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A Word of Introduction

It is difficult to say how grateful I am to the Centre de Recerca Matemàtica (CRM)
of Catalonia, its director Lluis Alsedà, and all its staff, who made possible what the
reader will discover in this volume, and the team of enthusiastic researchers led by
Marianna Bosch—Berta Barquero, Ignasi Florensa, Josep Gascón, Pedro Nicolás,
and Noemí Ruiz-Munzón—who has so cleverly devised and organised an Intensive
Research Programme under the title Advances in the Anthropological Theory of the
Didactic and their Consequences in Curricula and Teacher Education. The
programme took place in Bellaterra (Barcelona) in June and July 2019. Its duration
(eight weeks) was exceptional and its achievement remains impressive, to say the
least.

This could not have been achieved, of course, without the scientific input of some
90 researchers from 23 countries in Europe, America, and Asia, whose contributions
fuelled four courses: (1) Dialogue between theories; (2) Teacher education and the
professionalisation of teaching; (3) The curriculum problem and the paradigm of
questioning the world in mathematics and beyond, and (4) Research in didactics at
the university level. Such a wide variety of contributions cannot be summarised in a
few words. However, I would like to give the reader some general but firm
indications on the matter at hand. To do so, I will begin with the very name of the
research field that encompasses all the works presented here: the anthropological
theory of the didactic (ATD).

Let us start with this rather unusual expression: the didactic. In the ATD, we
consider persons on the one hand and institutions on the other hand. As always in the
ATD, the word “institution” is understood in a broad sense: a couple is an institution,
a family is an institution, a class is an institution, and so are a football team, or a
research team. Every institution has various institutional positions, such as the
position of a mother in a family, a teacher or pupil in a class, a captain in a football
team, etc. All persons occupy various positions at the same time and successively.
For a more concise presentation, we define the notion of instance: an instance is
either a person or an institutional position. An instantial point of view on a reality is
the point of view of a certain person or a certain position within an institution—in the
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ATD, institutions and their positions have “points of view”, just like persons, and
they can also learn, unlearn, etc. All this noted, what is called the didactic is
constituted by any act (or “gesture”) that at least one instance sees as likely to
help certain instances to know a certain reality better—to “learn more”. Of course, in
general, there exist at the same time instances which consider that the act in question
will not help to learn more or will even diminish the learning outcomes—in the first
case, those instances will consider the act as isodidactic and, in the second case, as
antididactic. The essential fact to underline about the didactic is that research in
didactics is too often, and restrictively, focused on acts or gestures considered as
didactic by conventional instances—e.g. teachers, teacher trainers, students, curric-
ulum developers and instructional designers, or even the minister of education. In
contrast, the researcher working within the framework of the ATD has to be sensitive
to the didactic existing in a host of not necessarily “school” institutions, be it the
family, the siblings, a group of schoolmates, etc. And, in all these settings, the
researcher has to go beyond what is usually labelled as didactic—e.g. a student
giving a presentation in class can be didactic for the student as well as for other
students who attend the presentation, a pupil reciting his or her lesson to his or her
mother or father can be didactic for anyone listening to it, pupils talking about their
homework on the phone can be didactic for them but not for their parents (some of
whom will be prone to believe that it is mere gossip), etc. However, there is more to
it. Research in didactics must certainly focus on elucidating the economy of the
didactic, i.e. the economy of the potentially didactic acts or gestures actually
performed. It must also study the ecology of the didactic, and in particular, those
gestures that might be performed even if some of them will not be performed, which
make up what can be called the missing didactic. What we have to study thus goes
beyond what we can actually observe here and now, if only to actually explain the
observable.

The search for the possibly didactic and the study of its economy and its ecology
must get away from the restricted framework in which most “classical” didactic
research has chosen to confine itself. What happens in class cannot be explained only
by what happens in class. We must remember that the ATD started with the theory of
the didactic transposition of knowledge, which makes the classroom appear as open
to decisions and phenomena that are external to it, proceeding from mechanisms
teachers and students can choose to ignore, but which nevertheless determine their
didactic destiny. It is at this point that the qualifier anthropological used to designate
the ATD takes on its meaning and scope. Any act, any “gesture”, carried out by
anyone in any institutional position, can have didactic effectiveness from some
instantial viewpoints with respect to some instances and some specific subject. A
classroom is not a sanctuary. What happens there also depends on decisions made,
sometimes a very long time ago, at different levels of what is called the scale of
levels of didactic co-determinacy—first the school where the class is located, then
the society that is their common habitat, then what is called the civilisation
(a concept I will not attempt to elucidate here) in which they are immersed, and
finally the human species itself. The class, understood in a broad sense like all the
other notions here, is the focal place where what we call didactic systems are formed,
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committed to the study of a certain “work” (any possible human creation), in
particular, a certain question to be “answered”. Didactic systems appear and disap-
pear just to be replaced by new didactic systems. It is in the classroom with its
didactic systems that we can begin to identify factors, which in the ATD are called
conditions and constraints, which are determinative of the ecology and constitutive
of the economy of the didactic in this institution called school, where all this takes
place. This is the starting point of all research study conducted within the framework
of the ATD, regardless of the institutional diversity of the questions selected and the
paths taken by the researchers.

One more comment: the ATD, the anthropological theory of the didactic, is a
theory. Even in the social sciences, the term “theory” seems to be polysemous
nowadays. Often, the word is used to designate an isolated hypothetical statement,
which might be a decontextualised theoretical fragment, but generally appears as an
alleged condition, isolated from any explicit theoretical context, as if a theory were
made of bits and pieces with little connection between them. Let me remind you that
the word theory derives from the Greek theōrós, which means first of all “spectator”,
one who looks at: a theory enables us to “see” the observable world—and, as pointed
out earlier, to go beyond the observable—and to model it in order to understand and
explain it. Understanding and explaining the didactic (including the “missing”
didactic) in any institution is the task, barely begun, of the ATD. What follows is
both a testimony to this “will to know” and a timely contribution to our scientific
project—the advancing of the anthropological theory of the didactic.

Marseille, France Yves Chevallard
April 2021
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Introduction to Part I
Dialogue Between Theories in Didactics

Josep Gascón and Pedro Nicolás

The course Dialogue between theories in didactics derives from a question we posed
to Guy Brousseau in 2013: Is (or should) didactics be a normative science? Despite
the succinct formulation, the context in which the question was asked contributed to
making it clear that we were referring to the fact that knowing and setting a norm are
two very different kinds of activities, and that we were questioning the legitimacy of
didactics, regarded as a science, to prescribe or outlaw certain teaching techniques.
Brousseau’s answer went against the one underlying most of the published works in
didactics:

I do not know what could possibly be a “normative science”, really. Is classical mechanics a
science? Is it a model? Is it normative? Is biology a normative science? I do not think so. I
think that issues concerning scientific truth and problems about cultural, social or economic
norms are, and must be, completely separated.

We thought that such a clear answer gave cause for a promising dialogue between
different theories. We therefore reformulated the question as follows:

Q1: To what extent, how, under which conditions, can (or should) didactics make value
judgments and write out normative prescriptions in order to provide criteria about how to
organise and manage study processes?

In 2015, we posed this question to several scholars working in different theories
in didactics: Brousseau (Theory of Didactic Situations), Michèle Artigue (Compar-
ison between different theories), Ed Dubinsky (Theory of Actions Processes Objects
Schemas), María Trigueros (Theory of Actions, Processes, Objects, Schemas), Juan
D. Godino (Onto-Semiotic Approach), Koeno Gravemeijer (Realistic Mathematics

J. Gascón
Departament de Matemàtiques, Universitat Autònoma de Barcelona, Barcelona, Spain
e-mail: gascon@mat.uab.cat

P. Nicolás
Didáctica de las Matemáticas, Universidad de Murcia, Murcia, Spain
e-mail: pedronz@um.es
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Education), Ricardo Cantoral (Socio-epistemology of Mathematics Education) and
Josep Gascón and Pedro Nicolás (Anthropological Theory of the Didactic). The
corresponding answers were published, analysed and compared in (Gascón &
Nicolás, 2017), and they form what we call the first step in the dialogue between
theories in didactics.

At the end of the aforementioned article, we explained the need to broaden the
dialogue, beyond the discussion about the legitimacy of didactics, to submit value
judgements and normative prescriptions., We said that, in order to make progress in
the reciprocal understanding of the different theories, we should try to answer a
question which could be formulated as follows:

Q2: Which are the relationships between research in didactics and teaching?

This question sets out an unavoidable key problem for the community of didac-
tics, which still remains open. The answer provided by each theory should specify
the teaching ends underlying the value judgements and the normative prescription
advocated by each approach, as well as bring to light the postulates or the basic
assumptions, and to analyse their influence on the corresponding teaching ends and
the kind of statements regarded as results of the research by each theory.

Given the crucial importance of this matter, we started the second step in our
dialogue by suggesting to continue in the direction pointed by these questions. This
was reflected in a series of papers published in For the Learning of Mathematics:
Lerman (2018), Proulx (2018), Bartolini Bussi (2018), Davis (2018), Oktaç et al.
(2019), Díaz Godino et al. (2019), Staats and Laster (2019), Gascón and Nicolás
(2019).

This stage culminated in a face-to-face advanced course organised by the Centre
de Recerca Matemàtica (Centre for Mathematical Research) within the framework
of the Intensive Research Programme on the ATD. Several researchers such as María
Trigueros (Theory of Actions, Processes, Objects, Schemas), Claire Margolinas
(Theory of Didactic Situations), Juan D. Godino (Onto-Semiotic Approach), Josep
Gascón and Pedro Nicolás (Anthropological Theory of the Didactic), Michèle
Artigue (Comparison between different theories) and Yves Chevallard (Anthropo-
logical Theory of the Didactic) participated in the course.

Each one delivered a lecture explaining the principles and the methodological and
theoretical tools of each approach. Some of them also led a workshop to show those
principles and tools in action, with the formulation and the study of a prototypical
didactic problem addressed by the corresponding theory. Their contributions con-
stitute the chapters of this first part of the book.
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On the Genesis and Progress of the ATD

Yves Chevallard

1 Theory and Theorization

The word theory belongs to the vocabulary of the ATD, where it has a broader
meaning than usual: a 3-year-old boy has a theory of dads, a man without education a
theory of politics, and so on.

As usual, when we speak of “theory of...”, we mobilize a synecdoche: a part (the
theoretical component of a praxeological complex) refers to the whole (this complex
itself).

Correlatively, the work of constructing a theory (in this sense) will be called
theorization—which is, therefore, the process of constructing the whole complex in
question, its logos as well as its praxis.

What we theorize is the object of the theory, that the theory must allow to
question, to model, in order to establish the laws of its economy (how does this
object function?) and of its ecology (under what conditions and constraints?).

In the case of the ATD, the object is obviously “the didactic”. The object of a
theory evolves in time with this theory. We will see this later in the case of the ATD.
But we will start with another aspect of the ATD: its anthropological nature.

2 “Anthropological”

The ATD is the “anthropological theory of the didactic”. The first question we will
examine—necessarily in summary form—is the following: why “anthropological”?
How and why did this adjective appear?
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What surprised me, from the point of view of research in didactics, when I
observed the teaching of mathematics in high school was that the objects taught
seemed to be seen by teachers and the noosphere around them as something obvious,
or, if you can call it that, natural: they were taken for granted.

One of the first questions studied (in a master’s thesis) was the following:
although they knew the notion of square root, why were eighth graders asked to
factor the expression x2 – 4 but not x2 – 5, not to mention x – 5?

If we discussed the problem with the teachers concerned, we could get opportu-
nistic answers like “It would be too difficult”. In fact, they had not even thought of
proposing such expressions, because the then current didactic transposition
excluded them.

This type of phenomenon led to a fundamental conclusion: what happens in the
classroom can depend on conditions formed outside the classroom, sometimes very
far away, in social space and historical time, of students and teachers.

The adjective anthropological gradually emerged to express, in the first place,
that didactic analysis had to take into account multiple conditions, whose location
could be outside the classroom, that duly determine all human activity.

Today, we denote by C the set of all the conditions that prevail at a given time.
The set C can only be known in part, unless the conditions considered are deliber-
ately limited a priori, which we will not do.

3 A Recent Finding

Three economists recently published a study entitled “Social inequalities widen
gender gaps in mathematics”, subtitled “Equal countries cultivate high-yielding
girls” (Breda et al., 2018). They write: “According to the Programme for Interna-
tional Student Assessment (PISA), there are on average only seven girls for ten boys
in the top decile of the math performance distribution among the 35 countries
belonging to the OECD.”

They add that the underrepresentation of girls at high levels of performance is a
common feature of all OECD countries and has remained stable since 2000, a result
that extends to science and reading (but, in this case, in favour of girls).

The authors explain the gender gaps in terms of “general” inequalities: “In more
egalitarian countries, [. . .] girls are more represented among high performers. . .”
The gender gap in math is a form of social inequality.

In terms of action, instead of persisting on gender-specific measures, this would
lead to focus on measures tailored to reduce global social and economic inequalities
—which is largely outside the specific sphere of action of teachers.

6 Y. Chevallard



4 Epistemological Break

The epistemological break to be assumed by the didactician consists in making the
teacher one of his or her objects of study, whose praxeological determinants (relative
to what they do and to what they think) must be brought to light.

The opposite would be to explain what is observed with the means available to the
teacher. When researchers are also teachers, they must accept a degree of “schizo-
phrenia” between what they must study and the means they use to do so.

Although they can imaginatively put themselves in the place of what they study,
researchers do not have to identify with teachers, who tend to consider as explana-
tory only the conditions they wish to modify from their position as teachers.

5 Humpty Dumpty

Before I go any further, I want to remind you of what I have called the Humpty
Dumpty principle, which is essential for building a theoretical language and which is
familiar to anyone with a mathematical background.

In Through the Mirror, and what Alice found there (1871), Lewis Carroll writes:
“When I use a word,” Humpty Dumpty said, in rather a scornful tone, “it means just
what I choose it to mean—neither more nor less.”

Here is how the dialogue continues: “The question is, said Alice, whether you can
make words mean so many different things. The question is, said Humpty Dumpty,
which is to be master—that’s all.”

The above is fiction. Accepting the Humpty Dumpty principle is a requirement to
understand what a given theory tells us. The condition of possibility of this principle
is the principle of epoché or of “suspension of judgment”.

Epoché is also translated as withholding of assent. Indeed, the epistemologically
correct approach to any work also requires the suspension of disbelief, which we
should expect of every student of the work.

In what follows, the vocabulary used, although as close as possible to common
sense, will have a meaning specific to the ATD—this was already the case, in the
above, with the words theory and condition for example.

6 Cognition

The anthropological theory of the didactic contains a theory of cognition, which is
therefore a subtheory of the ATD. The starting point is the notions of person x and
institution I, or, more precisely, of institutional position p.

On the Genesis and Progress of the ATD 7



The basic notion is that of relation of x (or p) to an object o, denoted by R(x, o)
(or RI( p, o)). We will speak of an instance î, either personal (î ¼ x) or positional
(î ¼ p), and denote the “instantial” relation to o by R(î, o).

The relation R(î, o) is composed of everything that connects the instance îwith the
object o—what î thinks of o, what î can or cannot do with o, the feelings (of interest,
love, indifference, etc.) î may have towards o, etc.

The relation R(î, o) evolves throughout the life of î. What a “mentalist” psychol-
ogy places “in the head” of î (the Latin word mens means “mind”, and also
“intention”, “will”), the ATD places it in an objectifiable reality, R(î, o).

When we have R(î, o) 6¼∅, we say that î knows o, or that o exists for î. When R(î,
o)¼∅, we say that î does not know o, or that o does not exist for î. An object o is any
entity which exists for at least one instance î. All that exists is object.

Given instances î, ĵ, k^, etc., we can consider R(ĵ, R(î, o)), the relation of ĵ to the
relation of î to o, and R(k^, R(ĵ, R(î, o)), the relation of k^ to the relation of ĵ to R(î, o).
If x1 and x2 are pupils and y is the teacher, it may, for instance, be that R(x2, R(y, R(x1,
o))) 6¼ ∅.

The cognitive universe of î is Ω(î) ≝ {o / R(î, o) 6¼ ∅}: it tells us which objects
o are known to î. The cognitive equipment of î is Γ(î) ≝ {(o, R(î, o)) / o 2 Ω(î)}: it
tells us what is î’s knowledge of o.

In what follows, we take as known the concept of praxeology P. The praxeolog-
ical universe of î is Ω✦(î) ≝ {P / R(î, P) 6¼∅}. The praxeological equipment of î is
Γ✦(î) ≝ {(P, R(î, P)) / P 2 Ω✦(î)}. We have Ω✦(î) ⊂ Ω(î) and Γ✦(î) ⊂ Γ(î).

We now assume this key principle: Γ✦(î) generates Γ(î) in the sense that,
whatever the object o, R(î) results from all the relations R(î, P) where P 2 Ω✦(î)
involves the object o, whether technically, technologically, or theoretically.

Consequently, in order to analyse in depth the content of a relation R(î, o) or R(î,
O), where O is a set of objects o, it is necessary to investigate concretely the
praxeologies that generated it, either recently or in a more remote past.

7 Instantial Relativity

There is a key question so far ignored. Which instance judges that, for example, R(î,
o) 6¼ ∅? If it is the instance ĵ, we will write ĵ ⊦ R(î, o) 6¼ ∅, which can be read as
follows: “ĵ judges that î knows o”.

There may be another instance k^ such that k^ ⊦ R(î, o) ¼∅. The instances ĵ and
k^ do not have the same vision of R(î, o). Note that we have this: k^ ⊦ (ĵ ⊦ R(î,
o) 6¼∅)) k^ ⊦ R(ĵ, R(î, o)) 6¼∅. Similarly, we have: l^ ⊦ k^ ⊦ R(î, o)¼∅) l^ ⊦
R(k^, R(î, o)) 6¼ ∅.

Let’s generalise the above. Let ϑ be any sentence. We can have: ĵ ⊦ ϑ, k^ ⊦ Øϑ, k^
⊦ (ĵ ⊦ ϑ), etc. If ĵ ¼ î, for example, we can have î ⊦ R(î, o) 6¼ ∅ or k^ ⊦ (î ⊦ R(î,
o) ¼ ∅), or k^ ⊦ (î ⊦ (k^ ⊦ R(î, o) 6¼ ∅), or î ⊦ (k^ ⊦ (î ⊦ (R(k^, o) ¼ ∅), etc.

The instances î, ĵ, k^, or l^ can be a researcher in didactics ξ, a student x, or a
teacher y, so that, depending on the circumstances, we will have for example ξ ⊦ R

8 Y. Chevallard



(y, o) 6¼ ∅, ξ ⊦ R(x, o) 6¼ ∅, y ⊦ R(x, o) ¼ ∅, y ⊦ R(ξ, o) ¼ ∅, ξ ⊦ (y ⊦ R(ξ,
o) ¼ ∅), etc.

Consider an instance ĵ and the cognitive universe Ω(î) of the instance î. The
cognitive universe of î according to ĵ is Ωĵ(î) ≝ {o / ĵ ⊦ R(î, o) 6¼ ∅}. The cognitive
equipment of î according to ĵ is then defined by: Γĵ(î) ≝ {(o, R(î, o)) / o 2 Ωĵ(î)}.

In what follows, we will say that we look at an object o “from the point of view”
of î to say that we consider R(î, o). But who considers R(î, o)? It can only be an
instance ĵ, which is usually the author, ϟ (koppa, an archaic Greek letter), of the
statement about R(î, o).

In this description, the researcher ξ does not have a privileged place, even when
ξ ¼ ϟ. Why is this the case? There are two main reasons for this. The first refers to
any possible instance, including the investigator.

Every instance creates conditions that ξmust take into account. If y ⊦ R(x, o)¼∅,
this will have consequences. Si }\hat{z}{ is the education minister and }\hat{z}{ ⊦ ϑ,
where ϑ ¼ “the paradigm of visiting works is collapsing”, this will also have effects.

The other reason is that researchers should not believe that being researchers
gives them automatic access to the truth. They must constantly shape their relation to
the objects of their scientific life. Nothing is given to them. Everything has to be
conquered.

8 The Didactic Revisited

So far, we have only studied cognitive aspects, whether personal or institutional.
Now we move on to the didactic. At the starting point we consider an instance ŵ and
an ordered pair n¯ ¼ (î, o).

The instance ŵ is arbitrary, similar to the origin of coordinates in a plane, which
can be changed at will: it is the reference instance. The couple n¯ ¼ (î, o) is also
arbitrary: it is the cognitive base considered here.

Let us now consider an instance û, which will perform a certain “gesture” δ
(a “gesture” is a task of a certain type). This gesture changes C, which becomes
C0 ¼ C⁁δ (where C⁁δ is the set C “deranged” by the gesture δ).

Can it be said that, at least from the point of view of ŵ, δ is a “didactic” gesture
regarding n¯ ¼ (î, o), in the sense that R(î, o) will be considered as “cognitively
better” after the gesture δ has taken place, i.e., under the conditions C⁁δ?

I used to use a definition of “didactic” inspired by Guy Brousseau’s definition of
the expression “didactic situation”: I said that the gesture δ was didactic if it
manifested the intention of û to make î learn more about o.

The current definition generalizes this “old” definition (by the intention lent to û),
insofar as it allows us to dissociate the author û of the gesture δ from the observer ŵ.
Of course we can have ŵ ¼ û, but also ŵ ¼ î, ŵ ¼ y, ŵ ¼ ξ, etc.

To appraise the change in a relation R(î, o), it is necessary to consider (1) an
institutional position ŝ ¼ (I, p) that knows o, and (2) an “evaluating instance” v^,

On the Genesis and Progress of the ATD 9



able to say whether a relation R0 to o is closer to R¯ ¼ R(ŝ, o) than another relation
R to the object o.

To decide whether δ is didactic with respect to n¯ ¼ (î, o), ŵ must imagine a
position ŝ ¼ (I, p) such that ŵ ⊦ R(ŝ, o) 6¼∅. The ordered pair ṉ ¼ (ŝ, v^) is called a
cognitive frame of reference. The 4-tuple ñ ¼ (î, o, ŝ, v^) is called a cognitive
nucleus.

More precisely, if ŵ judges that (with obvious notations) we will have v^ ⊦ d(R0,
R¯) < d(R, R¯), or v^ ⊦ d(R0, R¯) > d(R, R¯), or v^ ⊦ d(R0, R¯) � d(R, R¯), we will say
that, for ŵ, δ is didactic, or antididactic, or isodidactic with respect to ñ and C.

It is important to note that ŵ makes a judgment (of didacticity, antididacticity or
isodidacticity) beforehand: ŵ makes a prediction about the future judgment of v^, a
prediction based on ŵ’s knowledge of ñ ¼ (î, o, ŝ, v^) and C.

All this requires two comments. The first is to note that any gesture δ can be
considered didactic, even if there is no “didactic” intention: any gesture is possibly
didactic, which greatly expands the didactician’s universe of interest.

The second comment has to do with the fact that the possible didacticity of a
gesture δ is enunciated by ŵ a priori, before δ is carried out. Of course, it may be that,
in order to judge δ, ŵ uses previous observations of δ in like cases.

9 Possibly Didactic Situations

The purpose of didactics, we have said, is to study the didactic. Let us clarify this
statement using the notions of cognitive base n¯¼ (î, o), cognitive frame of reference
ṉ ¼ (ŝ, v^), and cognitive nucleus ñ ¼ (î, o, ŝ, v^).

To the previous notions, we add another one, which defines the notion of possibly
didactic situation: ς ¼ (ñ, û, δ, C). Didactics is the science that studies the social
elaboration of the didactic, the antididactic, and the isodidactic.

Some of the main questions raised are the following. What instances ŵ issue
judgments, regarding which gestures δ, which cognitive nucleuses ñ ¼ (î, o, ŝ, v^),
and taking into account which sets of conditions C?

I do not wish to go any further into this matter here, but I want to draw attention to
two points. The first point is that the formalization adopted here highlights the fact
that learning is a social fact, which does not exist outside of a cognitive frame of
reference, whatever it is.

The other point refers to C. What does ŵ know about C, even if ŵ¼ ξ, and what do
we know about C at this point in the history of our discipline? We certainly must not
limit ourselves to conditions that can be modified from a given position!
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10 By Way of Conclusion

How can a theory T look at another theory T 0? The promoters of T should ask
themselves what objects T 0 sees that T has not yet seen or can hardly see and what
concepts it uses to give meaning to what it sees.

I hope that this suggests that a theory is a meticulously built construct, and that
this is sufficient to outlaw any opportunistic syncretism. We must each time carefully
study T 0 and then re-examine T —to improve it, when possible.
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ATD on Relationships Between Research
and Teaching. The Case of a Didactic
Problem Concerning Real Numbers

Josep Gascón and Pedro Nicolás

1 Introduction

According to what we suggest in the introduction to the course, in order to progress
in the dialogue and to move towards the second step in the dialogue between theories
in didactics, we start by wondering about how research and teaching are related in
the anthropological theory of the didactic (ATD):

Q2: Which are the relationships between research carried out by ATD and different
kinds of teaching regarded as valuable by ATD? How are these relationships
incarnated in the case of a didactic problem concerning real numbers?

Wewill decomposeQ2 into two sets of problems,Q2(i) andQ2(ii). Section 2 deals
with Q2(i), devoted to the analysis of the ends of research in ATD. Section 3 deals
with Q2(ii), devoted to the analysis of the teaching ends which underlay many works
in ATD. In this section we introduce the notion of didactic paradigm, a key idea in
order to explain the links between research and teaching (Gascón & Nicolás, 2019b).
Section 4 is devoted to show how the tools of ATD can be applied to a didactic
problem concerning real numbers. Finally, in Sect. 5 we propose a third step in the
dialogue between theories.
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2 Basic Assumptions and the Object of Study in ATD

In what follows we will present some basic assumptions of the ATD and show their
incidence on the constitution of the object of study and research methodology. More
precisely, we will answer the following questions:

Q2(i): Which are the research ends in ATD? In other words, which are the kind of
research problems fostered and the kind of didactic phenomena aimed to be
clarified? Which are the kind of results regarded as admissible?

2.1 ATD as a Theory of Human Activity

Every human activity, and their outputs, can be described in terms of praxeologies.
This postulate is at the core of the theory of human activity propose by the ATD. It
shapes the formulation of any research problem. Moreover, it plays a crucial role in
the formulation of the teaching ends and the means to achieve those ends. Indeed,
both the works to be studied and the way of studying them are to be expressed in
terms of praxeologies.

2.2 Research Ends and Teaching Ends Are Postulates

As Weber (1917/2010) would say, the ultimate motivation of human activity, the final
ends, are in the “sphere of values”, which means that cannot be rationally
stablished. This is true for the ends of research activity and the ends of teaching
activity. In both cases those ends are chosen by the community involved in a way
half conscious and half involuntary.

In the case of the teaching ends we distinguish between: (1) those pursued by an
institution (for instance, a society or primary education or the Degree in Mathemat-
ics); and (2) those pursued by a theory in didactics (for instance, ATD). In both
cases, those teaching ends are to be coherent with the underlying postulates, with the
assumed facts and values, of the institution or of the theory. Of course, these
postulates and the ends may change throughout history.

2.3 Relative Autonomy of Didactics

Didactic phenomena exist, that is to say, there are phenomena which are genuinely
didactic, in the sense that they essentially appear in the genesis, development,
teaching-learning and diffusion (personal or institutional) of all kind of praxeol-
ogies (possibly regardless the split of knowledge into disciplines). Those phenomena
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are ruled by didactic laws not reducible to psychological laws, sociological laws,
semiotic laws, etc. The existence of didactic phenomena make didactic a relatively
autonomous science (as any other), devoted to the study of didactic phenomena.

2.4 Personal Praxeologies and Institutional Praxeologies

Personal praxeologies result from the history of the personal links to several
institutions. Reciprocally, institutional praxeologies result from the interactions of
many personal praxeologies coming from different individuals. This
interdependence between personal and institutional praxeologies underlies the
need to study them together. Due to methodological reasons, at the current state of
didactic, ATD prioritise the study of the genesis, development and diffusion of
institutional praxeologies, as its generality makes them more accessible to analysis.

2.5 The Praxeological Analysis as an Entrance to Didactic
Analysis

ATD places itself in the so-called Epistemological Programme of Didactic Research
(Gascón, 2003). This means that, to carry out a praxeological analysis, ATD
explicitly makes and uses reference models both of the praxeologies related to the
knowledge to be studied and of the corresponding didactic praxeologies. In the first
case we call them reference epistemological models (REM), which account for what
to study, and in the second case we call them reference didactic models (RDM),
which account for how to study. Both kinds of models are to be included and
integrated in the more general notion of didactic paradigm (Sect. 3).

2.6 Transpositive Phenomena Are at the Heart of Didactic
Problems

Didactic cannot ignore that for a knowledge, coming from an academic institution
I1, to be taught in a teaching institution I2, must go through a transposition process
to be adapted to the epistemological ecology of I2. However, the differences between
the “academic” and the “taught” knowledge cannot be clearly set out and, moreover,
they must be rejected in order to preserve the legitimacy of the taught knowledge.
The interpretation of the transposed knowledge creates a strong tension between
both institutions (Chevallard, 1985/1991).

The analysis of the transpositive adaptations of knowledge helps to break up with
the transparency of the current models of the institutions and, in particular, it enables
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us to question the so-called prevailing epistemological models (PEM) in different
institutions. Therefore, this analysis has strong consequences for the formulation of
research problems and the adopted methodology in ATD.

2.7 The Minimal Unit of Analysis of Didactic Processes

The ATD states that the minimal unit of analysis of didactic processes includes all
the phases involved in the didactic transposition (Fig. 1) (Bosch & Gascón, 2005).
Hence, ATD prioritises to what we could call “macrodidactic” processes. The unit
of analysis determines: (1) the theoretical framework used to formulate research
problems; and (2) the empirical field in which we collect, analyse and interpretate
data.

2.8 Relativity of Epistemological Roles and Purpose
of the REM

There is no privileged epistemological position to be used as a universal reference to
guide the praxeological analysis. This postulate leads to the use of provisional and
relative REMwhen dealing with each didactic research problem. The construction of
such a REM take into consideration the empirical data coming from all the phases of
didactic transposition (Fig. 1). This collection of empirical data is essential to ATD
methodology, but it is not sufficient in itself to construct a REM. Indeed, as it is the
case in the production of any scientific hypothesis, in order to make a REM one
needs to make some decisions: the choice and the reject of some didactic facts; the
emphasis on some of the chosen facts; and to postulate certain relationships between
them. Moreover, one might even consider also some aspects only exceptionally
present (or even missing) in the starting collection of data. In conclusion, we could
say that a REM is never the result of a process merely inductive (Gascón & Nicolás,
2019a).

A REM is an heuristic tool, with methodological aims, which enables us to draw
attention to some phenomena which were previously invisible and unexplained.
Thus, it is clear the phenomenotechnical function of the REM and their role as
devices for epistemological emancipation in didactics (Gascón, 2014). Their first

Scholarly
knowledge

Academia and

other

Knowledge to be
taught

Education system,

“noosphere”

Taught knowledge

School, classrooms

Learned/available
knowledge

Community of study

Fig. 1 Phases and institutions involved in didactic transposition
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purpose is to provide the required elements to formulate didactic problems, the study
of which will allow to enlarge the knowledge of those phenomena revealed by
the REM.

2.9 Levels of Conditions Which Affect the Life
of Praxeologies

The set of conditions which regulate the institutional life of praxeologies can be
stratified according to the so-called scale of didactic codetermination (Fig. 2)
(Chevallard, 2002).

For instance, in the case of the discipline mathematics, the conditions having an
impact on the domains, sectors, themes and questions open to be studied, and on the
possible ways of studying them, come from all the upper levels of the scale,
including the most generic ones.

2.10 Object of Study and Admissible Research Results

According to ATD, didactics is a science which studies the conditions that govern
the genesis, development and diffusion of (personal or institutional) praxeologies
concerning the intentional enlargement of knowledge. That is to say, the science that
studies the economy and the ecology of these praxeologies. Research results are
expected to be didactic laws, that is, laws describing certain phenomena concerning
the economy and ecology of praxeologies.

Didactic laws can only formulate statements about the rationally suitable means
to achieve previously fixed ends, and about the (desired or not) consequences of
certain actions. Research results in didactics cannot state value judgement or
prescribe norms.

Humanity

Civilisations

Societies

School

Pedagogies

Didactic systems

Disciplines ↔Domains ↔ Sectors ↔ Themes ↔ Questions

Fig. 2 Scale of levels of
didactic codetermination
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In the study of research problems in didactics we deal in practice with three
fundamental dimensions: epistemological, economic and ecological (Gascón, 2011).
The construction of a REM is a tentative answer to questions linked to the episte-
mological dimension (the basic dimension of research problems in didactic). Hence,
to make explicit a REM is a necessary step in order to formulate real research
problems.

Didactic laws concerning the economic dimension describe how the praxeologies
works at a certain institution, and they also describe which is the official rationale of
those praxeologies in that institutions. Didactic laws concerning the ecological
dimension state: (1) why certain praxeologies behave as they do at a certain
institution; (2) what is required in order to modify those praxeologies in a certain
way; and (3) the constraints for those modifications.

3 Teaching Ends and Didactic Paradigms Considered by
the ATD

In what follows we will deal with the teaching ends fostered de facto by the ATD up
to now, and with the epistemological model proposed by this theory. Specifically, we
want to answer the following questions:

Q2(ii):Which is the relationship between the teaching ends (implicitly) assumed and
advocated by the ATD, the normative prescriptions concerning teaching and
the underlying epistemological and didactic praxeological models -that is, the
conceptualisations made by the ATD of what and how to study-?

In order to provide suitable answers we use the key notion of didactic paradigm.
Before analysing this notion, we would like to point out that a didactic paradigm
occurs at different levels: pedagogic, disciplinar and subdisciplinar (Fig. 2).

We will distinguish between: (1) the current didactic paradigm at a given
institution, shaped by the society in which this institution is immersed and, more
especifically, by the pedagogical ideal of that society; and (2) the reference didactic
paradigm built by a theory to analyse the empirical reality.

3.1 Characterisation of a Didactic Paradigm

A didactic paradigm is made of an epistemological model and by certain assumed
educational ends (formulated in terms of that epistemological model). Typically, a
didactic paradigm also contemplates some means to achieve those educational ends,
and hence, unavoidably, it promotes certain normative prescriptions. Frequently, a
didactic paradigm appears as a reaction to some undesirable didactic facts and, in
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this sense, the educational ends can be regarded in turn as means to prevent these
didactic facts.

When a theory in didactics assumes uncritically the current didactic paradigm at a
given institution, this theory implicitly accepts the corresponding pervasive episte-
mological model of that institution, the educational ends, the means and the associ-
ated normative prescriptions. Thus, in order to build in an autonomous way its object
of study, a theory in didactics needs to get rid of social impositions as much as
possible, and, in particular, to get rid of the didactic paradigm prevailing in the
institutions under consideration.

Consequently, to separate from the paradigm of visiting works (PVW) which
currently in force in didactic institutions, ATD considers, as an alternative, the
paradigm of questioning the world (PQW). The PVW presents to students certain
works in an authoritarian fashion, leaving no room for questions about the
corresponding rationale, utility for human beings, alternatives along history, etc.
Both paradigms, the PVW and the PQW, live at the pedagogical level and they are
reference didactic paradigms made by the ATD in order to understand the empirical
reality.

3.2 On the Paradigm of Questioning the World (PQW)

The main educational ends assumed by the PQW are: (1) to promote a new cognitive
ethos characterised by an open attitude towards knowledge, able to question well-
stablished statements and to pose new challenges; and (2) to promote a learning not
only based on the study of available knowledge, but also based on the inquiry aimed
at the construction of new knowledge.

The epistemological model underlying the PQW put the emphasis on the process
of construction of knowledge, rather than in the knowledge already constructed. This
process starts with problematic questions concerning a certain system. In order to get
answers, one makes a model of that system. Frequently, this model turns out to be
provisional and leads to the construction of new models. New knowledge appears
based on the successive models and, as it is the case with the models, also that
knowledge is often provisional.

In the PQW, the proposed means consists of a kind of inquiry, typically analysed
in terms of certain dialectics (Chevallard, 2007), aimed at the construction of a
(temporarily) satisfactory answer to an initial question placed at the starting point of
the inquiry.

3.3 On the Paradigm of Mathematical Modelling (PMM)

At the disciplinar-mathematic level, ATD assumes the PMM, provided by: (1) an
epistemological model that identifies mathematics with mathematical modelling
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(García et al., 2006); (2) the educational ends, which consist in passing on mathe-
matical knowledge while showing the ability of mathematics to understand and
master the reality via modelling activity; (3) the means to reach those ends,
consisting in the so-called study and research paths (SRP); and (4) the didactic
phenomena the PMM tries to fight consists of a vision of mathematics as a rigid
activity, ritualised, with compartmentalised knowledge, algorithmic, dogmatic, etc.
which prevents the students the practical use of mathematics in order to understand
and master the reality (Gascón & Nicolás, 2019b).

The PMM is coherent with the PQW, but it aims to capture the idiosyncratic way
in which mathematics help to answer questions about the world.

In conclusion, the relationships between research in ATD and the kind of teaching
promoted by the ATD are strongly shaped by the assumed didactic paradigm (at the
level of pedagogy, discipline and beyond). Didactic paradigms assumed by a theory
are the link between the research made by the community that share this theory and
the actions fostered by that community to achieve the educational ends included in
those paradigms.

4 The Case of a Didactic Problem Concerning Real
Numbers

In the workshop of the advanced course, we showed a problem about the teaching of
real numbers in Secondary Education, a REM for that teaching, certain specific
educational ends (formulated in terms of the REM), and certain means to lead the
teaching towards the achievement of those educational ends. All this in coherence
with the PMM previously explained.

4.1 A Teaching Problem Concerning Real Numbers,
and the Institutional Answer

In what follows the fundamental reference is Licera (2017). This work deals with the
following teaching problem: What and how is to be taught in relation with real
numbers in the last years of Secondary Education?

After the analysis of the corresponding institutional answer provided by different
school systems (French, Argentine, Chilean, Spanish) we verify that: (1) there are
technical problems in the calculus with numerical approximations; (2) the unlikeli-
ness of the rationale for the study of real numbers in Secondary Education; and
(3) the only irrational numbers involved in calculations are radicals appearing in the
realm of exact measurements. Remarkably, these empirical data coming from the
school mathematics are compatible with the axiomatic definition of real numbers,
ignoring the usefulness of that kind of numbers.
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Concerning academic works in didactics on real numbers, they mostly focus on
issues about representation of those numbers and the understanding of their basic
properties. This leads to a question related to educational ends: are the students
mainly aimed to understand the basic properties of real numbers or, rather, to use
them properly to solve problems? In other words, should the study of real numbers
be an end by itself or rather a means to solve certain type of tasks, revealing in this
way their functional role in human beings’ activities?

In coherence with the basic assumptions of ATD, before wondering what to teach
and how to teach real numbers, one needs to identify the institutional constraints
affecting a possible functional use in the last years of Secondary Education. This
requires a questioning of the prevailing epistemological model (PEM) for real
numbers and, consequently, the construction of an alternative reference epistemo-
logical model (REM). In parallel, there is the need to provide teachers with tools to
analyse the (mathematic or para-mathematic) status of real numbers and to manage
their teaching. Taking this need into account, the problem on the teaching of real
numbers is placed in an institutional scope including not only Secondary Education
but the devices devoted to teachers education.

4.2 A REM on Real Numbers for Teachers Education

Once the problem has been linked to the realm of teachers education, Licera (2017)
detects three problems the REM should deal with:

1. The problem of a rationale for real numbers: Which are the types of tasks that can
be formulated without mentioning real numbers and that can be optimally solved
by using them? Which are the reasons behind the different constructions of real
numbers?

2. The problem of measurement: Which is the family of numbers that provide the
best account for the correspondence between amounts of magnitudes and mea-
surement? Which are the techniques that allow to compare amounts of magni-
tudes or determine those amounts obtained via the operations of union,
subtraction or splitting?

3. The problem of techniques: How to develop techniques suitable for the indirect
calculation of measurements by using bounded decimal numbers? How to control
propagation of errors?

4.3 Economy of Real Numbers in the Step from Secondary
to Tertiary Education

The REM deals also with the questions corresponding to the three fundamental
dimensions of a didactic problem. Concerning the economic dimension:
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1. How are real numbers currently taught in Secondary Education?
2. Which are the relationships stablished between real numbers, measurement

activities and calculations with numerical approximations?
3. Which is the official rationale?

The answers provided in Licera (2017) can be summarized as follows: (1) real
numbers are taught together as an ‘incomplete’ mathematical praxeology: (a) there
are theoretical elements dissociated from the considered types of tasks, and (b) there
are no techniques and technological discourses to deal with the problems of numer-
ical approximations and propagation of errors; (2) irrational numbers are identified
with a writing (non-repeating unbounded decimal numbers or points of the real line);
and (3) there is no rationale for real irrational numbers other than Pi or radical
numbers.

Moreover, the REM brings to light two didactic phenomena:

The divorce between numbers and measurement of continuous magnitudes In
Secondary Education, measurement activities are missing. The problems about
approximation of the measurement of magnitudes and about errors are ignored.
The field of numbers used for activities is reduced in practice to rational numbers.

The phenomenon of avoiding irrationals In Secondary Education the problems
concerning the use of irrationals is avoided. There are three strategies to avoid
irrationals: (1) to identify an irrational number with a rational approximation;
(2) to replace it with an arbitrary approximation; and (3) to let the operations
indicated but undone.

4.4 Ecology of Real Numbers in the Step from Secondary
to Tertiary Education

Concerning the ecology of real numbers the following questions are considered:

• Why the teaching of real numbers is as it currently is in Secondary Education?
• Which are the constraints for a change in the direction suggested by the REM?

Of course, the current teaching of real numbers is as it is because it is immerse in
the teaching prescribed by the aforementioned PVW, which is intimately compatible
with a finished and static and axiomatic presentation of real numbers, appearing out
of the blue, whose basic properties must be studied, and disconnected from any
possible source of functionality (such as the scope of activities related to magnitudes
and measurements).
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5 Towards a Third Step of the Dialogue Between Theories

Many research problems in didactics are concerned about means: is this a good
means for teaching? Form our view, in this kind of research there is a deep
limitation: given that the educational end remains implicit in the formulation of the
problem, the question cannot but belong to what Weber called “the sphere of values”
(Weber, 1917/2010).

In coherence with the basic assumptions of ATD, the research problem should be
formulated as follows: is M a suitable means to achieve the educational end E? In
agreement with Postman (1995), we think that the possible ends of the education
should be openly considered, and the ways of teaching should always be analysed in
the light of an explicitly declared educational end. On the hand, as we said before,
teaching ends are always shaped by and included in that broader thing called didactic
paradigm. This is why we propose a third step of the dialogue between theories, in
order to deal with the following issues:

• Q3: Are compatible the didactic paradigms assumed by the different theories in
didactics? Otherwise, to what extent are the different theories working inside the
same discipline?

In answering these questions we will be forced to make explicit the assumed
teaching ends together with the underlying epistemological model. Only in this way
we will be ready to move forward in the dialogue between theories.
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From the Networking of Theories
to the Discussion of the Educational
Implications of Research

Michèle Artigue

1 Introduction

As explained in the introduction of this book, the advanced course on dialogue
between theories proposed at the CRM in June 2019 was part of a long process that
began with questioning the relationship between the field of mathematics education
as a field of research and normativity. The reflection benefitted from the contribu-
tions of a panel of researchers and its main results were presented in Gascón and
Nicolás (2017). These show that all researchers do not share the same view of this
relationship and that the didactic theories they use and to whose development they
contribute undeniably influence their responses. When I participated in this first
study, I did not position myself as the representative of a particular theory. I
preferred to explain how my experience as a researcher grown up in a particular
didactic culture and my professional experience more broadly, have conditioned my
view of this relationship. In this contribution, too, I do not act as representative of a
particular theory. Rather, In this chapter, I try to put the knowledge and experience I
have gained by working for about 15 years on what is now called the “networking of
theories” at the service of the dialogue between theories and the reflection on their
influence on the vision of the educational implications of research. I defend, in
particular, the thesis that conceiving theories as components of research praxeologies
and taking into account the reality of the work of researchers who, more often than
not, combine different theoretical inputs, helps establish a productive dialogue
between theories and to work on the issues addressed in the course. In this text,
therefore, I begin by introducing the key notions of research praxeology and scale of
networking strategies. Then I draw some lessons from my experience of networking,
before addressing the relationship between research and educational action, and the
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role of theories in it. I end with a brief report on the contribution to the reflection
offered by the seminar associated with the lecture, focused on a particular domain,
Algebra, extensively investigated in mathematics education with a variety of theo-
retical approaches.

2 Theories as Components of Research Praxeologies

In mathematics education, various definitions of theories coexist (see, for instance,
the contrast between the structural definition proposed in Niss (2007) and the
operational vision proposed in Radford (2008). What is called theory is also highly
variable according to researchers and contexts. It goes from very local constructs and
distinctions to systems of concepts organized in coherent structures, from construc-
tions mostly ‘home-grown’ to constructions mostly ‘borrowed and adapted’ from
other fields, from constructions having emerged decades ago to quite recent elabo-
rations. I plaid here for a pragmatic and operational vision of theories. A possible
approach is to consider these as components of research praxeologies. Such an
approach was first introduced at the third TAD Congress in 2009, then presented
at CERME 7 (Artigue et al., 2011). Since that time, it has been refined and its
potential for the analysis and comparison of theories made clear (see for instance
(Artigue, 2019; Artigue & Bosch, 2014).

As any form of praxeology in ATD, research praxeologies are quadruplets [t,
T,θ,Θ], with a praxis block made of the different types of tasks t that the research
work asks for and associated techniques T, and a theoretical block made of the
technological discourse θ used to describe, justify, interpret both research practices
and their outcomes, an a theoretical discourse consisting in “statements of a more
general and abstract character, with a generally strong justifying and generating
power” (Bosch & Chevallard, 2020). As other praxeologies, research praxeologies
are dynamic entities, the technological discourse playing an essential role in the
dialectic relationship between their praxis and theoretical blocks which is the source
of this dynamics.

Research praxeologies are very diverse as are the types of tasks that the research
activity requires. However, there are some emblematic research praxeologies, and
especially the following basic one consisting of a research question, a technique or
method used to address it, the methodological discourse justifying this technique
(note that we recover here the etymological meaning of the world methodology: a
logos about a method) with associated constructs, and a theory which serves as a
background for this discourse and more globally the whole research work. Of course,
this is a very simplified model. Most often researchers in mathematics education do
not try to answer one single question, and even in this particular case they generally
combine several research techniques. Most often, too, their research theoretical
framework is not reduced to a single theory, but combines theoretical constructs
coming from different sources. This is understandable considering that, when they
address a particular question, researchers cannot emancipate from the state of the art
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of research in the area at stake, and thus have to take into account pieces of
knowledge often obtained through research praxeologies relying on different theo-
ries, and whose formulation itself uses theoretical constructs alien to their own
theoretical discourse. At least, some conversion work would be necessary to incor-
porate these in their theoretical discourse. However, this is not an obvious task and
the risk of denaturation of the initial constructs is real. To this adds that theoretical
approaches in mathematics education can be themselves the result of theoretical
combinations.

Most often, research praxeologies emerge at the praxis level, with questions to
study; however the vision of what count as a valuable research question and its
precise formulation is influenced by the ‘theoretical’ already there in the environ-
ment of the researcher or the research team. Study techniques are generally inspired
by those implemented in close research praxeologies, or familiar to the researcher or
the research team; however, experience shows that their implementation always
requires some adaptation to the particular question at stake, and thus some creativity.
These adaptations and associated constructs, for instance in terms of categorizations,
contribute to the technological discourse and the praxeological dynamics. This
dynamics is also generated by the research results, and the work carried out for
their interpretation, through the new questions generated, the didactic phenomena
identified or constructed. New constructs enter thus the technological discourse,
which, at a later stage, will be incorporated into the theory if their interest becomes
‘reasonably’ acknowledged and shared. Practically, praxeological development
combines horizontal and vertical dimensions, with both the building of new point
praxeologies and their progressive organization into local research praxeologies,
then regional praxeologies. In fact, a well developed theory always operates at a
regional level, unifying in some sense a diversity of research praxeologies to which
contribute researchers from different backgrounds, with different research interests,
living in different research and educational contexts, and also with different visions
of the relationships between research and educational action shaped by their differ-
ent institutional subjections and personal experiences. I will come back to this point
later on, but move now to the introduction of a second conceptual tool: the scale of
networking strategies.

3 The Scale of Networking Strategies

This scale was established in the first steps of the networking enterprise. As
explained in Bikner-Ahsbahs and Prediger (2008), it aims at showing the diversity
of forms that connections between theories can take, and at ordering these between
two extremal positions expressing respectively a total absence of relationship and a
global unification. As shown in Fig. 1, the scale distinguishes eight intermediate
positions according to the degree of integration.

These positions appear in a linear order, structured into pairs such as understand-
ing others and making understandable, comparing and contrasting, etc. The precise
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meaning of these terms is clarified by the authors, pages 492–497. For instance, it is
pointed out that coordinating means that “a conceptual framework is built by well
fitting elements from different theories” and supposes the complementarity of the
theoretical approaches involved, while combining means that “the theoretical
approaches are only juxtaposed according to a specific aspect”. The combining
strategy can thus involve theories with some conflicting basic assumptions. The
scale proposes a linear order, but “it must be emphasized that it is not easy to specify
globally their exact topology, since the degree of integration always depends on the
concrete realizations and networking methodologies” (ibidem, p. 492). Moreover,
researchers who try to connect theories usually combine several strategies. I will add
that, for all those involved in the networking enterprise, a unified theory of mathe-
matics education is not the Holy Grail they are pursuing. On the contrary, they are
convinced that theoretical diversity is a normal state for this scientific field, and that
diversity should not be interpreted as a sign of scientific immaturity.

As stressed in the introduction, for more than one decade, these tools have been
effectively used to compare theories, the research practices they nurture and their
outcomes. Personally, I have been involved in two major projects carried out in this
direction, the ReMath European project (Kynigos & Lagrange, 2014) which
followed TELMA (Artigue, 2009), and the Bremen group project (Bikner-Ahsbahs
& Prediger, 2014). In the next section, I summarize the lessons that I find most useful
to draw from these projects for the discussion.

4 Some Lessons from the Networking Enterprise

The first essential lesson from these projects is the limitation of mutual reading of
selected texts and discussions for comparing theories and capitalizing on the out-
comes of associated research. This limitation became clear in the collaborative
activity carried out in the European research team TELMA of the Kaleidoscope
European network of excellence, with the aim of identifying the knowledge accu-
mulated through European research on technology enhanced learning in mathemat-
ics. This limitation made clear the necessity of creating specific research practices
making it possible the collaborative work on our respective research practices, taken
as object of inquiry. From this emerged the idea of methodology of cross-
experimentation, later systematized and better conceptualized in the ReMath project

Networking strategies

ignoring
other theories

understand-
ing others

making under-
standable contrasting

comparing

combining

coordinating

synthesizing

integrating
locally

unifying
globally

degree of integration

Fig. 1 Networking scale (Bikner-Ahsbahs & Prediger, 2008, p. 492)
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whose ambition was to build an integrated vision of the semiotic potential of
Dynamic digital artefacts (DDA) (Artigue & Mariotti, 2014). This necessity was
also taken into account in the work of the Bremen group, which started from the
analysis of a single video by representatives of five different theories (Abstraction in
context (AiC), Action, production, communication (APC), ATD, Interest dense
situations (IDS) and the theory of didactic situations (TDS)) and their comparison,
and continued, over several years, with the progressive development of and collab-
orative work on a series of research questions leading to explore all strategies
identified in the scale of networking, at the exception of the two extreme ones.

The second lesson is the difficulty that many if not most researchers meet at
operating the decentration and moves in posture necessary to make sense of other
theories without denaturing them; thus, the importance of creating an “antagonist
milieu” with the meaning given to this term in TDS, in attempts made to compare
and connect theories. This has been achieved in ReMath through the development of
specific research techniques such as the design of a common research question then
rephrased by each team in each own discourse and complemented by research
questions representative of its own interests and approach, or the technique of
cross-experimentation making that the same DDA was engaged in two substantial
experimentations (one carried out by the team developing the DDA and the other one
by another team from another country and with a different theoretical background),
and the systematic organization of case studies crossing the analyses of these
experimentations. This was also the case in the group of Bremen as attested by the
case studies reported in Bikner-Ahsbahs and Prediger (2014). I have experienced
how the good functioning of the antagonist milieus so created, favored by the careful
design of the tasks themselves and of their conditions of realization, and also the
friendly and critical spirit atmosphere of work among researchers that was
established in the two projects, helped limit the risks of misunderstanding and
denaturation. In the advanced course on theories at CRM, also, we can consider
that the substantial group work asked from participants after the conferences has
created opportunities for the constitution and exploitation of such an antagonist
milieu.

The joint work of researchers with different theoretical backgrounds on the same
questions and data also helped overcome the naturalization of constructs which goes
along with the development of a theory in a given community. In the work of the
Bremen group, a good example is provided by the case study reported in Bikner-
Ahsbahs et al. (2014) investigating why, looking at the same short video episode,
French, German, and Italian researchers immediately identified respectively a
Topaze effect, a Funnel pattern and a Semiotic game. The first two interpretations
conveyed a negative vision of the episode from a didactic perspective while the third
one conveyed a positive vision. These contrasting interpretations led to a work of
denaturalization of these three didactic phenomena, and a process of deconstruction/
reconstruction of each of them. It also made clear the complementarity of the views
of the episode offered by the Topaze effect and the Funnel pattern, linking this
complementarity to the fact that the two phenomena respond to a similar necessity:
to give account of the common fact that the fiction of learning has to be maintained in
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classrooms, but do so within the logic of their respective theoretical inscriptions,
TDS for the Topaze effect and Interactionism for the Funnel pattern.

The third lesson I want to mention is the necessity of questioning the exact role
played by theories in research praxeologies, beyond the idyllic image presented in
research publications for obvious reasons. This was a crucial question in ReMath
and it was worked out both regarding the development of the six DDAs that took
place in the project, the vision of their didactical functionalities, the associated
experimental designs and their a priori and a posteriori analyses. It must be added
that the methodological tools designed for this part of the study allowed researchers
to distinguish between metaphorical and operational uses of theories. The data
collected and their analysis led to relativize the importance of the control by theories
of the practical research work, showing the importance, especially in the design of
DDAs and scenarios of use, of pragmatic decisions taking into account contextual
conditions and constraints, cost issues, familiarity, etc. It was also shown that the use
of theories could remain mainly at a metaphorical level, through the reference to
principles and ideas.

The last lesson I will mention in this text, is the difference in the conditions to be
satisfied for productive networking for analysis and for design. The different case
studies developed in ReMath and in the Bremen group showed the potential offered
by different types of connections between theories for increasing our understanding
of the complexity of learning and teaching processes. Moreover, these projects also
showed that the distance between theories is not an obstacle per se if the networking
activity is carefully thought and implemented. Combinations and complementarities
can be looked for between theories with very different underlying principles, as
admitted in the scale of networking strategies. This has been confirmed by further
research, for instance the efforts carried out to compare and connect two theories as
different as ATD and APOS (Bosch et al., 2017). However, ReMath also showed
that, regarding design, building productive connections is not so easy. A clear case
was provided by the case study about the DDA Cruislet, a microworld allowing to
pilot airplanes above a map of Greece, designed by the Greek team relying on
Constructionism. For Cruislet, the alien team was the French team DIDIREM
(now LDAR), thus my laboratory, with a vision of design shaped by the concept
of didactical engineering and its foundation in TDS, but incorporating also the
concerns and tools of the Instrumental approach in research regarding digital envi-
ronments, as was the case in ReMath. The contrast between the two experiments, the
difficulties initially met by the French team at designing a sequence of situations in
line with TDS principles and constructs, using Cruislet productively, made visible
the fundamental difference between the constructionist and TDS logics of design,
despite the shared influence of Piagetian constructivism on their respective vision of
learning processes, as explained in Artigue and Mariotti (2014). In fact, despite the
epistemological proximity between ATD and TDS, a similar phenomenon can be
observed for these theories. The logic underlying design in terms of SRP, now the
predominant form of design promoted by ATD, is not the same as the logic
underlying design in TDS. These considerations make a natural transition with the
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next section devoted to the relationships between research, theories and educational
action, an issue not directly addressed in the projects just evoked.

5 Research, Theories and Educational Action

As recalled in the introduction of this book and chapter, the research undertaken on
normativity issues (Gascón & Nicolás, 2017) has evidenced the diversity of existing
‘formal’ views regarding the possible normative role of didactic research among
researchers, and questioned the possible role of theories in the diversity observed.
Most researchers involved in this inquiry were either at the origin of the
corresponding theories or in the first circle of their main contributors. Thus it is
legitimate to consider that the corresponding theories shape their views of the
possible normative role of didactic research. However, my personal reflection and
experience, my vision of theories and of their collective development, of research
practices, such as expressed above, leads me to consider that the link is not
necessarily so straightforward. A priori, normative views of research, if any, should
be part of the principles in the background of theories. However these principles,
even when made explicit which is not at all always the case, hardly take such a form.
They more consist of general assertions positioning the theory regarding the vision
of mathematics learning and teaching, or the vision of the mathematics discipline
itself; they try to explicit its ambition and scope, or its links with other theories in the
field itself or outside it. Moreover, theories are dynamic entities, and, even when
attached to the name of a particular researcher, they develop thanks to the collective
efforts of communities and the contribution of many different researchers, as
stressed above. What shapes most the vision they have of normativity? The theory
they mainly use and contribute to and its underlying principles, or other dimensions
of their professional and personal life? How does their vision impact their research
practices and their outcomes, and the theory itself in return?

In fact, reflecting on these issues, and more globally on the relationship between
research and educational action or, formulated differently, on the educational impli-
cations of research, I find useful to make a distinction between a normative view and
a transformative view of didactic research, certainly more generally shared. As many
researchers, I deny a normative aim to didactic research for different reasons linked
to my conception of science, to characteristics of this field of research, its nature and
state of development (Artigue, 2017), and also because I cannot avoid to see a
relation between normative visions of research and the over-valuation of evidence-
based research practices considered as the only ones able to provide scientific results
and thus a solid foundation to educational action and norms. However, this is not by
chance that I have engaged in this field or research and worked in it for nearly five
decades. As for most of my colleagues, this is because I am convinced that the
knowledge gained through didactic research can and should help improve the current
state of mathematics education, while being aware that what is considered an
improvement of mathematics education is not just a matter of scientific judgement.
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I agree thus with a transformative view of didactic research, not with a normative
view, and I also accept that the view I can have, at a given moment, of the
educational implications of research outcomes is not just a matter of science but
also a matter of values, which should be made more explicit.

However, the distinction introduced above, while useful, does not solve the
problem, and, once again, an institutional perspective is helpful. What I have just
expressed is a formal position. Practically, didacticians belong to different institu-
tions where they occupy different positions. They are researchers in laboratories,
carrying out fundamental and applied research and publishing their results where,
quite often, they feel obliged to include implications for teaching, unfortunately
often over-generalizing the lessons that can be drawn from the limited study they
report. Most of them are professionals engaged in teacher education and professional
development, and in the context of these activities, their discourse generally does not
fully escape normative assertions, whatever is their formal position. Many of them
also play the role of experts in national or international commissions and institutions
advising governmental institutions; they are involved in curricular design, in the
writing of official curricular resources, of textbooks, in the production of digital
educational artefacts, etc. These different subjections and positions result in a
diversity of discourses that, at times, take a normative dimension, which can be in
contradiction with expressed formal positions. Moreover, normative or not, these
discourses influence external and internal didactic transposition processes, often in
unpredictably ways.

Such problems have been early identified, especially in relation with the repro-
duction of didactic engineering, but not so much taken as objects of study by the
research community at that time. As I pointed out in Artigue (2017), some evolution
is today visible, fostered by unexpected influences of didactic research, by institu-
tional and social pressure and the conditions made to scientific research, and by the
theoretical evolution of the field itself providing new conceptual tools and
approaches to address the complex issue of relationship between didactic research
and educational action. However, very much remains to be done to understand how
to develop more productive relations between research and educational action, and
how theoretical work can contribute.

In the next and last section, I illustrate how the tools introduced so far were
practically used in the seminar to reflect on research practices and their outcomes,
their relationship with theories, and potential educational implications.

6 Recovering Research Praxeologies and Relationship
to Educational Action from Publications

The seminar associated to the lecture focused on the following question: what access
to research praxeologies and the relationship between research and action do
research publications allow? As mentioned in the introduction, a mathematical
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theme, Algebra, was selected and the researchers in charge of presenting the
different theories engaged in the course were asked to proposed one or two publi-
cations for the seminar work. All positively answered, but the references sent for
APOS and ATD were difficult to accommodate within the constraints of such a
seminar, and eventually only two publications were discussed in the seminar,
involving respectively TDS and OSA. Participants, organized in small groups,
were asked to select one article and work on the following questions:

• How to describe the work presented in this article and its results in terms of
research praxeology?

• Can I identify resonance, complementarity, incommensurability, between this
research praxeology on algebra and those I am the most familiar with? How do
these depend on the theories at stake and associated principles?

• Does this article explicitly address the question of didactic action and if so, how?
Would I draw similar implications?

Due to limitation of space, I only present below, in a synthetic way, the main
outcomes of the work carried out on the TDS text (Barallobres & Bergeron, 2019)
presented in a congress on inclusion and diversity held in Granada in April 2019, and
focusing on the teaching of algebra to students with learning difficulties. I reproduce
below its abstract (p. 1, original version in Spanish):

The reduction of the level of complexity of mathematical knowledge to be taught is one of
the phenomena observed in classes with students who have learning difficulties. This
reduction is carried out without any epistemological vigilance regarding the nature of
the resulting mathematical activity. One of the forms of this reduction is what we have
called the concretization of knowledge (Barallobres, 2016). In this article, we will describe
some of the forms that this concretization takes, particularly in the context of algebra
teaching, and the impact that it can have on the nature of the mathematical practice to
which students are introduced. We will also investigate the way in which the usual
conception of abstraction conditions the analysis of difficulties in mathematics and thus
contributes to the process of concretization of the knowledge taught. Finally, we will present
some examples of situations developed for the teaching of algebra to students with severe
learning difficulties, experienced for several years in a school in Montreal.

The text makes explicit three research questions:

• What forms does the phenomenon of concretization take in the teaching of
algebra?

• How does the usual conception of abstraction condition the analysis of difficulties
in mathematics, with what limitations ?

• Can didactic strategies be developed allowing to overcome these limitations?

The text does not provide information allowing the reader to reconstruct a
research praxeology for the two first ones. However, the third question visibly
emerges from the results of these, which contribute to the theoretical block of the
associated research praxeology. Two hypotheses indeed guides its development. H1:
Reducing the level of complexity of the tasks denatures the mathematical object at
stake, hindering access to the different levels of abstraction and generalization
necessary to the constitution of algebraic thought. H2: Abstract objects can become
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concrete through the frequentation of varied didactic situations that allow students to
perceive their usefulness.

The technique used in this research praxeology is didactic engineering, and it is
explicitly connected by the authors with TDS. This didactic engineering is of
substantial size (15 sessions of 70 min). The text makes visible classical steps in
the implementation of this technique (a priori and a posteriori analyses), and the
influence on these of the tools provided by the theory, such as the notion of didactic
variable, the organization of the design around families of situations obtained
through the controlled variation of didactic variables. . . However, nothing is said
regarding the validation process and how the contrast between a priori and a
posteriori analyses is organized, on what data it relies, how these are analysed. . .
The theoretical block of this research praxeology combines different elements: TDS
of course, but also an epistemological vision of the field of algebra which is only
partially influenced by TDS, and the background provided on the one hand by
existing research on the didactic of algebra, and on the other hand by research
regarding students with special needs and the critical analysis of it.

We observe thus here an example of research praxeology in which the interaction
between the praxis and the theoretical blocks is highly visible, for instance through
the move from a vision in terms of general cognitive characteristics of students to
characteristics of the learning situations they are exposed to, which guides the
formulation of the research question and is paradigmatic of research praxeologies
relying on TDS; through the adaptation of the didactic engineering methodology
piloted by TDS to the particular context at stake, with the importance attached to the
role and organization of the teacher mediation. And, as if often the case for such
types of research praxeology, it potentially leads to an ‘existence theorem’ of the
type: “Under these conditions, such effect can be obtained” or “Under these condi-
tions, such didactic organization becomes ecologically viable and produces such
effects”, positively answering the research question at stake. However, as can be also
observed, the limited space allowed for such a substantial design makes that the
description is quite incomplete. More would be necessary to appreciate the precise
outcomes of this research work.

In this text, there is no doubt that the didactic intentionality is clear and explicit,
and permeates the whole research praxeology. However, this didactic intentionality
is, by no ways, at the service of some normative aim; rather, this research work can
be interpreted as a resource to oppose to the normative consequences of research
inspired by influential cognitive perspectives, for a population of students deserving
our full attention, because of their fragility. Moreover, we cannot say that this
didactic intentionality is aimed at by the use of TDS, which functions more as an
instrument to work out the hypotheses made and to show that another mathematical
world is possible for these students.

I cannot enter into more details, and just will add that this synthetic description of
one single example, however, does not pay justice to the vivid discussions that took
place in the seminar. These confirmed the fact that making sense of research
activities inspired by other theoretical perspectives than those we are familiar with,
without being too much oriented by our own theoretical lens, requires substantial
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efforts of decentration, but that these are necessary for productively discussing
possible connections and complementarities between research works and their out-
comes. It confirmed the possibility of establishing connections with research carried
out under other theoretical perspectives, but also the fact that the didactic engineer-
ing designed obeyed a different logic from those associated to ATD or APOS in the
domain of algebra.
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Theory of Didactical Situations
in Mathematics: An Epistemological
Revolution

Claire Margolinas

1 Scientific Foundations of Theory of Didactical Situations
in Mathematics

1.1 Brousseau’s Scientific Project

In the late seventies Brousseau played a leading role in the development of
‘didactique des mathématiques’ as a scientific discipline. He stated the necessity to
consider a “didactical variety” of concepts:

the study of (didactical) situations must in the end allow the derivation or modification of the
necessary concepts currently imported from other scientific fields (Brousseau, 1997, p. 24)

As examples of those fields Brousseau considers for example linguistics and
psychology but also mathematics themselves.

His definition of mathematics didactics is thus:

Didactics of mathematics
Is the science of the specific conditions for the diffusion of mathematical knowledge

necessary for human occupations (in a broad sense).
It deals (in a restricted sense) with the conditions under which a ‘teaching institution’

tries to modify the knowledge of a ‘studying institution’when the latter is not in a position to
do so independently and does not necessarily feel the need for it. (Brousseau, 1998, p. 1–2,
my translation)
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1.2 The Ambition to Understand Teaching and Learning
Mathematics

The focus of the French community of research on the understanding of the teaching
and learning of mathematics is still an important feature of the aim of our research:

Didactics, when it was set up as a field of research, was not constituted with normative
ambitions, especially in France. [. . .] Research was built on the conviction that priority
should be given to understanding the functioning of didactic systems, to clarify the processes
of teaching and learning of mathematics which alone could be the basis of reasoned action.
(Artigue in Gascón & Nicolás, 2017, p. 4)

Considering the definition of “basic research” by the International Council for
Science, didactics of mathematics is considered by Brousseau and Artigue as a basic
research:

Basic scientific research is defined as fundamental theoretical or experimental investigative
research to advance knowledge without a specifically envisaged or immediately practical
application. It is the quest for new knowledge and the exploration of the unknown. As such,
basic science is sometimes naively perceived as an unnecessary luxury that can simply be
replaced by applied research to more directly address immediate needs.

However the demarcation between basic research and applied research is not at all clear
cut. In reality they are inextricably inter-twined. Most scientific research, whether in the
academic world or in industry, is a hybrid of new knowledge generation and subsequent
exploitation. Major innovation is rarely possible without prior generation of new knowledge
founded on basic research. Strong scientific disciplines and strong collaboration between
them are necessary both for the generation of new knowledge and its application. (Interna-
tional Council for Science, 2004, p. 1)

This strong collaboration is considered as very important by Brousseau himself
since:

Only the observation of the singular phenomena that govern the acquisition of knowledge in
the conditions specific to them can lead to an understanding, an explanation, and perhaps an
improvement of the learning and teaching of mathematics

The theoretical understanding of the way situations work is the aim and not the means to
attain a practical goal. (Brousseau, 1975, p. 2 my translation, cited by Perrin-Glorian, 1994,
p. 101 my translation)

Brousseau has founded in 1973 the Centre for Observation and Research in
Mathematics Education1 (COREM) that involved an entire school for more than
25 years (until 2000). Some of its operational principles are very important:

Many people today are inquiring into the relationships among theories, research methods,
experiments, results and the practices of teachers. Perhaps my account might be of assistance
to them. For example, our observations consisted of watching ordinary classes. But beyond
that, the observation school [COREM] made it possible to modify the teaching conditions
and observe the result. We learned more about mathematic education from what we had to
do in order to observe classes than we did from the observation itself.

1COREM : centre d’observation et la recherche sur l’enseignement des mathématiques, see http://
guy-brousseau.com/le-corem/
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Another example: in our experimentation, we did not compare the results of the students
to determine whether one method was better than another. Instead we restricted ourselves to
having the results be equally good, despite the modifications we made, and compared the
efforts required by the students and teachers in each case. (Brousseau, 2004, p. 245)

Gascón and Nicolás (2017) has shown that the debate between theories about the
very aims of the scientific research has not reach a consensus in mathematics
education. For me, a theory is strong and useful if it is coherent, if it is resilient to
development of new parts and if it is able to anticipate a significant part of empirical
results gathered by researchers that are not claiming this theory as their theoretical
framework. For this reason, the understanding of what is at stake in learning and
teaching mathematics is an essential part of research and not an ‘unnecessary luxury’
(in agreement with the International Council for Science, see above).

The role of observations has been in the case of Brousseau’s work strongly linked
to the existence of the COREM, where different types of observations has taken
place over the almost 30 years of its existence. At first, the observations were only
related to didactical engineering and was directed mostly toward the understanding
of student’s procedures and knowledge and their evolution. Gradually, teacher’s
work has also been observed, using various original experimental settings
(in particular in Julia Centeno’s doctoral thesis, see Brousseau & Centeno, 1991;
Centeno, 1995).

The evolution of TDS due to the work of other researchers has been based on the
observation of ordinary teaching (without any intervention of the researcher as
proponent of engineering resources, e.g. Hersant & Perrin-Glorian, 2005;
Margolinas et al., 2005).

In the following sections, I will develop the TDS concepts I consider as the most
important in order to understand learning and teaching mathematics.

2 Epistemological Principles

2.1 Theory of Mathematical Situations (TMS)

In his conference at ICME Copenhagen Felix Klein medallist, Brousseau, (2004)
introduces the principles of the Theory of Mathematical Situations (TMS):

A Theory of Mathematical Situations—Why?
I made the assumption that

– to every piece of mathematical knowledge there corresponds a collection of Situations
which can be resolved using this knowledge and reciprocally that

– in any real environment of a student it is possible to choose elements of one or more
Situations that make it possible to identify the knowledge being brought into action by
the student’s actions. (Brousseau, 2004, p. 250)

Those ‘assumptions’ or rather principles, are central in the theorization of Theory
of Situations, they have many aspects and consequences that I will now examine.
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2.2 Situational and Institutional Knowledge

In order to better understand those principles we need the distinction made by
between two dual dimensions of knowledge. This distinction is not very easy to
understand and I will share here my own ways to explain those two dimensions of
knowledge (Margolinas, 2014).

In written societies (Goody, 1986), the transmission of knowledge is based on
written texts: in a given institution, knowledge is written, which is particularly true in
mathematics, a discipline that has a very strong relationship with a specific form of
writing. The term that is associated by Brousseau to this form of knowledge in
French is ‘savoir’ and in Spanish ‘saber’.

However, if a knowledge does exist it is because it has been recognised as useful
in various situations (Conne, 1992). The usefulness of knowledge and the situations
in which this usefulness is revealed most often disappear from the text of knowledge.
Moreover, this form of knowledge is often implicit and cannot readily be expressed
in situation. The term that is associated by Brousseau to this form of knowledge in
French is ‘connaissance’ and in Spanish ‘conocimiento’.

In English there is only one term: ‘knowledge’. Many attempts of translation has
been made (Geiger et al., 2017, 2018) by different researchers (in particular
N. Balacheff, M. Cooper, R. Sutherland, and V. Warfield translators of Brousseau
(1997). The propositions made in different texts in English that I have read are the
following: to leave the French word “savoir” in the English text, to save the term
‘knowledge’ for ‘savoir’, to add a letter ‘s’ for ‘sapere’ (in Latin) ‘s-knowledge’; for
the French word “connaissance”, Balacheff M. Cooper, R. Sutherland, and
V. Warfield have coined the noun “knowing” (1997, p.72), and you can also
found ‘c-knowledge’ (from conoscere). Those translation’s propositions have in
common to propose two nouns in English for the nouns ‘savoir’ and ‘connaissance’,
no translation is yet widely used.

I have been looking into another way to translate these terms: in English, it is not
so common to distinguished some linked concepts using different nouns and it is
more common to use different adjectives with the same common noun. Since
‘savoir’ is linked to the formalization of knowledge within an institution (for
example mathematics as an institution) I have proposed to translate ‘savoir’ by
‘institutional knowledge’. Since ‘connaissance’ is linked to the usefulness of knowl-
edge in situations I have proposed to translate ‘connaissance’ by ‘situational knowl-
edge’. In English this proposition allows the use of the general term ‘knowledge’
when it is not necessary to distinguished between institutional and situational
knowledge, which is very useful, and difficult in other languages, for example in
French or Spanish.

We can now reformulate the principles enunciated above by Brousseau:

– To every piece of mathematical institutional knowledge there corresponds a
collection of situations which can be resolved using this knowledge as situational
knowledge and reciprocally that
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– In any real environment of a student it is possible to choose elements of one or
more situations that make it possible to identify the institutional knowledge that
correspond to the situational knowledge being brought into action by the stu-
dent’s actions.

This reformulation reveals a complexity that was hidden by the use of the single
word ‘knowledge’. There is always a circulation between those aspects of knowl-
edge: situational knowledge is institutionalized in mathematics institution and thus is
transformed into institutional knowledge. Institutional knowledge is supposed to
give the power to act in situations and thus is transformed into situational knowl-
edge. Institutional knowledge is easier to determine since it is written, it is organized
as a “body of knowledge” (Chevallard, 1989, p. 7) however, situational knowledge
is always an observer’s interpretation of somebody’s actions. Any piece of knowl-
edge involves potentially these two facets, no knowledge is only institutional or only
situational. However, in a determined institution, during a certain historical period, a
piece of knowledge may present mainly one aspect or the other.

3 Interactions Between Institutional Knowledge
and Situational Knowledge: An Example in the Context
of Didactic Engineering

3.1 Didactic Engineering

The first principle (see above) is very important for didactic engineering: to every
piece of mathematical institutional knowledge there corresponds a collection of
situations which can be resolved using this knowledge as situational knowledge.

In Brousseau’s perspective, didactic engineering lays in the correspondence
between a sequence of situations and an institutional piece of knowledge which is
the final aim of those situations. Interactions between institutional and situational
knowledge work both ways in order to build a didactic sequence of situations.

3.2 From Institutional to Situational Knowledge in Didactic
Engineering

In this text I will develop an example about cardinality. The teaching of early number
knowledge involves lots of aspects: memorization of oral number sequence, relation-
ships between successive numbers, etc. We will focus here on discrete quantity, that
is one of the aspects related to the general concept of cardinality.

From a large mathematics perspective, two sets have the same cardinality if there
is a bijection between those two sets. For example, the existence of a bijection
between ℕ and ℚ demonstrates the countability of rational numbers set, the existence
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of a bijection between ]0;1[ and ℝ demonstrate the uncountality of an open interval
of ℝ, etc.

For finite sets, bijection is often named one-to-one correspondence and for finite
sets with few elements this one-to-one correspondence can be realized by material
association between elements. Thus a sequence of mathematical situations that
correspond to discrete quantity will be based on the association between two
different collections of objects. For example (Briand et al., 2004) as component of
a milieu a collection of garages and a collection of cars and as stake, given a
collection of cars to take exactly what you need in the collection of garages to put
each car on a garage.

The one-to-one correspondence allows the possibility of a situational definition of
the relation “to have the same quantity” between two collections: If you can put each
car on a garage, no car left, no garage left, the collections of cars and garages have
the same quantity.

3.3 Action Situation

The first and the more general schema of situation is the ‘action situation’. The
student2 interacts with a milieu and a stake that have no intention toward this student
(Fig. 1).

This figure introduces non only an action and a decision of the student but also an
anticipation. In fact if the student has a constant and direct access to both cars and
garages then he or she only implements the definition and there is no new situational
knowledge involved. For there to be a cognitive stake in the situation, the one-to-one
correspondence should be realized only in order to give a feed-back. Thus the
immediate action should not be possible: for example stake might be to put the
garages on a tray in order to anticipate the realization of the validation, or the car can

Fig. 1 Schema of action situation

2The exact term in Theory of situation is “actant”, which refers to a hypothetical player who acts
rationally and economically, without being subject to the didactic contract.
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be put on the student’s table but the stock of garages in another part of the room, etc.
Thus this schema lead to more than one situation, depending on the possible
interactions with the milieu.

There are several useful situational pieces of knowledge in order to realize the
stake in those situations, depending on the variables of the situation, in particular:
spatial knowledge (to put cars and garages in the same spatial arrangement), and
counting knowledge (to count the cars, to memorize the last number, to count the
garages up to the same number). The knowledge in this situation is “what” allows
you to obtain the desired outcome. It represents a successful adaptation to a
particular situation.

Feedback in action situation is not only a win/lose information, it’s always more
than that. For example, if an student has put the cars on a line and the garages on a
line of approximately the same length, the quantity of cars and garages is not
necessarily the same, there is thus a feedback about the length as a non always
reliable indicator for the quantity.

3.4 During an Action Situation, No Formulation Is
Necessary, Situational Knowledge Is Mostly Implicit.
Formulation Situation

However, the scientific study of the effects of situational variables on student pro-
cedures makes it necessary to experiment with variables that make it necessary to
transform knowledge from implicit situational knowledge to explicit formulation of
some pieces of knowledge. The gradual transformation of situational knowledge
stricto sensu into institutional knowledge stricto sensu lead to consider the institu-
tionalization as a process of transformation of knowledge.

Situational knowledge encountered during action situation is mostly implicit and
is not even identified as useful, there is thus an enormous gap between situational
implicit knowledge and institutional written knowledge. TMS studies the major
statuses of mathematical knowledge that appear as a bridge over this gap: action,
formulation, validation. The method of TMS is to study the specific situations
corresponding to those situational knowledge statuses.

As an example of formulation situation in the car-garage setting, I will show some
4–5-year-old students productions in experimental setting (Leterre & Serindat,
2019). This situation has been implemented after the introduction of the car-garage
milieu and an action situation (see also Briand et al., 2004, for another experiment of
the same situation). The students are told that they have access only to the cars today
and they will have access to the garages only another day, the students realize that
they will need to remember an information about the cars in order to take the right
amount of garages the next day: to write or to draw something that help them to
remember. In this experimental setting, no written number line was available. All
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students were given the task individually by a researcher, all students were given
4 cars. You can see in Fig. 2 the messages written by three students.

Tom counted the cars and found four cars. He asked the researcher how to write
four, but the researcher did not give him the answer. So he starts drawing. The
following day Tom has taken three garages and thus the feedback has been negative.

Mona made a drawing saying: “I draw four lines for the four cars” referring to the
four vertical strokes. The following day, Mona as taken a handful of garages and the
feedback has been negative.

Peter drew quickly four strokes on the first line and when asked by the researcher
it he was finished he add a second line of four stokes and then a third line of four
rounds. The following day, Peter has taken four garages and the feedback has been
positive.

All students know how to count the four garages, which they may have used as an
effective procedure in the action situation. However, in the formulation situation this
procedure is not sufficient: the quantity has to be represented.

What the productions show is that new knowledge is invested in the formulation
situation: the pupils all try to draw a collection of signs of the same quantity as the
collection of cars. Tom draws cars but stops at three, Mona draws a car and invents a
coding that she forgets when decoding, Peter is the only one to produce a schema of
the car quantity, which he repeats three times. Counting knowledge is no longer
sufficient, in particular if the sign “4” is not available. It is thus necessary to produce
a collection of signs that have the same quantity as the collection of cars, an
‘intermediary’ collection (Margolinas & Wozniak, 2012) which is very important
for the conception of numbers.

However, in this situation, it is possible to win the stake with a message which is
not totally satisfactory (case of Peter’s message, see below) or to lose the stake with a
message which has some interesting elements (case of Mona’s message, see below).
In formulation situation, the feedback comes from the action that has been realized
thanks to the messages but this does not represent a mathematical validation of those
messages.

TOM Mona Peter

Fig. 2 Three students’ written messages
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3.5 Validation Situation

There is thus another situation that represent another step toward mathematical
knowledge.

The messages are now objects of study in the validation situation, they are
considered as “statements”, the question changed the focus from the result of and
action informed by a formulation to the discussion of the formulated messages. For
example, in the car-garage situation. If the previous message has allowed the student
to lose: Is there a reason for this message to fail? Is there a possibility to read this
message with another result? If the previous has allowed the student to win: Is there a
reason for this message to win? Is there a possibility to read this message with
another result?

If we discussed Tom’s failed message: Tom has taken three garages, there are
three cars drawn in the message. The message itself is false and it is possible to
conclude: Drawing cars is a valid strategy only if the quantity of drawn cars is the
same as the quantity of the cars.

If we discussed Mona’s failed message: Mona has taken a handful of garages.
There is one car drawn in the message, thus another student may have taken one
garage (and fail). There are four vertical lines thus another student may have taken
four cars (and win). The message itself is ambiguous: drawing the car is not
necessary, four strokes are necessary and sufficient. A general statement can be
deduced: Drawing strokes is a valid strategy only if the quantity of drawn strokes is
the same as the quantity of the cars.

If we discussed Peter’s winning message: Peter has taken four garages. However,
there are eight vertical lines, another student may have taken eight cars (and fail).
There are 12 signs, another student may have taken 12 cars (and fail). The message
itself is ambiguous: the repetition of the drawings of four signs is not necessary, four
signs are necessary and sufficient. A general statement can be deduced: Drawing
forms is a valid strategy only if the quantity of drawn forms is the same as the
quantity of the cars.

The validation situation led to general statements that are close to a mathematical
statement.

3.6 From Situational Knowledge to Institutional Knowledge:
Roles of the Different Situations in the Institutionalization
Process

The sequence of situations that have been described in the previous paragraph can be
implemented with a didactic intention by a teacher, and in this case those situations
would be part of bigger situations that include in particular a didactic contract. Those
situations have different properties and they do not trigger the same situational
knowledge, even if they are built using the same problem: to have exactly the
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right amount of garages in order to put exactly one car on the garages, no car left, no
garage left. However, the different situations imply different situational piece of
knowledge in the action situations, knowledge is mostly implicit, in formulation
situations, some pieces of knowledge are made explicit and written form of the
knowledge of quantity may appear, in validation situations, some mathematics
statements become useful.

Thus this sequence of situations can play an important part in the institutionali-
zation considered as a process of transformation from situational implicit knowledge
toward an explicit and rational knowledge that is closer to the institutional knowl-
edge at stake. Even if the systematic part of institutionalization directed by the
teacher was not at the beginning part of the theorization of Brousseau, the process
of transformation of knowledge plays a very important role in the theorization of the
different situations.

4 Didactical Consequences of Theory of Mathematics
Situations on Teaching

4.1 Engineering and “Task Design”

Brousseau has always clearly stated that the experimental process was not designed
in order to be generalized for non experimental conditions:

We have repeatedly insisted that we do not consider this curriculum as a method to be
offered to teachers. It should be explained why:

The main reason is the difficulty in communicating all the necessary information [that are
very different from those usually followed by teachers, for example relative to assessment
and teacher-student relationship]. [. . .] It would probably be harmful for children to teach
them in the traditional way every step of this long genesis and to institutionalize temporary
behaviours.

Moreover, the necessities of the epistemological experience have led to choices that it
would be at least premature to propose to teachers [. . .] (Brousseau, 1981, p. 113–114 my
translation)

Brousseau’s writings can always be [mis]read as readymade didactic proposals.
The importance of the sequences of situations that have been experimented at the
COREM lay in the properties they have in order to be part of the teaching a given
knowledge, with the aim to both situational and institutional knowledge.

4.2 Mathematic Problem, Situations and Observation

In order to interpret the actions of students and teachers, it is necessary to understand
the situations that students are investing in, even if they do not correspond to what
the teacher is trying to set up. The observer has thus to proceed from the situational
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knowledge required by the situation toward the corresponding institutional knowl-
edge. During this process, some discrepancies often appear between some situations
that are considered as ‘similar’ by teachers, particularly when the same mathematical
problem lead to different situations (Clivaz, 2017; Margolinas et al., 2005). This is
often the case when teachers give first to students some ‘manipulation’ tasks and as a
final test a written task.

For example, a teacher can ask students to put six apples in a basket. With real
objects, students can accomplish this task with the following procedure: take one
apple, say ‘one’ and simultaneously put the apple in the basket, thus take one apple,
say ‘two’ and simultaneously put the apple in the basket, and so on up to ‘six’. This
procedure can be accomplish fairly quickly and at a steady pace. The oral sequence
of numbers ‘one, two, three, four, five, six’ can thus be pronounced without
hesitation. If the student know how to memorize a number as target of counting,
and how to count up to six, this is quite easy. In this situation, the ‘counting
procedure’ is sufficient in order to succeed.

If we now consider a written task based on the same problem. (observed in the
final year of nursery school, 5–6-year-old students, Fig. 3), with the following
instruction: draw the indicated number of apples.

In this situation, the student have not only to understand the meaning of the
symbol ‘6’ as ‘six’ but also to draw apples and to count the drawings. For a student
of 5–6 years old, to draw an apple is not an easy task, in particular if this students
consider the drawing as a serious task (right colours, right shape, etc.), it is more or
less impossible to do this drawing and to count at the same time. But if drawing and
counting are disconnected it will frequently lead to a situation where you have a
number of drawn apples and you have to compare this number to six. This is a
situational knowledge that is never encountered in the apple-basket material setting:
is a given number more or less than six?

Often, a student who is not able to succeed in this written task will be submitted
again to the material task, he or she will thus succeed and can again failed written the
test. Teachers are not always aware that the same mathematical problem can lead to
different situations.

Fig. 3 A written apple-
basket task
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4.3 From Situational to Institutional Knowledge: Student’s
Struggle

Students are always confronted with situations and therefore with situational knowl-
edge, regardless of the teachers’s of teaching. The adequacy between situational and
institutional knowledge is thus a very important issue of teaching. If students cannot
make any link between the situations they have encountered and thus the situational
knowledge they have invested and the ‘lesson’ that is the presentation of institutional
knowledge, they may considered the lesson and perhaps mathematics themselves are
disconnected from any reality. Conversely, if students consider mathematics as a
monumental text of knowledge (chapter “On the Genesis and Progress of the ATD”)
they will not be able to transform this knowledge into useful situational knowledge.
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The Onto-semiotic Approach
in Mathematics Education. Analysing
Objects and Meanings in Mathematical
Practice

Juan D. Godino, María Burgos, and María M. Gea

1 Introduction

In this seminar a synthesis of the Onto-semiotic Approach (OSA) theoretical system
to mathematical knowledge and instruction was presented. We highlighted the
problems, principles and research methods that are addressed in this approach and
considering the didactics of mathematics as a scientific and technological discipline.
In the first part of the seminar we developed the reply to the question posed by
Gascón and Nicolás (2017) about the prescriptive nature of didactics of mathematics
research from the OSA perspective. This theoretical framework suggests that Didac-
tics should address the epistemological, ontological, semiotic-cognitive, educa-
tional-instructional, ecological, and instruction optimization problems (Godino
et al., 2019). OSA assumes anthropological, pragmatic and semiotic principles to
approach all these types of problems, as well as it embraces sociocultural principles
to face the educational-instructional problem.

1.1 Didactics as Science and as Technology

The OSA framework attributes both a scientific and technological character to the
knowledge produced by didactic research. On the one hand, it addresses theoretical
problems related to the ontological, epistemological and semiotic nature of mathe-
matical knowledge, as far as such problems are related to the teaching and learning
processes (the scientific, descriptive, explanatory or predictive component). On the
other hand, didactics should intervene in these processes to improve them as much as
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possible (the technological - prescriptive component). While description, explana-
tion and prediction are the main goals of scientific activity, prescription and assess-
ment are the main goals of technological enterprise; however, technological action
also includes elements of applied research when solving specific problems. The
notion of didactic suitability has been introduced as a systemic criterion to address
the problem of optimization of mathematical instruction processes.

2 Onto-semiotic Approach: A Modular and Inclusive
Theoretical Framework for Mathematics Education

The Onto-semiotic Approach is a modular and inclusive theoretical system for
research in mathematics education that provides specific principles and methods to
address the:

1. Epistemological problems: How does mathematics emerge and develop?
2. Ontological problems: What is a mathematical object? What types of objects

intervene in mathematical activity?
3. Semiotic-cognitive problems: What is knowing a mathematical object? What is

the meaning of a mathematical object for a subject given a time and
circumstances?

4. Educational-instructional problems: What is teaching? What is learning? How
do they relate? What types of interactions between people, knowledge and
resources are required in the instructional processes to optimize learning?

5. Ecological problems: What factors condition and support the development of
instructional processes and what norms regulate them?

6. Instruction optimization problems:What kind of actions and resources should be
implemented in the instructional processes to optimize students’ mathematical
learning?

7. Teachers’ education problems: What knowledge and skills should teachers have
to manage the teaching and learning processes of mathematics?

These problems, the assumed principles and methods developed to address them
are described in Godino et al. (2019). Likewise, a model of teacher’s Didactic-
Mathematical Knowledge and Competencies based on the OSA (Godino et al.,
2017) has been developed. This model considers essential that teachers be trained
for the analysis of objects and meanings that intervenes in mathematical practices
(onto-semiotic analysis), together with the competences for the analysis of didactical
configurations, normative analysis and didactical suitability (Fig. 1).

In the following section, we describe the objectives, methodology and founda-
tions of a workshop for developing the general competence of analysis and didactical
intervention.
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3 Objects and Meanings Analysis of Mathematical
Practices

The notion of meaning, frequently used both in research and educational practice, is
a central and controversial issue in philosophy, logic, semiotics and other sciences
and technologies interested in human cognition. Given the importance of symboli-
zation, communication and understanding processes in mathematics teaching and
learning, the question of meaning should occupy a central place in teacher training.

In this workshop we propose to develop the specific analysis competence of the
different meanings involved in mathematical practices, applying theoretical tools of
the OSA framework (Godino et al., 2007, 2019), which allow micro and macro
analysis levels of the communication and interpretation processes in mathematics
education.

3.1 Workshop Aims and Method

The workshop main is that the participants:

Fig. 1 Components of the analysis and didactic intervention competence (Godino et al., 2017,
p. 103)
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1. Know various theoretical approaches about the meaning of mathematical objects.
2. Analyze the mathematical practices that are put at stake in problem solving from

the point of view of the objects involved and meanings attributed.
3. Reflect on the notion of meaning of mathematical concepts, their relationship

with understanding and the design of teaching and learning processes.

The workshop includes a first part in which a text offering a synthesis of various
theories of meaning in mathematics education (Godino et al., 2021) is presented and
discussed. This reading includes an application example of the analysis method of
meanings involved in the solving processes of a mathematical problem (onto-
semiotic analysis method, at the micro and macro levels). Next, it is proposed to
work in teams of two or three participants to solve a missing value proportionality
problem by applying at least two different strategies. Next, the analysis of the objects
and meanings put at stake in the practices to solve the problem is carried out. First,
the technique described in the reading document, previously discussed, is applied
according to the two solutions proposed for the workshop. The micro-level analysis
is completed with an exploration of the different meanings of proportionality and its
articulation in a global meaning. Then, the unitary and systemic meanings of other
solutions different from those proposed in the workshop are analyzed.

3.2 Meaning in the Onto-semiotic Approach

Within the OSA framework the notion of meaning and its relation to the notions of
practice and object plays a central role. The fact that certain types of practices are
carried out within certain institutions is what determines the progressive emergence
of “mathematical objects” and that the “meaning” of these objects is closely linked to
the problems and the activity carried out for their resolution, not being pertinent to
reduce this object meaning to its mere mathematical definition (Godino & Batanero,
1994).

Although the initial OSA objective was to develop a theoretical model that would
answer the question of the meaning of mathematical concepts, in subsequent devel-
opments this objective has been extended and applied to any type of object that
intervenes in mathematical practices, also proposing a categorization for such
objects. It is considered that the epistemological, cognitive and instructional prob-
lems that mathematics education has to address should first deal with the ontological
problem, that is, clarify the nature and types of mathematical objects whose teaching
and learning is intended.

In a first approach, the meaning is that object which is referred by a word, a
symbol or any other means of expression, issued by a person in a communicative act
with another person or with himself, which takes place in a given context. However,
with words and symbols not only things are mentioned or represented, but through
them things are also done, that is, they intervene in operative practices. Operations
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and calculation with the words and symbols are carried out, so that new objects are
produced as result of these operative practices.

Therefore, the question arises, what role, besides the representational one, does
this word, symbol or expression play in a specific operative practice? This is a central
problem that has to be addressed by a holistic theory about meaning, which should
takes into account both referential and operational use, responding to the meaning of
expressions that refers to concepts (ideal, abstract objects) or any other type of
object.

3.3 Pragmatist and Referential Meanings

We explained the use of meaning in the OSA, and its relation to the notions of
practice and mathematical object. We contextualized the explanation with the
example of a possible demonstration of the elementary arithmetic proposition
included in Fig. 2.

In Table 1 (column 2) we summarize the use or operational meaning of the
practices required in the demonstration of proposition 2 + 3¼ 5 (column 1). Column
3 shows the intervening objects in the practices.

In the realization of each practice, and in the conjunction of all or a part of them, a
configuration of objects intervenes whose identification is necessary to understand
and manage the teaching and learning processes. The OSA perspective proposes that
the problem of signs and their interpretation should not be separated from the
ontological problem, understood in terms of inquiring about the nature and types
of entities referred to by the signs, as well as the instrumental role played by them in
the construction activity and knowledge communication. In addition, the solution of
the onto-semiotic problem implies new ways of addressing the epistemological

Proposition: 2 + 3 = 5

Demonstration:
1) The symbols, 2, 3 and 5 represent natural numbers.

2) Natural numbers are a set of symbols that satisfy the Peano’s axioms, in particular, there is a first

element, 1, and a following (successor), injective function : ℕ → ℕ, is defined. In this set, the sum, +,

is defined recursively as:

+ 1 = ( ); + ( ) = ( + )

3) In the sequence, 2 is the successor of 1, 2 = (1) = 1 + 1 ; 3 is the successor of 2, 3 =

(2) = 2 + 1; and 5 is the successor of 4 which is next of 3, 5 = (4) = (3) .

4) The sign = indicates the equivalence of two expressions.

5) The expression 2 + 3 represents the sum of the natural numbers 2 and 3.

6) Taking into account the definition of the sum of natural numbers and successor

7) Therefore, the expressions 2 + 3 and 5 are equivalents.

2 + 3 = 2 + (2) = (2 + 2) = 2 + (1) = (2 + 1) = (3) = .(4) = 5

Fig. 2 Demonstration of an elementary arithmetic proposition (2 + 3 ¼ 5)
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Table 1 Use/intentionality and objects in practices to demonstrate 2 + 3 ¼ 5

Sequence of elementary
practices Use/intentionality Intervening objects

1. The symbols, 2, 3 and
5 represent natural numbers

Attributing meaning to the
symbols 2, 3, 5 as natural
numbers

Languages: symbolic; natural
Concepts: natural number

2. The natural numbers are a
set of symbols that satisfy the
Peano’s axioms, in particular,
there is a first element, 1, and a
following (successor), injec-
tive function s:N!N is
defined. In this set, the sum, +,
is defined recursively as:
n + 1 ¼ s(n); n + s(m) ¼ s
(n + m)

Evoking the rules that define
natural numbers and their sum,
within the framework of a
specific axiomatic theory

Language: natural, symbolic
Concepts: natural number; set
(of symbols); successor,
function; first element; sum
Propositions: Peano’s axioms

3. In the sequence, 2 is the
successor of 1, 2 ¼ s
(1) ¼ 1 + 1; 3 is the successor
of 2, 3 ¼ s(2) ¼ 2 + 1, and 5 is
the successor of 4 which is
next of 3, 5 ¼ s(4) ¼ s(s(3))

Interpreting the meaning of
symbols 2, 3, 5 in Peano’s
axiomatic theory of natural
numbers

Languages: natural; symbolic
Concepts: sequence; succes-
sor, sum
Proposition: 2 is the successor
of 1, 3 is the successor of
2, and 5 is the successor of the
successor of 3
Arguments: convention based
on the properties of the suc-
cessor function

4. The sign ¼ indicates the
equivalence of two
expressions

Evoking the meaning of the
equality of natural numbers as
equivalence of two
expressions

Languages: symbolic; natu-
rally
Concepts: equivalence of
expressions; equality

5. The expression 2 + 3 repre-
sents the sum of the natural
numbers 2 and 3

Interpreting the meaning of +
as the sum of natural numbers

Languages: natural and sym-
bolic
Concepts: sum of natural
numbers

6. Taking into account the
definition of the sum of natural
numbers and successor
2 + 3 ¼ 2 + s(2) ¼ s(2 + 2) ¼ s
(2 + s(1)) ¼ s(s(2 + 1)) ¼ s(s
(3)) ¼ s(4) ¼ 5

Applying the rules that define
the following function (suc-
cessor) and addition of natural
numbers

Languages: natural and sym-
bolic
Proposition: 2 + 3 ¼ 5
Procedure: addition and suc-
cessor operations
Argument: deductive, based
on the definitions of natural
numbers, sum and the suc-
cessor function

7. Therefore, the expressions
2 + 3 and 5 are equivalent

Fixing the new rule of use of
the numerical symbols
(declare the truth of the
proposition)

Languages: natural and sym-
bolic
Proposition: statement of
practice 7
Argument: deductive
sequence of practices 1 to 6
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problem about the origin and evolution of knowledge, no doubt essential to address
the educational-instructional problem (Godino et al., 2021).

3.4 Workshop Development

Participants were proposed to respond to the instructions given below.
Question 1: Identify the referred objects (meanings) in each of the practices of

solution 1 of the problem included in the Annex. Complete Table 2.
Question 2: Identify the referred objects (meanings) in each of the practices of the

solution 2 of the problem included in the Annex. Complete Table 3.
In solutions 1 and 2 of the problem, the concept of proportionality intervenes in a

decisive way. Taking into account the types of objects and unitary meanings that
intervene in the operative and discursive practices that allow solving the problem, we
can say that the systemic meaning of the proportionality that is at stake in solution
1 is of arithmetic type, while in solution 2 is of algebraic-functional type (Burgos
et al., 2018).

Question 3: Analyze the unitary and systemic meanings of other different solu-
tions by which the problem can be solved.

3.5 Some Conclusions

The identification of the various partial meanings of a mathematical object and its
articulation is a phase of the onto-semiotic analysis of mathematical activity. This
analysis helps to formulate hypotheses about critical points in the interaction
between the various agents in which there may be gaps of meaning or disparity of
interpretations that require processes of negotiation of meanings and changes in the
instruction process.

Table 2 Object and meanings in solution 1

Sequence of elementary
practices to solve the task

Objects referred to in the practices (concepts,
propositions, procedures and arguments)

Use and
intentionality of
practices

. . .

Table 3 Objects and meanings in solution 2

Sequence of elementary
practices to solve the task

Objects referred to in the practices (concepts,
propositions, procedures and arguments)

Use and
intentionality of
practices

1.

. . .
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The theory of meaning that has been elaborated from the OSA perspective is
supporting a new field of reflection on what could be called an onto-semiotic
analysis, in which the study of signs should be linked to the analysis of the objects
referred to by the signs. The OSA attempts to combine realistic and operational
theories of meaning, since the problem is approached from the educational context,
that is, the setting of construction and dissemination of mathematical knowledge.
Although the problem of meaning interests to various disciplines (philosophy,
linguistics, psychology, semiotics, etc.), the field of education, and, in particular,
mathematics education, provides a rich perspective to address this problem. The
onto-semiotic approach proposes not to separate the problem of signs and their
interpretation from the ontological problem. This is understood in terms of inquiry
about the nature and types of entities referred to by the signs, as well as the
instrumental role played by them in the knowledge construction and communication.

The onto-semiotic approach to the meaning of mathematical objects has impli-
cations for teachers, since it highlight the complexity of knowledge and, therefore,
the challenge of teacher education. In this sense, mathematics teacher should know
the different meanings of mathematical objects, as well as the network of objects and
processes involved in the mathematical practices, in order to be able to plan the
teaching, manage the interactions in the classroom, understand the difficulties and
assess the students’ learning.

4 Final Reflections

Didactics should provide results that allow effective action on a part of reality: the
teaching and learning of mathematics in the different contexts in which it takes place.
In addition, it must take into account the four types of problem areas, epistemolog-
ical, ontological, semiotic-cognitive, educational-instructional, described in Godino
et al. (2021) and their interactions. Didactics should offer provisional principles
(standards or suitability criteria in OSA framework) agreed by the community
interested in mathematics education. These principles and norms are useful in two
moments:

1. A priori, the suitability criteria guide the way in which an instruction process
should be developed.

2. A posteriori, the criteria serve to assess the teaching and learning process
effectively implemented and identify possible aspects to be improved in the
redesign.

To generate these principles, researchers in mathematics education should discuss
and collaborate with all other sectors interested in improving mathematics teaching
(teachers, parents, administration, etc.). This will lead to a consensus that generate
principles to guide and value the instruction processes, in order to achieve a suitable
teaching of mathematics. It is recognized, however, that the identification of
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suitability criteria, both general and specific, requires a research agenda that is open
to discussion and development in the mathematics education community.

Didactics involves the study of human beings interacting in very diverse contexts,
that is complex, dynamic, open, heterogeneous systems engaged in multiple and
diverse interactions. These systems have chaotic aspects, where small changes can
lead to large deviation. Since minor changes take place at the micro level, they
should be studied as possible explanatory factors of the changes observed at the
macro level. Consequently, Didactics should contemplate the use of analysis units at
the micro level (a task, or a teacher-student interaction of a specific nature), and at the
macro level (a field of problems, a long-term didactic trajectory, the sociocultural
context). The principles explicitly stated as characteristics of a theory should be
interpreted as tools, while the methods are ways of applying these tools to face the
solution of specific problems and questions in the field.

Annex. Solutions to a Proportionality Problem

Problem: A package of 500 g of coffee is sold for 5 euros. At what price should a
package of 450 g be sold?

Solution 1:

1. In everyday life situations of buying and selling, it is usual to assume that, when
buying small quantities of coffee, these quantities are of the same type and
quality.

2. Consequently, if you buy double, triple, etc. of product, you must pay double,
triple, etc. Similarly, if you buy half, the third part, etc. of product, half, the third
part, etc. must be paid.

3. If a package of 500 g of coffee is sold for 5 euros, the price of 100 g of coffee (five
times less) should be a fifth of 5 euros, that is, 1 euro.

4. The price of 50 g (half of 100 g) must be half the price of 100 g, that is, 0.50 euros.
5. In this way, 4� 100 + 50¼ 450 g of coffee should cost, 4� 1 € + 0.50¼ 4.50 €;

that is, 4 euros and 50 cents.

Solution 2:

1. It is assumed that if you buy double, triple, etc. of product, you must pay double,
triple, etc. In addition, what we will pay for two different coffee packages will be
equal to the price of a package that weighs the same as the two together.

2. Therefore, the correspondence established between the set of the quantities of the
product (Q) and the set of the prices paid (P), f: Q! P complies that, the image of
the sum of quantities is the sum of the images, f (a + b) ¼ f (a) + f (b), and the
product image of an amount a by a real number α is the product of the image
quantity by that number, f (αa) ¼ αf(a).

3. That is, the function f: Q ! P is linear; then there is k, such that f(x) ¼ kx.
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4. The coefficient k of the linear function is the coefficient of proportionality, in the
case of direct proportionality relations between magnitudes.

5. Applying these properties to the case, we have:
f (500 g) ¼ 5 €; 500f (1 g) ¼ 5 €; f(1 g) ¼ € 5/500 [One gram of coffee costs

1 cent]
6. 450f(1 g) ¼ 450 � 5/500 €; f (450 g) ¼ 4.5 €

7. Then the price of a package of 450 g should be 4.5 euros.
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APOS Theory and the Role of the Genetic
Decomposition

María Trigueros

1 Introduction

APOS Theory is a well-known theoretical framework in mathematics education. In
spite of the fact that it has been used by researchers since the 1980s researchers who
use this theory in research face in many occasions questions related to the main
principles of the theory that seem to be not well understood. These questions
probably arise from the fact that subtleties in the theory’s communication may be
taken for granted when the theory is communicated and need to be clarified. The
context of a dialogue among different theories opens a possibility to think on some of
those questions and to make an effort to discuss them with some care. In this study
the role of the genetic decomposition in the theory, its importance and its use are
discussed. Its goal is to respond the following questions: What is a genetic decom-
position? How is it developed? How is it used when APOS theory is used in research
and in the design of teaching?

This paper presents initially a brief description of APOS theory and its relation to
teaching. It follows with the discussion of the role of the genetic decomposition in
this theoretical framework, its use in research and in the design of teaching activities.
With the goal of providing the readers with a clear explanation, an example is
included where the use of the genetic decomposition is presented in the context of
a research project and also in the analysis of data obtained from students’ work.
Finally, the role of the teacher is briefly discussed and some final reflection are
included.
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2 APOS Theory and Its Relation to Teaching

APOS theory was developed originally by Dubinsky and advanced and refined by
RUMEC (Research in Undergraduate Mathematics Education Community) (Arnon
et al., 2014; Asiala et al., 1996). It is based on Piaget’s genetic epistemology and can
be considered a cognitive framework. As such, the main interest of the theory is to
understand how mathematical knowledge is constructed and learnt. Although it has
been applied to mathematics learning at different school levels, work with APOS
theory has focused mainly at university level.

The description of APOS theory includes an explicit presentation of its basic
assumptions and its methodological approach to research are explicitly presented. It
emphasizes the construction of knowledge at an individual level, although it does not
refer to a specific individual but to a generic student of an institution (Bosch et al.,
2017) and takes into account the role of the social component in learning. Its research
end can be stated as the identification of the mental constructions developed by
students when learning a mathematical concept of a topic and the detailed descrip-
tion of those elements involved in the construction of mathematical knowledge. It
also has an educational end that takes into account the specificities of the context
where learning takes place (Oktaç et al., 2019).

It is important at this point to make two clarifications linked with common
misunderstandings about research using APOS theory and that are closely related
to genetic epistemology. First, APOS theory focus on the learning of mathematical
concepts has been interpreted as linking its research focus to mathematical defini-
tions; however, in APOS theory concepts are considered as a unit of cognitive
meaning about a mathematical object that is constructed by an individual, usually,
in a didactical context. Also, genetic epistemology posits that the relation of the
cognitive object and the subject is dialectical, so in APOS theory there is an
indissoluble unity between the mathematical and cognitive aspects (Bosch et al.,
2017). Second, the work of Piaget has been criticized for focusing on individual
cognitive processes and leaving aside the social aspects of cognition. However,
Piaget did consider these factors in his work. He repeatedly mentioned the identity of
intellectual operations and social co-operations and discusses the role of social
context in the development of knowledge. He insisted that “progress in logics is
equivalent in a non-dissociable way to a process of socialization of thought” (Piaget,
1950/1975, p85). He insisted that the coordination of actions could be the result of
cooperation between individuals and that this cooperation, as well as the social
context, is important in individual cognition. He also argued that the construction of
conservation and reversions needed the cooperation of groups of individuals
(i.e. Piaget, 1950/1975, 1967/1971). The importance of the social context and
culture in the development of knowledge is also central in Piaget and García
Psychogenesis and the history of science (1982).

APOS theory explicitly takes into account the social component of the develop-
ment of knowledge in its didactic component, the ACE cycle. According to it the
teacher should act as a guide of students working collaboratively in small groups on
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activities (A) that promote the development of knowledge, designed previously in
terms of the theory. This work is followed by whole class discussion (C) with the
teacher. Reflection is reinforced through this discussion and results obtained are
formalized. Students work on their own in the solution of exercises as homework
(E). This cycle is repeated during the whole duration of the course (Asiala et al.,
1996).

2.1 Mental Structures and Mechanisms

APOS theory proposes that learning happens by the construction of mental struc-
tures associated to a concept or a topic of mathematics. These structures are
constructed through mental mechanisms. APOS structures are Action, Processes,
Objects and Schema.

Actions are needed to start the construction of new knowledge. They are applied
to previously constructed structures and are mainly directed by external instructions
or stimuli. When students repeat an Action and reflect upon it, it interiorized into a
Process. Interiorization is a mechanism related to abstract reflection, when a Process
is constructed students are able to apply Actions in a general context, they can skip
steps in chains of Actions and can predict the result of an Action. Processes can be
reverted. Reflection on Processes can lead to their encapsulation into Objects and
Actions can be applied to them. A collection of related structures brought about in
the solution of a certain class of problems constitutes a Schema.

Mathematical knowledge is defined in terms of APOS as the individual tendency
to respond to mathematical problem situations and their solutions by reflecting on
them in a social context and constructing or reconstructing mathematical Actions,
Processes and Objects and organizing them in Schemas to use in dealing with the
situations (Asiala et al., 1996).

Structures of knowledge are not conceived as levels in APOS theory, they
represent stages in learning that are not necessarily constructed as a linear progres-
sion. In order to determine a type of conception constructed it is necessary to observe
students working with different types of tasks. When an individual, for example,
solves problems using mainly Actions, it does not mean that he has failed, Actions
are an important part of the construction of knowledge process; and the same can be
said of other conceptions, an Object conception does not necessarily mean that the
subject will always succeed when working with certain types of tasks (Oktaç et al.,
2019).
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3 The Genetic Decomposition: Its Role in Research
and Teaching

A goal of APOS theory, as a scientific theory, as well as of other theories, is the
development of models that can be used to predict and explain different phenomena
related to how students learn different mathematical concepts or topics in different
contexts using the theory structures. A central component of APOS Theory meth-
odology is the development of an epistemological model describing such construc-
tion: a genetic decomposition.

A genetic decomposition consists in a description of the structures and mecha-
nisms that are hypothesized as needed to describe how individuals learn a particular
mathematical concept or topic. As a preliminary model, a genetic decomposition is
not unique, several genetic decompositions for the same concept can coexist, but,
what is important, is that this model needs to be tested experimentally (Dubinsky,
1991). Results from research are used to redesign, refine or to validate the proposed
genetic decomposition. After each refinement the genetic decomposition needs to be
experimentally tested and this process is repeated until it is validated, which means
that research has shown that the model predicts those construction needed in the
learning of the concept.

3.1 How Is a Genetic Decomposition Designed?

The development of a preliminary genetic decomposition is not an easy endeavor. It
needs a thorough reflection on the role the concept plays in mathematics and its
functionality. This reflection is complemented by research on the historical devel-
opment of the concept, research on results of previous studies in the literature
concerning the concept or topic, examination of textbooks, class observations and
reflections on the previous experiences of researchers as teachers. Results of this
research and reflection results in a description of the previous structures supposed to
be needed to start the construction, a description of the Actions needed to be applied
on previous structures, how these Actions may be interiorized into Processes, how
Processes may be reverted and coordinated to construct new more encompassing
Processes, how Processes are encapsulated into Objects. Depending of the level of
analysis chosen, the genetic decomposition may describe the structures that are
supposed to be elements of the Schema, the relations among those components
and how these relations may evolve according to Piaget and Garcia Triad levels
(1982), the possibility to assimilate or accommodate other structures to the Schema
as it develops and how the Schema can be thematized into an Object. The genetic
decomposition if thus an epistemological and cognitive model that describes how an
individual can learn and use successfully the mathematical concept in the solution of
intra-mathematical or extra-mathematical problems (Arnon et al., 2014).
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It is important to point out that although genetic decompositions are presented
linearly, as a form of communication, this do not imply that the development of the
described concept is linear. Different trajectories may result in the construction of
knowledge, there can be discontinuities, loops and other phenomena. What is
important is that in the construction of knowledge researchers can find evidence of
the need of the proposed structures and mechanisms. It is important to remember that
the genetic decomposition is a model, it does not try to describe what happens in a
generic student’s mind, this is not possible, nor does it offer an exclusive analysis of
how the concept is learned. It intends to predict if the student will apply, in one
moment or other, the described structures when dealing with mathematical problems
related to the concept.

3.2 How Is a Genetic Decomposition Used?

As an epistemological model, the genetic decomposition is used in research as a
useful model of cognition for different mathematical concepts and topics. It is an
important guide in the design of research instruments and in the analysis of results
obtained from the data obtained.

It is also used as a guide in the design of activities where intended structures and
mechanisms are reflected. These activities are used in teaching with the ACE cycle
(and its variations) where “The role of the instructor is to identify the mental
structures that might be needed in learning the concept and to design activities that
help students make the proposed mental constructions.” (Arnon et al., 2014, p. 179).
Its use in research implementation provides data for its refinement and validation and
important information about other learning phenomena in the classroom.

Research, teaching and theory development are closely related in APOS theory
(Arnon et al., 2014). Through several research cycles it has been found that genetic
decompositions reflect adequately how a concept of interest is learned and that it is a
useful tool in the design of effective instruction (i.e. Martinez-Planell & Trigueros,
2019; Oktaç, 2018; Weller et al., 2003). Some genetic decompositions have been
used by researchers to investigate the teacher’s role and the constructions they intend
to develop, as inferred from their teaching practices and their relation to students’
constructions, or as an approach to their professional knowledge (i.e. Badillo et al.,
2011; Gavilán Izquierdo et al., 2007).
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4 An Example: The Role of the Genetic Decomposition
in the Design of Activities and in Teaching

An example can help to throw light into the role of the genetic decomposition in
APOS theory. A genetic decomposition that been used in research and teaching is
presented together with the sources used in its design. The teaching and research
experience methodologies are summarized and the discussion is focused on how
APOS research and methodology, on particular the genetic decomposition, are used
to design teaching activities and to identify aspects involved in students’ construc-
tion of knowledge, together with examples of the role of the teacher in the classroom.

The selected genetic decomposition was designed to construct the concepts of
matrix-vector product, matrix-matrix product together with the concept of a matrix
transformation (a matrix transformation TA(v) is a transformation such that
TA(v) ¼ Av, where A is a matrix, v is a vector and Av is defined).

4.1 The Genetic Decomposition

The design of the genetic decomposition presented here (Figueroa et al., 2018)
included an analysis of the concepts use in mathematics and applications, an analysis
of the authors’ observations during previous teaching experiences and a review of
literature (Larson & Zandieh, 2013; Roa-Fuentes & Parraguez, 2017).

4.1.1 Previous Constructions

The previous constructions needed to initiate the construction of the intended
concepts are:

• Table as an Object: students are able to perform Actions on the table, such as
identify any element of a given row and column, taking all the entries of a column
or a row as a whole.

• Vector as an Object and operations with vectors: sum of vectors, product by a
scalar and dot product as a Process, as well as the use of row and column
representations of vectors.

• Functions as a Schema, which includes the following Processes: domain and
codomain sets, correspondence rule, and composition of functions.
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4.1.2 Construction of the Matrix-Vector Product and the Matrix
Transformation

A table is used to construct the Process of identifying the element in the i-th row and
j-th column (aij). Actions are performed using the aij elements to construct a matrix
A. These Actions are interiorized into matrix as a Process when students can
construct any matrix given information about its elements, which is encapsulated
by doing Actions on the matrix (e.g. comparing, adding and other operations).

The matrix as a Process and the vector Process (obtained by de-encapsulating the
vector Object) are coordinated to obtain a new Process that considers the rows and
columns of a matrix as vectors and a matrix as an ordered collection of rows and
column vectors. Actions are performed to calculate the dot product of a row vector of
matrix A by any given column vector x, and to recognize it as a scalar, denoted by
rowi(A)� x. This Action is repeated for every row of A, and is interiorized into a
Process that is coordinated with the Process of a column vector to obtain a new
column vector c ¼ (row1(A) �x, row2(A)�x, . . . rowm(A)�x). This Process is encap-
sulated as the product of vector x with matrix A.

The above Processes are coordinated with the function Process (function as a
correspondence rule) to obtain the Process of relating vector c with a function fA
whose correspondence rule is fA(x) ¼ c. This Process allows the calculation of fA (x)
for different vectors x to obtain a Process that can be encapsulated as the function
Object fA when students name fA (x) as Ax, and can determine, for example, the
relationship with the system of equations Ax¼ c, or calculate the domain, codomain,
image, and pre-image of the function, among other operations between matrix
functions.

4.1.3 Construction of the Matrix Product and the Composition
of Matrix Transformations

A given matrix B may be desencapsulated into the Process of considering B as an
ordered collection of column vectors, bi. This Process is coordinated with the
function Process fA, to obtain a new ordered collection of column vectors ( fA(b1),
fA(b2), . . ., fA(bk)).

This new Process allows the writing of the formal definition of matrix product AB.
This Process is encapsulated into matrix AB through the Action of comparing any
ij-th entry of matrix AB, (AB)ij, with the dot product rowi(A) �bj. One may perform
Actions on this matrix Object C ¼ AB to determine its properties (its existence, or
non-commutative properties of matrix product, among others).

Additionally, the Processes fA and fB are coordinated into a new Process which is
the composition fA � fB. This composition Process may be later coordinated with
Process fAB through the Action of comparing both Processes and is encapsulated into
the composition as an Object fA � fB ¼ fAB which can be compared to the Object AB
and considered as equivalent to it.
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4.2 Teaching and Research Methodology

The decided teaching strategy was the use of a modeling problem. Although the use
of this type of problems is not considered in APOS theory, it is consistent with
it. Since working in any type of problem requires students to use their constructed
Schemas and they have been proved to be useful in developing the need for new
knowledge construction.

The problem designed for this research experience is the following:
Pesticides are sprayed on plants to eliminate harmful insects. Plants absorb some

of the pesticides. Parts of these pesticides are absorbed by herbivores when they eat
the plants that have been sprayed. How can we determine the amount of pesticide
absorbed by an herbivore? If we have carnivores (such a human) that eat the
herbivores, can we find out how much of each pesticide has been absorbed by
each carnivore?

Two teachers participated in the experience. Each of them used the problem and
the worksheets in a classroom with 30 students. Work in the classroom followed the
ACE cycle described above. It started with students’ work on the problem. Students
worked in collaborative teams and after discussing their proposals data for the
problem were introduced and as the work progressed the teachers involved in the
experience introduced worksheets with activities designed with the genetic
decomposition.

A worksheet intended to develop the constructions related with matrix, matrix
function and matrix-vector multiplication. A second one had the goal of helping
the students to construct the matrix multiplication and its interpretation in terms of
the matrix function fA. The third worksheet intended to foster the construction of the
functions fAB and fA � fB and the relation between the matrix product and the
composition of matrix functions. In all the worksheets activities related with the
initial problem were included as a context of the intended constructions but oppor-
tunities to reflect on the constructions included in the genetic decomposition to learn
the proposed mathematical concepts. Table 1 shows some of the designed activities
included in the worksheets and their relation to the genetic decomposition.

The experience was developed on three sessions of 2 h each. All the students’
work was recovered at the end of each class to be analyzed. Students’ work on teams
was recorded and responses to a similar problem included in an exam for the students
at the end of the course were also analyzed.

4.3 Use of Activities Based on the Genetic Decomposition
in Students’ Construction of Knowledge

Students strategies when working with the open modeling problem were discussed
with the teachers. Two main strategies appeared in both classrooms. Most teams
proposed to use tables where they would record the information about the problem
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and suggested to use table rows and columns as vectors and to use linear combina-
tions to determine a mathematical model to work with the problem. The second
strategy proposed consisted on using functions to model the absorption of pesticides
by the plants and then consider new functions for the herbivores and the carnivores.
These ideas were taken by the teachers, one of them discussed with students the

Table 1 Example of activities and their analysis using the GD (Figueroa et al., 2018)

Worksheet-question/activity Analysis based on the GD

W1-6 / An animal eats 20 plants of type 1, 28
plants of type 2, 30 plants of type 3, and
40 plants of type 4, given this diet what is the
animal’s consumption of each type of pesticide?

Action of considering and calculating the dot
product of a row vector of a matrix by a given
vector using the data form the modeling
problem

W1-7 / If another animal has the following
consumption vector (a, b, c, d) in which the jth
entry is the number of plants of type j eaten by
the animal, what is the animal’s consumption of
each type of pesticide?

Interiorization of the above Actions into a
Process

W1-8 / Write the above result as a column
vector and describe the operation you
performed to obtain each entry

Encapsulation of the Process by means of the
Action of grouping the resulting scalars into a
new column vector

W2-2/ How do you interpret the solution set of
system Ax ¼ b in terms of function fA? If you
can, use set notation to write your answer

Coordination of the system of equation Process
with that of matrix function into a new Process
that identifies the solution set of Ax ¼ b with
those vectors in the domain of fA whose images
are b

W2-6/ Apply function fA to each of the columns
of matrix B, how do you interpret these opera-
tions in terms of the problem?

Coordination of the row-column dot product
Process with that of matrix function into the
Process of finding the images of the columns of
B that constitute the columns of a new matrix
(AB)

W2-7/ If AB is the matrix whose ij-entry is cij,
the amount of pesticide i absorbed by herbivore
j, calculate every entry of AB and describe each
column of AB with respect to function fA

Encapsulation of the matrix product Process,
as an ordered collection of images of fA

W2-8 / Describe entry cij as an operation that
relates a row of A with a column of B

Encapsulation of the matrix product as an
operation between matrices

W3-3/ Calculate and interpret in the problem
the following: (a) fB(x) ¼ _____ if x ¼ (4,5,1);
(b) fAB(x) ¼ _____ if x ¼ (4,5,1);
(c) fA( fB(x)) ¼ _____ if x ¼ (4,5,1);
(d) ABx ¼ _____ if x ¼ (4,5,1)

Action of calculating and comparing the results
of applying a matrix function and the compo-
sition of matrix functions

W3-6/ How much of pesticide i is absorbed by
carnivore j?

Interiorization of the Actions of W3-3 into the
Processes of matrix product and composition
of matrix function. Coordination of both Pro-
cesses into their equivalence Process

W3-7/ Calculate: (a) (AB)C ; (b) A(BC);
(c) Compare this last two calculations and
interpret them in terms of composition of
functions

Encapsulation of the product matrix by
performing Actions to find its properties and
encapsulation of the function composition by
comparing it with the matrix product
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possibility to operate with tables and then introduced the first worksheet while the
other decided to introduce it after the discussion of the strategies.

The analysis of the data obtained while students worked in class with the
designed activities can be give information about students’ possible constructions.
Some examples of the types of students’ responses that give evidence of different
types of the constructed structures follow.

During work with the activity W1-6 the following students’ assertions were
recorded:

S15: We have the table. We can first calculate the products of the number of plants and the
units of pesticide each of them has. The herbivore 1 eats 20 28 30 40 of plants 1, 2, 3 and
4 respectively. And plants have 2,3,4,3 units of pesticide 1. Then we add them. . .it consumes
364 units of pesticide 1. We do the same for each of the plants.

S19: We can think of it, the consumption of an animal herbivore a of plant 1, b plant
2, and so on. We can look at the table, as a matrix as we did before and there is four types of
plants, to find the consumption if it eats the 3 pesticides, then we have to add we have a
consumption matrix it must have 4 types of plants and if we have 3 pesticides, we do the
scalar product of the vectors, one row and one column so it consumes ai1a plus ai2b plus
ai3c plus ai4d. Here it is 364 units. We can do that for all the herbivores and the pesticides.

Student 15 shows that she can respond to the question by applying Actions to the
information given; as the question can be responded by doing Actions her response
is correct. Student 19 describes a general procedure to find the consumption of any
herbivore. Her response is also correct, but she shows she has constructed the
Process of calculating the dot product of a row vector and a column vector. She
then applies this Process to the particular information given. She also shows the
construction of the matrix-vector product as a Process. Working with other activities
S22 commented to his team members:

S22: What I can see is the multiplication of a matrix A by a vector x, is the same as the
function, a function with vectors. This function f A has a rule and it gives the units of
pesticide in a herbivore when it ate certain quantities of plants. With the dot product of each
row of A as a vector and the consumption vector.

This assertion shows that this student has coordinated the Process of vector and
that of function through the dot product. He gives evidence of the construction of the
Process where the product Ax can be considered the rule of correspondence of a
function fA. This evidence was also found in his work on other similar problems.

In worksheet 2 a new matrix associated to the problem situation was presented.
Students were all able to do Actions to calculate the i-th pesticide absorbed by the
j-herbivore. They were all able to use the dot product of a row of matrix A and a
column of matrix B and could interpret this operation in the context of the problem:

S42: It is the same as before, but now matrix a represents the plants and matrix B represents
each herbivore, what each of them consumes. Now the dot product of this row and a column
gives what this herbivore has eaten of each plant, when we do all the rows and the columns,
we get how much pesticide is absorbed by each herbivore. With each of this numbers
obtained. . . as elements, we can write a new matrix with all the information of the pesticide
each herbivore has absorbed.
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Other students gave evidence that they had interiorized the product matrix AB.
They deduced a general rule to calculate each of its elements. For example;

S08: We have to calculate the dot product of each row of A by each column of B. We thus
obtain c11, c12 etcetera. We repeat it so we can write like a formula cij ¼ rowi(A) � colj
(B) to obtain all the elements of the new matrix C.

S09 Yes, this can also be written as a sum, as we did before with the teacher (she wrote
cij ¼ Pn

k¼1aikbkj).

Student S47 evidenced she had encapsulated the matrix product as an Object. She
deduced the previous sum with her colleagues and then she realized that the product
is not commutative, demonstrating show could do Actions on the product to find one
of its properties:

S47 These matrices have different numbers of rows and columns. We can only do the dot
product if the elements of each row of A are the same in number as those of the columns
of B, then it is clear that the product of matrices is not commutative, you see that the product
AB can be defined, for example but the product of BA may not be defined, for example if A
has 2 rows and 4 columns and B has 4 rows and 6 columns we can do AB but BA is not
defined. . . the product is not commutative.

Some students showed they coordinated the matrix function with the matrix
product Processes by writing the product procedure in terms of functions, as
shown in Fig. 1.

Only a few students demonstrated encapsulation of the matrix transformation.
They were able to coordinate the Process of product of matrices and the Process of
function into a Process that where they can use them indistinctly and to encapsultate
this later Process into an Object where both representations are considered as
equivalent. Descriptions such as the following can be considered as evidence of
this construction:

S47: . . . but here we have fB of x, it is a vector, and we also know that fA of x is another
vector v. When we do the product, we can calculate fB and then fA of the vector obtained
and we get a new vector. We can verify this now with these matrices, we do fA (fB)(x)) and
then AB. . .they are the same, so we can also think of AB as fAB, this is nice!

The previous examples illustrate how researchers can find evidence of construc-
tion described in the genetic decomposition. It may be clear, however, that one
instance where a student shows a construction is not enough to determine his or her
constructed structures. To be able to determine them it is necessary to take into
account student’s responses and work while facing different problem situations
related with the same concepts. This needs to follow students’work through a course

Fig. 1 Example of
coordination or processes by
student 48
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and to complement the information obtained through semi-structured interviews or
open questionnaires.

4.4 The Role of the Teacher

The methodology used in the class was the ACE cycle. As we have focused on
examples showing students’ constructions, it may seem that the teacher passively
uses the worksheets but it is not so. During each class the teachers talked to students
while they worked on the activities to observe what students were doing and to pose
them some questions when needed (A). They also interrupted students’ work when
they considered it pertinent to discuss results obtained with the whole class, compare
different strategies followed by teams, to ask new questions and to formalize when
considered pertinent (D) and gave students other tasks to work individually or
collectively in the classroom or at home (E), depending on what they considered
students needed. This behavior is typical in classes using ACE cycle.

Teachers in the experience described above collaborated as researchers in the
design of the worksheet used, they were familiar with the genetic decomposition and
with the ACE cycle. However, the experience has been repeated with three teachers
unfamiliar with the design of the activities included in the worksheets but used the
ACE cycle in the class. Results obtained are similar to the described in Figueroa
et al. (2018).

5 Final Reflections

The close connection between a genetic decomposition, the design of activities and
problem situations is illustrated through the description of the examples presented
above. Each task focuses on details involved in the learning of a concept or group of
concepts as is the case in this study. Some activities may be similar to those that can
be found in textbooks, but most of the times, the need to design an activity that is
intended to help students do a very specific construction results in original tasks that
are not usually considered without the guide of a model such as the genetic
decomposition. Sequences of activities or worksheets, as those described above,
provide students with several opportunities to reflect on fine-grained details related
to the construction of concepts and to look at them from different angles. Discussion
among students and with the teacher involves the need to share ideas, strategies and
arguments to justify points of view and opportunities to develop strategies and
deepen their understanding of mathematics.

In terms of research, the use of APOS theory provides detailed information about
students’ constructions. The need to test the genetic decomposition experimentally
provides opportunities to critically analyze the constructions predicted and to use
new information obtained from research to either validate it, refine it or discard it.
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APOS theory aims are also related to its limitations. It is clear that it cannot be
used to find answers to questions that are not comprised within its chosen level of
analysis. The possibility to establish a dialog with other theories, as has been the case
with the Anthropological theory of didactics (Bosch et al., 2017) can help to broaden
the use of APOS theory, as changed by the results of such dialogue.
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Introduction to Part II
Mathematics Teacher Education and the

Professionalisation of Teaching

Berta Barquero and Marianna Bosch

Formulating the Problem of Teacher Education within the
ATD

The ATD approach of teacher education takes as its starting point the attempt to
convert the craft of teaching into a full-fledged profession. The core of this line of
research is the study of teaching “semi-professions” at school, university or voca-
tional school. It is based on two main concepts, first that of a profession
(as distinguished from the notion of “semi-profession”) and second, the concept of
problems of a profession, which refers to the difficulties to face in the practice of this
profession. The main idea here is that, regardless of how subjective it may seem to
others, any observed difficulty must be taken seriously and looked at as a problem to
be solved within the framework of the ATD.

According to Bosch and Gascón (2009), following Cirade (2006), we can propose
an initial formulation of the problem of teacher education in the following terms:

What knowledge and competences are necessary (or, at least, useful) for mathematics
teachers to act in an effective and appropriate way in the students’ mathematical training?
And, what can be done to help teachers become aware, build and/ or acquire said knowledge
and competences?

As in any other human activity, the notion of praxeology appears as a key tool to
approach teachers’ praxis—what they do to organise teaching processes—and
logos—why they do it the way they do—as inseparable dimensions. The develop-
ments proposed by Cirade (2006), Sierra (2006) and Ruíz-Olarría (2015) introduced
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a distinction among different types of praxeologies to better express the complexity
of the praxeological equipment involved in the practice of the teaching profession:
the “mathematical praxeologies” (to be taught), which are part of the “mathematical
praxeologies for teaching”, included in the broader set of “teachers’ didactic prax-
eologies”, that can finally be understood from the perspective of the didactic research
praxeologies. The problem of teacher education can then be reformulated as follows:

What is the praxeological equipment necessary (or, at least, useful) for mathematics teachers
to be able to act in an effective and appropriate way in students’ education? And what can be
done to help teachers integrate it into their own personal praxeological equipment?

Addressing this set of questions needs to include the analysis of didactic trans-
position processes (Chevallard, 1985; Chevallard & Bosch, 2020) to a certain extent.
In other words, the problem of teacher education cannot be separated from the
problem of the curriculum that is presented in part 3 of this volume and inherits
the main assumptions that are made in this regard. These assumptions mainly
correspond to the type of didactic paradigm (Chevallard, 2006, 2015) that prevails
in the considered didactic institutions, including schools and teacher education
institutes or faculties. Teacher education then appears as a privileged environment
to analyse the conditions and constraints produced by the prevailing pedagogical
“paradigm of visiting works” and to examine the possible ways to make it evolve
toward the one of “questioning the world” (Barquero et al., 2018).

In a first approximation, the second formulation of the teacher education problem
can be considered as belonging to the paradigm of visiting works if one assigns a set
of supposedly pertinent works to the project of enriching the teacher’s praxeological
equipment. If we move to the paradigm of questioning the world, instead of focusing
on the teacher’s praxeological equipment, it is important to place the questions,
difficulties or problems to which teachers must provide answers through their
professional activity, at the heart of teacher education. Thus, the problem of describ-
ing the praxeologies that can increase the teacher’s praxeological equipment
becomes the problem of determining the questions that are at the origin of these
praxeologies. The problem of teacher education then admits a new formulation,
which we can consider as dual to the previous one:

What are the crucial questions that teachers have to face in their teaching practice? And,
what can be done to help them construct satisfactory answers to these questions?

The dual character of the two formulations lies in the fact that the answers to the
crucial questions are precisely the basic ingredients of the teacher’s praxeological
equipment. It has the advantage of suggesting that the collective construction of
answers does not necessarily follow the visit of some pre-established bodies of
knowledge and know-how. Moreover, it has the virtue of keeping the problem of
the description of this praxeological equipment open and, therefore, of its construc-
tion and dissemination in educational processes. It must therefore be made clear that
these questions are not teachers’ personal difficulties due to, for instance, an alleged
lack of vocation, interest or dedication. On the contrary, they refer to problems that
the teaching profession must face and to which it must provide a collective response,
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i.e. by developing (or making available) appropriate technical and theoretical—
praxeological—resources. Didactics can find its function as basic instrumental
knowledge for teachers in both the detection and formulation of these questions
and the elaboration and dissemination of answers. In the words of Chevallard (2009,
our translation):

A teacher education project approaching the questions raised by the practice of mathematics
teaching in a real and effective way [. . .] needs tight cooperation between the school system
which constitutes the “field” for the teaching practice; research in didactics, which acts as a
source of questioning and production of praxeological resources to the renewal and improve-
ment of this activity; and the teaching profession itself, which is the one who should, in the
end identify the—always evolving—needs that all its members should face.

An interesting example of a teacher education proposal founded on the ATD can
be found in the pioneer study of Cirade (2006) and the instructional device of the
questions of the week, based on the questions formulated by pre-service teachers
during their internship in schools while following a course in didactics of mathe-
matics. Another approach to educational devices for teachers and, more particularly,
to the lesson studies that are spreading from Japan, is formulated in terms of
paradidactic systems and infrastructures. Miyakawa and Winsløw (2013 and
2019) propose characterising teacher knowledge and practices at stake in terms of
didactic and paradidactic praxeologies. This approach helps identify different types
of professional tasks and techniques, as well as professional technologies and
theories (García et al., 2019), including questioning the paradidactic ecology, that
is, the conditions and constraints acting on paradidactic systems and, more generally,
on the teaching profession. Finally, Sierra (2006) and Ruiz-Olarría (2015) proposed
study and research paths for teacher education (SRP-TE) as an instructional format
that places the study of professional questions at the core of teacher education
programmes.

Collective Advances During the Lectures and Workshops in
Course 2

In this second course, there was a total of 45 participants from 14 different countries.
For two intensive two weeks, we all participated in discussing the advances regard-
ing the topic of mathematics teacher education and the professionalisation of teach-
ing. Lectures were followed by workshops, which were, in most cases, closely
related to the content of the lectures. We invite readers to have a look at the
contributions of the researchers participating in the course that are accessible in
(Barquero et al., 2021).

With respect to the lectures, we start with the chapter written by Yves Chevallard
(Aix-Marseille Université), titled “Challenges and advances in teacher education
within the ATD”, which aims to outline the main aspects of the modelling, in the
framework of the ATD, of the teacher’s position. The author underlines the fragility

Mathematics Teacher Education and the Professionalisation of Teaching 77



of the teacher position, which has slowly emerged from its menial origins to stabilise
itself as a mere semi-professional occupation, to stress that we find ourselves facing a
praxeological revolution which calls for the coordinated use of all the means of
thought and action of didactics.

In chapter 2, T. Miyakawa’s “Paradidactic infrastructure for mathematics
teachers’ collective work” addresses the questions related to the mathematics
teachers’ collective work around classroom teaching. The author investigates how
and to what extent different theoretical constructs of the ATD can facilitate the
analysis of teachers’ collective work inside and outside the classroom. Some exam-
ples from Japan and France are considered to show how to characterise mathematics
teachers’ knowledge and practices.

For their part, F. J. García, E. M. Lendínez and A. M. Lerma present their work
“On the problem between devices and infrastructures in teacher education within the
paradigm of questioning the world” (chapter 3). They start by facing the challenge of
placing teacher education within the paradigm of questioning the world. The authors
connect this challenge with two basic problems: the problem of the devices and the
problem of the infrastructures in teacher education. They then focus on the lesson
study devices to reformulate them in terms of professional praxeologies that take
place in different paradidactic systems. This reformulation contributes to elucidating
how lesson study can work coherently within the paradigm of questioning the world
and to advance in the problem of the infrastructures needed to support it.

The fourth lecture was given by Floriane Wozniak and Claire Margolinas. It
concerned the “Introduction of ordinal numbers at the beginning of the French
curriculum: a study of a professional teaching problem”. In chapter 4, the authors
focus on the study of ordinal numbers in pre-primary school that has allowed them to
build a didactic engineering approach to observe the evolution of the students’
knowledge (as ordinal numbers are not part of ordinary teaching, at least not in
France). They used the data collected in an implementation that was put into practice
in a class of two teachers with pre-elementary school students (5–6 years old). The
aim was to better understand the knowledge that students could build in a sequence
of adidactic situations and to better understand the praxeological needs of the teacher
and the means for observing them.

The fifth and last lecture was delivered by Avenilde Romo (Instituto Politécnico
Nacional, CICATA) and Berta Barquero (Universitat de Barcelona). It was about the
“Study and research paths for teacher education (SRP-TE): some advances on
teacher education in the paradigm of questioning the world”. Chapter 5 focuses on
the proposal of the SRP-TE, as an inquiry-based process combining practical and
theoretical questioning of school mathematical activities, to place teacher education
in the new paradigm of questioning the world. Two case studies of SRP-TE for
pre-service and in-service mathematics teachers are presented, for primary and
secondary education. Both case studies are used to show the transposition of
research tools to teaching practice and how they help teachers to progress in the
critical issue of identifying institutional constraints hindering the integration of
mathematical modelling.
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Chapter 6 presents a workshop guided by Michèle Artaud (Aix-Marseille
Université) and Jean-Pierre Bourgade (Université de Toulouse - Jean Jaurès) about
the “Transpositive Phenomena of Didactics in Teacher Training”. The authors
describe the process of institutional transposition of knowledge in an institution
that is not a school, as a process called archididactic transposition. In light of the
didactic transposition theory, and of the latest developments in the anthropological
theory of the didactic, the authors examine the process of transposition of mathe-
matical didactics in the particular case of mathematics teacher education.

A workshop led by Vicenç Font, Alicia Sánchez and Gemma Sala (Universitat de
Barcelona) about “Prospective teachers’ narrative analysis using the didactic-
mathematical knowledge and competences model” is described in chapter 7. The
authors present the use of tools proposed by the onto-semiotic approach based on a
system of categories of knowledge and competences of the mathematics teacher.
These categories belong to what the authors have called the didactic-mathematical
knowledge and competences model (DMKC). The model is applied to the analysis
of a narrative of a classroom session, in order to identify the knowledge and
competences of the pre-service teacher.

Chapter 8 is devoted to a workshop guided by Koji Otaki (Hokkaido University
of Education) and Yukiko Asami-Johansson (University of Gävle). It deals with
“Exploring the paradidactic ecosystem: conditions and constraints on the teaching
profession”. This chapter aims to show the work using different theoretical resources
for investigating the teachers’ design and analysis of didactic situations. By intro-
ducing notions such as the nested triptych of paradidactic systems and the scale of
paradidactic determinacy, the authors show the kind of levels and institutions that
might be considered for the study of the conditions related to the paradidactic work
of teachers.

Last but not least, chapter 9 “Teacher learning in collaborative settings: analysis
of an open lesson” presents a workshop guided by T. Miyakawa and F. J. García. It
concerns the work developed for the analysis of an open lesson organised in a
Japanese primary school. Some of the questions the participants addressed were
about analysing the mathematical and didactic organisation in the lesson plan and the
textbook developed in the classroom, and the paradidactic praxeologies that could be
identified in the open lesson.
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Challenges and Advances in Teacher
Education Within the ATD

Yves Chevallard

1 By Way of Warning

This presentation focuses on an institutional reality, to wit, the teacher position (and
some other positions), in the sense of “position” that the anthropological theory of
the didactic gives to this word.

A person x occupying a position p, for example that of teacher, is subjected to that
position: x is a subject of p. A person x is the subject of a great many institutional
positions.

The caveat I wish to make here is the following: while the analysis presented is
about a position p, it happens quite often that the listener or reader misunderstands it
and imagines that it really applies to the persons in position p.

If one asserts that the teacher “profession” is still a “semiprofession”, it does not
mean that teachers do not have a high personal potential, only that, generally, this
potential will not be fully realized in that position such as it is now.

Many institutional positions require from those who occupy them much less than
what they could give. Projecting on these people the image of the position they
occupy is often a caricature that ignores and denies their full personality. Beware!

2 A Typical Example

I use the word teacher to mean the person y in a didactic system S (formed in a
school σ) denoted by S ¼ S(X; y; ♥), where X is the set of students and ♥ is the
didactic stake.

An English wit and Anglican cleric, Sydney Smith (1771–1845), writes:
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It made me a very poor man for many years, but I never repented it. I turned schoolmaster to
educate my son, as I could not afford to send him to school. Mrs. Sydney turned school-
mistress, to educate my girls, as I could not afford a governess. I turned farmer, as I could not
let my land. A manservant was too expensive; so, I caught up a little garden-girl, made like a
milestone, christened her Bunch, put a napkin in her hand, and made her my butler. The girls
taught her to read, Mrs. Sydney to wait, and I undertook her morals; Bunch became the best
butler in the county. (Holland, 1855, p. 159)

Sydney Smith, his wife and his daughters are amateur teachers. This, it seems, has
become the exception rather than the rule. But, in fact, a “professional” teacher is an
amateur teacher turned professional. A teacher always has to assume an ounce of
amateurism: When “certified teachers” have to teach something that they never
studied at the university, they must accept to start by being amateur teachers.

This is valid for professions in which the work content may evolves suddenly.
What matters is that the profession clearly shows that the ongoing change, consid-
ered vital, is under the profession’s control, a point to which I shall return.

Sydney Smith’s life shows another essential aspect of the teaching trades: just as
you can do the cleaning yourself if you can’t pay someone to do it, you can make
yourself a teacher if you can’t afford to pay someone for that. The conclusion to be
drawn from this example is unpleasant but little questionable: the teaching trades are
generally regarded as low-level occupations. This is, until today, an invariant in the
history of teachers.

Sydney Smith shows us another petty craft, that of butler. An improvised teacher,
Mrs. Sydney, trains a young girl, Bunch, to become a butler, an occupation that does
not rely on a science and has low technological requirements. When an occupation is
founded on the personal qualities of its practitioners rather than on a solid body of
knowledge, it is bound to be a low-level occupation, particularly if its practitioners
adhere to this self-satisfied self-definition.

3 Starting from Scratch

Vannes is a town in Morbihan, Brittany (France). In “Le collège de Vannes en 1830”
(1886), Jules Simon (1814-1896), a former Minister of Public Instruction in the
provisional government of 1870, wrote the following:

Our teachers, who were almost all priests, knew Latin perfectly well. Perhaps they also
knew, as best they could, a little bit of theology. I can attest that they knew nothing else. In
1829 we were given a physics teacher. We hadn’t heard of this kind of study at the college of
Vannes since 1789. Mr. Merpaut, who was in charge of this teaching, was like the college:
he had never heard of it. He bought an old copy of Father Nollet’s Physics. “I don’t
understand it,” he said, “but we will read it together, and perhaps by helping each other,
we can find out what it means.”We couldn’t do it. We looted two cabinets containing some
outdated physics instruments and many miscellaneous substances. We were very keen to
mix the vials with each other under Mr. Merpaut’s watchful eye . . . We ended up playing
pucks during class with the discs from a Voltaic pile. I must say, to pay tribute to the truth,
that Mr. Merpaut had a very noisy game. The rhetorics teacher, our neighbour, complained
about the noise. Mr. Merpaut was magnificent: “Go tell your master that we are here to study
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the laws of nature and that we give him full freedom to do whatever he wants with the laws
of rhetoric.” (Simon, 1886, pp. 149–150).

The author reports the birth of a didactic system S(X; Y; ♥), with Mr. Merpaut as a
physics teacher y who, at this stage, knows almost nothing about physics, even if he
has heard of Jean-Antoine Nollet (1700–1770), a renowned physicist.

However, the real birth of Mr. Merpaut as a physics teacher y occurs when he
haughtily declares to his colleague’s student: “Go tell your master that we are here to
study the laws of nature . . .”. Mr. Merpaut certainly knows only that the Greek word
phýsis (φύσις) means “nature”. In this case, the study of nature starts almost from
zero. This phenomenon continues to this day, even with “certified” teachers.

In fact, it occurs whenever they have to teach a field of “their” discipline that they
hardly know—which was the case in France a few years ago when some mathemat-
ics teachers had to teach, for the first time ever, the basics of graph theory.

4 The Teacher as Servant

As is well known, in Ancient Greece, a pedagogue—from Greek παιδίoν (paidíon)
“child” and ἀγωγóς (agōgós) “guide”—was a slave who led the master’s children to
school and more or less supervised their schoolwork. Given the evolution of
European societies, the pedagogues have ceased to be slaves. However, they have
become members of the domestic staff: they became servants.

If we look at things from the point of view of the teacher himself (in the case of
men), the teaching profession has long been what, given his education, one could do
if he could not do “better” (for example, become a civil engineer).

For parents of affluent social origin, the idea has been preserved that teachers are
people who, like servants in a household, work in the school so that society outside it
can live fully, without worrying that much for the basic social preparation of the
rising generations.

5 A Semiprofession

The teaching trade is nowadays considered as a semiprofession. To clarify this point,
I borrow from the article “Semiprofession” in Wikipedia, in which we read the
following (Semiprofession (n.d.)):

A semiprofession is an occupation that requires advanced knowledge and skills but is not
widely regarded as a true profession. Traditional examples of semiprofessions include social
work, journalism, librarianship, teaching and nursing.

The article adds that semiprofessions often have “less clear-cut barriers to entry”
than professions, while their practitioners “often lack the degree of control over their
own work” associated with doctors and lawyers.
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The American Association of Colleges for Teacher Education (AACTE) has
published a list of 12 criteria that help delineate a semiprofession:

1. Lower in occupational status
2. Shorter training periods
3. Lack of societal acceptance that the nature of the service and/or the level of

expertise justifies the autonomy that is granted to the professions
4. A less specialized and less highly developed body of knowledge and skills
5. Markedly less emphasis on theoretical and conceptual bases for practice
6. A tendency for the individual to identify with the employment institution more

and with the profession less
7. More subject to administrative and supervisory surveillance and control
8. Less autonomy in professional decision making, with accountability to superiors

rather than to the profession
9. Management by persons who have themselves been prepared and served in that

semiprofession
10. A preponderance of women
11. Absence of the right of privileged communication between client and

professional
12. Little or no involvement in matters of life and death

One crucial observation needs to be mentioned: “In most semiprofessional fields,
efforts at professionalization are ongoing.” (The opposite process also occurs; pro-
fessions are subject to processes of deprofessionalization.)

The status of semiprofession expresses itself in a number of “symptoms”, the
disappearance of which would mean that this semiprofession is professionalizing
itself—while, correlatively, their persistence expresses that this status continues
unchanged.

One of the most remarkable and, it seems, one of the most obstructive obstacles in
moving towards the professionalization of the teaching trades is the fact that teachers
regularly fall prey to pedagogical fads. In an article entitled “25 Years of Teaching
Fads and Bad Educational Science”, a British noospherian, Ross Morrison McGill,
has proposed (see Fig. 1) a table of pedagogical fads that overwhelmed teachers over
the past two decades (McGill (2016)).

In contrast, the didacticians’ dream would be to stop these cycles of waiting/
pedagogical agitation/disappointment, and to substitute them with the linear time of
the progress of knowledge—whose advent, however, is still to come . . .

6 Towards a Profession?

The path to the status of profession is arduous. The praxis and logos of any
occupation with a long history have a strong inertia, so that, finally, they collapse
rather than transform themselves. In the case at hand here, what are these “products”
of history? The brief answer that I will give here describes a teacher position which
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seems to have been so far occupied by a great many teachers, who, therefore, were
subjected to it.

The main constraint imposed on teachers by this position is to conceive of oneself
and act as an autonomous and relatively solitary “system”—the teacher is similar in
this respect to a self-employed worker and a sole contractor. What is often referred to
as “the teacher’s pedagogical freedom” is the obverse of a coin of which the reverse
is the teacher’s practical obligation to fend for himself, an obligation whose respect
is also a point of honour for him or her.

During the golden age, when teachers played a role, not only as guides, but also as
experts of the works to visit, their key achievement (and the essential proof of their
adequacy to the teacher position) was the lessons they designed and taught. For a
long time, the constraints imposed by the position of teacher pushed teachers not to
share “their” course with anyone but their students. This is an attitude that, with the
emergence of the Internet, has begun to fade away.

7 A Few Reminders

How can things evolve without deteriorating? First of all, a few reminders. At the
basis of any form of education there are didactic systems S ¼ S(X; Y; ♥), within a
school σ in a school system Σ.

Here, the set X is the set of “students” (we should have card(X) � 1) and Y is the
set of “teachers” (we can have Y ¼∅ but often have card(Y ) ¼ card({y}) ¼ 1). The
symbol ♥ refers to the “didactic stake”, the work to study and learn.

Fig. 1 Unending educational fads
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Let us denote by ps the student position, to which the students x 2 X are subjected,
and by pt the teacher position in S. A teacher y 2 Y first and foremost considers not so
much the students x 2 X taken one by one as the student position ps.

The teacher y refers to a cognitive nucleus ñ ¼ (î, o, ŝ, v^), with î ¼ ps and o ¼ ♥:
the cognitive base is n¯¼ (î, o)¼ ( ps, ♥). The standard instance ŝ¼ (I, p) may be of
y’s own choosing, with the evaluating instance v^ being y: ṉ ¼ (ŝ, v^) ¼ (ŝy, y).

However, the cognitive frame of reference ṉ ¼ (ŝ, v^) may be quite diverse. For
example, in σ or Σ, it may be that, to all classes of the same grade, there corresponds
a common cognitive frame of reference ṉ ¼ (ŝ, v^), specific to σ or Σ.

We will assume hereafter that the principle of teachers’ activity is the following:
from their own point of view, teachers must act in order to make the relation R( ps, o)
evolve to be judged by v^ closer to R(ŝ, o).

The expression ς ¼ (ñ, û, δ, C) denotes a possibly didactic situation: ñ is the
cognitive nucleus ( ps, ♥, ŝ, v^), û is any instance making a gesture (i.e., any task of
any type) δ, and C is the set of conditions prevailing before δ is performed.

We focus here on the case where û¼ y, so that ς ¼ (ñ, y, δ, C), with ñ ¼ ( ps, ♥, ŝ,
v^). The gesture δ that y will perform depends on y’s personal relations to ps, ♥,
ṉ ¼ (ŝ, v^), and C: it will therefore depend on y’s praxeological equipment.

The gesture δ changes the set C into C0 ¼ C⁁δ, (read “C deranged by δ”), i.e., δ
changes the ecology of S ¼ S(X; Y; ♥). We thus have a function δ^y from the set of
ordered pairs (ñ, C) to a set of gestures Δ: δ^y: (ñ, C) � δ^y(ñ, C) ¼ δ 2 Δ.

It is assumed that Δ contains the “do nothing” gesture δ∅: when δ^y(ñ, C) ¼ δ∅,
y does nothing. The study of the ecology and economy of possible didactic functions
δ^� and their learning yields is a major research type of tasks of didactics.

If it is true that a didactician is free to consider other standard instances than the
one y has in mind, the learning yields mentioned above are always relative to some
standard instance ṉ ¼ (ŝ, v^): learning is a socially defined process.

8 Some Questions

In the foregoing, we mentioned a teacher y, i.e., a person. In fact, we are interested in
the teacher position pt: we are concerned with the ideal subject ȳ of pt, subjected to pt
only, unlike a real person.

Teacher training is based on didactic systems denoted as S ¼ S(Y�; Ž; ǒ), with
obvious notations. This requires the creation of a position pwt for “would-be”
teachers y�2 Y�and a position ptt for teacher trainers ž 2 Ž.

It thus requires to define relations R( pwt, ǒ) and R( ptt, ǒ), which raises the first big
question for educational institutions: What should the position pwt’s praxeological
equipment be made of? Put naively: What should student teachers study?

A key issue for ȳ is: if C* is a set of conditions that ȳ would like to see fulfilled, do
we have Δ* ¼ {δ/δ 2 Δ ^ C⁁δ ⊃ C*} 6¼ ∅? In a host of cases, Δ* is empty: for
example, ȳ cannot by himself reduce economic inequalities in society.
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This is a type of problems that student teachers must unswervingly address. For
any “difficulty” observed in S¼ S(X; Y; ♥), student teachers will have to study which
sets C* eliminate it and which gestures δ 2 Δ are such that C⁁δ ⊃ C*.

Behind all this, there lurks another question, which is still today an open question,
or rather an unasked question: What should the position ptt’s praxeological equip-
ment be made of? What should teacher trainers study?

This question must be highlighted here. Even today, many academics start to train
professors as Mr. Merpaut taught physics. But what was meritorious in 1830 at the
college of Vannes seems today somewhat incongruous.

9 The Paradigm of Visiting Works and Its Limitations

What a teacher must know how to do depends on many parameters. The most
important of them is the school paradigm in which the teacher acts, and which
specifies “what they do in class”—do they visit works or do they question the world?

A didactic system S¼ S(X; y; ♥) can now be written S¼ S(X; y;W ), whereW is a
“work”, i.e., any reality made by humans. The difference between paradigms
appears first with the level of pedagogy.

. . .
⇵

Schools
⇵

Pedagogies
⇵

Didactic systems

In the ATD, pedagogy is the activity of leading students x 2 X to the work W to
study. In a school σ, grouping (or not) students into classes (where didactic systems
will form) is an important part of the school’s pedagogy.

Another important aspect is that, generally, access to a workW is not random: the
class follows a path laid out in σ (or Σ), which leads toW and comprises a succession
of nested fields: Discipline ⊃ Domain ⊃ Sector ⊃ Theme ⊃ Subject.

Let us consider a given work W. In the paradigm of visiting works, a class will
studyW if, and only if,W appears in one of the nested successions mentioned above.
In what follows, W is a “subject”, i.e., here, a type of tasks.

Let’s take the case of a mathematical work long known as the “rule of three”, a
name now used (anachronistically) to refer to the technique of solving proportions
by cross-multiplying. Suppose there exists in Σ this pedagogic path: Mathematics
⊃ Arithmetic ⊃ Fractions and decimals ⊃ Special uses ⊃ Rule of three. No
such path is given by nature: it is a human creation—hence, here, its perhaps unusual
aspect.

Challenges and Advances in Teacher Education Within the ATD 87



Suppose that y wants to convey to the students a technique t¯ more user-friendly
than cross-multiplication, by generalizing the more elementary technique t illustrated
by this example: “if 3 books cost 6s. 7d. what will 12 cost?”

The technique t works thus: 12 is 4 times 3, and therefore 12 books will cost
4 times the price of 3, i.e., 4 � 6 s. 7d. ¼ £1 6 s. 4d. Now if we want to know the
price of 17 books or 329 books, since 17 and 329 are not multiples of 3, what will
we do?

The example used is on page 52 of A Treatise on the first principles of Arithmetic,
after the method of Pestalozzi (London, 1847) by Thomas Tate, under the title “Rule
of three (where a knowledge of Fractions is not required)”.

The scope of the technique t astoundingly increases if we accept the concept of a
fractional number of times: 17 is 17/3 times 3, so that if 3 books cost, say, 34.5 €,
17 books will cost 17/3 times 34.5 €, or (17 � 34.5 €)/3, i.e., 195.5 €.

Because the list of works to visit is pre-established, the paradigm of visiting
works, when strictly implemented, does not allow replacing the currently used
technique (by cross-multiplication) with the technique t¯.

10 The Paradigm of Questioning the World

Indeed, in the paradigm of questioning the world, the “teacher” y and the class are
free to consider the following question: “Is it possible to extend the scope of the
elementary rule of three t, where one of the numbers of items must be a multiple of
the other?”

The historical transition to the new paradigm has a high price for y, especially (but
not only) in pedagogic terms: starting from a question Q, it is now up to the students
led by y to identify the fields of knowledge useful for their inquiry on Q.

Suppose a class of eighth graders (13–14 years) studies the following question:
“What is this thing called apparent temperature?”

Let’s skip the first steps of the inquiry. The class has arrived at this passage from
the article “Wind Chill” in Wikipedia (Wind chill (n.d.)):

The standard formula for Environment Canada is: Twc ¼ 13.12 + 0.6215Ta – 11.37v+0.16 +
0.3965Tav

+0.16 where Twc is the wind chill index, based on the Celsius temperature scale; Ta
is the air temperature in degrees Celsius; and v is the wind speed at 10 m (33 ft) standard
anemometer height, in kilometres per hour”.

A part of the formula giving the index Twc is clear to the students. But the
expression v+0.16 is unknown to them, although it looks like v1, v2 or v3. They
conclude that it is known to at least one position in one institution, that of
meteorology.

The same article specifies that, if Ta ¼ �20 (�C) and v ¼ 5 (km/h), then
Twc ¼ �24; and that, if Ta ¼ �20 and v ¼ 30, then Twc ¼ �33. The students decide
to use their calculator and to interpret the expression v+0.16 as meaning v ^0.16. They
get the following results:
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13.12 + (0.6215 * (-20)) - (11.37 * (5^0.16)) + (0.3965 * (-20) * (5^0.16)) ¼ -
24.2785032833

13.12 + (0.6215 * (-20)) - (11.37 * (30^0.16)) + (0.3965 * (-20) * (30^0.16)) ¼ -
32.5680444763

They conclude that they now know another institution that also knows decimal
exponents such as +0.16: the “institution of calculators”. Such are the very first steps
in their inquiry on “apparent temperature”.

11 A Foreseeable Future

Many types of tasks that y will have to perform in the new paradigm are still to
explore, such as working with the students to identify essential or useful fields of
knowledge (here, mathematics, but also physics, meteorology, etc.).

The case of apparent temperature highlights a real difficulty of the new paradigm:
When a class answers a question Q, what can be the standard instance ŝ against
which this answer will be appraised by some evaluating instance v^?

There is thus a whole history to build collectively through the work of didactic
systems S( ps; pt; Q) and of teacher training didactic systems S( pwt, ptt, Q�), where all
the questions raised by the new paradigm will have to be studied.
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Analyzing Mathematics Teachers’
Collective Work in Terms of the Inquiry

Takeshi Miyakawa

1 Introduction

Mathematics teachers working and learning through collaboration are gaining par-
ticular attention today in terms of a form of teacher professional development and an
object of mathematics education research. The Japanese lesson study (Fernandez &
Yoshida, 2004; Isoda et al., 2007) is one of the typical examples often referred to in
such a context. Apart from it, one may find a wide range of teachers’ collective work
inside and outside school across and within educational systems in different parts of
the world (Robutti et al., 2016). The teachers may officially or unofficially collab-
orate face to face or online for different purposes: preparing ordinary mathematics
lessons, developing teaching materials or textbooks, collaborating in a research
project of teachers and researchers, and so forth.

In this lecture, focusing on the teachers’ work around the classroom teaching and
the system of conditions and constraints that shapes them, we investigate how and to
what extent different theoretical constructs of the Anthropological Theory of the
Didactic (ATD, hereafter) allow us to analyze and better understand teachers’
collective work inside and outside the classroom. The questions we address in this
lecture are the following:

• How to characterize mathematics teachers’ collective work inside or outside
school?

• How to analyze the teachers’ knowledge and practices in such work?
• How to analyze the dynamic process of teacher collaboration?

This lecture is organized mainly with two examples of teachers’ collective work
from the following two perspectives. We investigate, on the one hand, Japanese
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teachers’ work inside and outside mathematics class in terms of paradidactic
praxeologies, which characterize teacher knowledge and practices at stake
(e.g. Miyakawa & Winsløw, 2013, 2019). On the other hand, teachers’ collective
preparation of mathematics lessons in France in terms of inquiry, which character-
izes the dynamic process of the development of lessons (e.g. Trouche et al., 2019).

2 Teacher’s Work Inside and Outside Mathematics
Classroom

Teacher’s individual work and/or teachers’ collective work cannot be reduced to the
teaching practices in the classroom. Mathematics teachers work individually or
collectively around these teaching practices for developing and implementing math-
ematics tasks, lessons, or resources (textbooks, worksheets, etc.), as well as for their
professional growth. The mode of teacher’s work varies across and even within
countries depending on the contexts, such as professional development and everyday
teaching.

2.1 Paradidactic Praxeologies

One of the issues we often encounter in the international community of research on
mathematics education, and in particular teacher education, is how to characterize
teachers’ knowledge devoted to such practices and/or developed during these prac-
tices. It is well known that Shulman (1986) proposes some categories of teacher’s
knowledge (subject matter content knowledge, pedagogical content knowledge, and
curricular knowledge), and Ball and her colleagues specify, following Shulman’s
idea, the domains of mathematical knowledge for teaching (Ball et al., 2008).

Within the ATD, the notion of praxeology is a critical idea to model the practices
and knowledge inside and outside the mathematics classroom. In addition to the
mathematical and didactical praxeologies (MP and DP respectively hereafter) that
are to be implemented or that are implemented in the classroom, this notion allows us
to describe teacher’s practices and knowledge outside classroom, as a paradidactic
praxeology, which is a praxeology associated with the praxeologies at stake in the
classroom (Winsløw, 2011; Miyakawa & Winsløw, 2013). Further, while the pre-
vious research work—the ones mentioned above, for instance—tends to deal with
teachers’ practices and knowledge separately, the notion of praxeology brings them
together and clarifies how a specific knowledge is invested in a teacher’s specific
action.

As the variety of teachers’ practices can be found in the educational fields of
different countries, there is a variety of the types of tasks required for the teachers
and, as a consequence, the variety of teacher’s knowledge associated with and
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developed with it. As Chevallard (2002, p. 6) mentions, “the system (Tπ
(k))k2I of

professional tasks is neither fixed once for all, even at the level of a career nor totally
predefined”. The main issue for our research work is to identify the paradidactic
praxeologies with different instances of teacher’s individual or collective work in
different countries and reveal how they are related to the praxeologies in the
classroom (MP and DP). Besides, it would also be important to identify the evolu-
tions of paradidactic praxeologies when considering professional development or
teacher learning.

In the previous work, some examples of praxeological analysis of teachers’
paradidactic work have been proposed with the data of Japanese open lesson,
including an actual lesson with a detailed lesson plan and a post-lesson discussion,
and show how to characterize teachers’ collective work (Miyakawa & Winsløw,
2013). In this lecture, I further propose another way to analyze teachers’ collective
work in terms of inquiry, which is a principal object of study within the ATD.

2.2 Paradidactic Infrastructure

Teachers’ paradidactic praxeology does not exist “in vacuo”, like any other praxe-
ology. It is shaped by the conditions that support such a praxeology to exist and the
constraints that hinder it. In particular, the basic system of these conditions and
constraints that is indispensable to make a paradidactic praxeology viable has been
called the paradidactic infrastructure (Winsløw, 2011; Miyakawa & Winsløw,
2013), following the notion of didactic and mathematical infrastructure introduced
by Chevallard (2009, 2019). The notion of paradidactic infrastructure is critical to
characterize the different settings or contexts of teachers’work outside the classroom
and to understand better teachers’ didactic or paradidactic practices that vary
according to the didactic institutions.

Due to the diversity of teachers’ work as mentioned above, the ordinary practices
in a given institution seems, from time to time, extraordinary from the perspective of
another institution. This was a case for the Japanese paradidactic practices that a
number of teachers observe a lesson given by a colleague in the classroom and
discuss it right after the lesson. Such practices are carried out within the context of
lesson study or open lesson, which constitute a paradidactic infrastructure that
supports them. However, while its characteristics are more or less known today
outside Japan, it is not evident yet, even for Japanese people, what conditions such
practices and hinders them. This is because these practices are very natural for
Japanese teachers and researchers, and so they are involved in these practices as
participants without asking about their viability and sustainability. It is necessary,
therefore, for the researcher to investigate the paradidactic infrastructure
encompassing these practices in a specific case of paradidactic practices like the
study of Miyakawa & Winsløw (2019), in addition to describing the setting of
teachers’ practices. In this paper, there is not enough room to discuss this issue,
but it is certainly a critical issue to tackle in the mathematics education research on
teacher education.
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3 Analysis of Teachers’ Collective Work in Terms
of the Inquiry

In addition to identifying the key praxeologies in teachers’ work for the classroom
teaching, some theoretical constructs of ATD allow us to describe the dynamic
process of how some specific MP and DP could be realized in the classroom through
the teachers’ different work outside the classroom and how they acquire or learn the
professional knowledge related to the mathematics teaching.

3.1 Teachers’ Work as an Inquiry

The key idea is to regard teachers’ work related to mathematics teaching inside and
outside the classroom as an inquiry. In order to design and implement tasks and/or a
teaching sequence in the classroom, the teachers investigate curricular materials such
as national curricula, mathematics textbooks, and related literature, and understand
or clarify the goals of teaching, as well as for deciding or inventing which tasks they
are going to use in the classroom and how. This process is similar to the process of
inquiry. In fact, Japanese teachers’ individual and/or collective work on their
teaching practices in the context of lesson study (Fernandez & Yoshida, 2004) and
practice research (Miyakawa &Winsløw, 2019; Miyakawa & Xu, 2019) is regarded
as a kind of research which investigates the effective teaching (Takahashi &
McDougal, 2016). This is why in Japan, the term kenkyu (study or research) is
very often used in teachers’ community, such as jugyo-kenkyu (lesson study), kyozai-
kenkyu (study of teaching materials), and jissen-kenkyu (practice research). Further,
even in the community of mathematics education research, this idea of regarding
teachers’ work as a process of inquiry is not something odd. Some previous research
work analyzes teachers’ work from the perspective of documentational inquiry
(Margolinas & Wozniak, 2010; Assude, 2010).

In the ATD, the inquiry is an important object of study in the context of the
paradigm of questioning the world, and several theoretical tools have been devel-
oped to characterize it. The notion of inquiry is broadly defined as “the action taken
to provide an answer A to a question Q” (Chevallard & Bosch, 2019, p. xxiv). The
teacher’s work, such as designing lessons or developing resources, can be naturally
considered as a kind of inquiry. The rich analytical tools in the ATD allow us to
describe the dynamic process of teachers’ work as well as for their learning. Let us
analyze two example cases: lesson study in Japan and teachers’ collective designing
of lessons in France.
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3.2 The Case of Lesson Study

The lesson study in Japan is the teachers’ practices, including the designing and
implementation of lessons, often carried out in the context of school-based profes-
sional development called konai-kenshu (see Fernandez & Yoshida, 2004 for more
details). It is not usually easy to identify the critical aspects in terms of the
professional development to characterize or conceptualize it because this is a
teachers’ spontaneous practice in the field, and there is a diversity in its form in
Japan. For example, the lesson study is often described as a cyclic process (Lewis
et al., 2006), but it is not often the case in Japan that the long process of lesson study
is iterated several times because the focus is not a single lesson, but the sequence of
lessons for a unit or chapter and one lesson study does not usually continue to the
next school year. Further, while teacher collaboration is often emphasized in the
description of lesson study outside Japan, it is scarce in Japan that a group of teachers
collaborates all through the process of lesson study. Usually, a single teacher is
designated as a principal teacher who designs and implements the lessons. It is a
professional development mainly for that teacher. If another lesson study is orga-
nized in the same school, another teacher will be designated as a principal teacher
and design lessons for another grade and unit.

When describing a practice, the researcher implicitly adopts a specific viewpoint
that seems important to remark on. It is, therefore, crucial to set up explicitly a
framework or viewpoint to characterize the practice in scientific research. In this
paper, we regard teachers’ work in the lesson study as an inquiry and the theoretical
constructs related to the inquiry within ATD are adopted. From this perspective, our
claim is that the structure of the lesson study is characterized as in Fig. 1, while there
should be some variations according to the context.

As mentioned earlier, teachers’ practices in the lesson study could be character-
ized in terms of paradidactic praxeologies. What describes teachers’ practices from

Elaborating the tasks 
and activities in the 
small group

Designing tasks and 
activities  with 
respect to the school 
theme/mission

Designing lessons 
and writing a lesson 
plan

Discussing on the 
lesson plan in a larger 
group

Trial 
teaching in 
other classes

Open 
research 
lesson

Discussion 
with 
participants

Analysing 
the practices 
and writing 
a report

1 month or more

Individual work

Collective work

Fig. 1 The dialectic of the individual and the group and the types of associated tasks
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this perspective is, first of all, the types of tasks, that is, paradidactic tasks in our case.
Figure 1 describes in the chronological order paradidactic types of tasks the teachers
are working on in the process of lesson study. I also take into consideration the
dialectic of the individual and the group, which is a dialectic that can be found in the
inquiry (Chevallard & Bosch, 2019, pp. xxiii–xxiv). This aspect is critical in the
context of Study and Research Paths (SRP) or inquiry-based teaching as well as for
in the lesson study because, on the one hand, there is always individual work in some
parts of lesson study and inquiry and, on the other hand, this aspect describes the
topogenesis (Chevallard, 1991) of the teachers’ overall practice and knowledge
(i.e. paradidactic praxeology) as well as the mathematical and didactical praxeol-
ogies to be implemented in the classroom. The notion of topogenesis describes in the
ATD the roles of different participants (usually teacher and learners; principal
teacher and other teachers or experts in the case of lesson study) in terms of the
emergence of knowledge. In contrast, the horizontal bar (timeline) shows the
chronogenesis (Chevallard, 1991) that describes the timings of the emergence and
development of a paradidactic praxeology as well as the mathematical and didactical
praxeologies. Let me briefly further explain this diagram (Fig. 1).

In the lesson study within a school, an individual teacher is designated to carry
out a lesson study. He or she first designs mathematical activities (MP) to be
implemented in the classroom in relation to the theme of the school. Then, the
teacher brings them into the discussion with the colleagues in a small group and
develops these activities. After the discussion, there is still individual work, and
repeat this discussion two or three times. After designing the activities, the teacher
writes a formal lesson plan which details the goal of lessons, the structure of the
sequence of lessons, the ideas of lesson design, and the progression of a lesson that
will be demonstrated to the colleagues and visitors [see the examples given by
Fernandez and Yoshida (2004) and Miyakawa and Winsløw (2013)]. Then, this
principal teacher takes it to another meeting in a larger group in the school and
discusses the detail of the lesson plan. After the discussion, this teacher revises the
lesson plan. Then, before the open research lesson, the teacher makes essays in other
classes, if possible. Then the teacher carries out the open research lesson to the
colleagues within the school. If this is a big open lesson, there are teachers from other
schools. Then, the post-lesson discussion follows. The participants discuss the
reasons for teacher’s instruction in the classroom, or what was good, what was not
good enough, how it can be improved, and so forth. After the lessons, the teacher
analyses his/her teaching practices during these lessons (no single lesson) and writes
a practice report [see for the examples Miyakawa and Winsløw (2019) and
Miyakawa and Xu (2019)]. Usually, the lesson study is finished at this step. But
sometimes, the teacher is asked to present these teaching practices in the meeting or
congress of teachers’ association. And a very few times, these practices are
published in a book for sale at bookstores.

The characterization of teachers’ practices in the lesson study, as shown in Fig. 1,
is a first step of the analysis of the inquiry. While it shows an overall process of
teachers’ work, it does not show how the teacher develops MP and DP to be
implemented in the classroom with supports from his/her colleagues. In particular,
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another aspect of the development of praxeology, which is often called mesogenesis
that describes the evolution of milieu (Chevallard, 1992), has not been taken into
account. This aspect is going to be discussed with the next example in the micro
analysis of teachers’ work.

3.3 The Case of Collaborative Design of Lessons

The teachers’work of designing and implementing lessons in the classroom happens
in the process of lesson study. The theoretical development of ATD related to the
inquiry allows us to go further to investigate this dynamic process of teachers’ work.
In what follows, we provide an example of the analysis of teachers’ practices, in the
case of the collaborative design of lessons in France (Trouche et al., 2019). The
French case, not the Japanese case, is discussed here due to the methodological
difficulty of data collection as lesson design is often carried out as individual work.
While the context of teachers’ practice is different from the lesson study in Japan, I
consider that the same analytical method could be applied in the case of lesson study.

Two teachers of a French public lower secondary school were working together
for preparing lessons on a topic, algorithmic, which was newly introduced in the
French mathematics curriculum. The data was collected from a one-hour session
wherein the teachers explore several textbooks and discuss what activities they will
use and how to teach this topic. The process of collaborative design in terms of the
inquiry within the ATD is summarized in Fig. 2.

This diagram accounts for, first of all, the dialectic of questions and answers (also
called the dialectic of inquiry; Chevallard & Bosch, 2019, p. xxiv), which is a main
characteristic of inquiry from the perspective of ATD. The timeline is segmented
into stages according to the questions (given below the timeline) the teachers dealt
with during the collective work. The answers to these questions are given above the
timeline. These answers were also classified according to the two-kinds of praxeol-
ogies: algorithmic praxeology in blue and didactic praxeologies in orange. The
diagram shows that two-thirds of the session was mainly used to explore mathemat-
ical activities for students that were in line with the target of algorithmic praxeology;
one third was used for the discussion on the didactic praxeology with respect to the
activities they found. There are also some interactions between them, which are
called in the ATD the didactic codetermination (Chevallard, 2002), the dynamic
process wherein the mathematical praxeology and didactical praxeology have deter-
mined each other.

Figure 2 provides further details about the dynamic process at a micro-level how
the teachers delimit the praxeologies to be implemented in the classroom through the
discussion with the colleague and the investigation of related materials and docu-
mentation. This process is called in the ATD the dialectic of media and milieus
(Chevallard & Bosch, 2019, p. xxii), which is another main characteristic of inquiry.
The media is defined as “a medium being any system that issues messages”, and the
milieu is “a system deemed to be devoid of any intention to prove or disprove σ
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[a statement], much like a part of the inanimate world” (idem), which is able to
produce feedbacks to the inquirer (the teacher in this case). In the process of
designing the lessons, the teacher obtained the answers or information (given
above the timeline) not only by themselves but also from different resources
(media): textbooks, internet, curricular documents official or not, colleagues, and
so forth. These answers constitute a part of the milieu with which the teacher
interacts during the lesson design. Therefore, the answers above the timeline in
Fig. 2 shows the evolution of the milieu for the teachers, that is to say, the
mesogenesis of the paradidactic praxeology.

In addition, the timeline implies, as in the analysis given in Fig. 1, the
chronogenesis of teachers’ paradidactic praxeology as well as the mathematical
(or algorithmic) and didactical praxeologies to be implemented in the classroom.

I briefly further explain the detail of this diagram (Fig. 2). For the collaborative
work, the different kinds of resources (media) had been prepared so that the teachers
would be able to consult during the session, such as the national curriculum, several
series of mathematics textbooks, the documents related to the algorithmic teaching,
and so forth. The two teachers worked on the different questions for designing
lessons to be realized in the classroom. As mentioned above, many of them relate to
the mathematical activities (MP) and some to the teacher’s instruction on how to
teach (DP). At the beginning of the session (Stage 1), the teachers consulted the
media and proposed some tentative answers to the initial question on the students’
activities to be implemented. They referred to the national curriculum as well as the
direction given by an inspector in the professional development program one of the
teachers had taken prior to this collaborative work and then proposed some activities
they preferred (Creperie, binary activity, and dance). From Stage 2, the teachers
started investigating different textbooks (media) and found different activities and
exercises as well as the teaching methods. In these stages (mainly from Stage 2 to
Stage 5), the main concern of the one teacher was to find ‘unplugged’ activities
which are carried out without using the computers; and the other teacher was
working on the activities or exercises they found in the textbooks, in addition to
browsing the different textbooks. One can find here more and more the interaction
with the milieu. From Stage 6, after finding preferred activities, the teachers began
working on the didactic questions on how to organize teaching activities in the
classroom. In particular, they decided to start the lessons with unplugged activities
such as Creperies (a kind of sorting activity) and sorting.

The process of designing lessons in the lesson study in Japan would be different
in terms of the way of collaboration between teachers. In the French case, the two
teachers were really working together with the same goal and with the same
responsibility, while in the Japanese lesson study, the roles and the responsibilities
(topos) attributed to the participants are often different according to the kinds of
participates. In terms of the ATD, the topogenesis of mathematical and didactical
praxeologies to be implemented in the classroom is very different. However, it is our
further question to what extent these characteristics of paradidactic practices are
different between France and Japan. The process of developing the mathematical
activities and designing the lessons might be similar to each other.
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4 Discussion and Conclusion

This lecture aims to show how we can analyze teachers’ collective work inside and
outside the classroom in terms of the ATD. Its theoretical constructs related to the
inquiry allow us to elucidate teachers’ work involved in the process of lesson study
and the lesson design. In particular, the dialectics related to the inquiry (questions
and answers, media and milieus, and the individual and the group) play crucial roles
to characterize the three principal aspects of the genesis of teacher’s paradidactic and
didactic knowledge: topogenenesis, chronogenesis, and mesogenesis.

Based on these results, two main issues seem crucial to be addressed in our further
study. The first one is the issue mentioned earlier on the paradidactic infrastructure
that makes teacher collaboration viable in different countries. In this paper, I
discussed the two example cases from the two different countries. Both of them
actually exist as a possible form of teacher collaboration. However, it is not evident
at all what cultural elements allow such existences. Some previous studies claim, in
the case of lesson study, that teachers’ associations, regional or national congress,
journals or bulletins for publication would be the critical conditions for teachers’
collaborative activities like lesson study (Miyakawa &Winsløw, 2019; Miyakawa &
Xu, 2019). Further detailed analysis is necessary.

The second issue is related to the theoretical constructs and the characterization of
teacher collaboration. The frameworks used to characterize teachers’ work in this
paper are the ones developed in the general context of teaching and learning within
ATD. Another important issue for our future study is to develop analytical tools to
characterize the aspects specific to teacher collaboration and to the design of
mathematics lessons. There are some attempts to tackle this issue. A Franco-Italian
group, for instance, tries to characterize teachers’ collaborative work with
researchers in terms of the Meta-Didactical Transposition, which describes the
mechanism of how the researchers’ praxeologies and teachers’ praxeologies are
shared and developed to the new ones (Aldon et al., 2013; Arzarello et al., 2014).
Since the teachers’ collaborative project often include different kinds of participants,
such as teachers, teacher educators, researchers, and politicians, the different prax-
eologies according to them play important roles in the collaborative work. Another
recent theoretical development by Otaki et al. (2020) would also be an important
contribution in this regard. They propose six dialectics that characterize the con-
straints specific to the teachers’ work around mathematics classroom as well as other
types of teachers’ paradidactic work: the dialectics of stakes and gestures, period
and study program, milieu and infrastructure, the predidactic and the postdidactic,
school and noosphere, and the designer and the analyzer.

100 T. Miyakawa



References

Aldon, G., Arzarello, F., Cusi, A., Garuti, R., Martignone, F., Robutti, O., Sabena, C., & Soury-
Lavergne, S. (2013). The Meta-didactical transposition: A model for analysing teacher educa-
tion programs. In A. M. Lindmeier & A. Heinze (Eds.), Proceedings of the 37th Conference of
the International Group for the Psychology of Mathematics Education (Vol. 1, pp. 97–124).
PME.

Arzarello, F., Cusi, A., Garuti, R., Malara, N. A., Martignone, F., Robutti, O., & Sabena, C. (2014).
Meta-didactic transposition: a theoretical model for teachers’ education programs. In A. Clark-
Wilson, O. Robutti, & N. Sinclair (Eds.), The mathematical teacher in the digital era
(pp. 347–372). Springer.

Assude, T. (2010). Enquête documentaire et action didactique conjoite professeur-élèves. In
G. Gueudet & L. Trouche (Eds.), Ressources vives. Le travail documentaire des professeurs
en mathématiques (pp. 341–356). PUR and INRP.

Ball, D. L., Thames, M. H., & Phelps, G. C. (2008). Content knowledge for teaching: what makes it
special? Journal of Teacher Education, 59(5), 389–407.

Chevallard, Y. (1991). La transposition didactique. La Pensée Sauvage (1st edition: 1985).
Chevallard, Y. (1992). Fundamental concepts in didactics: Perspectives provided by an anthropo-

logical approach. In R. Douady & A. Mercier (Eds.), Research in didactique of mathematics,
selected papers (pp. 131–168). La Pensée Sauvage.

Chevallard, Y. (2002). Organiser l’étude. Structures & fonctions. In J.-L. Dorier, M. Artaud,
M. Artigue, R. Berthelot, & R. Floris (Eds.), Actes de la 11e École d’Été en Didactique des
Mathématiques (pp. 3–22). La Pensée Sauvage.

Chevallard, Y. (2009). Remarques sur la notion d’infrastructure didactique et sur le rôle des PER.
Lecture given at the Journées Ampère in Lyon, May 2009. http://yves.chevallard.free.fr/spip/
spip/IMG/pdf/Infrastructure_didactique_PER.pdf

Chevallard, Y. (2019). Introducing the anthropological theory of the didactic: An attempt at a
principled approach. Hiroshima Journal of Mathematics Education, 12, 71–114.

Chevallard, Y., & Bosch, M. (2019). A short (and somewhat subjective) glossary of the ATD. In
M. Bosch, Y. Chevallard, F. J. García, & J. Monaghan (Eds.),Working with the anthropological
theory of the didactic in mathematics education. A comprehensive casebook (pp. xviii–xxxvii).
Routledge.

Fernandez, C., & Yoshida, M. (2004). Lesson study: A Japanese approach to improving mathe-
matics teaching and learning. Lawrence Erlbaum Associates.

Isoda, M., Stephens, M., Ohara, Y., &Miyakawa, T. (2007). Japanese lesson study in mathematics:
Its impact, diversity and potential for educational improvement. World Scientific.

Lewis, C., Perry, R., & Murata, A. (2006). How should research contribute to instructional
improvement? A case of lesson study. Educational Researcher, 35(3), 3–14.

Margolinas, C., & Wozniak, F. (2010). Rôle de la documentation scolaire dans la situation du
professeur: le cas de l’enseignement des mathématiques à l’école élémentaire. In G. Gueudet &
L. Trouche (Eds.), Ressources vives. Le travail documentaire des professeurs en mathématiques
(pp. 233–249). PUR and INRP.

Miyakawa, T., & Winsløw, C. (2013). Developing mathematics teacher knowledge: The
paradidactic infrastructure of “open lesson” in Japan. Journal of Mathematics Teacher Educa-
tion, 16, 185–209.

Miyakawa, T., & Winsløw, C. (2019). Paradidactic infrastructure for sharing and documenting
mathematics teacher knowledge: a case study of “practice research” in Japan. Journal of
Mathematics Teacher Education, 22(3), 281–303.

Miyakawa, T., & Xu, B. (2019). Teachers’ collective work inside and outside school as an essential
source of mathematics teachers’ documentation work: Experiences from Japan and China. In
L. Trouche, G. Gueudet, & B. Pepin (Eds.), The ‘resource’ approach to mathematics education
(pp. 145–172). Springer.

Analyzing Mathematics Teachers’ Collective Work in Terms of the Inquiry 101

http://yves.chevallard.free.fr/spip/spip/IMG/pdf/Infrastructure_didactique_PER.pdf
http://yves.chevallard.free.fr/spip/spip/IMG/pdf/Infrastructure_didactique_PER.pdf


Otaki, K., Asami-Johansson, Y., & Hakamata, R. (2020). Theoretical preparations for studying
lesson study: Within the framework of the anthropological theory of the didactic. In H. Borko &
D. Potari (Eds.), ICMI Study 25 conference proceedings: Teachers of mathematics working and
learning in collaborative groups (pp. 150–157). University of Lisbon.

Robutti, O., Cusi, A., Clark-Wilson, A., Jaworski, B., Chapman, O., Esteley, C., Goos, M., Isoda,
M., & Joubert, M. (2016). ICME International survey on teachers working and learning through
collaboration: June 2016. ZDM Mathematics Education, 48, 651–690. https://doi.org/10.1007/
s11858-016-0797-5.

Shulman, L. S. (1986). Those who understand: knowledge growth in teaching. Educational
Researcher, 15(2), 4–14.

Takahashi, A., & McDougal, T. (2016). Collaborative lesson research: Maximizing the impact of
lesson study. ZDM Mathematics Education, 48(4), 513–526.

Trouche, L., Gitirana, V., Miyakawa, T., Pepin, B., & Wang, C. (2019). Studying mathematics
teachers interactions with curriculum materials through different lenses: Towards a deeper
understanding of the processes at stake. International Journal of Educational Research, 93,
53–67.

Winsløw, C. (2011). A comparative perspective on teacher collaboration: the cases of lesson study
in Japan and of multidisciplinary teaching in Denmark. In G. Gueudet, B. Pepin, & L. Trouche
(Eds.), From text to “lived” resources: Mathematics curriculum materials and teacher devel-
opment (pp. 291–304). Springer.

102 T. Miyakawa

https://doi.org/10.1007/s11858-016-0797-5
https://doi.org/10.1007/s11858-016-0797-5


On the Problem Between Devices
and Infrastructures in Teacher Education
Within the Paradigm of Questioning
the World

Francisco Javier García, Elena M. Lendínez, and Ana M. Lerma

1 Introduction

Schools, in a broad sense, are social institutions created to facilitate that certain
groups of people get access to certain kind of knowledge. With any social institution,
the way they work is affected by a complex set of conditions and restrictions. These
determine, very often implicitly, what could be studied within a given institution and
how. That is what Chevallard (2015), in the framework of the Anthropological
Theory of the Didactic (ATD), called a didactic paradigm. Initially, he distinguished
between two ideal cases, named the paradigm of visiting works (PVW) and the
paradigm of questioning the world (PQW). In short, in the former paradigm, the
study is organized as if mathematical works had already been created elsewhere and
the students are just visiting them. Mathematical works are presented as finalized
works, giving students little opportunities to understand why these works were
created and what they serve for (it is usually said that their raison d’être is absent).
In the latter, the study is organized around the exploration of crucial and live
questions. Thus, it is fostered a functional approach to mathematical works as
means worth knowing to deal with such questions (that is, their raison d’être is put
at the front of the study process). The PQW is generally represented with the
developed Herbartian scheme (Fig. 1), describing a didactic system S in which:
X are the students, Y are the ‘study helpers’ (teacher(s), in a broad sense), Q the
question students are exploring, already existing answers that they could consider
when exploring Q, Wj already existing works useful to study and deconstruct such
answers, Qk derived questions that could emerge along the study process (whose
exploration could need considering new answers and new works Wj), and A♥ the
answer X could get to, as a consequence of the whole study process, that could be
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offered as a possible answer to Q (for a more detailed explanation, see the ATD
glossary at Chevallard et al., 2020).

The notion of didactic paradigm has been extensively used in research within the
ATD, normally applied to institutions in which mathematics or other disciplines are
studied. Our aim here is to expand the use of this notion to institutions focused on
teacher education, where the didactic stake is not just mathematics works, but also
didactic ones, as the generating question is connected with the teaching and learning
of mathematics. Following the Herbartian scheme above, now S is interpreted as a
teacher education system in which: X are teachers, Y are teacher educator(s),
(eventually Y¼∅ if the study process is self-regulated),Q is a professional question
(in the sense of a question that addresses issues that matters to the profession).
Already existing answers and worksWj could be diverse, but would include, at least,
those connected with mathematics (more related to the epistemological dimension of
teacher education) and those connected with the teaching and learning of mathemat-
ics (more related to the pedagogical dimension of teacher education). Likewise,
derived questions Qk could be more related to epistemological issues and/or peda-
gogical ones. Finally, the tentative answer A♥ might be interpreted as a professional
answer, including both mathematical and didactic praxeologies, although the bal-
ance between them could differ depending on the nature of the professional question
Q they are exploring (more epistemology oriented or more pedagogy oriented).

Organising teacher education under the paradigm of questioning the world of the
teaching profession, which we will represent as PQWTP, might be desirable since it
would favour a functional and meaningful access to professional knowledge, in
contrast with teacher education programmes structured more in the sense of visiting
mathematical and pedagogical works. It leads to interesting questions like: is it
possible to organise teacher education under the PQWTP? What does a teacher
education process under the PQWTP look like? What are the conditions needed to
realise the PQWTP (in initial or in-service teacher education)?

Answering these questions goes beyond the scope of this chapter. However, our
aim is to initiate the exploration of them. In our understanding, any possible answer
to these questions should be connected, to some extent, with the issue of teacher
education devices and infrastructures.

Fig. 1 Developed Herbartian scheme

104 F. J. García et al.



2 Devices and Infrastructures: an ATD Perspective

Chevallard et al. (1997) introduced the notion of devices that facilitate the study of a
mathematical work. They defined a didactic device, in a general sense, as “any kind
of mechanism arranged to produce some educational aims” (p. 277, our translation).
They offered some examples: a “mathematics lesson”, “a textbook”, “the school
library”, “exam papers”, or “the questions that a teacher uses in his/her lesson” could
be seen as didactic devices. In a first approach, the notion might be seen as too broad
and undetermined. Later on, they distinguished between pedagogical and didactic
devices, depending on whether they are general ones (like “textbooks”) or specific to
the teaching of a discipline (like, for instance, the “mathematical practices work-
shops”). This distinction offers a hint to clarify and sharpen the notion: devices could
be conceptualised in relation to the different levels of didactic codeterminacy.

These levels are explained in Chevallard and Bosch (2020) as ‘places’ from
which conditions that affect study processes emanate (Fig. 2), considering that
conditions originated in one level might appear as restrictions to what is possible
in the levels below it.

From these levels, it is possible now to interpret pedagogical devices as those
connected with the so-called higher levels (above ‘didactic systems’: pedagogy,
school, society . . .) while didactic devices could be those related to the so-called
lower levels (below ‘didactic systems’: discipline, domain, sector, theme, subject).
For instance, a “lesson” could be seen as a device related to the school level, a
“textbook” as one related to the pedagogy level, while “mathematics textbooks” and
“calculators” could be interpreted as devices at the discipline level, the “(general)
number line” a device at the domain level (arithmetic), “natural/integer numbers
lines” as devices at sector level (natural numbers and integer numbers, respectively).
From this perspective, it is important to notice that a device in one level could
include devices from levels below or could be part of devices related to levels above.

Devices are essential in any study process. Indeed, it is hard to imagine a study
process without them. However, study processes do not occur isolated but within
institutions that are subject to conditions and restrictions arising from the different
levels of didactic codetermination. Devices need supporting conditions to exist and
produce the educational aims they are supposed to. The notion of infrastructure
arises then.

According to Chevallard and Bosch (2020), an infrastructure is a general concept
within the ATD that refers to “the underlying base needed to develop any deter-
mined, superstructural activity” (p. xxix). The notion appeared previously in
Chevallard (2009), in the context of the conditions for the implementation of the
pedagogy of study and research activities and paths. Chevallard (2009) argued that,

Humankind ⇆ Civilisation ⇆ Society ⇆ School ⇆ Pedagogy ⇆ Didactic System ⇆ 
⇆ Discipline(s) ⇆ Domain ⇆ Sector ⇆ Theme ⇆ Subject 

Fig. 2 Scale of levels of
didactic codeterminacy
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for such kind of devices to exist, a mathematical-didactic infrastructure is needed. In
the same vein, Miyakawa and Winsløw (2013) consider an infrastructure as the “set
of conditions for the teachers’ work in the classroom—with a concrete mathematical
organisation and didactic organisation—[. . .] and refers ultimately to the levels of
co-determination of those organisations” (p. 189). Later, they state that “the infra-
structure of the classroom [. . .] involves both elements which are generic to all
teachers of a given school and some which are specific to the teaching of mathe-
matics and thus to the development of students’ mathematical praxeologies”
(Miyakawa & Winsløw, 2019, p. 284). They admit that, while the notion is abstract,
what matters is the systemic point of view it offers, since it brings to the front “a
multitude of apparently unrelated factors as a coherent whole which conditions and
constrains a particular set of praxeologies, without determining them entirely” (Ibid.,
p. 284).

Considering both notions together offer an interesting perspective that we for-
mulate here as a working hypothesis: any study process entails the activation of a set
of devices, which is possible only if an underlying infrastructure exists. Both devices
and infrastructure are notions that rely on each other and relate to the different levels
of didactic codeterminacy (Fig. 3).

3 Devices and Infrastructures for Teacher Education
in the Paradigm of Questioning theWorld of the Teaching
Profession

In the introduction of this chapter, we opened the question related to if it is possible
to organise teacher education under the PQWTP. If so, new questions arise: how
would these study processes look like? And, what conditions are needed to support
them? Now, we can reformulate these questions more precisely, as the interaction of
two didactic problems:

• The problem of the devices: what kind of teacher education devices could be
used to realise the PQWTP?

Fig. 3 Didactic devices and infrastructures

106 F. J. García et al.



• The problem of the infrastructures: what kind of infrastructures are needed to
support such devices so that they can produce the intended educational aims?

Within the ATD, different kinds of teacher education devices have been designed,
implemented and analysed, as well as the infrastructure needed to support them. For
instance, Cirade (2006) proposed the ‘question of the week’ device, Ruiz-Olarría
(2015) and Barquero et al. (2020) proposed the ‘study and research paths for teacher
education1’, or García et al. (2020) who proposed a teacher education device based
on a ‘structured exploration of professional questions’.

Explaining the affordances and limitations of these devices, as well as the
infrastructure needed to support them, would go beyond the scope of this chapter.
However, it is important to point out that (1) these devices have been developed with
a focus on the exploration of meaningful questions of the teaching profession
(according to the Herbartian schema applied to teacher education), and (2) their
implementation in the initial and/or in-service education of teachers would need the
creation of infrastructural elements that are currently missing in the institutions in
charge.

The aim of our research is to find out whether lesson study, in an appropriate
form, could be interpreted as a teacher education device within the PQWTP. And,
from this, to advance in the problem of the infrastructures related to this device.

4 Lesson Study as a Teacher Education Device Within
the Paradigm of Questioning the World: An ATD
Perspective

In brief, a lesson study could be described as a device that allows the teacher to
develop their professional knowledge through the collaborative and careful design of
a lesson, its implementation and direct observation in the classroom, and a joint
analysis in a post-lesson discussion (Doig & Groves, 2011; Fernández & Yoshida,
2004). Usually, it is structured as a cyclical process (Fig. 4). Based on Fujii (2014,
2016), its main features are:

1. Lesson study starts from some teachers’ concern about students’ learning, which
leads to the formulation of a ‘research question’.

2. The group of teachers engages in collaborative research activity around the topic
at stake, curricular documents, existing resources, etc. that leads to the design of a
lesson. This lesson is detailed in a document (called ‘lesson plan’), which usually
includes: the objective of the lesson, its connections to the research question,
relation with the curriculum, a detailed analysis of students’mathematical activity
within the lesson, and a description of teacher’s actions within the classroom.

1With a modular structure based on existing study and research paths designed for primary,
secondary or tertiary levels.
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3. The implementation of the lesson (called the ‘research lesson’) by a teacher of the
lesson study group, while the others observe it.

4. A post-lesson collective discussion focused on students’ strategies and difficul-
ties, and connected to the research question. This discussion could be enriched
with some input made by an external expert.

5. A final reflection, to consolidate and carry forward learning, and to identify new
questions for the next cycles. It could include the writing and publication of a
report.

The lesson study has already been problematised within the ATD. Winsløw
(2011) uses the notion of didactic system S(X, Y, O): formed by a group of ‘students’
X, supported by a ‘teacher’ Y, and with the aim that X study (and learn) O. He
considers that, in lesson study, there are two kinds of didactic systems: (1) the one in
school (captured in the lesson plan and happening in the research lesson, where O is
a mathematical work), (2) the one in which X are teachers, Y could be empty, another
teacher and/or an expert, and O is a work about the teaching and learning of
mathematics. These systems correspond to teachers’ collective work during the
lesson planning, the research lesson, and the post-lesson discussion. To differentiate
between them, Winsløw proposes using the word ‘paradidactic systems’, consider-
ing that, in fact, these are systems in which teachers work and learn about a didactic
system.

Based on Winsløw (2011), García et al. (2019) consider that teachers’ activity
within each paradidactic system could be described in terms of praxeologies. The
benefits of this approach are that teachers’ activity within these systems can now be
analysed in terms of types of tasks, techniques, technologies and theories. These
would contribute to a better understanding of lesson study as a teacher education
device, as well as to how it contributes to developing teacher knowledge. Figure 5
synthetises this approach, making visible some of the type of tasks teachers carry out
when they engage in lesson study.

We argue that lesson study could be interpreted as a teacher education device
within the PQWTP. First of all, because it is a study process that starts from a

Fig. 4 Lesson study cycle
(Fujii, 2014, 2016)
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professional question. Second, because, to develop the lesson plan, teachers have to
engage in a research process in which ‘answers’ of different nature might be
considered and analysed (like curricular documents, textbook, online resources,
professional books, research papers . . .). Finally, because it leads to the building
of an ‘own answer’, in the form of a lesson plan and a research lesson, besides the
device allows the teacher to reflect on their answer, to discuss and to develop it
further. Thus, teachers engage in collective work throughout different paradidactic
systems, carrying out certain types of tasks (Fig. 5) that potentially would contribute
to an enlargement of their professional knowledge.

5 Lesson Study and the Problem of the Infrastructure

Supporting lesson study is challenging. Research has extensively reported about
conditions that favour or hinder lesson study in each country, particularly in Japan,
where the practice originated and seems to be established. Usually, researchers rely
on a general notion of ‘culture’ to find out what are the conditions that favour lesson
study, which includes a mixture of conditions. For instance, in Japan, Lewis and
Tsuchida (1998) mention a frugal curriculum, a culture of collaboration among
teachers and critical self-reflection, and stability in educational policies as key
factors, while Shimizu (2014) identifies the formulation of clear students’ learning
goals in the national curriculum and teachers’ voluntary efforts with the support of
administrators. Doig et al. (2011) add the existence of classroom culture in which
each student is willing to engage in the tasks and contribute together with a teacher
professional culture opened to other perspectives of teaching and seeing commen-
taries as positive contributions.

Fig. 5 Lesson study from the ATD perspective (García et al., 2019, based on Winsløw, 2011)
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Without denying the relevance of these and other ‘cultural’ factors already
identified in the lesson study literature, our hypothesis is that the notion of infra-
structure, and its relation to the levels of didactic codetermination, could contribute
to our understanding of what might make a lesson study sustainable and successful.

A first consequence of this approach (García et al., 2019) is that most of the
‘factors’ (infrastructural components) already identified are more related to the upper
levels of didactic codeterminacy (above discipline), while ‘factors’ more related to
the lower levels (discipline and below) seems to be neglected. In fact, García et al.
(2019) analysed three cases of lesson study in three different contexts (Japan,
England and Spain) which were organised under three different epistemological
and didactic models: in Japan under the ‘structured problem-solving approach’
model, in England under the ‘teaching problem-solving’ approach, and in Spain
under the Theory of Didactic Situations (TDS). This analysis showed that the
professional praxeologies within each paradidactic system and, particularly, the
professional tasks teachers face, how they tackle them, and the technological-
theoretical discourses that explain and justify teachers’ activity in lesson study, are
critically affected by the epistemological models about mathematics and its teaching
that the lesson study community assumes. As a consequence, it would be stated that
a crucial dimension of lesson study infrastructure is the epistemological and didactic
models assumed, very often implicitly, by the lesson study community. For instance,
in the case of Japan, the success of lesson study in elementary and middle school
could largely be explained by a shared understanding and adoption of the ‘structured
problem-solving approach’ as an epistemological and didactic model of reference. In
the Spanish case analysed, carried out with prospective teachers, researchers found
out that a sufficient understanding of the TDS was crucial in the implementation of
the lesson study cycles.

6 Conclusions

Implementing teacher education under the paradigm of questioning the world is a
challenge that we have connected here with two basic problems: the problem of the
devices and the problem of the infrastructures in teacher education. This
conceptualisation seems to be useful to advance our understanding of how
organising teacher education and how best to support it. Different kinds of teacher
education devices have already been experimented with in the ATD, like the
‘question of the week’, ‘study and research paths for teacher education’ or the
‘structured exploration of professional questions’. In this chapter, we focus on
another device, which has attracted interest from researchers worldwide: lesson
study. Specifically, in the chapter, we have argued that (1) lesson study can be
reformulated as an articulated set of paradidactic systems, (2) activity within these
systems can be modelled in terms of professional praxeologies (thus, as types of
professional tasks and techniques, as well as technological and theoretical dis-
courses), (3) supporting these systems need the existence of adequate infrastructure,
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(4) an essential component of this infrastructure is the epistemological and didactic
models adopted by the lesson study community. Thus, we consider that this
approach could contribute to a better understanding and a theorisation of lesson
study, as well as of other teacher education devices.
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Introduction of Ordinal Number
at the Beginning of the French Curriculum:
A Study of Professional Teaching Problem

Floriane Wozniak and Claire Margolinas

1 Introduction

In mathematics, cardinal and ordinal are two aspects of integers. However, cardinal
aspects are usually dominant at the beginning of the mathematics curriculum
(pre-elementary and beginning of elementary curriculum: 3–7 year-old).

We will interpret this teaching problem using different theoretical approaches in a
complementary perspective. Within ATD, we can consider this teaching problem as
a question of didactic transposition (Chevallard, 1985) and of the use the praxeo-
logical analysis in order to understand its different constraints (Chevallard, 2011).
Within TDS (Brousseau, 1997), we can consider this teaching problem in a didactic
engineering design that begins with the determination of a fundamental situation and
includes experimental observations (Bessot, 2011).

A recent French curriculum (Ministère de l’éducation nationale, 2015) empha-
sizes the importance of ordinal number and more generally of numbers as means of
remembering a position (Margolinas & Wozniak, 2014). This new aspect of num-
bers thus poses a teaching problem: how teachers are supposed to interpret this piece
of curriculum?
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2 A Praxeological Analysis of the Mathematical Coordinate
System’s Knowledge

An elementary way to distinguish ordinal number and cardinal number is to examine
two situations. Let us consider two bags both containing 10 beads: 9 blue and 1 red.
These bags have the same content and same quantity of beads. There is no way to
distinguish their content. Let us consider now, two bits of thread knotted at one end.
We thread the beads from the two bags separately: an order is created and the red
bead’s position among the blue ones is different on the two threads (9 chances out of
ten). A cardinal number is a number used to remember the quantity of a set of objects
and an ordinal number is a number used to remember the position of an object on a
list. List and set in one hand, position and quantity in the other hand are the two main
elements to distinguish these different functions of numbers.

Let us consider now some praxeologies to locate an object on a one-dimension
space (a line) in order to better characterize an ordinal number. A young girl calls her
friends: Lara, Luca, Lila . . . It is easy to determinate that Lila is the third on the list.
The enunciation of the names implicitly gives the starting point (the first name
enunciated) and the enunciation of the sounds is ordered by the time order (one
name after one name). It is not the same situation if we are looking for the second
token from the green token in identical rows of tokens in various dispositions
(Fig. 1). Is it the yellow or blue token?

In this case, there is no implicit linear coordinate system (usually called “number
line” in English and “repère” in French) with an origin, an orientation, and a unit.
Such a coordinate system is needed in order to locate an object on a one-dimensional
space. It can be more or less implicit in situation or explicitly created. For example,
in Fig. 1, you can say “starting from the first orange token, the green token is the
fourth”: you do not need to explicit the direction of the number line (from the orange
token there is only one direction) or the unit (each token represent a unit), but you
need to explicit the origin or the first unit.

If all objects on a list are different, it is possible to locate one without using any
ordinal number. For instance, let us suppose the origin is the purple token in Fig. 1
(the direction is then given towards the other tokens). By enumerating the colours of
tokens, it is possible to order each of them: purple, blue, red, etc. A few words are

Fig. 1 Some rows of tokens
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then enough to locate a particular token: for instance, the grey token is between the
green token and the yellow one, or the blue token is after the purple one. So if the
objects are different from each other, a coordinate system is not necessary, even if
the objects are arranged in a line. The use of a line or a list is not a sufficient
condition to need an ordinal number.

Another aspect must be studied now: the relationship between cardinal number
and ordinal number. Let us consider a collection of different forms (Fig. 2). To count
them transforms the collection into a list by successively pointing at them: trape-
zium, heart, head, triangle, cloud, sun.

There are 6 drawings and the last drawing pointed is the sun, thus the sun is in
sixth position on the oral list. The cardinal number witch expresses the quantity of
elements in a set corresponds to the ordinal number witch expresses the position of
the last element in the list of enumerated elements. Couturat (1896, p. 305) has
shown the duality between cardinal number and ordinal by proposing a way to define
cardinal numbers from ordinal numbers [our translation]:

“Let us imagine a simple infinite sequence of numbers 1, 2, 3, 4, 5, 6, 7, 8, 9, . . . A set of
signs such that one of them is the first (1) and for each of them corresponds to another
determined one that follows it immediately: we say that we have built a system of ordinal
numbers. It should be noted that these signs have no other meaning than that resulting from
the previous definition; in other words, each of them, 5 for example, has no other property
than to immediately follow a given sign (4) and to be immediately followed by another given
sign (6). [. . .] A collection of distinct objects is given, they are in one by one correspondence
to consecutive numbers, starting from 1; in other words, each of them is assigned successive
order numbers: 1, 2, 3, 4, 5. . . without forgetting or repeating one of them. The last ordinal
number thus used, n, is called the cardinal number of the given collection, or the number of
given objects; and we said that there are n objects in the collection. This operation is called
numbering/counting; it consists in counting the objects [. . .] The set of these signs arranged
in this order is called the natural sequence of whole numbers.

Thus, counting numbers (one, two, three . . .) arises from the need to use an
ordered and stable list of words to count or to locate.

Finally, the mathematical study of locating praxeologies makes possible to define
a reference praxeological model of the ordinal number at elementary school in
France. The “raison d’être” of ordinal number is to identify a position by using the
oral number sequence. The question to be studied is how to locate a distinct object in

Fig. 2 A collection of
different forms
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a list of identical objects. It is the place that has to be located, and not a particular
object among singular objects. The successful technique consists in choosing a
coordinate system for the list: an origin and an orientation. Numbering the elements
from the first after the origin until the targeted object gives the position (last
pronounced number).

3 A Didactic Engineering for Research

Two dimensions must be considered to design a didactic engineering: a mathemat-
ical organization as an ecological condition (definition of a reference praxeological
model); a didactical organization as an economical condition.

How can the main characteristics of the number as position concept be transposed
into situations? Using Brousseau’s terms, we are looking for a fundamental
situation:

“[. . .] a situation’s schema capable of generating, by the interplay of the didactic variables
that determine it, all the situations corresponding to a given institutional knowledge.1 Such a
situation, when it can be identified, offers teaching opportunities but above all a represen-
tation of institutional knowledge through the problems in which it intervenes, making it
possible to restore the meaning of the knowledge to be taught”. (Brousseau, 1998, p. 3, our
translation).

The search of a suitable fundamental situation leads to consider:
Milieu

• Objects are disposed on a line
• All objects are identical but at least one is different
• It is possible to determine an origin on the line

Situation’s stake

• To position a distinguished object on a list of neutral objects in order to have a one
to one correspondence with a model

Definition in act of “same position” through one to one correspondence
Goal of the fundamental situation

• Necessity to build a system of coordinates

Epistemological bases

• Make explicit the cardinal/ordinal duality
• Depart from the dominant model which consists in masking ordinal number

Theory of didactical situations (Brousseau, 1998; Brousseau et al., 2014) con-
siders an evolution of knowledge statuses that lead to consider different situations

1The terms “institutional knowledge” has been introduced by Margolinas in this volume.
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based on the same fundamental situation: action situations (the model is close to the
material or far away) with anticipation of the feedback, formulation situations (the
model is given some day and the material is given another day or the model is given
to a student and the material to another one).2

Our experimental choices, developed in 2012, is based on a milieu of a knotted
thread, nine identical neutral beads and one coloured bead (Fig. 3). Our choices are
coherent with our praxeological analysis.

In particular, by proposing a knotted thread, we offer the possibility of consider-
ing an origin (the knot) which:

• is not one of the objects whose position we can locate,
• corresponds both to the position from the origin and to the succession of the

manipulation of the beads that we thread.

Thus, the first bead from the origin is also the first bead threaded on the knotted
thread. Moreover, there is no ambiguity between the origin (which must mathemat-
ically have the abscissa 0) and the first pearl (which must mathematically have the
abscissa 1).

The conclusion from our engineering for research about students’ situational
knowledge (see Margolinas & Wozniak, 2014) confirms that number is only
known to students (5–6 years old) as a designation of quantity. During the formu-
lation situation, students were able to combine this mathematical knowledge with
their linguistic knowledge of the order of the written words (Goody, 1977). They
have coined an ‘oriented quantity’. For example, in order to remember the necklace
of Fig. 3, they would have written 3 1 6, that means starting from the knot, there are
3 neutral beads, 1 coloured bead and 6 neutral beads. This is a new situational
knowledge, which take into account the origin and a succession using the successive
words read. However, the principle of the economy of the ordinal number is only
rarely encountered in these situations.

Fig. 3 Two identical necklaces

2We do not refer here to the validation situation (discussion of the messages produced during the
formulation situation, see Margolinas in the same volume).
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4 Towards Training: Teacher’s Mathematical
and Didactical Knowledge Needs

In France, before 2015, ordinal number was mentioned in the national curriculum
but was missing from the list of required skills at the end of pre-elementary school
(3–6 year-old students). Thus, teachers taught only counting and some number
songs. In primary school (6–11 year-old students), the order relation was mentioned
with the type of task « placing a number/a fraction on the graduated numbers line »
but not the ordinal number. Since 2015, the ordinal number is explicitly mentioned
in the text and into the list of required skills [our translation]

Use the number to designate a rank, a position: The number also allows memorising the rank
of an element in an organized collection. To memorise the rank and position of the objects
(third bead, fifth hoop), children must define a reading direction, a direction of way, i.e. give
an order. (Ministère de l’éducation nationale, 2015, p. 14)

Locate a position in a row or in a list. Make the link between the rank in a list and the number
of items before it. (Minitère de l’éducation nationale, 2018, p. 24)

Why this change? In France, it is usual for a new Minister of education to change
curriculum. In 2015, the committee in charge of writing the new curriculum
consulted some researchers about mathematics education in primary school. Claire
Margolinas was part of them and she has presented our works and some elements
have been then introduced. This is an illustration of a didactic transposition phe-
nomenon: There is regularly the need to renew the works of the curriculum, even if
no one knows how to teach the new introduced piece of knowledge, in this case, the
institution “research in mathematics education” has legitimized this change. This
lead to a problematic of research in didactics that Chevallard (2011) considers as a
primordial problematic:

Given a project of activity in which a particular institution or person is contemplating
engaging, what is, for that institution or person, the praxeological equipment that may be
considered essential or merely useful in the design and execution of that project?
(Chevallard, 2011, p. 98, our translation)

This new curriculum thus trigger two questions: (1) How teachers are supposed to
interpret this piece of curriculum? (2) How teachers’ educators can support them in
this change on the curriculum?

To support a change on the curriculum, teacher educators must work on the
conditions and constraints affecting teaching systems and practices. Teacher educa-
tors have to determinate which can be the useful praxeological equipment for
teaching ordinal number and what training content might be proposed. This requires
identifying teachers’ missing praxeologies to be acquired, and the relationships
between existing praxeologies and future praxeologies to be developed.

Concerning mathematical and didactical organizations, the questions to be con-
sidered are: How to characterize a given piece of knowledge? What is its “raison
d’être”? How can a given piece of knowledge lives in the didactical system? How is
it possible to interpret students’ praxeologies?
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In the case considered here, the introduction of ordinal number as a new piece of
knowledge, taken into account our previous work, the specific question is: What
does didactic engineering for research teach us about mathematical and didactical
praxeologies useful for the teacher?

In our studies (Margolinas & Wozniak, 2014, 2015), we organised three types of
observations related to research engineering: (1) Post-experimentation: the experi-
mentation as a milieu; (2) Free implementation as an engineering-based research:
presentation of didactical purposes and research results; and (3) Free implementa-
tion: the engineering as a resource (not related to research).

Three main indicators of praxeological needs can be identified by observing
teachers’ practices. First, what teacher takes or modifies (ostensives, tasks, tech-
niques, technologies) compared to their usual practices through the didactic engi-
neering. Second, the part of logos in teachers’ praxeologies and its effects on the
mathematical praxeologies (mute, weak, strong, see Wozniak, 2012). Third, the
distance from the reference praxeological model used as the didactic engineering
foundation [degree of conformity, as introduced by Chevallard (2020)].

However, the direct observation of teachers’ practices is not the only way to study
the relationships between existing praxeologies and future praxeologies to be
acquired. The study of existing responses in teaching resources (e.g. textbooks3)
can reveal the ecological or economical constraints of the didactical system. Let us
consider a textbook (first year of elementary school) for illustrating the ecological or
economical constraints on the didactical system (Figs. 4, 5 and 6).

In the situation evoked in this textbook, Rose has 10 stones and has placed a stone
in each card. The arrow “Departure” represents the origin and the direction of the
line. The first question is “On which card did she arrived?”. In a second time, the
cards are turned face down and two cards are marked with coloured tokens. The type
of question is “Which are the drawings on those cards?”. The mascot gives the
indication of the expected answer: the green token is in sixth position on the line.

This problem is in conformity with the curriculum (“Locate a position in a line or
un a row”, see above) and the ordinal number is introduced via the relationship with
cardinal number. Since the arrow is an origin outside the line of cards, there are six
cards from the first card up to the sixth card. The cardinal number remains the
reference for a reason (origin outside the line of objects) that may not be explicit.
After the introductory situation, some exercises are proposed (Fig. 5). The questions
are “Which is the card in 5th and in 16th position?”

Thus, after the introduction of the relationship between quantity and ordinal
number, new words to express ordinal numbers are given and used. Ordinal number
appears, therefore, only as a simple vocabulary matter.

Let us consider now an example of pre-service teacher training provided by an
experienced pre-elementary school teacher who is also a part-time teacher educator.
Our hypothesis is that the specific status of this teacher educator reveals what the

3In France, teachers are free to choose textbooks for theirs students. Textbooks are freely published
without any control from the Ministry of education.
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profession understands about its institutional demand. The content of the courses is
organised in three parts: presentation of the curriculum, list of the vocabulary needed
for locating oneself, other persons or things (In front of, behind, before, after, back,
in the middle, between, next to, at the beginning, at the end, first, last), and study of
an example of teaching situation: “the train” (Fig. 6).

We find again, as in the textbook, the question of vocabulary. But the most
important is the inherent difficulty in this situation: orientation of the list of numbers
for numbering and movement of the train are in two opposite directions: The train
moves from right to left, and the list numbers for expressing the place from left to
right (Fig. 7).

Fig. 4 An introductory situation

Fig. 5 Exercise
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The coordinate system is thus define by an origin which is not a wagon (the
locomotive) and an orientation which is from left to right, thus identical to the
written words direction. Thus even if there is no awareness from the students (and
the teacher) of the coordinate system, the knowledge of the orientation of writing is
sufficient to answer all questions. In all the textbooks that we have consulted, this is
always the case, and that leads to make the hypothesis that the inherent difficulty of a
conflict of orientation may never been encountered and neither any new knowledge
about coordinate system.

Nevertheless, the significant element of the situation is about the learning objec-
tives announced: the ordinal number must be used for the spatial location of an
object in relation to others, but students don’t need to use numbers in a coordinate
system to succeed. Two didactic variables are essential: the number of compartments
and the characteristic of objects (animals) in each of them. With 5 compartments,
students can duplicate the model by using words such as: the first, after the first, the
last, before the last, the middle. With all different animals, students can also
duplicate the model by remembering the list of animals in a certain order: “cat,
rabbit, snake, cow, duck” or “duck, cow, snake, rabbit, cat”. In this situation there is
a confusion between spatial location (which is an important part of pre-elementary
school curriculum) and ordinal number. The ordinal number is a tool for spatial
location, but it is possible to locate without numbers, and some words in the list of
specific words to be learned have no relationship with numbers.

In summary, the study of these « works » shows that cardinal number dominates
ordinal number. In our previous study (Margolinas & Wozniak, 2014), we showed

Fig. 6 An example of teaching situation: “the train” [our translation]

Fig. 7 An inherent
difficulty, the opposite
direction
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how students’ productions in didactical engineering for research invent a new kind
of number we called “oriented number”. In the other hand, the study reveals that the
conditions for locating with a technique based on the use of ordinal numbers instead
of spatial techniques are unknown. The previous example of situations in
pre-elementary school textbook and the pre-service teacher training provided by
an experienced teacher illustrate it quite well. Thus, our answer about teacher’s
required praxeological equipment follows three directions: epistemological needs,
mathematical needs and didactical needs.

The result of our analysis is that the type of task T: To reproduce the position of
an object in a line composed of indistinguishable objects” is the “raison d’être” of
ordinal number.

Different situations have to be associated with this type of task (see Margolinas in
this volume about the difference between problem—or type of task—and situation):
action situation and formulation situation, in particular time delay is important in
order to experience the situational pieces of knowledge needed in order to memorize
a position.

From a mathematical point of view, it is necessary to know that for locating an
object on a line composed by indistinguishable objects, the line must be transformed
into a list. In other words, we must create a coordinate system: origin, orientation,
and unit. Thus, the one-to-one comparison in sequence is the technique to assess the
success of the achievement of T. At last, concerning didactical needs, teachers have
to understand that the construction of a coordinate system by students is a criterion of
understanding what ordinal number is.

5 Conclusion

Reflecting on the teaching of the ordinal number leads to questions on both “num-
ber” and “order”. “Number” is implicitly understood by its cardinal aspect, i.e. to
account for a quantity. As soon as a collection of objects is present, the quantity is
always available, but in order to be able to recognasi and talk about position, this
collection must be constituted as a list, i.e. it must be ordered. There is therefore no
situation in which the quantity is excluded for the sole benefit of the position, the
cardinal and the ordinal always appear together.

On the other hand, “counting”, i.e. pronouncing the oral sequence of word-
numbers by enumerating objects, is an useful technique both for determining the
cardinal of a collection of these objects and for numbering these objects and thus
saying the position of each of these objects in an ordered list.

However the technologies that explain the use of the technique of “counting” in
order to obtain the cardinal or the ordinal are different.

When one “counts” a collection of objects in order to compare the quantity of this
collection with the quantity of another collection, one makes a one-to-one corre-
spondence between objects and word-numbers. The order of the word-numbers is
not essential: “one, two, three, four” is a collection of words that has the same
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quantity as “four, three, two, one” or “one, three, four, two”. Of course if one always
uses the words in the same order, it is possible to remember only the last one (the
cardinal) but also one can compare two collections using any intermediary collection
of objects or words (Margolinas & Wozniak, 2012).

When one “counts” a list of objects in order to compare the place of a distin-
guished object on the list with the place of a distinguished object on another list, the
order of the word-numbers is one of the keys of the success of the technique, the
other is the designation of the origin, and sometimes also the orientation of the list.
For example, if one says on the phone that you have to open the second drawer of a
desk, this is not sufficient to know which drawer it is (the second from the top or the
bottom). Thus teachers are confronted with a problem which is not frequent: to make
a distinction between two praxeologies where the techniques are the same but the
technologies (and of course the theories) are different. Furthermore, one of the
praxeology is always available and the other is not. Last but not least, “order”,
when it deals with a spatially ordered list, inherits implicitly the order of writing,
which, in mathematics, is not relevant and plays the role as a hidden technique.

Our observations, both the engineering for research and their subsequent out-
comes on teachers’ practices (Margolinas & Wozniak, 2015), lead to consider that
the designed sequence cannot resist to the tendency to consider only the cardinal
praxeology. There is thus a challenge not only to share some carefully planned tasks
and situations to the teacher but most of all to share the “raison d’être” of those
situations.
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Study and Research for Teacher Education:
Some Advances on Teacher Education
in the Paradigm of Questioning the World

Berta Barquero and Avenilde Romo-Vázquez

1 Introduction: Study and Research Paths for Teacher
Education

Considering the general problem of moving toward the paradigm of questioning the
world (PQW) (Chevallard, 2015) in current educational systems, this chapter focuses
on the inevitable step of the professional development of teachers. In the framework
of the ATD, when thinking about how to plan teacher education in the PQW, various
assumptions raise about what teacher education may deal with and how to plan
teacher education programmes. On the one hand, previous research on the ATD on
teacher education (Cirade, 2006; Bosch & Gascón, 2009) stated that teacher educa-
tion programmes should include the questions affecting the development of teachers’
practice. That is, these professional questionsmay be at the core of teacher education
programmes. These questions of the teachers’ profession are of different levels of
generality since the more specific ones concerning a theme to the ones about the
school organisation or pedagogical decisions. However, it is important to consider
that many of them have an essential mathematical component. In other words, some
of the problems that teachers should face in their daily professional life are related to
mathematics and, particularly, to the didactic transposition process of this knowl-
edge at stake.

On the other hand, another aim of teacher education might be to facilitate the link
between new knowledge resulting from educational research with the reality of the
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classroom and present these tools to deal with and start proposing answers to these
professional questions, rather than presenting basing teacher education on as a set of
more or less dogmatic knowledge. Simultaneously, this didactic knowledge can be
used to question both curricular content and forms of teaching, thus allowing
teachers in training to formulate new problematic issues that implicitly hinder
teaching, acting transparently for all actors in the educational process.

These assumptions materialize in the proposal of study and research paths for
teacher education (SRP-TE), initially experimented by Sierra (2006) in the case of
preschool teacher education and developed by Ruiz-Olarría (2015) for the initial
training of secondary mathematics teachers. In this chapter, two case studies of
SRP-TE with pre-service and in-service mathematics teachers are discussed, which
were implemented in two different university contexts for teacher education. The
common aspect is that both courses start from a similar initial professional question
about how to analyse, adapt and integrate a learning process related to mathematical
modelling in school.

In the following sections, we present the general structure of the SRP-TE that, far
from being a close structure, is then adapted for each particular case study. We are
particularly interested in several aspects of both experiences. The first consist of
looking at what are the main derived professional questions that are at the core of the
different steps of the SRP-TE, guiding its development, and which answers are
expected to be built collectively between students-teachers and educators. The
second relies on the analysis of the evolution of the milieu that each experience
with the SRP-TE has been able to create between students-teacher and educators to
enable teachers’ epistemological and didactic questioning. The third concerns the
individual and collective work developed to jointly elaborate new mathematical and
didactic infrastructure or, at least, jointly acknowledge its necessity to deal with the
prevailing institutional constraints hindering the integration of the PQW in current
school systems.

2 General Structure of the Study and Research Paths
for Teacher Education

Five general modules organise an SRPs-TE, which appear as an inquiry-based
process combining practical and theoretical questioning of school mathematical
activities. For more details, Barquero et al. (2020) presents an overview of the
different SRP-TE implemented with different modalities of development in teacher
education.

• Module 0 starts by considering a professional question (i.e., how to teach
proportionality, algebra, integers or linear regression? How to integrate inquiry
in mathematics teaching?) in front of which student-teachers are invited to search
for available answers among the different accessible media (books, textbooks,
curricula guidelines, etc.), which eventually include some instructional proposals
coming from educational research.
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• Module 1 consist of proposing student-teachers experience a teaching activity
(based on the design of an study and research path (SRP)) that could, to a certain
extent, exist in a regular classroom closely linked to what could exist in school.
Student-teachers are asked to act as students within the SRP under the guidance of
the educators.

• Module 2 involves the analysis of the experienced SRP and the collective work on
the design of a lesson plan. Student-teachers might design an adapted version of
the previously experienced mathematical activity for a specific group of students
(theirs, if possible). This design takes the form of a lesson plan as close as
possible to teachers’ practice, including an a priori design of the activity. During
this adaptation, it usually happens that teachers “reduce” the potential of the
proposed instructional activity to face their school institutional constraints.

• Module 3 entails the implementation and in vivo analysis of the lesson plan.
Teachers are asked to implement their adapted teaching proposal in a real
classroom or with students in an out-of-class activity. In this module, teachers
are supposed to use the a priori design as a tool for managing the implementation
of the activity and for developing its in vivo analysis.

• Module 4 consist of the a posteriori analysis of the lessons. This last module is
devoted to sharing the teaching experiences, looking at what has happened
(compared to the a priori designs) and reflect on the conditions created and
constraints faced in the implementation(s). Teachers are asked to share and
compare the institutional constraints found and the level at which they manifest
themselves. Teachers finally can present a new adaptation of the instructional
proposal and a detailed analysis of the entire process. At the very end of the
SRP-TE, the results of the experimentation can be partially used as an answer to
the first initial question (‘How to teach . . .?’) that was at the origin of the whole
process.

The specific activities proposed depend on the initial professional questions, on
the particular context for teacher education and the possibilities of developing all the
modules, or only some of them.

3 The Herbartian Schema as a Didactic Model of Reference
for the Analysis of the SRP-TE

With the aim to analyse what exists (and what could exist) in the transition from the
paradigm of visiting works toward the paradigm of questioning the world, the
Herbartian schema appears as a useful didactic model of reference for this analysis.
As explained in Bosch (2018), the Herbartian schema indicates the main elements of
the inquiry process.
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S X,Y ,Q0ð Þ↷M½ �↪A♡

We start from a didactic system S in which X are the students, Y are the guides of
the study (teachers, in a broad sense), and Q0 is the generating question to which X,
with the help of Y, has to provide an answer A♡. The study ofQ0 generates an inquiry
process involving a didactic milieu M made up of different types of objects or tools
for the inquiry.

½SðX, Y ,Q0Þ↷M ¼ fA♢
1 ,A

♢
2 , . . . ,A

♢
m,Wmþ1,Wmþ2, . . . ,Wn, Qnþ1,Qnþ2, . . . ,

Qp,Dpþ1,Dpþ2, . . . ,Dqg�↪A♡

The A♢
m are already existing answers that seem helpful to address Q0 (or its

derived questions Qp) that the X and Y have discovered in the institutions around
them. The Wn are works drawn upon to make sense of the A♢

m , analyse and
reconstruct them to build up A♡. The Qp are the questions derived from the study
and inquiry into the Q0, the A

♢
m andWn, raised by the construction of A

♡. Finally, the
Dq are sets of data gathered in the course of the inquiry.

When we use the Herbartian scheme to analyse teacher education, the didactic
system S is composed of X students-teachers in training, Y are teacher-educator(s),
and Q0 is a professional question that generates the teacher education process. We
designate it as the generating question for teacher education: Q0-TE. The particular
SRP-TEs, we here considered, have the same initial generating question about:

How to analyse, adapt and develop a learning process related to mathematical modelling in
our teaching practice? How to institutionally sustain long-term learning processes based on
modelling? What constraints might be faced, and how overcome them?

The milieu M includes a diversity of elements (with the derived questions Qp, the
existing answers A♢

m, worksWn and data gathered Dq) of different nature, as they can
come from questioning different dimensions of teacher education. These elements
can be more connected to the epistemological dimension, that is, to the questioning
of the mathematical knowledge at stake (in our case, about how to conceptualise
modelling and how to describe and analyse it); or, to economic dimension (asking
about what exist in secondary or primary school institutions concerning modelling,
or about which particular conditions facilitate its integration); or, to the ecological
dimensions (asking about the conditions and constraints that facilitate or hinder the
dissemination of modelling practices in a broader sense). To characterise these
elements, we have used the following main dialectics (following the previous
works, Chevallard, 2011; Barquero et al., 2019).

First, we use the dialectics of the questions and answers to describe the main
professional questions and answers structuring the SRP-TE. As the structure, in term
of modules and on main professional questions addressed, are common for both case
study, Fig. 1 shows the main questions addressed in each module and the expected
answers to be built. We retake this figure in the conclusions to highlight the main
commonalities of both experiences.
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Second, we analyse each particular case study with respect to the dialectics of
media and milieus established in the teacher education process, focusing on what is
made available for teachers and which means are provided. And third, we focus on
the organisation of the individual and the collective work to make the didactic milieu
evolve as expected.

4 Analysis of Two Case Studies with SRP-TE

First, we present the experience with the SRP-TE organized by the CICATA
(Instituto Politécnico Nacional) that has been implemented during the last six
academic years, from 2014/15 to 2019/20. Participants are in-service secondary
and university teachers, mostly from Mexico and other Latin American countries
(Argentina, Chile, Colombia, Guatemala, Paraguay and Uruguay). The course ran
over 4–5 weeks with an expected work from participants of about 80 h. This case
study is particularly interesting due to its adaptation to the online and in distance
modality, considering the multimedia tools, forums, videos, Moodle platform, as
well as the asynchronous working conditions. Moreover, the optimal conditions of
the number of hours, the reduced number of participants (about fifteen in each
edition of the course, with about five educators), and the fact that participants are
in-service teachers made possible to develop all the modules of an SRP-TE. The
second case study has been implemented with pre-service primary school teachers at
the University of Barcelona (Spain). It has been implemented since the academic
year 2011/12. The SRP-TE ran over a compulsory course called “Didactics of

Fig. 1 Structure of the SRP-TE in term of the main Q-A in each module
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Mathematics II”, with fourth-year students, which aims to introduce tools from
didactics of mathematics to address the professional tasks to analyse, design and
evaluate mathematical practices in primary school. All the classroom sessions have
been developed face-to-face over about 2 months within 2-h session twice a week.

4.1 Case Study 1: The SRP-TE About Modelling
the Evolution of Facebook Social Network

We focus on the particular SRP-TE developed in 2018/19. For 5 weeks, we
approached the Q0-TE presented, with an adaptation of the general structure of the
SRP-TE into four main activities that covered from module 1 to module 4. They
mainly consisted of (Act1) Carry out the SRP (role of a student); (Act2) Preparing
an adaptation of the SRP for their students (role of a designer); (Act3) Implementing
an SRP (role of a teacher); and (Act4) Analysing the implemented SRP (role of an
analyst-didactician).

More concretely, the first activity—corresponding to Module 1—proposed the
resolution and analysis of a modelling activity about ‘Modelling the forecast of
Facebook user’ with the main aim to let participants experiment an SRP close to
what could exist in the classrooms [a more detailed description of an implementation
of this SRP at university level can be found in Barquero et al. (2018b)]. Participants
were asked to ‘live’ it as mathematical learners or students. They were asked to
become a team of mathematical consultants and provide an answer to a request from
“Publicity” (an invented name for a consultant firm specialized in social networks)
which wanted to have a deep study on the initial question about “How to predict the
evolution of users Facebook: growth of the number of users by geographical area,
existing predictions, variables at stake, open and unused accounts, etc.?”. To develop
this activity, five groups of teachers were formed. Each group was guided by one
educator. They interacted in a forum to prepare the first prediction, and they used
common forums to compare their work with the rest of the working groups. In the
end, they had to prepare a report with their final answer to the request of “Publicity”.
In this first activity, looking at the dialectics of the media and milieus, many new
elements started to be included in the milieu, such as dataset about Facebook users’
evolution, derived questions and temporary answers generated by the students about
the role of models, mathematical models used to fit data, elements for justification
and validation, etc. But it also brought to light some important constraints about, for
instance, the absence of mathematical notions, concepts and discourses to talk about
the modelling work developed, as well as the transparency of the use of some media
(such as GeoGebra or Excel). In particular about the pertinence of the functions used
to fit data, the meaning of the coefficient to compare the different models (such as
R2), etc.

When these first reports were delivered, the educators asked them to analyse the
activity carried out. Concerning the analysis of this modelling activity, the main tool
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provided to the participants took the form of a questions-answers map (Winsløw
et al., 2013; Barquero et al., 2018a). Students were asked to sketch the modelling
process they had followed, underlying the dialectics established between the ques-
tions addressed and the answers obtained. The educators helped the students by
providing them with a summary of some of the questions and answers (Q–A) that
appeared in their discussions or reports (see Fig. 2). As explained in Barquero et al.
(2018b), the aim of this analysis was to break with the usual way of describing
school mathematical contents—which priorities concepts, notions and techniques to
the detriment of questions and problems—without using complex terminology.

It enabled the participants to change the order of priorities, highlighting the dialectic between
questions and answers in the complete modelling process they had followed, and using the
arborescence of Q–A to analyse the different stages of the modelling process. (Ibid., p. 37)

In Activity 2—corresponding to Module 2—participants were asked to prepare a
“lesson plan” as an adaptation of the SRP that they come to experience to be then
transposed to secondary school level. First, participants prepared an individual
version of the lesson plan, which was later shared with her/his working group and
with the instructor. The work led to the preparation of a final common lesson plan to
be adapted and implemented to their particular conditions in the following activity.
Generally speaking, at this stage, the tendency was to “close” the activity with

Fig. 2 Example of Q-A map from a group of participants (Barquero et al., 2018a, p. 38)
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respect to the different elements they included. More concretely, some decisions that
could be read in the individual lesson plans were about: (a) describing the objectives
mostly in terms of the notions to be introduced (function graphs, linear regression,
etc.); (b) structuring the activities as a set of small tasks “to be solved” by students;
(c) assigning to the teacher most of the responsibilities related to the introduction of
the models to be used, later applied by the students; (d) describing teachers’ work,
but independently from students’ work; (f) assigning the teacher the responsibility to
validate the models and answers provided by the students, among other decisions.
This can be interpreted as the difficulty of the participants to detach from the
dominant paradigm of visiting work, dominant in the educational institutions
where most of us are developing our professional practices. But these initial lesson
plans constituted a rich milieu to question many epistemological and didactic
decisions that had been made. The educators intervened more actively to question
how to plan a more inquiry-based activity with a more active role of students in this
process. In the following, there is a comment of one of the educators guiding the
work from Group B in the discussion forum:

[Educator, following Team B in the forum] I read your three individual lesson plans, and I
found that they share many commonalities, [. . .]. I found that the discussion about which
elements to include in the lesson plan is interesting and a good starting point. But we may go
one step further and compare the underlying pedagogical and didactic proposals. For
example, to what extent can we leave the activity open, or should we necessarily establish
the mathematical tools to be used in advance? What means of information (besides the
teacher’s explanations) can students’ access? What difficulties do we contemplate from
students, and what kind of answer can we provide? How much autonomy will students’ have
to assume during the modelling activity?

Participants finished activity 2 with a new version of the lesson plan, common to all
the members of the working group. Then, each of them had to adapt this common
lesson plan to the particular condition for implementation. Activity 3 consisted of
carrying out this implementation and collecting all the empirical data from its
observation in the classroom (which acted as main media in this module). Partici-
pants acted now as “teacher” in their classrooms and guided the activity as close as
they could, according to their a priori designs. At the end, they had to prepare an
“experimentation report”, with a prefixed structure provided by the educators. These
reports constituted part of the milieu to be then shared with the rest of the partici-
pants. The reports allowed, first, to reflect on their own practice in an objective and
common way and, second, to know about how the designs had been worked in
different school contexts. This rich milieu facilitated the a posteriori analysis of the
designs and to open the discussion about the conditions and constraints detected.

Finally, Activity 4—linked to Module 4—was devoted to elaborating a final
revision of the lesson plan to propose a new version of it. This had to take into
account their initial design, the own experience and those of the team partners. The
milieu was then enlarged by detailed feedback from the instructors to the experi-
mental reports and some reading (Chevallard, 2015). Educators also provided a
clearer structure of the final form of the lesson plan, which asked to include: (a) a
mathematical analysis of the teaching activity, (b) a didactic analysis of the teaching
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activity in the form of lesson plan—as re-elaboration of the previously produced in
activity 2—, and (c) a description of the conditions and constraints detected in the
implementation.

A summary of the development of this SRP-TE, we take the proposal of
Miyakawa (2021) to show the dialectics between the individual and the collective
work, to synthesise the chronological evolution of the modules and of the most
important instrument facilitating the evolution of the milieu shared in this training
process (Fig. 3).

4.2 Case study 2: the SRP-TE about modelling the cake box

We do not develop the entire SRP-TE in this chapter. More details about its
implementation can be read in Barquero et al. (2020). We explain here its main
particularities with respect to the adaptation for pre-service primary school teachers
and the main differences in comparison to the previous case study. In particular, we
want to mention two main differences: the first is about the way how Module 0 was
planned in the SRP-TE. The second concerns module 1, which can be considered as
the more important module in this case. Participants were pre-service primary school
teachers, and that they did not have hours in the course for implementing any
proposal in the school, either easy access to primary school classrooms. That is
why there were no easy conditions to develop module 3 and 4. This SRP-TE was
more planned to work on the epistemological dimension, in other words, to question
what the role of modelling can be in the teaching and learning of mathematics, how
mathematics can be interpreted as a modelling tool and how to describe modelling. It
also addressed the need of introducing new epistemological tools to analyse and
design mathematical activity in an approach closer to the PQW. We thus focus on
briefly describing the work developed in relation to modules 0 and 1.

About module 0, the first activity started by presenting Q0-TE about “How can
modelling be introduced in Primary school education? What kind of modelling

Fig. 3 The dialectic of the individual and collective work in the first case study
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activities could be used?”. Participants were asked to make a first analysis of the role
of modelling in mathematics education using different resources, such as local
curriculum, textbooks or some teaching proposals. This activity is two-fold: firstly,
to describe the conditions under which modelling is proposed to be introduced in
primary school education and, secondly, to establish some shared terms to refer to
modelling (such as system, model, variables of the system, mathematical results,
interpretation, model validation, etc.). In comparison to the first case study, this way
to start Module 0 facilitated the first encounter to Q0-TE, helping to set up a shared
terminology to talk about modelling.

With respect to the second activity—the starting of Module 1—, educators
proposed a modelling activity, the cake box, which consisted of helping a pastry
chef to find the most appropriate measures of the material to buy to build boxes with
lids to pack the cakes (and other sweets) she sells. This modelling activity, which
leads to inquiry into the relation of measure of the material to build the boxes with
the corresponding measures of the boxes and the lids, corresponds to an adaptation
of the one proposed by Ruiz-Higueras (2008) and Chappaz and Michon (2003).
Participants were asked to assume the role of primary school students and experience
the different steps of this activity. The activity of the cake box was easily accessible
to participants, and it has always generated a rich modelling activity involving
different types of models, from the ones more numerical and geometrical to the
more advanced ones involving pre-algebraic or algebraic models.

The third activity was about the analysis of the mathematical activity developed—
ending of Module 1—. Participants had to analyse the modelling process as it was
experienced by themselves and by other groups in the class. They used the session
reports delivered by each group and the class debates as the main media considered
in this task. The educator proposed to do this work using the proposal of the
questions-answers maps. She proposed an initial sketch of the Q-A map, with the
main steps or phases of the activity with the initial questions she had presented
during the implementation. Participants had to complete it with a description of their
work. Each group worked on producing their Q-A map of the cake box activity,
which was used later to analyse the path followed by another group in the class. This
new task helped them to enrich the Q-A maps by including new questions, answers,
strategies, etc., showing the potentialities of using this tool for future implementation
of the activity.

This way of describing the modelling process not only provided the participants
with new terminology, but it also appeared as an alternative way to talk about doing
mathematics, breaking with the usual “static” way of describing school activities,
more focused on concepts, notions and techniques to the detriment of questions,
models and provisional answers. Furthermore, these Q-A maps were later used when
participants started working on the design of a teaching proposal. And, in the case
they could implement, participants used them as tools for the in vivo and a posteriori
analysis of the implementations.
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5 Conclusions and Discussion

In this chapter, we have described two experiences with SRP-TEs implemented
under different institutional conditions. The first with in-service secondary and
university teachers in the CICATA centre within online and in distance modality.
The second with pre-service primary school teacher at the University of Barcelona.
They both start from a similar generating question about how to analyse, adapt and
develop a learning process related to mathematical modelling in our teaching
practice? Although their evident differences in the institutional context for imple-
mentation and the school level teachers are trained, some common aspects and
regularities appeared in their analysis.

Both experiences were designed by the same team of researchers with a similar
structure supporting the design of the SRP-TE. We have used Fig. 1 to sketch the
main derived professional questions (and the expected answers from the partici-
pants) that were central in each of the modules. The first common question was about
how to analyse a teaching proposal, and in particular, an SRP. The SRP proposed in
each case study was different: “Forecasting Facebook users” for the first case and
“The cake box” for the second one. Their selection was made according to the school
level teacher were trained and the experiences we had with the SRP. This first
question was addressed similarly in both cases by making teachers experience an
SRP under the role of students (as it could exist in a school institution) and then
proposing to analyse it. The tools provided to do so were also a common aspect of
the case studies examined. First, teachers use the questions and answers maps as the
main epistemological tool to analyse knowledge developed during the SRP. Fur-
thermore, this tool played a crucial role when the teachers adapted the experienced
SRP in a specific school institution. At this moment, teachers use Q-A maps not only
as an epistemological tool for the a posteriori analysis of teaching proposals. They
also use them during the a priori analysis—when they design the lesson plans and
use Q-A maps to anticipate and evaluate possible paths to be followed by students—
and in the in vivo analysis—when they used them as a tool to institutionalise
knowledge.

The second common questions were about how to adapt the experienced SRP to
some particular school conditions. The strategy followed was to asked teachers to
elaborate a lesson plan (which were retaken and re-elaborated in different parts of the
modules). The work with respect to the (re)elaboration of the lesson plans with
in-service teachers (the first case study) was richer than in the second case. This was,
in part, thanks to the professional experience that participants had in secondary
school and the fact that they could change of position easily. In particular, when they
were asked to prepare a first proposal of the lesson plan, they easily adopted a new
the position and assumed the dominant conditions in their school institutions, most
of them closer to the paradigm of visiting work. This allowed a rich discussion on the
implicit assumptions that were considered, and the related constraints derived from
the paradigm of visiting works. In the second case study, pre-service primary school
teachers are less subjected to the primary school conditionings. That can be a reason
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why their work on the lesson plan did not make emerged as many constraints as
detected in the first case, and the discussion on the ecological analysis was highly
limited, as teachers could not feel by themselves these limitations.

Modules 3 and 4 were only developed in the first case study, but it is important to
mention the efforts of creating the appropriate devices (such as the lesson plan “in
evolution”, the reports of the implementation, the last version (with fixed) structure
of the lesson plans) to enrich the milieu progressively. Our option consisted of
elaborating a rich enough milieu between the educators and the participants to be
used as a confrontation device for the teaching proposals and the theoretical tools
introduced in the course.

In any case, the role-play, which was also a common strategy in both cases,
appeared to be a successful strategy to make participants place themselves in
different positions and make different institutional constraints emerge. It allowed
to make visible some constraints that lead to the introduction of new tools for the
epistemological and didactic analysis and to open a more general discussion on the
constraints derived from the paradigm of visiting works and the collective awareness
their scope.
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Transpositive Phenomena of Didactics
in Teacher Training

Michèle Artaud and Jean-Pierre Bourgade

1 Introduction

The process of didactic transposition of knowledge in educational institutions has
given rise to many works equipped by the theory of didactic transposition. It has also
been shown that the process of institutional transposition of knowledge in an
institution that is not a school could, under certain conditions at least, be read as a
process of didactic transposition: we have called it a process of archididactic
transposition. In light of these two aspects of the didactic transposition theory
(ATD) and the latest developments in the anthropological theory of the didactic,
we examine in this workshop some aspects of the process of transposition of
mathematical didactics into the training of mathematics teachers.

We have considered the following question that Yves Chevallard has presented in
his lecture: “What should student-teachers study?” or, more precisely, “What should
the position pwt’s praxeological equipment be made of?” where pwt is the student-
teacher position. We assume that this praxeological equipment must include some
didactics. Therefore, the above question can be considered as the question of the
didactic transposition process of the didactics in teacher training.

The difference with several works presented in the workshops, if we have
correctly understood them, is that we are not going to model an existing didactic
praxeology but instead produce a model of a praxeology that could, or even should,
exist. Such a praxeology could be part of a didactic infrastructure for the position of
teacher, pt, and then something that should be studied in the pwt position.

M. Artaud (*)
Aix-Marseille University, Marseille, France
e-mail: michele.artaud@univ-amu.fr

J.-P. Bourgade
University of Toulouse Jean Jaurès, Toulouse, France
e-mail: jean-pierre.bourgade@univ-tlse2.fr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Y. Chevallard et al. (eds.), Advances in the Anthropological Theory of the Didactic,
https://doi.org/10.1007/978-3-030-76791-4_12

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76791-4_12&domain=pdf
mailto:michele.artaud@univ-amu.fr
mailto:jean-pierre.bourgade@univ-tlse2.fr
https://doi.org/10.1007/978-3-030-76791-4_12#DOI


2 A Didactic Organisation Produced with the ATD: An
Example of Infrastructure

As we have written in some previous papers (Artaud, 2010, 2011, 2016), the model
of the didactic moments (Chevallard, 2002), modelling six functions of the study, is a
productive tool to analyse the didactic within a situation, because it allows seeing a
lot of didactic phenomena that could be hindered by mathematical considerations.
However, it is also useful to develop or to construct some didactic praxeologies
because the development is based on the functions of the study—the moments—,
which is a condition favouring the avoidance of a structural approach to the
construction of praxeologies.

In this workshop, we have considered the following didactic type of tasks: “to
realise an exploratory moment”, that is a moment (which can take a long time, even
several sessions) during which, in the process of study of a praxeology, the technique
is produced, elaborated, and it generally necessitates the exploration of several tasks
of the same type. The exploratory moment could be realised in several episodes. We
have worked on elaborating a didactic organisation (DO) around this type of tasks.
This DO should be produced, justified and made intelligible by ATD, and we have
tried to place ourselves as much closer as we can in the paradigm of questioning the
world.

To make things easier and save time, we have based our work on the DO that
appears in the study plan presented during the workshop described in Miyakawa and
Garcia (this volume). We have found there an analysis of a technique for the
realisation of the exploratory moment relative to the type of tasks, “to solve an
addition or subtraction situation” and, more precisely, to the subtype of tasks, “to
make a drawing of the situation”. The task studied in this lesson is the following:

There were 16 people in a bus. Later, some people got on this bus. Now, as a whole, the
number of people is 34. How many people got on later on?

Some theoretical technological elements (part of the logos) also appear. And we
have assumed that the type of tasks has been encountered in the process of studying a
certain question Q. The aim of the first part of the workshop was to develop this
technique and this technological-theoretical environment (the logos) into a praxe-
ology for the realisation of the exploratory moment, a praxeology that would, at
least, be partially produced and justified by ATD.

The work performed by the four groups who took part in the workshop provided
good support to progress. The first point that we can highlight is that the four groups
began by writing the technique. It is a good way to start when analysing an existing
didactic organisation—that is the first step. Nevertheless, when one wants to modify
some DO, it is better to think about the technological or theoretical elements first or
“dialectically” with the analysis of the technique. If we consider the techniques, the
first group analysed the technique for the realisation of the exploratory moment by
restricting the study to the exploration of the mathematical task at stake. This first
group proposed:
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Encourage the students to draw. (sic)
Tell pupils not to use formulae. (sic)
Firstly, letting them draw individually.
For pupils who get stuck, encourage them to draw a concrete situation.
Remind of their previous works (drawing).
Then, dividing them into groups and letting them draw together.

One more time, it is the first step, and then we can generalise the analysis to see to
what extent the (didactic) technique depends on the mathematics at stake. For
instance, here, we could write: to encourage the students to use an experimental
technique and not a deductive one (a graphical one in most cases); first, let them
work individually before constituting groups and asking them to share their
techniques; etc.

The second technique proposed by the second group is a little more general
technique but not a very operational one.

Start with the praxis, not with logos.
Consider diagrams (informal ostensives) as important, which are made by students.
Use a realistic problem for making the problem lively for students (modelling problem).
Allow the students to share different diagrams.
Combine individual work and group work.

It is more some subtype of tasks for which we need a technique, and the
formulation includes at least a technological statement as it is important to “make
the problem lively for students”. That is also a difficulty encountered when analysing
techniques: what must and can be “put into words”, and what can be considered as
“well-known”? what is a part of the technique and what is justifying it?

In the techniques proposed by the third and fourth groups, there were proposals to
modify the mathematical task in order to improve the technique of realisation of the
exploratory moment, as well as the technique of the direction of the study. For
instance, the third group explained that they would propose to:

Divide the class into 2; let us say student type A & student type B. Both groups get different
tasks in which the particular numbers are different. [. . .] They both get subtraction situations
with the same context for the “task” (the bus context).

And, the fourth group wrote:

We would propose the location of the bus with numbers between 5 and 20. [. . .] We would
change the size of the numbers up to 50, and in each case, we would propose that they
represent and look for answers to the different questions that have been proposed.

It is interesting to see that these proposals boil down to have different tasks in the
class that change the parameters of the situation. Another time, this is expressed in
the context of the mathematical task at stake.

If we consider the technology and the theory, we can notice that the second group
gave an extensive theoretical assessment (as it is usual for theory) provided from
ATD: “Preparing pupils to live in human society (questioning the world)” but no
technological ones. The other groups give technological assessments, some of which
are related to the choice of the mathematical task but not explicitly related to ATD.
For instance:
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Teacher’s understanding about the MO: drawing at the same time as reading the statement
allows pupils to organise numerical values, to reconstruct the problem situation by means of
their own drawings or words, and therefore to understand it. Working in small groups makes
it easy to start searching for answers to the situation.

To develop an infrastructure for the realisation of the exploratory moment, we
first consider that the dialectics of the study (Kim, 2015) are relevant to analyse the
realisation of the didactic moments (this is a theoretical assessment). We also assume
that the dialectics of media and milieus is one of the main relevant dialectics for the
realisation of the exploratory moment (technological assessment). Finally, we
include the definition of the dialectics of media and milieus (technological assess-
ment): the dialectics of media and milieus enables a renewed relationship with the
tools used to obtain and check information. Assessments obtained from a media are
checked by the confrontation to some milieus.

We also take into account the following definition of the exploratory moment: it is
the moment when the type(s) of tasks at stake is(are) explored and when at least an
embryo of technique is produced. We are now able to produce a technique, or at least
an infrastructure of a technique, for the realisation of the exploratory moment. For
instance:

To realise an exploratory moment, the type of tasks at stake must be explored; this
exploration is performed by the students, who are given several tasks of the type at stake;
for each task, the techniques that students will have implemented must be presented then
tested by some milieus (that have to be available to the students) in order to keep the
elements that stand the test and if necessary to develop them in order to build a technique or
part of a technique.

Obviously, this infrastructure must be developed to integrate some characteristics
of the mathematics at stake. For instance, we could add to take into account types of
tasks related to addition or subtraction:

If the type of tasks explored belongs to addition or subtraction types of tasks, vary the size of
the numbers between the tasks at stake and ensure that a graphical milieu is available, as well
as a calculator.

We turn now into the question of the didactic transposition by studying the
conditions under which a teacher, that is, someone who occupies the pt position,
who would like to improve or develop his or her didactic praxeologies, could
encounter, or even learn, the DO that we have just developed. When studying this
question, we study some aspects of the archididactic transposition process of
didactics.

3 Archididactic Transposition Process

The notion of archidactic transposition was introduced to analyse the transposition
of mathematics into a knowledge-producing institution, economics (Artaud, 1993,
1994, 1995). In particular, we have highlighted that mathematics is a fundamental
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knowledge for economics, in the sense that mathematics makes it possible to produce
economics or to use it as a system of knowledge production. When the production of
knowledge K uses mathematics or any other K0 knowledge that plays a fundamental
role for it, one may wonder through which channels the fundamental knowledge
arrives in the sphere PK of the production of the knowledge K under consideration.

Two answers must a priori be considered. First, either the elements of the
fundamental knowledge necessary to PK are already developed and may therefore
be borrowed, accompanied by possible transpositive changes. In this case, the
knowledge K0 “manipulated” in PK is clearly exogenous. Second, the elements of
knowledge K0 have been developed in PK, by specialized actors, or actors who
specialize for the occasion. In this case, the knowledge K0 used in PK is endogenous.

From this basic schema, we observe the implementation of a more complex
configuration, whose development is part of the historical time frame. On the one
hand, actors who specialize in borrowing, adapting and developing useful K0

knowledge elements are emerging at the PK border. With regard to economics and
mathematics, we can look at these actors, permanent or occasional, as mathematical
economists.

On the other hand, the use of knowledge K0 in PK is recorded in the very training
of future PK actors. At a certain historical stage of development, in particular, a
satellite institution of PK, which we call the school associated with PK (generically
noted as EK) emerges. The work carried out on K0 must then take into account new
constraints: not only those linked to its import into a given region of PK with a view
to its use, but also the–strictly didactic–constraints generated by the desire to
introduce K0 into the training of future PK actors and, more generally, of all those
who, in their activity, claim to know K because they recognise that this knowledge is
relevant to their practice.1

Thus, in each period of its history, PK will “learn” the part of K0 useful to PK
through its actors, either directly from PK’, or indirectly, through the associated
school, EK.

Let us consider K ¼ economics (E) and K0 ¼ mathematics (M). The study of the
modalities and conditions for integrating mathematics (M) into economists’ training
courses—i.e. in EE—is traditionally part of the field of analysis of didactic transpo-
sition processes. The transposition processes that transport mathematical matter from
PM to the production institution of economics, PE, are processes of institutional
transposition of mathematical knowledge.

The elaboration of all the analyses carried out in the study of mathematisation in
economics has gradually but irresistibly led to the thinking—that is, to the model-
ling—of observable phenomena in the genuine terms of the theory of didactic
transposition. What is obvious is that, with regard to mathematical knowledge, the
PE institution functions like a school and its noosphere. This is an institution that can
be seen as a school without being mainly a school since the “institutional problem”

1For instance, the profession of commercial recognizes that economics (K) is necessary to its
activity and therefore incorporates mathematics (K0) into its members’ training.
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of PE remains the production of economics knowledge. Nevertheless, it is an
institution that also functions in the same way as a school (of mathematics).

Thus, within the noosphere—where the controversy over the relevance of math-
ematics takes place—a whole series of debates is developed, articulated around the
question of the economist’s mathematical needs, and aimed at clarifying and regu-
larly modifying what can be regarded as a curriculum. This curriculum determines
the subject be learned by attaching comments to its presentation, which are all
“official instructions”. Real didactic strategies are developed, generally unsophisti-
cated ones and, to put it bluntly, somewhat rudimentary ones. Didactic systems
appear and then disappear in an erratic but recurrent way. Finally, an evolving corpus
of mathematical knowledge is built up in which, in each historical period, archaisms
and innovations coexist.

This school, since this is how we look at the PE institution, when compared to
what we have called the school associated with PE, EE, appears as a primitive and
primordial school, of which the associated school EE is basically only the “offshoot”.

For this reason, we can say that the PE institution, which is seen as a school of
mathematics –from which, in fact, the actors learn mathematics—is an archischool.
From this point of view, the institutional transposition mentioned above—from PM
to PE—can then be considered as an archidactic transposition.

As explained at the first edition of the ATD congress, “ATD is a very concrete
thing, a machine for producing praxeologies, in particular, teaching and training
praxeologies” (Artaud, 2007, pp. 256–257). In other words, didactics and, in partic-
ular the ATD, is a fundamental knowledge for the profession of teacher. Therefore,
there must be a process of archidactic transposition, which transposes the didactics
from the institution producing this knowledge to the profession of teacher. It will be
noted as IMP in the following, which is not a didactic institution, but which function
as such with regard to didactics, by constituting an archischool. This archischool is
the matrix of another institution, strictly didactic for its part: a school that trains IMP

actors, where the position pwt exist.
Therefore, we consider it important to study the transposition processes and to

examine archididactic processes too, as both processes can create some conditions
and constraints that partially explain didactic transposition phenomena.

4 Conditions and Constraints of Didactic Transposition
Phenomena of Didactics in Teacher Training

Let us go back now to the question at stake, namely whether a teacher who would
want to improve or develop his or her didactic praxeologies could encounter the DO
that we have just developed. That is, in other words, is the archididactic transposition
process effective (or even possible?) in regards to the didactic knowledge involved
in this DO?
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In order to answer this question, we consider an ideal subject of pt, and we try to
formulate and test the conditions or constraints which allow for or prevent from
developing his or her praxeological equipment to include this didactic organisation.
We did not have time to fully accomplish and discuss this task in the workshop. We
intended to test, in a dialectics of media and milieus, some of the following
assertions (or to produce others).

A1. Unlike what is happening today for the couple (Mathematics, Economics),
the process of archidactic transposition of didactics in IMP is still embryonic, and this
is caused by different conditions (see A2, and A4, for instance).

A2. Didactics is not yet seen by society as a scholarly knowledge, following the
characterization of knowledge due to Y. Chevallard (1985), and it hinders its
dissemination, including in “professional” institutions.

A3. Assertion A2 is reinforced in the case of teacher training by the constraint of
the denial of the didactics (Chevallard, 2010). This leads, first, to discuss what is
going to be taught, and it prevents the identification of a didactic relation to the issues
of the study—or an institutional relation in the position of a teacher suitable for the
study direction. Second, in a non-independent way, the denial of the didactics pushes
the emphasis on the pedagogical aspects of professional gestures to the detriment of
the more specific aspects that, nevertheless, largely determine the effectiveness of
the study organisations.

A4. The teaching profession is a semi-profession, as developed by Y. Chevallard
and G. Cirade (2010). This means that the profession (Chevallard & Cirade, 2010)
makes little claim to provide scientific knowledge for the profession and, when it
does, this knowledge does not appear fundamental to the core of the profession—
namely the direction of the study of questions and the setting up, on this occasion, of
praxeological organisations. In other words, the profession does not express needs
for didactics as knowledge and, as a consequence, there are no “didactician pro-
fessors” similar to “mathematician economists”. Indeed, if some professors are
interested in didactics to improve their professional praxeologies, this remains within
the framework of the paradigm of the “small independent producer”, and it is, in fact,
almost invisible to the profession. It can be noticed that whereas the strategy of
demathematization of the economy is second, the “dedidactisation” of professorial
praxeologies seems to be first in the profession. In addition, the debates or contro-
versies surrounding the relevance of didactics, which any didactician dealing with
vocational training encounters, are institutionally invisible, which hinders a clear
questioning of the teacher’s didactic needs, not to mention that of the constitution of
a study program.

To conclude, these conditions and constraints affect the didactic transposition
process of didactics in teachers’ training because training systems are not isolated
from the profession. It is not easy to set up an institutional relation to didactics and,
especially, to praxeologies produced by ATD, which would be functional when, in
the profession, praxeologies around the same types of tasks exist whose logos are not
based on didactics. The fact that these praxeologies are not well justified, or
explainable, or even effective is not sufficient to disqualify them. For this reason,
we think that it is of importance to develop in teachers’ training analysis and
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evaluation of observed praxeologies, mathematical as well as didactic ones (Cirade
& Crumière, 2019). It gives some milieu to elaborate professional praxeologies
whose logos are based on didactics. But the development of observed praxeologies
is also important, as it is, therefore, necessary for the researcher to build teaching
praxeologies that could or should exist or, at least, infrastructures of such praxeol-
ogies to support teachers’ training and that help on the diffusion of the didactics in
the teacher position.
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Prospective Teachers’ Narrative Analysis
Using the Didactic-Mathematical
Knowledge and Competences Model
(DMKC)

Vicenç Font, Alicia Sánchez, and Gemma Sala

1 Introduction

In the design of Mathematics teacher training programs, it seems necessary to use a
model of categories of knowledge and competences that are considered useful for the
development of the professional activity. This is the reason why, in the literature on
research about teachers’ education, we find different proposals of such systems of
categories. The analysis of the teachers’ (or pre-service teachers’) practicum reports
is used, in many cases, to infer their competences and knowledge, according to one
of such models of categories of knowledge and competences.

Based on the theoretical notions of the onto-semiotic approach (OSA) (Godino
et al., 2019) and its several contributions to the field of teacher education, it has been
developed a model (the DMKCmodel) that intends to assemble several categories of
didactic-mathematical knowledge and professional competences of the Mathematics
teacher required for a suitable teaching of mathematics (Godino et al., 2017; Breda
et al., 2017; Pino-Fan et al., 2018). The theoretical tools of the DMKC model make
possible to answer the following research question: Which knowledge and teacher
competences are involved when teachers describe, explain and assess their teaching
practice?

In the development of the workshop, we present the practicum report of a
pre-service teacher, with the observations of some mathematics classes. This is a
narrative made by a pre-service teacher, coming from the observation of a class of an
in-service teacher and a guide with the categories of the DMKC model. Attendees
are asked to address the following questions: Which competences (and at which
degree of development) can be inferred from the report? Which type of knowledge
(and which knowledge) can be inferred from the report? Which aspects of the guide
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used for the observation could be improved in order to better answer the first two
questions?

In the following sections, we present a brief explanation of the Didactic-
Mathematical Knowledge and Competences model (DMKC model), the methodol-
ogy used in the workshop and an example of the analysis performed by the
participants, and, in the end, some final considerations.

2 Didactic-Mathematical Knowledge
and Competences Model

A theoretical model of the Didactic-Mathematical Knowledge (DMK) of the Math-
ematics teacher has been developed within the framework of the OSA (Godino,
2009; Pino-Fan et al., 2015, 2018). One of the perspectives of development of this
model is the fitting of the notion of knowledge and the notion of competence. In
addition, within the framework of OSA, there have been other studies regarding
Mathematics teachers’ competences (Font et al., 2015; Giacomone et al., 2018;
Pochulu et al., 2016; Seckel & Font, 2015) that have also exposed the need of
having a model of teachers’ knowledge to evaluate and develop their competences.
These two research agendas have joined, thus generating the Mathematics teachers’
Didactic-Mathematical Knowledge and Competences model (DMKCmodel) (Breda
et al., 2017; Godino et al., 2017; Pino-Fan et al., 2017).

2.1 The Notion of Competence

The Mathematics teacher should be able to address didactic problems related to the
teaching of this subject, for which they need some specific competences. Therefore,
two important questions to develop the DMKC model appear: (1) How is the notion
of competence understood? and (2) Which are the key competences that the math-
ematics teacher should have? The competence in the DMKC model is understood
from the action competence perspective, considering it as a combination of knowl-
edge, skills, affective dispositions for action, tools for reflection, etc., that allows an
effective performance, within typical contexts of the profession, of the actions
aforementioned in its formulation. It consists in a potentiality that is updated in the
performance of effective (competent) actions.

This formulation of the competence needs a characterization of its development
(definition, levels of development and descriptors), in order to be operational.
According to Seckel and Font (2015), the resolution of a task is the starting point
for the development and evaluation of a teacher competence, since the task generates
the perception of a professional problem that needs to be solved, and for this
purpose, the teacher mobilizes skills, knowledge and attitudes, in order to develop
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a practice that intends to solve the problem. Furthermore, we can expect that such
practice is performed with more or less achievement. It can be considered as an
evidence that the person can perform practices that are similar to the ones described
by some descriptors of the competence, which is at the same time associated to a
certain level of development of the competence.

In the DMKC model, the mathematical competence and the competence in
analysis and didactic intervention are considered the two key competences of the
mathematics teacher. The core of the second one (Breda et al., 2017) is designing,
applying and assessing sequences of one’s own learning and others’, through
techniques of didactic analysis and quality criteria to establish cycles of
planification, implementation, assessment and outline suggestions for improve-
ments. In this work, we mainly focus on the competence in analysis and didactic
intervention. This general competence consists of different subcompetences (Breda
et al., 2017): (1) subcompetence in the analysis of the mathematical activity—as
described in Godino et al. (2017), this subcompetence is decomposed into two more
(the competence in analysis of global meanings and the competence in ontosemiotic
analysis of mathematical practices)—; (2) subcompetence in the analysis and man-
agement of the interaction and its effect on students’ learning; (3) subcompetence in
the analysis of norms and meta-norms; and (4) subcompetence in the assessment of
the didactic suitability of the process of instruction.

2.2 The Notion of Knowledge of the Mathematics Teacher

There are several models regarding the knowledge that a mathematics teacher should
have to properly manage their students’ learning. Pino-Fan et al. (2015) propose a
model to characterize the didactic-mathematical knowledge (DMK) of the teachers,
which considers, among other aspects, the contributions and development of several
models of the mathematics teacher’s knowledge, and the theoretical and methodo-
logical developments of the OSA. Thus, the DMK model (a part of the DMKC
model) suggests that teachers’ knowledge is organized into three big dimensions:
mathematical, didactical and meta didactic-mathematical.

The first dimension, the mathematical one, refers to the knowledge that enables
teachers to solve mathematical problems or tasks that are typical of the educational
level in which they teach (common knowledge), and link the mathematical objects of
that level to mathematical objects that are studied at higher levels (extended knowl-
edge). Researchers who propose different models of the mathematics teacher’s
knowledge agree that, apart from the mathematical content, the teacher should
have knowledge about several factors that influence the teaching of that mathemat-
ical content. The third dimension of the DMK, the meta didactic-mathematical
dimension, refers to the knowledge needed to reflect on the own practice, that
enables the teacher to assess the instructional process and improve it in a redesign
for future implementations.
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2.3 Competence in the Analysis and Didactic Intervention
and Its Relation to the Model of Analysis of Instructional
Processes Proposed by the OSA

The OSA (Font et al., 2010) considers five type of analysis of the instructional
processes: (1) identification of mathematical practices; (2) elaboration of configura-
tions of mathematical objects and processes; (3) analysis of trajectories and didactic
interactions; (4) identification of the system of norms and metanorms; and (5) assess-
ment of the didactic suitability of the instructional process. The first type of analysis
explores the mathematical practices performed in a mathematical instruction pro-
cess. The second one focuses on the mathematical objects and processes that
intervene in the performance of the practices, as well as those that emerge from
them. The third type of analysis is oriented to the description of patterns of
interaction, didactic configurations and the articulation between them in didactic
trajectories; the configurations and trajectories are conditioned and supported by a
weave of norms and metanorms. The fourth type of analysis studies this weave. The
fifth type is based on the four previous analysis and is oriented to the identification of
potential improvements of the instructional process in new implementations.

The development of the competence in analysis and didactic intervention enables
the teachers to do these types of didactic analysis proposed by the OSA and, at the
same time, the training programs for the teaching and learning of these types of
didactic analysis contribute to the development of this competence and the acquisi-
tion of teachers’ knowledge of the DMKC model. They are training cycles (work-
shops) designed as powerful learning environments where: (1) attendees have an
active participation starting with the analysis of classroom episodes; and (2) the
types of analysis proposed by the model of analysis emerge from the interaction with
the whole group.

In the different implemented workshops, with the just mentioned aim, we have
observed the following regularities: (1) Teachers and pre-service teachers express
comments in which aspects of description and/or explication and/or assessment can
be found, when they have to give their opinion (without a previous given guide)
about a classroom episode implemented by other teacher; (2) These teachers’
opinions can be considered as evidences of some of the six facets (epistemic,
cognitive, ecologic, interactional, mediational and emotional) of the didactic-
mathematical knowledge model (DMK) of the Mathematics teacher (a part of the
DMKC model); (3) When opinions are clearly appraising, they are implicitly or
explicitly organized with some descriptors of the components of the didactic suit-
ability criteria (another component of the DMKC model) proposed by the OSA
(epistemic, mediational, ecologic, emotional, interactional and cognitive suitability);
(4) The positive assessment of these descriptors is based on the implicit or explicit
assumption that there are certain trends in mathematics teaching that indicate how a
mathematics teaching of quality should be. These trends are related to the DMKC
model, since some of them are the base to propose some of the didactic suitability
criteria; and (5) The levels of depth of the analysis performed by the teachers vary
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from superficial analysis to expert, based on the theoretical tools used to
perform them.

3 Methodology

We use a practicum report and a document with a brief explanation of some
constructs of the DMKC model and some tasks that have to be answered in group.
Finally, we have a discussion with the whole group to answer the three tasks
previously mentioned.

Participants received a narrative, made with a guide of observation by a
preservice teacher that attended a class of a teacher in-service, and a series of tasks
that the group should answer, as well as an explanation about the theoretical tools
presented in the previous sections. Finally, we had a discussion with the whole group
to answer the following questions related to the narrative: Which competences (and
at which degree of development) can be inferred from the report? Which type of
knowledge (and which knowledge) can be inferred from the report? Which aspects
of the guide used for the observation could be improved in order to better answer the
first two questions?

4 Results

The practicum report was elaborated by a preservice teacher during the teaching
practice in a group of primary education (six-years-old). In this report, she had to
identify and describe a teaching and learning situation in the classroom and she
received a guide to do it, which she answers in her narrative. The questions in the
guideline are grouped into three blocks that require describing, interpreting and
completing (in the sense of designing new and better situations). There are five
questions about describing, three about interpreting and two about completing.

Participants had a guide with the categories of the DMKC model that they use to
answer the three questions previously mentioned. In particular, each of these ques-
tions of the guide used by the preservice teacher to elaborate her practicum report,
were analysed a priori systematically identifying the theoretical categories of the
DMKC, with the aim to answer the following questions: Does the guide include the
different categories of knowledge and competences of the mathematics teacher?
How could the proposed questions be refined? In the following lines, we show an
example of the work of analysis for one of the questions considered constructive.

Example of constructive question: 10. Modify the original task proposed by the
teacher so that the student that has had difficulties to achieve the intended objective
of learning, could achieve it. Justify your change.

(1) Type of analysis: appraising (justify the change: it is the previous assessment
of the didactic design that enables to make decisions for the redesign of new didactic
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sequences); (2) Depth of the analysis: Level 1 (analysis of some tasks, required
practices and mathematical objects used by the students with learning difficulties);
(3) Phase of the study process: assessment and redesign; (4) Knowledge dimension:
(a) mathematic: component of common knowledge, (b) didactic-mathematical:
epistemic facet (necessary knowledge for the design of didactic sequences),
(c) cognitive facet (noticing of learning difficulties and curricular adaptations). The
other facets of the knowledge can also intervene, depending on the answer given,
(d) meta-didactic-mathematical: didactic suitability criteria (the other criteria can
also intervene, depending on the answer given); (5) Competence: subcompetence in
assessment of the mathematical suitability (cognitive suitability).

5 Considerations

Conclusions of this course are that the participants infer knowledge and competences
of a preservice teacher, when they use some of the characteristic of the DMKC
model. Participants were able to deduce about the categories of the DMKC model
that appear in the answers of the preservice teacher, through a qualitative analysis, in
particular, they infer the level of development of the competence in analysis and
didactic intervention and the different types of the teacher’s knowledge.

Acknowledgements This work has been developed in the framework of the research projects on
teacher training: PGC2018-098603-B-I00 (MCIU/AEI/FEDER, UE).
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Exploring the Paradidactic Ecosystem:
Conditions and Constraints on the Teaching
Profession

Koji Otaki and Yukiko Asami-Johansson

1 Introduction: An Epistemological Obstacle
in the Research on Teachers’ Work

In this workshop, we aim to give participants some theoretical resources for inves-
tigating teachers’ design and analysis of didactic situations, i.e. teachers’ work
outside their lessons. Teachers’ activities in this kind more recently have attracted
increasing research attention in didactics (e.g., ICMI-study 25 on “Teachers of
mathematics working and learning in collaborative groups”, 2020). However, in
our view, researching such teachers’ work—or paradidactic work (we explain it in
detail later)—holds an epistemological obstacle that has to be overcome for the
scientific inquiry. We tend to regard paradidactic reality as an “accessory” of (purely)
didactic reality—remember the meaning of the prefix para-. This can be illustrated
through looking at some challenges for transferring Japanese lesson study—a type of
paradidactic work—into other countries. Such transplantation usually aims to adopt
not only the methodology and institutional system of lesson study itself but also
Japanese teachers’ didactic and pedagogical views and methods of teaching.
Because of this “second-class” status of the paradidactic reality, the teachers’ work
seems not to be regarded as a full-fledged object of study in didactics yet comparing
to the phenomena in didactic situations. In our view, this obstacle is deeply rooted in
two properties of the paradidactic. The first property is the intimate relationship
between didactic activities and paradidactic activities. Didactic actions are planned
and reflected in the paradidactic context, and paradidactic actions are organised

K. Otaki (*)
Hokkaido University of Education, Hokkaido, Japan
e-mail: otaki.koji@k.hokkyodai.ac.jp

Y. Asami-Johansson
University of Gävle, Gävle, Sweden
e-mail: yuoasn@hig.se

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
Y. Chevallard et al. (eds.), Advances in the Anthropological Theory of the Didactic,
https://doi.org/10.1007/978-3-030-76791-4_14

155

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76791-4_14&domain=pdf
mailto:otaki.koji@k.hokkyodai.ac.jp
mailto:yuoasn@hig.se
https://doi.org/10.1007/978-3-030-76791-4_14#DOI


around didactic situations. They are inseparable superficially, even though they are
different entities in didactic research themes. The second property is that teachers’
paradidactic work is rather closer to our own research activities than their activities
for teaching, which used to be the central objects of our didactic research. In other
words, both teachers out of lessons and researchers usually ask questions about
didactic situations in their investigation, even if their ways of questioning the
didactic reality (that is, the problematics) are essentially different. This means that
the paradidactic is easy to become “transparent” for researchers—but of course, this
is an illusion. This fate of the paradidactic as objects of the study in didactics implies
that research on the paradidactic work needs well-constructed theories for detaching
ourselves from familiar objects, much more than the case of usual research on
didactic situations. This workshop especially focuses on a tool for studying the con-
ditions on teachers’ paradidactic work.

2 Didactic Systems Involved in Complex Institutional
Ecosystems

In this section, we briefly introduce some basic ideas for studying didactic phenom-
ena within ATD before inviting you to investigate paradidactic phenomena. It is
because most notions and methods in paradidactic research are based on them in
didactic research.

2.1 A Triptych of Didactic Systems

Any didactic situation—situations where someone teaches something to others—
emerges in a system consisted of three elements: a work at stake, studying people
and teaching people. Within ATD, such a system is called a didactic system, which is
denoted by S(X, Y, ♥), where X is a set of students, Y is a set of teachers, and ♥ is
called a didactic stake (cf. Chevallard & Bosch, 2019). It can function as a simple
model of an ordinary classroom, which have a group of students as X, a teacher as Y,
and some piece of knowledge-to-be-taught as ♥. However, this is only an example of
applying the triptych. In the sense of ATD, the meaning of the term didactic system
is quite broad. For example, you can imagine a check-in procedure at a hotel. It
usually activates the functioning of a small didactic system for teaching how to use
the service and equipment of the hotel.
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2.2 The Scale of Levels of Didactic Co-determinacy

Each didactic system S(X, Y, ♥) has its own right. However, this does not imply that
the system is closed. All the elements of S(X, Y, ♥) can be affected by the factors out
of the system. This fact is obvious; imagine a didactic system of a typical classroom.
Undoubtedly, numbers of different factors outside the didactic system are involved
in there: international educational movements, national schooling systems, school
equipments, teachers’ educational perspectives, etc. Within ATD, such factors are
called conditions and constraints on didactic systems. According to the terminology
of ATD, the word constraint means the conditions that are unadjustable for the
players of a given system (more properly speaking, for a given position).

S(X, Y, ♥) is opened to the conditioning from its super-systems at different levels.
ATD distinguishes six levels of conditions starting from the level of didactic systems
(Fig. 1; cf. Chevallard, 2019). The level of pedagogies means a category for all
pieces of knowledge and know-how of teaching something, which is independent of
the specificity of didactic stakes ♥: for example, the so-called inquiry-based teach-
ing. And then, a certain didactic system S(X, Y, ♥) within a pedagogy is consecu-
tively subsumed into a school, a society, a civilisation, even a humankind, all of
which bring about their own conditions for S(X, Y, ♥). In addition, didactic systems
can be identified to different sub-levels depending on sizes or granularities of ♥:
Disciplines ⇄ Domains ⇄ Sectors ⇄ Themes ⇄ Subjects.

Let us emphasise here that this kind of classification is not a realistic picture of
the system of conditions but a pragmatic toolkit for research on it. The reality of the
system looks like a spectrum rather than a bundle of discontinuous levels. An
important research task is not identifying the levels of well-known conditions but
finding out unknown conditions on a given phenomenon in terms of the scale.

2.3 The Ecology and Economy of Didactic Systems

Any didactic system functions in a unique way for handling various conditions and
constraints, i.e. a given institutional ecology. Such functioning of a didactic system
brings about its behaviours and properties. The set of such behaviours and properties

Humankind

↓↑

Civilisations

↓↑

Societies

↓↑

Schools

↓↑

Pedagogies

↓↑

Didactic systems

Fig. 1 The scale of didactic
co-determinacy levels
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of a certain didactic system S(X, Y, ♥) is called the economy of S(X, Y, ♥) (see
also Gascón & Nicolás, 2019). In general, didactic research is supposed to include
some analysis of the economy of didactic systems. For example, the theory of
didactic situations (TDS) studies different states of didactic systems, i.e. didactic
situations of devolution, action, communication, validation, and institutionalisation
(cf. Brousseau, 1997). And, most of didactic research aims to create new “desirable”
didactic economies through introducing new conditions.

3 Towards Paradidactic Research

3.1 A Nested Triptych of Paradidactic Systems

Let us define here teachers’ work within ATD. We start from the fact that such a
work deals with didactic systems S ¼ S(X, Y, ♥). Teachers design and analyse—
simply speaking, study—didactic systems S . We call the systems of teachers’
working on S the paradidactic systems denoted by S. The adjective paradidactic
has been introduced byWinsløw (2012) for studying teachers’work about the didac-
tic situations. The fact that S study S—let us represent it by S � S—suggests the
existence of a nesting relationship between S and S . In our research project, we
define the paradidactic systemS byS(X,Y, ♠). It is composed of a didactic system
S(X, Y, ♥) as a paradidactic stake ♠, a set of didactic engineers X , and a set of
didactic mentors Y: S(X, Y, ♠) ¼ S(X, Y, S(X, Y, ♥)). In short, any paradidactic
system S can be modelled by a nested notation based on the triptych of didactic
systems. Let us illustrate the usage of it. This workshop began with your analysis of a
video data-collection of an elementary-school mathematics lesson S JP in Japan,
which is simply defined by S(X, Y, ♥). The point is that we set up a paradidactic
system SWS1 where SWS1 � SJP. We can describe SWS1 as S(P, W, SJP) where
participants P as X; “workshopers” W (i.e. KO & YAJ) as Y; and the lesson SJP as
♠:

SWS1 ¼ SðP,W, SðX,Y ,♥ÞÞ:

After that, you will analyse your analysing process about the lesson: a new
“transcendental” system ΣWS2 will emerges where ΣWS2 � [SWS1 � S JP]. In
short, P will be not only players of this paradidactic system, but also its analysers.
Thus, precisely speaking, the system ΣWS2 will have a triple nested structure:

ΣWS2 ¼ ΣðP,W,SðP,W, SðX, Y ,♥ÞÞÞ:

In our view, this triality plainly symbolises the difficulty of the paradidactic
research.
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3.2 Economic Usage of the Scale of Levels of Didactic
Co-determinacy

The scale of levels of didactic co-determinacy is usually used for explaining the
ecology of didactic systems. In addition, within the paradidactic research, it can also
play a new role in describing the economy of paradidactic systems. For example,
Otaki, Asami-Johansson, and Bahn (2020) clarify a propensity of teachers’ post-
lesson discussion in which teachers talk solely about specific mathematical topics
and general teaching methods. They take for granted the conditions at the levels of
sector, domain, and discipline—we call it the paradidactic bipolarisation. This kind
of usage of the scale of didactic co-determinacy levels is not our original. Some
researchers have consciously, or not, used this tool for the purpose of conducting
economic analysis. To begin with, our identification of the bipolarisation phenom-
enon is based on the Spanish researchers’ description of teachers’ professional
tendency in terms of the scale: the thematic confinement and the pedagogical
generalism (e.g., Barbé et al., 2005; Florensa et al., 2018). In another case, Artigue
and Winsløw (2010) apply the scale for identifying the foci of international com-
parative analyses, e.g. in PISA and TIMSS (This imply that the international surveys
of this type are paradidactic activities of a special genre!). Let us name this usage of
the scale the economic usage in contradistinction to the ecological usage.

3.3 The Scale of Levels of Paradidactic Determinacy

Any paradidactic system S(X, Y, ♠) has an intimate relationship with its didactic
system S(X, Y, ♥) ¼ ♠, that is to say, S(X, Y, ♠) brings about S(X, Y, ♥), and vice
versa. However, this does not mean that each system lives under the same ecological
conditioning. S(X, Y, ♠) is born upon by a given ecology through a unique route
and influence, which are different from those of S(X, Y, ♥). For example, a current
teachers’ paradidactic system and its didactic system can be conditioned by an
identical condition of inquiry-based teaching movement. This movement might be
easy to affect the paradidactic system; that is to say, teachers study inquiry-based
teaching and consider its possibility in their didactic systems. By contrast, the
didactic systems themselves resist such radical changes. This fact suggests a need
for a specialised scale for investigating the ecology of paradidactic systems
(Fig. 2)—we call it the scale of levels of paradidactic determinacy (Otaki et al.,
2020). In this scale, the level of professionsmeans the didactic profession, that is, the
category of possible professions involved in paradidactic activities: schoolteacher,
governmental official, textbook-designer, teacher-educator, mathematician, didactic
researcher, etc. The noospheres of the next level indicates the didactic noospheres,
which are fuzzy and extensive institutions thinking about school systems with
didactic systems at stake (see also, Chevallard, 1992a, 1992b).
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To explain the case of the paradidactic bipolarisation, let us briefly introduce one
of the constraints: the lack of didactic theories—e.g., the absence of the notions of
didactic contract and didactic transposition—, which is located at the levels of
societies and noospheres. Our noospheres around the world do not have enough
terminology for recognising the didactic phenomena, especially those that are
involved in the levels of disciplines, domains, and sectors. By contrast, school-
teacher can use pedagogical notions and very specific didactic notions. As a conse-
quence, they tend to focus on general pedagogic matters and microscopic contents at
stake in their paradidactic systems, with an illusion that the articulation of disciplin-
ary knowledge-to-be-taught described in curricular documents is universal.

4 Relation of the Paradidactic Theory to the Fundamental
Theory in ATD

The “A” of ATD encapsulates its fundamental assumption: every human action is
didactic in some sense. According to this anthropological principle, any paradidactic
entity is also didactic. We have no intention to resist it. In fact, we model the
paradidactic systems as the didactic systems of a special type. Moreover, it is very
likely able to integrate the paradidactic scale to the didactic scale, if we want to do so
(Fig. 3). This integrated scale clarifies that the paradidactic research focuses on the
interface—or “ecotone” (cf. Chevallard, 1992a)—between the levels of societies and

Humankind

↓↑

Civilisations

↓↑

Societies

↓↑

Noospheres

↓↑

Professions

↓↑

Paradidactic systems

Fig. 2 The scale of
paradidactic determinacy
levels

Humankind

↓↑

Civilisations

↓↑

Societies

↓↑

Noospheres ⇄ Professions ⇄ Paradidactic systems

↓↑

Schools

↓↑

Pedagogies

↓↑

Didactic systems

Fig. 3 A possible (but too
much) integration of the two
scales
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schools (see also Chevallard & Bosch, 2019). However, our interest is not in such
over-sophistication of the general theory (we consider that the integrated scale is
specifically useful for justifying that our paradidactic theory is not independent of the
fundamental theory of ATD). Praxeologically speaking, using the vocabulary of
ATD, the paradidactic approach is a domain of research praxeologies based on the
theoretical infrastructure of ATD. Based on the praxeology model, a typical
sequence of four research actions can be described as following four components:
having a problem about certain didactic facts (e.g., didactic facts around geometry);
gathering data about the facts; constructing a spontaneous solution based on the data;
and deconstructing and reconstructing the solution (and problem) within a theoret-
ical framework (see also Artigue & Bosch, 2014). By using mathematical simile, we
can make a following statement about such a didactic research activity: the funda-
mental part of ATD seems like a kind of set theory in didactics. Every (possible)
domain of didactics—e.g., the didactics of mathematics, the didactics of Catalan,
and the didactics of didactics—can be based on the fundamental theory of ATD.

At this point, we remind you of the epistemological obstacle with paradidactic
research mentioned in the first section. Our slightly complex theorisation of
paradidactic reality is not motivated by a purely theoretical concern, but deeply
rooted in research practice with sensitivity to the transparency illusion. In our view,
almost nothing is as “invisible” as the paradidactic in what we study within didactics.
We need scientific theories constructed with relevant epistemological vigilance in
social science, when we study the paradidactic reality.

5 Final Remarks: What Could Be the raison d’être
of Paradidactic Research?

As we have already mentioned in the introduction, teachers’ paradidactic work is on
the way to gaining acceptance as a legitimised theme of study in didactics. Then,
where could its epistemological legitimacy come from? Let us give here our tentative
answer. A main aim of science is to understand the conditions under which its target
phenomenon emerges (see also Chevallard et al., 2015). In the case of didactics, such
conditions seem to be categorised into two major interrelated types: the noospheric
and the school. Every didactic phenomenon is more or less affected by the institu-
tional ecologies of both types, where a certain piece or body of knowledge related to
the phenomenon lives. In other words, any didactic stake emerges under different
conditions not only of the home-institution of a school of it (we have to remember
that the term school has quite broad meaning according to ATD), but of also the
transit-institution of a noosphere in its didactic transposition history. Within ATD,
the existence of the school type of conditions is emphasised by the scale of levels of
didactic co-determinacy. By contrast, the noospheric type does not fully attract
research concern, even though we have the technical term of noosphere, which
allows us to recognise the complex process of dissemination of knowledge. The
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noospheres are implicit but influential institutions between the schools and the
societies in the didactic co-determinacy levels. In our view, the information about
conditions of the noospheric type is crucial, especially when we study the possibility,
viability, and reproducibility of radical didactic proposals like the study and
research path (cf. Bosch, 2019). The importance of research on paradidactic phe-
nomena will probably continue to grow more and more in the future.
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Teacher Learning in Collaborative Settings:
Analysis of an Open Lesson

Takeshi Miyakawa and Francisco J. García

1 Teacher Knowledge Within the Anthropological Theory
of the Didactic

The notion of praxeology is central within the Anthropological Theory of the
Didactic (ATD). Coined more than 20 years ago, it offers a theoretical tool to
describe, analyse, and question any human activity.

[. . .] the notion of praxeology is at the heart of the ATD. This notion generalises different
common cultural notions—those of knowledge [savoir] and know-how [savoir-faire], a
word that generically refers to “an ability that has been acquired by training”. It should
allow designating, without epistemological-cultural implications (this is knowledge, this is
not, this is “just” a skill, etc.), and without judging an a priori or a posteriori value, any
possible structure of knowledge (Chevallard, 2009, p. 4, our translation).

When the focus is on the teaching and learning of mathematics, we usually talk
about mathematical praxeologies or organisations (MP or MO) and didactic praxe-
ologies or organisations (DP or DO). To make a long story short, a basic assumption
within ATD is that any problem about mathematics teaching and learning should be
considered in a wider sense as a problem about doing mathematics (Chevallard et al.,
1997). Thus, learning is about carrying out a certain mathematical activity within an
institution that can be described in terms of MP. And when this study process is
supported by someone else (normally a teacher, in regular school institutions), the
activity he or she makes to support learners’ mathematical activity can be described
in terms of DP. In this case, a didactic system is formed, designated by S(X; Y; O),
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being X the people studying O (and that should be engaged in certain mathematical
activity about O), being Y those that will help X studying O (normally, Y is a single
teacher y) and O the mathematical organisations at stake (made up of praxeologies,
or containing some praxeological elements at least). As a conclusion, we can state
that a teaching and learning process could be described as a joint activation of MP
and DP in mutual dependency (called didactic codetermination).

If we put our lenses in the teacher, as the study helper or facilitator, a crucial
question arises: what kind of knowledge should he or she have in order to facilitate a
fruitful and meaningful encounter of Xwith mathematical organisations MO? This is
an old and nuclear question within research in mathematics education. Several
theoretical frameworks have been developed to try to inquire about the nature of
this knowledge (see Venkat & Adler, 2014).A possible answer from the ATD to this
issue is the notion of praxeological equipment of the teaching profession, interpreted
as the set of praxeologies teachers need to intervene effectively and pertinently in the
mathematical education of their students (see Cirade, 2006; Bosch & Gascón, 2009;
Chevallard, 2009; Ruiz-Olarría, 2015). Some important remarks about this notion
are:

• It offers a unifying model of teacher knowledge (logos) and teacher action
(praxis).

• This equipment is essentially made of mathematical and didactic praxeologies.
• It hypothesized its collective and institutional nature beyond personal

idiosyncrasies.

Cirade (2006) pointed out that this equipment should include not only the
mathematical praxeologies teachers would have to teach, but also praxeologies
teacher would need to (a) delimit, interpret, connect and make explicit the raison
d’être of these praxeologies, (b) conceive and construct the didactic praxeologies
associated to the mathematical praxeologies to teach. From this perspective, an
important research program within ATD has to do with the characterisation of the
praxeological equipment needed, or at least useful, for teachers to intervene effec-
tively and pertinently in their students’mathematical education in a given institution.

2 Teacher Learning: Devices and Infrastructures

The notion of praxeological equipment of the teaching profession as a model of
teacher knowledge is one side of the coin. The other side is how teachers build and
develop their knowledge. This relates to another important domain in the research in
mathematics education: teacher education and professional development.

To tackle this domain of research within the ATD, two important notions could be
borrowed and adapted from the ATD. The first one is the notion of educational
devices, considered as any mechanism (in a general sense) arranged to produce some
educational aims (Chevallard et al., 1997). The second one is the notion of mathe-
matical-didactic infrastructure, based on Chevallard (2009), which could be
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considered as the set of conditions and constraints that affect and determine what is
studied (MO) and how (DO) in a given institution. These two notions have been
introduced mainly connected with mathematical study processes in school (from
kindergarten to higher education). However, they could be considered in a wider
sense, as far as any teacher education process is nothing but a kind of study process
(not only about mathematics, but also about teaching them) in a given institution
(normally, schools of teacher education in the teachers’ initial education, but teacher
centres, schools, or whatever, in teacher professional development). Thus, the
problem of teacher education could be tackled by both questioning: (a) the teacher
education devices that could be useful to build and develop teachers’ praxeological
equipment, and (b) the infrastructures necessary for such devices to exist and
produce their intended outcomes.

To differentiate these infrastructures that affect teacher education from those
related to the teaching of mathematics, the term paradidactic infrastructure has been
introduced (Winsløw, 2011; Miyakawa & Winsløw, 2013, 2019). A paradidactic
infrastructure has been defined as “the set of conditions for the work outside the
classroom, related to a given MO and DO” (Miyakawa & Winsløw, 2019, p. 189).
Here, it could be considered even in a more general sense, as the conditions and
constraints that affect the existence and functioning of teacher education devices.

3 The Teacher Education Device “Open Lessons”
and the Paradidactic Infrastructure in Japan

In general, an open lesson (in Japanese, kokai-jugyo) in Japan means any lesson
wherein the colleagues inside or outside school are invited to observe the classroom
teaching and provide comments mainly for the purpose of professional development.
Its form is very simple: a teacher prepares a lesson attentively and writes a lesson
plan for the observers; this teacher teaches in the classroom, and the others observe
the lesson; the post-lesson discussion is organized after observing the lesson. It
occurs at any educational level today, even in the university for the faculty devel-
opment. Because the terms used in the educational field in Japan are not clear-cut, an
open lesson could be considered as a kind of lesson study (Shimizu, 2014) or as a
part of lesson study (synonymous with research lesson). This teacher education
device forms a part of paradidactic infrastructure in Japan that allows mathematics
teachers to work together.

Open lessons, and in general lesson study, have been acknowledged as a powerful
professional development device. It has attracted worldwide attention mainly since
Stigler and Hierbert’s (1999) seminal work. Thus, lesson study has become a study
object for many didacticians from different theoretical perspectives, with different
research aims. Particularly, researchers from the ATD have focused on open lessons
and lesson study using the ATD framework, with the aim to better understand the
affordances and limitations of this practice, as well as its ecology within teacher
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education institutions. Among others, it is worth considering publications such as
Winsløw (2011), Miyakawa and Winsløw (2013, 2019), Rasmussen (2016), or
García et al. (2019).

4 Workshop’s Rationale and Guiding Questions

It is the aim of this workshop to invite participants to engage in a research process
about teacher learning in the context of an open lesson using ATD tools. The open
lesson to be analysed in this workshop was taught in 2009, in a 2nd grade class (pupil
age � 7 years) of the elementary school attached to Joetsu University of Education,
about word problems of subtraction (Fig. 1). This open lesson formed part of a 2-day
“study meeting” (kenkyu-kai), held annually at this school, and attended by hundreds
of teachers from all over Japan. During these 2 days, the school showcases lessons
from all school disciplines, as well as other aspects of the school’s life, such as after
school musical and sports activities. Each activity contributes to give a holistic
impression of the school’s life, governed by the general aim of “preparing students
to live in human society” (an approximate translation of the school’s motto). The
mathematics lesson considered in this paper was observed by about 70 teachers.

The workshop was structured as follows: first of all, we showed short video clips
of the lesson and the post-lesson discussion to get an overall image of the open
lesson, then, we proposed the participants analyse the data, considering what they
had seen in the videos plus the detailed lesson plan, excerpt from textbook connected
with the topic addressed in the lesson, the transcript of open lesson, and the transcript
of the discussion after the lesson. The mathematical problem used in this lesson was
a world problem of subtraction, which requires to use the segment diagram: “There
were 27 passengers in a bus. Later, some passengers got on this bus. Now as a whole,
the number of passengers is 34. How many people got on later on?” (see
Hitotsumatsu, 2005, p. 72).

Participants’ work was guided by the following questions:

• What MO and DO are planned to be implemented in the lesson plan and the
textbook?

• What MO and DO are implemented in the classroom?

Fig. 1 An open lesson about word problems of subtraction in second grade class in Japan
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• What paradidactic praxeologies could be identified in the open lesson?
• What teacher learnings happen in the open lesson?

5 Discussion and Perspectives

The detailed results of analysis of this open lesson can be found in Miyakawa and
Winsløw (2013). We do not refer to them here. Instead, we discuss an aspect that has
not been discussed in that paper, but they were in the workshop.

An important question that has been addressed in the workshop is how the
choices of didactic organisations realized in the Japanese lesson can be justified.
One answer proposed by the authors is the epistemological and didactic model
adopted in the mathematics lessons of Japanese primary and middle schools, that
is the teaching approach mondai-kaiketsu-gata-jugyo (literally translated into
English as a lesson of the form of problem-solving, and also called in English
structured problem-solving approach by Stigler & Hierbert, 1999). The lesson
based on this approach is “designed for students to acquire knowledge and skills
through creative mathematical activity by presenting challenging problems to stu-
dents” (Takahashi, 2008). In addition to the development of problem-solving strat-
egies and skills, which is the target of traditional problem-solving approach, this
Japanese approach also aims at developing the conceptual knowledge on the specific
mathematical contents. The teaching progression in a lesson with this approach is
usually organised into four or five phases: posing a problem (hatsumon), students’
work on the problem individually or in groups (kikan-shido), whole-class discus-
sions of various solutions (neriage), summing up of the lesson (matome), and
exercises or extension (hatten; optional). The lesson analysed in this workshop
also followed this model. In addition to this model, the notion of mathematical
thinking (sugakuteki-kangaekata) is also often referred to when discussing the
structured problem-solving lessons in Japan (Hino, 2007; Isoda, 2012). We do not
go into the detail of this notion, but it constitutes, with the structured problem-
solving approach, an epistemological and didactic model of Japanese lessons.

Coming back to the ecological perspective of teacher collaboration, we consider
that such an epistemological and didactic model is a critical condition that supports
the teachers’ collaborative work in the lesson study, that is to say, it is a part of the
didactic as well as paradidactic infrastructure. In order to design and discuss the
mathematics teaching in the group of teachers, it is necessary to have such a model of
reference that justifies or criticises the didactic organisation proposed by a teacher. It
can be the structured problem-solving approach and the mathematical thinking like
in the case of Japanese lessons, or it could be any other, like the ATD or the Theory
of Didactical Situations (Brousseau, 2002) the frameworks that allow us to design
and analyse MO and DO to be implemented or have been implemented in the
classroom. However, what is important to consider is that using an approach or
another, will it be implicitly or explicitly, will have a direct impact on how the
teacher education device is organised and what kind of knowledge will teachers
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build as a consequence of being engaged in such devices (García et al., 2019). The
role of these epistemological and didactic models as essential components of the
paradidactic infrastructure has been overlooked in existing research about lesson
study/open lessons as professional development devices. Since we do not have
enough empirical studies that investigate the relationship between the epistemolog-
ical and didactic model and the teacher education devices such as lesson study, we
think it is an important issue to be addressed in the future.
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Introduction to Part III
The Curriculum Problem and the Paradigm of

Questioning the World

Marianna Bosch and Noemí Ruiz-Munzón

The Curriculum and the ATD

The study of the curriculum has always been at the core of the anthropological theory
of the didactic (ATD) since its first developments with the theory of the didactic
transposition in 1980 (Chevallard, 1985, Chevallard & Bosch, 2020). This theory
clearly expanded the object of study of didactics, which was mainly focused on
teaching and learning processes taking place in the classroom. It introduced new
analytical methods to start questioning different subject matter constructions that are
at the core of school education. It also requires distinguishing the knowledge that is
actually taught and learnt at school from what is designated as knowledge to be
taught and from its original forms in the scholarly institutions that produce and use
knowledge for purposes other than teaching it. The initial question for researchers is
not how a given piece of knowledge can be better taught and learnt, but the different
possible conceptions of this piece of knowledge and how it has initially been
elaborated or produced and then transformed into something to be learnt at school.
Analysing didactic transposition processes needs approaching knowledge as a social
construction and also as structured activities taking place in social institutions.

Didactic transposition processes take place over different periods of time, and
include several breaks in the form of curriculum reforms. They are carried out by
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different types of agents (scholars and producers of knowledge in different disci-
plines, but also the users of knowledge or educators and policy-makers) and in
different institutions surrounding the school. The result is not always a coherent
construction, and objects of knowledge from different historical periods can coexist.
The problem of the ecology of knowledge emerges. The objects of knowledge are
seen as alive entities that live in certain environments—niches—with certain raisons
d’être that can be modelled in terms of trophic levels (Chevallard, 2007, 2017).

New notions and methods were needed to approach this universe of knowledge
objects that appear in didactic transposition processes, their interactions and evolu-
tion. The development led to the emergence of the anthropological theory of the
didactic in the 1990s, with a description of the social universe in terms of institu-
tions, persons, objects, positions, relations, etc. and the modelling of human activ-
ities in terms of praxeologies. In Chevallard’s words (2007, our translation),
didactics as a field of research aims to study “the conditions and constraints under
which praxeologies start to live, migrate, change, operate, perish, disappear, be
reborn, etc. within human groups”.

Approaching the conditions and constraints affecting the praxeologies that are to
be taught at school will produce a new extension of the research focus that is
represented by the scale of didactic codeterminacy (Fig. 1). While didactic transpo-
sition addresses the problem of how contents are selected, elaborated and organised
to be transformed into themes, sectors, domains and disciplines, the study of the
ecology of school praxeologies also questions how the upper levels of the scale
affect their existence and possible evolution (including their disappearance).

In our societies, teaching and learning processes are mainly organised according
to what Chevallard (2015) calls the paradigm of visiting works. In this paradigm,
instructional processes are determined by the selection of a set of works or praxe-
ological organisations—a curriculum—that students are asked to “visit” under the
guidance of the teacher. The visit includes learning what those works are made of,
which their main elements are and how they can be used, for instance, to solve some
given sets of problems—usually called “applications”. It not only comprises
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becoming aware of their existence, but also acknowledging their importance as
historical productions. The raisons d’être of these praxeologies, not only the reasons
for learning them but also their reasons for existence, can remain in the shadow or
simply be delayed, presented as something that will appear later on—if it does.

To avoid assuming the current state of things as if it were the only possible one,
the paradigm of visiting works is subsumed into a larger pedagogical paradigm, the
paradigm of questioning the world, which can also appear as a counter-paradigm
because of the important changes it requires in the scale of didactic codeterminacy.
The main element to define the paradigm of questioning the world is the notion of
study and research path (SRP) based on the so-called Herbartian schema:

S X; Y ;Qð Þ➦M½ �➥A♥

where M is the “didactic milieu”, i.e., the set of resources potentially used by the
class [X, Y] to construct the answer A♥ defined to be the class’s answer to questionQ.
In this case, we say that the class [X, Y] studies Q or inquires about it. The Herbartian
schema indicates the main elements of the inquiry process. Its dynamics is captured
in terms of some dialectics (question-answer, media-milieu, individual-collective,
among others) that describe the production, validation and dissemination of A♥.

Adopting the perspective of the paradigm of questioning the world represents a
crucial change. The pre-established organisations of knowledge do not precede the
educational process generated by the didactic system S(X, Y; Q). It is during the
inquiry about Q that the potential knowledge tools are searched, selected, studied,
tested and adopted as new elements of the milieu or they are simply rejected. The
scale of didactic codeterminacy has to be modified accordingly (Fig. 2).

The latest advances in the ATD related to the curriculum problem are located at
the interface between both paradigms: trying to determine the conditions needed for
didactic systems to evolve towards the paradigm of questioning the world while
identifying the constraints imposed by the current paradigm of visiting works that
hinders, and sometimes even impedes, such an evolution.
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Fig. 2 Scale of didactic
codeterminacy in the
paradigm of questioning the
world
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Collective Advances During the Lecture and Workshops in
Course 3

Chapter 3.1 contains the notes of Yves Chevallard’s four-lecture course. They take
stock of the current state of certain areas of the ATD and, on this basis, address the
crucial question of the didactic paradigm shift that is becoming increasingly clear
throughout the world today. Chevallard plays special attention to the higher levels of
the scale of didactic codeterminacy (Humanity, Civilisations, Societies, etc.) and
highlights the notions of pedagogy—in particular, the pedagogy of inquiry. He
shows how to model classical study paradigms and the paradigm of questioning
the world that is developing today.

Chevallard’s notes are followed by four short chapters derived from the work-
shops that completed Course 3, illustrating some recent research works related to the
curriculum problem. In chapter 3.2, Hamid Chaachhoua and Annie Bessot, from the
Université Grenoble Alpes, and Julia Pilet, from the Université Paris-Est-Créteil, in
France, study the case of quadratic equations through the analysis of dominant
praxeological models. They discuss methodological issues regarding a reference
praxeological model designed to conduct a comparative study of two institutions
using different curricula for quadratic equations.

The didactic analysis of a school piece of knowledge, such as quadratic equations
proposed by the French authors, corresponds to the didactic transposition method-
ology and its developments in the praxeological analysis. This line of research is
carried out within the paradigm of visiting works. The three chapters that end Part
3 of this book address the design, implementation and analysis of study and research
paths, an instructional format that can be located in the transition towards the
paradigm of questioning the world.

Britta Eyrich Jessen, from the University of Copenhagen in Denmark, presents
experimentations of study and research paths (SRPs) in chapter 3.3. Some corre-
spond to implementations carried out in the researcher’s classrooms; others come
from her engagement in in-service teachers education courses about the design,
development and analysis of SRP-based teaching. She emphasises the methodolog-
ical choices concerning both the implementation and the analysis of the outcomes.

In chapter 3.4, Koji Otaki, from Hokkaido University of Education in Japan,
develops the analysis of SRPs through the dialectic of questions and answers. He
studies the dynamics of an SRP about calculating cube roots using simple pocket
calculators, and uses it to illustrate the relationship between question-answer maps
and the notion of praxeology.

Chapter 3.5 follows a similar direction. Verónica Parra and María Rita Otero,
from the Universidad Nacional del Centro de la Provincia de Buenos Aires in
Argentina, consider didactic-mathematical indicators of the dialectics that nourish
the dynamic of SRPs and provide tools to pilot research-based teaching. They
introduce a set of indicators of the inquiry dialectics and analyse the data obtained
when implementing an SRP in the last year of the Argentinian secondary education
level.
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Toward a Scientific Understanding of a
Possibly Upcoming Civilizational
Revolution

Yves Chevallard

1 Prefatory Remarks

The ATD is a complex theory, which in many ways breaks with the common relation
to teaching and learning facts. Of course, everyone is free to study a given prob-
lem—the question of teacher education or the question of curriculums—using the
tools and through the channels they want. However, we are here to address the
problem of questioning the world in the framework of the ATD. And this pre-
supposes that our relation to the ATD has a solidity that, first of all, I would like
to examine and strengthen. I will therefore take the liberty of recalling basic elements
of the ATD, insisting in particular on the key points that seem to me to be the least
well identified in general.

For newcomers to the ATD, let me recall here what I have called the “Humpty
Dumpty principle”, which I borrow from Lewis Carroll’s Through the Mirror, and
what Alice found there (1871), and which applies to all sciences: “When I use a
word,” Humpty Dumpty said, in rather a scornful tone, “it means just what I choose
it to mean—neither more nor less.” This principle says in direct terms what Blaise
Pascal, around 1658, in The Geometric Spirit and the Art of Persuasion, stated as
follows:

Hence it appears that definitions are very arbitrary, and that they are never subject to
contradiction; for nothing is more permissible than to give to a thing which has been clearly
designated, whatever name we choose. It is only necessary to take care not to abuse the
liberty that we possess of imposing names, by giving the same to two different things.
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2 Revisiting Some Basics of the ATD

2.1 Persons, Institutions, and Positions

The Macmillan Dictionary online defines “basics” as meaning “the most important
aspects or principles of something that you should learn, think about, or deal with
first”. The point of departure of the ATD as a modeling tool of the didactic is the joint
notions of a person and an institution, which, as everyone knows, are to be
understood in a broad sense—newborns, infants, and toddlers are persons, for
example; and families, classes, couples, clubs, and circles, among a countless
number of entities, are full-fledged institutions—they are all “instituted” by human
activity.

I must pause here to make explicit something very important to the ATD, i.e., the
use of letters and other symbols to name the entities we are interested in. As a rule,
persons are denoted by the small letter x (with a subscript if needed) and institutions
by the capital letter I (same remark).

Let me then introduce the third key notion, that of institutional position p in an
institution I. We shall denote such a position by the letter p if the institution I is clear
from the context and otherwise by the ordered pair (I, p). An institution has at least
one, and generally many, positions. In a school class, there are two main positions:
let us call them the student position and the teacher position. In a family, there are
generally the parent position and the child position. A given position (I, p) may be
unoccupied briefly or for a long time: the class’s teacher may be absent, for example.

A person x who is a “member” of an institution I occupies a position p in I. We
say that x is a member of the institution I in the position p. We also say that the
person x is a subject of p or is subjected to p. Persons are always subjected to many
institutional positions—that of a native speaker of their mother tongue, of son or
daughter, of husband or wife, of lover, of student or teacher (or both), etc. We shall
also say that persons are the resultants of the (evolving) sets of (personal) sub-
jections. Institutions are continually built up by persons, and, conversely, persons are
shaped by institutions: this dialectic of persons and institutions is the beating heart of
society as seen from the ATD.

2.2 Relations to Objects

We can now take a crucial step forward. Given any entity or, as we shall say, any
object o, for any person x or institutional position (I, p), we define the relation of that
person or position to the object o as the set made up of all the links relating x or p to
o. These sets are denoted by R(x, o) and RI( p, o), respectively. (Of course, one can
also denote RI( p, o) by R((I, p), o).)

In what follows, I shall subsume the notions of person and institutional position
under a common notion, that of instance (think of Humpty Dumpty’s principle),
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often denoted by a letter with a circumflex accent. An instance î can, therefore, be
either a personal instance x or an institutional (or positional) instance (I, p). With this
in mind, we shall denote the relation of the instance î to the object o by R(î, o). In the
former case, we shall have R(î, o) ¼ R(x, o), in the latter R(î, o) ¼ RI( p, o).

This subsumption may seem, at first, somewhat counterintuitive. However, we
consider that, just like a person, an institution or, more exactly, an institutional
position, can know, learn, forget, like, dislike, obsess over any “object”. (Beware!
An “object” o may as well be a person x.) When a person says “Here, we don’t like
dogs!”, this person refers to a position that she occupies and at which dogs are not
welcome. When people say “In here, they know too little mathematics!”, they refer
to a position to which—it seems—they are themselves subjected.

The notation used here allows us to denote, for example, the relation of an
instance ĵ to an object õ which is the relation of the instance î to the object o, i.e.,
R(ĵ, õ) ¼ R(ĵ, R(î, o)). In particular, R(y, R(x, o)) is the relation of the teacher y to the
relation of the student x to the object o. In what follows, the Greek letter ξ will
generically denote a researcher in the field of didactics, while bρ will be a position of
researcher in didactics. Of course, what will be of primary interest to us is the case of
a didactician ξ doing research in the framework of the ATD. In other words, we shall
be concerned with contributing to the definition of a researcher’s position bρATD

within the framework of the ATD.
When the relation of an instance î to an object o is not empty, i.e., when R(î,

o) 6¼ ∅, we say that î knows o—this is, of course, a deliberately minimalist
definition!—or that the object o exists for î. When R(î, o) ¼ ∅, we say that î does
not know o—or that o does not exist for î. As a result, we have: î knows o , R(î,
o) 6¼∅. Now a crucial problem arises. What instance asserts that “we have R(î, o) 6¼
∅”? More generally, what instance ĵ professes that it is so? If such an instance ĵ
exists, we shall write: ĵ ⊦ R(î, o) 6¼∅, to be read: “the instance ĵ judges (or opines, or
asserts) that R(î, o) is not empty” (or: “according to ĵ, î knows o”). There may exist
another instance k̂ such that k̂ ⊦ R(î, o)¼∅ or k̂ ⊦Ø(R(î, o) 6¼∅). In other words, the
instances ĵ and k̂ have different views of R(î, o). Note that we have this: k̂ ⊦ (ĵ ⊦ R(î,
o) 6¼∅)) k̂ ⊦ R(ĵ, R(î, o)) 6¼∅. Similarly, we have: l^ ⊦ k̂ ⊦ R(î, o) ¼∅) l̂ ⊦ R(k̂,
R(î, o)) 6¼∅. This noted, it may be the case that we also have: k̂ ⊦ (ĵ ⊦ R(î, o) 6¼∅).
More generally, let ϑ be any statement; we can have ĵ ⊦ ϑ, k̂ ⊦ Øϑ, k̂ ⊦ (ĵ ⊦ ϑ), etc. Of
course, it can be the case that ĵ¼ î or k̂¼ î (so that, for example, î ⊦ R(î, o) 6¼∅ or î ⊦
R(î, o) ¼ ∅). Some of the more important cases for us are when one or more of the
instances î, ĵ, and k̂ are a researcher in didactics ξ, a student x, or a teacher y. In
particular, according to the circumstances, we can have ξ ⊦ R(î, o) 6¼ ∅, ξ ⊦ R
(x, o) 6¼ ∅, y ⊦ R(x, o) 6¼ ∅, y ⊦ R(ξ, o) ¼ ∅, ξ ⊦ R(ξ, o) ¼ ∅, etc.

However, a question is still open at this stage. When I write that, for example, ĵ ⊦
ϑ, who then asserts that ĵ ⊦ ϑ? Of course, it is the present author, the only person who
can write (or say) “I” in the present context. In the following, I shall denote this
“authorial instance” by the (archaic) Greek letter ϟ (koppa), so that if I write “ϟ ⊦ (ĵ ⊦
ϑ)”, I arrive at a redundant formulation (“I assert that the author, i.e., myself, asserts
that ĵ ⊦ ϑ”), which I’ll try to avoid.
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2.3 Who’s Speaking?

Before going further, it is important to stress three more points briefly. First, we
define an object (in a human group or society) as anything that exists for at least one
person or one institution (in that group or society). Let me add that, in consonance
with the general ethos of the anthropological theory of the didactic, there is no object
o that, at one time or another, does not deserve the interest of researching
didacticians—all objects are anthropologically interesting.

Second, the functions î ⊦ . . ., where î can be any instance, allow a multifocal
approach to the didactic, in which every instantial “worldview” may count,
depending on the research questions the didactician ξ is dealing with. Thus, the
ATD stands at a distance from theorisations in didactics that centre on the relations to
objects of the researcher ξ considered or, even more flippantly, of the researcher
position bρ, and disregard most other instances’ viewpoints. There is indeed a crucial
advantage to the ATD’s open stance towards otherness: it allows us to develop
unconfused analyses of research situations. Here is a recently observed example.

2.4 The Case of Peer Review

A researcher ξ submits a paper to a research journal. The proposed study is about a
class session where the students had to carry out a certain (mathematical) task t.
Following the referees’ reports, the paper is not considered acceptable by that
journal’s editors. In fact, it is critically required of ξ to explain further why, as ξ
views it, the task t has to do with the learning of algebra. Now the author ϟ of the
paper, i.e., ϟ ¼ ξ, only asserts that it is some of the instances observed by ξ that view
the task t as being likely to make the students aware of their need for “algebraic”
tools. It is these instances, notably the teacher who designed the didactic scenario
involving t and the teachers who implement it, who let it be known that they view t as
likely to efficiently push the students into the world of (elementary) algebra. If we
denote the latter statement (“The task t is likely to push the students. . .”) by ϑ, we
can say that ξ ⊦ (y ⊦ ϑ), where y is the designer or any one of the teachers involved,
not that ξ ⊦ ϑ: in fact, it might be as well that ξ ⊦ ϑ or that ξ ⊦ Øϑ. Therefore ξ should
be required to justify that ξ ⊦ (y ⊦ ϑ), not that ξ ⊦ ϑ! It is true that ξ can be required to
analyze the reasons why the designer and the teachers hold the belief that ϑ, which
certainly has to do with both their relation to t, i.e., R(y, t), and their relation to the
mathematical field of algebra, i.e., R(y, A), where the letter A stands for “algebra”.

Note that, in complying with this requirement, ξ would have to draw on his
relations R(ξ, R(y, t)) and R(ξ, R(y, A)), which, in turn, will partially depend on his
relations R(ξ, t) and R(ξ, A). It is not unreasonable to presume that what motivated
the referees was twofold. The first incentive has a systemic source: referees are
supposed (including by themselves) to know at least one of the fields of expertise to
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which the question tackled by the author ϟ ¼ ξ in the paper they have to review can
be related more or less explicitly. At the same time, however, they are generally
ignorant of the nontrivial aspects of the question under study because of the
peculiarity of the material made available by the author and, of course, because
the question under consideration is supposed to be on the front lines of science. As a
result, referees tend to insist on unspecific aspects of the paper submitted to them.

One of these aspects consists in making (often bitter) remarks on methodological
matters, which seem liberally open to comments and suggestions—the referee, so he
or she usually suggests, would have done otherwise! The second “solution” consists
in criticizing the author’s supposedly inadequate command of some scientific field
implicated in the proposed study. In the episode I refer to here, it will be for example
“algebra”, denoted here by A, with referees implicitly boasting about their own
relation toA and, at one go, querying the author’s one. It boils down to saying that R
(ϟ, A) will not be validated by the referee ω unless it resembles closely enough—
according to the referee’s discernment—the referee’s own relation R(ω , A), held by
ω to be the “right” relation to A (humility is usually not a referee’s forte).

From the point of view of the ATD, this is epistemological wrongdoing—
bragging is rarely a good thing on a researcher’s part. From the vantage point of
bρATD, there is no such thing as a good-in-itself relation to any object. The important
point is not about the relation to A of the researcher ξ ¼ ϟ but about ξ’s ability to
adequately model such relations as R(x, t), R(y, t), R(x, A), and R(y, A), which
depends only in part on R(ξ, A). In this respect, it turns out that, quite often today,
innovative and committed teachers fall in with the age-old but enduring view that
algebra should be construed as “generalized arithmetic”. This fact, of course,
should be part of R(ξ, R(bμ , A)), where bμ is the mathematics teacher position.
Researchers always have to alter and enrich their relations to many objects to free
themselves from the current mainstream conception. Another view, and indeed a
competing view of (elementary) algebra, is that A is a set of tools to model
(“algebraically”) number phenomena. The key word here is model.

2.5 The Case of Algebra

Let me indulge in a quick example. Consider the numbers a ¼ 2 and b ¼ 8. Their
arithmetic mean is m ¼ 2þ8

2 ¼ 10
2 ¼ 5. Here is an arithmetic phenomenon: in chained

notation, we have 2 < 2þ8
2 < 8. We can check on other ordered pairs that the mean

m seems to always lie between a and b. This leads to the conjecture that if a< b, then
a < aþb

2 < b. This is an algebraic model of the presumed arithmetic phenomenon we
are interested in. How can we generate this model?

We can do that in a manner that is not the generalization of any “natural”,
basically arithmetic procedure. Indeed we have: a < b ) a ¼ 2a

2 ¼ aþa
2 < aþb

2 < bþb
2

¼ 2b
2 ¼ b. As anyone can see here, the amount of “algebraic” calculations is kept to a

minimum: at every step of the way, we slightly alter the form of the (algebraic)
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expression obtained so far. But there is more to it than that. By looking at numerical
examples, we can also convince ourselves that m lies right in the middle of the
interval [a, b]. Once again, the “algebraic” work to perform to check this conjecture
is tantamount to seeing the forms of the algebraic expressions that are displayed
before our eyes. When we look at our “proof” that a < m < b, we first see that in
going from a¼ aþa

2 to m¼ aþb
2 we replace an a by a b, which produces an increase of

b�a
2 ; then in going from m ¼ aþb

2 to b¼ bþb
2 , where once again an a is replaced by a b,

we observe another increase by the same amount, i.e., b�a
2 . We thus arrive at the

equalities m – a ¼ b – m ¼ b�a
2 , which prove our guess.

The glossary of a book on mathematics (Morrison & Hamshaw, 2015, p. 616)
defines algebra as “the use of letters and other symbols to write mathematical
information”. This is a good, i.e., minimalist, “definition”. Now a key question is
left blank: which uses will it serve? This is exactly the question I have tried to
consider here. The onus of addressing it is indefinitely on researchers in didactics, for
all answers to this question are necessarily provisional—from the point of view of
the practicing researcher at least.

2.6 The Praxeological Analysis of Action

Let us consider an instance ŵ that we shall call the reference instance (in truth, ŵ can
be any instance). Given an instance î, the universe of objects or cognitive universe of
î according to ŵ is defined by: Ωŵ(î) ≝ {o / ŵ ⊦ R(î, o) 6¼ ∅}. The set Ωŵ(î) tells us
which objects exist for î according to ŵ. The cognitive equipment of î according to ŵ
is then defined by: Γŵ(î) ≝ {(o, R(î, o)) / o 2 Ωŵ(î)}. The set Γŵ(î) specifies how î
knows the objects that î knows according to ŵ, i.e., the objects o 2 Ωŵ(î).

What causes the relations to objects to exist in persons and institutions? The
answer hinges on the notion of praxeology, the key notion of the theory of human
action propounded by the ATD. Let us consider an institution I and a position p in I.
The subjects of the instance ô ¼ (I, p) engage in an activity ã which is seen by an
instance ŵ as the implementation of a praxeology P ¼ pÄ(ô, ã, ŵ). The symbol pÄ

denotes the praxeological functor, which supplies a praxeological analysis of the
activity ã, that is to say, essentially, specific answers to three questions: (a) What do
people in p do?, (b) How do they do it?, and (c) Why do they do it that way?

From the point of view of the ATD, the answer to the first question can be
formulated in terms of tasks of some type. The ATD posits that all action splits into a
sequence of tasks ti of different type Ti. As is usual in the ATD, the notion of task is a
very wide notion: many human activities that seem to some of us “natural”, such as
the task of conversing, for example, or of drinking a glass of water, must be looked at
as tasks. As is usual, too, the notion of task is invariant under changes of “size”
(in terms of the amount of work required to perform the task): “calculating the
difference of two integers”, “writing a poem”, “opening a mustard jar”, “buying a
new car”, “getting married”, are all types of tasks.
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The answer to the second question is that, to carry out some task t of type T, one
needs a technique τ (from Greek τε�χνη), i.e., a determined way of doing tasks t of the
given type T. It should be noted that a technique τ succeeds only on a set of tasks Tτ
⊊ T which is called the scope of τ. It must be emphasized that the preceding
requirement governs every type of action: a specific technique is therefore required
to speak, sing, walk, squat, blow one’s nose, brush one’s teeth, swallow a pill, or
prove that the number e is transcendental. The ordered pair made up of a type of
tasks T and a technique τ relative to T is denoted by [T / τ] and is called the praxis
block (or block of “know-how”).

The answer to the third question is that any technique requires a justifying
comment called its technology, denoted by the Greek letter θ. This technology θ is
itself coupled with a supporting discourse at a higher level, that of the theoryϴ of the
technique τ. The ordered pair made up of the technology θ and the theory ϴ is
denoted by [θ /ϴ]: it is the logos block (or block of “knowledge”). It can be observed
that the quality of the justification of the praxis block [T / τ] provided by the logos
block [θ / ϴ] is variable according to the institution I. But one point is not debatable:
all praxis blocks tend to couple with a logos block, thereby constituting a fully-
fledged, though sometimes questionable, praxeology P¼ pÄ(ô, ã, ŵ)¼ [T / τ / θ / ϴ].
Let us denote the blocks [T / τ] and [θ / ϴ] by the Greek capital letters Π and Λ,
respectively. We thus have: P ¼ pÄ(ô, ã, ŵ) ¼ [T / τ / θ / ϴ] ¼ [T / τ]

L
[θ /

ϴ] ¼ Π
L

Λ.
A fourth question must be raised to complete the praxeological analysis of an

activity ã: Why do people in p do what they do? In other words, what is the reason
why they do what they do? What is the raison d’être—the reason for being—of the
task t carried on? What motivates it? The kind of answer which is relevant here is
based on the following phenomenon: a task t of some type T is performed because
performing it is part and parcel of a technique τ1 relative to a type of tasks T1: to
perform a task t1 2 T1, one has at some time or other to perform a task t 2 T. If you
want to cook ravioli (type of tasks T1), you have to boil water (type of tasks T ). If you
want to sum two fractions (T1), you may need—according to the technique τ1 used—
to calculate the least common multiple of two numbers (T ). Etc.

2.7 Praxeological Obsolescence

What is sometimes the case is that some type of tasks T, which used to be imposed by
a widespread technique τ1, remains in a curriculum, while the technique τ1, which
justified its presence therein, has long vanished from the curricular scene. In such a
case, if the performing of tasks of type T is not required by any other technique τ2,
T becomes “unmotivated”, deprived of any raison d’être and useless, and the
performing of tasks t ends up resembling a mysterious rite of passage—“Don’t ask
why, you have to do it!” In some lower high school curriculums—until recently, this
was the case in France, for example—, there remained the formula a

b ¼ a � 1
b (with
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b 6¼ 0). This is certainly mathematically correct. But what is it for? What praxeology
is it a part of? A century ago, it was a key technological component of a taught
praxeology whose purpose was to facilitate the division of two numbers. Suppose
you have to calculate 20 � 8 and you know in advance that 1

8 ¼ 0.125; you have:
20 � 8 ¼ 20

8 ¼ 20 � 0.125 ¼ 2 � 1.25 ¼ 2.5. Of course, you have to know in
advance, so to speak by heart, the value of the reciprocal of the divisor, as, for
example, 1

5 ¼ 0.2. In many cases, the reciprocal is not a decimal number, and you
have to settle for an approximate value: 13 � 0.33; 17 � 0.142; etc.

One important case was the division by π: if you want to calculate the radius of a
circle of length 10 m, you have to calculate 10

2π ¼ 5
π ¼ 5 � 1

π. Just as everyone knew
that π � 3.14, everyone had to know that 1π � 0.318 or 0.32. So that you had: 5 � 1

π

� 5 � 0.318 ¼ 1.59 or 5 � 1
π � 5 � 0.32 ¼ 1.6. Today, a calculator gives at one

click: 10
2π ¼ 1.59154943. . .

It may happen that a praxeological element p remains lastingly in the curriculum
even though it is no longer praxeologically motivated—it is precisely the case with
the equality just considered. Two remarks, however, are in order. The first is that,
when teaching an unmotivated praxeological element p, a teacher generally concocts
a “didactic” justification, no matter how vague it may be. The second remark is that a
praxeological element long unmotivated in a given institution can recover a role in
another institution and even can reassume the function it played in its
“traditional” role.

This is typically the case in modern computing with the method called “Division
by Invariant Multiplication”, whose pivot is the equality a

b ¼ a � 1
b , where the

reciprocal 1
b is precomputed. Suppose b ¼ 7. If we have 1020

7
¼ 14285714285714285714. . . we arrive at, say,

106�7� 106�14285714285714285714�10�20 ¼ 151428571428571428526�10�20

¼ 15:14285714285714285684:

Note that, because 106
7 is a repeating decimal, its true value is

15.14285714285714285714. . . ¼ 15:14287.

2.8 Praxeologies and Relations

Where do personal and institutional relations come from? For any instance î and for
every praxeology P¼ pÄ(ô, ã, ŵ)¼ [T / τ / θ /ϴ], we consider the relation R(î, P). We
define the praxeological universe of î according to ŵ byΩŵ

✦(î)≝ {P / R(î, P) 6¼∅}
and î’s praxeological equipment according to ŵ by Γŵ✦(î) ≝ {(P, R(î, P)) / P 2
Ωŵ

✦(î)}. We have Ωŵ
✦(î) ⊂ Ωŵ(î), where Ωŵ(î) ¼ {o / ŵ ⊦ R(î, o) 6¼ ∅} is the

cognitive universe of î according to ŵ, and Γŵ✦(î) ⊂ Γŵ(î), where Γŵ(î) ¼ {(o, R(î,
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o)) / o 2 Ωŵ(î)} is the cognitive equipment of î according to ŵ. We now posit that,
conversely, [

bw
Γŵ✦(î) generates [bw

Γŵ(î) in the following sense: whatever the object o,

the relation R(î, o) results from all the relations R(î, P) where P 2 [
bw
Ωŵ

✦(î) involves

the object o, whether technically, technologically or theoretically.
This generating principle applies to any object o. Thus the relation R(x, x0) of the

person x to a person x0, for example, to x’s mother (in which case x0 6¼ x), or to
x themself (x0 ¼ x), arises from all the praxeologies to which x has a non-empty
relation and which involve x0. The same applies to all instances î and î0. To analyze in
depth the contents of a relation R(î, o) or R(î, O), where O is a set of objects o, one has
to concretely inquire about the praxeologies that generated it, either recently or in a
more remote past.

Let us consider an activity ã carried out in a positional instance ô ¼ (I, p) and
which an instance ŵ regards as the implementation of a certain praxeology P ¼ pÄ(ô,
ã, ŵ) ¼ [T / τ / θ / ϴ]. This equality signifies that ŵ interprets the activity ã as the
performing in the position ô of tasks t of type T by means of the technique τ,
according to the technological-theoretical block Λ ¼ [θ / ϴ]. Now let Ã be the set of
praxeologies P ¼ pÄ(ô, ã, ŵ) for all ô and ŵ. Given an instance î, let us consider the
relation R(î, Ã). If î establishes in an instance ô0 an activity ã0 regarded by î as
corresponding to ã, i.e., such that î ⊦ ã0 ≘ ã (where ≘ means “corresponds to”), we
say that the praxeology P0 ¼ pÄ(ô0, ã0, î) ¼ [T0 / τ0 / θ0 / ϴ0] is a (personal or
institutional) transpose of P according to î, which we denote by: P0 ¼ Ptr. (The
transposition functor is a multivalued or plurivocal functor.) Of course, if ŵ0 is
another instance, we can have ŵ0 ⊦ Ø(ã0 ≘ ã). Generally speaking, ã0 and P0 will
depend on R(î, Ã) and on the conditions that prevail in the position ô0. It is the core
notion of condition, central to the theory of the didactic developed in the ATD, that
we will now examine.

2.9 Conditions and Constraints

What causes the relations to objects to exist in persons and institutions? The general
answer is: the conditions that prevail around them. The changes that affect these
conditions explain the changes that the relations R(î, o) may undergo. Now, what is a
condition? This question can receive a formal answer: given any system S*, a
variable (i.e., a variable quantity) w* defined on the states t* of S*, and a set V of

possible values v of w*, the condition c is defined by: c �def w*(t*)¼ v, where v 2 V.
(Note thatw* can be a dichotomous or a polytomous variable as well as a continuous
variable.) If S* is a classroom, we can consider the condition “the room’s temper-
ature is between 21 �C and 23 �C”.

More generally, we can define a condition by a combination of variables defined
on S*. If S* is a class of s students comprising f female students andmmale students,
we can consider the condition f > 1

3 m and m > 1
3 f, which is the same as f > 1

4 s and
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m > 1
4 s. (If s ¼ 24, for this condition to be satisfied, we must have f � 7 and m � 7.)

Other conditions can be “Each student has a calculator”, “Each student has a
workable Internet connection”, “Students have had enough to eat before coming to
school”, “This student does not know what the derivative of ex is”, etc.

Let us denote by C(ȶ) the set of all prevailing conditions relative to all systems in
the universe. This definition has the advantage of emphasising that, in the ATD, we
theoretically take into account all possible conditions, relative to all possible sys-
tems—we do not restrict our interest to a limited number of them that tradition has
brought to our attention. But this definition must be criticised on one count: the “set
of prevailing conditions C(ȶ)” depends on the instance ŵ that considers it: there exists
no all-encompassing vantage point to look at the set C(ȶ). For this reason, instead of
writing C(ȶ), we shall henceforth write Cŵ(ȶ) to denote the set of prevailing conditions
known to ŵ. Some conditions may be absent from Cŵ(ȶ) simply because of ȶ—until
recently in the history of humanity, no instance ŵ could take into account the level of
ionising radiation (which is detectable with a Geiger counter but not by the human
senses).

This can be generalized. Very often, Cŵ(ȶ) excludes conditions on which ŵ has no
control, i.e., that ŵ is not allowed to alter. Such conditions are called constraints for
ŵ. However, any instance ŵ is fully aware of many conditions that are constraints for
ŵ but which are not constraints for some other instances ŵ0. For example, students
know that they cannot freely set the date of their next test: they know that it is a
prerogative of the teacher or the school administration. More generally, given two
instances ŵ and ŵ0, we may have î ⊦ Cŵ(ȶ) 6¼ Cŵ0(ȶ). It is of the utmost importance for
ξ (and bρ) to learn to distinguish between Cŵ0(ȶ) and Cŵ(ȶ) because each of them is
generally characteristic of the type of instance concerned. For example, the set of
conditions that exist for a “classical” didactician seems at times to be almost disjoint
from the set of conditions contemplated by a classical pedagogue or, for that matter,
by a sociologist of education. In this respect, the ambition of the ATD is to
theoretically and practically overcome the limitations that tend to characterise each
of these instances.

2.10 “Unknown Unknowns”

All this notwithstanding, we cannot brush aside a fundamental limitation, which
was—surprisingly enough—expressed in 2002 by the then US Secretary of State for
Defense, Donald Rumsfeld, at a Defense Department briefing, when he declared
(“There are known knowns” (n.d.); “Known and Unknown: A Memoir” (n.d.)):

. . . as we know, there are known knowns; there are things we know we know. We also know
there are known unknowns; that is to say we know there are some things we do not know.
But there are also unknown unknowns—the ones we don’t know we don’t know.

In Cŵ(ȶ), the “known knowns” are those conditions c defined by a set of variables
w*

1,w
*
2, . . .,w

*
n of which ŵ knows the values v1, v2, . . ., vn, at least approximately.
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The “known unknowns” are types of conditions c for which ŵ knows w* but not,
even approximately, its current value v. Lastly the “unknown unknowns” are the
possible types of conditions c defined by variablesw* that ŵ doesn’t even imagine to
exist.

In truth, these notions had been used much earlier. The Canadian American
engineer Elio D’Appolonia (1918–2015) wrote in 1979 (Jackson, 2019, 98):

The risk posed by unknowns is somewhat dependent on the nature of the unknown relative
to past experience. This has led me to classify unknowns into one of the following two types:
(i) known unknowns (i.e., expected or foreseeable conditions), which can be reasonably
anticipated but not quantified based on past experience as exemplified by case histories, and
(ii) unknown unknowns (i.e., unexpected or unforeseeable conditions), which pose a poten-
tially greater risk because they cannot be anticipated based on past experience or investiga-
tion. Known unknowns result from phenomena which are recognized, but poorly
understood. On the other hand, unknown unknowns are phenomena which cannot be
expected because there has been no prior experience or theoretical basis for expecting the
phenomena.

Once an “unknown unknown” has been discovered, it is easy to convince oneself
that the existence of the type of conditions in question is crystal-clear and that it is at
worst a known unknown. This is a fact that we must be firmly aware of, at the risk of
diminished epistemological alertness. I will first mention three examples of discov-
ery of such sensitive conditions, in cases more or less foreign to our domain of
endeavour.

The first example relates to “puerperal fever” or childbed fever, i.e., “bacterial
infections of the female reproductive tract following childbirth or miscarriage”
(“Postpartum infections”, (n.d.)). In that case, the “unknown” variable—poor
hygiene on the part of midwives, nurses, and doctors—was discovered several
times since the end of the eighteenth century—by, among others, Alexander Gordon
(1752–1799), in Aberdeen (Scotland), Oliver Wendell Holmes (1809–1894), in
Boston (USA), or Ignaz Semmelweis (1818–1865), first in Vienna (Austria), then
in Pest (Hungary). But the discovery was not taken seriously, and the discoverers
were blamed and ridiculed for uttering statements regarded as offensive to doctors.
Referring to one of his colleagues, Dr. D. Rutter, an opponent of Holmes and the
“contagionists”, Charles Delucena Meigs (1792–1869), typically wrote (Meigs,
1854):

Still, those of you who are contagionists will say that he [Dr D. Eutter] carried the poison
from house to house; and if so, then you ought to give some rationale of the fact. Did he carry
it in his hands? But a gentleman’s hands are clean [emphasis added]. Did he carry a nebula
or halo about him? Then why not I also? If the nebula adhered to his clothing, it might as
well have adhered to mine. (p. 104)

What was lacking—besides the lack of humility of the medical profession!—was
an explanation of the alleged mechanism of contagion—the germ theory of disease
had not yet been developed or was not fully accepted.

My second example concerns physics and, more particularly, the experimental
work conducted by Heinrich Hertz (1857–1894) in the years 1886–1888 on what
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came to be called “Hertzian waves”, i.e., radio waves. Let us first do a little physics
with Alan Chalmers (1999):

Hertz was able to use his apparatus to generate standing waves, which enabled him to
measure their wavelength, from which he could deduce their velocity. His results indicated
that the waves of longer wavelength travelled at a greater speed in air than along wires, and
faster than light, whereas Maxwell’s theory predicted that they would travel at the speed of
light both in air and along the wires of Hertz’s apparatus. The results were inadequate for
reasons that Hertz already suspected. Waves reflected back onto the apparatus and the walls
of the laboratory were causing unwanted interference. (pp. 33–34)

The “hidden” variable was thus. . . the size of the room in which Hertz’s exper-
iments were taking place. Hertz (1962, p. 14, quoted by Chalmers, 1999, p. 34)
wrote:

The reader may perhaps ask why I have not endeavored to settle the doubtful point myself by
repeating the experiments. I have indeed repeated the experiments, but have only found, as
might be expected, that a simple repetition under the same conditions cannot remove the
doubt, but rather increases it. A definite decision can only be arrived at by experiments
carried out under more favorable conditions. More favorable conditions here mean larger
rooms, and such were not at my disposal. I again emphasize the statement that care in
making the observations cannot make up for want of space. If the long waves cannot
develop, they clearly cannot be observed. (p. 14)

In this case, the “unknown” condition is presented by Hertz as a (temporarily
insuperable) constraint (“larger rooms. . . were not at my disposal”).

My third example is far more recent. In 2014, specialists of “pain research”
published a study entitled “Olfactory exposure to males, including men, causes
stress and related analgesia in rodents” (Sorge et al., 2014). Their introduction
speaks for itself:

We found that exposure of mice and rats to male but not female experimenters produces pain
inhibition. Male-related stimuli induced a robust physiological stress response that results in
stress-induced analgesia. This effect could be replicated with T-shirts worn by men, bedding
material from gonadally intact and unfamiliar male mammals, and presentation of com-
pounds secreted from the human axilla. Experimenter sex can thus affect apparent baseline
responses in behavioral testing.

It seems that this discovery—the influence of the experimenters’ sex (rather than
gender) on the mice’s responses—was utterly unexpected. Of course, this kind of
influence was known when the “subjects” are human beings. But it came as a
surprise in the case of rodents.

The issue of “unknown unknowns” does not spare didactics. As far as I know, an
“unknown” set of conditions, essentially revealed by Guy Brousseau, was first and
foremost the set of conditions grouped under the name of didactic contract
(Brousseau, 2002). This key notion is a pivotal example of a very generic case.
Let us consider a person x in the process of being subjected to some institutional
position (I, p), for example, to the student position in some school class. Experience
shows that this process may be more or less difficult and challenging, which can be
explained by the following mechanism: the person x is already subjected to other
institutional positions (Ǐk, p�k). Given this situation, one or more of these subjections
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may conflict with the subjection of x to the position (I, p), and even may impede this
process. As an example, I will quote from an interview of the British sociologist
Peter Woods (2012) with two female students, Yvonne and Dianne, as part of “a
discussion on reports, and reference therein to ‘ladylike behavior’”:

Yvonne: I don’t think they’re . . .Well, it seems stupid to me . . .We’re women . . .
I don’t care what anyone says.

PW: What do you think they mean by ‘ladylike’?
Yvonne: Someone that goes around stinking of perfume, ‘aving ‘er ‘air up, an’

wearin’ little earrings.
Dianne: Rather like Miss Sparkes. (Deputy head)
Yvonne: Yeah, spittin’ image of Miss Sparkes.
Dianne: That’s what she’s trying to get us to be like you know, trying to get us to

be like her. But that’s one thing I could never do, because ever since I’ve
been five I’ve been climbing trees, climbing on top of garages at the back
‘ere – you can climb up trees and swing over on the back of the garages. I
don’t think I could ever adjust to the way Miss Sparkes... Oh no!
(pp. 197–198)

These students refuse to look like their teacher, at least as far as how they behave
in everyday life. If some form of ladylike composure is indeed a didactic stake o in
Miss Sparkes’s teaching, they reject the very aim of the education imposed on them,
which is a crippling condition with respect to the targeted education. If, however, the
object o—the way one behaves, walks or dresses—is not considered a goal of this
education, these students fear more or less unconsciously that, in accepting to
resemble their teacher as regards an object ô (say English grammar, or arithmetic)
of which the mastery is a “true” educational objective, they will automatically look
like her on many other points, including o. It is true that, when students learn from
their teachers, they “look”more like them. There is no question that, for example, if a
student learns that the derivative of cosine is negative sine, this student will look a
little more like the teacher, at least in “mathematical behaviour”.

2.11 Within Reach or out of Reach?

An important issue must be highlighted here. It may happen that teachers seek to do
something to neutralize the students’ subjections which would hinder their commit-
ments to school work. In other words, teachers may believe that the hostile condi-
tions that determine the student’s “negative” attitude towards school and school
work are not constraints for teachers, that teachers can modify these conditions to
reduce their “bad” influence. We shall see that this hypothesis is part of a broader
scheme on which the management of education is globally based. However, in many
cases, this hypothesis proves wrong: if some solution exists, it is often the case that it
is not within the reach of the teacher position, while, at the same time, other
institutional positions can act efficiently to solve the riddle.
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Here is a typical example. In a study titled “Societal inequalities amplify gender
gaps in math” and subtitled “Egalitarian countries cultivate high-performing girls”,
the authors (Breda et al., 2018) write:

According to the Programme for International Student Assessment (PISA), there are on
average only seven girls for ten boys in the top decile of the math performance distribution
among the 35 countries belonging to the Organisation for Economic Co-operation and
Development (OECD). Underrepresentation of girls at high levels of performance is a
common feature of all OECD countries [. . .] and has remained remarkably stable since
2000 [. . .]. Gender gaps of the same magnitude are also observed in science and reading, the
latter in favor of girls [. . .]. (p. 1219)

As the title and subtitle suggest, the authors explain the gender gaps in terms of
“general” inequalities existing in the societies which are being compared:

It is striking that general indicators of inequalities can explain so well the patterns of gender
differences in math, science, and reading performance across countries (whereas other
indicators directly related to gender stratification have limited explanatory power). In more
egalitarian countries, differences in initial status seem less likely to translate into differences
in performance, and girls are more represented among high performers as are, for example,
students from a low socioeconomic and cultural background. This suggests that the gender
gap in math is a form of social inequality like many others. (p. 1220)

In terms of action, instead of persisting on gender-specific measures, this would
lead to focus on measures tailored to reduce global social and economic inequal-
ities—which is largely outside the specific sphere of action of teachers as such.

2.12 The Possibly Didactic

In order to make the link with the foregoing, let us first consider an instance î. For
simplicity’s sake, we shall leave implicit the reference instance ŵ. As a general rule,
î’s cognitive universe Ω(î) and cognitive equipment Γ(î) change in time. If a person
x is subjected to a position (I, p), in order for x to be a “good subject” of I in the
position p, we must have R(x, o) ffi RI( p, o) for every object o 2 ΩI( p), where the
symbol ffi means that the relation R(x, o) “conforms” with the relation RI( p, o)—as
ever, from the point of view of the reference instance ŵ kept implicit.

It may happen that this conformity is achieved at some time ȶ, which can be
denoted by R(x, o) ffi ȶ RI( p, o) (or, more exactly, ŵ ⊦ R(x, o) ffi ȶ RI( p, o)), and turns
out to be lost at a later time ȶ0 > ȶ, which will be written R(x, o)≇ȶ0 RI( p, o) (or, more
exactly, ŵ ⊦ R(x, o)≇ȶ0 RI( p, o)). In such a case, we can assume that some exogenous
institutional subjection, maybe unnoticed until then, manifests itself as a “counter-
subjection”—at least from the standpoint of ŵ. This is a vicissitude of the cognitive
life of persons and institutions. We will now look at what can, more generally,
determine the cognitive evolution of persons and institutions.

The ATD defines didactics as the science of the didactic, i.e., of “didactic facts”.
The “traditional” word used in the ATD is gesture, taken in a metaphorical sense, to
designate any act or action (and not only a “bodily movement”). The use of “gesture”
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was adapted to the original definition of “the didactic”, for it conveys the idea of an
intention on the part of the “gesturer”, which can be here any instance û: In short, I
used it to define—in the wake of Guy Brousseau’s definition of a “didactic situa-
tion”—a didactic gesture δ as an act that manifests an intention, on the part of û, to
help some instance î to “learn” some object o. Now this definition has appeared over
time to be fragile, uncertain, and too narrow.

A difficulty lies in the notion of intention itself. How can one know that û had the
intention to perform a gesture of a “didactic” nature, except maybe û themself?
Paradoxically enough, it seems that observers are more prone to see an intention in
û’s action when they regard the effects of this action as “bad”, and to deny it when
they regard the results of this action as “good” (Knobe, 2006; and also Cova, 2016).
It is not unreasonable to assume that this attitude has deep-rooted, religious origins.
According to Gil Brodie (n.d.), “it is axiomatic in scholastic theology that the
intention to perform a sinful act, even though not executed, is a sin in itself. (This
is sometimes referred to as the ‘Priority of the Intention.’).”

This is not the sole obstacle to using the criterion of intention. Any gesture, of any
“kind” whatever, matters to the didactician, even when the gesturer had no “didac-
tic” intention in mind, for it can change the prevailing conditions in ways that modify
the ecology of learning, as we are going to see now.

To move forward, we must first give more development to the theme of evalu-
ation. We start from what we will call a cognitive base, i.e., the ordered pair n¯ ¼ (î,
o) of an instance î and an object o. How can the “quality” of R(î, o)—i.e., how
“good” or “bad” it is—be assessed? We must first assume that the relation to o of
some institutional instance ŝ¼ (I, p), i.e., R(ŝ, o)¼ RI( p, o), is regarded (more or less
explicitly) as the “right”, standard relation to o, to which R(î, o) must be compared.
We then assume an evaluating instance v̂, capable of making judgments about the
quality of relations R(î, o), for at least some objects o and some instances î. Of
course, we suppose that v̂ can make rough judgments such as v̂ ⊦ R(î, o)ffi R(ŝ, o) and
v̂ ⊦ R(î, o) ≇ R(ŝ, o). But more is needed of v̂. We assume that v̂ is able to estimate a
“degree of conformity” φ(R, R¯) between R ¼ R(î, o) and R¯ ¼ R(ŝ, o). More
precisely, given relations R and R0 to o, v̂ can issue one of the following verdicts:
v̂ ⊦ φ(R, R¯) < φ(R0, R¯); v̂ ⊦ φ(R, R¯) > φ(R0, R¯); v̂ ⊦ φ(R, R¯) � φ(R0, R¯). The
ordered pair ṉ ¼ (ŝ, v̂) is then called a cognitive frame of reference. The quadruple ñ
¼ n¯⁀ṉ¼ (î, o, ŝ, v̂) is a cognitive nucleus. The notion of cognitive nucleus will now
allow us to define the key concept of a possibly didactic situation.

Let us consider a reference instance ŵ and some instance û that “makes a gesture”
δ. When shall we say that the gesture δ is a didactic gesture from the point of view of
ŵ (or is a ŵ-didactic gesture)? To do so, we first consider a cognitive base n¯¼ (î, o)
which is likely to “profit by” the gesture δ once performed, in the sense that î will
know o “better” than before δ was made. We also consider a cognitive frame of
reference ṉ ¼ (ŝ, v̂) likely to appraise the change in R(î, o) after the gesture will be
made. And finally, we have to take into account the set C of conditions that prevail
before the gesture δ is made. (Note that, of course, we can have, for example, v̂¼ ŵ
or v̂ ¼ î.)
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For notational convenience, we denote by R the relation R(î, o) before δ takes
place, and R0 the “same” relation after the accomplishment of δ. That being so, we
say that the gesture δ is didactic from the point of view of ŵ (or ŵ-didactic) with
respect to ñ and C if ŵ conjectures that v̂ will consider R0 “closer” to R¯ ¼ RI( p, o)
than was the case of R, i.e., that v̂ ⊦ φ(R, R¯) < φ(R0, R¯). If ŵ conjectures that v̂ will
consider it further away from R¯ ¼ RI( p, o) than was the case of R, i.e., that v̂ ⊦ φ(R,
R¯) > φ(R0, R¯), we say that the gesture δ is antididactic from the point of view of ŵ
(or ŵ-antididactic) with respect to ñ and C. The gesture δ is said to be isodidactic
from the point of view of ŵ (or ŵ-isodidactic) with respect to ñ and C if ŵ conjectures
that v̂ will find R and R0 almost equally compliant with R¯, i.e., that v̂ ⊦ φ(R,
R¯) � φ(R0, R¯).

The quadruple ς ¼ (ñ, û, δ, C) is called a possibly didactic situation and is said to
be a didactic, antididactic, or isodidactic situation from the point of view of ŵ,
respectively, according to whether the gesture δ is didactic, antididactic, or
isodidactic from the point of view of ŵ with respect to ñ and C.

Let me note here that if we represent these notions on a number line by assigning
them, respectively, the values 1 (didactic), �1 (antididactic), and 0 (isodidactic),
then we can think of enriching much the gamut of judgments possibly issued by ŵ
about δ: ŵ might assert, for example, that δ is most probably didactic, or in all
likelihood antididactic, or very surely isodidactic. We could also distinguish between
what ŵ “thinks” or “believes”, and what ŵ may wish for—in which case δ might be
held to be “hopefully” didactic, or “optimistically” isodidactic, etc. However, in
what follows, we will limit ourselves to our initial three-valued model, without
regard to the “degree of belief” that might affect ŵ’s judgment (Kyburg, 2003).

To conjecture that the gesture δ performed by û is didactic or isodidactic or
antididactic with respect to ñ and C, ŵ relies in particular on ŵ’s relations to R(î, o), ŝ,
v̂ and C, i.e., on R(ŵ, R(î, o)), R(ŵ, ŝ), R(ŵ, v^), and R(ŵ, C). The set of triples (ñ, û, C)
with respect to which the gesture δ is didactic (or antididactic, or isodidactic) from
the point of view of ŵ is called the didactic (or antididactic, or isodidactic) scope of δ
from the point of view of ŵ. It must then be underlined that the object o and the
instances û, ŝ, v̂, and even î, are often merely imagined by ŵ, in which case we shall
denote them, respectively, by *o, *û, *ŝ, *v̂ , or *î. The corresponding cognitive
nucleus, *ñ, is written as the case may be, (î, o, *ŝ, *v̂), (î, o, *ŝ, v̂), (î, *o, ŝ, *v̂), etc.
The set C of prevailing conditions is itself partially unknown to ŵ and largely
imagined by this instance so that we should denote it by *C. Cognitive nuclei are
therefore frequently underdefined. This seemingly invasive phenomenon is at the
root of a major tendency, the tendency towards the surreptitious generalization of a
gesture’s didactic (or antididactic, or isodidactic) scope from the point of view of ŵ.

The gesture δ changes the prevailing conditions C, in particular if it modifies R(î,
o). Let us denote by C0 the new set of conditions after δ has taken place. We call C0 a
derangement of C and write C0 ¼ C⁁δ, which can be read “C deranged by δ”, where
the symbol used (⁁) is the “caret insertion point”—a symbol familiar to any
copyeditor or proofreader. We thus have C0 ¼ C0 [ Dδ, with C0 ⊂ C and Dδ \
C ¼ ∅. This may lead to rewriting the situation ς as bς ¼ (ñ, û, D, C), where the
gesture δ is replaced by the setD of deranging conditions. Let us emphasize that the
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instance ŵ’s judgment is formed before the gesture δ takes place: it is, therefore, a
prediction about the judgment that the evaluating instance v̂ will issue after δ has
been performed. When ς and δ are (roughly speaking) reproducible, ŵ may have
integrated into their relation to ς results observed in past occurrences of the situation
ς. But ŵ will nevertheless issue an a priori, conjectural judgment relating to the a
posteriori judgment of v̂.

One of the major difficulties of forecasting in general (and not only in didactics) is
our lack of knowledge about the set C of conditions and their effects on R(î, o)—
which relates to the existence of “unknown unknowns” commented above. The
commendable effort to neutralize some of these conditions does not eliminate the
fact that we are unaware of even more of them. Although the possibly didactic is
always unsure, it is a vital necessity to human societies, which nonetheless tend to
repress it as if it were an insuperable flaw. They, therefore, hide it in selected,
isolated places, e.g., schools and classrooms. Didacticians should, however, look
for the possibly didactic wherever it occurs in society—not only where society
pretends to maintain it.

3 Humanity, Civilizations, and Societies

3.1 The Assertedly (or Allegedly) Didactic

Any gesture δ made by any instance û may be held to be didactic (or antididactic, or
isodidactic) for at least some instances ŵ. One case must be highlighted. It often
happens that an instance û considers making some gesture δ that, from the point of
view of û, is a didactic gesture, essentially justified as such in û’s perspective. We
then call δ an assertedly (or allegedly) didactic gesture—a gesture that, of course,
can be seen as antididactic or isodidactic by instances ŵ 6¼ û.

A possibly didactic gesture is any possible gesture and can therefore be performed
by any instance in any institution. By contrast, the coming into being of an assertedly
didactic gesture δ supposes that û is authorized to do so by some institution endowed
with the (more or less disputed) legitimacy and authority to host such gestures. We
shall call institutions of this kind declaredly didactic institutions.

One such institution is, in many societies, the Ministry of Education, about which
Wikipedia notes the following (“List of education ministries”, n.d.):

An education ministry is a national or subnational government agency politically responsible
for education. Various other names are commonly used to identify such agencies, such as
Ministry of Education, Department of Education, Ministry of Public Education, and so forth,
and the head of such an agency may be a Minister of Education or Secretary of Education.
Such agencies typically address educational concerns such as the quality of schools or
standardization of curriculum. The first such ministry ever is considered to be the Commis-
sion of National Education (Polish: Komisja Edukacji Narodowej, Lithuanian: Edukacinė
komisija) founded in 1773 in the Polish-Lithuanian Commonwealth.
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In a more general way, all declaredly didactic institutions must seek and obtain
some form of political legitimacy that gives them momentarily some acknowledged
place as “didactic” institutions in the society where they exist. Like all other aspects
of society, the allegedly didactic borders on the political.

3.2 The Infrastructure/Superstructure Dialectic

The above considerations may serve to illustrate, however briefly, the dialectic
between ecology and economy, in the sense given to these words in the ATD. In
the word “ecology”, coined in German by Ernst Haeckel (1834–1919) as Ökologie,
the suffix -logy relates to the set C of prevailing conditions as far as it can be
objectively known, regardless of any changes to be made to it. In the word “econ-
omy”, which derives from Greek oikonomia “household management”, the suffix -
nomy comes from nemein “manage”.

In order that some gesture δ becomes ecologically possible, the set C of prevailing
conditions, i.e., the prevailing ecology, often has to be “deranged” by some prelim-
inary gesture δ0, which by definition partakes of the economy, so that the ensuing
ecology, i.e., C0 ¼ C⁁δ0 , makes δ possible. The ecology (C) determines the econom-
ically possible (δ0), which in turn reshapes the ecology (C⁁δ0). This dialectic takes the
concrete form, at all levels, of the interplay between two functions: that of infra-
structure, i.e., basic “facilities”, and that of superstructure, i.e., the gestures which
the existing infrastructure makes possible.

To give an elementary mathematical example, let us suppose we wish to prove
that the three medians of a triangle ABC intersect each other at the triangle’s centroid
G. Such is, therefore, the superstructural mathematical work that we wish to do. To
achieve this, we have to use some mathematical infrastructure. Suppose we have at
our disposal the mathematical infrastructure of barycentric coordinates. Let O be any
point in the triangle’s plane—in fact, O can be anywhere in space. For any point M,
the vector OM

��!
is denoted by the letter m corresponding to the letter M. The points

I and J being the midpoints of segments BC and CA, respectively, we have

i ¼ bþ c
2

and j ¼ cþ a
2

, i:e:, 2i ¼ bþ c and 2j ¼ cþ a:

By subtracting the second equality from the first, we arrive at 2i – 2j ¼ b – a and
therefore at 2i + a ¼ 2j + b. Dividing by 3 we get 23 i +

1
3 a ¼ 2

3 j +
1
3 b. This equality

shows that the point G defined by g ¼ 2
3 i +

1
3 a ¼ 1

3 (b + c) + 1
3 a ¼ 1

3 (a + b + c)
belongs to both line segments AI and BJ (which proves that these segments intersect
each other) and also to segmentCK, where k¼ aþb

2 , since we have: g¼ 1
3(a + b + c)¼ 2

3
aþb
2 + 1

3 c ¼ 2
3 k + 1

3 c.∎
As should be clear from this example, the work done depends heavily on the

available infrastructure. Here we have used a simple but powerful mathematical
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infrastructure, which allows us to convert a proof into an easy algebraic calculation,
repeating after Gottfried Leibniz (1646–1716): Calculemus—let’s calculate. It is
known that the creation of this infrastructure was, however, the end result of a great
scientific saga, which required an incredible amount of superstructural work and
imagination based on already existing mathematical and physical infrastructures.

Despite its high specificity, the above example illustrates a fundamental problem
of all human societies and civilizations: the building up of praxeological infrastruc-
tures (of all possible natures: mathematical, juridical, industrial, political, medical
and social, etc.), so as to make possible the praxeological superstructural activities
people want to do before they die (it’s humour, folks). The dialectic of infrastruc-
tures and superstructures throughout the prehistory and history of humankind is the
material with which civilizations are formed, deformed and formed again. In this
global perspective, the possibly didactic (and the assertedly didactic) play a key role:
persons and institutions learn, unlearn, and relearn. Their evolution is a complex,
didactically driven process. In what follows, we will address, however briefly, a
major issue about the root of didactics: Why on earth are there didactic gestures at
all?

3.3 Homo sapiens and the Didactic

Our species has given an essential place to the didactic—a place with a similar
extension in no other animal species. Many reasons have been given for this
all-pervasive phenomenon in human societies. Certainly, one of the oldest consid-
erations in this regard relates to the “indeterminacy” of the human being, looked
upon as intrinsically incomplete. Here are two quotes that testify to our age-long
awareness of our native incompleteness. The first is from the Oration on the Dignity
of Man (De hominis dignitate) of Giovanni Pico della Mirandola (1463–1494),
sometimes called the “Manifesto of the Renaissance” (Pico della Mirandola, 1496/
1956):

At last, the Supreme Maker decreed that this creature, to whom He could give nothing
wholly his own, should have a share in the particular endowment of every other creature.
Taking man, therefore, this creature of indeterminate image, He set him in the middle of the
world and thus spoke to him: “We have given you, Oh Adam, no visage proper to yourself,
nor any endowment properly your own, in order that whatever place, whatever form,
whatever gifts you may, with premeditation, select, these same you may have and possess
through your own judgment and decision. The nature of all other creatures is defined and
restricted within laws which We have laid down; you, by contrast, impeded by no such
restrictions, may, by your own free will, to whose custody We have assigned you, trace for
yourself the lineaments of your own nature. I have placed you at the very center of the world,
so that from that vantage point you may with greater ease glance round about you on all that
the world contains. We have made you a creature neither of heaven nor of earth, neither
mortal nor immortal, in order that you may, as the free and proud shaper of your own being,
fashion yourself in the form you may prefer. It will be in your power to descend to the lower,
brutish forms of life; you will be able, through your own decision, to rise again to the
superior orders whose life is divine.” (pp. 6–8)
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The main conclusion of Pico’s Oratio is present three centuries later under the
pen of Johann Heinrich Fichte (1762–1814) in his Science of Rights (Grundlage des
Naturrechts):

In short, all animals are perfect and complete; man, however, is merely suggested. [. . .].
Every animal is what it is; man alone is originally nothing at all. What man is to be, he must
become; and as he is to be a being for himself, must become through himself. Nature
completed all her works; only from man did she withdraw her hands, and precisely thereby
gave him over to himself. (pp. 118–119)

From a biological perspective, the indeterminacy of human beings is linked to a
key fact: the phenomenon of neoteny. The word “neotenia” was coined in German
(Neotenie or Neotänie) around 1885 by the anatomist, zoologist and anthropologist
Julius Kollman (1834–1918), who composed it from the Greek neos “young” and
the verb teinein “to extend”. Neoteny, i.e., the prematurity inherent in the human
species, results in the continued infancy and helplessness of the youngHomo sapiens
and the ensuing vital necessity of a very long period of care and education.

In this perspective, one should also mention the more recently formulated
(“Grandmother hypothesis”, n.d.), which relies on the fact that “long postmeno-
pausal lifespans” distinguish humans from all other primates. This hypothesis
completes the above picture. Rachel Caspari and Sang-Hee Lee (2004) write:

The human life history pattern differs from that observed in the great apes in its delayed
maturation, slower growth, higher fertility, and increased longevity, which is associated with
menopause in women [. . .]. These are evolutionary changes that have implications for the
development of human culture. Longevity, in particular, may be necessary for the
transgenerational accumulation and transfer of information that allows for complex kinship
systems and other social networks that are uniquely human. It is also a focal point of the
grandmother hypothesis, which posits that increased longevity is important in enhancing the
inclusive fitness of grandmothers who, perhaps as early as the first Homo populations,
invested in their reproductive-age daughters and their offspring.

More generally, human societies, through their institutions and their subjects, are
endlessly coping with the problem of an undetermined future—what will they
become? This is true both at the levels of societies and individuals. The anthropol-
ogist Marshall Sahlins (2008) notes:

We have the equipment to live a thousand different lives, as Clifford Geertz observed,
although we end up living only one. This is only possible on the condition that biological
needs and drives do not specify the particular means of their realization. Biology becomes a
determined determinant. (p. 107)

In this perspective, Sahlins highlights the fact that, since the start of the human
adventure, “Culture” took the lead over “Nature”:

Culture is older than Homo sapiens, many times older, and culture was a fundamental
condition of the species’ biological development. Evidence of culture in the human line goes
back about three million years; whereas the current human form is but a few hundred
thousand years old. (p. 104)

To sum up, Homo sapiens, Knowing man, had to become Homo discens,
Learning man, and Homo docens, Teaching man (the Latin verb docere means “to
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show, teach, cause to know”, and discere means “to learn, acquire or attempt to
acquire knowledge, study”).

Before we move forward, let me posit a key tenet of the ATD. Whatever the
possibly didactic gestures made, a necessary visible outcome of a possible didactic
complex should be the formation, flourishing, and passing away, in some institution,
of a type of structures called didactic systems. A didactic system S, usually denoted
by S¼ S(X; Y; ♥), brings together a “class of students” X, a “team of teachers” Y, and
a “didactic stake” ♥. All these words must be taken cum grano salis—not too
literally. In fact, X may be just a singleton, with one “student” only, x, who can be
a two-year-old child, a doctoral student or a seasoned researcher, for example. The
set Y may be the empty set∅ (the system is then said to be an autodidactic system),
or y 2 Y may be the mother—or, as we have seen, the grandmother!—of the child x,
or the supervisor of the doctoral student x. As for the didactic stake ♥, it is the entity
X has to “study” and “learn”, with the possible help of Y.

A didactic system S can also be denoted by S ¼ Ṡ(ps, pt, ♥), where ps is the
student position, and pt the teacher position, to highlight the centrality of these
positions. The possibly didactic gestures that are made within a didactic system S are
said to be possibly didactic in the strict sense—all other gestures, performed outside
any didactic system, being possibly didactic in the broader sense.

Here again, we must take care not to suggest that the existence of a possible
didactic system is a glaringly conspicuous fact: it may exist from the point of view of
some instance ŵ while another instance ŵ0 will ignore it altogether. Among the first
questions that should be addressed by researchers in didactics is the question of what
possible didactic systems S are recognized as didactic systems, by what instances ŵ.
Once again, we will refer to declared didactic systems, notably those so labelled by
the institutions that host them. Of course, other questions of fundamental relevance
to the didactician are: Which kinds of x 2 X and y 2 Y can appear in S, and about
which didactic stakes ♥? A large part of the history of education could be told simply
by answering just these questions. All this boils down to the study of the ecology and
economy of possible didactic systems.

3.4 Humankind: We Versus They, and Way Beyond

In the ATD, the prevailing conditions C ¼ C(ȶ) are, at every time ȶ, distributed across
the levels of the scale of didactic codeterminacy, which, in its standard form, can be
represented as follows:
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Humanity

⇵

Civilizations

⇵

Societies

⇵

Schools

⇵

Pedagogies

⇵

Didactic systems

On reading the tags from top to bottom, we observe they are all nouns in plural,
except the first, Humanity, because there is today only one humankind.

We begin with this first level of conditions. The generic human being carries a
host of conditions and constraints, which are determinants of all human endeavours
and, in particular, of learning processes. We have already noted that neoteny and
prolonged infancy in humans are factors favouring learning. This is only one of
many key factors, of which the most prominent is the existence of language, in both
its oral and written forms, which set Homo sapiens apart from all other animals.

Regarding mathematics, particularly, language in the usual sense of the word
should be seen as a part of the wealth of ostensives that make up the noetic tools of
humans. We remind the reader that the noun ostensive used here derives from the
Latin verb ostendere “to show, expose to view”: an ostensive is any entity that can be
grasped by the senses, as for example, a sound, a glyph, a gesture (in the restricted
sense of the word). The adjective noetic derives from the Greek verb noein “to
think”: noetic tools are tools that allow us to think.

I will abstain here from conducting an in-depth study of the main characteristics
of humans relevant to didactics. By way of example, we shall consider two different
aspects of Homo sapiens’s deep-rooted behaviour. The first concerns humans as
members of collectives. Generally speaking, every human group tends to fight
against, or to distinguish oneself from, every other human group: it is “We vs
they”. In his booklet Race and History (1952), the illustrious anthropologist Claude
Levi-Strauss (1908–2009) has noted, not without a touch of humour, that, paradox-
ically, excluding others and feeling superior to other peoples is the touchstone of
humanity:

This attitude of mind, which excludes “savages” (or any people one may choose to regard as
savages) from human kind, is precisely the attitude most strikingly characteristic of those
same savages. We know, in fact, that the concept of humanity as covering all forms of the
human species, irrespective of race or civilization, came into being very late in history and is
by no means widespread. Even where it seems strongest, there is no certainty—as recent
history proves—that it is safe from the dangers of misunderstanding or retrogression. So far
as great sections of the human species have been concerned, however, and for tens of
thousands of years, there seems to have been no hint of any such idea. Humanity is confined
to the borders of the tribe, the linguistic group, or even, in some instances, to the village, so
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that many so-called primitive peoples describe themselves as “the men” (or sometimes—
though hardly more discreetly—as “the good”, “the excellent”, “the well-achieved”), thus
implying that the other tribes, groups or villages have no part in the human virtues or even in
human nature, but that their members are, at best, “bad”, “wicked”, “ground-monkeys”, or
“lousy eggs”. (pp. 11–12)

This enduring attitude, which shows through racism and xenophobia, sexism and
gender discrimination, ageism, and all types of collective or individual egocentrism,
must have had an adaptive advantage in the human adventure—but I will shun the
issue here.

In this respect, however, two aspects must be brought to researchers’ attention in
didactics. First, while it is true that the logos block of the praxeological equipment of
many instances may contain stereotypes, prejudices, and implicit biases, researchers
ξ have to consider them, first and foremost, as objects of study that have to be
problematized, not taken for granted. The key tool to master in that conjuncture is the
practice of epoché, a Greek word (ἐπoχή) usually rendered as “suspension of
judgment” or sometimes “withholding of assent”. Researchers need not condemn
nor endorse any behavioural, i.e., praxeological, element on a moral or political basis
(for example), which would be at variance with the very idea of epoché. Their
commitment is to analyze the conditions that maintain the corresponding praxeo-
logical elements alive and the changes in conditions that might lead to their
extinction.

The deprecation of other groups, which seems connatural to the human species, is
the reverse of a coin whose obverse is also worthy of some comments. Two words
will enlighten us in that regard. The first is out-group, defined by the Merriam-
Webster Dictionary as “a group that is distinct from one’s own and so usually an
object of hostility or dislike”. The second is in-group, defined as “a group with
which one feels a sense of solidarity or community of interests”. The in-group is, so
to speak, a “fostering group” of its members, with which some of them may develop
an almost exclusive relationship—which always carries the dangers of parochialism.

However, throughout their lifetime, persons are bound to become members of
several in-groups, each of them contributing a part of those persons’ empowerment.
In particular, for persons to escape the “tyranny” of a given in-group, they will
become members of some group new to them, which was, until then, an out-group,
but which will soon become an in-group—unless the induction process fails.

In this dialectic between in-groups and out-groups, the support provided by an
in-group is crucial. In terms of learning outcomes, in particular, an in-group can be
compared to a peloton in a road bicycle race, to wit, “a densely packed group of
riders who stay together for their mutual advantage” (Wordnet). It should be
remembered here that learning processes are, first and foremost, collective processes,
in which each learner benefits from common—rather than “personalized”—instruc-
tion and the de facto support of fellow in-group members. In fact, learning is a
“tribal” process: persons learn because the institutional group to which they are
subjected itself learns.

The preceding remarks apply notably to two contexts of interest to us. The first
one is that of in-groups of students, whatever their age, i.e., “classes”. A class [X, y]
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is an in-group which should help its members to learn, especially when the subjec-
tion of a student to this “new” institutional position mitigates the possibly detrimen-
tal effects of exogenous or previous institutional subjections—think for example of
Dianne and Yvonne’s attitude towards Miss Sparkes’s world. Ideally speaking, the
class composition should beget a new “species” of students—a “counter-species”—
to counteract and neutralize the supposedly undesirable conditions—i.e., ŵ-
antididactic conditions, for some instances ŵ—brought into the classroom, implic-
itly or explicitly, by its members. In any case, a new reality has to emerge dialec-
tically—which can take time.

Let me emphasize that the first help the teacher y as such can get comes from the
class itself—which, it is true, can, at times, be the main hindrance to the teacher’s
projects. In a commonplace classroom, the students follow the teacher who fosters
the dynamics of the collective study process. Conversely, the teacher uses the class’s
“kinetic energy” to move forward—at the risk of gliding off the track. It is here time
to signal that the verb to teach originally meant “to show, point to” (the “teacher”
was formerly the. . . index finger); while to learn referred to the idea of following a
track—the learner follows the track that the teacher is pointing to.

Let us now turn to the second context announced, which is the case of researchers
in didactics and, more generally, of all scientific communities. The forming of a
scientific community typically follows the “laws” highlighted above, in the wake of
the so-called “Invisible college” (n.d.) dear to Robert Boyle (1627–1691): there is
little need to say much more about its utility. However, there’s a hidden side to this
auspicious view, which is the splintering of the field of didactics into an indefinite
series of “subfields”, usually (though not always) defined by restricting the knowl-
edge domain they focus on.

This specialization strategy can never be taken at face value, as if it were
practically imposed by the knowledge researchers have to come to grips with. Not
only can it be disputed on epistemological grounds (because the “splintering” of a
domain of study may surreptitiously exclude objects that are key to understanding
the phenomena under study), but also it leads to the exclusive appropriation of the
“remaining” objects of study by an in-group of researchers and, so to speak, to the
expropriation of all the researchers who do not wish to pledge allegiance to this
in-group.

Many consequences follow from this confiscation that, more often than not,
transforms a research domain open to all into the stronghold of a few. The most
notable side effect, it seems, is the lack of scientific debate in research communities
so well protected against interventions from the outside, at the risk of surrendering to
dogmatic convictions. The dialectic of media and milieus, to which we will return,
then remains sourly underdeveloped.
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3.5 Humankind: An Answer to Every Question?

The level of Humanity is the seat of the conditions and constraints carried by
“modern humans” as such. Many observations have been made about the trials
and tribulations of Homo sapiens in their quest for truth. Be they mere students or
seasoned researchers, our fellow humans are prone to yield to the so-called confir-
mation bias that Francis Bacon (1561–1626) already diagnosed in The New Orga-
non or true directions concerning the interpretation of Nature (1620):

The human understanding when it has once adopted an opinion (either as being the received
opinion or as being agreeable to itself) draws all things else to support and agree with it. And
though there be a greater number and weight of instances to be found on the other side, yet
these it either neglects and despises, or else by some distinction sets aside and rejects, in
order that by this great and pernicious predetermination the authority of its former conclu-
sions may remain inviolate. (XLVI)

Before and after Bacon’s own comments, a great many observations have been
made on the human propensity to favour what we already believe. In his book The
Seven Deadly Sins of Psychology (2017), Chris Chambers writes:

Since the mid-1950s, a convergence of studies has suggested that when people are faced
with a set of observations (data) and a possible explanation (hypothesis), they favor tests of
the hypothesis that seek to confirm it rather than falsify it. Formally, what this means is that
people are biased toward estimating the probability of data if a particular hypothesis is true, p
(data|hypothesis) rather than the opposite probability of it being false, p(data|~hypothesis).
In other words, people prefer to ask questions to which the answer is “yes,” ignoring the
maxim of philosopher Georg Henrik von Wright that “no confirming instance of a law is a
verifying instance, but... any disconfirming instance is a falsifying instance.” (p. 5)

A lot of research in psychology, in fact, focuses on the conditions and constraints
of which human beings are the seat. Some of these findings have epistemological
and methodological implications, as we shall see now.

Some people seem to have an answer to every question, even if the question has
never been raised since the beginning of time! Many decades ago, working with
“split-brain” patients, whose hemispheres didn’t communicate anymore because
their corpus callosum had been severed for medical reasons, the psychologist and
neuroscience expert Michael Gazzaniga showed what the cue to this mystery might
be (“Left-brain interpreter”, n.d.):

The left-brain interpreter is a neuropsychological concept developed by the psychologist
Michael S. Gazzaniga and the neuroscientist Joseph E. LeDoux. It refers to the construction
of explanations by the left brain hemisphere in order to make sense of the world by
reconciling new information with what was known before. The left-brain interpreter attempts
to rationalize, reason and generalize new information it receives in order to relate the past to
the present.

This conclusion was prompted by famous experiments with split-brain patients,
the principle of which can be summarized as follows (Carrier & Mittelstrass, 1991):

One of these patients is asked to perform a certain action and this request is made using
optical information provided only to the left side of the patient’s field of vision and, hence, to
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the right (mute) cerebral hemisphere. When the patient is then asked why he performed this
action, the left hemisphere of the brain (where the linguistic capability resides) knows
nothing of the request the right side obtained; the patient gives other, entirely sensible
reasons. (p. 227)

In fact, “although the concept of the left-brain interpreter was initially based on
experiments on patients with split-brains, it has since been shown to apply to the
everyday behaviour of people at large” (“Left-brain interpreter”, n.d.). The conclu-
sion follows:

The drive to seek explanations and provide interpretations is a general human trait, and the
left-brain interpreter can be seen as the glue that attempts to hold the story together, in order
to provide a sense of coherence to the mind. In reconciling the past and the present, the left-
brain interpreter may confer a sense of comfort to a person, by providing a feeling of
consistency and continuity in the world. This may in turn produce feelings of security that
the person knows how “things will turn out” in the future.

This, it seems, is how we humans “connect the dots”. Here is a more concrete
example given by Gazzaniga (2011):

We showed a split-brain patient two pictures: A chicken claw was shown to his right visual
field, so the left hemisphere only saw the claw picture, and a snow scene was shown to the
left visual field, so the right hemisphere saw only that. He was then asked to choose a picture
from an array of pictures placed in full view in front of him, which both hemispheres
could see.

The left hand pointed to a shovel (which was the most appropriate answer for the snow
scene) and the right hand pointed to a chicken (the most appropriate answer for the chicken
claw). Then we asked why he chose those items. His left-hemisphere speech center replied,
“Oh, that’s simple. The chicken claw goes with the chicken,” easily explaining what it knew.
It had seen the chicken claw.

Then, looking down at his left hand pointing to the shovel, without missing a beat, he
said, “And you need a shovel to clean out the chicken shed.” Immediately, the left brain,
observing the left hand’s response without the knowledge of why it had picked that item, put
into a context that would explain it. It interpreted the response in a context consistent with
what it knew, and all it knew was: Chicken claw. It knew nothing about the snow scene, but
it had to explain the shovel in his left hand. Well, chickens do make a mess, and you have to
clean it up. Ah, that’s it! Makes sense.

What was interesting was that the left hemisphere did not say, “I don’t know,” which
truly was the correct answer. It made up a post hoc answer that fit the situation. It
confabulated, taking cues from what it knew and putting them together in an answer that
made sense. We called this left-hemisphere process the interpreter. (“Why do we feel
unified”)

That said, we are led to conclude that Homo sapiens seems to be primarily
engrossed in “making sense” of the world, more than in the quest for truth. It will
be the role of the dialectic of media and milieus to go beyond this outcome of
evolution.
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3.6 Societies and Civilizations

The sense of the word society involved in the ATD is, up to now, not discordant with
the common meaning of the term. Broadly speaking, we can refer to this dictionary
definition of “society” (Macmillan Dictionary): “people in general living together in
organized communities, with laws and traditions controlling the way that they
behave toward one another.” A particular case of interest to us is when a society is
governed by a state—is a “statist society”, as are today the French, the Spanish, or
the German societies, for example.

By contrast, any human community is not necessarily a (fully-fledged) society: to
be considered so, it has to provide infrastructures addressing the basic human needs
regarding shelter, food, safety, family life (making and raising children), education,
health, communication and information, transportation, ageing, dying, etc. But there
is more to it than that: one crucial observation is that the way a society ministers to
the needs of the persons and institutions it comprises depends heavily on time and
space. Healthcare in Greece in Plato’s day, for example, was not the same as
healthcare in Barcelona nowadays. And the same holds for education.

The reverse exists too. Some aspects of the Spanish society resemble much their
French counterparts. The same certainly applies to other societies, notwithstanding
the propensity of Homo sapiens to believe in their unrivalled “singularity”. This is
where the notion of civilization comes up. Let us first remember the upper levels of
the scale of didactic codeterminacy:

Humanity

⇵

Civilisations

⇵

Societies

⇵

…

Awarning must be issued before we go any further. Here, “civilisation” is defined
on a strictly local and comparative basis. Given a reference instance ŵ, the societies
S1 and S2 and institutions I1 in S1 and I2 in S2, we say that, from the point of view of
ŵ, the institutional positions (I1, p1) and (I2, p2) belong to the same civilisation with
respect to a set O of objects, if, for all o 2 O, we have: ŵ ⊦ RI2 ( p2, o) � RI1 ( p1, o).

A case of much interest is when the two societies are the “same” society S(ȶ) at
different points in time (for example, the French society now and a century ago). If
ȶ2 > ȶ1, for some position p in I that exists at both times, it may be the case that ŵ ⊦
RI2 ( p2, o) ≉ RI1 ( p1, o), with obvious notations. In such a case, we shall say that,
from the point of view of ŵ, a civilisational change has taken place in p with respect
to o between times ȶ1 and ȶ2.
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The impact of such changes cannot be overestimated. They often generate
passions for and against, with horrified haters, who cannot abjure the “mores” of
yesterday and accept those of today, and unqualified supporters of the change, who
dogmatically hate the haters. Any commitment to a reform regarded by many as a
civilisational change is sure to come across these opposing passions. Of course, here,
we can think of the historical transition to the paradigm of questioning the world!

4 Questioning and Studying: The Human Art of Learning

4.1 The Notion of School

The word school appears at the fourth level (counting from the top) in the scale of
didactic codeterminacy:

Humanity

⇵

Civilisations

⇵

Societies

⇵

Schools

⇵

…

The notion of school used in the ATD is, once again, a very extensive notion: a
school is any institution that can host—more or less legitimately—didactic systems
of a certain type at least. Although schools in this sense exist in every society, the
formulation of its founding principle becomes clearly explicit in ancient Greece. The
Online Etymology Dictionary reminds us that the word school comes from Latin
schola, which means “intermission of work, leisure for learning; learned conversa-
tion, debate, lecture; meeting place for teachers and students, place of instruction;
disciples of a teacher, body of followers, sect.” Latin schola comes in turn from
Greek skhole, “spare time, leisure, rest, ease; idleness; that in which leisure is
employed; learned discussion” and also “a place for lectures, school”. In fact, the
original meaning of Greek skhole was “leisure”, which, circa 300 BCE, passed to
mean “otiose discussion”, “in Athens or Rome the favorite or proper use for free
time”, and then a place for such discussion. The time for “studious discussion”, for
school in the new sense, was therefore a special time when all other activities
stopped to make room for study time. The Roman grammarian Festus, who
flourished in the second century (CE), fittingly wrote that schools had been named
after a Greek word (σχoλή, skholḗ) meaning originally “leisure” but which came to
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refer to a time when, “all other activities left aside” (ceteris rebus omissis), “children
devote themselves to liberal studies” (vacare liberalibus studiis pueri debent).

It cannot be overemphasized that “school” means—by definition—a time apart
(which usually requires a particular place: the school) from the busy and sometimes
chaotic worldly life outside school. The paradox of school is that, while schools keep
“mundane” affairs outside, they are, or should be, the very place where questions
about worldly matters of any kind can be raised and addressed with equanimity. As
is well known, Greek skhole and Latin schola opened the way to many other
European languages, a fact that the author of the Dictionary of Word Origins
(Ayto, 1990) sums up as follows:

[School] was borrowed [. . .] from medieval Latin scōla, and has since evolved into German
schule, Dutch school, Swedish skola, and Danish skole, as well as English school. The
medieval Latin word itself goes back via classical Latin schola to Greek skholế. This
originally denoted ‘leisure,’ and only gradually developed through ‘leisure used for intel-
lectual argument or education’ and ‘lecture’ to ‘school’ (in the sense ‘educational assembly’)
and finally ‘school’ the building. The Latin word has spread throughout Europe, not just in
the Romance languages (French école, Italian scuola, Spanish escuela), but also into Welsh
ysgol, Irish scoil, Latvian skuola, Russian shkola, Polish szkola, etc.

It is a postulate of the ATD that, behind any didactic system, there exists a
“school” that accommodates this didactic system, in which it can legitimately thrive,
whatever its lifespan. In any analysis conducted according to the ATD, a didactic
system being given, one has first to identify the school that enshrines it. The next step
will consist of the analysis of the school’s pedagogy relative to the didactic system in
question. As we will see, the existence and functioning of didactic systems crucially
depend on their pedagogies.

4.2 The Level of Pedagogies

Let us look again at the lowest levels of the scale of didactic codeterminacy:

⇵

Schools

⇵

Pedagogies

⇵

Didactic systems

The words pedagogy and pedagogue have acquired in the ATD meanings faithful
to their origins but which, however, have to be carefully delineated. The word
pedagogue derives (through Latin and French) from the Greek paidagōgós
(παιδαγωγóς), from paîs (παῖς), “child” and agōgós (ἀγωγóς), “guide”—from ágō

Toward a Scientific Understanding of a Possibly Upcoming Civilizational. . . 207



(ἄγω), “lead”. A pedagogue was at first a “slave who escorts boys to school and
generally supervises them”, and later “a teacher”. The Online Etymology Dictionary,
from which we borrow this information, adds that “hostile implications in the word
are from at least the time of Pepys (1650s)”—for example, the MacMillan Dictio-
nary defines a pedagogue as “a teacher who uses strict old-fashioned method”. Of
course, the uses we will do of the word in the ATD will be rid of these pejorative
nuances. Nonetheless, as didacticians, we would have to explain—among other
things—the emergence and spread of this disparaging meaning.

What is pedagogy? To answer this question, we have to introduce the notion of a
work. According to theOnline Etymology Dictionary, the expression “work of art” is
attested by 1774, but earlier (1728) this expression was simply taken to mean an
“artifice, production of humans (as opposed to nature).” It is in this sense that we will
use the word work on its own, as well as in expressions like “work of mathematics”,
“work of linguistics”, “work of chemistry”, or. . . “work of art”. Note also that any
human notion for study, that of a rational number, mountain, sea, lake, or pond, are
“productions of humans” and therefore works. Consequently, any didactic system S

can be denoted by S ¼ S(X; Y; W ), where W is the work to study and “learn”.
To studyW, students x 2 X have to come “in contact” withW, be it the resolution

of quadratic equations or horse riding. Pedagogy is, if one may say so, the “art” of
putting the students x 2 X in contact with the didactic stake—the work for study, W.
The first contact can be of various natures: it can be achieved through mere
storytelling or, to the contrary, through direct contact—by boldly attempting, for
the first time in one’s life, to solve a quadratic equation or to ride a horse. It must be
emphasized that the notion of pedagogy as used in the ATD is not independent of the
contents studied: leading students towards a given work W (or a set of works W)
obviously depends on the nature of W (or W).

A way of putting students in contact with W is through a “field trip”, which the
lexical database WordNet defines as “a group excursion (to a museum or the woods
or some historic place) for firsthand examination”. But there are other possibly
didactic structures that should be highlighted as well. A first pedagogic gesture
consists of grouping students in classes according to some criteria: a class [X, Y] is a
structure in which didactic systems S(X; Y; W ) form. A second major pedagogic
gesture consists of giving a structure to the set of works W to study—a gesture that
results in a “course of study” or “curriculum”. At this point, a pedagogical bifurca-
tion occurs according to the study paradigm being implemented. In the still current
paradigm of visiting works, founded on disciplines as a jumping-off point, a study
programme is most often structured into five successive levels, as shown below:
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Disciplines

⇵

Domains

⇵

Sectors

⇵

Themes

⇵

Subjects

If, for example, we consider the mathematical discipline, we may have
domain ¼ “Geometry”, sector ¼ “Plane transformations”, theme ¼ “Isometries”,
subject ¼ “Isometries of a rectangle”. Beware! Such a structuration of the works to
study is always an artificial construction that changes in time and across institutions:
one cannot expect to meet a “context-free” structuring—a fact which has to do with
the didactic transposition process. We will now slowly move towards the other
branch of the bifurcation, i.e., the paradigm of questioning the world.

4.3 The Pedagogies of Inquiry

The difference between the paradigm of visiting works and the paradigm of
questioning the world cannot be reduced to a single aspect. Formally speaking, the
expression S ¼ S(X; Y; W ) should be replaced, in the case of the paradigm of
questioning the world, by the formula S ¼ S(X; Y; Q) where Q is a question. Note
that a question is indisputably a work, i.e., a human creation. Note also that,
according to the Online Etymology Dictionary, Latin quaestionemmeant “a seeking,
a questioning, inquiry, examining” and quaerere “ask, seek”.

Without further delay, I introduce here the Herbartian schema in its semi-
developed form:

S X; Y ;Qð Þ➦M½ 
➥A♥

where M is the “didactic milieu”, i.e., the set of resources potentially used by the
class [X, Y] in constructing the answer A♥ defined to be the class’s answer to Q. In
this case, we shall say that the class [X, Y] studies Q or inquires into it. While, just
like question, inquire has to do with Latin quaerere “ask, seek”, the verb to study has
something special about it. According to the Dictionary of Word origins (Ayto,
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1990), the underlying notion is that of “application of extreme effort”, which is
neither in learn nor in teach, and was already in Latin studium “eagerness, intense
application”, hence “application to learning”.

The notion of inquiry used in the ATD is a general modelling concept. It applies
to whatever didactic system S¼ S(X; Y; ♥) in which the didactic stake ♥ is a question
Q. In fact, it applies indirectly to all didactic systems. If ♥ is a work W that is not a
question, the study of W takes the form of the study of questions Q1, Q2, . . ., Qn

related to W: What is W? What is its praxeological structure? How does
W “function”? What are its raisons d’être? Where does it come from? Who made
it? Etc.

Let us go back to the Herbartian schema. Note first that Johann Friedrich Herbart
(1776–1841) was a German philosopher, often regarded as the founder of pedagogy
as an academic discipline. Although the Herbartian schema is not formally due to
Herbart, it retains something of Herbart’s pedagogical views. Moreover, according
to a law of the history of mathematics formulated by historian Carl B. Boyer
(1906–1976), “mathematical formulas and theorems are usually not named after
their original discoverers”. This extends easily to other fields of endeavour.

We suppose that every member of X[Y, i.e., of the class [X, Y], strives to come up
with their own answer: if x 2 X (respectively, y 2 Y ), we denote this answer by A♥

x

(resp., A♥
y ). It may be that the students work in groups X0, X00, X000, . . ., such that

X ¼ X0[X00[X000. . . If x 2 X0, then A♥
x ¼ A♥

X0, etc. (The same applies to Y.) In the most
general case, A♥, i.e., A♥

X,Y½ 
, results in some way from the different answers A♥
x (x 2

X) and A♥
y (y 2 Y ).

When Y ¼ {y}, it may happen that the teacher imposes his own answer A♥
y on his

class so that A♥ ¼ A♥
y . To describe such a case and the other potential cases, we use

the notion of topos—the Greek word topos means “place, region, space”. The topos
of an institutional position î is the set of types of tasks that a person occupying the
position î is institutionally allowed to perform on their own, without interaction with
any other person. In the case in point, the authorizing institution is the school or the
class itself. The teacher position’s topos is maximal, and the student position’s topos
is minimal—students are only required (and allowed) to study and learn the teacher’s
answer A♥

y , i.e., we have A
♥ ¼ A♥

y . We shall speak of y as a “maximal teacher” and
the student x as a “minimal student”—of course, what is maximal (respectively,
minimal) is not the teacher (resp., the student), but the teacher position (resp. the
student position). The latter case, which can be regarded as a limiting case, suggests
that any study format can be analyzed in terms of inquiry. At this point, the notion of
paradigm will enable us to put some order in the profuse possibilities offered by
human didactic creativity.
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4.4 Study Paradigms

The notion of study paradigm gives an answer to the generic question: “What do
they do at school?” According to the Online Etymology Dictionary, the word
paradigm derives from Greek paradeigma “pattern, model; precedent, example”,
from paradeiknynai “exhibit, represent,” literally “show side by side” (from para-
“beside” and deiknynai “to show”). In what follows, I will present four main
paradigms designated, respectively, by the symbols ϖ1, ϖ2, ϖ3, and ϖ4. Although
these models seem to follow one another historically, they should be considered as
contemporary: they exist in synchrony, even though it is suggestive to study them
diachronically.

The first paradigm is the paradigm of reading the Book. In a given civilization, the
Book (seen as unique) is a text B that both raises questions Q and gives answers A.
Saying that a class [X, y] studies B means that, under the direction of y, X studies the
questions Q raised and the answers A given in B. The students do not choose the
questions for study and, of course, do not officially take part in the construction of
the answers A. In this study format, the teacher y will be called the reader (the word
derives from Old English rædere “person who reads aloud to others; lector; scholar;
diviner, interpreter”).

The supposed author of B may be an alleged divinity, a legendary figure, or a
person who once existed but whose book has been at least partially anonymized by
the passing of time, changing its author into a legend (the word legend, from Latin
legere “to read”, originally meant “things to be read”). The paradigm of reading the
Book has a long past. In some civilizations, there was a Book supposed to cover all
the needs of an accomplished life, a book I will call a total encyclopedia. For a long
time, the Bible was the total encyclopedia par excellence in the Christian world, as
the Koran is in the Muslim world. I will take here a non-religious example that may
be unexpected for some readers, that of Homer, the legendary author of the Iliad and
the Odyssey. (You certainly know the logician’s joke that these poems “were not
written by Homer, but by another Greek man of the same name”.) According to some
specialists, Homer’s works were the Book, i.e., the total encyclopedia of the Hellenic
world, in which generations of young Hellenes studied “their” world. I will draw
here on Eric Alfred Havelock (1903–1988)’s book Preface to Plato (1963), where
the author writes:

To approach Homer in the first instance as a didactic author is asking a good deal from any
reader and is not likely to win his early sympathy. The very overtones of the word ‘epic’,
implying as they do the grandiose sweep of large conceptions, vivid action, and lively
portraiture, seem to preclude such an estimate of Europe’s first poet. Surely for Homer the
tale is the thing. Didactic or encyclopedic elements that may be there—one thinks for
example of the famous Catalogue of the Ships—are incidental to the epic purpose and likely
to weigh as a drag on the narrative. However, we are going to explore the argument that the
precise opposite may be the case; that the warp and woof of Homer is didactic, and that the
tale is made subservient to the task of accommodating the weight of educational materials
which lie within it. (p. 61)
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In a footnote, the author adds a comment on the adjective “didactic” (p. 84, note
2): “This adjective may mislead, if it suggests an emphatically conscious purpose on
the part of the oral poet, yet it is difficult to choose a better. He is didactic by
necessity, but also in large part unconsciously.”

The paradigm ϖ1 of reading the Book has descendants to this day, which we will
continue to call the paradigm of reading the Book. But here, the total encyclopedia is
replaced by a library of partial encyclopedias β1, β2, . . . βl, where βi is the book on
some part of the lived world. Such was, for example, Edward Cocker’s Arithmetick,
if we are to believe the article about it in Wikipedia:

Cocker’s Arithmetick, also known by its full title “Cocker’s Arithmetick: Being a Plain and
Familiar Method Suitable to the Meanest Capacity for the Full Understanding of That
Incomparable Art, As It Is Now Taught by the Ablest School-Masters in City and Country”,
is a grammar school mathematics textbook written by Edward Cocker (1631–1676) and
published posthumously by John Hawkins in 1677. Arithmetick along with companion
volume, Decimal Arithmetick published in 1684, were used to teach mathematics in schools
in the United Kingdom for more than 150 years.

In a generation before mine, mathematics students perused John L. Kelly’s
General Topology (1955) or William Feller’s An Introduction to Probability Theory
and Its Applications (1957). In my generation, we studied Serge Lang’s Algebra
(1965) and Walter Rudin’s Real and Complex Analysis (1966).

In a sense now archaic, an “author” is an authority, a source of authoritative
information to be found in the author’s book. In the study format long associated
with the paradigm of reading the Book, a book about some specific topic—the
Book—is chosen, and the students “study” it under the direction of the “reader”,
who is not always a specialist of the subject matter treated in β, but who rules and
directs the study of β. In France, these “underteachers” were long called régents,
from Latin regere “to rule, direct”, a verb which, according to the Online Etymology
Dictionary, derives “from PIE root *reg- ‘move in a straight line,’ with derivatives
meaning ‘to direct in a straight line,’ thus ‘to lead, rule’.”

The famous French writer Stendhal (1783–1842), in his posthumously published
The Life of Henry Brulard, described his mathematics class at the “École centrale” of
Grenoble, i.e., Grenoble high school, with the teacher, Dupuy, sitting in an armchair
and questioning the pupil at the blackboard on some lesson of the book—which, in
that case, was Étienne Bézout’s Cours de mathématiques (1798) (Fig. 1).

In France, this study format culminated in the practice of colles, i.e., weekly oral
examinations, which were central to the French Higher School Preparatory Classes
(Classes préparatoires aux grandes écoles), and is at the origin of the “flipped
classroom” (see, e.g., Rickey & Shell-Gellasch, 2010).

The most crucial point here is that the paradigm of reading the Book is not
incompatible with any other paradigm, and, in particular, with the paradigm of
questioning the world. We may place ourselves in this paradigm when, during an
inquiry, we want to know if a certain work W can be useful to our inquiry. The
difference, as always, is that we ask what W, and therefore the book β on W, can
bring to the inquiry.
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The paradigm ϖ2 is the paradigm of celebrating great authors. In it, the focus is
less on a work than on the work’s author. We do not study political science but
Aristotle’s Politics; we do not study arithmetic or geometry but Euclid’s Elements,
etc. Of course, we do so because these supposed masterpieces are (or were, at some
point in history) the Books on political science and on arithmetic and geometry,
respectively. While the implementations of the paradigm of reading the Book is
often low-level, the paradigm of celebrating great authors is often high-level. One
consequence of this fact is that the study of a great author’s works not only seeks to
know the questions raised and the answers given by this author, but also the didactic
milieus drawn upon and the dialectic of media and milieus used.

This paradigm ϖ2 survives and even flourishes to this day, generally in areas that
are now part of history: history of literature, history of philosophy, and even history
of science. This paradigm is the bearer of a learned tradition from which we can learn
a lot. The paradigm ϖ2 is, of course, compatible with the paradigm of questioning
the world—in many inquiries, we are led to study some author’s work whose
understanding seems to require an analysis of the conditions and constraints under
which the author worked.

The paradigm ϖ2 was part of an intellectual universe that paved the way for the
third study paradigm, ϖ3, the paradigm of visiting works. Indeed, it is in medieval
universities that the standard curriculum made up of the “seven liberal arts” was
developed. Its lower division was called the “trivium”, i.e., the place where three
roads (via) meet, to wit, grammar, logic, and rhetoric. According to John Ayto’s
Dictionary of Word Origins (1990), “the notion of ‘less important subjects’ led in the
16th century to the use of the derived adjective trivial for ‘commonplace, of little
importance”.

The upper division, the quadrivium, was made up of four “arts”: arithmetic,
geometry, music, and astronomy. Although flourishing during the Middle Ages, the
whole “liberal” curriculum had been established in ancient Greece (the names
trivium and quadrivium came later): it appears as a transition between the paradigm
ϖ2 of celebrating great authors and the paradigm ϖ3 of visiting works.

Fig. 1 The young Beyle at the blackboard (https://www.gutenberg.org/files/53779/53779-h/
53779-h.htm)

Toward a Scientific Understanding of a Possibly Upcoming Civilizational. . . 213

https://www.gutenberg.org/files/53779/53779-h/53779-h.htm
https://www.gutenberg.org/files/53779/53779-h/53779-h.htm


4.5 The Disciplines and the Professor

The paradigm ϖ3 is well known to all of us, and I will therefore not dwell much on
it. This paradigm is the paradise of academic disciplines, which Wikipedia charac-
terizes in the following way (“Discipline (academia)”, n.d.):

An academic discipline or academic field, also known as a field of study, field of inquiry,
research field and branch of knowledge, is a subdivision of knowledge that is taught and
researched at the college or university level. Disciplines are defined (in part), and recognized
by the academic journals in which research is published, and the learned societies and
academic departments or faculties to which their practitioners belong. It includes scientific
disciplines.

How does the paradigm ϖ3 differ from ϖ1 and ϖ2? In the paradigm of reading
the Book, the “teacher” y is a mere reader. A reader does not claim to be a master of
the discipline(s) to which the Book belongs: the one who claims to be an expert is the
more or less distant and more or less anonymous author of the Book studied.

By contrast, in the paradigm ϖ3 of visiting works, the teacher is a professor, i.e.,
someone who professes the discipline taught. According to Ayto’s Dictionary of
Word Origins (1990), a professor “is etymologically someone who ‘makes a public
claim’ to knowledge in a particular field”, and, incidentally, someone’s profession
“is the area of activity in which they ‘profess’ a skill or competence”. Let us note in
passing that something of the distinction made here between reader and professor
survives in British universities, where, according to the Macmillan Dictionary,
“someone begins as a lecturer, then becomes a senior lecturer, then sometimes a
reader, and finally a professor”.

The somewhat surreptitious change from reader to professor brings about an
irreversible change in the paradigm of visiting works: the monumentalisation of the
works studied, with the correlative deletion of their raisons d’être. That is where we
are today. As a teacher educator, I used to ask student teachers endowed with the best
training in mathematics, notWhat is a straight line? butWhat are the raisons d’être
of straight lines? And the same with the notions of ray, angle, or parallelogram.
Why the devil, in geometry, are there rays, angles, and parallelograms rather than
nothing? Not, therefore, What is this thing? But What is this thing for? The fact that
they could not seriously answer this type of questions was a symptom of the
increasing monumentalisation of mathematics teaching. There were questions to
which the “text of knowledge” they would have to teach brought an answer. Still, in
this text, the interplay between questions and answers remained generally implicit,
and the teachers themselves were unaware of it. This is where the research work on
the paradigm of questioning the world started.
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4.6 Steps Towards Questioning the World

The fundamental impetus was given by Guy Brousseau’s theory of didactic situa-
tions (2002), which brought about a decisive epistemological break. Given some
(mathematical) work W, the problem is to find a question Q whose study, under
certain conditions C (of which only a few are explicitly considered), will lead the
students to encounter W and establish thereby a more epistemologically genuine
relation toW. In this way, the use made ofW in the study of Q reveals at least one of
W’s raisons d’être in the institution where the study process takes place—a raison
d’être is always relative to some institutional position, at some point in the history of
the institution.

During a first period of time, the incipient ATD followed close in the wake of the
TDS, with some adjustments to take into account: (1) the anthropological concern
that already prevailed in the theory of didactic transposition, and (2) the adaptation to
the ecology of (French) secondarymathematics teaching. In this perspective, at least
some of the TDS’s tenets gave birth to the notion of a study and research activity
(SRA). In an SRA, for example, one starts with a certain task of a culturally well-
known type, known as the tick task (✓), whose completion bumped into a problem-
atic task t of a certain type T, in such a way that, under the supposedly prevailing
conditions C, the building-up of a technique for T and of a surrounding logos block
would have to draw critically on the work to study W.

It is under these conditions that the model of didactic moments (Chevallard, 2020)
was developed as a counterpart to Guy Brousseau’s “dialectics” (of action, formu-
lation, etc.): but I shall not go into it here. The design and implementation of SRAs
proved expensive in terms of mathematical and didactic imagination and work: for
every notion to be “taught”, the (student) teacher had to devise a task ✓ with the
appropriate properties and, above all, the pupils had to discover each time a new type
of tasks T, which, in addition, was generally thought of as a pure means, and not as a
valued end of the teaching process.

This led me to introduce the notion of a study and research path (SRP), in which
the study of a large type of tasks T with a great number of subtypes of tasks T1, T2,
. . . Tn, leads to encounters with works W1, W2, . . . Wn pertaining to the official
mathematics curriculum. In the curriculum that had long prevailed since the nine-
teenth century, one of these supertypes of tasks T consisted in “calculating the
distance between two inaccessible points”. Here is a basic example (Beck, 2011;
see Fig. 1):

Suppose that you can measure the distance between A and B and the angles from A and B to
two inaccessible points C and D. For example, A and B might be on a straight road in a
valley and C and D might be two visible mountain peaks. Then you can calculate the
distance between C and D using the law of sines and the law of cosines.

Let us note in passing that this problematic task exemplifies a fundamental
(though elementary) raison d’être of angles.
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Another classic example of an SRP “with large reach” is associated with the
supertype of tasks T0 consisting in calculating a numeric value using graphical
methods. Here is an example borrowed from Carl Runge (1856–1927)’s book
Graphical Methods (1912; see Fig. 2a, b):

In order to multiply a given quantity c by a given number, let the number be given as the ratio
of the lengths of two straight lines a/b. If the quantity c is also represented by a straight line,
all we have to do is to find a straight line x whose length is to the length of c as a to b. This
can be done in many ways by constructing any triangle with two sides equal to a and b and
drawing a similar triangle with the side that corresponds to b made equal to c. As a rule it is
convenient to draw a and b at right angles and the similar triangle either with its hypotenuse
parallel [Fig. 3a] or at right angles [Fig. 3b] to the hypotenuse of the first triangle. Division
by a given number is effected by the same construction; for the multiplication by the ratio a/b
is equivalent to the divisions by the ratio b/a. (p. 4)

Fig. 2 Distance between “inaccessible” points

Fig. 3 (a) and (b) Graphical multiplications
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The graphical calculations above use crucial elementary knowledge in geometry.
It can be shown that the supertype T0 has quite a wide reach in terms of mathematical
works. In the language of the ecology of knowledge, i.e., of the ecology of praxeol-
ogies, we say that, given a (“standard”) instance ŝ ¼ (I, p), a praxeological entity P
“eats” the praxeology P* according to ŝ if, according to ŝ, the construction of P
draws on P*, be it technically, technologically, or theoretically. For example, using
Pythagoras’ theorem PΣ (¼ P*), it is easy to calculate graphically

ffiffiffi
5

p
: it all boils

down to measuring the hypotenuse of a right triangle of which the other two sides
have lengths 1 and 2. In the case of, say,

ffiffiffi
7

p
, the same technical gesture cannot be

used directly, but we can rely on the recursive technique suggested by Fig. 4.
We can conclude that, according to some ŝ, T0 “eats” Pythagoras’ theorem PΣ, a

fact we can denote by: ŝ ⊦ T0 ↩ PΣ or ŝ ⊦ PΣ ↪ T0. The transitive relation ρŝ that holds
between a type of tasks T and a praxeology P when, according to ŝ, T eats (either
directly or indirectly) the praxeological entity P is called the trophic relation—the
adjective “trophic” derives (1845) from Greek τρoφή (trophḗ), “food”. Given T, we
define the trophic span of T according to ŝ by ρŝ(T )¼ {P / ŝ ⊦ T ↩ P} and the trophic
span by ρŜ(T ) ¼

S
{ρŝ(T ) / ŝ 2 Ŝ} for any set Ŝ of instances.

How can square roots be calculated graphically? A technique used the notion of
power of a point, based on the following theorem (see Fig. 5).

For any chord PN, we have PM � PN ¼ PA � PB ¼ PT2 . If PM ¼ 1 and
PN ¼ 7, then PT ¼ ffiffiffi

7
p

.
This technique was formerly used in some secondary mathematics curriculums,

so that it used to be within the span of T0 according to some quite decent instances.
This is an example of a crucial phenomenon, which will allow us to make the
transition from “finalized” SRPs, i.e., SRPs with an assigned finality (in terms of
“bumping” into a prescribed set of works), to “unfinalized” SRPs. In the first case, an
SRP is supposed to lead the students to encounter works W1, W2, etc., designated in
advance. In the second case, the SRP only aims to answer a question without seeking
to arrive at any predesignated work. In the first case, the question Q to which the
didactic system S ¼ S(X; Y; Q) seeks to answer appears as a means to an end, as a
stratagem, a manoeuvre, a trick to come across some predetermined work. In the
second case, question Q appears self-justifying, with a value in itself, without
considering what it might be conducive to (Fig. 5).

Fig. 4 Calculating square
roots
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4.7 Questioning the World? Really?

As far as I am concerned, the real breaking point in the research on the paradigm of
questioning the world was the introduction, during the 2000–2001 school year, in
grade 11 of French high schools, of a new study format known by the French
acronym of TPE (Travail personnel encadré): the supervised personal work. Elev-
enth graders, generally working in teams of three, had to study on their own
(although a teacher of their class tutored them) a question Q of their choosing and
to submit a written report narrating the whole study process and giving the answer
A they had arrived at. The question Q was freely chosen, provided it appeared very
likely that its study would draw on resources from at least two of the subjects taught
to the students—mathematics and chemistry, biology and physics, etc.

Despite such a limitation, this represented a remarkable break with the dominant
paradigm of visiting works. In fact, it gave rise to the idea of an unfinalised SRP, in
which the question tackled was not a hidden means to compel the students to study
some prescribed work. The first question that I decided to study as if I were an 11th
grader, and which I borrowed, through his teacher, from a true 11th grader, was:
“Why has plague disappeared from European countries?” During an in-service
training course, a team of science teachers (some of them taught physics and
chemistry, others biology) chose the following question: “Why do roses smell
good?” Like their own students, these teachers had to ask me (I was their “supervi-
sor” for a while) to validate their proposal. To do this, I asked them if they could
assure me that they had no a priori idea of the answer. Their answer was positive, and
I agreed with their choice.

Let us remember here the four study paradigms mentioned above, to wit, the
paradigm of reading the Book (ϖ1), the paradigm of celebrating great authors (ϖ2),
the paradigm of visiting works (ϖ3), and the paradigm of questioning the world (ϖ4).
Now the (relatively) free choice of the question Q in the supervised personal works
established an essential break with the previous paradigms ϖ1, ϖ2, and ϖ3. It is
indeed fundamental to note that, in these paradigms, both the choice of questions and
the construction of answers are the prerogative of tradition, i.e., of more or less
legendary, heroized, or deified authors (ϖ1), of supposedly superlative authors (ϖ2),
or fully certified teachers (ϖ3).

Let us also remember the Herbartian schema in its semi-developed form: [S➦M]
➥ A♥, where S ¼ S(X; Y; Q). The Herbartian schema applies to all possible study
paradigms. For example, in the paradigm ϖ3, given a question Q (determined

Fig. 5 Using the power of a
point
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implicitly by the teacher), it is generally the case that teachers y have inquired on Q,
under the supervision of expert academics z, when they were university students
(in which case we had S ¼ S(y; z; Q)), and they resume this inquiry when preparing
their teaching notes (in which case we generally have S ¼ S(y; ∅; Q)).

In such a case, we’ll almost always have A♥ ¼ A♥
y . The teacher y presents to the

students the report of his or her inquiry into Q. The students are, at this point, mere
spectators—certainly committed spectators, but spectators. The only actor of the
inquiry is the teacher, in front of a captive audience. Students will become (second-
ary) actors in the inquiry by studying the teacher’s report, i.e., the lesson content, in
the framework of personal autodidactic systems S(x; ∅; A♥

y ).
In many respects, the creation of the TPEs (or other similar study formats) caused

an epistemological and didactic break. The change affected the relation to the object
“knowledge”, designated here by the letter K, of any instance î, i.e., R(î, K). A
situation of inquiry tends to promote a relation to knowledge in which what is
already known is a priori less important—since it was learnt in previous inquiries
and has, therefore, a low probability of being once again relevant—than what
remains to be studied next, to meet the needs of the inquirers engaged in a new
inquiry. Retrocognition (or “knowing backward”), which was the old school habitus,
has to give way to an attitude of procognition (or “knowing forward”). What the
instance î will have to learn in the near future is likely to be more decisive in the
ongoing inquiry than what î has already learned.

In fact, what became suddenly obvious was that the student position’s cognitive
equipment, as seen by myself (ϟ), i.e., Γϟ( ps) ≝ {(o, R( ps, o)) / o 2 Ωϟ( ps)}, had to
deeply change. The same conclusion applied to the teacher position pt. The change in
question was described—at least partially—in terms of dialectics. We define a
dialectic to be any praxeology that allows some instance to overcome two opposed,
contrary types of constraints by turning them into a new kind of conditions that
supersede them. These new conditions are said to be the outcome of an operation of
supersession (in German, Aufhebung, in French, dépassement, in Spanish,
superación).

The work done from the very beginning (in 2000) clarified the contract changes
required by the situation of inquiry with respect to the traditional class situation.
These changes were identified with the mastery of a (finite) number of dialectics
(in the sense just indicated). I shall now present, in no particular order, these
dialectics by borrowing from a recent glossary (Chevallard, 2020).

Let us begin with the so-called dialectic of the individual and the group, or
dialectic of idionomy and synnomy:

In a school class [X; Y] where Y ¼ {y}, it is usually supposed that every student x 2 X
inquires on the question Q on his or her own to produce an answer A♥

x . In general, the answer
A♥
x supplied by x will cease to have any relevance from the very moment the teacher

discloses his or her own answer A♥
y , which will displace all answers A

♥
x , x 2 X, in accordance

with the degenerate Herbartian schema S(X; Y; Q) ➥ A♥
Y . This leads students to develop an

individualistic relation to knowledge (and to ignorance), caught as they are between their
idionomy (from Greek idios “one’s own” and nomos “law”) and the heteronomy imposed by
the teacher. By contrast, in an inquiry as modeled by the (non degenerate) Herbartian
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schema, answers A♥
x are no more but no less than answers A⋄ that will constitute part of the

milieu M from which A♥ is to be produced according to the semi-developed Herbartian
schema, [S(X; Y; Q)➦M]➥ A♥, whereM¼ {A⋄

1, A
⋄
2, . . ., A

⋄
n,Wn + 1, . . .,Wm, . . .}. In such a

perspective, a student is no longer accountable only for his or her own answer A♥
x : all

students are collectively accountable for the answer A♥ and its construction. Their main need
is therefore to establish in the class a common law, determined and applied collectively, to
which they will be accountable. Such a synnomy (from Greek syn “together”) must coun-
terbalance the idionomy that remains indispensable for each student in his or her personal
effort to investigate the question Q and bring his or her share to the advancement of the
inquiry.

Knowing how to navigate between the individual (myself) and the group
(me with the others) in order to contribute to the creation of a collective answer
A♥, is obviously fundamental if we do not want that, as in traditional classes, the
answers given to the questions studied are only those of the teacher. But the class has
to set to work. An important “gesture” is to look for existing answers A⋄ coined by
various institutions. This is, in fact, a new breach of contract: in a traditional class,
that would be “copying” and therefore “cheating”—while in scientific research, it
does appear as a duty you cannot evade! The situation faced by the students x as
inquirers (and the teacher y as chief inquirer) is new and raises many problems. One
of them is taken care of by a dialectic with a strange name, the dialectic of the
parachutist and the truffle hound:

When looking for information in the course of some inquiry, one has to sweep vast areas,
thus acting as a (military) parachutist, while knowing that the information searched for will
be found (in the way a truffle hound—or hog, or pig—does) only in some sporadic,
unexpected places. The capacity to do so is identical with the mastery of the dialectic of
the parachutist and the truffle hound.

When the class’s resources cease to be strictly organized by the teacher, as is
usual, when the information given to the students ceases to be neither insufficient nor
in excess, new challenges arise, that the dialectic of the parachutist and the truffle
hound helps to overcome.

A difficulty created by the sudden expansion of the areas to be explored and the
disappearance of the teacher’s control over access to information has to do with the
uncertainty associated with the exploration to be carried out: is the document under
review relevant to the ongoing inquiry or is it likely to lead us astray? This is what
the dialectic of on-topic and off-topic allows us to do:

At school, the course followed by an inquiry is traditionally supposed to remain on-topic all
the time, without wandering off-topic even for a short detour that would seem promising in
terms of unexpected but hopefully relevant encounters. Proper mastery of the dialectic of
on-topic and off-topic makes it possible to overcome this institutional limitation and go away
at times from the apparent right path, in search of the unforeseen.

The study format of the inquiry as promoted by the paradigm of questioning the
world thus requires less pusillanimous, more daring “inquirers” than the traditional
strictly guided work.

Another difficulty results from the breach of contract related to a “free” docu-
mentary search characteristic of the type of inquiry in question. In the answers A⋄
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and the other worksW that this search brings to light, there are grey areas comprising
entities that the inquirer is unfamiliar with or does not know at all. This, again,
requires an attitude towards the unknown or unfamiliar that is not that required in an
ordinary classroom, where retrocognition is the rule and procognition is a fault. This
is what the praxeology called the dialectic of black boxes and clear boxes should
enable us to achieve:

[The dialectic of black boxes and clear boxes is a] praxeology that allows one, when
confronted to some praxeological element, to manage one’s way between full ignorance
(black box) and supposedly complete knowledge (clear or white box) of that element. To
cast it in formulaic style: this dialectic helps one determine the right shade of grey to
work with.

From the traditional school perspective, the dialectic of black boxes and clear
boxes may seem to weaken the conclusions that will lead to the answer A♥, because
they may hinder the correct understanding of the answers A⋄ and the other worksW.
On the other hand, we do not always have to elucidate all the aspects of an answer A⋄

or a work W: a supposedly “in-depth” study is rarely necessary on the way to A♥
—

but a relevant study is. With this remark, which is essential to an epistemologically
sound understanding of the so-called dialectic of questions and answers (we have to
question answers A⋄ and works W, and answer—up to a point—the corresponding
questions), we come to the dialectic that we must look at as the alpha and omega of
inquiry work: the dialectic of conjecture and proof.

The dialectic of conjecture and proof is best known under the name of dialectic of
media and milieus, and can be described as follows:

In the course of an inquiry on a question Q by a didactic system S(X; Y; Q), X is confronted
with statements expressed by what is generically called media, a medium being any system
that issues messages—a textbook, a teacher, a newspaper, the Internet are all media. Of
course this list should also include X insofar as this group utters statements regarding the
question Q. Notwithstanding their plausibility, mostly all the statements “received” by
X (including those coming from Y ) should be regarded as conjectures, i.e., as statements
based on incomplete evidence. Looking for evidence is thus the sinews of inquiry. Proof of
statement ϑ should be looked for by questioning media which, with respect to ϑ, behave like
“adidactic” milieus. Such an adidactic milieu—or simply milieu, if no ambiguity is to be
feared—is a system deemed to be devoid of any intention to prove or disprove ϑ, much like a
part of the inanimate world. The dialectic of media and milieus enables the pursuit of truth—
even in cases where there is no decisive test.

In all areas of human activity, this dialectic is central to the search for truth and
obliges us to look for ever more media and milieus. Contrary to the usual pedagogic
contract, the teacher as a chief inquirer does not have to validate the answer A♥

arrived at by the class: this validation is the responsibility of the class, by means of
the dialectic of conjecture and proof. It is the evidence gathered by the class that
counts, not the possible verdict of the teacher—who, of course, may oppose a
conclusion proposed by the students, not as a traditional teacher, perhaps, would
do, but with the support of clear antagonistic evidence.

All this is particularly true in mathematics, where, unlike in ordinary school
practice, a multiplicity of proofs of a statement will be sought—these proofs will,
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in particular, replace the teacher’s veridictive interventions. Here is a small, delib-
erately humorous dialogue between a dimwit (β) from the old world-that-is-not-to-
be-questioned and an average person trained in the paradigm of questioning the
world (ω):

β: “7 times 9?”
ω: “7 times 9? Damn, I don’t know about that anymore! Well, 7 times 10¼ 70. . .”
β: “No, no, no! Answer me right now!”
ω: “Allow me. . . So 7 times 9, that’s 70 minus 7, or 63.”
β: “That’s it! That’s it!”
ω: “Or it’s 7 times 3 times 3 (because 3 times 3 ¼ 9), that is 21 times 3 ¼ 63. Or,

since I think I remember that 7 times 8 ¼ 56, 7 times 9 ¼ 56 plus 7, that is
56 plus 6, 62, plus one, 63. Or it is also equal to (8 – 1)(8 + 1), or 82 – 1, or
64 minus 1; so 63. Or... Okay. It is also 9 times 9 ¼ 81, minus 2 times 9 ¼
18, so 81 minus 20 plus 2, or 61 plus 2, or 63. Yes, that’s my answer: 63. At
least I think so!”

β: “That’s right, that’s right!”
ω: “But how do you know it is true?”
β: “I know that 7 times 9 ¼ 63.”
ω “Are you sure about that? Aren’t we both wrong? When I was a child I liked to

count in base 3.”
β: “?”
ω “Let’s count in base 3, my dear! In base 3, the number 7 is written... 21 and 9 is

written... 100. Their product is therefore 2100, i.e., 0 + 0 + 32 + 2 � 33, i.e.,
9 plus 2 times 27, or 9 plus 54, i.e., 63. We can’t get out of it!”

β: “Hey, what’s taking you so long?”
ω “It’s better than making a mistake, isn’t it?”
β: “That’s not untrue...”
ω “Mathematics, my dear, deserves a little respect; and people deserve the same.”
β: “What do you mean? What do you mean?”
ω “Well, people deserve a little respect. Especially as concerns their relation to

mathematics. Don’t you think so?”
β: “Maybe. . .”

Other dialectics of inquiry have been identified: we will examine them below.

4.8 The Question of Questions

The question of the choice of questions to study is crucial. However, it seems that
today, this question has been little studied. To begin with, I list some questions
studied in a workshop entitled “Inquiries on the Internet” which I had created in a
French “collège” (junior high school). The workshop took place during four succes-
sive school years, from 2008 to 2012:
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Q1. A billion (dollars) is a thousand million (dollars), but what is a trillion (dollars)?
Q2. Why do insects rush to light sources at night?
Q3. Why does the onion make you cry?
Q4. It is sometimes said that the great battles of the past (before the Second World

War) were much more deadly than those of today. Is that true?
Q5. What is the 500th decimal place of π?
Q6. When you copy a URL into a browser’s address box and press the “Enter” key

(for example), you usually see a web page more or less quickly. Where does this
page come from? How does it get to the computer screen?

Q7. What is the 500th decimal place of
ffiffiffi
2

p
?

Q8. It is said that the use of mobile phones can endanger the health of users. What
exactly are the dangers involved?

Q9. How long does it take for a plastic bottle to be destroyed? 5 years? 50 years?
500 years? 5000 years? And how do we know that?

Q10. Coal and oil are said to be unsustainable sources of energy (one day, coal or oil
reserves will be depleted). But what about nuclear power? Would this source of
energy be inexhaustible?

Q11. A traveller goes from Paris (France) to São Paulo (Brazil). The flight lasts about
12 hours. He dreams that the Earth is half as small as it is, to shorten the journey.
What would happen to humans if the Earth were as he dreams? Would life on
Earth be the same? How would it change?

Q12. What is the 100th decimal place of 31/19? The thousandth? The ten thou-
sandth? The hundred thousandth? The millionth?

Q13. Ice cubes are said to float on the water because the ice would be “lighter than
water”. Is that true? It is also said that we do not know why ice is lighter than
water. Is that true?

Q14. It seems that there are sites on the Internet where you can ask which day of the
week was a given date. Is that true? Can we also do it ourselves, without using
such calculators, and even mentally?

I cannot consider these questions in detail here. But I would like to make a few
simple remarks about them. A first remark is that they are formulated in a somewhat
“naïve” way. There is a logic behind this: if persons address a question, we can think
that they do not know the answer that can be given to it, and more broadly, they do
not know the domain to which the question belongs.

Second remark: when a question contains one or more assertions that are not
explicitly questioned (they are “presuppositions” of the question), these assertions
have to be examined in the inquiry on the question: this is part of the contract that
regulates the “new” world.

Thirdly, several questions are about rumours and hearsays: the expected inquiries
are a privileged tool for deconstructing erroneous beliefs.

The questions above generate unfinalised inquiries, whose “facilitators” did not
seek to have the students meet this or that work of this or that nature. However, this is
a rare material in our community where, for good reasons in general, many of us are
led to consider (and design) finalized SRPs. If we could consult the inquiry reports
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(they are in French) relating to the questions given as examples above, it would also
be an opportunity to observe how incredibly important, and often unexpected, the
trophic span of the questions studied (i.e., of the task of answering them) can be.

Newcomers to the paradigm of questioning the world may fear, in some students,
the copy-paste syndrome. I suppose that many questions—the most non-standard
ones notably—in the list above will curb that fear. Even when the “best” answer, i.e.,
the optimal answer given the constraints under which the inquirers work, is quite
similar to an answer A⋄, i.e., A♥ � A⋄, we must remember that the “moment of the
evaluation”, which is part and parcel of the “model of didactic moments” at the heart
of the ATD, does not only concern the answer A♥ but also the relation of the student
x to A♥, particularly x’s capacity to explain, justify, and comment on the answer A♥,
its genesis and justification.

How should we choose the questions for study? If it is the class’s or the teacher’s
choice, we can think of “mysteries” recently encountered in our daily life. For
example, during this series of lectures, I have mentioned the “grandmother hypoth-
esis”, or the “Out of Africa” theory. Anyone here could record these questions in
their personal “question book”, in order to inquire about them later on. In fact, this
happens rarely: It is the fate of questions to be forgotten, left aside for a later time
that, too often, never comes. Our questioning curiosity sometimes verges on the
sexual zeal of giant pandas. Of course, when we engage in the paradigm of
questioning the world, as teachers, as teacher trainers, or as researchers, this attention
to the questions that come to us in one form or another must be developed and
systematized.

Like any gesture, the choice of a question requires a technique. What require-
ments can be considered as determinants of this technique? The choice can, of
course, be random—and in some cases, this is a relevant or an even optimal
technique. A mitigated form of this randomness is to accept a significant place for
the unexpected. As in genuine research, we have to handle the dialectic of the
planned and the unexpected. This dialectic has a companion, which is the dialectic
of a priori and in vivo analyses. I will say nothing here about the notion of a priori
analysis since, I believe, it is well-known to all. The in vivo analysis is linked to the
unexpected in any inquiry: decisions have to be made that cannot be planned and
anticipated so that the inquirers and the “chief inquirer” have to analyse “in vivo” the
current situation and discuss the suggestions or decisions that result from it. Once
again, it is clear that both the student craft and the teacher craft change.

We now arrive at a big issue! Suppose a “statist society” with a ministry of
education (or any similar governmental agency), that determines and publicizes
teaching programs. In the paradigm of visiting works, such a program Ṗ is formu-
lated in terms of works to be visited: Ṗ ¼ {W1, W2, . . ., Wn}. In the paradigm of
questioning the world, Ṗ will be formulated in terms of “great questions” to be
inquired into: Ṗ¼ {Q�1, Q�2, . . ., Q�m}. Note that the great questions Q�should be more
or less generic (e.g., “Being human, being social: Forms of sociality in human
societies”, or “Knowledge for the citizen: What to learn?”) whereas the questions
studied in classes (such as the questions Q1, . . ., Q15 above) will be more specific
(e.g., “Is the distribution of single-parent families by income group uniform,
unimodal, or bimodal?” or “What are quadratic equations? Are they useful to the
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ordinary citizen? If so, how?”) and should be contributions—however small!—to the
study of some “great question” Q�.

The big challenge we have to face is to determine how—by what societal
technique—this program of questions could be created. I’ll deliberately keep this
major problem out of this series of lectures: it will be on our research agenda for the
years to come. I’ll simply make a few remarks concerning the principles that might
guide the building-up of such a program.

A first guiding principle is that school is an institution that must enable the
younger generations to enter society by “entering” into the questions that arise
there and the answers that can be given to them.

A second guiding principle is that the ability to produce, under reasonable
conditions of supervision and assistance, an answer A to a question Q can be
considered essential in training citizens to exercise their public and private
responsibilities.

Against the habitus of immediacy that tends to be generated by the old school
world, whose virtue of patience is not the strongest, a third guiding principle is that
the construction of an answer A to a question Q cannot be almost “instantaneous”: it
presupposes a series of draft answers A0, A00, . . ., several times “dismantled”,
enriched, and elaborated anew. In the best of cases, this sequence will seem to
converge towards a “provisionally definitive”, even if hypothetical, answer A.

4.9 Conducting an Inquiry

I would like now to consider what I believe to be the three structuring principles of
any SRP in the paradigm of questioning the world. The first one is quite simply the
fact that a question is chosen. The second structuring principles lies in the imple-
mentation of the five basic gestures of the study of any question Q:

1. Observe the answers A⋄ in the various institutions.
2. Analyze, at both experimental and theoretical levels, these answers A⋄.
3. Evaluate these answers A⋄.
4. Develop a specific answer A♥.
5. Defend and illustrate the answer A♥ thus produced.

All these gestures are related to the dialectics of inquiry and, in particular, to the
dialectics not yet examined.

The first of these dialectics is the dialectic of reading (or “excribing”) and
writing (or inscribing):

Most information comes to us in texts, as happens with the answers A⋄ appearing in the
developed Herbartian schema. Texts are made of assertions that both follow from and
manifest praxeologies which, usually, remain hidden to the casual reader. These praxeol-
ogies have been “inscribed” (and thus concealed) in the text, so to speak; conversely, the
serious reader, who feels concerned with the praxeologies put to use to produce the
assertions he reads, will have to “undo” the inscribing by—to use a neologism—“excribing”
them, i.e., by questioning the text about its hidden content, so as to bring to the fore normally
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latent praxeologies. It follows from all this that, reciprocally, in producing A♥, X (and
therefore Y ) has to devote much effort to “inscribing” it into the text that will preserve it
from oblivion and make it known more widely. Altogether, all this necessitates much writing
and, above all, different kinds of writing (such as in a notebook, a progress report, a draft,
etc.).

The second dialectic is the dialectic of diffusion and reception:

Whatever the answer A♥ to some question Q, be sure that it will diffuse outside of S(X; Y;Q).
For example, if [X; Y] is a school class, A♥ will be known, in essence, to other teachers, to
parents, etc. Bringing an answer to a question is a social act, the product of which cannot be
cooped up in a single place—“leaks” are sure to happen. The diffusion that takes place alters
the ecology of A♥ and may therefore diminish its viability, even within [X; Y]. How A♥ will
be received is thus a crucial concern for its producers and potential users. The dialectic of
diffusion and reception is therefore a key tool of inquiry.

The third structuring principle is, of course, to put to use the seven dialectics of
inquiry, to wit, the dialectics of the individual and the group, also called dialectic of
idionomy and synnomy, of the parachutist and the truffle hound, of on-topic and
off-topic, of black boxes and clear boxes, of conjecture and proof, also called
dialectic of media and milieus, of reading (or “excribing”) and writing
(or inscribing), and of diffusion and reception.

4.10 An Endless Analysis

Before I stop, I would like to highlight a point that has to do with the dialectics of
diffusion and reception. Answering a question is a social act that must be recognized
and known, and therefore evaluated, outside of the class. The paradigm of
questioning the world is, undoubtedly, more than the old paradigms, a paradigm in
which inquiry work ceases to be confined within a classroom. In a school, for
example, it can be imagined that the inquiries conducted in a class [X1, Y1] could
be evaluated by another class [X2, Y2].

This openness must also concern the works used in the inquiry: if it draws upon
work W1, W2, . . ., Wm, its supervisor or its evaluators can ask the question: What
about the work W* that has not been considered? Would it significantly change the
inquiry’s outcome? How? Is the answer given stable, “resilient”, with respect to
other works not taken into consideration? And, last but not least, what about
mathematics?
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The Analysis of Dominant Praxeological
Models with a Reference Praxeological
Model: A Case Study on Quadratic
Equations

Hamid Chaachoua, Julia Pilet, and Annie Bessot

1 Introduction

Depending on the country, the choices in the curricula differ, the mathematical
objects to be studied are introduced in different orders and according to ecological
issues (Chevallard, 1997) specific to each institution. These choices lead to different
institutional relationships to the objects of knowledge, embedding the development
of the personal relationships of the institution’s subjects. How to access the dominant
praxeological model of an institution? At what level of granularity should it be
described? We already assume that this level of granularity depends on research
questions. How to compare the dominant praxeological models of each institution?

Several studies (Chevallard, 1984; Gascón, 1994; Bosch & Gascón, 2001) show
that there is an implicit model of the taught mathematical knowledge in any
institution. Didacticians must necessarily take a step back from the educational
system they are studying by constructing a “frame of reference” based on an
epistemological approach to the knowledge considered (Gascón, 1994, p. 44). In
Bosch and Gascón (2005), this frame of reference is expressed as an epistemological
model, which can be formalised in terms of a reference praxeological model (RPM).

In this study, we discuss methodological questions in order to build such a
reference praxeological model. To what extent is this model independent of the
institution considered by the researcher for the conduct of his or her research
problem? How does the analysis of dominant praxeological models in different
institutions enrich the reference model and at what level: global, regional, local,
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punctual? How can praxeologies be structured to reflect the dynamics in their study?
Are new theoretical tools needed? These questions are by nature open-ended and
will be addressed here.

To approach this problem, we have chosen the field of elementary algebra which
is widely studied in the context of the anthropological theory of the didactic and
which has already been the subject of several reference epistemological models. We
deal more specifically with the case of the solving of quadratic equations in French
and Brazilian secondary education.

2 A Reference Epistemological Model of Elementary
Algebra

Researches in didactics of elementary algebra (secondary education) converge to the
findings on the prevalence of non-functional manipulation of algebraic expressions
(Chevallard, 1989; Schneider, 2012) and on the difficulties encountered by students
(Kieran, 2007) in this field, which is essential for further scientific education. For
Chevallard (1989) the epistemological raison d ‘être (reason of being in English) of
elementary algebra is to be a tool for modelling other mathematical praxeologies.

Some researchers such as (Chaachoua, 2010; Grugeon-Allys et al., 2018; Ruiz-
Munzón, 2010; Pilet, 2015; Sirejacob, 2016; Jolivet, 2018) have attempted to
construct didactic engineering that takes into account the epistemological raison
d’être of elementary algebra. They have grown rich around a common core
presented in Fig. 1. The reference praxeological model of algebra reflects a hierar-
chical structure according to the scale of the codetermination levels. The field of
algebra is at the global level of mathematical organisation. It is divided into three

GMO : Algebra

Sector RMO1: Algebraic Expressions

Field

Mathematics

Domain GMO : Geometry GMO : Calculus

RMO2 : Equations RMO3 : Formulas

Theme

Subject

LMO1

PMO1 ….

GMO : Arithmetic …

Co-determination scale
Lower levels

LMO2

….

LMO1 : Generation
of equations

PMO1

LMO2 :
Transformation of

equation

LMO3 :
Structure of
equations

PMO1 : Solve

…

…
….

Legend: GMO: Global Mathematical Organization RMO: Regional Mathematical Organization
LMO: Local Mathematical Organization PMO: Punctual Mathematical Organization

Fig. 1 A partial representation of an RPM of elementary algebra
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regional mathematical organisations: algebraic expressions (Pilet, 2015), equations
((Sirejacob, 2016) for the first degree) and formulas. Each is divided into several
local mathematical organisations.

This study deals with the regional mathematical organisation “Equations”
(RMO2) and, at the local level, with the transformation and solving of algebraic
equations. At the punctual level, we focus on the type of tasks T: Solve a
one-variable quadratic equation.

We consider three techniques of algebraic solving of a quadratic equation
(Table 1), each with a specific technological-theoretical environment.

The null product factorisation technique, noted τnull_product, consists in factorising
to obtain an equation of the form PQ ¼ 0. The technological-theoretical level is
based on the property of the null product. τsquare_root technique consists of factorising
to obtain an equation of the form (ax + b)2 ¼ k (where a, b and k are real). At the
technological-theoretical level, it is based on the definition of the square root.
Finally, the discriminant technique, noted τdiscriminant, consists in rewriting the
equation in the form of a trinomial and applying the discriminant formula that
gives the roots of the equation. It is based on the discriminant formula.

There are other techniques for solving quadratic equations such as arithmetic,
calculus or geometric techniques, but we restrict the study to the three algebraic
techniques presented above, given the school levels considered and what is expected
in the institutions analysed.

Table 1 Three techniques of algebraic resolution of a quadratic equation

Technique Example

τnull_product:
• Grouping all of the terms in the left member
• Factorizing
• Tnull_product: Solve an equation of form P ∙ Q ¼ 0

4x ¼ 4x2

�4x2 + 4x ¼ 0
4x (�x + 1) ¼ 0
4x ¼ 0 or – x + 1 ¼ 0
x ¼ 0 or x ¼ 1

τsquare_root:
• Grouping all of the non-constant monomes in the left member

and constants in the right
• Factorizing the left member
• Tsquare_root: Solve an equation of form P(x)2 ¼ k

x2 – 3 ¼ 0
x2 ¼ 3
x ¼ √ 3 or x ¼ � √ 3

τdiscriminant:
• Grouping all of the terms in the left member
• Developing and reducing
• Ttrinomial: Solving a trinomial equation by using the discriminant

formula

x2 + 5x + 4 ¼ 0
Δ ¼ 52 – 4 ∙ 1 ∙ 4Δ ¼ 9
x ¼ �5þ3

2 or x ¼ �5�3
2

x ¼ � 1 or x ¼ � 4
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3 A Comparative Study of the Teaching of Quadratic
Equations in Two Curricula

We aim to describe and compare dominant models inside two different institutions,
Brazil and France, in relation to the solving of quadratic equations. The methodology
exemplified consists of a set of round trips between modelling and confrontation
with contingency thanks to different empirical surveys. The different steps are as
follows: description of a reference epistemological model as presented in the previ-
ous section, empirical survey of students from both institutions to describe their
personal relationship to solving quadratic equation, analysis of curricula and text-
books from both institutions to describe their dominant models, confrontation
between the dominant model and the epistemological model. To do this, we will
seek to enrich the reference praxeological model by describing the punctual level.

4 Students’ Personal Relation with Solving Quadratic
Equations in both Institutions

We designed a survey on the solving of quadratic equations (Table 2) to find out to
which solving techniques French and Brazilian students gave priority. This infor-
mation allows them to make assumptions about the dominant models in France and
Brazil. As shown in the a priori analysis (Table 2), the structure of the equations and
coefficients are chosen so that among the three solving techniques, one is more
optimal than the others.

The equations are presented to the students on a sheet of paper with the following
instructions: “Solve the following equations, taking care to make your solving
process visible”. We have not given instructions about the calculator.

This survey was conducted among French students in 2005 (Nguyễn, 2006) and
2019 and among Brazilian students in 2019. All of them had studied what is
expected by their institution on solving quadratic equations. We present only a

Table 2 Equations used in the survey and a priori analysis on the optimal solving technique

Equations used in the survey τnull_product τsquare_root τdiscriminant

a. (3 � x)(x + 2) + x + 2 ¼ 0 X

b. x2 + 8x + 16 ¼ 0 X

c. x2 � 7 ¼ 0 X

d. x2 � 1þ ffiffiffi

3
p

� �

xþ ffiffiffi

3
p ¼ 0 X

e. 2x2 + 5x + 7 ¼ 0 X

f. 25x2 � 90x + 81 ¼ 0 X

g. (3x � 4)2 � (�5x + 1)2 ¼ 0 X

h. x2 � 11x + 24 ¼ 0 X

i. 4x ¼ x2 X
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part of the experimental results in Table 3. About equations (a) and (b) from Table 2,
between 2005 and 2019, French students did not use the same techniques. In 2019,
they exclusively used the discriminant technique, whereas in 2005 more than half of
the students used the optimal factorising technique. Like them, Brazilian students
turned to the discriminant technique. This trend is confirmed for the other equations.
The “other” category corresponds to the absence of answer or to student productions
that do not fall into the other three techniques analysed a priori.

The massive use by French students (2019) of the τdiscriminant technique, even if a
priori calculations are expensive as in equation d, seems linked to the presence of
programmable calculators. The excerpt from the copy of a French student in Fig. 2
illustrates this. This student transforms the equations to identify coefficients of the
trinomial and then writes the value of the discriminant as well as those of the roots
without writing intermediate calculations. His or her calculator seems to provide
exact and approximate roots values. The presence of the calculator modifies a priori
analysis presented in Fig. 3. In fact, with this tool, τdiscriminant technique becomes
optimal, the only cost being to identify coefficients and to enter them in the
calculator.

The French institutional context provides interpretative elements on evolutions of
techniques used by French students between 2005 and 2019: curricular changes have
led to a reduction in the time devoted to technical work, in particular factorisation,
and introduction of the algorithmic domain has encouraged a frequent use of
programmable calculators.

The productions analysed are observable of the institutional relation to quadratic
equations and therefore of the dominant model in each institution. They are not
sufficient to characterise and understand the dominant model. It is necessary to
analyse other observables such as curricula and textbooks from both countries. We
only present the analysis of the textbooks here.

5 Textbooks Analysis: Which Are the Dominant
Praxeological Models in France and Brazil for Solving
Quadratic Equations?

To explain the differences observed in the techniques used by the students, we
propose to question the dominant models of the two institutions. This analysis
requires refining the level of granularity in the description of the RPM. Indeed, the
teaching of a notion is done at the level of the subject in the scale of levels of
codetermination, and therefore of punctual praxeologies. The identification of these
punctual praxeologies is based on a specific methodology that interrogates several
study materials. In our case, we limit the analysis to that of some textbooks by
considering them as a good observable of the institutional relation (Assude, 1996;
Chaachoua & Comiti, 2007) and therefore of the dominant model. This analysis
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seeks to identify the technological environment and praxis based on the textbook
lesson and exercises.

First of all, it should be noted that the official institutional time devoted to the
study of quadratic equations is very different between the two institutions studied:
1 year in Brazil (BR) and 3 years in France (FR). The praxeological analysis of
textbooks revealed different study dynamics around 11 types of tasks, as shown in
Table 4.

This analysis led us to enrich the RPM on solving quadratic equations, as
presented in Fig. 3.

This enriched model allows us to produce and understand the dominant praxeo-
logical models of the two institutions that we describe below.

For Brazil, the study is motivated by situations in the field of geometry (GMO:
Geometry) whose role is to produce algebraic expressions and equations to be solved
(Theme level). The resolution of equations is restricted to the resolution of the
trinomial and its variants: PMO(T1), PMO(T2), PMO(T8) and PMO(T9). For task

Fig. 2 Copy of a French student who appears to be using a programmable calculator

Fig. 3 Enrichment of the RPM by analysing the praxeologies of the two institutions BR and FR
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type T1, the τsquare_root technique is expected. This technique will become part of the
technological environment to produce the τdiscriminant technique, a unique technique
for solving the T9 type of tasks. Although factorisation has been studied before, it
rarely produces a technique for solving second-degree equations and, even then, it is
only in very simple cases. On the other hand, the τdiscriminant technique produces a
new factorisation technique for second-degree polynomials.

For France, the panorama is very different because there is a valorisation of the
τnull_product technique during the “troisième” (14–15 years) and “seconde”
(15–16 years) where the only equations proposed are factorisable by the technolog-
ical elements that are distributivity and remarkable identities. It is only at the
“première” school level (16–17 years old) that the trinomial form appears, which
cannot be factorised by previous technological elements. The τnull_product technique
will become part of the technological environment to produce the τdiscriminant tech-
nique to solve T9. Moreover, the study of quadratic equations and functions feed into
each other. At present, in France, the habitat of equations migrates from the field of
algebra to that of calculus during secondary education.

The dominant models in France and Brazil and their dynamics are therefore
highly contrasted. How can we then explain the similar answers of the students
observed previously between FR2019 and BR2019? As analysed above, the

Table 4 The 11 types of tasks in the order in which they appear in each textbook

Types of tasks
BR
grade9

FR
grade9

FR
grade
10

FR1
grade
11

T1 (Solve an equation of the form ax2 + c¼ 0, with a 6¼ 0) 2 6 6 3

T2 (Solve an equation of the form ax2 + bx ¼ 0, with
a 6¼ 0)

3 4 5 4

T3 (Solve an equation of the form (ax + b)2� (cx + d)2¼ 0,
with a 6¼ 0 et c 6¼ 0)

8

T4 (Solve an equation of the form (ax + b)2 � c ¼ 0, with
a 6¼ 0, c > 0)

1 3

T5 (Solve an equation of the form (ax + b)2 ¼ 0, with
a 6¼ 0)

5 7

T6 (Solve an equation of the form [a2]x2 +/� [2ab]
x + [b2] ¼ 0, with a 6¼ 0, b 6¼ 0) where the expressions in
brackets are total values. Eg. 4x2 – 12x + 9

2 8

T7 (Solve an equation of the form (ax + b) (cx + d) ¼ 0,
with a 6¼ 0, c 6¼ 0)

3 4 9

T8 (Solve an equation of the form x2 + bx + c ¼ 0, with
b 6¼ 0 and c 6¼ 0)

4

T9 (Solve an equation of the form ax2 + bx + c ¼ 0 with
a 6¼ 0)

5 2

T10 (Solve a quadratic equation or reduce it to P(x) ¼ Q
(x))

1 10

T11 (Solve a third-degree equation of the form P(x) ¼ Q
(x))

10
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introduction of calculators in French classrooms and recent curricular developments
may provide some answers. More in-depth studies would be necessary to provide
solid results, but it is not the purpose of this article that aims to show a possible
methodological path.

6 Conclusion

The methodology we have tried to present here is based on the following steps.
First of all, a first step is to build an RPM on the basis of an epistemological study-

oriented by a research question. Then, the RPM and the analysis of a contingent
(in this case textbooks and productions of students from an institution) enrich the
RPM by possible breakdowns into punctual praxeologies according to a more or less
fine level of granularity according to the requirements of the research. Finally,
comparison with one or more other institutions (fictitious, distant in time or geo-
graphically distant) is a relevant contribution to identifying dominant models,
continuing to enrich the RPM and questioning the possibilities.

This methodology is a way of describing not only the composition of the
dominant model but also its praxeological dynamics.
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Study and Research Paths, Ecology
and In-service Teachers

Britta Eyrich Jessen

1 Introduction

In Denmark, we have experimented with study and research paths (SRP) in upper
secondary education and in pre-service teacher education for lower secondary school
(Jessen, 2014, 2017; Rasmussen, 2016). Still, SRP based teaching has not become
part of teachers’ practices in classrooms detached from research activities. In this
paper, we will discuss conditions and constraints for engaging upper secondary
mathematics teachers in SRP based teaching.

We here refer to the SRP-based teaching as situations where the teacher poses a
generating question, Q0. Q0 is an open question the students understand enough to
inquire but are unable to answer. For this, they need to learn something new, through
the combination of known methods and notions potentially supported by the study of
media. When preparing the generating question, the teacher must analyse the
potential paths students might take when studying the question. This study includes
the derived questions they might raise and the potential media they might consult
when developing answers for the derived question.

The construction of an answer covers the construction of new knowledge devel-
oped in an iterative process where students continuously go from studying media to
use the new insights in research processes building new answers (see further in
Chevallard, 2004; Winsløw et al., 2013; Jessen, 2017). Thus, the dialectic between
media and milieu or between study and research is considered the venue where
learning emerges. As part of the design and a priori analysis of Q0, we create
question-answer maps, which are tree-like mind maps indicating what derived
questions students might pose, see Fig. 1. In the beginning, they might have an
open nature, such as, e.g., “if I am to answer this. . . I need to know more about how
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we define a differential equation?”. Further in the process, the questions might take
the form of a type of task and address a point praxeology (see Chevallard, 2002;
Barbé et al., 2005).

During the last decades, initial experimentations with SRP have been conducted
at all levels of the educational system (e.g. García et al., 2006; Barquero, 2009).
They indicate successful learning outcomes in terms of the development of more
coherent praxeological organisations among students when teaching is based on a
generating question engaging students in study and research processes. Similarly,
the Danish experiments with SRP have been studying the potentials of introducing
SRP based teaching under the constraints and conditions of ordinary teaching. To
study the constraints and conditions, we employ the scale of levels of codetermina-
tion, as shown in Fig. 2. Below we refer to this scale when analysing the Danish
situation.

Fig. 1 A tree diagram of the a priori analysis (Jessen, 2014, p. 207)

Fig. 2 The scale of levels of codetermination affecting teaching (Jessen, 2019, p. 128)
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2 The Context and In-service Teachers

Constraints and conditions for implementing SRP-based teaching arrive from sev-
eral parts of the educational system. Jessen (2019) discusses the backwash effect of
high-stake written exit examinations as a constraint for implementing SRP based
teaching. In Denmark, the exit examinations for upper secondary school function as
the entrance to the higher education as well. Most students attend a written exam in
mathematics, and therefore, the written exam is a high stake for the students and
teachers. Jessen (2019) has reported how this leads to a practice where students and
teachers preproduce templates for solving typical types of tasks in the written exam,
which students use to practice rather than learning the underlying substance of the
techniques required to solve the task. This focus on students being able to identify
and solve standard problems further support the teachers’ emphasis on the contents
from the curriculum, such as how to determine the tangent line to a differentiable
function f(x) in a given point x0, which can be reduced to fill in this formula:
y ¼ f ’(x0)(x � x0) + f(x0). This seems to further the teaching paradigm of transmis-
sion of knowledge.

The less often used oral examination offers potentially good conditions for SRP
based teaching. The case study presented by Jessen (2014) on interdisciplinary SRP
based teaching is an example of another high stake examination, where students are
supposed to demonstrate that they can address a question or problem from two
different disciplines and connect those in more complete answers in a written project
report. From 2017, this report must be defended in an oral exam (Danish Ministry of
Education, 2017c). Jessen (2014) argues how SRP is a strong tool for designing and
realising this kind of project exam since the generating questions often address
problems beyond one school discipline. Furthermore, the tree diagrams indicate
the interdisciplinary potential of the problem along with explicit indications of how
and when the study of different media might be relevant to the students. Thus we can
argue that SRPs meet the societal demand of the school system to teach students to
be able to apply knowledge and competences beyond the school discipline and in
more real-world contexts preparing the students for higher education (Danish Min-
istry of Education, 2017a). This is part of the justification for upper secondary
education why it becomes a condition at school level at the scale of levels of
codeterminacy. Constraints, arriving from the teachers’ lack of experience with
interdisciplinary teaching and the schools classical distinction between school dis-
ciplines, becomes a challenge at the level of the discipline and below, if we wish to
base the teaching on generating questions addressing problems that go beyond the
boundaries of school disciplines.

The dominant pedagogy is still based on the transmission of knowledge, although
different initiatives, like in-service courses and curricula changes, support a more
inquiry-based approach to teaching in all disciplines. The ministerial guidelines
describe in their ‘didactical principles’ how: “Reasoning must become explicit
when working with pure mathematical theories, in modelling and through an inquiry
approach to the content knowledge, where students autonomously discover “new”

Study and Research Paths, Ecology and In-service Teachers 241



mathematical theorems [. . .]” (Danish Ministry of Education, 2017b, p. 21). The
document continues by stating: “Problem solving must be organised in ways where
students learn individually to formulate mathematical questions (and tasks) to pose a
problem with relevant questions for modelling purposes. Problem posing can be the
goal itself or the questions can, e.g. be answered (solved) by other students.” (Danish
Ministry of Education, 2017b, p. 22). This surely resonates with the idea of SRP,
where students engage in the dialectic of questions and answers to solve the
generating question or problem. On the other hand, the Danish curriculum is divided
into mathematical goals (in terms of competences, see Niss, 2003) and core goals,
which is a monumentalistic description of the content knowledge. This affects the
levels from pedagogy and below.

In order to accommodate the SRP based teaching to the constraints and conditions
for upper secondary mathematics formed by the high-stake exit examination, we
have experimented with the design of sequences of study and research activities
(SRA). These can be considered a branch of an SRP or an SRP with a more delimited
Q0, aiming at specific elements or monuments of the curriculum. When the SRAs are
directed towards specific goals in the curriculum they carry the risk of being reduced
to transmission of knowledge, meaning that students do not develop the full rationale
behind the techniques developed during the SRA (Chevallard, 2004, p. 6, 2006,
p. 18). Barquero et al. (2016) provide a categorisation of SRAs linked to the degree
to which the SRA supports the development of coherent notions or concepts. Jessen
(2017) reports on an SRA concerning the doubling time for exponential functions
being part of a sequence of SRAs addressing the notion of functions in grade 10.
Jessen indicates how the students develop many more details on the topic compared
to the goals of curriculum including more theoretical arguments. The students
performed above average at their oral exam.

The teachers’ education represents a mixture of constraints and conditions for the
implementation of SRP based teaching. To become an upper secondary school
teacher in Denmark, one needs a master degree with a minor in one discipline and
a major in another. To gain ‘teaching competency’ students need to take university
courses fulfilling a number of requirements: 60 ECTS1 core mathematics (calculus,
analysis, linear algebra, algebra, probability theory and discrete mathematics),
30 ECTS advanced courses (advanced courses in the previously mentioned fields),
20 ECTS courses providing a broader perspective (history of mathematics, program-
ming in relation to core courses and mathematics in a broader context as other natural
sciences) and 10 ECTS in didactics and philosophy of mathematics (Danish Ministry
of Higher Education and Science, 2018). Universities organise study programmes
according to the above, but with rather different realisation—especially in the last
requirement. This means that students can have had next to no didactical knowledge
before entering the classrooms as teachers. Most Danish universities provide courses
where didactics is intertwined with or mainly concerns learning theory and more

1European Credit Transfer and Accumulation System, where 60 ECTS points correspond to 1 year
fulltime university studies.
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generic approaches to teaching. At University of Copenhagen the required course for
pre-service teachers introduces the students to learning theories (e.g. Piaget and
Vigotsky), the theory of didactic situations (Brousseau, 1997), inquiry-based science
education through the 5E-model (Bass et al., 2009, p. 91), interdisciplinary teaching
(as Jantsch, 1972) and assessment (e.g. Black et al., 2004). Those who take a major
in mathematics can choose to take the advanced course on didactics of mathematics,
which covers elements of ATD including SRP. Students from this course can choose
to write their master thesis in didactics of mathematics, which has led to more than
40 projects, where 6 of them has studied the challenges of developing, implementing
or analysing SRPs (e.g. see Hansen & Winsløw, 2011; Christensen, 2018;
Uglebjerg, 2019). Thus some pre-service teachers enter the profession with detailed
knowledge about SRP-based teaching or at least prerequisites for engaging in this
rather swiftly. However, the vast majority has next to no knowledge about didactical
theories such as ATD. We, therefore, consider the teachers’ initial education both
representing constraints and conditions for implementing SRP based teaching and
this affects the level of pedagogy in the scale of levels of codeterminacy in Fig. 2.
Jessen et al. (2019) present a complete analysis of conditions and constraints for
implementing SRP based teaching in Denmark compared to Japan.

The above-mentioned experiences on implementing SRP, SRA and analyses of
the ecology of doing so, were the outset for the course design, Math in Change,
which has been offered to all secondary mathematics teachers in Denmark (see more
detailed description in Jessen, 2020). The suggestion from Barquero and Bosch
(2015) using didactical engineering as a research methodology for the experimenta-
tions with ATD has been the starting piont for the course design. However, we
suggest considering a slightly transposed version for the teachers, when engaging in
the development of their own practice through the development of SRP based
teaching. The four activities of didactical engineering are: preliminary analysis,
design and a priori analysis, experimentation and ‘in vivo’ analysis and finally a
posteriori analysis, validation and further development of the design. These compo-
nents resonate with components of the paradidactical infrastructures existing in
Japanese Lesson Study. Below we will explain how these were combined and related
in the course design of Math in Change.

3 Reflections Upon Course Design

The above-mentioned constraints and conditions are part of what conditions the
creation of an in-service course on how to design and implement SRP based teaching
for ordinary teachers. The teachers are not familiar with the idea of questioning the
content knowledge, creating a priori analysis or work more theoretically with the
planning of their teaching nor the shared reflections about the outcomes of their
teaching.

We have therefore considered how we can introduce the teachers to SRP and
ATD without using the full theoretical framework of ATD and how to teach them an
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idea as learning from media-milieu dialectics without Herbartian schema and the
notion of praxeology? We have looked at the experiences with SRP in teacher
education (SRP-TE), which indicate that tree-diagrams function well when engaging
teachers in considering how to design SRPs. Still, Barquero et al. (2015) have
encountered difficulties when teachers are to implement their designs in their
classrooms, where they tend to turn to transmission of knowledge. As one participant
in an online SRP-TE course formulates it: “As I said, the implementation is com-
plicated in my case, and I can only use one session, not more. [. . .] I would apply it to
a group of students to observe if they are able to graph a scatterplot and fit different
functions to it, but I cannot go further.” (Barquero et al., 2015, p. 40). This indicates
a transfer problem issue from rich designs in a course to the classroom reality. This is
a general problem with more open and inquiry-based teaching formats. García
(2013) argues that when we engage in-service teachers in inquiry-based mathematics
education, we need more than good designs, the teachers need further support for
implementation of the activities produced during professional development courses
and he suggests Lesson Study as a way to organise this support. For the course Math
in Change we strived to achieve elements of this by encouraging the teachers to
participate in pairs or small groups from each school to support the implementation
of their designs, to share responsibilities of the design and to observe and reflect
upon the outcomes of the designs developed by the teachers during the in-service
course.

We chose to teach the course ‘hands-on’ where SRP was introduced through an
exercise, where a generating question was shared with the participants who created
the first attempt of an a priori analysis answering the question: “What strategies,
questions and answers can you imagine students follow, when posed this generating
question?”. We do not consider the outcome of the teachers work a full mapping of
the potential praxeological organisation, which could be derived from the generating
question. We named their diagrams ‘knowledge maps’, since they map the content
knowledge potentially addressed by students and guide or support the teachers in the
classroom when validating the contributions of the students, for instance by posing
new questions or prompting them for further study and research. Afterwards, the
teachers were presented with the Danish case studies mentioned above, introducing
the participants to how we can engage students in the study process using all sorts of
media. The teachers were encouraged to explicitly incorporate this when they started
to design SRPs.

Initially, teachers were introduced to the elements of Japanese Lesson Study
using Danish research on how to engage teachers in this working mode to lower
secondary teachers. This is further described by Jessen and Rasmussen (2018), also
addressing the choices made with respect to how ATD theory was taught to teachers
not knowing much about didactics of mathematics.

The course Math in Change was organised as 7 times 4 hours sessions. The first
session focused on SRP, inquiry-based education and elements of lesson study,
including lesson plans. The second session focused on the teachers’ design of
SRPs on vector algebra and geometry. Probability theory was also a new topic in
curriculum, which was unfolded from a mathematical perspective. For the next

244 B. E. Jessen



session, the participants developed SRPs covering parts of probability theory
together with sharing their experiences from teaching their SRP on vectors. In this
way each session represented both a shared preparation of a lesson for the teachers
together with a shared reflection upon their previously realised SRPs. For every
design teachers presented a lesson plan and a knowledge map which was discussed
with the participants leading to adjustments of the design. In the groups of teachers
coming from the same or nearby schools, the designs were implemented and
different testimonials were collected in order to discuss the outcomes in relation to
the lesson plan during the following course session. The data took very different
forms: observation notes, students’ assignments, pictures or video recording of
classrooms and students—and in one case we managed to move the course session
to one of the participants’ classroom, first observing a lesson together before
reflecting upon the experience.

The experiences from the course Math in Change were promising with respect to
engaging in-service teachers in inquiry-based teaching in terms of SRP. They saw
the potential of using ‘knowledge maps’ and a priori analyses as tools for keeping the
student inquiry open and guiding the students to validate their hypotheses and
strategies by sharing and comparing. The components of shared preparation and
reflections seemed to further their engagement, and several teachers expressed the
excitement of working more in detail with the mathematics to be taught, than they
had done previously. Still, the reflections were more plenum discussions and ques-
tions to the responsible groups than explicit a posteriori analyses of potentials
realised by the students. More details about why certain potentials were unfolded
where others ignored might have furthered the teachers’ knowledge about their own
practice and the content knowledge at stake. Last but not least, it is doubtful if the
teachers kept using and designing SRPs after the completion of the course, when the
structured time for preparation, observation and reflections ended with the course.
Thus more research is needed regarding the constraints and condition of creating
more sustainable changes or development of the participants teaching practices.
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Analysing the Dialectic of Questions
and Answers in Study and Research Paths

Koji Otaki

1 Introduction: A Dialectical Generalisation of the Notion
of “Study”

The purpose of this workshop makes participants familiar with the analysis of
inquiry characterised by the notion of SRP, i.e. study and research path in the
anthropological theory of the didactic, ATD (Chevallard, 2006). The so-called
inquiry-based teaching attracts increasing interests of mathematics education. Such
a pedagogical tenet emphasises students’ “autonomous” inquiry which might resem-
ble researchers’ one. However, the name of “inquiry-based teaching” seems to be an
oxymoron. On the one hand, the word inquiry highlights an unfettered action
according to students’ own interests; on the other hand, the term teaching implies
that there is something-to-be-taught which is forced to students. If you can see here
some double-bind situation, it is because you are probably possessed with the study
paradigm of visiting works (Chevallard, 2015). This paradigm regards the didactic
situation as it of predetermined knowledge of some kind. Most national curricular
projects are typical hypostatisations of it. The visiting-works paradigm is dominant
not only in mathematics education action but also within the research on it. For
example, the theory of didactic situations, TDS (cf. Brousseau, 1997) aims to
investigate fundamental situations for different bodies of knowledge, which assume
the existence of targeted knowledge in some sense. The different cases of research on
the inquiry-based teaching are probably similar. However, if we recall PhD courses
as didactic situations of a genre, then we can notice that this view is relatively
confined to school common-sense. PhD didactic situations must be “inquiry-based”.
This case leads us to the possibility of another paradigm called the questioning the
world (Chevallard, 2015). This new paradigm underlines not only studying
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pre-established answers, but also inquiring students’ own questions. In short, the
school realisation of didactic situations like PhD courses is insisted by this “counter-
paradigm” (ibid.). Let me put brief comments here in the prefix counter-. It usually
means “against” and “opposite direction”: counterblow, counterculture, counterex-
ample, and so on. However, we have to understand here the counter-paradigm as
including the paradigm of visiting works, although it actually denies the traditional
teaching view in some sense. To use an expression by the French epistemologist and
philosopher Gaston Bachelard, the questioning-the-world is a dialectically general-
ised perspective of the classic paradigm.

2 Didactic Systems and Their Study-and-Research
Functioning

2.1 The Name of “Study and Research Path” and Its Two
Referents

The study and research path (SRP) is a central idea of a new didactic proposal which
is conducted by the questioning-the-world paradigm. The SRP is a relatively met-
onymical term for emphasising that any inquiry process has two fundamental and
complementary poles: the study pole for acquiring existing knowledge and the
research pole for producing new knowledge. Precisely speaking, the name of SRP
means two things. The first and main meaning is the students’ activity for solving
their own problems. The idea of SRP highlights that the inquiry is the inquiry into
questions. An SRP as a students’ activity starts from some question which can be
fruitful sources of students’ inquiry, that is, have the generating power: for example,
“how to calculate the cube root of a given number by using a simple pocket
calculator?” (Otaki et al., 2016). Such questions are alive, that is to say, the questions
are legitimised by some needs, demands, or values: cultural, disciplinary, and
functional (García et al., 2006). The second and applied meaning of SRP is the
teachers’ activities which is a complex of knowledge and know-how for supporting
students’ inquiry. Such an SRP as the teachers’ activity and sequence of didactic
situations is also named the knowing-through-inquiry didactic organisation
(Chevallard, 2019). In this paper, I will use the name of SRP in the first meaning.

2.2 A Generic Model of Didactic Systems

Let me introduce a fundamental model for describing the course of SRP, which is a
general model of didactic systems. Didactic systems—which are denoted by S(X; Y;
♥)—consist of a set of students X, a set of teachers Y, and a “target” ♥ called a
didactic stake (cf. Chevallard & Bosch, 2019). It should be obvious that ordinary
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mathematics classes and lessons can be described by this model: S(X; y; ♥). In
addition, the model can also represent didactic systems like those of homework
situations: S(x; x; ♥) or S(x;∅; ♥). Let me add a small comment here that, within the
ATD’s terminology, the adjective didactic has quite broad meaning, that is to say,
any fact related to dissemination of knowledge is a didactic fact: teaching how to add
numbers, to come to Barcelona from Japan, to politely eat full-course meal of French
cuisine, and so on.

2.3 The Herbartian Schema as a Model of Inquiry Processes

In ordinary classrooms, didactic systems S(X; Y; ♥) are constructed around
predetermined pieces of knowledge k :—in the case of mathematics, for example,
k can be different theorems, notions, or techniques. Such S(X; Y; ♥) can be denoted
by S(X; Y; k ). By contrast, in SRPs, S(X; Y; ♥) function around questions q without
forced works to be studied: S(X; Y; q ). This characterisation implies that S(X; Y; q )
bring their answers a into being: S(X; Y; q)! a. This formula is called theHerbartian
schema (cf. Bosch, 2019; Chevallard, 2019), precisely speaking the reduced
Herbartian schema.

2.4 The Three Genetic Facets of SRP

The Herbartian schema implies that any course or history of inquiry begins with
some question and ends with some answer. Generally speaking, the history of a
certain object has different facets—in the case of a person, there could be many
historical aspects: biological, intellectual, family-relational, economical, educa-
tional, and so on. Within the framework of the ATD, when considering the history
of SRP, one focuses on three genetic facets: chronogenesis, mesogenesis, and
topogenesis (cf. Bosch, 2019; Chevallard & Ladage, 2008). The chronogenesis of
inquiry is the process of (re)producing and disseminating knowledge in a given
didactic system S(X; Y; q ), which is promoted by the dialectic of questions and
answers. The prefix chrono- underlines that the reality of knowing evolves over time
in didactic situations. Precisely speaking in the ATD—especially in the theory of
personal and institutional relations—, any relation R(î, o) of an instance î, that is a
person x or an institutional position (I, p), to an object o is at a given time ȶ, that is, R
(ȶ, î, o) (see also Chevallard, 2019). The mesogenesis of inquiry is related to the
growing and evolving of “toolkit” of S(X; Y; q). About this dimension, the paradigm
of questioning the world insists on the importance of the dialectic of media and
milieus, which emphasises that any course of inquiry includes not only production of
new knowledge but also the acquisition of pre-established knowledge in previous
research. The topogenesis of inquiry refers to the division of roles and responsibil-
ities in an SRP. In general, an answer a is more or less a collective product, which is
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handled by individuals of different “places” or topoi. For a metaphorical illustration,
let me use a football game, which has a main product “getting-points” by the
teamwork of players in different places of a given field (it is not an individual
product by Lionel A. Messi!).

3 Investigation into the Chronogenesis of SRP

This workshop focuses on the chronogenesis of SRP, that is to say, we concentrate
on how to analyse the evolution of questions q and answers a on it. In the following,
I will introduce three points of view for analysing dynamics of the questions/answers
dialectic. Its introducing order progresses in a zoom-in way from a landscape
photography of SRP to a close-up photography of a .

3.1 Questions-and-Answers Map

A first approximation of the chronogenesis of SRP is a tree diagram of questions q1,
q 2, . . ., q i, and answers a 1, a 2, . . ., a j (Fig. 1), which is called the Q-A map (e.g.,
Winsløw et al., 2013). Let me highlight here that the Q-A map is regulated not only
by chronological order expressed by subscript numbers, but also by epistemological
order implied by bi- or multi-furcating structure. The relationship between two kinds
of orders are quite complicated, so we still do not have clear and explicit methods for
drawing Q-A maps. However, it is mere theoretical problem related to the Q-A map,
and drawing it seems to be actually not so difficult. For example, in my personal
experience of SRPs for teacher education as a lecturer, pre- and in-service school-
teachers could easily write their own Q-A maps.

Fig. 1 An example of Q-A
maps (Otaki et al., 2016,
p. 17)
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3.2 Two Dimensions of Answers

Every process of SRP starts from some initial question q 0, which brings about
derived questions q 1, q 2, . . ., q i. Such questions more or less belong to either two

types of questions: how-type Q
 

or why-type Q
!

(cf. Chevallard & Bosch, 2019). The
question “how to calculate the cube root of a given number by using a simple pocket

calculator?” belongs to Q
 
. And, the inquiry of this question naturally produces a

why-question in Q
!
: “why does such a method allow the calculation of the cube

root?” (Otaki et al., 2016). Of course, this why-question comes after answering the
initial how-question (Fig. 2). Let me name here such type of answers to the how-type

questions Q
 
, the practical type of answers denoted by A

 
. By contrast, the type of

answers to the why-type Q
!

is named the theoretical type of answers denoted by A
!
.

In this case, the convergence of the exponent part is an answer in A
!
(Fig. 3). Let me

explain how to handle a major type of q , that is, what-type question. About this, an
important fact is that what-type question can be translated to how-type question
(cf. Chevallard & Bosch, 2019): how to define it? This is even the same in the case of
why-type question (Ibid.): how to explain it? These facts remind us that distinction
between the practical type and the theoretical type of answers is not absolute but
relative. In other words, they are not the natures of answers but the functions of them.
We will return to this matter at the following section about the praxeology model.

Comparing with the first dimension of answers—practical and theoretical—,
the second dimension of answers seems to be more familiar with us: ready-made
type A � and home-made type A♥. A � means that answers in it have been produced
by other persons or institutions, that is to say, they are findings of previous research.
By contrast, if a certain inquiry originally creates answers, then they belong to A♥. In

short, there can exist four (ideal) types of answers in SRP: A
 �, A

 ♥, A
! �, and A

!♥.

Fig. 2 Two ways for
calculating cube-roots using
simple pocket calculators
(Otaki et al., 2016, p. 14)

Fig. 3 A justification of the
calculating method (Otaki
et al., 2016, p. 14)

Analysing the Dialectic of Questions and Answers in Study and Research Paths 253



3.3 Praxeological Functions of Answers

When we use the word answer, it usually means some statement or sequence of
statements to a given question. However, we sometimes answer a given question by
gestures: for example, when I go to a restaurant, I can answer a question “how many
people?” through hand-gesture. This naive example reminds us that the answer is not
the statement but the activity. An ATD’s research assumption is that any human
activity can be described as a praxeology or a system of praxeologies (cf. Chevallard,
2019). Within the framework of the ATD, the word praxeology is a technical term
for representing activities, indicating and underlining that any activity consists of
four components: type-of-tasks T, technique τ, technology θ, and theory Θ. A type-

of-tasks T is any origin or motivation of a given how-question in Q
 
. In the

abovementioned case about the pocket calculator, the type-of-tasks TC is “to calcu-
late the cube root of a given number by using a simple pocket calculator”, which
includes tasks t1, t2, . . ., tk as in cases where given numbers are 2, 3, 100, and so
on. A technique τ is any specific way for doing a certain T. In our case, calculating
methods in Fig. 2 can be τ for TC denoted by τTC. Let me emphasise that T and τ are
not natures of objects but their functions in a given human action. For example, TC
can work as a technique in a situation where T is “approximately identifying cube
root values of certain natural numbers”. The term technology has unusual meaning in
the ATD. It is the discourse for explaining τ denoted by θ, according to the
etymological composition of the word, “technique” + “logy”. In our case, the
proof of Fig. 3 is an essential component of θ. Finally, the theory Θ is the discourse
explaining θ. The ε-N definition of the notion of limit of a sequence can be a crucial
ingredient of Θ in our case. In the same way as distinction of T and τ, it is relational
and relative matter whether a given argument in A

!
is technological or theoretical.

Let me remind you of an ATD’s fundamental assumption: any human activity Ã
can be divided into a sequence of finite tasks t1, t2, . . ., tk: Ã ¼ t1 ^ t2 ^ . . . ^ tk. A
task t1 is accomplished by some technique τ1, and τ1 generates some new task t2, and
so forth. This assumption implies that any praxeological analysis has to make many
tasks in its targeted praxeology undescribed. For example, our praxeological anal-
ysis abovementioned does not explicitly describe tasks of a genre like “to prove”,
which is no less present in the praxeology but implicit or absent in the product of the
analysis. Types-of-tasks clarified in any praxeological analysis are selected for
reasonably reconstructing observed activities. There is the intentional omitting of
different tasks for making research results simple and clear. However, it does not
mean that there are no other tasks in the realised praxeologies. As with other models
in different scientific fields, any praxeological model is an approximation of the
system studied.
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4 Final Remarks: How to Analyse the Question on Inquiry?

I have just introduced some tools for analysing dialectical interplay between ques-
tions and answers on SRP. However, as you notice, such tools are partial to the
answer. This seems to be an epistemological obstacle in our current didactic
research:

Our mathematical epistemology is much richer when it comes to designate results, properties
and objects as defined in answers than to describe and develop the questions which did or
could lead to the answers, or be posed based on them (Bosch & Winsløw, 2015, p. 392).

The entity of question is more invisible than the answer, and taken for granted.
Indeed, we have only very naive tools for analysing questions: how/why, yes-no/
what, and so on. In my view, there is a situational similarity between such a state of
our research and the dawn of Gérard Vergnaud’s theory of conceptual fields
(Vergnaud, 2009), which theorises the notion of answer as a triplet model of concept.
He problematised the notion of answer at that time. We have to problematise the
notion of question now.
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Experimentation of a Study and Research
Path: Didactic-Mathematical Indicators
of Dialectics

Verónica Parra and María Rita Otero

1 Study and Research Path’s Generative Question and Its
Hypotheses

Study and research path’s generative question is the following Q0:How to determine
the set of values of the variables that satisfy the equilibrium condition in a given offer
and demand market model? This question is formulated based on the hypothesis (H )
of the existence of an equilibrium state:

H0: The market balance exists, and it is possible to obtain.
H1: The market balance is produced when the offered quantity is equal to the

demanded quantity, for a certain price.
H2: The offers and demands functions are linear and both depend on the price of the

unique product.

For example, if nothing is supposed about the existence of an obtainable equi-
librium state, the generative question could be asked in terms of How to determine
whether or not the equilibrium point is obtainable?

We consider that a generative question is related not only to the initial hypoth-
eses, but also to the institutions where the SRP experimentation is carried out. That is
to say, depending on the contexts of implementation, the question can be specified or
extended just like the set of hypotheses. For example, we can incorporate a hypoth-
esis about the nature of offer and demand functions, of the variables that affect their
formation, whether or not to assume that the equilibrium point is obtainable, etc. In
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Fig. 1, the scheme of a possible praxeological model is presented that contemplates
possible routes according to the questions and hypotheses.

2 SRP’s Implementation Contexts

SRP was implemented in 4 groups of students with different characteristics which
we grouped in two institutional contexts. On the one hand, a school context
composed of students of the last year of the Argentinian secondary education, within
the curricular space destined to the classes of “Mathematics”. On the other hand, a
context of mathematics teachers in training, within the curriculum space called
“Didactics of Mathematics”. SRP implemented in the institution “secondary school”
begins from the Q0, assumes the hypotheses H0, H1 and H2. In this way, the search
for answers to Q0 permits to study several topics of the Mathematics’ study program
of the last year of the secondary education. In return, SRP implemented in the
“university” institution begins from Q0, also assuming the equilibrium hypothesis
(H0), but nothing assumes about the nature of offer and demand functions. So,
teachers in training go through three stages: experimentation of SRP, analysis of
SRP in terms of derived questions, involved praxeologies, and proposal of possible
extensions or restrictions to the questions and hypotheses.

In the “secondary school” context, SRP was implemented in two different grades
of the last year, with students between 17 and 18 years old. In the first of them, the
implementation lasted 36 class sessions of two hours each and the group was made
up of 32 students. On the first day of class the first question of SRP was asked. This
decision was taken during the stage of designing the SRP, so there was not a
previous training in the praxeologies that would allow answers to the questions,
so, the students would not know which mathematical notions would allow them to
provide answers. The study process was completely managed by the researcher. In
the second grade, the implementation lasted 8 class sessions of two hours each and
the group consisted of 35 students. The generative question was presented to the
class group after 5 months of the school year and the study process was not managed
by the researcher. In this case, the researcher was present in the classroom as an
observer.

From the analysis of data obtained in these implementations, a possible set of
didactic-mathematical indicators of each of the dialectics was generated (Parra &
Otero, 2017, 2018).

In the “Argentinian university level” context, SRP was implemented in two
groups of mathematics teachers in training (students between 22 and 35 years) in a
Didactics of Mathematics course.

This course is part of the third year of the mathematics teacher training curricu-
lum. The course programme proposes, among other units, to study the anthropolog-
ical approach in mathematics teaching. In this case, both implementations were
carried out by the researcher. The first lasted 7 sessions of classes of three hours
each and the group consisted of 12 students. The second implementation lasted
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8 class sessions of three hours each and the group consisted of 11 students. In this
context, no data were presented and only the equilibrium hypothesis was formulated.

The questions given to the secondary level students were the following:

Q0: Let’s suppose that we will make a product and that our aim is to sell and collect
money. The following information corresponds to information obtained in a
previous test of sales (Table 1):

What model would allow to study the behavior of the offer and demand on this
market? How to determine the price and the quantity so that the demand could satisfy
at the same time that the offer does not have excess?

Q1: How to study the behavior of the law of offer and demand for any couple of
linear functions? How to determine the point of balance in this case?

Q2: If the parameter “ordinate” of the model is modified: How to describe the
variation of the point of balance?

Q3: If the parameter “gradient of a line” of the model is modified: How to describe
the variation of the point of balance?

Q4: How much does the point of balance change exactly in each case?

The questions Q3, Q4 and Q5 correspond to the study of the variations in the
point of balance after modifying the parameters of the model. The parameters were
modified one by one because the official curriculum of the Argentina secondary
school prescribes only the study of functions of an independent variable. The
curriculum does not propose the study of functions of two or more independent
variables. The students answered the questions to the variations of a parameter and at
the same time built different modes calculating the point of balance (in an analytical
way or using the software GeoGebra®) in each case. They described the variations
and answered questions of the type: if it increases or diminishes one of the param-
eters “How does it change the balance?” The answer to this question was qualitative
(increase or decrease). Then, the teacher proposed the following question: “Q5: How
much does the point of balance change exactly in each case?”

Some derived questions were the following ones: What is a model of market?
What is the point of balance? What is “the demand and the offer”? “How does the
offer and demand behave?” These questions were answered by the students through

Table 1 Information obtained in a test on previous sales

Price per unit (in $ARG) Amount of demand Amount offered

10 300

11 174

13 270

14 231

23 402

24 160

25 440

26 140
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internet search, books and asking the teacher of economy at the institution. Several
groups of students not only worked on the characterisation of the economic model,
but also researched, among others, about the factors that cause an increase or
decrease of the demand; factors that cause an increase or decrease of the offer, and
of course, the question: “How to build a model?” Here, there is a way out to the
scope of microeconomics, but also to the area of mathematics. In order to build this
model, it is necessary to study how to build the equation of a line with two or more
known points, how to solve a system of two linear equations with two unknown
quantities and to represent that model or situation in a system of these components.

To answer the questions derived from Mathematics, the professor acted, in some
cases, as a source of information. For example, he reminded the students that this
model, being linear, could behave like the linear functions they have studied in
previous school years. Here, an “output” to the linear functions and to the resolution
of systems of linear equations with two unknowns were necessary. Once done the
research and the study, it was necessary to go back to the initial question and build an
acceptable answer, at least, by the study community (students and teacher).

The study of the questions referred to the variations that were developed during
several classes, until arriving to the concept of derivative functions as a useful tool to
describe reason of change between two variables. This required the study of the
limits of the functions to define the derivative of a function, a new exit or way out of
the theme. The questions were the following: “What is the “intuitive idea” of a limit?
Does the limit of a function exist always? Can function have two different limits?
Which are the properties of the limit? Which are the infinite limits? Which are the
limits in the infinity? How many indeterminations can we find? How can they be
“saved”?”

3 Didactic-Mathematical Indicators of the Dialectics

1. DE-I. Dialectic of research and study: we identified this dialectic when it
appears at any moment during the class:

I1DE-I: A search on the internet, in books of different disciplines, consulting the
teachers of different disciplines, consulting different professionals and any other
search in different medias who are not the teacher. For example, in this case, the
search on internet or in math books and microeconomics.

I2DE-I: A study of answers Ai
⋄, such as, the study of available answers, the works

Oj that are useful in the building of the answer to the general question or its derivates.
For example:

• A1
⋄: OMat on linear function.

• A2
⋄: OMat on parallel straight lines and perpendicular straight lines.

• A3
⋄: OMat on two linear equation systems with two unknown quantity.
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• A4
⋄: OMicro on the models of offer and demand.

• A5
⋄: OMicro on the displacement of the offer and demand curves.

I3DE-I: The formulation of the derived questions in the different groups and search
for answers. For example:

• QME1: What is a model of offer and demand?
• QME2: What is the function of the offer?
• QME3: How does the function of demand behave?
• QME4: What is the point of balance in microeconomics?
• QME5: How do we represent a group of data in a cartesian coordinate system?

2. DI-C. Dialectic of the individual and collective: we identify this dialectic when
the following actions are identified.

I1DI-C: A group decision taken by the students, for example: to agree in a model
(if the amounts offered and demanded depend on the price or if the price depends on
the amount offered and demanded).

I2DI-C: A member mentions that the production made is not his but from the group
and vice versa.

I3DI-C: Each group pact how to expose and defend the answer knowing that is it a
production of the group collective, not individual, assigning tasks and individual
responsibilities in this spread out of information.

I4DI-C: The teacher and the students decide what subject to study.
I5DI-C: The teacher prepares the common settings regarding the need to move

forward in the study process.
I6DI-C: The students incorporate questions during the common settings to redirect

the study process according to the production of each group.

3. DASP-ASD. Dialectics of the praxeological analysis-synthesis/didactic syn-
thesis-analysis: we identify this dialectic when we observe an action of the
following type:

I1DASP-ASD: An analysis of the different answers Ai
◊ that requiers a decision on

what of this work to study in order to build the answer A♥. For example: what and
how to study the system of two lineal equations with two unknown quantity? what
and how to study the displacement of the functions? How to study the models of
offer and demand? What and how to study the relationships between variables?

I2DASP-ASD: An analysis of the information obtained by different information
systems: internet, books, microeconomics books, teachers, economists,
merchants, etc.

I3DASP-ASD: An analysis of the questions asked in each study group.
I4DASP-ASD: A synthesis of techniques, technology and theories that make up

different Ai
◊.

I5DASP-ASD: A synthesis of the information obtained by the different media
prioritising what is necessary and adequate to give answers to the different questions.

I6DASP-ASD: A synthesis of the answers to the derived questions.
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4. DT-FDT. Dialectic of subject and out-of-subject: The separation between math-
ematics and microeconomics is done in terms of exploring different environments
that apparently do not have any direct relation with the issue considered. For
example, the study of limits of the functions was produced when there were
questions asked about the variations of price and amount of balance. This
exploration was not obvious when considering question Q4. That is how we
identified this dialectic for the following actions:

I1DT-FDT: Students go to different disciplines of mathematics. For example, to
microeconomics. The decision over the domain of validity of the parameters of the
model implies to study lays of offer and demand and adjust them.

I2DT-FDT: In mathematics, a solution to the same discipline. For example:

• The study of limits of the functions in order to enter the study of the derivate of
functions as limits of the incremental quotient.

• The study of equation systems to enter the calculation of point of balance.

5. DP-T. Dialectic of the parachutist and the truffle hound: This dialectic starts
working when it is introduced for the first time to a new question, a derived
question, a A◊ and or any other work, that when doing a search in different media
and without a strict analysis, it seems to be useful to the construction of answer
A♥. We identify the functioning of the dialectics when at some point of the class
we observe:

I1DP-T: The group of students cannot determine how to start answering the
question and the productions delivered do not give a partial answer to the questions.

I2DP-T: The search on the internet is wide and starts to focus on what can be
useful.

I3DP-T: The search in books leads us to rule out different chapters that were not
useful for answering the questions.

6. DCN-CC. Dialectic of black boxes and clear boxes: We identify this dialectic
when at some point in the class there is a partial study of fragments or parts of
some work. So, when a study is produced in a grey level. For example: actions
belonging to this level of grey are the following:

I1DCN-CC: To study only one way to solve a system of equations.
I2DCN-CC: To build the equation of the line that goes through two points without

doing the mechanical study of the formula.
I3DCN-CC: To study straight lines without studying perpendiculars.
I4DCN-CC: To study the derivatives of functions as a limit of the incremental

quotient.

7. DM-M: Dialectic of media-milieu: We identify this dialectic when at some point
in the class:

I1DM-M: Questions are asked in terms of “why?” and the results obtained or
proposal of a media (source of information) are questioned. For example: “Which of
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the two models obtained are correct? Why are both models of offer and demand
suitable?”

I2DM-M: A different answer is studied in any media (that is not the teacher).
I3DM-M: Questions in terms of “how?”, that is, questioning: “How to prove that

the model chosen is the correct one? How do we prove that the point of balance
varies? How do we prove that the point of balance and the parameters are related?
etc.” This implies the need to look for new information.

8. DL-E. Dialectic of reading and writing: We identify this dialectic when at some
point of the class the students:

I1DL-E: The students underline or highlight what they consider important from the
internet researches, or when they copy to their folders what can be useful in this
search and the use of books, or asking for information from economy and math
teachers.

I2DL-E: They prepare the synthesis of their own work or from the information
obtained in a media.

9. DD-R. Dialectics of diffusion and reception: We identify this dialectic when at
some point in the class study groups communicate and defend their answers, that
is, when they share the productions in each common setting.

4 Final Thoughts

From the set of indicators of each and every one of the dialectics constructed based
on the data of the SRP experimentation at the secondary level, we conclude that the
most frequent dialectics was from the individual and collective, which is due to the
group working in the class. The dialectic of subject and out-of-subject is another
frequent one as well as praxeological analysis-synthesis/didactic synthesis-analysis
and black boxes and clear boxes. The dialectic of the praxeological analysis-syn-
thesis/didactic synthesis-analysis and the black boxes and clear boxes were used in
class immediately. Both of them are strongly linked since the realisation of the
analysis to a synthesis requires determining a level of grey useful to the study of the
works.

Question number 4 (Q4) presents higher occurrence of indicators of all of the
dialectics, especially the dialectic of research and study, subject and out-of-subject
and of the individual and collective. This indicates a higher occurrence in the search
of information and development of the investigations, more agreements from each
group and higher entering and coming out from different subjects (such as mathe-
matics and microeconomics). There is a significant difference with the remaining
questions, possibly because Q4 was allowed to generate more derived questions
(characteristics not determined beforehand) and a study more sustained in time.
More sessions were devoted to the construction of answers to Q4 and its derived
questions. This particularity was maybe due to the fact that Q4 allowed to address
aspects of the curriculum that had not been studied before by the class.
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The search for answers to Q3 did not present indicators of the dialectic of research
and study nor the dialectic of reading and writing possibly it is so because Q3 did not
generate any derived questions, and in consequence it was not necessary to look or
research in different sources of information. Therefore, there were no lectures with
subsequent rewriting and interpretations from the students. In Q2 there were no
indicators of the dialectics of reading and writing but there were of the dialectic of
research and study, possibly because Q2 generates some questions related to straight
parallels, to the use of GeoGebra®, and the intersection of two straight lines:
mathematics that the students knew and used. Generally, the occurrence of indicators
was similar for Q1 and Q0 detecting an inferior number in the corresponding to Q4,
but higher to Q2 and Q3.

However, the indicators introduced here correspond to this particular implemen-
tation and have been developed under specific conditions and limitations of SRP. We
conclude that the more generative a question is, the more indicators of dialectics we
can find. This work expects to move forward in the construction of a set of indicators
extending them to future implementations and other researches. The work of
Salgado et al. (2017) and Gazzola (2018) go in this direction.

References

Gazzola, M. P. (2018). Diseño, implementación y análisis de un Recorrido de Estudio e
Investigación codisciplinar en matemática y física en la Escuela Secundaria (Tesis de
doctorado). Universidad Nacional del Centro de la Provincia de Buenos Aires.

Parra, V., & Otero, M. R. (2018). Antecedentes de los Recorridos de Estudio e Investigación (REI):
Características y génesis. Revista electrónica de investigación en educación en ciencias, 13(2),
1–18.

Parra, V., & Otero, M. R. (2017). Enseñanza de la matemática por recorridos de estudio e
investigación: Indicadores didáctico-matemáticos de las “dialécticas”. Revista Educación
Matemática, 29(3), 9–50.

Salgado, D., Otero, M. R., & Parra, V. (2017). Gestos didácticos en el desarrollo de un recorrido de
estudio e investigación en el nivel universitario relativo al cálculo: El funcionamiento de las
dialécticas. Perspectiva Educacional, 56(1), 84–108.

Experimentation of a Study and Research Path: Didactic-Mathematical. . . 265



Introduction for Part IV
Research in Didactics of Mathematics at the

University Level

Ignasi Florensa and Pedro Nicolás

Research in didactics of mathematics at university level can be considered as a
relatively novel field. In fact, the first research works date from the decade of the
1970s. These initial works were framed within cognitive approaches and studied
phenomena related to student conceptions and difficulties, learning processes, and
modes of thinking among others. However, in the early 1980s, and due to the
limitations of such approaches, researchers progressively adopted the epistemolog-
ical approach that was flourishing in France. The works of Artigue (1988), Artigue
and Rogalski (1990) and Gascón and Bosch (1995) pioneered this transition. The
adoption of the epistemological approach accelerated in the 1990s with the devel-
opment of the Anthropological Theory of the Didactic (ATD), which has proven to
be extremely fruitful in this domain as stated in the summary of the TWG14 of the
CERME11 (Gonzalez-Martin et al., 2019).

Nowadays, the field of didactics of mathematics at the university level has spread
widely: the creation of a specific group in the CERME7 in 2011 and the creation of
the INDRUM network in 2016 are illustrative facts. Some of the open questions that
the research community faces can be found in these two documents: Background:
the birth of INDRUM2016 (Nardi & Winsløw, 2016) and the call for papers of the
TWG14 of CERME11 conference. We summarise them here:

• Transitions between secondary and tertiary institutions seem to produce prob-
lematic phenomena related to high failure rates.

• Implementation and analysis of new teaching formats. Diverse teaching formats
such as Study and Research Paths have been implemented in Mathematics
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degrees (or in mathematics courses in other degrees). What challenges does this
implementation face at research level?

• Teaching of advanced mathematics topics that tend to be highly theorised,
leaving their raisons d’être in the shade.

• Initial training of lecturers. Teacher training is based mainly on research achieve-
ments and the didactic training of teachers is absent or based on general peda-
gogic approaches. Should didactic devices be incorporated as training tools?

These questions cannot be detached from two phenomena that we consider
specific of the teaching of mathematics at tertiary level. First, the illusion of
closeness to scholarly knowledge: the fact that the lecturer is a researcher in the
taught field may generate the idea of teaching pure and unique scholarly knowledge.
However, this closeness, even if it may have existed in the past, remains an illusion,
and we consider that didactics may help making this illusion explicit. Second, the
ambivalent nature of the profession of lecturer: combining teaching mathematics
with research in didactics. This twofold character generates important and unavoid-
able tensions between the practice, the implementation of empirical experiences, and
research.

Considering the open questions in the field, these phenomena and the ATD
developments, we planned the course Research in didactics of mathematics at the
university level to debate and elaborate on the following themes:

• How to deal with knowledge at university level and question, analyse and
describe it? How to do that as researchers? What is the role of the praxeological
analysis, reference praxeological models, question-answer maps and other theo-
retical constructs?

• How to be sure that the theoretical developments and empirical experiences
enrich from each other? How to guarantee fruitful feedback from both sides? In
other words: how to avoid empty theoretical advances and naïve empirical
experiences?

• How to deal with the tension between a prevailing epistemology with highly
crystalised works in the domain and the need of living questions when
implementing an inquiry study process?

The first week of the course included four lectures and four workshops revolving
around these open issues. In the following chapters, the papers summarising the
content of each lecture can be found. The first lecture, entitled Institutional transi-
tions in university mathematics education, was given by Michèle Artigue, emeritus
professor at the Université Paris Diderot. The paper addresses an exhaustive revision
on how the ATD analyses the problem of institution transitions as well as the
associated design of alternative practices trying to smooth them. Taking the doctoral
dissertation of Frédéric Praslon as a starting point, the lecture presents the progres-
sion of the theoretical and empirical research within the ATD framework.

The second lecture was given by Reinhard Hochmuth, full professor at the
Leibniz Universität Hannover. This conference was entitled About the use of math-
ematics in other sciences. Hochmuth, who signs his work together with Jana Peters,
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analyses the consequences of the fact that applying mathematics to real-world
phenomena requires empirical sciences like physics, engineering, sociology, psy-
chology, etc. In consequence, this interaction among disciplines make epistemolog-
ical issues emerge. In particular, two aspects of mathematical practices in empirical
sciences are discussed: first, the identification of mathematical formal quantities with
measurable quantities and, second, the analysis of mathematical discourses inherent
in mathematical practices.

The third lecture was delivered by Carl Winsløw, full professor at the University
of Copenhagen, and was entitled Mathematical analysis at university. Taking the
works of Bergé (2008) as a starting point, Winsløw provided an overview of ATD
research on the teaching and learning of analysis at the university level. Then, this
overview is illustrated by some examples of recent research leading to the outline of
related problems for future research.

The final lecture was given by Chris Rasmussen, professor and associate chair in
the department of mathematics and statistics at San Diego State University, and an
associated workshop was also proposed. Rasmussen’s lecture and workshop were
entitled Examining individual and collective level mathematical progress.
Rasmussen’s lecture and its associated workshop contribute to coordinating different
analyses to develop a more comprehensive account of teaching and learning. In
particular, Rasmussen proposes to expand the constructs in Cobb and Yackel’s
(1996) interpretive framework that allow for coordinating social and individual
perspectives.

In addition to the workshop associated to Rasmussen’s lecture, another three were
held. The first one was conducted by Alejandro González-Martín, full professor at
the Université de Montreal. The workshop was Using tools from the ATD to analyse
the use of mathematics in engineering tasks. Some cases involving integrals. The
workshop proposed the analysis of certain tasks related to engineering in which
integrals are used. The paper summarises the main results of our analysis as well as
the key ideas raised in the workshop discussion; and ends by discussing implications
regarding the role of calculus courses in engineering, as well as some perspectives on
its teaching.

The second workshop was entitled Describing mathematical activity: dynamic
and static aspects and was organised by Catarina Lucas, researcher at the Instituto
Da Saúde Pública Da Universidade Do Porto, Ignasi Florensa, tenure track lecturer at
the Escola Universitària Salesiana de Sarrià in Barcelona. The authors asked the
participants to mobilise two different ATD tools to describe different aspects of
mathematical activity and their complementarity with the praxeological analysis.
The ATD tools proposed were question-answer maps as a tool to describe the
genesis and evolution of knowledge involved in inquiry processes and the
Herbartian schema used to describe different aspects of inquiry processes.

The final workshop was led by Thomas Hausberger, tenure track lecturer at the
Université de Montpellier and was entitled Mathematical structuralism: A didactic
invention? The workshop was dedicated to a discussion of epistemological and
didactic aspects of mathematical structuralism with a focus on Group Theory. The
participants worked on a corpus of documents comprising excerpts of the Bourbaki

Research in Didactics of Mathematics at the University Level 269



Manifesto “the architecture of mathematics” and the transcript of a discussion thread
from a mathematical forum online.

The second week of the course was devoted to scientific interactions and the
participants’ contributions about ongoing research works. The interested reader can
access them in (Barquero et al., 2021).
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Institutional Transitions in University
Mathematics Education

Michèle Artigue

1 Introduction

Institutional transitions in education are inherently problematic. Students must adapt
to changes in institutional relationships that may be abrupt, and often are not
explicitly discussed, or in terms too much general to be useful. Teachers, who are
often only superficially informed about the institutional relationships that prevail in
the institutions from which their students come, are ill-equipped to effectively
support their acculturation. This is by no means a recent phenomenon. Already at
the beginning of the twentieth century, the mathematician Felix Klein denounced, in
the introduction to the famous book associated with his lectures for Gymnasium
professors in Germany, a double discontinuity directly linked to such institutional
transitions. He wrote:

The young university student finds himself, at the outset, confronted with problems, which
do not remember, in any particular, the things with which he had been concerned at school.
Naturally, he forgets all these things quickly and thoroughly. When, after finishing his
course of study, he becomes a teacher, he suddenly finds himself expected to teach the
traditional elementary mathematics according to school practice; and, since he will be
scarcely able, unaided, to discern any connection between this task and his university
mathematics, he will soon fell in with the time honoured way of teaching, and his university
studies remain only a more or less pleasant memory which has no influence upon his
teaching (Klein, 2016, p. 1).

It is therefore not surprising that the discontinuities of the secondary/university
transition have been an object of attention since the emergence of research on
university mathematics education. This attention has increased with the
massification of university education, and also with a growing demand for account-
ability making unacceptable the high failure rates engendered by these
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discontinuities, insufficiently considered. The first ICMI study devoted to the teach-
ing and learning of mathematics at the university level (Holton, 2001) particularly
underlined this point. Nevertheless, there is no doubt that research in this area has
developed considerably in the last decades, partially renewing its approaches, as
shown by the following succession of syntheses:

• The ICMI Study 11 (Holton, 2001)
• Gueudet (2008) resulting from a course at the 2007 summer school of didactics
• The survey piloted by Mike Thomas for ICME12 (Thomas et al., 2015)
• The entry (Gueudet & Thomas, 2020) in the Encyclopedia of Mathematics

Education.

These syntheses clearly show both the quantitative increase of research within
this field and the enrichment of its perspectives. Research has primarily focused on
identifying and understanding students’ difficulties, mobilizing epistemological and
cognitive perspectives. The work carried out around the idea of “Advanced Math-
ematical Thinking” within the international group PME (Tall, 1991) is a good
example of this. This research also pointed out new requirements in terms of
connections between domains of knowledge, flexibility between modes of thinking
and semiotic representations, relationship with proof and with formal language,
forms of discourse (see for instance the reference book (Dorier, 2000) for research
on linear algebra).

However, progressively, we can observe an increasing awareness of the role
played by university teaching practices and assessment modes in the difficulties
experienced by students, going along with an increasing influence of socio-cultural
perspectives in mathematics education research at large, which leads to question the
dominant visions, and provides new frameworks and conceptual tools to address
transition issues. The anthropological theory of the didactic (ATD) has played an
important role in this evolution, and in this text, I focus on the contribution of ATD
research to the study of transition issues in university mathematics education (UME).

2 The ATD Perspective on Transition Issues

ATD provides a global approach of institutional transitions, not reserved to transi-
tions at stake in UME. In fact, to my knowledge the first research using ATD to
address transition issues was the thesis by Brigitte Grugeon, a doctorate student of
mine (Grugeon, 1995), and the transition at stake was the transition between
vocational high school and technological high school in France.

ATD obliges its users to a radical move of lens, from the students to the
institutions shaping their relationship with mathematics knowledge, from the anal-
ysis of students’ difficulties to the analysis of mathematical and didactical praxeol-
ogies in the institutions at stake. Doing so, students’ difficulties become the sign of
some institutional dysfunction. When adopting such a perspective, a basic concept is
the one of praxeology used in the theory to model any type of human practice. A
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praxeology is defined as a quadruplet [t,T,θ,Θ], with a praxis block made of the
different types of tasks t and associated techniques T, and a theoretical block made of
the technological discourse θ used to describe, justify, produce these techniques, and
a theoretical discourse consisting in “statements of a more general and abstract
character, with a generally strong justifying and generating power” (Bosch &
Chevallard, 2020). For instance, a classical type of task in Calculus is to prove
that an equation f(x) ¼ c, f being a real function of one real variable, has a unique
solution on an interval I ¼ [a,b]. To solve it, different techniques exist. The French
high school curricula favours the following one: to show that f is continuous and
strictly monotonic on I and that c belongs to the interval [f(a),f(b)] in the increasing
case (resp. to [f(b),f(a)] in the decreasing case). The use of this technique can
mobilize new tasks and techniques, for instance if the derivative is used to prove
that f is strictly monotonic. In this praxeology, the intermediate value theorem, which
is part of the theory of real functions of one real variable, is an essential ingredient. It
may be a more or less explicit part of the technological discourse, according to the
level of schooling and institution.

Praxeologies structured around a type of task, also called “punctual praxeol-
ogies”, coalesce into “local praxeologies” sharing a common technological dis-
course, for instance the intermediate value theorem or the fundamental theorem of
Calculus, and local praxeologies themselves coalesce into regional praxeologies
sharing some common theoretical ground, for instance the theory of real functions
of real variables, which leads to complex mathematical organizations. As has been
shown by research on the secondary/tertiary transition, this progressive structuration
of praxeologies needs to be carefully examined (see for instance (Bosch et al.,
2004)).

A second ATD essential construct for approaching institutional transitions is the
hierarch of scales of codeterminacy, helping us better understand the complex
system of conditions and constraints that condition the ecology of mathematical
and didactical praxeologies. In its current presentation (Chevallard, 2019), ten
different levels in interaction are distinguished,1 from the level of conditions and
constraints resulting from the fact that we are human beings (humanity level) to the
level of topics and questions. Considering the field of functions, for instance, the
teaching of a topic such as the variation of exponential functions is shaped by a
diversity of conditions and constraints which go beyond those associated with its
inscription in a particular theme (exponential functions), sector (transcendent func-
tions of one real variable) and domain (Calculus or Analysis) of the mathematics
discipline. It is also shaped by more global conditions and constraints for instance
regarding the role given to digital tools (level of pedagogy), the curricular choices
which may more or less emphasize connections between scientific disciplines and
shape assessment practices (level of school). These choices, in turn are constrained

1These ten levels are, in decreasing hierarchical order: humanity, civilization, society, school,
pedagogy, which constitute the supra-didactic levels, and discipline, domain, sector, theme, topic/
question, which constitute the didactic level.

Institutional Transitions in University Mathematics Education 273



by society expectations, habits and values (level of society), which, for many of
them, transcend a particular society (level of civilization or more in our globalized
world).

3 Investigating the Secondary/University Transition
with ATD: Pioneering Theses

The doctoral thesis by Frédéric Praslon (2000) was to my knowledge the first
research using this ATD perspective to approach the secondary/university transition.
As was the case in Grugeon’s thesis, Praslon uses ATD to question dominant
visions, in his case, the dominant vision of the secondary-university transition as a
radical move from the proceptual world to the formal world of mathematics, from
intuitive to rigorous practices. His theoretical framework combines ATD with
constructs such as the distinction between the tool and object dimensions of math-
ematical objects due to Douady (1986), the idea of semiotic register due to Duval
(1995), the idea of procept and the three mathematical worlds of Tall (2004). This
combination helps him build on already established knowledge regarding the teach-
ing and learning of Calculus and Analysis, which, at the time, is often expressed
through the use of such constructs.

The analysis of mathematical praxeologies follows a standard methodology based
on the analysis of curricular documents and resources, textbooks and teaching
material, assessment texts. This analysis makes clear that a substantial praxeological
universe around the notion of derivative already exists at the end of high school, but
that a dramatic increase of the praxeological landscape takes place in the first six
months at university. It also makes clear that the transition does not correspond to the
radical move described above, rather to an accumulation of smaller and less visible
breaches, that are not appropriately taken in charge. The main breaches that Praslon
identifies are the followings:

• An acceleration in the introduction of new objects.
• A greater diversity of tasks preventing routinization.
• Much more autonomy given in the solving process, and in the selection and

management of semiotic registers of representations or mathematical settings.
• A new balance between the particular and the general, between the tool and object

dimensions of mathematical concepts.
• Objects more controlled by definitions, results more systematically proved, and

proofs which are no longer “the cherry on the cake” but take the status of
mathematical methods.

The conjunction of these breaches creates a substantial gap, but university
teachers tend to under-estimate the cognitive charge induced for their students. As
pointed out in Artigue (2017), in the expression of the results of this pioneering
research, we can observe the effect of the theoretical combination at stake in its
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theoretical framework. To make university teachers and students sensitive to these
changes, Praslon designed a set of tasks in the gap between the two cultures: a priori
compatible with high school knowledge but fully exotic in high schools, and at the
same time not really university tasks. These tasks were proposed to students at their
inscription at the university and discussed with them and the staff in the first week of
teaching. Here is an example of such a task.

Let us consider the periodic function f with period 1 defined by f(x) ¼ x�(1�x) on
[0, 1[(see the corresponding graph).

Q1: Is this function continuous? Differentiable?

Q2: The symmetric derivative of f at a is defined as the following limit: f 0 að Þ ¼
lim
h!0

f aþhð Þ�f a�hð Þ
2h:

Compute the derivatives and symmetric derivatives of f, if they exist, at points ½, ¼
and 0, and compare these.

Q3: Are the following three conjectures true or false? Justify your answers:
C1: Every even function defined on ℝ has a symmetric derivative at 0.
C2: Every even function defined on ℝ has a derivative at 0.
C3: If a function defined onℝ has a derivative at a, it has also a symmetric derivative

at a, and the two are equal.

A French student entering the university after a scientific baccalauréat (Bac S) in
the late nineties had been taught the mathematics required for solving this task.
Nevertheless, it was not part of the high school culture. For instance, fwas defined by
pieces and students had to understand that the given expression could only be used
on [0,1[. They had already met functions defined by pieces, but these remained
marginal objects and, generally, those used were defined by two or at most three
different algebraic expressions given to the students. Question Q1 was not a new
question and a graphical representation was offered making visible the existence
of acute points, but the techniques students had routinized, based on the conservation
of continuity and differentiability through algebraic operations and composition of
functions, were not sufficient. In question Q2, a new notion was introduced directly
through a formal definition and the students were asked to use it; this was not usual,
but the definition was close to the familiar definition of the derivative. Question Q3
proposing three general conjectures was also rather unusual, but Q1 and Q2
prepared it.

The students’ answers showed that students recognized these questions as ques-
tions they could address and tried to answer them but that, in their great majority,
they were deprived of the mathematical means and experience necessary for their
solution, except for the calculation of derivatives and symmetric derivatives in
non-problematic cases. Moreover, Praslon observed the lack of connection between
graphical and algebraic perspectives, attested for instance by the fact that most of
those who had identified points of no-differentiability in Q1, using the graphical
representation, fell down in the algebraic trap when calculating the derivative at
0 in Q2.
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Praslon’s thesis was a source of inspiration for two other doctorate students of
mine interested in transition issues. The first one was Analia Bergé, a university
teacher at the University of Buenos Aires who studied the evolution of the students’
conceptualization of the completeness ofℝ and continuity of the real line, along their
university mathematics studies where the theme was addressed in four successive
courses (Bergé, 2004, 2008). The transition at stake was not the secondary/university
transition but transitions internal to the university system. Her thesis showed that the
four courses functioned as disconnected institutions, and that the connection
between the perspectives they offered on completeness was let to the students’
private work. As a consequence, most of the students who successfully passed
these courses did not distinguish the completeness of ℝ from the density of its
order, these two properties being associated for them, indiscriminately, with the idea
of set without holes. Also, in their great majority, they neither understood the
foundational role of this property for the field of Analysis, nor were able to explain
where it was used in the demonstration of key theorems such as the Intermediate
Value Theorem mentioned above. Visibly, the situation only improved when, in the
last course, the completeness of ℝ became a particular case in the study of complete
metric topological spaces.

The second thesis was that of Ridha Najar, prepared in cotutelle with the
University El Manar in Tunis (Najar, 2010). This time, as in Praslon’s thesis, the
transition at stake was the secondary/university transition, and the domain that of
functions. The student population considered was a privileged population, made of
top level and highly motivated students, those entering the selective program of CPS
(Scientific Preparatory Classes) preparing to engineering schools. Najar focused on
another main source of discontinuity in institutional relationships regarding func-
tions in the secondary/tertiary transition, linked to the extension of the function
habitat, with the move from praxeologies mobilizing essentially real functions of one
real variable for solving Calculus tasks to praxeologies involving functions con-
ceived as set theoretical objects or homomorphisms between algebraic structures.
Najar developed a detailed study of these functional praxeologies, paying specific
attention to the respective topos of teachers and students, to the use of semiotic
resources and reasoning modes, mobilizing once again different constructs for that
purpose.

He showed the praxeological discontinuity resulting from the new inscription of
functions (as applications) in the domain of set theory and algebraic structures at
university, despite the introduction of some set theory perspectives and discourse in
the teaching of geometric transformations in high school, and once again the poor
sensitivity of the institution to this discontinuity. The type of task “Proving that a
function is a bijective mapping” illustrates this difference, when one compares the
techniques favoured in high school mentioned above and those used in set theory or
abstract algebra, coming back to the definition or using specific characteristics of
homomorphisms in abstract or linear algebra. The example below, a typical example
of task often proposed to students in the first worksheet on set theory and functions,
is analysed by Najar in a very detailed way for illustrating this difference.
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E, F, G and H are sets and H has two elements at least, f is an element of A(F,G),
the set of applications from F to G; prove the following equivalences:

f ‐surjective , 8g, h 2 A G,Hð Þ, gof ¼ hof ) g ¼ hÞð �½

f ‐injective , 8g, h 2 A E,Fð Þ, fog ¼ foh ) g ¼ hð Þ½ �

The thesis shows the limitations of high school praxeologies around geometric
transformations that could prepare the transition. These are limited to a few punctual
praxeologies, isolated and rigid, and the technological and theoretical discourse is
reserved to the teacher’s topos. The contrast is clear with the CPS praxeologies
centered around their theoretical block, paying limited attention to the needs of the
technical work and to the practical dimension of the technological discourse (Castela
& Romo Vázquez, 2011) and with a much more reduced gap between the teachers’
and students’ topos. Taking into account these results, Najar designed a didactic
intervention addressing under-estimated breakdowns that resulted reasonably effec-
tive despite the strong constraints imposed by the specific context of CPS.

As commented in Artigue (2017), these doctoral theses contributed to show the
potential of ATD for understanding transition issues in their institutional and
systemic dimensions and the difficulties they generate, in diverse contexts. One
can observe an evolution in their use of ATD, as far as the theory develops. For
instance, Najar refers to the idea of completeness of local praxeologies introduced in
(Bosch et al., 2004) and uses associated indicators (see below). However, there is no
doubt that in the light of current ATD research, their results could be expressed
differently. This naturally leads me to the next section devoted to the evolution of
research since these pioneering theses, still focusing on research inspired by ATD
perspectives.

4 The Evolution of ATD Research Praxeologies
on Transition Issues

This evolution has impacted both the praxis block and the theoretical block of
research praxeologies on transitions, as could be expected considering the dialectic
relationship between these two blocs (Artigue et al., 2011). In this text, I can only
discuss a few of them.
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4.1 The Evolution of the Praxis Block

The three theses I have evoked approach mathematics from an internal perspective.
They do not consider mathematics in their relationships with other scientific fields,
and the courses they study are not service courses. This is not surprising knowing the
long-term predominance of such internal perspectives in research carried out at
university level. One important evolution in the last decade is the increasing atten-
tion paid to the teaching of mathematics for non-specialists, attested by the existence
of a specific entry in the second version of the Encyclopedia of Mathematics
Education (Hochmuth, 2020). There is no doubt that ATD contributes to this
evolution in an original way, as shown for instance by the pioneering theses by
Barquero (2009) investigating the possible ecology of modelling practices in courses
for economic majors and by Romo Vázquez (2009) investigating how engineering
students respond to the mathematical needs they face in engineering projects, and the
circulation of mathematical knowledge between the different institutions involved.
These pioneering theses make clear that in university education, mathematics are
engaged in a diversity of transitions beyond the sole secondary/tertiary transition,
and that many of these engage a diversity of institutions whose mathematical
praxeologies remain for the most part terra incognita, even for those who teach
mathematics in service courses. I will not enter into more details, as several contri-
butions to the CRM advanced course and thus to this book show, in a detailed way,
how these questions are today addressed in ATD research.

The evolution of the praxis block of praxeologies has also resulted from the
distinction introduced by Chevallard between two paradigms for mathematics edu-
cation: the paradigm of visiting works and the paradigm of questioning the world,
with the associated introduction of the concept of SRP (Study and Research Path),
and the resulting evolution of the conceptualization of didactic engineering
(Barquero & Bosch, 2014). This evolution has clearly influenced the methodology
of ATD research on transitions. In university mathematics education, once again,
Barquero’s thesis was a pioneering example, with the essential role given to an SRP
on the evolution of populations implemented in a workshop parallel to the main
course. This methodological construction obeys another logic than the one at the
base of Praslon’s and Najar’s experimental designs mentioned above that rely on the
traditional vision of didactic engineering inspired by the theory of didactic situations.

Regarding transitions in university mathematics education, a recent example is
Catarina Lucas’ doctoral thesis (Oliveira Lucas, 2015). This work searches for a
possible rationale for the domain she calls Elementary Differential Calculus (EDC)
at stake in the secondary/tertiary transition. Capitalizing on existing ATD research,
she hypothesizes that such a rationale can be found in terms of functional modelling.
This thesis very well illustrates the crucial role given in ATD design to the elabo-
ration of what is called a Reference Epistemological Model (REM) allowing the
researcher to question official institutional views and rationales, build alternatives,
and then study their possible ecology. This REM permeates the whole research
process from the formulation of precise research questions, to the analysis of
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institutional practices, the identification of possible mathematical paths
(MP) incarnating it, and the design and experimentation of SRPs. It helps establish
conditions addressing identified obstacles to the development of functional model-
ling such as those linked to the dominant applicationist view of mathematics, or the
disassembling of functional relationships in secondary education. SRP based on this
REM are experimented with first year university students in a course of nuclear
medicine, and their ecology carefully studied.

4.2 The Evolution of the Theoretical Block

As could be expected, this evolution is tightly intertwined with the evolution of the
praxis block. In this part of the text, I point out some important evolutions especially
due to research on transitions in university mathematics education, and more pre-
cisely three of them.

The first one is an outcome of the research carried out by Bosch et al. (2004) on
limits in the secondary/tertiary transition, contrasting the high school and university
praxeologies. This research has led to the idea of “completeness” of local mathe-
matical praxeologies associated with a list of seven indicators of degree of com-
pleteness (integration of the different types of tasks, existence of different techniques
and criteria for choosing between them, non-rigidity of the ostensives associated
with the techniques, existence of inverse tasks and techniques, existence of a
technological discourse for the interpretation of techniques and the results they
produce, existence of open mathematical tasks, generative influence of technological
elements on the types of tasks and techniques). These have been widely used since
then, and not only by researchers working on transitions in university mathematics
education.

The second one is the distinction introduced by Winsløw (2008) in the context of
Calculus and Analysis. It differentiates two types of praxeological changes: the first
one from praxeologies nearly limited to their praxis block to full praxeologies, the
second one when tasks and techniques themselves become of theoretical nature, that
is to say when the theoretical block of existing praxeologies becomes the source of
new types of tasks and techniques. His research also makes clear that this second
change does not necessarily occur in the first university courses. Once again, this
theoretical distinction has been used since then by different researchers (see for
instance Hausberger (2018)). It could also be used to incorporate results already
obtained and expressed in other terms in the current ATD discourse, facilitating thus
the capitalization of knowledge. There is no doubt for me that this would be possible,
for instance, for part of the results obtained by Najar and Bergé.

The last theoretical development I would like to mention is due to Castela and
Romo Vázquez (2011) and motivated by the specific terrain of engineering studies.
To give account of the circulation of knowledge between the different institutions
involved and of characteristics of the technological discourse in engineering courses
and professional work, these researchers felt the need to extend the praxeological
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model. On the one hand, this model refines the usual description of the technological
discourse as a discourse developed for justifying, explaining and producing tech-
niques, by distinguishing six functions of the technological discourse: describing the
type of task and technique, validating the technique, explaining the technique,
facilitating the implementation of the technique, motivating the technique and
associated gestures, evaluating the technique. On the other hand, it distinguishes
between the scientific institutions in charge of producing the reference mathematics
knowledge P(M) and the associated technological discourse θth made of proofs
based on existing theories, and institutions Iu where this mathematical knowledge
is used, and where validation obeys to processes proper to Iu, leading to original
forms of technological discourse, practical and empirical, noted θp. This extended
model was first used in Romo Vázquez’s thesis to compare different courses on
Laplace transform. Its need is still debated in some quarters; however, it is produc-
tively used today in different contexts (see for instance González-Martín &
Hernandes Gomes, 2017; Peters et al., 2017)).

5 Final Reflections

In this text on transition issues in university mathematics education, I have tried to
make clear the original and substantial contribution of research developed under the
ATD theoretical umbrella, for our understanding of the complex nature of these
transitions that do not limit to the secondary/tertiary transition, and for supporting
educational action. Coming back to some pioneering doctoral theses, I have tried to
show the change in perspectives on transition issues induced by ATD, and I have
also tried to give the reader some flavour of the progressive evolution of ATD
research in this area, pointing out some important evolutions of associated research
praxeologies, dialectically involving their praxis and theoretical blocks. However,
this contribution on transition issues remains schematic and partial, partial regarding
the research work on transitions developed within ATD itself, partial also because it
focuses on ATD research, which only represents a small part of the research on
transition issues involving university institutions, as made clear for instance by the
corresponding entry in the revised version of the Encyclopedia of Mathematics
Education (Gueudet & Thomas, 2020). I have no doubt that the reader will find in
this volume many complements to this partial presentation.
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Examining Individual and Collective Level
Mathematical Progress

Chris Rasmussen

Recent work in mathematics education research has sought to integrate different
theoretical perspectives to develop a more comprehensive account of teaching and
learning (Bikner-Ahsbahs & Prediger, 2014; Hershkowitz et al., 2014). An early
effort at integrating different theoretical perspectives is Cobb and Yackel’s (1996)
emergent perspective and accompanying interpretive framework. In this paper we
expand the interpretive framework for coordinating social and individual perspec-
tives by offering a set of constructs to examine the mathematical progress of both the
collective and the individual. Building off the work of Rasmussen et al. (2015), we
illustrate these constructs by conducting four parallel analyses and make initial steps
toward coordinating across the analyses.

1 Theoretical and Methodological Background

The emergent perspective is a version of social constructivism that coordinates the
individual cognitive perspective of constructivism and the sociocultural perspective
based on symbolic interactionism (Blumer, 1969). A primary assumption from this
point of view is that mathematical development is a process of active individual
construction and a process of mathematical enculturation (Cobb & Yackel, 1996).
The interpretive framework, shown in Table 1, lays out the constructs in the
emergent perspective. The significance of accounting for both individual and col-
lective activity is highlighted by Saxe (2002), who points out that, “individual and
collective activities are reciprocally related. Individual activities are constitutive of
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collective practices. At the same time, the joint activity of the collective gives shape
and purpose to individuals’ goal-directed activities” (p. 276–277).

Our prior work with the interpretative framework (e.g., Rasmussen et al., 2009;
Yackel & Rasmussen, 2002; Yackel et al., 2000) has raised our awareness of the
opportunity (and need) to go beyond the constructs in the interpretative framework.
In particular, we expand the ways we can analyze individual and collective mathe-
matical progress. We use the phrase “mathematical progress” as an umbrella term
that admits analyses of collective practices and individual conceptions and activity.

On the bottom left-hand side of the interpretive framework (Table 1), the con-
struct of classroom mathematical practices is a way to conceptualize the collective
mathematical progress of the local classroom community. In particular, such an
analysis answers the question: What are the normative ways of reasoning that
emerge in a particular classroom? Such normative ways of reasoning are said to be
reflexively related to individual students’ mathematical conceptions and activity. In
prior work that has used the interpretive framework, individual conceptions and
activity has been treated as a single construct that frames the ways that individual
students participate in classroom mathematical practices (e.g., Stephan et al., 2003).

In an effort to be more inclusive of a cognitive framing that would posit particular
ways that students think about an idea, we split the bottom right hand cell into two
constructs, one for individual participation in mathematical activity and one for
mathematical conceptions that individual students bring to bear in their mathemat-
ical work. With these two constructs for individual progress we now can ask the
following two questions: How do individual students contribute to mathematical
progress that occurs across small group and whole class settings? And what con-
ceptions do individual students bring to bear in their mathematical work?

Our prior work at the undergraduate level has also highlighted the fact that, in
comparison to K-12 students, university mathematics and science majors are more
intensely and explicitly participating in the discipline of mathematics. However, the
notion of a classroom mathematical practice was never intended to capture the ways
in which the emergent, normative ways of reasoning relate to various disciplinary
practices. In order to more fully account for what often occurs at the undergraduate
level, we therefore expand the interpretive framework to explicate how the class-
room collective activity reflects and constitutes more general disciplinary practices.
Thus we add an additional cell to the bottom left row of the interpretive framework,
disciplinary practices. We can now answer two different questions about collective
mathematical progress, one related to disciplinary practices (What is the

Table 1 The interpretive framework

Social perspective Individual perspective

Classroom social norms Beliefs about own role, others’ roles, and the general nature of
mathematical activity

Sociomathematical norms Mathematical beliefs and values

Classroom mathematical
practices

Mathematical conceptions and activity
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mathematical progress of the classroom community in terms of the disciplinary
practices of mathematics?) and one for classroom mathematical practices (What
are the normative ways of reasoning that emerge in a particular classroom?).

To summarize, Table 2 shows our expansion of the bottom row of the interpretive
framework, which now entails four different constructs: disciplinary practices,
classroom mathematical practices, individual participation in mathematical activity,
and mathematical conceptions. The left hand side of the bottom row comprises two
different constructs for examining the mathematical progress of the classroom
community, while the right hand side comprises two different constructs for exam-
ining the mathematical progress of individual students. The contribution that this
expansion makes is in providing researchers with a more comprehensive means of
bringing together analyses from social and individual perspectives. In particular, the
expanded interpretive framework enables a researcher to answer the questions listed
in Table 3.

1.1 Classroom Mathematical Practices

Classroom mathematical practices refer to the normative ways of reasoning that
emerge as learners solve problems, explain their thinking, etc. This means that
particular ideas or ways of reasoning are functioning in classroom discourse as if
everyone has similar understandings, even though individual differences in under-
standing may exist. The empirical approach (see Rasmussen & Stephan, 2008)
makes use of Toulmin’s (1958) argumentation scheme, the core of which consists
of: data, claim, and warrant. In an argument, a speaker or speakers makes a claim and

Table 2 Expanded interpretive framework

Social perspective Individual perspective

Classroom social norms Beliefs about own role, others’ roles, and the
general nature of mathematical activity

Sociomathematical norms Mathematical beliefs and values

Disciplinary
practices

Classroom mathematical
practices

Participation in mathemati-
cal activity

Mathematical
conceptions

Table 3 Four constructs for analyzing mathematical progress and respective research questions

Disciplinary practices

Classroom
mathematical
practices

Participation in
mathematical activity

Mathematical
conceptions

What is the mathemat-
ical progress of the
classroom community
in terms of the disci-
plinary practices of
mathematics?

What are the nor-
mative ways of rea-
soning that emerge
in a particular
classroom?

How do individual stu-
dents contribute to
mathematical progress
that occurs across small
group and whole class
settings?

What conceptions
do individual stu-
dents bring to bear
in their mathemati-
cal work?
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presents evidence or data to support that claim. Typically, the data consist of facts or
procedures that lead to the conclusion that is made. To further improve the strength
of the argument, speakers often provide more clarification that connects the data to
the claim, which serves as a warrant, or a connector between the two. Finally, the
argumentation may also include a backing, which demonstrates why the warrant has
authority to support the data-claim pair. Toulmin’s model also includes qualifiers
and rebuttals. All argumentations are then analyzed to identified ways of reasoning
that function as if shared using three well-defined criteria.

1.2 Disciplinary Practices

Disciplinary practices refer to the ways in which mathematicians typically go about
their profession. The following disciplinary practices are among those core to the
activity of professional mathematicians: defining, algorithmatizing, symbolizing,
and theoremizing (Rasmussen et al., 2005). Not all classroom mathematical practices
are easily or sensibly characterized in terms of a disciplinary practice. This is because
classroom mathematical practices capture the emergent and potentially idiosyncratic
collective mathematical progress, whereas a disciplinary practice analysis seeks to
analyze collective progress as reflecting and embodying core disciplinary practices.
In this workshop we focus on algorithmatizing, which encompasses both creating
and using algorithms. The method for documenting algorithmatizing makes use of a
grounded approach, with an eye toward the disciplinary nature of students’ mathe-
matical activity. For example, an important algorithm in differential equations is
Euler’s method, which is a numerical technique for obtaining an approximate
solution to an initial value problem. A common instructional approach is to simply
tell students what this algorithm is and then to have them practice the method. This
kind of approach to teaching Euler’s method does not offer students an opportunity
to engage in doing mathematics like mathematicians do. In contrast, in the example
analyzed in this workshop we see students engage in the authentic practice of
creating and using algorithms, which involved engaging in the goal directed activity
of creating predictions, isolating attributes, forming quantities, creating relationships
between quantities, and expressing relationships symbolically.

1.3 Mathematical Conceptions

As students solve problems, explain their thinking, represent their ideas, and make
sense of others’ ideas, they necessarily bring forth various conceptions of the ideas
being discussed and potentially modify their conceptions. Our analysis of individual
student conceptions follows a grounded approach, while at the same time making
use of relevant analyses from prior work that have characterized different ways that
students think about mathematical ideas.
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1.4 Participation in Mathematical Activity

This analysis draws on recent work by Krummheuer (2011), who characterizes
individual learning as participation within a mathematics classroom using the con-
structs of production design and recipient design. In production design, individual
speakers take on various roles, which are dependent on the originality of the content
and form of the utterance. The title of author is given when a speaker is responsible
for both the content and formulation of an utterance. The title of relayer is assigned
when a speaker is not responsible for the originality of either the content nor the
formulation of an utterance. A ghostee takes part of the content of a previous
utterance and attempts to express a new idea, and a spokesman is one who attempts
to express the content of a previous utterance in his/her own words. Within the
recipient design of learning-as-participation, Krummheuer (2011) defines four roles:
conversation partner, co-hearer, over-hearer, and eavesdropper. A conversation
partner is the listener to whom the speaker seems to allocate the subsequent talking
turn. Listeners who are also directly addressed but do not seem to be treated as the
next speaker are called co-hearers. Those who seem tolerated by the speaker but do
not participate in the conversation are over-hearers, and listeners deliberately
excluded by the speaker from conversation are eavesdroppers.

2 Background and Setting

I illustrate the four constructs and address the respective research questions from
Table 3 using data from a semester-long classroom teaching experiment (Cobb,
2000) in differential equations conducted at a medium sized public university in the
Midwestern United States. I selected a 10-minute small group episode from the
second day of class based on its potential to illustrate all four constructs. There were
four students in this group, Liz, Deb, Jeff, and Joe (all names are pseudonyms).

There were 29 students in the class. Class met four days per week for 50-minute
class sessions for a total of 15 weeks. The classroom had movable small desks that
allowed for both lecture and small group work. The classroom teaching experiment
was part of a larger design based research project that explored ways of building on
students’ current ways of reasoning to develop more formal and conventional ways
of reasoning (Rasmussen & Kwon, 2007). A goal of the project was to explore the
adaptation of the instructional design theory of Realistic Mathematics Education
(RME) to the undergraduate level. Central to RME is the design of instructional
sequences that challenge learners to organize key subject matter at one level to
produce new understanding at a higher level (Freudenthal, 1991). In this process,
graphs, algorithms, and definitions become useful tools when students build them
from the bottom up through a process of suitably guided reinvention (e.g., Rasmus-
sen & Blumenfeld, 2007; Rasmussen &Marrongelle, 2006; Rasmussen et al., 2005).
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As previously stated, the analysis comes from video recorded work of a small
group of four students, Liz, Deb, Jeff, and Joe, on the second day of class, and they
have received no instruction on any analytic, numerical, or graphical techniques. Just
prior to the small group work students completed the following task: The previous
problem dealt with a complex situation with two interacting species. To develop the
ideas and tools that we will need to further analyze complex situations like these, we
will simplify the situation by making the following assumptions: There is only one
species, the species have been in the lake for some time before what we are calling
time t ¼ 0, the resources (food, land, water, etc.) are unlimited, and the species
reproduces continuously. Given these assumptions for a certain lake with fish, sketch
three different population versus time graphs (one starting at P ¼ 10, one starting at
P ¼ 20, and the third starting at P ¼ 30).

This task was relatively straightforward for students and brought forth an imagery
of exponential growth and the graphs they sketched were consistent with this
imagery. The instructor then used their graphs as an opportunity to introduce the
rate of change equation dP/dt¼ 3P as a differential equation that was consistent with
their graphs. In particular, as P values increase, so does the slope of the graph of
P vs. t.

The follow up task, which students worked on for approximately 10 minutes,
however, was much more cognitively demanding for students.

Consider the following rate of change equation, where P(t) is the number of
rabbits at time t (in years): dP/dt ¼ 3P(t) or in shorthand notation dP/dt ¼ 3P.
Suppose that at time t ¼ 0 we have 10 rabbits (think of this as scaled, so we
might actually have 1000 or 10,000 rabbits). Figure out a way to use this rate
of change equation to approximate the future number of rabbits.

At t ¼ 0.5 and t ¼ 1.
At t ¼ 0.25, t ¼ 0.5, t ¼ 0.75, and t ¼ 1.

The following is a priori analysis of the reasoning that we expect students to
engage in when solving this task: Establishing connection between P and dP/dt
(if you know P you can find dP/dt); Given P and dP/dt at a moment in time allows
one to find P at a later time; Applying the connection between P and dP/dt at that
later time one can find the corresponding dP/dt; The previous can be combined into a
repeating loop.

3 Sample Analysis

The 10-minute transcript was split into four segments. As a sample of the theoretical
and methodological approach, I analyze only the first segment in which students get
starting on the problem.
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The first four minutes of small group work consisted of 19 talk turns and the
production of four arguments (a la Toulmin). We start by detailing the first of the
four arguments, as this argument constituted the basis for their subsequent work and
hence is the lynchpin for what follows. Through this argument, we are able to
highlight various participation roles, meanings that emerge, and the start of students’
algorithmatizing. The totality of Argument 1, shown in Fig. 1, was generated over
the first 12 talk turns and involved contributions from three of the four students.
Because people often explicate the motivation or inspiration before stating their
claims, it is not unusual for arguments to unfold in a manner such that a warrant or
backing comes before the claim and data. Moreover, parts of an argument are often
repeated and a complete argument may develop over multiple turns. All of this is the
case in Argument 1. In Fig. 1 talk turns and speakers (e.g., 4 Liz) are provided so that
a reader is able to glean the order in which utterances were made and by whom.

In Argument 1 we see three of the students take on different production roles. Liz
is the author for three components of the argument (Claim, Warrant, and Backing)
because she is the first one to articulate the respective ideas. Jeff and Joe are both
conversation partners and Jeff plays the role of relayer for the Claim (which is that
the initial rate of change is 30). Recall that a relayer is someone who restates a
previously articulated idea. This is significant in this case because it provides
evidence that Jeff shares and agrees with the claim that Liz made. Jeff gave similar

Data (2 Joe): “Oh ok. This is where 10 rabbits at zero.”

(4 Liz): “So I thought, well, if we know the population is 

ten when our time equals zero.”

(9 Liz): “if we know the population is ten when our time 

equals zero”

Claim (4 Liz): “Oh ok, so I get 

the rate of change at time, 

initially, the instantaneous rate 

of change would be 30.”

(12 Jeff): “Okay I see so it 

would be 30.”

Warrant (1 Liz): “To find out the rate of change initially, at that point in 

time, when time equals zero. [Joe: What’s that again? What’s the first part?] 

I would plug in the population of rabbits for P to determine the rate of 

change, when, initially, just at the instant, like initially, what’s the rate of 

change when time equals zero.”

(9 Liz): “can we plug in the 10 for P(t) population at time zero and find out 

initially what the rate of change is?” [Jeff: I see what you’re saying.]

Backing (1 Liz): “So if we had a graph, it’s 

kind of like what we were just talking 

about, we are trying to determine the rate of 

change when this time is equal to zero.”

Fig. 1 Argument 1—Determining the initial rate of change
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confirmation on what we coded as Liz’s warrant (see (9 Liz) in Fig. 1). Joe, for his
part, is also an author because he is the first to articulate the Data, although as we see
that in Argument 3 his interpretation of what the 10 is is incorrect and inconsistent
with the interpretation of his groupmates. Deb, who has seen this problem before,
intentionally pulls herself out of the discussion and hence functions as an eaves-
dropper in this entire segment. Eavesdroppers are those that are intentionally
excluded from conversations, which often has negative connotations, but here we
see this as a positive participation role because Deb allows space for her groupmates
to develop their own ideas while she privately (re)works the problem. Deb rejoins
the discussion, however, in the next segment.

In turns 1–12 in which Argument 1 was developed, we also see articulated two
different meanings for dP/dt. In particular, in the Claim for Argument 1 Liz plugs in
the initial population value of 10 into the rate of change equation and gets 30, which
she interprets to be the “instantaneous rate of change.” She says this while sketching
an exponential graph and pointing her pen to where the graph intersects the vertical
axis. In calculus, the notion instantaneous rate of change is often associated with the
slope of the tangent line at a point, and this might be how Liz interprets the
30, however we do not have strong evidence for this graphical interpretation of
instantaneous rate of change. A second meaning that emerges for dP/dt is “the
change in the population over the change in time.” This discrete, ratio-based
interpretation was authored by Liz and is the Claim for Argument 2, which occurred
on turn 7 and was provided by Liz in response to a question from Joe, “Are we trying
to figure out what P is?”

The development of Argument 1 is also illustrative of the group’s start toward the
creation of an algorithm to approximate future population values. That is, their
participation in the disciplinary practice of algorithmatizing. In particular, we see
here students engaged in two aspects of creating an algorithm: engaging in goal-
directed activity and isolating attributes. The first of which was partnered with the
participation role of focuser and second of which was partnered with articulating
different meanings for dP/dt. Recall that a focuser is one of four new facilitator roles
that we found necessary to add to Krummheuer’s (2011) set of production and
recipient roles in order to capture newly identified participation roles. We define a
focuser as someone who directs others attention toward a specific goal or activity.
Liz takes on this role in turn 1 when she directs her and her groupmate’s attention
“To find out the rate of change initially, at that point in time, when time equals zero.”
With this statement Liz sets out a specific activity of finding the initial value of dP/dt,
which an expert will see as a specific case of a component of the more general Euler
algorithm. As we saw in Fig. 1, this goal was realized with Liz and Jeff agreeing that
the initial value of dP/dt is 30. Joe also acted as a focuser when in turn 6 he posed the
following question to his group: “Are we trying to figure out what P is?” With this
question, Joe focuses his group on what attribute of the problem situation are they
trying to determine, P or dP/dt? Joe’s question promoted Liz to create we coded as
Argument 2 where she articulated a new meaning for dP/dt, the “change in popula-
tion over the change in time.” This is a powerful meaning for this group that enables
them to make use of the isolated attribute of dP/dt to figure out a general approach to
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compute the change in population, which is a necessary component of the Euler
method algorithm. Moreover, both focusing acts led to an argument’s claim, which
was mathematically productive as it resulted actually finding the initial rate of
change and interpreting this value as a ratio of two discretely changing quantities.

The last turn that makes up Argument 1 is line 12, which is followed by Liz in
turn 13 asking her groupmates, “30, I mean does that make sense?” This is the first
time we see anyone in this group “checking in” with their peers about their thinking
and thus gave rise to our identifying another new Facilitator role, that of checker.
Acting as a checker can serve multiple functions in a group. For example, it can lead
to coherence and shared understanding and build confidence in their ideas, it can
open a space for someone to ask a clarifying question, and it can be an opportunity
for someone to disagree. In this case, Liz’s check in gave rise to Jeff indicating
agreement, “Yeah, that makes sense,” and for Joe to offer a counter argument, which
we coded at Argument 3. In this argument Joe asserts (incorrectly) that 10 is actually
equal to 3P(t). This incorrect claim by Joe turns out to be productive for it gives rise
to Liz putting forth what we coded as Argument 4, show in Fig. 2.

As a whole Argument 4 relates again to the algorithmatizing aspect of isolating
attributes because it reasserts the meaning of 10 as the initial population and it puts
forth a new meaning for the quantity dP/dt, namely “how the population is chang-
ing.” Joe does not object with Liz’s argument and appears from the video to think
quietly about what has been said. Thus far, the meanings for dP/dt include instan-
taneous rate of change, change in population over change in time, and how the
population is changing. Developing meaning(s) for attributes that figure prominently
in their mathematical work will serve to ground their reinvention of Euler’s method
as a product of their own reasoning and sense making.

Next, Liz and Jeff act as focusers in that they each ponder what now to do with the
30. In particular, Liz says, “So if we have that [initial rate of change is 30], the
question is how can we use that to help us figure out the population after, say, a half
year has elapsed?” and Jeff says, “how would we work time into the equation to get
the next, uh, population or change in population?” As before, this particular facili-
tator role of focuser promotes students’ goal directed activity toward creating an

Data (16 Liz): “10 is 

actually the population”

Claim (16 Liz): 10 

is not dP/dt

Warrant (16 Liz): dP/dt tells us 

“how the population is changing”

Fig. 2 Another meaning for dP/dt
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algorithm. At this point Deb finally joins the discussion and says to the group, “That
is exactly what I did.”

4 Conclusion

There exist multiple ways in which coordination across the four lenses, some of
which will be explored in the workshop. For instance, one could choose an individ-
ual student within the classroom community and trace his/her utterances for the ways
in which they contributed to the emergence of various normative ways of reasoning
and/or disciplinary practices. Alternatively, when considering a normative way of
reasoning, a researcher could investigate who the various individual students are that
are offering the claims, data, warrants, and backing in the Toulmin schemes that
comprise the normative way of reasoning. How do those contributions coordinate
with those students’ production design roles within the individual participation lens?

An instructional implication that this analysis raises is the how to help promote
productive interactions between small group members. In this particular class the
small group analysed worked extremely well together, even on the second day of
class. This was largely good fortune. So then what might an instructor do to facilitate
more productive interactions in small groups that do not function as well as Liz, Deb,
Joe, and Jeff?

Acknowledgement The work presented here was done in collaboration with Megan Wawro and
Michelle Zandieh.
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Mathematical Analysis at University

Carl Winsløw

1 What Is Analysis and Why Is It Important?

Mathematical Analysis allows us to model physical phenomena such as motion and
volume with as much precision as we want. Already in Antiquity, the “method of
exhaustion” was applied by Archimedes to evaluate the volume of solids, while
Aristotle suggested that paradoxes about motion (such as the famous race between
Achilles and the tortoise) could not be solved without considering time as infinitely
divisible. To some extent, the development of Analysis is inseparable from that of
Arithmetic—that is, of our concept of number; and of course, modern Analysis is
impossible without the notion of completeness, a property held by the real number
field, but not by the field of rational numbers (despite the fact that these include
“arbitrarily small” numbers). However, the most useful results of Analysis did not
have to wait until the modern theory of the real number field was developed; in fact,
the Calculus of the Newton and Leibniz (eighteenth century, with several precursors
also in the seventeenth century) was mainly based on bold applications of symbol
manipulation, including Cartesian models of curves. Brave calculations with infinite
sums and with “infinitesimal” quantities allowed the formulation of the first, rudi-
mentary versions of the “Fundamental theorem”, which relates the calculation of
instantaneous growth (derivatives) with the calculations of accumulated growth
(integrals). In classical mechanics, this corresponds to the fundamental relations
between speed and travel distance during motion in Euclidean space, such as s ¼
s0 þ

R t
0v. These early developments also led to spectacular advances in the new field

of “Analytic Geometry”, where, for instance, the algebraic description of curves and
other geometric objects could now be applied to solve a large number of problems
related to their numerical properties, such as curvature or area. Later on, these basic
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techniques to handle growth and accumulation have also led to spectacular advances
in many other fields, including Biology, Engineering and even social sciences such
as Economy and Demography. As concerns present-day mathematical sciences, the
importance of Analysis as an area of research can be roughly estimated as about
25%: among the 63 “main categories” in the Mathematics Subject Classification
(https://mathscinet.ams.org/msc/msc2010.html), 17 categories (numbered from
26 to 49) pertain to Analysis. The categories range from more classical ones (such
as “30: Functions of a complex variable”) to more recent ones (such as “37:
Dynamical systems and ergodic theory”).

The wealth and breadth of “applications” of the mathematical techniques of the
Calculus, initially developed in the context of Physics, explains why a large number
of university students today are required to learn those techniques, even if the
appearance of Computer Algebra Systems has also led to new developments as to
how these techniques are practiced and learnt.

The first explosive period of technical progress, with its daring use of intuition
and computation, also led to a number of new paradoxes, which showed the
necessity of more precise theoretical control of the meaning and validity of compu-
tations. Only towards the end of the nineteenth century did the field fully mature at
the level of theory, as is it taught in introductory or semi-advanced university courses
today. These developments have not profoundly affected the teaching of the Calcu-
lus praxis—although, at the level of technology, it is assorted with more precise
descriptions related to the permissibility of certain computations (such as conver-
gence criteria for sums). The modern theory of the Calculus—based on the com-
pleteness property of the real numbers, definition and distinction of various kinds of
integral, and so on—is mainly taught to students of mathematics and closely related
fields. In fact, even such students rarely meet and almost never acquire the full scope
of the theoretical advances in the field which professional mathematicians consider,
today, the state of the art. It is therefore increasingly apparent that what most students
meet at university is a transposition of the Calculus of the eighteenth century, with
mainly superficial theoretical decorations drawing on later developments. The vis-
ibility of didactical transposition phenomena in secondary school mathematics
motivated the beginnings of the anthropological theory of the didactic. But also at
university level, the mathematical sciences—and not least Mathematical Analysis—
do, in fact, offer some of the most striking cases of an increasing distance between
scholarly knowledge (including the knowledge held and developed by teachers) and
the knowledge actually taught and learnt. This leads to an increasing need of
epistemological and institutional vigilance for didacticians who endeavour to under-
stand the constraints and obstacles faced by the teaching of Calculus and Analysis,
and to design and experiment innovations with specific goals that are important to
institutions or are considered desirable for other reasons.

296 C. Winsløw

https://mathscinet.ams.org/msc/msc2010.html


2 The Transition from Calculus into Analysis

One can increasingly distinguish two kinds of “Analysis” in the didactical trans-
positions found in universities:

(1) praxis focused courses which focus on developing students’ skills with Calculus
as a computational and modelling tool, without any significant treatment of
theory based on the topology of the real number field;

(2) courses in which such praxis continues to be of some importance, but where a
strong focus lies also on studying the theory which explains and justifies the
praxis, at least at was done towards the end of the nineteenth century.

In short, these are often referred to as Calculus (1) and Analysis (2). First courses
on the latter are often called “Real Analysis” or the like, where “Real” refers to the
real numbers orℝn, as opposed to the somewhat different field of Complex Analysis
that is usually studied later on. In both cases, the main objects of the courses are
functions and their properties, and the role of the number field is to appear as domain
and range of functions. Modern Analysis as a whole is certainly not limited to the
study of functions but involves also more abstract sectors such as Operator Theory,
Distribution Theory and so on.

The didactical research literature is surprisingly scarce when it comes to anything
beyond Calculus; the investigations we did to prepare the recent Encyclopedia article
(Winsløw, 2018) suggests that there are less than 30 papers in major international
journals that have such a focus. This can, to some extent, be explained by the
relatively larger student populations that study Calculus at university, but not by
an absence of institutional stakes and didactical challenges in the case of the smaller
populations that study Real Analysis. We shall return to the principal relevance of
these stakes and challenges for Didactics of Mathematics in the section on the
Teaching Profession.

The arithmetical foundations of university level Analysis have been the object of
some studies in ATD, beginning with Bergé (2008) who, in a series of papers,
investigated tasks which university students are given on this subject, and well as
their (mis-)understandings of the completeness axiom and its consequences. These
studies do generally not go beyond the arithmetical foundations, let alone question
alternatives such as hyperreal numbers; but this is done, for instance, by Tall and
Katz (2014). We notice here that although the latter paper is presented as a “cogni-
tive” study and does not involve an explicit institutional analysis, it questions the
mathematical contents from a number of perspectives relevant to ATD.

Concerning the Calculus-Analysis transition, a main result in ATD based
research on the teaching of post-Calculus Analysis is that at least two major
transitions take place (Winsløw, 2008; Winsløw et al., 2014): the first (type I) in
which “Calculus” praxeologies are refined and formalized by the study of theory that
involves definitions, theorems and proofs based on the basic topological properties
of the real numbers; and the second (type II) when tasks and techniques are
introduced which take, as objects, elements of the theory blocks previously
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introduced. For instance, integrals of abstract functions appear as theoretical objects
in most introductory real analysis courses; they become simple examples of func-
tionals in the study of function spaces. It is apparent that a type II transition may,
again, be followed by a type I transition, as the new praxis is supplied with
theoretical superstructure (in the example, topological vector spaces etc.); in princi-
ple, one can in fact assume that the continued study of Analysis involves an ongoing
accumulation and dialectics of such transitions.

The role of definitions in first Analysis courses, and in particular in type I
transitions, was further studied by Winsløw (2019). It identifies one characteristic
feature of how such courses define their primary objects (such as integrals): condi-
tions for existence of an object are given simultaneously with its value, as in the
following example of a classical εδ-definition (where the condition for existence of
the number I also show what it is in case it exists):

A function f: [a, b]!ℝ is integrable if there is a number I2 ℝ with the following
property: for all ε > 0 there is a δ > 0 such that for any partition
a ¼ x1 < x2 < . . . < xn ¼ b of [a, b] with |xk + 1 � xk| < δ for all k, and for
any choice of middle points tk 2]xk, xk + 1[, one has

I �
Xn�1

k¼1
f tkð Þ xkþ1 � xkð Þ

�

�

�

�

�

�
< ε

In this case one says that I is the integral of f over [a, b].

It is clear that definitions of this type are quite different from the kind of definition
typically given in a Calculus course, where the working definition of the integral is
simply a formula (corresponding to the Fundamental Theorem of Calculus). This
kind of definition is found throughout Analysis courses, also when defining notions
that do not appear in Calculus (such as the norm of an operator on a Hilbert space).
They are usually formulated as quantified statements (with the verbal form of
quantifiers being something like “for all”, “there is”) involving inequalities that
relate the variables of the quantifiers. In typical first courses on Real Analysis,
definitions of this type are presented in lectures with only few requirements for
students to actively engage with their meaning. Students’ failure to complete the first
transition can, more broadly, be explained by the new theory blocks being purely
related with relevant praxis blocks, both those known from Calculus (Kondratieva &
Winsløw, 2018), and new ones. These failures therefore lead naturally to the didactic
problem of task design.

3 Task Design in Analysis

What we have considered so far amounts mainly studies based on descriptive models
using key notions from ATD, in particular the modelling of mathematics itself based
on praxeologies. A very large body of the broader field of research on university
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mathematics education remains, in fact, at the level of ethnographic studies, trying to
capture significant features (especially problematic ones) of the spontaneous or
“normal” didactical practice in university mathematics. But the expectations which
the institutions (and society at large) have to research on university mathematics are
typically that such research produces concrete and documented interventions which
can lead to improved didactical practice and solve some of the problems. These
expectations are often driven by unsatisfactory learning outcomes that typically
appear through high failure rates, not least in undergraduate courses in Analysis.
Institutions, and not least university mathematics teachers, have a tendency to expect
that problems could be solved with broad, universal remedies, such as new lecturing
styles (“flipped classroom” is currently a popular one) or the addition of support
measures such as exercise clinics, remedial courses etc. These expectations, of
course, appeal to those who wish to maintain a clear division of labour between
mathematics teachers (who deliver the contents) and pedagogues (who advise on the
form of delivery). The substantial advantage of the ATD approach is to show how
didactical and mathematical praxeologies are intrinsically intertwined. Didactical
tasks involve, among other things, to construct mathematical tasks for the students to
work on. As mathematical tasks are at the basis of the mathematical praxeologies
which can be developed, it is apparent that central features of the contents which can
be delivered are constituted by the specific didactical praxis and theoretical assump-
tions taken by those who deliver (the teachers), and not just by the external forms in
which delivery takes place.

The design of mathematical tasks for didactical use is thus a crucial didactical task
that is frequently undervalued by university mathematics teachers who tend to select
tasks for students from end-of-chapter collections, while they concentrate on the
details of exposing theory and technology related to these types of tasks. In Analysis
courses beyond Calculus, textbook tasks tend to be strictly theoretical, with little or
no link to the praxis blocks learned in Calculus (and which much of the theory
actually serves to describe and justify)—and, at the same time, fairly trivial (like
verifying that a definition is satisfied by some example or applying a theorem to a
simple special case). It is therefore a possible strategy for improving students’
learning to design and experiment new tasks for students—i.e., exercises—that
have more subtle goals than verifying the students’ comprehension of a few lines
in the text. A number of recent research studies in ATD are based on doing so, both
for initial Analysis courses to facilitate transitions of type I (e.g. Gyöngyösi et al.,
2011; Gravesen et al., 2017), and for more advanced courses where the main
challenges relate to transitions of type II (e.g. Grønbæk & Winsløw, 2007). In all
of these studies, explicit reference models for the specific mathematical contents—
usually in terms of praxeological organisations—are crucial to the systematic iden-
tification of learning gaps, and subsequent design and experimentations of new
student tasks.
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4 Analysis and the Teaching Profession

Undergraduate courses in Analysis are not only taken by future mathematics
researchers. In particular, the initial education of secondary level mathematics
teachers often includes one or more such courses. More than 100 years ago, Felix
Klein (1908) noted that the relevance of such an experience to secondary school
teaching might not be evident to students as they have it, or when they become
teachers. Indeed, there is necessarily many practical and theoretical components of
such courses that do not appear in secondary level teaching. Klein’s solution to this
problem was to propose what we would now call “capstone lectures”, in which the
university mathematics contents were applied to endow students with what he called
an advanced perspective on secondary level items such as numbers, functions,
derivatives and so on. Analysis certainly offers important contributions here, partic-
ularly when it comes to exhibit and elucidate subtle features of the real number field
(often represented informally as points on a “number line” at secondary level) as
well as its roles in defining the most common functions and operations studied at
secondary level (cf. Grønbæk &Winsløw, 2014). Designing and experimenting such
“bridges” between undergraduate Analysis courses, and the mathematics to be
taught in secondary school, is certainly an interesting and important aspect of
Mathematical Analysis at university, with potential bearings and links to wider
areas of research in Didactics of Mathematics—including the currently very active
field related to the study and questioning of the knowledge held by and required for
mathematics teachers. At the same time, the undergraduate courses in question need
to be investigated and possibly redesigned with the needs of the teaching profession
in mind.

Let us consider a concrete example, partially based on Kondratieva and Winsløw
(2018). Students have encountered the notion of angle already in primary school,
where it has two different meaning that are not always strictly separated: the
“opening” between two-line segments, and a “measure” of the size of this region,
usually strongly associated with material measurement using a protractor. The
former is purely informal and linked to visual ostensives (circle segments drawn
between the line segments). The latter comes, as all other measures, with a unit—at
primary level, angles are invariably measured in “degrees”, with 90� being a “right”
angle and 360 making up a full circle (corresponding to the “outer” angle between
two superposed line segments). This suffices to introduce, for instance, the basics of
triangle geometry, including trigonometry based on computations with side lengths.

However, the relation between the measures of length (usually in metric units)
and measures of angles (in the archaic degree system) remains somewhat mysteri-
ous. Then, usually in upper secondary school, a link appears with “radians”, a new
unit to measure angles. It is related to the (usually postulated) formula from primary
school, which allows one to compute the length of a full circle in terms of the length
of its diameter d, namely πd. The number π remains, in particular a complete
mystery; defining it as the length of a circle with diameter 1 (in whatever unit one
may like, as long as the same unit is applied to both diameter and circle) does not
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help much, as long as nothing is said about what the length of the circle itself could
be. A possible informal explanation, occasionally given at secondary level
(cf. e.g. Loeng, 2019), is linked to the thought experiment of “winding” a soft
ruler (or “measurement band”) around the circle, in “positive” direction (“against
the clock”). Doing so with a circle of diameter 1 (units) would thus yield the number
π. The new unit for angles is then based on doing this “winding” with a circle of
radius 1 (diameter 2) and omitting the unit for length: the full circle—called the “unit
circle”—then measures 2π. Curiously, the number π was already met in primary
school, as the area of circle of diameter 2; in uses of the “area formula” πr2, students
have also become used to a postulated value of π, namely some “approximation” like
3.14. At the same time, to prepare the introduction of sine and cosine as functions
defined on all of ℝ, one extends the possibility of “winding” to allow for “winding”
around the circle an arbitrary number of times, and also to “wind” in “negative”
direction, so that the new “angle measure” may in fact assume any “real” number
value.

But even without these supplementary extensions, remains the question: how can
one measure the length of a circle in the same units as a straight line? And the area of
the circle in terms of the usual area units introduced for rectangles (in primary
school), given that the circle cannot be divided into rectangles? It seems clear that
teachers, whether in primary or in secondary school, need to know at least plausible
answers to these questions, if they are teaching mathematics as more than natural
history, i.e. as more than inexplicable facts of nature based on observation and more
or less approximate measurement. It also explains why teachers at this level need to
know something about analysis, and in particular about integrals in the sense of
“infinite sums”. Here the most basic idea is that of length: we associate length to any
curve in the plane if the sum of lengths of cords obtained by joining any collection of
points on the curve has an upper bound, or more informally, if the sum of cord
lengths “converge” when adding still more points on the curve and joining them by
cords. To prove that this is actually the case for a circle—in particular a unit circle—
certainly goes beyond the normal secondary mathematics curriculum. In a rigorous
course on vector calculus, it is the theorem that allows concluding that a circle is
rectifiable, usually in terms of the differentiability of a parametrization. But the
“approximation” of the circle by inscribed regular polygons is intuitively convinc-
ing. Then, the link with the area can also be established by intuitive means, since
regular polygons are made up of disjoint triangles, with base on the polygon and
height approximately the radius r of the circle; the sum of these areas, then, is
approximately half the sum of the length of the bases (¼ the length of the circle)
times the radius of the triangles (approximately, r), so that the area becomes half the
length of the full circle times r. Of course, the “convergence” of the area of the
inscribed polygon to the “area” of the full circles is also rather informal, and its
formalization requires yet another piece of Analysis, namely a definition for the
existence and value of area, and a criterion that permits to conclude in the case of a
circle. Teachers should not only know the informal argument—along with ways it
could be shared with students, and that need to be carefully designed and
experimented. They need also to know what makes it different from a rigorous
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mathematical proof—hence, they need to be exposed not only to relevant proofs, but
also to activities that enable them to master the technicalities (concerning the real
numbers, including completeness, and the ways these are built into vector analysis)
which the informal argument hides as “evidences”. To encounter the existence of
simple non-rectifiable curves, such as the Koch curve, is probably a necessary step,
and transpositions to secondary mathematics might even be imagined with full use of
the digital tools that students at this level are usually only using on tame cases where
intuition and tool always coincide.

As this example shows, Analysis does not only appear as a (more or less
advanced) superstructure to the more frequently taught Calculus. Certain elements
of Analysis—especially infinite series—appear as a source of modern mathematical
foundations whenever the real numbers are involved, which include all contexts
involving continuous measures, such as those found in primary school geometry. We
currently know little about the actual or potential implications for teaching and
mathematics teacher education. In schools, digital tools are increasingly used to
carry out computations and visualisations related to functions, which are almost
invariably assumed to be defined on the real number line (or part of it). This leads to
surprises such as Fig. 1 (obtained with Maple, one of the most sophisticated CAS
tools currently available). Secondary school teachers may need a specialized educa-
tion on power series in relation to how such digital tools represent real numbers and
functions, in order to be prepared to manage students’ use of such tools.

1
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Fig. 1 Plot of the function
cos2x + sin2x produced in
Maple 2017
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5 Problems for Future Research

Based on the previous outline of existing research studies, we now come to more or
less open problems which ATD researchers could turn their attention to in the future.

The first one concerns the scale of the studies undertaken. For material and
institutional reasons that are quite general, studies so far conducted—for instance,
to make visible and to theoretically delimit transitions of type I and II—seem to be
solely based on case studies, usually done within a single course unit at the
institution of the authors. Studies that encompass larger populations of students, as
well as several institutions, need to be organized (and, in particular, funded) in order
to make sense of these phenomena as more than institutional incidences, and to
identify also the variations that exist among institutions, and their causes. This goes
obviously not only to test the tools that have been developed to identify transitions
but also for didactical designs—in particular, task designs—that have so far only
been experimented in single institutions, often only in one occurrence of a single
course. Certainly, successful adaptation of designs always requires careful attention
to specific conditions in the institution, but on the other hand, carefully crafted task
design—developed with explicit reference epistemological models, in view of
overcoming specific transition problems—could also be expected to have some
general form of “adaptability” to a variety of conditions. One could even say that
if they do not, they have in principle no interest beyond development purposes in a
single course context.

One specific obstacle to going beyond course units and more evidently single
institutions is the almost total lack of comparative studies of curricula. While we
often—also in this paper—postulate similarity or even a kind of isomorphism
between course units (such as “first analysis courses”) or between larger chunks of
course units (such as “Calculus courses”, “Real Analysis courses”), we need explicit
reference models to declare and investigate the mathematical praxeologies which
they actually expose students to—whether we use these models to analyse the
official aims of course units, the way they are assessed, or the praxeologies actually
observed to be developed by students. Such models are usually only developed at a
very local scale and they are only applied to one institutional context. An ongoing
research programme aims to carry out comparative analyses of the contents and
construction of undergraduate mathematics programmes in Europe (Bosch et al.,
2019). This should be followed by comparisons not only of individual Analysis
courses in such programmes, but of the whole sequences of undergraduate courses
on Calculus and Analysis. It would also be especially important, for such courses, to
go beyond the context and rationales of undergraduate programmes in pure mathe-
matics, especially to study the more elementary courses which are also taken by
students in other programmes. Is Calculus at university level mainly maintained for
service purposes? What are the effective role of Calculus courses in these
non-mathematics study programmes? What mathematical needs—in particular,
within Analysis—exist in other parts of these programmes, and are they satisfied
by the courses offered?
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Another largely unexplored challenge for the teaching of post-Calculus Analysis
is the potential—but apparent rare use—of Computer Algebra Systems and other
powerful digital tools, which have increasingly found their way into Calculus
teaching at both secondary and tertiary levels (see e.g. Varsavsky, 2012). We have
some small-scale experiments of didactical designs aiming at facilitating transition
of type I, by integrating the use of simple instrumented techniques into students work
with theoretical tasks (e.g., Gyöngyösi et al., 2011). To go beyond initial courses
closely related to praxis blocks from Calculus, designs would likely need to be based
on more thorough investigation of mathematicians’ usage of tools to support theo-
retical research, where studies such as Bunt et al. (2013) point out gaps between both
existing software and current uses in education on the one hand, and the practices of
“expert problem solving”. This field, indeed, represents a fascinating instance of the
teaching-research nexus problem (Madsen & Winsløw, 2009; Winsløw, 2015).

The interaction between physics and mathematics continues to be strong and
fruitful in scholarly institutions but seems to be more difficult and less well under-
stood when it comes to both secondary and university level education (see e.g.,
Karam et al., 2019). The borderland between advanced Analysis and specific
domains of physics (e.g., quantum mechanics and quantum field theory) currently
begins to be investigated within ATD (ongoing thesis work by N. Lombard at the
University of Montpellier). The investigation and crafting of semi-advanced courses
on Analysis that cater to specific future professional needs, for instance in teaching
and engineering, is only an emergent topic in mathematics education research (see
e.g., Grønbæk &Winsløw, 2014; Wasserman et al., 2017). We have already touched
upon the case of teacher education, which is probably closer the current concerns of
ATD based researchers, while the links established with Analysis courses beyond
Calculus are still few and timid. Again, an anthropological perspective would need
to connect praxeological needs in professional practices with what is currently or
potentially offered in such courses. In order to identify the extent to which Analysis
courses contribute, or could contribute, to professional education outside the strict
domain of mathematics or mathematics teaching, it is also relevant to investigate
how more or less advanced mathematical ideas appear in the teaching of engineers,
such as the recent studies of Hochmuth and Peters (2018) focusing on mathematical
praxeologies in Signal Theory.
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Using Tools from ATD to Analyse the Use
of Mathematics in Engineering Tasks: Some
Cases Involving Integrals

Alejandro S. González-Martín

1 Introduction

In recent years, research on mathematics education has become increasingly focused
on the teaching and learning of university-level mathematics by non-specialists
(González-Martín et al., 2021). Given the large number of students worldwide
who take university mathematics courses as a programme prerequisite, as compared
with the number of students enrolled in specialist mathematics programmes, it is
worthwhile questioning whether these courses could better prepare students for the
professional workplace. This issue becomes even more important if we consider the
dropout rates of students who fail calculus (Rasmussen & Ellis, 2013), which are
particularly high in engineering programmes (Faulkner et al., 2019). Literature
examining the teaching and learning of mathematics in engineering programmes
reports that students encounter many difficulties with mathematics in their first years
of study; moreover, it has been reported that “poor mathematics skills are a major
obstacle to completing [. . .] engineering programs” (Fadali et al., 2000, p. S2D-19).
One specific challenge for these students relates to their difficulty connecting
previously learned mathematical content with the content of the professional engi-
neering courses (González-Martín & Hernandes-Gomes, 2018), which may lead
them to view mathematics courses as irrelevant to their professional needs.1 Faced
with this scenario, researchers and educators alike seem to agree that traditional

A longer paper with details of the results presented here is available in González-Martín (2021).

1In the words of Flegg et al. (2011), “without an explicit connection between theory and practice,
the mathematical content of engineering programs may not be seen by students as relevant”
(p. 718).
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calculus content and teaching methods are not meeting current professional needs
and do not allow students to adequately develop the mathematical skills they require
for the workplace (González-Martín & Hernandes-Gomes, 2019). Loch and
Lamborn (2016, p. 30) stated that “mathematics is often taught in a ‘mathematical’
way, with a focus on mathematical concepts and understanding rather than applica-
tions. The applications are covered in later engineering studies.”

Noss (2002) and Kent and Noss (2003) conducted pioneering work on the
mathematical needs of engineers. Using interviews and a questionnaire survey,
they concluded that, in general, structural engineers do not use any advanced
mathematics in their workplace (Noss, 2002) and that the majority of civil engineers
employ basic arithmetic on a daily basis (Kent & Noss, 2003). Their study reveals
that the content of university mathematics is “transformed into something else”
(Kent & Noss, 2003, p. 54) and that only traces of it can be detected in engineers’
actual professional activity. More recently, the anthropological theory of the didactic
(ATD) has been used by researchers to provide further insight into this phenomenon.
Romo-Vázquez (2009), after having analysed three engineering capstone projects,
found “a weak presence of the Teaching of Mathematics institution: mathematics
teachers do not propose projects and are not used as resource persons in developing
these [capstone projects]” (p. 288, [translation]). Moreover, it is evident that math-
ematics is used in different ways in these projects: “for a mathematician whose
research is not already related to the type of issues tackled in these projects, the
investment is no doubt heavy.” (p. 288 [translation]) These observations led Romo-
Vasquez to conclude that “the invisibility of mathematics is, therefore, a result that is
broadly confirmed” (p. 289, [translation]). With that in mind, she identified two
types of mathematical needs:

• “Elementary” needs, which in general call for secondary mathematics, at least in
spirit: working on formulae, analysing and using functional dependences, finding
orders of magnitude, performing calculations, assessing intervals of possible
values for given measurements, calculating simple integrals, solving simple linear
differential equations, and using trigonometry.

• More advanced mathematics: Laplace transform, dimensional analysis, and finite
elements. (p. 289, [translation])

Romo-Vázquez (2009) adds that elementary needs lead to mathematical tech-
niques being adapted to a given engineering task, which requires engineers to
interpret the meaning of the objects at hand. As this meaning is never strictly
mathematical in this context, mathematics and engineering notions become
intertwined. Regarding advanced mathematics, the use of software facilitates math-
ematical work but also modifies it (e.g., allowing for explorations), making the
interpretation of results essential.

More recently, Quéré (2019) conducted an online survey which was completed
by 261 professionally active French engineers. Of this large sample, only 24% stated
that their university mathematical training was adequate for their current profes-
sional requirements, whereas 52% reported that this training was ill adapted to their
needs. Regarding their real need for university mathematics in their workplace, only
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129 (49.4%) of the participants answered positively, with only 43% of them (21.24%
of the entire sample) stating that they required knowledge of content from calculus/
analysis courses.

In order to contribute to this area of research, we previously analysed the use of
mathematics in teaching praxeologies employed by teachers with different academic
and professional backgrounds who teach in the same engineering programme
(González-Martín & Hernandes-Gomes, 2020). Our results indicate that the propen-
sity for rigour can be stronger in teachers with a mathematical background, while
teachers who have worked as engineers may be more likely to incorporate this
professional experience into their teaching practices. Our current research program
investigates how calculus notions are used in engineering courses; we seek to
identify possible ruptures between how notions are introduced in calculus courses
and how they are later used in professional engineering courses. This type of
research can help pinpoint the actual needs of engineers and reveal how they use
mathematics both in the workplace and in their academic programmes, sparking a
debate over the content of mathematics courses for engineers.

In the first stage of our research programme, we are interested in better under-
standing how single-valued integrals are used in engineering courses and whether
this represents a disconnection with their use and content in calculus courses. At this
stage we are analysing engineering textbooks, working under the principle that most
tertiary instructors use textbooks as a major resource in planning their curriculum
(e.g., Mesa & Griffiths, 2012). At this time, our analyses focus on a Strength of
Materials course in a civil engineering programme and a General and Experimental
Physics course in an electrical engineering programme (González-Martín &
Hernandes-Gomes, 2019). We have developed detailed analyses examining the
way the books introduce bending moments (González-Martín & Hernandes
Gomes, 2017) and first moments of an area (González-Martín & Hernandes-
Gomes, 2018). We have also provided an overview of both textbooks’ use of
integrals (González-Martín & Hernandes-Gomes, 2019). We believe this type of
research is necessary, since, as Castela (2016) puts it:

. . .mathematicians need to take some distance with their own culture [. . .]. They have to
reconsider the following questions: which mathematical praxeologies are useful for such
engineering or professional domains? What needs would be satisfied? Which discourse
makes the mathematical technique intelligible? This is actually an epistemological investi-
gation that we consider as a prerequisite to the design of mathematics syllabi for professional
training programs. (pp. 424–425)

2 Theoretical Framework

We will now provide a brief description of the theoretical tools used in our research
(for more details, see González-Martín & Hernandes Gomes, 2017, 2018, 2019). We
use tools from ATD (Chevallard, 1999), which considers human activities as
institutionally situated. In this sense, knowledge about these activities and their
raison d’être are also institutionally situated. In particular, ATD offers a general
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epistemological model of mathematical knowledge, where mathematics is seen as a
human activity through which various types of problems are studied.

A key element in ATD is the notion of praxeology (or, in our case, mathematical
organisation or mathematical praxeology—MO hereinafter), which is formed by a
quadruplet [T/τ/θ/Θ] consisting of a type of task T to perform, a technique τ which
allows the task to be completed, a rationale (technology) θ that explains and justifies
the technique, and a theoryΘ that includes the discourse. The first two elements [T/τ]
are the practical block (or know-how), whereas the knowledge block [θ/Θ]
describes, explains, and justifies what is done. These two blocks are important
elements of the ATD model of mathematical activity that can be used to describe
mathematical knowledge. Furthermore, ATD distinguishes different types of MO:
punctual, which are associated with a specific type of task; local, which integrate
multiple punctual MOs that can be explained using the same technological dis-
course; and regional, which integrate local MOs that accept the same theoretical
discourse.

Praxeologies, like knowledge in general, may move from the institution in which
they originate to other institutions where they are used in different ways. This is the
case, for example, with mathematical notions that are used to solve engineering
problems. In this instance, the concerned praxeologies are subject to transposition
effects (Castela, 2016; Castela & Romo Vázquez, 2011; Chevallard, 1999): this
means that when a piece of knowledge that is produced within one institution moves
to and is used in another institution, it may undergo certain transformations. In this
boundary-crossing process, some (or all) elements of the original praxeology may
evolve. In the case of a praxeology crossing the boundary from one research
institution to another in order to be taught or used, Castela (2016) proposes the
following model (Fig. 1).

In this model, Ir represents a research institution, while the arrow between the
praxeologies represents the institutional processes, which have an epistemological
and a social dimension. The tasks of type T can be addressed by an institution that
has only a pragmatic relationship to the praxeology (Ip). The asterisks indicate that
every component of the original praxeology may evolve. I*r, which is created and
controlled by Ir and Ip, operates these evolutions or transformations. Finally, θp

represents a practical technology that is developed and acknowledged by Ip on
specific empirical bases, “possibly sustained by a [rationale] of second level”
(p. 423).

Although our work does not examine the same praxeologies in different institu-
tions, this model informs our work, in that we are examining objects (integrals) that
originate in one institution (calculus courses) which are then used to solve tasks in

Fig. 1 Transposition model proposed by Castela (2016, p. 422)
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another institution (professional engineering courses). Therefore, it is important to
analyse the types of tasks and techniques as well as the rationales and theories
employed. To that end, our research identifies specific local MOs present in profes-
sional engineering courses; we analyse how calculus notions are used (practical
block) and whether this use relates to the way these notions are usually introduced in
calculus courses (knowledge block).

3 Methodology

We first analyse calculus textbooks to identify how the content on integrals is
structured and to pinpoint the tasks where integrals are used along with the rationales
given. We then analyse engineering textbooks to identify how integrals are used in
introducing specific engineering notions. For the case of bending moments, we
analysed the book by Beer et al. (2012). With respect to the content presented in
this workshop, we analysed the praxeologies employed in introducing techniques for
sketching bending-moment diagrams. We analysed the theoretical sections to iden-
tify (a) how notions are defined and how properties are justified, (b) the tasks
proposed to justify and use the new content, and (c) the techniques that are employed
to solve these tasks. For more details, see González-Martín and Hernandes
Gomes (2017) and González-Martín (2021).

4 Some Results

Our analysis of the Mechanics of Materials book used in a Strength of Materials
course show that, with regard to first moments of an area (Q), moments of inertia (I ),
polar moments of inertia (J ), bending moments (M ) and centroids (C), integrals are
mostly used in the theoretical sections to introduce and define notions proper to
engineering, as well as to deduce certain properties (González-Martín & Hernandes-
Gomes, 2019). That said, students can turn to the tables and formulae provided to
find values and solve most of the tasks. The actual technique does not rely on
integrals, and it is only in the explanation of the technique (technology) that integrals
appear. In many cases, the explicit justifications rely on a professional discourse that
is not (at least for the student) explicitly related to explanations and properties that
would appear in a calculus course.

For example, our analysis of the way integrals are used to define bending
moments for beams in a Strength of Materials textbook reveals different uses of
the “integral” object (González-Martín & Hernandes Gomes, 2017). Although
bending moments are defined as an integral, the tasks, techniques and justifications
used in calculus courses are very different from the ones presented in this profes-
sional engineering course; this may result in students not recognising “the same”
object in two different courses, which means they may question the relevance of
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integration techniques that are not used in tasks concerning bending moments. For
instance, Fig. 2 shows a typical task: sketching the bending moment diagram (lower
graph, M ) referring to the distribution forces on a beam (upper diagram). The
technique to solve the task can be summarised as follows:

1. Using the diagram showing the distribution of loads (upper diagram in Fig. 2),
identify the key points (A, B, C, D, E) where loads are applied or distributed.

2. Using these points and some arithmetic formulae (based on the principle that the
addition of forces equals zero), calculate the values of the shear force at these
points.

3. Using these values, sketch the graph of the shear force (middle graph in Fig. 2).
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Fig. 2 Example of task
involving bending moments
(González-Martín &
Hernandes Gomes, 2017,
p. 2078, adapted from Beer
et al., 2012)
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4. By calculating areas in that graph and using arithmetic formulae, find the values
of M at A, B, C, D, and E.

5. Sketch the graph of M (lower graph in Fig. 2).

The rationale for Step 5 is given as follows:

Note that [in a solved example] the load curve is a horizontal straight line, the shear curve an
oblique straight line, and the bending-moment curve a parabola. If the load curve had been
an oblique straight line (first degree), the shear curve would have been a parabola (second
degree), and the bending-moment curve a cubic (third degree). The shear and bending-
moment curves are always one and two degrees higher than the load curve, respectively.
With this in mind, the shear and bending-moment diagrams can be drawn without actually
determining the functions V(x) and M(x). (Beer et al., 2012, p. 362)

We can therefore see that the technique to solve this task relies on basic formulae
and on geometric considerations. As Kent and Noss (2003) put it, only traces of the
calculus content can be detected in the actual technique. Our results concerning first
moments of an area (González-Martín & Hernandes-Gomes, 2018) are similar: the
tasks proposed to students require mostly the use of geometric considerations and of
ready-to-use formulae.

Our analysis of the General and Experimental Physics textbook used in an
electrical engineering course (Halliday et al., 2014) focused on the content related
to electromagnetism, (Chaps. 21–24, for a total of 108 pages; see González-Martín &
Hernandes-Gomes, 2019). Once again, our results echo previous findings. Although
we note the use of more challenging functions, in this book integrals are also used
mostly to introduce and define notions proper to electrical engineering, and it is
rather the interpretation of an integral that allows for a proper analysis of the
phenomena under study. As with the previous book, most techniques call for the
use of given properties or tables, which means that tasks can be solved without
students being aware of the use of integrals. In most cases where students need to
calculate an integral, immediate integration techniques are sufficient.

5 Final Comments

During the workshop, the discussion centred around the following main questions:

• How are integrals used to introduce or define bending moments? What type of
rationale is used to justify certain properties or techniques?

• What tasks are presented that use integrals, and what are the techniques available
to solve them? Are integrals explicitly used, or they are implicitly involved in the
rationale that justifies the techniques?

• What parts of calculus course content are (and are not) used? Can recommenda-
tions be made regarding certain topics that should (or should not) be taught in
calculus courses?

• Is it possible to suggest some tasks that could be used in a calculus course for
engineers to better motivate the introduction of integrals?
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The discussion led the participants to agree with the points presented earlier in
this chapter. They also questioned the amount of time traditionally spent in calculus
courses on techniques used for calculating the integral of very complex functions.

The analyses described in this chapter are intended to illuminate how mathemat-
ics is actually used in professional engineering practices. This in turn may help
determine which content should be emphasised in calculus courses (such as the
interpretation of integrals) and which content may be less important (such as the
integration of very complex functions).
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A Workshop on the Epistemology
and Didactics of Mathematical
Structuralism

Thomas Hausberger

1 Epistemology of Mathematical Structuralism

Mathematical structuralism takes its roots in the re-foundation of algebra operated by
German algebraists at the beginning of the twentieth century. Workshop participants
were thus given a few historical landmarks on the emergence of the group, ring and
field structures, following Wussing (2007) and Corry (1996). Synthetic accounts
may be found in (Hausberger, 2018b).

The idea of algebraic structures as a unifying principle is due to Noether: in the
1920s, she got Abstract Algebra away from thinking about operations on elements
(such as addition or multiplication in groups or rings) but described structures in
terms of selected subsets (such as normal subgroups of groups or ideals in Ring
Theory) and homomorphisms. Noether and her school thus changed the way theo-
rems were proved in algebra, focusing on general proofs that limit the calculations
and put to the fore the “most general and fundamental” (hence simpler, according to
structuralist views) concepts. This mathematical re-foundation of algebra also paved
the way for unprecedented mathematical constructs, such as noetherian rings.

The structuralist method is well described in the Bourbaki (1950) Manifesto,
entitled “the architecture of mathematics”, written by a group of French mathema-
ticians who were the great promoters of structuralist thinking. Indeed, Bourbaki set
out to apply the method developed by the German algebraists to all fields of
mathematics. The first part of the workshop was dedicated to the discussion of
excerpts of the Manifesto. Bourbaki describes the structuralist use of the axiomatic
method both as a method of exposition of mathematical theories and a method of
discovery of new results (thus a heuristic). He draws conclusions on the impact of
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structuralism on mathematical activity and the organization of mathematical
theories.

The starting point of the workshop was a couple of remarks that guided the
reading of the Manifesto. Firstly, Bourbaki is aiming at the “profound intelligibility”
of mathematics through the axiomatic method which “teaches us to look for the
deep-lying reasons for such a discovery, to find the common ideas of these theories,
buried under the accumulation of details properly belonging to each of them, to bring
these ideas forward and to put them in their proper light”. This suggests that didactic
principles are governing Bourbaki’s reconstruction of mathematical knowledge.
Secondly, Bourbaki sees structures as “tools for the mathematician”; he emphasizes
the “standardization of mathematical techniques” by means of the axiomatic method
which is “nothing but the Taylor system for mathematics”. This connects to the
praxeological point of view of the Anthropological Theory of Didactic (ATD) which
sees mathematical activity as the development of combinations of praxis and logos
(praxeologies, Chevallard, 2006). The following questions were thus discussed:

1. Which statements of the Bourbaki discourse express didactic concerns? To what
extent does mathematical structuralism rely (or not) on didactic principles as a
method of exposition and a method of discovery? How to phrase these principles
in terms of didactics of mathematics?

2. Using the vocabulary of ATD, how to describe the impact of structuralism on
mathematical praxeologies, in particular the praxis and logos blocks, the interre-
lations of both, on mathematical organizations in general?

Participants underlined that the writing of the Manifesto is itself a didactic
gesture: in order to disseminate mathematics (Bourbaki wrote a treatise in several
volumes: Elements de mathématiques), one must have a clear vision of what
mathematics is. As pointed out in the Manifesto, “[it is] out of the question to give
to the uninitiated an exact picture of that which the mathematicians themselves
cannot conceive in its totality”. This quote refers to a stage of development of
mathematics in which diversity hindered the production, communication, and dis-
semination of mathematics. This is where the structuralist method comes into play as
a didactic method to promote understanding and sense-making through “separating
out the principal mainsprings of the arguments; then taking each of them separately
and formulating it in abstract forms, to develop the consequences which follow from
it alone”. Bourbaki also refers to an “economy of thought”, which may be related to
the economy of didactic memory. Nevertheless, setting out abstraction and general-
ity as principles was also debated among workshop participants (as among mathe-
maticians, for instance Mandelbrot who discussed relationships between
explanation, generality, and abstraction). At first sight, a few educators—perhaps
those who least share the Bourbaki culture—exclaimed: “Don’t do that!” (the use of
such principles in classrooms).

In fact, Bourbaki describes and justifies in the Manifesto techniques to solve
problems and to write and communicate mathematical theories. In other words, all
the elements of mathematical research praxeologies may be found. Readers may
draw a list of structuralist techniques to solve problems: “to recognize among the
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elements relations which satisfy axioms of known types”, “to apply the arsenal of
general theorems which belong to the structure of that type”, “to orient the intuitive
course of one’s thought [according to the structural insights]”; and structuralist
techniques for the exposition of mathematics: “to look for deep-lying reasons”, “to
find common ideas of theories and bring them forward”, “to separate out the
mainsprings of its arguments”, “to inquire how these different components influence
each-other”, “to set up the axiomatic theory of a given structure”.

The phenomena of unification of punctual praxeologies into regional and global
praxeologies was related by several participants to the Bourbaki discourse of
unification of mathematics under the axiomatic method. The holistic vision of
Bourbaki was questioned as an epistemological point of view that may be relativised
(it applies to algebra but maybe not with the same pertinence to every mathematical
domain) and as a socio-cultural norm. Participants pointed out that distinctions
should be made between mathematical praxeologies in teaching institutions (includ-
ing universities), in research institutions (also including universities), and in different
fields or domains, considering also variations between societies and civilisations
(in reference to the scale of levels of didactic codeterminacy). Nevertheless, it was
argued that some common points (consistent with the Bourbaki discourse) may be
found privileging the “most general formulations” (of theorems, definitions, etc.);
the role played by Theory to unify mathematical sectors and domains (regional
praxeologies); a further Metatheory to unify the discipline in a global praxeology.
Other participants underlined that the structuralist method induced changes at the
discipline level, for instance the creation of new domains and sectors (general
set-theoretic topology, algebraic topology, etc.). It was accompanied by important
modifications in the praxis (and of course logos), as new questions appeared and new
ways of proving results (new techniques). At this stage of the workshop, the need of
new tools emerged to make such statements more precise.

2 Modeling Mathematical Structuralism Within ATD

The notion of structuralist praxeology (Hausberger, 2018a) aims at modeling within
ATD the epistemological ideas developed above. Structuralist thinking is
characterised by reasoning in terms of classes of objects, relationships between
these classes and stability of properties under operations on structures. The applica-
tion of the structuralist method relies on a dialectic between the particular and the
general, or in other words between objects and structures. The questions and
problems are raised to a higher level of generality in order to apply structuralist
concepts (e.g., ideal, principal ideal domain, etc.) and tools (e.g., isomorphism
theorems, structure theorems, combinatorial of structures, etc.) according to the
moto “generalizing is simplifying”. In other words, the “structuralist methodology
aims at replacing a praxeology [T, ?, ?,Θparticular] by a structuralist praxeology [T

g, τ,
θ, Θgeneral], where Tg is a generalization of T that allows the use of structuralist
techniques” (loc. cit. p. 83). In order to illustrate the theoretical construct of
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structuralist praxeology, workshop participants were presented the example of the
thread on decimal numbers from the online forum mathematiques.net (loc. cit.
pp. 83–87). To prove that the ring D of decimals is a principal ideal domain, the
forum students searched for a proof of the general statement that any subring of Q is
principal, then investigated whether principality was transferred from a ring to its
subrings. The study of these dialogues emphasises the role of the dialectic of objects
and structures in the development of structuralist praxeologies: structures are applied
as a generalizing-simplifying viewpoint in order to demonstrate properties on math-
ematical objects and, conversely, a semantic control of the formal general statements
on structures is exercised by putting them to the test of known examples (Q[x] is
principal but Z[X] is not).

Inspired by Winsløw’s (2008) praxeological formalisation of the concrete to
abstract transition in analysis (from calculus to more theoretical tasks involving
continuity and differentiability of functions as well as the topology of real numbers),
the author proposed a model for the epistemological transition to Abstract Algebra,
in two phases: the first phase is concerned with the transition from T to Tg described
above and leads to the construction of a structuralist praxeology as a fertile strategy
to prove properties of concrete objects; the second phase builds on structuralist
praxeologies previously developed in order to introduce more abstract and theoret-
ical types of tasks that only consider classes of objects with their structural properties
(e.g.: show that a Noetherian integral domain such that every maximal ideal is
principal is a principal ideal domain).

A new example related to arithmetic and abelian Group Theory (GT) was then
introduced at the workshop. Indeed, Bourbaki cautiously explained that his account
of structuralism is a schematic and idealized sketch, and so is the model described
above. Its pertinence in the elucidation of teaching-learning phenomena related to
GT needs be investigated through concrete case studies. The case of GT was also
chosen to relate to other didactic studies. For instance, Bosch et al. (2018) focused
“not only on the official raison d’être of GT within university teaching, but also on
different possible alternative ones that could motivate or impel the use of GT to solve
problematic questions”. In particular, they looked for external problems (that is,
external to GT) that could lead to the reproduction of a substantial part of GT as a
means to ascribe some rational to it. Precisely, they argued that a counting problem
(such as that of symmetries of a square) may be a suitable candidate for a recon-
struction of elementary GT. This choice is justified by the links between GT and the
notions of symmetry and invariant in the historical development of GT and by the
role played by Lagrange’s theorem as a tool to solve the problem. Nevertheless, it
also raises epistemological issues: for instance, “is it substantial enough to motivate
the study of the isomorphism theorems”?

The problem discussed at the workshop is classical, external to GT, and may be
found in standard textbooks (Perrin, 1996): determine the set of primes p such that
�1 is a quadratic residue (congruent to a perfect square) modulo p. Such questions
follow from the work of number theorists of the 17th and 18th centuries (Fermat,
Euler, Lagrange, Legendre) and have been given a first systematic treatment in
Gauss’s Disquisitiones Arithmeticae (1801). The answer to this question is called

320 T. Hausberger

http://mathematiques.net


“first supplement to the law of quadratic reciprocity” [p ¼ 2 or p � 1 (mod 4)]. The
ambition is not to cover a substantial part of GT but simply illustrate the structuralist
methodology.

The problem may be considered inside arithmetic as a particular theory (in the
sense of Bourbaki) in dialectical relationship with GT [through the group (Z/pZ)*],
Field Theory (Fp), or even Ring Theory (Z[i], Fp[X]) as general structures. Students
may stay in arithmetic (as a theory in the sense of ATD), use Fermat’s little theorem
to prove that (�1)(p � 1)/2 � 1 (mod p) and deduce the necessity of the condition
p� 1 (mod 4). The converse implication is less straightforward (the reader may have
a try or look up Gauss’s DA art 111) but gains much clarity when translated into
structural terms. Indeed, the set Q of quadratic residues modulo p make up a
subgroup of index 2 in Fp* (as the image of the homomorphism x � x2). It thus
contains ( p � 1)/2 elements (and we may recover the preceding result by means of
Lagrange’s theorem). Moreover, the equation x(p � 1)/2 ¼ 1 in Fp admits at most
( p � 1)/2 solutions since Fp is a field. This proves that the set of solutions is exactly
Q and the result follows. Another proof uses the argument that a group of even order
always possesses an element of order 2 (a well-known result in elementary GT) to
conclude that �1 belongs to Q [under the hypothesis p � 1 (mod 4)], since it is the
unique element of order 2. The problem may thus be related to standard praxeologies
from GT (show that a subset is a group, determine its order and use known results on
orders of elements) or mixed arguments using a property of polynomials defined
over a field.

In this example, the type of task T (find conditions for the existence of a solution
of a congruence) is handled with respect to the structural properties of the given
congruence equation, and thus gives birth to the structuralist types of tasks (which
are not direct generalizations of T ) once structures are identified. The first isomor-
phism theorem, Lagrange’s theorem and other general results about groups play the
role of technologies. Theories of structures (GT, abelian GT, FT, RT) orient the work
and provide the (formalized part of the) theory in the sense of ATD.

3 The Thread on (Z/32Z)* and Abelian Group Theory

Although many mathematical problems from GT may be stated independently on
GT as we have just seen, the concepts of GT often offer an adequate framework to
state GT problems in a synthetic meaningful way, as well as inspiring new problems
as further natural developments. Looking up at lists of problems collected and
proposed by mathematicians to students, for instance https://yutsumura.com/
welcome-to-problems-in-mathematics/, it is striking that the structuralist scope is put
in the fore to give a title to the problems (Prove a Group is Abelian if (ab)2 ¼ a2b2

; Quotient Group of Abelian Group is Abelian; A Group is Abelian if and only if
Squaring is a Group Homomorphism). Therefore, the success of students to solve
these problems very much depend on their ability to connect the statements to the
core structuralist praxeologies that they previously met, in other words their
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structuralist praxeological equipment and their understanding of the structuralist
methodology.

For the last part of the workshop, participants focused on a problem that was
submitted by a student (ianchenmu) to the Math Help Board (MHB) forum. MHB
presents itself as an “online community that gives free mathematics help any time of
the day about any problem, no matter what the level”. As stated by ianchenmu, “the
question is to identify isomorphism type for each proper subgroup of (Z/32Z)�”.
The student wonders about the meaning of “isomorphism type”, guesses that iso-
morphisms need to be found between each such subgroup and “another group” and
questions about the method to proceed. A math scholar and MHB moderator
(Klaas_van_Aarsen) helps ianchenmu to advance through the task, and another
student (jakncoke) joins in to share his views. The thread may be accessed via this
link1 and a transcript of the collective study process was provided at the workshop.

The study process may be modeled by a study and research path (SRP;
Chevallard, 2006) as the author did for the thread on decimal numbers
(Hausberger, 2018a; 2019). The chronogenesis is governed by a dialectic between
questions and answers while the mesogenesis involves a dialectic of medias and
milieus (Chevallard, 2009). Special attention should be paid to the mathematical
praxeologies that are developed through the SRP, in particular structuralist praxeol-
ogies that, as we have seen, usually appear through the dialectic of objects and
structures.

The following questions were proposed for discussion at the workshop: (1) Do
you have any idea about the historical origin of such a problem? To which sector and
theme of the Abstract Algebra curriculum would you connect this problem to?
(2) What are the main praxeologies developed during the study process online?
(3) Which structuralist aspects can you identify? What are the objects and structures
involved? Can you observe a dialectic between objects and structures? (4) What is
your evaluation of the dialectic of medias and milieus, and the global vitality of the
study process? (5) What are, according to you, the main conditions that hinder/foster
the development of structuralist praxeologies (the ecological question)? If you were
moderating the forum, what strategy would you adopt to “link problem solving and
learning content” and thus address the “challenges of self-sustained study and
research processes” (Bosch & Winsløw, 2016)? What would you retain from
Bourbaki’s didactic principles? Answers or partial answers to these questions are
proposed and discussed in the sequel.

Considering the formulation of the problem by ianchenmu, two types of tasks
emerge: determine the lattice of subgroups of a given finite abelian group G (T1),
determine the isomorphism type (or structure) of a given finite abelian group (T2).
The type of tasks T2 must be understood in relation to the fundamental theorem of
finite abelian groups (FTAG), which clarifies the notion of “type”: every finite
abelian group can be expressed as the direct sum of cyclic subgroups of prime-

1https://mathhelpboards.com/linear-abstract-algebra-14/identify-isomorphism-type-each-proper-
subgroup-z-32z-3585.html

322 T. Hausberger

https://mathhelpboards.com/linear-abstract-algebra-14/identify-isomorphism-type-each-proper-subgroup-z-32z-3585.html
https://mathhelpboards.com/linear-abstract-algebra-14/identify-isomorphism-type-each-proper-subgroup-z-32z-3585.html


power order. According to Wussing (2007), the FTAG, was proven by Kronecker in
1870, using a group-theoretic proof, though without stating it in group-theoretic
terms. This generalised an earlier result of Gauss from Disquitiones Arithmeticae
(1801), which classified quadratic forms. The theorem was stated and proved in the
language of groups by Frobenius and Stickelberger in 1878.

The type of tasks T1 and type of group G ¼ (Z/nZ)� both take roots in Galois
Theory (GT). Indeed, such groups are the Galois groups of cyclotomic field exten-
sions (generated over Q by a primitive n-th root of unity), and GT states a corre-
spondence between the lattice of field extensions and the lattice of subgroups (the
latter being easier to determine). Finally, the isomorphism types of (Z/nZ)� are
known: by the Chinese remainder theorem, it is enough to determine the type in the
case n is a primer power pr; moreover, (Z/pr Z)� is cyclic except in the case p ¼ 2
and r� 2 in which (Z/2r Z)� ’ Z/2r � 2 Z3 Z/2 Z. The parameters p and r (¼ 5) are
thus important didactic variables.

There are introductory as well as advanced textbooks on GT, covering GT or
Abstract Algebra in general. The lattice of subgroups is often not a topic covered by
elementary textbooks, the classification of groups according to isomorphism types
being the culmination of the course. In Dummit and Foote (2003), a more advanced
textbook, the lattice of subgroups appears as a topic of Chap. 2 “subgroups” (the
theme) within Part I “Group Theory” (sector). The FTAG (generalised to finitely
generated abelian groups) and the classification problem are presented in Chap. 5 on
“direct and semidirect products and abelian groups”.

Several techniques are developed on the forum to solve the main types of tasks T1

and T2. Regarding the former: τ1,Klass: determine cyclic subgroups; if g does not
generate G, add other elements; τ1,ianchenmu: compute <g> for all g in G [“it’s so
much work”];τ1a,Jakncoke: if G ¼ Z/nZ, use the fundamental theorem of cyclic
groups; τ1b,Jakncoke: determine the possible orders of subgroups thanks to Lagrange’s
theorem and the possible isomorphism types thanks to the FTAG. Then construct
subgroups by looking at orders of elements and then combining elements by means
of direct products [erroneous part of the technique]. The technology includes the
definition of a cyclic group, Lagrange’s theorem and the fundamental theorems
(used implicitly by Jakncoke). Regarding the latter: τ2a,Klass: if G is cyclic of order
n, then the isomorphism type is that of Z/nZ; τ2b,Klass: give all possible isomorphism
types thanks to the FTAG and conclude by examining orders of elements; τ2,
ianchenmu: if G ¼ <a, b, c> then the isomorphism type is that of the direct product
of cyclic groups of orders given by those of the three generators [erroneous tech-
nique]. The technology here includes the definitions of the isomorphism type and
cartesian product, and the FTAG. In fact, three related auxiliary types of tasks are
discussed on the forum: T3: determine the order of an element g in G; T4: determine
the list of elements of an abelian group G ¼ <a, b>; T5: show that a given group of
order 4 is isomorphic to the Klein group V4.

Several structuralist aspects of the problem may be pointed out: (1) at the level of
mathematical concepts, the problem involves: the mathematical structures of group
and the partial order < on subgroups; the notion of isomorphism type (abstract
structure of a group); the lattice of subgroups that “encodes” part of the group-
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theoretic information. (2) at the level of methods, the following structuralist princi-
ples are encountered: thinking in terms of generators (and relations); thinking up to
isomorphism (isomorphisms preserve “structural information”); to decompose into
simple components (structure theorems); to combine simple components (direct
product).

Let us now focus on the dialectic of objets and structures. The main objects met
during the study process are the groups Z/32Z and (Z/32Z)�, and instances of
products of cyclic groups (e.g. V4). The main structures are <a, b> (abstract
group on generators) and

Q
Z=prii Z(FTAG), which serve as abstract models. The

dialectical aspects may be described as follows: the structures serve as tools to
determine subgroups of (Z/32Z)� (by means of generators) and their isomorphism
types (τ2,ianchenmu; the fundamental theorem as a means to predict possible models).
Respectively, further elements of the logos on structures emerged (but only
implicity) to fulfill technical needs: the implicit erroneous formulas
<a, b> ¼ <a>[<b> and <a, b, c> ’ Z/o(a) Z 3 Z/o(b)Z 3 Z/o(c) Z, which
were refuted during the study process. Unfortunately, conditions for such a isomor-
phism to hold (in the simplest case of two elements) were not discussed, as well as
more advanced structuralist questions such as the behavior of the lattice of sub-
groups under direct product of groups.

Let us now conclude on the ecology of structuralist praxeologies. Our analysis
shows that the study process evolved towards more and more basic praxeologies (T4,
T5) due to a lack in the praxeological equipment of ianchenmu that hindered the
possibility to deal with the main tasks. Moreover, the moderator only focused on
ianchenmu and didn’t help jakncoke develop more advanced praxeologies. The
dialectic of medias and milieus is very limited (very few elements of the medias
were brought up in the milieu and no media on lattice of subgroups was identified):
one hypothesis is that ianchenmu lacked skills to identify pertinent sources and
therefore relied on Klauss who played the role of teacher. The dialectic of objects
and structures is also limited: structures were applied as tools, but techniques did not
lead to further theoretical developments (new general results about structures to test
on known examples). The two types of tasks T1 and T2 were not related as they could
(role of information on the structure of G to construct its lattice of subgroups), and
the structuralist methods were not supported by structuralist insights as a
metadiscourse (a technology): e.g. the notion of isomorphism type was not clarified
by Klauss. Finally, if the FTAG illuminates the role of cyclic groups, it hinders the
work on constructing isomorphisms “by hand” to link <a, b> and Z/o(a) Z 3 Z/o
(b)Z (the issue of the economy of techniques). In Dummit and Foote (2003), the task
T1 on lattice of subgroups is discussed three chapters before the FTAG (generalised)
is taught. This suggests, by contrast with structuralist principles, that it would be
preferable to separate the two types of tasks, at an early stage of the development of
structuralist praxeologies in GT.
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About Two Epistemological Related Aspects
in Mathematical Practices of Empirical
Sciences

Reinhard Hochmuth and Jana Peters

1 Introduction

Mathematical practices, techniques and algorithms play a significant role in many
disciplines (Winsløw et al., 2018). Consequently, mathematical service courses have
become part of many study programs. Beyond the service courses, mathematical
practices are also developed, adapted, and taught in courses of other disciplines.
There, mathematical concepts that are also taught in introductory service courses
sometimes have different meanings. Moreover, advanced content, like for example
the Gaussian theorem in basic electrical engineering courses, is justified and used
long before it is taught in service courses. Another illustrative example is that
concepts like the Dirac impulse in signal analysis are often not covered in service
courses.

Although the use of mathematics in other disciplines and the issue of mathemat-
ical service courses have been discussed for a long time in mathematics education
(see for example the third ICMI Study by Howson et al. (1988) and for an actual
overview Hochmuth (2020)), it is only more recently that research on mathematical
practices in service courses and beyond has been playing an increasing role at
international conferences on university mathematics education like CERME
(Winsløw et al., 2018), ICME (Biza et al., 2016), INDRUM (Durand-Guerrier
et al., 2021), and RUME (Weinberg et al., 2017).

Whereas mathematical topics that are relevant in other disciplines, for example
differentiation, integration or stochastic distributions, can easily be identified in
curricula and textbooks, the respective discipline-related mathematical practices
and their respective rationales are often not explicitly known in detail (Winsløw
et al., 2018). Due to the differences between mathematical practices and rationales in
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service courses and in major-subject courses, it is often not clear to students which
activities and reasoning are allowed, required or forbidden and, in particular, how
symbols have to be interpreted with regard to a specific task in major-subject courses
(Hochmuth et al., 2014; Alpers, 2017).

In this contribution, we do not approach the study of mathematical practices in
other disciplines by looking at students’ or lecturers’ concrete practices or lecturers’
measures supporting students’ learning in service courses. Instead, we start out from
various historical-philosophical studies on the relationship of mathematics and
empirical sciences and from there we explore two epistemological related aspects,
that we have partly already investigated in detail in earlier research. One aspect deals
with the identification of mathematical objects such as continuous variables and
formal quantities with measurable, and therefore finite and discrete, quantities in
empirical sciences (Hochmuth, 2019; Hochmuth & Peters, 2020). The second aspect
concerns the characterisation of two different ideal-type (Weber, 1904) mathemat-
ical discourses and their roles in mathematical practices within empirical sciences
(Hochmuth & Peters, 2021; Peters & Hochmuth, 2021). The mathematical dis-
courses connect to what is identified with each other in the sense of the first aspect.
In this way they also refer in a certain way to the respective norms and rationales, on
the one hand of mathematics and on the other hand of the respective empirical
science. In this contribution we want to plausibly demonstrate that both aspects play
a role in the use of mathematics in empirical sciences and illustrate this by examples
from electrical engineering and psychology.

There is no place here to reflect in detail on the relationship between the two
aspects. However, we want to emphasise that both aspects are essentially the result
of institutional and societal processes. Each identification must have proved histor-
ically adequate and fruitful within the respective empirical science. And the various
mathematical discourses are, among other things, the result of the historically
specific organisation of the knowledge to be taught, taught and learned in educa-
tional institutions.

We have structured this article as follows: in the next section, we embed our
research in the context of the ATD. Afterwards, we summarise some epistemological
insights and observations from historical-philosophical and epistemological studies.
These relate in particular to the two aspects outlined above. The quite abstract
assertions are then exemplified for mathematical practices in electrical engineering
and for psychology. A short outlook on subsequent research questions concludes our
contribution.
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2 ATD-Research on the Use of Mathematics in Other
Sciences

Artigue et al. (1990) analysed different students’ conceptions about differentials
linked to mathematics and physics. Requirements regarding the institutional settings
are figured out in essentially cognitively understood legitimations and validations of
concepts and rituals assigned to mathematics or physics. They have observed, for
example, that the idea of approximation works in mathematics as a constitutive
moment of some notion and in physics as an excuse of loose reasoning, which
reflects an “old conflict between rigorous mathematics and effectiveness in physics”
(Artigue et al., 1990, p. 265). In view of teaching goals, the authors have especially
suggested to make the various types of situations where differentials are needed
more explicit.

Castela and Romo Vázquez (2011) applied and extended notions form ATD
(Chevallard, 1992, 1999) in their analysis of mathematical praxeologies in signal
and system theory courses. For studying the intrinsic intertwining of mathematics
and its use they introduced a distinction between two technological components—a
theoretical and a practical component—which reflects among others external didac-
tical transpositions and different modalities of institutional validations. This idea of
an internal differentiation of praxeological blocks is further extended and adapted in
our analyses of signal and system theory-tasks (Hochmuth & Peters, 2021).

The institutionalised separation of teaching mathematics partially in service
courses and in major-subject courses corresponds to a widespread understanding
of the use of mathematics in other disciplines essentially as an application of
previously constructed mathematical knowledge, an understanding which is coined
by Barquero et al. (2013) as “applicationism”. This understanding to some extent
neglects the intrinsic dialectics between different mathematical practices and
underlying needs, something we want to explore in this paper. In contrast,
González-Martín and Hernandes-Gomes (2018) address curricular differences
between practices, for example, regarding the integral notion and the integral use
in calculus and mechanical engineering courses. Such curricular differences were
also observed and investigated by Dammann (2016) and, for electrical engineering
contexts, by Hennig et al. (2015).

In ATD there are the following two (in fact interrelated) options possible to make
use of the idea of higher levels of codetermination: firstly, one could consider
the impact of higher levels (for example societal dominant beliefs concerning the
relationship between mathematics and other sciences like “applicationism”) on the
constitution of practices. Secondly, one could inform the analyses of mathematical
practices and their institutionalisation by research results from history, sociology
and/or philosophy of mathematics and sciences. In the following we mainly focus on
the second option and outline a perspective with consequences for further analyses
within ATD. Later, in addition to codetermination, we will also discuss the ATD
principle of the institutional dependence of knowledge.
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3 Epistemological Considerations Regarding
the Relationship of Mathematics and Empirical Sciences

Practices in empirical sciences explicitly and/or implicitly claim to show an intrinsic
relation to the world. This implies, for example, that their assertions cannot reason-
ably be justified and understood without recourse to the world. In our everyday life
we show a realistic attitude, which means that we act under the premise, that there is
conformity between mental images and reality. Philosophical reflections show that
this view is highly problematic from an epistemological point of view1 and, more-
over, complicates understanding what the specific truth of empirical knowledge is. In
our opinion, didactic studies are also at least occasionally based on the realistic
position, such as the modelling cycle. In our contribution, we want to show that
elaborate and epistemologically reflected positions are particularly helpful for a
better understanding of mathematical practices in empirical sciences. On this basis,
especially ATD-related concepts can be complemented and concretised in a suitable
way in order to examine institutionalised mathematical practices.

With this in mind, pragmatic (Schlaudt, 2014) and historic-materialistic (Wahsner
& von Borzeszkowski, 1992) views seem to be fruitful. According to the pragmatic
position, empirical truth relies in “mastering objective means for the achievement of
subjective purposes. It shows itself concretely in the agreement of will and ability in
the action, in the performatively experienced resistance of the world” (Schlaudt,
2014, p. 11).2 Accordingly, two readings of physics can be distinguished, a descrip-
tive one “according to which the laws of physics tell us how certain objects behave,
and a prescriptive one, according to which the laws are rather rules on how these
objects can be manipulated” (Schlaudt, 2014, p. 123), The latter also means, that
laws of nature have to be understood as instructions for action. Now an important
point in our context is that the “resistance of the world” with regard to assertions
from mathematics and empirical sciences like physics, engineering or psychology is
quite different. Consequently, also the control of symbolic means for the achieve-
ment of purposes is quite different and subject to significantly different validity
claims and related discourses. Such a position finally provides a basis for
reconstructing the historic-specific societal-institutional constitution of practices
and the generation of discourses, as well as for tracing its pedagogical and institu-
tional reproduction.

According to the pragmatic position, and incorporating also historic-materialistic
views, measurements in empirical sciences are not seen as the representation of a
numerical determination of a property of things, but as something that informs about
the behaviour of an object under certain norm conditions. Mathematics abstracts
from behaviour and focuses on the pure quantity as well as presupposes the existence
of objects in an axiomatic system of relations. But empirical sciences cannot “forget”

1See for example Schlaudt, pp. 42.
2All text passages originally in German were translated into English by the authors for this
contribution.
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these constituents. Instead, they are inherently reflected in the practices by consti-
tuting, incorporating and framing specific mathematical practices.

In historic specific transformations from dialectic interconnections to dualisms,
contradictory conceptual identifications of, for example, infinite and infinitesimal
quantities turn out to be particularly important (von Borzeszkowski & Wahsner,
2012). Especially with respect to metrological aspects Wahsner (1981) notes:

However, natural science (at least this applies to a physical theory) does not make its
statements directly about real objects, but about physical quantities and their relationships.
These quantities are a means to recognise reality. They are finite determinations and must be,
otherwise they cannot be measured. Natural science must therefore operate with these
“objects of understanding”. This is not metaphysics, but physics based on measurement
theory. But these quantities, these objects of understanding are not natural, or are given
directly in the imagination. They have to be produced through comparative work, through a
comparative work that presupposes a human activity, but above all, it requires the develop-
ment of a principle of scientific experience, the elaboration of a measurement theory (. . .), a
theory that states how the contact between these quantities of the mind and the real objects is
established. (p. 200)3

One aspect of mathematical knowledge is that a statement is true if it can be
derived logically from true statements within the mathematical system. Truth (valid
knowledge) is thus essentially determined inner-theoretical.4 This is different in
empirical sciences. Here, truth (valid knowledge) must always establish a reference
beyond theory. Empirical sciences cannot be divided into an empirical
(non-mathematical) part that regulates the relationship to reality and a mathematical
part that is free of this relationship to reality. This phenomenon is made explicit in
the investigations of Wahsner and von Borszeskowski on the relationship of math-
ematics and physics, but also by our investigations, especially with regard to the
electrotechnical mathematics discourse. Such a decomposition, which in our opinion
is ultimately not possible, would justify considering mathematical practices in
empirical sciences as exclusively inner-mathematically justified actions. Accord-
ingly, studies of mathematical practices in empirical sciences that ignore the empir-
ical reference, including mathematics, to reality would imply this separation in an

3
“Doch die Naturwissenschaft (wenigstens gilt dies für eine physikalische Theorie) trifft ihre
Aussagen nicht unmittelbar über die wirklichen Gegenstände, sondern über Physikalische Größen
und deren Beziehungen. Diese Größen sind ein Mittel, um die Wirklichkeit zu erkennen. Sie sind
endliche Bestimmungen und müssen es sein, sonst kann man sie nicht messen. Die
Naturwissenschaft muss daher mit diesen „Verstandesgegenständen“ operieren. Es ist dies keine
Metaphysik, sondern meßtheoretisch begründete Physik. Doch diese Größen, diese
Verstandesgegenstände sind nicht naturgegeben, bzw. unmittelbar in der Vorstellung gegeben.
Sie müssen durch Vergleichsarbeit erzeugt werden, durch eine Vergleichsarbeit, die die handelnde
Tätigkeit des Menschen voraussetzt, vor allem aber die Entwicklung eines Prinzips
wissenschaftlicher Erfahrung bedingt, die Ausarbeitung einer Meßtheorie (. . .), einer Theorie, die
aussagt, wie der Kontakt zwischen diesen Verstandesgrößen und den realen Gegenständen
hergestellt wird.”
4Of course our description of mathematical knowledge is not comprehensive. But for our consid-
erations, the point of inner-theoretical validation of knowledge is decisive. The same holds for
validation of knowledge in empirical sciences.
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empirical un-mathematical part and a mathematical part justified within mathemat-
ics. Examples are modelling cycles (Blum & Leiss, 2005) and “applicationsm”

(Barquero et al., 2013). The fact that in empirical sciences mathematical practices
also have a constitutive relation to reality have to be taken into account in didactic
analyses. ATD enables this consideration, among other things, through the principle
of institutional dependence on knowledge. In the institutions that can be assigned to
the empirical sciences (e.g. lectures in the engineering sciences, research institutions,
etc.), mathematical practices are justified, substantiated, validated and constituted
differently than in academic mathematics. The core of this otherness is the empirical
reference, which is constituted differently for each individual science.

In summary, we would like to point out that the epistemological questions
outlined above have to be resolved in every mathematically based empirical science.
Their relevance could be examined especially with regard to mathematical practices
and, in the sense of ATD, to characterisations of technological-theoretical blocks of
mathematical praxeologies in empirical sciences. Their consideration in electrical
engineering is the focus of the next section. Afterwards, we briefly turn to mathe-
matical practices in psychology.

4 About Mathematical Practices in Electrical Engineering

In various papers we have analysed mathematical practices in electrical engineering
with a focus on the technological-theoretical block (Hochmuth et al., 2014;
Hochmuth & Peters, 2020, 2021; Hochmuth & Schreiber, 2015a, 2015b, 2016;
Peters et al., 2017; Peters & Hochmuth, 2021), and also in quantum mechanics
(Hochmuth, 2019). A sociological and philosophical informed view has been crucial
for the analyses of justifications, validations and their discursive constitution. In the
following, we will elaborate on the two above mentioned epistemology related
aspects. Firstly, the two different mathematical discourses and their roles in the
use of mathematics within empirical sciences. And secondly, the identification of
mathematical formal quantities with measurable quantities in empirical sciences.

The technological-theoretical blocks of mathematical practices in engineering
and in mathematics differ in terms of general characteristics (empirical
truth vs. deductive-logical truth, the ontology of objects etc.) and concrete contents.
In previous studies we have been able to reconstruct two ideal-type mathematical
discourses in relation to mathematical practices: an Electrotechnical Mathematics
Discourse (ET) and a Higher Mathematics Discourse (HM) (Hochmuth & Peters,
2021; Peters & Hochmuth, 2021). In ATD the logos is considered as a discourse on
praxis, but as praxis and logos are dialectically interrelated, every aspect of praxis
(i.e. tasks or techniques) is also related to the institutional discourse. In the follow-
ing, we will describe both mathematical discourses within the context of complex
numbers. In the concrete studies just cited on mathematical practices in signal theory
we have presented this in more detail, and in a broader context.
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The mathematical knowledge associated with the HM-discourse is characterised
by an inner-mathematical conception of terms and statements without concrete
references to reality, a generalisation-oriented rational of academic mathematics
and a concentration on calculation rules. To describe the mathematical knowledge
concerning complex numbers we refer to the textbook by Strampp (2012). This book
represents a standard approach to complex numbers. It is used as a course literature
for a consolidated two-semester standard course on higher mathematics for engi-
neers which is held every year at the University of Kassel and thus represents an
important reference point for our previous analyses with regard to mathematical
practices. Complex numbers are covered in the first semester in the context of Linear
Algebra and are introduced as a field extension of real numbers, motivated by the
solvability of the equation x2 + 1 ¼ 0. Field extension is not introduced as a formal
algebraic concept. Strampp (2012) just states that the real numbers are extended by a
number i with the property i2 ¼ � 1 and that after the extension, all field axioms
which are relevant for calculating with real numbers shall continue to exist (p. 59).
This approach is typical for the whole chapter: the rational is aimed at an elaboration
of the solvability of equations, resulting in considerations about the general solution
of algebraic equations, the fundamental theorem of algebra and Vieta’s formula. In
doing so, however, no formal concepts are introduced and proven, but rather
calculation rules for complex numbers are derived and presented. Although the
chapter is clearly designed to develop a practical approach to the concepts and
rules of calculation, an orientation towards the inner-mathematical, generalisation-
oriented rational of academic mathematics can also be observed. In addition to the
previously mentioned more algebraic view on complex numbers, the chapter con-
tains another, geometric, orientation based on an analogy to vectors. However, the
vector concept is also distinguished from complex numbers: “We speak of phasors5

[Zeiger] and not of vectors, since complex numbers, unlike vectors, can also be
multiplied. This multiplication extends the multiplication of real numbers.” (p. 60)
This HM-phasor concept differs from the phasor concept in electrical engineering,
described below, but refers to it.6 The geometrical representation of complex

5We translated the German term Zeiger with the term phasor, which already refers to electrical
engineering concepts. But electrotechnical aspects play no role in the course and Stramp (2012)
does not refer to them either. Another possible translation of Zeiger, without the connection to
engineering concepts would be pointer. But we decided to use phasor for the following reason: In
German, the term Zeiger is used both in electrical engineering and in mathematics courses for
engineers, but with different meanings (reference to electrotechnical concepts vs. geometrical object
with no further references to reality). By using the term Zeiger instead of vector Strampp (2012) can
thus establish a connection to the electrotechnical courses without dropping the inner mathematical
conception of complex numbers. This aspect of using the same term, that has different meanings in
different institutional contexts is in jeopardy of being lost through translation.
6The textbooks by Fettweis (1996) and Frey and Bossert (2009) cover signal and system theory, the
context for our second example, the introduction of the Dirac impulse. Complex numbers are also
very important in signal and system theory, especially in the context of amplitude modulation, see
for example (Peters & Hochmuth, 2021).
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numbers as arrows in the Argand diagram is used as a visualisation of calculation
rules.

To characterise the ET-discourse we first note that electrical engineering as an
empirical science inherently includes a reference to reality. However, a look at
various textbooks, e.g. Fettweis (1996) and Frey and Bossert (2009) (see footnote
5), shows a large variance in the explication of this reference to reality, which is
accompanied by a variance in the degree of mathematical formalisation. For a short
overview of how complex numbers are treated in electrical engineering courses we
refer to the standard textbook by Albach (2011). In Albach (2011) phasors [Zeiger]
are introduced in the context of alternating currents and voltages. The first introduc-
tion is without reference to complex numbers: Here a phasor is an arrow with a
specific length and a specific angle with respect to a reference angle. This arrow can
be related to a time-dependent sinusoidal7 function, see Fig. 1.

Current and voltage ratios in electrical networks can be displayed and analysed
graphically in phasor diagrams without using differential equations. On the basis of
Kirchhoff’s rules for the analysis of electric circuits, geometric calculation rules for
phasors are derived, which are analogous to the calculation rules for vectors. For the
purpose of a mathematical description of phasors, the plane in which phasors are
drawn, can be considered as the complex plane. The phasor is now understood as a
complex quantity that symbolises the time-dependent voltage (see Albach, 2011,
p. 42). Whereas in the HM-discourse phasors are used to graphically illustrate the
properties of complex numbers, in electrical engineering phasors are arrows that
represent measurable, time-dependent quantities such as alternating voltages or
currents. Complex numbers are then used for the convenient mathematical descrip-
tion of phasors, justifying the compatibility of the rules for manipulating phasors and
the calculation rules of complex numbers via physical relations.

Fig. 1 Relationship between phasor and time-dependent function (Albach, 2011, p. 32)

7Circuits are operated with sinusoidal current- and voltage forms in the power supply network as
well as in many other important areas.
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With the above explanations we have shown how phasors and complex numbers
are constituted as different epistemological objects in the mathematical discourses.
In other publications we have shown how both discourses can also be reconstructed
empirically on the basis of tasks, lecturer sample solutions (Peters & Hochmuth,
2021) and student work (Hochmuth & Peters, 2021).

In the following, we will use the introduction of the Dirac impulse in signal theory
as an example for the principle of identifying infinitesimal formal mathematical
quantities with finite measurable quantities. Furthermore, we show how this princi-
ple also interacts with the two mathematical discourses described above.

In previous work (Hochmuth & Peters, 2020) we analysed the introduction of the
Dirac impulse in the signal theory textbook by Fettweis (1996): Thereby we have
taken up Fettweis’ distinction between idealised and real signals and highlighted a
general principle (see diagram in Fig. 2), which plays an important role in justifica-
tions by Fettweis and is used by Dirac (1958) in a similar way.

Here we want to draw attention to the connection between the principle, illus-
trated in Fig. 2, and the two mathematical discourses outlined above. On this basis
we will then show how this connection is also helpful for the reconstruction of a
passage from the textbook by Frey and Bossert (2009).

In Fettweis’s approach, the real signals represent irregular transmissions on the
one hand, i.e. they refer to empirical objects, and on the other hand to functions with
pleasant mathematical properties such as sufficient differentiability. Thus, they form
a central link that enables further identifications, allow specific justifications in this
context and connect discourses. The ideas associated with idealised signals, on the
other hand, refer to irregular (according to Fettweis) mathematical objects, such as
the Heaviside function or the Dirac impulse, as well as to signals which as such do
not exist in reality, but only approximately. Here, too, references to mathematics and
empirical sciences are brought together, and mathematical discourses can start from
these. We now illustrate these general remarks with the example of a passage from
the signal theory textbook by Frey and Bossert (2009).

Frey and Bossert (pp. 208) formulate the goal to differentiate the (in the usual
sense) non-differentiable Heaviside function, which is defined by:

ε tð Þ ¼ f 1, t � 0

0, t < 0
:

Fig. 2 Illustration of the
interplay between idealised
and real signals
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The Heaviside function represents (according to Fettweis) an idealised signal. In
order to apply HM-practices, the Heaviside function is represented approximately by
the sequence of differentiable functions (real signals):

f a tð Þ ¼ 1
π

tan �1 t
a

� �
þ π

2

� �
, a > 0:

The approximation can be interpreted in the sense of the HM-discourse as
pointwise convergence. The derivation of the Heaviside function is then derived
with the following steps:

d
dt
ε tð Þ ¼ d

dt
lim
a!0

f a tð Þ ¼ lim
a!0

d
dt

f a tð Þ ¼ lim
a!0

1
π

a
a2 þ t2

¼ f 0, t 6¼ 0

1, t ¼ 0
:

The HM concept of pointwise convergence also allows to understand the equal
sign in the last step. The central step in the argumentation is the transition from the
second to the third term, which can be clarified with reference to the above principle
and through this mediated interplay between the two mathematical discourses. From
a mathematical point of view, the step from the second to the third term, i.e. the
permutation of the limit values on the basis of the pointwise convergence of function
sequences, is not permissible. This permutation can therefore not be justified in the
HM discourse. This is where the principle comes into play: The derivative of the
idealised signal cannot be calculated. Therefore, it is approximated and replaced by
real signals. These are differentiated. Then finally the limit of the calculated deriv-
atives is calculated. The above principle thus allows the step from the second to the
third term to be broken up in such a way that HM discourse elements can be made
effective. Here the principle proves to be an expression of the ET-discourse. Thus, in
the step from the second to the third term an interesting interplay between the two
mathematical discourses, mediated by the principle, results.

Of course, the discussed step could be rewritten in terms of distribution theory
(also partially addressed by Frey and Bossert, pp. 110), so that it could be justified in
this interpretation purely mathematically. But the central point in our argumentation
is not that distribution theory is not used here as the basis for justification, which
would correspond to a rather deficit-oriented view. Rather, our point is that the
electrotechnical mathematics discourse, in its reference to empirical objects, not only
allows for a justification of the step, but also establishes a reference of symbols and
argumentation to empirical objects and contexts. A purely distribution-theoretical
argumentation could not make this possible. To do so, it would have to be
supplemented in a suitable way by electrotechnical means, which would of course
be possible in principle.
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5 About Mathematical Practices in Psychology

We consider psychology as another example of mathematical practices in an empir-
ical science. Here we focus on psychometric tests, as used in diagnostics in the form
of performance, intelligence, ability or development tests.8 Such tests are also used
or developed in empirical research projects in university mathematics education (see
e.g. Kuklinski et al., 2018; Hochmuth et al., 2019). The aim of such tests is, in
particular:

to capture inter-individual differences in behaviour and experience as well as intra-
individual characteristics and changes, including their relevant conditions, in such a way
that sufficiently precise predictions of future behaviour and experience as well as possible
changes in defined situations become possible.9 (Amelang & Zielinski, 2002, Sect. 1.1)

In general, model assumptions underlying the tests can be distinguished in terms
of traits and behaviour diagnostics. In the first case, the description of experience and
behaviour in the form of traits is crucial, whereby traits are represented by hypo-
thetical constructs that are derived from and refer to observable behaviour. In the
second case, personality traits act as intervening variables, which are usually deter-
mined as the probability that a person with certain traits will exhibit certain
behavioural tendencies. Theory and empirical knowledge are interdependent in test
development and application: On the one hand, theories are available in the form of
descriptions and conceptualisations of psychological constructs (e.g. motivation,
self-efficacy, intelligence) and are usually embedded in broader theoretical contexts:
they form the basis of quantitative models. On the other hand, modelling and testing
also create opportunities for observation. These allow, for example, theoretically
suggested hypotheses to be empirically confirmed or refuted. In theoretical prelim-
inary considerations, the aim is to determine the situational test conditions as
precisely and objectively as possible (e.g. also selection of suitable cohorts, suitable
item formulations). The tests to be developed should ideally be sensitive to interest-
ing factors and robust against interfering factors. Which factors and constructs come
into view is determined by the underlying theories and their basic concepts. Each
concrete test development, both in the traits and in behaviour diagnostics, now
includes the transformation of theoretical constructs or factors into variables. This
transformation is often referred to as operationalisation. The aim of

8Psychometric tests, of course, represent only a small section of psychology as an empirical science.
It should at least be noted that throughout the history of psychology there have been repeated
controversies about how to define the specific subject of psychology and what this means in terms of
feasible and appropriate scientific methods. For example, the controversy of explanation-
understanding is to be mentioned (see e.g. Riedel, 1978). There are, for example, many relation-
ships between this controversy and our discussion in this section. For space reasons alone we cannot
go into this here.
9
“. . .interindividuelle Unterschiede im Verhalten und Erleben sowie intraindividuelle Merkmale
und Veränderungen einschließlich ihrer jeweils relevanten Bedingungen so zu erfassen, hinlänglich
präzise Vorhersagen künftigen Verhaltens und Erlebens sowie deren evtl. Veränderungen in
definierten Situationen möglich werden”.
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operationalisation is then to formulate assumptions of interrelationships between
variables, e.g. between independent and dependent ones. Based on variable-related
data, the assumptions are tested by means of stochastic procedures. The goal of
operationalisation is thus to enable statistically processable and assessable findings.

To make this possible, operationalisation must ensure that the events and refer-
ence variables that are considered quantifiable and measurable by variables meet
conditions such as random variability:

Only if a result could in principle also have occurred by chance does the statement that in the
present case (according to agreed criteria) it is more frequently than simply random has
empirical substance.10 (Holzkamp, 1994, p. 85)

Random variability must therefore be ensured in the psychological design of
experiments. Which constructs or factors in which situations are suitable for trans-
formation into variables is a central specific contribution of the science of psychol-
ogy and cannot be answered mathematically alone. In contrast to electrical
engineering, for example, such transformations or “identifications” of psychological
constructs and variables are controversial in psychology (cf. e.g. Echterhoff et al.,
2013, pp. 39–42). From a historical point of view, operationalisation represents,
among other things, a starting point for the formulation of a fundamental critique
of the type of psychological research outlined here: For example, the assumptions of
connections formulated in this way would often be “secondary constructions of
abstract generality . . . that have very little to do with the real connections/contra-
dictions that should actually be up for debate [in psychology; the authors], with
which the research findings, because they `bypass the problem´, always seem
somehow trivial, meaningless, indifferent” (Holzkamp, 1994, p. 82).11 Currently, a
large part of psychological research is oriented towards the methodological approach
sketched up. With regard to this, it should have become plausible that it includes, in
its operationalisation, an identification of mathematical objects with quantities that
are considered measurable and quantitative.12

10
“Nur wenn ein Resultat prinzipiell auch zufällig zustande gekommen sein könnte, hat die

Aussage, dass es im vorliegenden Fall (nach vereinbarten Kriterien) ‘überzufällig’ ist, einen
empirischen Gehalt.”
11
“sekundäre Konstruktionen von abstrakter Allgemeinheit . . . die mit den wirklichen

Zusammenhängen/Widersprüchen, um die es eigentlich [in der Psychology; the authors] gehen
sollte, nicht viel zu tun haben, womit die Forschungsbefunde, weil sie `am Problem vorbei´ gehen,
stets irgendwie als trivial, nichtssagend, gleichgültig anmuten”. One can also compare Blumer’s
introduction of a theory of symbolic actionism, which was explicitly founded as an alternative to
“variable psychology”. ATD, with its focus on mathematics, also distinguishes itself to a certain
extent from research in didactics that is essentially psychologically based. It goes without saying
that this does not mean that psychometric tests in psychological or didactic research to investigate
specific questions, such as the effects of interventions in the face of large cohorts, are rejected.
12In psychology, operationalisations often do not take place in a single step. Therefore, a sequence
of such steps could be distinguished in detail. The last step, with regard to mathematical objects,
would then be particularly close to considerations in electrical engineering. In a certain sense, the
preceding steps would then be comprised in that step. Of course, the basic principle can only be
roughly described here.
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The second epistemology related aspect is the emergence of different mathemat-
ical discourses in mathematical practices in psychology, especially statistics, that can
also be observed in many ways. This concerns the specific selection of stochastic
models oriented to particular psychological research questions, but also their imple-
mentation in detail. This can be shown particularly well with path models and
structural equation models (cf. e.g. Renner et al., 2012). These do not result only
from quantitative calculations, but they are also usually based on theoretical psy-
chological considerations. Only this subsequently enables the psychological inter-
pretation of the calculated results.

The considerations about mathematical practices in psychology of this section
cannot, of course, replace a praxeological study based on concrete empirical mate-
rial. However, they point out that this could also be fruitful with regard to the two
epistemology related aspects highlighted in this paper. Finally, we would like to
briefly add that our reflections on psychology are also compatible with the pragmatic
position referred to at the beginning: according to this position, psychological
measurements (e.g. of an intelligence test) would not be understood as quantitative
definitions of personal characteristics, but rather as something that makes statements
about the behaviour of a person under certain conditions.

6 Outlook

In this contribution we examined a few ideas of how ATD-analyses could be
informed by epistemological-philosophical insights. Aspects from historic-
materialistic studies by Wahsner and von Borzeszkowski and philosophical-
pragmatic considerations by Schlaudt were used to discuss relationship of mathe-
matics and empirical sciences. Links to concepts of the ATD were drawn via the
scale of levels of codetermination and the institutional dependence of knowledge.
We have illustrated our considerations by examples of mathematical practices in
electrical engineering and psychology.

The philosophical-epistemological reflections on mathematical practices indicate
that they (partially) ground in major issues related to the interrelationships between
empirical sciences and pure mathematics and their historic-specific manifestation in
societal institutionalised teaching learning contexts. On this basis, especially
ATD-related concepts can be complemented and concretised in a suitable way in
order to examine institutionalised mathematical practices of teaching and learning in
educational institutions and to draw conclusions for teaching innovations. In partic-
ular, implementations of well-meant measures might produce unsatisfactory or
unintended effects as long as institutional, pedagogical and epistemological condi-
tions are not sufficiently well understood. Beyond an analysis of technological-
theoretical blocks of mathematical practices in empirical sciences like electrical
engineering, physics but also psychology, sociology, etc., the philosophical-
epistemological considerations further allow to question notions often used in
mathematical education research that claim to make essential aspects of such
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mathematical practices didactically accessible. Examples of these questions are:
Which aspects of those mathematical practices are covered and which are not
covered by approaches applying modelling cycles (Blum & Leiss, 2005) or
“Grundvorstellungen” (Greefrath et al., 2016)? How could these approaches be
reinterpreted by ATD terms, if relevant, in order to complement them appropriately
with regard to ignored aspects? And even more critically: How are those approaches
and their deficits regarding the issue of mathematical practices in empirical sciences
related to societal dominating reflections on teaching-learning issues? The latter
question is (partially) further connected to questions regarding the level of external
didactical transformations (see e.g. Bosch et al., 2021): How are the investigated
issues reflected in the construction of study programs and module structures? And
finally, regarding consequences for teaching: in addition to an emphasis on the
explication of identifications and the rationales of different mathematical discourses
in lectures and texts, the construction of suitable rich tasks with interesting opening
questions for the establishment of SRPs could be an interesting and useful way. In
connection with suitable initial problems for SRPs, the mathematical practices of the
empirical sciences, which have historically been widely recognised as adequate,
could and should indeed prove useful for their elaboration and solution by students.
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Describing Mathematical Activity: Dynamic
and Static Aspects

Ignasi Florensa and Catarina Lucas

1 Describing Inquiry: A Challenge for Research

During the past decades, there has been an important movement claiming for a
change in school institutions and more precisely in the organization of teaching and
learning processes. The main characteristics of this new pedagogical paradigm are
usually described by general principles such as active learning, student-centred
processes, open and contextualized activities and independent learning among others
(Felder & Brent, 2005; Prince, 2004; Prince & Felder, 2006).

The anthropological theory of the didactic (ATD) assume as one of its educational
ends to promote a shift in the pedagogical dominant paradigm, moving from the old
paradigm of “visiting works” towards the new paradigm of “questioning the world”.
This new paradigm is based on these four concepts: inquiry and being herbartian,
procognitive and exoteric (Chevallard, 2015).

One of the basic assumptions of the epistemological approach in didactics and, in
consequence, of the ATD is the strong dependence existing between the way
knowledge is conceived in school institutions and the didactic phenomena arising
in their implementation. The design, implementation and analysis of study processes
and their associated phenomena cannot be detached from a deep epistemological
analysis.

The design, implementation and analysis of inquiry study processes is not
different and presents diverse specificities at the epistemological level: knowledge
shifts from a static, individual and structured form to a more dynamic, collective and
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provisional structure. The systematic observation and description of these study
processes is a challenging issue for any theoretical approach in didactics. The
ATD framework has developed diverse tools enabling researchers to describe
knowledge involved in study processes as well as its dynamic evolution.

In this workshop we will present and mobilise three of these tools in order to
illustrate their use and potentialities. First, we will present the praxeological analysis,
the Herbartian schema and the question-answer maps. Secondly, we will use these
tools to analyse an SRP experienced by the participants regarding the forecasting of a
flu epidemy.

2 Fostering This Transition: Study and Research Paths

Study and Research Paths (SRPs) are a teaching format proposed by the ATD to
foster the transition from the paradigm of visiting works to the paradigm of
questioning the world. The design, implementation and analysis of these teaching
formats is based on the Didactic Engineering methodology (Artigue, 2014; Barquero
& Bosch, 2015). This methodology includes the consideration of the prevailing
epistemology in the school institution, the didactic phenomena that will be studied,
the selection of a generating question that will initiate the process of study as well as
the analysis of the whole process.

Specifically, SRPs in are initiated by an open question posed to a community of
study (a set of students X and a set of guides of the study, Y) that will generate
moments of study of available information in the media, and moments of research
and development of new solutions to generate an answer to the initial question. The
implementation of an SRP under the ATD perspective is often twofold. On the one
hand, SRPs can be considered as a tool to reach the education ends of the ATD:
fostering the paradigm shift. On the other hand, and from a research perspective,
SRPs are implemented following the didactic engineering methodology to empiri-
cally validate how an alternative conception of knowledge overcomes (and to what
extend) a specific undesired didactic phenomenon. This double character of SRPs is
crucial: they are research tools enabling researchers to generate answers to their
research questions, and also teaching tools to implement new study processes.

3 Modelling and Describing Knowledge Within the ATD:
Praxeological Analysis

As said before, the crucial role of knowledge in ATD forces researchers to avoid
blindly accepting the way knowledge is conceived in a specific institution. ATD
proposes to model knowledge in terms of praxeologies. Praxeologies are living
entities evolving and changing according to the institutions where they exist. They
are defined by a set of four elements [T/τ/θ/Θ], according to the ATD principle that
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any activity combines a “practice part” (or “know-how”) known as the praxis block,
and a “knowledge part” (or “know-that”) known as the logos block. The praxis block
involves a specific kind of tasks (T) and a set of associated techniques (τ) enabling to
develop the tasks. The logos block includes the technology (θ) and a theory (Θ)
justifying and interpreting (in a more or less formal and explicit form) the praxis, its
raison d’être and its results (Chevallard, 1999).

Praxeologies enable researchers to systematically describe knowledge existing in
a school setting and to describe the different elements of the praxeology and its
degree of explicitness. In addition, this way to characterise knowledge allow
researchers to detach from the traditional way of conceiving knowledge in school
institution, a way usually based on finished and closed elements (such as notions,
concepts, properties, procedures and definitions in mathematics). Praxeologies can
be used to describe the type of tasks that are actually associated to this piece of
knowledge, the way these tasks are carried out, how they are described and justified,
how they are related to other pieces of knowledge and also its raison d’être, that is,
the main questions this piece of knowledge allegedly helps to addressing.

4 Describing Study Processes: Herbartian Schema

Chevallard (2008) developed the notion of Herbatian schema (see Fig. 1) as a
representation facilitating researchers to describe and analyse different aspects of
study processes (Bosch & Winsløw, 2016).

The first part of the schema represents the didactic system S(X; Y; Q0) formed by
a set of students (X) a set of guides of study (Y) that together face the task to generate
an answer to an open question Q0. The second part of the schema describe the
process of elaboration of an answer (A♥) of the community of study to the generating
question Q0 This part is composed of two elements interacting through a dialectic:
the questions (Q1, Q2, . . ., Qm) and answers and works (A◊

m + 1, A
◊
m + 2, . . ., A

◊
n

and Wn + 1, Wn + 2, . . ., Wp). The hallmarked answers and works are preexisting
developed knowledge in different institutions that the community of study will
access in different media (Bosch & Winsløw, 2016). This information obtained is
then studied, deconstructed and adapted to the (sub)question addressed and incor-
porated to the milieu. The potential of the Herbartian schema is not only its capacity
to systematically model inquiry study process by easily incorporating the question-
answer and media-milieu dialectics but also its adequacy to compare any study
process ranging from traditional lectures to more innovative formats. For example,
in a more transmissive—traditional setting in where lectures are central, the
Herbartian schema reveals that only one answer will be available to the community
of study and that this answer will coincide with the one presented by the teacher. In

Fig. 1 Herbartian scheme
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addition, the question leading to the knowledge will remain in the shadow. In
contrast, in an open study process initiated by a question the community of study
will search for available answers, will modify and incorporate them. The difference
between teaching formats is made explicit in terms of diversity of elements of the
Herbartian schema mobilised during the process.

5 Describing Study Processes: Question-Answer Maps

Winsløw et al. (2013) present the question-answer maps (Q-A maps) as a research
tool to model “mathematical knowledge from a didactical perspective”. Q-A maps
are rooted tree representations of the inquiry followed in an SRP. They start from the
generating question and include all the partial answers and the derived questions
appearing during the whole process.

The use of Q-A maps by researchers in the ATD has spread in the past decade
with two main uses. On the one hand, they have been used as the materialisation of a
REM (Barquero, 2009; Lucas, 2015). On the other hand, Q-A maps have been used
as tools to describe and model study processes by, for instance, Barquero et al.
(2008) when implementing an SRP about population growth, and by Jessen and
Winsløw (2011) during the implementation of a bidisciplinary SRP in mathematics
and history. In addition, Q-A maps have also been incorporated in teacher profes-
sional development as a tool to structure and describe knowledge involved in SRPs
as well as a communication tool with students involved in these kind of study
processes (Florensa et al., 2018).

6 A Possible Raison d’Être for Elemental Differential
Calculus

Lucas and colleagues (Fonseca et al., 2014; Lucas, 2015) taking as starting point the
work of Ruiz-Munzon (Ruiz-Munzón, 2010), propose in their works a reference
epistemological model (REM) for elemental differential calculus at the transition
between high school and university. This REM considers that the activity around
functional modelling should be the raison d’être of elemental differential calculus.
The ATD considers that any modelling process can be described in four steps (not
necessarily in this chronological order): delimitation of the system to be modelled,
construction of the mathematical model, technical work in the model, and
interpreting this work within the system.

In her work Lucas (2015) also propose diverse SRPs based on this REM that were
experienced with first year students of Nuclear Medicine in the Biomathematics
course. One of the SRPs was initiated by the following generating question: “How to
prepare and administer a radiopharmaceutical to diagnose a thyroid cancer?”. The
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derived questions that appeared during the implementation of this SRP involved data
analysis of medicament concentration in diverse patients and the study of its average
rate of change, among other aspects. The students also worked on the selection of
continuous functions modelling the phenomena.

We consider this work as an important contribution to the ATD, in particular, on
the development of mathematical modelling at higher education. In consequence, we
have chosen to illustrate the use of the ATD tools (praxeological analysis, Herbartian
schema and question-answer maps) using a mathematical activity based on the REM
developed by Lucas (2015).

7 The Workshop: Describing Mathematical Activity
with ATD Tools

The structure of the workshop was the following (see Table 1): it started with a
presentation of the three ATD tools that the workshop intends to illustrate. Secondly,
we organized the participants in groups of 6 and proposed them to address a
generating question during 60 min. Then the groups used the ATD tools to analyse
their own modelling activity and we finished by the presentation of the work
developed by the groups and a general discussion.

The generating question proposed to the participants was selected based on the
REM on elemental differential calculus developed by Lucas (2015). The question
was: “We provide you the incidence index of the flu outbreak of the last winters in
Spain. We also give you the data of the first weeks of 2018 winter. Can you forecast
when the outbreak peak will take place? How intense will be the outbreak of 2018?”.
Data was provided using a spreadsheet and a graphic (see Fig. 2).

During this activity each member of the team will also use one of the ATD tools
to describe the activity in where they are involved.

Table 1 Activities of the workshop

Time
(min)

ATD tools to describe study processes: Praxeological analysis, Q-A maps and
Herbartian schema

20

Presenting the SRP Q0 10

Group working on the Q0 60

Analysing the inquiry process, deploying the ATD tools 50

Presentation of the results of each group 20

General discussion 20

Describing Mathematical Activity: Dynamic and Static Aspects 347



8 Results

Participants mobilised the three ATD tools to analyse their activity. Regarding the
use of Q-A maps, two of the groups worked with the Q-A maps. While group 1 (see
Fig. 3) included questions and answers involving diverse aspects, group 2 (see
Fig. 4) only worked on questions and answers involving the SIR model. As is
emphasized in previous research (Florensa et al., 2018; Winsløw et al., 2013)
works the Q-A maps model this dynamic nature of knowledge involved in inquiry
and its evolution during the study process.

Regarding the use of the Herbartian schema, group number 3 used it and
described in a very detailed way the elements of the media and how they evolved.
In particular, they identified the following hallmarked works: standard distribution,
average, best fitting techniques, variance, SIR model. In addition, the use of the
Herbartian schema made also explicit data they used (provided by the workshop
animators) but also complementary date they found (such as previous years data).
The elements that the group used to validate their answers are also made explicit
thanks to the use of the schema: data of the end of the 2018 epidemy, found in the
Health Ministry website is an illustrating example.

Finally, two groups (group 3 and 4) developed a praxeological analysis of their
activity. Both groups have only analysed a short extract of their activity: the fine
grain praxeological analysis allow them to describe exhaustively their activity but, in
contrast, they highlight the difficulty to connect the different types of tasks and
techniques mobilised. As an example, we present here the analysis of one of the
praxeologies involved according to group 4:

Fig. 2 Flu incidence index in Spain in 2015–2016, 2016–2017, 2017–2018, 2018–2019 winters
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Type of task T_1: Provided the incidence index of the flu outbreak of the last n
winters in a country, and provided the data of the first weeks of the current winter:
(a) Forecast when the outbreak peak will take place and, (b) forecast how intense
will be the outbreak of the current year.

One possible strategy (involving several techniques): To “play” with the data
provided: to consider the table describing the variation of infected along time,
and to consider the table describing the relative rate of infected along time.

Another possible strategy/technique τ1: to look in internet at disposable and suitable
works. We finded the SIR (Susceptible-Infected-Recovered) model, which
involves the functions S(t), I(t), R(t), and the parameters N, \gamma y \beta.

Technology θ1 corresponding to τ1: Description of the parameters N, \gamma and
\beta in terms of their properties in relation with the function S(t), I(t) and R(t).

Theory Θ1 underlying θ1 corresponding to τ1: Mathematical elements but also
notions and properties concerning the notion of epidemy, etc.

The diversity of tools developed within the ATD framework enable researchers to
describe inquiry study processes under different approaches. Each tool mobilised

Fig. 4 Q-A map of group 2
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during the workshop seem to emphasize a certain didactic-epistemological aspect of
the SRP. While Q-A maps highlight the dynamic and the evolution of knowledge in
a study process, the Herbartian schema allow researchers to analyse the elements
involved in the study as well as their providers. Finally, the praxeological analysis
allow a fine grain analysis where each praxeology is detailed in terms of the 4t
model. The selection of the mobilised tool in research works should be done
according to the studied didactic phenomena.
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