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Abstract Operating rooms (ORs) are themost costly part of hospitals, thus a priority
for hospital administrations. In this paper, we consider the next-day OR scheduling
problem for multiple operating rooms. We assume that surgeries have uncertain
durations, and distributions of surgery durations are time-dependent. Our aim is to
find the assignment of surgeries to the available ORs, the sequence, and the planned
starting times of surgeries in order to minimize the weighted sum of expected waiting
time of patients, idle time of ORs, and overtime of the hospital staff. In order to
find solutions to the problem, we propose an L-Shaped method, customized to our
problem formulation. We quantify the penalty of ignoring the time-dependency of
surgery durations within a numerical study. We find that the penalty of ignoring the
time-dependency increases with the overtime cost, average surgery durations, and
decreases with surgery variability.
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Introduction

Healthcare expenditures are increasing with an ever-increasing rate [14]. According
to [7], the proportion of healthcare expenditures in total GDP in the USA increased
from 5.0% in 1960 to 17.8% in 2015. Hospital expenditures are responsible for a
third of this spending. To reduce costs, many hospitals have been looking for ways to
increase the efficient use of their resources. According to the Health Care Financial
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Management Association, operating rooms (ORs) account for more than 40% of a
hospital’s revenues and costs [18]. Therefore, it is crucial to increase the efficiency
of ORs in order to better manage the increasing hospital costs.

OR planning and scheduling problems are especially challenging. First, many
factors, including the ability of hospital staff, type of surgeries, and possible compli-
cations encountered during surgeries, result in the inherent uncertainty of surgery
durations. Yet, the accuracy of surgery duration predictions is critical: If surgeries
last shorter than predicted, ORs remain idle, and utilization of ORs decreases. If
surgeries last longer than predicted, patients will wait for their surgeries, and this
will result in dissatisfaction of patients. Moreover, the computational burden of the
problem increases drastically as the number of ORs and thus the number of the surg-
eries increase, since there are too many possible assignments of surgeries to ORs and
sequences of surgeries within ORs.

OR planning problems are divided into three categories in [1, 17]: strategic,
tactical, and operational. Strategic level problems have long-term planning horizons.
The long-term capacity of operating rooms and the allocation of operating rooms
over different specialties are determined at the strategic level. The temporary capacity
of operating rooms and the allocation of surgeries to different days in a week are
determined at the tactical level. At the operational level, daily schedules of operating
rooms are determined. Our research problem lies in this last category: What is the
best next-day OR schedule for a list of surgeries given the time-dependent stochastic
surgery durations?

In this chapter, we consider a next-day OR scheduling problem for multiple ORs.
Emergent surgeries are ignored, and only elective surgeries are considered. It is
assumed that surgeries have uncertain durations, and distributions of surgery dura-
tions are time-dependent. Furthermore, it is assumed that a surgery cannot start
before its planned time, even if the previous surgery is completed earlier than its
planned time. On the other hand, it may start later than the planned time if the
previous surgery is completed after the planned time. The objective is to minimize
the expected weighted sum of waiting time of patients, idle time of operating rooms,
and overtime of the hospital staff. We provide a mathematical model formulation of
the problem, and the L-Shaped method is used to solve the resulting formulation.

The vast literature on OR planning assumes that the duration of surgery does
not depend on the scheduled time of the day. However, recent studies show that the
performance of hospital staff (surgeons, nurses, anesthesiologists, technicians) could
change according to the time of the day (e.g., [19, 19]). Most of the hospital staff
are energetic in the morning, and this may result in a decrease in surgery durations
of early surgeries. Moreover, hospital staff would not want to stay beyond planned
working hours and be more effective in parallel processing and communication with
other team members, which translates into reduced durations for late surgeries. We
consider time-dependent surgery durations and quantify the effect of ignoring the
time-dependency of stochastic surgery durations in OR planning.

A related avenue of research is scheduling papers that consider sequence-
dependent setup times. In these papers, job duration is assumed to depend on the
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preceding job(s). In our study, we model time dependency such that the distribu-
tion of surgery duration depends on whether it is the first, middle, or last scheduled
surgery. Apart from [35], which study the deterministic OR scheduling problem
with sequence-dependent setup times, our paper is the first study that considers
time-dependent stochastic surgery durations in next-day OR scheduling.

Literature Review

OR planning and scheduling problems have drawn great attention during the last
50 years. For a comprehensive review, we refer the reader to [6, 6]. In this section,
we briefly discuss papers on stochastic OR planning grouped into two categories:
papers that study only scheduling and those that consider both sequencing and
scheduling of surgeries. Then, we highlight papers on machine scheduling with
sequence-dependent setup times, which is a related stream for our study.

Papers in the first category assume that sequence of surgeries is known at the
beginning and aims to find the optimally planned surgery durations. Reference [33]
finds that the problem is of a “Newsvendor” type when there are two surgeries. If
the number of surgeries is more, a myopic heuristic is proposed. Reference [31]
aims to minimize the weighted customer delay time and system completion time.
Under exponentially and independently distributed surgery durations, it proves the
convexity of the objective function. It is argued that the optimal durations exhibit a
dome-shaped pattern: the planned surgery durations first increase and then decrease
as one moves toward the later surgeries in the sequence. Reference [8] formulate
the problem as a two-stage stochastic linear program. It finds the lower and upper
bounds of the objective function and then employs theL-Shapedmethodwith sequen-
tial bounding to solve this problem. Reference [4] study the case where the surgery
durations are distributed with a joint discrete probability function. It is shown that
the optimal surgery durations can be calculated in polynomial time. Since the exact
solution is hard to find, some papers focus on developing effective heuristics. Refer-
ence [29] propose a robust heuristic to minimize the weighted sum of the waiting
time of the patients and the idle time of surgeons. Finally, [21] develop a method to
find the exact solution to the problem and propose a hybrid heuristic motivated by
real practices.

The problem of finding the optimal sequence as well as the planned starting
times of surgeries within a single OR, is even more challenging. Reference [32]
proposes a sequential two-phasemethod in which first the sequence, then the planned
starting times are calculated. It finds that under exponentially distributed service
times, sequencing jobs in order of decreasing means gives the optimal sequence.
Reference [12] consider elective case scheduling to maximize the utilization of
the operating rooms. Two heuristics for scheduling of surgeries are used: Earliest
Start Time Heuristic and Latest Start Time Heuristic. The first heuristic is good at
predicting start time, and the second heuristic can eliminate overtime. Reference [25]
studies OR scheduling with the aims of maximizing the throughput and minimizing
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waiting time and overtime. It is argued that short procedures contain less variability
than long procedures. Thus, scheduling short-duration procedures first maximize on-
time performance. A two-stage stochastic programming model is presented in [10]
to sequence surgeries and schedule surgery durations simultaneously. The paper
employs the Sample Average Approximation (SAA) method to find solutions using
four different sequencing heuristics. It is concluded that sequencing surgeries using
Shortest-Variance-First (SVF) rule outperform other heuristics. Reference [28] prove
that thefinite scenarioSAAmethod isNP-Complete. Theydevelop aheuristicmethod
based on Bender’s decomposition, and the results are compared with the solutions
found by the SAA method. It discusses that this heuristic has significantly better
results than SVF heuristic when the unit costs are unequal. Reference [2] studies a
single machine stochastic scheduling problem and finds that when the job processing
times are distributed normally, and earliness and tardiness costs are the same for each
job, the optimal sequence is SVF. Reference [15] extends this result and proves that
the SVF rule is optimal under the assumption of dilation ordering of processing
durations.

When there are multiple available ORs, another dimension of the assignment of
surgeries to the ORs is introduced into an already challenging problem. Reference
[9] develop a simulation model to handle uncertainties related to the intake process,
surgical procedure, and recovery process. A simple simulated annealing method
is used in order to improve the patient arrival schedule. Reference [22] develop a
stochastic model for OR scheduling with elective and emergent surgeries under the
assumption that surgery durations of elective surgeries are known and deterministic.
A Monte Carlo optimization is proposed that combines Monte Carlo simulation and
mixed-integer program. In this model, elective surgeries are assigned into different
periods over the planning horizon in order to minimize the sum of elective patient-
related costs and overtime cost of operating rooms. Reference [23] assume that
operating rooms are identical, and the SAA method is used as a solution method.
They find that the Monte Carlo optimization method converges exponentially to a
real optimal solution. Reference [11] develop twomethods to minimize the total sum
of the fixed cost of opening operating rooms and the variable cost of overtime relative
to a fixed length of a day. The first method is a two-stage stochastic linear program
with binary decisions in the first stage, and simple recourse in the second stage. The
binary decisions in the first stage are the number of operations to be opened, and the
assignment of surgeries to operating rooms. The secondmethod tries to minimize the
maximum cost associated with the uncertainty of surgery durations. The paper finds
that the second method is faster, and it benefits from limiting the worst-case outcome
of the recourse problem. Reference [3] employ the L-Shaped method for multiple
operating rooms and multiple surgeries problem. In the first stage, the number of
operating rooms to be opened, the assignment of surgeries into operating rooms,
and the sequence of the surgeries within ORs are determined. Therefore, this stage
only includes binary variables. In the second stage, the weighted sum of the waiting
time, idle time, and overtime are calculated by using the values of binary variables
obtained in the first stage. Finally, [35] develop a method for solving a problem with
sequence-dependent setup times of surgeries. The goal is to decide on the number
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of operating rooms to open, the assignment of surgeries to operating rooms and the
sequence of surgeries within an operating room. It is assumed that surgeries belong to
different types, each operating room allows only a set of surgery types and setup time,
and surgery durations are deterministic. It is found that the Constraint Programming
model gives more efficient results in terms of computation time and solution quality
than the Mixed Integer Nonlinear Programming model.

There are several studies on machine scheduling with sequence-dependent setup
times that are relevant to our problem. As in [35], the majority of studies on machine
scheduling problems with sequence-dependent setup times focus on deterministic
setup times due to the computational burden of stochastic problems. Reference [16]
proposes an assignment algorithm, which is an extension of the Hungarian algorithm
for scheduling jobs when there exist many identical parallel machines. Reference
[26] propose a three-phase heuristic for scheduling of jobs when there exists only
one machine. It is assumed that setup times are sequence-dependent, and all jobs
are available for processing at time zero. In the first phase, several parameters that
characterize the problem are calculated. By using these parameters, the schedule
of jobs is found based on a priority rule in the second phase. In the last phase, the
schedule obtained in the second phase is improved by using a local improvement
procedure. Reference [27] extends the same problem to many parallel and iden-
tical machines. The same heuristic is used for the solution of the problem, and the
simulated annealing method is applied in the third phase.

In conclusion, there are several studies on the scheduling and sequencing of the
surgeries. It is nearly impossible to solve these problems exactly, and different heuris-
tics are developed in order to solve these problems. However, there is no study
on the scheduling and sequencing of ORs under time-dependent stochastic surgery
durations. The problem of finding the optimal schedule under time-dependent setup
times have been studied assuming deterministic setup and surgery durations. We
consider stochastic surgery durations, and the computational complexity increases
significantly as the number of surgeries and the number of ORs increases.

Problem Formulation

We study a stochastic next-day OR planning problem: Given the list of the surgeries
to be performed the next day, one must assign each surgery in this list an OR, a
sequence within this OR, and a planned starting time. Let S = {1, . . . , N } be the
set of surgeries that need to be scheduled for the next day. There are m identical
ORs, and each OR k is assigned with nk surgeries for k = {1, . . . ,m}. Trivially we
have

∑m
k=1 nk = N . We assume that the number of surgeries assigned to each OR is

determined in advance by hospital management.
All surgeries are assumed to be elective. Surgery durations are independently

and non-identically distributed. We measure the surgery duration from wheels-in
to wheels-out, i.e., surgery duration includes setup time before the surgery, actual
surgery duration, and clean-up time after the surgery. Ti, j,k is the random duration of
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surgery j, with a cumulative distribution function Fi, j (x) and a probability density
function fi, j (x), when it is assigned to i-th sequence in k-th OR.We assume that ORs
are identical; hence surgery durations do not depend on the assigned OR. The first
surgery of the OR starts without any waiting time, but surgeries later in the sequence
should wait for the preceding surgery to be completed and the planned start time to
arrive.

Our objective is to find a schedule that minimizes the expected weighted cost of
waiting time of the patients, idle time of the operating rooms between two successive
surgeries, and overtime of the ORs beyond planned opening times. We use weights
for these cost components to reflect the fact that their priorities may not be equal. α1

is defined as the unit cost of the idle time, α2 is defined as the unit cost of the waiting
time, and α3 is defined as the unit cost of the overtime.

There are two types of decision variables in our model: continuous (planned
surgery duration, waiting time, idle time and overtime) and binary (sequence and
assignment of surgeries). Di,k is the assigned duration of i-th scheduled surgery in
k-th OR.wi, j,k is the waiting time of the patient who is waiting for surgery j, which is
assigned to i-th sequence in k-th OR. It takes positive value only if (i-1)-th scheduled
surgery in k-th operating room lasts longer than its planned time. si, j,k is the idle
time of the OR right after i-th scheduled surgery in k-th OR. It is the time interval
between the completion time of i-th scheduled surgery and the planned starting time
of (i + 1)-th scheduled surgery in k-th OR. ok is the excessive time over the total
planned time of all surgeries assigned to k-th OR. The binary variable xi, j,k takes the
value of 1 if surgery j is assigned to i-th sequence in k-th operating room.

Our problem could be formulated as a StochasticMixed-Integer Problem (SMIP).
However, it is nearly impossible to find an exact solution. Instead, we will provide a
formulation based on the SAAmethod, which is one of themost common approaches
to solve SMIPs. SAA generates a number of scenarios (samples) for the random vari-
ables in the problem and estimates the objective function using the average weighted
cost over these samples. In our context, a scenario is one particular sample path real-
ization of all surgeries’ random durations. Clearly, the approximation error reduces
as the number of scenarios increases.

Some of the parameters and decision variables used in this method have an index
p representing the scenario number. Let parameter T p

i, j,k be the random duration of
surgery j in p-th scenario when it is assigned to i-th sequence in k-th OR. Since we
assume that surgery durations are time-dependent, this parameter is sampled from
the associated distribution with completing surgery j in the i-th sequence. wp

i, j,k is
the waiting time of the patient who is waiting for surgery j, which is assigned to i-th
sequence in k-th OR in p-th scenario. s pi, j,k is the idle time of the operating room
right after i-th scheduled surgery in k-th OR in p-th scenario. op

k is the excessive time
over the total planned time of all surgeries assigned to k-th OR in p-th scenario.

One can formulate the problem to be solved with the SAA method as follows:

Min
1

P

P∑

p=1

(

m∑

k=1

(

n∑

j=1

(

nk∑

i=1

α1.s
p
i, j,k +

nk∑

i=2

α2.w
p
i, j,k) + α3.o

p
k )) (1)
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s.t.

−
n∑

j=1

wp
i, j,k +

n∑

j=1

wp
i+1, j,k −

n∑

j=1

s pi, j,k + Di,k =
n∑

j=1

T p
i, j,k · xi, j,k

i = 1, . . . ,nk - 1, k = 1, . . . ,m and p = 1, . . . ,P

(2)

−
n∑

j=1

wp
nk , j,k

−
n∑

j=1

s pnk , j,k + Dnk ,k + op
k =

n∑

j=1

T p
nk , j,k

· xnk , j,k .

k = 1, . . . ,m and p = 1, . . . ,P

(3)

m∑

k=1

nk∑

i=1

xi, j,k = 1 j = 1, . . . ,N (4)

n∑

j=1

xi, j,k = 1 i = 1, . . . ,nk and k = 1, . . . ,m (5)

s pi, j,k ≤ M1 · xi, j,k i = 1, . . . ,nk and j = 1, . . . ,N and k = 1, . . . ,m and p = 1, . . . ,P
(6)

wp
i, j,k ≤ M2.xi, j,k i = 2, . . . ,nk and j = 1, . . . ,n, k = 1, . . . ,m and p = 1, . . . ,P (7)

j∑

k=1

nk∑

i=1

xi, j,k = 1 j = 1, . . . ,m (8)

min{ j,m}∑

k=r

nk∑

i=1

xi, j,k −
j−1∑

a=r−1

nk∑

i=1

xi,a,r−1 ≤ 0 j = 2, . . . ,N and r = 2, . . . ,min(j,m) (9)

s pi, j,k,w
p
i, j,k ≥ 0 i = 2, . . . ,nk and j = 1, . . . ,N and k = 1, . . . ,m and p = 1, . . . ,P

(10)

op
k ≥ 0 k = 1, . . . ,m and p = 1, . . . ,P (11)

Di,k ≥ 0 i = 1, . . . ,nk and k = 1, . . . ,m (12)

xi, j,k ∈ {0, 1} i = 1, . . . , nk and j = 1, . . . ,N and k = 1, . . . ,m (13)

The objective function (1) is the weighted average cost of the waiting time of the
patients, the idle time of the ORs, and the overtime of the surgeons. Constraints (2)
and (3) provide the relationship between the waiting time of the patients, the idle time
of the ORs, and the overtime of the surgeons. Constraints (4) and (5), respectively,
ensure that surgery is assigned to exactly one sequence in exactly one OR, and each
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sequence in each OR is assigned to exactly one surgery. Constraints (6) and (7)
guarantee that the waiting time and the idle time variables are equal to 0 unless j-th
surgery is assigned to i-th sequence in k-th OR. In these constraints, M indicates a
large number. Constraints (10), (11), and (12) define the non-negativity restrictions
of the waiting time, the idle time, the overtime, and the assigned duration variables,
respectively. Constraint (13) is the integrality constraint.

Constraints (8) and (9) are symmetry breaking constraints: In terms of sequencing
of surgeries, there are N! possible allocation of surgeries. However, it is possible to
decrease the number of allocations that should be considered, since we assume that
ORs are identical. This constraint set prevents obtaining the same solution again.
Constraint (8) helps assigning the surgeries to operating rooms in the lexicographical
order, since assigning surgeries lexicographically will give a feasible solution to the
problem (see, for example, [30]). According to this constraint, surgery 1 should be
assigned to OR 1. Surgery 2 can be assigned to the OR 1 or OR 2. By following this
pattern, surgery (m − 1) can be assigned to the first (m − 1) ORs, and surgery m
can be assigned to any OR. Constraint (9) prevents assigning surgeries to ORs that
have a larger OR number index than the smallest OR number index of empty ORs
(see, for example, [11]). For example, surgery 4 cannot be assigned to the third OR
if there exists no surgery in the second OR.

Solution Methodology

As the number of operating rooms and the number of surgeries increase, the problem
size increases drastically. For these cases, the SAAmethod cannot provide a solution
within a reasonable computation time. As an alternative, we propose to solve our
problem using the L-Shaped method (see, for example, [3], and [5, 24, 34]).

The L-shaped method computes a solution in two stages, defined as a master
problem and a subproblem. In the master problem, the assignment of surgeries to
ORs and their sequences within the OR are determined by solving a mixed-integer
problem. The objective of this problem is tominimize the value of a variable, denoted
by�, which is the expected recourse function.� is the expected value of the objective
function of the subproblem given the sequences of surgeries in their assigned ORs.
In the second stage, the total weighted sum of the waiting time of the patients for
the surgeries, the idle time of the operating rooms, and the overtime of the ORs is
minimized. A slightly modified version of the SAA model defined in the previous
section is used to solve the subproblem. Since the values of the binary variables are
assigned in the first stage, the second stage of the L-Shaped method is solving a
simple linear programming problem. Figure 1 presents the overall algorithm of the
L-Shaped method.

As an input, the algorithm requires α1, α2, α3 weights, the number of operating
rooms (m), and the total number of surgeries (N). It is assumed that each operating
room will have an equal number of surgeries. Furthermore, parameters of time-
dependent surgery duration distributions for each surgery should be provided.
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Require m and N;
Require Parameters of distributions of surgery durations for i=1,2,…,N/m and j=1,2,…,N;

while do
solve the master problem to obtain the values of x decision variables and the corres-
ponding objective value ; 
substitute x into the subproblem;  
generate scenarios and obtain T matrix; 
solve the subproblem; 

add to the master problem;
end while

is the optimal value of the problem.

Fig. 1 L-Shaped method algorithm

The algorithm starts by initializing w and � variables: w is set to 0, and � is set
to−∞ in this step. w is the objective value of the subproblem, and� is the objective
value of the master problem. At each step of this algorithm, � and w values are
obtained, respectively. The algorithm continues to iterate as long as the value of w is
larger than the value of �. At each iteration, an optimality cut is added to the master
problem, and these cuts help � converge to the optimal value of the problem.

In the algorithm, the value ofw is calculated as πT ×(h − T × x), π is the matrix
of optimal simplex multipliers, and h is the vector of constants of each constraint. In
our problem, we take h = 0 since there exist no constants in all constraints. T is the
coefficient matrix of the values of the xi, j,k binary variables. This matrix consists of
the surgery duration values generated in different scenarios. Once the subproblem is
solved, if the value of w is larger than �, an optimality cut, � ≥ πT × (h − T × x),
is generated and added to the master problem.

Themaster problem formulation startswith the objective function,which is simply
theminimization of the variable�. The constraints in the first iteration are constraints
(4), (5), (8), (9), and (13) of the SAA problem formulation, as defined in the previous
section. In the subsequent iterations, additional optimality cuts are added to the
master problem, as explained before.

Once the assignment of surgeries to ORs and their sequences within the ORs are
determined in the master problem, the subproblem aims to find the planned starting
times of the surgeries. The objective function is exactly that of the SAA problem
formulation as defined in theprevious section,which is the average totalweighted cost
of idle time, waiting time, and overtime across the scenarios. The constraints of the
subproblem are Eqs. (2–3), (6–7), and (10–12) from the SAA problem formulation.
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Numerical Results

To understand the computational performance of the L-shaped method and quantify
the value of considering time-dependent surgery durations, we conduct a compu-
tational study. We investigate the relationship between different parameter settings
and the penalty of ignoring time-dependent surgery durations, which is calculated as
the per-centage difference between the optimum objective value of the problem with
and without the assumption of time-dependent surgery durations, as shown below:

P I = Obji − Obj

Obj
× 100%

In this equation, Obji is the objective value obtained when time-dependent
surgery durations are ignored, and Obj is the optimum objective value obtained
when time-dependent surgery durations are incorporated.

In order to decrease the computation time of the L-shaped method further, the
SVF rule is used to sequence the surgeries. Particularly, we include the following
constraint to the master problem in order to sequence the surgeries according to the
SVF rule:

N∑

j=1

xi−1, j,k × Vi−1, j −
N∑

j=1

xi, j,k × Vi, j ≤ 0 i = 2, . . . , nk and k = 1, . . . ,m

In this constraint Vi, j is the variance of the distribution of the surgery duration
of surgery j when it is assigned to i-th sequence. Finally, we use mean surgery
durations as the planned surgery durations as a heuristic in the initial iteration of
the L-shaped method to give an initial lower bound to the objective function of the
master problem. The weighted cost obtained from this heuristic is used as a lower
bound for the objective function of the master problem.

Experimental Setting

In our computational study, we vary a few parameters to study the extent of PI and
the relationship between PI and our problem parameters. The number of operating
rooms is chosen from the set {2, 3, 4}, and the number of surgeries for each operating
room is taken as 3. Following the literature on surgery duration estimation, we use
the log-normal distribution family to model surgery duration distributions. We take
the time unit as an hour. We consider two different modes for the surgery duration
distributions: short duration and long duration. For each mode, two different values
for mean and coefficient of variation (CV) of surgeries durations are generated. The
mean of surgery durations is generated randomly from U[0.5, 1] to model short
duration surgeries and from U[1, 4] to model long duration surgeries. CV of surgery
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durations is generated randomly from U[0.4, 0.8] for short duration surgeries, and
from U[0.8, 1.2] for long-duration surgeries.

We consider the time-dependency of surgery durations in our computational study
as follows. The mean and standard deviation of the surgery durations of surgeries
assigned to the first sequence in each operating room and surgeries assigned to the
last sequence in each operating room is adjusted by multipliers. The value of the
coefficient of variation will remain the same since both mean and standard deviation
will be multiplied by the same value. The multiplier of surgeries assigned to the first
sequence in each operating room is chosen from the set afirst = {0.9, 0.95, 0.983},
and it is called the first-surgery multiplier. The multiplier of surgeries assigned to the
last sequence in each operating room is chosen from the set alast = {0.8, 0.9}, and
it is called the last-surgery multiplier. These parameter values are chosen following
the empirical study of [19].

Furthermore, there will be four different combinations of {α1, α2, α3}:
{0.2, 0.2, 0.6} is used to observe the effect of high overtime weight, {0.2, 0.6, 0.2}
is used to observe the effect of high waiting time weight, {0.6, 0.2, 0.2} is used to
observe the effect of high idle time weight, and {0.33, 0.33, 0.33} is used to model
equal weights settings.

There are three options for the number of ORs, three options for the first-surgery
multiplier, three options for the last-surgery multiplier, four different combinations
for {α1, α2, α3}, two options for the mean of surgery durations, and two options for
coefficient of variation of surgery durations. In totalwe consider 3×3×2×4×2×2 =
288 different parameter combinations.

Analysis of the Results

We summarize the minimum, average, and maximum percentage penalty of ignoring
time dependency, PI, as we change problem parameters one at a time in Table 1.

The average penalty decreases as the first-surgery multiplier increases, as
expected. The slope of the decrease is smaller as one gets closer to 1. Similarly,
the average penalty decreases as the last-surgery multiplier increases from 0.8 to 0.9.
Remember that when the last surgery duration is overestimated, only the idle time
cost due to the last surgery being completed before planned time increases. None of
the preceding surgeries are affected. Hence the penalty could be limited. However,
it is possible to modify OR assignment and sequence in order to take advantage of
time-dependency. These results support our insights.

Next, we investigate the effect of having long surgeries or surgeries with higher
duration variability on the penalty of ignorance.When the list includes relatively long
surgeries, the average penalty is higher. On the other hand, when the list includes
surgeries with relatively more variable durations, the average penalty decreases. We
believe that when there is sufficient variability in the surgery durations, the advantage
of considering time-dependency disappears.
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Table 1 Statistics of PI as problem parameters vary

Parameter Value Min (%) Avg (%) Max (%)

afirst 0.9 0.06 1.96 6.52

0.95 0.04 1.56 6.78

0.983 0 1.59 4.88

alast 0.8 0.06 2.04 6.52

0.9 0 1.36 6.78

Mean mode Small 0 1.36 5.70

Large 0.05 1.99 6.78

CV mode Small 0.09 2.15 6.78

Large 0 1.12 3.27

Unit cost comb {0.2, 0.2, 0.6} 0.12 2.01 6.52

{0.2, 0.6, 0.2} 0.09 1.52 6.78

{0.33, 0.33, 0.33} 0.06 1.7 5.44

{0.6, 0.2, 0.2} 0 1.54 4.74

Keeping the unit cost of idle time as 0.2, we observe that the average penalty of
ignoring time-dependent surgery durations decreases when the unit cost of waiting
time increases, and the unit cost of overtime decreases. Moreover, when the unit cost
of waiting time is kept as 0.2, we find that the average penalty of ignoring time-
dependent surgery durations decreases as the unit cost of idle time increases, and the
unit cost of overtime decreases. Finally, we observe that the average penalty is high
when the overtime cost has significant weight or all unit costs are equal. The former
observation is due to the effect of the last-surgery multiplier.

Computational performance of our L-shapedmethod deteriorates as the number of
ORs increases due to the increasing number of binary variables: 36 binary variables
are used when there are 2 ORs. This number is 81 with 3 ORs and 144 with 4 ORs.
Table 2 shows the number of iterations in the L-shaped algorithm as well as the
total solution time in seconds. There is a superlinear increase in the average number
of iterations as the number of ORs increases. However, the increase in the average
solution time is more superlinear. This observation highlights the fact that the master
problem requires significantly more time as the number of ORs increases. To check
the effect of using SVF heuristic in the master problem, we computed the solution

Table 2 Solution time and the number of iterations as the number of ORs varies

# of iterations Time (seconds)

# of ORs Min Avg Max Min Avg Max

2 2 2.61 14 12.27 25.16 99.52

3 2 4.90 104 16.63 174.70 1471.56

4 2 8.77 315 24.52 1315.37 8853.20
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with 2 ORs without this heuristic. We find that the optimum values are very close,
yet the average (maximum) solution time increases from 25.16 (99.52) seconds to
167.57 (2650.69) seconds. Therefore, we conclude that using SVF heuristic in the
master problem is quite effective.

Conclusions

ORsare responsible for themajority of a hospital’s revenues, and also the costliest part
of healthcare services. In this paper,we consider the next-dayOR scheduling problem
with multiple ORs. We study this problem under time-dependent and stochastic
surgery durations. We formulate the problem as a Stochastic Mixed Integer Program
and propose an L-shaped algorithm to solve this problem within a reasonable time
limit. Through a computational study, we quantify the penalty of ignoring time-
dependency in creating OR schedules and investigate the effects of problem param-
eters on this penalty. Results show that penalty of ignoring time-dependent surgery
durations increases as the unit cost of idle time or the unit cost of waiting time
decreases. Furthermore, the penalty of ignoring time-dependent surgery durations is
directly proportional to surgery durations, whereas inversely proportional to surgery
duration variability.

Further research is needed to develop heuristics to solve problems with larger
numbers of surgeries and ORs within reasonable computational times. Another
avenue for research is to incorporate other factors that effect surgery duration,
such as surgery team and other resources. Finally, integration of pre and post-
operative processes and their resource usage could create additional insights for
the OR managers.
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