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Abstract. In Mathematical Morphology (MM), dynamics are used to
compute markers to proceed for example to watershed-based image
decomposition. At the same time, persistence is a concept coming from
Persistent Homology (PH) and Morse Theory (MT) and represents the
stability of the extrema of a Morse function. Since these concepts are
similar on Morse functions, we studied their relationship and we found,
and proved, that they are equal on 1D Morse functions. Here, we pro-
pose to extend this proof to n-D, n ≥ 2, showing that this equality can
be applied to n-D images and not only to 1D functions. This is a step
further to show how much MM and MT are related.
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1 Introduction

Fig. 1. Low sensibility of dynamics to noise (extracted from [15]).

In Mathematical Morphology [21–23], dynamics [14,15,24], defined in terms of
continuous paths and optimization problems, represents a very powerful tool to
measure the significance of extrema in a gray-level image (see Fig. 1). Thanks to
dynamics, we can construct efficient markers of objects belonging to an image
which do not depend on the size or on the shape of the object we want to segment
(to compute watershed transforms [20,25] and proceed to image segmentation).
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This contrasts with convolution filters very often used in digital signal processing
or morphological filters [21–23] where geometrical properties do matter. Selecting
components of high dynamics in an image is a way to filter objects depending
on their contrast, whatever the scale of the objects.

Fig. 2. The dynamics of a minimum of a given function can be computed thanks to a
flooding algorithm (extracted from [15]).

Note that there exists an interesting relation between flooding algorithms
and the computation of dynamics (see Fig. 2). Indeed, when we flood a local
minimum in the topographical view of the 1D function, we are able to know the
dynamics of this local minimum when water reaches some point of the function
where water is lower than the height of the initial local minimum.

In Persistent Homology [6,10] well-known in Computational Topology [7],
we can find the same paradigm: topological features whose persistence is high
are “true” when the ones whose persistence is low are considered as sampling
artifacts, whatever their scale. An example of application of persistence is the
filtering of Morse-Smale complexes [8,9,16] used in Morse Theory [13,19] where
pairs of extrema of low persistence are canceled for simplification purpose. This
way, we obtain simplified topological representations of Morse functions. A dis-
crete counterpart of Morse theory, known as Discrete Morse Theory can be found
in [11–13,17].

As detailed in [5], pairing by persistence of critical values can be extended
in a more general setting to pairing by interval persistence of critical points.
The result is that they are able to do function matching based on their critical
points and they are able to pair all the critical points of a given function (see
Fig. 2 in [5]) where persistent homology does not succeed. However, due to the
modification of the definition they introduce, this matching is not applicable
when we consider usual threshold sets.

In this paper, we prove that the relation between Mathematical Morphology
and Persistent Homology is strong in the sense that pairing by dynamics and
pairing by persistence are equivalent (and then dynamics and persistence are
equal) in n-D when we work with Morse functions. Note that this paper is the
extension from 1D to n-D of [4].

The plan of the paper is the following: Sect. 2 recalls the mathematical back-
ground needed in this paper, Sect. 3 proves the equivalence between pairing by
dynamics and pairing by persistence and Sect. 4 concludes the paper.
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2 Mathematical Pre-requisites

We call path from x to x′ both in R
n a continuous mapping from [0, 1] to R

n. Let
Π1, Π2 be two paths satisfying Π1(1) = Π2(0), then we denote by Π1 <> Π2

the join between these two paths. For any two points x1,x2 ∈ R
n, we denote by

[x1,x2] the path:
λ ∈ [0, 1] → (1 − λ).x1 + λ.x2.

Also, we work with R
n supplied with the Euclidean norm ‖.‖2 : x → ‖x‖2 =√∑n

i=1 x
2
i .

We will use lower threshold sets coming from cross-section topology [2,3,18]
of a function f defined for some real value λ ∈ R by:

[f < λ] =
{

x ∈ R
n

∣∣
∣ f(x) < λ

}
,

and
[f ≤ λ] =

{
x ∈ R

n
∣
∣∣ f(x) ≤ λ

}
.

2.1 Morse Functions

We call Morse functions the real functions in C∞(Rn) whose Hessian is not
degenerated at critical values, that is, where their gradient vanishes. A strong
property of Morse functions is that their critical values are isolated.

Lemma 1 (Morse Lemma [1]). Let f : C∞(Rn) → R be a Morse function.
When x∗ ∈ R

n is a critical point of f , then there exists some neighborhood V of
x∗ and some diffeomorphism ϕ : V → R

n such that f is equal to a second order
polynomial function of x = (x1, . . . , xn) on V :

∀ x ∈ V, f ◦ ϕ−1(x) = f(x∗) − x2
1 − x2

2 − · · · − x2
k + x2

k+1 + · · · + x2
n,

We call k-saddle of a Morse function a point x ∈ R
n such that the Hessian

matrix has exactly k strictly negative eigenvalues (and then (n − k) strictly
positive eigenvalues); in this case, k is sometimes called the index of f at x. We
say that a Morse function has unique critical values when for any two different
critical values x1, x2 ∈ R

n of f , we have f(x1) �= f(x2).

2.2 Dynamics

From now on, f : Rn → R is a Morse function with unique critical values.
Let xmin be a local minimum of f . Then we call set of descending paths

starting from xmin (shortly (Dxmin)) the set of paths going from xmin to some
element x< ∈ R

n satisfying f(x<) < f(xmin).
The effort of a path Π : [0, 1] → R

n (relatively to f) is equal to:

max
�∈[0,1],�′∈[0,1]

(f(Π(�)) − f(Π(�′))).
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Fig. 3. Pairing by dynamics on a Morse function: the red and blue paths are both in
(Dxmin) but only the blue one reaches a point x< whose height is lower than f(xmin)
with a minimal effort. (Color figure online)

A local minimum xmin of f is said to be matchable if there exists some
x< ∈ R

n such that f(x<) < f(xmin). We call dynamics of a matchable local
minimum xmin of f the value:

dyn(xmin) = min
Π∈(D

xmin )
max

�∈[0,1]

(
f(Π(�)) − f(xmin)

)
,

and we say that xmin is paired by dynamics (see Fig. 3) with some 1-saddle
xsad ∈ R

n of f when:

dyn(xmin) = f(xsad) − f(xmin).

An optimal path Πopt is an element of (Dxmin) whose effort is equal to
minΠ∈(D

xmin )(Effort(Π)). Note that for any local minimum xmin of f , there
always exists some optimal path Πopt such that Effort(Πopt) = dyn(xmin).

Thanks to the uniqueness of critical values of f , there exists only one critical
point of f which can be paired with xmin by dynamics.

Dynamics are always positive, and the dynamics of an absolute minimum of
f is set at +∞ (by convention).

2.3 Topological Persistence

Let us denote by clo the closure operator, which adds to a subset of Rn all its
accumulation points, and by CC(X) the connected components of a subset X of
R

n. We also define the representative of a subset X of Rn relatively to a Morse
function f the point which minimizes f on X:

rep(X) = arg minx∈Xf(x).

Definition 1. Let f be some Morse function with unique critical values, and let
xsad be the abscissa of some 1-saddle point of f . Now we define the following
expressions. First,

Csad = CC([f ≤ f(xsad)],xsad)
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Fig. 4. Pairing by persistence on a Morse function: we compute the plane whose height
is reaching f(xsad) (see the left side), which allows us to compute Csad, to deduce the
components CI

i whose closure contains xsad, and to decide which representative is
paired with xsad by persistence by choosing the one whose height is the greatest. We
can also observe (see the right side) the merge phase where the two components merge
and where the component whose representative is paired with xsad dies. (Color figure
online)

denotes the component of the set [f ≤ f(xsad)] which contains xsad. Second, we
denote by:

{CI
i }i∈I = CC([f < f(xsad)])

the connected components of the open set [f < f(xsad)]. Third, we define

{Csad
i }i∈Isad =

{
CI

i | xsad ∈ clo(CI
i )

}

the subset of components CI
i whose closure contains xsad. Fourth, for each i ∈

Isad, we denote
repi = arg minx∈Csad

i
f(x)

the representative of Csad
i . Fifth, we define the abscissa

xmin = repipaired

with
ipaired = arg maxi∈Isadf(repi),

thus xmin is the representative of the component Csad
i of minimal depth. In this

context, we say that xsad is paired by persistence to xmin (Fig. 4). Then, the
persistence of xsad is equal to:

Per(xsad) = f(xsad) − f(xmin).
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Fig. 5. Every optimal descending path goes through a 1-saddle. Observe the path in
blue coming from the left side and decreasing when following the topographical view
of the Morse function f . The effort of this path to reach the minimum of f is minimal
thanks to the fact that it goes through the saddle point at the middle of the image.
(Color figure online)

3 The n-D Equivalence

Let us make two important remarks that will help us in the sequel.

Lemma 2. Let f : R
n → R be a Morse function and let xmin be a local

minimum of f . Then for any optimal path Πopt in (Dxmin), there exists some
�∗ ∈]0, 1[ such that it is a maximum of f ◦ Πopt and at the same time Πopt(�∗)
is the abscissa of a 1-saddle point of f .

Proof : This proof is depicted in Fig. 5. Let us proceed by counterposition, and
let us prove that when a path Π in (Dxmin) does not go through a 1-saddle of
f , it cannot be optimal.

Let Π be a path in (Dxmin). Let us define �∗ ∈ [0, 1] as one of the positions
where the mapping f ◦ Π is maximal:

�∗ ∈ arg max�∈[0,1]f(Π(�)),

and x∗ = Π(�∗). Let us prove that we can find another path Π ′ in (Dxmin)
whose effort is lower than the one of Π.

Fig. 6. How to compute descending paths of lower efforts. The initial path going
through x∗ (the little grey ball) is in red, the new path of lower effort is in green
(the non-zero gradient case is on the left side, the zero-gradient case is on the right
side). (Color figure online)
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At x∗, f can satisfy three possibilities:

– When we have ∇f(x∗) �= 0 (see the left side of Fig. 6), then locally f is a
plane of slope ‖∇f(x∗)‖, and then we can easily find some path Π ′ in (Dxmin)
with a lower effort than Effort(Π). More precisely, let us fix some arbitrary
small value ε > 0 and draw the closed topological ball B̄(x∗, ε), we can define
three points:

�min = min{� | Π(�) ∈ B̄(x∗, ε)},

�max = max{� | Π(�) ∈ B̄(x∗, ε)},

xB = x∗ − ε.
∇f(x∗)

‖∇f(x∗)‖ .

Thanks to these points, we can define a new path Π ′:

Π|[0,�min] <> [Π(�min), xB ] <> [xB ,Π(�max)] <> Π|[�max,1].

By doing this procedure at every point in [0, 1] where f ◦ Π reaches its
maximal value, we obtain a new path whose effort is lower than the one of
Π.

– When we have ∇f(x∗) = 0, then we are at a critical point of f . It cannot be
a 0-saddle, that is, a local minimum, due to the existence of the descending
path going through x∗. It cannot be a 1-saddle neither (by hypothesis). It
is then a k-saddle point with k ∈ [2, n] (see the right side of Fig. 6). Using
Lemma 1, f is locally equal to a second order polynomial function (up to a
change of coordinates ϕ s.t. ϕ(x∗) = 0):

f ◦ ϕ−1(x) = f(x∗) − x2
1 − x2

2 − · · · − x2
k + x2

k+1 + · · · + x2
n.

Now, let us define for some arbitrary small value ε > 0:

�min = min{� | Π(�) ∈ B̄(0, ε)},

�max = max{� | Π(�) ∈ B̄(0, ε)},

B =

⎧
⎨

⎩
x

∣∣∣
∑

i∈[1,k]

x2
i ≤ ε2 and ∀j ∈ [k + 1, n], xj = 0

⎫
⎬

⎭
\ {0}.

This last set is connected since it is equal to a k-manifold (with k ≥ 2)
minus a point. Let us assume without constraints that Π(�min) and Π(�max)
belong to B (otherwise we can consider their orthogonal projections on the
hyperplane of lower dimension containing B but the reasoning is the same).
Thus, there exists some path ΠB joining Π(�min) to Π(�max) in B, from
which we can deduce the path Π ′ = Π|[0,�min] <> ΠB <> Π|[�max,1] whose
effort is lower than the one of Π since its image is inside [f < f(x∗)].

Since we have seen that, in any possible case, Π is not optimal, it concludes
the proof. �



532 N. Boutry et al.

Fig. 7. A 1-saddle point leads to two open connected components. At a 1-saddle point
whose abscissa is xsad (at the center of the image), the component [f ≤ f(xsad)] is
locally the merge of the closure of two connected components (in orange) of [f <
f(xsad)] when f is a Morse function. (Color figure omline)

Proposition 1. Let f be a Morse function from R
n to R with n ≥ 1. When x∗

is a critical point of index 1, then there exists ε > 0 such that:

Card (CC(B(x∗, ε) ∩ [f < f(x∗)])) = 2,

where Card is the cardinality operator.

Proof : The case n = 1 is obvious, let us then treat the case n ≥ 2 (see Fig. 7).
Thanks to Lemma 1 and thanks to the fact that xsad is the abscissa of a 1-saddle,
we can say that (up to a change of coordinates and in a small neighborhood
around xsad) for any x:

f(x) = f(xsad) + xT .

[−1 0
0 In−1

]
.x,

where In−1 is the identity matrix of dimension (n − 1) × (n − 1). In other
words, around xsad, we obtain that:

[f < f(xsad)] =

{

x
∣∣∣ − x2

1 +
n∑

i=2

x2
i < 0

}

= C+ ∪ C−,

with:

C+ =

⎧
⎨

⎩
x

∣∣∣ x1 >

√√√√
n∑

i=2

x2
i

⎫
⎬

⎭
, C− =

⎧
⎨

⎩
x

∣∣∣ x1 < −
√√√√

n∑

i=2

x2
i

⎫
⎬

⎭
,

where C+ and C− are two open connected components of Rn. Indeed, for any

pair (M,M ′) of C+, we have xM
1 >

√∑n
i=2(x

M
i )2 and xM ′

1 >
√∑n

i=2(x
M ′
i )2,

from which we define N = (xM
1 , 0, . . . , 0)T ∈ C+ and N ′ = (xM ′

1 , 0, . . . , 0)T ∈ C+

from which we deduce the path [M,N ] <> [N,N ′] <> [N ′,M ′] joining M to M ′

in C+. The reasoning with C− is the same. Since C+ and C− are two connected
(separated) disjoint sets, the proof is done. �
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3.1 Pairing by Persistence Implies Pairing by Dynamics in n-D

Theorem 1. Let f be a Morse function from R
n to R. We assume that the

1-saddle point of f whose abscissa is xsad is paired by persistence to a local
minimum xmin of f . Then, xmin is paired by dynamics to xsad.

Proof : Let us assume that xsad is paired by persistence to xmin, then we have
the hypotheses described in Definition 1. Let us denote by Cmin the connected
component in {Ci}i∈Isad satisfying that xmin = rep(Cimin).

Since xsad is the abscissa of a 1-saddle, by Proposition 1, we know that
Card(Isad) = 2, then there exists: x< = rep(C<) with C< the component Ci

with i ∈ I \ {imin}, then xmin is matchable. Let us assume that the dynamics of
xmin satisfies:

dyn(xmin) < f(xsad) − f(xmin). (HYP)

This means that there exists a path Π< in (Dxmin) such that:

max
�∈[0,1]

f(Π<(�)) − f(xmin) < f(xsad) − f(xmin),

that is, for any � ∈ [0, 1], f(Π<(�)) < f(xsad), and then by continuity in space of
Π<, the image of [0, 1] by Π< is in Cmin. Because Π< belongs to (Dxmin), there
exists then some x< ∈ Cmin satisfying f(x<) < f(xmin). We obtain a contra-
diction, (HYP) is then false. Then, we have dyn(xmin) ≥ f(xsad) − f(xmin).

Because for any i ∈ Isad, xsad is an accumulation point of Ci in R
n, there

exist a path Πm from xmin to xsad such that:

∀� ∈ [0, 1],Πm(�) ∈ Csad,

∀� ∈ [0, 1[,Πm(�) ∈ Cmin.

In the same way, there exists a path ΠM from x< to xsad such that:

∀� ∈ [0, 1],ΠM (�) ∈ Csad,

∀� ∈ [0, 1[,ΠM (�) ∈ C<.

We can then build a path Π which is the concatenation of Πm and � →
ΠM (1 − �), which goes from xmin to x< and goes through xsad. Since this
path stays inside Csad, we know that Effort(Π) ≤ f(xsad) − f(xmin), and then
dyn(xmin) ≤ f(xsad) − f(xmin).

By grouping the two inequalities, we obtain that dyn(xmin) = f(xsad) −
f(xmin), and then by uniqueness of the critical values of f , xmin is then paired
by dynamics to xsad. �

3.2 Pairing by Dynamics Implies Pairing by Persistence in n-D

Theorem 2. Let f be a Morse function from R
n to R. We assume that the local

minimum xmin of f is paired by dynamics to a 1-saddle of f of abscissa xsad.
Then, xsad is paired by persistence to xmin.
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Proof : Let us assume that xmin is paired to xsad by dynamics. Let us recall the
usual framework relative to persistence:

Csad = CC([f ≤ f(xsad)],xsad), (1)

{CI
i }i∈I = CC([f < f(xsad)]), (2)

{Csad
i }i∈Isad =

{
CI

i |xsad ∈ clo(CI
i )

}
, (3)

∀i ∈ Isad, repi = arg minx∈Csad
i

f(x). (4)

By Definition 1, xsad will be paired to the representative repi of Csad
i which

maximizes f(repi).

1. Let us show that there exists imin such that xmin is the representative of a
component Csad

imin
of {Csad

i }i∈Isad .
(a) First, xmin is paired by dynamics with xsad and dyn(xmin) is greater than

zero, then f(xsad) > f(xmin), then xmin belongs to [f < f(xsad)], then
there exists some imin ∈ I such that xmin ∈ Cimin (see Eq. (2) above).

(b) Now, if we assume that xmin is not the representative of Cimin , there
exists then some x< in Cimin satisfying that f(x<) < f(xmin), and then
there exists some Π in (Dxmin) whose image is contained in Cimin . In
other words,

dyn(xmin) ≤ Effort(Π) < f(xsad) − f(xmin),

which contradicts the hypothesis that xmin is paired with xsad by dynam-
ics.

(c) Let us show that imin belongs to Isad, that is, xsad ∈ clo(Cimin). Let us
assume that:

xsad �∈ clo(Cimin). (HYP2)

Every path in (Dxmin) goes outside of Cimin to reach some point whose
image by f is lower than f(xmin) since xmin has been proven to be the
representative of Cimin . Then this path will intersect the boundary ∂ of
Cimin . Since by (HYP2), xsad does not belong to the boundary ∂ of Cimin ,
any optimal path Π∗ in (Dxmin) will go through one 1-saddle xsad

2 =
arg max�∈[0,1]f(Π∗(�)) (by Lemma 2) different from xsad and verifying
then f(xsad

2) > f(xsad). Thus, dyn(xmin) > f(xsad) − f(xmin), which
contradicts the hypothesis that xmin is paired with xsad by dynamics.
Then, we have:

xsad ∈ clo(Cimin).

2. Now let us show that f(xmin) > f(rep(Csad
i )) for any i ∈ Isad\{imin}. For this

aim, we will prove that there exists some i ∈ Isad such that f(rep(Csad
i )) <

f(xmin) and we will conclude with Proposition 1. Let us assume that the
representative r of each component Csad

i except Cmin satisfies f(r) > f(xmin),
then any path Π of (Dxmin) will have to go outside Csad to reach some point
whose image by f is lower than f(xmin). We obtain the same situation as
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before (see (1.c)), and then we obtain that the effort of Π will be greater than
f(xsad) − f(xmin), which leads to a contradiction with the hypothesis that
xmin is paired with xsad by dynamics. We have then that there exists i ∈ Isad

such that f(rep(Csad
i )) < f(xmin). Thanks to Proposition 1, we know then

that xmin is the representative of the components of [f < f(xsad)] whose
image by f is the greatest.

3. It follows that xsad is paired with xmin by persistence.

4 Conclusion

We have proved that persistence and dynamics lead to same pairings in n-D,
n ≥ 1, which implies that they are equal whatever the dimension. Concerning
the future works, we propose to investigate the relationship between persis-
tence and dynamics in the discrete case [12] (that is, on complexes). We will
also check under which conditions pairings by persistence and by dynamics are
equivalent for functions that are not Morse. Furthermore, we will examine if the
fast algorithms used in MM like watershed cuts, Betti numbers computations
or attribute-based filtering are applicable to PH. Conversely, we will study if
some PH concepts can be seen as the generalization of some MM concepts (for
example, dynamics seems to be a particular case of persistence).

A Ambiguities occurring when values are not unique

As depicted in Fig. 8, the abscissa of the blue point can be paired by persistence
to the abscissas of the orange and/or the red points. The same thing appears
when we want to pair the abscissa of the pink point to the abscissas of the green
and/or blue points. This shows how much it is important to have unique critical
values on Morse functions.

Fig. 8. Ambiguities can occur when critical values are not unique for pairing by dynam-
ics and for pairing by persistence. (Color figure online)
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