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Abstract. Binary partition hierarchies and minimum spanning trees
are key structures for numerous hierarchical analysis methods, as those
involved in computer vision and mathematical morphology. In this arti-
cle, we consider the problem of their computation in an out-of-core man-
ner, i.e., by minimizing the size of the data structures that are simultane-
ously needed at the different computation steps. Out-of-core algorithms
are necessary when the data are too large to fit entirely in the main mem-
ory of the computer, which can be the case with very large images in 2-,
3-, or higher dimension space. We propose a new algebraic framework
composed of four main operations on hierarchies: edge-addition, select,
insert, and join. Based on this framework, we propose and establish the
correctness of an out-of-core calculus for binary partition hierarchies and
for minimum spanning trees. First applications to image processing sug-
gest the practical efficiency of this calculus.

1 Introduction

Image segmentation, one of the oldest problems in computer vision, consists
in partitioning an image into meaningful regions that can be used to perform
higher-order tasks. However, the objects of interest do not all appear at the same
scale and can be nested within each other making segmentation a ill-posed prob-
lem. In this article, we are interested in the more general problem of hierarchical
(or multi-scale) segmentation: find a series of partitions ordered from fine to
coarse describing how the finer details are grouped to form higher level regions.
This problem generalizes the one of hierarchical clustering, studied in classifi-
cation, with the additional benefit of considering class-connectivity in a graph
framework [2]. Nowadays, state of the art image analysis procedures involving
segmentation [4,11] include two steps performed independently: i/learning con-
tour cues and regional attributes with machine or deep learning strategies; and
ii/computing and processing hierarchical segmentation trees. One of the trends
in the computer vision community is the integration of these two tasks with for
instance the introduction of hierarchy processing layers [1] into deep learning
architectures for use in an end-to-end fashion. Binary partition hierarchies [17]
built from an altitude ordering (a total order on the pairs of adjacent pixels
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or vertices) and minimum spanning trees [3,12] constitute key structures for
numerous hierarchical analysis methods.

While the algorithms for building and processing hierarchical segmentations
are well established in the regular case of a single image of a standard size,
there is a lack of efficient scalable algorithms. Scalability is needed to analyze
large images at native resolution or large datasets. Indeed, giga- or tera-bytes
images, which become common with the improvements in sensor resolution, can-
not fit within the main memory of a computer and recent (deep) learning meth-
ods require browsing several times datasets of millions of images. The classical
sequential hierarchy algorithms are not adapted to these situations and therefore
need to be completely redesigned [5–7,10] to cope with these situations.

In [5,7,10], the authors investigate parallel algorithms to compute the min
and max trees – hierarchical structures used for various applications, such as
attribute filtering and segmentation – of terabytes images. In [6], the computa-
tion of minimum spanning trees of streaming images is considered. In [9], the
authors investigate the parallel computation of quasi-flat zones hierarchies. From
a high-level point of view, these approaches work independently on small pieces
of the space, “join” the information found on adjacent pieces, and “propagate”
(or “insert”) this joint information into other pieces.

In this article, we envision the problem of computing binary partition hierar-
chies (and associated minimum spanning trees) under the out-of-core constraint,
that is minimizing the size of the data structures loaded simultaneously into the
principal memory of the computer. In other words, out-of-core algorithms target
the processing of data or images that are too large to fit into the main mem-
ory at once without necessarily using any parallelization. With respect to these
objectives, our main contributions in this article are the following:

– the formalization of a representation of a hierarchy of partitions, called a
distribution, that is suited to out-of-core hierarchical analysis (Sect. 2);

– the introduction and the algebraic study of a fundamental external binary
operation on hierarchies called edge-addition. This operation allows us to
provide new characterizations of binary partition hierarchies and to introduce
the notion of a partial binary partition hierarchy that is useful in the context
of distributions (Sect. 3);

– three operations on hierarchies called select, join, and insert (Sects. 2 and 4)
to handle distributions;

– an out-of-core calculus for (distributions of) binary partition hierarchies and
minimum spanning trees (over a causal partition) of the space (Sect. 5); this
calculus only involves the three introduced operations applied to partial hier-
archies and it requires O(K) calls to these operations, where K is the number
of parts onto which the data structures are distributed;

– a discussion and a proof of concept of the efficiency of this calculus to design
out-of-core algorithms for binary partition hierarchies and minimum spanning
trees (Sect. 6).

Due to the space limitation in this article, formal proofs of the properties are
omitted and will be given in a forthcoming extended version. However, a pre-
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liminary version of these proofs is available on https://perso.esiee.fr/∼coustyj/
hoocc/.

2 Distributed Hierarchies of Partitions: Select Operation

In this section, we first remind the definitions of a partial partition and of a
hierarchy of partial partitions [15,16]. Then, we introduce the select operation.
Intuitively, this operation consists in “selecting” the part of a given hierarchy
made of the regions which hit a given set. Finally, we define the notion of a
distribution of a hierarchy over a partition of the space. Such distribution is a
set of hierarchies where each element is the result of “selecting” the part of the
given hierarchy associated with one of the class of the given partition. These
notions allow one to define a component forest and a border tree as presented
in [5,10] and to set up the formal problem that we tackle in this article.

Let V be a set. A (partial) partition of V is a set of pairwise disjoint subsets
of V . Any element of a partition is called a region of this partition. The support
(or ground) of a partition P, denoted by gr(P), is the union of the regions
of P. A partition whose support is V is called a complete partition of V . Let P
and Q be two partitions of V . We say that Q is a refinement of P if any region
of Q is included in a region of P. A hierarchy on V is a series (P0, . . . ,P�)
of partitions of V such that, for any λ in {0, . . . , � − 1}, the partition Pλ is a
refinement of Pλ+1. Let H = (P0, . . . ,P�) be a hierarchy. The integer � is called
the depth of H and, for any λ in {0, . . . , �}, the partition Pλ is called the λ-
scale of H. In the following, if λ is an integer in {0, . . . , �}, we denote by H[λ]
the λ-scale of H. For any λ in {1, . . . , �}, any region of the λ-scale of H is also
called a region of H. The hierarchy H is complete if H[0] = {{x} | x ∈ V } and
if H[�] = {V }. The hierarchy H is binary if, for any λ ∈ {1, . . . , �}, we have
|Pλ| ∈ {|Pλ−1| − 1, |Pλ−1|}. We denote by H�(V ) the set of all hierarchies on V
of depth �, by P(V ) the set of all partitions on V , and by 2|V | the set of all
subsets of V .

In the following, the symbol � stands for any positive integer.
Let V be a set. The operation sel is the map from 2|V | ×P(V ) to P(V ) which

associates to any subset X of V and to any partition P of V the subset sel(X,P)
of P which contains every region of P that contains an element of X. The
operation select is the map from 2|V | × H�(V ) in H�(V ) which associates to
any subset X of V and to any hierarchy H on V the hierarchy select(X, H) =
(sel(X, H[0]), . . . , sel(X, H[�]).

Definition 1 (Distributed hierarchy). Let V be a set, let P be a complete
partition on V and let H be a hierarchy on V . The distribution of H over P is
the set {select (R,H) | R ∈ P}.

The operation select and the notion of a distribution of a hierarchy are illus-
trated in Fig. 1. The following property asserts that the distribution of any hier-
archy H over a partition of the space is indeed a representation of this hierarchy,
which means that one can retrieve H from its distribution.

https://perso.esiee.fr/~{}coustyj/hoocc/
https://perso.esiee.fr/~{}coustyj/hoocc/
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Fig. 1. Illustration of a distribution of a hierarchy. The hierarchies are represented in
black-bold in the form of trees. First row: the binary partition hierarchy of the weighted
graph depicted in red; and second row: its distribution over the partition {S0, S1, S2},
where S0 (resp. S1, S2) contains the four leftmost (resp. centermost, rightmost) vertices
of the graph.

Property 2 (reconstruction). Let V be a set, let P be a complete partition
on V , let H be a hierarchy on V of depth �, and let δ be the distribution of H
over P. Then, for any λ in {0, . . . , �}, we have H[λ] = ∪{D[λ] | D ∈ δ}.

3 Binary Partition Hierarchies: Edge-Addition
Operations

The binary partition hierarchy plays a central role when one has to deal with
hierarchies of partitions, notably in the framework of mathematical morphology
[3,12]. It allows one to obtain the set representation of a hierarchy from its
saliency map or from its ultrametric distance representations [3,13]. It can also
be efficiently post-processed to obtain other hierarchies useful in image analysis
applications like the quasi-flat zones and the constrained connectivity hierarchies
[18], the hierarchical watersheds [13], the various HGB hierarchies [8], and to
simplify hierarchies by removing non-significant regions [14] or to obtain marker-
based segmentations of an image [17]. When the binary partition hierarchy is
built from the edge-weights of a graph, its regions are in bijection with the
vertices and edges of a minimum spanning tree of this graph [3,12] and thus
embeds this minimum spanning tree.
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In this section, we provide a new definition of this hierarchy based on an
(elementary) external binary operation on hierarchies. We investigate the alge-
braic properties of this operation. As shown in Sect. 5, this allows us to design
calculus to obtain distributions of binary partition hierarchies.

The binary partition hierarchy depends on an ordering of the edges of a graph
that structures the set on which the hierarchy is built. Let us start this section
with basic notions on graphs.

We define a graph as a pair X = (V,E) where V is a finite set and E
is composed of unordered pairs of distinct elements in V , i.e., E is a subset
of {{x, y} ⊆V | x �= y}. Each element of V is called a vertex of X, and each
element of E is called an edge of X.

In the remaining part of this article, we assume that G = (V,E) is a graph
and that � = |E|. Let us now give the definitions of some basic operators on
graphs that are used in the sequel.

We denote by ε× the operator that maps to any subset X of V the subset of E
made of the edges of G composed of two vertices in X, i.e. ε×(X) = {{x, y} ∈
E | x ∈ X, y ∈ X}. We denote by δ• the operator that maps any subset F of E
to the subset of V made of every vertex of V that belongs to an edge in F ,
i.e., δ•(F ) = ∪F . We denote by δ× the operator that maps to any subset X
of V the subset of E made of every edge of G that contains a vertex of X, i.e.,
δ×(X) = {{x, y} ∈ E | {x, y} ∩ X �= ∅}. Finally, we denote by γ the operator
that maps to any two subsets X and Y of V the subset of E made of every edge
of E that contains exactly one vertex of X and exactly one vertex of Y , i.e.,
γ(X,Y ) = ε×(X ∪ Y ) \ ε×(X) \ ε×(Y ). The set γ(X,Y ) is called the common
neighborhood of X and Y

A total order on E is a sequence (u1, . . . , u�) such that {u1, . . . , u�} = E.
Let ≺ be a total order on E. Let k in {1, . . . , �}, we denote by u≺

k the k-th
element of E for the order ≺. Let u be an edge in E. The rank of u for ≺,
denoted by r≺(u), is the unique integer k such that u = u≺

k . Let v be an edge
of G. We write u ≺ v if the rank of u is less than the one of v ,i.e., r≺(u) < r≺(v).

In the remaining part of this article, the symbol ≺ denotes a total order on E.
Let P be a partition of V . We consider the class map associated with P (see

[15]), denoted by ClP, as the map from V to the set of all subsets of V such that
ClP(x) = ∅ if x does not belong to the support of P and ClP(x) = R where R
is the unique region of P which contains x, otherwise.

Let X be a hierarchy on V . Let {x, y} be an edge in E and let k be the rank
of {x, y} for ≺. The update of X with respect to {x, y}, denoted by X ⊕ {x, y},
is the hierarchy defined by:

X ⊕ {x, y}[λ] = X [λ], for any λ in {0, . . . , k − 1}; and

X ⊕ {x, y}[λ] = X [λ] \ {Rx, Ry} ∪ {Rx ∪ Ry}
where Rx = ClX [λ](x) and Ry = ClX [λ](y), for any λ in {k, . . . , �}.
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Property 3 Let u and v be two edges in E and let H be a hierarchy. The
following statements hold true:

H ⊕ u = H ⊕ u ⊕ u

H ⊕ u ⊕ v = H ⊕ v ⊕ u

Definition 4 (edge-addition) Let E′ ⊆ E and let H be a hierarchy. We
set H � E′ = H ⊕ u1 ⊕ . . . ⊕ u|E′| where E′ = {u1, . . . , u|E′|}. The binary
operation � is called the edge-addition.

Let X be a set, we denote by ⊥X the hierarchy defined by ⊥X [λ] = {{x} | x ∈
X}, for any λ in {0, . . . �}.

Definition 5 (Binary partition hierarchy) The binary partition hierarchy
(for ≺), denoted by B≺, is the hierarchy ⊥V �E. Let A be a subset of V , we
define the (partial) binary partition hierarchy (for ≺) on A, denoted by B≺

A , as
the hierarchy ⊥A �ε×(A).

Property 6 The binary partition hierarchy for ≺ is complete and binary.

The notion of a binary partition hierarchy is illustrated in Figs. 1 and 2. In
Fig. 1, the hierarchy H (in bold in the first row) is the binary partition hierarchy
of the graph shown in red for the order ≺ associated with the ranks given below
the edges. In Fig. 2, the two hierarchies X and Y represented in the first row in
blue and in green are the partial binary partition hierarchies associated to the 8
leftmost (resp. to the 4 rightmost) vertices of the graph.

The definition of a binary partition hierarchy given in Definition 5 differs
from the one given in [3]. In [3], the edges of E are considered in increasing
order of rank, whereas in Definition 5 the edges are added in any order since,
from Property 3, the chosen order does not change the resulting hierarchy. From
the particular case where the edges are picked in increasing order in Definition 5,
it can be observed that the two definitions are equivalent.

In this article, we consider the problem of computing the distribution of
the binary partition hierarchy over a partition of the space under the out-of-
core constraint. To this end, we finish this section by analyzing some algebraic
properties of the external operation �.

Let X and Y be two hierarchies in H�(V ). We say that Y is smaller than X ,
and we write Y � X , if, for any λ in {0, . . . , �}, the partition Y[λ] is a refinement
of X [λ]. The set H�(V ) equipped with the relation � is a lattice whose supremum
and infimum are denoted by � and  respectively. We refer to [16] for a general
study of the lattices of (partial) partitions and of hierarchies. Let u = {x, y} be
an edge in E, we denote by Hu the hierarchy ⊥u ⊕u. We have:

for anyλ in {0, . . . , r≺(u) − 1},Hu[λ] = {{x}, {y}} ; and
for anyλ in {r≺(u), . . . , �},Hu[λ] = {u}.

Property 7 Let X and Y be two hierarchies in H�(V ), let u be an edge in E,
and let F and I be two subsets of E. Then, the following equalities hold true:
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Fig. 2. Illustration of partial binary partition hierarchies and of the operations select
and join. First row: the two partial binary partition hierarchies X and Y (represented
in blue and in green, respectively) on the sets A and B of the 8 leftmost vertices and
of the 4 rightmost vertices, respectively. Second row: (left) two hierarchies X ′ and Y ′

which are equal to select (γ•
B(A), X ) and to select (γ•

A(B), Y) respectively; (center) the
hierarchy M↑ = join (X ′, Y ′); and (right) the hierarchy Z = select

(
γ•

A(B), M↑)
.

1. H ⊕ u = H � Hu;
2. H � F = H � (�{Hu | u ∈ F});
3. (X � Y) � F = X � (Y � F ) = (X � F ) � Y;
4. X � (F ∪ I) = (X � F ) � I = (X � I) � F ; and
5. (X  Y) � F = (X � F )  (Y � F ).

4 Join and Insert Operations

In this section, we introduce the two main binary operations, called join and
insert, that allow us to compute (the distribution of) binary partition hierarchies
in an out-of-core manner. Following the high-level schemes presented in [5,7,9,
10], the basic idea is to work independently on small pieces of the space, “join”
the information found on adjacent pieces and “propagate” (or “insert”) this
information into other pieces. After presenting the definition of these operations,
we investigate some basic properties which are then used in the following section
to establish an out-of-core calculus for distributed binary partition hierarchies.

The extent of a hierarchy is the union of the set of its regions and its ground
is the support of its 0-scale. The ground and the extent of a hierarchy H are
denoted by gr(H) and ex(H), respectively.
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Definition 8 (join) Let X and Y be two hierarchies in H�(V ). The join of X
and Y, denoted by join(X ,Y), is the hierarchy defined by join(X ,Y) = (X �
Y)�F , where F is the common neighborhood of the grounds of X and of Y, i.e.,
F = γ(gr(X ), gr(Y)).

The operation join is illustrated in Fig. 2. The next property indicates that
the binary partition hierarchy for ≺ on a set A ∪ B can be obtained by first
considering the binary partition hierarchies on A and on B and then considering
the join of these two hierarchies.

Property 9 Let A and B be two subsets of V . Then, we have join (B≺
A , B≺

B) =
B≺

A∪B.

Definition 10 (Insert) Let X and Y be two hierarchies.
We say that X is insertable in Y if, for any λ in {0, . . . , �}, for any region Y

of Y[λ], Y is either included in a region of X [λ] or is included in V \ gr(X [λ]).
Let X be insertable in Y. The insertion of X into Y is the hierarchy Z, such

that, for any λ in {0, . . . , �}, Z[λ] = X [λ] ∪ {R ∈ Y[λ] | R ∩ gr(X [λ]) = ∅}. The
insertion of X into Y is denoted by insert(X ,Y).

For instance, in Fig. 2, the hierarchy Z is insertable in the hierarchy Y. The
insertion of Z into Y is the hierarchy depicted in Fig. 1(right-bottom).

Property 11 Let X and Y be two hierarchies. The following statements hold
true:

1. the hierarchy X is insertable in Y if and only if select (gr(X ),Y) � X .
2. if X is insertable in Y, then we have insert(X ,Y) = X � Y.

The next lemma states that the selection is distributive over the insertion.
Thus, when one needs to calculate a selection of the insertion of a hierarchy
into another one, then it is enough to insert a selection of the first hierarchy in
the selection of the second. In other words, the insertion can be performed in
subparts of the hierarchy instead of on the whole hierarchy, a desirable property
in the context of out-of-core computation.

Lemma 12 Let A be a subset of V and let X and Y be two hierarchies such
that X is insertable in Y. Then, we have:

select (A, insert(X ,Y)) = insert(select (A,X ), select (A,Y))

The following lemma shows that when one needs to add a certain set of
edges to a hierarchy, the addition can be performed “locally” on a subpart of
the hierarchy (of the regions containing an element of the edges to be added)
before being inserted in the initial hierarchy.

Lemma 13 Let X be a hierarchy in H�(V ) and let F be a subset of E. Then,
we have X � F = insert(select (δ•(F ),X ) � F ,X ).
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Due to Lemmas 12 and 13, we deduce the following property. It provides
us with an out-of-core calculus to obtain the distribution of a binary partition
hierarchy over a bi-partition {A,B}. This calculus is out-of-core in the sense
that it does not consider the binary partition hierarchy on the whole set A ∪ B.

Let A and B be any two subsets of V . We set γ•
B(A) = δ•(γ(A,B)) ∩ A. In

other words, γ•
B(A) contains every vertex in A which adjacent to a vertex in B.

Property 14 Let A and B be two subsets of V .
Let M↑ = join (select (γ•

B(A),B≺
A), select (γ•

A(B),B≺
B)). Then, we have:

select
(
B,B≺

A∪B

)
= insert(select

(
γ•

A(B),M↑),B≺
B).

Property 14 is illustrated in Figs. 1 and 2. The first row of Fig. 2 rep-
resents two hierarchies X = B≺

A and Y = B≺
B , where A (resp B) is the

set of the 8 leftmost (resp. 4 rightmost) vertices of the depicted graph.
The hierarchies X ′ = select (γ•

B(A),B≺
A), Y ′ = select (γ•

A(B),B≺
B), M↑ =

join (select (γ•
B(A),B≺

A), select (γ•
A(B),B≺

B)), and Z = select
(
γ•

A(B),M↑) are
depicted from left to right in the second row of Fig. 2. It can be observed that,
as established by Property 14, the insertion of Z into X = B≺

A is indeed equal
to select (B,B≺

A∪B) (shown in Fig. 1(bottom-right)). The next lemma is the key
ingredient to extend the above calculus to partitions with more than two sets.

Lemma 15 Let A,B and C be three pairwise disjoint subsets of V such
that γ(A,C) = ∅. Let M↑ = join (select (γ•

B(A),B≺
A), select (γ•

A(B),B≺
B)) and

let M↓ = join (select (γ•
B(A),B≺

A), select (γ•
A(B),B≺

B∪C)). Then, we have :

1. select (A,B≺
A∪B∪C) = insert(select

(
γ•

B(A),M↓),B≺
A); and

2. M↓ = insert(select (γ•
A(B),B≺

A∪B∪C),M↑).

5 Out-of-Core Calculus

In this section, after providing the definition of a causal partition, we introduce
an out-of-core calculus (with an associated algorithm) to efficiently obtain the
distribution of a binary partition hierarchy on a causal partition. The main result
of this section (Theorem 17) states the correctness of this calculus.

A causal partition of V is a series (S0, . . . , Sk) of subsets of V such that: (i)
{S0, . . . , Sk} is a partition of V ; (ii) δ×(S0) = ε×(S0) ∪ γ(S0, S1); (iii) δ×(Si) =
ε×(Si) ∪ γ(Si, Si−1) ∪ γ(Si, Si+1), for any i in {1, . . . , k − 1}; and (iv) δ×(Sk) =
ε×(Sk) ∪ γ(Sk, Sk−1). Any element of a causal partition δ is called a slice of δ.

Let us now present induction formulae to compute the distribution of a binary
partition hierarchy over a causal partition of the space.

Definition 16 Let (S0, . . . , Sk) be a causal partition of V . We set

1. B↑
0 = B≺

S0
;

2. ∀i∈{1, . . . , k},M↑
i = join

(
select

(
γ•

Si
(Si−1),B↑

i−1

)
, select

(
γ•

Si−1
(Si),B≺

Si

))
;
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3. ∀i ∈ {1, . . . , k}, B↑
i = insert(select

(
γ•

Si−1
(Si),M↑

i

)
,B≺

Si
);

4. B↓
k = B↑

k and M↓
k = M↑

k;

5. ∀i ∈ {0, . . . , k − 1}, B↓
i = insert(select

(
γ•

Si−1
(Si),M↓

i+1

)
,B↑

i ); and

6. ∀i ∈ {1, . . . , k − 1}, M↓
i = insert(select

(
γ•

Si−1
(Si),B↓

i

)
,M↑

i ).

On the one hand, the three first formulae of Definition 16 provide us with a
causal (inductive) calculus: i-th term of the series relies on the (i−1)-th term of
the series. In particular, M↑

i depends on B↑
i−1 and that B↑

i depends on M↑
i , for

any i in {1, . . . , k}. On the other hand, the three last formulae of Definition 16
provide us with an anti-causal calculus since the terms of index i rely on the
ones of index (i + 1): B↓

i depends on M↓
i+1 and M↓

i depends on B↓
i . Note also

that M↓
i depends on M↑

i and that B↓
i depends on B↑

i . Hence, the anti-causal
calculus must be performed after the causal ones. One can also observe that
the computation of each term requires only the knowledge of hierarchies whose
grounds are included in two consecutive slices of the given causal partition. In
this sense, we can say that the above formulae form an out-of-core calculus.
Algorithm 1, presented hereafter, is a sequential implementation of the above
induction formulae. Given a partition of V into k + 1 slices, it can be observed
that Algorithm 1 performs O(k) calls to select, insert, join, and to the algorithm
PlayingWithKruskal [12] applied to a single slice of the given partition.

Algorithm 1: Out-of-core binary partition hierarchy.
Data: A graph (V, E), a total order ≺ on E, and a causal partition (S0, . . . , Sk)

of V

Result: {B↓
0 , . . . , B↓

k}: the distribution of the binary partition hierarchy B≺
V

over {S0, . . . , Sk}.
1 B↑

0 := B≺
S0

// Def. 16.1, call PlayingWithKruskal algorithm

2 foreach i from 1 to k do // Causal traversal of the slices

3 Call PlayingWithKruskal algorithm to compute B≺
Si

4 M↑
i := join

(
select

(
γ•

Si
(Si−1), B↑

i−1

)
, select

(
γ•

Si−1
(Si), B≺

Si

))
// Def. 16.2

5 B↑
i := insert(select

(
γ•

Si−1
(Si), M↑

i

)
, B≺

Si
) // Def. 16.3

6 B↓
k := B↑

k; M↓
k := M↑

k // Def. 16.4

7 foreach i from k − 1 to 0 do // Anticausal traversal of the slices

8 B↓
i := insert(select

(
γ•

Si+1
(Si), M↓

i+1

)
, B↑

i ) // Def. 16.5

9 if i > 0 then M↓
i := insert(select

(
γ•

Si−1
(Si), B↓

i

)
, M↑

i ) ; // Def. 16.6

Let us finish this section by Theorem 17 that establishes that the formulae
of Definition 16 indeed allows one to compute a distributed binary partition
hierarchy, hence, establishing the correctness of Algorithm 1.
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Theorem 17 Let (S0, . . . , Sk) be a causal partition of V . Let i be any element
in {0, . . . , k}. The following statements hold true:

1. B↑
i = select

(
Si,B≺

∪{Sj | j∈{0,...i}}
)
;

2. B↓
i = select (Si,B≺

V ); and

3. the set
{

B↓
i | i ∈ {0, . . . , k}

}
is the distribution of B≺

V over {S0, . . . , Sk}.

Fig. 3. Left: average size of the hierarchies in distributions of binary partition hierar-
chies over causal partitions; and right: execution times of the proposed calculus from
three images of 1000 × 1000, 2000 × 2000, and of 4000 × 4000 pixels.

6 Discussion and Conclusion

In this article, an algebraic framework to study binary partition hierarchies is
presented. Based on this framework, a new calculus allowing us to obtain the
binary partition hierarchy associated to a given total order of the edges of a
graph is introduced: the result of this calculus is a distributed representation
of the binary partition hierarchy where the hierarchy is “split into subparts”,
each of them containing the hierarchical information associated to one predefined
subset, called a slice, of the space. The proposed calculus only comprises binary
operations that depend on two partial hierarchies. Thus, if the size of the partial
hierarchies is limited compared to the size of the full hierarchy, computing the
result of each operation only requires loading data structures of limited size into
memory. In this sense, the proposed calculus is out-of-core. In order to test the
practical efficiency of this calculus, an implementation in Python is designed and
made available online at https://perso.esiee.fr/∼coustyj/hoocc/. Figure 3 shows
the first results obtained for images of 1K × 1K, 2K × 2K, and of 4K × 4K pixels:
on the left, the average sizes of the partial hierarchies are displayed as functions of
the number of slices into which the image domain is partitioned and, on the right,
the execution times per pixel are displayed as functions of the number of slices. It
can be seen that the sizes of the partial hierarchies decrease as an inverse function
of the number of slices whereas the execution times increase linearly with respect
to the number of slices as expected from the theoretical analysis. For instance,
compared to the standard case where the image is considered as a single slice, for

https://perso.esiee.fr/~{}coustyj/hoocc/
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an image of 16M pixels, the average size of the partial structures is divided by
approximately 10, when the space is partitioned into 16 slices while the execution
time is multiplied by approximately 3. A detailed description of the algorithms
for computing the result of the operations select, join, and insert will be provided
in forthcoming articles. Directions for future work also include extensions of the
calculus to partitions of the space which are not necessarily causal (e.g. grid-like
partitions), out-of-core algorithms for image processing based on binary partition
hierarchies like (hierarchical) watersheds or marker-based segmentation, and the
adaptation of the proposed algorithm to parallel computations.
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