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Abstract. We introduce new local operations, perforations and fillings,
which transform couples of objects (X, Y ) such that X ⊆ Y . We comple-
ment these two operations by collapses and anti-collapses of both X and
Y . This set of operations may be seen as a generalization of transforma-
tions based solely on collapses, thus a generalization of simple homotopy.
Though these transformations do not, in general, preserve homotopy, we
make a link between perforations, fillings, and simple homotopy. We give
a full characterization of the collection of couples of objects that is closed
under the above set of operations. Also, we provide a full characteriza-
tion of the collection of couples of objects that is closed under the single
operation of collapse.
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1 Introduction

Simple homotopy, introduced by J. H. C. Whitehead in the early 1930’s, may
be seen as a refinement of the concept of homotopy [1]. Two complexes are
simple homotopy equivalent if one of them may be obtained from the other by
a sequence of elementary collapses and anti-collapses.

Simple homotopy plays a fundamental role in combinatorial topology [1–4].
Also, many notions relative to homotopy in the context of computer imagery
rely on the collapse operation. In particular, this is the case for the notion of
a simple point, which is crucial for all image transformations that preserve the
topology of the objects [5–7], see also [8–10].

In this paper, we introduce new local operations, perforations and fillings,
which transform couples of objects. Intuitively, a perforation of a couple (X,Y ),
with X ⊆ Y , consists of removing a part of Y which is also a part of X, a filling is
the operation that reverses the effect of a perforation. We complement these two
operations by collapses and anti-collapses of both X and Y , with the constraint
that we keep the inclusion relation between X and Y . This set of operations
may be seen as a generalization of transformations based solely on collapses,
thus a generalization of simple homotopy. We formalize these notions by means
of completions, which are inductive properties expressed in a declarative way [11].
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Our main results include the following:

– Though these transformations do not, in general, preserve homotopy, we make
a link between perforations, fillings, and simple homotopy.

– In particular, we show there is an equivalence between the collection of couples
of objects that is closed under the above local operations and the collection
made of all contractible objects.

– We give a full characterization of this collection. This characterization is
given by four global properties, which are a subset of the five completions
that describe acyclic pairs of objects.

– We also provide a full characterization of the collection of couples of objects
that is closed under the single operation of collapse.

The paper is organized as follows. First, we give some basic definitions for
simplicial complexes (Sect. 2) and simple homotopy (Sect. 3). Then, we recall
some facts relative to completions (Sect. 4). We also recall the definitions of the
completions that describe acyclic objects (dendrites) and acyclic pairs (dyads)
in Sect. 5. Then, we present homotopic pairs and give preliminary results on
contractibility (Sect. 6). In Sect. 7, we introduce our perforation and filling oper-
ations and give properties relative to these transformations. In Sect. 8, we present
some results on collapsible pairs. Note that the paper is self contained.

2 Basic Definitions for Simplicial Complexes

Let X be a finite family composed of finite sets. The simplicial closure of X is
the complex X− = {y ⊆ x | x ∈ X}. The family X is a (simplicial) complex if
X = X−. We write S for the collection of all simplicial complexes.

Observe that ∅ ∈ S and {∅} ∈ S. The complex ∅ is the void complex, and the
complex {∅} is the empty complex.

Let X ∈ S. An element of X is a simplex of X or a face of X. A facet
of X is a simplex of X that is maximal for inclusion. For example, the family
X = {∅, {a}, {b}, {a, b}} is a simplicial complex with four faces and one facet.
Note that the empty set is necessarily a face of X whenever X �= ∅.

A simplicial subcomplex of X ∈ S is any subset Y of X that is a simplicial
complex. If Y is a subcomplex of X, we write Y � X.

Let X ∈ S. The dimension of x ∈ X, written dim(x), is the number of
its elements minus one. The dimension of X, written dim(X), is the largest
dimension of its simplices, the dimension of ∅, the void complex, being defined
to be −1. Observe that the dimension of the empty complex {∅} is also −1.

A complex A ∈ S is a cell if A = ∅ or if A has precisely one non-empty
facet x. We set A◦ = A \ {x} and ∅◦ = ∅. We write C for the collection of all
cells. A cell α ∈ C is a vertex if dim(α) = 0.

The ground set of X ∈ S is the set X = ∪{x ∈ X | dim(x) = 0}. Thus, if
A ∈ C, with A �= ∅, then A is precisely the unique facet of A. In particular, if α
is a vertex, we have α = {∅, α}.
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We say that X ∈ S and Y ∈ S are disjoint, or that X is disjoint from Y , if
X ∩Y = ∅. Thus, X and Y are disjoint if and only if X ∩Y = ∅ or X ∩Y = {∅}.

If X ∈ S and Y ∈ S are disjoint, the join of X and Y is the simplicial complex
XY such that XY = {x ∪ y | x ∈ X, y ∈ Y }. Thus XY = ∅ if Y = ∅, and
XY = X if Y = {∅}. The join αX of a vertex α and a complex X ∈ S is a cone.

3 Collapse

Let us first recall some basic definitions related to the collapse operator [1].
Let X ∈ S, and let x, y be two distinct faces of X. The couple (x, y) is a

free pair for X if y is the only face of X that contains x. Thus, the face y is
necessarily a facet of X. If (x, y) is a free pair for X, then Y = X \ {x, y} is
an elementary collapse of X, and X is an elementary expansion of Y . We say
that X collapses onto Y , or that Y expands onto X, if there exists a sequence
〈X0, ...,Xk〉 such that X0 = X, Xk = Y , and Xi is an elementary collapse of
Xi−1, i ∈ [1, k]. The complex X is collapsible if X collapses onto ∅. We say
that X is (simply) homotopic to Y , or that X and Y are (simply) homotopic, if
there exists a sequence 〈X0, ...,Xk〉 such that X0 = X, Xk = Y , and Xi is an
elementary collapse or an elementary expansion of Xi−1, i ∈ [1, k]. The complex
X is (simply) contractible if X is simply homotopic to ∅.

In the sequel, we will use the following facts.

1) Let X,Y ∈ S, and let (x, y) be a free pair for Y . Thus Y ′ = Y \ {x, y} is an
elementary collapse of Y . If x and y are not in X, we observe that X ∪ Y ′ is
an elementary collapse of X ∪ Y . It follows that:

The complex Y collapses onto X ∩Y if and only if X ∪Y collapses onto X.

2) Let α be an arbitrary vertex. We have α = {∅, α}. The couple (∅, α) is a free
pair for α. Hence α collapses onto ∅, i.e., the vertex α is collapsible.

3) Let X ∈ S, Y � X, and let α be a vertex disjoint from X. If X = {∅}, we
have αX = α, and either Y = X or Y = ∅. Otherwise, let x be a facet of X
that is not in Y . We observe that the couple (x, α ∪ x) is a free pair for the
cone αX. Thus, the cone αX ′, with X ′ = X \ {x, α ∪ x}, is an elementary
collapse of the cone αX. By induction, we obtain:

If Y � X, then αX collapses onto αY.

If Y = ∅, it means that αX collapses onto ∅. Thus:

Any cone is collapsible.

4) Let X,Y ∈ S, with X � Y , and let α be a vertex disjoint from Y . Let x
and y be two faces of X. The couple (x, y) is a free pair for X if and only
if (α ∪ x, α ∪ y) is a free pair for αX ∪ Y . Thus, by induction, we have the
following:

The complex X collapses onto Z if and only if α X ∪ Y collapses onto α Z ∪ Y.
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As a special case of this result, we obtain:

The complex X is collapsible if and only if α X ∪ Y collapses onto Y.

5) Let A ∈ C. If A = ∅, or if A is a vertex, then A is collapsible. Otherwise, there
exists a vertex α and a cell B such that A = αB, which is a cone. Thus, any
cell is collapsible. Using the result 4), we see that the cell A = αB collapses
onto the cell B. By induction, we obtain the following result:

If A,B ∈ C, and if B � A, then A collapses onto B.

6) Let X,Y ∈ S, with X �= ∅. We observe that X is an elementary collapse of
Y if and only if there exists a cell D, D �= ∅, such that Y = X ∪ αD and
X ∩ αD = αD◦, where α is a vertex disjoint from D.

Now, we recall the definition of the dual of a complex, and we give two related
propositions which will be used for collapsibility.

Let A ∈ C and X � A. The dual of X for A is the simplicial complex,
written X∗

A, such that X∗
A = {x ∈ A | (A \ x) �∈ X}.

We have ∅∗
A = A and {∅}∗

A = A◦, and, for any A ∈ C, we have the following:

– If X � A, then (X∗
A)∗

A = X.
– If X � A, Y � A, then (X ∪ Y )∗

A = X∗
A ∩ Y ∗

A and (X ∩ Y )∗
A = X∗

A ∪ Y ∗
A.

Proposition 1 ([4,11]). Let A ∈ C. Let X,Y ∈ S, with X � Y � A. The
complex Y collapses onto X if and only if X∗

A collapses onto Y ∗
A.

Proposition 2 ([12]). Let A ∈ C. Let X,Y ∈ S, with X � Y � A, and let α be
a vertex disjoint from A. Then we have (αX ∪ Y )∗

αA = αY ∗
A ∪ X∗

A.

4 Completions

We give some basic definitions for completions. A completion may be seen as a
rewriting rule that permits to derive collections of sets. See [11] for more details.

Let S be a given collection and let K be an arbitrary subcollection of S.
Thus, we have K ⊆ S. In the sequel of the paper, the symbol K, with possible
superscripts, will be a dedicated symbol (a kind of variable).

Let K be a binary relation on 2S, thus K ⊆ 2S×2S. We say that K is finitary,
if F is finite whenever (F,G) ∈ K.

Let 〈K〉 be a property that depends on K. We say that 〈K〉 is a completion
(on S) if 〈K〉 may be expressed as the following property:

−> If F ⊆ K, then G ⊆ K whenever (F,G) ∈ K. 〈K〉

where K is a finitary binary relation on 2S.
If 〈K〉 is a property that depends on K, we say that a given collection X ⊆ S

satisfies 〈K〉 if the property 〈K〉 is true for K = X.
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Theorem 1 [11]. Let 〈K〉 be a completion on S and let X ⊆ S. There exists,
under the subset ordering, a unique minimal collection that contains X and that
satisfies 〈K〉.

If 〈K〉 is a completion on S and if X ⊆ S, we write 〈X; K〉 for the unique
minimal collection that contains X and that satisfies 〈K〉.

Let 〈K〉 be a completion expressed as the above property 〈K〉. By a fixed
point property, the collection 〈X; K〉 may be obtained by starting from K = X,
and by iteratively adding to K all the sets G such that (F,G) ∈ K and F ⊆ K
(see [11]). Thus, if C = 〈X; K〉, then 〈X; K〉 may be seen as a dynamic structure
that describes C; the completion 〈K〉 acts as a generator, which, from X, makes
it possible to enumerate all elements in C. We will see now that 〈K〉 may in fact
be composed of several completions.

Let 〈K1〉, 〈K2〉, ..., 〈Kk〉 be completions on S. We write ∧ for the logical “and”.
It may be seen that 〈K〉 = 〈K1〉∧〈K2〉...∧〈Kk〉 is a completion. In the sequel, we
write 〈K1,K2, ...,Kk〉 for 〈K〉. Thus, if X ⊆ S, the notation 〈X; K1,K2, ...,Kk〉
stands for the smallest collection that contains X and that satisfies each of the
properties 〈K1〉, 〈K2〉, ..., 〈Kk〉.

Let 〈K〉, 〈Q〉 be two completions on S. We say that 〈K〉 and 〈Q〉 are equivalent
if, for any X ⊆ S, the collection X satisfies 〈K〉 if and only if X satisfies 〈Q〉.

5 Dyads and Dendrites

The notion of a dendrite was introduced in [11] as a way for defining a collection
made of acyclic complexes. Let us consider the collection S = S, and let K denote
an arbitrary collection of simplicial complexes.

We define the two completions 〈D1〉 and 〈D2〉 on S: For any S, T ∈ S,

−> If S, T ∈ K, then S ∪ T ∈ K whenever S ∩ T ∈ K. 〈D1〉
−> If S, T ∈ K, then S ∩ T ∈ K whenever S ∪ T ∈ K. 〈D2〉

Let D = 〈C;D1,D2〉. Each element of D is a dendrite or an acyclic complex.

The collection T of all trees (i.e., all connected acyclic graphs) provides an
example of a collection of dendrites. It may be checked that T satisfies both 〈D1〉
and 〈D2〉, and that we have T ⊆ D. In fact, we have the general result [11]:

A complex is a dendrite if and only if it is acyclic in the sense of homology.

As a consequence, any contractible complex is a dendrite but there exist
some dendrites that are not contractible. The punctured Poincaré homology
sphere provides such a counter-example.

In the following, we will say that a dendrite is twisted if it is not contractible.
Intuitively, a dyad is a couple of complexes (X,Y ), with X � Y , such that

the cycles of X are “at the right place with respect to the ones of Y ”.
We set S̈ = {(X,Y ) | X,Y ∈ S,X � Y }, the notation K̈ stands for an

arbitrary subcollection of S̈.
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We define five completions on S̈ (the symbols ˜T, ˜U, ˜L stand respectively for
“transitivity”, “upper confluence”, and “lower confluence”):

For any S, T ∈ S,
−> If (S ∩ T, T ) ∈ K̈, then (S, S ∪ T ) ∈ K̈. 〈˜X〉
−> If (S, S ∪ T ) ∈ K̈, then (S ∩ T, T ) ∈ K̈. 〈˜Y〉
For any (R,S), (S, T ), (R, T ) ∈ S̈,
−> If (R,S) ∈ K̈ and (S, T ) ∈ K̈, then (R, T ) ∈ K̈. 〈˜T〉
−> If (R,S) ∈ K̈ and (R, T ) ∈ K̈, then (S, T ) ∈ K̈. 〈˜U〉
−> If (R, T ) ∈ K̈ and (S, T ) ∈ K̈, then (R,S) ∈ K̈. 〈˜L〉
We set C̈ = {(A,B) ∈ S̈ | A,B ∈ C} and Ẍ = 〈C̈; ˜X, ˜Y, ˜T, ˜U, ˜L〉.
Each couple of Ẍ is a dyad or an acyclic pair.

Y X Y X

α

Y X Z

Fig. 1. Left: A circle X in a cylindrical surface Y , the couple (X, Y ) is a dyad. Middle:
The complex αX ∪ Y is a dendrite. Thus, αX ∪ Y is acyclic. Right, illustration of the
completion 〈˜X〉: If a complex Z is such that Z ∩ Y = X, then (Z, Z ∪ Y ) is a dyad.
Here Z is a punctured cylindrical surface. Again, the complex αZ ∪ (Z ∪ Y ) is acyclic.

In [12], the following fundamental relation between dyads and dendrites was
given. Intuitively, Theorem 2 indicates that (X,Y ) is a dyad if and only if we
cancel out all cycles of Y (i.e., we obtain an acyclic complex), whenever we
cancel out those of X (by the way of a cone). See Fig. 1, which also gives an
illustration of the completion 〈˜X〉.
Theorem 2. Let (X,Y ) ∈ S̈ and let α be a vertex disjoint from Y .

The couple (X,Y ) is a dyad if and only if αX ∪ Y is a dendrite.

In particular, setting X = ∅ in the above theorem, we see that a complex
D ∈ S is a dendrite if and only if (∅,D) is a dyad. Therefore, we have the
following corollary of Theorem2.

Corollary 1. Let (X,Y ) ∈ S̈ and let α be a vertex disjoint from Y .
The couple (X,Y ) is a dyad if and only if (∅, αX ∪ Y ) is a dyad.

If (X,Y ) ∈ S̈ and α is a vertex disjoint from Y , we say that αX ∪Y is the Δ-
form of (X,Y ) (with vertex α). Such forms play a decisive role in our framework.
We see that Theorem 2 may be formulated in this way: A couple (X,Y ) ∈ S̈ is
a dyad if and only if its Δ-form is a dendrite.
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6 Homotopy and Contractibiliy

We now recall the completions introduced in [13] for simple homotopy.
If (I,O) ∈ S̈, the basic idea is to continuously deform both the inner complex

I and the outer complex O, these deformations keeping I inside O.
If X,Y ∈ S, we write X

E�−→ Y , whenever Y is an elementary expansion of X.
We define four completions on S̈: For any (R,S), (R, T ), (S, T ) in S̈,

−> If (R,S) ∈ K̈ and S
E�−→ T , then (R, T ) ∈ K̈. 〈O+〉

−> If (R, T ) ∈ K̈ and S
E�−→ T , then (R,S) ∈ K̈. 〈O−〉

−> If (R, T ) ∈ K̈ and R
E�−→ S, then (S, T ) ∈ K̈. 〈I+〉

−> If (S, T ) ∈ K̈ and R
E�−→ S, then (R, T ) ∈ K̈. 〈I−〉

We set Ï = {(X,X) | X ∈ S} and Ḧ = 〈Ï;O+,O−, I+, I−〉.
Each element of Ḧ is a homotopic pair.
Observe that X is homotopic to Y whenever (X,Y ) ∈ Ḧ. The following is

a variant of a result given in [13] which gives a basic characterization of the
collection Ḧ.

Theorem 3. Let (X,Y ) ∈ S̈. We have (X,Y ) ∈ Ḧ if and only if there exists a
complex Z such that Z collapses onto X and Z collapses onto Y .

The following theorem is the important global result given in [13]. It shows
that four of the five completions that describe dyads allow for a characterization
of the collection made of all homotopic pairs. Thus, in this framework, we have
a unified presentation of both acyclicity and homotopy.

Theorem 4. We have Ḧ = 〈C̈; ˜X, ˜T, ˜U, ˜L〉.
We now present some facts relative to contractibility. This special case of

homotopy will play a crucial role in the sequel of this paper. The following is a
direct consequence of the definition of contractibility and that of the collection Ḧ.

Proposition 3. A complex X ∈ S is contractible if and only if (∅,X) ∈ Ḧ.

The next proposition is a basic fact which will be useful in the sequel. It
indicates that, if a subcomplex X of Y is contractible, then we can add or
remove a cone on X without changing the homotopy of Y . Observe that it is
not easy to prove this fact by using direct arguments, since the steps involved in
the contractibility of X may “extend X outside Y ”. With the global properties
given by Theorem 4, only few lines are needed for establishing this result. See
[17], Proposition 0.17, for a counterpart of this property in the framework of
general homotopy.

Proposition 4. Let (X,Y ) ∈ S̈ and let α be a vertex disjoint from Y .
Suppose the complex X is contractible, i.e., we have (∅,X) ∈ Ḧ. Then we have
(Y, αX∪Y ) ∈ Ḧ. In particular, we have (∅, Y ) ∈ Ḧ if and only if (∅, αX∪Y ) ∈ Ḧ.



144 G. Bertrand

Proof. Since any cone is collapsible, we have (∅, αX) ∈ Ḧ. By Theorem 4, the
collection Ḧ satisfies 〈˜U〉. Thus (X,αX) ∈ Ḧ. We may write (Y ∩αX,αX) ∈ Ḧ.
By 〈˜X〉, we obtain (Y, αX ∪ Y ) ∈ Ḧ. Since Ḧ satisfies also 〈˜T〉 and 〈˜L〉, we see
that (∅, Y ) ∈ Ḧ if and only if (∅, αX ∪ Y ) ∈ Ḧ. �

Proposition 5. Let (X,Y ) ∈ S̈ and let α be a vertex disjoint from Y .
If (X,Y ) ∈ Ḧ, then αX ∪ Y is contractible, i.e., we have (∅, αX ∪ Y ) ∈ Ḧ.

Proof. Let (X,Y ) ∈ Ḧ. We have αX ∩ Y = X, thus (αX ∩ Y, Y ) ∈ Ḧ. By 〈˜X〉,
we obtain (αX,αX ∪Y ) ∈ Ḧ. Since any cone is collapsible, we have (∅, αX) ∈ Ḧ.
The result follows from 〈˜T〉. �

The converse of Proposition 5 is not true. Let X be a twisted dendrite, i.e., a
non contractible dendrite. If A is a cell, with X � A, then X is not homotopic to
A, but αX ∪A is contractible. This fact is well known in algebraic topology [17].

Let K̈ be a collection of couples such that (∅, ∅) is in K̈. We define the kernel
of K̈ as the collection of all complexes X ∈ S such that (∅,X) is in K̈.

Let us consider the two following properties, where α is a vertex disjoint
from Y :

If (X,Y ) ∈ K̈, then the Δ-form αX ∪ Y is in the kernel of K̈. (K1)
If (X,Y ) ∈ S̈ and the Δ-form αX ∪Y is in the kernel of K̈, then (X,Y ) ∈ K̈.

(K2)
By Corollary 1, the collection Ẍ of dyads satisfies both (K1) and (K2). In

particular, it means that Ẍ may be recovered from its kernel. By Proposition 5
and the above remark, the collection of all homotopic pairs Ḧ satisfies (K1) but
not (K2).

In the next section, we will investigate the collection Ẅ of all pairs (X,Y )
such that the Δ-form αX ∪ Y is contractible. Thus, Ẅ will satisfy both (K1)
and (K2) and, by the preceding remark, Ẅ will strictly contain the collection Ḧ.
Furthermore, we will see that Ẅ has a remarkable global characterization.

7 Filling and Perforation

Let (X,Y ) ∈ S̈ and (X ′, Y ′) ∈ S̈. We say that (X,Y ) is an elementary perforation
of (X ′, Y ′), if there exists a face f of both X ′ and Y ′ such that X = X ′ \ {f}
and Y = Y ′ \ {f}. Thus f is necessarily a facet of both X ′ and Y ′.

We say that (X ′, Y ′) is an elementary filling of (X,Y ), if (X,Y ) is an ele-
mentary perforation of (X ′, Y ′).

Let (X,Y ) ∈ S̈. We write (X,Y ) F�−→ (X ′, Y ′) if (X ′, Y ′) is an elementary
filling of (X,Y ). We define two completions on S̈: For any (S, T ), (S′, T ′) in S̈,

−> If (S, T ) ∈ K̈ and (S, T ) F�−→ (S′, T ′), then (S′, T ′) ∈ K̈. 〈F〉
−> If (S, T ) ∈ K̈ and (S′, T ′) F�−→ (S, T ), then (S′, T ′) ∈ K̈. 〈P〉
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We set ∅̈ = {(∅, ∅)} and Ẅ = 〈∅̈;O+,O−, I+, I−,F,P〉.
Each couple of Ẅ is a contractible pair.
We first observe that any couple (X,X) ∈ Ï may be obtained from (∅, ∅) by

iteratively applying the completion 〈F〉. In fact we see that Ï = 〈∅̈;F〉.
Thus, we have Ẅ = 〈Ï;O+,O−, I+, I−,F,P〉.
See Fig. 2 which provides an illustration of four contractible pairs.
We have Ḧ = 〈Ï;O+,O−, I+, I−〉. Therefore, we immediately note that Ḧ ⊆

Ẅ since the two additional completions 〈F〉 and 〈P〉 allow to generate more
couples in Ẅ. Also, we observe that, if we apply the completions 〈F〉 or 〈P〉 on a
couple (X,Y ) ∈ S̈, then the homotopy of both X and Y is changed. Nevertheless,
we will see that all couples (X,Y ) ∈ Ẅ satisfy an homotopy condition.

It can be checked that each transformation of a couple (X,Y ) ∈ S̈, that is
made according to the six completions which constitute the definition of Ẅ, may
be seen as a collapse or an expansion of a complex of the form αX ∪ Y .

(a) (b)

(c) (d)

Fig. 2. Four contractible pairs. For each pair (X, Y ), the subcomplex X of Y is high-
lighted by its facets (triangles, segments, or vertices). (a) A pair (X0, Y0) ∈ Ï, thus
X0 = Y0. (b) A pair (X1, Y1): the complex Y1 is obtained from Y0 with a sequence
of expansions, and X1 is obtained from X0 with a sequence of collapses. (c) A pair
(X2, Y2) obtained from (X1, Y1) with three perforations. (d) A pair (X3, Y3) obtained
from (X2, Y2) with three fillings.

Proposition 6. Let (X,Y ) ∈ S̈, let X ′ � X, Y ′ � Y , and let α be a vertex
disjoint from Y . The complex αX ′ ∪ Y ′ is an elementary collapse of αX ∪ Y if
and only if the couples (X ′, Y ′) and (X,Y ) are such that:

– we have Y ′ = Y and the complex X ′ is an elementary collapse of X, or
– we have X ′ = X and the complex Y ′ is an elementary collapse of Y , or
– the couple (X ′, Y ′) is an elementary perforation of (X,Y ).

As a consequence, we have the following result which makes the connection
between the collection Ẅ and contractible complexes.
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Proposition 7. Let (X,Y ) ∈ S̈ and let α be a vertex disjoint from Y .
We have (X,Y ) ∈ Ẅ if and only if αX ∪ Y is contractible, i.e., if and only if
(∅, αX ∪ Y ) ∈ Ḧ.

By Theorem 3, we have (∅, αX ∪Y ) ∈ Ḧ if and only if there exists a complex
Z such that Z collapses onto ∅, and Z collapses onto αX ∪Y . Thus, the complex
Z is collapsible. It follows that Proposition 7 and Theorem 3 permits to establish
a link between the collection Ẅ and collapsibility. The following proposition will
allow us to refine this result.

Proposition 8. Let X ∈ S, A ∈ C, with X � A, and let α be a vertex disjoint
from A. If X collapses onto ∅, then αA collapses onto X.

Proof. Suppose X collapses onto ∅, and let A ∈ C with X � A. By Propo-
sition 1, since ∅∗

A = A, the complex A collapses onto X∗
A. Let α be a vertex

disjoint from A, and let Z = αX∗
A ∪ A. Since A collapses onto X∗

A, the com-
plex Z collapses onto αX∗

A. Thus Z collapses onto ∅. By Proposition 2, we have
Z∗

αA = αA∗
A ∪ (X∗

A)∗
A. We obtain Z∗

αA = X. By Proposition 1, we deduce that
αA collapses onto X. �

By Proposition 7, Theorem 3, and Proposition 8, we deduce that (X,Y ) ∈ Ẅ

if and only if there exists a cell B ∈ C such that B collapses onto αX ∪ Y .
Clearly, we can assume that B is of the form αC, with C ∈ C.

Proposition 9. Let (X,Y ) ∈ S̈ and let α be a vertex disjoint from Y .
We have (X,Y ) ∈ Ẅ if and only if there exists a cell C ∈ C, which is disjoint
from α, such that the cell αC collapses onto αX ∪ Y .

Under the conditions of Proposition 9, we may write αC = αC∪C. Hence, we
have (X,Y ) ∈ Ẅ if and only if there exists a cell C ∈ C such that (X,Y ) may be
obtained from (C,C) by using the three transformations given in Proposition 6.
Since (C,C) ∈ Ï, we obtain the following result.

Proposition 10. We have Ẅ = 〈Ï;O−, I−,P〉.
A direct consequence of Theorem 3 is that we have Ḧ = 〈Ï;O−, I−〉 (see

Proposition 7 of [13]). Thus, the previous result may be seen as a counterpart
of this characterization of homotopic pairs. We now point out the following
equivalence.

Proposition 11. The two completions 〈F〉 and 〈˜X〉 are equivalent and the two
completions 〈P〉 and 〈˜Y〉 are equivalent.

Proof. Let K̈ be an arbitrary subcollection of S̈.

i) Suppose K̈ satisfies property 〈P〉 and let (S, S ∪ T ) ∈ K̈. Let x be a facet
of S, with x �∈ T . If no such a facet exists, we are done. Otherwise, the face
x is also a facet of S ∪ T . Thus the couple (S \ {x}, (S \ {x}) ∪ T ) is an
elementary perforation of (S, S ∪ T ). By induction on the number of such
facets, K̈ satisfies 〈˜Y〉.
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ii) Suppose K̈ satisfies property 〈˜Y〉. Let (S, T ) ∈ K̈ and let (S′, T ′) be an ele-
mentary perforation of (S, T ). We have (S, T ) = (S, S ∪ T ′), thus by 〈˜Y〉, we
have (S ∩ T ′, T ′) = (S′, T ′) ∈ K̈. We deduce that K̈ satisfies 〈P〉.
It follows that 〈P〉 and 〈˜Y〉 are equivalent. By reversing the above operations,
we get the equivalence between 〈F〉 and 〈˜X〉. ��
Since the collection Ḧ satisfies the property 〈˜X〉, a consequence of the above

equivalence is that we can add another local transformation to the four comple-
tions which define homotopic pairs.

Corollary 2. We have Ḧ = 〈Ï;O+,O−, I+, I−,F〉.
The following is one of the main results of this paper. It shows that the

collection of contractible pairs is uniquely identified by four global properties.

Theorem 5. We have Ẅ = 〈C̈; ˜X, ˜Y, ˜T, ˜U〉.

Proof. We set Ẅ′ = 〈C̈; ˜X, ˜Y, ˜T, ˜U〉.
1) In this part, we show that we have Ẅ ⊆ Ẅ′.

For that purpose we first establish the following result (R).
Let X,Y ∈ S. If (∅, Y ) ∈ Ẅ′ and if Y collapses onto X,then (∅,X) ∈ Ẅ′.

(R)
Suppose (∅, Y ) ∈ Ẅ′ and X is an elementary collapse of Y . If X = ∅, we
are done. Otherwise, there exists a cell D, D �= ∅, such that Y = X ∪ αD
and X ∩ αD = αD◦, where α is a vertex disjoint from D. The complex αD
being a cone, we have (∅, αD) ∈ Ẅ′ (see Lemma 1 in [13]). By 〈˜U〉, we get
(αD, Y ) = (αD,X ∪ αD) ∈ Ẅ′. By 〈˜Y〉, we derive (αD◦,X) ∈ Ẅ′. Since
αD◦ is a cone, we have (∅, αD◦) ∈ Ẅ′, and we obtain (∅,X) ∈ Ẅ′ (by 〈˜T〉).
By induction, we derive the result (R).
Now, let (X,Y ) ∈ S̈ and let α be a vertex disjoint from Y . Suppose (X,Y ) ∈
Ẅ. Then, there exists a cell αC ∈ C such that αC collapses onto αX ∪ Y
(Proposition 9). We have (∅, αC) ∈ Ẅ′. By (R) we obtain (∅, αX ∪ Y ) ∈ Ẅ′.
We also have (∅, αX) ∈ Ẅ′. Hence, by 〈˜U〉, we have (αX,αX ∪ Y ) ∈ Ẅ′. By
〈˜Y〉, we deduce (αX ∩ Y, Y ) ∈ Ẅ′. Therefore (X,Y ) ∈ Ẅ′. Thus, we proved
that Ẅ ⊆ Ẅ′.

2) By Proposition 11, Ẅ satisfies 〈˜X〉 and 〈˜Y〉. We also have C̈ ⊆ Ẅ. So, we only
have to show that Ẅ satisfies 〈˜U〉 and 〈˜T〉 in order to prove the inclusion
Ẅ′ ⊆ Ẅ.
Let (R,S), (S, T ), (R, T ) ∈ S̈. Suppose (R,S) ∈ Ẅ, and let α, β be two
distinct vertices disjoint from T . Let us consider the complex U = β(αR∪S)∪
(αR∪T ). By Proposition 7, we have (∅, αR∪S) ∈ Ḧ. Hence, by Proposition 4,
we have (αR ∪ T,U) ∈ Ḧ. But we can write U = α(βR) ∪ (βS ∪ T ). Since
(∅, βR) ∈ Ḧ, again by Proposition 4, we have (βS ∪ T,U) ∈ Ḧ.
i) Suppose (S, T ) ∈ Ẅ. We have (∅, βS ∪ T ) ∈ Ḧ (Proposition 7) and (βS ∪

T,U) ∈ Ḧ. Thus (∅, U) ∈ Ḧ (since Ḧ satisfies 〈˜T〉). We have (αR∪T,U) ∈
Ḧ and (∅, U) ∈ Ḧ. Thus (∅, αR∪T ) ∈ Ḧ (since Ḧ satisfies 〈˜L〉). We obtain
(R, T ) ∈ Ẅ (Proposition 7). It follows that the collection Ẅ satisfies 〈˜T〉.
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ii) Suppose (R, T ) ∈ Ẅ. We have (∅, αR∪T ) ∈ Ḧ (Proposition 7) and (αR∪
T,U) ∈ Ḧ. Thus (∅, U) ∈ Ḧ (since Ḧ satisfies 〈˜T〉). We have (βS ∪
T,U) ∈ Ḧ and (∅, U) ∈ Ḧ. Thus (∅, βS ∪ T ) ∈ Ḧ (since Ḧ satisfies 〈˜L〉).
We obtain (S, T ) ∈ Ẅ (Proposition 7). Consequently, the collection Ẅ

satisfies 〈˜U〉. �

Therefore, the completion 〈˜L〉 is the unique property that makes the distinc-
tion between the collections Ẅ and Ẍ. Observe also the differences between Ẅ

and Ḧ: the collection Ẅ satisfies 〈˜Y〉, but it no longer satisfies 〈˜L〉. Nevertheless,
as discussed before, the collection Ẅ strictly contains the collection Ḧ.

Let us consider now the three following completions on S̈.
For any (R,S) ∈ S̈, T ∈ S,

−> If (R,S) ∈ K̈ and (S ∩ T, T ) ∈ K̈, then (R,S ∪ T ) ∈ K̈. 〈˜Z1〉
−> If (R,S) ∈ K̈ and (R,S ∪ T ) ∈ K̈, then (S ∩ T, T ) ∈ K̈. 〈˜Z2〉
−> If (R,S ∪ T ) ∈ K̈ and (S ∩ T, T ) ∈ K̈, then (R,S) ∈ K̈. 〈˜Z3〉

We set Z̈ = 〈C̈; ˜Z1, ˜Z2, ˜Z3〉.
It has been shown that this set of completions allows for a characterization

of dyads [12]. More precisely, it has been proved that we have Ẍ = Z̈.
The following theorem may be derived from Theorem5 and from arguments

used in four proofs given in [12] (Proofs of Prop. 1, 2, 3 and Th. 2).

Theorem 6. We have Ẅ = 〈C̈; ˜Z1, ˜Z2〉.
Thus, Theorem 6 provides another characterization of contractibility by

means of only two global properties.

8 Collapsible Pairs

In this section, we show that the three completions 〈˜X〉, 〈˜Y〉, 〈˜T〉 allow us to
describe collapsibility.

Let (X,Y ) ∈ S̈. If α is a vertex disjoint from Y , we say that (αX,αY ) is a
cone pair. We denote by �̈ the collection composed of all cone pairs.

Observe that we have C̈ ⊆ �̈. In [11], it was shown that the collection �̈ is
closed under duality, but not the collection C̈.

In the previous sections, we have often considered C̈ as the starting collection
of our completion systems. In the following, we will replace C̈ by �̈ in order to
obtain an exact characterization of collapsibility.

We set Ë = 〈�̈; ˜X, ˜T〉. Each couple of Ë is a collapsible pair.

Proposition 12. We have (X,Y ) ∈ Ë if and only if Y collapses onto X.
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Proof

i) Suppose X is an elementary collapse of Y . If X = ∅, we are done. Otherwise,
there exists a cell D, D �= ∅, such that Y = X ∪ αD and X ∩ αD = αD◦,
where α is a vertex disjoint from D. The couple (αD◦, αD) being a cone
pair, we have (αD◦, αD) ∈ Ë. By 〈˜X〉, since X ∩ αD = αD◦, we obtain
(X,X ∪ αD) ∈ Ë. Thus, (X,Y ) ∈ Ë. By induction, we have (X,Y ) ∈ Ë

whenever Y collapses onto X.

ii) If (αX,αY ) ∈ �̈, then αY collapses onto αX. Furthermore:
– If T collapses onto S ∩ T , then S ∪ T collapses onto S.
– If T collapses onto S, and S collapses onto R, then T collapses onto R.

By induction on 〈˜X〉 and 〈˜T〉, the complex Y collapses onto X if (X,Y )
∈ Ë. �

Thus, we have (∅,X) ∈ Ë if and only if X collapses onto ∅. In other words,
the kernel of Ë is precisely made of all collapsible complexes.

The following corollary is a direct consequence of Proposition 12.

Corollary 3. We have Ë = 〈Ï; I−〉 = 〈Ï;O+〉 = 〈Ï;O+, I−〉.

In addition, the following proposition shows that Ë satisfies the property 〈˜Y〉.

Proposition 13. We have Ë = 〈�̈; ˜X, ˜Y, ˜T〉.

Proof. Let (S, S ∪T ) ∈ Ë. The complex S ∪T collapses onto S (Proposition 12).
Thus, T collapses onto S∩T . Therefore (S∩T, T ) ∈ Ë (Again by Proposition 12).
It means that the collection Ë satisfies the property 〈˜Y〉. Thus Ë = 〈�̈; ˜X, ˜Y,
˜T〉. �

The dunce hat [16] provides an example of a complex X that is contractible,
but not collapsible. Since X is contractible, there exists a complex Y , which
is collapsible, and which collapses onto X (a consequence of Proposition 3 and
Theorem 3). Thus, we have (X,Y ) ∈ Ë and (∅, Y ) ∈ Ë, but (∅,X) �∈ Ë. This
shows that the collection Ë does not satisfy the property 〈˜L〉. By considering
the dual of the dunce hat in a cell, we obtain an example which shows that the
collection Ë does not satisfy the property 〈˜U〉.

Thanks to Proposition 12, we easily derive the following.

Proposition 14. We have Ḧ = 〈�̈; ˜X, ˜T, ˜L〉.

Proof. Let K̈ = 〈�̈; ˜X, ˜T, ˜L〉. Clearly, we have �̈ ⊆ Ḧ. Furthermore, we have
Ḧ = 〈C̈; ˜X, ˜T, ˜U, ˜L〉 (Theorem 4). Thus K̈ ⊆ Ḧ. Now, let (X,Y ) ∈ Ḧ. By The-
orem 3, there exists a complex Z such that Z collapses onto X and Z col-
lapses onto Y . The collection K̈ contains the collection 〈�̈; ˜X, ˜T〉. Thus, by
Proposition 12, we have (X,Z) ∈ K̈ and (Y,Z) ∈ K̈. By 〈˜L〉, it means that
(X,Y ) ∈ K̈. �
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9 Conclusion

In a previous work, it was shown that only five completions 〈˜X〉, 〈˜Y〉, 〈˜T〉, 〈˜U〉,
and 〈˜L〉, were sufficient to describe the whole collection Ẍ made of all acyclic pairs
of complexes. Furthermore, it has been found that a subset of these completions
permits to characterize the collection Ḧ made of all homotopic pairs.

In this paper, we show that another subset of these completions corresponds
to a collection Ẅ, the couples of which are linked by a contractibility rela-
tion. These couples, we called contractible pairs, may be generated by two local
transforms, perforations and fillings, completed by collapses. We also show that
a certain collection Ë provides an exact characterization of all collapsible pairs.

Thus, these five completions allow us to describe, in a unified framework, the
four remarkable nested collections composed of all collapsible pairs, homotopic
pairs, contractible pairs, and acyclic pairs. Not only these completions may act
as generators of these collections, but also they provide structural and global
properties of them.
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