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Abstract. The Elastica is a curve regularization model that integrates
the squared curvature in addition to the curve length. It has been shown
to be useful for contour smoothing and interpolation, for example in the
presence of thin elements.

In this article, we propose a graph-cut based model for optimizing the
discrete Elastica energy using a fast and efficient graph-cut model. Even
though the Elastica energy is neither convex nor sub-modular, we show
that the final shape we achieve is often very close to the globally optimal
one.

Our model easily adapts to image segmentation tasks. We show that
compared to previous works and state-of-the-art algorithms, our proposal
is simpler to implement, faster, and yields comparable or better results.

Keywords: Multigrid convergence · Digital estimators · Curvature ·
Discrete optimization

1 Introduction

The Elastica model and associated energy is a curve regularisation problem with
a rich history [12,15], which involves the squared curvature. It was introduced in
computer vision in [16] as a means to regularize edges or segmentation bound-
aries with an explicit curvature component. Being associated with second-order
derivatives, the notion of curvature is difficult to compute and optimize in a
regularisation framework.

Multiple attempts have been made by prominent researchers to introduce
an explicit curvature term in curve regularizers using various methods and
approaches. Even early active contour models [10] had an elasticity component
equivalent to a notion of curvature. Similarly, with level-set methods, local cur-
vature can readily be estimated as in [13]. However these approaches typically
optimise a non-convex local energy by gradient descent, and most were non-
geometric, i.e. discretization-dependent. In contrast [5] proposed a geometric
level-set segmentation method, but using only the perimeter as a regularizer, and
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was still non-convex. All the numerous approaches based on total-variation mini-
mization for image restoration or segmentation [19] and even the Mumford-Shah
functional [17] use this quite elementary regularizer, probably because optimiz-
ing it in an exact manner was already a challenge for a long time [2,4,6], whether
in the discrete or continuous cases.

In more recent works, optimizing the Elastica, which is a geometric regular-
izer, has seen renewed interest. In [14], authors successfully use a computational
geometry approach to perform image restoration with the Elastica as regular-
izer. In [7], authors compute an approximate discrete version of the Elastica
and optimize it with discrete calculus. In [18], an efficient, discrete approxi-
mation of curvature is optimized with a specific solver using local submodular
approximations [8]. However, in these works, the poor quality of the curvature
approximation may limit accuracy and hence the quality of the result.

In a previous work [1] we proposed to formulate a digital flow that approxi-
mates an Elastica-related flow using a multigrid-convergent curvature estimator,
within a discrete variational framework. We also presented an application of this
model as a post-processing step to a segmentation framework.

In this work, we propose a novel approach that still uses a multigrid-
convergent estimation of curvature, but we optimize using a maximal flow algo-
rithm.

1.1 Multigrid Convergent Estimators

Geometric measurements in digital objects can be tricky. Intuitively, a good
estimator should converge to its continuous counterpart value as the grid res-
olution is refined. The criterion that formalizes this intuition is the multigrid
convergence property.

Definition 1 (Multigrid convergence). Let F a family of shapes in the plane and
Q a global measurement (e.g., perimeter, area) on members of F . Additionally,
denote Dh(S) a digitization of shape S in a digital grid of resolution h. The
estimator Q̂ of Q is multigrid convergent for the family F if and only if for
every shape S ∈ F , there exists hS > 0 such that

∀h ≤ hS , |Q̂(Dh(S), h) − Q(S)| ≤ τS(h),

where τS : R+ \ {0} → R+ tends to zero as h tends to zero and is the speed of
convergence of Q̂ towards Q for S.

Tangent and curvature are examples of local properties computed along the
boundary of some shape S in the plane. We need a slightly different definition
of multigrid convergence in order to map points of the Euclidean boundary to
those in the digital contour.

Definition 2 (Multigrid convergence for local geometric quantities). Let F a
family of shapes in the plane and Q a local measurement along the boundary
∂S of S ∈ F . Additionally, denote Dh(S) a digitization of S in a digital grid
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of resolution h and ∂hS its digital contour. The estimator Q̂ of Q is multigrid
convergent for the family F if and only if for every shape S ∈ F , there exists
hS > 0 such that the estimate Q̂(Dh(S), p, h) is defined for all p ∈ ∂hS with
0 < h < hS, and for any x ∈ ∂S,

∀p ∈ ∂hS with ‖p − x‖∞ ≤ h, |Q̂(Dh(S), p, h) − Q(S, x)| ≤ τS(h),

where τS : R+ \ {0} → R+ has null limit at 0. This function defines the speed
of convergence of Q̂ towards Q for S.

We now recall the notion of Elastica, as well as its digital counterpart.

1.2 Digital Elastica

Letting κ be the curvature function along some Euclidean shape S ⊂ R
2. The

elastica energy of S with parameters θ = (α ≥ 0, β ≥ 0) is defined as

Eθ (S) =
∫

∂S

α + βκ(s)2ds.

Similarly, the digital elastica Êθ of some digitization Dh(S) of S is defined as

Êθ (Dh(S)) =
∑

ė∈∂hS

ŝ(ė)
(

α + βκ̂2(Dh(S), ė, h)
)
, (1)

where ė denotes the center of the linel e and the estimators of length ŝ and
curvature κ̂ are multigrid convergent.

1.3 A Multigrid-Convergent Estimation of Curvature

Let S be an arbitrary shape. The following definition yields a curvature estima-
tion at every point of its boundary.

Definition 3 (Integral Invariant Curvature Estimator). Let Dh(S) a digitiza-
tion of S ⊂ R

2 and Br(p) the Euclidean disk of radius r centered at p. The
integral invariant curvature estimator is defined for every point p ∈ ∂hS as

κ̂r(Dh(S), p, h) :=
3
r3

(
πr2

2
− Ârea

(
Dh

(
Br(p)

) ∩ Dh(S), h
))

. (2)

where Ârea(D,h) estimates the area of D by counting its grid points and then
scaling them by h2. This estimator is multigrid convergent for the family of
compact shapes in the plane with 3-smooth boundary. It converges with speed
O(h

1
3 ) for radii chosen as r = Θ(h

1
3 ) [11].

In the expression above, we will substitute an arbitrary subset D of Z
2 to

Dh(S) since the continuous shape S is unknown. In the following we omit the
grid step h to simplify expressions (or, putting it differently, we assume that the
shape of interest is rescaled by 1/h and we set h = 1).
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2 Digital Elastica Minimization via Graph Cuts

In this section we present a graph cut model that converges to the optimum
digital shape under digital elastica regularization. Moreover, the model is easily
adapted to image segmentation tasks.

2.1 Balance Coefficient

In the core of the model is the notion of balance coefficient. We are going to
extend Eq. 2 to the whole digital domain. In fact, since we are more interested
in the balance of intersected and non-intersected points, we slightly change Eq. 2
and give it another name. We define the balance coefficient as

ur(D, p) =
(

πr2

2
− Ârea(Br(p) ∩ D)

)2

.

The balance coefficient at p gives us as an approximation of the new squared
curvature value when the shape is perturbed a little around p. Therefore, it is
reasonable to evolve the shape towards the zero level set of the balance coefficient
function (see Fig. 1).

Fig. 1. Balance coefficient zero level set. We notice that evolving the initial con-
tour (colored in white) to the zero level set of the balance coefficient (colored in
magenta) regularizes the shape with respect to the squared curvature. (Color figure
online)
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2.2 Model Overview

Let D(0) be the initial digital set. The GraphFlow model produces a sequence
of digital shapes D(k) by executing two main steps:

Candidate selection: We associate to D(k) a set of neighbor shapes P(D(k)).
For each D′ ∈ P(D(k)) we construct the capacitated graph GD′ such that its
minimum cut Q minimizes the candidate function.

cand(D) = data(D) +
∑
p∈D′

∑
q∈N4(p)

ur(D, p) + ur(D, q). (3)

The proposition mincut(Q,G) indicates that Q is a minimum cut of G.
Validation: Each minimum cut Q computed in the previous step induces a
solution candidate DQ. We group the solution candidates in the set sol(D(k))
and we choose the one that minimizes the validation energy

val(D) = data(D) + Êθ (D). (4)

The candidate function is computed on a band around the contour of D(k). Let
dD : Ω → R be the signed Euclidean distance transformation with respect to
shape D. The value dD(p) gives the Euclidean distance between p /∈ D and the
closest point in D. For points p ∈ D, dD(p) gives the negative of the distance
between p and the closest point not in D.

Definition 4 (Optimization band). Let D ⊂ Ω ⊂ Z
2 a digital set and natural

number n > 0. The optimization band On(D) is defined as

On(D) := {p ∈ Ω | − n ≤ dD(p) ≤ n} .

We use as the neighborhood of shapes the a-probe set

Definition 5 (a-probe set). Let D ⊂ Ω ⊂ Z
2 a digital set and a some natural

number. The a-probe set of D is defined as

Pa(D) = D ∪
⋃

a′<a

D+a′ ∪ D−a′
,

where D+a(D−a) denotes a dilation(erosion) by a disk of radius a.

2.3 Shape Optimization

We are going to evolve the initial contour ∂D of some digital shape D to the zero
level set of its balance coefficient by computing the minimum cut of the candidate
graphs. In this experiment, the data term in both candidate and validation
functions equal to zero.
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Definition 6 Candidate graph. Let D ⊂ Ω ⊂ Z
2 a digital set and natural num-

ber n > 0. We define GD(V, E , c) as the candidate graph of D with optimization
band n such that

V =
{

vp | p ∈ On(D) } ∪ {s, t
}

E =
{ {vp, vq} | p ∈ On(D) and q ∈ N4(p)

} ∪ Est

Est =
{ {s, vp} | dD(p) = −n

} ∪ { {vp, t} | dD(p) = n
}
.

The vertices s, t are virtual vertices representing the source and target ver-
tices as it is usual in a minimum cut framework. In particular, after the min-
imum cut is computed, vertices connected to the source will define the new
digital shape. The innermost (resp. outermost) pixels of the optimization band
are connected to the source (resp. target), and we identify such vertices as

Vs := {vp ∈ Ω | dD(p) = −n}
Vt := {vp ∈ Ω | dD(p) = n} .

The set Est comprises all the edges having the source as their starting point or
the target as their endpoint. Next, we describe how to set the edges’ capacities.

Edge e c(e) For

{vp, vq} ur(D, p) + ur(D, q) {vp, vq} ∈ Eu

{vp, s} M vp ∈ Vs

{vp, t} M vp ∈ Vt

Here M is twice the highest value of the balance coefficient plus one, i.e.

M = 1 + max
p∈On(D)

2 ∗ ur(D, p).

2.4 Image Segmentation

The GraphFlow model is suitable for image processing tasks. We present our
experiments using the data term employed by Boykov-Jolly (BJ) graph cut
model described in [3]. Let x ∈ [0, 1]|D| represent the label of each pixel (0
for background and 1 for foreground). Then, we define the data term as

data(D) = γr

∑
p∈D

ψp(xp) + γb

∑
p∈D′

∑
q∈N4(p)

ψp,q(xp, xq),

where γr ≥ 0 and γb ≥ 0 are parameters controlling the influence of the data
and space coherence terms, respectively. Given the image I : Ω → [0, 1]3, the
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unary and pairwise terms are defined as

ψp(xp) =
{− ln Hbg

(
I(p)

)
, if xp = 0

− ln Hfg

(
I(p)

)
, if xp = 1,

ψp,q(xp, xq) =

⎧⎨
⎩

exp
(

− 1
|(p, q)|

(I(p) − I(q))2

2σ2

)
, q ∈ N4(p)

0, otherwise.

The terms Hbg and Hfg are mixed Gaussian distribution constructed from fore-
ground and background seeds given by the user.

2.5 Elastica GraphFlow Algorithm

The GraphFlow algorithm implements a local-search strategy to minimize (4)
with a search space given by the solution of the candidates set defined in the
previous section. We choose to let the model flow even in the case where the next
shape D(k+1) has a higher energy than the previous shape D(k). It is a simple
strategy to escape local minima. In the implementation presented here, the only
stopping condition is the number of iterations. This strategy could be tailored
to a specific application.

input : An image I or a digital set D; the optimization band n; the probe set
parameter a; parameter vector θ = (α, β); parameter vector
γ = (γr, γb); the maximum number of iterations maxIt;

if Image I is given then

D(0) ←− graphcutBJ(I);
end
else

D(0) ←− D;
(γr, γb) ←− (0, 0);

end

k ←− 0;
while k < maxIt do

//Candidate selection

sol(D(k)) ←− ⋃
D′∈Pa(D(k))

{(
Q, DQ

) | mincut(Q, GD′)
}

;

//Candidate validation

D(k+1) ←− arg min
(Q,S)∈sol(D(k))

data(S) + Êθ (S);

k ←− k +1;

end
Algorithm 1: GraphFlow algorithm.

The Elastica GraphFlow algorithm has two fundamental steps. In the can-
didate selection, we build the solution of the candidates set from the minimum
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cuts of the candidate graphs. Next, in the validation step, we choose the digital
set with minimum value for (4). If we interpret the balance coefficient minimiza-
tion as the best move one can make towards digital elastica minimization, the
solution of the candidates set can be seen as the neighboring shapes with highest
potential to minimize the elastica energy for the given a-probe set.

Some results of Algorithm 1 are shown in the next section.

3 Results and Discussion

We first present some of our own results, then some comparison with our previous
work and with the reference implementation of [20].

3.1 Results

The GraphFlow algorithm produces a flow that is in accordance with expecta-
tions for a flow guided by the elastica energy. In particular, it grows and shrinks
in accordance with the α coefficient in the digital elastica (see Fig. 2) for a-probe
sets such that a > 0. If we use a 0-probe set, we recover a flow similar to the
curve-shortening flow [9].

(n = 2, a = 0, α = 0.01) (n = 2, a = 2, α = 0.01) (n = 2, a = 2, α = 0.001)

(a)

Fig. 2. GraphFlow results. The GraphFlow algorithm can shrink and grow in accor-
dance with length penalization and it converges to a shape close to the theoretical global
optimum (green curve) in the free elastica problem. We are using n = 2, a = 2 and
shapes are displayed every 10 iterations. (Color figure online)

The solutions are very similar to those achieved in [1], but with the advantage
of producing smoother flows and up to 100× faster. In Fig. 3, we show that our
algorithm can easily be used for segmentation, and that it produces results that
are parametrically smoother than those of the BJ model.

In Fig. 4, we can observe that the Elastica GraphFlow presents the comple-
tion property, i.e., it tends to return a segmentation with fewer disconnected
components.
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Seeds Graph cut
α = 0.05, β = 0, α = 0.05, β = 0.5,

γr = γb = 1.0 γr = γb = 1.0

Fig. 3. GraphFlow segmentation. Given foreground (green) and background (gray)
seeds in picture (a); Graph cut produces picture (b) which is used as input of the Graph-
Flow algorithm; in pictures (c) and (d) we display the output of our Elastica GraphFlow
algorithm with and without the squared curvature term in the regularization. (Color
figure online)

α = 0, β = 0 α = 0, β = 1
γr = 3, γb = 3 γr = 3, γb = 3

Fig. 4. GraphFlow and completion property. The oversegmented picture on the
left was obtained with no squared curvature regularization, while the picture on the
right was obtained by setting β = 1.0. (Color figure online)

Table 1. Running time for the image segmentation problem.

Exp-comparison running time

Model Minimum Maximum Average

SLCR 2.87 min 52.24 min 18.4 min

Previous work 60 s 297 s 156 s

This work 11 s 150 s 75 s
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3.2 Comparisons

In this section we compare our proposed results for segmentation with several
state-of-the-art results in Fig. 5: the reference BJ segmentation method; the lin-
ear relaxation methods by Schoeneman et al.; and our previous results. We
observe that our results are smoother than BJ, as in the previous figure. They
are very similar to our previous results, and much better than the reference
SCLR method from literature.
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Fig. 5. Segmentation results comparison. Top row, Graph-Cut BJ results; second row:
references SCLR results; third row: previous results from [1]; last row: proposed method.
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All the experiments were executed on a 32-core 2.4 GHz CPU. According to
Table 1, our proposed method is significantly faster than our previous work, and
much faster than the reference SLCR method.

4 Conclusion

In this article, we described a graph cut model for optimizing the Elastica energy
that is suitable for both discrete curve evolution and image segmentation. The
evolution produced by the Elastica GraphFlow responds to the length penaliza-
tion term α, i.e., the shape tends to grow (shrink) for lower (higher) values of
α and to the curvature penalization β. Furthermore we observe a convergence
to a shape that appears close to the expected, theoretical global optimum of
the Elastica model in the cases where this globally optimal curve can be com-
puted. Our Elastica GraphFlow algorithm is significantly faster and simpler to
implement than the previous models presented in the literature.

In our method, we need to use a family of shapes (a-probes). In future work,
we plan to use a dynamic family with the help a parameter-free estimator. In
the same vein, a multi-resolution approach would be very useful, in particular
for dealing with very thin portions of the image. We also note that a globally
optimal solution with multigrid convergent estimators is yet to be proposed.
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