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Abstract. Malware are capable of evolving into different variants and
conceal existing detection techniques, which relinquishes the ineffective-
ness of traditional signature-based detectors. There are many advanced
malware detection techniques based on machine learning and deep learn-
ing, but they cannot fulfill the real issues in industries. Malware variants
are evolving at a rapid pace and labelling each of them is not practical
and feasible. So, industries are considering a lot of the unlabeled sam-
ples as benign, while only a few are labelled. Consequently, the authentic
malware samples are mislabelled. Bias created by mislabelling the sam-
ples severely restraints the accuracy. Also, the user is unsatisfied with
malware detection system, since there is poor negotiation between the
speed and accuracy.

In this research article, we propose a hybrid positive-unlabeled learn-
ing technique for malware detection that can address some important
challenges. Here, we use an ensemble model comprising of Logistic
regression (cost-sensitive boosted), Random Forest and Support vector
machine, to detect the malware variants. Along with that, we demon-
strate that features in the form of a triplet vector are optimal while
training a model. Experimental outcomes show that our proposed model
attains 91% malware detection accuracy having a false alarm rate less
than 0.005, while the earlier state-of-art approaches can only achieve
76.4% to 89% accuracy. The detection speed of our approach is 0.003 s.

Keywords: Ensemble model · Positive-unlabeled learning · Machine
learning techniques · Malware

1 Introduction

Malware is an extensive threat that covers computers as well as Internet of
Things (IOT) devices [1]. Whenever software under study has coding or con-
figuration error and wrongly sensed as anomalous, it generates a false positive
data [7,11,14]. For the machine learning (ML) or deep learning (DL) based tech-
niques to work, we must label several legitimate and benign binary executables
for training. Labeling each sample is inimical as it takes a lot of time and requires
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high labour costs. For this reason, the volume of the unlabeled sample is smaller
compared to labeled one. For tackling this issue, companies label the remaining
unlabeled malware samples as benign.

Now, the unlabeled binary executable is considered as benign one (nega-
tive samples), but the authentic malicious binary executable (positive samples)
are mislabeled. Immense amount of malicious samples in the unlabeled binary
executable will reduce the efficiency of the malware detection model. So, it gen-
erates bias in the decision boundary and is illustrated in Fig. 1, which leads to an
inaccurate malware detector. We term this problem as positive-unlabeled learn-
ing, where a 2-class classifier is trained using a dataset containing negative data
(benign), positive data (malicious) and unlabeled data (presumed as benign).

In this research work, our primary goal is to enhance the accuracy of the
detector when it is trained using the dataset created from positive-unlabeled
binary executable. Besides, detecting malware variants, we use system calls which
is collected using NITRSCT [2] tool and demonstrate that the vector of con-
secutive 3 system calls as a feature, will be effective and optimal for malware
detection. Whenever a dataset is created, we optimize the logistic regression
with cost-sensitive boosting. We propose an ensemble model comprising opti-
mized logistic regression, random forest and support vector machine, which will
accurately detect malware variants and will have least detection time.

Fig. 1. Biased boundary misclassifies the samples [20]

We organize the remaining part of this article as follows. Section 2 consists
of related works, Sect. 3 presents our proposed malware detector’s methodology.
Section 4 exhibits the experimental results. Section 5 presents the comparison
with related work. Section 6 discusses over the threats to validity and Sect. 7
concludes the paper with future directions.
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2 Related Works

In this section, we discuss some existing work linked to our approach.

2.1 Malware Variants Detection

Fan et al. [3] recommended subgraphs construction of API calls which describes
the prevalent behaviour of binary executable malware of the same family. But,
the extraction of API calls from binary executable fails sometimes. Zhang et
al. [4] embedded opcode and API sequential calls using Convolutional neural
networks (CNN) and Back Propagation Neural Networks (BPNN) and the mix
of these networks is used for training a malware variant detector having hybrid
features. Zhang et al. [5] used topological features of the opcode graph to identify
android binary executable malware. Stringhiniq et al. [8] created a graph depict-
ing the file delivery networks and trained using semi-supervised Bayesian label
propagation. Here, reputation of the acknowledged files is sent to all nodes of the
graph. But these files are behind-time, meaning that whenever malicious binary
executable is sensed, then up to that time, countless copies of the malware has
already done the damage.

Canzanese et al. [6] represented binary executable using system call n-gram
and used SVM for malware variants detection. Raff et al. [19] used CNN and
bytecode n-grams for malware variants detection. Presence of noise in bytecodes
is much higher compared with opcodes, resulting in a depreciation of accuracy.
Kang et al. [18] used Naive Bayes technique towards catching the 2-opcode
vectors of binary malicious executable. But, the assumption that Naive Bayes
considers features as independent, depreciates the malware detector’s accuracy.
Puerta et al. [10] used SVM for detecting malware and represented binary exe-
cutable using opcode frequencies. Simplicity of features depreciates the accuracy
due to the lack of the adequate information in the features.

All the above discussed approaches rely on dataset having known positive
and negative labels. If they will design detector with dataset having semi-labeled
instances, then the accuracy is acutely hampered.

2.2 Positive-Unlabeled Learning

Some scholars preferred positive-unlabeled learning techniques for training the
malware detector whenever they encounter positive-unlabeled data. Liu et al.
[12,13] designed a SVM with some bias and upcoming steps were used to find
obvious positive samples. Xiao et al. [16] employed K-means to discover positive
as well as negative instances in dataset which are unlabeled. But, these tech-
niques were influenced by the recognized negative training samples. Malware
detection results’ accuracy will be disastrous if the negative data is inaccurately
detected. Elkan et al. [17] trained a malware detection classifier on positive as
well as unlabeled instances for estimating weights of validation set samples and
modeled a weighted Support Vector Machine. Xu et al. [9] generalized solitary
positive class of binary executable into various positive classes. Gong et al. [15]
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identified the margin among positive and potentially negative samples and pro-
posed a label-calibrated SVM. However, their method is confined to SVM and is
inappropriate for other ML methods. Zhang et al. [20] suggested a cost-profound
boosting technique for positive-unlabeled learning for malware detection. But
they have used opcode representation, which is only the static analysis of the
binary executable.

3 Proposed Methodology

In this section, we propose the methodology for detecting malicious variants
using system calls and ML. First, we discuss the architecture of our proposed
model. Second, we discuss the representation of system calls and conclude by
presenting the positive unlabeled learning, which we use in our approach.

3.1 Architecture of Our Approach

We present the architecture of our malware detection model in Fig. 2. First, a
model is initialized and trained using a customized cross entropy loss function
and termed as optimized Logistic Regression. We use the cross-entropy function
as it will output the binary label in the terms of probability. Then the training
is done using the optimised LR, Support Vector Machine and Random Forest.
After training is completed by the three different approaches, we ensemble them
and use the hard voting classifier to predict the final label on the test dataset.
In Ensemble model first, we will sum the predictions made by each model and
then we will predict the class label with the most votes.

Fig. 2. Proposed architecture of our approach
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3.2 Representation of System Calls

Features are extracted using n-gram model representing an adjacent sequence
of n consecutive system calls derived from a selected sequential system call. We
analyze three ML models’ true positive rate (tpr), by varying the length of the
vector of system calls. The tpr of each detector is shown by fixing the false
positive rate at 10−5. For n = 1, the highest tpr is 0.32, while for n = 2, the
highest tpr is 0.85. When we select n = 3, the highest tpr is 0.91, and it decreases
to 0.81 whenever n = 4 is considered. So, we can infer that taking the value of
n = 3 will be optimal for the length of all feature’s vector. Here, n is the number
of consecutive system calls in a vector.

3.3 Positive-Unlabeled Learning

Nowadays, industries mark a limited portion of the binary malicious executable
as positive sample and leftovers are “unlabeled legitimate data” containing mal-
ware variants. Upon training malware detector with “semi-labeled data” (unla-
beled samples along with malware samples) using ML, the detection accuracy
will be inadequate. In this article, we propose an ensemble method comprising
of logistic regression (cost-sensitive boosted), random forest and SVM, that can
boost the accuracy of positive unlabeled learning.

First, we optimize the logistic regression with cost-sensitive boosting. The
idea behind this technique is assigning separate weights to unlabeled binary
executable for differentiating between true legitimate binary executable and false
legitimate binary executable (malware variants) in it. We calculate loss function
using Eq. 1, where LossCEL is the Cross Entropy Loss, h(x) is the confidence of
x (model’s yield) and yi is the label of a sample in the tth iteration.

LossCEL = −(
n∑

i=0

h(xi)∑i−1
j=0 h(xj)

.(yi.log(h(xi)) + (1 − yi).log(1 − h(xi)))) (1)

The major problem is allocating proper weights to the samples. While train-
ing during each iteration, we allocate the weights bestowing to the confidence
h(x). Let x be an instance of a dataset of binary executable, xm is the malware
instance and xb is the benign one. Since xm in unlabeled datasets and malware
datasets are analogous, h(xm) hovers between 0 and 1, while h(xb) of xb in
unlabeled data sets will advance towards 1. Accordingly, h(x) of benign will
be huge than h(x) of malicious binary executables. This amplifies the value of
genuine legitimate binary executable and dampens the cost of false legitimate
binary executable, while training with unlabeled data. The algorithm for our pro-
posed hybrid positive-unlabeled learning malware variants detector is presented
in Algorithm 1.

4 Experimental Results

We present the experiment for demonstrating that our proposed ensemble model
can boost the accuracy with commendable detection time. At first, we present
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Algorithm 1: Hybrid positive-unlabeled learning malware variants detec-
tion model
Input: A data set X
Output: A detection model which classifies samples into malware and benign.

1 Initialize a model ML(x) ;
2 Set avg = 0 as initialization ;
3 Function Training(X, ML(x)):
4 for i = 0 : n do
5 Train x using ML(x) ;
6 calculate h(x) from ML(x) ;
7 Get avg = (avg · i + h(x)) / (i + 1) ;
8 Update ML(x) according to Equation 1 ;

9 Apply Random Forest and SVM on X ;
10 ML(x) = Ensemble ML(x) (Optimized Logistic regression), Random forest

and SVM using hard voting ;
11 return ML(x) ;

12 end function

the experimental setup, the dataset, the hyper-parameter settings and at last
we conclude with performance evaluations.

4.1 Setup, Dataset and Hyper-parameters

We carry out entire experiments on one system. The variant of the CPU is
Intel i5-3470 @ 3.20 GHz, the RAM is 16.0 GB and the OS is Windows 10. We
have implemented our approach using Python language in which the matrix
computations are dependent on numpy.

The dataset1 considered for performance evaluation and training is developed
using NITRSCT2, which was developed by us. We evaluate the performance of
our proposed model during training with the unlabeled datasets, which contain
20% malware variants and 80% benign ones.

For preparing a dataset, we have collected benign executables from 20 hosts
in offices, laboratories and isolated testbeds. The malware used for experimental
purpose is collected from VirusTotal3. The hyper-parameters which are fixed
by us have a considerable effect on the performance. We display the hyper-
parameters used in our way in Table 1.

4.2 Performance Analysis of Malware Detection

The parameters which we use for performance analysis of our proposed model
are classification accuracy, detection false positive rate, detection true negative

1 https://github.com/pushkarkishore/NITRSCT/blob/master/data1.rar.
2 https://github.com/pushkarkishore/NITRSCT/blob/master/Debug.rar.
3 https://www.virustotal.com/.

https://github.com/pushkarkishore/NITRSCT/blob/master/data1.rar
https://github.com/pushkarkishore/NITRSCT/blob/master/Debug.rar
https://www.virustotal.com/
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Table 1. The hyper-parameter settings of our experiment

Detector Hyper-parameter Value

Optimized Logistic Regression (OLR) Learning rate 0.001

Optimized Logistic Regression (OLR) Number of iterations 5000

Random Forest (RF) Number of estimators 100

Random Forest (RF) Random State 0

Random Forest (RF) Number of Jobs 2

Support Vector Machine (SVM) Kernel Sigmoid

Proposed model Weight SVM(1), OLR(1), RF(1)

rate, detection false negative rate, detection precision, detection recall, F1-score,
training time cost, detection time cost and area under curve. The classification
accuracy is evaluated using Eq. 2. The recall of the model is the true positive rate,
where True Positive (TP) is the number of correctly classified malware samples
and False Negative (FN) implies malware samples misclassified as the benign
one. TNR is the true negative rate, where False Positive (FP) is the number of
benign samples misclassified as malware binaries and True Negative (TN) is the
number of benign samples which are correctly classified. FPR represents false
positive rate, FNR represents false negative rate, Precision represents malware
detector’s precision and F1-score is computed using Precision and Recall.

accuracy =
TP + TN

TP + FN + TN + FP
(2)

The performance evaluation of our model is presented in Table 2. The ROC
curve of our model is shown in Fig. 3. The area under the receiver operating
characteristics (ROC) curve of our proposed model is 0.94. The confusion matrix
of our model is presented in Fig. 4. For the combination of 1000 benign and
malicious testing instances, we get 995 True negatives, 5 False positives, 180
False negatives, 820 True positives. Our model’s False positive rate is 0.005
which is considerably low as compared to other works. A malware detector is
practically useful when it has low FPR.

5 Comparison with Related Work

We have compared the performance of our model with that of several state-of-
art methods and shown in Table 3. By comparing with the other state-of-the-art
methods, we observe that our approach significantly improves the classification
accuracy, precision, the (1-FPR), F1-score and training time while retaining the
detection speed. Accuracy is better than all the considered models, making it
useful for industrial malware detection. Precision is 99.3%, which is higher than
the precision evaluated by using the SVM method. Recall is 82.0%, which is
lower than logistic (optimization) and CNN (optimization) methods. It means
that 82.0% of the total relevant results are correctly classified by our proposed



Hybrid Positive-Unlabeled Learning Method 15

Fig. 3. Roc curve of our model Fig. 4. Confusion matrix of our model

Table 2. Performance evaluation of our model

Sl. no. Performance parameters Value

1 Accuracy (%) 91.0

2 Recall (%) 82.0

3 TNR (%) 99.5

4 FPR (%) 0.5

5 FNR (%) 18.0

6 Precision (%) 99.3

7 F1-score (%) 89.6

8 Detection Time (s) 0.003

9 Training Time (s) 160

model. Considering the problem under consideration, we give the highest pri-
ority to either precision or recall. In general, we use a simple metric, F1-score,
which is the harmonic mean of precision and recall. Our model proves its vitality
when we consider F1-score, which is 89.6%. Specificity is equivalent to “1-FPR”,
which implies that benign samples being labeled benign is 99.5%. Its lower value
will only block the benign process, so we consider it as an auxiliary parameter.
Our extraneous objective of blocking of benign executable on the hosts will be
minimal as specificity is higher. SVM [18] method has a higher precision, but it
has lower F1-score, accuracy and recall. As accuracy and F1-score is lower than
our proposed model, we cannot use this model. CNN (optimization) [20] method
has higher recall than our proposed model, but lags in F1-score, accuracy and
precision. Logistic (optimization) [20] method has also higher recall than our
model, but has least accuracy, precision, specificity, F1-score, detection time as
well as training time. Considering the above models, there is a poor trade-off
between precision and recall, thus, their F1-score is minimal. Comparing with the
above stated parameters, we observe that our proposed model is more suitable
for malware detection.
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Table 3. Comparison of performance of our approach with existing state-of-art
approaches

Method Accuracy Precision Recall 1-FPR F1-score Detection time Training time

Logistic (optimization) [20] 89.0% 87.3% 91.2% 86.7% 89.2% 0.007 s 16,053.0 s

Softmax (optimization) [20] 80.0% 82.7% 75.8% 84.1% 79.1% 0.006 s 16,241.0 s

CNN (optimization) [20] 86.0% 86.2% 85.7% 86.3% 85.9% 0.053 s 107,519.0 s

CNN [19] 84.3% 91.8% 75.2% 93.3% 82.7% 0.053 s 109,633.0 s

SVM [18] 76.4% 92.9% 58.9% 95.5% 67.6% 0.006 s 676.0 s

Our approach 91.0% 99.3% 82.0% 99.5% 89.6% 0.003 s 160.0 s

6 Threats to Validity

For all the methods to work with system calls, they have to capture the system
calls during runtime with the help of sandboxes, which makes it tough and costly
in terms of resources in preparing dataset. Modern malware variants tend to hide
their malicious behaviour whenever they detect themselves running in sand-
boxes. Our model can eliminate this issue to some level. We have analyzed every
act of malware inactiveness or sleepy behaviour by making sandbox dynamically
changing its time settings to deceive malware and stimulate its execution.

7 Conclusion and Future Work

In this paper, we proposed an ensemble malware detection method for positive-
unlabeled learning adopted to detect numerous malware variants. In industries,
malware detection model is trained with positive-unlabeled datasets, which
severely limits the accuracy. Our approach addresses this issue by providing
a novel ensemble malware variants detection model. Besides, we have demon-
strated that a vector of three consecutive system calls, when considered as a fea-
ture in dataset will be optimal for malware detectors. The experimental results
convey that our model achieves 91.0% accuracy with false alarm rate less than
0.005, while the other techniques achieve up to a maximum of 89%, when the
unlabeled dataset contain many “mislabeled” data (positive data).

In the future, we can improve the cost of dataset creation and can detect
newer sandbox-evading malware by enhancing the features of the sandboxes. We
can consider a static analysis of the binary executable like API calls, opcode,
etc. and design an ensemble detector to improve malware detection accuracy.
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