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1  Introduction

In the past few years, as a result of developments in the field of electronics and 
improvements of wireless systems, the term Internet of Things (IoT) emerged. The 
opportunity to connect devices together and share information and data while per-
forming their individual tasks without being bound to locations and physical equip-
ment [1].

Industrial Internet of Things (IIoT) is a new application of the Internet of Things 
(IoT) in the industrial sector. The IIoT enables an enterprise to perform operations 
in an efficient way while maintaining quality and validation [2]. IIoT makes moni-
toring and maintenance tasks more convenient, which will be discussed under the 
category of smart manufacturing systems [3]. By integrating Cyber-Physical 
Systems CPS, a smart manufacturing execution system can be created such that, 
documents all data obtained from production and performs decision-making based 
on predictions on the data for better and optimized future steps [4]. IoT has been 
progressively used in different sectors of the industry and created a new revolution, 
IIoT or Industry 4.0 [5, 6], which improves the efficiency, security and productivity 
in the industry [7–10]. Based on the environment and the purpose of its application, 
IIoT can have different architectures, but generally, it can be described in a four- 
layered architecture, as can be observed in Fig. 1.

The physical layer, consists of all physical elements such as actuators, sensors, 
machines, etc. The network layer consists of communication networks and 
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protocols. The middleware layer makes the communication between the second 
layer and the first layer possible. It consists of an application programming interface 
(API), database, cloud server, etc. The fourth layer, the application layer, describes 
the application of the IIoT. Some instances of the applications are autonomous vehi-
cles, smart home, healthcare, etc. [11–15]. for instance, Rouzbahani et al. proposed 
an Incentive-based Demand Response Optimization (IDRO) model in order to effi-
ciently schedule household appliances for minimum usage during peak hours [16, 
17], which demonstrates noticeable improvements in power factor and cost-saving 
during peak hours for individual households.

While IIoT is an excellent solution to facilitate industrial processes, it creates 
new challenges with its application. As the devices start to operate simultaneously, 
they generate valuable data for online monitoring and control of the system, which 
can also be used by attacker to manipulate the system performace [18, 19]. There 
are several attacks that can be performed in IIoT, one of such is cyber-attacks, and 
this type of attack has other variations itself, such as Denial of Service (DoS), 
Datatype Probing (DP), Scan, and etc.

Fig. 1 Four layered architecture IIoT
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In order to perform data processing and analysis, Machine Learning (ML) is 
preferred over the traditional methods due to the huge quantity of data that is being 
generated throughout the operations. ML is considered to be a useful paradigm for 
detecting security threats [20]. Apruzzese et al. [21] conducted an investigation on 
the effectiveness of ML for cyber threat detection to find and address the limitation 
of it in such tasks. Lee et al. [22] conducted the same topic of research, but the focus 
was on the reduction of error in the solution. These are a few instances to show the 
effectiveness of ML in the area of detection and classification of cyber-security 
threats.

In this paper, we proposed a Snapshot Ensemble Deep Neural Network (SEDNN) 
for cyber-attack detection. The model has high accuracy in the detection of cyber 
threats. It is worth noticing that the classification of the attacks was not considered 
in this paper. In sect. II, some previous work on the same area of study will be pre-
sented, section III will be devoted to the methodology, in sect. IV the results will be 
presented and in sect. V conclusion and future steps will be discussed.

2  Previous Works in IIoT Security

As the system becomes more complex and data quantity becomes enormous [23–
25], the computation and control become more challenging, resulting in traditional 
methods not to perform as expected because of latency and long response time [26, 
27]. ML algorithms improve industrial processes’ security and reliability and are 
rapidly used to detect and address security threats in IIoT [28, 29]. Previous studies 
in the area of ML application in IIoT security show promising results in using ML 
algorithms for addressing cyber threats in IIoT.

Rouzbahani, Karimipour and Lei [30] proposed an Ensemble Deep Convolutional 
Neural Network (EDCNN) model for electricity theft detection in smart grids. In 
this study, they used a dataset consisting of the daily consumption of 42,372 users. 
They used an unbalanced dataset in which 8% of customers were attackers, and the 
rest were normal users. They compared the results with other models and concluded 
that EDCNN could detect electricity theft in smart grids with an accuracy of 0.981, 
which indicates that the model is precise.

Farahnakian and Heikkonen [31] approached intrusion detection by presenting a 
Deep Auto-Encoder (DAE) based system. They used the model on the KDD- 
CUP’99 dataset and achieved an accuracy of 94.71% for attack detection, which 
then they concluded that their approach obtained better results as opposed to other 
deep learning-based approaches. Moukhafi et al. [32] chose a novel hybrid genetic 
algorithm and support vector machine with the particle swarm optimization feature 
selection approach for detecting Denial of Service (DoS) attack detection, which 
they implemented on KDD 99 dataset and obtained an accuracy of 96.38%. 
Rouzbahani et al. [33] presented research on using ML algorithms for the classifica-
tion of False Data Injection (FDI) attacks in CPS.
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Vajayanand et al. [34] proposed a support vector machine (SVM)-based model, 
and by doing so, they improved the classification algorithm. They used the 
ADFA-LD dataset for the implementation of their model and obtained an accuracy 
of 94.51%. In the research of Khalvati et  al. [35], they proposed the SVM and 
Bayesian model to successfully classify IoT attacks. They conducted research with 
their proposed model on KDD CUP 99 dataset and achieved an accuracy of 91.50%. 
Li et al. [36] proposed a bidirectional long and short-term memory network with a 
multi-feature layer (B-MLSTM) on the classical IIoT datasets: CTU-13 [37], Gas- 
Water [38], and AWID [39] in order to detect low-frequency and multi-stage attacks 
in IIoT.  After the implementation of the model, an accuracy of 95.01% on the 
CTU-13 and 97.58% on AWID was obtained. Rouzbahani et  al. [40] conducted 
research and performed cyber-attack detection in smart cyber-physical grids by 
using different ML algorithms, which resulted in a great performance for Random 
forest K-Nearest Neighbor (KNN).

Overall, investigations show that ML can efficiently and precisely detect security 
threats in IIoT. What is worth noticing is that the datasets in these studies are clas-
sical datasets that are available on the internet and are considered to be outdated. We 
are obligated to use new datasets because of the modern security requirements of 
IIoT. This paper proposes a modern ML model that will be implemented on newer 
datasets and will also address the compatibility of the model with resource- 
constrained devices.

3  Methodology

In this section, a brief description of the dataset has been presented. The section will 
then continue with a description of the preprocessing of the dataset, the proposed 
model, and evaluation parameters that were considered to evaluate the model’s 
performance.

3.1  Dataset

The dataset used in this paper is an open-source dataset obtained from Kaggle [41]. 
It was provided by Pahl et al. [42]. This dataset contains communications between 
different IoT nodes, sensors and applications. In this dataset, multiple attacks were 
performed on the IIoT applications, for example, “spying”, “wrong setup” and etc., 
which resulted in an anomaly in some of the 357,952 data samples [43, 44]. This 
paper tried to address the cyber-attack performed on the data. Classification of the 
attacks will be discussed in another paper.

H. M. Rouzbahani et al.
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3.2  Preprocessing of Data

In order to obtain acceptable results from ML models, a comprehensive dataset is 
the main requirement. Most of the time in data mining is devoted to data processing 
[45], and the most essential problem in data processing is missing values, which can 
be caused by various reasons such as power outage, sensor damage or cyber- 
attacks [46].

In this dataset, there are missing values. Deleting them can result in losing valu-
able data on other columns. Therefore, the missing values need to be replaced. 
Figure 2 shows a diagram of the algorithm for attack detection. The processing of 
replacing the missing values is as follows:

3.2.1  Features

First, we need to select the features that we want to create our model based on. 
Table 1 shows the features that were selected. It demonstrates which methods were 
considered in order to encode the features as well.

3.2.2  Replacing Missing/NaN Values

Backward Difference Encoding: this coding system is one of the coding systems of 
categorical encoding. When a regression is performed on a set of variables with K 
categories, these variables will enter the regression as a sequence of K-1 dummy 
variables. The regression coefficient of these K-1 variables corresponds to linear 
hypotheses on the cell means.

Dataset

Preprocessing

Sampling

Training set

Test set

SEDNN 
Learning 

Model
Final Model

Evaluation of 
the model

Fig. 2 Diagram of the attack detection algorithm
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In this coding system, the mean of the dependent variable for one level of the 
categorical variable is compared to the mean of the dependent variable for the prior 
adjacent level.

Label Encoding: in this encoding, a number will be assigned to each variable. 
The model should be able to understand the difference between “blank,” “False,” 
and “None” variables. Therefore we cannot assign 0 to all of them. Table 2 demon-
strates the values which were assigned to each variable.

3.3  Snapshot Ensemble Deep Neural Network

In this paper, a Snapshot Ensemble Deep Neural Network (SEDNN) was proposed 
in order to detect cyber-attacks on the dataset. The disadvantage of an ordinary 
Ensemble Deep Neural Network (EDNN) is a high computational cost, so that with 
ordinary hardware, the time of the training and testing will be high. In order to over-
come this problem, this paper approached this problem with an SEDNN model [47]. 
The difference between and ordinary EDNN and SEDNN is that every time the 
SEDNN reaches a local minimum, it will save the model’s weights and biases and 
continues to do so until the model finds the optimal minimum, resulting in a set of 
neural networks with low errors. After this process, the model will ensemble all 
models in this set and obtains the perfect model. The algorithm uses Gradient 
Descent in order to find the minimum in each step. Two types of activation functions 

Table 1 Methods for feature 
encoding

Feature Method

Source ID Label encoding
Source type Label encoding
Source location Label encoding
Destination service type Label encoding
Destination location Label encoding
Accessed node type Label encoding
Operation Label encoding
Source address Backward difference encoding
Destination service address Backward difference encoding
Accessed node address Backward difference encoding

Table 2 Replacing 
missing values

Variable Assigned value

Blank −2
False −1
True 0.1
20 20
None 0
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were considered for the DNN layers, for the first three layers, a “Relu” activation 
function was assigned, and for the last layer, a “Sigmoid” function was considered 
to conduct a binary classification in this paper. As an output, each of the test set data 
will be given a label of 0 (Normal) or 1 (Attack). Figure 3 shows a visualization of 
the proposed algorithm, and the architecture of the DNNs can be observed in Fig. 4.

Fig. 3 Architecture of The Proposed Algorithm
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3.4  Evaluation Parameters

In order to evaluate a ML model, there are some parameters that can be used. In this 
section, these parameters will be briefly explained. There are some terms used in the 
calculation of the evaluation parameters that need to be defined.

True positive is the resulting term where the model correctly predicted the posi-
tive class. True negative is the resulting term where the model correctly predicted 
the negative class. False-positive is the resulting term where the model incorrectly 
predicted the positive class. False-negative is the resulting term where the model 
incorrectly predicted the negative class.

Accuracy is the most common measure for evaluating the ML model, and it is 
defined as the ratio of correctly predicted results to the total predicted results. It may 
be implied that the higher the accuracy, the more precise model. This is not true in 
all possible cases. This assumption is only correct when there are symmetric datas-
ets where false positives and false negatives are almost the same. Therefore, we 
have to look for other parameters to evaluate our model more accurately. The math-
ematical formula for accuracy calculation is described in Eq. 1.

 
Accuracy

T T

T T F F
Pos Neg

Pos Neg Pos Neg

=
+

+ + +  
(1)

Precision is the ratio of true positives to all optimistic predictions. The formula 
for precision calculation is described in Eq.  2. High precision will result in low 
false-positive rate.

Fig. 4 Deep Neural Network Architecture
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Precision
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The recall is the ratio between true positive to all predictions (true positive and 
false negative) of the same class. The formula for recall calculation is described 
in Eq. 3.

 
Recall

T
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F1-Score is the weighted average of Precision and Recall. Therefore, it takes 
false positives and false negatives into account. The formula for F1-score calcula-
tion is described in Eq. 4.
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(4)

4  Implementation and Results

In this section, hardware and software equipment will be discussed. The section will 
continue to present the results in detail.

4.1  Software and Hardware

The proposed model has been tested using Python 3.7.4 on a system with an Intel 
Core i7-97580H CPU, 16.0 GB of RAM, and the model’s design is structured based 
on TensorFlow. In order to analyze the performance of the model, we need to obtain 
the confusion matrix, which will offer us true positive, false positive, true negative 
and false negative.

4.2  Results

The general form of a confusion matrix can be observed in Table 3.
In this research, different classifiers have been tested on the dataset in order to 

compare the results and accuracy percentage. In Table 4, the confusion matrix of the 
proposed model can be observed; moreover, Table 5 presents the proposed model’s 
performance with evaluation parameters.
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As it can be implied from Tables 4 and 5, the model presents promising results. 
Obtained accuracy of 90.58% and F1-Score of 90.48% show the great performance 
of SEDNN in detecting cyber-attacks in IIoT applications. Figures 5 and 6 show the 
accuracy and loss rate of the model.

In Fig.  5, the accuracy is not stable, and this is caused by changes of DNN 
between each time it reaches a local minimum, the algorithm uses a new DNN with 
new weights and biases. Overall, the test set’s accuracy is higher than the train set, 
which shows the model’s outstanding performance.

In Fig. 6, we can observe the loss diagram of the train and test set. The nose in 
the test diagram was caused by utilizing multiple DNN in between each local mini-
mum, as was described before. It can be observed that overall, the loss of the test set 
is lower than the train set, which shows the model is performing great.

5  Conclusion and Future Work

In this paper, a SEDNN model was proposed for cyber-attack detection in industrial 
IoT systems. As the model searches for a global minimum, upon finding every local 
minimum, it will save the weights and biases of that particular DNN (Snapshots), 
and when it reaches the global minima, it generates the best possible model from the 
set of DNNs, instead of training and testing different models on the entire dataset. 
The proposed model has a high accuracy of 90.58%, demonstrating the model’s 
excellent performance in cyber-attack detection. The model was tested on an open- 
source dataset, DS2OS, which showed promising results. The dataset consists of 
communication between different IoT nodes such as sensors and actuators. In the 
future steps, more real-time experiments and ìnvestigations can be conducted with 
the proposed model to test the model on real IIoT systems; furthermore classifica-
tion of the attacks with the proposed model will be conducted in future researches.

Table 3 Confusion matrix Actual/Detected Normal Attacker

Normal TPos FNeg

Attacker FPos TNeg

Table 4 Confusion matrix of 
the proposed model

Actual/Detected Normal Attacker

Normal 49,478 7123
Attacker 3285 50,613

Table 5 Result comparison of different classifiers

Classifier Accuracy Precision Recall F1-Score

SEDNN 0.9058 0.8742 0.9377 0.9048

H. M. Rouzbahani et al.
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