
Chapter 10
Labeled Graphs in Life Sciences—Two
Important Applications

Piotr Formanowicz, Marta Kasprzak, and Piotr Wawrzyniak

Abstract Life sciences and mathematics are usually considered as quite distant
areas of research. But in fact there are close relationships between them, especially
in recent years, when computational biology and bioinformatics rapidly evolve. The
spectacular developments in the area of biological sciences, particularly those related
to sequencing genomes, made evident that an application of formalmathematical and
computer sciencemethods is necessary for further discovering the nature of the living
world. Among many areas of mathematics being useful in this context, graph theory
plays especially important role. It is also worth to remember that, despite the fact that
graphs are intensively applied in biology during last three decades, they were used
in chemistry (being a basement of molecular biology) more than a century ago. In
this chapter a short review of selected applications of labeled graphs in biology and
chemistry is given. Some graph theory problems concerning molecules of chemical
compounds and DNA sequencing are presented.
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10.1 Introduction

Computational biology is an interdisciplinary branch of science which evolves at the
intersection of computing science, mathematics and biological sciences, especially
molecular biology. Itsmain goal is to developmathematicalmodels of biological phe-
nomena and algorithms solving various problems arising when biological processes
and objects are analyzed using strict methods. Many of the studied phenomena have
discrete nature, hence methods based on various branches of discrete mathematics
are often very useful to analyze them. Here, especially important is graph theory,
since many of the analyzed biological processes and objects have structure which
can be described in a natural way using graphs.

But an application of graph theory in life sciences can be dated a century before an
emergence of computational biology. Indeed, in the second half of nineteenth century,
graphs were used to describe and analyze molecules of chemical compounds. It was
a significant impulse to develop important ideas not only in chemistry but also in
graph theory.

In this paper a short review of selected applications of labeled graphs to two
groups of life sciences problems is presented. The first group concerns determining
structural formulas of chemical compounds. The problem has a quite long history,
but it has become more important recently when mass spectrometers are becoming
more and more precise and more available in biological laboratories.

The secondgroupof consideredproblems concernsDNAsequencingbyhybridiza-
tion. It is the problemwhich brought an attention of computer scientists into molecu-
lar biology in the late 1980s and in fact caused a rapid development of computational
biology. Many interesting theoretical results have been obtained since that time.
Some of them are mentioned in this chapter.

10.2 Molecular Graphs—Labeled Graphs in Chemistry

Problems considered with graphs have a long history, dating back to 1736 when
Leonhard Euler considered the issue of the Königsberg bridges. The word “graph”
appeared laterwhen in 1878, in an article published inNature, James JosephSylvester
introduced the term “chemicograph” along with its abbreviated version of “graph.”
It can be said that the application of graph theory to solving chemistry problems
gave birth to this science under the name we know. This close relationship between
graphs and chemistry will be presented here.
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10.2.1 Correspondence Between Graph Theory and
Chemistry

The possibility of using graphs for the mathematical description of chemical
molecules seems obvious when we compare the visual representation of a graph
(Fig. 10.1) and the structural formula (Fig. 10.2) of a chemical compound.

The main differences between these Figs. 10.1 and 10.2 are symbols of elements
in a chemical compound. The need to assign different symbols to the vertex brings
us to the essential requirement of using a graph to represent a chemical compound.
We have to assign a label to each vertex in the graph. After such an operation, each
vertex identifies the atom of a specific chemical element in the molecule. Modeling a
chemical compound by a graph requires more such relationships between the graph
and the chemical compound. There exists more such one-to-one correspondences,
like edge–bond, degree of vertex–valence of the atom, and others. They are listed in
Table10.1.

These analogies in constructing a graph and a chemical compound do not exhaust
the analogy between graph theory and chemistry. Many problems from the graph
theory correspond to the problems of chemistry (see Table10.2).

Fig. 10.1 Graph

Fig. 10.2 Molecule
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Table 10.1 Graph and chemical terms

Graph theory term Chemical term

Vertex Atom

Vertex label Chemical element symbol

Vertex degree Atom valency

Edge Chemical bond

Parallel edges/weighted edges Multiple chemical bonds
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Table 10.2 Graph and chemical problems

Graph theory Chemistry

Graph isomorphism Structural isomers

Topological indices (quantitative structure
properties)

Chemical or physical properties of substances
(e.q. boiling point)

Enumeration problems Counting all possible molecules for given
molecular formula

Planarity Chirality

Subgraph A molecule fragment or chemical group

10.2.2 Definitions

There are two basic ways to define a molecular graph:

(i) a labeled multigraph [20]
(ii) a labeled graph with labeled edges [32].

Each graph can be denoted as G = (V ,E), where V is a set of vertices matching
the atoms of the compound. Each vertex u ∈ V has assigned a label l(u) matching
the chemical element of the atom. Depending on the way of representation, E is
(i) a multiset or (ii) a set of edges. Edge e ∈ E is an unordered pair {u, v} : u, v ∈
V ∧ u �= v, the inequality of vertex ensures that the graph is a loop free. In the case
where the graph is not a multigraph, i.e. (ii), each edge has assigned a label w(e)
which corresponds to the type of a chemical bond.

10.2.3 Graph Isomorphism and Chemical Isomerism

In chemistry, molecules with the same molecular formulae can be completely differ-
ent compounds. Because apart from the elemental composition, the bonds between
atoms are an essential feature of a chemical compound. Such molecules, made from
the same number of atoms of each element but connected differently, are called
structural isomers. To investigate whether two molecules are the same, we need to
answer the question: Is the structure of connections between atoms the same? The
answer can be found by checking whether the corresponding molecular graphs are
isomorphic or not.

Isomorphism is one-to-one correspondence (a bijection) between vertex sets of
two compared graphs, G = (V ,E) and G ′ = (V ′,E′):

f : V → V ′ such that: ∀u,v∈V {u, v} ∈ E ⇐⇒ {f (u), f (v)} ∈ E′

This definition of isomorphism for the basic graph does not distinguish all dif-
ferences between molecular graphs. The graphs can have different labels in the
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Fig. 10.3 1,1-Difluoroethylene
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Fig. 10.4 1,2-Difluoroethylene

same place in the structure. Figure10.3 (1,1-Difluoroethylene) and Fig. 10.4 (1,2-
Difluoroethylene) present two different chemical compounds with the same molec-
ular graph structure.

It is easy to notice that these molecular graphs have the same structure but differs
in vertex labels. To distinguish between these cases, an extra condition for check
label equality must be added to the isomorphism bijection function [25]:

f : V → V ′ such that:
(∀u,v∈V {u, v} ∈ E ⇐⇒ {f (u), f (v)} ∈ E′) ∧ (∀u∈V l(u) = l(f (u)))

Graph isomorphism is a widely studied problem, and many ways to solve it have
been proposed. However, no polynomial-time algorithm for this problems has been
found. Hence it is not known whether the problem belongs to class P. On the other
hand, it was also not possible to confirm its belonging to the class of NP-complete
problems [44]. Fortunately, molecular graphs correspond to the natural chemical
compounds. They have many limitations, a finite number of labels (corresponding
to the symbols of elements), or a limited degree of vertices (corresponding to the
valence of an atom in the compound) [1]. Using this knowledge, we can use an
isomorphism algorithm for bounded degree graphs, and this problem can be solved
in polynomial time [29]. This approach and most other considered graph problems
concern simple graphs (without parallel edges and labeled vertices), called them just
a “graph”. However, a fast method having polynomial complexity of transforming
molecular graphs into simple graphs has been presented [20]. It consists of two steps:

1. Removing parallel edges: each parallel edge is split into two parts by adding an
extra vertex between the adjacency source vertices. Such dummy vertices always
have a degree equal to 2.

2. Removing labels: each label of a vertex is replaced by attaching a different number
of dummy vertices to the labeled vertex. Of course, the number of vertices added
this way is unique for each unique label. In this case, the dummy vertices always
have a degree equal to 1. For example, the number of added dummy vertices can
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Fig. 10.5 cis-1,2-Difluoroethylene
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Fig. 10.6 trans-1,2-Difluoroethylene

be set to Z = Z(a) + Z0, where Z(a) is the atomic number of a, and Z0 is the
maximum valence in the compound.

After such transformation, the molecular graph becomes a simple one and still
has a limited degree. In such a case, the isomorphism can be checked in polynomial
time.

Chemical compounds can have not only the structural isomers, but there are also
stereoisomers. This situation occurs for the mentioned earlier 1,2-Difluoroethylene,
the substance that has the cis- (Fig. 10.5) and trans- (Fig. 10.6) isomers.

The molecular graph cannot differentiate among such spatial isomers [21]. How-
ever, this information (chiral centers, cis/trans isomerism) can be encoded by bonds
labels (as in wedge and dash notation) [2]. For part of such problems, e.g., for the
cis and trans isomers, a solution has been proposed through the concept of virtual
bonds forming virtual cis rings [37].

10.2.4 Counting of Molecular Graphs / Isomer Enumeration

As mentioned earlier, the word graph was introduced in 1878 to denote what is now
known as a molecular graph. Even before that date, in 1874, Arthur Cayley first
applied the graph theory in chemistry to enumerate alkenes isomers [6]. Moreover,
more recently, the DENDRAL [15] enumerate molecules program is called the first
expert system [40].

The chemical problem of isomers enumeration is to count the number of different
compounds with the same molecular formula. This problem can be solved using
graph theory and counting all topologically distinct nodes labelings in the graph [14].
Pólya’s enumeration formula gives the most general method of such a calculation.

The Pólya algorithm is based on the symmetry recognition of the molecule under
study. The method is most often explained on the example of benzene and the sub-
stitution of its hydrogens with any other monovalent element, e.g., by fluorine. The
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Fig. 10.7 Symmetry axes

Fig. 10.8 Symmetry rotations

Fig. 10.9 Example of σ
(1)
v symmetry, permutation group (1)(4)(2 6)(3 5)

six axes of benzene symmetry are shown in Fig. 10.7, while Fig. 10.8 presents six
rotations in it, each with a step of 60◦. The last 360-degree rotation is identity [35].

Each of these symmetries can be written as a permutation. After each binding site
in benzene has been indexed, the applied symmetric operation can be described as a
sequence of indexes changes that make up the symmetry’s resulting indexing. When
vertex with index 1 is not changed, we can denote it as a permutation

(
1
1

)
. When the

vertex 2 is replaced with 6 and 6 with 2, it can be marked as a permutation
(
2 6
6 2

)
.

Permutations written in two-line notation can be changed to cyclic notation (1) and
(2 6). An example permutation group is presented in Fig. 10.9.
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Table 10.3 All symmetries of benzene

Symmetry Permutation Cycle index

E (1)(2)(3)(4)(5)(6) z61
C+
6 (1 2 3 4 5 6) z16

C−
6 (6 5 4 3 2 1) z16

C+
3 (1 3 5)(2 4 6) z23

C−
3 (5 3 1)(642) z23

C2 (1 4)(2 5)(3 6) z32
σ

(1)
v (1)(4)(2 6)(3 5) z21z

2
2

σ
(2)
v (3)(6)(1 5)(2 4) z21z

2
2

σ
(3)
v (2)(5)(1 3)(4 6) z21z

2
2

σ
(4)
v (1 6)(2 5)(3 4) z32

σ
(5)
v (1 4)(2 3)(5 6) z32

σ
(6)
v (1 2)(3 6)(4 5) z32

From such notations, we can extract the cycle index needed by Pólya’s algorithm.
For each permutation α, shown in Table10.3, the cycle index zik describes the number
i of the permutation cycles of a given length k.

The Pólya’s formula Z(A) is a multivariate polynomial, counting the cycle index
for a group of permutations A [38],

Z(A) = 1

|A|
∑

α∈A

n∏

k=1

zck (α)

k

where:

(i) |A| is the number of elements in the permutatioin group A,
(ii) α is a permutation from group A,
(iii) k describe the permutation length,
(iv) zk is a variable representing cycles in permutations of the length k,
(v) ck(α) is the number of cycles of length k in permutation α.

In the product
∏n

k=1 z
ck (α)

k , for each permutation α the sum of products of cycles
length k and cycles number of such length ck(α), of course, always equals the number
of elements in a permutation α, e.g., for z61 1 · 6 = 6, for z32 2 · 3 = 6 or for z21z

2
2

1 · 2 + 2 · 2 = 6.
Following the Pólya theorem, to obtain number of isomers, every occurrence of

variable zk has to be replaced by the generating function ck(x). Having only two
different chemical elements to choose from (hydrogen and fluorine), the simple
generating function ck(x) = 1 + xk can be used [18].
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Table 10.4 All k-fluoro-benzene isomers matched to Pólya’s polynomial terms

Replace in Pólya’s formula Z(A) for benzene example:

Z(A) = 1

12
(z61 + 4z32 + 2z23 + 2z16 + 3z21z

2
2)

each variable zk by generating function ck(x) = 1 + xk , results in the following for-
mula:

Z(A) = 1

12
((1 + x)6 + 4(1 + x2)3 + 2(1 + x3)2 + 2(1 + x6)1 + 3(1 + x)2(1 + x2)2)

Z(A) = 1 + x + 3x2 + 3x3 + 3x4 + x5 + x6

.
The coefficient of the xk term in the polynomial describe the number of isomers

with k fluorine atoms (Table10.4).

10.2.5 Molecular Graphs Generation / Isomer Construction

The graphs shown in Table10.4 are only an illustration presenting the correctness of
the Pólya algorithmoperation. The construction of such graphs is, however, a task that
hasmany practical applications.One of them is identifying chemicalmolecules based
on experimental data, most often from mass spectrometry. In the simplest case, the
mass spectrometry can provide very accurate information about a molecule’s mass.
This information can then be converted into a simple molecular formula [13] like
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C6H4F2. Creating all the structural isomers of such a molecule can be defined as the
following graph problem.

The molecular formula is changed to a multiset of labels L (corresponding to
the symbols of elements), and d(l) function assigning to each label l ∈ L a numeric
value (corresponding to the valence of the element). The task is to construct a set
S of connected graphs with labels from set L and corresponding degrees d(l) that
∀g,h∈G g and h are not isomorphic. There are two approaches to solve this problem:

(i) We create an unlabeled graph basing on the list of given vertices degrees d(l).
It is a well-known problem of graph realization [23]. Then, to obtain molecular
graphs,we assign labels to all unique graphs created in thisway. The assignment
of these labels also has to keep the graphs topologically distinct. The algorithm
for labeling these graphs can, like in the Polya algorithm, use symmetry groups
and algebraic structures based on them [14].

(ii) We start from the empty graph on labeled vertices from a multiset of labels L.
Then,we assign another kind of label to each vertex in the formof an index from
1 to |L|. In particular the vertex set for the Difluoroethylene (C2F2H2) can be
presented as {C1,C2,F3,F4,H5,H6}. Next, starting from this empty graph, we
extend it by one edge at each step, following the orderly generation algorithm
by Read and Faradzev [17, 39]. By introducing the order of added edges, this
algorithm eliminates the need to check the created graphs’ isomorphism with
each other.

Each of these approaches allows the application of additional conditions, e.g., the
existence of a specific subgraph, which corresponds to the existence of specific
chemical groups in the molecule. These algorithms are applied in various tools [3,
19, 22, 34, 43] used by chemists to discover the chemical structure of unknown
compounds, or to prepare libraries of new compounds for biochemical screening.

10.3 Sequencing Graphs—Labeled Graphs in Biology

DeBruijn graphs are labeled graphs known for their technical application inmodeling
communication networks or parallel computer architectures. Their special form well
fits such real-world schemas and guarantees a short path between any pair of nodes in
a network. What is more, a polynomial-time solution to the problems of the directed
Hamiltonian cycle or path, being generally NP-hard, is possible for such graphs.
Here, we describe another, biological application of de Bruijn graphs and related
classes of digraphs.
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10.3.1 Definitions

The following statements refer to directed graphs. Graph G = (V ,A) has V as the
set of its vertices and A as its set of arcs. Arc a ∈ A is an ordered pair (u, v): u, v ∈ V ,
where u and v can be the same vertex. Let e(v) be the label of vertex v, suf i(s) the
suffix of length i of string s, and prei(s) the prefix of length i of s.

A path in a directed graph is a sequence of vertices (v1, v2, . . . , vp), where
(vi, vi+1) ∈ A, i = 1, . . . , p − 1. A cycle is a path, for which the condition (vp, v1) ∈
A is satisfied. A path (cycle) containing every vertex of a graph exactly once is a
Hamiltonian path (Hamiltonian cycle). A path (cycle) traversing every arc of a graph
exactly once is an Eulerian path (Eulerian cycle).

For an alphabet of size α and labels of constant length k (k > 1, α > 0),
de Bruijn graph B(α, k) = (V ,A) has αk vertices, every one labeled
by a different word over the alphabet. For all u, v ∈ V , (u �= v ⇒ e(u) �= e(v))
and

(
(u, v) ∈ A ⇔ sufk−1(e(u)) = prek−1(e(v))

)
[16]. Adjoint G = (V ,A) of a

graph H = (U,V ) has vertices corresponding to arcs of H , and (u, v) ∈ A if and
only if the head of arc u in H is the tail of arc v [5]. Adjoint G is always a 1-graph
(i.e., it has no multiple arcs), H need not be. If H is a 1-graph, its adjoint G is a
directed line graph [8].

1-graph G = (V ,A) is an adjoint if and only if, for all u, v ∈ V , the following
property is satisfied:

N+(u) ∩ N+(v) �= ∅ ⇒ N+(u) = N+(v),

whereN+(u) is the set of immediate successors of vertex u [5]. 1-graphG = (V ,A) is
a directed line graph if and only if the following property is satisfied for all u, v ∈ V :

N+(u) ∩ N+(v) �= ∅ ⇒ N+(u) = N+(v) ∧ N−(u) ∩ N−(v) = ∅,

where N−(u) is the set of immediate predecessors of vertex u [8]. Digraph G =
(V ,A) is a quasi-adjoint graph if and only if, for all u, v ∈ V , the following property
holds [12]:

N+(u) ∩ N+(v) �= ∅ ⇒ N+(u) = N+(v) ∨ N+(u) ⊂ N+(v) ∨ N+(v) ⊂ N+(u).

Quasi-adjoint graphs, unlike adjoints, can be multigraphs.
According to definitions in [8], a directed 1-graphG = (V ,A) belongs to classLα

k
(can be (α, k)-labeled) if it is possible to assign labels to vertices such that, for all
u, v ∈ V , (u �= v ⇒ e(u) �= e(v)) and

(
(u, v) ∈ A ⇔ sufk−1(e(u)) = prek−1(e(v))

)
,

where k > 1 is the length of labels and α > 0 is the alphabet size. Labeled graphs
(uniquely labeled graphs) are these graphs that belong to a classLα

k for some α and k.
Graphs satisfying the above requirements except the condition that labels must be
different are called non-uniquely labeled graphs. A self-adjoint is defined as a graph
isomorphic to its adjoint [24]. Alphabet overlap digraphs are a generalization of
de Bruijn graphs. Given three integers, α ≥ 1, k ≥ 2 and 1 ≤ i < k, alphabet overlap
digraph O(α, k; i) = (V ,A) is defined as a graph labeled with all possible words of
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length k over an alphabet of size α, where i is a fixed offset in overlaps of vertex
labels [28] (see also [27]). For all u, v ∈ V , where |V | = αk , (u �= v ⇒ e(u) �= e(v))
and

(
(u, v) ∈ A ⇔ sufk−i(e(u)) = prek−i(e(v))

)
.

10.3.2 Combinatorial Modeling of DNA Sequencing

We refer to one of fundamental issues associated with molecular biology, DNA
sequencing. It is a process of recognizing a sequence of nucleotides of a DNA frag-
ment. Such a sequence determines some aspects of functioning of an organism, and
knowing it is a first step toward understanding biologicalmechanisms.Over the years,
several techniques were developed to carry through this process, from small-scale
laboratory methods [31, 41] to high-throughput automated modern sequencing (e.g.,
the Illumina sequencing), here we focus on an approach involving an algorithmic
stage, the DNA sequencing by hybridization [4, 33, 42].

Not going into biological details (for those see the above references or the algo-
rithmically oriented review [11]), the DNA sequencing by hybridization provides a
set S of short words over the alphabet {‘A’, ‘C’, ‘G’, ‘T’}, where the letters stand
for four nucleotides encoding genetic information of an organism: adenine, cyto-
sine, guanine, and thymine. The words are identified via a biological hybridization
experiment as parts of a DNA chain, and the goal of the computational problem is
to reconstruct the chain from these words. In the case of the classical approach to
the hybridization experiment, the words have the same length k and we call them
k-mers (where k usually takes values from 8 to 12), they are also assumed to be
different within a set. During the algorithmic stage of the process, the words from S
are ordered to obtain a final nucleotide sequence of the examined fragment of a DNA
chain (usually of the length a few hundreds of nucleotides). If the hybridization
experiment was performed without any error (the theoretical case considered here),
S is complete and the properly ordered words overlap exactly on k − 1 letters in pairs
of neighbors, thus they form a sequence of |S| + k − 1 letters.

The computational problem of DNA sequencing by hybridization without any
error in S was initially solved without special combinatorial models, via exhaustive
search. Soon two nice graph models were proposed. The first one, by Lysov and
co-workers, places words from S in vertices of a directed graph. Two vertices u
and v are connected by arc (u, v) if and only if sufk−1(e(u)) = prek−1(e(v)). In such
a graph, a Hamiltonian path is looked for, which corresponds to a solution of the
problem, i.e., the properly ordered sequence of all words from S [30]. In the second
model by Pevzner, words from S correspond to arcs and their prefixes and suffixes of
length k − 1 to vertices. Arcs are directed from the prefix of a word to the suffix of
the same word, and the solution is an Eulerian path [36]. Figure10.10 shows the two
models in an example. It also shows a common problem in bioinformatics, ambiguity
of a solution, which cannot be solved without additional information, e.g., coming
from other experiments or expert knowledge.
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C A G T C A G A G T A(a)

(b)

C A G T
A G T C
G T C A
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G A G T
A G T A

CAGT

AGTC
GTCA

TCAG
AGTA

GAGT
AGAG

CAGA

(c)

GAG
AGT

GTC

AGA
CAG

TCA

GTA

Fig. 10.10 Graph models for the problem of DNA sequencing by hybridization without errors.
a A nucleotide sequence of a DNA fragment and k-mers identified as its parts, here k = 4 and
S = {‘AGAG’, ‘AGTA’, ‘AGTC’, ‘CAGA’, ‘CAGT’, ‘GAGT’, ‘GTCA’, ‘TCAG’}. b The graph
by Lysov et al. constructed for S, where there are two Hamiltonian paths corresponding to two
possible solutions of the problem: ‘CAGTCAGAGTA’ and ‘CAGAGTCAGTA’. c The graph by
Pevzner constructed for S with two Eulerian paths resulting in the same two nucleotide sequences

10.3.3 Directed Line Graphs, De Bruijn Graphs, and Others

The equivalence of the two graphmodels became a subject of research a decade later.
Why, in this case, is the transformation from theNP-hard problem of theHamiltonian
path to the polynomially solvable Eulerian path possible? The answer was given
in [8], the Lysov graph is a directed line graph of the Pevzner graph constructed for
the same set S, and the problems of the Hamiltonian path or cycle in directed line
graphs are polynomially solvable. In [8] also a wider analysis of labeled graphs was
done. The graphs of Lysov and Pevzner have labels at vertices, and the overlapping
labels in Lysov graphs imply the presence of arcs (it is not the case of Pevzner graphs).
Actually, only the Lysov graphs can be classified as the labeled graphs, they belong to
classes L4

k . Lysov graphs are also called DNA graphs, especially when not restricted
to errorless S. DNA graphs are vertex-induced subgraphs of de Bruijn graphs with
α = 4. Pevzner graphs are subgraphs ofDNAgraphs, thus in consequence, subgraphs
of de Bruijn graphs.

Currently, a widest superclass of labeled graphs that is ‘easy’ for the Hamiltonian
cycle/path problem is the class of quasi-adjoint graphs [12]. In general, such graphs
cannot be labeled because sets of immediate successors of two vertices are no longer
the same or disjoint for all the pairs within a graph. Figure10.11 shows how graph
classes mentioned here relate to each other.
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10.3.4 Other Variants of DNA Sequencing

The DNA sequencing by hybridization is usually considered with errors accompany-
ing the experiment. Then, it is alsomodeled as a graph problem but without the useful
property of the polynomial-time solvability. Presence of any errors in an instance of
the DNA sequencing problemmakes the problem (i.e., the reconstruction of the orig-
inal nucleotide sequence of a DNA fragment) strongly NP-hard [9]. Both methods of
graph construction, by Lysov et al. and Pevzner, still work for S with errors, but the
Hamiltonian or Eulerian path cannot be expected there. The class of DNA graphs, as
presented in Fig. 10.11, covers graphs constructed according to Lysov et al. for all
possible sets S (with or without experimental errors) that do not contain repetitions
nor words of different lengths.

With next steps going beyond the original Lysov’s method, we lose ties with
graphs from Fig. 10.11. If we allow overlaps of k-mers with an offset greater than 1
but constant, we still obtain a (non-uniquely) labeled graph, a vertex-induced sub-
graph of an alphabet overlap digraph. But for a variable offset allowed, the resulting
graph is outside the class of quasi-adjoint graphs. Look at the following example, a
pair of vertices ‘TGATAT’ and ‘CCATAT’, and their sets of successors {‘GATATA’,
‘ATATTA’} and {‘ATATTA’, ‘CATATT’}, respectively. The sets are not disjoint, nor
equal, nor one contained in the other, thus do not match the property for quasi-adjoint
graphs.

self-adjoints

alphabet
overlap
digraphs

labeled graphs = directed line graphs

non-uniquely labeled graphs = adjoints

de Bruijn graphs

quasi-adjoint graphs

DNA graphs

Fig. 10.11 Relations between the classes of uniquely and non-uniquely labeled digraphs, their
subclasses, and quasi-adjoint graphs [26]. DNA graphs (Lysov graphs) are used as models of DNA
sequencing. All the graphs included here are polynomial-time solvable instances of the problems
of searching for the Hamiltonian cycle or the Hamiltonian path
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A non-classical approach to the DNA sequencing by hybridization, the isothermic
DNAsequencing, produces a set of nucleotide subsequences that can be characterized
by the same ‘temperature’ (melting temperature of DNA duplexes) but differing in
length [7]. A graph proposed as a model for this variant, for the errorless case, can
be either a directed line graph, an adjoint not being a directed line graph, or a quasi-
adjoint graph not being an adjoint [10]. Therefore, this problem is also polynomially
solvable.

TheDNA sequencing by hybridizationwas replaced by a newer technique, a high-
throughput automated sequencing, which is realized without an algorithmic stage.
However, algorithms and models are still necessary for such sequencing data at the
next level of organizing them. Although the output data from these two sequencing
approaches have different scale and contain different errors, basically the processes
of composing partial sequences into a final DNA fragment are very similar. Conse-
quently, graphmodels of Lysov et al. and Pevzner are still in use, after some necessary
adjustments to new circumstances (for a detailed description see, for example, [11]).
One of the adjustments is the permission for non-exact overlaps of sequences in the
Lysov’s model. However, this one change makes a graph not satisfying the property
for quasi-adjoint graphs.

10.4 Conclusions

In this chapter a short review of selected applications of labeled graphs in life sci-
ences has been given. Graph theory is a very important and useful tool in solving
various problems appearing in many areas of biological sciences. Its application
helped to make a progress in DNA sequencing and mass spectrometry, among oth-
ers. On the other hand, problems arising in biology (especiallymolecular biology) are
inspirations for new directions of theoretical research in graph theory (DNA graphs
and molecular graphs being examples). So, the intersection of these two seemingly
not very closely related areas, i.e., biology and graph theory, is a source of many
interesting problems, results and inspirations for both of them.
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