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1  Introduction

Internet of Things (IoT) has emerged as a new technology paradigm envisioned to 
enable the interoperable interactions of machines and devices over the internet. The 
structure of IoT entails the use of millions of smart devices which are able to effi-
ciently share and process data among each other, thereby providing reliable moni-
toring and controlling systems [1]. IoT offers the ability to learn and interact with 
environmental indicators in realizing the automated real-time decision-making pro-
cesses. This paves the way for enabling efficient productions and manufacturing 
processes in the industrial domain. Applying IoT to industrial applications has 
raised a new research area called Industrial IoT (IIoT) that enables the industry to 
analyze the acquired data from industrial assets and systems. This is a notable fea-
ture in the context of the fourth industrial revolution, known as industry 4.0 [2].

This infrastructure can lead to a significant improvement in performance, energy 
efficiency, and reduced response time of the devices [3]. However, IIoT-enabled 
multi-source manufacturing data generated by industrial devices are required to be 
analyzed in real-time to achieve the operation optimization and strategic decision- 
making [4]. The large quantity of data in resource-constrained devices and growing 
concerns of data privacy are preventing IIoT solutions to achieve the desired quality 
of services. Therefore, the realization of IIoT requirements in terms of the network 
reliability, real-time processing and transmission, and industrial information secu-
rity can be met with the new technologies such as AI and edge computing tech-
niques [5, 6].
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Edge computing refers to the edge-processing model that provides a flexible and 
efficient edge network for heterogeneous industrial devices. It leverages edge nodes 
with sufficient computing resources for implementing the local pre-processing of 
real-time industrial data, which is essential for accommodating the growing compu-
tational demands [7]. It can potentially reduce the communication bandwidth and 
overall delay of the system, thereby improve the overall performance of the system. 
More importantly, it also allows enterprises to build the effective solutions for pro-
tecting the security and privacy risks [7, 8]. In this context, edge computing incor-
porates AI technologies for data mining and analysis process [9].

The IIoT enables the successful cooperating of AI and big data techniques. 
AI-assisted data analysis framework requires proximate and prompt cloud 
resources for manufacturing data processing. Therefore, integrating AI into edge 
computing is a promising solution for deploying efficient distributed computing 
services [10, 11], known as Edge Intelligence (EI). The realization of edge intel-
ligence in IIoT can be further reinforced by integrating ML methods. In particular, 
model training and model evaluation in data analysis and prediction processes can 
be carried out locally in edge devices called ML as a Service (MLaaS) [12]. EI 
provides some benefits in terms of personalization, responsiveness, and privacy 
issues. Notably, it enables not only accurate services through customizing AI 
models, but also provides fast and adaptive services for time-varying industrial 
process. Moreover, information processing at the network edge ensures the pri-
vate services. The rest of this chapter discusses the opportunities and essential 
issues of the paradigm where ML models are executed locally in the industrial 
manufacturing network.

2  IIoT with Edge Intelligence

The IIoT provides an efficient computational platform that is able to monitor and 
control the manufacturing processes with the aid of information technologies. In 
this platform, the acquired data from industrial assets and devices can be efficiently 
processed and analyzed by incorporating the AI technologies. In smart manufactur-
ing, data analysis is a critical feature in realizing the automation and intelligence of 
IIoT systems. Mainly, ML is a popular modeling technique that can be applied to 
data-driven applications. Learning techniques typically utilize a sufficient amount 
of data for training the model in different areas such as regression, classification, 
clustering, and forecasting. Thus, intelligent manufacturing requires cloud-assisted 
service for processing and analyzing the industrial big data. For this purpose, utiliz-
ing edge devices can be a promising development trend that provides computational 
power and service accuracy on the edge servers. The relationship between AI, EI, 
Edge Computing (EC), and IIoT is shown in Fig. 1. Given these concepts and the 
relationships between them, in this section, we investigate the preliminaries of an 
intelligent computing framework for IIoT.
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2.1  The Challenges of EC in IIoT

EC is an innovative paradigm for industrial devices that utilizes sensing, computa-
tional resources, and data processing techniques to provide an efficient manufactur-
ing infrastructure. However, processing a large quantity of data in edge nodes may 
bring some new challenges in terms of the confidentiality of information and 
performance- related issues that should be addressed in design and implementation 
of a system. The following focuses on the detailed discussion of the design issues.

Data Processing and Analysis Big industrial data are mainly driven by millions of 
smart devices and business processes. To develop an efficient edge service in IIoT, 
it is critical to design the appropriate approaches for data capturing and storing the 
vast amount of heterogeneous data in distributed edge servers. Since the data quan-
tity is huge and grows rapidly, the solution must not only be able to store the indus-
trial data effectively, but also support scalability and flexibility. This is the 
requirement of applications envisaged in IIoT vision [13, 14]. In addition, data 
analysis schemes should be considered to meet the requirements of data processing 
and management. AI-enabled technologies are proved as an effective solution in 
providing a real-time data management platform in terms of accuracy, adaptability, 
and the security of data [15, 16].

Security and Privacy Integrating EC technologies with IIoT enhances the security 
and privacy of the produced data, as it decreases the data transmission in the net-
work. However, traditional security solutions cannot guarantee the full requirements 
for edge services. Different kinds of malicious attacks can threat confidentiality due 
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to the ubiquitous network environment [17, 18]. Moreover, existing cybersecurity 
frameworks are not applicable for industrial systems, as the unique characteristics 
of IIoT in providing the strict performance and reliability requirements for support-
ing the critical functionality [19]. AI technologies are the potent methods for inves-
tigating the normal/abnormal behavior of the manufacturing components and 
devices in the IIoT environment. In particular, these methods can assist in develop-
ing the security-based intelligent systems [20].

Energy Consumption In general, the total energy consumption consists of the 
amount of energy consumed by industrial devices for collecting and processing the 
industrial information, and the energy consumed for data transmission among these 
devices. Although edge-enabled computing enhances the energy expenditure of the 
sensory devices, big data processing, and association imposes the higher energy 
levels on the edge devices that need to be considered in design stages [21].

Resource Management and Task Scheduling An edge-enabled computing model 
provides flexible computations and storage services for intelligent industrial sys-
tems. However, the heterogeneity of this platform in terms of the higher real-time 
task requests, terminal assets and devices, and edge nodes necessitates the creation 
of an efficient task scheduling scheme. The problem lies in determining the rules 
about how to perform the data transmission and task scheduling among edge nodes 
to minimize the delay and energy consumption, whilst enhance the overall perfor-
mance of the manufacturing systems. Moreover, the scheduling strategy should 
assign the tasks among edge nodes to guarantee the load-balancing and prolong the 
lifecycle of the system [7, 22].

2.2  Classifications of AI Techniques

Nowadays, AI has become an integral part of our daily lives. Motivated by the 
recent advancement in AI techniques and the impacts on a wide variety of domains, 
ranging from automatic face-focus to robotics, a set of intelligent applications have 
quickly ascended to the spotlight in the industrial field. In particular, AI is a generic 
term, which involves various techniques summarized in Fig. 2.

Among them, ML is an effective method that has received greater attention in 
recent years owing to the achieved accuracy [9]. As shown in Fig. 2, ML-based 
approaches are generally divided into supervised, unsupervised, and Reinforcement 
Learning (RL) methods. These methods can improve the performance of the system 
through training the machine using gathered data from the real world. Besides ML 
techniques that utilize neural networks for learning, the deep representation of data, 
achieve remarkable results in a broad spectrum of fields. In contrast to the ML 
approaches that require a feature extractor for transmitting raw data into proper 
representation, the Deep Learning (DL) method develops its own representations 
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for pattern recognition. In this manner, systems can successfully learn more com-
plex functions with unprecedented and undefined conditions.

2.3  Machine Learning Techniques in IIoT

ML is one of the popular AI-based techniques that provide the ability to learn with 
data and enhancing the performance of computer systems in decision-making pro-
cesses, without having explicit programs [23, 24]. The aid of these techniques is to 
model the concepts from perceptions. According to these perceptions, learning 
techniques can be in three categories: supervised learning, in which labeled data are 
applied in classification or regression tasks, unsupervised learning with unlabeled 
data in clusters, and reinforcement learning approach that utilizes the concept of 
agents for maximizing the cumulative reward.

Nowadays, ML-based schemes have found their applications in upcoming decen-
tralized and intelligent information and networking systems. They have significant 
potential in improving the deployment of communications and networking systems, 
as they are able to extract features from a large amount of data. The application of 
ML-based algorithms in networking is twofold. First, it can help in optimal deci-
sions with learning network patterns, such as routing decisions in traffic patterns 
[25, 26]. Second, the performance and resource usage optimization in a network can 
be solved by the intelligent task allocation and scheduling schemes [27, 28].

The heterogeneous manufacturing data are analyzed through a ML-assisted 
approaches in IIoT. For example, the authors in [29] proposed an ML-aided infor-
mation management system to enhance the user request service. They leveraged 
some indexing techniques for achieving the effective data management, then an ML 
algorithm is applied to improve the accuracy of the request processing. The authors 
in [10] investigated the tradeoff between the service delivery latency and energy 

AI techniques

Machine Learning 
(ML) Fuzzy ModelsProbabilistic ModelsMetahuristics

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Single solution based

Population based

Hybrid Methods

Bayesian Mixture Model

Gaussian Mixture Model

Fig. 2 Summary of AI technologies [23]

Complementing IIoT Services Through AI: Feasibility and Suitability



12

expenditure in IIoT. Generally, cloud resources are used for data processing in these 
approaches. However, it imposes much cost in terms of network bandwidth and 
service latency, while transmitting data to the cloud servers; so, it is beneficial to 
apply the distributed computing services.

2.4  Machine Learning Techniques in Edge Computing

AI-aided edge computation services could efficiently empower the Manufacturing 
Devices (MD) with low latency computing capability. Typically, edge resources 
cannot afford the complex AI tasks. Thus, distributed AI services can be performed 
with multiple edge devices to provide an efficient service provisioning. For exam-
ple, an AI-based privacy-preserving service division is presented in [30] that con-
ducts the service composition on encrypted data using a homomorphic encryption 
algorithm. In [31], a federated deep reinforcement learning-based framework is pro-
posed that improves latency by applying the edge caching technique. This frame-
work utilizes the local training parameters of the base stations as the initial input for 
the global training in the next stage. In [32], a QoE-based computation offloading 
model is presented that improves the service latency, energy consumptions, and task 
success rate using a deep reinforcement learning algorithm. It could improve the 
QoE performance, besides achieving the better instability and faster convergence.

2.5  Edge Intelligent IIoT

The recent proliferation of the computation-intensive manufacturing applications 
generates a large volume of the industrial data at the network edge. This incurs an 
urgent need for AI techniques at the network edge to release the informative poten-
tial of big data. Big data has a crucial role in AI development that has recently 
moved from datacenters toward the growing widespread devices, e.g., IIoT devices. 
The emerging paradigm that moves computing tasks and services from core to the 
network edge has led to a promising area of EI. EI combines the edge advantages 
(e.g., reduced latency and network traffic) with AI strategies that result in further 
benefits in the following aspects [9].

 1. Big data analysis at the network edge: the growing number of smart devices and 
assets leads to the large volume of industrial data in IIoT.  In this context, 
decision- making processes can be accelerated through AI strategies in data ana-
lytic and information extraction. Among them, deep learning is a strong approach 
that can meet the requirements of big data analytic. Deep learning models have 
also achieved remarkable results in automatically identifying patterns and anom-
aly detection in data. Then, the extracted information is used for real-time pre-
dictive decision-making in industrial environments.
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 2. Efficient data processing using edge resources: it is already proved that data has 
a vital effect on the development of AI models. Traditionally, the acquired data 
from IoT devices and industrial assets are sent and stored in the cloud data cen-
ters. This incurs the higher latency and wastage of bandwidth resources. To 
address these challenges, computing tasks and services are moved to the network 
edge in recent years. In this way, the generated data can be processed locally to 
achieve low-latency responses in real-time manufacturing systems.

 3. Ubiquitous AI services: AI has been recognized as an essential solution in a vari-
ety of application domains that influence our everyday lives [33–38]. The poten-
tial of AI in improving the smart products and services imposes the need for 
bringing AI closer for every person and device [39]. Clearly, edge computing can 
assist in achieving this goal by enabling ubiquitous AI at the network edge.

3  AI-Enhanced Cooperative Computing Architecture

This section introduces the architecture of smart manufacturing resources based on 
the cooperative edge computing in IIoT.  It is consists of three operational layers 
named manufacturing assets, edge-devices, and remote cloud resources, as depicted 
in Fig. 3. Multi-source manufacturing data is collected and delivered to the base 
stations (BS) or edge devices. Real-time manufacturing services include self- 
monitoring, production and logistic status, fault detection, and service management 
[10, 40].

Edge layer provides a lightweight smart service by processing the real-time data 
and perception events, and transforming them into dynamic behaviors in manufac-
turing systems. Computing service of edge devices may be different, depending on 
the application and service accuracy. However, cooperative computing service 
through edge and cloud accommodates both prompt and comprehensive computing 
services. Owing to the additional cost of communications between edge and cloud 
servers, the deployment of computing services between them has a significant 
impact on performance. Additionally, a task scheduling strategy is required for 
assigning the computing tasks to the heterogeneous edge servers according to their 
specifications and quality of service (QoS) requirements.

4  Potential Advantages of Learning Techniques in Edge 
Intelligent IIoT

The applications of learning techniques in IIoT would enable the further extraction 
of the information, and the deployment of the innovative applications in the intelli-
gent manufacturing domain. More specifically, applying information technologies 
in the industrial field can provide a flexible infrastructure for smart manufacturing 
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services. This allows the industrial assets and devices to have a seamless autono-
mous communication in the service delivery process. For example, Prognostic and 
Health Management (PHM) is a novel paradigm that utilizes the collected opera-
tional information of the system for predicting and taking suitable decisions before 
system failure [41]. A large number of sensors are utilized to provide a real-time 
monitoring system, which is essential in IIoT [42]. This system has the ability to 
detect and predict the system failures by integrating the autonomous support system 
with the information system. The initial processing of data is performed at the net-
work edge that enhances the latency of the emergency decisions.

In the context of big data, learning can be used for the efficient extracting and 
mining of the features in exact classifications or autonomous decision-making pro-
cesses. Moreover, an intelligent edge-computing platform would be capable of 
learning the surrounding conditions, mapping out the events, monitoring and track-
ing manufacturing faults, effective action prediction, and providing a fast response 
to real-time changes.

5  Practical Limitation and Open Issues

Although there is a growing interest in EI, the study of EI is still in the early stage. 
This section discusses some challenges and open issues in EI-based IIoT, including 
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software platforms and middleware, load balancing, EI model design, and secu-
rity issues.

5.1  Software Platforms and Middleware

Recently, cloud-based AI service provisioning systems have received a lot of atten-
tions in industrial field. In this regard, some companies, such as Amazon’s 
Greengrass, Microsoft Azure, and Google Cloud IoT Edge try to deliver software 
platforms and middleware for the edge services. On the other hand, the growing 
number of AI-assisted computation-intensive applications leads to the development 
of the pervasive EI platform and middleware.

In order to realize the potential of EI services, several key challenges should be 
addressed in terms of the compatibility, portability, and programing issues. Owing 
to the diverse and heterogeneous EI services, a middleware should be developed for 
providing seamless and smooth services. This platform should support the portabil-
ity between different AI programing frameworks, such as Tensor flow and Torch. 
Moreover, it should provide a lightweight virtualization and computing service [9].

5.2  Task Offloading and Load Balancing

Pervasive computing in EI is a distributed system paradigm that has variety of com-
puting resources. Therefore, it is required to have an effective task offloading and 
load balancing scheme for task dissemination among the resources and servers. 
Particularly, data offloading schemes aid to balance the overall load of the system 
among the limited computing resources. This can help in improving the overall 
latency of the service delivery in system, which is necessary for manufacturing 
applications. In this context, machine learning models can be used to set up the 
efficient balancing schemes.

5.3  EI Model Design

AI models are usually resource-intensive and require powerful computing capabil-
ity. To address this problem, model compression techniques can be applied to resize 
the AI models. To this end, model simplification is used for adapting the model to 
the edge resources, which includes weight pruning and data quantification. In 
weight pruning method, the removal of neurons with small contribution makes the 
model smaller. Data quantization utilizes a small data format with fewer bits in 
representing the input/output that improves the operational speed of the instruc-
tions [7].
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5.4  Security Issues

Owing to the open nature of the pervasive computing, privacy and security prob-
lems is one of the key challenges of IIoT. Manufacturing assets and devices produce 
a large amount of data that may contain sensitive information about location, activ-
ity records, production process, and manufacturing information. Therefore, design-
ing an appropriate distributed security mechanism is critical to guarantee the user 
privacy and data integrity for industrial applications. Distributed learning models 
are a feasible solution for the privacy-friendly local data training schemes.

6  Conclusion

Recent advances on ubiquitous computing play a crucial role in boosting AI tech-
niques in a resource-constrained environment. Moving the AI frontier from the 
remote cloud to the network edge can pave the way for computation-intensive AI 
applications. This can help to tackle the limitations of the bandwidth and latency in 
computation-intensive decision-making processes.

This chapter reviewed the novel paradigm of edge intelligence, motivations for 
pushing artificial intelligence frontier to the network edge, and the reference archi-
tecture of edge intelligence in industrial IoT (IIoT). Specifically, we discussed the 
emerging learning models in the industrial field for training and perceiving manu-
facturing data and processes at the network edge. This review could be a good step 
for motivating researchers to make more attention to the industry development.
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