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Abstract. In this paper, an algorithmic scheme is proposed to estimate
different local characteristics of image structures using discrete geome-
try tools. The arithmetic properties of Digital Straight Lines and their
link with the Farey sequences allow the introduction of a new directional
filter. In an incremental process, it provides local geometric information
at each point in an image, such as the length, orientation and thick-
ness of the longest Digital Straight Segment passing through that point.
Experiments on binary and grayscale images are proposed and show the
interest of this tool. Comparisons to a well-known morphological filter
for grayscale images are also presented.

Keywords: Farey sequences · Stern-Brocot tree · Digital straight
segment · Directional filter · Orientation field · Thickness

1 Introduction

Image processing applications often require computing, analyzing and studying
the characteristics of objects contained in digital images. In the field of digi-
tal geometry [4], new mathematical definitions of basic geometric objects are
introduced to better fit these discrete data, in particular, the notion of digital
straight segments (DSS) [4,12]. DSS has been used in many different contexts
to study and analyze the geometrical characteristics of digital curves extracted
from contour of objects in digital image [2,6,7,10,11], such as detection of the
convex and concave parts of the shape, the discrete geometric estimators: length,
tangent, curvature estimators, dominant point detection, . . .

In this paper we are interested in computing the local geometric characteris-
tics at every pixels in image, not only object contours, using the discrete tools.
More precisely, based on the arithmetic properties of DSS and their link with
the Farey sequences, we develop a new directional filter from which different
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geometric features at each image point can be estimated, such as the length and
directional features, the thickness map and the distance to object boundary.

In the context of directional filters using discrete geometry and mathematical
morphology tools, several works have been proposed [8,9,13,14,17]. Van Herk
has presented in [17] an efficient algorithm for local min/max filters using linear
structuring element (SE). Soille et al. [13] proposed later a generalized imple-
mentation of this method for erosion and dilation along discrete line at arbitrary
angles. The method was promising, however the obtained results are not transla-
tion invariant (TI) to the image frame. Indeed, depending on the position of SE
along the line, the obtained results can slightly vary from one position to another.
To tackle this issue, Soille and Talbot [14] proposed a TI method allowing to
efficiently compute the different morphological operations of grayscale images.
However, no implementation is given to reproduce the proposed method. Still in
[14], an application of orientation fields is presented. For this, a segment of fixed
length is used for the local orientation estimation. The obtained result depends
strongly on this length parameter. Using the path operator from mathematical
morphology, Merveille et al. have introduced in [8,9] a non-linear operator, called
Ranking the Orientation Responses of Path Operators (RORPO), for 2D and
3D curvilinear structure analysis. RORPO is well adapted to extract the charac-
teristic of objects with intrinsic anisotropy, and has been applied as a curvilinear
filter in segmentation framework of blood vessels in medical imaging.

Inspired by Soille and Talbot work [14] and to overcome the limitations of
their method, we introduce a new directional filter using DSS. More precisely,
we consider the DSS of adaptive lengths to exploit all possible directional spaces
around a pixel and report the longest segments passing through it. Moreover the
thickness of the selected DSS is also considered in our proposed method. These
length and thickness of the segments are used to extract the local geometric
features of pixels as they contain relevant information for the pixel description.
This study leads to the proposal of an exact numerical and incremental algorithm
allowing to efficiently compute these local features. Applications to the grayscale
images and comparisons to a morphological filter are also detailed in the paper.

In the next section we recall definitions and results useful in our study. The
Sect. 3 presents the proposed method on binary images and the deduced local
geometric features are illustrated. The approach for grayscale images is presented
in Sect. 4. Applications and results are shown in Sect. 5.

2 Digital Straight Lines and Stern-Brocot Tree

2.1 Digital Straight Lines [12]

Definition 1. A digital straight line (DSL), denoted by D(a, b, μ, ω), with a,b, μ
and ω integer numbers and gcd(a, b) = 1, is the set of points (x, y) ∈ Z

2 verifying
μ ≤ ax − by < μ + ω.

ω is called the thickness of the DSL. If ω = max(|a|, |b|), the DSL is 8-
connected and is named naive DSL, and denoted D(a, b, μ). If ω > |a| + |b|, the
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DSL is named thick DSL. A (naive) digital straight segment (DSS) is a finite
connected part of a (naive) DSL.

A naive DSS is called symmetric for a point (x, y) iff (x, y) belongs to it and
if the DSS contains the same number of elements on both sides of (x, y).

It can be noticed that for given values of a, b and μ, the set of naive DSL
D(a, b, μ + imax(|a|, |b|)), with i ∈ Z, tessellates Z

2 (see Fig. 1).

Fig. 1. Naive segments of 15 pixels for x ∈ [0, 14] of D(4, 11, 0)(white), D(4, 11, 11)(light
gray), D(4, 11,−11)(dark gray). The thick DSS TDSS1,1(4, 11) contains all the pixels
of the figure for x ∈ [0, 14]. The value 4x − 11y labels each pixel (x, y).

In the rest of this paper, we study the neighborhood of naive segments and we
extend a DSS by stacking its closest naive DSS to obtain a thick DSS. In this way,
we define on [0, l] × [0, L] in Z

2 a thick DSS of indices k, j and characteristics
( a, b), noted TDSSk,j(a, b), as the set of points (x, y) ∈ [0, l] × [0, L] belonging
to D(a, b,−k max(|a|, |b|), (1 + k + j)max(|a|, |b|)) with k and j in N. k and j
are the number of naive DSS of characteristics (a, b) that could be stack on one
side or on the opposite side (according to current octant) of the naive DSS of
D(a, b, 0). This naive DSS is named the seed of the TDSS.

2.2 Stern-Brocot Tree and Farey Sequence [3,15]

Constructing the set of reduced positives fractions a
b can be done iteratively.

From two successive fractions a
b and a′

b′ , we insert a new fraction a+a′
b+b′ . The

Stern-Brocot tree is created by starting with 0 = 0
1 and 1 = 1

1 (see Fig. 2).

Definition 2. The Farey sequence of order n ∈ N
∗, denoted by Fn is the set

of reduced fractions between 0 and 1 for which denominators are lower or equal
to n.

Some examples of Farey sequences: F2 = { 0
1 , 1

2 , 1
1}, F3 = { 0

1 , 1
3 , 1

2 , 2
3 , 1

1}. The
number of DSS in the first octant in a grid of size N × N is exactly the number
of elements of Farey sequence of order N (see Berenstein et al. [1] and Koplowitz
et al. [5]). The Farey sequence of order N is a subtree of Stern-Brocot tree.
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Fig. 2. Construction of DSS according to the first four levels Stren-Brocot tree.

3 DSS Filter on Binary Images

As described in the introduction, we are interested in structures close to DSS but
with different lengths and widths. By using Stern-Brocot tree, we can take the
advantage of constructing DSS of variable lengths and widths to retrieve more
precise features. We will first describe our approach in binary images, where
objects under consideration are white and the background is black.

3.1 Proposed Method

The method is described in Algorithm 1 and hereafter we summarize it. Let be
p the pixel under consideration of a binary image I, the aim of the presented
method is to obtain the longest naive DSS, centered in p, with its pixels in the
same color than p. We can, without loss of generality, consider the first octant,
i.e. the Stern-Brocot tree goes from 0/1 up to 1/1.

The method is as follows from the level n to the level n + 1. The considered
set of fractions issued from Stern-Brocot tree at the level n is denoted by Tn

(T in Algorithm 1). The segments which can be extended are stored in S. At
the start of each iteration, S is set to Tn (all segments may be extended). For
each a/b in Tn, we create the DSS of D(a, b, μ) with 2n + 1 pixels (all μ are
considered). If the segment cannot be extended, i.e. one of its points belongs to
the background, then (a, b, μ) is removed from S. Once all elements of Tn have
been checked, if S = ∅, meaning that no segment can be extended, the algorithm
stops. Otherwise, Tn+1 is built according to Tn and S, and then we proceed to
the iteration n + 1.

At each iteration, for a given n, the set Tn contains the fractions of the Farey
sequence of order n+1 for which the corresponding DSS could be extended. The
incremental process to construct the considered fractions level n + 1 from the
level n of Stern-Brocot tree is described in Algorithm 2. The slopes of DSS, kept
in S at the previous iteration, permit to add in Tn+1 only the useful fractions
for which DSS could be extended at iteration n + 1.
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Algorithm 1: Computation of the longest naive DSS at a given point (first octant)

Input: An image I and a pixel p(x, y) of I
Output: The set S of all longest naive DSS centered at p

1 T ← {0/1, 1/1} // Stern-Brocot sequence represented by fractions a/b
2 n ← 0
3 repeat
4 S ← ∅
5 T ′ ← increment(T, S) // See Algo. 2
6 n ← n + 1
7 cut ← 0

8 foreach a/b ∈ T ′ do // Compute for each node of T ′

9 for μ ← −b + 1 to 0 do // This loop is applied for small n
10 Sn ← (a, b, μ, n) // Characteristics of a DSS of D(a, b, μ)
11 if b < n + 2 then // Case (a, b, μ, n − 1) ∈ S at the level n − 1

12 Ln ← {(n, a∗n−µ
b ), (−n, − a∗n−µ

b )} // End-points of the DSS

13 else // Case b = n − 2 (a, b, μ, n − 1) /∈ S at the level n − 1
14 Ln ← all the 2n + 1 pixels of the DSS centered in p

15 S ← S ∪ Sn

16 foreach (i, j) ∈ Ln do
17 q ← (x + i, y + j)
18 if q �∈ I or I(p) �= I(q) then
19 cut ← cut + 1
20 S ← S \ Sn

21 break

22 T ← T ′

until cut �= size(T )
24 Return S

Algorithm 2: Stern-Brocot incrementation (first octant)

Input: A Stern-Brocot sequence T at level n and the set S of extensible DSS
Output: The Stern-Brocot sequence T ′ at level n + 1

1 T ′ ← ∅
2 for i ← 0 to size(T ) − 1 do
3 node ← ai/bi // The current node in T
4 prev ← ai−1/bi−1[size(T )] // The previous node of node in T

5 next ← ai+1/bi+1[size(T )] // the next node of node in T

6 if (prev or next or node is the slope of a DSS in S) then
7 Insert ai/bi in T ′ // Keep the current node in the next level T ′

8 p ← ai + ai+1
9 q ← bi + bi+1

10 if (q <= n + 2) then
11 Insert p/q in T ′ // Insert the node to the next level T ′

12 Return T ′

Figure 2 shows the constructed DSS at the first four levels of the tree (with
μ = 0) according to the incremental Algorithm 2. At the level three, we only
consider the fraction of the Farey sequence of order four then both 2/5 and 3/5
are not inserted at this level but at the level four.

Figure 3 illustrates some steps of the method for one pixel. On the left side
of the four subfigures, the red color shows the covered area by DSS at different
levels. At each step, extensible DSS are kept. On the right side, we show on a
circle the fractions of Stern-Brocot tree. Green lines indicate extendable DSS
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with the corresponding fractions. Red lines indicate new DSS which cannot be
extended. And blue lines are DSS required for building new DSS at the next level.
The tree starts at the level 1, with 8 fractions: 0/1, 1/2, . . . , −1/1. All DSS can be
extended. We move to the level 2. At this level, some DSS are not extendable,
we removed them and move to the level 3. The algorithm stops at the level
6 (meaning DSS of length 13 pixels) where only the DSS D(5, 4,−4) is still
extensible. This last DSS is shown in Fig. 4.

Fig. 3. Step-by-step method for binary image. In green the extendable fractions. In
red the rejected ones. In blue those that are required to build new fractions. (Color
figure online)

3.2 Geometric Description

At the end of the Algorithm 1, for a given point p in I, we get a value of n and
the set Sn of all the DSS with 2n + 1 pixels which fit the object. From this set,
the following features can be retrieved.

Local Elongation. The elongation L at p is the length of the longest final DSS.
We use the simple estimator, length(DSS) = Ne +

√
2No, with Ne et No the

number of even and odd codes in the freeman code of the DSS. This feature
indicates if locally the object is elongated. A high value indicates a straight and
long shape.

Local Orientation and Direction. Another feature is the local orientation θ
of the shape at p and the local vector direction Δ. It is computed by the average
of the local orientations obtained in Sn at the final step of the method.
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Orthogonal Span. By constructing, pixel by pixel in both directions, the
orthogonal DSS of D(−b, a, μ), we can extract the number of pixels ND or
the length D of this DSS which reach object’s border.

Directional Thickness. The directional thickness of the local shape at the
point p. To obtain this feature, we thicken each DSS in Sn according to our
definition of TDSSk,j(a, b) (see Sect. 2). The directional thickness DT is then
defined as the sum of the maximum of j and k for which the TDSS is included
in I.

Those geometric features are visible in Fig. 4 for DSS of D(5, 4,−4) with 13
pixels previously extracted (see Fig. 3). The length is L = 15.7, the orientation
is θ = tan−1( 54 ) ≈ 51◦, the orthogonal span is ND = 6, D = 6.65 and finally
the directional thickness is DT = 0 + 1 = 1.

Fig. 4. On the left, D(5, 4,−4) from last step of the algorithm (see Fig. 3). The blue
pixel is the one under consideration. Green pixels are those of the DSS which are valid.
On the right, red pixels are outside of the object, orange are inside of it. (Color figure
online)

The Table 1 shows these geometric features for some images. The first image
is an annulus, the second one is two circles with different center points and the
last one represents vessels. At first, it can be observed that the length map is
uniform for the annulus as expected. The length is higher close to the centre.
It is the same for the two circles. For vessel image, elongated vessels have high
value. For orientation map, the black/white transition corresponds to the change
between π and 0. Note that the angle θ is considered for the orientation; e.g.,
the naive DSL D(1, 3, 0) and D(−1,−3, 0) have the same orientation (which is
around 18 degree). For this, we use arctan of a/b. This explains the discontinuity
between 0 (black pixel) and π (white pixel).

There are some artefacts due to the mean of orientation. The obtained ori-
entation is close to the theoretical one. For the directional thickness we show
that it is higher outside the annulus. It is due to small length of DSS at the
end, which lead to being able to thicken easily. Small number of pixels reduces
the probability to be outside the object when thickening. At last, the orthogonal
span has to be high when the object is width or when it is in an intersection as
it can be shown in vessel image.



262 R. Decelle et al.

Table 1. Extracted geometric features from DSS filter

4 DSS Filter on Grayscale Images

In this section, we focus on a similar approach as the one developed by Soille and
Talbot [14] for orientation field. Therefore, we are interested in local orientation
of image structure with different lengths and widths. Similar approach to the
binary case to take account different lengths and widths is used.

As the binary case, we start with first level of the Stern-Brocot tree and
with small segments. We compute the erosion by it of the image. We thicken the
segment if possible, and compute again the erosion by it. Then, we move to the
next level of the tree. We stop until we reach a certain level n. We sum up the
results of each erosion. Algorithm 3 sums up the method. Erosions should be
used for brighter image structure than background. For darker image structure
than the background, the invert image J = 255 − I combined with erosions
should be used. For each a/b, we denoted Bi,j,k the TDSSk,j(a, b) for which the
seed DSS contains 2i + 1 points, we compute the image Ya,b equal to:

Ya,b =
1

n − α + 1

n∑

i=α

⎡

⎣
i−1∑

k=0

εBi,k,0(I) +
i−1∑

j=1

εBi,0,j (I)

⎤

⎦ (1)

where ε is the morphological erosion and α = max(max(|a|, |b|) − 1, 1). We
introduce a coefficient of normalization in order to take account that the number
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Algorithm 3: Grayscale method (first octant)

Input: An image I, n the maximum number of points of the DSS
Output: An array of images Y

1 Y ← matrix of size (2n+1,2n+1) // The element at position (a, b) is the image Ya,b

2 A ← (0, 1, 1)T

3 for i ← 0 to n do // Iterate over points number up to n
4 foreach a/b ∈ Fi+2 do // Iterate over Farey sequence of order i + 2
5 B ← TDSS0,0(a, b) with 2i+1 points
6 E ← εB(I) // Compute erosion of I by the DSS Bi,0

7 E+ ← E

8 E− ← E
9 Ya,b ← Ya,b + E

10 for k ← 1 to i do // Iterate over the segment width

11 E+ ← εA(E+) // Erosion by TDSS0,k(a, b)

12 E− ← εĂ(E−) // Erosion by TDSSk,0(a, b)

13 Ya,b ← Ya,b + E+

14 Ya,b ← Ya,b + E−

15 Return Y

of DSS depends on a/b. Indeed, if a/b is defined at a level p, it will still be
there for all the next levels. For instances, 1/2 will be considered n times (DSS
with 3, 5, 7, . . . , 2n + 1 points), 1/3 will be considered n − 1 times (DSS with
5, 7, . . . , 2n + 1 points), and so on.

Figure 5 presents, for a pixel in an image of tree rings (last image, bottom
right, in the figure), different steps of the proposed process if we only consider
length variations. The pixel under consideration is the one located at the center
of the image (green cross).

The ten first images of the Fig. 5 highlight the results of each erosion, i.e.
erosion of I by Bi,0,0 with i varying from 1 to 10. Axes are the parameters a
and b from DSS. For each couple (a, b) from Farey sequences, we plot the gray
value resulting from the erosion of I by Bi,0,0. In each image, the pixel with the
highest value is framed with red color.

The image before the last one shows for each couple (a, b) the sum of each
erosion for the different lengths. The orientation is assumed to be the one with
the highest gray value (red pixel).

We can see that the a/b for which the maximum is reached changes several
times depending on the value of i, i.e. the number of points in the segment. By
choosing i = 9 (i.e. 19 points), the orientation seems correct, but by choosing i =
10 (i.e. 21 points) points, the direction is not the expected one (the corresponding
segment is represented in red in the last image). However, the direction resulting
from the sum is correct (the corresponding segment is represented in green in
the last image).

4.1 Fast Implementation

For the first octant, with A =
(
1 1 0

)T , we have the relation Bi,j,k+1 = Bi,j,k ⊕
A, where ⊕ is the morphological dilatation. Knowing the property εA⊕B(I) =
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εA(εB(I)), the relation becomes εBi,j,k+1(I) = εA(εBi,j,k
(I)). The relation holds

for Bi,j,k ⊂ Bi,j+1,k by taking the symmetric of A, i.e. Ă =
(
0 1 1

)T . This
relation is shown by the loop line 10 in Algorithm 3. A is adjusted according
to the octant. Moreover, for elements Bi,0,0 we can take the advantage of the
algorithm developed by [14] (line 6 in Algorithm 3).

4.2 Orientation Feature

We can consider three variants of the proposed method. First, we consider all
possible lengths and thicknesses (see Eq. 1). Second variant, we consider all
thicknesses but the length is fix to n (in Algorithm 2 line 3 is removed and
i = n). Third variant, we consider all lengths but the thickness is fix to 0 (loop
line 10 is removed). The Eq. 1 is then respectively for the second and third
variants:

Ya,b =
n−1∑

k=0

εBn,k,0(I) +
n−1∑

j=1

εBn,0,j (I) Ya,b =
1

n − α + 1

n∑

i=α

εBi,0,0(I)

In all three cases, we are back to estimate only the dominant orientation for
each point x since we have images rely only on a/b. Inspired by [14], we define
at each point x the bright orientation as:

Dir+(x) = {tan−1(
ai

bi
), Yai,bi(x) ≥ Yaj ,bj (x)∀(ai, bi) �= (aj , bj)}

We introduce an additional quantity to allow us to determine which orientations
to choose.

G+(x) = max
a,b

(Ya,b(x)) − min
a,b

(Ya,b(x))

G+(x) can be interpreted as the strength of the bright structures at the point x.
The orientation Dir− for dark structures and their strength G− are computed
on the same principle as G+ but using J = 255 − I instead of I. Finally the
orientation is computed as follows:

θ(x) =
{

Dir+(x) , if G+(x) ≥ G−(x)
Dir−(x) , otherwise

It can be noticed that during the process of orientation, we can extract filtered
images. These are images resulting from the calculation of maxa,b(Ya,b(x)) for
both I and J (see Fig. 7).
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Fig. 5. Illustration of the approach with length variations. (Color figure online)

5 Results and Discussion

A deep analysis of grayscale method is out of range of this article. Nonetheless,
we provide a comparison with the proposed method by Soille and Talbot [14]. To
do this, we first consider circular objects (see Fig. 6) since the ground truth can
easily be determined. This information is useful to demonstrate the efficiency of
the proposed method. For the comparison, we computed the deviation between
a ground truth and output using the formulae proposed by Turroni et al. [16]:

RMSD =

√ ∑
x d2(θx, θG

x )
Number of pixels

, d(θ1, θ2) =

⎧
⎨

⎩

θ1 − θ2 if −π
2 ≤ θ1 − θ2 < π

2
π + θ1 − θ2 if θ1 − θ2 < −π

2
π − θ1 + θ2 if θ1 − θ2 ≥ π

2

with θG
x theoretical orientation at x, θx its estimated orientation. The proposed

method by [14] provides a RMSD of 0.2809. For our methods, we have respec-
tively for thick variations a value of 0.3111, length variations a value of 0.2436
and both variations a value of 0.2317. For each methods, we set n = 10 (i.e.
λ = 21 for [14]). Including thickness does not improve orientation, but including
length (with or without thickness) improved the orientation.

Figure 7(a) shows the circles in Fig. 6 corrupted by the additive Gaussian
noise of mean 0 and standard deviation 0.1, on top right a zoom on the central
part of the image). Figure 7(b) and (c) are results filtered by both [14] and our
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approach. Since Soille and Talbot fix the length parameter, their approach fails
to filter areas where this length is not suitable. As the orientation, we fix n = 10
(i.e. λ = 21 for [14]).

(a) (b) (c) (d) (e) (f)

Fig. 6. Results for our method and [14]. (a) Input image of concentric circles. (b)
Ground truth. (c) [14] method. (d) Thick variations. (e) Length variations. (f) Both
variations.

(a) (b) (c)

Fig. 7. (a) Noisy image, (b) filtering with [14] of image (a), (c) filtering with our method
(length variations) of image (a). On the top right a zoom on the central part of the
image.

(a) (b) (c)

Fig. 8. (a) Original image, (b) filtering with [14], (c) filtering with our method (length
variations).
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Figure 8 shows an other example. From left to right, we can see the original
image, the resulting images filtered by [14] and our approach We can see that our
method preserves better the circular structures and is smoother at intersections.

6 Conclusion

In this paper, we firstly presented a method able to estimate geometric fea-
tures on binary images such as the local elongation, local orientation, direc-
tional thickness and orthogonal distance. These features are based on digital
straight segments (DSS) according to Farey sequences. By taking the advantage
of widths and lengths of DSS, we secondly introduced an adaptation of the pre-
vious method to grayscale images. Comparisons to the approach proposed in
[14] shows its interest. In particular, using the orientation estimation as a direc-
tional filtering, our method allows to reduce noise along line segments. It should
be noted that such filter is well adapted for images with structures of different
lengths such as tree ring and fingerprint images.

Applications of the extracted features for image analysis framework are cur-
rently under study. As short-term perspective, we would like to use the method
for wood-log-section image analysis. In this context, several problems could be
addressed such as pith detection, tree-ring delineation, . . .

In other perspectives, we plan to investigate improvements for selecting opti-
mal orientation among line segments. We are also looking to retrieve pertinent
thickness information in grayscale images.
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12. Reveillès, J.-P.: Géométrie discrete, calcul en nombres entiers et algorithmique
(1991)

13. Soille, P., Breen, E.J., Jones, R.: Recursive implementation of erosions and dilations
along discrete lines at arbitrary angles. IEEE Trans. Pattern Anal. Mach. Intell.
18(5), 562–567 (1996)

14. Soille, P., Talbot, H.: Directional morphological filtering. IEEE Trans. Pattern
Anal. Mach. Intell. 23(11), 1313–29 (2001)

15. Stern, M.: Uber eine verallgemeinerung der kreistheilung. J. fur die reine und
angewandte Mathematik 55, 193–220 (1858)

16. Turroni, F., Maltoni, D., Cappelli, R., Maio, D.: Improving fingerprint orientation
extraction. IEEE Trans. Inf. Forensics Secur. 6(3), 1002–1013 (2011)

17. van Herk, M.: A fast algorithm for local minimum and maximum filters on rect-
angular and octagonal kernels. Pattern Recognit. Lett. 13(7), 517–521 (1992)

https://doi.org/10.1007/978-3-642-04397-0_10

	Digital Straight Segment Filter for Geometric Description
	1 Introduction
	2 Digital Straight Lines and Stern-Brocot Tree
	2.1 Digital Straight Lines ch18bib:Rev
	2.2 Stern-Brocot Tree and Farey Sequence ch18bib:HAR89,ch18bib:STE58

	3 DSS Filter on Binary Images
	3.1 Proposed Method
	3.2 Geometric Description

	4 DSS Filter on Grayscale Images
	4.1 Fast Implementation
	4.2 Orientation Feature

	5 Results and Discussion
	6 Conclusion
	References




