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Abstract. The digitization of historical maps enables the study of
ancient, fragile, unique, and hardly accessible information sources. Main
map features can be retrieved and tracked through the time for subse-
quent thematic analysis. The goal of this work is the vectorization step,
i.e., the extraction of vector shapes of the objects of interest from raster
images of maps. We are particularly interested in closed shape detection
such as buildings, building blocks, gardens, rivers, etc. in order to mon-
itor their temporal evolution. Historical map images present significant
pattern recognition challenges. The extraction of closed shapes by using
traditional Mathematical Morphology (MM) is highly challenging due
to the overlapping of multiple map features and texts. Moreover, state-
of-the-art Convolutional Neural Networks (CNN) are perfectly designed
for content image filtering but provide no guarantee about closed shape
detection. Also, the lack of textural and color information of historical
maps makes it hard for CNN to detect shapes that are represented by
only their boundaries. Our contribution is a pipeline that combines the
strengths of CNN (efficient edge detection and filtering) and MM (guar-
anteed extraction of closed shapes) in order to achieve such a task. The
evaluation of our approach on a public dataset shows its effectiveness for
extracting the closed boundaries of objects in historical maps.

Keywords: Deep learning · Convolutional neural networks ·
Mathematical morphology · Historical map segmentation · Object
extraction

1 Introduction

The massive digitization of archival collections carried out by heritage institu-
tions provides access to huge volumes of historical information encoded in the
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(a) Some geographical entities
typically depicted in city maps:
building blocks (orange), roads
(green) and rivers (blue).

(1) (2)(3)

(b) Challenges in historical maps: (1) planimetric
overlap, (2) text overlap, (3) paper folds.

Fig. 1. Contents of a 1925 urban topographic map along with an overview of their
challenging properties for automatic feature extraction. (Color figure online)

available documents. Among them, maps are unfortunately still little exploited.
Yet they are a gold mine of geographic data that allows to reconstruct and
analyze the morphological and social evolution of a place over time [12,24]. In
particular, topographic maps contain geographical features: their distribution in
space, their topological relationships and various information encoded by the
map legend or by text labels [8,17]. Transforming such graphical representations
of geographic entities into discrete geographic data (or vector data) is a crucial
step for numerous spatial and spatio-temporal analysis purposes. Such a trans-
formation is most often manually retrieved by historians or with the help of
crowdsourcing tools. This is extremely time-consuming, non-reproducible, and
leads to heterogeneous data quality. Automating this tedious task is a key step
towards building large volumes of reference geo-historical data.

Unfortunately, historical maps exhibit characteristics that hinder standard
pattern recognition approaches and make them relatively inefficient at extracting
data of good quality, i.e., that do not need to be manually post-processed. Unlike
modern computer-generated maps which follow roughly the same semiotic rules,
these maps vary in terms of legend, level of generalization, type of geographic
features and text fonts [17]. They also usually lack texture information, which
creates ambiguities in the detection of objects. For instance, building blocks and
roads have very similar textures despite being of completely different nature
(Fig. 1a). Popular semantic [3,18,28] and instance [4,7,27] image segmentation
algorithms detect objects based on textures and are prone to fail in our context.
Color is not a relevant cue either: the palette is usually highly restricted due to
the technical limitations and financial constraints of their production. Objects
in maps are often overlapping, some are thus partially hidden and hardly sep-
arable. Occlusion happens with overlaid textual and carto-geodetic information
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Fig. 2. Overview of the approach presented in the paper: we combine an efficient edge
detection and filtering stage using a deep network with a fast closed shape extraction
using mathematical morphology tools.

in particular (Fig. 1b, rectangles (1) and (2)). Last, preservation conditions of
historical maps play a role as stains, folds or holes might cause gaps in the
cartographic information. Such artifacts may lead to incorrect object detection
(Fig. 1b, rectangle (3)).

Our contributions in this paper are as follows. After reviewing the limitations
of the current approaches for segmenting maps in Sect. 2, we propose a simple
pipeline (Fig. 2) that combines deep networks and mathematical morphology for
object detection in maps. It takes benefit from their complementary strengths,
namely image filtering and strong guarantees with respect to closed shapes. We
derive edge probability maps using a multi-scale deep network approach depicted
in Sect. 3 and then leverage mathematical morphology tools to extract closed
shapes as explained in Sect. 4. Eventually, in Sect. 5, the second contribution lies
in a thorough evaluation of the relevance of the mathematical morphology stage
with novel visualizations and metrics to objectively assess our approach and
better identify the strengths and weaknesses of each stage and of the workflow.

2 Approaches for Map Segmentation

We target to recover geometric structures from scans of historical maps. In lit-
erature, Angulo et al. [1] apply watershed in Mathematical morphology in color
cartographic image to extract objects through color and geometrical features.
Unfortunately, as mentioned above, due to the limited texture and color content
of such data sources, standard semantic segmentation approaches of the litera-
ture would fail for most cases. Instead, we cast our problem as a vectorization
challenge that can be turned into a region-based contour extraction task. Such
a problem is traditionally solved through a two-step approach: the detection of
edges or local primitives (lines, corners) followed by the retrieval of structures
based on global constraints [34]. Recent works have shown the relevance of a cou-
pled solution [13]. They remain tractable and efficient only for a limited number
of structures. Region-based methods (e.g., based on PDEs [21]) may lead to
oversimplified results and will not be further analyzed here.

The main issue of two-step solutions is the edge detection step. This low-
level task is achieved by measuring locally pixel gradients. Due to the amount
of noise (overlapping objects, map deformation), this would result in many
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tiny and spurious elements that any global solution would manage connecting.
Instead, we focus on boundary detection, i.e., a middle-level image task that sep-
arates objects at the semantic level according to different geometric properties
of images. This offers two main advantages: (i) a limited sensitivity to noise in
maps and (ii) the provision of more salient and robust primitives for the sub-
sequent object extraction step. We do not focus on a primitive-based approach
since shapes on maps cannot be simply assumed.

Recently, among the vast amount of literature, convolution neural networks
(CNN) have shown a high level of performance for boundary detection [15,33].
However, they only provide probability edge maps. Without topological con-
straints, image partitioning is not ensured. Conversely, watershed segmentation
techniques in mathematical morphology can directly extract closed contours.
They run fast for such a generation, but may lead to many false-positive results.
Indeed, using only low-level image features such as image gradients, watershed
techniques may not efficiently maintain useful boundary information [4]. Con-
sequently, we propose here to merge the CNN-based and watershed image seg-
mentation methods in order to benefit from the strengths of both strategies [32].
A supervised approach is conceivable since we both have access to reference
vectorized maps and CNN architectures pre-trained with natural image.

3 Deep Edge Detection

We detail how we selected the network architecture used to detect and filter
edges, with illustrations of the strengths of such approach, and describe the train-
ing procedure we followed to use the selected network (BDCN) on our dataset.

Network Architecture. Contour detection was first addressed with the design
of handcrafted features based on brightness, color, textures [19]. Then, improve-
ments lied in their efficient group through mono- or multi-scale attributes retriev-
ing micro-structures: textons are a salient example [35]. Afterwards, main meth-
ods focused on combining all available cues, such as [2]. They used a global
probability boundary by learning the weights of manually selected features (gra-
dients and textons as features in several image scales) in order to detect con-
tours and form better closed boundaries to represent the objects in images. Since
CNNs have proved their relevance to extract and combine meaningful image fea-
tures, a large amount of research has focused on detecting contours. The most
famous one is the so-called Holistically-nested edge detector (HED) [33], which
is an end-to-end multi-scale deep learning network. The novelty consisted in
using skip-connections to merge different levels of features and learn different
losses from intermediate layers of VGG-16 [30]. This allowed recovering mul-
tiscale representations of image features. Eventually, He et al. [15] proposed a
so-called Bi-Directional Cascade Network (BDCN) by designing a scale enhance-
ment module (SEM) on top of HED to enhance multiscale spatial contexts in
images resulting in a better performance than humans in the BSDS500 dataset.

One advantage of BDCN is that the multiscale representatives combine
semantically meaningful features to efficiently filter out the image textures and
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Fig. 3. BDCN produces an Edge Probability Map (right) with texts and textures
removed from the input (left).

text information while maintaining useful contours and lines in the images. It
is particularly suited for handling noise in our maps. Another advantage is that
learnable dilated convolutions in SEM can learn fine-grained features with larger
receptive fields that are beneficial when we want to accurately separate the
texts with object contours. It is because building contours have much longer
pixel continuity than text, resulting in higher activation after dilated convolu-
tion. After several iterations, the probability of text pixels will vanish, leading
to their removal, similarly to texture, as shown in Fig. 3. However, the BDCN
network works only at the pixel level and cannot guarantee the required topolog-
ical properties in predicted edge probability maps without additional topological
constraints [9], thus the current solution requires knowledge of the number of
structures to be retrieved.

Training. Annotated historical maps are used to train a BDCN network. The
final prediction which is a probability map where each pixel in the maps contain
values in range [0, 1] (zero means the pixel does not belong to a contour, one that
it does). We train our network from scratch instead of using transfer learning on
the edge weights learned from BSDS500 (dataset developed for image boundary
detection and segmentation tasks): the features in natural images are very dif-
ferent from our historical map images. We need to filter out most of the texts
in our maps, but the network trained on the BSDS dataset does not provide
any useful features related to geometric filtering tasks. In order to handle data
imbalance during training, we proceed as follows. We define our input image as
x ∈ R

H·W and ground truth label y ∈ {0, 1}H·W . The output of predicted image
is ŷ = f(x,w) ∈ [0, 1]H·W and every element of ŷ is interpreted as the probability
of pixel i having label 1: ŷ ≡ p(Yi = 1|x,w). Since the edge detection is a binary
classification task, binary cross entropy loss is used as loss function between pre-
dictions and ground truths. Due to highly imbalanced edge (97.5%) and non-edge
(only 2.5%) classes, extra parameters α, β are used as weights to re-balance the
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binary cross entropy loss, as LBCE = −α
∑

j∈Y− log(1 − ŷj) − β
∑

j∈Y+
log(ŷj)

where Y+ is the set of indices of edge pixels, Y− is the set of indices of non-edge
pixels, α = (λ · |Y−|/(|Y+| + |Y−|)) is the percentage of edge pixels in each batch
of historical map image and β = (|Y+|/(|Y+| + |Y−|))) is the percentage of non-
edge pixels. An extra λ = 1.1 factor is used to enhance the percentage of edge
pixels in order to give extra weights for edge responses.

We build our code based on the BDCN code repository to train our historical
map dataset from scratch with a few modifications. We evaluate the loss for every
epoch and also for choosing the best training weights. To make the network
converge faster, we replace SGD with ADAM optimizer. The initial learning
rate is set to 5 × 10−5 with 0.9 momentum and 0.002 weight decay.

4 Segmentation of the EPM

From the Edge Probability Map, we then need to extract boundaries of the
objects. For natural images, Hanbury et al. [14] extract close shapes from learned
gradient image similar to Edge Probability Map (EPM) by using watershed
transform. In Mathematical Morphology, the Watershed Transform [20] is a de
facto standard approach for image segmentation. It has been used in many appli-
cations and has been widely studied in terms of topological properties [11,26],
in terms of algorithms and in terms on computation speed [10,26].

It has two well-known issues: the over-segmentation due to the high number
of minima, and the gradient leakage that merges regions. There is a third general
issue with the watershed that concerns the separation of overlapping or touching
objects, but this is not a problem in our case since the map components do not
overlap.

Solutions to the Over-Segmentation Problem. The first problem is gen-
erally solved by filtering the minima first. In [31], the h-minima characterize
the importance of each local minimum through their dynamic. When flooding a
basin, it actually refers to the water elevation required to merge with another
basin. Attributes filter, filters by reconstruction [29] also allow to eliminate some
minima based on their algebraic properties: size, shape, volume. . . Another effi-
cient approach consists in first ordering the way the basins merge to create a
hierarchy of partitions and then performing a cut in the hierarchy to get a seg-
mentation with non-meaningful basins removed [5,6,23].

Solutions to the Early Leakage Problem. The second problem lies in the
quality of the gradient. It has been noted [22], that (hierarchical) watersheds have
better results on non-local supervised gradient estimators. The idea of combining
the watershed with high performance contour detector dates back to [2].

The relevance of a simple closing by area and dynamic on the edge map
produced by our deep-learning edge detector combined with the watershed for
this application lies in three points.

First, the minimum size of the components is known. Indeed, the document
represents a physical size, and regions whose area is below 100 m2 are not repre-
sented in the map. Thus, we have a strong a priori knowledge we want to inject
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Input EPM Ground-truth Param set A Param set B

Fig. 4. Some failures and some success stories of the watershed segmentation. The
parameter sets are A: h = 3, λ = 250, and B: h = 7, λ = 400. The first row shows the
ability to recover weak boundaries. This sensitivity is not desirable in some cases as
it leads the over-segmentation of the 2nd row. The third row suggests that the over-
segmentation can be prevented by a stronger filtering but would also lead to a lower
shape detection.

in the process, the minimum size of the regions (in pixels). This type of constrain
is hard to infer in a deep-learning system and we cannot have such guarantees
from its output. Having hard guaranties about the shapes and their size is at
the foundation of the granulometries in Mathematical Morphology. Moreover,
the connected (area) filter used for filtering the edge image ensure that we do
not distort the signal at the boundaries of the meaningful regions.

Second, the watershed segmentation method does not rely on the strength
of the gradients to select the regions. Even if the edge response is low (i.e., the
gradient is weak), the watershed is able to consider this weak response and closes
the contour of the region. We do not depend on the strength of the edge response
from BDCN which is difficult to calibrate and normalize.

Last but not least, not only the watershed outputs a segmentation, but some
implementations also produce watershed lines between regions. In our applica-
tion, watershed lines are even more important than regions because we need
to extract polygons for each shape. Event if we could extract boundaries from
regions, it avoids an extra processing step. The watershed lines produced by the
algorithm is one pixel-large and are located where the edges are the strongest,
i.e., where the network has the strongest response on thick edges. The watershed
lines form closed boundaries around regions which is a guarantee we cannot have
from the output of a network.
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Figure 4 shows the strength of the watershed to recover the boundaries of
objects even on weak edge responses that would be lost by thresholding the
EPM. This is especially visible in the first row where the boundaries of “Place
du Châtelet” are leaking; nevertheless they are recovered in the segmentation.
On the downside, this ability to recover weak edges is also a bottleneck that
can create false-boundaries as shown in the middle row where the place around
“Eglise Notre-Dame” is over-segmented because of some detection noise.

The filtering parameters (dynamic h and area λ) are important to control the
trade-off between the fact we want to recover small/leaking regions (somewhat
related to the recall) and the false-detection of boundaries (somewhat related to
the precision). This is illustrated with two sets of parameters A and B where B
has more restrictive filtering parameters. The third row of Fig. 4 shows that B
has less over-segmentation but in the two first rows, it misses some boundaries.

The decision to merge objects depend on their context and not on the size of
the component, neither its volume, nor its shape. The watershed “does its best”
to create the missing boundaries and, at the moment, we have not managed to
find better rules (e.g., with extinction values of some attributes) to filter out the
basins of the watershed.

5 Evaluation

To assess the performance of the proposed approach, we conducted a series of
experiments on a fully manually annotated map sheet. We report here details
about this dataset we created and used, the experimental protocol as well as
the calibration procedures we followed, the metrics we designed and used, and
discuss some results.

Dataset. Among the multiple map sheets of the collection of Paris atlases, our
work focuses on the particular sheet representing a central area of the city from
year 1925 [25]. We encourage the reader to refer to the extra online material of
this paper for a full-size view of this image. Indeed, such map sheets are large by
nature and were digitized with high resolution, resulting in a 8500× 6500 image
for the area of interest.

We carefully annotated the original image by creating line vector information
for each edge of each object of interest in the map. It should be noted that only
a subset map strokes should be kept as many objects are not relevant for our
current study: underground lines and railways, for instance, should be discarded.
The resulting vector information was rasterized to produce: i) a reference edge
map (a small dilation was applied, so the resulting edges have a thickness of 3
pixels); ii) a reference label map identifying each shape to be detected.

We divided the image into three disjoint subsets: a training set (rows 0 to
3999); a validation set (rows 4000 to 4999); and a test set (rows 5000 to 6500).
These areas were divided into 228 disjoint tiles of 500 × 500 pixels.

Protocol. In the evaluation protocol we designed, our goal was to assess the
impact of the watershed stage in our pipeline. We compared the performance
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of a baseline system, without watershed, with our proposed approach: the same
baseline augmented by a watershed stage (see Fig. 2).

The baseline (without watershed) consists in a deep edge detection stage
using the BDCN network presented in Sect. 3. This stage produces an edge
probability map (EPM) as previously explained. The network was trained on
the training set using the validation set as control set during training. To gener-
ate closed shapes, we simply thresholded the EPM and extracted the connected
components. We selected the best performing threshold value (9) on the valida-
tion set for fair comparison.

The proposed approach (baseline plus watershed) consists in adding a joint
filtering on area and dynamic of the EPM followed by a watershed. This approach
produces a label map, i.e. a usable set of closed shapes, as detailed in Sect. 4.
We selected the best performing values for area (λ) and dynamic h parameters
on the validation set.

To avoid losing topological information during component labeling (baseline)
or during watershed, these steps were performed on the full image (with training,
validation and test sets merged) but the performance indicators were computed
exclusively on the test set by masking other areas.

Metrics. While it is common in segmentation challenges to evaluate the qual-
ity of object detection by evaluating the precision and recall of edge detection
at pixel, such an approach would only evaluate the process halfway to our tar-
get application: closed shapes detection. To evaluate shape detection, we need
to identify pairs of matching shapes between a reference set (R) and a set of
predictions (P ). Because, in our particular case, shapes are disjoint among R
and also among P (by construction), we can leverage the following property: as
soon as the intersection over union (IoU ) between ri ∈ R and pj ∈ P is strictly
superior to 0.5, then we know that no other element rk ∈ R, i �= k can have a
higher IoU with pj ∈ R than ri ∈ R, and reciprocally.

For each pair of shapes (ri, pj) ∈ R × P which verifies IoU(ri, pj) =
area( ri∩pj

ri∪pj
) ≥ T > 0.5 we count a successful match under the threshold con-

straint T . We introduce this threshold value to consider all possible values
between 0.5 (excluded) and 1 (included) and create a global indicator of the sys-
tem under all potential quality requirements. This allows us to count the number
of correctly detected shapes (true positives or TP), missed shapes ((false nega-
tives or FN)), and wrongly predicted shapes ((false positives or FP)) for every
operating characteristics. This is a very simple extension of the COCO Panoptic
metric [16] which enables a finer evaluation of the system. We derive from this
set of measures two analysis tools.

First a precision ( TP
TP+FP ), a recall ( TP

TP+FN ) and a F1 score ( 2TP
2TP+FP+FN )

curves for all possible threshold values. They offer a condensed view of the behav-
ior of a system under all possible operating characteristics. The area under the
F1 score curve is equivalent, up to an offset, to the COCO PQ metric.
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CC-labeling Watersheding

IoU Precision Recall F-score Precision Recall F-score
0.50 0.20 0.39 0.27 0.74 0.50 0.59
0.80 0.10 0.19 0.13 0.60 0.40 0.48
0.90 0.04 0.09 0.06 0.45 0.30 0.36
0.95 0.01 0.02 0.02 0.25 0.16 0.20

COCO PQ RQ RQ PQ SQ RQ

(%) 0.21 0.77 0.27 0.52 0.88 0.59

Fig. 5. Left : comparison of the evolution of the shape detection F1-score across all
possible IoU threshold with and without the watershed stage. Right : evaluation metrics
with and without watershed. PQ (SQ × RQ), SQ (segmentation) and RQ (retrieval)
are COCO Panoptic [16] global metrics for each system.

The second tool is a pair of visualization maps: a precision map which asso-
ciates for each predicted shape pj ∈ P the maximal IoU value bpj such as bpj =
argmaxri∈R(IoU(ri, pj)), and a recall map which associates for each expected
shape ri ∈ R the maximal IoU value bri such as bri = argmaxpj∈P (IoU(ri, pj)).
Each pixel of each shape is then assigned a color indicating the value of the
maximal IoU: red to yellow for values between 0 and 0.5, and yellow to green for
values between 0.5 and 1. The darker the green, the better the match (for both
maps). The darker the red, the more serious the false positive (resp. negative)
in precision (resp. recall) map.

Results and Discussion. We report here the results for the best calibrated vari-
ant of each of the two systems (baseline+connected component labeling vs base-
line+watershed) under test. Figure 5 (left) compares the evolution of the F1 score
indicator for both systems under each possible IoU threshold. Figure 5 (right)
details the different indicators for several key values of IoU thresholds. We can
see from those results that the watershed post-processing consistently and sig-
nificantly improves the quality of the results. The precision and recall maps pre-
sented in Fig. 6 illustrate the benefits that the watershed post-processing bring
to the deep edge segmentation: it adjusts the border of the shapes (improves
precision and recall); it also removes small noise (improves precision); and it
also efficiently recovers some weak boundaries (improves recall).
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Precision map without watershed Precision map after watershed

Recall map without watershed Recall map after watershed

Fig. 6. Precision and recall maps without and with watershed. In all maps, the darker
the green is, the better the match between predicted and reference shapes. Predicted
shapes (precision map, top row) have thick and inaccurate borders which are effectively
thinned by the watershed. In precision maps, red areas indicate false positives (over-,
under-segmentations and noise). Reference shapes (recall map, bottom row) are better
localized and sometimes recovered thanks to the restoration of weak boundaries by the
watershed. In recall maps, red areas indicate false negatives (over-, under-segmentations
and missed elements). (Color figure online)

6 Conclusion

In this paper, we propose an efficient combination of convolutional neural net-
works and mathematical morphology to address the problem of closed shapes
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extraction in historical maps. Convolutional neural networks (BDCN) allow us
to efficiently detect edges while filtering unwanted features (text for instance).
Mathematical morphology is applied to the edge probability map created by
BDCN to create closed shapes reliably. The efficiency of our approach is shown
by testing it on an open dataset. We believe such a method will make the digi-
tization process of historical maps faster and more reliable.
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