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Abstract. The characteristics of a digitization of a Euclidean planar
shape depends on the digitization process but also on the shape border
regularity. The notion of Local Turn Boundedness (LTB) was introduced
by the authors in Le Quentrec, É. et al.: Local Turn-Boundedness: A cur-
vature control for a good digitization, DGCI 2019 so as to have multigrid
convergent perimeter estimation on Euclidean shapes. If it was proved
that the par-regular curves are locally turn bounded, the relation with
the quasi-regularity introduced in Ngo, P.et al.: Convexity-Preserving
Rigid Motions of 2D Digital Objects, DGCI 2017 had not yet been
explored. Our paper is dedicated to prove that for planar shapes, local
turn-boundedness implies quasi-regularity.

1 Introduction

A loss of information is inherent to any digitization of a continuous shape. The
control of the shape border can allow the digitization to inherit of continuous
shape properties. Thus the notion of local-turn boundedness (LTB) introduced
in [6] by the authors makes it possible to preserve the shape connectivity and
well-composedness for a Gauss digitization under a condition on the grid step.
The class of LTB curves is not the first attempt to control the shape border for
digitization. One can cite the par-regularity [12] and its generalizations including
shapes with spikes: half-regularity [13], r-stability [9], quasi(r)-regularity [10] and
the μ-reach [2]. There are links among the existing notions and also with the
LTB notion. The following equivalences have already been shown: in [3], the
equivalence between the class C1,1 (curves with Lipschitz unit tangents) and the
par-regular class; in [4], the equivalence between par-regular class and the class
of curves with a positive reach; in [7,8], the equivalence between the class of
curves with a positive reach and LTB curves with Lipschitz turn.

This paper is dedicated to show that LTB implies the quasi-regularity. The
proof is composed of several but necessary steps. The key point of the proof is
the connectivity of the eroded of a LTB shape. It consists in showing that close
points, or on the contrary distant points, in the eroded set can be joined by a
path inside the shape. The main difficulty is to define precisely the terms “close”
and “far” to cover all the point distances in the eroded set while making proof
possible.
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In Sect. 2, the main notions and some useful properties –some of them
revisited– are recalled. Section 3 gives all the steps to prove the implication.
The conclusion and some perspectives are given in Sect. 4.

2 Definitions

Notations. The complementary of a subset S of R
2 is noted Sc. We write Ā

for the topological closure of a set A and ∂A for its topological boundary. We
note B(c, r) the open disk centered in c and of radius r. The notation [xi]Ni=0

designates the polygonal line whose ordered sequence of vertices is (xi)N
i=0. When

x0 = xN , the polygonal line is actually a polygon. The geometric angle between
two vectors �u and �v, or between two directed straight lines oriented by �u and
�v, is denoted by ∠(�u,�v). It is the absolute value of the reference angle taken in
(−π, π] between the two vectors. Given three points x, y, z, we also write x̂yz
for the geometric angle between the vectors x − y and z − y. We write Ca,b for
an arc of a curve C between the points a and b.

The two following definitions introduce the notion of local turn boundedness.

Definition 1 (Turn, [1]).

– The turn κ(L) of a polygonal line L = [xi]Ni=0 is defined by:

κ(L) :=
N−1
∑

i=1

∠(xi − xi−1, xi+1 − xi).

– The turn κ(P ) of a polygon P = [xi]Ni=0 (where xN = x0 and xN+1 = x1) is
defined by:

κ(P ) :=
N

∑

i=1

∠(xi − xi−1, xi+1 − xi).

– The turn κ(C) of a simple curve C (respectively of a Jordan curve) is the supre-
mum of the turn of its inscribed polygonal lines (respectively of its inscribed
polygons).

At each point c of a curve whose turn is finite, there exists a left-hand and a
right-hand tangent vectors, denoted by el(c) and er(c) [1].

Property 1 (Fenchel’s Theorem, [1] Theorem 5.1.5). The turn of a Jordan curve
is greater than or equal to 2π. The equality case occurs if and only if the interior
of C is convex.

Definition 2 (Proposition 2 [7]). A Jordan curve C is (θ, δ)-LTB if for any
two points a and b in C such that d(a, b) < δ, the turn of one of the arcs of the
curve C delimited by a and b is less than or equal to θ.



204 É. Le Quentrec et al.

As the (θ, δ)-LTB-curve set is growing with θ, the properties established for
θ = θ0 are also available for θ ≤ θ0. In the rest of the paper, θ is fixed to π/2
and we write δ-LTB instead of (π/2, δ)-LTB.

Notice that two distinct points of a Jordan curve delimit two arcs of the curve.
The notion of straightest arc introduced in [6] makes it possible to distinguish
these two arcs.

Property 2 ([7], Definition 6 and Proposition 4). Let a, b be two distinct points
of a δ-LTB curve C. If d(a, b) < δ, then there exists a unique arc of C between
a and b whose turn is less than or equal to π/2. This arc, denoted by C|ba, is
included in the closed disk with diameter [a, b] and is called the straightest arc
between a and b.

Let us quote a recent result which makes easier the use of straightest arcs.

Property 3 ([8], Lemma 1). Let a and b two points of a δ-LTB curve such that
d(a, b) < δ. Let C|ba be the straightest arc between a and b. Then,

∠(el(a), er(a)) + κ(C|ba) + ∠(el(b), er(b)) ≤ π

2
.

The following proposition is a very slight quantitative improvement of [7,
Proposition 5]. Nevertheless, this improvement is absolutely necessary to get the
main result of this paper.

Proposition 1. Let C be a (θ, δ)-LTB curve and a ∈ C. Then, for any ε < δ, the
intersection of C with the closed disk B̄(a, ε) is path-connected and is therefore
an arc of C. Furthermore, the turn of this arc is less than or equal to 2θ.

Proof. The proof is exactly the same as the one given in [7] except that, taking
into account Property 3, we can omit the term ∠

(

el(a), er(a)
)

so as to upper
bound the curvature of the arc C ∩ B(a, ε) by 2θ instead of 3θ. ��

We recall here the notions of par-regularity and quasi-regularity.

Definition 3 (par(r)-regularity, [5]). Let C be a Jordan curve of interior K.

– A closed disk B̄(ci, r) is an inside osculating disk of radius r to C at point
a ∈ C if C ∩ B̄(ci, r) = {a} and B̄(ci, r) ⊂ K ∪ {a}.

– A closed disk B̄(ce, r) is an outside osculating disk of radius r to C at point
a ∈ C if C ∩ B̄(ce, r) = {a} and B̄(ce, r) ⊂ R

2 \ (C ∪ K) ∪ {a}.
– A curve C or a set K is par(r)-regular if there exist inside and outside oscu-

lating disks of radius r at each a ∈ C.
As noticed in [11], for a bounded simply connected set S, the above definition

can be rephrased in the following way 1:
The set S is par(r)-regular if and only if

1 Actually, the equivalence does not perfectly hold as seen taking S = B̄(0, r).
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– S 	 B̄(0, r) is non-empty and connected,
– Sc 	 B̄(0, r) is connected,
– S = (S 	 B̄(0, r)) ⊕ B̄(0, r) ,
– Sc = (Sc 	 B̄(0, r)) ⊕ B̄(0, r),

with ⊕, 	 the standard dilation and erosion operators.
In order to consider shapes with angles, the two last items of par-regularity

are relaxed in Definition 4 allowing the border of the shape to oscillate in a
margin around its opening.

Definition 4 (Quasi-regularity [10,11] ). Let S ⊂ R
n (n = 2, 3) be a

bounded, simply connected set. We say that S is quasi-r-regular with margin
r′ − r (with 0 < r ≤ r′) if it satisfies the following four properties

– S 	 B̄(0, r) is non-empty and connected,
– Sc 	 B̄(0, r) is connected,
– S ⊂ S 	 B̄(0, r) ⊕ B̄(0, r′),
– Sc ⊂ Sc 	 B̄(0, r) ⊕ B̄(0, r′).

3 Main Result

For sake of readability of the article, we state the main result—Theorem 1—
before the propositions and lemmas needed for the proof.

Theorem 1. Let S be a compact subset of the plane R
2 whose boundary is δ-

LTB. Then S is quasi-r-regular with margin (
√

2−1)r for any r < δ/
√

10 + 4
√

2.

Our first intermediate result is an improvement of a proposition about turn
originally stated in [7] that roughly asserts that avoiding a convex obstacle
bounds from below the turn of a curve. It was stated for convex polygonal
obstacles in [7, Lemma 3] and for convex obstacles in a particular configuration
in [8, Lemma 10]. The new version presented below is valid in a more general
configuration (see Fig. 1).

Proposition 2. Let C be a simple curve with endpoints a, b. Let Ha,b be a half-
plane having a and b in its boundary and S be a closed set included in the closure
of a bounded connected component of R

2 \ (C ∪ [a, b]) and whose intersection with
the half-plan Ha,b is not included in the line passing through a and b. Then,

κ(C) ≥ κ(∂ conv(Ha,b ∩ S ∪ [a, b]) \ (a, b)),

where ∂ conv(·) stands for the boundary of the convex hull.

Proof. We begin the proof by stating and proving some facts about convex poly-
gons. So, let n ≥ 3 and P = [ai]ni=0 with an = a0 be a convex polygon. Then,

Claim 1. Let σ be a permutation of [1, n] such that σ(1) = 1 and σ(n) = n.
Then, κ([aσ(i)]ni=1) ≥ κ([ai]ni=1).
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Fig. 1. Proposition 2 states that the blue curve with endpoints a and b has a turn
greater than the red curve ∂ conv(Ha,b ∩ S ∪ [a, b]) \ (a, b) where Ha,b is the grey half-
plane.

Claim 2. Let [a, b, c, d, a] be a convex polygon of R
2. For any point b′ on the

half-line
−→
c,b \ [c, b), for any point c′ on the half-line −→a, c \ [a, c) and for any

point b′′ on the half-line
−→
d,b \ [d, b), the polygons [a, b′, c, a] and [a, b′′, c′, d, a]

are convex and the turn of the polygonal lines [a, b′, c] and [a, b′′, c′, d] are
respectively greater than or equal to the turn of the polygonal lines [a, b, c]
and [a, b, c, d]. Claim 2 is also valid in the degenerate case where b, a, d, c are
aligned in this order.

Proof of Claim 1: The turn of the polygonal line Q = [aσ(i)]ni=1 is the sum of the
turns at each vertex aσ(i), 2 ≤ i ≤ n − 1. Since P is convex, the turn of Q at
aσ(i) is bounded from below by the turn of the polyline [aσ(i)−1, aσ(i), aσ(i)+1],
that is by the turn at aσ(i) for the polyline [ai]ni=1.
Proof of Claim 2: The triangle [a, b′, c, a] is obviously convex. The interior
angle of [a, b′′, c,′ , d, a] at b′′ is maximum when b′′ = b and c′ at infinity.
Thereby, it is never a reflex angle. Alike, the angle at c′ is never reflex and
the quadrilateral [a, b′′, c,′ , d, a] is convex. Furthermore, the turn of the poly-
gons [a, b′, c, a], [a, b′′, c,′ , d, a] , [a, b, c] and [a, b, c, d] are equal to 2π by Prop-
erty 1 and, by definition of b′, c′ and b′′, the interior angles at a and c for
[a, b′, c, a] (resp. a and d for [a, b′′, c,′ , d, a]) are greater than or equal to those
for [a, b, c, a] (resp. for [a, b, c, d, a]). We derive that κ([a, b′, c]) ≥ κ([a, b, c]) and
κ([a, b′′, c′, d]) ≥ κ([a, b, c, d]). In the degenerate case, the reader can check that
the turns of the polygons [a, b, c], [a, b, c, d, a], [a, b′, c, a] and [a, b′′, c,′ , d, a] are
equal to 2π.

Let us go back to the main proof. Put T = ∂ conv(Ha,b ∩ S ∪ [a, b]). Observe
that T includes the straight segment [a, b] and has a non-empty interior (for
Ha,b ∩S is not included in the line passing through a and b). Thus, P = T \(a, b)
is a curve with endpoints a and b. Firstly, we assume that T is a polygon.
Consequently, P is a polygonal line and we denote by c, resp. d the vertex of
the edge of P whose other end is a, resp b. Notice that the turns of T and of
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the quadrilateral (or triangle) [a, c, d, b, a] are equal to 2π (Property 1). Also,
observe that if [a, c, d, b, a] is degenerate, then c, a, b and d are aligned in this
order. Thereby, the turn of P and the polyline [a, c, d, b] are equal.

Since the component of R
2 \ (C ∪ [a, b]) whose closing includes S is bounded

and c, d ∈ S, any half-line with initial point c or d cuts the curve C ∪ [a, b]. Then,
thanks to Claim 2, we define the points c′ and d′ on C such that [a, c′, d′, b, a]
is a convex quadrilateral with vertices on C. Observe that either the polygonal
line [a, c′, d′, b] or the polygonal line [a, d′, c′, b] is inscribed in C. We denote by
Q the one which is inscribed in C and we set Q′ = [a, c′, d′, b].

We now end the proof in the same manner as in [7, Lemma 3]. We have
κ(C) ≥ κ(Q) by definition of κ(C). Moreover, κ(Q) ≥ κ(Q′) by Claim 1. Besides,
κ(Q′) ≥ κ([a, c, d, b]) by Claim 2. Since κ([a, c, d, b]) = κ(P ), we get κ(C) ≥ κ(P ).
In the general case where P is not polygonal, it suffices to observe that the result
is valid for any polygonal line inscribed in P . Then, taking the supremum of the
turns of all such polygonal lines, we obtain the desired result. ��

The statement of the following proposition should be compared with the
definition of par-regularity. Indeed, from Definition 3, it is possible to derive
that any point lying in the closure S of the interior, or the exterior, of a Jordan
par(r)-regular curve is contained in a circle with radius r included in S.

Proposition 3. Let C be a δ-LTB curve and S be the closure of either the
interior or the exterior of C. For each point p ∈ S, there exists a square of
diameter δ included in S and containing p.

Proof. The proof is divided in three parts. In the first one, we prove the statement
for the points of C. In the second part, we prove the statement for points in
S\(S	B̄(0, δ/2)). The last part treats the obvious case of points in S	B̄(0, δ/2)
and concludes the proof.

1. This part of the proof is illustrated by Fig. 2 (center). In a first step, given
a point p ∈ C, we prove that there exists a circular sector of center p and
radius δ√

2
included in S. In the second step, we prove that this circular sector

extends to a square in S. We set B̄p = B̄(p, δ/
√

2).
(a) Let p ∈ C. By Proposition 1, the intersection of the curve C with any

disk included in B̄p is an arc of C (it is connected) and its turn is less
than or equal to π. We set Ca,b = C ∩ B̄p. Then, the arc Ca,b splits the
disk B̄p into three connected components: the arc Ca,b itself, included in
C, another one included in the interior of S called I and the last one
included in the exterior of S. Let A be the circular sector of B̄p delimited
by [a, p, b] including I ∩ ∂B̄p. Let Ca,p, resp. Cb,p, be the subarc of Ca,b

from a, resp. b, included to p excluded.
Let ca ∈ Ca,p and cb ∈ Cb,p and, by contradiction, assume that ĉapcb < π

2 .
Then, the distance between ca and cb is less than δ. We derive that C|cbca
exists. Nevertheless, on the one hand, the turn of the arc from ca to cb

passing through p is greater than or equal to κ([ca, p, cb]) which is greater
than π/2 (by the contradiction assumption). On the other hand, the turn
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of the arc from ca to cb not passing through p is greater than κ(C \
Ca,b) which is greater than π (by Fenchel’s Theorem and the additivity of
turns). We get an absurdity. Hence, ĉapcb ≥ π

2 for any ca ∈ Ca,p, cb ∈ Cb,p.
Furthermore, a basic calculation of angles shows that the radius [p,m]
which is the angle bisector of ̂apb is not intersected by the arc Ca,b (see
Fig. 2-left).
Let A be the smallest angular sector of ∂B̄p containing I. Notice that
A �= ∂B̄p. Let D be the subset of the circular sectors of ∂B̄p delimited by
radii intersecting Ca,p and Cb,p and included in A . Since the radius [p,m]
is included in all the sectors of D and since any intersection of angular
sectors is a sector or empty, the set

⋂{d | d ∈ D} is a circular sector. Put
Ω =

⋂{d | d ∈ D} ∩ ∂B̄p.
Let x0 and x1 be the ends of the arc of circle Ω. For any ε > 0, there
exists x′

0, x
′
1 ∈ ∂B(p, δ√

2
) \ Ω such that x̂0px′

0 < ε and x̂1px′
1 < ε. One of

the segments (px′
0] and (px′

1] intersects Ca,p at a point c′
a, and the other

intersects Cb,p at a point c′
b. Moreover ĉ′

apc′
b ≥ π

2 , then for any ε > 0,

x̂0px1 ≥ x̂′
0px′

1 − 2ε. Then the sector
⋂{d | d ∈ D} is included in I ∩ B̄p

and has its angle greater than or equal to π
2 .

(b) Let Q be a square of side length δ/
√

2 having p as vertex and two edges
included in A′. By contradiction, let c be a point of C lying in the interior
of Q. Then, d(c, p) < δ. Thus there exists a straightest arc C|pc between c
and p. This straightest arc is included in the disk D with diameter [c, p]
by Property 2. Besides, an elementary geometric reasoning shows that D
intersects the circle ∂B̄p in two points that lie in Q. Thus, C|pc does not
contain neither a nor b, which is absurd.

2. This part of the proof is illustrated by Fig. 2 (right). Let us consider a point
q in S \ (

S 	 B̄(0, δ/2)
)

and q /∈ C (if q ∈ C, we are done by Part 1). Then,
there exists a point p ∈ C such that d(p, q) = d(q, C) < δ/2. Thereby, the
open disk B(q,d(p, q)) is included in the interior of S. With the notations of
Part 1, we consider the sector A of B̄p containing q and delimited by [a, p, b]
where a and b are the endpoints of C ∩ B̄p. Let R = [p, c] be the radius of
B̄p passing through q. If the arc Ca,p, resp. Cb,p, cuts the radius R, thanks to
Proposition 2, we have that the turn of Ca,p, resp. Cb,p, is greater than the turn
of a quarter of circle and, as in Part 1, we derive a contradiction with Fenchel’s
Theorem (Property 1). Thus, Ca,b does not intersect the radius R. We end the
proof as in Part 1, just noticing that the angular sector

⋂{d | d ∈ D} does
contain the radius R which ensures the existence of a square in S including
R, and thus containing q.

3. When the considered point lies in S 	 B̄(0, δ/2), the result follows from the
very definition of the operator 	.

Eventually, we partitioned the set S in three subsets and in each of these subsets
we proved that any point is contained in a square with diameter δ included in
S. Hence, the result holds. ��
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Fig. 2. Left: the turn of the polyline [a,q,p,b], γ + δ, is greater than α + δ = π (the

half-line passing through p and q is the bisector of the angle ̂apb). Center: in blue
the arc Ca,b = C ∩ B̄(p, δ√

2
). In red, another arc of C whose end c is inside a square

having p for vertex and included in the shape bounded by C. Right: in blue, the arc
Ca,b = C∩B̄(p, δ√

2
). The disk B̄(p, d(p, q)) is included in the shape bounded by C. Since

the arc Ca,b cuts the radius [p, c] passing through q, its turn is greater than that of the
quarter of circle in red.

Thanks to the previous proposition, we get in Corollary 1 that a shape S
having a δ-LTB curve for boundary with r ≤ δ/(2

√
2) verifies the two last items

of Definition 4 with r′ =
√

2r and that S 	 B̄(0, r) is non-empty.

Corollary 1. Let S be closed shape having a δ-LTB curve C for boundary. Let
r ≤ δ/(2

√
2). Then,

– S 	 B̄(0, r) is non-empty,
– S ⊂ S 	 B̄(0, r) ⊕ B̄(0,

√
2r),

– Sc ⊂ Sc 	 B̄(0, r) ⊕ B̄(0,
√

2r),

Proof. Let p ∈ S. By Proposition 3, there exists a square Q of edge length 2r
containing p and included in S. Then, the center q of Q belongs to S 	 B̄(0, r)
which is therefore non-empty. Furthermore, Q ⊆ S 	 B̄(0, r) ⊕ B̄(0,

√
2r). Then,

S ⊆ S 	 B̄(0, r) ⊕ B̄(0,
√

2r). Alike, applying Proposition 3 to S̄c, we get Sc ⊂
Sc 	 B̄(0, r) ⊕ B̄(0,

√
2r). ��

It remains to prove that the erosion by a disk of radius r of a connected
component of the plan deprived of a LTB curve is path connected (for well
chosen values of r/δ). The rest of the proof is made by contradiction: we assume
that S 	B(0, r) has at least two distinct connected components and we consider
the infimum distance d0 between two connected components. The reasoning is
split into two cases: d0 ≤ 2

√
2r (Lemma 1) and 2

√
2r < d0 (Lemma 2).

Lemma 1. Let C be a δ-LTB curve and A be a connected component of R
2 \ C.

Let r < δ/
√

10 + 4
√

2. Two points of ∂(A 	 B̄(0, r)) at distance less than or
equal to 2

√
2r are path-connected in A 	 B̄(0, r).

Proof. Let x0 and x1 two points of A 	 B̄(0, r) at distance less than or equal
to 2

√
2r from each other (Fig. 4 illustrates the proof). Assume that the segment
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[x0, x1] is not included in A	B̄(0, r) (otherwise, we are done). Then, there exists
a point a ∈ C in the dilation of the segment [x0, x1] by the open disk B(0, r)
deprived of the two closed disks with center x0, x1 and radius r. Thereby, the
point a belongs to a rectangle [x0, u0, u1, x1] with u0 ∈ ∂B(x0, r) and u1 ∈
∂B(x1, r). Since the segment [x0, x1] is not included in A	 B̄(0, r), we are going
to build another arc from x0 to x1 that will be proved to lie inside A 	 B̄(0, r).
Let i0 and i1 be the respective intersections of the segment [x0, x1] with the
circles ∂B̄(x0, r) and ∂B̄(x1, r). For k ∈ {0, 1}, let lk be the symmetric of uk

with respect to xk. Let p0 and p1 be the intersection points of the segment [l0, l1]

and the circles ∂B(i0, r) and ∂B(i1, r). Let P be the simple arc
�

x0i0p0∪ [p0, p1]∪
�

p1i1x1 where
�

xcy denotes the quarter of circle with center c linking the points
x and y. We claim that P is included in A 	 B̄(0, r). By contradiction, assume
that P � A 	 B̄(0, r). Then, there exists a point b ∈ C ∩ (

P ⊕ B(0, r)
)

deprived
of B(x0, r) and B(x1, r). The distance between a and b is upper-bounded by the
distance between o0 and u1 (o0 is the symmetric of i0 with respect to x0), that is
by

√

10 + 4
√

2r. Thus, d(a, b) < δ. Therefore, there exists a straightest arc C|ba
between a and b. We set X = R

2 \ (B(x0, r) ∪ B(x1, r)). For k ∈ {0, 1}, let Hk

be the set of simple arcs Da,b in X between a and b such that any arc between
a and b homotopic to Da,b in X intersects the quarter of plane Qk delimited by
the rays −−→xkok and −−→xkuk. Alike, let I be the set of simple arcs Da,b in X between
a and b such that any arc between a and b homotopic to Da,b in X intersects the
segment [x0, x1] (see Fig. 3). Notice that I is empty if d(x0, x1) ≤ 2r. Observe
that any arc between a and b in X that does not intersect the segment [x0, x1]
belongs to H0 ∪ H1. Furthermore, by definition of H0 and H1, any arc between
a and b in X homotopic to an arc not in H0 ∪ H1 is not in H0 ∪ H1 and thereby
intersects [x0, x1]. Then, any arc between a and b in X that is not in H0 ∪ H1 is
in I.

In other words, we split the set of simple arcs between a and b in X in two
classes: those passing in between the disks B(x0, r) and B(x1, r) and the others
that turn around B(x0, r) or B(x1, r). Be aware that actually this splitting is
not a partition for we make no restriction about the turn of the arcs in both
sets. Hence, these arcs can do several turns around any of the two disks. The
problem is that the only tool to link homotopy and turn to our knowledge is
Proposition 2 and it is not sufficient to easily constrain the behavior of the arcs.

– Firstly, assume that the arc C|ba belongs to I. Let z be a point of intersection
of the arc C|ba and the segment [i0, i1].

• Let t0 and t1 be the tangents from z to the quarters of circle
�

i0x0u0

and
�

i1x1u1 at points q0 and q1. Put αk := îkxkqk for k ∈ {0, 1}. Since
d(x0, x1) ≤ 2

√
2r and the secant function is increasing and strictly convex,

we derive

sec
(

α0 + α1

2

)

≤ sec(α0) + sec(α1)
2

≤
√

2 ≤ sec(
π

4
), (1)
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that is α0 + α1 ≤ π/2 and the equality occurs only if α0 = α1 = π
4 . Since

q̂0zq1 = α0 + α1, we get q̂0zq1 ≤ π
2 .

• According to Proposition 3, there exists a square S with edge length
δ/

√
2, having z for vertex and whose interior is included in the exterior

of A. Observe that, since d(x0, x1) ≤ 2
√

2r, the distances d(q0, z) and
d(q1, z) are upper-bounded by d(i0, u1) =

√

10 − 4
√

2r which is less than
the edge length of S. Thus, the square S has to be included in the sector
delimited by the tangents t0 and t1 and not containing x0 and x1. Then,
q̂0zq1 ≥ π

2 , and by Eq. 1, α0 = α1 = π
4 , that is z is the middle of [i0, i1].

Therefore, z is the unique point of C lying on [i0, i1].
• Noting that the three points q0, q1 and z are at distance less than δ/2

from each other, we derive from [8, Lemma 8.a] that one of the three
subarcs of C delimited by the three points z, q0, q1 has a turn greater
than π/2. Since κ([q0, q1, z]) > π/2 and κ([q1, q0, z]) > π/2, the arc of
C between q0 and z not containing q1 and the arc of C between q1 and
z not containing q0 have a turn bounded from above by π/2. Thus, the
third arc delimited by the three points z, q0, q1, which is the arc between
q0 and q1 not containing z has a turn greater than π/2. Hence, the turn
of the arc Cq0,q1 between q0 and q1 containing z is less than or equal to
π/2. As the κ(Cq0,q1) ≥ κ( ̂q0, z, q1) = π/2 by the definition of the turn, we
derive that κ(Cq0,q1) = π/2. Thus, Cq0,q1 is the polyline [q0, z, q1]. Then,
the arc C|ba is the disjoint union of two or three arcs, an arc Ck between
a and a point qk, k ∈ {0, 1}, the open polyline (q0, z, q1) and an arc C1−k

between q1−k and b if a /∈ [q0, z, q1], or the polyline [a, z, q1−k) and the
arc C1−k if a ∈ [qk, z). Thus, C|ba is homotopic in X to Ck � (q0, q1)�C1−k,
or to [a, q1−k) � C1−k which do not intersect [x0, x1] (for z is the unique
point of C on [i0, i1] and C is simple). Contradiction!

– Secondly, assume that for some k ∈ {0, 1}, C|ba ∈ Hk .
We denote by Ok, k ∈ {0, 1}, the convex hull of the quarter of the circle
∂B(xk, r) delimited by uk and ok.
Ok is included in a bounded component of R

2 \ (C|ba ∪ [a, b]). Then, according
to the definition of C|ba and Proposition 2,

π/2 ≥ κ(C|ba) ≥ κ(∂ conv(Ok ∪ [a, b]) \ (a, b)) > π/2,

which is absurd (the last inequality comes from the fact that a, resp. b, cannot
lie on the tangent at uk, resp. ok, to the circle ∂B(xk, r)).

Finally, in each studied case, the assumption that the path P is not included in
the eroded set A	 B̄(0, r) leads to a contradiction. We conclude that the points
x0 and x1 are path-connected in A 	 B̄(0, r). ��

Lemma 2. Let S be a closed subset of R
2 whose boundary is a δ-LTB curve.

Let r <
√
2
2 δ. The minimal distance d0 between two connected components of the

eroded shape S 	 B̄(0, r) (respectively Sc 	 B̄(0, r)) is upper-bounded by 2
√

2r.
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•
a

•
b

•
x0

•
x1

Q0 Q1
•
a

•
b

•
x0

•
x1

Q0 Q1

Fig. 3. On the left the blue arc belongs to the set H0, the green arc to I and the red
arc to H1. On the right, the purple arc belongs to H0, H1 and I. (Color figure online)

≤

α1

10 +
√
2r

•
x0

•
x1

•
i0

•
i1

•
a

•
b

•
p0

•
p1

Q0 Q1

•
q0

•
q1

•o0 • o1

•

l0

•

l1

•
z

•
u0

•
u1

Fig. 4. The figure illustrates the notations used in the proof of Lemma 1. The proof
consists in showing that one of the two red paths joining the points x0 x1 is included
in A � B̄(0, r).

Proof. Assume by contradiction that d0 > 2
√

2r. Let A be S 	 B̄(0, r) (the
case A = Sc 	 B̄(0, r) is similar). If A has two, or more, connected components,
then it is the same with A ⊕ B̄(0,

√
2r) for the dilation of a path connected set

by a path connected structural element containing the origin is path connected
and the radius of the dilation is less than the half of d0. Therefore, S, which
is connected and included in A ⊕ B̄(0,

√
2r) is included in just one connected

component of A ⊕ B̄(0,
√

2r). Therefore, the others components do not contain
any point of S. Hence, there are at least one non empty component of S	B̄(0, r)
which does not contain any point of S which is absurd. ��
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Proof (Theorem 1).
By Corollary 1:

– S 	 B̄(0, r) is non-empty,
– S ⊂ S 	 B̄(0, r) ⊕ B̄(0,

√
2r),

– Sc ⊂ Sc 	 B̄(0, r) ⊕ B̄(0,
√

2r).

Assume by contradiction that S 	 B̄(0, r) or Sc 	 B̄(0, r) is not path-connected.
Since S is a compact set, S can be covered by a finite number of disks of radius r

2 ,
then S	B̄(0, r) is also covered by a finite number of disks of radius r

2 . Moreover,
by Lemma 1, in each disk of radius r

2 there is at most one connected component
of S 	 B̄(0, r). Then S 	 B̄(0, r) has a finite number of connected components.
Since S is compact, Sc 	B̄(0, r) has just one unbounded component, say Sc

0, and
(Sc 	B̄(0, r))\Sc

0 is bounded. Thereby, by the same reasoning as for S 	B̄(0, r),
we have that Sc 	 B̄(0, r) has a finite number of connected components. Then
the minimal distance d0 between two connected components is well-defined for
both S 	 B̄(0, r) and Sc 	 B̄(0, r). More precisely, d0 is defined by:

d0 := min
{

inf
x0∈A0,x1∈A1

d(x0, x1)|A0, A1 distinct connected components of A

}

,

where A is S 	 B̄(0, r) or Sc 	 B̄(0, r). But by Lemmas 1, 2, d0 /∈ [0, 2
√

2r] ∪
(2

√
2r,+∞). Contradiction ! ��

4 Conclusion

This paper establishes that the Local Turn Boundedness implies the quasi-
regularity in 2D. Therefore the set of quasi(r)-regular curves is larger than the set
of LTB curves for a r < δ/

√

10 + 4
√

2. On the one hand, quasi-regularity allows
the corresponding shape digitization to keep its convexity and its topological
properties under rigid motion [10,11]. On the other hand, Local Turn Bounded-
ness has been introduced to map ordered samplings of the digital boundary to
close ordered samplings of the continuous curve in order to compare the lengths
of the continuous curve and of its digitization.

It is possible to build a quasi(r)-regular curve having arbitrary numerous
small (against r) oscillations leading to an arbitrary large length. Thus, the
results obtained in [8] on the length estimation of LTB curves cannot be extended
to quasi-regular curves. Nevertheless, the link between Local Turn Boundedness
and quasi-regularity can be useful for the generalization of Local Turn Bound-
edness to higher dimension and this is the perspective of our work.
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