type 1. Numerical solutions for N = 40 (left) and N = 80 (right)

the same way as in the previous subsection. The subscript k corresponds to the
orders of accuracy of the schemes used to obtain the results.

Interior Power Layer Letting in (1) d(x) = 0, f (x, u) = 0, α = 1, a(x, u) =
a(u) ∈ C[A0, A1], b(u) = ∫ u

A0
a(μ) dμ, b(A0) = b(A1), b(u) > b(A0), for A0 <

u < A1 and, besides this, b′(A0) = b′(A1) = 0, b′′(A0) 	= 0, b′′(A1) 	= 0, in
accordance with [4] for j � n− 1, the estimate holds

∣∣∣u(j)(x, ε)
∣∣∣ � M

[
1 + ε/(ε + x − x0)

1+j] , 0 � x � 1 ,

where u(x, ε) is the solution to (1). The center x0 of the layer is calculated as

x0 = 1√
c0 + c1

[
√
c1 − ε ln ε−1

(
d0

c
3/2
0

+ d1

c
3/2
1

)]
,

with ci = a′(Ai)/2, di = a′′(Ai)/6, i = 0, 1. Thus, the solution has a single
interior power layer of first type.

Example 3 As an example, we assume a(u) = 2(u+ 1)(u− 2)(2u− 1), A0 = −1,
A1 = 2, We have b(u) = (u− 2)2(u+ 1)2. It holds b(A0) = b(A1), b(u) =
(u− 2)2(u+ 1)2 > b(A0) = 0 for A0 < u < A1, b′(u) = a(u), b′(A0) =
b′(A1) = 0, and b′′(u) = 2(6u2 − 6u − 3), b′′(A0) = 18 	= 0, b′′(a1) = 18 	= 0,
and c0 = a′(A0)/2 = 9, c1 = a′(A1)/2 = 9, d0 = a′′(A0)/6 = −6, d1 =
a′′(A1)/6 = 6, and x0 = √

2/2. The constant a appearing in (4) is subject to
0 < m < a � 1/n2. The values of characteristics δk and pk , k = 1, 2, are displayed
in Table 3; the numerical solutions and their parts are given in Fig. 3.

Interior Mixed Layer Letting in (1): d(x) = 0, f (x, u) = 0, α = 1, a(u) be such
that a(A0) 	= 0, a(p)(A1) = 0, 0 � p < r , a(r)(A1) 	= 0, and the function b(u)



236 V. D. Liseikin et al.

Table 3 Data for power layer of type 1 for various ε

δ1 p1 δ2 p2 δ1 p1 δ2 p2

N ε = 10−3 ε = 10−3 ε = 10−4 ε = 10−4

160 1.95 × 10−2 0.96 1.03 × 10−3 1.97 2.16 × 10−2 0.96 1.09 × 10−3 1.98

320 1.00 × 10−2 0.98 2.65 × 10−4 1.98 1.10 × 10−2 0.98 2.75 × 10−4 1.98

640 5.06 × 10−3 0.98 6.72 × 10−5 1.98 5.60 × 10−3 0.99 6.97 × 10−5 1.96

1280 2.65 × 10−3 – 1.70 × 10−5 – 2.81 × 10−3 – 1.79 × 10−5 –

N ε = 10−5 ε = 10−5 ε = 10−6 ε = 10−6

160 2.28 × 10−2 0.96 1.20 × 10−3 2.00 2.36 × 10−2 0.96 1.28 × 10−2 5.33

320 1.11 × 10−2 0.98 3.01 × 10−4 1.97 1.21 × 10−2 0.98 3.19 × 10−4 2.00

640 5.94 × 10−3 0.99 7.70 × 10−5 1.98 6.14 × 10−3 0.99 7.99 × 10−5 2.00

1280 2.98 × 10−3 – 1.94 × 10−5 – 3.09 × 10−3 – 2.00 × 10−5 –

Fig. 3 Interior power layer of kind 1. Numerical solutions (left), fragments (right)

satisfies the conditions b(A0) = b(A1) and b(u) > b(A0), if A0 < u < A1, then, in
accordance with [4], the following estimates hold

∣∣∣u(j)(x, ε)
∣∣∣ � M

{
1 + ε−j exp[a0(x − x0)/ε] , j � n , 0 � x � x0 ,

1 + ε1/r(ε + x − x0)
−j−1/r , j � n , x0 � x � 1 ,

(10)

where a0 = a(A0), x0 = ε(r+1)/(a0r) ln
(
ε−1

)
. Hence, the solution to the problem

(1) has a mixed interior layer of scale 1 and the central point x0 of the layer tends to
0, when ε → 0,

Example 4 As an example, we consider a(u) = 3u2 − 6u + 2, A0 = 0, A1 = 1.
We have b(0) = b(1) = 0, b(u) > b(0), 0 < u < 1, and a(0) = 2 	= 0, a′(u) =
−6 + 6u, a′(1) = 0, a′′(1) = 6 	= 0, and r = 2, x0 = ε(r + 1) ln ε−1/(a(0)r) =
3ε ln

(
ε−1

)
/4. The constant a appearing in (4) has an arbitrary value a � m > 0;

the selected value is a = 1/4. The values of δk and pk , k = 1, 2, are displayed in
Table 4; the graphics are given in Fig. 4.



On a Comprehensive Grid for Solving Problems Having Exponential or Power-. . . 237

Table 4 Data for mixed interior layer for various ε

δ1 p1 δ2 p2 δ1 p1 δ2 p2

N ε = 10−3 ε = 10−3 ε = 10−4 ε = 10−4

160 1.20 × 10−2 0.87 5.28 × 10−3 1.97 2.09 × 10−2 0.91 4.24 × 10−3 2.02

320 6.58 × 10−3 0.97 1.34 × 10−3 1.98 1.11 × 10−2 0.96 1.04 × 10−3 1.99

640 3.36 × 10−3 0.98 3.41 × 10−4 1.99 5.71 × 10−3 0.97 2.63 × 10−4 2.00

1280 1.70 × 10−3 – 8.60 × 10−5 – 2.90 × 10−3 – 6.58 × 10−5 –

N ε = 10−5 ε = 10−5 ε = 10−6 ε = 10−6

160 3.05 × 10−2 0.89 9.76 × 10−3 2.03 4.13 × 10−2 0.81 8.98 × 10−2 4.11

320 1.65 × 10−2 0.95 2.38 × 10−3 1.98 2.36 × 10−2 0.93 5.17 × 10−3 1.99

640 8.52 × 10−3 0.98 6.04 × 10−4 1.99 1.24 × 10−2 0.97 1.29 × 10−3 2.00

1280 4.32 × 10−3 – 1.52 × 10−4 – 6.34 × 10−3 – 3.25 × 10−5 –

Fig. 4 Interior mixed layer. Numerical solutions (left), fragments (right)

3.3 Numerical Experiments with a Two-Dimensional Problem
of a Viscous-Gas Flow over a Flat Plate

This subsection presents results of numerical experiments with a viscous heat-
conducting gas flow over a flat plate at a zero angle of attack, modelled by
two-dimensional Navier–Stokes equations:

∂Q

∂t
+ ∂F

∂x
+ ∂G

∂y
= M∞

Re∞

(
∂F v

∂x
+ ∂Gv

∂y

)
. (11)

Here, Q is a vector of conservative variables, F,G vectors of inviscid flows, Fv,Gv

vectors of viscous flows, and Re,M Reynolds and Mach numbers calculated from
the parameters of the incoming flow. The system of equations (11) is closed by the
ideal gas law: p = ρT/γ . On the surface of the plate are imposed next boundary
and initial conditions: adhesion condition (u|� = 0) and adiabatic temperature
condition

(
∂T
∂n

∣∣
�

= 0
)
. The domain for calculations is a rectangle, the bottom side

of which coincides with the axis y = 0.



238 V. D. Liseikin et al.

The solution to the problem has a boundary layer, the type of which is not
known. However, some information can be obtained from problem (1) for d(x) = 0,
a(x, u) = a(x), a(0) = 0 analyzed analytically in [4], where it was shown that its
solutions have exponential boundary layers when a′(0) = 0, or power-of-type-1
boundary layers when a′(0) > 0. The equation in (11) with respect to a component
u of the velocity vector (u, v) can be considered as (1) for d(x) = 0, a(x, u) = a(x),
a(0) = 0, if ε = M/Re, x in (11) is replaced by y, x in (11) is a parameter, and
ρv = a(). Thus, the solution to (11) may have an exponential or power-of-type-1
boundary layer.

Numerical solutions of (11) are based on the code in Fortran described in [14].
The equations are integrated in time by using the second-order Runge–Kutta
scheme. The calculations are carried out until a steady solution is achieved.
The step of integration over time is chosen from the Courant–Friedrichs–Lewy
condition [14]. The grid nodes in the x direction are uniform, while in the y

direction they are defined through the transformation (4) with l = 2, k = 1/2,
ξ0 = 0.8, a = 2. For estimating the accuracy of numerical solutions, the
characteristic δt = maxNt

i=1 |uNt+1
3i − u

Nt

i | , t = 1, 2, was used. To estimate the
order of accuracy of the numerical solution, the characteristic p1 = log3(δt/δt+1)

for two consecutive Nt was applied. For estimating the jump of the numerical
solution at nearby nodes and the jump order, the corresponding characteristics
dut = maxNt

i=1 |uNt

i+1 − u
Nt

i | , t = 1, 2, 3, and pt2 = log3(dut/dut+1), t = 1, 2
were applied.

Hypersonic gas flow was investigated for Mach number M = 6. Calculations of
problem (11) were conducted for various values of Re = 100,000, 1,000,000. For
each of these values, sequences of grids with tripled numbers of grid nodes in the y
coordinate are used: Nt

y = 3tN0, t = 0, 1, 2, N0 = 51. The number of grid nodes
along the x coordinate is 192.

The values of characteristics δt , p1, dut , pt2 are shown in Table 5, the velocity
profiles of the numerical solution in Fig. 5.

Table 5 Data for power layer of type 1 and scale 1/2, one layer near x = 0, for various Re

δt p1 dut pt2 δt p1 dut pt2
Nt M = 7, Re = 100,000 M = 6, Re = 1,000,000

51 – – 0.213 – – – 0.283 –

153 0.017 – 0.074 0.962 0.064 – 0.099 0.956

459 0.003 1.58 0.025 0.988 0.005 2.32 0.034 0.973



On a Comprehensive Grid for Solving Problems Having Exponential or Power-. . . 239

–0.05
–1

0

1

2

3

4

5

6

7

0 0.10.05 0.20.15 0.30.25 0.35 –0.05
–1

0

1

2

3

4

5

6

7

0 0.10.05 0.20.15 0.30.25 0.35

N_y = 51
Re = 100 000
M = 6

N_y = 51
Re = 1000 000
M = 6

Fig. 5 Longitudinal velocity profiles and values at the grid points in the cross section x = 0.5

4 Conclusions

The paper substantiates theoretically that the coordinate transformation formulated
eliminates both exponential and power-of-first-type singularities. The numerical
calculations performed in this paper show that, from the computational view, the
presented grid explicitly produced by the coordinate transformation, is efficient
for solving linear or quasilinear problems with such types of layers using first
order and high-order algorithms. The values of the characteristics introduced are
within expected bounds and stabilize very quickly when the number of grid nodes
increases.

Acknowledgment The reported study was funded by RFBR, project No. 20-01-00231.

References

1. Bakhvalov, N.S.: On optimization of the methods of the numerical solution of boundary value
problems with boundary layers. USSR Comput. Math. and Math. Phys. 9(4), 842–859 (1969)

2. Berger, A.E., Han, H., Kellog, R.B.: A priori estimates of a numerical method for a turning
point problem. Math. Comput. 42 166, 465–492 (1984)

3. Farrell, P.A.: A uniformly convergent difference scheme for turning point problems. In: Miller,
J.J.H. (ed.), Boundary and Interior Layers, Computational and Asymptotic Methods, pp. 270–
274. Boole Press, Dublin (1980)

4. Liseikin, V.D.: Layer Resolving Grids and Transformations for Singular Perturbation Prob-
lems. VSP, Utrecht (2001)

5. Shishkin, G.I.: A difference scheme for a singularly perturbed equation of parabolic type with
a discontinuous initial condition. Soviet. Math. Dokl. 37, 792–796 (1988) (in Russian)

6. Liseikin, V. D., Karasuljic, S.: Numerical analysis of grid-clustering rules for problems with
power of the first type boundary layers. Comput. Technol. 25(1), 49–65 (2020)

7. Liseikin, V.D., Yanenko N.N.: On a uniform algorithm for solving of equations of second order
with a small parameter affecting the higher derivatives. Chisl. Metody. Mech. Sploshn. Sredy
12(2), 45–56 (1981) (in Russian)

8. Liseikin, V.D.: On the numerical solution of an equation with a power boundary layer on a
nonuniform grid. Chisl. Metody Mech. Sploshn. Sredy 15(2), 90–97 (1984) (in Russian)



240 V. D. Liseikin et al.

9. Vulanovic, R.: Mesh construction for numerical solution of a type of singular perturbation
problems. Numer. Meth. Approx. Theory, Conference Paper, Lis, September 26–28, 137–142
(1984)

10. Liseikin, V.D.: Grid Generation for Problems with Boundary and Interior Layers. NSU,
Novosibirsk (2018)

11. Liseikin, V.D., Paasonen, V.I.: Compact difference schemes and layer-resolving grids for
numerical modeling of problems with boundary and interior Layers. Numer. Anal. Appl. 12(1),
1–17 (2019)

12. Polubarinova–Kochina, P. Ya: Theory of Ground Water Movement. Princeton University Press,
Princeton, NJ (1962) (translated from Russian)

13. Zamaraev, K.I., Khairutdinov, R.F., Zhdanov, V.P.: Electron Tunneling in Chemistry. Chemical
Reactions at Large Distances. Elsevier, Amsterdam (1989) (translated from Russian)

14. Kudryavtsev, A. N., Mironov, S. G., Poplavskaya, T.V., Tsyryul’nikov I.S.: Experimental
investigation and direct numerical simulation of the development of disturbances in a viscous
shock layer on a flat plate. J. Appl. Mech. Tech. Phys. 47, 617–627 (2006) (translated from
Russian)



Preserved Structure Constants for Red
Refinements of Product Elements

Sergey Korotov and Jon Eivind Vatne

Abstract In this paper we discuss some strategy for red refinements of product
elements and show that there are certain structure characteristics (d-sines of
angles formed by certain edges in the initial partition) which remain constant
during refinement processes. Such a property immediately implies the validity of
the so-called maximum angle condition, which is a strongly desired property in
interpolation theory and finite element analysis. Our construction also gives a clear
refinement scheme preserving shape regularity.

1 Introduction and Basic Definitions

Red refinement is one of the most popular meshing techniques used in various
branches of numerical mathematics. However, it is usually applied to simplicial
partitions only, see, e.g., [1, 14, 15, 17, 18], and various aspects of regularity of the
generated meshes are then analysed.

In practice, depending on the shape of the domain over which we construct the
meshes, one may prefer to construct some initial mesh consisting of so-called prod-
uct elements, and only after that refine it into simplices. The simplest illustration in
this direction would be the case of cylindric-type domains first naturally split into
right prisms and then (conformally) into tetrahedra, see, e.g., [13].

In this work, we consider a more general case of product elements of any
dimensions and red refinement techniques used independently for each factor of the
product. Some regularity properties of resulting simplicial meshes are discussed.

S. Korotov
Department of Computer Science, Electrical Engineering and Mathematical Sciences,
Western Norway University of Applied Sciences, Bergen, Norway
e-mail: sergey.korotov@hvl.no

J. E. Vatne (�)
Department of Economics, BI Norwegian Business School, Bergen, Norway
e-mail: jon.e.vatne@bi.no

© Springer Nature Switzerland AG 2021
V. A. Garanzha et al. (eds.), Numerical Geometry, Grid Generation and Scientific
Computing, Lecture Notes in Computational Science and Engineering 143,
https://doi.org/10.1007/978-3-030-76798-3_15

241

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76798-3_15&domain=pdf
mailto:sergey.korotov@hvl.no
mailto:jon.e.vatne@bi.no
https://doi.org/10.1007/978-3-030-76798-3_15


242 S. Korotov and J. E. Vatne

Products of simplices, and their triangulations, have been studied in many contexts,
in particular for two factors. See, e.g., [2, 4, 6, 7, 9].

In 1978, F. Eriksson proposed the following concept of the d-dimensional sine
of angles in R

d . In terms of the simplex S, for any of its vertices Ai , i = 0, . . . , d ,
the d-dimensional sine of the angle of S at Ai , denoted by Âi , is defined as follows
(see (3) in [5, p. 72]):

sind(Âi |A0A1 . . . Ad) = dd−1 (vol S)d−1

(d − 1)! ∏d
j=0,j 	=i vol Fj

, (1)

where vol denotes the measure of (simplex or its facets) of relevant dimen-
sion. We will apply sind to a set of d vectors, which then will mean that
we choose Ai at the common point of origin of the vectors and the remain-
ing vertices A0, . . . , Ai−1, Ai+1, . . . , Ad as the corresponding endpoints. Write
vol(a set of vectors) for the hypervolume of the generalized parallelotope spanned
by the vectors. We then have the convenient formula

sind(vi , . . . , vd ) = vol(v1, . . . , vd)
d−1

∏d
i=1 vol(v1, . . . , vi−1, vi+1, . . . , vd )

.

See also [12].

Definition 1 ([10]) A family F = {Th}h→0 of partitions of some polytope into
simplices is said to satisfy the maximum angle condition if there exists C0 > 0 such
that for any Th ∈ F and any S = conv{A0, . . . , Ad} ∈ Th we can always find
d edges of S, which when considered as vectors, constitute a (higher-dimensional)
angle whose d-sine is bounded from below by the constantC0. Here, we let h denote
the maximal diameter of the simplices in a partition.

Simplicial partitions satisfying the maximum angle condition are highly desired
in numerical analysis for various interpolation and finite element convergence
proofs, see, e.g., [10, 17]. There is another (equivalent) definition of the maximum
angle condition in [12]. However, we prefer the one from Definition 1 in this paper,
since it is more suitable for our geometric considerations in what follows.

The maximum angle condition is weaker than the shape regularity property
(also known as the minimum angle condition in two dimensions) described, e.g.,
in [3]. Even though our constructions are suited to the maximum angle property,
the shape regularity property can also be preserved if desired, as explained below
in Theorem 3(b) and Remark 2. The refinement scheme presented in Theorem 3(c)
will in general violate the shape regularity property.



Preserved Structure Constants for Red Refinements of Product Elements 243

2 Red Refinement Strategy and Its Properties

Recall a standard triangulation of the hypercube (see, e.g., Freudenthal [8]).

Theorem 1 Consider the unit hypercube in R
d with 2d vertices (0, 0, . . . , 0) to

(1, 1, . . . , 1) (all possible combinations of 0 and 1). For any path from (0, 0, . . . , 0)
to (1, 1, . . . , 1) consisting of the standard unit vectors ei , i = 1, . . . , d , in some
order, there is a corresponding d-simplex (known as a path simplex) given as the
convex hull of the vertices of the hypercube along the path.

a) By varying the path over all possible orderings of the vectors ei , this gives
a triangulation of the hypercube consisting of d! simplices, each sharing the
common edge from (0, 0, . . . , 0) to (1, 1, . . . , 1).

b) We can subdivide the unit cube into 2d smaller cubes, with coordinates given by
0, 1/2 or 1, and apply the same construction to each of them.

The resulting triangulation from Theorem 1 (b) refines the original triangulation,
thus defining a red refinement scheme for the hypercube by iteration. By making
consistent choices of diagonals, we automatically get conformity when we start
refining a single simplex as above.

By embedding a simplex into the hypercube we can produce a conforming
red refinement scheme by intersecting with the subdivision of the hypercube as
presented in Theorem 1, see Fig. 1.

◦ ◦

◦

⊂

⊂

◦ ◦

◦◦

◦ ◦

◦

◦

◦◦

◦ ◦

◦◦

◦

◦

◦

◦

◦

Fig. 1 By embedding a simplex in a hypercube, we construct a red refinement of the simplex by
restriction of the red refinement of the hypercube



244 S. Korotov and J. E. Vatne

More formally, given any d-dimensional simplex S, we can choose a path (or an
ordering of the vertices) A0A1 . . . Ad . There is then a unique affine transformation
T that maps A0 to (0, 0, . . . , 0), and Ai to (1, 1, . . . , 1, 0, 0, . . . , 0) (1 in the first
i positions), i = 1, . . . , d . Then T (S) is one of the simplices in the triangulation
of the hypercube described in the theorem, corresponding to the path e1, e2, . . . , ed ,
which we will use as a reference simplex. To describe the set by inequalities, it is
the set 1 ≥ x1 ≥ x2 ≥ · · · ≥ xd ≥ 0. Since we will usually only consider these
inequalities in the unit hypercube, we will suppress 1 and 0 at the ends of the string
of inequalities. Using the refinement from Theorems 1 (b), and then translating back
with T −1, gives a red refinement of S.

Theorem 2 Consider a simplex S and its red refinement as defined above. Then

a) each sub-simplex resulting from the red refinement step has a path consisting of
the vectors { 1

2fi} in some order, where {fi} are the vectors along the chosen path
in S,

b) repeated red refinements using the paths parallel to the chosen path in S will
produce only finitely many similarity types of simplices (up to scaling and rigid
transformations),

c) each sub-simplex produced by a repeated red refinement has a path such that
sind applied to the vectors along the path is equal to sind(f1, . . . , fd).

Proof Part (a) immediately follows from Theorem 1 and standard properties of
affine transformations. Part (b) follows since each simplex produced is congruent to
a simplex whose vertices are connected by a path consisting of { 1

2fi} in some order.
Part (c) follows since sind remains unchanged if one of the vectors is multiplied by
a non-zero constant, and also after permutation of the inputs (see [5, 12]). ��
Remark 1 The statements (a) and (b) in the above theorem are well known (see,
e.g., [1]), and are included only for completeness. Statement (c) of Theorem 2 has
been considered for tetrahedra in [15].

3 Main Results

In what follows we will need a result about the higher-dimensional sines when the
arguments are orthogonal to each other.

Lemma 1 Suppose that {v1, . . . , vd1} and {u1, . . . , ud2} are two sets of vectors that
are orthogonal to each other. Then

sind1+d2(v1, . . . , vd1 , u1, . . . , ud2) = sind1(v1, . . . , vd1) sind2(u1, . . . , ud2).

In case d1 and/or d2 is equal to one, we use the natural convention sin1(u1) = 1
(sine of a single nonzero vector is one).



Preserved Structure Constants for Red Refinements of Product Elements 245

Proof We assume that each of the n = d1 + d2 vectors is a unit vector. Then

sinn(v1, . . . , vd1 , u1, . . . , ud2)

= vol(v1, . . . , vd1 , u1, . . . , ud2)
n−1

∏d1
i=1 vol(v1, . . . , vi−1, vi+1, . . . , vd1, u1, . . . , ud2)

× 1∏d2
i=1(v1, . . . , vd1 , u1, . . . , ui−1, ui+1, . . . , ud2)

.

By orthogonality of the two sets of vectors, each hypervolume factors as a
product of two lower-dimensional hypervolumes and we get:

sinn(v1, . . . , vd1 , u1, . . . , ud2)

= vol(v1, . . . , vd1 , u1, . . . , ud2)
n−1

∏d1
i=1 vol(v1, . . . , vi−1, vi+1, . . . , vd1, u1, . . . , ud2)

× 1∏d2
i=1(v1, . . . , vd1 , u1, . . . , ui−1, ui+1, . . . , ud2)

= vol(v1, . . . , vd1)
n−1 vol(u1, . . . , ud2)

n−1

∏d1
i=1 vol(v1, . . . , vi−1, vi+1, . . . , vd1) vol(u1, . . . , ud2)

d1 vol(v1, . . . , vd1)
d2

× 1∏d2
i=1(u1, . . . , ui−1, ui+1, . . . , ud2)

= vol(v1, . . . , vd1)
d1−1

∏d1
i=1 vol(v1, . . . , vi−1, vi+1, . . . , vd1)

vol(u1, . . . , ud2)
d2−1

∏d2
i=1(u1, . . . , ui−1, ui+1, . . . , ud2)

= sind1(v1, . . . , vd1) sind2(u1, . . . , ud2).

��
Let S1, . . . , Sk be simplices of dimensions d1, . . . , dk , respectively and
n = ∑k

i=1 di . Now we can independently choose a path (or equivalently a vertex
ordering) in each Si , and embed it in the unit di-cube by an affine transformation Ti
as discussed before Theorem 2. By this choice, Ti(Si) is the reference di-simplex.
The product polytope � = ∏

Si of the simplices is embedded into R
n by the

product map T of the maps Ti :

T : � =
k∏

i=1

Si →
k∏

i=1

Ti(Si) ⊂
k∏

i=1

R
di = R

n.



246 S. Korotov and J. E. Vatne

Theorem 3 Consider the product of simplices � = ∏
Si as defined above.

Then:

a) The product � can be triangulated by simplices, each of which contains a path
with the property that sinn of the path vectors is the product of the sindi of the
chosen paths of the factors.

b) There is a red refinement scheme so that all simplices occuring by repeated
refinement has a path with sinn equal to the sinn in part (a), and that only
contains a finite number of similarity types of product elements.

c) There are also red refinement schemes where the factors are refined at different
rates, so that each simplex occuring by repeated refinement has a path with sinn
equal to the sinn in part (a). In this case, the family may contain an infinite
number of similarity types of product elements.

Proof We apply the affine transformation T defined above, solve the problem in the
unit n-cube, and transform using T −1 to get back to the original polytope �. Look
at the coordinates of T (�). For each factor,

Ti(Si) =
{ (

x
(i)
1 , . . . , x

(i)
di

)
| x(i)1 ≥ x

(i)
2 ≥ · · · ≥ x

(i)
di

}
∩ [0, 1]di ⊂ R

di .

The product T (�) = ∏
Ti(Si) can then be described as a product of these sets with

the given coordinates. More precisely, if we use

x
(1)
1 , . . . , x

(1)
d1
, x

(2)
1 , . . . , x

(2)
d2
, . . . , x

(k)
1 , . . . , x

(k)
dk

as coordinates for Rn, we can use the k sets of the same inequalities to describe
T (�). We then consider the triangulation of the hypercube in R

n from Theorem 1.
A triangulation of T (�) then uses only those simplices in the triangulation of the
hypercube that always satisfy these inequalities. The index set of these simplices
can be given by shuffles, i.e., permutations of {1, 2, . . . , n} that preserve the order
of {1, . . . , d1}, {d1 + 1, . . . , d1 + d2}, . . . , {d1 + · · · + dk + 1, d1 + d2 + · · · + dk}
separately.

The results in parts (a) and (b) now follow immediately as in Theorem 2,
using only that if a given set of n vectors splits as a union of sets of cardinality
d1, d2, . . . , dk such that all the subsets are orthogonal to each other, the correspond-
ing sinn is the product of the corresponding sindi (by Lemma 1 and an obvious
induction).

For part (c), introduce the notation f (i)
j for the preimage under T of the standard

basis vectors e(i)j on R
n, so that, e.g., f (1)

1 , f
(1)
2 , . . . , f

(1)
d1

are the vectors along the
chosen path of S1. We can now perform the refinement on a single factor, keeping
the remaining factors unchanged. Without loss of generality, we can assume that
we only refine the first factor S1. Then any simplex in the refined triangulation
has a path with vectors 1

2f
(1)
1 , 1

2f
(1)
2 , . . . , 1

2f
(1)
d1

in some order, and keeping the

vectors f (k)
j for all j and for k ≥ 2. Since sinn is unchanged when arguments are



Preserved Structure Constants for Red Refinements of Product Elements 247

Fig. 2 The prism is split into
three tetrahedra, each with a
path containing the same
three edge vectors in some
order. This path is marked in
bold for the middle
tetrahedron

00 10

20

01

11

21

scaled, this does not change its value. We can then refine another factor, and keep
doing this in any order, with any number of repetitions of factors. This process
can in general produce infinitely many shapes of the product elements and of their
simplicial subdivisions. ��
Example 1 We illustrate the main theorem by the simplest nontrivial example,
namely a triangular prism, i.e., a cartesian product of a triangle and an interval. It
can be split into three tetrahedra in various ways. Let the chosen path in the triangle
be R00, R10, R20 (see Fig. 2). Each of the three tetrahedra in the figure contains a
path with one edge for each of the two edges in the chosen path and a third vertical
edge. When we apply sin3 to these three edges, we get the same value as sin2 of
the two edges in the triangle, which is the same as the ordinary sine of the angle at
R10. This value of sin3 will be preserved by the red refinement scheme described in
part (c) of Theorem 3, i.e., when subdividing the height and the triangular base at
independent rates.

Remark 2 The maximum angle condition from Definition 1 will be satisfied for all
refinements of a product of simplices produced by Theorem 3. Since we have used
the formulation with sinn this is obvious. As the restricted process in part (b) of the
theorem only produces a finite number of similarity types, that process will even
preserve the standard regularity property, see [3]. In the general process in part (c),
the factors can be subdivided at different rates, and therefore the regularity condition
can be violated. We refer to [11] for more information about the case of prisms in
this context.

Remark 3 We are currently working on extending the ideas from [13] to guarantee
overall conformity of a mesh of product elements, not only for a single product
element as considered in the present paper. Since this is more interesting in practice,
we aim at numerical experiments in that setting rather than in the present case.



248 S. Korotov and J. E. Vatne

References

1. Bey, J.: Simplicial grid refinement: on Freudenthal’s algorithm and the optimal number of
congruence classes. Numer. Math. 85, 1–29 (2000)

2. Billera, L.J., Cushman, R., Sanders, J.A.: The Stanley decomposition of the harmonic
oscillator. Nederl. Akad. Wetensch. Indag. Math. 50(4), 375–393 (1988)

3. Ciarlet, P.G.: The Finite Element Method for Elliptic Problems. North-Holland, Amsterdam
(1978)

4. Eilenberg, S., Steenrod, S.: Foundations of Algebraic Topology. Princeton University Press,
Princeton, NJ (1952)

5. Eriksson, F.: The law of sines for tetrahedra and n-simplices. Geom. Dedicata 7, 71–80 (1978)
6. Fomenko, A., Fuchs, D.: Homotopical Topology, 2nd edn. Graduate Texts in Mathematics,

vol.‘273. Springer, Cham (2016)
7. Freudenthal, H.: Eine Simplizialzerlegung des Cartesischen Produktes zweier Simplexe. Fund.

Math. 29, 138–144 (1937)
8. Freudenthal, H.: Simplizialzerlegungen von beschränkter Flachheit. Ann. Math. 43, 580–582

(1942)
9. Galashin, P., Nenashev, Postnikov, A.: Trianguloids and triangulations of root polytopes.

Preprint. Available as https://arxiv.org/abs/1803.06239
10. Hannukainen, A., Korotov, S., Křížek, M.: Generalizations of the Synge-type condition in the

finite element method. Appl. Math. 62, 1–13 (2017)
11. Khademi, A., Korotov, S., Vatne, J.E.: On interpolation error on degenerating prismatic

elements. Appl. Math 63, 237–257 (2018)
12. Khademi, A., Korotov, S., Vatne, J.E.: On the generalization of the Synge-Křížek maximum

angle condition for d-simplices. J. Comput. Appl. Math. 358, 29–33 (2019)
13. Korotov, S., Křížek, M.: On conforming tetrahedralizations of prismatic partitions. In: Pinelas,

S., et al. (eds.) Differential and Difference Equations with Applications. Springer Proceedings
in Mathematics & Statistics, vol. 47, pp. 63–68. Springer Science+Business Media, New York
(2013)

14. Korotov, S., Křížek, M.: Red refinements of simplices into congruent subsimplices. Comput.
Math. Appl. 67, 2199–2204 (2014)

15. Korotov, S., Vatne, J.E.: On regularity of tetrahedral meshes produced by some red-
type refinements. In: Pinelas, S., et al. (eds.) Differential and Difference Equations with
Applications. ICDDEA 2019. Springer Proceedings in Mathematics & Statistics, vol. 333.
Springer, Cham. https://doi.org/10.1007/978-3-030-56323-3_49

16. Křížek, M.: An equilibrium finite element method in three-dimensional elasticity. Apl. Mat.
27, 46–75 (1982)

17. Křížek, M.: On the maximum angle condition for linear tetrahedral elements. SIAM J. Numer.
Anal. 29, 513–520 (1992)

18. Zhang, S.: Successive subdivisions of tetrahedra and multigrid methods on tetrahedral meshes.
Houston J. Math. 21, 541–556 (1995)

https://arxiv.org/abs/1803.06239
https://doi.org/10.1007/978-3-030-56323-3_49


Part III
Meshing and CAD



Global Parametrization Based
on Ginzburg-Landau Functional

Victor Blanchi, Étienne Corman, Nicolas Ray, and Dmitry Sokolov

Abstract Quad meshing is a fundamental preprocessing task for many applications
(subdivision surfaces, boundary layer simulation). State-of-the-art quad mesh
generators proceed in three steps: first a guiding cross field is computed, then a
parametrization representing the quads is generated, and finally a mesh is extracted
from the parameterization. In this paper we show that in the case of a periodic
global parameterization two first steps answer to the same equation and inherently
face the same challenges. This new insight allows us to use recent cross field
generation algorithms based on Ginzburg-Landau equations to accurately solve the
parametrization step. We provide practical evidence that this formulation enables
us to overcome common shortcomings in parametrization computation (inaccuracy
away from the boundary, singular dipole placement).

1 Introduction and Related Work

Meshing is so central in geometric modeling because it provides a way to represent
functions on the objects studied (texture coordinates, temperature, pressure, speed,
etc.). There are numerous ways to represent functions, but if we suppose that
the functions are piecewise smooth, the most versatile way is to discretize the
domain of interest. Ways to discretize a domain range from point clouds to
block-structured meshes; while the first are really easy to produce, the latter are
extremely challenging due to the inherent structure that is very difficult to discover
automatically.

V. Blanchi
École Normale Supérieure, Paris, France
e-mail: vblanchi@clipper.ens.fr

É. Corman · N. Ray · D. Sokolov (�)
Université de Lorraine, CNRS, Inria, LORIA, Nancy, France
e-mail: Etienne.Corman@loria.fr; Nicolas.Ray@loria.fr; Dmitry.Sokolov@loria.fr

© Springer Nature Switzerland AG 2021
V. A. Garanzha et al. (eds.), Numerical Geometry, Grid Generation and Scientific
Computing, Lecture Notes in Computational Science and Engineering 143,
https://doi.org/10.1007/978-3-030-76798-3_16

251

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76798-3_16&domain=pdf
mailto:vblanchi@clipper.ens.fr
mailto:Etienne.Corman@loria.fr
mailto:Nicolas.Ray@loria.fr
mailto:Dmitry.Sokolov@loria.fr
https://doi.org/10.1007/978-3-030-76798-3_16


252 V. Blanchi et al.

In this paper we are interested in the problem of quad mesh generation; although
over the past years mesh generation have seen great advances and is now used in
production, many challenges remained to be solved for a more practical and efficient
use.

Common approaches to quad meshing like paving [3] or Q-morph [9] rely
on advancing-front algorithms starting from a constraint, e.g., the boundary, and
expanding it to fill the interior. When these advancing fronts meet, they have to
be merged; merging two fronts of quads is a challenging task in itself prone to
create many local singular vertices. Moreover, due to the propagation process,
the mesh topology is fixed near the boundary in the early stage of the algorithm
and it is often very difficult to go back on these early choices even if they create
terrible quad configuration in the interior of the mesh. All these approaches are
based on local decisions that do not consider the global structure of quad/hex
meshes, and this is the key reason why quad/hex meshing is so hard. The atomic
operation in a triangle/tetrahedral mesh is a simple addition of points; whereas in a
quad/hexahedral mesh, it would be the addition quad strips/layers of hexahedra.

While front propagation methods are usually fast and robust (for the 2D case),
their output is often not as structured as we would like it to be. Kälberer et
al. [5] proposed another type of approach, giving extremely nice looking meshes;
unfortunately, it is not guaranteed to be able to mesh all possible domains. The main
motivation comes from the observation that good quality quad meshes look like a
deformed grid almost everywhere. The idea is to define a deformation of the object
such that if the final quad mesh (the result) undergoes this deformation, it matches a
unit, axis aligned grid. The direct application of this idea computes this deformation,
applies its inverse to the unit grid, and obtains a quad mesh. In practice, it is better to
introduce more degrees of freedom by considering a global parameterization instead
of a deformation. In this case, parameterizations have some discontinuities that
make it possible to represent a much larger family of quad meshes: the deformed
grid can be cut and glued to itself in a non-trivial way.

All global parameterization approaches are decomposed into three steps (refer to
Fig. 1):

1. Frame field generation: this step defines the orientation of the grid at each point
of the domain.

2. Field integration: this step computes the position and the size of the grid cells
aligned with the input orientation field.

3. Final mesh extraction: at this step we map the grid onto the original object, thus
creating the final quad/hex mesh.

In this paper we focus on the second step, namely the parameterization. Since
our approach (periodic global parameterization [12]) is strongly tied to the frame
field generation problem, let us review it first.



Global Parametrization Based on Ginzburg-Landau Functional 253

Frame Field Generation A frame is a set of 4 unit vectors {zk}3
k=0 ⊂ C which

is invariant by a π/2 rotation. Note that due to its symmetry, a frame can be
represented by a single unit vector z such that

{zk}3
k=0 = 4

√
z
{

1, eiπ/2,−1, e−iπ/2
}
.

Following this definition, we represent frame fields by complex valued fields. We
note as )(z) and *(z) the real and imaginary parts, respectively.

Frame field generation is a simple problem to state: we are looking for the
smoothest unit field under boundary constraints. Here, smoothest is equivalent to
minimizing the Dirichlet energy while the boundary conditions prescribe one of the
4 frame vectors to be aligned with the normal. More formally, we are looking to
minimize the following energy:

arg min
|z|=1

∫

�

|∇z|2 subject to boundary constraints. (1)

The main challenge is dealing with the unit norm constraint; the very first
methods that introduced frame field design for orienting strokes in non-
photorealistic rendering [4], represented frame fields by an angle Arg z per vertex,
so the unit norm was naturally respected. The optimization was performed by a
non-linear solver (BFGS). There is a catch though: Dirichlet energy of a unit frame
field is not a reliable measure of quality. While its evaluation on a mesh is finite,
in the continuous case the integral diverges, leading to numerically challenging
computations. Due to this problem this kind of approaches struggled from bad
singularity placement.

Later methods [10, 12, 13] choose to optimize for vector fields directly without
the unit norm constraint; the field is normalized in post-processing. This kind of
approaches improved greatly the quality of results (and the running times, since only
a linear system needs to be solved), but still the geometry of the fields suffered from
the unit norm constraint being relaxed. The energy at singular points is well-defined
but away from the boundary constraint the frame field is close to zero, making the
computation unreliable. Later on, Knöppel et al. [6] proposed to constrain overall
norm of the field to be unit (as opposed to the real per-point unit constraint) by
solving an eigenvector problem. Fixing the norm of the entire solution instead of
the norm of each vector allows to find optimal frame field on closed surfaces, but in
presence of boundary constraint the fields are still suboptimal. The latest advances
in frame fields [1] proposed to use the Ginzburg-Landau functional to enforce the
unity constraint while keeping a well-defined energy. The idea is to redefine the
problem (1) as follows:

arg min
arbitrary |z|

∫

�

|∇z|2 + Pε(z) subject to boundary constraints. (2)



254 V. Blanchi et al.

Here P(z) is a penalty term that enforces the field to have a point-wise unit norm.
Beaufort et al. [1] propose to choose Pε(z) = 1

4ε2 (|z|2 − 1)2; this problem is well-
defined, and can be solved by Newton iterations. As ε tends to zero, the field
converges to a unit-norm field, while minimizing the field variation. Viertel et
al. [17] suggested another optimization scheme for (2) based on heat diffusion. Both
methods yield similar results in term frame field quality. It is to be noted that, while
these approaches improve the geometry of frame fields in some cases, the problem
is still non convex, and does not provide guarantees of optimality.

Parametrization The parameterization step consists in integrating the frame field,
while imposing integer constraints at the boundary and singular points. More
precisely, one needs to find two scalar functions [5] whose gradients are as close
as possible to the input frame field under the integer constraints. When succeeding,
these approaches provide impressive results. There are, however, many limitations.
The frame field may not be integrable in the sense that is does not locally correspond
to the gradient of a scalar function. This problem can be mitigated by asking
the frame field to be curl-free [12, 15, 16]. However this does not prevent a
major problem: some frame fields are not consistent with any quadrangulation.
Top left image of Fig. 1 provides an example: the radial frame field (without
any singularities!) cannot be integrated directly; the only way to compute a
parameterization is to insert a dipole (index 1/4 and −1/4) in the scalar fields.

Getting a bijective parametrization for quad-meshing is an open problem. The
most advanced methods follow the path of [8] by computing a motorcycle graph
which is a partition of the surface into quads with possible T-junctions. This
intermediate state, in between the full quad mesh and the triangle mesh, allows
the authors to formulate the targeted grid aligned parametrization into a mixed-
integer problem whose variables are subdivisions or collapses of the T-mesh.
Even though this is currently the most robust method available, each step has

Fig. 1 Quad meshing via global parameterization. Left: a cross field prescribing the orientation
of the elements. Middle: a parameterization prescribing the size and the position of the elements
to place. Note that it is not a quad mesh, it is a unit grid texture image mapped to the triangle
mesh. In this case it is a periodic global parameterization, the red triangle shows a singularity of
the parameterization. Right: a quad mesh extracted from the parameterization. The singularity of
the parameterization corresponds to a dipole (a pair of vertices of valence 3 and 5, shown in red)



Global Parametrization Based on Ginzburg-Landau Functional 255

its practical shortcoming. For instance, extracting motorcycle graphs from a
frame field is a notoriously challenging task as it requires to trace non-intersecting
streamlines [8, 11]. The intermediate T-mesh has many T-junctions which must
be resolved either by collapsing the edge into a quad or by placing a dipole of
singularities. In either case it requires to robustly solve a mixed-integer problem
which is often NP-complete.

In this landscape algorithms in the wake of Periodic Global Parametrization
(PGP) [12, 16] stand aside. The main idea is to consider quad mesh edges as
zeros of two oscillators integrating orthogonal branches of the frame. Thus, all
integer constraints are built in the algorithm by design and extracting a mesh does
not require to compute streamlines.

The optimization problem involved in PGP is nearly identical to the one for
computing frame field: a modified Dirichlet energy with Dirichlet boundary
conditions. Thus, similar challenges regarding unit norm constraints and singularity
placement arise. The original paper [12] solves the optimization problem by
relaxing the unit norm constraint, leading to a nearly zero solution away from the
boundary.

Based on the frame field generation experience, we propose an optimization
strategy based on the Ginzburg-Landau functional [2]. It correctly specifies the
oscillators away from constraints, creates more regular quads and improves the
quality of the mesh near singularities.

N.B. For the sake of clarity, we focus on integrating singularity-free frame fields.
PGP can deal with singular fields through a quad-covering of the surface [12], but
we found it unnecessary to show the potential of the Ginzburg-Landau functional in
the context of field integration.

2 Periodic Global Parametrization

In this paper we mesh a planar domain � ⊂ R
2. In order to simplify the

presentation, our input frame fields are without singularities: it allows us to extract
two continuous orthogonal vector fields from the input frame field; we integrate
these vector fields independently one from another. In this section the vector field
to be integrated is denoted as V and ∂�v denotes the subset where V is orthogonal
to the boundary.

2.1 PGP Basics

In the standard quad meshing pipeline the edges of the resulting mesh are orthogonal
to one of the frame field directions. The goal of the integration step is to compute
a global parametrization whose integer level sets respect this constraint. The most



256 V. Blanchi et al.

basic scheme [5], which laid ground for many quad meshing methods, is to optimize
for parameters (u, v) such that their gradients are equal to one of the directions of
the frame. At the same time integer constraints are imposed in order to conform the
boundary of the domain with the boundary of the quad mesh.

Another possibility is to look for a periodic function. Indeed, the periodic
function z(p) = e2iπθ(p) has clearly identified integer level sets which can be easily
aligned with the boundary. A level set of z is orthogonal to the vector field V

whenever V is equal to the direction of oscillation ∇θ . Thus taking the gradient
of z, the periodic function must satisfy [7, 12]:

∇z = 2iπV z.

By specifying the norm of V , we determine the speed of oscillation and thus the
size of the quads.

As the mesh must conform to the boundary of the domain, we have to enforce the
Dirichlet boundary constraint z = 1. Moreover z has pointwise unit norm over the
domain. So integrating the vector field V with a global periodic function amounts
for solving the following optimization problem:

min
z∈C

1

2

∫

�

|∇z− 2iπV z|2

s.t.: z = 1 on ∂�v,

|z| = 1 on ∂�.

(3)

The optimization problem in (3) is non-convex due to the unit norm constraint.
The authors of original paper [12] simply removed this constraint altogether to
recover a quadratic optimization similar to a Laplacian smoothing operation. Note
that if not for the boundary constraints, the solution of (3) would be equal to
zero everywhere. So a common issue with this approach is that far away from
the constraint the norm of z is numerically close to zero making the integration
unreliable (see Fig. 2 top row). The Ginzburg-Landau functional is a sound way of
accurately solving (3).

2.2 Ginzburg-Landau to the Rescue

As mentioned earlier, (3) is a non-convex optimization problem because of the unit
norm constraint. Recent work on frame field generation used the Ginzburg-Landau
functional to deal with such a constraint. In practice this strategy allows for a better
placement of singularities [1]. Note that our problem (3) is very similar to the frame



Global Parametrization Based on Ginzburg-Landau Functional 257

Fig. 2 Quad meshing via Periodic Global Parametrization. Left and middle: periodic function
z respectively integrating the radial and the tangent direction field. Right: quad mesh extracted
from the parameterization. Top row: the integration with PGP causes a drastic norm reduction in
the integration of the radial field and the tangent field integration simply outputs an everywhere
vanishing field. Bottom row: in comparison, our Ginzburg-Landau based optimization yield a unit
norm vector field on both directions and a valid quad mesh is extracted

field generation problem (2); following this idea we propose to use a Ginzburg-
Landau functional for periodic global parametrization:

zε = arg min
z∈C

E(z)+ Pε(z) = 1

2

∫

�

|∇z− 2iπV z|2 + 1

4ε2

∫

�

(
|z|2 − 1

)2

s.t.: z = 1 on ∂�v.

(4)

Theoretical results [14] demonstrated that as ε goes to zero, the complex function
z tends to be a unit complex number everywhere except at isolated singular points.
Asymptotically the singular points have integer indexes and are placed in a way that
minimizes the overall field curvature.

In the rest of the paper we show how to discretize our problem with standard finite
elements and solve the optimization problem with a Newton method for decreasing
value of ε.



258 V. Blanchi et al.

2.3 Newton Method

In order to solve the optimization problem of (4), we use a modified Newton
method. More precisely, a local extremum of the energy is reached whenever zε
is a stationary point of the energy i.e. ∇E(zε)+∇Pε(zε) = 0. Thus, after explicitly
differentiating E and Pε , the oscillator zε must satisfy the non-linear PDE:

{
∇E(zε)+ ∇Pε(zε) = 0 on �,

zε = 1 on ∂�v,
(5)

where the gradients are explicitly given by:

{
∇E(zε) = −�z+ 4π2|V |2z+ iπ (〈∇z, V 〉 + div (V z))

∇Pε(z) = 1
ε2 z

(|z|2 − 1
) (6)

For each value of ε, we approximate the solution of (5) with Newton iterations.
To realize this scheme, we need an expression of the Hessian matrix as a function
of point z. The closed-form expression of the Hessian is easier to read as a matrix

applied to the vector
()(z) *(z)), containing the real and imaginary part of the

complex:

⎧
⎪⎪⎨
⎪⎪⎩

HE(z)h = −�h+ 4π2|V |2h+ iπ (〈∇h, V 〉 + div (V h))

HPε(z)h = 1
ε2

(
3)(z)2 + *(z)2 − 1 2*(z))(z)

2*(z))(z) 3*(z)2 + )(z)2 − 1

)(
)(h)
*(h)

)
. (7)

Newton iterations are well-defined only when the Hessian is positive definite.
The first term E(z) of the energy in (4) is convex thus its Hessian is positive. The
second term Pε constraining the unit norm is non-convex and its Hessian is negative
near 0. In this case it is a common practice to approximate the Hessian with a
positive definite matrix by removing all negative terms from the Hessian (7):

H̃Pε(z)h = 1

ε2

(
3)(z)2 2*(z))(z)

2*(z))(z) 3*(z)2
)()(h)

*(h)
)

(8)

Therefore, for a fixed ε we compute the sequence of oscillator znε satisfying:

⎧
⎨
⎩

(
HE

(
znε
)+ H̃Pε

(
znε
))

hn+1
ε = −∇E(znε

)− ∇Pε
(
znε
)

zn+1
ε = znε + hn+1

ε

, (9)

until convergence to a stationary point.



Global Parametrization Based on Ginzburg-Landau Functional 259

2.4 Discretization

We discretize (9) with standard first order finite elements. The oscillator z is a
complex per vertex and the vector field V is encoded as a two dimensional vector
per vertex. Both are linearly interpolated on each triangle with “hat” functions ϕ
(Fig. 3). On the triangle (ijk) the interpolation, denoted with superscript ijk , reads:
zijk = ziϕi + zjϕj + zkϕk.

The Hessian (8) are square complex matrices of size the number of vertices.
They are assembled by accumulated the 6 × 6 elementary matrices computed on an
element �ijk , given by:

⎧
⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

H
ijk

E = ∫
�ijk

−〈∇ϕn,∇ϕm〉 + 4π2|V ijk |2ϕnϕm
+iπ

(〈∇ϕn, V ijk〉 + div
(
V ijkϕn

))
ϕm,

H
ijk
Pε

= 1
ε2

⎛
⎝ 3

∫
�ijk

)(zijk)2ϕmϕn 2
∫
�ijk

*(zijk))(zijk)ϕmϕn
2
∫
�ijk

*(zijk))(zijk)ϕmϕn 3
∫
�ijk

*(zijk)2ϕmϕn

⎞
⎠ ,

for m,n = 1, 2, 3. Similarly, (5) is turned into a vector of complex of the size
number of vertex. The elementary vector of size 3 on an element �ijk are given by:

⎧
⎪⎪⎨
⎪⎪⎩

∇Eijk = ∫
�ijk

−〈∇zijk,∇ϕm〉 + 4π2|V ijk |2zijkϕm
+iπ

(〈∇zijk, V ijk〉 + div
(
V ijkzijk

))
ϕm,

∇P ijk
ε = 1

ε2

∫
�ijk

zijk
(∣∣zijk∣∣2 − 1

)
ϕm,

.

with m = 1, 2, 3.

k

i

j

ϕi

1

i

j

ϕj1

k

i

j

ϕk1

k

Fig. 3 The three local FEM basis functions on the element ijk



260 V. Blanchi et al.

3 Results

This article focuses on the parametrization step of the quad meshing pipeline, thus
the results shown in Fig. 4 show a unit grid texture image applied to the domain, we
do not extract actual quad meshes.

For the sake of clarity, we presented an algorithm for integrating non-singular
frame fields over a flat 2D domain. While it is perfectly possible to compute a
periodic global parameterization of a 3D triangulated surface with Ginzburg-Landau
functional, as well as to incorporate the frame field singularities in the computation,
the notations become cumbersome and we prefer to avoid it.

For Fig. 1, the vector fields are obtained by solving (2) as specified in [1]. For the
other examples (Figs. 4 and 5), the vector fields are computed as two independent
orthogonal unit vector fields U and V . First, we partition the boundary in two
complementary sets based on the normal orientation. If the normal is close to the
x-axis, the point belongs to ∂�u, but if it is closer to the y-axis, it belongs the set
∂�v. Second, we find the smoothest non-singular unit vector field U normal to the
boundary on ∂�u and tangent to the boundary on ∂�v by smoothly interpolating
the angle of the vector. The vector field V is obtained by 90° rotation of U .

The vector fields U,V are then integrated separately by doing the Newton
iterations of (9) for decreasing values of ε. The boundary conditions naturally arise
from the construction of the vector fields, i.e., U = 1 on ∂�u and V = 1 on ∂�v .

The frame field on Fig. 1 exhibits a limit cycle making it non-integrable. Thus
standard integration algorithms often fail to output a valid quad mesh. Our method
is able to correctly place a singularity (middle image) which can be turn it a quad
mesh (right image). Frame fields used for our results are singularity-free, yet
our algorithm is able compute smooth parametrizations with a minimal amount of

Fig. 4 Examples of parametrization obtained with our resolution of periodic global parametriza-
tion with Ginzburg-Landau functional. Note that the algorithm tries to limit the number of
singularities and optimally places unavoidable dipoles



Global Parametrization Based on Ginzburg-Landau Functional 261

Fig. 5 Comparison between one step of periodic global parametrization (left) and our periodic
global parametrization with Ginzburg-Landau functional (right). Note that our algorithm removes
unnecessary singularities and produces more regular quads

parameterization singularities as shown in Fig. 4. In Fig. 5, we compare our results
with a naive implementation of PGP, simply solving (3) as a quadratic problem
by removing the unit norm constraint. It is easy to see that the parameterization
obtained with the Ginzburg-Landau functional is more regular and presents less
singularities. Moreover, in the some dramatic cases, omitting the unit norm
constraint makes PGP unable to output valid parametrization (see Fig. 2)



262 V. Blanchi et al.

4 Conclusion

The main goal of this article is to underline the similar nature between frame field
generation and periodic global parameterizations. Both problems can be solved
by (almost) the same set of equations using the Ginzburg-Landau functional. This
article brings a solid theoretical basis that allows to solve accurately the periodic
global parameterization problem, making the problem well-posed and leading to an
automatic and optimal singularity placement in the parametrization.

References

1. Beaufort, P.A., Lambrechts, J., Henrotte, F., Geuzaine, C., Remacle, J.F.: Computing cross
fields a pde approach based on the ginzburg-landau theory. Procedia Eng. 203, 219–231
(2017)

2. Bethuel, F., Brezis, H., Hélein, F., et al.: Ginzburg-landau Vortices, vol. 13. Springer, New
York (1994)

3. Blacker, T.D., Stephenson, M.B.: Paving: A new approach to automated quadrilateral mesh
generation. Int. J. Numer. Methods Eng. 32(4), 811–847 (1991). https://onlinelibrary.wiley.
com/doi/abs/10.1002/nme.1620320410

4. Hertzmann, A., Zorin, D.: Illustrating smooth surfaces. In: Proceedings of SIGGRAPH 2000,
pp. 517–526 (2000)

5. Kälberer, F., Nieser, M., Polthier, K.: Quadcover-surface parameterization using branched
coverings. In: Computer Graphics Forum, vol. 26.3, pp. 375–384. Wiley Online Library
(2007)

6. Knöppel, F., Crane, K., Pinkall, U., Schröder, P.: Globally optimal direction fields. ACM
Trans. Graph. 32(4) (2013)

7. Knöppel, F., Crane, K., Pinkall, U., Schröder, P.: Stripe patterns on surfaces. ACM Trans.
Graph. 34(4), 1–11 (2015)

8. Myles, A., Pietroni, N., Zorin, D.: Robust field-aligned global parametrization. ACM Trans.
Graph. 33(4), 1–14 (2014)

9. Owen, S.J., Staten, M.L., Canann, S.A., Saigal, S.: Q-morph: an indirect ap-
proach to advancing front quad meshing. Int. J. Numer. Methods Eng. 44(9),
1317–1340 (1999). http://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207
%2819990330%2944%3A9%3C1317%3A%3AAID-NME532%3E3.0.CO%3B2-N

10. Palacios, J., Zhang, E.: Rotational symmetry field design on surfaces. ACM Trans. Graph.
26(3) (2007). http://doi.acm.org/10.1145/1276377.1276446

11. Ray, N., Sokolov, D.: Robust polylines tracing for n-symmetry direction field on triangulated
surfaces. ACM Trans. Graph. 33(3), 1–11 (2014)

12. Ray, N., Li, W.C., Lévy, B., Sheffer, A., Alliez, P.: Periodic global parameterization. ACM
Trans. Graph. 25(4), 1460–1485 (2006)

13. Ray, N., Vallet, B., Alonso, L., Levy, B.: Geometry-aware direction field processing. ACM
Trans. Graph. 29(1), 1:1–1:11 (2009). http://doi.acm.org/10.1145/1640443.1640444

14. Rivière, T., Given, M.c., Harpes, P.: Asymptotic analysis for the ginzburg-landau equations
(1997)

15. Sageman-Furnas, A.O., Chern, A., Ben-Chen, M., Vaxman, A.: Chebyshev nets from
commuting polyvector fields. ACM Trans. Graph. (TOG) 38(6), 1–16 (2019)

16. Sokolov, D., Ray, N., Untereiner, L., Lévy, B.: Hexahedral-dominant meshing. ACM Trans.
Graph. 35(5) (2016). https://doi.org/10.1145/2930662

17. Viertel, R., Osting, B.: An approach to quad meshing based on harmonic cross-valued maps
and the ginzburg–landau theory. SIAM J. Sci. Comput. 41(1), A452–A479 (2019)

https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620320410
https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.1620320410
http://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2819990330%2944%3A9%3C1317%3A%3AAID-NME532%3E3.0.CO%3B2-N
http://onlinelibrary.wiley.com/doi/abs/10.1002/%28SICI%291097-0207%2819990330%2944%3A9%3C1317%3A%3AAID-NME532%3E3.0.CO%3B2-N
http://doi.acm.org/10.1145/1276377.1276446
http://doi.acm.org/10.1145/1640443.1640444
https://doi.org/10.1145/2930662


Parametrization of Plane Irregular
Regions: A Semi-automatic Approach I

Pablo Barrera and Iván Méndez

Abstract In some problems, the solutions of partial differential equations
use parametrizations of plane regions. However, it is difficult to get suitable
parametrizations of irregular regions. In this paper we introduce a method for
finding a parametrization of a polygonal region �. Our method decomposes � into
a finite collection of admissible subregions. We use compatible parametrizations of
these subregions to construct the parametrization of � as a block structured mesh.

1 Introduction

The parametrizations of irregular regions have many applications in Computer
Aided Design, Engineering Modeling, and Shape Recognition [15]. The Finite
Element Analysis and the Isogeometric Analysis use parametrizations of plane
regions to solve partial differential equations [10].

Our UNAMALLA workgroup has generated bilinear and biquadratic B-splines
parametrizations of simply connected regions using structured mesh generation [1,
2]. Nevertheless, some cells are elongated or skewed on highly irregular regions.
This limitation can be overcome by splitting the region into subregions suitable for
parametrization.

The problem we address is to decompose polygonal regions into admissible
subregions and generate compatible parametrizations of these subregions. We want
a method to solve this problem.

Researchers in Computer Aided Design have developed some methods for
constructing compatible parametrizations of 2D regions. In that regard, Xu G. et
al. [18, 19] have constructed high quality parametrizations by solving constrained
optimization problems. Even so the overall process is computationally expensive
for irregular regions.

P. Barrera · I. Méndez (�)
Faculty of Sciences, National Autonomous University of Mexico, Mexico City, Mexico
e-mail: pablobarrera@ciencias.unam.mx; vanmc@ciencias.unam.mx

© Springer Nature Switzerland AG 2021
V. A. Garanzha et al. (eds.), Numerical Geometry, Grid Generation and Scientific
Computing, Lecture Notes in Computational Science and Engineering 143,
https://doi.org/10.1007/978-3-030-76798-3_17

263

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76798-3_17&domain=pdf
mailto:pablobarrera@ciencias.unam.mx
mailto:vanmc@ciencias.unam.mx
https://doi.org/10.1007/978-3-030-76798-3_17


264 P. Barrera and I. Méndez

On the other hand, admissible subregions and their compatible parametrizations
can be efficiently constructed by automatic methods of block structured mesh
generation. Zint et al. [21] use triangulations for region decomposition, so the block
connectivity depends on the triangulation. Bommes et al. [6] use the singularities of
a cross-field to construct a family of parametrizations between coarse quad layouts
of surfaces. Nevertheless, as the number of singularities increases, the number
of layouts also increases. Recently, Xiao et al. [17] use the singular points of a
cross-field to generate high quality structured meshes with smooth lines between the
subregions. However, they provide examples in which the geometry is not irregular.
On the other hand, Zhang et al. [20] decompose a polygonal region into a main
block with multiple subregions organized in a hierarchy structure. Mesh generation
is automatically carried out block by block from the main root block to the highest
level. This method is not easy to extend to multiply-connected regions.

In this paper we propose a method to find both admissible subregions and
their compatible parametrizations. Our method consists of two stages: region
decomposition and parametrization construction.

Motivated by Liu et al.[13], we propose in Sect. 2 an interactive region decom-
position method to obtain admissible subregions. In Sect. 3 the parametrization
construction is carried out from the boundary to the interior of the subregions.
First, the subregion boundaries are approximated by compatible B-splines curves
in Sect. 3.1. Then, these curves are extended into the whole region by structured
mesh generation in Sect. 3.2. Finally, we summarize the main steps of our method
and show some examples to illustrate its robustness in Sect. 4.

2 Region Decomposition

Region decomposition is a fundamental step in our method. Let � be a a counter-
clockwise oriented polygonal region. We decompose � into non-overlapping
admissible polygons. A polygonal region is admissible if it has a parametrization
such that its cells are rectangle-like quadrilaterals.

The key point of our region decomposition is the concavity. Lien [12] decom-
poses recursively a polygon into approximate convex polygons. He introduces
concavity criteria to decompose polygons. Later, Liu et al. [13] proposed the Dual-
space Decomposition (DUDE) to split polygons using their convex complements.

2.1 Concavity Measures and Admissible Regions

We use some concepts introduced in Lien [12] and Liu et al. [13] to measure the
concavity of �. Let H(�) be the convex hull of �. The convex complement
of � is H(�) \ �. The bridges of � are line segments contained in the convex
complement of � which join two points in ∂�. Each bridge β has a pocket ρ, that



Parametrization of Plane Irregular Regions: A Semi-automatic Approach I 265

Fig. 1 Convex complement of the region Gulf and some of its bridges and pockets. The red
point has the largest concavity in the corresponding pocket

is, the polygonal curve of ∂� with the smallest length which joins the ending points
of β (Fig. 1).

We measure the concavity of pocket points and bridges. Let β be a bridge of �
with pocket ρ. The concavity of a point x of ρ is the distance from x to β. This
distance is the straight line distance to β or the arc length of the polygonal curve in
ρ which joins x with the nearest ending point of β.

The concavity of a bridge is the largest concavity of its pockets points. We
measure the concavity of the bridges using the straight line distance to the bridges.
The largest concavity of the bridges of � is denoted by c1(�). The region � is
scaled inside a circle of radius one centered at the centroid of � so that c1(�) be
scale independent.

In addition to the concavity measures in [12, 13], we introduce the concavity
measure

c2(�) := Area(H(�))− Area(�)

Area(H(�))
. (1)

This is the relative size of region with respect to its convex hull.



266 P. Barrera and I. Méndez

Regions with small concavity measures are suitable for parametrization, so we
want subregions of � that satisfy the following concavity criteria:

• 1° concavity criterion: The concavity of the bridges of � is small.

c1(�) ≤ τ1, τ1 ∈ (0, 1). (2)

• 2° concavity criterion: The area difference between the region and its convex
hull is small.

c2(�) ≤ τ2, τ2 ∈ (0, 1). (3)

Regions which satisfy both concavity criteria are admissible regions. So convex
regions are admissible. On the other hand, non-convex regions which do not
satisfy the previous criteria are decomposed into admissible subregions. We want
an admissible decomposition of �, that is, a collection {�k}nk=1 of polygonal
subregions of � such that

1. � = ∪n
k=1�k .

2. �i ∩�j 	= ∅ -⇒ �i ∩�j ⊂ ∂�i ∩ ∂�j ∀i, j .
3. Each �k satisfies both concavity criteria (2)–(3).

2.2 Decomposition Method

Our decomposition method is interactive. It uses some ideas of DUDE [13]. The
region � is recursively split into two subregions �1 and �2 by a cut when � does
not satisfy the concavity criteria (2)–(3) (Fig. 2).

A cut of � is a line segment in the interior of � which joins two points of ∂�.
We make a cut in each step of our method. However, not just any cut separates �
into admissible subregions. We propose an interactive cut choice method based on
concavity measures. It consist of the following steps:

1. Compute the convex hull H(�)

2. Find the pockets of � with ending points in the boundary of H(�). Select the
pockets such that their union with the corresponding bridges have large area.

3. In each pocket compute the concavity of their points using either the straight line
distance or the arc length. Select a point x1 with large concavity in a pocket ρ1
as an ending point of the cut.

4. Select a point x2 with large concavity in a pocket different from ρ1 such that the
segment x1x2 is a cut, else choose x2 as an intersection point of ∂� with the
line P perpendicular to the bridge of ρ1 which passes at x1. Otherwise choose
x2 ∈ ∂� \ ρ1 with the smallest straight line distance to x1 such that the segment
x1x2 does not cross previous cuts of � (Fig. 3).

The segment x1x2 is the chosen cut of �.



Parametrization of Plane Irregular Regions: A Semi-automatic Approach I 267

Fig. 2 The decomposition process of the region Gulf. The cuts are colored in each step and the
subregions are labeled by 1–2 tuples to indicate a binary tree structure

(a) (b)

Fig. 3 Choices for a cut x1x2 in our region decomposition method. (a) Pocket points x1 and
x2 with large concavity in different pockets. (b) A pocket point x1 with large concavity and the
intersection x2 of ∂� and the line P



268 P. Barrera and I. Méndez

Our region decomposition method is shown in Algorithm 1. We interactively
choose suitable cuts in each step. These cuts does not necessarily connect two
pockets. On the other hand, the DUDE method joins points with large concavity
measure and automatically selects the cuts using a triangulation.

Algorithm 1 Region decomposition method
procedure DECOMPOSITION(�)

if � satisfies both concavity criteria (2)–(3) then
return �

else
x1x2 ← Cut Choice Method(�)
split � into �1 and �2 using the cut x1x2
Decomposition(�1)
Decomposition(�2)

end if
end procedure

3 Parametrization Construction

Our next task is to find compatible parametrizations of admissible subregions.
Any two parametrizations of different subregions are compatible if they have the
same points on the intersection. First, we generate compatible parametrizations
of the boundaries. Then, we extend these parametrizations into the interior of the
subregions.

3.1 Compatible Parametrizations of the Boundaries

Let {�k}nk=1 be an admissible decomposition of �. We want to parametrize ∂�k on
the boundary of R = [0, 1]× [0, 1]. To that end, we split ∂�k into four consecutive
polygonal curves �k,bottom,�k,right, �k,top and �k,left delimited by four points of
∂�k. The polygonal curves�k,bottom and �k,top are opposite boundaries of �k . The
same applies for �k,right and �k,left.

Since the subregions �k are admissible, we can manually choose four points of
∂�k such that their interior angles are less than 180° and the opposite boundaries
have approximately the same length. Zhang et al. [20] propose another choice for
the four points.

We identify the decomposition cuts of � in the four boundary curves of each
suregion, then we split each one of polygonal curves �k,bottom,�k,right, �k,top and
�k,left into consecutive polygonal sections which are either cuts of � or maximal
polygonal curves contained in ∂�. We enumerate these polygonal sections starting
with �k,bottom, then the sections in �k,right and �k,top, and finally those in �k,left
for k = 1, . . . , n. These sections form a polygonal decomposition {Qp}sp=1 of
∪n
k=1∂�k (Fig. 4).



Parametrization of Plane Irregular Regions: A Semi-automatic Approach I 269

Fig. 4 The region � is split into �1,�2 and �3. We split ∂�1 ∪ ∂�2 ∪ ∂�3 into 17 polygonal
sections Qp . The sections Q2,Q7,Q11 and Q17 are cuts of � while the other sections are
contained in ∂�. The boundary curve �2,right is split into three sections while �3,left is split
into two sections

Fig. 5 The sections of the boundaries in Fig. 4 are reparametrized as polygonal curves �p and the
four boundary curves of each subregion are reparametrized as �k,b, �k,r , �k,t and �k,l

Each polygonal section Qp is reparametrized with respect to arc-length as a
polygonal curve �p with equidistant points. We join the sections �p to obtain
reparametrizations of �k,bottom, �k,right, �k,top and �k,left denoted by �k,b, �k,r,
�k,t and �k,l, respectively (Fig. 5).

Afterwards, we generate four uniform linear B-spline curves:

ψk,bottom : [0, 1] → �k,b,

ψk,right : [0, 1] → �k,r,

ψk,top : [0, 1] → �k,t,

ψk,left : [0, 1] → �k,l.



270 P. Barrera and I. Méndez

The control points of these B-spline curves are given by their polygonal curves. We
combine these curves to get parametrizations ψk : ∂R → ∂�k .

We want to extend ψk to the interior of �k as explained by the UNAMALLA
workgroup [1]. To that end, ψk,bottom and ψk,top must have the same number of
points and the same condition on ψk,right and ψk,left, that is,

number of points of �k,b = number of points of �k,t, (4)

number of points of �k,r = number of points of �k,l. (5)

Let mp be the number of points of �p. In order to formulate Eqs. (4) and (5) in
terms of mp we identify the sets of indexes of the polygonal sections �p in each
subregion by introducing some notation.

Let sk,b, sk,r , sk,t and sk,l be the number of polygonal sections �p in �k,b, �k,r,
�k,t and �k,l, respectively. Denote by sk the number of polygonal sections �p in
�k,b ∪ �k,r ∪ �k,t ∪ �k,l. Let

σk =

⎧
⎪⎨
⎪⎩

0, if k = 1;
k−1∑
�=1

s�, if k > 1; k = 1, . . . , n.

We define the set of indexes

Jk,b = σk + {
1, . . . , sk,b

}
,

where the sum means that σk is added to each element of the other set. Similarly,
we define

Jk,r = σk + {
sk,b + 1, . . . , sk,b + sk,r

}
,

Jk,t = σk + {
sk,b + sk,r + 1, . . . , sk,b + sk,r + sk,t

}
,

Jk,l = σk + {
sk,b + sk,r + sk,t + 1, . . . , sk

}
.

Then, Eqs. (4)–(5) are formulated as
∑
j∈Jk,b

mj − sk,b =
∑
j∈Jk,t

mj − sk,t , (6)

∑
j∈Jk,r

mj − sk,r =
∑
j∈Jk,l

mj − sk,l . (7)

We want compatible parametrizations of the boundaries. So they must have the
same points in the intersections. By construction, the intersections of the subregions
are cuts of �. Since we have n subregions, there are n − 1 cuts. Let {ci}n−1

i=1 be the
set of the decomposition cuts of �. For each cut ci we have exactly two polygonal
sections of ∪n

k=1∂�k which coincide with ci .



Parametrization of Plane Irregular Regions: A Semi-automatic Approach I 271

Let us remember that s is the number of polygonal sections �p in ∪n
k=1∂�k. Let

γi, δi ∈ {1, . . . , s} be the indexes of two sections which coincide with ci . Then
ψ1, . . . , ψn are compatible if

mγi = mδi , i = 1, . . . , n− 1. (8)

Let q = 3n− 1. We put together Eqs. (6)–(8) as the system of linear equations

Am = b, (9)

where A ∈ Z
q×s with entries given by

a2k−1,j =
⎧⎨
⎩

1, if j ∈ Jk,b;
−1, if j ∈ Jk,t ;

0, otherwise;
k = 1, . . . , n,
j = 1, . . . , s.

a2k,j =
⎧⎨
⎩

1, if j ∈ Jk,r ;
−1, if j ∈ Jk,l;

0, otherwise

k = 1, . . . , n,
j = 1, . . . , s.

a2n+i,j =
⎧⎨
⎩

1, if j = γi;
−1, if j = δi;

0, otherwise

i = 1, . . . , n− 1,
j = 1, . . . , s,

b is a vector in Z
q with entries given by

b2j−1 = sj,b − sj,t , j = 1, . . . , n;
b2j = sj,r − sj,l , j = 1, . . . , n;
bj = 0, j = 2n+ 1, . . . , 3n− 1,

and

m = [
m1 · · · ms

]T
.

The system of linear equations (9) is underdetermined since the matrix A has
3n − 1 rows and for each subregion there are at least four boundary curves, i.e.,
there are at least 4n variables.

The vector m can be chosen as the solution of a linear integer programming
problem:

min
{
1Tm : m ∈ Z

s , Am = b
}
, (10)

where 1 is the vector of s ones. However, some entries of the optimal solution of
the problem (10) could be negative or zero.



272 P. Barrera and I. Méndez

Let �p be the length of the polygonal section �p. We choose compatible number
of points so that their sum is minimized and the boundary point distribution depends
on �p. Let �min be the length of the smallest �p. Given K ∈ N, we measure the
proportion of �p in comparison to �min by

Lp = K

⌈
�p

�min

⌉
. (11)

Since the number of boundary points in �p is mp, we distribute at least Lp

points in �p by adding the constraint mp > Lp to the problem (10). So we solve
the following integer linear programming problem:

min
{
1Tm : m ∈ Z

s, Am = b,mp ≥ Lp p = 1, . . . , s
}
. (12)

By construction, b is an integer vector and A is a totally unimodular matrix, that
its, all its square submatrices have determinant 0, 1 or −1. Therefore, the integer
programming problem (12) is feasible by the Hoffmann-Kruskal theorem [14].

We get compatible mesh sizes by solving the problem (12). Other authors
use a tree structure of the region decomposition [20]. The parametrizations
ψk,bottom, ψk,right, ψk,top and ψk,left with these mesh sizes are compatible.

3.2 Parametrizations of the Subregions

Now, we extend the parametrization ψk into the interior of �k. Let Mk be the
number of points of �k,b, and let Nk be the number of points of �k,r We generate
convex structured quadrilateral meshes

Gk =
{
P
(k)
i,j ∈ �k : i = 1, . . . ,Mk, j = 1, . . . , Nk

}

such that

points of �k,b =
{
P
(k)
i,1 : i = 1, . . . ,MK

}
,

points of �k,r =
{
P
(k)
Mk,j

: j = 1, . . . , NK

}
,

points of �k,t =
{
P
(k)
i,Nk

: i = 1, . . . ,MK

}
,

points of �k,l =
{
P
(k)
1,j : j = 1, . . . , NK

}
.

The meshes Gk are automatically generated using the discrete variational ap-
proach of our UNAMALLA workgroup [3, 4, 16]. Garanzha [8] and Ivanenko [11]
generate quadrilateral meshes with boundary adaptability.



Parametrization of Plane Irregular Regions: A Semi-automatic Approach I 273

By construction, the boundary points of Gk are the control points of the linear B-
spline curves ψk,bottom, ψk,right, ψk,top and ψk,left. Since the polygonal curves �k,b,
�k,r, �k,t and �k,l satisfy Eqs. (4) and (5), the meshes G1, . . . ,Gn are compatible
and their union is a block structured mesh G on �.

We use Gk to extend the boundary parametrization into the interior of �k

following the approach of the UNAMALLA workgroup [1]. Let B2
i,Mk

be the i-
th linear B-spline with knot sequence given by a uniform partition of [0, 1] with
Mk elements for i = 1, . . . ,Mk , and let B2

j,Nk
be the j -th linear B-spline with knot

sequence given by a uniform partition of [0, 1] with Nk elements for j = 1, . . . , Nk .
We use the parametrizations ϕk : R → �k given by the bilinear tensor product B-
spline

ϕk(ξ, η) =
Mk∑
i=1

Nk∑
j=1

P
(k)
i,j B

2
i,Mk

(ξ)B2
j,Nk

(η), ξ, η ∈ [0, 1]. (13)

Let us make a few observations of these parametrizations:

• The control points of ϕk are the points of Gk .
• The map ϕk is 1-1 since all the cells of Gk are convex [1].
• By construction,

ϕk|∂�k ≡ ψk. (14)

Moreover, since ψ1, . . . , ψn are compatible, then ϕ1, . . . , ϕn are compatible.

Therefore, we have decomposed the region � into a set of admissible regions
�1, . . . , �n, and we have constructed a family of compatible and admissible
parametrizations ϕ1, . . . , ϕn for these subregions given by (13).

4 Summary and Examples

We summarize the key points of our methodology:

1. Get an admissible decomposition {�k}nk=1 of � by Algorithm 1.
2. In each �k choose four points as explained in Sect. 3.1.
3. Identify the cuts of � in each ∂�k and split ∪n

k=1∂�k into polygonal sections.
Reparametrize these sections and join them to obtain reparametrizations �k,b,
�k,r, �k,t and �k,l of the four boundary curves.

4. Solve the integer linear programming problem (12) to get compatible number of
points for �k,b, �k,r, �k,t and �k,l.

5. Generate convex structured quadrilateral meshes Gk on �k such that their
boundary points are the points of �k,b, �k,r, �k,t and �k,l.

6. Construct parametrizations ϕk using the bilinear tensor product B-spline (13).



274 P. Barrera and I. Méndez

We generate parametrizations of four irregular polygonal regions using our
method. First, the region decomposition is interactively carried out using our
subroutines in JULIA [5] with concavity criteria tolerances τ1 = 0.1 and τ2 = 0.45.
We do not use the DUDE code. Then, a Julia interface of the COIN-OR Branch and
Cut solver [7] is used to solve the integer programming problem (12). We choose
K = 2 for the lower bound Lp given by (11). Finally, automatic mesh generation
is carried out by our UNAMALLA software [16] using a convex combination of
the weighted discrete functionals Hω and Area-Orthogonality so that mesh cells are
accumulated in the boundary of the subregions [4, 9].

The region decomposition of the four polygonal regions and their corresponding
block structured meshes are shown in Figs. 6, 7, 8, and 9. Table 1 shows the number
of points, subregions and polygonal sections �p of each region.

Fig. 6 Admissible decomposition of Titicaca and its block structured mesh



Parametrization of Plane Irregular Regions: A Semi-automatic Approach I 275

67

10 14 16

11
2

13 12
17 15

Fig. 7 Admissible decomposition of the region Gulf and its block structured mesh



276 P. Barrera and I. Méndez

Fig. 8 Admissible decomposition of the region Jalisco and its block structured mesh



Parametrization of Plane Irregular Regions: A Semi-automatic Approach I 277

Fig. 9 Admissible decomposition of the region Spider [13] and its block structured mesh



278 P. Barrera and I. Méndez

Table 1 Number of points, subregions and polygonal sections in our example regions

Region
Number of
points

Number of
subregions

Number of polygonal
sections �p

Gulf
199 17 88

Gulf of Mexico

Titicaca
365 32 161

Lake Titicaca in Peru

Jalisco
120 28 139

State of Jalisco in Mexico

Spider [13] 1388 33 150

5 Conclusions and Future Work

We have proposed a methodology to find a decomposition of an irregular polygonal
region into admissible subregions and a family of compatible bilinear B-spline
parametrizations of these subregions.

Irregular regions are interactively decomposed into admissible subregions using
concavity measures. Then, the subregion boundaries are parametrized by compati-
ble linear B-spline curves. Afterwards, these parametrizations are extended into the
interior of the subregions as compatible bilinear B-splines by automatic structured
mesh generation.

We plan to measure the quality of our meshes using the quality measures
reported by UNAMALLA [9]. Our parametrizations are compatible, but they are
not necessarily smooth between the subregions. We address this issue later.

We want to extend our method to multiply-connected plane regions. Our results
would be submitted in the part II of this paper. We thank the anonymous referees
that help us to make significant changes to improve our paper.

References

1. Abello, I.A., Hernández, V., Barrera, P., González, G.F.: Parametrización B-spline de regiones
planas con frontera irregular. Ci. Mat. 31:2, 95–107. Cuba (2017)

2. Abello, I.A., Hernández, V., Barrera, P., González, G. F.: Injectivity of B-spline biquadratic
maps. Comput. Methods Appl. Mech. Eng. 341, 586–608. Elsevier (2018)

3. Barrera, P., González, G.F., Domínguez, F.J.: Robust discrete grid generation on plane irregular
regions. USSR Comput. Math. Math. Phys. 43(6), 884–892 (2003)

4. Barrera, P., Cortés, J.J., González, G.F., Domínguez, F.J., Tinoco, J.G.: Smoothness and convex
area functionals revisited. SIAM J. Sci. Comput. 32(4), 1913–1928 (2010)

5. Bezanson, J., Edelman, A., Karpinski, S., Shah V.B.: Julia: a fresh approach to numerical
computing. SIAM Rev. 59(1), 65–98 (2017)

6. Bommes, D., Campen, M., Ebke, H.C., Alliez, P., Kobbelt, L.: Integer-grid maps for reliable
quad meshing. ACM Trans. Graph. 32(4) (2013). https://doi.org/10.1145/2461912.2462014

7. Forrest, J., Ralph, T., Vigerske, S.: coin-or/Cbc: Version 2.9.9. https://projects.coin-or.org/
Cbc. Cited 19 July 2018

https://doi.org/10.1145/2461912.2462014
https://projects.coin-or.org/Cbc
https://projects.coin-or.org/Cbc


Parametrization of Plane Irregular Regions: A Semi-automatic Approach I 279

8. Garanzha, V.A.: Barrier method for quasi-isometric grid generation. Comput. Math. Math.
Phys. 40(11), 1617–1637 (2000)

9. González G. F.: Generación Numérica de Mallas Estructuradas de Calidad y Adaptativas
en Regiones Planas Irregulares. PhD. Thesis. Universidad Nacional Autónoma de México.
México (2018)

10. Gravesen, J., Evgrafov, A., Nguyen, M., Nørtoft, P.: Planar parametrization in isogeometric
analysis. In: Floater, M., et al. (eds) Mathematical Methods for Curves and Surfaces. MMCS
2012. Lecture Notes in Computer Science, vol. 8177. Springer, New York (2014). https://doi.
org/10.1007/978-3-642-54382-1_11

11. Ivanenko, S.A.: Control of cells shapes in the course of grid generation. Comput. Math. Math.
Phys. 40(11), 1596–1616 (2000)

12. Lien, J.: Approximate Convex Decomposition and its Applications. PhD. Thesis. Texas A&M
University, USA (2006)

13. Liu, G., Xi, Z., Lien, J.: Dual-Space Decomposition of 2D Complex Shapes. In: IEEE
Conference on Computer Vision and Pattern Recognition, pp. 4154–4161 (2014)

14. Schrijver, A.: Theory of Linear and Integer Programming. Wiley, New York (1998)
15. Sheffer. A., Praun, E., Rose, K.: Mesh Parameterization Methods and Their Applications.

Found. Trends Comput. Graphics Vision 2(2), 105–171 (2006)
16. UNAMalla Workgroup: UNAMalla: Version 5.0.

http://www.mathmoo.unam.mx/unamalla. Cited 23 May 2013
17. Xiao, Z., He, S., Xu, G., Chen, J., Wu, Q.: A boundary element-based automatic domain

partitioning approach for semi-structured quad mesh generation. Engrg. Anal. Boundary Elem.
11, 133–144. Elsevier (2020)

18. Xu, G., Mourrain, B., Duvigneau, R., Galligo, A.: Parametrization of computational domain
in isogeometric analysis: methods and comparison. Comput. Methods Appl. Mech. Eng. 200,
23–24, 2021–2031. Elsevier (2011). https://doi.org/10.1016/j.cma.2011.03.005

19. Xu, G., Li, M., Mourrain, B., Rabczuk, T., Xu, J., Bordas, S.P.A.: Constructing IGA-suitable
planar parametrization from complex CAD boundary by domain partition and global/local
optimization. Comput. Methods Appl. Mech. Eng. 328, 175–200 (2018)

20. Zhang, Y., Jia, Y.: 2D automatic body-fitted structured mesh generation using advancing
extraction method. J. Comput. Phys. 353, 316–335. Elsevier (2018). https://doi.org/10.1016/
j.jcp.2017.10.018

21. Zint, D., Grosso, R., Aizinger, V., Köstler, H.: Generation of block structured grids on
complex domains for high performance simulation. In: Garanzha, V.A., et al. (eds.) Numerical
Geometry, Grid Generation and Scientific Computing. Lecture Notes in Computational Science
and Engineering, vol. 131, pp. 87–99. Springer, New York (2019). https://doi.org/10.1007/978-
3-030-23436-2_6

https://doi.org/10.1007/978-3-642-54382-1_11
https://doi.org/10.1007/978-3-642-54382-1_11
http://www.mathmoo.unam.mx/unamalla
https://doi.org/10.1016/j.cma.2011.03.005
https://doi.org/10.1016/j.jcp.2017.10.018
https://doi.org/10.1016/j.jcp.2017.10.018
https://doi.org/10.1007/978-3-030-23436-2_6
https://doi.org/10.1007/978-3-030-23436-2_6


A Hybrid Approach to Fast Indirect
Quadrilateral Mesh Generation

Daniel Zint and Roberto Grosso

Abstract Indirect quadrilateral mesh generation methods are commonly used
particularly for numerical simulations due to their adaptiveness to different element
sizes across the domain. The well-known Blossom-Quad algorithm generates high
quality meshes but has a worst case complexity of O

(
N2 +N logN

)
. A method

which merges triangles using topological operations is less complex, indeed we
show that it has a complexity of O(N logN), but resulting meshes might have
low quality especially near boundaries. We propose a combination of these two
methods. Boundary regions are processed by Blossom-Quad and the interior by
triangle merging. Post-processing solves quality issues caused by triangle merging.
The results are comparable to pure Blossom-Quad but this approach is much faster.
Therefore, it is favorable especially on large meshes where the runtime of Blossom-
Quad might become troublesome. The efficiency of this hybrid approach is shown
on ocean meshes with up to several million triangles.

1 Introduction

Quadrilaterals are often favored over triangles in numerical simulations for various
reasons. Besides requiring less memory, quadrilateral (quad) meshes are known to
have several positive side effects on simulations [2]. A well-known quad meshing
algorithm is Blossom-Quad [28]. It belongs to the group of indirect quad meshing
methods, i.e., it requires a triangle mesh as input. Triangles are merged by solving
the best matching problem of graph theory with Edmonds’ Blossom algorithm [14–
16]. Remaining triangles only exist on boundaries and appear pairwise. They can
be eliminated by duplicating vertices, swapping, or collapsing edges. A major
drawback of Blossom-Quad is its worst case complexity of O

(
N2 +N logN

)
,

where N is the number of triangles [19]. Even though modern implementations like

D. Zint (�) · R. Grosso
Visual Computing, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
e-mail: daniel.zint@fau.de; roberto.grosso@fau.de

© Springer Nature Switzerland AG 2021
V. A. Garanzha et al. (eds.), Numerical Geometry, Grid Generation and Scientific
Computing, Lecture Notes in Computational Science and Engineering 143,
https://doi.org/10.1007/978-3-030-76798-3_18

281

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76798-3_18&domain=pdf
mailto:daniel.zint@fau.de
mailto:roberto.grosso@fau.de
https://doi.org/10.1007/978-3-030-76798-3_18


282 D. Zint and R. Grosso

the one of Kolmogorov [24] terminate early in many cases, runtime is unpredictable.
It might happen that a mesh with several million triangles is processed within less
than a minute while another mesh with only a fraction of elements takes several
minutes or longer.

Another indirect way of generating quad meshes is merging as many triangles
as possible in a greedy fashion and moving remaining triangles across the mesh to
eventually merge them. This approach is very simple and appears in different forms
in literature [6, 33]. We show that triangle merging is of complexity O(N logN).
Post-processing solves quality issues on the interior. On boundaries, especially
those with complex shapes, achieving good quality with post-processing is difficult.

We present a hybrid approach which uses Blossom-Quad in boundary regions
and triangle merging on the interior, Fig. 1. Blossom-Quad ensures high quality
on boundaries whereas merging the majority of triangles in a more efficient way
improves runtime. This approach outperforms Blossom-Quad on all our test meshes
while yielding similar quality. A positive side effect of our method is that we adjust
our post-processing such that the number of quads is half the number of triangles.
This control over complexity is useful for high performance simulations. For
example, block-structured grids with a precise number of blocks can be generated
this way.

In Sect. 2 we give a brief introduction to quad mesh generation. In Sect. 3
we explain our implementation of triangle merging and show how we combine it
with Blossom-Quad. The post-processing, consisting of smoothing and topological
improvements, is explained in Sect. 4. A comparison of Blossom-Quad, triangle
merging, and the hybrid approach are given in Sect. 5. Finally, conclusions are
drawn in Sect. 6. A C++/CUDA implementation of our method is provided at https://
github.com/DanielZint/RatRace .

(a) (b) (c) (d) (e)

Fig. 1 Hybrid quad mesh generation which performs Blossom-Quad near boundaries and triangle
merging on the interior, followed by smoothing and topological optimization. (a) Triangle mesh.
(b) Blossom-Quad near boundaries. (c) Greedy triangle merging. (d) Merge remaining triangles.
(e) Post-processing

https://github.com/DanielZint/RatRace
https://github.com/DanielZint/RatRace


A Hybrid Approach to Fast Indirect Quadrilateral Mesh Generation 283

2 Related Work

Several papers compare the vast range of quad meshing methods. Bommes et al.
discuss in [7] methods focusing on applications in computer graphics. Armstrong
et al. in [2] and Campen in [8] discuss multi-block structured quad mesh generation.
A survey about unstructured mesh generation is given in [25]. Usually, quad
meshing algorithms are divided into two categories, direct and indirect methods,
depending on weather they construct quads from a triangle mesh or directly.

Advancing front algorithms, mostly considered as indirect methods, work well
on boundaries but might result in poorly shaped elements in the center of a
domain [4, 26, 34]. Other methods use domain decompositions given by the medial
axis [32], a quadtree [3, 30], the Morse-Smale complex [13], or cross fields [5, 22].
They generate mostly structured meshes with overall good quality. The challenging
task here is generating a reasonable domain decomposition which can become
tedious for meshes with complex boundaries and strongly varying element sizes.

Given a triangle mesh, the easiest way to obtain a quad mesh is applying one
Catmull-Clark subdivision step [10]. However, besides increasing the number of
elements by a factor of three, the resulting quad mesh also contains many irregular
vertices. Rank et al. first generate a hybrid mesh by merging neighboring triangles
and perform one subdivision step afterwards [27]. By applying topological changes
Docampo-Sánchez and Haimes generate quad meshes with good quality directly
from a subdivided triangle mesh [12]. However, they have no control over the
element size. Tarini et al. remove triangles of a hybrid mesh by moving them
through the mesh and merging them [33]. The resulting mesh is improved by post-
processing but especially on boundaries quality might not be sufficient.

Remacle et al. formulate triangle merging as the best matching problem of graph
theory and solve it with the Blossom-Quad algorithm [28]. Several methods were
developed to improve the triangle mesh before applying Blossom-Quad [17, 20,
29]. Often it is used to generate hybrid meshes which are then subdivided using
Catmull-Clark. This is for example the default behavior in Gmsh [21]. The method
generates overall good quality but has performance issues because of its complexity
of O

(
N2 + N logN

)
.

3 Hybrid Quad Mesh Generation

Our hybrid approach processes boundary regions with Blossom-Quad. Those are
determined by a segmentation step presented in Sect. 3.1. Triangles on the interior
are greedily merged by a method which is based on the one of Rank et al. [27],
Sect. 3.2. In Sect. 3.3 we explain our implementation of triangle merging which
uses the dual graph for finding paths between two triangles. Throughout this work
we explicitly distinguish between nodes and vertices. Nodes belong to the dual
graph, vertices are part of the mesh.



284 D. Zint and R. Grosso

3.1 Segmentation of Boundary Regions

Each boundary vertex gets an index assigned which is unique for the boundary.
Next, all neighboring vertices and also their neighboring vertices inherit the same
index. A triangle is considered as part of the boundary region if all of its vertices
have the same boundary index. Thus, two layers of triangles belong to each
boundary, Fig. 2a. Sharp corners should be avoided in the segmentation. Therefore,
vertices with more than half of their neighbors having a boundary index are also
added to the boundary region. Several boundaries that are close to each other
might have intersecting regions. We solve this by merging those boundary regions
into a single one, Fig. 2b. Furthermore, a boundary region might cut off some
interior triangles from the rest, Fig. 2c. There must exist only one interior region.
Otherwise, triangle merging might have to iterate through boundary regions and
cause unsolvable quality problems. Only the largest of interior regions is not
considered as island. We check for such islands of interior triangles and add them
to the surrounding boundary region, Fig. 2d. As a last step we have to ensure that
all boundary regions consist of an even number of triangles. If this condition is not
satisfied, we just add a random adjacent triangle from the interior.

Blossom-Quad is applied independently to each boundary region. Remaining
triangles are not processed as described by Remacle et al. in [28]. Instead, triangle
merging and post-processing will take care of those.

(a) (b)

(c) (d)

Fig. 2 Segmentation of boundary regions. (a) Several boundaries with unique indices. (b)
Touching boundaries are merged and interior vertices in between are added. (c) Islands of interior
vertices enclosed by a boundary. (d) Islands are added to the boundary



A Hybrid Approach to Fast Indirect Quadrilateral Mesh Generation 285

Table 1 Number of
remaining triangles for the
method of Rank et al. and our
extended version

# remaining triangles

Mesh # triangles Rank et al. Ours

Chile 6,517,764 852,488 142,466

Chile_low 3,396,752 445,780 78,916

Okushiri 3,098,880 142,228 13,510

Ike 2,678,402 229,788 17,296

3.2 Greedy Triangle Merging

A simple and fast way of generating a hybrid mesh from triangles is the method
of Rank et al. [27]. For each edge of the triangle mesh, we compute the quality of
the quad that would be generated by deleting this edge. Edges are deleted greedily
starting with the best quality. With this method a rather high number of triangles
remains. In our tests, approximately 10% could not be merged.

We reduce the number of remaining triangles by extending the method of Rank et
al. We also start with the best edge, i.e., the edge that generates the best quadrilateral,
and remove it but instead of removing the second best edge, we continue triangle
merging in the neighborhood of the best edge. All edges that would generate a quad
incident to the one we just created are stored in a queue, starting with the best edge.
Edges with low quality are omitted. We then merge the edges from this queue,
recursively adding edges in the neighborhood like in the previous step. If the queue
is empty, we add the best remaining edge to the queue and continue until no more
merging is possible.

This extended version of the method of Rank et al. has much less remaining
triangles while also creating quads with good quality. In our tests we had less than
3% of triangles remaining for large meshes. A detailed comparison is given in
Table 1.

3.3 Merging of Remaining Triangles

Triangle merging is performed on the dual graph and is based on concepts
introduced by Tarini et al. [33]. The path between two triangles is determined with
breadth first search (BFS). Two triangles can be merged if there exists a connecting
path purely consisting of quads. Thus, we can always find a quad topology for
any manifold mesh with an even number of triangles as long as the mesh does not
contain multiple independent patches. Having a triangle node ni on the dual graph
we use BFS to find the nearest triangle node nj . Backtracking the path from nj to ni
we modify the dual graph such that nj “moves” towards ni . This graph modification
is done in two steps, merge and split.

Our data structure must be capable of dealing with multiple edges, which appear
when two quads share two edges. We use a modification of the halfedge data



286 D. Zint and R. Grosso

Fig. 3 All possible triangle/quad merges. Blue edges represent the merging path. (a) Single edge.
(b) Multiple edge

structure [23]. Instead of a face, halfedges store their neighboring vertex. Thus,
we can always reconstruct the hybrid mesh from the dual graph. Each element of
the mesh is represented by a node. When merging two nodes that are connected by
a multiple edge we need to store the vertex that is enclosed by the multiple edge.
Therefore, each node contains a vector of vertices.

3.3.1 Merging Nodes

Merging two nodes is an edge collapse where multiple edges have to be considered.
By merging a triangle with a quad we get a pentagon, Fig. 3a, but by merging along
a multiple edge we get a triangle with an unreferenced vertex, Fig. 3b. Multiple
edges appear when two graph edges connect the same two nodes, i.e., there exists a
vertex with two incident edges in the mesh. The unreferenced vertex is stored in the
remaining node.

3.3.2 Splitting Nodes

In the previous step we have merged a triangle with a quad. This produces either a
node with five outgoing halfedges, Fig. 4a, or a node with three outgoing halfedges
and one vertex stored, Fig. 4b. There is only a limited set of possible splits if the
outcome should be again a triangle and a quad. There are at most four possible split
cases when we consider the moving-direction (which might be also a multiple edge).
We choose the case which produces the best quad according to a quality measure,
e.g., the shape metric [31]. Note that this decision won’t stop the mesh from getting
tangled. It merely helps to keep mesh quality somewhat reasonable. Tangling will
be handled by post-processing.

After moving a triangle towards another, the last step is just combining the two
triangles to one quad, i.e., merging two nodes in the dual graph. After merging
all triangles the result is a valid quad topology. However, the chances for having
a tangled result are high. There might also exist valence two vertices in the mesh
which is usually not acceptable. Later we show how to recover mesh quality with
post-processing.



A Hybrid Approach to Fast Indirect Quadrilateral Mesh Generation 287

Fig. 4 All possible node splits when the triangle is moved towards the blue edge. (a) Single edge.
(b) Multiple edge

Fig. 5 Merging on a triangle strip with the maximum amount of operations possible

3.3.3 Complexity of Triangle Merging

The BFS algorithm on triangle meshes has a worst case complexity of O(N), where
N is the number of triangles. If BFS has to be applied to all triangles the worst case
complexity is O(N2). We show that the complexity is actually lower.

Assume a pure triangle mesh on which triangle merging is performed in the
most inefficient way, i.e., with as many operations as possible. In the first step,
triangles will be merged with their direct neighbors. In the worst case, every third
triangle would be left over. We illustrate this for a triangle strip in Fig. 5. Thus,
in the first step we need to perform N/3 operations, one search operation for every
third triangle. When considering more complex examples than a triangle strip, the
number of operations might be actually higher but search is still local and therefore
of O(1) for each triangle. In the second step, BFS needs 3 search operations
(distance on the initial triangle mesh) to find the next triangle. Again, this is only
done for every third triangle, N/32 · 3. In general, BFS requires 3i−1 operations on
3i triangles in the i-th step, N/31 · 3i−1 = N/3. The number of remaining triangles
is reduced by a factor of 3 in every iteration, leading to the following number of
operations:

3i≤N∑
i=1

1

3
N =

i≤log3 N∑
i=1

1

3
N ≤ 1

3
N log3 N. (1)



288 D. Zint and R. Grosso

This estimation only considers the complexity of BFS but all other steps like moving
the triangle are only local operations with O(1) and therefore not relevant. Thus, the
complexity of triangle merging is O(N logN).

4 Post-Processing

Post-processing consists of smoothing and a set of topological operations. For
smoothing we use a combination of Laplacian and optimization-based smoothing.
With the topological operations the number of irregular vertices is reduced. An
interior vertex is considered as irregular if it has more or less than four incident
edges, i.e., its valence is unequal four. Topology is only changed locally to preserve
element size.

Topological Improvements
We use three topological operations: edge swap, diagonal collapse, and vertex split.
Edge swapping is a key feature for topology optimization not just on triangle but also
on quad meshes [9, 12, 33, 34]. There exist three ways to orient an edge between
two quads, Fig. 6a. Thus, there are two possible configurations for an edge swap.
An edge is swapped whenever this reduces the number of irregular vertices.

Vertex split is the inverse operation of diagonal collapse, Fig. 6b. A vertex split
reduces the valence of the vertex and increases the valence of two of its neighbors.
Again, both operations are applied if they reduce the number of irregular vertices.

Fig. 6 Topological operations on quad meshes. (a) Edge swap. (b) Diagonal collapse and vertex
split



A Hybrid Approach to Fast Indirect Quadrilateral Mesh Generation 289

The first step of post-processing is eliminating valence two vertices with diagonal
collapses. Also valence two vertices on boundaries are eliminated if they have low
shape quality (3). For this we set a threshold for the quality to 0.1. Next, we perform
edge swaps, diagonal collapses, and vertex splits.

Diagonal collapses are only performed if the resulting elements do not become
too long. In practice, if the diagonal of the collapsing quad is longer than 1.5 times
the size of the initial edge length in this position, the quad is not collapsed. This
condition is evaluated by using a size function.

Vertex splits are only performed if elements do not become too short. We only
perform vertex splits if the edge that is shortened due to the split is at maximum 0.9
times the size of the initial edge length in this position. Additionally, vertex splits
are only performed if the number of elements is smaller or equal than the expected
number of elements, i.e., half the number of initial triangles. In our experience there
are usually more vertex splits possible than diagonal collapses. Therefore, we do not
consider the number of elements in the diagonal collapse. If the number of quads
is smaller than expected it can be easily increased by performing vertex splits. This
way we can precisely control the number of elements.

Smoothing
For smoothing we use the method discrete mesh optimization (DMO) [35, 36].
DMO evaluates a quality metric on a uniform candidate grid and chooses the
optimal position solving an argmaxmin-problem. DMO does not require derivatives
and therefore the metric can be chosen arbitrarily. We measure element quality with
the shape metric of Stimpson et al. [31],

c = min
i∈[1,4] ci (2)

ci = 2
αi

‖Li‖2 + ‖Li−1‖2 (3)

αi = (Li × Li−1)
ᵀ · n (4)

Li = Pi+1 − Pi , (5)

where ci is the inverse condition of a vertex vi within this quad, Pi is the position,
and n = (0, 0, 1),. For optimization and especially untangling we need to modify
the metric as it has a negative minimum at −1. A common approach for untangling
is using the signed area [18]. We combine shape quality and signed area,

c′i =
{

2 αi
‖Li‖2+‖Li−1‖2 , if αi > 0,

αi , otherwise.
(6)



290 D. Zint and R. Grosso

For vertex repositioning we must not consider the quality of the opposite quad
vertex,

c′(vi) = min(c′i , c′i+1, c
′
i−1). (7)

A similar approach which builds upon the Winslow method was presented by
Charakhch’yan and Ivanenko in [11]. The optimization is here formulated as a
global minimization problem and the objective function contains the inverse shape
quality metric.

Considering only minimal element quality often generates jagged lines within a
mesh. We avoid this by only requiring a shape quality of at least 0.5. If the quality
is higher, we use standard Laplace smoothing.

5 Results

We compare the hybrid approach to Blossom-Quad and pure triangle merging on
several meshes designed for ocean simulation. The meshes chile, chile_low, and
okushiri were generated by Sven Harig at the Alfred Wegener Institute for tsunami
simulations using TsunAWI [1]. All meshes except for diam10/diam11 have
varying element sizes. Besides okushiri and diam10/diam11, they have multiple and
complex boundaries. None of the meshes were pre-conditioned for quad meshing.
In Fig. 7 we show the result of the hybrid approach on mesh chile_low. Quantitative
results are presented in Table 2. Runtimes exclude post-processing as this is applied
to all methods equally. Quality is measured in terms of element shape as defined
in [31]. Irregular vertices are only counted on the interior and displayed relatively
to all interior vertices.

For Blossom-Quad there is no direct link between runtime and mesh size. The
complexity of O

(
N2 + N logN

)
is merely an upper bound and often not reached.

We use Blossom V, an implementation of Kolmogorov [24] which is up to an order
of magnitude faster than prior implementations of Edmonds’ Algorithm. For pure
triangle merging and the hybrid approach runtime scales linearly with mesh size.
The only exceptions are okushiri and diam10/diam11 which have simple boundaries
and are mostly structured on the interior. In that case, triangle merging is very
efficient. The hybrid approach outperforms Blossom-Quad on all test meshes that
have more than 20,000 triangles. On smaller meshes the segmentation has a major
effect on performance. Pure triangle merging performs best independently of the
mesh size.

Mesh quality of Blossom-Quad and the hybrid approach is comparable. Both
have the same minimal quality which is reasonable considering that low quality
elements appear on boundaries. If better minimal quality is required, the threshold



A Hybrid Approach to Fast Indirect Quadrilateral Mesh Generation 291

Fig. 7 The mesh chile_low in the initial form with triangles and as quad mesh generated with the
hybrid approach. The initial mesh contains 3,396,752 triangles

for valence two vertex removal on boundaries can be increased. The average
quality is a little bit better for Blossom-Quad almost everywhere. Furthermore,
Blossom-Quad produces the lowest amount of irregular vertices but the difference
to the hybrid approach is only up to 2%. Triangle merging reaches good quality in
many cases when post-processing is applied but on some complex boundaries post-
processing cannot solve all quality related issues, i.e. degenerated quads remain.
Therefore, meshes generated purely with triangle merging might not be appropriated
for numerical simulations.

The meshes diam10/diam11 are artificial tests and show the major difference
between Blossom-Quad and triangle merging. The meshes consist of two equilateral
triangles which were 10/11 times uniformly subdivided. Blossom-Quad reaches
optimal quality by generating a fully structured grid whereas triangle merging
and the hybrid approach generate irregularities. The optimality of Blossom-Quad
comes with the price of a very slow performance. For diam11 Blossom-Quad
took approximately 30 min, the hybrid approach only 36 s. The reason for the
bad performance of Blossom-Quad is that all triangles have the same quality and
therefore finding the global optimum is challenging.



292 D. Zint and R. Grosso

T
ab

le
2

Q
ua

lit
y

an
d

pe
rf

or
m

an
ce

of
hy

br
id

ap
pr

oa
ch

(H
A

)
in

co
m

pa
ri

so
n

to
B

lo
ss

om
-Q

ua
d

(B
Q

)
an

d
pu

re
tr

ia
ng

le
m

er
gi

ng
(T

M
)

R
un

ti
m

e
[s

]
M

in
.q

ua
li

ty
A

vg
.q

ua
li

ty
Ir

re
g.

ve
rt

.[
%

]

M
es

h
#

tr
ia

ng
le

s
B

Q
T

M
H

A
B

Q
T

M
H

A
B

Q
T

M
H

A
B

Q
T

M
H

A

C
hi

le
6,

51
7,

76
4

10
2

74
78

0.
11

0.
10

0.
11

0.
89

0.
87

0.
87

16
.6

18
.2

18
.2

C
hi

le
_l

ow
3,

39
6,

75
2

20
3

21
27

0.
14

0.
10

0.
14

0.
89

0.
87

0.
87

16
.9

18
.8

18
.7

O
ku

sh
ir

i
3,

09
8,

88
0

15
5

11
13

0.
62

0.
53

0.
54

0.
92

0.
89

0.
89

3.
9

2.
4

2.
5

Ik
e

2,
67

8,
40

2
70

10
22

0.
10

<
0.

01
0.

10
0.

90
0.

89
0.

89
9.

7
11
.7

11
.7

G
om

57
,0

76
0.

2
0.

2
0.

2
0.

11
0.

11
0.

11
0.

88
0.

85
0.

86
10
.5

14
.1

12
.7

E
as

t
18
,5

78
<

0.
1

<
0.

1
<

0.
1

0.
42

0.
17

0.
42

0.
86

0.
84

0.
85

19
.1

21
.4

21
.4

E
as

t_
lo

w
20

00
<

0.
1

<
0.

1
<

0.
1

0.
20

0.
21

0.
20

0.
69

0.
67

0.
68

30
.3

31
.7

30
.8

D
ia

m
11

8,
38

8,
60

8
17

66
29

36
0.

87
<

0.
01

0.
63

0.
87

0.
88

0.
88

0
5.

2
7.

0

D
ia

m
10

2,
09

7,
15

2
21

0
7

8
0.

87
0.

43
0.

63
0.

87
0.

89
0.

89
0

1.
2

1.
4



A Hybrid Approach to Fast Indirect Quadrilateral Mesh Generation 293

6 Conclusion

We presented a hybrid method combining Blossom-Quad and triangle merging.
Boundary regions are processed by Blossom-Quad and the interior by triangle
merging. This hybrid approach is almost as fast as triangle merging and much
faster than Blossom-Quad due to its low complexity of O(N logN). In terms of
quality, the hybrid approach is comparable to Blossom-Quad and better than triangle
merging making it a fast alternative especially on large meshes with millions of
triangles.

References

1. Androsov, A., Behrens, J., Danilov, S.: Tsunami modelling with unstructured grids. interaction
between tides and tsunami waves. In: Krause, E., Shokin, Y., Resch, M., Kröner, D., Shokina,
N. (eds.) Computational Science and High Performance Computing IV, pp. 191–206. Springer,
Berlin (2011)

2. Armstrong, C.G., Fogg, H.J., Tierney, C.M., Robinson, T.T.: Common themes in multi-block
structured quad/hex mesh generation. Procedia Eng. 124, 70 – 82 (2015). 24th International
Meshing Roundtable

3. Baehmann, P.L., Wittchen, S.L., Shephard, M.S., Grice, K.R., Yerry, M.A.: Robust,
geometrically based, automatic two-dimensional mesh generation. Int. J. Numer. Methods
Eng. 24(6), 1043–1078 (1987)

4. Blacker, T.D., Stephenson, M.B.: Paving: a new approach to automated quadrilateral mesh
generation. Int. J. Numer. Methods Eng. 32(4), 811–847 (1991)

5. Bommes, D., Zimmer, H., Kobbelt, L.: Mixed-integer quadrangulation. ACM Trans. Graph.
28(3) (2009)

6. Bommes, D., Lempfer, T., Kobbelt, L.: Global structure optimization of quadrilateral meshes.
In: Computer Graphics Forum, vol. 30.2, pp. 375–384. Wiley Online Library, Hoboken (2011)

7. Bommes, D., Lévy, B., Pietroni, N., Puppo, E., Silva, C., Tarini, M., Zorin, D.: Quad-mesh
generation and processing: A survey. Comput. Graph. Forum 32(6), 51–76 (2013)

8. Campen, M.: Partitioning surfaces into quadrilateral patches: A survey. Comput. Graph. Forum
36(8), 567–588 (2017)

9. Canann, S.A., Muthukrishnan, S.N., Phillips, R.K.: Topological improvement procedures for
quadrilateral finite element meshes. Eng. Comput. 14(2), 168–177 (1998)

10. Catmull, E., Clark, J.: Recursively generated b-spline surfaces on arbitrary topological meshes.
Comput. Aided Des. 10(6), 350–355 (1978)

11. Charakhch’yan, A., Ivanenko, S.: A variational form of the Winslow grid generator. J. Comput.
Phys. 136(2), 385–398 (1997)

12. Docampo-Sanchez, J., Haimes, R.: A regularization approach for automatic quad mesh
generation. In: 28th International Meshing Roundtable. Zenodo (2020)

13. Dong, S., Bremer, P.T., Garland, M., Pascucci, V., Hart, J.C.: Spectral surface quadrangula-
tion. In: ACM SIGGRAPH 2006 Papers, SIGGRAPH ’06, p. 1057–1066. Association for
Computing Machinery, New York (2006)

14. Edmonds, J.: Maximum matching and a polyhedron with 0, 1-vertices. J. Res. Natl. Bur. Stand.
B 69(125–130), 55–56 (1965)

15. Edmonds, J.: Paths, trees, and flowers. Can. J. Math. 17, 449–467 (1965)
16. Edmonds, J., Johnson, E.L., Lockhart, S.C.: Blossom I: A computer code for the matching

problem. In: IBM TJ Watson Research Center, Yorktown Heights, New York (1969)



294 D. Zint and R. Grosso

17. Ekelschot, D., Ceze, M., Garai, A., Murman, S.M.: Robust metric aligned quad-dominant
meshing using Lp centroidal voronoi tessellation. In: 2018 AIAA Aerospace Sciences
Meeting, p. 1501 (2018)

18. Freitag, L.A., Plassmann, P.: Local optimization-based simplicial mesh untangling and
improvement. Int. J. Numer. Methods Eng. 49(1–2), 109–125 (2000)

19. Gabow, H.N.: Data structures for weighted matching and nearest common ancestors with
linking. In: Proceedings of the First Annual ACM-SIAM Symposium on Discrete Algorithms,
pp. 434–443 (1990)

20. Georgiadis, C., Beaufort, P., Lambrechts, J., Remacle, J.: High quality mesh generation using
cross and asterisk fields: application on coastal domains. CoRR abs/1706.02236 (2017)

21. Geuzaine, C., Remacle, J.F.: Gmsh: A 3-D finite element mesh generator with built-in pre- and
post-processing facilities. Int. J. Numer. Methods Eng. 79(11), 1309–1331 (2009)

22. Kälberer, F., Nieser, M., Polthier, K.: Quadcover - surface parameterization using branched
coverings. Comput. Graph. Forum 26(3), 375–384 (2007)

23. Kettner, L.: Using generic programming for designing a data structure for polyhedral surfaces.
Comput. Geom. 13(1), 65 – 90 (1999)

24. Kolmogorov, V.: Blossom V: a new implementation of a minimum cost perfect matching
algorithm. Math. Program. Comput. 1(1), 43–67 (2009)

25. Owen, S.J.: A survey of unstructured mesh generation technology. In: Freitag, L.A. (ed.)
Proceedings of the 7th International Meshing Roundtable, pp. 239–267 (1998)

26. Owen, S.J., Staten, M.L., Canann, S.A., Saigal, S.: Q-morph: an indirect approach to
advancing front quad meshing. Int. J. Numer. Methods Eng. 44(9), 1317–1340 (1999)

27. Rank, E., Schweingruber, M., Sommer, M.: Adaptive mesh generation and transformation of
triangular to quadrilateral meshes. Commun. Numer. Methods Eng. 9(2), 121–129 (1993)

28. Remacle, J.F., Lambrechts, J., Seny, B., Marchandise, E., Johnen, A., Geuzainet, C.: Blossom-
quad: A non-uniform quadrilateral mesh generator using a minimum-cost perfect-matching
algorithm. Int. J. Numer. Methods Eng. 89(9), 1102–1119 (2012)

29. Remacle, J.F., Henrotte, F., Baudouin, T.C., Geuzaine, C., Béchet, E., Mouton, T., Marchan-
dise, E.: A frontal delaunay quad mesh generator using the L ∞ norm. Int. J. Numer. Methods
Eng. 94(5), 494–512 (2013)

30. Rushdi, A.A., Mitchell, S.A., Mahmoud, A.H., Bajaj, C.C., Ebeida, M.S.: All-quad meshing
without cleanup. Comput. Aided Des. 85, 83 – 98 (2017). 24th International Meshing
Roundtable Special Issue: Advances in Mesh Generation

31. Stimpson, C., Ernst, C., Knupp, P., Pébay, P., Thompson, D.: The verdict library reference
manual. Sandia Nat. Laborat. Techn. Rep. 9(6), 32–57 (2007)

32. Tam, T., Armstrong, C.: 2d finite element mesh generation by medial axis subdivision. Adv.
Eng. Softw. Workstat. 13(5), 313 – 324 (1991)

33. Tarini, M., Pietroni, N., Cignoni, P., Panozzo, D., Puppo, E.: Practical quad mesh simplifica-
tion. Comput. Graph. Forum 29(2), 407–418 (2010)

34. Zhu, J.Z., Zienkiewicz, O.C., Hinton, E., Wu, J.: A new approach to the development of
automatic quadrilateral mesh generation. Int. J. Numer. Methods Eng. 32(4), 849–866 (1991)

35. Zint, D., Grosso, R.: Discrete mesh optimization on GPU. In: Roca, X., Loseille, A. (eds.)
27th International Meshing Roundtable, pp. 445–460. Springer International Publishing, Cham
(2019)

36. Zint, D., Grosso, R., Lunz, F.: Discrete mesh optimization on surface and volume meshes. In:
28th International Meshing Roundtable. Zenodo (2020)



Hexahedral Mesh Generation Using
Voxel Field Recovery

Alexander Sergeevich Karavaev and Sergey Petrovich Kopysov

Abstract We consider a modification of the previously developed voxel-based
mesh algorithm to generate models given by a triangular surface mesh format (STL).
Proposed hexahedral mesh generator belongs to the family of grid methods, and its
capable to use as source data both volume and surface types of model geometry
representation. To define the initial position of mesh nodes, a «signed distance
field» volume data file, obtained from the STL geometry, is used. A special
projection technique was developed to adapt constructed orthogonal mesh on the
models boundary. It provides an approximation of sharp edges and corners and
performs before running any other operations with the mesh. Finally, to improve the
mesh quality, additional procedures were implemented, including boundary layers
insertion, bad quality cells splitting, and optimization-based smoothing technique.

1 Introduction

The first step in the process of element mesh generation belongs to the description
of the initial model geometry. Surface representation is a set of faces describing
a model’s boundary. This description has become the main technique applied in
engineering calculations and it is widely used by the existing CAD software.

However, for some applications, such as medicine and biomodeling, the only
possible way is to use voxel data obtained by a CT, MRI, or MicroCT scanner [11].
Preserving geometric corners and edges is not so critical in the case of biological
tissues modeling. Usually, mesh algorithms for such problems are high performance
and robust. They are based on combining pairs of Cartesian voxels grid into
hexahedra followed by boundary nodes position adaptation.

At the same time, generation of hexahedral meshes of a given quality with an
accurate description of an arbitrary model geometry is not a completely solved

A. S. Karavaev (�) · S. P. Kopysov
Department of Computational Mechanics, Udmurt State University, Izhevsk, Russia
e-mail: karavaev-alexander@yandex.ru

© Springer Nature Switzerland AG 2021
V. A. Garanzha et al. (eds.), Numerical Geometry, Grid Generation and Scientific
Computing, Lecture Notes in Computational Science and Engineering 143,
https://doi.org/10.1007/978-3-030-76798-3_19

295

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76798-3_19&domain=pdf
mailto:karavaev-alexander@yandex.ru
https://doi.org/10.1007/978-3-030-76798-3_19


296 A. S. Karavaev and S. P. Kopysov

task [1, 8]. In comparison with tetrahedral meshes, there is no well-developed theory
and robust general-purpose software to solve the problem under discussion.

Specially for this, a sufficient number of algorithms have been developed with
their advantages and disadvantages.

For example, block decomposition approaches break the model into pieces that
are easier to mesh. They provide good quality cells but are semi-automatic, and
therefore time-consuming to construct complex geometries. It should be mentioned
that a lot of strategies have been developed to automate the block decomposi-
tion process, such as medial surface transformation, midpoint subdivision, and
singularity-restricted frame fields [1].

The advancing fronts methods (sweeping, paving, plastering, etc.) generate a
hex-mesh from the boundary of the surface mesh inward [9]. Such techniques
have issues with robustness, especially when two different fronts are merged during
processing. The same problems of reliability have the methods based on spatial twist
continuum concept which is a dual representation of an all hex-mesh that defines
the global connectivity constraints [6]. In recent years, many investigations have
been devoted to the indirect approaches. They convert a given tetrahedral mesh
to the hexahedral one by using a different type of combining techniques [3, 8].
Unfortunately, in many cases, the result meshes are hex-dominant while containing
a small number of irregular polyhedra.

The grid-based or octree family of methods are robust but tends to generate
poor quality elements at the boundary of the volume and to create hanging nodes
arising from size transitions [1, 10]. Also, these methods incline to produce a large
number of hexahedra and are highly dependent upon the orientation of the interior
orthogonal grid of hex elements. The recent attempts to quality hexahedral meshing
are either robust but lack the ability to align to the surface curvature and sharp
features [4, 7], or produce high quality meshes but are extremely fragile.

In this article, we propose an algorithm that provides good compromise between
robustness and quality meshing. We consider a modification of previously devel-
oped voxel mesh generator which was originally intended to work with volume
(tomograthic) data representation [5]. Figure 1 shows the result of the algorithm for
construction a multicomponent head model. Here, the boundary is reconstructed
with the «Dual Contouring» algorithm [5, 11]. This approach is widely used to
render tomographic images with a surface quadrangular mesh. It allows to restore
the sharp features of the model contour to a certain degree. Unfortunately, in the
case of STL geometry, the accuracy of the «Dual Contouring» algorithm is not
sufficient. Therefore, additional options have to be considered to build hexahedral
meshes of models given in STL format.

Our approach belongs to the family of grid methods. It utilizes initial surface
representations and «signed distance fields» voxel data format obtained from
STL file.



Hexahedral Mesh Generation Using Voxel Field Recovery 297

Fig. 1 Human head model with three materials. Hexahedral mesh constructed from tomograthic
data by the authors’ algorithm [5]

2 Initial Data Representation

As mentioned before, the proposed method can generate meshes from both surface
and volumetric types of model representation.

In literature, volumetric (voxel) data V is defined as scalar values of an implicit
function F on a Cartesian coordinate grid V = F (i, j, k), where i, j, k are indexes
in the form of x, y, z coordinates of Cartesian grid. The isosurface (surface of equal
values) corresponding to the value α represents points of a constant value within a
volume IF (α) = { (x, y, z) | F (x, y, z) = α }.

Volumetric data may be viewed by extracting isosurfaces from the volume and
rendering them as polygonal meshes or by rendering the volume directly as a block
of data.

For now, the algorithm takes a standard DICOM volumetric data file obtained
from tomography scans to construct meshes of biological tissues. In the case of
STL-models, the «signed distance fields» (SDF) data structure is used.

Each voxel in a SDF file contains a positive or a negative shortest distance to the
model surface according to its relative position. Therefore, a border of the model is
set by the isosurface of value α = 0.

Let the model � be bounded by a surface triangular mesh T . Then, for an
arbitrary voxel ν, the function F could be written as

F (ν) = ST (ν)× min
t∈T d(t, ν), ST (ν) =

{
+1, if ν ⊆ �,

−1, if ν 	⊂ �,

where d(t, ν) denotes the minimal distance between a triangle t ∈ T and a voxel
ν ∈ V.



298 A. S. Karavaev and S. P. Kopysov

The initial SDF voxel array is constructed from a given STL geometry by a
straightforward («brute force») conversion technique. For every voxel ν ∈ V it
calculates the distance to all triangles of T and takes the minimal one. Because
of this, the execution time is a little bit high and it is efficient to use parallel
computations. On the other hand, this method calculates the accurate Euclidean
distance field without errors and has a simple implementation.

The obtained volume data file implicitly contains all information about an
orthogonal hexahedral grid covering the model. Thus, a result of the mesh
generation directly depends on the accuracy of voxels values in V.

3 Hexahedral Mesh Generation

According to Schneider [10], the mesh of the model should fulfill the following
requirements: each point of the model is covered by the mesh point; each edge of
the model is covered by a sequence of mesh edges.

To overcome this problem, we construct the set � of «characteristic» edges and
nodes. The set � is considered to be a «frame» of the model which preserves all
its sharp features. The resulting hexahedral mesh T has to cover the elements of �
with a continuous chain of its edges and nodes.

To construct � we follow Schneider’s idea and don’t take into account edges of
triangular mesh T whose adjacent faces enclose a dihedral angle of about 180°.

In Fig. 2a and b we can see the STL geometry of a half part of the metal sleeve
and its set � with 10 «characteristic» nodes and 15 «characteristic» edges.

The second step of mesh generation is the construction of the orthogonal
structured grid with size h (Fig. 2c). The grid size h is chosen in advance, and it
defines an interval (span) between voxels that will be taken to form mesh nodes.
This size determines the number of cells in the resulting mesh and thus a final
accuracy of the model description. The minimal value of h is 1, and it means that
all voxels of V taking into account during mesh generation.

For every 8 neighboring voxels with γ = 4 or more positive values a new cell is
constructed.

Let dimz × dimy × dimx be the dimension of SDF voxel array V and

sgn(x,y,z)F is a signum function of voxel value with indexes (x, y, z), sgn(x,y,z)F =
sgn
(
F
(
ν(x,y,z)

))
, then the above process can be written as following:

“Algorithm 1”.
In addition to number γ = 4 of positive voxels, we also require that they have to

belong to one quadrangle of a hexahedron. Such choice provides a situation when
every face of a cell has at least 2 points inside the model. From tests, we established
that such value γ = 4 is optimal because of a less number of additional hexahedra
(in comparison with the case γ < 4, see Fig. 3a and b) and uniform size of boundary
and inner cells (that is not provided in the case of γ > 4, see Fig. 3c and d).

It should be mentioned that the number of positive voxels is not strict and can be
lower than 4. Also, there is an option to add any other conditions, such as acceptable



Hexahedral Mesh Generation Using Voxel Field Recovery 299

(a) (b)

(c) (d)

Fig. 2 Hexahedral mesh construction. (a) STL-geometry. (b) Model’s «frame». (c) Structured
hex-grid (with background STL surface). (d) Grid projected to the model’s «frame»

Algorithm 1 Orthogonal structured grid generation
1: for z = 1; z < dimz /h; z + + do
2: for y = 1; y < dimy /h; y + + do
3: for x = 1; x < dimx /h; x + + do
4: if sgn(x,y,z)F + sgn(x+h,y,z)F + sgn(x+h,y+h,z)F + sgn(x,y+h,z)F + sgn(x,y,z+h)F +

sgn(x+h,y,z+h)F + sgn(x+h,y+h,z+h)F + sgn(x,y+h,z+h)F � γ then
5: end if
6: Create hexagon c from the voxels

{
ν(x+i,y+j,z+k)

}
i,j,k=0,h

7: end for
8: end for
9: end for

distance of voxels to the surface. For example, the cell c is not constructed if
∃ν ′ ∈ {

ν(x+i,y+j,z+k)
}
, i, j, k = 0, h such that F

(
ν′) < ε0 < 0, where ε0 is

some threshold value defined by the user.
The third step is the projection of the orthogonal grid onto the set � to provide

an approximation of «characteristic» edges and nodes of the model. This procedure
is slightly different from the isomorphism technique proposed by Schneiders [10].
In our case, the adaptation is performed before running any smoothing or topologi-
cal operations with the mesh, and it can be divided into 3 main steps:



300 A. S. Karavaev and S. P. Kopysov

Fig. 3 The choice of the number γ of positive voxels in a cell during structured grid generation:
(a, b) additional hexahedra (in frame) in the case of γ < 4 in comparison with γ = 4; (c, d) lack
of uniform cell size (large ones in frame) in the case of γ > 4 in comparison with γ = 4

(1) At first on each «characteristic» node η an appropriate grid node x is projected.
Usually, x is taken as the nearest one to η, but sometimes other rules can be
adopted. For example, if two or more nodes have the closest distance to η, the
node which is connected to all of them should be chosen.

(2) The next step is the covering «characteristic» edges of the model. At first,
all boundary nodes with distance to the «characteristic» edges less than some
threshold ε1 ≈ 0.1 × h are projected onto them.

(3) The remaining uncovered sections of � is handling with sequential nodes
projection procedure. It starts from every node x which is already projected onto
�. The next candidate x′ is selected from boundary neighbors of x according to
proposed priority criteria which work in the following way:

– The neighboring nodes, which have two or more boundary inverted quads
after projection, are not considered.

– The nodes with 3 adjacent boundary quads are more preferable than others.
– Among the nodes with the previous two conditions are fulfilled, the one with

the shortest distance to the «characteristic» edge should be taken.

Figure 2d demonstrates the result of the described operation. It should be
mentioned that every selected node x′ ∈ T is projected to the nearest edge e ∈ E�,
and this position typically doesn’t coincide with vertices of the triangular mesh T .

After the set � has been constructed, the remaining boundary nodes are projected
to the surface of the model. Here we use two different techniques: the well-known



Hexahedral Mesh Generation Using Voxel Field Recovery 301

ray-tracing method and a special iterative movement through the volume of SDF
data field described in [11]. The first procedure is more accurate, but the latter
one has better performance in the case of STL geometries with a high number of
triangles. Such STL meshes are often required to describe models with curvilinear
surfaces. Each iterative movement consists of 2 steps:

– Check an approximation of node x to the iso-surface IF (α). If the value F (x) is
close enough to α, e.g. |F (x)− α| ≈ 10−4 × h, then it can be assumed that x
locates on the surface and further iterations are not needed.

– Define new coordinates of node by moving it in a small distance x+ = x + δn,
where n is the normal of vertex x and δ the size of iteration step.

In the case of SDF data format, the boundary of the model is set with zero iso-
surface of value α = 0.

According to our tests, in most cases, the implementation of these procedures
allows to fully describe the model so that each «characteristic» node is assigned to
one corresponding mesh node, and each «characteristic» edge is completely covered
by mesh edges.

As one can see from Fig. 4a, the projection of remaining nodes to the surface
allows to fully described initial STL model with sufficient accuracy.

Fig. 4 Removing inverted boundary hexahedra and quads (in frames) with: (a, b) volume layer
insertion and splitting procedures; (c, d) surface layer insertion along a «characteristic» edge



302 A. S. Karavaev and S. P. Kopysov

4 Mesh Quality Improvement

To improve the mesh quality, a Laplacian smoothing procedure is applied. Unfor-
tunately, this operation is not enough to get rid of invalid mesh elements along the
model boundary. This is because of hexahedra may have two or three faces to be
projected on the same plane, and surface quads may have two edges to be projected
on the same sharp line.

To resolve these issues, three standard procedures for grid type meshes are used.
First, a volume layer of hexahedra is inserted around the constructed mesh so

that new boundary elements have only one face to be projected on the real geometry
(Fig. 4a and b). The shape of boundary quads with angle �180° (two are marked
with rectangular frames in Fig. 4a) are significantly improved after the volume layer
of hexahedra has been inserted (Fig. 4b).

It should be mentioned, that sometimes for better mesh quality it is useful to skip
the insertion of volume layer along surfaces which are orthogonal to the Cartesian
axes. For instance, for the final mesh displayed in Fig. 4d, bottom, front, and
back boundary surfaces stay unchanged, and only for the top curvilinear surface
an additional layer of cells was added.

Likewise, a second layer of hexahedra is inserted along the set of «characteristic»
edges, if the solid angle alongside them is sufficiently smaller than 180°. Also, an-
other restriction exists, the operation is not allowed if the number of «characteristic»
edges adjacent to a «characteristic» point does not equal 2 or 3.

An application of this optimization step is demonstrated in Fig. 4c and d. All
hexahedra with flat angles (two are marked in frames) have been removed.

The remaining degenerate elements are removed by a splitting procedure (one
is marked with circular frame in Fig. 4c) proposed in [10]. All hexahedra with an
inverted face are split into four new ones by specific template (Fig. 4d), thus, the
degenerate boundary quad along «characteristic» edge has vanished. To maintain
the conformity of the mesh, the neighbor elements are also split up (Fig. 4d).

Finally, to improve the mesh quality, a smoothing procedure is applied. We use
different types of Laplacian smoothing weighted by the edges length, quads areas,
and volume of hexahedra. It should be mentioned that often a simple Laplacian
technique is not enough to get properly shaped cells.

One of the options is to use the optimization-based smoothing method proposed
in [2]. In our algorithm, we apply a modification of this method for the case of
hexahedral cells. This approach is an iterative one and could improve the value of
any hexahedra quality measure q which varies in the interval [−1; 1].

The algorithm works with three quality criteria for hexahedra cells, among which
are scaled Jacobian, inverse aspect ratio, and skew metric. Also, we propose a
normalized measure for a warping angle ! of a quadrilateral face q! = (π−!)/π .

Since the optimization-based technique is time-consuming, it is often applied
to the nodes with poor quality cells. In other cases, various types of Laplacian
smoothing are used [2].



Hexahedral Mesh Generation Using Voxel Field Recovery 303

5 Test Examples

In this section, the results of the algorithm on three types of STL geometry and one
volumetric data representation are shown.

All demonstrated hexahedral meshes do not contain inverted cells. The measure
of the minimum scaled Jacobian has a value of QJ � 0.2, which is acceptable for
finite element algorithms. This quality metric was chosen as an objective function
for the optimization-based smoothing technique. Meshes quality characteristics can
be viewed in Table 1.

Figure 5a demonstrates a cut view of the metal sleeve model with a cylindrical
inclusion, the result hexahedral mesh contains N = 15,930 nodes and C = 13,842
cells. A relatively large value of maximal aspect ratio Qa = 33.8 emerges in the
boundary layer cells around inclusion.

Maximal skew metric of cells in the star model is Qs = 0.84. Though, all
boundaries of the model are flat, the maximal warp angle of the inner quads of
the mesh equals !w = 61.1°. This is because the only scaled Jacobian value was
optimized, and other metrics were not taken into account.

Due to the small number of «characterictic» features (only edges and no nodes),
the mesh of the spring model has better values of scaled jacobian QJ = 0.4 and
aspect ratio Qa = 4.2. The most optimal skew value Qs = 0.63 was obtained for a
cube model containing 13 elliptic inclusions.

The human head model (Fig. 1) was generated from a DICOM volume data file.
Hounsfield scale values (or the values of extracted isosurfaces) for each material
were the following: soft tissue α = −720, brain α = 1, skull α = 172. In addition
to scaled Jacobian, a warping angle of quadrangles was also improved. Quality
measures of the resulting mesh can also be seen in Table 1.

Table 1 Meshes characteristics

Characteristic Sleeve Star Spring Cube Head

Dim 70 × 129 × 129 129 × 129 × 28 86 × 151 × 86 653 10293

h 4 4 1 1 2

N 15,930 3894 239,757 288,152 1,363,369

C 13,842 2860 195,904 276,003 1,308,341

!w 73.6° 61.1° 54.3° 57.1° 37°

QJ 0.22 0.29 0.4 0.4 0.2

Qa 33.8 20.7 4.2 4.9 15.9

Qs 0.84 0.84 0.8 0.63 0.85



304 A. S. Karavaev and S. P. Kopysov

(a) (b)

(c) (d)

Fig. 5 Unstructured hexahedral mesh examples. (a) Sleeve with inclusion. (b) Star. (c) Spring.
(d) Cube with inclusions

6 Conclusions

This paper presented a further modification of early developed volume hexahedral
mesh generator as applied to the models described by STL geometry.

The main developments of new functionality are the following:

– Obtaining from the original STL geometry a set � of «characteristic» edges and
nodes, which positions should be saved in the resulting hexahedral mesh T . The
set � is considered to be a «frame» of the model, which preserves all its sharp
angles and faces.

– Construction and mapping the part of boundary nodes of T onto the set � to
provide an approximation of boundary contour. The procedure is based on a
sequential node projection at every element of �. Here is the most suitable nodes
are selected according to proposed priority criteria, which evaluate adjacent
hexahedra number, quality measures of cells and faces, and the distance to the
elements of �.

– Removing degenerated cells of T emerging along «characteristic» edges. The
operation includes insertion of an additional surface layer of hexahedra along
the edges and splitting inverted cells into four new ones according to the template
described in [10].



Hexahedral Mesh Generation Using Voxel Field Recovery 305

Implementation of the new procedures allows to generate a uniform mesh
accurately describing the original geometry of an arbitrary STL-model.

Generation of multicomponent models for the case of voxel data is carried out
by a sequential mesh construction for each isosurface value in descending order.

In the case of a surface representation, the application of such an approach seems
difficult, since the SDF file obtained from the STL-geometry contains only one
isosurface value α = 0. Thus, the SDF file stores information about only one
material of the model.

Using one file in the SDF format allows to solve a specific case when the model
contains areas with inclusions located entirely inside, or on one level with the
orthogonal plane (Fig. 5a and d).

To implement the general case it is necessary to use a set of SDF files, generated
for every specific material. Then all orthogonal meshes, obtained from each SDF
file, should be assembled in one.

At the moment, an integration of the described technique to the algorithm just
like an implementation of adaptive hexahedral mesh generation are questions of
further research.

References

1. Awad, M., Rushdi, A., Misarah, A., Mitchell, S., Mahmoud, A., Chandrajit, B., Ebeida, M.:
All-hex meshing of multiple-region domains without cleanup. Procedia Eng. 163, 251–261
(2016). https://doi.org/10.1016/j.proeng.2016.11.055

2. Cannan, S., Tristano, J., Staten, M.: An approach to combined Laplacian and optimization-
based Smoothing for triangular, quadrilateral, and quad-dominant meshes. In: 7th International
Meshing Roundtable. Dearborn. Michigan, pp. 479–494 (1998)

3. Gao, X., Jakob, W., Tarini, M., Panozzo, D. Robust hex-dominant mesh generation using field-
guided polyhedral agglomeration. ACM Trans. Graph. 36(4), 114 (2017)

4. Gao, X., Shen, H., Panozzo, D.: Feature preserving octree-based hexahedral meshing. Comput.
Graph. Forum 38, 135–149 (2019). https://doi.org/10.1111/cgf.13795

5. Karavaev, A., Kopysov, S.: The method of unstructured hexahedral mesh generation from
volumetric data. Comput. Res. Model. 5, 11–24 (2013). https://doi.org/10.20537/2076-7633-
2013-5-1-11-24

6. Ledoux, F., Weill, J.C.: An extension of the reliable Whisker Weaving algorithm. In:
Proceedings of the 16th International Meshing Roundtable. Springer, Berlin (2008)

7. Marechal, L.: Advances in octree-based all-hexahedral mesh generation: Handling sharp
features. In: Proceedings of the 18th International Meshing Roundtable. Springer, Berlin
(2009)

8. Pellerin, J., Johnen, A., Remacle, J.-F.: Identifying combinations of tetrahedra into hexahedra:
a vertex based strategy. Procedia Eng. 203, 2–13 (2017). https://doi.org/10.1016/j.proeng.2017.
09.779

9. Ruiz-Girones, E., Roca, X., Sarrate, J.: The receding front method applied to hexahedral mesh
generation of exterior domains. Eng. Comput. 28, 391—408 (2012). https://doi.org/10.1007/
s00366-011-0233-y

10. Schneiders, R.: Automatic generation of hexahedral finite element meshes. Comput. Aided
Geom. Des. 12, 693–707 (1995). https://doi.org/10.1016/0167-8396(95)00013-V

11. Zhang, Y., Bajaj, C.: Adaptive and quality quadrilateral/hexahedral meshing from volumetric
data. Comput. Methods Appl. Mech. Engrg. 195(9), 942–960 (2006). https://doi.org/10.1016/
j.cma.2005.02.016

https://doi.org/10.1016/j.proeng.2016.11.055
https://doi.org/10.1111/cgf.13795
https://doi.org/10.20537/2076-7633-2013-5-1-11-24
https://doi.org/10.20537/2076-7633-2013-5-1-11-24
https://doi.org/10.1016/j.proeng.2017.09.779
https://doi.org/10.1016/j.proeng.2017.09.779
https://doi.org/10.1007/s00366-011-0233-y
https://doi.org/10.1007/s00366-011-0233-y
https://doi.org/10.1016/0167-8396(95)00013-V
https://doi.org/10.1016/j.cma.2005.02.016
https://doi.org/10.1016/j.cma.2005.02.016


Generation of Boundary Layer Meshes
by the Enhanced Jump-and-Walk
Method with a Fast Collision Detecting
Algorithm

Jie Cao, Fei Yu, Zhonghai Gao, S. H. Lo, and Zhenqun Guan

Abstract Boundary layer meshes as an important part of hybrid mesh are often
constructed via advancing layer method for CFD fluid simulations. One major
difficulty in implementing a robust boundary layer meshing tool is to handle mesh
collisions. In this work, the authors propose to enhance the Jump-and-Walk method
by constructing a medial surface mesh in a constrained Delaunay triangulation
to detect the safe marching space of front points. Medial surface can build a
separation wall between adjacent boundary surfaces to prevent the intersection of
boundary layer elements, and the computation of the distance between front points
and the medial surface can be accelerated by walking through tetrahedra in sequence
without additional data structures. A range of tests were performed for several
complex configurations to demonstrate the capability of the method.

1 Introduction

Considering the ease of use and calculation accuracy, the hybrid grid that takes full
advantage of semi-structured prismatic grid and unstructured tetrahedral grid and
considers the boundary layer effect is considered to be the best grid form for CFD
calculations [1–3]. Since unstructured grid meshing techniques are very mature
now [4–6], so the focus is commonly on the prismatic mesh generation. Advancing
layer method is one of most popular algorithms for boundary layer meshing. Early
attempts of this method were proposed by Lohner [7] and Pirzadeh [8]. There is
a problem that self or global-intersecting meshes may appear especially at narrow

J. Cao (�) · F. Yu · Z. Gao · Z. Guan
Dalian University of Technology, Dalian, China
e-mail: caojie@mail.dlut.edu.cn; fei.yu@mail.dlut.edu.cn; gaozhonghai@mail.dlut.edu.cn;
guanzhq@dlut.edu.cn

S. H. Lo
The University of Hong Kong, Hong Kong SAR, China
e-mail: hreclsh@hku.hk

© Springer Nature Switzerland AG 2021
V. A. Garanzha et al. (eds.), Numerical Geometry, Grid Generation and Scientific
Computing, Lecture Notes in Computational Science and Engineering 143,
https://doi.org/10.1007/978-3-030-76798-3_20

307

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76798-3_20&domain=pdf
mailto:caojie@mail.dlut.edu.cn
mailto:fei.yu@mail.dlut.edu.cn
mailto:gaozhonghai@mail.dlut.edu.cn
mailto:guanzhq@dlut.edu.cn
mailto:hreclsh@hku.hk
https://doi.org/10.1007/978-3-030-76798-3_20


308 J. Cao et al.

valley corners or adjacent surfaces. How to robustly and efficiently detect the grid
collisions is one of main issues in related studies.

Collision detection is a point location problem in nature. A data structure is
usually needed to accelerate the search for objects, such as point, edge, cell, and
so on. A k-d tree can be employed with a computational time between O(n logn)
and O

(
n2
)

for preprocessing the tree and O(logn) for each query. In addition, a
closest point search algorithm based on uniform cubes can achieve a time efficiency
of O(1) with small amount of memory for evenly distributed point set. One of the
most common algorithms to locate the position of target point in a triangulation
is Walk-through method [9–12]. A Delaunay triangulation can be constructed in
O
(
n5/4

)
expected time in 3D and the computational complexity of the algorithm is

generally O(n1/4) per point inherently bound by the connectivity of the triangular
mesh [11]. In general, collision detection algorithms can be divided into two
categories according to the means used: (1) Intersection test; (2) Space detection.

If an intersection test is used, benefiting from the determined locations of
elements, it is possible to locate all intersecting or overlapping prisms precisely [7,
13, 14]. However, an additional data structure, like a k-d tree, Octree, alternating
digital tree (ADT) [15] and so on, is needed to reduce the time complexity of
locating operations.

Grid intersections also can be removed by computing the marching space of front
points [8, 9, 16, 17]. If a constrained Delaunay triangulation (CDT) is taken as the
background grid, additional data structure is not necessary as we can call an existing
tetrahedral mesh generator. One way is to fill the domain with a CDT and advance
layers while always keeping the volume of elements positive [17]. This method
is simple and robust but generally needs a large number of iterations to adjust the
CDT, which may result in a low-efficiency problem. Jump-and-Walk method as a
variant of Walk-through method was first proposed by Mücke et al. [11] and was
used to compute the maximal advance distances of points on the boundary to reduce
the total number of layers in narrow areas by Wang and Mare [9]. The time of
only handling the boundary points is much less than other methods. However, the
robustness of Wang and Mare’s method is poor for complex configurations.

Medial surface as a skeleton abstraction of solid object provides a representation
that simply captures the geometric proximity of boundary elements, which is
described by the locus of the center of the maximal sphere as it rolls along the
boundary. A continuous expression by geometric surfaces or a triangular mesh is
usually necessary in many applications, such as path planning, size control [18, 19],
structured mesh generation [20, 21] and so on. Medial surface also can be a natural
wall to separate the opposite frontiers of boundary layer meshes at narrow regions
and avoid the global and local grid collisions.

In this work, we improve the robustness of the Jump-and-Walk method by
constructing a medial surface mesh in the background grid to generate valid and
high-quality boundary layer meshes. We aim to make the boundary layer meshing
procedure easy to build and quick to execute with a simple data structure.



Generation of Boundary Layer Meshes by the Enhanced Jump-and-Walk Method 309

2 Overview

The goal of this paper is to develop a fast collision detection algorithm to avoid the
intersections of boundary layer meshes. The core of the enhanced Jump-and-Walk
method (EJW) is a Ray Tracing accelerator based on a Walk-through algorithm.
A CDT of boundary points is constructed first as the background mesh with a
general tetrahedral mesh generator. We then test all front points on the boundary
surface and make a rough adjustment to their total marching distances by walking
through tetrahedra along the marching directions. After that, the marching pathes
still have a risk in crossing each others. We introduce a medial surface mesh into the
background mesh to build a wall between adjacent front points When front points
are advanced layer by layer, all self-intersecting prisms are cleaned compulsively
by computing the element Jacbian. In addition, we will test all risky points at
each layer based on the new background mesh to remove the remaining local and
global-intersecting prisms. Isotropic meshes are filled in the remaining region by
Tetgen finally after boundary layer meshes are generated. A brief of our algorithm
is provided in Algorithm 1.

Algorithm 1 An overview of hybrid grid generation
Require: Closed boundary surface mesh.
Ensure: Hybrid mesh consisting of boundary layer meshes and isotropic tetrahedral meshes.
1: Initialize marching frontiers; compute and smooth marching directions and distances.
2: Construct a CDT background mesh and adjust the total marching distances of front points by

EJW.
3: Introduce a medial surface mesh in the CDT as the new background mesh of EJW.
4: while i < n and Nfrontiers > 0 do
5: Initialize the ith-layer marching frontiers; compute and smooth the marching directions

and distances.
6: Front point will stop marhcing if it satisfies one of the following conditions:

• Any adjacent prism generated produces a negative Jacbian.
• A multilevel difference in the number of neighboring layers will form.
• Current total marhcing distance will exceed its allowed value or current march is tested to

be risky by EJW.

7: Advance and update the frontiers.
8: i = i + 1.
9: end while

10: Fill isotropic meshes in the remaining region bounded by boundary layer meshes.



310 J. Cao et al.

3 Computation and Smoothing of Marching Directions
and Distances

The orthogonality of prism is an important property for the accuracy of fluid
calculation. The initial marching direction of front point is determined by the
normals of facets connected to the point. An angle-weighted average of these
normals is usually taken to produce a reasonable surface normal at the patch as
shown in Fig. 1a. However, it may result in an invalid visibility condition for
the surface of discontinuous slopes, such as wing-fuselage junctions, sharp edges,
troughs and peaks.

This situation can be avoided with a visibility polygonal cone constructed by
extending the facets around the front point. As a simplification of the region, a
maximal inscribed circular cone with a half-cone angle βvisi can be constructed
as shown in Fig. 1b [1], and its central axis can produce a valid normal vector
most orthogonal to the sharp patch. Consider that most of the boundary surface
is smooth, it is inefficient to compute visibility cones for all front points. To balance
the reliability and efficiency of the algorithm, an alternative strategy relative to the
maximal angle θmax between adjacent facet normals is proposed:

• If θmax < 30°, the weighted average of surface normals is adopted;
• If θmax ≥ 30°, the visibility cone is computed.

The initial marching distance of front point could be a function value of
characteristic angle of the patch that produces a relatively large marching distance in
concave regions and a small value in convex regions to increase grid orthogonality

(a) (b)

p

p

nk+1

pk+1

pk

nk

ni
ni

qkak

bvisi

Fig. 1 Computation of the normal at a point p: (a) the angle-weighted average of surface normals
and (b) the axis vector of visibility cone



Generation of Boundary Layer Meshes by the Enhanced Jump-and-Walk Method 311

as the layers grow. Wang and Mare [9] defined the ith-layer marching distance with
the customized layer thickness dli as

di = (1 ± |cos(βvisi)|)dli . (1)

The reason to select the cos function is that its value is between -1 and 1 and
insensitive to a small variation of the βvisi. After the initial marching directions and
distances are computed, an inverse-distance weighted Laplacian smooth is used to
prevent grid overlap especially for closely spaced points.

4 Validity Check for Elements

Several tests about the validity of prisms are carried out before the frontiers are
advanced:

(1) Element quality. The orthogonality of side edges and the aspect ratio of two
triangles are two important quality indexes for prism. A scaled-aspect-ratio
quality measure [16] is adopted in our algorithm. When the quality factor
" ≤ 0, prism is a collapsed element which is not allowed to generate.

(2) Topological connection. If the marching status of a point is turned off,
all frontiers around it stop marching and pyramid transitional elements are
generated between prisms and tetrahedra. The front point on the border of the
marching and non-marching frontiers will become a cliff point in the next layer.
The marching status of cliff points is always closed, then the number difference
of adjacent layers will stay below 2 and the transitional elements can achieve a
good quality.

(3) Collision detection. In this work, EJW is proposed to make a quick adjustment
to the total marching distances of all front points on the boundary and then
estimate part of front points at each layer whether they have enough space to
march to the next layer.

5 Construction of the Background Grid with Medial Surface
Mesh (MSM)

A CDT of boundary points is constructed and then is split to produce a decomposed
CDT (DCDT) as shown in Fig. 2. To quickly locate the medial surface when walking
through the tetrahedra, a MSM is approximately represented by a triangular mesh
extracted from the DCDT. The details are depicted in Algorithm 2.

As shown in Fig. 3, there are seven kinds of tetrahedra totally according to the
number of boundary edges contained. This algorithm can build a tight wall mesh
in a linear complexity by a two-step marking. The topology of MSM is closely



312 J. Cao et al.

Fig. 2 Left: a tetrahedron is decomposed into 17 small tetrahedrons. Right: The face containing
0, 1, or 2 boundary edges is decomposed by inserting extra points

Algorithm 2 Construction of MSM
Require: A CDT
Ensure: A MSM located in the DCDT
1: for each tetrahedron ∈ CDT do
2: Split it into 17 small tetrahedra by inserting points on the edges or inside the faces.

• 6 points are inserted at the midpoints of edges.
• 4 points are placed inside facets. For the facet containing 1 boundary edge, a point is

inserted at the midpoint of the edge joining the midpoints of two non-boundary edges;
otherwise, the point is inserted at the barycenter of the facet.

3: Mark small facets inside the tetrahedron.

• Mark all small facets consisting of three new points.
• If the tetrahedron contains boundary edges, unmark the small facets connecting to the

midpoint of boundary edge; if the number of boundary edges 	= 2, unmark the small facets
opposite to the endpoint of boundary edge.

4: end for
5: Collect all marked facets as the MSM.

related to the tetrahedralization, which is similar to the dual graph of the CDT, i.e.,
Voronoi diagram. A further filtering for the MSM is not allowed to avoid small holes
produced. Although the MSM is noisy near curved surfaces, as shown in Fig. 4, the
intersection test will not be performed as the advance of front points is safe after the
smoothing of marching vectors. The facets of MSM are alternately parallel to the
boundary surfaces on their two sides with a size half of the boundary elements. If
the angle between the normal vectors of boundary surfaces is near 180°, the MSM
tends to be a planar surface with a minimal approximate error.



Generation of Boundary Layer Meshes by the Enhanced Jump-and-Walk Method 313

Fig. 3 Tetrahedrons containing 0–6 boundary edges with facets marked inside

Fig. 4 A MSM is built in a DCDT

6 The Enhanced Jump-and-Walk Method (EJW)

By walking through the tetrahedra of CDT in sequence along the marching direction
of a front point on the boundary, each iteration of Jump-and-Walk method (JWM)
will reach a new tetrahedron. This process is repeated until the tetrahedron
containing target point is found or the walk hits a boundary surface. Most grid
intersections could be resolved by compressing the thickness of boundary layer
meshes with the maximal walking distance computed by JWM. The algorithm is
shown in Algorithm 3. To improve its robustness, EJW is proposed with two parts.
EJW-A is the same as JWM while EJW-B is an extra collision test based on JWM
for the front points still with a certain risk of intersecting with other grid after the
adjustment of EJW-A.



314 J. Cao et al.

Algorithm 3 JWM
Require: A DT with the topology data structure of O(1) query complexity; Starting point p;

Target point q which is far from p along the marching direction
Ensure: The maximal marching distance dmax of p
1: Initialize a random tetrahedron σ0 ∈ DT with p as one of vertexes.
2: σ ← σ0.
3: while n < nmax do 0 nmax is the maximum number of iterations limited
4: Determine a face τ of σ along the walking direction:

• no τ is selected, then q is inside σ , dmax = ‖q− p‖.
return dmax.

• τ is selected and lies on boundary, then q is outside the DT, dmax = ‖pinter − p‖.
return dmax. 0 pinter is the intersection point between the walking ray and the τ

• τ is selected and σneigh can be obtained.

5: Jump over the τ and walk along the σneigh.
6: σ ← σneigh.
7: n = n+ 1.
8: end while

6.1 Risky Cliff Points

Collision detection of the meshes relying on JWM is not always reliable. Figure 5
shows two typical examples that the test may fail. At the corner, the space is
gradually increasing. The prisms generated upon the frontiers propelled from
inflection points will be twisted first when the walking rays overlap each other.
These frontiers then stop marching, from which steplike boundary layer meshes
will be generated as shown in Fig. 6 because the numbers of neighboring layers
cannot differ by more than one in our algorithm. As the layers increases, grid
may intersects locally. At the exit of narrow channel, when the space increases
sharply, global intersections may appear in a similar form even though the JWM
has compressed the total thickness of layers in the channel properly. Each layer of

Fig. 5 Two typical examples that collision detection may fail just relying on Jump-and-Walk
method. Left: at a corner. Right: at the exit of a narrow channel



Generation of Boundary Layer Meshes by the Enhanced Jump-and-Walk Method 315

Fig. 6 Under one of the four conditions, mesh collisions may happen at cliff points. Condition
1: small corner angle. Condition 2: large minimum number of layers. Condition 3: large total
number of layers. Condition 4: big growth rate of layer thickness or small surface mesh size

the steplike meshes will produces some cliff points on the edges. The cliff point is
a point on which an incomplete front patch is centered. As the number of layers
increases, grid intersections first appear at the cliff points, which is related to corner
angle, minimal number of layers where frontiers stop marching at first, growth rate
of layer thickness or surface mesh size, total number of layers, and so on. Although
sufficient iterations on smoothing marching vectors can alleviate or even avoid this
problem, the time cost is expensive and it is not always effective.

6.2 Algorithm

MSM can approximately split the solid space into several subdomains bounded by
a continuous convex boundary surface and part of the MSM. The walking rays from
a subdomain are hard to intersect with those from the neighboring subdomains as
long as they does not cross the MSM. EJW-B performs a space detection in a DCDT
with the MSM as the walking boundary. However, if the frontiers tested by EJW-B
are not filtered, the number of layers produced is less near curved surfaces as the
frontiers will hit the MSM quickly due to its noisy representation in sliver elements.
One way to balance robustness and quality is to take an extra test just for cliff points,
which as the starting points for Ray Tracing are far away from curved surfaces after
the smoothing of marhcing vectors.

In the preprocessing, front point p is a 0th-layer point and q is the target point
far away from p. The maximal number of marching layers of p can be estimated
by EJW-A with a safe factor rgap, which takes 0.3 to ensure clear distance between
boundary layer meshes as shown in Fig. 7a. At the ith layer, p0 is the 0th-layer
point and q is the target point (di + dave) far away from p, where di is the marching
distance and dave is the average surface mesh size at p0 as a safe threshold. If the
corresponding (i + 1)th-layer point of p is a cliff point, EJW-B is carried out to
check whether the cliff point is a risky point with a two-walk scheme. The first walk



316 J. Cao et al.

Fig. 7 Schematic of the enhanced Jump-and-Walk method: (a) EJW-A and (b) EJW-B

Fig. 8 DCDT and boundary layer meshes generated based on it

from p0 to p is to determine the tetrahedron where p is located and the second one
from p to q is to evaluate whether the advance of p is safe as shown in Fig. 7b. p
can march to the next layer only if i is less than the maximal number of marching
layers and the ray pq does not intersect with the MSM.

If p stops marching, the (i + 1)th-layer points of its neighbors will become cliff
points. Therefore, its neighbors will also be tested until all points pass this test. If
p0 is a feature point, then p will not be checked because the MSM will extends to
the feature edge. As shown in Fig. 8, a reasonable number of boundary layers are
generated near the curved boundary.



Generation of Boundary Layer Meshes by the Enhanced Jump-and-Walk Method 317

6.3 Time Complexity

Let n be the number of front points on boundary, EJW-A will handle n points while
EJW-B just handle εn points. ε is smaller than 1 as only the top-layer front points
in narrow area may be tested by EJW-B like the ones marked in the dotted box of
Fig. 8. Totally the collision detection operation will be called (1 + ε)n times. As
JWM requires the expected time close to O

(
n1/4

)
per point, the time complexity of

our algorithm is O
(
n5/4

)
.

7 Generation of Isotropic Meshes

With the closed inflated boundary as input, isotropic tetrahedral meshes can be
generated in the remaining flow field. There are many efficient, stable and open-
source tetrahedral mesh generators, such as Gmsh, NetGen, Tetgen, etc. In this
work, the generation of CDT and isotropic tetrahedral meshes is completed via
TetGen program.

8 Work Examples and Industrial Applications

In this section, we present three representative cases to discuss the performance
of our algorithm. 3D-cavity is a model constructed by simplifying and extruding
the 2D-cavity below the combustion chamber of a gas turbine engine without any
curved feature for a basic performance test; Impingement cooling channel (ICC) is a
common internal flow model containing periodic surfaces and smooth corners while
F6 is a complex external flow aircraft. All cases were run in a single core of an Intel
Core i7-8850H CPU with 16 GB of RAM.

8.1 Hybrid Mesh

Table 1 shows the statistics of surface mesh inputted and hybrid mesh generated by
our algorithm for the models. In this work, the input is required to be a closed
trianglar mesh and the boundary layer meshes generated consist of prisms, but
quadral and hexahedral elements also can be supported simply by a splitting of
quads before the input and a merging of prisms after the output.

For the ease of examination, the surface meshes in narrow areas were marked
red while the rest were green. As shown in Fig. 9 (left), the locus of MSM is
consistent with actual medial surface on the whole and geometric features of 3D-
cavity have been identified. From the cut-up view of hybrid mesh and the local



318 J. Cao et al.

Table 1 Data statistics of hybrid mesh

Model Algorithm # nodes # tri. # layers # tet. # pyramids # prisms

Cav Ours 381 k 762 k 26 3.4 M 62 k 13.0 M

Pointwise 381 k 762 k 26 9.4 M 76 k 13.8 M

ICC Ours 152 k 304 k 26 3.7 M 37 k 6.0 M

Pointwise 152 k 304 k 26 2.8 M 42 k 6.3 M

F6 Ours 150 k 299 k 35 2.4 M 53 k 8.9 M

Pointwise 150 k 299 k 35 1.9 M 49 k 9.3 M

Fig. 9 MSM and hybrid mesh of 3D-cavity

Fig. 10 MSM and hybrid mesh of ICC

enlarged pictures in Fig. 9 (right), both global and local grid intersections at narrow
channels and corners are effectively avoided with our algorithm. In the same way,
Fig. 10 shows the MSM and hybrid mesh of ICC. Although part of the MSM is
chaotic around periodic surfaces and curved corners, reasonable boundary layer



Generation of Boundary Layer Meshes by the Enhanced Jump-and-Walk Method 319

meshes have been generated with enough layers. It indicates the drawback of MSM
can be overcome. Moreover, the MSM is continuous and almost leak-free, which
improves the robustness of our algorithm. Figure 11 (left) gives a cut-up view of
the DCDT outside F6. The locus of MSM is visible from the enlarged pictures with
the branches in the big tetrahedra of CDT. Figure 11 (right) shows the front cut-
up views of hybrid mesh outside F6. The thickness of boundary layers increases
gradually from the corners to the outside and a clear spacing between prismatic
meshes is always maintained.

To demonstrate the quality of the boundary layer meshes generated by the
proposed method, a comparison was made with a popular commercial software
Pointwise, which contains a T-Rex technique that anisotropic tetrahedral elements
are generated first around the model, and then boundary layer meshes are formed by
combining three tetrahedral elements into a prism [22]. The determination of self-
intersection in the front surface mesh during continuous local mesh modification is
based on an intersection test accelerated by an axis-aligned binary space partitioned
tree. With the same surface mesh of the models as the input, the hybrid mesh
generated by Pointwise are shown in Table 1, and the quality distributions of
prismatic elements are plotted in Fig. 12 with the scaled aspect ratio, where the
ratio in the range of 0.9–1.0 has been cut by 70 for the ease of examination. As
our algorithm avoids grid collisions based on space detection by maintaining a safe

Fig. 11 MSM and hybrid mesh of F6

0

5

10

15

20

25

30

0.05 0.25 0.45 0.65 0.85

P
er

ce
n

ta
g
e 

o
f 

T
o

ta
l

Scaled Aspect Ratio

F6 model

Our Algorithm
Pointwise

0.0  0.1 0.2 0.3   0.4 0.5   0.6 0.7 0.8   0.9  1.0

+70

0

5

10

15

20

25

30

0.05 0.25 0.45 0.65 0.85

P
er

ce
n

ta
g
e 

o
f 

T
o

ta
l

Scaled Aspect Ratio

ICC model

Our Algorithm
Pointwise

+70

0.0  0.1 0.2 0.3   0.4 0.5   0.6 0.7 0.8   0.9  1.0

0

5

10

15

20

25

30

0.05 0.25 0.45 0.65 0.85

lat
o

T  f
o  e

gat
necre

P

Scaled Aspect Ratio

Cav model

Our Algorithm
Pointwise

0.0  0.1 0.2 0.3   0.4    0.5   0.6    0.7  0.8  0.9   1.0

+70

Fig. 12 Quality distributions of the prismatic elements



320 J. Cao et al.

space between adjacent meshes, the total number of prisms is less than Pointwise.
However, a more desirable distribution can be observed in the result produced by
our algorithm.

8.2 Comparison of JWM and EJW

Table 2 shows the time of background grid generation and Ray Tracing (RT) and
the results of intersection tests by JWM and EJW. JWM or EJW-A performs the
RT in a CDT while EJW-B is based on a DCDT. The constructions of the CDT and
DCDT consumed about the same amount of time according to the statistics. The
RT in EJW-B took less than 10 s to detect the collisions of boundary layers meshes
in the millions while that in EJW-A took about 5 times as long. For each of front
points tested we count the number of tetrahedra visited in a RT and take the mean
Mn. Figure 13 plots the ratio Mn/n

1/4 with a front point set of size m tested by
EJW-A and EJW-B in a triangulation of n points for the 3D-cavity model. Both of
the ratio values are less than 1.5 close to the result produced by Mücke et al. [11].
As EJW-A tested all front points on the boundary, totally about 1.2 layers of front
points were handled by the proposed method.

When the value of n reaches 381 k, JWM fails the intersection test for the 3D-
cavity model. The grid also intersects for the ICC and F6 if JWM is adopted.
Figure 14 shows the intersected or almost intersected meshes generated by JWM,
while these problems are effectively alleviated by EJW at the same positions. It
indicates that our algorithm can produce a valid result under different conditions.
Moreover, the construction of DCDT and the ray tracing operations can run in
parallel without large modification to the program.

Table 2 Time statistics of JWM and EJW

JWM EJW

Model # nodes # tri. # layers CDT(s) RT(s) T/F CDT(s) RTA(s) DCDT(s) RTB(s) T/F

Cav 24 k 47 k 26 0.977 0.612 T 0.952 0.593 1.212 0.153 T

47 k 94 k 26 1.736 1.424 T 1.762 1.417 2.263 0.479 T

91 k 183 k 26 3.444 3.872 T 3.402 3.767 4.528 0.753 T

175 k 351 k 26 6.463 9.180 T 6.56 9.538 8.283 1.545 T

381 k 762 k 26 14.959 29.904 F 16.498 30.214 19.219 5.936 T

562 k 1125 k 26 26.838 55.051 F 26.909 55.855 30.099 9.092 T

ICC 152 k 304 k 26 11.203 22.970 F 10.935 21.911 12.949 2.93 T

F6 150 k 299 k 35 13.467 58.959 F 13.574 58.208 13.344 6.953 T



Generation of Boundary Layer Meshes by the Enhanced Jump-and-Walk Method 321

m = n = 18612

36417

70564

130768

287423
434099

0

0.5

1

1.5

2

0 200000 400000 600000

EJW-A

m = 4823

8617
14701 23988

46097

57865

0

0.5

1

1.5

2

0 2000000 4000000 6000000

EJW-B

/
1
/
4

/
1
/
4

Fig. 13 The ratio Mn/n
1/4 by EJW-A and EJW-B for Cav. Mn is the mean of the number of

tetrahedra visited for a front point set of size m tested in a triangulation of n points

Fig. 14 Comparison of boundary layer meshes: (a) JWM and (b) EJW

9 Conclusions and Discussions

In this work, the JWM has been developed, which relies only on CDT without other
extra data structures. By introducing a wall of medial surface into the background
grid, the intersections of boundary layer meshes around complex geometrical
features can be much alleviated. Several complex geometries with a lot of special
features were tackled to test the effectiveness of the proposed method.



322 J. Cao et al.

This paper also has proposed a novel method to quickly extract a medial surface
from the CDT. As the construction of medial surface is a significant topic, further
researches can be conducted to improve the approximate accuracy.

References

1. Kallinderis, Y., Ward, S.: Prismatic grid generation for three-dimensional complex geometries.
AIAA J. 31, 1850–1856 (1993)

2. Kallinderis, Y., Khawaja, A., McMorris, H.: Hybrid prismatic/tetrahedral grid generation for
viscous flows around complex geometries. AIAA J. 34, 291–298 (1996)

3. Zheng, Y., Xiao, Z., Chen, J., et al.: Novel methodology for viscous-layer meshing by the
boundary element method. AIAA J. 56, 209–221 (2018)

4. Si, H.: TetGen, a Delaunay-based quality tetrahedral mesh generator. ACM Trans. Math. Softw.
41, 11 (2015)

5. Lo, S.H.: 3D Delaunay triangulation of non-uniform point distributions. Finite Elem. Anal.
Des. 90, 113–130 (2014)

6. Yu, F., Zeng, Y., Guan, Z.Q., et al.: A robust Delaunay-AFT based parallel method for the
generation of large-scale fully constrained meshes. Comput. Struct. 228, 106170 (2020)

7. Loehner, R.: Matching semi-structured and unstructured grids for Navier-Stokes calculations.
In: AIAA 93-3348-CP, pp. 555–564 (1993)

8. Pirzadeh, S.: Unstructured viscous grid generation by the advancing-layers method. AIAA J.
32, 1735–1737 (1994)

9. Wang, F., Mare, L.D.: Hybrid meshing using constrained Delaunay triangulation for viscous
flow simulations. Int. J. Numer. Methods Eng. 108, 1667–1685 (2016)

10. Borouchaki, H., Lo, S.H.: Fast Delaunay triangulation in three dimensions. Comput. Methods
Appl. Mech. Eng. 128, 153–167 (1995)

11. Mücke, E.P., Saias, I., Zhu, B.: Fast randomized point location without preprocessing in two-
and three-dimensional Delaunay triangulations, Comput. Geom. 12, 63–83 (1999)

12. Shan, J.L., Li, Y.M., Guo, Y.Q., et al.: A robust backward search method based on walk-
through for point location on a 3D surface mesh. Int. J. Numer. Methods Eng. 73, 1061–1076
(2008)

13. Tomac, M., Eller, D.: Towards automated hybrid-prismatic mesh generation. Procedia Eng. 82,
377–389 (2014)

14. Wang, Z., Quintanal, J., Corral, R.: Accelerating advancing layer viscous mesh generation for
3D complex configurations. Procedia Eng. 112, 35–46 (2019)

15. Bonet, J., Peraire, J.: An alternating digital tree (ADT) algorithm for 3D geometric searching
and intersection problems. Int. J. Numer. Methods Eng. 31, 1–17 (1991)

16. Dyedov, V., Einstein, D.R., Jiao, X., et al.: Variational generation of prismatic boundary-Layer
meshes for biomedical computing. Int. J. Numer. Methods Eng. 79, 907–945 (2009)

17. Alauzet, F., Marcum, D.: A closed advancing-layer method with changing topology mesh
movement for viscous mesh generation. In: Proceedings of the 22th International Meshing
Roundtable. Springer, Cham (2014)

18. Hubbard, P.M.: Approximating polyhedra with spheres for time-critical collision detection.
ACM Trans. Graph. 15, 179–210 (1996)

19. Quadros, W.R., Shimada, K., Owen, S.J.: Skeleton-based computational method for the
generation of a 3D finite element mesh sizing function. Eng. Comput. 20, 249–264 (2004)

20. Fogg, H.J., Armstrong, C.G., Robinson, T.T.: New techniques for enhanced medial axis based
decompositions in 2-D. Procedia Eng. 82, 162–174 (2014)



Generation of Boundary Layer Meshes by the Enhanced Jump-and-Walk Method 323

21. Price, M.A., Armstrong, C.G., Sabin, M.A.: Hexahedral mesh generation by medial surface
subdivision: Part I. Solids with convex edges. Int. J. Numer. Methods Eng. 38, 3335–3359
(1995)

22. Steinbrenner, J.P., Abelanet, J.P.: Anisotropic tetrahedral meshing based on surface deforma-
tion techniques. In: 45th AIAA Aerospace Sciences Meeting and Exhibit, pp. 554. AIAA,
Reno (2007)



Part IV
Numerical Geometry and Applications



An Improved Algorithm for Scattered
Data Interpolation Using Quartic
Triangular Bézier Surfaces

Krassimira Vlachkova

Abstract We revisit the problem of interpolation of scattered data in R
3 and

propose a solution based on Nielson’s minimum norm network and triangular Bézier
patches. We aimed at solving the problem using the least number of polynomial
patches of the smallest possible degree. We propose an alternative to the previously
known algorithms, see Clough and Tocher (Finite element stiffness matrices for
analysis of plate bending. In: Proceedings of the 1st Conference on Matrix Methods
in Structural Mechanics, vol. 66–80, pp. 515–545. Wright-Patterson A. F. B., Ohio,
1965) and Shirman and Séquin (Comput Aided Geom Des 4:279–295, 1987; 8:217–
221, 1991). Although conceptually similar, our algorithm differs from the previous
in all its steps. As a result the complexity of the resulting surface is reduced and its
smoothness is improved. We present results of our numerical experiments.

1 Introduction

Scattered data interpolation is an important problem in Computer Aided Geometric
Design and finds applications in various areas including automotive, aircraft and
ship design, architecture, archeology, computer graphics, biomedical informatics,
scientific visualization, and others. In general the problem can be formulated as
follows: Given a set of points di = (xi, yi, zi )∈R

3, i= 1, . . . , N , find a bivariate
function F(x, y) defined in a certain domain D containing points vi = (xi, yi),
such that F possesses continuous partial derivatives up to a given order and
F(xi, yi)= zi .

K. Vlachkova (�)
Faculty of Mathematics and Informatics, Sofia University “St. Kliment Ohridski”, Sofia, Bulgaria
e-mail: krassivl@fmi.uni-sofia.bg

© Springer Nature Switzerland AG 2021
V. A. Garanzha et al. (eds.), Numerical Geometry, Grid Generation and Scientific
Computing, Lecture Notes in Computational Science and Engineering 143,
https://doi.org/10.1007/978-3-030-76798-3_21

327

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76798-3_21&domain=pdf
mailto:krassivl@fmi.uni-sofia.bg
https://doi.org/10.1007/978-3-030-76798-3_21


328 K. Vlachkova

Various methods for solving this problem were proposed and applied, see
[10, 11, 13, 14]. Further information and treatment more recently have been
presented in [1–3, 7]. A standard approach to solve the problem consists of two
steps:

Step 1. Construct a triangulation T = T (v1, . . . , vN);
Step 2. For every triangle in T construct a surface (patch) which interpolates the

data at the three vertices of T .

The interpolation surface constructed in Step 2 is usually polynomial or piece-
wise polynomial. Typically, the patches are computed with a priori prescribed
normal vectors at the data points. G1 or G2-smoothness of the resulting surface is
achieved either by increasing the degree of the patches, or by the so called splitting
in which for each triangle in T a macro-patch consisting of a fixed number of
Bézier sub-patches is constructed. Splitting was originally proposed by Clough and
Tocher [6] and further developed by Percell [16] and Farin [8] for solving different
problems. Known splitting algorithms apply splitting to all macro-patches defined
in D. We point out that splitting decreases the smoothness of a polynomial macro-
patch to G1.

Shirman and Séquin [18, 20] construct a G1-smooth surface consisting of quartic
triangular Bézier surfaces. Their method assumes that the normal vectors at points
di , i = 1, . . . , N , are given as part of the input. Shirman and Séquin construct
a smooth cubic curve network defined on the edges of T , first, and then degree
elevate it to quartic. This increases the degrees of freedom and allows them to
connect smoothly the adjacent Bézier patches. Next, they apply splitting where for
each triangle in T a macro-patch consisting of three quartic Bézier sub-patches is
constructed. To compute the inner Bézier control points closest to the boundary
of the macro-patch, Shirman and Séquin use a method proposed by Chiyokura and
Kimura [4, 5]. The interpolation surfaces constructed by Shirman and Séquin’s
algorithm often suffer from unwanted bulges, tilts, and shears as pointed out by the
authors in [19] and more recently by Hettinga and Kosinka in [12].

Nielson [15] proposes a method which computes a smooth interpolation curve
network defined on the edges of T so as to have common tangent planes at the
data points and to satisfy an extremal property. This curve network is called
minimum norm network (MNN) and is cubic. Nielson extends the MNN to a
smooth interpolation surface using a blending method based on convex combination
schemes. The interpolant obtained is a rational function on every triangle in T .

In this paper we aim at constructing an interpolation surface that is piecewise
polynomial and consists of the least number of patches of the smallest possible
degree. Such interpolants are computationally tractable and desired in practice. We
propose an algorithm that constructs interpolants consisting of quartic triangular
Bézier patches and improves on Shirman and Séquin’s method in various ways.
More precisely, our contributions are as follows.

(i) We use the MNN and then degree elevate it to quartic. An important advantage
of this approach is that the MNN is obtained through a global optimization of
the curve networks defined on the edges of T which improves the shape of the



An Improved Algorithm for Scattered Data Interpolation 329

patches. Another advantage is that the normal vectors at the data points are
obtained through the computation of the MNN.

(ii) Our algorithm does not necessarily apply splitting in all triangles of T . We
identify a subset of triangles Ts ⊂ T where splitting needs to be applied.
Finding the minimum size set Ts is computationally hard, and instead, we
adopt an efficient incremental heuristic, where at each step the best candidate
triangle is added to Ts . Decreasing the size of Ts reduces the complexity of the
resulting surfaces and improves their quality.

(iii) We compute the control points of the Bézier patches so that the oscillations of
the resulting interpolation surface near edges and vertices are minimized and
distortions and twists are avoided.

(iv) Shirman and Séquin impose an additional condition that the three quartic
curves defined on the common edges of the three sub-patches must be degree
elevated cubic curves. This condition is not necessary to obtain G1-continuity
across the common edges of the sub-patches. We use different condition for the
inner points of the sub-patches and believe that such a choice would facilitate
the construction of convex macro-patches.

The remainder of this paper is organized as follows. In Sect. 2 we present some
preliminary results. Our algorithms are presented in Sect. 3. In the final Sect. 4
examples of some of our numerical experiments are presented and compared with
surfaces generated by Shirman and Séquin’s method.

2 Preliminaries

2.1 Nielson’s MNN

Let N ≥ 3 be an integer and di := (xi, yi, zi ), i = 1, . . . , N , be different points
in R

3. We call this set of points data. The data are scattered1 if the projections
vi := (xi, yi) onto the plane Oxy are different and non-collinear. Hereafter we
assume that a triangulation T of the points vi , i = 1, . . . , N , is given and fixed.
Furthermore, for the sake of simplicity, we assume that the domain D formed by
the union of the triangles in T is simply connected. The set of the edges in T is
denoted by E. If there is an edge between vi and vj in E, it will be referred to by
eij or simply by e if no ambiguity arises. A curve network is a collection of real-
valued univariate functions {fe}e∈E defined on the edges in E. With any real-valued

1Note that this definition of scattered data slightly misuses the commonly accepted meaning of the
term. It allows data with some structure among points vi . We have opted to do this in order to
cover all cases where our presentation and results are valid.



330 K. Vlachkova

bivariate function F defined on D we naturally associate the curve network defined
as the restriction of F on the edges in E, i.e., for e = eij ∈ E,

fe(t) := F

((
1 − t

‖e‖
)
xi + t

‖e‖ xj ,
(

1 − t

‖e‖
)
yi + t

‖e‖ yj
)
,

where 0 ≤ t ≤ ‖e‖ and ‖e‖ =
√(

xi − xj
)2 + (

yi − yj
)2
.

(1)

Furthermore, according to the context F will denote either a real-valued bivariate
function or a curve network defined by (1). We introduce the following class of
smooth interpolants defined on D

F :=
{
F(x, y) ∈ C1(D) | F(xi , yi) = zi , i = 1, . . . , N, f ′

e ∈ AC, f ′′
e ∈ L2, e ∈ E

}
,

where C1(D) is the class of bivariate functions defined in D which possess
continuous first order partial derivatives, AC is the class of univariate absolutely
continuous functions defined in [0, ‖e‖], and L2 is the class of univariate functions
defined in [0, ‖e‖] whose second power is Lebesgue integrable.

The restrictions on E of the functions in Fp form the corresponding class of
so-called smooth interpolation curve networks

C(E) := {
F|E = {fe}e∈E | F(x, y) ∈ F

}
.

The smoothness of the interpolation curve network F ∈ C(E) geometrically means
that at each point di there is a tangent plane to F , where a plane is tangent to the
curve network at the point di if it contains the tangent vectors at di of the curves
incident to di .

For F ∈ C(E) we denote the curve network of second derivatives of F by F ′′ :=
{f ′′

e }e∈E . The L2-norm of F ′′ is defined by

∥∥F ′′∥∥
L2(T )

:= ∥∥F ′′∥∥ =
(∑
e∈E

∫ ‖e‖

0

∣∣f ′′
e (t)

∣∣2 dt

)1/2

.

Nielson [15] considered and solved the following extremal problem

(P) Find F ∗ ∈ C(E) such that
∥∥F ∗′′∥∥ = inf

F∈C(E)
∥∥F ′′∥∥.

The unique solution (MNN) to (P) is a cubic curve network and is obtained by
solving a linear system of equations.



An Improved Algorithm for Scattered Data Interpolation 331

2.2 The G1-Continuity Conditions

Let C1 and C2 be cubic triangular Bézier patches whose common boundary is the
cubic curve q(t). Let q(t) = ∑3

i=0 qiB
3
i (t), where qi , i = 0, . . . , 3, be the control

points of q(t), and Bm
i (t) be the Bernstein polynomials of degreem, m ∈ N, defined

for 0 ≤ t ≤ 1 by

Bm
i (t) :=

(
m

i

)
t i (1 − t)m−i ,

(
m

i

)
=
{

m!
i!(m−i)! , for i = 0, . . . ,m,

0, otherwise.

Let us degree elevate C1 and C2 to quartic Bézier patches and denote the control
points of the degree elevated q(t) by q̂i , i = 0, . . . , 4, where q̂0 ≡ q0 and q̂4 ≡ q3.
Then q(t) = ∑4

i=0 q̂iB
4
i (t) where q̂i = i

4qi−1 + (
1 − i

4

)
qi , i = 0, . . . , 4.

Let pi and ri , i = 0, . . . , 3, be the nearest to q(t) control points of C1 and
C2, respectively, see Fig. 1 (left). Farin [9, pp. 368–371] proposed the following
sufficient conditions for G1-continuity between C1 and C2.

i

4
bi,4 +

(
1 − i

4

)
bi,0 = 0, i = 0, . . . , 4, (2)

p0 p3

r0 r3
0 1 2 3 4

p1 p2
t1

t5

t2

t3 q0

1
1

2
1

3
1

4
1

q̂

q̂

q̂

q̂ q̂5
1

t4

q̂q̂q̂ q̂q̂

Fig. 1 Left: the G1-continuity conditions: the four shaded quadrilaterals are planar. Right: the
vertex enclosure problem for an odd degree vertex always has a solution



332 K. Vlachkova

where

bi,0 = α0pi + (1 − α0)ri −
(
β0q̂i + (1 − β0)q̂i+1

)
,

bi,4 = α1pi−1 + (1 − α1)ri−1 − (
β1q̂i−1 + (1 − β1)q̂i

)
,

and 0 < αi < 1, i = 1, 2. From (2) for i = 0 and i = 4 we obtain

b0,0 = 0 ⇒ α0p0 + (1 − α0)r0 = β0q̂0 + (1 − β0)q̂1, (3)

b4,4 = 0 ⇒ α1p3 + (1 − α1)r3 = β1q̂3 + (1 − β1)q̂4. (4)

The geometric meaning of (2) is that the four shaded quadrilaterals in Fig. 1 (left)
are planar. Moreover, αi, βi , i = 1, 2, are uniquely determined by the intersection
point of the diagonals of the first and the last quadrilaterals, respectively.

2.3 The Vertex Enclosure Problem

Let v be an inner vertex in T , i.e., v ≡ vi for some i, 1 ≤ i ≤ N , and q0 be the
corresponding point di . Let n be the degree of v, i.e., the number of the edges
incident to v. Let τk , k = 1, . . . , n, be the triangles in T with common vertex
v listed in counterclockwise order around v, where τ1 is arbitrarily chosen. For
k = 1, . . . , n, let Tk be the quartic Bézier patch defined in τk , and
qk(t) = ∑4

i=0 q̂
k
i B

4
i (t) be the degree elevated cubic curves of the MNN with

starting point q0 defined on the edges of τk . We denote by αki , βki , i = 0, 1, the
corresponding coefficients for qk(t) defined by (3) and (4). Let tk be the nearest to
q0 inner control point of Tk , k = 1, . . . , n, see Fig. 1 (right) for n = 5.

By applying (3) to Tk , k = 1, . . . , n, we obtain the following linear system for
the unknowns tk ,

⎛
⎜⎜⎜⎜⎜⎝

1 − α2
0 α2

0 0 · · · 0 0
0 1 − α3

0 α3
0 · · · 0 0

...
...

...
...

...
...

0 0 0 · · · 1 − αn0 αn0
α1

0 0 0 · · · 0 1 − α1
0

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

t1
t2
...

tn−1

tn

⎞
⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎝

s1

s2
...

sn−1

sn

⎞
⎟⎟⎟⎟⎟⎠
, (5)

where the points sk depend on αki , βki , q̂ki , k = 1, . . . , n; i = 1, 2.
The existence of a solution to system (5) is known as the vertex enclosure

problem. Peters [17] proved that the rank of (5) in n for odd n, and n − 1 for
even n. Therefore, if n is odd then system (5) always has a unique solution. If n is



An Improved Algorithm for Scattered Data Interpolation 333

even then by Gauss elimination we obtain that (5) has a solution if and only if

sn
(

1 − α2
0

)
. . .
(
1 − αn0

)− sn−1α
1
0 . . . α

n−1
0

+
n−2∑
k=1

(−1)kskα1
0 . . . α

k
0

(
1 − αk+2

0

)
. . .
(
1 − αn0

) = 0.

(6)

3 Outline of Our Algorithms

In this section we propose algorithms to construct G1-continuous surface consisting
of Bézier patches in the presence of even degree vertices. In [17] it is shown
that although splitting does not eliminate even degree vertices, the vertex enclosure
problem can be solved successfully since splitting adds more degrees of freedom.
However, it is not necessary to split all triangles in T . In case the vertex is of even
degree and (6) doesn’t hold, it suffices to split just one triangle incident to the vertex.
Our goal is to reduce the number of the splitted triangles since splitting decrease the
smoothness of the macro-patch to G1.

3.1 Determining the Set Ts

First, using degree elevation we represent all cubic curves comprising the MNN
as quartic Bézier curves. Next, we identify an optimized set Ts of triangles where
splitting needs to be applied. For the remaining triangles, those in T \Ts , we simply
construct the standard quartic Bézier patch.

Let V1 be the set of all inner vertices in T . First, for each edge e incident to V1
for which the corresponding coefficients α0(e) and α1(e) defined by (3) and (4) are
different, we insert the triangles incident to e in Ts and mark the endpoint vertices
of e. Next, we identify a set V2 ⊂ V1 consisting of vertices that:

(i) are not marked;
(ii) have even degree;

(iii) Equation (6) does not hold.

Let T2 be the set of triangles incident to vertices in V2. We assign weights w,
w = 1, 2, or 3, to triangles in T2 equal to the number of vertices in T2 incident to
the corresponding triangle. We organize T2 in a priority queue with respect to the
weights. While T2 is nonempty we insert a triangle with maximum weight in Ts ,
remove its vertices from V2, and update the weights and the queue.



334 K. Vlachkova

Algorithm 1 below takes the MNN as an input and construct a G1-continuous
interpolating surface F(x, y) defined on D which consists of triangular quartic
Bézier patches.

Algorithm 1
Step 1. Compute the control points of the curves in the MNN
Step 2. Degree elevate all curves to quartic curves.
Step 3. Compute an optimized set Ts as described above.
Step 4. For each τ ∈ T \ Ts compute 3 inner control points and construct a macro-patch.
Step 5. For each τ ∈ Ts compute 19 inner control points and construct three sub-patches using

Algorithm 2 for splitting as described in Sect. 3.2.

3.1.1 Solving the Vertex Enclosure Problem

Let v be an inner vertex of T of degree n and q0 be the corresponding data point.
First, we compute the control points t1, . . . , tn which are the nearest to q0, see
Fig. 2. If no triangle with vertex v belongs to Ts then we compute t1, . . . , tn by
solving the corresponding system (5), see Fig. 1 (right). Let there be a triangle in
Ts with vertex v. In Fig. 2 an inner vertex v of degree 7 incident to four triangles in
Ts is shown. Let τ1, . . . , τr be the triangles with vertex v listed in counterclockwise
order around v, where τ1 is arbitrarily chosen. Let tk be the nearest to q0 point for
τk , k = 1, . . . , r . We divide τ1, . . . , τr into groups of consecutive triangles such that
the first and the last triangles in each group are sub-patches, and the intermediate
triangles are macro-patches, see Fig. 2 where the groups are four: τ1, τ2, τ3, τ4;
τ5, τ6; τ7, τ8, τ9; τ10, τ11. The groups are uniquely defined and their number is
equal to the number of the triangles in Ts incident to v. Let τ1, . . . , τm be any of
the groups. We compute t1, . . . , tm by solving the corresponding system (5). Since
τ1 and τm do not have a common edge then the last equation of (5) is excluded.
Then we can represent t1, . . . , tm as linear functions of tm using (5). We aim at
minimizing the unwanted oscillations between patches Q1, . . . ,Qm using tm as a

Fig. 2 An inner vertex v of
degree 7 with four incident
triangles in Ts . The points ti
are the nearest control points
to the corresponding data
point q0, i = 1, . . . , 11 t9

t8

t7
t4

t3

t2 t1

t6
t5

t11 t10

v

τ1

τ4

τ2

τ3

τ5

τ10

τ9

τ5

τ8

τ7τ6
τ5

τ11



An Improved Algorithm for Scattered Data Interpolation 335

shape parameter. We compute its first two coordinates as shown in Sect. 3.2. Let
zi denote the third coordinate of ti , i = 1, . . . ,m. We compute zm by minimizing
the function g(zm) = ∑m−1

i=1 (zi+1 − zi)
2. The minimum is found readily since

g′(zm) = 0 is a linear equation.
In the case where v is a boundary vertex we compute the corresponding points

t1, . . . , tr analogously to the case of an inner vertex. In this case τ1 is uniquely
determined and it is possible that either the first group of triangles starts, or the last
group ends with a macro-patch instead of a sub-patch.

We note that if a triangle doesn’t belong to Ts then by solving the vertex enclosure
problem for its three vertices we completely determine the corresponding macro-
patch since we obtain its three inner control points.

3.2 Computing the Control Points of the Sub-patches

Let τ be a triangle in Ts and T be the corresponding macro-patch defined in τ . We
compute the control points of the three Bézier sub-patches consecutively in four
layers as shown in Fig. 3(left). The first layer consists of inner control points that
are the nearest to the boundary of τ . The last fourth layer contains a single point z.
This point z is the splitting point and will be computed as a center of the triangle
with vertices in the previous third layer. We use the following notation.

� vertices of the sub-patches;
• inner control points on the boundary of the macro-patch;
� inner control points of the three inner boundary curves of the sub-patches;
◦ inner control points of the sub-patches.

Next we explain in detail our choice of the control points in the first level. There
are three points of type � and six points of type ◦ in this layer, see Fig. 3(left). First,
we compute points of type � as centers of the three small triangles with vertices

q̂1
0

q̂2
0

q̂1
1

q̂1
2

q̂1
3

z

q̂3
3

q̂2
3

q̂2
2

q̂2
1

x2

x3

x1

z6

z1

q̂3
2

q̂3
0

q̂3
1

z3

z2

z4z5

Fig. 3 (left) Construction of a G1-continuous Bézier macro-patch by splitting to three sub-
patches. (right) The control points in the first layer are computed to avoid unwanted twisting,
tilting, and oscillations between the adjacent patches



336 K. Vlachkova

•�• on the boundary of the macro-patch. Then we compute the points zi , i = 1, 2,
of type ◦ as follows.

Let the corresponding edge of τ be inner for T and q̃i1, z̃i , i = 1, 2, be
the corresponding control points of the neighbouring patch, see Fig. 3(right). We
compute consecutively the following points.

z′i := q̂1
1 + qi − m1, z̃′i := q̃1

1 + qi − m1,

z′′i := q̂2
1 + qi − m2, z̃′′i := q̃2

1 + qi − m2,

ai :=
(

1 − i

3

)
z′i +

i

3
z′′i , ãi :=

(
1 − i

3

)
z̃′i +

i

3
z̃′′i , i = 1, 2,

where qi , i = 1, 2, are control points of the cubic curve defined on the common
edge of τ and its neighbouring triangle, and mi , i = 1, 2, are the intersection points
of the diagonals of the quadrilaterals q̂1

0q̂
1
1•q̃1

1 and •q̂2
1q̂

2
0q̃

2
1, respectively, as shown

in Fig. 3(right).
Let zi := (ξi , ηi , ζi) and z̃i := (ξ̃i , η̃i , ζ̃i ). We choose ξi , ηi and ξ̃i , η̃i to be equal

to the corresponding coordinates of ai and ãi , respectively, i = 1, 2. In this way
the projections of zi , i = 1, 2, onto Oxy lie inside τ . Hence, we avoid unwanted
twisting and tilting of the patch. We compute the third coordinates ζi , ζ̃i so that
ζi = ζ̃i and zi , z̃i , qi are collinear, i = 1, 2. In this way we avoid unwanted
oscillations between the adjacent patches.

In the case where the corresponding edge of τ is boundary for T , i.e., there is no
neighbouring patch of T , we compute zi , i = 1, 2 as follows.

r′i := q̂1
1 − q̂1

0 + qi , r′′i := q̂2
1 − q̂2

0 + qi , zi :=
(

1 − i

3

)
r′i +

i

3
r′′i , i = 1, 2.

The rest of the points zi , i = 3, . . . , 6, are computed analogously.
Algorithm 2 below takes a triangle τ in Ts and the degree-elevated quartic

boundary control points of the corresponding patch and computes 19 control points
of the three G1-continuous quartic Bézier sub-patches.

4 Examples

To demonstrate the results of our work we present here two examples and compare
the surfaces generated by our algorithms and Shirman and Séquin’s algorithm. For
the latter we also use the MNN as input.

Example 1 We consider data obtained from a regular triangular pyramid. We have
N = 4, v1 = (−1/2,−√

3/6), v2 = (1/2,−√
3/6), v3 = (0,

√
3/3), v4 = (0, 0),

and zi = 0, i = 1, 2, 3, z4 = −1. The corresponding MNN is shown in Fig. 4 (left).
In this case Ts is empty and no triangle has been splitted. The corresponding



An Improved Algorithm for Scattered Data Interpolation 337

Algorithm 2
Step 1. Compute the control points in the first layer:

1.1 Points of type � are centers of the three small triangles with vertices •�•.
1.2 Then points of type ◦ are computed as described in Sect. 3.2.

Step 2. Compute the control points in the second layer:

2.1 Points of type � are centers of the three small triangles with vertices ◦�◦ in the first
layer.

2.2 Then points of type ◦ are mid-points of the segments with vertices of type � in the
second layer.

Step 3. Compute the control points in the third layer: the three points of type � are centers of the
small triangles with vertices ◦�◦ in the second layer.

Step 4. Compute the splitting point of type � as a center of the triangle with vertices � in the third
layer.

Fig. 4 Left: the MNN for Example 1. Right: the MNN for Example 2

0

0

0.
2

0.
4

–0
.2

–0
.2–0

.4

–0
.4

0

0

0.
2

0.
4

–0
.2

–0
.2

–0
.4

–0
.4

z

z

y y

x

x

0.6
0.4
0.2

–0.2

0

0.6
0.4
0.2

–0.2

0

Fig. 5 Comparison of the two surfaces for the data in Example 1. Left: the surface generated
using Shirman and Séquin’s algorithm. Right: the surface generated using our Algorithms 1 and 2

Shirman and Séquin’s surface is shown in Fig. 5 (left). The surface generated by
our Algorithms 1 and 2 is shown in Fig. 5 (right).

Example 2 We have N = 25 and data sampled from the function F(x, y) = 5 ×
exp

(
(x − 0.5)2 + (y − 0.5)2

)
.



338 K. Vlachkova

z z

x

7

6
5
4

3 32
1

0

7

6
5
4

2
1

0

00.2

0.
4

0.
6

0.
8

0.5

0

0.5
1

0.
2

0.
4

0.
6

0.
8

1x

Fig. 6 Comparison of the two surfaces for the data in Example 2. Left: the surface generated
using Shirman and Séquin’s algorithm. Right: the surface generated using our Algorithms 1 and 2.
The set Ts is marked in black and consists of 6 triangles

The triangulation is the Delaunay triangulation, it consists of 41 triangles and is
shown in Fig. 6 (left). The corresponding MNN is shown in Fig. 4 (right). The set Ts
consists of 6 triangles, see Fig. 6 (right). The corresponding Shirman and Séquin’s
surface is shown in Fig. 6 (left). The surface generated by our Algorithms 1 and 2 is
shown in Fig. 6 (right).

Acknowledgments This research was supported by Sofia University Science Fund Grant
No. 80-10-171/2020, and by European Regional Development Fund and the Operational Program
“Science and Education for Smart Growth” under Contract № BG05M2OP001-1.001-0004
(2018–2023). The author acknowledges Krum Radev’s work and support in implementation and
testing of the algorithms.

References

1. Amidror, I.: Scattered data interpolation methods for electronic imaging systems: a survey. J.
Electron. Imaging 11, 157–176 (2002). https://doi.org/10.1117/1.1455013

2. Anjyo, K., Lewis, J., Pighin, F.: Scattered Data Interpolation for Computer Graphics, SIG-
GRAPH 2014 Course Notes. http://olm.co.jp/rd/research_event/scattered-data-interpolation-
for-computer-graphics (2014). Accessed 22 Aug 2020

3. Cazals, F., Giesen, J.: Delaunay triangulation based surface reconstruction. In: Boissonat,
J.D., Teillaud, M. (eds.) Effective Computational Geometry for Curves and Surfaces, pp. 231–
276. Springer, Berlin (2006). https://doi.org/10.1007/978-3-540-33259-6_6

4. Chiyokura, H.: Localized surface interpolation method for irregular meshes. In: Kunii, T.
(ed.) Advanced Computer Graphics, Proceedings of Computer Graphics Tokyo’86, vol. 66–80,
pp. 3–19. Springer, Tokyo (1986). https://doi.org/10.1007/978-4-431-68036-9_1

https://doi.org/10.1117/1.1455013
http://olm.co.jp/rd/research_event/scattered-data-interpolation-for-computer-graphics
http://olm.co.jp/rd/research_event/scattered-data-interpolation-for-computer-graphics
https://doi.org/10.1007/978-3-540-33259-6_6
https://doi.org/10.1007/978-4-431-68036-9_1


An Improved Algorithm for Scattered Data Interpolation 339

5. Chiyokura, H., Kimura, F.: Design of solids with free-form surfaces. In: Tanner, P.P. (ed.)
SIGGRAPH ’83 Proceedings of the 10th Annual Conference on Computer Graphics and
Interactive Techniques, vol. 17, pp. 289–298. ACM, New York (1983). https://doi.org/10.
1145/964967.801160

6. Clough, R., Tocher, J.: Finite element stiffness matrices for analysis of plate bending. In:
Proceedings of the 1st Conference on Matrix Methods in Structural Mechanics, vol. 66–80,
pp. 515–545. Wright-Patterson A. F. B., Ohio (1965) URL http://contrails.iit.edu/reports/
8574

7. Dell’Accio, F., Tommaso, F.D.: Scattered data interpolation by Shepard’s like methods:
classical results and recent advances. Dolomites Res. Notes Approx. 9, 32 – 44 (2016). https://
doi.org/10.14658/pupj-drna-2016-Special_Issue-5

8. Farin, G.: A modified Clough-Tocher interpolant. Comput. Aided Geom. Des. 2(1–3), 19–27
(1985). https://doi.org/10.1016/0167-8396(85)90003-2

9. Farin, G.: Curves and Surfaces for CAGD: A Practical Guide, 5th edn. Morgan-Kaufmann,
San Francisco (2002). https://doi.org/10.1017/CBO9780511546860

10. Foley, T., Hagen, H.: Advances in scattered data interpolation. Surv. Math. Ind. 4, 71–84
(1994)

11. Franke, R., Nielson, G.: Scattered data interpolation and applications: a tutorial and survey.
In: Hagen, H., Roller, D. (eds.) Geometric Modeling, pp. 131–160. Springer, Berlin (1991).
https://doi.org/10.1007/978-3-642-76404-2_6

12. Hettinga, G., Kosinka, J.: Multisided generalisations of Gregory patches. Comput. Aided
Geom. Des. 62, 166–180 (2018). https://doi.org/10.1016/j.cagd.2018.03.005

13. Lodha, S., Franke, K.: Scattered data techniques for surfaces. In: Proceedings of
Dagstuhl Conference on Scientific Visualization, pp. 182–222. IEEE Computer Society Press,
Washington (1997). https://ieeexplore.ieee.org/document/1423115

14. Mann, S., Loop, C., Lounsbery, M., Meyers, D., Painter, J., DeRose, T., Sloan, K.: A survey
of parametric scattered data fitting using triangular interpolants. In: Hagen, H. (ed.) Curve
and Surface Design, pp. 145–172. SIAM, Philadelphia (1992). https://doi.org/10.1137/1.
9781611971651.ch8

15. Nielson, G.: A method for interpolating scattered data based upon a minimum norm network.
Math. Comput. 40, 253–271 (1983). https://doi.org/10.2307/2007373

16. Percell, P.: On cubic and quartic Clough-Tocher finite elements. SIAM J. Numer. Anal. 13(1),
100–103 (1976). https://doi.org/10.1137/0713011

17. Peters, J.: Smooth interpolation of a mesh of curves. Constr. Approx. 7(1), 221–246 (1991).
https://doi.org/10.1007/BF01888155

18. Shirman, L., Séquin, C.: Local surface interpolation with Bézier patches. Comput. Aided
Geom. Des. 4(4), 279–295 (1987). https://doi.org/10.1016/0167-8396(87)90003-3

19. Shirman, L., Séquin, C.: Local surface interpolation with shape parameters between adjoining
gregory patches. Comput. Aided Geom. Des. 7(5), 375–388 (1990). https://doi.org/10.1016/
0167-8396(90)90001-8

20. Shirman, L., Séquin, C.: Local surface interpolation with Bézier patches: errata and
improvements. Comput. Aided Geom. Des. 8(3), 217–221 (1991). https://doi.org/10.1016/
0167-8396(91)90005-V

https://doi.org/10.1145/964967.801160
https://doi.org/10.1145/964967.801160
http://contrails.iit.edu/reports/8574
http://contrails.iit.edu/reports/8574
https://doi.org/10.14658/pupj-drna-2016-Special_Issue-5
https://doi.org/10.14658/pupj-drna-2016-Special_Issue-5
https://doi.org/10.1016/0167-8396(85)90003-2
https://doi.org/10.1017/CBO9780511546860
https://doi.org/10.1007/978-3-642-76404-2_6
https://doi.org/10.1016/j.cagd.2018.03.005
https://ieeexplore.ieee.org/document/1423115
https://doi.org/10.1137/1.9781611971651.ch8
https://doi.org/10.1137/1.9781611971651.ch8
https://doi.org/10.2307/2007373
https://doi.org/10.1137/0713011
https://doi.org/10.1007/BF01888155
https://doi.org/10.1016/0167-8396(87)90003-3
https://doi.org/10.1016/0167-8396(90)90001-8
https://doi.org/10.1016/0167-8396(90)90001-8
https://doi.org/10.1016/0167-8396(91)90005-V
https://doi.org/10.1016/0167-8396(91)90005-V


On Integral-Based (Transfinite) Laplace
Coordinates

Alexander G. Belyaev and Pierre-Alain Fayolle

Abstract In this theoretical work, we analyze general constructions for integral-
based (transfinite, continuous) barycentric coordinates and consider a simple
variational principle to arrive at a continuous version of the Laplace barycentric
coordinates. We demonstrate how our approach leads to a general description of
the integral-based barycentric coordinates and establish links with Dirichlet energy
minimization problems for conical surfaces. Both the 2D and 3D cases are studied.
An application to a surface generation problem is briefly considered.

1 Introduction

The present active research on generalized barycentric coordinates was initiated
by works of Wachspress [26], Warren [27], and Floater [10] and is currently
fuelled by numerous applications of generalized barycentric interpolation schemes
in computational mechanics, computer graphics, and geometric modelling. See,
for example, [5, 11, 16, 29] and references therein. This paper focuses on the
analysis of integral-based Laplace coordinates, a continuous version of a highly
popular generalized barycentric interpolation scheme known under the names of
Laplace coordinates [3], non-Sibsonian coordinates [1], cotangent weights [22],
discrete harmonic coordinates [15], and Voronoi coordinates [18] (see also earlier
works [7, 9, 20, 25]). The high popularity of the Laplace coordinates arises from
the fact that they approximate the Laplace operator (hence the name) on polygonal
meshes [21, 22].

A. G. Belyaev (�)
Institute of Sensors, Signals and Systems, School of Engineering & Physical Sciences,
Heriot-Watt University, Edinburgh, UK
e-mail: a.belyaev@hw.ac.uk

P.-A. Fayolle
Computer Graphics Laboratory, University of Aizu, Aizu-Wakamatsu, Japan
e-mail: fayolle@u-aizu.ac.jp

© Springer Nature Switzerland AG 2021
V. A. Garanzha et al. (eds.), Numerical Geometry, Grid Generation and Scientific
Computing, Lecture Notes in Computational Science and Engineering 143,
https://doi.org/10.1007/978-3-030-76798-3_22

341

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76798-3_22&domain=pdf
mailto:a.belyaev@hw.ac.uk
mailto:fayolle@u-aizu.ac.jp
https://doi.org/10.1007/978-3-030-76798-3_22


342 A. G. Belyaev and P.-A. Fayolle

Integral-based (transfinite, continuous) barycentric coordinates were originally
proposed by Warren et al. [28]. Although at present integral-based barycentric
interpolation constitutes an active area of research [2, 4, 6, 8, 12, 13, 17, 19, 23],
very little is known about integral-based versions of the Laplace coordinates. In
this paper, we consider a simple variational principle for integral-based Laplace
barycentric coordinates and show how it leads to a general description of integral-
based barycentric coordinates.

One of our main results can be formulated as follows. Let � be a strictly convex
bounded domain in R

N with N = 2 or N = 3. Consider a function u(y) defined for
each y ∈ ∂�. Given x ∈ �, let us assume that u(x) is known. We fix x and consider
a conical surface Ux(z) generated by straight segments connecting the inner point
(x, u(x)) with the boundary points (y, u(y)), y ∈ ∂�. See the left image of Fig. 1
for a visual explanation of how the conical surface

{
(z, Ux(z)) ∈ R

N+1, z ∈ �
}
, is

constructed.
Let the value u(x) be defined by minimizing Dirichlet’s energy

∫∫

�

|∇Ux|2 dz → min . (1)

Then the above Dirichlet energy minimization interpolation performed for each
x ∈ � is obtained by integral-based Laplace interpolation

u(x) =
∫

Sx

u(y)w(x, eθ )
|x − y| dθ

/∫

Sx

w(x, eθ )
|x − y| dθ (2)

with the weighting function given by

w(x, θ ) = �Sf + (N − 1)f, where f = |x − y|N−1, (3)

Fig. 1 Left: Point x ∈ � parameterizes family of conical surfaces{
(z, Ux(z)) ∈ R

N+1, z ∈ � ⊂ R
N
}
, each of which spans (y, u(y)), y ∈ ∂�, and has its

apex at (x, u(x)). Right: Notations used to define integral-based barycentric coordinates



On Integral-Based (Transfinite) Laplace Coordinates 343

and defined up to a multiplicative constant. Here Sx is the unit sphere centered
at x, integration is taken with respect to spherical coordinates θ (point θ ∈ Sx
corresponds to the unit vector eθ and is obtained as the radial projection of y ∈ ∂�

onto Sx), and �S is the sphere Laplacian. The fact that (N − 1) is the smallest
non-zero eigenvalue of −�S implies the linear precision of (2) and (3) (see the last
paragraph of Sect. 2 for an explanation).

2 Introduction to Integral-Based Barycentric Coordinates

Let � be a bounded convex domain in R
N and x be a point inside �. Assume that

we know the values of function u(·) on ∂�. Integral-based barycentric interpolation
T interpolates u(·) inside �

T : u|∂� → u(x)

while preserving the linear functions.
Consider the unit sphere Sx centered at x. We assume that Sx is parameterized

by its outer unit normal eθ , where θ stands for spherical coordinates. See the right
image of Fig. 1 for a visual explanation of some notations used. A general form of
interpolation T is given by

u(x) =
∫

Sx

u(y)w(x, eθ )
|x − y| dθ

/∫

Sx

w(x, eθ )
|x − y| dθ , x ∈ �, y ∈ ∂�, (4)

where w(x, eθ ) is a weighting function satisfying orthogonality conditions

0 =
∫

Sx

eθ w(x, eθ ) dθ for each x ∈ �. (5)

Note that (5) is necessary and sufficient for linear precision. Indeed setting u(x) ≡ x
yields

u(y) ≡ y = x + ρ eθ , ρ = |x − y|,

which, after a substitution into (4), gives (5).
If w(x, eθ ) ≡ 1, we arrive at the integral-based mean value interpolation scheme

(or transfinite mean value coordinates)

u(x) =
∫

Sx

u(y) dθ

|x − y|
/∫

Sx

dθ

|x − y| , (6)



344 A. G. Belyaev and P.-A. Fayolle

which was originally proposed in [10] for 2D polygons and then in [14, 17] for
simplicial polyhedra and the continuous case.

2D Case
In the 2D case, eθ = (cos θ, sin θ) and (5) simplifies to a system of two equations

2π∫

0

w(x, θ) cos θ dθ = 0 =
2π∫

0

w(x, θ) sin θ dθ (7)

for each x ∈ �.
Let us expand w(x, θ) into the Fourier series

w(x, θ) =
∑

cn(x)ejnθ , j = √−1.

Note that (7) is equivalent to c−1 = 0 = c1 and, therefore, w(x, θ) can be
represented as

h′′
θθ (x, θ)+ h(x, θ) = w(x, θ) (8)

for some function h(x, θ) periodic in θ . Indeed, expanding h(x, θ) into the Fourier
series

h(x, θ) =
∑

hn(x)ejnθ

and substituting the expansion into (8) leads to

−n2hn(x)+ hn(x) = cn(x), hn(x) = cn(x)/(1 − n2), where n 	= ±1,

and defines h(x, θ) uniquely if, in addition, we set h−1(x) = 0 = h1(x).
We can interpret (8) geometrically. For each point x ∈ �, let us consider a closed

curve �x whose support function is given by h(x, θ) defined by (8). The radius of
curvature of �x is given by the left-hand side of (8) and orthogonality conditions
(7) can be written as

2π∫

0

n
dθ

k
≡
∫

�x

n dl = 0, (9)

where n = eθ = (cos θ, sin θ) is the outer unit normal of �x, k is the curvature of
�x, and l stands for the arc-length parametrization of �x. For example, if for each
x the curve �x is a unit circle centered at x, then w(x, θ) ≡ 1, and we arrive at the
2D version of the transfinite mean value coordinates (6).



On Integral-Based (Transfinite) Laplace Coordinates 345

N-Dimensional Case
The N components of the unit normal eθ are the eigenfunctions corresponding to
the minimum non-zero eigenvalue λmin = N − 1 of the sphere Laplacian −�S .
Thus if the weighting function w(x, θ) in (4) is given by

w(x, θ) = �Sh+ (N − 1)h (10)

for some function h(x, θ), then the orthogonality conditions (5) are satisfied. Indeed,
simple integration by parts on the unit sphere Sx yields

∫

Sx

eθw(x, eθ ) dθ =
∫

Sx

eθ [�Sh+ (N − 1)h] dθ

=
∫

Sx

[�Seθ + (N − 1)eθ ]h(x, θ) dθ = 0.

3 2D Integral-Based Barycentric Coordinates as a Limit
Case of Their Discrete Counterparts

Let us recall a general construction for generalized barycentric coordinates intro-
duced in [15]. Let A(x, y, z) denote the signed area of the triangle formed by points
x, y, and z. Given a convex polygon with vertices v1, v2, . . . , vn, and a point
x inside the polygon, consider signed triangle areas Ai(x) = A(x, vi , vi+1) and
Bi(x) = A(x, vi−1, vi+1). Then, as shown in [15], the weights

wi = ci+1Ai−1 − ciBi + ci−1Ai

Ai−1Ai

, (11)

where ci(x) are real functions, define a system of generalized barycentric co-
ordinates. Moreover, any system of generalized barycentric coordinates can be
represented by (11) for some functions ci(x), i = 1, 2, . . . , n.

Following [15], we can rewrite (11) as

wi = 2

ρi

(
hi+1 − hi cos θi

sin θi
+ hi−1 − hi cos θi−1

sin θi−1

)
, (12)

where hi(x) = ci(x)/ρi(x), ρi(x) = |x− vi |, and θi is the angle between the rays
[x vi ) and [x vi+1).



346 A. G. Belyaev and P.-A. Fayolle

Assume now that functions hi(x), i = 1, 2, . . . , n, are sufficiently smooth, the
number of vertices of the polygon tends to infinity, and all θi uniformly tend to zero:
θi ≈ dθ → 0. Passing to the limit we arrive at a smooth function h(x, θ) satisfying

hi+1 − hi cos θi
sin θi

≈ hi+1 − hi + hi θ
2
i /2

θi
≈
[
h(x, θ)′θ + h(x, θ)

θi

2

]

θ=∑i+1
k=1 θk

,

hi−1 − hi cos θi−1

sin θi−1
≈ hi−1 − hi + hi θ

2
i−1/2

θi−1
≈
[
−h(x, θ)′θ + h(x, θ)

θi−1

2

]

θ=∑i
k=1 θk

.

Adding together the right-hand sides yields

[
h(x, θ + dθ)′θ − h(x, θ)′θ

dθ
+ h(x, θ)

]

θ=∑i
k=1 θk

dθ + higher order terms.

Therefore (12) is approximately equal to

2

ρi

[
h(x, θ)′′θθ + h(x, θ)

]∣∣∣∣
θ=∑i

k=1 θk

dθ

and we arrive at (8). We can now formulate our result as a proposition which
generalizes the result of [16, Section 3.2.2].

Proposition 1 In the 2D case, integral-based barycentric coordinates (4) and (8)
are obtained as the limit case of the Floater-Hormann-Kós construction (11).

In view of the work of Kosinka and Barton [19] where the quadratic rate
convergence of generalized barycentric coordinates to their continuous counterparts,
barycentric kernels, was proved and numerically verified, the importance of (1)
consists of revealing a link between the functions ci(x) in (11) and the support
function h(x) defined by (8).

4 2D Integral-Based Coordinates and Dirichlet Energy
Minimization

Integral-Based Laplace Coordinates in 2D
By 2D integral-based Laplace coordinates we denote the continuous version of the
discrete harmonic coordinates. As shown in [15], setting ci = ρ2

i in (11) yields the
discrete harmonic coordinates. Thus, in view of Proposition 1, the integral-based
Laplace coordinates are described by

w(x, θ) = ρ′′
θθ + ρ. (13)



On Integral-Based (Transfinite) Laplace Coordinates 347

If the weight w(x, θ) in (4) is positive, the interpolation property of (4) follows
from [12, Theorem 1]. However (13) is not necessary positive and the interpolation
property of (4) and (13) requires a special attention. Let us start from the simplest
case: assume that � is a unit circle centered at the origin of coordinates and x has
coordinates (−a, 0), where 0 < a < 1. Simple analytic calculations shows that the
kernel

k(x, θ) = (
ρ′′
θθ + ρ

)
/ρ (14)

has two equal maxima achieved at θ1 and θ2 which approach π/2 and 3π/2,
respectively, as a → 1. See the left image of (2) for an illustration. The maxima
are equal to 32/

[
27(1 − a2)

]
and become sharper and sharper, as x approaches the

boundary, when a → 1, as demonstrated by the middle and right images of Fig. 2.
The boundary points y1 and y2 corresponding to θ1 and θ2, respectively, become
closer and closer to each other, as a → 1, and, in the limit, merge with x on the
boundary. Thus, similar to the classical Shepard’s interpolation [24],

u(x) =
∫

Sx

k(x, θ)u(y) dθ

/∫

Sx

k(x, θ) dθ (15)

does the boundary interpolation. The general case of strictly convex� can be easily
reduced to the above case of a circle, if for a given point y ∈ ∂� we consider the
osculating (best-fitted) circle touching ∂� at y.

It turns out that (13) can be also derived by mimicking the Dirichlet’s energy
minimization property of the harmonic functions [2, 23]. Given u(y) defined for
each y ∈ ∂�, let us choose x ∈ � and assume that u(x) is known. Consider
a conical surface patch generated by straight segments connecting the inner point
(x, u(x)) with the boundary points (y, u(y)). In polar coordinates (r, θ) centered at
x, ∂� is described by r = ρ(θ), ρ = |x − y|, and the conical surface associated
with point x is given by

Ux(z) = (ρ − r)u(x)+ ru(y)
ρ

, (16)

Fig. 2 Left: An illustration of notations used to establish interpolation properties of (14) and (15)
for a circle. Middle and right: the graphs of kernel k(x, θ) defined by (14) for x = (−0.9, 0) and
x = (−0.99, 0), respectively



348 A. G. Belyaev and P.-A. Fayolle

where r = |x − z| and y ∈ ∂� denotes the intersection point between ∂� and
the ray from x through z. See Fig. 1 for a rough sketch of the conical surface
(z, Ux(z)), z ∈ � and notations used.

Now the value u(x) is defined such that the Dirichlet’s energy of the constructed
conical surface attains its minimal value

∫∫

�

|∇Ux|2 dz → min .

Proposition 2 In the 2D case, the minimum of the Dirichlet energy for a conical
surface consisting of straight segments connecting the inner point (x, u(x)), x ∈ �,
with the boundary points (y, u(y)), y ∈ ∂�, is attained on the 2D integral-based
barycentric interpolation (4) and (13).

A brief derivation of this result is given in [2]. For the sake of completeness, we
present here a detail proof of the proposition.

Proof For a function f (r, θ), its gradient (and its magnitude) in polar coordinates
is given by

∇f (r, θ) = ∂f

∂r
er + 1

r

∂f

∂θ
eθ , |∇f |2 =

∣∣∣∣
∂f

∂r

∣∣∣∣
2

+ 1

r2

∣∣∣∣
∂f

∂θ

∣∣∣∣
2

.

Therefore

∂Ux

∂r
= u(y)− u(x)

ρ
and

∂Ux

∂θ
= r

[
(u(y)− u(x))

(
1

ρ

)′

θ

+ 1

ρ
u′
θ (y)

]
.

We arrive at the following minimization problem

min ←
∫∫

�

|∇Ux|2 dz

=
2π∫

0

dθ

ρ∫

0

r dr

{[
u(x)− u(y)

ρ

]2

+
[
(u(y)− u(x))

(
1

ρ

)′

θ

+ 1

ρ
u′
θ (y)

]2
}

= 1

2

2π∫

0

dθ

{
[u(x)− u(y)]2 +

[
u′
θ (y)+ (u(x)− u(y))

ρ′
θ

ρ

]2
}
,



On Integral-Based (Transfinite) Laplace Coordinates 349

where the last integral is a quadratic function w.r.t. u(x). Thus for the optimal value
of u(x) we have

2π∫

0

u(x)

{
1 +

(
ρ′
θ

ρ

)2
}

dθ =
2π∫

0

{
u(y)− u′

θ (y)
ρ′
θ

ρ
+ u(y)

(
ρ′
θ

ρ

)2
}

dθ

and, therefore, u(x) is given by

u(x) =
2π∫

0

{
u(y)− u′

θ (y)
[
ρ′
θ /ρ

]+ u(y)
[
ρ′
θ /ρ

]2}
dθ

/ 2π∫

0

{
1 + [

ρ′
θ /ρ

]2}
dθ .

(17)

Integration by parts yields

−
2π∫

0

u′
θ (y)

[
ρ′
θ /ρ

]
dθ =

2π∫

0

u(y)
[
ρ′
θ /ρ

]′
θ

dθ =
2π∫

0

u(y)
[
ρ′′
θθ /ρ − (

ρ′
θ /ρ

)2] dθ ,

2π∫

0

[
ρ′
θ /ρ

]2
dθ =

2π∫

0

(
ρ′′
θθ /ρ − [

ρ′
θ /ρ

]′
θ

)
dθ =

2π∫

0

(
ρ′′
θθ /ρ

)
dθ

and thus (17) becomes

u(x) =
2π∫

0

u(y)
ρ′′
θθ + ρ

ρ
dθ

/ 2π∫

0

ρ′′
θθ + ρ

ρ
dθ . (18)

One can see now that (18) corresponds to (4) with (13). ��
General Construction in 2D
In this section, we show that, similar to the integral-based Laplace coordinates, the
general construction of 2D integral-based barycentric coordinates (4) and (8) can
also be obtained as the solution to a Dirichlet energy minimization problem.

Again, we consider a point x inside a convex domain � and assume that ∂� is
given by r = ρ(θ) in polar coordinates centered at x. Thus � can be described
by {(r cos θ, r sin θ)} with 0 ≤ r < ρ(θ). Let us now consider another domain G

defined by 0 ≤ r < g(x, θ), where g(x, θ) is some function. Then ∂G is given by
r = g(x, θ).

Assume that we know u(x) and use linear interpolation between u(x) and u(y),
where y ∈ ∂�. Then the values of u(·) on ∂G are given by

v = u(y)g(x, θ)+ u(x)(ρ − g(x, θ))
ρ

. (19)



350 A. G. Belyaev and P.-A. Fayolle

Now let us apply the integral-based Laplace interpolation to the domainG. We have

2π∫

0

g′′
θθ + g

g
v dθ = u(x)

2π∫

0

g′′
θθ + g

g
dθ

and substituting v(·) defined by (19) yields

2π∫

0

g′′
θθ + g

ρ
u(y) dθ + u(x)

2π∫

0

(
1 − g

ρ

)
g′′
θθ + g

g
dθ = u(x)

2π∫

0

g′′
θθ + g

g
dθ ,

which immediately leads to the following general representation of 2D integral-
based coordinates

u(x) =
2π∫

0

g′′
θθ + g

ρ
u(y) dθ

/ 2π∫

0

g′′
θθ + g

ρ
dθ (20)

and yields the general 2D integral-based barycentric interpolation (4) and (8).

5 Potential Application to Surface Generation

In this section we briefly discuss a potential application of the variational approach
of Sect. 4 to surface generation. Consider a simple closed curve � in R

3. The task
we consider here consists of constructing a smooth surface patch S spanning contour
�. For example, S can be constructed as a minimal surface patch bounded by �.

Our approach can be considered as a simplified version of the surface area
minimization. For each point x, we consider a conical surface patch generated by
straight segments connecting x with the points of �. Let A(x) denote the area of
the conical surface patch with apex at x. Then we move x by the anti-gradient flow
−∇xA(x). Numerical experiments show that the flow has a single stationary point,
see the left image of Fig. 3. Now let us apply the flow to the points of contour �.
The trajectories which converge to the stationary point defined by � form a surface
patch bounded by �, see the middle image of Fig. 3. As seen in the right image of
Fig. 3, the shape of the surface patch is similar to the minimal surface spanning �.

For practical computations, we approximate � by a polygon, connect a given
point x with the vertices of �, and calculate A(x) as the side area of a triangular
pyramid with non-flat base � and apex x. Our straightforward implementation of
the anti-gradient flow −∇xA(x) by the forward Euler method is not computationally
efficient and additional work is needed to make our approach a practical one.



On Integral-Based (Transfinite) Laplace Coordinates 351

Fig. 3 Surface generation with integral-based Laplace coordinates. Left: several trajectories of
proposed anti-gradient flow −∇xA(x) converge to a single stationary point. Middle: A surface
patch is generated by the trajectories of −∇xA(x) emitted from the boundary vertices. Right: the
minimal surface spanned the boundary curve is added; its shape is similar to that of the surface
generated by the trajectories

6 3D Integral-Based Coordinates and Dirichlet Energy
Minimization

Integral-Based Laplace Coordinates in 3D
We define the 3D integral-based Laplace coordinates as the barycentric interpolation
(4) which, for each x ∈ �, minimizes the Dirichlet energy

∫∫∫

�

|∇Ux|2 dz → min

of the conical surface (16) associated with x.

Proposition 3 In the 3D case, the minimum of the Dirichlet energy for a conical
surface consisting of straight segments connecting the inner point (x, u(x)), x ∈ �,
with the boundary points (y, u(y)), y ∈ ∂�, is attained on the integral-based
barycentric interpolation (4) with the weighting function given by

w(x, eθ ) = �S(ρ
2/2)+ 2(ρ2/2), (21)

where �S is the sphere Laplacian and ρ(θ) represents ∂� in the spherical
coordinates centered at x (that is, for each y ∈ ∂�, ρ = |x − y| and eθ = (y−x)/ρ).



352 A. G. Belyaev and P.-A. Fayolle

Proof Note that (5) is satisfied. The components of the sphere normal eθ are the
eigenvectors of the sphere Laplacian −�S corresponding to the minimum positive
eigenvalue λ = 2. Integration by parts yields

∫

Sx

eθ w(x, eθ ) dθ =
∫

Sx

eθ
[
�S(ρ

2/2)+ 2(ρ2/2)
]

dθ

=
∫

Sx

[�Seθ + 2eθ ](ρ2/2) dθ = 0,

where θ stand for spherical coordinates.
Given a point x ∈ �, we consider standard spherical coordinates centered at

x: radial distance r , polar angle θ , and azimuthal angle ϕ. Thus θ = (ϕ, θ) and
dθ = sin θ dϕ dθ . Given a function f (r, θ, ϕ), its gradient and the magnitude of the
gradient in spherical coordinates are given by

∇f (r, θ, ϕ) = ∂f

∂r
er + 1

r

∂f

∂θ
eθ + 1

r sin θ

∂f

∂ϕ
eϕ,

|∇f |2 =
∣∣∣∣
∂f

∂r

∣∣∣∣
2

+ 1

r2

∣∣∣∣
∂f

∂θ

∣∣∣∣
2

+ 1

r2 sin2 θ

∣∣∣∣
∂f

∂ϕ

∣∣∣∣
2

.

Similar to the planar case we have

Ux(z) = (ρ − r)u(x)+ ru(y)
ρ

and, therefore,

∂Ux

∂r
= u(y)− u(x)

ρ
,

∂Ux

∂θ
= r

[
(u(y)− u(x))

(
1

ρ

)′

θ

+ 1

ρ
u′
θ (y)

]
,

∂Ux

∂ϕ
= r

[
(u(y)− u(x))

(
1

ρ

)′

ϕ

+ 1

ρ
u′
ϕ(y)

]
.



On Integral-Based (Transfinite) Laplace Coordinates 353

Similar to the 2D case, we will define u(x) such that the Dirichlet’s energy of
the constructed conical surface Ux(z) attains its minimal value. We consider the
following minimization problem

min ←
∫∫∫

�

|∇Ux|2 dz =
π∫

0

2π∫

0

ρ∫

0

r2 sin θ dr dϕ dθ

⎧
⎨
⎩
[
u(x)− u(y)

ρ

]2

+
[
(u(y)− u(x))

(
1

ρ

)′

θ

+ 1

ρ
u′
θ (y)

]2

+ 1

sin2 θ

[
(u(y)− u(x))

(
1

ρ

)′

ϕ

+ 1

ρ
u′
ϕ(y)

]2
⎫
⎬
⎭

= 1

3

π∫

0

2π∫

0

ρ(θ, ϕ) sin θ dϕ dθ
{

[u(x)− u(y)]2

+
[
u′
θ (y)+ (u(x)− u(y))

ρ ′
θ

ρ

]2

+ 1

sin2 θ

[
u′
ϕ(y)+ (u(x)− u(y))

ρ ′
ϕ

ρ

]2
⎫
⎬
⎭ .

Thus, for the optimal value of u(x) we have

π∫

0

2π∫

0

u(x)

⎧
⎨
⎩1 +

(
ρ′
θ

ρ

)2

+
(

ρ′
ϕ

ρ sin θ

)2
⎫
⎬
⎭ρ sin θ dθ dϕ

=
π∫

0

2π∫

0

{
u(y)− u′

θ (y)
ρ′
θ

ρ
− u′

ϕ(y)
ρ′
ϕ

ρ sin2 θ

+u(y)
(
ρ′
θ

ρ

)2

+ u(y)

(
ρ′
ϕ

ρ sin θ

)2
⎫
⎬
⎭ ρ sin θ dθ dϕ .

Let us consider

π∫

0

2π∫

0

⎧⎨
⎩1 +

(
ρ′
θ

ρ

)2

+
(

ρ′
ϕ

ρ sin θ

)2
⎫⎬
⎭ρ sin θ dθ dϕ (22)

and set f = ρ2/2. We have (ρ′
ϕ)

2
/ρ = f ′′

ϕϕ/ρ − ρ′′
ϕϕ . Thus the third term in (22)

can be rewritten as

π∫

0

2π∫

0

(
ρ′
ϕ

ρ sin θ

)2

ρ sin θ dθ dϕ =
π∫

0

2π∫

0

1

sin2 θ

f ′′
ϕϕ

ρ
sin θ dθ dϕ ,



354 A. G. Belyaev and P.-A. Fayolle

since

2π∫

0

ρ′′
ϕϕ dϕ = 0.

Obviously for the first term in (22) we have

π∫

0

2π∫

0

ρ sin θ dθ dϕ =
π∫

0

2π∫

0

2f

ρ
sin θ dθ dϕ .

Finally we use (ρ′
θ )

2
/ρ = f ′′

θθ /ρ − ρ′′
θθ and integration by parts w.r.t. θ for

rearranging the second term in (22)

π∫

0

2π∫

0

(
ρ′
θ

ρ

)2

ρ sin θ dθ dϕ =
π∫

0

2π∫

0

(
f ′′
θθ

ρ
− ρ′′

θθ

)
sin θ dθ dϕ

=
π∫

0

2π∫

0

(
f ′′
θθ

ρ
+ ρ′

θ

cos θ

sin θ

)
sin θ dθ dϕ

=
π∫

0

2π∫

0

(
f ′′
θθ

ρ
+ f ′

θ

ρ

cos θ

sin θ

)
sin θ dθ dϕ .

Thus, using the fact that the sphere Laplacian is given by

�Sf = f ′′
ϕϕ

sin2 θ
+ 1

sin θ

(
sin θ f ′

θ

)′
θ

≡ f ′′
θθ + f ′

θ

cos θ

sin θ
+ f ′′

ϕϕ

sin2 θ
,

(22) can be rewritten as

π∫

0

2π∫

0

�Sf + 2f

ρ
sin θ dθ dϕ ,

where f = ρ2/2 and sin θ dθ dϕ is the area element of the unit sphere.



On Integral-Based (Transfinite) Laplace Coordinates 355

In a similar way we have

π∫

0

2π∫

0

u(y)ρ sin θ dθ dϕ =
π∫

0

2π∫

0

u(y)
2f

ρ
sin θ dθ dϕ ,

π∫

0

2π∫

0

u′
θ (y)

ρ′
θ

ρ
ρ sin θ dθ dϕ = −

π∫

0

2π∫

0

u(y)

(
ρ′
θ sin θ

)′
θ

sin θ
sin θ dθ dϕ ,

π∫

0

2π∫

0

u′
ϕ(y)

ρ′
ϕ

ρ sin2 θ
ρ sin θ dθ dϕ = −

π∫

0

2π∫

0

u(y)
ρ′′
ϕϕ

sin2 θ
sin θ dθ dϕ ,

π∫

0

2π∫

0

u(y)
(
ρ′
θ

ρ

)2

ρ sin θ dθ dϕ =
π∫

0

2π∫

0

u(y)
(
f ′′
θθ

ρ
− ρ′′

θθ

)
sin θ dθ dϕ ,

π∫

0

2π∫

0

u(y)

(
ρ′
ϕ

ρ sin θ

)2

ρ sin θ dθ dϕ =
π∫

0

2π∫

0

u(y)
1

sin2 θ

(
f ′′
ϕϕ

ρ
− ρ′′

ϕϕ

)
sin θ dθ dϕ .

Combining these terms together yields

u(x) =
π∫

0

2π∫

0

u(y)w(x, θ, ϕ)
ρ

sin θ dθ dϕ

/ π∫

0

2π∫

0

w(x, θ, ϕ)
ρ

sin θ dθ dϕ ,

with

w(x, θ, ϕ) = �Sf + 2f, where f = ρ2/2.

��
General Construction in 3D
Similar to the 2D case, let us introduce the domain G defined by the radial function
g(x, θ, ϕ) and apply the integral-based Laplace interpolation to G, where the values
of u(·) on ∂G are found by linear interpolation

v = u(y)g + u(x)(ρ − g)

ρ
.

Then we have

∫

Sx

�S(g
2/2)+ 2(g2/2)

g
v dθ = u(x)

∫

Sx

�S(g
2/2)+ 2(g2/2)

g
dθ ,



356 A. G. Belyaev and P.-A. Fayolle

where dθ = sin θ dθ dϕ is the area element of Sx, the unit sphere centered at x.
Similar to the 2D case, this leads to

∫

Sx

�S(g
2/2)+ 2(g2/2)

ρ
u(y) dθ + u(x)

∫

Sx

(
1 − g

ρ

)
�S(g

2/2)+ 2(g2/2)

g
dθ

= u(x)
∫

Sx

�S(g
2/2)+ 2(g2/2)

g
dθ

and we arrive at

u(x) =
∫

Sx

�S(g
2/2)+ 2(g2/2)

ρ
u(y) dθ

/∫

Sx

�S(g
2/2)+ 2(g2/2)

ρ
dθ .

Thus we have arrived at the general 3D integral-based barycentric interpolation (4)
and (8) with h(x, θ, ϕ) = g2/2.

7 Conclusion

We have used a simple variational principle (the minimization of the Dirichlet
energy of a conical surface) to obtain an integral-based version of the Laplace
barycentric coordinates and extended the approach to arrive at a general description
of integral-based barycentric coordinates in 2D and 3D. We have also considered an
application of our approach to a surface generation problem.

Acknowledgments We would like to thank the anonymous reviewers of this paper for their
valuable and constructive comments.

References

1. Belikov, V.V., V.D. Ivanov, V.D., Kontorovich, V.K., Korytnik, S.A., Semenov, A.Y.: The
non-Sibsonian interpolation: a new method of interpolation of the values of a function on an
arbitrary set of points. Comput. Math. Math. Phys. 37(1), 9–15 (1997)

2. Belyaev, A.: On transfinite barycentric coordinates. In: Proceedings of the Fourth Eurographics
Symposium on Geometry Processing (SGP 2006), pp. 89–99 (2006)

3. Bobach, T., Bertram, M., Umlauf, G.: Issues and implementation of C1 and C2 natural
neighbor interpolation. In: International Symposium on Visual Computing, pp. 186–195
(2006)

4. Bruvoll, S., Floater, M.S.: Transfinite mean value interpolation in general dimension. J. Comp.
Appl. Math. 233, 1631–1639 (2010)



On Integral-Based (Transfinite) Laplace Coordinates 357

5. Budninskiy, M., Liu, B., Tong, Y., Desbrun, M.: Power coordinates: A geometric construction
of barycentric coordinates on convex polytopes. ACM Trans. Graph. 35(6), 241:1–11 (2016)

6. Chen, R., Gotsman, C.: Complex transfinite barycentric mappings with similarity kernels.
Comput. Graph. Forum 35(5), 41–53 (2016). SGP 2016 Special Issue

7. Christ, N.H., Friedberg, R., Lee, T.D.: Weights of links and plaquettes in a random lattice.
Nucl. Phys. B 210(3), 337–346 (1982)

8. Dyken, C., Floater, M.S.: Transfinite mean value interpolation. Comput. Aided Geom. Des.
26, 117–134 (2009)

9. Eck, M., DeRose, T., Duchamp, T., Hoppe, H., Lounsbery, M., Stuetzle, W.: Multiresolution
analysis of arbitrary meshes. In: SIGGRAPH ’95: Proceedings of the 22nd Annual Conference
on Computer Graphics and Interactive Techniques, vol. 95, pp. 173–182 (1995)

10. Floater, M.S.: Mean value coordinates. Comput. Aided Geom. Des. 20(1), 19–27 (2003)
11. Floater, M.S.: Generalized barycentric coordinates and applications. Acta Numer. 24, 161–214

(2015)
12. Floater, M.S., Kosinka, J.: Barycentric interpolation and mappings on smooth convex domains.

In: Proceedings of the 14th ACM Symposium on Solid and Physical Modeling, pp. 111–116
(2010)

13. Floater, M.S., Patrizi, F.: Transfinite mean value interpolation over polygons (2019).
arXiv:1906.08358

14. Floater, M.S., Kós, G., Reimers, M.: Mean value coordinates in 3D. Comput. Aided Geom.
Des. 22(7), 623–631 (2005)

15. Floater, M.S., Hormann, K., Kós, G.: A general construction of barycentric coordinates over
convex polygons. Adv. Comput. Math. 24(1–4), 311–331 (2006)

16. Hormann, K., Sukumar, N. (eds.): Generalized Barycentric Coordinates in Computer Graphics
and Computational Mechanics. CRC Press, Boca Raton (2017)

17. Ju, T., Schaefer, S., Warren, J.: Mean value coordinates for closed triangular meshes. ACM
Trans. Graph. 24(3), 561–566 (2005). Proceedings of SIGGRAPH 2005

18. Ju, T., Liepa, P., Warren, J.: A general geometric construction of coordinates in a convex
simplicial polytope. Comput. Aided Geom. Des. 24(3), 161–178 (2007)

19. Kosinka, J., Barton, M.: Convergence of barycentric coordinates to barycentric kernels.
Comput. Aided Geom. Des. 43, 200–210 (2016)

20. MacNeal, R.H.: An asymmetrical finite difference network. Q. Appl. Math. 11(3), 295–310
(1953)

21. Meyer, M., Lee, H., Barr, A., Desbrun, M.: Generalized barycentric coordinates on irregular
polygons. J. Graph. Tools 7(1), 13–22 (2002)

22. Pinkall, U., Polthier, K.: Computing discrete minimal surfaces and their conjugates. Exp. Math.
2(1), 15–36 (1993)

23. Schaefer, S., Ju, T., Warren, J.: A unified, integral construction for coordinates over closed
curves. Comput. Aided Geom. Des. 24(8-9), 481–493 (2007)

24. Shepard, D.: A two-dimensional interpolation function for irregularly-spaced data. In:
Proceedings of the 1968 23rd ACM National Conference, pp. 517–524. ACM Press, New York
(1968)

25. Sugihara, K.: Surface interpolation based on new local coordinates. Comput. Aided Des. 31(1),
51–58 (1999)

26. Wachspress, E.L.: A Rational Finite Element Basis. Academic, New York (1975)
27. Warren, J.: Barycentric coordinates for convex polytopes. Adv. Comput. Math. 6(2), 97–108

(1996)
28. Warren, J., Schaefer, S., Hirani, A., Desbrun, M.: Barycentric coordinates for convex sets.

Adv. Comput. Math. 27(3), 319–338 (2007)
29. Yan, Z., Schaefer, S.: A family of barycentric coordinates for co-dimension 1 manifolds with

simplicial facets. Comput. Graph. Forum 38(5), 75–83 (2019). SGP 2019 Special Issue



Part V
Numerical Methods



Fully-Implicit Collocated Finite-Volume
Method for the Unsteady Incompressible
Navier–Stokes Problem

Kirill M. Terekhov

Abstract This article introduces a collocated finite-volume method for the in-
compressible Navier–Stokes equations. Based on the linearity assumption of the
velocity and pressure unknowns, the coupled one-sided flux expression is derived.
Analysis and correction of the eigenvalues in the matrix coefficients of the vector
flux expression result in the inf-sup stable method. A single continuous flux
expression follows from the continuity of the one-sided flux approximations. As
a result, the conservation for the momentum and the divergence is discretely exact.
The method handles general polyhedral meshes but requires an artificial pressure
boundary condition for the pressure gradient reconstruction.

1 Introduction

Previous work [12] introduced a fully-implicit collocated finite-volume method with
the piecewise-constant approximation of the pressure field. The primary motivation
for the fully-implicit approach is the coupling of a stiff cascade of reactions into a
single system with the flow in the blood coagulation model [1, 18]. Current method
investigates the improvement of the collocated finite-volume scheme from [12]. We
consider piecewise-linear continuous approximation for the pressure field and full
symmetric stress tensor in diffusion term.

The typical problem of the collocated methods is the inf-sup instability issue [6].
A usual solution to the problem is to use a staggered velocity arrangement [5, 7, 8].
However, with the staggered scheme, it is hard to retain the conservation proper-
ties [9]. Another solution is to use the Rhie-Chow interpolation method [10] with
the collocated arrangement of unknowns. It is standard in industrial applications.

K. M. Terekhov (�)
Marchuk Institute of Numerical Mathematics of the Russian Academy of Sciences,
Moscow, Russia

Moscow Institute of Physics and Technology, Moscow, Russia

© Springer Nature Switzerland AG 2021
V. A. Garanzha et al. (eds.), Numerical Geometry, Grid Generation and Scientific
Computing, Lecture Notes in Computational Science and Engineering 143,
https://doi.org/10.1007/978-3-030-76798-3_23

361

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76798-3_23&domain=pdf
https://doi.org/10.1007/978-3-030-76798-3_23


362 K. M. Terekhov

This work uses the hypothesis that inf-sup stability is satisfied if all the matrix
coefficients in the vector flux expression have positive eigenvalues. Previously we
applied this hypothesis to the saddle-point mixed Darcy problem [15], the Navier–
Stokes problem [12] and the multi-domain coupling of Darcy and poroelasticity
equations [13].

We seek the solution to the system of Navier–Stokes equations:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∂ρu
∂t

+ div
(
ρuuT − τ (u)+ pI

)
= f,

div (u) = 0,
in �,

B.C. on ∂�.

(1)

The system (1) is closed with the appropriate boundary conditions, discussed in
Sect. 5. In (1), u = [u, v,w]T is the velocity vector, p is the pressure, u, v,w,
p ∈ H 1(�), with appropriate amendment to the space at the boundary. ρ = const
is the fluid density, constant due to incompressibility, τ (u) is the deviatoric stress
tensor:

τ (u) = 2μD(u), D(u) = 1

2

[
∇uT + u∇T

]
, (2)

here μ = const is the dynamic fluid viscosity. In the present work, we assume that
the components of the velocity vector and the pressure are piecewise-linear.

In the finite volume method we make use of Gauss’ formula for the divergence
operator on each cell V ∈ V(�), which results in:

∫

V

∇ ·
(
ρuuT − τ (u)+ pI

)
dV ≈

∑
σ∈F (V )

|σ |
[
ρuuT − τ (u)+ p

]∣∣∣
xσ

nσ ,

∫

V

∇ · u dV ≈
∑

σ∈F (V )

|σ | [u · nσ ]|xσ .

(3)

Here nσ is an average unit normal of face σ directed outwards of cell V . For
briefness we further denote it by n. Integrals of the other terms are evaluated as
follows:

∫

V

∂ρu
∂t

dV = |V | ∂ρu
∂t

∣∣∣∣
xV

≈ ρ
3un+1 − 4un + un−1

�t
|V |,

∫

V

f dV = |V | f|xV .
(4)

Further, whenever the upper index for the velocity is omitted, it is implied
u ≡ un+1.



Finite-Volume Method for the Navier–Stokes Problem 363

2 The Interface Flux Approximation

Equations in (3) introduce the momentum t and continuity q fluxes:

t = ρuu · n− τ (u)n + pn, q = u · n, (5)

here t is composed of the advection part tA = ρuu·n, the traction part tT = −τ (u)n
and the pressure part tP = pn. The fluxes t and q are continuous on any surface,
i.e., any mesh interface σ . Note, that due to the continuity equation, the velocity u
is continuous throughout the domain.

Let u1 be the velocity vector collocated at x1, the barycenter of the cell V1.
Then, according to Taylor decomposition, the second-order approximations of the
advection part tA of the momentum flux at the interface barycenter xσ is the
following:

tA|xσ ≈ ρ uu · n|x1
+ ρuu · n

∂u

∣∣∣
x1

∇u|x1 (xσ − x1)

≈ ρ

2

(
u1nT + u1 · nI

)
(2uσ − u1) .

(6)

The approximation of the traction part tT is formulated as follows:

tT |xσ ≈ − τ (u)|x1
n ≈ −μ

(
I ⊗ nT + nT ⊗ I

)
u⊗ ∇|x1

≈ μr−1
1

(
I+ nnT

)
(u1 − uσ )

− μ
(
I⊗ nT + nT ⊗ I − r−1

1

(
I+ nnT

)
⊗ (xσ − x1)

T
)
u1 ⊗ ∇,

(7)

where r1 = n · (xσ − x1) and ⊗ denotes the Kronecker product.
The pressure part of the momentum flux tP and the continuity flux q form a

saddle-point system:

[
tP
q

] ∣∣∣∣
xσ

=
[
pσn
uσ · n

]
=
[

n
nT

] [
uσ
pσ

]
= S(n)

[
uσ
pσ

]
, (8)

here the indefinite 4 × 4 matrix S(n) has two eigenvalues ±1. The approximation
to the combination of fluxes is:

[
tP
q

] ∣∣∣∣
xσ

≈ A

[
u1

p1

]
− (A− S(n))

[
uσ
pσ

]
+ A⊗ (xσ − x1)

T

[
u1

p1

]
⊗ ∇, (9)



364 K. M. Terekhov

where 4 × 4 matrix A > 0 is used to stabilize the method. Let us introduce matrix
A along with the other matrix coefficients:

A(u, v, n) =
[
a
(
I + nnT

)
cn

cnT b

]
, W(n) =

[
μ
(
I⊗ nT + nT ⊗ I

) ]
,

T (u, v, n) = A(u, v, n)+
[
μr−1

(
I + nnT

) ]
, Q(u, n) =

[
ρ
2 (un

T + u · nI)
]
,

(10)

where r = n · v and the parameters a, b and c depending on u, v,n are to be defined
later in Sect. 3. Defining T1 = T (u1, xσ − x1,n), Q1 = Q(u1,n), S1 = S(n) and
W1 = W(n) we get the coupled flux expression:

[
t
q

] ∣∣∣∣
xσ

≈ (T1 −Q1)

[
u1

p1

]
− (T1 − S1 − 2Q1)

[
uσ
pσ

]

+
(
T1 ⊗ (xσ − x1)

T −W1

) [u1

p1

]
⊗ ∇.

(11)

3 Analysis of Eigenvalues of Matrix Coefficients

According to the hypothesis, the method is inf-sup stable, if all the matrix
coefficients in the vector flux expression (11) have positive eigenvalues. The
goal is to make eigenvalues positive by tuning parameters a, b and c with the
minimal a and b. Let ν = ρnT u/2. The eigenvalues of the matrix coefficient
T (u, v,n)− S(n)− 2Q(u,n) at the interface vector unknown are

λ1,2 = a + μr−1 − 2ν + b/2 ±
√(

a + μr−1 − 2ν − b/2
)2 + (c − 1)2,

λ3,4 = a + μr−1 − 2ν.
(12)

The eigenvalues of the matrix coefficient T (u, v,n)− Q(u,n) at the cell vector
unknown are

λ1,2 = a + μr−1 − ν + b/2 ±
√(

a + μr−1 − ν − b/2
)2 + c2,

λ3,4 = a + μr−1 − ν.

(13)



Finite-Volume Method for the Navier–Stokes Problem 365

Requiring non-negativity of eigenvalues, we get a set of inequalities:

a + μr−1 − 2ν ≥ 0, a + μr−1 − ν ≥ 0,

2b
(
a + μr−1 − 2ν

)
≥ (c − 1)2, 2b

(
a + μr−1 − ν

)
≥ c2.

(14)

The first two inequalities in (14) are satisfied with:

a = max
(

2ν − μr−1, 0
)

+ θ > 0, (15)

here the parameter θ ≥ 0 is to be defined later. Let q = a + μr−1 − 2ν ≥ 0, note
that q + ν ≥ 0. The second two inequalities in (14) are satisfied with the condition
on b:

b ≥ max

(
1

2q
(1 − c)2,

1

2(q + ν)
c2
)
. (16)

Expressions under max corresponds to a pair of parabolas, oriented upwards with
q > 0 and q + ν > 0. The minimum for b is realized at the intersection of the
parabolas. The two parabolas have roots at c = 1 and c = 0, respectively. The
minimum is reached at the intersection within c ∈ [0, 1]. To minimize b we solve:

νc2 − 2(q + ν)c + (q + ν) = 0 (17)

and select solutions corresponding to c ∈ [0, 1] and corresponding value of b:

c =

⎧
⎪⎪⎨
⎪⎪⎩

1 + t − √
t + t2, ν > 0,

1/2, ν = 0,

1 + t + √
t + t2, ν < 0,

b = 1

q

⎧
⎪⎪⎨
⎪⎪⎩

t
(

1/2 + t − √
t + t2

)
, ν > 0,

1/8, ν = 0,

t
(

1/2 + t + √
t + t2

)
, ν < 0,

(18)

where t = q/ν and bq ∈ [0, 1/2]. Present work uses θ = ρ

√
uT
(
I − nnT

)
u + ε2

with small ε = 10−7. This choice helps prevent singular value of b due to zero q .

4 The Flux Continuity on Internal Face

Let us define pi,∇pi,ui ,∇ui , pressure, velocity and the gradient of velocity at cell
Vi barycenter xi . Let internal interface σ ∈ F (�) share two cells V1 and V2, i.e.,
σ = V1 ∩ V2, V1, V2 ∈ V(�h). We assume the normal n is oriented outside of V1
into V2.



366 K. M. Terekhov

Let T2 = T (u2, xσ − x2,−n), Q2 = Q(u2,−n) S2 = S(−n), W2 = W(−n)
and Θ2 = Θ(xσ − x2,−n), then the approximation of the flux from cell V2 reads
as:

[
t
q

] ∣∣∣∣
xσ

≈ (T2 − S2 − 2Q2)

[
uσ
pσ

]
− (T2 − Q2)

[
u2

p2

]

−
(
T2 ⊗ (xσ − x2)

T −W2

) [u2

p2

]
⊗ ∇.

(19)

The reasoning for the eigenvalues and choice of parameters from Sect. 3 holds for
matrix coefficients in (19) with the reversed normal direction. Enforcing the equality
of flux approximations (11) and (19) we obtain the interface vector unknown:

[
uσ
pσ

]
= (T1 + T2 − S1 − S2 − 2Q1 − 2Q2)

−1

×

⎛
⎜⎜⎜⎜⎝

(T1 −Q1)

[
u1

p1

]
+
(
T1 ⊗ (xσ − x1)

T − W1

) [u1

p1

]
⊗ ∇

+(T2 −Q2)

[
u2

p2

]
+
(
T2 ⊗ (xσ − x2)

T − W2

) [u2

p2

]
⊗ ∇

⎞
⎟⎟⎟⎟⎠
.

(20)

The continuous flux approximation is obtained by substituting (20) into either
(11) or (19):

[
t
q

] ∣∣∣∣
xσ

≈ (T2 − S2 − 2Q2) (T1 + T2 − S1 − S2 − 2Q1 − 2Q2)
−1

×
(
(T1 −Q1)

(
u1

p1

)
+
(
T1 ⊗ (xσ − x1)

T −W1

) [u1

p1

]
⊗ ∇

)

− (T1 − S1 − 2Q2) (T1 + T2 − S1 − S2 − 2Q1 − 2Q2)
−1

×
(
(T2 −Q2)

[
u2

p2

]
+ (T2 ⊗ (xσ − x2)

T −W2)

[
u2

p2

]
⊗ ∇

)
.

(21)



Finite-Volume Method for the Navier–Stokes Problem 367

5 Boundary Conditions

The boundary conditions are prescribed by

⎧⎪⎨
⎪⎩

nT
(
ᾱu+ β̄ (τ (u)− pI) n

)∣∣
xσ

= r̄ ,

(
I − nnT

) ( ¯̄αu + ¯̄β (τ (u)− pI) n
)∣∣∣

xσ
= ¯̄r,

(22)

The boundary conditions (22) are used to derive interface unknown vector. For
this purpose the boundary conditions are augmented with the condition on pressure:

(αp + βμn · ∇p)|xσ = r (23)

In (23), r = αpb+βμξ , with the prescribed boundary pressurepb. For simplicity
we use the pressure boundary condition ξ = n · ∇pn, proposed in [4]. Here pn is
the pressure at previous time step.

Coefficient choices for Dirichlet �D, no-slip �NS, slip condition �S, traction-free
�TF, prescribed pressure�P and Maxwell-Navier�MN types of boundary conditions
are presented in Table 1.

We combine (22) and (23) into a single block system to get

[
uσ
pσ

]
= (D +NTb)

−1

×
(
R +NTb

[
u1

p1

]
+N

(
Tb ⊗ (xσ − x1)

T −Wb

) [u1

p1

]
⊗ ∇

)
,

(24)

Table 1 Coefficients for common types of boundary conditions

�D �NS �S �TF �P �MN

ᾱ 1 1 1 0 0 1
¯̄α 1 1 0 0 0 λ

β̄ 0 0 0 1 1 0
¯̄β 0 0 1 1 1 1

α 0 0 0 0 1 0

β 1 1 1 1 0 1

r̄ n · ub 0 0 0 −pb 0
¯̄r ub − nn · ub 0 0 0 0 0
r n · ∇pn n · ∇pn n · ∇pn n · ∇pn pb n · ∇pn



368 K. M. Terekhov

where

D =
[ ¯̄αI + (

ᾱ − ¯̄α) nnT β̄n
α

]
, N =

[ ¯̄βI+
(
β̄ − ¯̄β

)
nnT

β

]
, R =

[
nr̄ + ¯̄r

r

]
,

(25)

Tb = T̄ (xσ − x1,n) and Wb = W̄ (n), where

T̄ (v,n) =
[
μr−1

(
I + nnT

)
μr−1

]
, W̄ (n) =

[
μ
(
I⊗ nT + nT ⊗ I

)
μnT

]
.

(26)

Expression in (24) is used in (11) to evaluate the boundary flux. The matrix
coefficient (D + NTb) is invertible for μ > 0. A small ε > 0 can be added to μ in
Tb to overcome the singularity without loss of the approximation property.

6 Gradient Reconstruction

To compute the fluxes numerically it remains to calculate the gradient at each cell
Vi . Let us consider cell V1 with the set of interfaces σ ∈ F (V1). For the internal
σ ∈ � \ ∂�, σ = V1 ∩ V2 we impose the following condition on the gradient:

I ⊗ (x2 − x1)
T

[
u1

p1

]
⊗ ∇ =

[
u2

p2

]
−
[
u1

p1

]
, (27)

and on the boundary interface σ ∈ ∂�, σ = ∂� ∩ V1 we obtain from (24) the
condition for the gradient:

(
D ⊗ (xσ − x1)

T +NWb

) [u1

p1

]
⊗ ∇ = R −D

[
u1

p1

]
(28)

Assembling the conditions (27) and (28) over all interfaces of V1 forms the linear
system with matrix A ∈ )4|F (σ )|×12 and right-hand side B ∈ )4|F (σ )|×1. The non-
square system is solved with the least-squares method by

[
u1

p1

]
⊗ ∇ =

(
ATA

)−1
AT B. (29)



Finite-Volume Method for the Navier–Stokes Problem 369

7 Problem Solution

On each iteration k of the Newton’s method the right-hand side vector Rk of
size 4|V(�)| × 1 and corresponding matrix Jk of size 4|V(�)| × 4|V(�)| are
assembled. The present work uses automatic differentiation for the sparse matrix
assembly, as a result only the residual assembly is of concern. The assembly
proceeds as follows:

1. Precompute the velocity and pressure gradients [ui pi ]T ⊗ ∇ together with the
derivatives on each cell Vi ∈ V(�) by assembling and solving the system (29).

2. Assemble the residual of cell Vi ∈ V(�) for the divergence terms as:

Rk
Vi

=
∑

σ∈F (Vi)

|σ |
[
t
q

] ∣∣∣∣
xσ

, (30)

where the flux is evaluated according to (21) and (11)–(24) on internal and
boundary σ , respectively.

3. For each cell Vi ∈ V(�), subtract the right hand side and add the time evolution
term to the residual Rk

Vi
according to (4).

The velocity and pressure at the next Newton’s iteration k + 1 are obtained from
the system:

Jk

([
uk+1

pk+1

]
−
[
uk

pk

])
= Rk, (31)

and the next linear iteration continues with uk+1 and pk+1 until either relative τrel
or absolute τabs tolerance is satisfied. The linear system is solved iteratively using
BiConjugate Stabilized Gradient method with multi-level inverse-based second-
order Crout-ILU preconditioner [14, 18]. The complete implementation is based on
the INMOST toolkit for distributed mathematical modelling [16–18] which provides
mesh handling, linear system assembly via automatic differentiation, linear system
solution and visualization.

8 Numerical Tests

We consider the analytical solution of the unsteady Navier–Stokes equations
suggested by Ethier and Steinman [3], where one may find the details on the
reference solution. We introduce the lagrange multiplier and impose the constraint
on pressure integral following [12] for unique pressure solution.

The problem is solved in the unit cube � ∈ [0, 1]3 in time interval t ∈ [0, 1]
for fluid with ρ = 1 and f = 0 and Dirichlet boundary conditions, ∂� = �D. The



370 K. M. Terekhov

Fig. 1 Grids �1 in the unit cube. Cubic (left), tetrahedral (middle), polyhedral (right) at level = 1

Table 2 Error norms for the Ethier-Steinman problem

level ‖uh − u‖L2
‖ph − p‖L2

‖uh − u‖L2
‖ph − p‖L2

‖uh − u‖L2
‖ph − p‖L2

Cubic Tetrahedral Polyhedral

μ = 10−1

1 2.446 × 10−2 1.234 × 10−1 1.761 × 10−2 5.516 × 10−2 3.676 × 10−2 2.471 × 10−1

2 4.264 × 10−3 1.383 × 10−2 4.518 × 10−3 1.764 × 10−2 1.227 × 10−2 6.055 × 10−2

3 9.680 × 10−4 3.880 × 10−3 1.136 × 10−3 7.124 × 10−3 3.967 × 10−3 1.465 × 10−2

4 4.181 × 10−4 1.528 × 10−3 3.645 × 10−4 3.171 × 10−3 1.113 × 10−3 3.704 × 10−3

rate 1.211 1.344 1.971 1.168 1.916 2.033

μ = 10−5

1 3.650 × 10−2 2.460 × 10−1 3.329 × 10−2 9.499 × 10−2 5.663 × 10−2 4.746 × 10−1

2 1.031 × 10−2 3.391 × 10−2 7.393 × 10−3 1.799 × 10−2 2.228 × 10−2 1.147 × 10−1

3 4.336 × 10−3 6.361 × 10−3 2.185 × 10−3 3.739 × 10−3 8.256 × 10−3 2.555 × 10−2

4 1.302 × 10−3 1.724 × 10−3 5.940 × 10−4 9.752 × 10−4 2.643 × 10−3 6.320 × 10−3

rate 1.736 1.883 1.879 1.924 1.717 2.106

boundary condition velocity ub is defined from the reference solution at centers of
faces. Initial velocity u0 at t0 = 0 and previous velocity u−1 at t−1 = −�t are
defined from the reference solution at barycenters of cells.

The problem is solved on three grid types depicted on Fig. 1. Four refine-
ment levels for each mesh are considered. The time step is taken according to
�t = 1/2(level−1). The maximal CFL number on hexahedral mesh is ∼12. The
computed errors for velocity and pressure with different viscosity μ are displayed
in Table 2. The convergence rate in the tables is reported by the formula
rate = log(E4/E3)/ log

(
(|V(�4)|/|V(�3)|)1/3), where Elevel is the L2-norm of the

error and |V(�level)| is the number of cells at given mesh refinement level. The
number of cells for each grid type is reported in Table 3. Nonlinear problem on
each time step requires up to three iterations to converge to the nonlinear tolerances
τabs = 10−5 and τrel = 10−9. The observed reduction of the convergence rate at
high viscosity can be attributed to the artificial boundary condition.

Next, we consider an unsteady flow around the cylinder with circular cross-
section at Reynolds number 100. The setup is similar to the one from [11], with



Finite-Volume Method for the Navier–Stokes Problem 371

Table 3 Number of cells for
the grid refinement level in
the Eshier-Steinman problem

Level Cubic Tetrahedral Dual

1 64 384 125

2 512 3072 729

3 4096 24,576 4913

4 32,768 196,608 35,937

Fig. 2 The polyhedral grid for the experiment of the fluid flow around circular cylinder

Fig. 3 Streamlines near the cylinder: side (left) and top (right) views

maximal inflow velocity U = 2.25. The density is ρ = 1 and dynamic viscosity is
μ = 1/1000. This experiment aims to reproduce a Karman vortex street on the mesh
with a low spatial resolution. The mesh is demonstrated in Fig. 2. It is composed of
115,491 polyhedra and is aggressively coarsened away from the zone of the cylinder.
The characteristic size h = |V |1/3 of cells is in the range h ∈ [0.0015, 0.08], time
step size is �t = 0.005 and CFL ∼ 4.5.

As seen from Figs. 3 and 5 of the flow at 4 s, the method can reproduce the
instability and the complex flow pattern in the fine region. However, the fine-
scale effects diffuse away rapidly in the coarse region of the mesh. One may
compare the result with the method from [12] that uses piecewise-constant pressure
approximation in Fig. 4. In comparison, the new method is less dissipative and
does not require a free parameter dependent on the global flow characteristics. In
Table 4, the comparison to the results with the finite-volume method from [12] and
the reference values of the drag and lift coefficients from [11] are provided. The
drag and lift coefficients are computed by the volumetric integrals over the domain
�, following [2]. The results show that the proposed method with piecewise-linear



372 K. M. Terekhov

Fig. 4 Pressure field colored in the range p ∈ [−0.3 : 1.7] (top) and z-component of the vorticity
(∇ × u)z ∈ [−25 : 25] (bottom) in the middle cutaway of the mesh. Obtained with the method in
the present article

Fig. 5 Pressure field colored in the range p ∈ [−0.3 : 1.7] (top) and z-component of the vorticity
(∇ × u)z ∈ [−25 : 25] (bottom) in the middle cutaway of the mesh. Obtained with the method
from [12] with piecewise-constant pressure approximation

Table 4 Estimated lift and drag coefficients and the Strouhal number for the flow around the
cylinder with circular cross-section

Method max(CD) − max(CL) St

Piecewise-linear pressure 3.303 0.011 0.29

Piecewise-constant pressure [12] 3.172 0.0219 0.305

Schäfer and Turek [11] 3.29–3.31 0.008–0.011 0.29–0.35

pressure approximation fits within the interval of reference values on the given grid,
whereas the method from [12] with piecewise-constant pressure approximation is
outside of the range (Fig. 5).



Finite-Volume Method for the Navier–Stokes Problem 373

9 Conclusion

This work proposed a new collocated finite-volume method that features a simple
flux-based construction. The method does not suffer from the inf-sup stability
issue. In future work, we shall consider a comparison of different approaches to
artificial pressure boundary condition and study the applicability of the method to
non-Newtonian fluids.

Acknowledgement This work was supported by the Russian Science Foundation through the
grant 19-71-10094.

References

1. Bouchnita, A., Terekhov, K., Nony, P., Vassilevski, Y., Volpert, V.: A mathematical model
to quantify the effects of platelet count, shear rate, and injury size on the initiation of blood
coagulation under venous flow conditions. PLOS One 15(7), e0235392 (2020)

2. Braack, M., Richter, T.: Solutions of 3d Navier–Stokes benchmark problems with adaptive
finite elements. Comput. Fluids 35(4), 372–392 (2006)

3. Ethier, C., Steinman, D.: Exact fully 3D Navier–Stokes solutions for benchmarking. Int. J.
Numer. Methods Fluids 19(5), 369–375 (1994)

4. Gresho, P., Sani, R.: On pressure boundary conditions for the incompressible Navier–Stokes
equations. Int. J. Numer. Methods Fluids 7(10), 1111–1145 (1987)

5. Harlow, F., Welch, J.: Numerical calculation of time-dependent viscous incompressible flow
of fluid with free surface. Phys. Fluids 8(12), 2182–2189 (1965)

6. Ladyzhenskaya, O.: The Mathematical Theory of Viscous Incompressible Flow, vol. 12.
Gordon & Breach, New York (1969)

7. Lebedev, V.: Difference analogues of orthogonal decompositions, basic differential operators
and some boundary problems of mathematical physics. I. USSR Comput. Math. Math. Phys.
4(3), 69–92 (1964)

8. Olshanskii, M., Terekhov, K., Vassilevski, Y.: An octree-based solver for the incompressible
Navier–Stokes equations with enhanced stability and low dissipation. Comput. Fluids 84,
231–246 (2013)

9. Perot, B.: Conservation properties of unstructured staggered mesh schemes. J. Comput. Phys.
159(1), 58–89 (2000)

10. Rhie, C., Chow, W.: Numerical study of the turbulent flow past an airfoil with trailing edge
separation. AIAA J. 21(11), 1525–1532 (1983)

11. Schäfer, M., Turek, S., Durst, F., Krause, E., Rannacher, R.: Benchmark computations of
laminar flow around a cylinder. In: Hirschel E.H. (eds.) Flow Simulation with High-
Performance Computers II. Notes on Numerical Fluid Mechanics, vol. 48, pp. 547–566.
Vieweg+Teubner Verlag, Berlin (1996)

12. Terekhov, K.: Collocated finite-volume method for the incompressible Navier-Stokes problem.
J. Numer. Math. 1(ahead-of-print) (2020)

13. Terekhov, K.: Multi-physics flux coupling for hydraulic fracturing modelling within INMOST
platform. Russ. J. Numer. Anal. Math. Model. 35(4), 223–237 (2020)

14. Terekhov, K.: Parallel multilevel linear solver within INMOST platform. In: Voevodin
V., Sobolev S. (eds.) Supercomputing. RuSCDays 2020. Communications in Computer and
Information Science. Springer, Cham (2020)



374 K. M. Terekhov

15. Terekhov, K., Vassilevski, Y.: Finite volume method for coupled subsurface flow problems, I:
Darcy problem. J. Comput. Phys. 395, 298–306 (2019)

16. Terekhov, K., Vassilevski, Y.: INMOST parallel platform for mathematical modeling and
applications. In: Voevodin V., Sobolev S. (eds.) Supercomputing. RuSCDays 2018. Com-
munications in Computer and Information Science, vol. 965, pp. 230–241. Springer, Cham
(2019)

17. Terekhov, K., Vassilevski, Y.: Mesh modification and adaptation within INMOST pro-
gramming platform. In: Garanzha V., Kamenski L., Si H. (eds.) Numerical Geometry,
Grid Generation and Scientific Computing. Lecture Notes in Computational Science and
Engineering, vol. 131, pp. 243–255. Springer, Cham (2019)

18. Vassilevski, Y., Terekhov, K., Nikitin, K., Kapyrin, I.: Parallel Finite Volume Computation on
General Meshes. Springer International Publishing, New York (2020). https://books.google.
ru/books?id=hYvtDwAAQBAJ

https://books.google.ru/books?id=hYvtDwAAQBAJ
https://books.google.ru/books?id=hYvtDwAAQBAJ


Efficient Steady Flow Computations
with Exponential Multigrid Methods

Shu-Jie Li

Abstract An exponential multigrid framework is developed and assessed with
a modal high-order discontinuous Galerkin method in space. The algorithm
based on a global coupling, exponential time integration scheme provides strong
damping effects to accelerate the convergence towards the steady-state, while
high-frequency, high-order spatial error modes are smoothed out with a s-stage
preconditioned Runge-Kutta method. Numerical studies show that the exponential
time integration substantially improves the damping and propagative efficiency of
Runge-Kutta time-stepping for use with the p-multigrid method, yielding rapid and
p-independent convergences to steady flows in both two and three dimensions.

1 Introduction

An important requirement for computational fluid dynamics is the capability to
predict steady flows such as the case of flow past a body, so that key performance
parameters, e.g., the lift and drag coefficients can be estimated. While the classical
second-order methods are still being used extensively, high-order spatial discretiza-
tions attract more attention. For steady-state computations, most of the spatial
discretizations have rested on the use of limited, traditional time discretizations
combining with various acceleration methods. Recently, as an alternative to
traditional time-marching methods, an exponential time integration scheme, the
predictor-corrector exponential time-integrator scheme (PCEXP) [1–5] has been
developed and successfully applied to the time stepping of fluid dynamics equations,
exhibiting some advantages in terms of accuracy and efficiency for solving the fluid
dynamics equations in both time-dependent and time-independent regimes.

In this paper, the exponential time integration is exploited in a multigrid
framework which consists of an exponential time marching method and a s-stage

S.-J. Li (�)
Beijing Computational Science Research Center, Beijing, China
e-mail: shujie@csrc.ac.cn

© Springer Nature Switzerland AG 2021
V. A. Garanzha et al. (eds.), Numerical Geometry, Grid Generation and Scientific
Computing, Lecture Notes in Computational Science and Engineering 143,
https://doi.org/10.1007/978-3-030-76798-3_24

375

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76798-3_24&domain=pdf
mailto:shujie@csrc.ac.cn
https://doi.org/10.1007/978-3-030-76798-3_24


376 S.-J. Li

preconditioned Runge-Kutta method as an effective way to increase the feasibility
of arbitrarily p-order DG for the high-order simulations of steady-state flows. The
remainder of this paper is organized as follows. Section 2 presents the multigrid
algorithm which combines two stand-alone methods in a V-cycle p-multigrid
framework. Section 3 introduces the spatial discretization with a modal high-order
DG method. Section 4 discusses how to evaluate the time steps in the p-multigrid
framework. Section 5 presents the numerical results including two inviscid flow
problems: (a) flow past a circular cylinder; (b) flow flow over a sphere. The
numerical results obtained with the exponential p-multigrid method (eMG) are
compared directly with a fully implicit method solved with the Incomplete LU
preconditioned GMRES (ILU-GMRES) linear solver. Finally, Sect. 6 concludes
this work. The Appendix provides the details of Jacobian matrices for the DG space
discretization and time-step evaluations.

2 Exponential Multigrid Frame

In this section, a high-order (p) multigrid frame is detailed which is expected to
have comparable performance to implicit methods for steady flow computations.
The algorithm combines two stand-alone methods: the exponential time integration
method and a s-stage preconditioned Runge-Kutta method. The two methods are
introduced separately first and are finally integrated into a whole V-cycle multigrid
frame.

2.1 Exponential Time Integration

We start with the following semi-discrete system of ordinary differential equations
which may be obtained from a spatial discretization:

du
dt

= R(u), (1)

where u = u(t) ∈ RK denotes the vector of the solution variables and R(u) ∈ RK

the right-hand-side term which may be the spatially discretized residual terms of the
discontinuous Galerkin method used in this work. The dimension K is the degrees
of freedom which can be very large for 3-D problems. Without loss of generality,
we consider u(t) in the interval of one time step, i.e., t ∈ [tn, tn+1]. Applying the
term splitting method [6] to (1) leads to a different exact expression

du
dt

= Jnu + N(u), (2)



Efficient Steady Flow Computations with Exponential Multigrid Methods 377

where the subscript n indicates the value evaluated at t = tn, Jn denotes the Jacobian
matrix Jn = ∂R(u)

/
∂u |t=tn = ∂R(un)

/
∂u and N(u) = R(u) − Jnu denotes the

remainder, which in general is nonlinear. Equation (2) admits the following formal
solution:

un+1 = exp(�tJn)un +
�t∫

0

exp ((�t − τ )Jn)N(u(tn + τ )) dτ , (3)

where �t = tn+1 − tn and

exp(−tJn) =
∞∑
m=0

(−tJn)m
m! . (4)

If using (3), the stiff linear term and the nonlinear integral term could be computed
separately. The linear term could be computed analytically for some specialized
equations but the nonlinear term is usually approximated numerically. In this paper,
we use its equivalent form (5) instead, in which the linear and nonlinear terms are
collected into a single term so that it can be efficiently approximated at one time.

Recently, a two-stage exponential scheme PCEXP [5] is shown to be effective
for computing various flow regimes. However, using only the first stage of PCEXP,
namely, the EXP1 scheme [1, 3] is shown to be more efficient for steady flows,
although it is incapable of solving unsteady flows. Considering the constant
approximation of the nonlinear term leads to the EXP1 scheme, namely

un+1 = exp(�tJn)un +�t�1(�tJn)Nn = un +�t�1(�tJn)Rn, (5)

where

�1(�tJ) := J−1

�t

[
exp(�tJ)− I

]
, (6)

and I denotes the K ×K identity matrix.
The physical nature of such type of exponential schemes relies on the global

coupling feature via the global Jacobian matrix J, so that flow transportation
information can be broadcasted to the whole computational domain without a CFL
restriction. That is why the exponential schemes behave like a fully implicit method
but only depends on the current solution, i.e., in an explicit way as (5). Therefore,
the EXP1 scheme is curiously exploited in the p-multigrid framework for steady
flow computations.



378 S.-J. Li

2.2 Realization of EXP1 with the Krylov Method

The implementation of exponential time integration schemes requires evaluations of
matrix-vector products, and in particular, the product of the exponential functions
of the Jacobian and a vector, e.g., �1(�tJn)N in (5). They can be approximated
efficiently using the Krylov method [7, 8]. Consider a m-dimensional Krylov
subspace

Km(J,N) = span
{
N, JN, J2N, . . . , Jm−1N

}
. (7)

The orthogonal basis matrix Vm := (v1, v2, . . . , vm) ∈ R
K×m satisfies the so-called

Arnoldi decomposition [8]:

JVm = Vm+1H̃m, (8)

where Vm+1 := (v1, v2, . . . , vm, vm+1) = (Vm, vm+1) ∈ R
K×(m+1). The matrix

H̃m is the (m+ 1)×m upper-Hessenberg matrix. Then (8) becomes

JVm = VmHm + hm+1,mvm+1eT
m. (9)

Because VT
mVm = I, therefore

Hm = VT
mJVm, (10)

Hm is thus the projection of the linear transformation of J onto the subspace Km

with the basis Vm. Since VmVT
m 	= I, (10) leads to the following approximation:

J ≈ VmVT
mJVmVT

m = VmHmVT
m, (11)

and exp(J) can be approximated by exp
(
VmHmVT

m

)
as below

exp(J)N ≈ exp
(
VmHmVT

m

)
N = Vm exp(Hm)VT

mN. (12)

The first column vector of Vm is v1 = N/‖N‖2 and VT
mN = ‖N‖2 e1, thus (12)

becomes

exp(J)N ≈ ‖N‖2Vm exp(Hm)e1. (13)

Consequently, �1 can be approximated by

�1(�tJ)N = 1

�t

∫ �t

0
exp((�t − τ )J)N dτ

≈ 1

�t

∫ �t

0
‖N‖2Vm exp((�t − τ )Hm)e1 d(τ ) .

(14)



Efficient Steady Flow Computations with Exponential Multigrid Methods 379

In general, the dimension of the Krylov subspace, m, is chosen to be much smaller
than the dimension of J, K , thus, Hm ∈ R

m×m can be inverted easily, so �1 can be
easily computed as the following

�1(�tJ)N ≈ 1

�t
‖N‖2Vm

∫ �t

0
exp((�t − τ )Hm)e1 dτ

= 1

�t
‖N‖2VmH−1

m

[
exp(�tHm)− I

]
e1, (15)

where the matrix-exponential exp(�tHm) can be computed efficiently by the
Chebyshev rational approximation (cf., e.g., [8, 9]) due to the small size of Hm.

2.3 Preconditioned Runge-Kutta Method

Consider a s-stage preconditioned Runge-Kutta (PRK) method of the following
form

u(0) = un

u(k) = un + βkP−1(un)R
(
u(k−1)

)
, k = 1, 2, . . . , s, (16)

un+1 = u(s)

where βk = 1/(s − k + 1). P is taken as the diagonal part of the global
residual Jacobian J = ∂R

/
∂u , representing the element-wise wave propagation

information. s = 4 is used for all the test cases of this work.
The physical nature of this type of RK method can be interpreted in two different

views which are helpful for us to see how does PRK make sense. First, we consider
the first-order spatial discretization of finite volume or discontinuous Galerkin
method to the i-th element surrounded by adjoined cells j (1 ≤ j ≤ N) with
the inter-cell surface area Sij , and the spatial residual using a upwinding flux can be
written as

Vi
�ui
�t

= Ri =
N∑
j=1

1

2

[
F(ui )+ F(uj )

]
nijSij + 1

2
|An

ij |
(
ui − uj

)
Sij . (17)

So P can be derived as

Pi = ∂Ri

∂ui
≈

N∑
j=1

1

2
|An

ij | Sij . (18)



380 S.-J. Li

A matrix �t can be defined as

�t = ViP−1 = Vi∑N
j=1

1
2 |An

ij | Sij
. (19)

One can uncover the relationship between the matrix �t and the traditional defini-
tion of time step by considering a cell-constant scalar spectral radius approximation
λmax
ij to |An

ij | , i.e.,

�t = 2Vi∑N
j=1 λ

max
ij Sij

1D−→ �xi

λmax
i

(20)

Therefore, P−1 is equivalent to a matrix time step and it is consistent to the usual
definition of time step in the scalar case. As demonstrated in [10], this matrix
is a kind of preconditioner which can provide effective clustering of convective
eigenvalues and substantial improvements to the convergence of RK time-stepping.
In this work, different from [10], an exact way of evaluating matrix time steps
with exact Jacobian is proposed in [3] so that all the stiffness effects from spatial
discretizations and boundary conditions can be exactly taken into account. Note that
such a matrix time stepping has no temporal order of accuracy, since the traditional
scalar, physical time step dose not show up at all. Therefore, the PRK scheme has
no temporal order of accuracy. The formula of PRK scheme can be considered as a
simplified fully implicit scheme or implicit-explicit Runge Kutta methods, but has
it own physical significance. To increase robustness, we recommend to increase
diagonal domination to P, namely, P = ∂R

/
∂u + I/δτ , where δτ is a pseudo time

step which is computed by (32).

2.4 The V-Cycle p-Multigrid Framework

The use of p-multigrid smoother with explicit RK or preconditioned RK methods
is observed inefficient at eliminating low-frequency error modes at lower orders of
accuracy. To provide a better smoother with stronger damping effects, the EXP1
scheme that exhibits fast convergence rates for Euler and Navier-Stokes equations
is considered. Unlike the explicit RK smoother that only produces weak damping
effects in a local, point-wise manner, the exponential scheme is a global method
that allows large time steps with strong damping effects to all the frequency modes
across the computational domain, as shown in the previous works [3].

In the exponential p-multigrid method (eMG), the EXP1 scheme is utilized on
the accuracy level p = 0 and the PRK method is used for accuracy levels p > 0,
contributing both memory deduction and efficiency enhancement. The smoothing
employs a V-cycle p-multigrid process, where a two-level algorithm is recursively
used. To illustrate the algorithm, let us consider a nonlinear problem A(up) = pp,



Efficient Steady Flow Computations with Exponential Multigrid Methods 381

where up is the solution vector, A(up) is the nonlinear operator and p denotes the
accuracy level of DG. Let vp be an approximation to the solution vector up and
define the residual r(vp) by

r(vp) = fp − Ap(vp).

In the eMG framework, the solution on the p−1 level is used to correct the solution
of p level in the following steps:

1. Conduct a time stepping with the PRK scheme on the highest accuracy level
pmax.

2. Restrict the solution and the residual of p to the p − 1 level (1 ≤ p ≤ pmax)

vp−1
0 = Rp−1

p vp, rp−1 = Rp−1
p rp(vp), (21)

where Rp−1
p is the restriction operator from the level p to the level p − 1.

3. Compute the forcing term for the p − 1 level

sp−1 = Ap−1(vp−1
0 )− rp−1. (22)

4. Smooth the solution with the PRK scheme on the p − 1 level but switch to use
the EXP1 scheme on the lowest accuracy level p = 0,

Ap−1(vp−1) = Rp−1
p fp + sp−1. (23)

5. Evaluate the error of level p − 1

ep−1 = vp−1 − vp−1
0 . (24)

6. Prolongate the p − 1 error and correct the approximation of level p

vp = vp + Pp

p−1e
p−1, (25)

where Pp

p−1 is the prolongation operator.

3 Spatial Discretization

In this paper, the eMG method is applied to solve three-dimensional Euler equations
discretized by a modal discontinuous Galerkin method. Consider the Euler
equations in three-dimensional space

∂U
∂t

+ ∇ ·F = 0, (26)



382 S.-J. Li

where U stands for the vector of conservative variables, F denotes the convective
flux

U =
⎛
⎝

"

"v

"E

⎞
⎠ , F =

⎛
⎝

"vT

"vvT + pI
"H vT

⎞
⎠ , (27)

where v = (u, v,w)T is the absolute velocity, ", p, and e denote the flow density,
pressure, and the specific internal energy;E = e+ 1

2‖v‖2 and H = E+p/" denote
the total energy and total enthalpy, respectively; I denotes the 3 × 3 unit matrix; and
the pressure p is given by the equation of state for a perfect gas

p = "(γ − 1)e, (28)

where γ = 7/5 is the ratio of specific heats for perfect gas.

3.1 Modal Discontinuous Galerkin Method

Considering a computational domain � divided into a set of non-overlapping
elements of arbitrary shape, the modal discontinuous Galerkin method [3] seeks
an approximation Uh in each element E ∈ � with finite-dimensional space of
polynomial Pp of order p in the discontinuous finite element space

Vh :=
{
ψi ∈ L2(�) : ψi |E ∈ Pp(�), ∀E ∈ �

}
. (29)

The numerical solution of Uh can be approximated in the finite element space Vh

Uh(x, t) =
n∑

j=1

uj (t)ψj (x). (30)

In the weak formulation, the Euler equations (26) in an element E becomes:

∫

E

ψiψj dx
duj
dt

= −
∫

∂E

ψi F̃ · n̂ dσ +
∫

E

F · ∇ψi dx := Ri , (31)

where n̂ is the out-normal unit vector of the surface element σ with respect to
the element E, F̃ is the Riemann solver [11], which will be approximated by Roe
scheme [12], and the Einstein summation convention is used. For an orthonormal
basis {ψi}, the term on the left-hand side of (31) becomes diagonal, so the system is
in the standard ODE form of (1), thus avoiding solving a a linear system as required
for a non-orthogonal basis. More importantly, using an orthogonal basis would yield
more accurate solutions, especially for high-order methods, e.g., p = 6.



Efficient Steady Flow Computations with Exponential Multigrid Methods 383

4 Time-Stepping Strategy

In this section, the time-stepping strategy of the eMG framework is discussed as
a time-marching solver to compute the steady solutions of the Euler equations.
There are two different time steps needed to be determined. One for the PRK time
stepping δτ and the other for EXP1 smoothing which is empirically chosen as large
as (pmax + 1)δτ . As such, only δτ should be determined. δτ is determined by

δτ = CFL h3D

(2p + 1)(‖v‖ + c)
, h3D := 2d

|E|
|∂E| , (32)

where CFL is the global Courant-Friedrichs-Lewy (CFL) number, p the accuracy
level, v the velocity vector at the cell center, c the speed of sound, d the spatial
dimension, |E| and |∂E| are the volume and the surface area of the boundary of
E, respectively; and h3D represents a characteristic size of a cell in 3D defined by
the ratio of its volume and surface area. All the methods mentioned in this paper
have been implemented in the HA3D flow solver developed by the author, which
is for solving three-dimensional problems as its name indicates. So to support 2-D
computations, a 2-D mesh is extruded to a 3-D (quasi-2D) mesh by one layer of
cells and we use h2D instead of h3D to eliminate the effect of the z dimension on
obtaining the truly 2-D time step. Given the cell size �z in the z direction, h2D is
determined by

2

h2D
= 3

h3D
− 1

�z
. (33)

To enhance the computational efficiency for the steady problems, the CFL number
of both schemes are dynamically determined by the following formula

CFLn = min

{
CFLmax,max

[
‖R("n)‖−1

2 , 1 + (n− 1)

(2p + 1)

]}
, (34a)

‖R("n)‖2 := 1

|�|
[∫

�

R("n)
2 dx

]1/2

, (34b)

where R("n) denotes the residual of density, CFLmax is the user-defined maximal
CFL number, n is the number of iterations, and p is the spatial order of accuracy.
Such a variable CFL evolution strategy allows a robust code startup and good overall
computational efficiency in practices. In all the test cases considered, the upper-
bound CFL number of (34a) is taken as follows: CFLmax = 103 for the implicit BE
method; CFLmax = 102 for the eMG method.



384 S.-J. Li

5 Numerical Results

In this section, we focus on the investigations of performance and convergence of
the eMG framework. The feasibility is of eMG is demonstrated and compared to
a fast fully implicit ILU preconditioned GMRES method. Two external flow cases
are considered: flows past a circular cylinder in quasi-2D and a sphere in 3D. Since
both eMG and GMRES are based on the Krylov subspace, the same Krylov space
parameters are used. The Krylov subspace dimension m is 30 and the tolerance of
Krylov subspace approximation error is 10−5, see Saad’s classic works [8, 13] for
more details about the error estimations. The fastest first-order backward Euler (BE)
discretization solved with the ILU preconditioned GMRES linear solver is used as
the performance reference solution.

5.1 Flow Over a Circular Cylinder in Quasi-2D

In this case, the results obtained for flow over a circular cylinder at Mach number
Ma = 0.3 is presented. The cylinder has a radius of 1 and is surrounded in a circular
computational domain of radius 15, as shown in Fig. 1. The quasi-2D mesh with
128×32 = 4096 quadratic curved hexahedral elements is generated by extruding the
2D mesh by one layer of grids. The final 3D mesh is used by the HA3D arbitrarily
high-order discontinuous Galerkin flow solver[1–5]. The total degree of freedoms
is up to 81,920 with DG at p = 3.

Fig. 1 Flow over a circular cylinder in quasi-2D: 128 × 32 = 4096 quadratic curved elements



Efficient Steady Flow Computations with Exponential Multigrid Methods 385

In Fig. 2, the L2 norm of density residual R("n) is plotted versus the iteration by
using the eMG scheme, indicating convergence rates independent of spatial order
of accuracy p, or say p-independent. The results obtained with a fast, implicit
ILU preconditioned GMRES is computed in Fig. 3, which shows the convergence

-10

-8

-6

-4

-2

 0

 0 50 100 150 200 250 300 350 400

lg
||R

( ρ
n)

|| 2

Iterations

eMG, p1

eMG, p2

eMG, p3

Fig. 2 Flow over a circular cylinder in quasi-2D: p-independent convergences with the eMG
method

-10

-8

-6

-4

-2

 0

 0 50 100 150 200

lg
||R

(ρ
n)

|| 2

Iterations

IMP, p1

IMP, p2

IMP, p3

Fig. 3 Flow over a circular cylinder in quasi-2D: Convergence histories of the implicit method
with varying spatial accuracy



386 S.-J. Li

-10

-8

-6

-4

-2

 0

 0  2  4  6  8 10 12 14 16 18

lg
||R

( ρ
n)

|| 2

CPU time

eMG, p1

eMG, p2

eMG, p3

IMP, p1

IMP, p2

IMP, p3

Fig. 4 Flow over a circular cylinder in quasi-2D: Performance comparison between the eMG
method and the implicit method at different spatial accuracy

histories of the implicit method with varying spatial accuracy. The results show
rapid quadratic Newton convergences which are dependent on the spatial order of
accuracy p. To see how promising is the eMG performance comparing with the
fully implicit method, the two results are compared in Fig. 4, where the CPU time is
normalized by that of the eMG scheme. As we can see, the implicit method (IMP) is
faster for p = 1, 2 cases but is slower than the eMG scheme for the p = 3 case. So
for high-order computations, the eMG method is at least comparable to the implicit
method in terms of overall performance.

5.2 Flow Over a Sphere in 3D

The computational efficiency of the eMG scheme is investigated for the three-
dimensional flow past a sphere with the Mach number Ma = 0.3. The radius
of the sphere is 1 and the far-field spherical radius is 5. The sphere surface is
set as a slip wall boundary condition, and the outer boundary uses a far-field
characteristic boundary condition with Riemann invariants. The mesh respects
the flow symmetries of the horizontal and vertical planes, on which a symmetry
boundary condition is imposed. The generated curved mesh consists of 9778
tetrahedrons and 4248 prisms, 14,026 cells in total. A close-up view of the mesh
about the sphere and the velocity contour computed with the eMG scheme at p = 3
is illustrated in Fig. 5.



Efficient Steady Flow Computations with Exponential Multigrid Methods 387

Fig. 5 Flow contour computed for the flow past a sphere at Ma = 0.3 with eMG and DG p = 3

Figure 6 shows the convergence histories of the eMG method for spatial order
of accuracy p = 1, 2, 3. Again, p-independent convergences do appear. In
Fig. 7, convergence histories of the implicit method (IMP) are shown with iteration
counts. Figure 8 compares both methods measured in CPU time. As one can see
that although IMP is fast in terms of iteration counts, the computational cost per
iteration is relatively high and the resulting CPU time is penalized. When using
high-order spatial schemes along with an implicit method, the high-order global
Jacobian matrix consumes a large amount of memory. The most significant part of
memory usage (M) of the two methods eMG and IMP are compared as follows

Memg = NE

[
5

3
(p + 1)(p + 2)(p + 3)+ 150

]
,

Mimp = 6NE

[
5

6
(p + 1)(p + 2)(p + 3)

]2

.

(35)

For problems sized up to NE = 105 elements at p = 3, fourth-order spatial
accuracy, a fully implicit method requires 45 GB memory only for storing the



388 S.-J. Li

-10

-8

-6

-4

-2

 0

 0 160 320 480 640 800

lg
||R

( ρ
n)

|| 2

Iterations

eMG, p1

eMG, p2

eMG, p3

Fig. 6 Flow over a sphere in 3D: p-independent convergences with the eMG method

-10

-8

-6

-4

-2

 0

 0 40 80 120 160

lg
||R

( ρ
n)

|| 2

Iterations

IMP, p1

IMP, p2

IMP, p3

Fig. 7 Flow over a sphere in 3D: convergence histories of the implicit method with varying spatial
accuracy

Jacobian matrix, while eMG only requires 0.03 GB memory for storing the solution
vectors plus the first-order Jacobian matrix for the same sized problem. Therefore,
the eMG method is far more memory friendly compared with a fully implicit
method, providing a more practical while efficient strategy for solving steady
problems with high-order methods.



Efficient Steady Flow Computations with Exponential Multigrid Methods 389

-10

-8

-6

-4

-2

 0

 2

 0 15 30 45 60

lg
||R

( ρ
n)

|| 2

CPU time

eMG, p1

eMG, p2

eMG, p3

IMP, p1

IMP, p2

IMP, p3

Fig. 8 Flow over a sphere in 3D: performance comparison between the eMG method and the
implicit method at different spatial accuracy

6 Conclusions

The first-order exponential time integration scheme, EXP1 has been exploited to
increase the feasibility of arbitrarily p-order DG for high-order simulations of
steady-state flows. The algorithms and the physical natures of the methods are
presented. The performance and memory usage are investigated and compared
with a fast backward-Euler ILU preconditioned GMRES fully implicit method for
2-D and 3-D steady flow problems. The results show expected p-independent
convergence rates for p = 1, 2, 3 order of accuracy and the eMG method is up to 20
times faster than the p = 3 ILU-GMRES for the 3-D case. Comparing to the fully
implicit method, the eMG framework uses less memory but achieves comparable
computational efficiency. Although the eMG method shows promising results, the
PRK scheme inside has a time step restriction and thus affects the overall efficiency.
Further studies are needed to pursue a better high-frequency smoother and a more
efficient exponential scheme as well.

Acknowledgments This work is funded by the National Natural Science Foundation of China
(NSFC) under the Grant U1930402. The computational resources are provided by Beijing
Computational Science Research Center (CSRC).



390 S.-J. Li

References

1. Li, S.-J., Wang, Z.J., Ju, L., Luo, L.-S.: Explicit large time stepping with a second-order
exponential time integrator scheme for unsteady and steady flows. In: 55th AIAA Aerospace
Sciences Meeting, AIAA-2017-0753 (2017)

2. Li, S.-J., Wang, Z.J., Ju, L., Luo, L.-S.: Fast time integration of Navier-Stokes equations with
an exponential-integrator scheme. In: 2018 AIAA Aerospace Sciences Meeting, AIAA-2018-
0369 (2018)

3. Li, S.-J., Luo, L.-S., Wang, Z.J., Ju, L.: An exponential time-integrator scheme for steady and
unsteady inviscid flows. J. Comput. Phys. 365, 206–225 (2018)

4. Li, S.-J.: Mesh curving and refinement based on cubic Bézier surface for High-order
discontinuous Galerkin methods. Comput. Math. Math. Phys. 59(12), 2080–2092 (2019)

5. Li, S.-J., Ju, L., Si, H.: Adaptive exponential time integration of the Navier-Stokes equations.
In: AIAA-2020-2033 (2020)

6. Caliari, M., Ostermann, A.: Implementation of exponential Rosenbrock-type integrators, Appl.
Numer. Math. 59(3), 568–582 (2009)

7. Tokman, M., Loffeld, J.: Efficient design of exponential-Krylov integrators for large scale
computing. Procedia Comput. Sci. 1(1), 229–237 (2010)

8. Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator.
SIAM J. Numer. Anal. 29(1), 209–228 (1992)

9. Moler, C.: Nineteen dubious ways to compute the exponential of a matrix, twenty-five years
later. SIAM J. Numer. Anal. 45(1), 3–49 (2003)

10. Pierce, N., Giles, M.: Preconditioning compressible flow calculations on stretched meshes. In:
34th Aerospace Sciences Meeting and Exhibit, AIAA-1996-889 (1996)

11. Toro, E.: Riemann Solvers and Numerical Methods for Fluid Dynamics. Springer, Berlin
(1999)

12. Roe, P.: Approximate Riemann solvers, parameter vectors, and difference schemes. J. Comput.
Phys. 43(2), 357–372 (1981)

13. Saad,Y., GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear
systems. SIAM J. Sci. Stat. Comput. 7(3), 856–869 (1986)



Exponential Time Integrators
for Unsteady Advection–Diffusion
Problems on Refined Meshes

Mikhail A. Botchev

Abstract Time integration of advection dominated advection–diffusion problems
on refined meshes can be a challenging task, since local refinement can lead to
a severe time step restriction, whereas standard implicit time stepping is usually
hardly suitable for treating advection terms. We show that exponential time
integrators can be an efficient, yet conceptually simple, option in this case. Our
comparison includes three exponential integrators and one conventional scheme,
the two-stage Rosenbrock method ROS2 which has been a popular alternative to
splitting methods for solving advection–diffusion problems.

1 Introduction

Time integration of unsteady advection–diffusion problems discretized in space on
locally refined meshes can be a challenging problem. This is especially the case
for advection dominated problems. On the one hand, requirements of accuracy,
monotonicity and total variation diminishing (TVD) usually rule out the use of
implicit time integration for advection terms [23, Chapter III.1.3] (for a notable
exception see [31]). On the other hand, locally refined meshes can impose a
severe CFL stability restriction on the time step, thus making explicit schemes very
inefficient.

Within the method of lines framework, i.e., when discretization in space is
followed by time integration, different approaches exist to cope with this problem. A
straightforward and widely used approach is operator splitting [23, Chapter IV],[43,
Chapter 3], when advection is usually treated explicitly in time and diffusion
implicitly. Though being conceptually simple and easy to apply in practice, splitting

M. A. Botchev (�)
Keldysh Institute of Applied Mathematics, Russian Academy of Sciences, Moscow, Russia

Marchuk Institute of Numerical Mathematics, Russian Academy of Sciences, Moscow, Russia
e-mail: botchev@ya.ru

© Springer Nature Switzerland AG 2021
V. A. Garanzha et al. (eds.), Numerical Geometry, Grid Generation and Scientific
Computing, Lecture Notes in Computational Science and Engineering 143,
https://doi.org/10.1007/978-3-030-76798-3_25

391

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76798-3_25&domain=pdf
mailto:botchev@ya.ru
https://doi.org/10.1007/978-3-030-76798-3_25


392 M. A. Botchev

methods unavoidably lead to splitting errors, see, e.g., [10, 27]. Moreover, a proper
use of boundary conditions within the splitting is sometimes not trivial and may lead
to error order reduction [15, 38]. To reduce splitting errors many various approaches
have been proposed, with none being fully successful. Here we mention source
splitting techniques [42] and Rosenbrock schemes [23, Chapter IV.5].

Other possible approaches to integrate advection–diffusion problems efficiently
include implicit-explicit (IMEX) methods [23, Chapter IV.4] and multirate
schemes [9, 34, 35].

In this paper we show that in some cases exponential time integration schemes
can serve as an efficient yet simple way to integrate advection–diffusion problems
in time on locally refined meshes. Similar to implicit schemes, exponential
schemes have attractive stability properties. However, exponential schemes have
also excellent accuracy properties and in some cases, especially for linear ODE
(ordinary differential equation) systems, are able to produce exact solution to initial-
value problem (IVP) being solved. This is the property we exploit in this work. An
example of an IVP that can be solved exactly by an exponential solver is

y ′(t) = −Ay(t)+ g, y(0) = v, t ∈ [0, T ], (1)

where v, g ∈ R
N are given and A ∈ R

N×N represents the advection–diffusion
operator discretized in space. Exponential solvers involve matrix-vector products
with the matrix exponential and related, the so-called ϕ functions. More specifically,
the exact solution y(t) of (1) can be written as

y(t) = v + tϕ(−tA)(g − Av), t � 0, (2)

where a matrix-vector product of the matrix function ϕ(−tA) and the vector g−Av

has to be computed. Here the function ϕ is defined as [21]

ϕ(z) =
⎧
⎨
⎩

ez − 1

z
, for z 	= 0, z ∈ C,

1, for z = 0.

In case g ≡ 0 expression (2) reduces to a familiar relation y(t) = exp(−tA)v, t � 0.
Note that such an “all-at-once” exact solution of systems (1) is also possible if g is a
given vector function g(t) of time t , see [1]. Furthermore, to solve general nonlinear
IVPs within this approach, across-time iterations of the waveform relaxation type
can successfully be employed [25]. Then, at each waveform relaxation iteration, a
linear IVP of the type (1) is solved by an exponential scheme. Such an approach is
attractive because no time stepping is involved and solution can often be obtained
for the whole time interval t ∈ [0, T ].

Exponential time integration is a rapidly developing research area [21]. Two
classes of exponential schemes can be distinguished: (1) time-stepping schemes
having a certain accuracy order where the matrix exponential or related matrix
functions are evaluated within each time step and (2) schemes which, formally



Exponential Time Integrators for Unsteady Advection–Diffusion 393

speaking, deliver an exact solution to the IVP, where the actions of the matrix
exponential or related matrix functions are employed across a certain time interval.
The former class includes extrapolated second order exponential Euler method
(EE2, discussed and tested below), exponential Rosenbrock schemes [22], and
predictor-corrector exponential schemes [30]. Examples of the latter class are the
scheme (2) applied to IVP (1), exponential waveform relaxation schemes [5] where
solution to (3) is sought by replacing A with a preconditioner M ≈ A and iterating,
and the exponential block Krylov (EBK) method discussed and tested below. Note
that exponential schemes of the both classes can handle nonlinear problems, in
particular, compressible [28, 29] and incompressible [26] Navier-Stokes equations.

In this work we present comparison results for three different exponential solvers.
All these methods are based on the Krylov subspace techniques discussed in [1, 6,
36]. Krylov subspace methods have been successfully used for evaluating matrix
exponential and related matrix functions since the eighties, see in chronological
order [11, 12, 20, 24, 32, 33, 39]. An attractive property of the Krylov subspace
methods, which distinguishes them from the other methods used for large matrix
function evaluations f (A)v, is their adaptivity with respect to the spectral properties
of A and the particular vector v, see [40]. To work efficiently, Krylov subspace
methods often need a restarting [14, 18], a mechanism allowing to keep Krylov
subspace dimension restricted while preserving convergence of the unrestarted
method.

The structure of this paper is as follows. In Sect. 2 the problem and methods
used for its solution are presented. Section 3 is devoted to numerical experiments,
here the methods are compared and comparison results are discussed. Finally, some
conclusions are drawn in Sect. 4.

2 Problem Formulation and Methods

In this paper we assume that a linear PDE of the advection–diffusion type is solved
by the method of lines and, after a suitable space discretization, the following IVP
has to be solved

y ′(t) = −Ay(t)+ g(t), y(0) = v, t ∈ [0, T ]. (3)

Here A ∈ R
N×N represents the discretized advection–diffusion operator and

the given vector function g(t) accounts for time dependent sources or boundary
conditions.



394 M. A. Botchev

2.1 Exponential Time Integrators

Perhaps the simplest exponential integrator is exponential Euler method which,
applied to problem (3), reads

yn+1 = yn +�tϕ(−�tA)(gn − Ayn), (4)

where �t is the time step size, yn is numerical solution at time t = �tn and gn =
g(�tn). The method is inspired by relation (2) and for constant source term g is
exact. It is not difficult to check that it is first order accurate.

Using extrapolation [3, 44], i.e., by combining solutions obtained with different
time steps, higher order methods can be obtained. Globally extrapolated second
order exponential Euler method (EE2) is considered in [1],

(1) carry out T/�t steps of (4) with �t, set result to y�t (T ),

(2) carry out 2T/�t steps of (4) with �t/2, set result to y�t/2(T ),

(3) obtain solution by extrapolation: yEE2(T ) := 2y�t/2(T )− y�t(T ),

(5)

where its combination with EXPOKIT [36], used to evaluate the ϕ matrix vector
products, is argued to be a competitive integrator. The phiv function of EXPOKIT
is able to efficiently compute actions of the ϕ matrix functions by a restarted Arnoldi
process, where the restarting is done by time stepping based on an error estimation.
In experiments presented below we show that EE2/EXPOKIT can be significantly
improved by introducing residual-based error control [4, 8, 13] and replacing the
restarting procedure by the residual-time (RT) restarting presented in [6, 7].

EE2 is an exponential integrator which evaluates matrix functions within a time
stepping procedure: at each time step ϕ is computed by a Krylov subspace method.
It is often more efficient [2, 5], if possible, to organize work in such a way that
numerical linear algebra work for matrix function evaluations is done across time
stepping, for a certain time interval. For instance, as shown in [1], if for a certain
time range g(t) allows an approximation

g(t) ≈ Up(t), U ∈ R
N×m, p : R → R

m, m ( N, (6)

then (3) can be solved for this time range by a single projection on a block Krylov
subspace. The matrixU and function p in (6) can be easily constructed by truncated
singular value decomposition (SVD) of the vectors g(ti ), at a small additional
cost [1]. This procedure simultaneously provides an error estimation in (6), so that
a proper value for m can be chosen.



Exponential Time Integrators for Unsteady Advection–Diffusion 395

To be more specific, consider problem (1), where for simplicity and without loss
of generality assume v = 0. A usual Krylov subspace solution of (1) constructs a
matrix Vk ∈ R

N×k , whose orthonormal columns span the Krylov subspace [40]

span(g,Ag, . . . , Ak−1g),

and, searching for an approximate solution yk(t) = Vku(t) ≈ y(t), reduces (1) to
its Galerkin projection

V T
k Vku

′(t) = −V T
k AVku(t)+ V T

k g ⇔ u′(t) = −Hku(t)+ βe1, (7)

where Hk = V T
k AVk, e1 = (1, 0, . . . , 0)T ∈ R

k is the first canonical basis vector
and β = ‖g‖. We have V T

k g = V T
k Vk(βe1) = βe1 because, by construction,

the first column of Vk is g/‖g‖. The small projected IVP (7) can be solved by
relation (2), evaluating ϕ(−tHk) with well developed matrix function techniques
for small matrices (see, e.g., [19]).

Now consider, still assuming v = 0, problem (3) where g(t) allows (6).
Projecting (3) on a block Krylov subspace [40]

span(U,AU, . . . , Ak−1U) = colspanVk, Vk ∈ R
N×km,

we can reduce (3) to its projected form

u′(t) = −Hku(t)+ E1p(t), (8)

where we now have Hk ∈ R
km×km and E1 ∈ R

km×m is a matrix whose columns are
the first m columns of the km × km identity matrix. These observations lead to the
exponential block Krylov (EBK) method described in [1].

The EBK solver exploits a stopping criterion and restarting which are based on
the exponential residual concept [4, 8, 13]. In particular, EBK iterations stop as soon
as for the computed approximate solution yk(t) holds

‖rk(t)‖ � tol, rk(t) ≡ −Ayk(t)+ g(t)− y ′
k(t), t ∈ [0, T ].

The EBK method can be summarized as follows (see [1] for details):

(1) form the approximation (6),

(2) carry out k = 1, . . . , kmax block Krylov steps, obtaining Vk, Hk,

(3) solve projected IVP (8), compute solution yk(T ) = Vku(T ).

(9)

Comparing the EE2 and EBK schemes, we note that an attractive feature of EE2
is its relative simplicity. On the other hand, a strong point for EBK is its potential
efficiency, as a single block Krylov subspace has to be constructed for the whole
time interval t ∈ [0, T ].



396 M. A. Botchev

2.2 ROS2 Method: Beyond Splitting

Rosenbrock schemes [23, Chapter IV.5] have been a popular alternative to splitting
methods, as they allow to reduce splitting errors and avoid other negative effects
related to splitting, such as order reduction. Let f (t, y) = −Ay(t) + g(t) be the
ODE right hand side in (3). The two-stage Rosenbrock method ROS2 reads

yn+1 = yn + 3

2
�tk1 + 1

2
�tk2,

(I − γ�tÂ)k1 = f (tn, yn),

(I − γ�tÂ)k2 = f (tn+1, yn +�tk1)− 2k1.

(10)

The method is second order consistent for any Â ∈ R
N×N and, to have good

stability properties, one usually takes Â ≈ A. Typically, Â corresponds to the
terms in A which have to be integrated implicitly in time. For instance in [41], for
advection-diffusion-reaction problems, Â is taken such that

I − γ�tÂ = (I − γ�tAdiff)(I − γ�tAreact),

where Adiff contains diffusion terms and Areact is the reaction Jacobian. In this work
we take Â to be either A or the diffusion part of A. Following suggestion in [23,
Chapter IV.5, Remark 5.2] we set γ = 1.

3 Numerical Experiments

Numerical experiments described here are carried in Matlab on a Linux PC with 6
Intel Core i5-8400 2.80 GHz CPUs with 16 GB RAM.

3.1 Test 1: Time Dependent Source and Boundary Conditions

In this test we solve (3) where A is a finite-element discretization of the two-
dimensional advection–diffusion operator:

L[u] = −ν∇2u+ v · ∇u, u = u(x, y), (x, y) ∈ [−1, 1]× [−1, 1], (11)

where ν is the viscosity parameter and the velocity field is v = [v1(x, y), v2(x, y)],

v1(x, y) = y(1 − x2), v2(x, y) = x(y2 − 1).



Exponential Time Integrators for Unsteady Advection–Diffusion 397

For this test, the function g(t) in (3) takes the form

g(t) ≡ y ′
ex(t)+ Ayex(t),

where yex(t) is exact solution function chosen as

yex(t) = α(t)
(
A−1gbc + T ϕ(−TA)gpeak

)
,

α(t) = 1 − e−t/300 + e−t/100.
(12)

Here gbc ∈ R
N is a vector containing Dirichlet boundary values prescribed below

and the vector gpeak ∈ R
N consists of the values of function e−10x2−50y2

on the
mesh. The boundary conditions imposing by gbc are

u(−1, y) = u(1, y) = u(x,−1) = 5, u(x, 1) = 5 + 5e−50x2
.

Note that A−1gbc is the steady state solution of (3) for g(t) ≡ gbc and
T ϕ(−T A)gpeak is the solution of (3) with g(t) ≡ gpeak at time t = T . The
final time is T = 1000 in this test. In Fig. 1 the exact solution yex(T ) is plotted.

In this test the IFISS finite element discretization [16, 37] by bilinear quadri-
lateral (Q1) finite elements with the streamline upwind Petrov–Galerkin (SUPG)
stabilization is employed. We set viscosity to ν = 1/6400 and use nonuniform
Cartesian stretched 256 × 256 and 512 × 512 grids with default refinement
parameters, which get finer near the domain boundaries, see Table 1.

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

x

y

Fig. 1 Solution function (12) on the mesh 256 × 256 at final time T = 1000 as surface (left) and
contour (right) plots



398 M. A. Botchev

Table 1 Parameters of the IFISS stretched meshes

Ratio max.elem. Peclet
Mesh minhx = minhy maxhx = maxhy maxhx,y/minhx,y for ν = 1/6400

256 × 256 5.9804 × 10−4 0.0312 52.17 1.9989 × 102

512 × 512 2.0102 × 10−4 0.0176 87.5535 1.1248 × 102

When constructing an advection-diffusion matrix, the IFISS package provides
the value the maximum finite element grid Peclet number, evaluated per element as

1

2ν
min

{
hx

cosα
,
hy

sin α

}
‖v‖2, α = arctan

v2

v1
,

where hx,y and v1,2 are respectively the element sizes and the velocity components.
The maximum element Peclet numbers reported for these meshes are given in
Table 1. Due to the SUPG stabilization, the resulting matrices for both meshes are
weakly nonsymmetric: the ratio ‖A−AT ‖1/‖A+AT ‖1 amounts approximately to
0.022 (mesh 256 × 256) and 0.012 (mesh 512 × 512).

In addition to the requested accuracy tolerance, two input parameters have to
provided to EBK: the number of the truncated SVD terms m and the number of time
snapshots ns to construct approximation (6). From the problem description, we see
that yex(t) is a linear combination of two linearly independent vectors for any t .
Hence, g(t) is a linear combination of no more than four vectors and we should
take m � 4. The actual situation is displayed by the singular values available from
the thin SVD of the time samples: the largest truncated singular value σm+1 is an
upper bound for the truncation error ‖g(t) − Up(t)‖2, see, e.g., [17]. In this case
it turns out that taking m = 2 is sufficient. A proper snapshot number ns can be
estimated from given α(t) or by checking, for constructed U and p(t), the actual
error ‖g(t) − Up(t)‖ a posteriori, see (Table 2). Based on this, we set ns = 120
in all EBK runs in this test. This selection procedure for ns is computationally very
cheap and can be done once, before all the test runs.

As the problem is two-dimensional, linear systems with A can be solved
efficiently by sparse direct methods. Therefore to solve the linear systems in ROS2,
we use the Matlab standard sparse LU factorization (provided by UMFPACK)
computing it once and using at each time step.

Table 2 Error of approximation (6), 256 × 256 mesh. The EBK errors are obtained for
tol = 10−6

ns
max
s∈[0,T ]

‖g(s)− Up(s)‖
∫ T

0 ‖g(s)− Up(s)‖ ds∫ T
0 ‖g(s)‖ ds EBK error (13)

30 2.37 × 10−3 1.82 × 10−5 2.24 × 10−5

60 1.27 × 10−4 9.83 × 10−7 1.23 × 10−6

120 7.40 × 10−6 5.73 × 10−8 7.90 × 10−8



Exponential Time Integrators for Unsteady Advection–Diffusion 399

The error reported below for the test runs is measured as

error = ‖y(T )− yex(T )‖2

‖yex(T )‖2
. (13)

The results of the test runs are presented in Tables 3 and 4. As we see, EBK turns out
to be more efficient than the other solvers. Within the EE2 integrator, the change of
the Krylov subspace solver from EXPOKIT’s phiv to the RT-restarted algorithm
leads to a significant increase in efficiency. Note that this gain is not due to the
restarting but due a more reliable residual-based error control. Restarting is usually
not done because, due to a sufficiently small �t , just a couple Krylov steps are
carried out in EE2 each time step. In both EE2/EXPOKIT and EE2/RT we should
be careful with setting a proper tolerance value, which is used at each time step for
stopping the Krylov subspace method evaluating the ϕ matrix function. Taking a
large tolerance value may lead to an accuracy loss. For increasingly small tolerance
values the same accuracy will be observed (as it is determined by the time step size)
at a higher cost: more matrix-vector multiplications per time step will be needed for
the ϕ matrix function evaluations.

From Tables 3 and 4 we also see that the ROS2 solver becomes less efficient
than EE2/RT on the finer mesh as the costs for solving linear systems become more
pronounced.

Table 3 Test 1. Results for the 256 × 256 mesh

Method CPU time, s Fevalsa l.s.s.b Error

EBK, tol = 10−4 0.36 20 — 8.01 × 10−8

EBK, tol = 10−6 0.40 24 — 7.90 × 10−8

EE2/RT, �t = 20, tol = 10−4 1.84 500 — 1.51 × 10−3

EE2/RT, �t = 10, tol = 10−4 3.52 900 — 3.79 × 10−4

EE2/RT, �t = 5, tol = 10−4 6.93 1800 — 9.50 × 10−5

EE2/EXPOKIT, �t = 20, tol = 10−4 17.99 9408 — 1.51 × 10−3

EE2/EXPOKIT, �t = 10, tol = 10−4 24.53 12,608 — 3.79 × 10−4

EE2/EXPOKIT, �t = 5, tol = 10−4 37.74 19,200 — 9.50 × 10−5

ROS2, Â = A, �t = 20 1.95 100 100 3.03 × 10−3

ROS2, Â = A, �t = 10 3.59 200 200 7.60 × 10−4

ROS2, Â = A, �t = 5 6.85 400 400 1.91 × 10−4

ROS2, Â = Adiff, �t = 2 19.55 1000 1000 8.49 × 10−4

ROS2, Â = Adiff, �t = 1 34.72 2000 2000 7.59 × 10−6

ROS2, Â = Adiff, �t = 0.5 68.33 4000 4000 1.90 × 10−6

a
Number of function evaluations or matvec (matrix-vector) products

b
Number of linear system solutions



400 M. A. Botchev

Table 4 Test 1. Results for the 512 × 512 mesh

Method CPU time, s Fevalsa l.s.s.b Error

EBK, tol = 10−4 1.26 4 — 3.08 × 10−8

EBK, tol = 10−6 1.31 8 — 2.33 × 10−8

EE2/RT, �t = 20, tol = 10−4 9.10 450 — 8.91 × 10−4

EE2/RT, �t = 10, tol = 10−4 17.97 900 — 2.40 × 10−4

EE2/RT, �t = 5, tol = 10−4 35.90 1800 — 8.07 × 10−5

ROS2, Â = A, �t = 20 11.82 100 100 1.90 × 10−3

ROS2, Â = A, �t = 10 22.68 200 200 5.46 × 10−4

ROS2, Â = A, �t = 5 36.91 400 400 1.85 × 10−4

ROS2, Â = Adiff, �t = 2 86.55 1000 1000 5.73 × 10−3

ROS2, Â = Adiff, �t = 1 167.95 2000 2000 4.44 × 10−6

ROS2, Â = Adiff, �t = 0.5 331.38 4000 4000 1.11 × 10−6

a
Number of function evaluations or matvec (matrix-vector) products

b
Number of linear system solutions

3.2 Test 2: Time Dependent Boundary Conditions

In the previous test we see that the EBK solver apparently profits from the specific
source function, exhibiting a very quick convergence. Although this is not an
unusual situation, we now consider another test problem which appears more
difficult for EBK. We take the same matrix A as in the first test and the following
initial value vector v and source function g(t):

g(t) = α(t)gbc, v = −T ϕ(−TA)gpeak,

where α(t) and gbc are the same as in (12). This test problem does not have a known
analytical solution and we compute a reference solution yref(t) by running EE2/RT
with a tiny time step size. The errors of computed numerical solutions y(t) reported
below are

error = ‖y(T )− yref(T )‖2

‖yref(T )‖2

Note that yref(t) is influenced by the same space error as y(t), hence, the error shows
solely the time error.

From the problem definition we see that the number of SVD terms m can be at
most 2. Therefore, in this test EBK is run with the block size m = 2 and ns = 80
time snapshots (the value is determined in the same way as in Test 1). For this test
we include in comparisons the two solvers which come out as best in the first test,
EBK and EE2/RT. The results presented in Table 5 show that EBK does require
more steps for this test but is still significantly more efficient than EE2/RT.



Exponential Time Integrators for Unsteady Advection–Diffusion 401

Table 5 Test 2. Results for the 256 × 256 mesh

Method CPU time, s Fevalsa l.s.s.b Error

EBK, tol = 10−4, ns = 80 0.77 36 — 1.83 × 10−5

EBK, tol = 10−6, ns = 80 1.32 50 — 1.91 × 10−7

EE2/RT, �t = 10, tol = 10−6 6.53 1306 — 8.91 × 10−5

EE2/RT, �t = 5, tol = 10−6 11.54 2406 — 5.58 × 10−5

a
Number of function evaluations or matvec (matrix-vector) products

b
Number of linear system solutions

4 Conclusions

We show that exponential time integrators can be an attractive option for integrating
advection–diffusion problems in time, as they possess good accuracy as well as
stability properties. In presented tests, they outperform state-of-the-art implicit-
explicit ROS2 solvers. Exponential solvers which are able to exploit their matrix
function evaluation machinery for a whole time interval (such as EBK in this paper)
appear to be preferable to exponential integrators where matrix functions have to be
evaluated at each time step.

Acknowledgement This work is supported by the Russian Science Foundation under grant
No. 19-11-00338.

References

1. Botchev, M.A.: A block Krylov subspace time-exact solution method for linear ordinary
differential equation systems. Numer. Linear Algebra Appl. 20(4), 557–574 (2013) https://
doi.org/10.1002/nla.1865

2. Botchev, M.A.: Krylov subspace exponential time domain solution of Maxwell’s equations in
photonic crystal modeling. J. Comput. Appl. Math. 293, 24–30 (2016) https://doi.org/10.
1016/j.cam.2015.04.022

3. Botchev, M.A., Verwer, J.G.: Numerical integration of damped Maxwell equations. SIAM J.
Sci. Comput. 31(2), 1322–1346 (2009) https://doi.org/10.1137/08072108X

4. Botchev, M.A., Grimm, V., Hochbruck, M.: Residual, restarting and Richardson iteration for
the matrix exponential. SIAM J. Sci. Comput. 35(3), A1376–A1397 (2013) https://doi.org/
10.1137/110820191

5. Botchev, M.A., Oseledets, I.V., Tyrtyshnikov, E.E.: Iterative across-time solution of linear
differential equations: Krylov subspace versus waveform relaxation. Comput. Math. Appl.
67(12), 2088–2098 (2014) https://doi.org/10.1016/j.camwa.2014.03.002

6. Botchev, M.A., Knizhnerman, L.A.: ART: Adaptive residual-time restarting for Krylov
subspace matrix exponential evaluations. J. Comput. Appl. Math. 364, 112311 (2020) https://
doi.org/10.1016/j.cam.2019.06.027

7. Botchev, M.A., Knizhnerman, L.A., Tyrtyshnikov, E.E.: A residual concept for Krylov
subspace evaluation of the ϕ matrix function (2020). Preprint arXiv:2010.08494. https://
arxiv.org/abs/2010.08494

https://doi.org/10.1002/nla.1865
https://doi.org/10.1002/nla.1865
https://doi.org/10.1016/j.cam.2015.04.022
https://doi.org/10.1016/j.cam.2015.04.022
https://doi.org/10.1137/08072108X
https://doi.org/10.1137/110820191
https://doi.org/10.1137/110820191
https://doi.org/10.1016/j.camwa.2014.03.002
https://doi.org/10.1016/j.cam.2019.06.027
https://doi.org/10.1016/j.cam.2019.06.027
https://arxiv.org/abs/2010.08494
https://arxiv.org/abs/2010.08494


402 M. A. Botchev

8. Celledoni, E., Moret, I.: A Krylov projection method for systems of ODEs. Appl. Numer.
Math. 24(2–3), 365–378 (1997) https://doi.org/10.1016/S0168-9274(97)00033-0

9. Constantinescu, E.M., Sandu, A.: Multirate timestepping methods for hyperbolic conservation
laws. J. Sci. Comput. 33(3), 239–278 (2007)

10. Csomós, P., Faragó, I., Havasi, Á.: Weighted sequential splittings and their analysis. Comput.
Math. with Appl. 50(7), 1017–1031 (2005)

11. Druskin, V.L., Knizhnerman, L.A.: Two polynomial methods of calculating functions of
symmetric matrices. U.S.S.R. Comput. Maths. Math. Phys. 29(6), 112–121 (1989)

12. Druskin, V.L., Knizhnerman, L.A.: Krylov subspace approximations of eigenpairs and matrix
functions in exact and computer arithmetic. Numer. Lin. Alg. Appl. 2, 205–217 (1995)

13. Druskin, V.L., Greenbaum, A., Knizhnerman, L.A.: Using nonorthogonal Lanczos vectors in
the computation of matrix functions. SIAM J. Sci. Comput. 19(1), 38–54 (1998) https://doi.
org/10.1137/S1064827596303661

14. Eiermann, M., Ernst, O.G.: A restarted Krylov subspace method for the evaluation of matrix
functions. SIAM J. Numer. Anal. 44, 2481–2504 (2006)

15. Einkemmer, L., Ostermann, A.: Overcoming order reduction in diffusion-reaction splitting.
Part 1: Dirichlet boundary conditions. SIAM J. Sci. Comput. 37(3), A1577–A1592 (2015)
https://doi.org/10.1137/140994204

16. Elman, H.C., Ramage, A., Silvester, D.J.: IFISS: A computational laboratory for investigating
incompressible flow problems. SIAM Rev. 56(2), 261–273 (2014)

17. Golub, G.H., Van Loan, C.F.: Matrix Computations, 3rd edn. The Johns Hopkins University
Press, Baltimore and London (1996)

18. Güttel, S., Frommer, A., Schweitzer., M.: Efficient and stable Arnoldi restarts for matrix
functions based on quadrature. SIAM J. Matrix Anal. Appl 35(2), 661–683 (2014)

19. Higham, N.J.: Functions of Matrices: Theory and Computation. Society for Industrial and
Applied Mathematics, Philadelphia (2008)

20. Hochbruck, M., Lubich, C.: On Krylov subspace approximations to the matrix exponential
operator. SIAM J. Numer. Anal. 34(5), 1911–1925 (1997)

21. Hochbruck, M., Ostermann, A.: Exponential integrators. Acta Numer. 19, 209–286 (2010)
https://doi.org/10.1017/S0962492910000048

22. Hochbruck, M., Ostermann, A., Schweitzer, J.: Exponential Rosenbrock-type methods. SIAM
J. Numer. Anal. 47(1), 786–803 (2008/2009). https://doi.org/10.1137/080717717

23. Hundsdorfer, W., Verwer, J.G.: Numerical Solution of Time-Dependent Advection-Diffusion-
Reaction Equations. Springer, Berlin (2003)

24. Knizhnerman, L.A.: Calculation of functions of unsymmetric matrices using Arnoldi’s method.
U.S.S.R. Comput. Maths. Math. Phys. 31(1), 1–9 (1991)

25. Kooij, G.L., Botchev, M.A., Geurts, B.J.: A block Krylov subspace implementation of the
time-parallel Paraexp method and its extension for nonlinear partial differential equations. J.
Comput. Appl. Math. 316(Supplement C), 229–246 (2017) https://doi.org/10.1016/j.cam.
2016.09.036

26. Kooij, G., Botchev, M.A., Geurts, B.J.: An exponential time integrator for the incompressible
Navier–Stokes equation. SIAM J. Sci. Comput. 40(3), B684–B705 (2018) https://doi.org/10.
1137/17M1121950

27. Lanser, D., Verwer, J.G.: Analysis of operator splitting for advection–diffusion–reaction
problems from air pollution modelling. J. Comput. Appl. Math. 111(1–2), 201–216 (1999)

28. Li, S.J.: Efficient p-multigrid method based on an exponential time discretization for
compressible steady flows (2018). arXiv preprint 1807.01151. https://arxiv.org/abs/1807.
01151

29. Li, S.J.: Time advancement of the Navier-Stokes equations: p-adaptive exponential methods.
J. Flow Control Measurement Vis. 8(2), 63–76 (2020) https://doi.org/10.4236/jfcmv.2020.
82004

30. Li, S.J., Luo, L.S., Wang, Z.J., Ju, L.: An exponential time-integrator scheme for steady and
unsteady inviscid flows. J. Comput. Phys. 365, 206–225 (2018) https://doi.org/10.1016/j.jcp.
2018.03.020

https://doi.org/10.1016/S0168-9274(97)00033-0
https://doi.org/10.1137/S1064827596303661
https://doi.org/10.1137/S1064827596303661
https://doi.org/10.1137/140994204
https://doi.org/10.1017/S0962492910000048
https://doi.org/10.1137/080717717
https://doi.org/10.1016/j.cam.2016.09.036
https://doi.org/10.1016/j.cam.2016.09.036
https://doi.org/10.1137/17M1121950
https://doi.org/10.1137/17M1121950
https://arxiv.org/abs/1807.01151
https://arxiv.org/abs/1807.01151
https://doi.org/10.4236/jfcmv.2020.82004
https://doi.org/10.4236/jfcmv.2020.82004
https://doi.org/10.1016/j.jcp.2018.03.020
https://doi.org/10.1016/j.jcp.2018.03.020


Exponential Time Integrators for Unsteady Advection–Diffusion 403

31. Lie, K.A., Mykkeltvedt, T.S., Møyner, O.: A fully implicit WENO scheme on stratigraphic
and unstructured polyhedral grids. Comput. Geosci. 24(2), 405–423 (2020)

32. Park, T.J., Light, J.C.: Unitary quantum time evolution by iterative Lanczos reduction. J.
Chem. Phys. 85, 5870–5876 (1986)

33. Saad, Y.: Analysis of some Krylov subspace approximations to the matrix exponential operator.
SIAM J. Numer. Anal. 29(1), 209–228 (1992)

34. Savcenco, V., Hundsdorfer, W., Verwer, J.G.: A multirate time stepping strategy for stiff
ordinary differential equations. BIT Numer. Math. 47(1), 137–155 (2007)

35. Schlegel, M., Knoth, O., Arnold, M., Wolke, R.: Multirate Runge–Kutta schemes for advection
equations. J. Comput. Appl. Math. 226(2), 345–357 (2009). https://doi.org/10.1016/j.cam.
2008.08.009

36. Sidje, R.B.: EXPOKIT. A software package for computing matrix exponentials. ACM Trans.
Math. Softw. 24(1), 130–156 (1998) www.maths.uq.edu.au/expokit/

37. Silvester, D.J., Elman, H.C., Ramage, A.: Incompressible flow & iterative solver software
(2019). http://www.manchester.ac.uk/ifiss/

38. Sommeijer, B.P., van der Houwen, P.J., Verwer, J.G.: On the treatment of time-dependent
boundary conditions in splitting methods for parabolic differential equations. J. Numer.
Methods Engrg. 17(3), 335–346 (1981). https://doi.org/10.1002/nme.1620170304

39. van der Vorst, H.A.: An iterative solution method for solving f (A)x = b, using Krylov
subspace information obtained for the symmetric positive definite matrix A. J. Comput. Appl.
Math. 18, 249–263 (1987)

40. van der Vorst, H.A.: Iterative Krylov Methods for Large Linear Systems. Cambridge
University Press, Cambridge (2003)

41. Verwer, J.G., Spee, E.J., Blom, J.G., Hundsdorfer, W.: A second order Rosenbrock method
applied to photochemical dispersion problems. SIAM J. Sci. Comput. 20, 456–480 (1999)

42. Verwer, J.G., Hundsdorfer, W., Blom, J.G.: Numerical time integration for air pollution
models. Surv. Math. Ind. 10, 107–174 (2002) https://ir.cwi.nl/pub/4620

43. Zlatev, Z.: Computer Treatment of Large Air Pollution Models. Kluwer Academic Publishers,
New York (1995)

44. Zlatev, Z., Dimov, I., Faragó, I., Havasi, Á.: Richardson Extrapolation: Practical Aspects and
Applications. De Gruyter, Berlin (2018)

https://doi.org/10.1016/j.cam.2008.08.009
https://doi.org/10.1016/j.cam.2008.08.009
www.maths.uq.edu.au/expokit/
http://www.manchester.ac.uk/ifiss/
https://doi.org/10.1002/nme.1620170304
https://ir.cwi.nl/pub/4620


Author Index

A
Alauzet, F., 127, 141
Aman, A., 113
Anosova, O., 37

B
Barrera, P., 263
Belyaev, A.G., 341
Blanchi, V., 251
Botchev, M.A., 391
Bright, M., 37

C
Cao, J., 199, 307
Chang, J., 199
Chen, W., 61
Clerici, F., 141
Corman, É., 251

D
Dolbilin, N., 3

E
Erkoç, Z., 113

F
Fayolle, P.-A., 341
Fedoseev, D.A., 13

G
Güdükbay, U., 113
Gao, Z., 307
Garanzha, V., 81, 157
Grosso, R., 281
Gu, X., 61
Guan, Z., 199, 307
Guo, Y., 61

K
Karasuljic, S., 227
Karavaev, A.S., 295
Kopysov, S.P., 295
Korotov, S., 241
Kudryavtseva, L., 81, 157
Kurlin, V., 37

L
Lei, N., 61
Li, S.-J., 375
Liseikin, V.D., 227
Lo, S.H., 307
Luo, Z., 61

M
Méndez, I., 263
Manturov, V.O., 13
Mukhortov, A.V., 227

N
Nhan, T.A., 213
Nikonov, I.M., 13

© Springer Nature Switzerland AG 2021
V. A. Garanzha et al. (eds.), Numerical Geometry, Grid Generation and Scientific
Computing, Lecture Notes in Computational Science and Engineering 143,
https://doi.org/10.1007/978-3-030-76798-3

405

https://doi.org/10.1007/978-3-030-76798-3


406 Author Index

P
Paasonen, V.I., 227

R
Ray, N., 251

S
Si, H., 95
Sokolov, D., 251

T
Tenkes, L.-M., 127
Terekhov, K.M., 361

V
Vatne, J.E., 241
Vlachkova, K., 327

Y
Yu, F., 199, 307

Z
Zegeling, P.A., 179
Zhao, T., 61
Zint, D., 281



Editorial Policy

1. Volumes in the following three categories will be published in LNCSE:

i) Research monographs
ii) Tutorials
iii) Conference proceedings

Those considering a book which might be suitable for the series are strongly advised to
contact the publisher or the series editors at an early stage.

2. Categories i) and ii). Tutorials are lecture notes typically arising via summer schools
or similar events, which are used to teach graduate students. These categories will be
emphasized by Lecture Notes in Computational Science and Engineering. Submissions by
interdisciplinary teams of authors are encouraged. The goal is to report new developments
– quickly, informally, and in a way that will make them accessible to non-specialists. In the
evaluation of submissions timeliness of the work is an important criterion. Texts should
be well-rounded, well-written and reasonably self-contained. In most cases the work will
contain results of others as well as those of the author(s). In each case the author(s) should
provide sufficient motivation, examples, and applications. In this respect, Ph.D. theses will
usually be deemed unsuitable for the Lecture Notes series. Proposals for volumes in these
categories should be submitted either to one of the series editors or to Springer-Verlag,
Heidelberg, and will be refereed. A provisional judgement on the acceptability of a project
can be based on partial information about the work: a detailed outline describing the contents
of each chapter, the estimated length, a bibliography, and one or two sample chapters – or
a first draft. A final decision whether to accept will rest on an evaluation of the completed
work which should include

– at least 100 pages of text;
– a table of contents;
– an informative introduction perhaps with some historical remarks which should be

accessible to readers unfamiliar with the topic treated;
– a subject index.

3. Category iii). Conference proceedings will be considered for publication provided that
they are both of exceptional interest and devoted to a single topic. One (or more) expert
participants will act as the scientific editor(s) of the volume. They select the papers which are
suitable for inclusion and have them individually refereed as for a journal. Papers not closely
related to the central topic are to be excluded. Organizers should contact the Editor for CSE
at Springer at the planning stage, see Addresses below.

In exceptional cases some other multi-author-volumes may be considered in this category.

4. Only works in English will be considered. For evaluation purposes, manuscripts may
be submitted in print or electronic form, in the latter case, preferably as pdf- or zipped
ps-files. Authors are requested to use the LaTeX style files available from Springer at http://
www.springer.com/gp/authors-editors/book-authors-editors/manuscript-preparation/5636
(Click on LaTeX Template → monographs or contributed books).

For categories ii) and iii) we strongly recommend that all contributions in a volume be written
in the same LaTeX version, preferably LaTeX2e. Electronic material can be included if
appropriate. Please contact the publisher.

Careful preparation of the manuscripts will help keep production time short besides ensuring
satisfactory appearance of the finished book in print and online.

http://www.springer.com/gp/authors-editors/book-authors-editors/manuscript-preparation/5636


5. The following terms and conditions hold. Categories i), ii) and iii):

Authors receive 50 free copies of their book. No royalty is paid.
Volume editors receive a total of 50 free copies of their volume to be shared with authors, but
no royalties.

Authors and volume editors are entitled to a discount of 40 % on the price of Springer books
purchased for their personal use, if ordering directly from Springer.

6. Springer secures the copyright for each volume.

Addresses:

Timothy J. Barth
NASA Ames Research Center
NAS Division
Moffett Field, CA 94035, USA
barth@nas.nasa.gov

Michael Griebel
Institut für Numerische Simulation
der Universität Bonn
Wegelerstr. 6
53115 Bonn, Germany
griebel@ins.uni-bonn.de

David E. Keyes
Mathematical and Computer Sciences
and Engineering
King Abdullah University of Science
and Technology
P.O. Box 55455
Jeddah 21534, Saudi Arabia
david.keyes@kaust.edu.sa

and

Department of Applied Physics
and Applied Mathematics
Columbia University
500 W. 120 th Street
New York, NY 10027, USA
kd2112@columbia.edu

Risto M. Nieminen
Department of Applied Physics
Aalto University School of Science
and Technology
00076 Aalto, Finland
risto.nieminen@aalto.fi

Dirk Roose
Department of Computer Science
Katholieke Universiteit Leuven
Celestijnenlaan 200A
3001 Leuven-Heverlee, Belgium
dirk.roose@cs.kuleuven.be

Tamar Schlick
Department of Chemistry
and Courant Institute
of Mathematical Sciences
New York University
251 Mercer Street
New York, NY 10012, USA
schlick@nyu.edu

Editor for Computational Science
and Engineering at Springer:

Martin Peters
Springer-Verlag
Mathematics Editorial IV
Tiergartenstrasse 17
69121 Heidelberg, Germany
martin.peters@springer.com



Lecture Notes
in Computational Science
and Engineering

1. D. Funaro, Spectral Elements for Transport-Dominated Equations.

2. H.P. Langtangen, Computational Partial Differential Equations. Numerical Methods and Diffpack
Programming.

3. W. Hackbusch, G. Wittum (eds.), Multigrid Methods V.

4. P. Deuflhard, J. Hermans, B. Leimkuhler, A.E. Mark, S. Reich, R.D. Skeel (eds.), Computational
Molecular Dynamics: Challenges, Methods, Ideas.

5. D. Kröner, M. Ohlberger, C. Rohde (eds.), An Introduction to Recent Developments in Theory and
Numerics for Conservation Laws.

6. S. Turek, Efficient Solvers for Incompressible Flow Problems. An Algorithmic and Computational
Approach.

7. R. von Schwerin, Multi Body System SIMulation. Numerical Methods, Algorithms, and Software.

8. H.-J. Bungartz, F. Durst, C. Zenger (eds.), High Performance Scientific and Engineering Comput-
ing.

9. T.J. Barth, H. Deconinck (eds.), High-Order Methods for Computational Physics.

10. H.P. Langtangen, A.M. Bruaset, E. Quak (eds.), Advances in Software Tools for Scientific
Computing.

11. B. Cockburn, G.E. Karniadakis, C.-W. Shu (eds.), Discontinuous Galerkin Methods. Theory,
Computation and Applications.

12. U. van Rienen, Numerical Methods in Computational Electrodynamics. Linear Systems in
Practical Applications.

13. B. Engquist, L. Johnsson, M. Hammill, F. Short (eds.), Simulation and Visualization on the Grid.

14. E. Dick, K. Riemslagh, J. Vierendeels (eds.), Multigrid Methods VI.

15. A. Frommer, T. Lippert, B. Medeke, K. Schilling (eds.), Numerical Challenges in Lattice Quantum
Chromodynamics.

16. J. Lang, Adaptive Multilevel Solution of Nonlinear Parabolic PDE Systems. Theory, Algorithm,
and Applications.

17. B.I. Wohlmuth, Discretization Methods and Iterative Solvers Based on Domain Decomposition.

18. U. van Rienen, M. Günther, D. Hecht (eds.), Scientific Computing in Electrical Engineering.

19. I. Babuška, P.G. Ciarlet, T. Miyoshi (eds.), Mathematical Modeling and Numerical Simulation in
Continuum Mechanics.

20. T.J. Barth, T. Chan, R. Haimes (eds.), Multiscale and Multiresolution Methods. Theory and
Applications.

21. M. Breuer, F. Durst, C. Zenger (eds.), High Performance Scientific and Engineering Computing.

22. K. Urban, Wavelets in Numerical Simulation. Problem Adapted Construction and Applications.

23. L.F. Pavarino, A. Toselli (eds.), Recent Developments in Domain Decomposition Methods.



24. T. Schlick, H.H. Gan (eds.), Computational Methods for Macromolecules: Challenges and
Applications.

25. T.J. Barth, H. Deconinck (eds.), Error Estimation and Adaptive Discretization Methods in
Computational Fluid Dynamics.

26. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations.

27. S. Müller, Adaptive Multiscale Schemes for Conservation Laws.

28. C. Carstensen, S. Funken, W. Hackbusch, R.H.W. Hoppe, P. Monk (eds.), Computational
Electromagnetics.

29. M.A. Schweitzer, A Parallel Multilevel Partition of Unity Method for Elliptic Partial Differential
Equations.

30. T. Biegler, O. Ghattas, M. Heinkenschloss, B. van Bloemen Waanders (eds.), Large-Scale PDE-
Constrained Optimization.

31. M. Ainsworth, P. Davies, D. Duncan, P. Martin, B. Rynne (eds.), Topics in Computational Wave
Propagation. Direct and Inverse Problems.

32. H. Emmerich, B. Nestler, M. Schreckenberg (eds.), Interface and Transport Dynamics. Computa-
tional Modelling.

33. H.P. Langtangen, A. Tveito (eds.), Advanced Topics in Computational Partial Differential
Equations. Numerical Methods and Diffpack Programming.

34. V. John, Large Eddy Simulation of Turbulent Incompressible Flows. Analytical and Numerical
Results for a Class of LES Models.

35. E. Bänsch (ed.), Challenges in Scientific Computing - CISC 2002.

36. B.N. Khoromskij, G. Wittum, Numerical Solution of Elliptic Differential Equations by Reduction
to the Interface.

37. A. Iske, Multiresolution Methods in Scattered Data Modelling.

38. S.-I. Niculescu, K. Gu (eds.), Advances in Time-Delay Systems.

39. S. Attinger, P. Koumoutsakos (eds.), Multiscale Modelling and Simulation.

40. R. Kornhuber, R. Hoppe, J. Périaux, O. Pironneau, O. Wildlund, J. Xu (eds.), Domain Decomposi-
tion Methods in Science and Engineering.

41. T. Plewa, T. Linde, V.G. Weirs (eds.), Adaptive Mesh Refinement – Theory and Applications.

42. A. Schmidt, K.G. Siebert, Design of Adaptive Finite Element Software. The Finite Element
Toolbox ALBERTA.

43. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations II.

44. B. Engquist, P. Lötstedt, O. Runborg (eds.), Multiscale Methods in Science and Engineering.

45. P. Benner, V. Mehrmann, D.C. Sorensen (eds.), Dimension Reduction of Large-Scale Systems.

46. D. Kressner, Numerical Methods for General and Structured Eigenvalue Problems.

47. A. Boriçi, A. Frommer, B. Joó, A. Kennedy, B. Pendleton (eds.), QCD and Numerical Analysis III.

48. F. Graziani (ed.), Computational Methods in Transport.

49. B. Leimkuhler, C. Chipot, R. Elber, A. Laaksonen, A. Mark, T. Schlick, C. Schütte, R. Skeel (eds.),
New Algorithms for Macromolecular Simulation.



50. M. Bücker, G. Corliss, P. Hovland, U. Naumann, B. Norris (eds.), Automatic Differentiation:
Applications, Theory, and Implementations.

51. A.M. Bruaset, A. Tveito (eds.), Numerical Solution of Partial Differential Equations on Parallel
Computers.

52. K.H. Hoffmann, A. Meyer (eds.), Parallel Algorithms and Cluster Computing.

53. H.-J. Bungartz, M. Schäfer (eds.), Fluid-Structure Interaction.

54. J. Behrens, Adaptive Atmospheric Modeling.

55. O. Widlund, D. Keyes (eds.), Domain Decomposition Methods in Science and Engineering XVI.

56. S. Kassinos, C. Langer, G. Iaccarino, P. Moin (eds.), Complex Effects in Large Eddy Simulations.

57. M. Griebel, M.A Schweitzer (eds.), Meshfree Methods for Partial Differential Equations III.

58. A.N. Gorban, B. Kégl, D.C. Wunsch, A. Zinovyev (eds.), Principal Manifolds for Data Visualiza-
tion and Dimension Reduction.

59. H. Ammari (ed.), Modeling and Computations in Electromagnetics: A Volume Dedicated to Jean-
Claude Nédélec.

60. U. Langer, M. Discacciati, D. Keyes, O. Widlund, W. Zulehner (eds.), Domain Decomposition
Methods in Science and Engineering XVII.

61. T. Mathew, Domain Decomposition Methods for the Numerical Solution of Partial Differential
Equations.

62. F. Graziani (ed.), Computational Methods in Transport: Verification and Validation.

63. M. Bebendorf, Hierarchical Matrices. A Means to Efficiently Solve Elliptic Boundary Value
Problems.

64. C.H. Bischof, H.M. Bücker, P. Hovland, U. Naumann, J. Utke (eds.), Advances in Automatic
Differentiation.

65. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations IV.

66. B. Engquist, P. Lötstedt, O. Runborg (eds.), Multiscale Modeling and Simulation in Science.

67. I.H. Tuncer, Ü. Gülcat, D.R. Emerson, K. Matsuno (eds.), Parallel Computational Fluid Dynamics
2007.

68. S. Yip, T. Diaz de la Rubia (eds.), Scientific Modeling and Simulations.

69. A. Hegarty, N. Kopteva, E. O’Riordan, M. Stynes (eds.), BAIL 2008 – Boundary and Interior
Layers.

70. M. Bercovier, M.J. Gander, R. Kornhuber, O. Widlund (eds.), Domain Decomposition Methods in
Science and Engineering XVIII.

71. B. Koren, C. Vuik (eds.), Advanced Computational Methods in Science and Engineering.

72. M. Peters (ed.), Computational Fluid Dynamics for Sport Simulation.

73. H.-J. Bungartz, M. Mehl, M. Schäfer (eds.), Fluid Structure Interaction II - Modelling, Simulation,
Optimization.

74. D. Tromeur-Dervout, G. Brenner, D.R. Emerson, J. Erhel (eds.), Parallel Computational Fluid
Dynamics 2008.

75. A.N. Gorban, D. Roose (eds.), Coping with Complexity: Model Reduction and Data Analysis.



76. J.S. Hesthaven, E.M. Rønquist (eds.), Spectral and High Order Methods for Partial Differential
Equations.

77. M. Holtz, Sparse Grid Quadrature in High Dimensions with Applications in Finance and
Insurance.

78. Y. Huang, R. Kornhuber, O.Widlund, J. Xu (eds.), Domain Decomposition Methods in Science and
Engineering XIX.

79. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations V.

80. P.H. Lauritzen, C. Jablonowski, M.A. Taylor, R.D. Nair (eds.), Numerical Techniques for Global
Atmospheric Models.

81. C. Clavero, J.L. Gracia, F.J. Lisbona (eds.), BAIL 2010 – Boundary and Interior Layers,
Computational and Asymptotic Methods.

82. B. Engquist, O. Runborg, Y.R. Tsai (eds.), Numerical Analysis and Multiscale Computations.

83. I.G. Graham, T.Y. Hou, O. Lakkis, R. Scheichl (eds.), Numerical Analysis of Multiscale Problems.

84. A. Logg, K.-A. Mardal, G. Wells (eds.), Automated Solution of Differential Equations by the Finite
Element Method.

85. J. Blowey, M. Jensen (eds.), Frontiers in Numerical Analysis - Durham 2010.

86. O. Kolditz, U.-J. Gorke, H. Shao, W. Wang (eds.), Thermo-Hydro-Mechanical-Chemical Processes
in Fractured Porous Media - Benchmarks and Examples.

87. S. Forth, P. Hovland, E. Phipps, J. Utke, A. Walther (eds.), Recent Advances in Algorithmic
Differentiation.

88. J. Garcke, M. Griebel (eds.), Sparse Grids and Applications.

89. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations VI.

90. C. Pechstein, Finite and Boundary Element Tearing and Interconnecting Solvers for Multiscale
Problems.

91. R. Bank, M. Holst, O. Widlund, J. Xu (eds.), Domain Decomposition Methods in Science and
Engineering XX.

92. H. Bijl, D. Lucor, S. Mishra, C. Schwab (eds.), Uncertainty Quantification in Computational Fluid
Dynamics.

93. M. Bader, H.-J. Bungartz, T. Weinzierl (eds.), Advanced Computing.

94. M. Ehrhardt, T. Koprucki (eds.), Advanced Mathematical Models and Numerical Techniques for
Multi-Band Effective Mass Approximations.

95. M. Azaïez, H. El Fekih, J.S. Hesthaven (eds.), Spectral and High Order Methods for Partial
Differential Equations ICOSAHOM 2012.

96. F. Graziani, M.P. Desjarlais, R. Redmer, S.B. Trickey (eds.), Frontiers and Challenges in Warm
Dense Matter.

97. J. Garcke, D. Pflüger (eds.), Sparse Grids and Applications – Munich 2012.

98. J. Erhel, M. Gander, L. Halpern, G. Pichot, T. Sassi, O. Widlund (eds.), Domain Decomposition
Methods in Science and Engineering XXI.

99. R. Abgrall, H. Beaugendre, P.M. Congedo, C. Dobrzynski, V. Perrier, M. Ricchiuto (eds.), High
Order Nonlinear Numerical Methods for Evolutionary PDEs - HONOM 2013.

100. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations VII.



101. R. Hoppe (ed.), Optimization with PDE Constraints - OPTPDE 2014.

102. S. Dahlke, W. Dahmen, M. Griebel, W. Hackbusch, K. Ritter, R. Schneider, C. Schwab,
H. Yserentant (eds.), Extraction of Quantifiable Information from Complex Systems.

103. A. Abdulle, S. Deparis, D. Kressner, F. Nobile, M. Picasso (eds.), Numerical Mathematics and
Advanced Applications - ENUMATH 2013.

104. T. Dickopf, M.J. Gander, L. Halpern, R. Krause, L.F. Pavarino (eds.), Domain Decomposition
Methods in Science and Engineering XXII.

105. M. Mehl, M. Bischoff, M. Schäfer (eds.), Recent Trends in Computational Engineering - CE2014.
Optimization, Uncertainty, Parallel Algorithms, Coupled and Complex Problems.

106. R.M. Kirby, M. Berzins, J.S. Hesthaven (eds.), Spectral and High Order Methods for Partial
Differential Equations - ICOSAHOM’14.

107. B. Jüttler, B. Simeon (eds.), Isogeometric Analysis and Applications 2014.

108. P. Knobloch (ed.), Boundary and Interior Layers, Computational and Asymptotic Methods – BAIL
2014.

109. J. Garcke, D. Pflüger (eds.), Sparse Grids and Applications – Stuttgart 2014.

110. H. P. Langtangen, Finite Difference Computing with Exponential Decay Models.

111. A. Tveito, G.T. Lines, Computing Characterizations of Drugs for Ion Channels and Receptors
Using Markov Models.

112. B. Karazösen, M. Manguoğlu, M. Tezer-Sezgin, S. Göktepe, Ö. Uğur (eds.), Numerical Mathe-
matics and Advanced Applications - ENUMATH 2015.

113. H.-J. Bungartz, P. Neumann, W.E. Nagel (eds.), Software for Exascale Computing - SPPEXA 2013-
2015.

114. G.R. Barrenechea, F. Brezzi, A. Cangiani, E.H. Georgoulis (eds.), Building Bridges: Connections
and Challenges in Modern Approaches to Numerical Partial Differential Equations.

115. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differential Equations VIII.

116. C.-O. Lee, X.-C. Cai, D.E. Keyes, H.H. Kim, A. Klawonn, E.-J. Park, O.B. Widlund (eds.), Domain
Decomposition Methods in Science and Engineering XXIII.

117. T. Sakurai, S.-L. Zhang, T. Imamura, Y. Yamamoto, Y. Kuramashi, T. Hoshi (eds.), Eigenvalue
Problems: Algorithms, Software and Applications in Petascale Computing. EPASA 2015,
Tsukuba, Japan, September 2015.

118. T. Richter (ed.), Fluid-structure Interactions. Models, Analysis and Finite Elements.

119. M.L. Bittencourt, N.A. Dumont, J.S. Hesthaven (eds.), Spectral and High Order Methods
for Partial Differential Equations ICOSAHOM 2016. Selected Papers from the ICOSAHOM
Conference, June 27-July 1, 2016, Rio de Janeiro, Brazil.

120. Z. Huang, M. Stynes, Z. Zhang (eds.), Boundary and Interior Layers, Computational and
Asymptotic Methods BAIL 2016.

121. S.P.A. Bordas, E.N. Burman, M.G. Larson, M.A. Olshanskii (eds.), Geometrically Unfitted Finite
Element Methods and Applications. Proceedings of the UCL Workshop 2016.



122. A. Gerisch, R. Penta, J. Lang (eds.), Multiscale Models in Mechano and Tumor Biology. Modeling,
Homogenization, and Applications.

123. J. Garcke, D. Pflüger, C.G. Webster, G. Zhang (eds.), Sparse Grids and Applications - Miami 2016.

124. M. Schäfer, M. Behr, M. Mehl, B. Wohlmuth (eds.), Recent Advances in Computational
Engineering. Proceedings of the 4th International Conference on Computational Engineering
(ICCE 2017) in Darmstadt.

125. P.E. Bjørstad, S.C. Brenner, L. Halpern, R. Kornhuber, H.H. Kim, T. Rahman, O.B. Widlund (eds.),
Domain Decomposition Methods in Science and Engineering XXIV. 24th International Conference
on Domain Decomposition Methods, Svalbard, Norway, February 6–10, 2017.

126. F.A. Radu, K. Kumar, I. Berre, J.M. Nordbotten, I.S. Pop (eds.), Numerical Mathematics and
Advanced Applications – ENUMATH 2017.

127. X. Roca, A. Loseille (eds.), 27th International Meshing Roundtable.

128. Th. Apel, U. Langer, A. Meyer, O. Steinbach (eds.), Advanced Finite Element Methods with
Applications. Selected Papers from the 30th Chemnitz Finite Element Symposium 2017.

129. M. Griebel, M.A. Schweitzer (eds.), Meshfree Methods for Partial Differencial Equations IX.

130. S. Weißer, BEM-based Finite Element Approaches on Polytopal Meshes.

131. V.A. Garanzha, L. Kamenski, H. Si (eds.), Numerical Geometry, Grid Generation and Scientific
Computing. Proceedings of the 9th International Conference, NUMGRID2018/Voronoi 150,
Celebrating the 150th Anniversary of G. F. Voronoi, Moscow, Russia, December 2018.

132. H. van Brummelen, A. Corsini, S. Perotto, G. Rozza (eds.), Numerical Methods for Flows.

133. H. van Brummelen, C. Vuik, M. Möller, C. Verhoosel, B. Simeon, B. Jüttler (eds.), Isogeometric
Analysis and Applications 2018.

134. S.J. Sherwin, D. Moxey, J. Peiro, P.E. Vincent, C. Schwab (eds.), Spectral and High Order Methods
for Partial Differential Equations ICOSAHOM 2018.

135. G.R. Barrenechea, J. Mackenzie (eds.), Boundary and Interior Layers, Computational and
Asymptotic Methods BAIL 2018.

136. H.-J. Bungartz, S. Reiz, B. Uekermann, P. Neumann, W.E. Nagel (eds.), Software for Exascale
Computing - SPPEXA 2016–2019.

137. M. D’Elia, M. Gunzburger, G. Rozza (eds.), Quantification of Uncertainty: Improving Efficiency
and Technology.

138. R. Haynes, S. MacLachlan, X.-C. Cai, L. Halpern, H.H. Kim, A. Klawonn, O. Widlund (eds.),
Domain Decomposition Methods in Science and Engineering XXV.

139. F.J. Vermolen, C. Vuik (eds.), Numerical Mathematics and Advanced Applications ENUMATH
2019.

140. O. Sander, DUNE – The Distributed and Unified Numerics Environment.

141. I.B. Badriev, V. Banderov, S.A. Lapin (eds.), Mesh Methods for Boundary-Value Problems and
Applications.

142. —–



143. V.A. Garanzha, L. Kamenski, H. Si (eds.), Numerical Geometry, Grid Generation and Scientific
Computing. Proceedings of the 10th International Conference, NUMGRID 2020 / Delaunay 130,
Celebrating the 130th Anniversary of Boris Delaunay, Moscow, Russia, November 2020

For further information on these books please have a look at our mathematics catalogue at the following

URL: www.springer.com/series/3527

www.springer.com/series/3527


Monographs in Computational Science
and Engineering

1. J. Sundnes, G.T. Lines, X. Cai, B.F. Nielsen, K.-A. Mardal, A. Tveito, Computing the Electrical
Activity in the Heart.

For further information on this book, please have a look at our mathematics catalogue at the following

URL: www.springer.com/series/7417

Texts in Computational Science
and Engineering

1. H. P. Langtangen, Computational Partial Differential Equations. Numerical Methods and Diffpack
Programming. 2nd Edition

2. A. Quarteroni, F. Saleri, P. Gervasio, Scientific Computing with MATLAB and Octave. 4th Edition

3. H. P. Langtangen, Python Scripting for Computational Science. 3rd Edition

4. H. Gardner, G. Manduchi, Design Patterns for e-Science.

5. M. Griebel, S. Knapek, G. Zumbusch, Numerical Simulation in Molecular Dynamics.

6. H. P. Langtangen, A Primer on Scientific Programming with Python. 5th Edition

7. A. Tveito, H. P. Langtangen, B. F. Nielsen, X. Cai, Elements of Scientific Computing.

8. B. Gustafsson, Fundamentals of Scientific Computing.

9. M. Bader, Space-Filling Curves.

10. M. Larson, F. Bengzon, The Finite Element Method: Theory, Implementation and Applications.

11. W. Gander, M. Gander, F. Kwok, Scientific Computing: An Introduction using Maple and MATLAB.

12. P. Deuflhard, S. Röblitz, A Guide to Numerical Modelling in Systems Biology.

13. M. H. Holmes, Introduction to Scientific Computing and Data Analysis.

14. S. Linge, H. P. Langtangen, Programming for Computations - A Gentle Introduction to Numerical
Simulations with MATLAB/Octave.

15. S. Linge, H. P. Langtangen, Programming for Computations - A Gentle Introduction to Numerical
Simulations with Python.

16. H.P. Langtangen, S. Linge, Finite Difference Computing with PDEs - A Modern Software Approach.

17. B. Gustafsson, Scientific Computing from a Historical Perspective.

18. J. A. Trangenstein, Scientific Computing. Volume I - Linear and Nonlinear Equations.

www.springer.com/series/7417


19. J. A. Trangenstein, Scientific Computing. Volume II - Eigenvalues and Optimization.

20. J. A. Trangenstein, Scientific Computing. Volume III - Approximation and Integration.

For further information on these books please have a look at our mathematics catalogue at the following

URL: www.springer.com/series/5151

www.springer.com/series/5151

	Foreword
	Preface
	Contents
	Conference Organization
	Organizers
	Organizing Committee
	Program Committee
	Web Site

	Reviewers
	Part I Delaunay-Voronoi Theory and Applications
	Local Groups in Delone Sets
	1 Introduction and Basic Definitions
	2 Main Result and Conjectures
	3 Proof of the Main Result
	4 Concluding Remarks
	References

	Manifolds of Triangulations, Braid Groups of Manifolds, and the Groups Gamma_n^k
	1 Introduction
	2 The Manifold of Triangulations
	2.1 Geometrical Manifold of Triangulations
	2.2 Topological Manifold of Triangulations
	2.3 Combinatorial Manifold of Triangulations

	3 The Groups Gamma_n^k
	3.1 The Case d=3
	3.2 General Case

	4 Main Results
	4.1 Gamma_n^k-Valued Invariant of Braids on Manifolds
	4.2 Triangulations of Polyhedra and Groups Gamma_n^k

	5 Other Developments: The Groups G̃amma_n^k
	References

	A Proof of the Invariant-Based Formula for the Linking Number and Its Asymptotic Behaviour
	1 The Gauss Integral for the Linking Number of Curves
	2 The Outline of the Invariant-Based Formula and Consequences
	3 Past Results about the Gauss Integral for the Linking Number
	4 Six Isometry Invariants of Skewed Line Segments in 3-Space
	5 Invariant-Based Formula for the Linking Number of Segments
	6 The Asymptotic Behaviour of the Linking Number of Segments
	7 Example Computations of the Linking Number and a Discussion
	Appendix 1: Proofs of Lemmas about Isometry Invariants
	Appendix 2: Proofs of Lemmas for the lk Formula in Theorem 2
	Appendix 3: Proofs of Corollaries of Main Theorem 2
	References

	The Singularity Set of Optimal Transportation Maps
	1 Introduction
	2 Generative Models and Optimal Transportation
	3 Convex Geometric View of Optimal Transportation
	3.1 Optimal Transportation Map
	3.2 Alexandrov Solution
	3.3 Minkowski and Alexandrov Theorems
	3.4 Secondary Polytope and Secondary Power Diagram

	4 Singularity Set of Optimal Transportation Map
	4.1 Singularity Set
	4.2 Algorithm for Singularity Set
	4.3 Singularity Set Homotopy Equivalence

	5 Conclusion
	References

	Polygonal and Polyhedral Delaunay Meshing
	1 Introduction
	2 Power Diagram and Lifting Procedure
	3 Ball Movement as a Transformation of Dual Polyhedra
	4 Dirichlet Functional for Power Function
	5 Numerical Experiments
	6 Discussion
	References

	On Decomposition of Embedded Prismatoids in R^3Without Additional Points
	1 Introduction
	2 Preliminaries
	2.1 Prisms, Antiprisms, and Prismatoids
	2.2 S_n,m-Prismatoids
	2.3 Twisted Prisms
	2.4 Decompositions of S_n,m-Prismatoids

	3 New Results on Decomposition of S_n,m-Prismatoids
	3.1 Outline of the Proof
	3.2 Proof of Lemma 2

	References

	Out-of-core Constrained Delaunay Tetrahedralizations for LargeScenes
	1 Introduction
	2 Related Works
	3 Algorithm
	3.1 Overview
	3.2 Expected Memory Calculation
	3.3 Subdivision Stage
	3.4 Repairing Stage
	3.5 Merging Stage
	3.5.1 Spatial Hashing
	3.5.2 Merging Time Complexity


	4 Experimental Results
	4.1 Runtime and Memory Results
	4.2 Quality Results

	5 Discussion and Future Work
	References


	Part II Adaptive Meshing
	Size Gradation Control for Anisotropic Hybrid Meshes
	1 Introduction
	2 Metric and Mesh Generation
	3 Size Gradation Control for Anisotropic Meshes
	4 Numerical Results
	4.1 Line
	4.2 Circle
	4.3 Inviscid Flow Simulation
	4.4 Turbulent Flow Simulation

	5 Conclusion
	References

	Adjoint Computation on Anisotropic Meshes in High-fidelity RANS Simulations
	1 Introduction
	2 Flow Solver
	3 Adjoint System
	4 Numerical Implementation
	5 Numerical Results
	6 Conclusions
	References

	Moving Deforming Mesh Generation Based on the Quasi-Isometric Functional
	1 Introduction
	2 Quasi-Isometric Functional
	3 Preconditioned Minimization Algorithm and the Moving Mesh Interpolation Strategy
	4 Mesh Stretching and Size Gradation Control
	5 MPI-Based Parallel Implementation
	6 Numerical Experiments
	7 Conclusions and Discussion
	References

	Adaptive Grids for Non-monotone Waves and Instabilities in a Non-equilibrium PDE Model
	1 Introduction
	2 The Non-equilibrium PDE Model
	2.1 The One-Dimensional Case
	2.2 Travelling Waves: A Bifurcation Diagram
	2.3 The Adaptive Moving Grid in 1D
	2.4 Numerical Results

	3 The Two-Dimensional Case
	3.1 Non-monotone Waves and Instabilities
	3.2 The Adaptive Moving Grid in 2D
	3.3 Numerical Results

	References

	RBF-VerBSS Hybrid Method for Mesh Deformation
	1 Introduction
	2 Related Work
	2.1 RBF Interpolation Method
	2.2 VerBSS Method
	2.3 Robustness of the Delaunay Graph and the MSA Method

	3 RBF-VerBSS Hybrid Mesh Deformation Method
	4 Results and Discussions
	4.1 NACA 0012 Airfoil Rotation
	4.2 3D Moving Aircraft

	5 Conclusions
	References

	A Uniform Convergence Analysis for a Bakhvalov-Type Mesh with an Explicitly Defined Transition Point
	1 Introduction
	2 Preliminaries
	3 A Bakhvalov-Type Mesh with an Explicitly Defined Transition Point
	4 The Barrier-Function Analysis of Roos and Linß for Shishkin-Type Meshes
	5 The Error Analysis
	6 Numerical Results for 2D Problems
	7 Conclusion
	References

	On a Comprehensive Grid for Solving Problems Having Exponential or Power-of-First-Type Layers
	1 Introduction
	2 Transformation for Eliminating High-Order Singularities
	3 Numerical Experiments
	3.1 Numerical Experiments with High-Order Schemes
	3.2 Experiments with Autonomous Equations
	3.3 Numerical Experiments with a Two-Dimensional Problem of a Viscous-Gas Flow over a Flat Plate

	4 Conclusions
	References

	Preserved Structure Constants for Red Refinements of ProductElements
	1 Introduction and Basic Definitions
	2 Red Refinement Strategy and Its Properties
	3 Main Results
	References


	Part III Meshing and CAD
	Global Parametrization Based on Ginzburg-Landau Functional
	1 Introduction and Related Work
	2 Periodic Global Parametrization
	2.1 PGP Basics
	2.2 Ginzburg-Landau to the Rescue
	2.3 Newton Method
	2.4 Discretization

	3 Results
	4 Conclusion
	References

	Parametrization of Plane Irregular Regions: A Semi-automatic Approach I
	1 Introduction
	2 Region Decomposition
	2.1 Concavity Measures and Admissible Regions
	2.2 Decomposition Method

	3 Parametrization Construction
	3.1 Compatible Parametrizations of the Boundaries
	3.2 Parametrizations of the Subregions

	4 Summary and Examples
	5 Conclusions and Future Work
	References

	A Hybrid Approach to Fast Indirect Quadrilateral Mesh Generation
	1 Introduction
	2 Related Work
	3 Hybrid Quad Mesh Generation
	3.1 Segmentation of Boundary Regions
	3.2 Greedy Triangle Merging
	3.3 Merging of Remaining Triangles
	3.3.1 Merging Nodes
	3.3.2 Splitting Nodes
	3.3.3 Complexity of Triangle Merging


	4 Post-Processing
	5 Results
	6 Conclusion
	References

	Hexahedral Mesh Generation Using Voxel Field Recovery
	1 Introduction
	2 Initial Data Representation
	3 Hexahedral Mesh Generation
	4 Mesh Quality Improvement
	5 Test Examples
	6 Conclusions
	References

	Generation of Boundary Layer Meshes by the Enhanced Jump-and-Walk Method with a Fast Collision Detecting Algorithm
	1 Introduction
	2 Overview
	3 Computation and Smoothing of Marching Directions and Distances
	4 Validity Check for Elements
	5 Construction of the Background Grid with Medial Surface Mesh (MSM)
	6 The Enhanced Jump-and-Walk Method (EJW)
	6.1 Risky Cliff Points
	6.2 Algorithm
	6.3 Time Complexity

	7 Generation of Isotropic Meshes
	8 Work Examples and Industrial Applications
	8.1 Hybrid Mesh
	8.2 Comparison of JWM and EJW

	9 Conclusions and Discussions
	References


	Part IV Numerical Geometry and Applications
	An Improved Algorithm for Scattered Data Interpolation Using Quartic Triangular Bézier Surfaces
	1 Introduction
	2 Preliminaries
	2.1 Nielson's MNN
	2.2 The G^1-Continuity Conditions
	2.3 The Vertex Enclosure Problem

	3 Outline of Our Algorithms
	3.1 Determining the Set T_s
	3.1.1 Solving the Vertex Enclosure Problem

	3.2 Computing the Control Points of the Sub-patches

	4 Examples
	References

	On Integral-Based (Transfinite) Laplace Coordinates
	1 Introduction
	2 Introduction to Integral-Based Barycentric Coordinates
	3 2D Integral-Based Barycentric Coordinates as a Limit Case of Their Discrete Counterparts
	4 2D Integral-Based Coordinates and Dirichlet Energy Minimization
	5 Potential Application to Surface Generation
	6 3D Integral-Based Coordinates and Dirichlet Energy Minimization
	7 Conclusion
	References


	Part V Numerical Methods
	Fully-Implicit Collocated Finite-Volume Method for the Unsteady Incompressible Navier–Stokes Problem
	1 Introduction
	2 The Interface Flux Approximation
	3 Analysis of Eigenvalues of Matrix Coefficients
	4 The Flux Continuity on Internal Face
	5 Boundary Conditions
	6 Gradient Reconstruction
	7 Problem Solution
	8 Numerical Tests
	9 Conclusion
	References

	Efficient Steady Flow Computations with Exponential Multigrid Methods
	1 Introduction
	2 Exponential Multigrid Frame
	2.1 Exponential Time Integration
	2.2 Realization of EXP1 with the Krylov Method
	2.3 Preconditioned Runge-Kutta Method
	2.4 The V-Cycle p-Multigrid Framework

	3 Spatial Discretization
	3.1 Modal Discontinuous Galerkin Method

	4 Time-Stepping Strategy
	5 Numerical Results
	5.1 Flow Over a Circular Cylinder in Quasi-2D
	5.2 Flow Over a Sphere in 3D

	6 Conclusions
	References

	Exponential Time Integrators for Unsteady Advection–Diffusion Problems on Refined Meshes
	1 Introduction
	2 Problem Formulation and Methods
	2.1 Exponential Time Integrators
	2.2 ROS2 Method: Beyond Splitting

	3 Numerical Experiments
	3.1 Test 1: Time Dependent Source and Boundary Conditions
	3.2 Test 2: Time Dependent Boundary Conditions

	4 Conclusions
	References


	Author Index

