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Preface

The pervasive deployment of Internet of Things (IoT) devices facilitates data 
exchange of modern objects across every aspect of our lives, which allows new use 
cases in smart cities, smart homes, smart grid, health, cyber-physical systems (CPS), 
and industrial IoT (IIoT). Specifically, the advent of Industry 4.0 takes advantage of 
the IoT developments by making use of intelligent, interconnected cyber-physical 
systems to automate all phases of industrial operations. Although IIoT improves 
efficiency, reliability, and economical benefits through IoT-enabled CPS, it brings 
new challenges for the security community by increasing the attack landscape. The 
increasing number of cybersecurity incidents in CPS and IIoT, additionally stress 
the need to strengthen cyber resilience.

Cyber attacks in the CPS and IIoT can result in anomalous behavior in the sys-
tem that may compromise physical security, cause production downtimes, damag-
ing equipment as well as ensuring financial and reputational losses. With the 
evolution of adversarial techniques, current threats become even more complicated. 
Therefore, self-learning/cognitive approaches are required to protect the infrastruc-
ture from malicious network attacks and unauthorized access.  Cognitive ability 
detection and Artificial Intelligence (AI) techniques, such as deep learning, machine 
learning, and reinforcement learning, have proven to be beneficial in learning the 
anomalous pattern from data to detect cyber attacks and reduce the workload of 
analysts.

To inform current IoT engineers and the future IoT players, materials summariz-
ing the state-of-the-art techniques and possible challenges in IoT security are 
required. This handbook focuses on cutting-edge research from both academia and 
industry, with an emphasis on the scientific foundations and engineering techniques 
for securing critical IoT-enabled infrastructure and their underlying computing and 
communicating systems. Utility networks, transportation systems, and wireless 
communication and sensor networks are examples of such infrastructures. Providing 
a fundamental and theoretical background with a clear, comprehensive overview of 
security issues in IoT is useful for students in the fields of information technology, 
computer science/engineering, or electrical engineering.
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This book will cover the anomaly detection and cybersecurity concepts in 
cutting- edge technologies, i.e., IoT, IIoT, and cyber-physical systems (CPS) and 
inform the reader of anomaly detection and defensive mechanisms in critical IoT- 
enabled industries. It also addresses the technical challenges associated with the 
design of secure IIoT and Industry 4.0 architecture by providing real-world prob-
lems and solutions from a wide variety of attack scenarios to provide intelligent 
automated IoT-enabled CPSs against cyber attack.

Calgary, AB, Canada Hadis Karimipour  
North York, ON, Canada  Farnaz Derakhshan  
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Applications and Challenges

Hadis Karimipour and Franaz Derakhshan

1  Introduction

The exponential usage of the Internet of Things (IoT) worldwide is transforming 
businesses and industries by providing real-time visibility into the flow of materials, 
products, and information. Many firms are investing in IoT technologies to redesign 
their workflows, improve process tracking, and optimize costs [1–3]. As such, IoT 
is widely recognized as a vital field in technology, paving the way for a more con-
nected future. Among the vast applications of IoT technologies is its integration into 
manufacturing, automation, and critical infrastructure. Coined with the term 
Industrial IoT (IIoT), this domain of technology focuses on communication among 
industrial machines to enhance the efficiency of automation processes [4, 5].

While advantageous in various ways, the vast and growing integration of IIoT 
into all major industries also raises serious concerns and vulnerabilities regarding 
security threats [6]. Therefore, the use of IIoT in critical infrastructures, like hospi-
tals, transportation systems, and power grids, increases the potential damage caused 
by cyber-attacks. This damage can extend beyond violating the privacy of individu-
als to potentially sabotaging an entire community [7]. IIoT devices may store an 
individual’s health data and medical records, shopping behaviour, finances, and 
even location history. On an enterprise level, IIoT devices may store inventory 
quantities, business orders, and other information that may be sensitive to a 
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company [8, 9]. As such, security is a critical concern that surrounds the develop-
ment of IIoT technologies and their integration into society.

A notable application of IIoT is in Industrial Control Systems (ICS) [10, 11]. 
Nowadays, ICS, which are one type of Operational Technology (OT), are deployed 
in a wide range of critical infrastructures such as smart grids, oil and gas refinery, 
transportation systems, Unmanned Aerial Vehicles (UAVs), nuclear power genera-
tion, water and gas distribution networks, and advanced communication systems 
[12–17]. The rapid integration of the IIoT in ICS leads to the widespread use of 
sensors, networked devices, and data acquisition systems, which is prone to various 
cyber and/or physical security threats and challenges such as privacy, access con-
trol, secure communication, and secure storage of data [18–22]. Traditionally, the 
ICS security was provided by physical obscurity, or a so-called air gap by keeping 
these systems on isolated communication networks [23]. By introducing Industry 
4.0 and IIoT, ICS information is routed to sophisticated applications across enter-
prises through the local area network and the internet; and this is where security by 
obscurity is no longer a valid security solution to protect the system [24].

While there were concerns expressed about the security of critical CPSs and IIoT 
as early as 2000s, it was not until the 2010 Stuxnet attack [25, 26] that the security 
of CPSs entered into public and government discourse. In Stuxnet, zero-day exploits 
were mounted on a USB drive and injected malicious code into Siemens 
Programmable Logic Controller (PLC) to spin centrifuges at their natural frequen-
cies, causing their wear rates to be much higher than expected. Another major 
cyber-attack that happened in 2015 against power substations in Ukraine resulted in 
power outages affecting 225,000 people [27]. The Black-Energy malware was used 
to target the power grids in Ukraine, causing an industrial power outage, which 
affected thousands of citizens [28, 29]. A more recent case was reported in April 
2018 by three U.S. gas pipeline suffering a shutdown of electronic customer com-
munication systems for several days [30].

The significant number and diversity of nodes in IIoT environments result in a 
large and complex attack surface. These environments (e.g., ICS, oil and gas, smart 
grids, transportation system) must be continuously monitored and protected [31]. 
This is very challenging, especially as IIoT devices are distributed across rural and 
remote areas. These characteristics are limiting applications of traditional security 
solutions such as endpoint security methods, firewalls, and security information and 
event management systems (SIEMs) in protecting IIoTs [32, 33].

Artificial Intelligence (AI) is proven to be a useful technique in the security anal-
ysis of IIoT. AI algorithms can be trained to detect intrusion and attacks in different 
layers of IIoT in a timely and reliable manner [34–37]. AI techniques can easily 
analyze the pattern and can attain the knowledge to find countermeasures to avoid 
cyber-attacks. Given the maturity and complexity of modern cyber threats and the 
current cybersecurity skills shortage, AI is seen as game-changers in assisting 
human analysts to detect, secure, and mitigate modern attacks. Although the appli-
cation of AI in security comes with tremendous advantages, it also brings up certain 
challenges related to the verification of AI systems, their trustworthiness, computa-
tional burden, and their security issues, which should be thoroughly addressed to 
ensure the efficiency of the AI-based solutions.

H. Karimipour and F. Derakhshan
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2  Book Outline

This book presents an overview of AI-based security solution and in IIoT by exam-
ining the state of the art security measures. Furthermore, the book proposes various 
defence strategies, including intelligent cyber-attack and anomaly detection algo-
rithms for different IIoT applications. This book is comprised of 13 chapters. The 
next chapter, chapter “Complementing IIoT Services Through AI: Feasibility and 
Suitability”, presents a brief overview of the opportunities and challenges of real-
izing the AI in IIoT environments [38]. Chapter “Data Security and Privacy in 
Industrial IoT” will touch on issues related to data security and privacy in the IIoT 
environment [39]. It reviews various proposed countermeasures for security at dif-
ferent surfaces in IIoT, including authentication techniques, key establishment tech-
niques, and intrusion detection techniques. Chapter “Blockchain Applications in the 
Industrial Internet of Things” discusses common issues and challenges related to 
the blockchain-based approaches on IIoT structures [40]. One of the important use 
cases of IIoT is on smart grids, which is discussed in chapter “Application of Deep 
Learning on IoT-Enabled Smart Grid Monitoring” [41]. This chapter gives an over-
view of the application of AI in smart grid state estimation, which has a key role in 
monitoring and control of these systems. Chapter “Cyber Security of Smart 
Manufacturing Execution Systems: A Bibliometric Analysis” aims to present a bib-
liographic analysis of the smart manufacturing execution systems and their integra-
tion with IIoT [42]. Chapter “The Role of Machine Learning in IIoT Through 
FPGAs” try to cover challenges faced in IIoT and developed ML-based solutions, 
which can address some of them. It also discusses the important role of FPGAs in 
implementing ML solutions [43].

The book then examines more advanced and specific topics in AI-based solutions 
developed for IIoT environments. Chapter “Deep Representation Learning for 
Cyber-Attack Detection in Industrial IoT” propose an unsupervised deep represen-
tation learning to handle the imbalanced IIoT data. The new representation is evalu-
ated using seven IIoT datasets and compared with six other ML techniques in 
accuracy, precision, recall, and f-measure [44]. Analysis of various intelligent min-
ing techniques for efficient anomaly detection in IIoT systems is proposed in chap-
ter “Classification and Intelligent Mining of Anomalies in Industrial IoT” [45]. In 
this respect, the authors reviewed existing studies highlighting their main features. 
They also discuss the remaining open problems that need to be solved to shed light 
for future research in the field. Chapter “A Snapshot Ensemble Deep Neural Network 
Model for Attack Detection in Industrial Internet of Things” proposed a Snapshot 
Ensemble Deep Neural Network (SEDNN) model to detect cyber-attacks on IIoT 
environment [46]. A privacy-preserving federated learning solution for the security 
of industrial cyber-physical systems is also proposed in chapter “Privacy Preserving 
Federated Learning Solution for Security of Industrial Cyber Physical Systems” 
[47]. Chapter “A Multi-stage Machine Learning Model for Security Analysis in 
Industrial Control System” developed a multi-stage machine learning model for 
cyber-attack detection and identification in ICS [48]. The proposed model was 
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tested and evaluated on samples from the data set for the water storage tank and gas 
pipeline. Finally, chapter “A Recurrent Attention Model for Cyber Attack 
Classification” proposed a recurrent attention model for cyber-attack classification 
in IIoT environments [49]. The proposed approach utilizes visualization to highlight 
regions of importance and learn feature representation for detecting polymorphic 
malware, which is an extremely difficult task due to its dynamic nature.
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Complementing IIoT Services Through AI: 
Feasibility and Suitability

Fatemeh Banaie and Mahdi Hashemzadeh

1  Introduction

Internet of Things (IoT) has emerged as a new technology paradigm envisioned to 
enable the interoperable interactions of machines and devices over the internet. The 
structure of IoT entails the use of millions of smart devices which are able to effi-
ciently share and process data among each other, thereby providing reliable moni-
toring and controlling systems [1]. IoT offers the ability to learn and interact with 
environmental indicators in realizing the automated real-time decision-making pro-
cesses. This paves the way for enabling efficient productions and manufacturing 
processes in the industrial domain. Applying IoT to industrial applications has 
raised a new research area called Industrial IoT (IIoT) that enables the industry to 
analyze the acquired data from industrial assets and systems. This is a notable fea-
ture in the context of the fourth industrial revolution, known as industry 4.0 [2].

This infrastructure can lead to a significant improvement in performance, energy 
efficiency, and reduced response time of the devices [3]. However, IIoT-enabled 
multi-source manufacturing data generated by industrial devices are required to be 
analyzed in real-time to achieve the operation optimization and strategic decision- 
making [4]. The large quantity of data in resource-constrained devices and growing 
concerns of data privacy are preventing IIoT solutions to achieve the desired quality 
of services. Therefore, the realization of IIoT requirements in terms of the network 
reliability, real-time processing and transmission, and industrial information secu-
rity can be met with the new technologies such as AI and edge computing tech-
niques [5, 6].
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Edge computing refers to the edge-processing model that provides a flexible and 
efficient edge network for heterogeneous industrial devices. It leverages edge nodes 
with sufficient computing resources for implementing the local pre-processing of 
real-time industrial data, which is essential for accommodating the growing compu-
tational demands [7]. It can potentially reduce the communication bandwidth and 
overall delay of the system, thereby improve the overall performance of the system. 
More importantly, it also allows enterprises to build the effective solutions for pro-
tecting the security and privacy risks [7, 8]. In this context, edge computing incor-
porates AI technologies for data mining and analysis process [9].

The IIoT enables the successful cooperating of AI and big data techniques. 
AI-assisted data analysis framework requires proximate and prompt cloud 
resources for manufacturing data processing. Therefore, integrating AI into edge 
computing is a promising solution for deploying efficient distributed computing 
services [10, 11], known as Edge Intelligence (EI). The realization of edge intel-
ligence in IIoT can be further reinforced by integrating ML methods. In particular, 
model training and model evaluation in data analysis and prediction processes can 
be carried out locally in edge devices called ML as a Service (MLaaS) [12]. EI 
provides some benefits in terms of personalization, responsiveness, and privacy 
issues. Notably, it enables not only accurate services through customizing AI 
models, but also provides fast and adaptive services for time-varying industrial 
process. Moreover, information processing at the network edge ensures the pri-
vate services. The rest of this chapter discusses the opportunities and essential 
issues of the paradigm where ML models are executed locally in the industrial 
manufacturing network.

2  IIoT with Edge Intelligence

The IIoT provides an efficient computational platform that is able to monitor and 
control the manufacturing processes with the aid of information technologies. In 
this platform, the acquired data from industrial assets and devices can be efficiently 
processed and analyzed by incorporating the AI technologies. In smart manufactur-
ing, data analysis is a critical feature in realizing the automation and intelligence of 
IIoT systems. Mainly, ML is a popular modeling technique that can be applied to 
data-driven applications. Learning techniques typically utilize a sufficient amount 
of data for training the model in different areas such as regression, classification, 
clustering, and forecasting. Thus, intelligent manufacturing requires cloud-assisted 
service for processing and analyzing the industrial big data. For this purpose, utiliz-
ing edge devices can be a promising development trend that provides computational 
power and service accuracy on the edge servers. The relationship between AI, EI, 
Edge Computing (EC), and IIoT is shown in Fig. 1. Given these concepts and the 
relationships between them, in this section, we investigate the preliminaries of an 
intelligent computing framework for IIoT.
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2.1  The Challenges of EC in IIoT

EC is an innovative paradigm for industrial devices that utilizes sensing, computa-
tional resources, and data processing techniques to provide an efficient manufactur-
ing infrastructure. However, processing a large quantity of data in edge nodes may 
bring some new challenges in terms of the confidentiality of information and 
performance- related issues that should be addressed in design and implementation 
of a system. The following focuses on the detailed discussion of the design issues.

Data Processing and Analysis Big industrial data are mainly driven by millions of 
smart devices and business processes. To develop an efficient edge service in IIoT, 
it is critical to design the appropriate approaches for data capturing and storing the 
vast amount of heterogeneous data in distributed edge servers. Since the data quan-
tity is huge and grows rapidly, the solution must not only be able to store the indus-
trial data effectively, but also support scalability and flexibility. This is the 
requirement of applications envisaged in IIoT vision [13, 14]. In addition, data 
analysis schemes should be considered to meet the requirements of data processing 
and management. AI-enabled technologies are proved as an effective solution in 
providing a real-time data management platform in terms of accuracy, adaptability, 
and the security of data [15, 16].

Security and Privacy Integrating EC technologies with IIoT enhances the security 
and privacy of the produced data, as it decreases the data transmission in the net-
work. However, traditional security solutions cannot guarantee the full requirements 
for edge services. Different kinds of malicious attacks can threat confidentiality due 

EI in
IIoT

� IIoT: Industrial IoT
� EC: Edge Computing
� AI: Artificial Intelligence
� EI: Edge Intelligence

EC

AI-enabled 
IIoT

EC-enabled 
IIoT

IIoT

AI
EI

Fig. 1 AI, EC, EI, and IIoT in venn diagram
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to the ubiquitous network environment [17, 18]. Moreover, existing cybersecurity 
frameworks are not applicable for industrial systems, as the unique characteristics 
of IIoT in providing the strict performance and reliability requirements for support-
ing the critical functionality [19]. AI technologies are the potent methods for inves-
tigating the normal/abnormal behavior of the manufacturing components and 
devices in the IIoT environment. In particular, these methods can assist in develop-
ing the security-based intelligent systems [20].

Energy Consumption In general, the total energy consumption consists of the 
amount of energy consumed by industrial devices for collecting and processing the 
industrial information, and the energy consumed for data transmission among these 
devices. Although edge-enabled computing enhances the energy expenditure of the 
sensory devices, big data processing, and association imposes the higher energy 
levels on the edge devices that need to be considered in design stages [21].

Resource Management and Task Scheduling An edge-enabled computing model 
provides flexible computations and storage services for intelligent industrial sys-
tems. However, the heterogeneity of this platform in terms of the higher real-time 
task requests, terminal assets and devices, and edge nodes necessitates the creation 
of an efficient task scheduling scheme. The problem lies in determining the rules 
about how to perform the data transmission and task scheduling among edge nodes 
to minimize the delay and energy consumption, whilst enhance the overall perfor-
mance of the manufacturing systems. Moreover, the scheduling strategy should 
assign the tasks among edge nodes to guarantee the load-balancing and prolong the 
lifecycle of the system [7, 22].

2.2  Classifications of AI Techniques

Nowadays, AI has become an integral part of our daily lives. Motivated by the 
recent advancement in AI techniques and the impacts on a wide variety of domains, 
ranging from automatic face-focus to robotics, a set of intelligent applications have 
quickly ascended to the spotlight in the industrial field. In particular, AI is a generic 
term, which involves various techniques summarized in Fig. 2.

Among them, ML is an effective method that has received greater attention in 
recent years owing to the achieved accuracy [9]. As shown in Fig. 2, ML-based 
approaches are generally divided into supervised, unsupervised, and Reinforcement 
Learning (RL) methods. These methods can improve the performance of the system 
through training the machine using gathered data from the real world. Besides ML 
techniques that utilize neural networks for learning, the deep representation of data, 
achieve remarkable results in a broad spectrum of fields. In contrast to the ML 
approaches that require a feature extractor for transmitting raw data into proper 
representation, the Deep Learning (DL) method develops its own representations 
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for pattern recognition. In this manner, systems can successfully learn more com-
plex functions with unprecedented and undefined conditions.

2.3  Machine Learning Techniques in IIoT

ML is one of the popular AI-based techniques that provide the ability to learn with 
data and enhancing the performance of computer systems in decision-making pro-
cesses, without having explicit programs [23, 24]. The aid of these techniques is to 
model the concepts from perceptions. According to these perceptions, learning 
techniques can be in three categories: supervised learning, in which labeled data are 
applied in classification or regression tasks, unsupervised learning with unlabeled 
data in clusters, and reinforcement learning approach that utilizes the concept of 
agents for maximizing the cumulative reward.

Nowadays, ML-based schemes have found their applications in upcoming decen-
tralized and intelligent information and networking systems. They have significant 
potential in improving the deployment of communications and networking systems, 
as they are able to extract features from a large amount of data. The application of 
ML-based algorithms in networking is twofold. First, it can help in optimal deci-
sions with learning network patterns, such as routing decisions in traffic patterns 
[25, 26]. Second, the performance and resource usage optimization in a network can 
be solved by the intelligent task allocation and scheduling schemes [27, 28].

The heterogeneous manufacturing data are analyzed through a ML-assisted 
approaches in IIoT. For example, the authors in [29] proposed an ML-aided infor-
mation management system to enhance the user request service. They leveraged 
some indexing techniques for achieving the effective data management, then an ML 
algorithm is applied to improve the accuracy of the request processing. The authors 
in [10] investigated the tradeoff between the service delivery latency and energy 

AI techniques

Machine Learning 
(ML) Fuzzy ModelsProbabilistic ModelsMetahuristics

Supervised Learning

Unsupervised Learning

Reinforcement Learning

Single solution based

Population based

Hybrid Methods

Bayesian Mixture Model

Gaussian Mixture Model

Fig. 2 Summary of AI technologies [23]
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expenditure in IIoT. Generally, cloud resources are used for data processing in these 
approaches. However, it imposes much cost in terms of network bandwidth and 
service latency, while transmitting data to the cloud servers; so, it is beneficial to 
apply the distributed computing services.

2.4  Machine Learning Techniques in Edge Computing

AI-aided edge computation services could efficiently empower the Manufacturing 
Devices (MD) with low latency computing capability. Typically, edge resources 
cannot afford the complex AI tasks. Thus, distributed AI services can be performed 
with multiple edge devices to provide an efficient service provisioning. For exam-
ple, an AI-based privacy-preserving service division is presented in [30] that con-
ducts the service composition on encrypted data using a homomorphic encryption 
algorithm. In [31], a federated deep reinforcement learning-based framework is pro-
posed that improves latency by applying the edge caching technique. This frame-
work utilizes the local training parameters of the base stations as the initial input for 
the global training in the next stage. In [32], a QoE-based computation offloading 
model is presented that improves the service latency, energy consumptions, and task 
success rate using a deep reinforcement learning algorithm. It could improve the 
QoE performance, besides achieving the better instability and faster convergence.

2.5  Edge Intelligent IIoT

The recent proliferation of the computation-intensive manufacturing applications 
generates a large volume of the industrial data at the network edge. This incurs an 
urgent need for AI techniques at the network edge to release the informative poten-
tial of big data. Big data has a crucial role in AI development that has recently 
moved from datacenters toward the growing widespread devices, e.g., IIoT devices. 
The emerging paradigm that moves computing tasks and services from core to the 
network edge has led to a promising area of EI. EI combines the edge advantages 
(e.g., reduced latency and network traffic) with AI strategies that result in further 
benefits in the following aspects [9].

 1. Big data analysis at the network edge: the growing number of smart devices and 
assets leads to the large volume of industrial data in IIoT.  In this context, 
decision- making processes can be accelerated through AI strategies in data ana-
lytic and information extraction. Among them, deep learning is a strong approach 
that can meet the requirements of big data analytic. Deep learning models have 
also achieved remarkable results in automatically identifying patterns and anom-
aly detection in data. Then, the extracted information is used for real-time pre-
dictive decision-making in industrial environments.
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 2. Efficient data processing using edge resources: it is already proved that data has 
a vital effect on the development of AI models. Traditionally, the acquired data 
from IoT devices and industrial assets are sent and stored in the cloud data cen-
ters. This incurs the higher latency and wastage of bandwidth resources. To 
address these challenges, computing tasks and services are moved to the network 
edge in recent years. In this way, the generated data can be processed locally to 
achieve low-latency responses in real-time manufacturing systems.

 3. Ubiquitous AI services: AI has been recognized as an essential solution in a vari-
ety of application domains that influence our everyday lives [33–38]. The poten-
tial of AI in improving the smart products and services imposes the need for 
bringing AI closer for every person and device [39]. Clearly, edge computing can 
assist in achieving this goal by enabling ubiquitous AI at the network edge.

3  AI-Enhanced Cooperative Computing Architecture

This section introduces the architecture of smart manufacturing resources based on 
the cooperative edge computing in IIoT.  It is consists of three operational layers 
named manufacturing assets, edge-devices, and remote cloud resources, as depicted 
in Fig. 3. Multi-source manufacturing data is collected and delivered to the base 
stations (BS) or edge devices. Real-time manufacturing services include self- 
monitoring, production and logistic status, fault detection, and service management 
[10, 40].

Edge layer provides a lightweight smart service by processing the real-time data 
and perception events, and transforming them into dynamic behaviors in manufac-
turing systems. Computing service of edge devices may be different, depending on 
the application and service accuracy. However, cooperative computing service 
through edge and cloud accommodates both prompt and comprehensive computing 
services. Owing to the additional cost of communications between edge and cloud 
servers, the deployment of computing services between them has a significant 
impact on performance. Additionally, a task scheduling strategy is required for 
assigning the computing tasks to the heterogeneous edge servers according to their 
specifications and quality of service (QoS) requirements.

4  Potential Advantages of Learning Techniques in Edge 
Intelligent IIoT

The applications of learning techniques in IIoT would enable the further extraction 
of the information, and the deployment of the innovative applications in the intelli-
gent manufacturing domain. More specifically, applying information technologies 
in the industrial field can provide a flexible infrastructure for smart manufacturing 

Complementing IIoT Services Through AI: Feasibility and Suitability



14

services. This allows the industrial assets and devices to have a seamless autono-
mous communication in the service delivery process. For example, Prognostic and 
Health Management (PHM) is a novel paradigm that utilizes the collected opera-
tional information of the system for predicting and taking suitable decisions before 
system failure [41]. A large number of sensors are utilized to provide a real-time 
monitoring system, which is essential in IIoT [42]. This system has the ability to 
detect and predict the system failures by integrating the autonomous support system 
with the information system. The initial processing of data is performed at the net-
work edge that enhances the latency of the emergency decisions.

In the context of big data, learning can be used for the efficient extracting and 
mining of the features in exact classifications or autonomous decision-making pro-
cesses. Moreover, an intelligent edge-computing platform would be capable of 
learning the surrounding conditions, mapping out the events, monitoring and track-
ing manufacturing faults, effective action prediction, and providing a fast response 
to real-time changes.

5  Practical Limitation and Open Issues

Although there is a growing interest in EI, the study of EI is still in the early stage. 
This section discusses some challenges and open issues in EI-based IIoT, including 

Cloud 
Servers

Network Core 

Edge nodes

IIoT Devices
Self-monitoring
Logistic ststus

Fault detection
Service management

Powerful and comprehensive 
computing service

Proximate and prompt 
computing service

Fig. 3 Three-layered architecture for IIoT
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software platforms and middleware, load balancing, EI model design, and secu-
rity issues.

5.1  Software Platforms and Middleware

Recently, cloud-based AI service provisioning systems have received a lot of atten-
tions in industrial field. In this regard, some companies, such as Amazon’s 
Greengrass, Microsoft Azure, and Google Cloud IoT Edge try to deliver software 
platforms and middleware for the edge services. On the other hand, the growing 
number of AI-assisted computation-intensive applications leads to the development 
of the pervasive EI platform and middleware.

In order to realize the potential of EI services, several key challenges should be 
addressed in terms of the compatibility, portability, and programing issues. Owing 
to the diverse and heterogeneous EI services, a middleware should be developed for 
providing seamless and smooth services. This platform should support the portabil-
ity between different AI programing frameworks, such as Tensor flow and Torch. 
Moreover, it should provide a lightweight virtualization and computing service [9].

5.2  Task Offloading and Load Balancing

Pervasive computing in EI is a distributed system paradigm that has variety of com-
puting resources. Therefore, it is required to have an effective task offloading and 
load balancing scheme for task dissemination among the resources and servers. 
Particularly, data offloading schemes aid to balance the overall load of the system 
among the limited computing resources. This can help in improving the overall 
latency of the service delivery in system, which is necessary for manufacturing 
applications. In this context, machine learning models can be used to set up the 
efficient balancing schemes.

5.3  EI Model Design

AI models are usually resource-intensive and require powerful computing capabil-
ity. To address this problem, model compression techniques can be applied to resize 
the AI models. To this end, model simplification is used for adapting the model to 
the edge resources, which includes weight pruning and data quantification. In 
weight pruning method, the removal of neurons with small contribution makes the 
model smaller. Data quantization utilizes a small data format with fewer bits in 
representing the input/output that improves the operational speed of the instruc-
tions [7].
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5.4  Security Issues

Owing to the open nature of the pervasive computing, privacy and security prob-
lems is one of the key challenges of IIoT. Manufacturing assets and devices produce 
a large amount of data that may contain sensitive information about location, activ-
ity records, production process, and manufacturing information. Therefore, design-
ing an appropriate distributed security mechanism is critical to guarantee the user 
privacy and data integrity for industrial applications. Distributed learning models 
are a feasible solution for the privacy-friendly local data training schemes.

6  Conclusion

Recent advances on ubiquitous computing play a crucial role in boosting AI tech-
niques in a resource-constrained environment. Moving the AI frontier from the 
remote cloud to the network edge can pave the way for computation-intensive AI 
applications. This can help to tackle the limitations of the bandwidth and latency in 
computation-intensive decision-making processes.

This chapter reviewed the novel paradigm of edge intelligence, motivations for 
pushing artificial intelligence frontier to the network edge, and the reference archi-
tecture of edge intelligence in industrial IoT (IIoT). Specifically, we discussed the 
emerging learning models in the industrial field for training and perceiving manu-
facturing data and processes at the network edge. This review could be a good step 
for motivating researchers to make more attention to the industry development.
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1  Introduction

The Industrial Internet of Things (IIoT) is considered as one of the most promising 
revolutionary technologies to prompt Industry 4.0. However, the massive volume of 
generated data by the connected devices in the IIoT paradigm, and the existing data 
sharing between them lead to new security and privacy concerns (e.g. data leakage 
[1, 2]). For this reason, security and privacy concerns are assumed as major obsta-
cles where things are responsible to control sensitive machinery and controlling 
systems in industries [3]. Indeed, according to Gartner forecast, information secu-
rity is considered as one of the top concerns among enterprises adopting IoT [4].

The leakage of private data in the IIoT paradigm can lead to critical issues that 
may be far beyond only financial loss, such as human death and injuries [5]. Data 
leakage may occur during data storage, data transmission, or data sharing. Therefore, 
for providing a completely secure IIoT system, a holistic cybersecurity framework 
is required covering all abstraction layers of the system.

Hence, in the first place, the storage of IIoT devices should be protected against 
potential adversaries via different approaches such as encryption. If there is a cen-
tral curator for data storage in the IIoT infrastructure, the increasing risks for data 
leakage, and the vulnerability of the curator to single point failure by malicious 
attacks such as DDoS needs to be addressed. This is while allowing the authorized 
users to access their required data. Hence, the IIoT infrastructure needs efficient 
identification and authentication mechanisms as well. Furthermore, if the generated 
data is outsourced to a cloud infrastructure, other security and privacy challenges 

N. Sharghivand () · F. Derakhshan 
Computer Engineering Department, Faculty of Electrical and Computer Engineering, 
University of Tabriz, Tabriz, Iran
e-mail: n.sharghivand@tabrizu.ac.ir

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76613-9_3&domain=pdf
https://doi.org/10.1007/978-3-030-76613-9_3#DOI
mailto:n.sharghivand@tabrizu.ac.ir


22

such as the authenticity of data, untrustworthiness of third parties, and robustness of 
cloud infrastructure should be considered.

To enhance security in the next layers, i.e. data transmission and sharing, the col-
laboration and data sharing among IIoT devices should be limited to authenticated 
devices. To do so, the communication channels between the IIoT devices should be 
kept secured in the first place so that the IIoT devices can easily share their data 
without compromising confidentiality or integrity. Then, efficient identification and 
authorization mechanisms should be tailored, so that only the authorized IIoT 
devices can access the data.

Finally, if the IIoT system is attacked for any reason, this should be detected in 
the fastest way before any serious damage happens. For example, anomaly detec-
tion approaches can be used to identify any anomalous behavior in the system due 
to cyberattacks. After this, appropriate actions must be taken to return the system to 
normal operation.

Figure 1 illustrates a Cyber-physical production system (CPPS) architecture and 
its existing attack surfaces as an example. Smart factories consist of several CPPSs, 
which are comprised of electronics (e.g., CPU and RAM) and monitors that are 
used to control physical processes through sensors and actuators [6]. At the lowest 
level, the deployed electronics are vulnerable to different invasive hardware and 
physical attacks, such as side-channel attacks and reverse-engineering attacks [7]. 
On the higher layer, the deployed software on the electronics can be compromised 
via different Trojans, viruses, or other types of malicious code. Then, the 

Fig. 1 Different attack surfaces in CPPS as an example [6]
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networking infrastructure and the employed communication protocols can be sub-
ject to other attacks such as man-in-the-middle and denial-of-service attacks [6]. 
Even the human operators may intentionally or accidentally compromise the secu-
rity of the system [8]. For example, a careless human user may leave his desktop 
logged in and then let unauthorized people use his user account, or he may inten-
tionally attack the system for example via phishing or social engineering [6].

However, addressing all the aforementioned security and privacy issues is 
assumed to be very challenging due to the existing complexity and resource limita-
tions in most of the IIoT systems. Indeed, IIoT systems usually consist of a large- 
scale network of heterogeneous IIoT devices and cyber-physical systems, with 
constrained power, computing, and communication resources of IIoT devices 
[9, 10].

Nonetheless, many researchers have addressed the security and privacy concerns 
in industrial IoT systems from different aspects in recent years. They have devel-
oped different approaches based on secure engineering, security and privacy man-
agement, identity management, industrial rights management, platform security, 
and communication security and privacy [7].

In this chapter, we discuss three countermeasures that are very common in IIoT 
systems to overcome security and privacy threats. These countermeasures include 
authentication techniques, key establishment techniques, and intrusion detection 
techniques. We also review the proposed methods in the literature which are devel-
oped based on one of these techniques. Furthermore, we review the existing real 
testbeds which are developed so that the proposed security mechanisms can be 
evaluated properly before they are used in practice.

The remainder of this chapter is organized as follows. In Sect. 2, we review the 
proposed techniques for intrusion detection in IIoT.  In Sect. 3, we discuss and 
review the proposed authentication techniques in IIoT. Furthermore, the proposed 
key establishment techniques in IIoT are discussed and reviewed in Sect. 4. In Sect. 
5, we explain the necessity of using real testbeds for security research evaluation in 
IIoT. Finally, we conclude the chapter in Sect. 6.

2  Intrusion Detection in IIoT

A network intrusion is described as an attempt to damage the confidentiality, integ-
rity, or availability of the host and network [11]. It is often assumed as one of the 
most common threats in cyberspace.

To overcome any intrusion attack and avoid subsequent damages in any system, 
the first step is to detect them on time. Then, appropriate actions can be taken to 
thwart the attack. Here, our main focus is on the first step, i.e. the timely and effi-
cient detection of intrusions in industrial IoT [12]. In general, the part of the system 
that is responsible to do this work is often referred to as the intrusion detection 
system (IDS). More precisely, an IDS is defined as a network security device that 
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monitors network traffic to discover suspicious transmissions on time so that taking 
suitable proactive actions against the existing intrusion could be possible [13, 14].

Figure 2 illustrates the existing operations in a general IDS, including the moni-
toring, analysis, and detection stages. As it can be seen, the first stage relies on 
network-based or host-based sensors. Then, the second stage relies on feature 
extraction methods or pattern identification methods. Finally, the last stage relies on 
anomaly or misuse intrusion detection [15].

An IDS is often modeled as a binary classification problem that aims to discrimi-
nate the normal network traffic behavior from anomalous. It is also sometimes 
implemented as a multiclass classification model that determines the type of net-
work attack as well [16].

In the following, we explain two of the very recent works for intrusion detection 
in IIoT.

Li et  al. [17] propose both a method for processing one-dimensional weakly 
three correlated feature data and a deep learning approach for intrusion detection 
using a multi-convolutional neural network (multi-CNN) fusion method. The 
authors believe that the processed data have a better training result for deep learn-
ing. In this respect, they first apply their processing method on the benchmark NSL- 
KDD dataset provided by [18]. According to the correlation, the feature data are 
divided into four parts. Then the one-dimensional feature data are converted into a 
grayscale graph. Next, they use it to propose their multi-CNN fusion algorithm for 
intrusion detection and the best of the four results emerge.

In [19] a novel federated deep learning scheme is proposed to detect cyber threats 
against industrial cyber-physical systems (CPSs). Namely, they first design a deep 
learning-based intrusion detection model for industrial CPSs, by making use of a 
convolutional neural network and a gated recurrent unit. Then, they develop a feder-
ated learning framework to build a comprehensive intrusion detection model by 
using data from multiple industrial CPSs. This framework also provides privacy 

Data traffic

Data traffic

Host-based sensor

Network-based sensor

Features extraction

Pattern signature Misuse detection

Anomaly detection

Alert

Fig. 2 An illustration of IDS operations can be divided into the monitoring, analysis, and detec-
tion stages [15]
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preservation of data resources by allowing data processing at each industrial CPS’s 
premise. Finally, a Paillier cryptosystem based secure communication protocol is 
built for the developed federated learning framework so that the security and pri-
vacy of model parameters through the training process is preserved.

However, despite the current significant advances in the field of intrusion detec-
tion in IIoT, there still exists a big room for further improvements in developing 
efficient IDSs in IIoT. For example, IIoT systems usually consist of a large set of 
devices that are distributed in the industrial environment. Hence, there is a great 
need to develop novel distributed IDS suitable for IIoT [20, 21]. Specifically, dis-
tributed IDS can overwhelm the limited computing resources of most IIoT devices 
which decreases the efficiency of centralized IDSs. Another important issue for 
future research is how to optimize intrusion detection algorithms automatically dur-
ing running. Since IIoT systems often need to work continuously and the system 
parameters (e.g. steady system states, security requirements, and system constrains) 
may change over time. Therefore, the intrusion detection algorithm needs to be 
optimized automatically concerning the undergoing changes to maintain a satisfy-
ing detection accuracy [22].

3  Authentication Techniques

In a real IIoT system, often a massive amount of data is generated, processed, and 
exchanged by a variety of IoT devices. Each IoT device has a unique identity and is 
capable of sharing its sensed or processed data with other communicated devices. 
However, in all data communications, each IoT device should be assured that the 
identity of the other party is the one that it claims to be [23]. In other words, besides 
secure data acquisition and communication in an IIoT system, it should be also 
assured that the data is always accessed only by authenticated (or authorized) 
parties.

Therefore, an authentication process is needed before any kind of communica-
tion is established between two IoT devices. In this respect, in a two-party commu-
nication, authentication is used by an IoT device that shares its data when it needs 
to know exactly who is accessing its information. It is also used by the IoT device 
which receives the data to be sure that the data is sent by the device that must be 
sent. In other words, both sides need to prove their identity to the other side [24, 25].

Hence, as it can be seen, authentication can be considered as the first line of 
defense among various security mechanisms. It involves the basis of access control 
to sensitive data in industrial environments. Each user shall be first verified before 
being allowed to access the application data. Hence, whenever an IoT device intends 
to log in to a remote service provider (which may be a powerful server or a light-
weight sensor node) and access the desired data/services, both the user and the ser-
vice provider must validate the authenticity of the corresponding party by the 
acquirement of corroborative evidence [26].
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To provide mutual authentication in device-to-device communications in IIoT, a 
great number of authentication schemes have been proposed. In the following, we 
review some of the salient works in this area.

Esfahani et al. [25] believe that conventional authentication schemes that have 
been proposed to ensure security in IoT or Machine-to-Machine (M2M) applica-
tions, such as [27–31], cannot be directly employed in IIoT. Because manufacturing 
machines are often limited by computation power and/or communication band-
width. So, authentication techniques with high computing and communication 
resource requirements are not applicable in industrial IoT environments.

In this regard, they propose a lightweight authentication scheme to authenticate 
these resource-constrained types of machinery in [25] to address the above issue. 
More specifically, they propose a lightweight authentication mechanism that is 
based only on hash and XOR operations, for M2M communications in the industrial 
IoT environment. By M2M they mean a resource-constrained industrial device 
(e.g., smart sensor) including a Secure Element (SE) and a router including a Trusted 
Platform Module (TPM). The proposed mechanism is inspired by [32] and includes 
two procedures; the registration procedure and the authentication procedure.

In the registration procedure, the sensor is registered to the Authentication Server 
(AS) which is performed as follows. First, the sensor sends its unique ID through a 
secure channel to the AS. Then, the AS calculates three secret authentication param-
eters for the sensor and sends two of them back. These parameters are saved in the 
SE of the sensor. Then the registration process is complete.

In the authentication procedure, mutual authentication between the sensor and 
the router is achieved. It should be noted that the sensor never uses its real identity 
for authentication. This way, the smart sensor’s ID cannot be eavesdropped by a 
malicious entity during the authentication process. The authentication procedure 
consists of the following steps. The smart sensor first generates a random number 
and then computes several parameters based on the generated random number and 
its ID. Then it sends an authentication request to the router based on the produced 
parameters. Once the authentication request is received by the router, it first vali-
dates the obtained message using the pre-shared key. If the message is invalid, then 
it is rejected by the router. However, if the message is valid, the router sends back 
the authentication response to the sensor. The router also computes the session key. 
When the sensor received the response message, it calculates the session key using 
the parameters in the message and then sends a message to the router. Upon receiv-
ing this final message by the router, it uses the message to verify that the smart sen-
sor holds the legitimate session key or not. Once the verification is complete and it 
is proved that the session key is valid, the authentication process is finished 
successfully.

In their work, they have also shown that the proposed mechanism involves low 
computational cost and low communication and storage overhead. This is while it 
can achieve mutual authentication, session key agreement, and device’s identity 
confidentiality. Moreover, the proposed mechanism is resistant against the replay, 
man-in-the-middle, impersonation, and modification attacks. However, the draw-
back of their work is that the proposed authentication technique is only applicable 
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between a machine and a network element and thereby it cannot be generalized to 
other types of machines.

Zhu et al. [33] have used a directed graph structure to represent an IIoT control 
system. Because the existing relationships among different devices can be simply 
represented by the directed graph. Then, they have developed a dynamically updat-
able privacy-preserving authentication scheme for the general directed graphs.

It should be mentioned that several works in the literature have developed authen-
tication schemes for directed graphs. However, they have often assumed a specific 
type of graph in their work and have developed their proposed authentication 
scheme based on that structure. For example, [34–36] have proposed authentication 
techniques for trees, while several other works have developed authentication 
schemes for directed acyclic graphs and directed cyclic graphs such as [37, 38].

Therefore, the main novelty of the proposed authentication scheme in [33] com-
pared to the previous works in the literature is that it considers general directed 
graphs and not a specific type of graph. In this respect, the authors in [33] propose 
an authentication scheme called privacy-preserving authentication for general 
directed graphs (PPAG). The proposed PPAG scheme is based on the cryptographic 
accumulator and an underlying standard digital signature scheme. For the sake of its 
security, the input domain for the accumulator must be prime numbers. Thereby, to 
authenticate arbitrary numbers via this accumulator, a special hash function is used 
to transform arbitrary numbers into prime numbers. The proposed scheme supports 
the addition of nodes/edges in the graph, and thus the graph is dynamically updat-
able. Furthermore, a feasible solution for nodes/edge deletion operations is pro-
vided. The security of PPAG under the adaptive chosen-message attacks is proved. 
The proposed scheme can also protect the privacy of nodes and edges from leakage.

In [39] the existing security and privacy challenges in device-to-device commu-
nications have been addressed. Because two different devices that belong to two 
different administrative domains may have to collaborate to complete the same task. 
The authors claim that the previously proposed authentication approaches in the 
literature may result in heavy key management overhead or rely on a trusted third 
party. Hence, they have tried to overcome this problem by proposing an efficient 
blockchain-assisted secure device authentication mechanism BASA for cross- 
domain industrial IoT. Precisely, consortium blockchain is introduced to construct 
trust among different domains by enabling devices in different domains to authenti-
cate each other. In this respect, an identity-based signature is exploited during the 
authentication process. Moreover, an identity management mechanism is designed 
to preserve the privacy of devices. This mechanism can realize that devices being 
authenticated remain anonymous. Furthermore, session keys between two parties 
are negotiated, which can secure the subsequent communications.
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4  Key Establishment Techniques

In this section, we review the proposed key establishment protocols for industrial 
IoT in the literature. First, we review the conventional key establishment protocols 
which are designed at higher layers and the physical layer. Then, we review pro-
posed cross-layer key establishment protocols which have been proposed to address 
the shortcomings of conventional key establishment protocols.

Figure 3 illustrates an overview of the surveyed key establishment protocols. In 
the following, we explain the fundamentals of each category, besides reviewing the 
proposed methods in each category.

4.1  Key Establishment Protocols at Higher Layers

At higher layers, the key establishment protocols are designed in either symmetric 
or asymmetric key settings [7]. In the following, we review symmetric and asym-
metric key establishment protocols respectively.

4.1.1  Symmetric Key Establishment Protocols

Symmetric key establishment protocols are considered lightweight protocols since 
the IIoT devices can establish the communication keys with less energy consump-
tion compared to asymmetric key establishment protocols. Different symmetric key 
establishment protocols have been proposed in the literature, including entity-based, 
probabilistic-based, polynomial-based, and matrix-based protocols [7, 40].

In entity-based key establishment protocols, such as in [41, 42], a trusted third- 
party is in charge of establishing communication keys. However, a critical issue in 
these methods is the privacy of the master key. Since, once the master key is discov-
ered by an adversary, the security and privacy of the IIoT system will be in danger. 
Hence, [42] has tried to overcome this problem by enforcing IIoT devices to delete 
the master key after establishing the communication keys.

Fig. 3 An overview of key establishment protocols ADDIN
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A probabilistic key distribution protocol, such as in [43, 44], often consists of 
three phases, including the key pre-distribution phase, the shared key discovery 
phase, and the path key establishment phase. In the key pre-distribution phase, a key 
ring is generated based on the selected random keys for each IIoT device. Then, the 
key ring, as well as the keys’ identifiers, are loaded into the device’s memory. In the 
next phase, the IIoT devices broadcast the loaded key identifiers such that they can 
find the shared keys with their neighbor devices. This way, neighbor IIoT devices 
can establish a communication key using the shared keys. Finally, in the last phase, 
any two IIoT devices can establish a path key using these devices, located at two 
different links between them.

Liu et  al. [45] develop a general framework for establishing pairwise keys 
between sensor nodes using bivariate polynomials. They propose two efficient 
instantiations of the general framework, namely a random subset assignment key 
pre-distribution scheme, and a hypercube-based key pre-distribution scheme. They 
also present an optimization technique for polynomial evaluation which is used to 
compute pairwise keys.

Finally, in [46, 47], a matrix-based key distribution protocol is developed based 
on [48]. The basic idea of the proposed protocol in [48] is that any two IIoT devices 
can directly establish a communication key as long as they pre-load secrets from the 
same matrix space.

In [46] a new design of matrix G [48] is provided. Their proposed protocol 
exhibits a threshold property which ensures that when the number of compromised 
nodes is less than the threshold, the probability that communications between any 
additional nodes are compromised is close to zero. This way the adversary will have 
to attack a large fraction of the network before it can achieve any significant gain.

In [47], the proposed protocol in [46] is improved using deployment knowledge 
and avoiding unnecessary key assignments. There are also several other matrix- 
based key distribution protocols in the literature such as [49, 50].

4.1.2  Asymmetric Key Establishment Protocols

Asymmetric key establishment protocols also have been used widely by research-
ers. For example, Two-Party Password Authenticated Key Exchange (2PAKE) pro-
tocols facilitate any two IIoT devices to establish a communication key using a 
pre-shared short password [7].

The 2PAKE protocol was initially proposed in [51] in which it is assumed that 
some public parameters are generated by the system authority and made accessible 
to IIoT devices. Then, a communication key can be established between two devices 
by running the improved Cramer-Shoup encryption algorithm.

Inspired by [51], several 2PAKE protocols have been proposed in the literature 
such as [52, 53]. Furthermore, several Password Authenticated Group Key Exchange 
(GPAKE) protocols have been proposed, extending the idea of 2PAKE protocols 
[54–56].
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4.2  Key Establishment Protocols at the Physical Layer

At the physical layer, several key establishment protocols have been developed 
using either the characteristics of the channels or keyless cryptography [7]. In the 
following, we review the proposed protocols using each of these methods.

4.2.1  Key Establishment Protocols Using channel’s Characteristics

In the real world, each wireless channel between two IIoT devices undergoes time- 
varying and stochastic fading between the exchanged wireless signals. The fading 
has the property that it is invariant within the channel coherence time no matter 
what the direction of the signals are in the channel [7]. Moreover, the channel coher-
ence time is a statistical measurement of time duration over which the channel 
impulse response is essentially invariant. Finally, the fading decorrelates over the 
distances of the order of half a wavelength. Hence, if the adversary is at a longer 
distance than this from the participants, it will be unable to extract any useful infor-
mation [7].

Existing physical layer key extraction protocols based on channel characteristics 
generally consist of three phases, including quantization phase, reconciliation, and 
privacy amplification phases respectively. In the first phase, the IIoT devices sample 
the transmitted signals and then quantize them using predefined thresholds. At the 
end of this phase, the two IIoT devices obtain two initial binary bit sequences, which 
may demonstrate minor differences due to the effect of imperfect reciprocity and 
noise. In the following phases, these devices can remove the mismatch bits and 
make the bit sequences have sufficient entropy [7].

In this respect, several key establishment protocols at the physical layer [57] 
have been proposed in the literature using the characteristics of the channel such as 
[58–61].

In [58], an information-theoretic secret key generation (SKG) method for time 
division duplexing (TDD)-based orthogonal frequency-division multiplexing 
(OFDM) systems over multipath fading channels is proposed. The proposed SKG 
method is based on the physical layer properties of the wireless medium, which 
aims to maximize the number of secret bits given a target secret key disagreement 
ratio (SKDR).

Premnath et al. [59] evaluate the effectiveness of secret key extraction using the 
received signal strength (RSS) variations on the wireless channel between two 
devices. We use real world measurements of RSS in a variety of environments and 
settings. Based on their obtained results from real world experiments, in certain 
environments the extracted bits have very low entropy which make these bits unsuit-
able for a secret key. Indeed, an adversary can cause predictable key generation in 
static environments. In contrast, as the mobility of the devices increases, the exist-
ing entropy in the extracted bits grows quickly. In this respect, the authors develop 
an environment adaptive secret key generation scheme that uses an adaptive lossy 
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quantizer in conjunction with Cascade-based information reconciliation and privacy 
amplification.

In [60] the security of a wireless channel between any two vehicles is addressed. 
The authors propose a scheme for message encryption by allowing two cars to 
extract a shared secret from RSSI (Received Signal Strength Indicator) values. The 
generated key is secure against an adversary with unlimited computing power, i.e., 
it is information-theoretically secure. Moreover, the proposed scheme can be used 
in the noisy vehicular environments. The unique channel conditions in vehicular 
networks make existing solutions of key extraction in the indoor or low-speed envi-
ronments inapplicable in vehicular environments. Finally, the authors propose an 
online parameter learning mechanism to adapt to different channel conditions.

4.2.2  Using Keyless Cryptography

Keyless cryptography techniques at the physical layer also have been employed by 
the researchers in their proposed key establishment protocols. These protocols use 
the characteristics of anonymous channels, i.e. those wireless channels that the 
source of the transmitted signals remain unidentifiable by the adversary [7].

In [62], an over-the-air key establishment protocol has been designed without 
using asymmetric key cryptography and pre-shared secrets. The proposed protocol 
enables two wireless devices to establish a secret key by directly sending random 
signals to each other. The proposed scheme for key establishment is low cost in 
terms of both energy consumption and execution time.

Pietro et al. [63], present a probabilistic protocol to allow two wireless devices to 
commit over-the-air on a shared secret, even in the presence of a globally eaves-
dropping adversary. The proposed scheme is only based on plaintext messages 
exchange and thus does not leverage any crypto.

4.3  Cross-Layer Key Establishment Protocols

The proposed key establishment protocols at higher layers generally assume that 
passwords are pre-shared among IIoT devices. However, in the real world, IIoT 
devices are often produced by different factories and thus it is impractical to assume 
that these devices are released from the factory with pre-loaded passwords. 
Furthermore, it has been shown that devices can extract secrets using the wireless 
fading channel [64]. The proposed key establishment protocols at the physical layer 
however do not require pre-loaded secrets in IIoT devices, but they suffer from a 
slow key extraction rate [7].

Hence, cross-layer key establishment protocols have gained attention in recent 
years to address the above problems. These protocols employ the characteristics of 
both higher layers and the physical layer. In the following we review the proposed 
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cross-layer key establishment protocols in the literature which are designed in either 
asymmetric or symmetric key settings [7].

4.3.1  Cross-Layer Key Establishment Protocols Based on Asymmetric 
Key Setting

In this section, we review the proposed cross-layer key establishment protocols that 
have been proposed in the literature based on the asymmetric key setting.

In [64] a variant of password-authenticated key exchange (vPAKE) protocol has 
been proposed in which the password sharing assumption has been evoked. The 
proposed protocol is indeed a cross-layer design in which two IIoT devices extract 
short secrets at the physical layer to shorten the key extraction time. The extracted 
short secrets are used as passwords by the users to establish a communication key at 
higher layers.

In some scenarios, data sharing may be required among a group of devices over 
the public and unreliable networks. In this respect, in [65] a group password- 
authenticated group key exchange (GPAKE) protocol has been proposed without 
the password sharing assumption. Similar to the above work, first wireless devices 
are used to extract short secrets at the physical layer. However, then the users estab-
lish a group key at higher layers using the extracted secrets. The proposed protocol 
is a cross-layer design, which is also a compiler. Indeed, the proposed protocol can 
transform any provably secure 2PAKE protocol into a GPAKE protocol with only 
one more round of communications.

4.3.2  Cross-Layer Key Establishment Protocols Based on Symmetric 
Key Setting

In this section, we review the proposed cross-layer key establishment protocols that 
have been proposed in the literature based on the symmetric key setting.

In smart homes scenarios, IIoT devices send their collected data to the home 
gateway. Then, the home gateway sends back suitable commands to the devices 
based on the analyzed data. Clearly, the data and commands are transmitted through 
wireless links making them vulnerable to different cyber-attacks such as eavesdrop-
ping. Hence, in order to address the security and privacy of smart home networks, 
Zhang et  al. [66] propose a matrix-based cross-layer key establishment protocol 
without using any pre-shared secrets. More precisely, based on their proposed 
scheme, home IIoT appliances extract master keys at the physical layer using the 
wireless fading channels. Then, the home gateway distributes key seeds for the 
devices using the extracted master keys. This way, any two IIoT devices can directly 
establish a secret session key at higher layers. The proposed protocol consists of 
four phases, including the initialization, the master key extraction, the key seed 
distribution, and the session key establishment phases.
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The problem of key establishment among smart home devices also has been 
addressed in [67]. In their proposed model, smart home devices first extract short 
random keys at the physical layer. Then, the Merkle puzzle is employed to establish 
secret communication keys at higher layers. In their proposed model, secret keys 
can be established without the secret sharing assumption or existing of an online 
trusted third party.

In [68], a cross-layer key establishment model for heterogeneous wireless 
devices in the Cyber-Physical Systems (CPS) is presented. In the proposed model, 
wireless devices extract master keys at the physical layer using ambient wireless 
signals. These master keys are shared with the system authority. Then, the authority 
use these master keys to distribute secrets for devices. To do so, the model converts 
an existing symmetric key establishment protocol into cross-layer key establish-
ment protocols. This way, the IIoT devices will be able to establish communication 
keys at higher layers by calling the employed key establishment protocol and with-
out the secret sharing assumption.

5  Real IIoT Security Testbeds

In this section, we discuss the necessity of developing and employing real IIoT 
testbeds for evaluating new security mechanisms before they are actually used on a 
real infrastructure.

As mentioned earlier, conventional industrial protocols often lack sufficient 
security mechanisms with the assumption that anyone on the local network is 
trusted. Moreover, many legacy devices in many IIoT infrastructures exhibit a long 
time life cycle. IIoT environments often include a heterogeneous set of these devices 
which are designed without suitable security mechanisms in the first place. Hence, 
all these issues set hurdles for fast, riskless, and cost-efficient setup of new proto-
cols [69].

More precisely, many existing legacy industrial systems such as Programmable 
Logic Controller (PLC), Remote Terminal Unit (RTU), Supervisory Control and 
Data Acquisition (SCADA), Input/Output (I/O) devices, etc., interoperate with IoT 
technologies. This is while these systems, as well as many other IoT devices used in 
energy, water, buildings, roads, and factories, have been initially designed to pro-
vide a long time service without any concerns about their connectivity and security 
requirements in the future. Hence, replacing them with new gadgets and devices 
designed to be secure from scratch brings new challenges in terms of both technical 
and economic issues [70].

Moreover, the current security solutions are not often applicable in the context of 
IIoT because they are usually IT-centric and do not take into account a system’s 
safety, resilience, and reliability [70].

Hence, as we thoroughly discussed in this chapter, novel security solutions are 
needed to be designed according to the IIoT system’s requirements to fill the exist-
ing security-gap. In this respect, many researchers have addressed the existing 
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security challenges in IIoT in recent years [71, 72]. In the previous sections, we 
reviewed some of these works which have been proposed for intrusion detection, 
authentication, or key establishment.

However, these works are often restricted by a lack of realistic data about a sys-
tem’s communications and activities, as well as potential cyber-attacks to evaluate 
their proposed model [70]. This is while it is often extremely difficult to obtain such 
data from an actual environment due to security and privacy reasons. Therefore, real 
testbeds can be employed to obtain a much richer dataset with further details com-
pared to those obtained from simulations and emulations. Obliviously, the better the 
dataset, the more verifiable results are expected [69].

Further motivations can also exist to construct a testbed for security research in 
IIoT. For example, there may be cases where discovering knowledge on a particular 
subject is not feasible through simulations, or they could be used for a much better 
applicability demonstration of research findings, or they could be Leveraged to edu-
cate people such as students, researchers, stakeholders.

Hence, it seems essential to develop real IIoT testbeds that can be used for cred-
ibility measurement of proposed security solutions, analyzing IIoT attack land-
scapes, and extracting threat intelligence, before they are used on a real IIoT 
infrastructure [69, 70].

Although real testbeds may require considerable financial, time, and human 
resources to set up and maintain, they provide many advantages. For example, aca-
demics can employ such testbeds to (1) understand state-of-the-art industrial proto-
cols and devices, (2) perform experiments on various security attacks leveraging 
physical processes, and (3) develop novel security solutions, while testing them 
with actual attacks [69].

However, it should be noted that hybrid models of IIoT testbeds can also be help-
ful in some scenarios. By hybrid testbeds we mean that several components of the 
testbed can be implemented physically, while other components are emulated or 
simulated depending on the requirements of the system and the application of secu-
rity research. Clearly, cyber-physical testbeds with real devices and processes will 
require more effort, time, and money to reconfigure and adapt to different settings, 
while fully simulated testbeds are more adaptable to changes [69]. Hence, a tradeoff 
is needed with respect to all these issues and the requirements of the application.

In this regard, many funding agencies have supported deploying real testbeds to 
proceed researches in the venue of IIoT security [70, 73–75]. Since the implementa-
tion of such testbeds often present significant investments and efforts, several stud-
ies have discussed the IIoT testbed implementation process as a guide through 
generic, accurate, inexpensive, and easy deployment of IIoT testbeds [69, 70].
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6  Conclusion

In this chapter, we discussed the necessity of security concepts in industrial IoT 
environments as different cyber-attacks may happen on different surfaces. We 
explained that efficient mechanisms are required to assure security at different 
abstraction layers. For example, devices should be authenticated before any data 
transmission happens. Also, key establishment protocols are needed for message 
encryption. Beside all these employed techniques to provide a secure IIoT environ-
ment, efficient mechanisms are also required to detect any anomalies in the IIoT 
environment, such as intrusion detection systems.

In this respect, we reviewed the existing works in the literature which have devel-
oped novel authentication techniques, key establishment techniques, and intrusion 
detection techniques. Each of these techniques ae used to address security in a dif-
ferent abstraction layer of the IIoT system.

In this chapter, we also discussed the necessity of developing real IIoT testbeds 
for a proper evaluation of novel security mechanisms before they are actually used 
on a real-world infrastructure.
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1  Introduction

Over the past few years, the fifth generation of cellular mobile communication is 
becoming one of the leading automation and intelligent data exchange contexts [1, 
2]. It has been motivated by various communication and traffic-based factors, such 
as the Internet of Things (IoT), to use millions of smart sensors, embedded machines, 
and everyday physical devices in industrial applications [3, 4]. The Industrial 
Internet of Things (IIoT) is a new technology paradigm in this realm [5]. It is defined 
as a typical cyber-physical system for connecting physical devices, communication 
protocols, and internet infrastructure to automate industrial processes and ensure 
intelligence, performance, and safety [6–8]. To satisfy the requirements of IIoT- 
based systems, security represents the most significant weak point besides the 
energy-efficiency and real-time processing [9–11]. Since IIoT consists of resource- 
constrained devices and low-bandwidth channels, platform security, privacy man-
agement, identity control, and industrial rights checking must be considered 
throughout massive data exchange [12, 13].

To deal with privacy and security threats on IIoT, blockchain is one of the critical 
technologies to guarantee transaction safety, facilitate data collection, and improve 
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the storage process [14, 15]. Blockchain (underpins the crypto-currency Bitcoin) is 
a fully distributed database, formed by a set of blocks, eliminating third-party veri-
fication [14, 16, 17]. Capabilities like transparency, operational flexibility, immuta-
bility, and data encryption enable blockchain to manage big data generated by IIoT 
efficiently [18].

Our studies indicate that several review papers on blockchain applications in 
IIoT have been published [19–22]. However, we aim to prepare an up to date litera-
ture review for covering all major issues on IIoT by exploiting blockchain capabili-
ties. The fundamental contributions of this chapter are summarized as follows:

• The literature on blockchain applications in the industrial internet of things is 
reviewed until the most recent articles.

• The IIoT systems, architecture, applications, and challenges are presented.
• Blockchain technology and its advantages/disadvantages to address various IIoT 

applications are comprehended.
• A state-of-the-art review has been provided on blockchain-based smart city, 

manufacturing, healthcare, energy management, supply chain/logistics, agricul-
ture, smart homes, autonomous vehicles, and multimedia right management on 
the industrial Internet of things.

• Finally, possible challenges on the blockchain applications in IIoT and some 
recommendations or research direction are presented.

The rest of this chapter is organized as follows: Sect. 2 presents an overview of 
IIoT, consisting of the architecture, applications, and challenges in these systems. 
Section 3 describes blockchain technology and its combination with the industrial 
Internet of things. Blockchain applications in IIoT and their challenges have been 
presented in Sect. 4. Section 5 shows an analysis of reviewed literature on 
blockchain- based applications in the industrial Internet of things. The challenges of 
blockchain technology in IIoT and some recommendations have been explained in 
Sect. 6. Finally, the chapter is concluded in Sect. 7.

2  Industrial Internet of Things

The concepts of the industrial internet of things and Industry 4.0 (the fourth indus-
trial revolution) have a lot in common but cannot be interchangeably placed. In 
2011, Germany presented a term called “Industry 4.0 for 2020” at the Hanover 
event, which is now globally visible and universally accepted for utilizing the 
Internet-based technologies to enhance production systems’ efficiency and offer 
intelligent services in industrial environments [23]. Industry 4.0 employs some 
technological enablers to introduce automated, decentralized, and dynamic produc-
tion process, including the Internet (the essential technology of Industry 4.0 that a 
majority of the other enablers are dependent on it), big data, industrial internet of 
things, blockchain, artificial intelligence, robotic, edge computing, open-source 
software, cloud computing, and human-machine interaction [24]. An overview of 
Industry 4.0 enablers is illustrated in Fig. 1.
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Industry 4.0 aims to augment workers’ capability and build a cooperative indus-
trial environment for collaborative human-machine manufacturing infrastructures. 
Accordingly, it must have three central paradigms to support the human operator, 
confirming its centrality facing with different tasks. The paradigms are as fol-
lows [25]:

 1. A smart product manages the resources and plans the manufacturing process 
during its lifecycle.

 2. A smart machine (cyber-physical system) maps the conventional manufacturing 
processes to decentral, self-organizing, and flexible production lines.

 3. An augmented operator adds the capability and adaptability of a human operator 
in smart systems.

In summary, the processes based on Industry 4.0 interconnect the industrial inter-
net of things with the Cyber-Physical Systems (C.P.S.s1) to automate and dynamite 
industrial infrastructure and innovative services [26]. The industrial internet of 
things refers to the systems, machines, and users providing smart industrial opera-
tions, using intelligent data analytics for transformational business results [27]. 
Indeed, IIoT is defined as an IoT-based trend of a combination of current manufac-
turing process automation with wireless sensor networks [28–31], Internet infra-
structure, and communication protocols to enhance efficiency, intelligence, 
productivity, quality of products, and safety in the industrial domain. To address 
these features, it must possess four design principles [21, 32], including:

1 A Cyber-Physical System (CPS) is a combination of physical and software components in which 
its mechanisms are monitored or controlled by computer algorithms.
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 1. Distribution is the ability to independently decisions making and technical func-
tion execution.

 2. Interoperability is defined as the possibility of connection and communication 
between IIoT equipment with humans.

 3. Technical assistance consists of essential data collection and information visual-
ization to support human-users’ capabilities.

 4. Transparency refers to the need to create virtual copies of the real world.

As a concluding remark, IIoT is a subset of IoT which monopolized by industrial 
applications. Industry 4.0 is where the IoT and C.P.S.s meet, originating from the 
IIoT. The intersections of IoT, IIoT, Industry 4.0, and C.P.S.s are illustrated in Fig. 2.

The primary concept of IIoT was introduced in the programmable logic control-
ler project by Dick Morley in 1968 (General Motors used the programmable logic 
controllers in automatic transmission manufacturing) [33]. However, the current 
IIoT was presented following the development of cloud technology in 2002, which 
provides data storage for historical processes, and the emergence of the O.P.C. Unified 
Architecture2 protocol in 2006, which allows for secure communications between 
system equipment without human intervention [34].

Nowadays, IIoT offers an incredible innovation in the technology-based indus-
try, which tries to communicate between machines and humans, providing smart 
services. On the other, relying on the recent advances in multiple hardware and 
computer algorithms, IIoT components are equipped with sensing, recognizing, 
processing, computing, and communicating capabilities [35]. According to these 
abilities, it is a futuristic idea for industrial environments and how business is done. 
Thus, the vision of IIoT applications is couched in various domains, including smart 
city [36–38], manufacturing [39–41], healthcare 4.0 [42], energy management [43–
45], supply chain/logistics [46], agriculture 4.0 [10], smart homes [47], autonomous 

2 OPC Unified Architecture (OPC UA) is a machine to machine, service-oriented, and platform-
independent architecture for industrial automation.
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vehicles [48], and multimedia right management [49]. An overview of the IIoT 
applications is shown in Fig. 3.

Versatile applications emphasize that everything was dreaming about the smart 
industry in the past years, relying on IIoT services advancements. The IIoT market 
is estimated to catch 77.3 billion U.S. dollars in 2020 and 110.6 billion U.S. dollars 
by 2025 [50]. Asia Pacific Accreditation Cooperation (APAC) has been the central 
hub for smart manufacturing based on the growing population, rising attention to 
global information technology, and increasing industrial investments. In other 
words, APAC has become an international focal point for significant business 
expansions, and companies are expected to drive the growth of the IIoT market rely-
ing on the development of big data and cloud computing in this domain [50]. Thus, 
research and analysis on the industrial internet of things, its architecture, and chal-
lenges are located at the center of computer-since researchers’ attention in the last 
years. The remainder of Sect. 2 is organized as follows: Sect. 2.1 presents IIoT 
architecture in summary and Sect. 2.2 explains the significant challenges in the field 
of IIoT systems.

2.1  IIoT Architecture

The first challenge that industry 4.0 faces while launching IIoT is to select an appro-
priate architecture [7]. Since IIoT consists of components connecting in a network- 
based system for data transmission, choosing the right architecture plays a critical 
role in various services’ efficiency [51]. Given the nature of IIoT equipment and its 
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extensive use of the software, the system architecture could be organized into a 
layered digital technology model according to business requirements. However, the 
standard architecture of IIoT is composed of three layers: edge, platform, and cloud 
[33, 52–54].

Edge Layer (Sensing/Perception Layer) supports the interaction between smart 
equipment for data collection, such as humidity, pressure, vibration, light, and 
chemistry. Indeed, it consists of millions of heterogeneous, resource-constrained, 
tiny, and inexpensive sensors, devices, controllers, and actuators interconnected by 
a local network to a gateway. They are responsible for the data collection process, 
sense the target factors from the monitoring environment, and transmit information 
to the gateway by wired and wireless networking protocols for the different func-
tions. Energy consumption is a significant challenge in the edge layer that could be 
solved using wireless recharging technologies for demanding events and filtering 
sensed data for reducing transmission costs.

Platform Layer (Gateway Layer) consists of high-processing components to per-
form the routing protocols, facilitate communications, establish links with the cloud 
layer, drives action, and manage the lower equipment. Indeed, gateways preprocess 
the smart sensors/devices’ data before sending it to the cloud layer, then summarize 
and locally analyze it to reduce transmission costs in the cellular networks. It should 
be noted that there is no constraint on communications among the components of 
the platform layer.

Cloud Layer (Datacenter/Control Layer) focuses on data transmission from the 
smart sensors/devices to the cloud servers. It fetches the users’ input data and 
decides how to allocate the edge layer equipment to the gateways, based on the 
application requirements. In others, the cloud layer performs large-scale back-end 
event analysis to generate business value. The primary functions of an IIoT datacen-
ter layer are connectivity and data routing/storage, event computing, sensor/device 
management, and application integration.

Figure 4 illustrates the layers of standard IIoT architecture.

2.2  IIoT Challenges

IIoT tries to employ smart devices/sensors to connect various manufacturing pro-
cesses, provide energy-efficient mechanisms, and offer high-performance services 
[55]. However, it faces different challenges, including big data management, energy 
efficiency, trust, security, privacy, real-time performance, and interoperability of 
heterogeneous devices, wireless protocols, and specified operating systems [41]. 
Figure 5 illustrates the significant challenges of IIoT-based systems.

Big Data Management is a challenging task to provide real-time, robust, and 
flexible processing, decision making, storage, transmission, and availability on 
IIoT. The vast adaptation of heterogeneous sensors, actuators, industrial devices, 
edge servers, local gateway, and cloud servers generates an increased amount of 
high-velocity data. Efficient management methods are required to handle the 
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massive amount of data, provide exceptional services with high-speed data process-
ing, enhance reliability and security of data storage, and get full benefits from IIoT 
[56]. Besides, adaptive database management systems should be established to save 
big data, analyze critical information, and offer real-time industrial automation, 
such as performance prediction and anomaly detection [57]. To sum up, big data 
management technologies should provide efficient data processing for supporting 
the manufacturing product lifecycle to reach full business advantages.

Energy Efficiency is a fundamental challenge that influences system lifetime, 
and as a result, reliable and uninterrupted processing/communication on 
IIoT.  Despite significant developments in hardware and software technologies, 
many IIoT applications are dependents on low-power sensors/devices to run for 
years on batteries. Furthermore, the sensor-based IIoT devices are often employed 
in inaccessible spots of industrial environments for a long time without the possibil-
ity of recharging or replacing the batteries [35, 58]. Indeed, power harvesting 
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creates a demand for energy-efficient processing algorithms, communication proto-
cols, and radio transceivers.

Trust, Security, and Privacy are other significant concerns in almost all IIoT 
applications. IIoT is a resource-constrained communication system, which strongly 
relies on low-bandwidth links and light-weight devices. Thus, existing protection 
techniques, such as privacy assurance, security protocols, encryption methods, and 
traditional cryptography approaches do not satisfy its security requirements [59]. 
Besides, user acceptance and trust affect the success of any complex system like 
IIoT. Most recent research works highlighted privacy as a significant challenge in 
these systems, linked with the users’ trust so that low privacy will discourage the 
industry from adopting IIoT [60]. To address security challenges, IIoT infrastruc-
ture should have some properties, including [61]:

• IIoT devices should be protected against potential physical attacks, like unau-
thorized updates or passive security thefts, while the authorized operators update 
the device’s firmware.

• The communication links among equipment need to be secured to guarantees 
IIoT integrity and confidentiality.

• The storage of sensors/devices should be resistant to malicious manipulations 
using encryption mechanisms.

• IIoT services need to be available within the regular operation in the physical 
damage period to satisfy the robustness requirements.

• IIoT infrastructure requires safe authorization and identification techniques to 
prevent unauthorized access to network resources.

Real-time performance is the essential requirement of vital IIoT applications to 
guarantee the quality of services. Sensor-based systems are often deployed in noisy 
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industrial areas to satisfy security-critical applications, timely data collection, reli-
ability requirements, and real-time control decisions. In such environments, provid-
ing real-time performance while maintaining scalability could handle the unexpected 
disturbances [62]. Furthermore, distributed resource management should be consid-
ered in the IIoT community, focusing on real-time end-to-end constraints to ensure 
bounded response-time and deal with concurrent troubles [63].

The interoperability of heterogeneous devices, wireless protocols, and specified 
operating systems should be prioritized in IIoT applications to keep them opera-
tional. Based on the rapid growth of IIoT technology, a large number of heteroge-
neous sensors/devices and communication links are deployed densely in large-scale 
monitoring environments. It leads to an unprecedented number of interferers. 
Memory-limited and intelligent IIoT devices could likely eliminate interference or 
minimize it. However, it becomes an essential issue that IIoT equipment can reduce 
maximum external interference to ensure standard coexistence [64]. On the other, 
communications based on wireless protocols in IIoT are critical for efficient data 
aggregation from the monitoring environment. Thus, IIoT communication protocols 
should provide the required bandwidth to connect many heterogeneous sensors/
devices for exchanging data with low latency, high reliability, and standard security 
requirements [65–67].

Furthermore, standard operating systems must be designed for IIoT systems to 
guarantee the requirements of different applications, including memory restrictions, 
real-time performance, power limitation, security/privacy protocols support, band-
width consumption, heterogeneous devices management, and interoperability [9]. 
The summary of major challenges on IIoT systems is illustrated in Fig. 5.

3  Blockchain

Satoshi Nakamoto introduced the term blockchain 1.0 as the next disruptive tech-
nology, highlighting its advantages in offering transaction security in 2008 when he 
described the whitepaper Bitcoin [68]. The blockchain is a decentralized and immu-
table ledger that can record financial transactions between two users without trusted 
intermediary authentication. Indeed, it provides a decentralized Peer-to-Peer (P2P) 
cryptographic hashes-based network to creates an efficient transaction process and 
reduces its cost below 1% [69, 70]. In 2009, Satoshi Nakamoto created Bitcoin with 
the Genesis block. It has led to chaos in financial systems and made an opportunity 
for many people to make money. In the following, big companies, such as Google, 
focused on blockchain projects to combine intelligent contracts with digital cur-
rency for optimizing a wide range of financial applications. It has developed to 
blockchain 2.0 to support the bitcoin-based trading market, currency exchanges, 
and decentralized solutions for IoT/IIoT applications [18, 71, 72].

The investments in blockchain projects have started from 93millions U.S. dollars 
to 550millions U.S. dollars from 2013, and it is anticipated that the blockchain mar-
ket grows to 2.3 billion U.S. dollars by 2021 [19]. Although people in business still 
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regard Bitcoin and blockchain as the same concepts, it should be noted that Bitcoin 
is originated from the blockchain. It works at the heart of the decentralized indus-
trial applications relying on cryptographically secured IIoT [73]. The remainder of 
Sect. 3 is organized as follows: Sect. 3.1 presents the blockchain structure and Sect. 
3.2 explains the blockchain usage in IIoT-based systems.

3.1  Blockchain Structure

An essential objective of blockchain is establishing trust, which is achieved by con-
structing the current block based on the resulting hash from the previous one [74–
77]. Indeed, the method known as the Proof-of-Work (P.O.W.) organizes a set of 
transactions in some blocks exploiting a Merkle tree, and the hash of the root block 
is added to the tree awarding for the performed task on the system [18, 78–82]. 
Blockchain technology is different from traditional distributed systems based on 
specified features [19]:

• Permission-less There is no requirement of permission in blockchain systems, 
i.e., each entity with specific properties can use the network.

• Trust-less There is no need for a digital certification to perform transactions in 
blockchain systems, i.e., the users communicating, cooperating, and collaborat-
ing in the network are unknown to each other.

• Resistant to censorship Since blockchain is a control-less system, any entity can 
transact or interact with others with no requirement of any modification or censor.

To address the trust requirements, a standard blockchain consists of three signifi-
cant parts [83]:

• The block is known as a set of modified-less bills so that any entity can access the 
information that you record into it. It should be noted that period, size, and trig-
gering events of blocks can vary based on the applications.

• The network is a group of blocks (nodes) over digital interconnections to share 
transaction information.

• The chain is a function to link all the blocks in a blockchain system.

The blockchain structure, block components, and relationship between blocks 
are illustrated in Fig. 6. It shows that each block is divided into two sectors, includ-
ing the block header and its body. The block header consists of the previous block 
hash, a timestamp for determining data writing time, Nonce for keeping the hash of 
the current block more extensive than the hash of the next one, and the Merkle root 
for verifying data integrity. The block body involves the transaction number and its 
information details [84]. Once a new transaction happens, its information is broad-
cast over the system. All miner blocks (responsible for validating hash) receive the 
information and validate the transaction signature to verify it. Then, the transaction 
is packed into timestamp blocks and broadcast over the system again. The system 
blocks prove valid transactions and refer to the chain’s previous block by employing 
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a specified hash algorithm or discard invalid transactions [85]. During the validation 
process, the blockchain offers a trusting framework for data/information transmis-
sion or trading applications.

3.2  Blockchain Usage in IIoT

In the smart world, IIoT plays a vital role in enhancing people’s life quality by digi-
tizing various information, applications, services, and data storage technologies. 
However, it acts as a black box that fails to guarantee security, privacy, and data 
transparency. To deal with security challenges in IIoT, Blockchain is a viable tech-
nology for providing trusted, open, and auditable sharing solutions to revolutionize 
processes in industrial environments [86]. It leads to any data transmission to be 
traceable [87, 88]. The main advantages of IIoT and blockchain integration are as 
follows [89]:

• Security Blockchain technology provides secure communications among IIoT 
devices based on smart contracts, where information exchanges are assumed as 
transactions. Moreover, the update history is traced easily in industrial environ-
ments to allow secure device updating.

• Identity Employing blockchain systems offer a trusted identification and authori-
zation process for IIoT devices to trace information origin.

• Scalability Decentralized blockchain-based IIoT improves fault tolerance and 
controlling data collection and processing in large-scale environments, where 
many users corporate.

• Reliability Users can verify the accountability and authenticity of transactions 
with certainty using blockchain technology in IIoT applications.

• Autonomy In blockchain-based networks, IIoT devices can interact with each 
other without the intermediary unit’s control. It leads to provide device-agnostic 
industrial applications.
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4  Blockchain Applications in IIoT

Blockchain applications for IIoT have become an emerging research field, attracting 
the academy and industry’s attention. In this section, different blockchain-based 
applications in the industrial internet of things have been presented in eight groups: 
smart city, manufacturing, healthcare 4.0, energy management, agriculture 4.0, 
smart homes, autonomous vehicles, and multimedia right management.

4.1  Smart City

The primary objective of IIoT is to offer autonomous services for supporting the 
requirements of Smart Cities. It aims to connect technology, the economy, govern-
ment, citizens, and society to address the necessities such as water, quality of ser-
vices, transportation, healthcare, operational costs of public administration, and 
energy [90]. In others, increasing the population migrating to urban areas and the 
associated urbanization process lead to the scarcity of resources. Thus, optimal uti-
lization of available vital resources is a fundamental challenge, required leveraging 
technologies such as IIoT [91].

Blockchain technology has been applied to IIoT-based smart city applications to 
provide a distributed, secure, and efficient platform for supporting people’s life. For 
example, B2EExpand is a gaming company that has invested in Steam to introduce 
cross-game video games based on an Ethereum blockchain. Ripple has provided a 
global payment solution to address the financial challenges by communicating 
between financial institutions such as banks, payment providers, and digital asset 
exchanges. To promote healthcare services in smart cities, the MedRec Company 
has combined IIoT and blockchain for secure, time-optimal, and cost-efficient data 
aggregation from facilities, patients, and medical providers. Guts have used block-
chain concepts to offer a fraud-preventing ticketing ecosystem. Finally, Warranteer 
has utilized blockchain-based networks to simplify access to product data [19]. The 
overall scheme of blockchain-based smart cities using IIoT is shown in Fig. 7.

Parking systems are one of the essential services in IIoT-based smart cities. It 
aims to develop a traffic management system for minimizing costs. In this regard, 
Pham et al. [92] have presented an efficient cloud-based parking system in smart 
cities. It tries to decrease the number of instances in which drivers cannot find a 
parking spot. Although the system reduced the average waiting time of drivers for 
parking, it suffers from security challenges in real-world applications. To address 
these challenges, Lazaroiu et al. [93] have proposed a distributed blockchain-based 
smart parking system model. The model consists of two entities: entity A demon-
strates the visitor who paid the system authenticator’s parking fees (entity B). The 
online blockchain contains the transaction data so that a block is appended to the 
blockchain when most of the devices verify its authenticity. Finally, the smart con-
tract triggers guarantee the wallet transferring from A to B. The results of analyzing 

S. Najjar-Ghabel et al.



53

illustrate that the paper offers a replicable model to build a parking system in smart 
cities based on IIoT and blockchain approaches to meet security needs along with 
energy efficiency.

The amount of data generated by IIoT devices and sensors is becoming unpre-
dictable based on the increasing number and type of network equipment and soft-
ware technologies. The classic client/server-based communication models are 
centralized and store data at a central server. It poses some problems for automated 
communication among system equipment. Fan et al. [94] have offered a blockchain- 
based solution to deal with communication challenges on large-scale data manage-
ment systems in smart cities.

Secure Community

Blockchain

IIoT-based Smart City

Smart Asset Smart Contract Digital Identity

Fig. 7 The overall scheme of the blockchain-based smart city using IIoT
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Zhang et al. [36] have introduced a light-weight data transmission mechanism 
based on blockchain technology to guarantee accurate data aggregation in IIoT, 
focusing on smart city applications. The process employs a decentralized ledger on 
multiple edge gateways to record, synchronize, and maintain the information. It 
deals with consistency challenges during the data aggregation using a two-path 
routing strategy. The mechanism also uses a light-weight data block structure to 
improve traditional blockchain technology and save resources. The simulation 
results show that the combination of IIoT and blockchain technology could reduce 
the hop count of data aggregation, energy consumption, and transmission delay in 
smart city applications. Furthermore, it enhances data accuracy, network reliability, 
and system security.

The Kasperky Labs report demonstrated that IIoT devices, such as data kiosks 
and autonomous machines have many security gaps that are vulnerable to external 
malicious attacks [95]. To enhance the privacy and security of IIoT, Biswas [96] has 
introduced a secure blockchain-based model that enables smart devices to commu-
nicate with each other in a smart city framework. It aims to deal with various secu-
rity bags, including accountability, authenticity, integrity, confidentiality, and 
availability threats. Blockchain applications in IIoT are mature in slight domains, 
such as tracking information, and could reduce the production cost and computa-
tional complexity of processes. However, most applications, especially in the smart 
city field, still stay in the experimental step. Thus, there is a lack of practical inter-
national standards for blockchain applications in IIoT.

4.2  Manufacturing

To address after-sales services, repair and maintenance departments of manufactur-
ers publish technical manuals for almost all products. Distribution and update of 
such records contain tons of paperwork. However, technical manuals are accessible 
to the users on the manufacturing framework using the blockchain technology with-
out worrying about deliberate changes or losing updated versions. In others, block-
chain could significantly improve the smart manufacturing industry’s performance 
by exploiting data-sharing ledgers to guarantee security and privacy needs. Wan 
et al. [97] have introduced a secure blockchain-based IIoT architecture for enor-
mous modern factories’ data interactions. It first reorganizes traditional IIoT archi-
tecture to form a smart multicenter model for data aggregation and optimizes results. 
Then, an automated production platform is provided to discuss the specific imple-
mentation. The experimental results indicate that the blockchain-based IIoT model 
guarantees system privacy, making a light-weight and secure solution.

Huang et al. [98] have presented a credit-based consensus system for IIoT-based 
factories. The system uses a directed acyclic graph-based blockchain on power- 
constrained IIoT devices/sensors to adjust the proof of work difficulty based on 
users’ behavior. It also employs a symmetric cryptography-based access control 
model to manage the data authority process flexibly in the blockchain system. The 
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simulation results show that using the asynchronous consensus model in smart fac-
tories can enhance system throughput. Zhang et al. [99] have provided a blockchain- 
based IIoT to address the security requirements of traceable configuring intelligent 
manufacturing systems to deal with manufacturing disturbances and limited- 
capacity security models. It involves hardware infrastructures, software-defined 
components, resource-efficient encryption methods, and consensus-oriented trans-
action logic to support the autonomous manufacturing process. The application 
examples justify that the practical fault-tolerant IIoT offers secure, stable, traceable, 
and decentralized manufacturing environments with reasonable throughput and 
latency.

Blockchain technology is being exploited in other IIoT-based manufacturing 
applications. Industrial Blockchain of Things (IBoT) is defined as an integrated 
framework for industrial data exchange in a distributed network [100]. It aims to 
prevent credential data tampering and employ consensus methods for cybersecurity 
in industrial environments. Researchers in [101] have simulated a decentralized 
blockchain-based IIoT on Ethereum to provide a tolerable automotive manufactur-
ing ecosystem. Finally, Angrish et al. [102] have exploited blockchain technology to 
introduce a distributed mechanism to handle manufacturing data generated by vari-
ous entities. In this mechanism, called FabRec, data are available to all IIoT devices/
sensors in a peer-to-peer network. However, fiduciary equipment is used to guaran-
tee transparency and data protection through a verifiable audit trail. Although IBoT- 
based models improve security criteria in manufacturing applications, managing the 
chain of multiple blockchains used by different manufacturers is a considerable 
challenge to consider. Researchers need to find methods to standardize other block-
chain implementations in smart organizations for more interoperability.

4.3  Healthcare 4.0

Healthcare 4.0 is an expression of Industry 4.0, which combines IIoT and cyber- 
physical systems to virtually address real health applications’ needs [103]. It 
employs data-driven digital health technologies, including mobile health, smart 
health, wireless health, online health, telehealth, eHealth, and digital medicine, to 
provide more informed decisions [104]. Blockchain technology plays a vital role in 
enhancing the performance of smart health systems. For example, it can efficiently 
share critical patients’ data to improve health services delivery by reducing mis-
matched data and errors. Besides, blockchain-enabled health systems can enhance 
interoperability by providing automatic access to the patient’s records. It also allows 
for clinical drug tracking by investigating drug side effects without the risk of modi-
fication. Finally, blockchain-based IIoT can monitor and manage diseases using 
smart pills and wearable devices in healthcare applications [105]. An illustration of 
blockchain-based IIoT for healthcare 4.0 is shown in Fig. 8.

To protect medical data, Xia et al. [106] have provided a blockchain-based data- 
sharing system in a trust-less big area called MeDShare. The system monitors users 
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who access data for identifying malicious attacks to guarantee data provenance, 
auditing, and management for big medical data in cloud platforms. MeDShare also 
records data transmission among users in a tamper-proof manner, with side-blocks 
and smart contracts. Side-blocks include contract reports and manage the block 
fetching process to enhance the accuracy of the logs. The performance analysis of 
MeDShare demonstrates that the system achieves data provenance while the data 
sharing with minimal risk to users’ privacy. Jiang et al. [107] have implemented and 
evaluated a minimal-viable-product blockchain-based plan to exchange healthcare 
data generated by medical institutions and individuals in IIoT. It first analyzes the 
requirements of healthcare data from various users using two loosely-coupled 
blockchain mechanisms. Then, the IIoT-based system combines off-chain storage 
and on-chain verification to address privacy challenges. Finally, the plan employs 
two fairness-based packing methods to enhance the IIoT throughput and fairness. 
Other similar approaches combine blockchain technology, machine learning algo-
rithms, and group-based secret sharing to provide privacy-preserving IIoT in medi-
cal applications [57, 108].

Wang [109] has presented a medical data management model using blockchain 
technology over healthcare 4.0. The model communicates between industrial IoT, 
cloud storage, and blockchain in medical applications to improve eHealth services. 
It provides secure monitoring of patients’ vital signs from remote hospitals using a 
blockchain-based data-sharing system so that only authorized users can access the 
sensors/devices. The data management model also uses a web-based frontend and 
representational state transfer application programming interfaces to offer product- 
centric services based on blockchain technology. The simulation results show that 
the overall throughput of health systems can be improved using this model because 
of its low latency.

Blockchain

IIoT Sensors/Devices

Smart Contract and Distributed Storage

Patient

Healthcare Provider

Fig. 8 The overall scheme of the blockchain-based healthcare 4.0
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To ensure privacy and accuracy in healthcare data sharing, Wu and Tsai [110] 
have proposed two blockchain-based methods in IIoT environments. The first 
method employs a public-key cryptography algorithm to allocate a public-private 
key to the users. The second method uses an elliptical curve cryptography-based 
key-pairing process to guarantee data privacy and distribute keys efficiently. In 
another approach, Zhang et al. [111] have claimed that saving the addresses of IIoT 
devices/sensors in the blockchain instead of raw health data leads to a secure system 
for pervasive social networks. The design illustrates a potential mechanism for 
employing blockchain technology for healthcare applications by allowing data 
access only to authorized IIoT devices/sensors in a secure manner.

To ensure quality control of medical products, Bocek et al. [112] have presented 
a start-up that employs blockchain-based IIoT devices/sensors in the pharma supply 
chain. The model exploits smart contracts to assess the temperature and humidity 
levels during the drug transportation process for reducing bureaucracy and costs. 
MedRec is another blockchain-based architecture for efficient storing of medical 
data that enables the patient and health providers to develop a longitudinal record 
containing a lifetime of healthcare cases [113]. Finally, Medicalchain is a distrib-
uted blockchain-based platform used in the U.K. for managing healthcare provid-
ers’ access to health data [114]. Indeed, the platform enables users to record data 
securely and transparently on a distributed ledger.

Although blockchain is on the top of healthcare 4.0 technologies, patients using 
IIoT-based healthcare systems have a right to delete their data whenever they want. 
However, this regulation is in contradiction to blockchain principles. Medical mul-
timedia data storage with high quality is another major challenge in the scalable 
implementation of blockchain-based IIoT in healthcare applications. Since hashing 
is not a reversible function, only hash storage in health systems is not useful for 
retrieving primary data.

4.4  Energy Management

Over the past decades, the energy management process in industrial applications 
has been undergoing specified transformations. The energy industry is becoming 
more complicated to handle with the emergence of smart technologies and IIoT 
devices. Blockchain is a newfound technology in IIoT-based energy management 
systems that accelerate the recent transformation by enabling smart contracts 
between IIoT devices/sensors, optimizing transaction costs, and operating the grid 
efficiently [115–117]. In this context, Li et al. [118] have designed a credit-based 
secure payment model to support energy trading IIoT. It first establishes a hybrid 
model of blockchain technology and energy management systems to minimize IIoT 
costs. A credit-based payment model is then proposed to support a massive flood of 
energy trading payments and reduce the transaction confirmation delays. Finally, 
the model utilizes an effective Stackelberg game-based pricing strategy for loans to 
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enhance credit bank performance. Security analysis on a real dataset shows that the 
blockchain-based energy management model is low-cost and secure in IIoT-based 
peer-to-peer networks dealing with a trusted intermediary. Kang et al. [119] have 
introduced another localized peer-to-peer energy trading scheme among plug-in 
hybrid vehicles to balance energy demand. It exploits blockchain technology to 
guarantee transaction security, energy pricing, and social welfare in energy trading. 
The Texas real map’s numerical results demonstrate that the blockchain-based peer- 
to- peer energy trading scheme improves transaction security and social welfare 
while protecting users’ privacy.

To manage energy resources in smart cities, Khattak et al. [120] have presented 
an intelligent open-source blockchain called Hyperledger. It provides a decentral-
ized ledger and secure system to manage smart contracts. Another article has intro-
duced an energy-efficient and privacy-preserving data aggregation mechanism 
based on blockchain in smart communities [121]. It divides devices into some 
groups; each group has a particular blockchain for data recording. Pseudonyms are 
exploited to hide users’ identities and support their privacy. It also uses the bloom 
filter for fast authentication. The simulation results show that the mechanism 
addresses security and energy-efficiency challenges. Finally, Aitzhan et  al. [122] 
have focused on transaction security in distributed smart energy trading systems. It 
uses multi-signatures, blockchain technology, and anonymous encryption to com-
municate energy prices and securely enforce trading transactions anonymously. 
Security analysis of case studies indicates the superiority of blockchain-based 
mechanisms in IIoT-based energy management systems.

Some commercial IIoT projects have been implemented based on blockchain 
technology for energy management along with academic approaches. PowerLedger 
is a blockchain-based energy trading platform, enabling users of renewable sources 
to offer their extra energy at a pre-determined price over a decentralized system 
[123]. Bankymoon is another blockchain-enabled energy management project, tar-
getting smart schools to address affordable energy supply [124]. It not only benefits 
the energy users but also the suppliers get on-time payment. Despite the privilege 
that blockchain technology offers in industrial energy management applications, 
current solutions’ scalability is a significant challenge. Since 0.13% of energy con-
sumption worldwide is originated from Bitcoin transactions [121], the energy 
needed for transactions in the energy sector (which is safely multiplied 1000 times) 
will be prohibitively high.

4.5  Agriculture 4.0

Agriculture 4.0 refers to industrial agriculture, which exploits smart IIoT devices/
sensors and big data to drive food supply efficiencies in the face of population 
growth and climate change [125]. With the replacement of Agriculture 4.0 to the 
traditional agriculture schemes, farmers can:
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• Ensure product security and minimize dependency on imports.
• Address net exporters of products and smart mechanisms.
• Support productivity and innovation-based economy [126].

However, the performance of agricultural 4.0 depends on some external factors 
such as moisture content, climate, soil type, quality of reap, and supply chains. 
Blockchain technology could make these factors increasingly transparent and lead 
to a controllable product journey from the farm to the supermarket. Besides, 
blockchain- based IIoT permits local producers to access big data as more affluent 
farms to making the agriculture industry a more transparent and secure area [127]. 
The overall scheme of a blockchain-based agriculture 4.0 is depicted in Fig. 9.

To tackle the food safety challenges, Lin et al. [128] have combined trustworthy 
blockchain technology and the low-power wide-area industrial internet of things to 
monitor products’ lifetime from the agriculture fields to the consumers’ home, 
including raw material process, product transportation, storing, and distribution. 
The trusted ecological food traceability system consists of all components of a 
smart, self-organized, and open agricultural ecosystem to record data, verify prod-
ucts/users, and minimize the human intervention to the platform. Authors believe 
that their blockchain model for agriculture 4.0 will help users to guarantee food 
safety status. Hua et  al. [129] have presented a decentralized, trust, and reliable 
agricultural product tracing system to address food safety. It uses the advantages of 
blockchain technology to solve the trust challenges in the product supply chain. 
System analyzing results show that exploiting blockchain in agricultural data 
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Fig. 9 The overall scheme of the blockchain-based agriculture 4.0
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management systems widens the IIoT application domain and supports a reliable 
community among agriculture entities. Caro et  al. [130] have provided another 
decentralized agricultural supply chain traceability system, which can rely on 
Ethereum or the Hyperledger Sawtooth blockchain implementations. It integrates 
IIoT devices to produce valuable data along the supply chain and then stores data 
directly in the underlying blockchain to ensure the traceability system’s transpar-
ency and audibility. Comparing the classical food traceability scenario and the 
smart one indicates the superiority of the blockchain-based IIoT platforms in terms 
of latency, CPU load, and network usage.

Awan et al. [131] have introduced a secure blockchain-based routing method for 
distributed agricultural 4.0 applications to use the communication links effectively. 
It exploits intelligent collaboration within heterogeneous IIoT-based sensors to find 
the best route from the source devices to the sink. The comparison results confirm 
that the method removes redundant data, blocks architecture attacks, and reduces 
the energy consumption of sensors to improve IIoT lifetime in agriculture applica-
tions. To predict raw material needs, farmers’ payment transactions, and distribution 
costs, Putri et al. [132] have proposed a Hyperledger Blockchain-based IIoT system 
for supply chain and logistics in the agricultural domain. Hyperledger Blockchain 
provides high data security for fast data exchange among farmers and consumers 
over a trusted distribution system. It also guarantees data transparency in Semarang 
District Agriculture Service.

iGrow is a commercial center that offers an agricultural supply chain for organic 
food [133]. Its team first identifies stable demand, prices, and growing characteris-
tics of crops to find suitable farmers. Then, iGrow provides an opportunity for urban 
people to control their investment growth. It aims to exploit the agricultural 
blockchain- based platform to connect farmers with the real-time market for healthy 
food distribution. Avenews-GT is another commercial platform that provides a 
secure and transparent ecosystem for agricultural product trading [134]. Indeed, 
blockchain record interactions and transparent data sharing among the partners 
improve the performance of Avenews-GT in agriculture 4.0 applications.

Blockchain technology enables data traceability in IIoT-based agriculture appli-
cations. It could be a concern to convince small-scale users to share their data over 
open and transparent systems. Furthermore, paying for the blockchain subscription 
and IIoT enablement leads to staggering costs for the agricultural industry.

4.6  Smart Homes

A smart home refers to a ubiquitous computing-based building where appliances 
and operations are automatically managed from anywhere using IIoT devices/sen-
sors to improve inhabitants’ quality of life [135]. Blockchain technology provides a 
secure platform that all devices within the home request information from the others 
to satisfy home requirements. In such platforms, owners have a list of IIoT devices 
that can communicate with other internal ones and protect device communications 
with a shared key [136, 137]. In other words, data can be stored locally in IIoT 
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devices and authenticated using a shared key without the need for cloud storage in 
blockchain-based smart homes. An illustration of blockchain-based IIoT for smart 
homes is shown in Fig. 10.

The first essential part of any smart home is the IIoT-based door lock system to 
prevent unauthorized entrance. In smart door lock mechanisms, the inhabitants’ 
information is stored in a central server to allow only the authorized users to access 
the interiors. However, the information managed by such systems could be attacked 
by malicious who tries to gain unauthorized access to the house. To tackle this chal-
lenge, Han et al. [138] have designed a blockchain-based smart door clock system 
to guarantees non-repudiation, authentication, and data integrity in smart home 
applications. It employs passive infrared, ultrasonic, and motion sensors for imme-
diate indoor/outdoor intrusion detection [139]. The system also exploits the immu-
table nature of the blockchain to prevent unauthenticated users access to the house. 
Although the smart door clock system provides intrusion detection and block min-
ing of the transactions, the IIoT networks’ latency in real-world applications can 
breach the intrusion detection process. To ensure data integrity in the real environ-
ment, Nadiya et al. [140] have simulated a manipulating door clock system combin-
ing IIoT and smart contracts on the Ethereum blockchain. Analyzing the security 
level test using an avalanche effect method shows that the proposed system can be 
considered a secure approach for real-world smart homes. The presented solution in 
[141] has exploited Infura API to connect Ethereum blockchain and IIoT 
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Fig. 10 The overall scheme of the blockchain-based smart homes
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infrastructure for reducing security costs in smart homes. The results of model eval-
uation using different Ethereum test networks, including Ganache, Ropsten, and 
Rinkeby, demonstrate low smart lock costs and high security, privacy, and conve-
nience. Other articles have presented practical authentication systems for smart 
home applications exploiting message authentication, IIoT, blockchain, and group 
signature [142–144]. The systems aim to authenticate users’ access history to the 
gateways for guaranteeing security needs, including traceability, anonymity, and 
confidentiality.

Yang et al. [145] have proposed a personalized, secure, and versatile smart home 
system exploiting inherent authentication and permission control features of block-
chain technology to support complex real-life IIoT scenarios. It uses a blockchain- 
based encryption approach on devices/sensors to ensure content privacy and verify 
authenticated users. The system also simulates a hierarchical deterministic funda-
mental model for multi-level controls and a distributed artificial intelligence-based 
component for enhancing security and customization of IIoT-based smart homes. 
To minimize smart homes’ electricity consumption and the total energy cost in 
modern communities, Afzal et al. [136] have formulated a game-based distributed 
demand-side management system. The users living in smart homes play a game 
with the best strategy to reduce the energy consumption of appliances exploiting a 
private industrial internet of things. Since the presented game plan is distributed on 
a blockchain, it provides users secure communication, autonomous monitoring of 
smart appliances, and billing of energy consumption via intelligent contracts. 
Comparison results demonstrate that the game-based energy management model 
minimizes the total electricity costs in smart communities.

Finally, Zhang et al. [146] have introduced a privacy-protection, confident, and 
unforgeable blockchain-based smart meter mechanism for distributed smart home 
applications. It uses elliptic curve point multiplication in the encryption algorithm 
to minimize the computing and communication costs. Although blockchain tech-
nology enhances people’s living standards in IIoT-based smart homes, some chal-
lenges such as high energy consumption of devices/sensors, unreasonable data 
transmission delay, and overhead should be resolved in this area. Furthermore, min-
ers are a type of blockchain entity that centrally handless the incoming/outgoing 
transactions in smart home applications; they have a critical role in supporting 
secure authentication and local storage management [147]. A miner cannot assign 
tasks when the attack happens on it, so unauthorized users can steal vital data. Thus, 
focusing on miners’ security is one of the essential issues in blockchain-based smart 
home applications.

4.7  Autonomous Vehicles

Recent developments in identification, communication, and computation technolo-
gies have led to smart transportation systems’ growth. Autonomous vehicles are 
used in smart transportation systems to provide intelligent, safe, and convenient 
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services [148]. However, such systems are generally centralized, unreliable, and 
temporarily down in external malicious attacks. To tackle such challenges, Yuan 
et al. [149] have introduced a blockchain-based autonomous ecosystem for smart 
transportation systems. It exploits the parallel transportation management mecha-
nism to support secure, trusted, and distributed real-world transportation systems.

To control peer-to-peer transactions between smart vehicles, Liu et al. [150] have 
presented a blockchain-based power trading model in vehicle-to-grid networks. It 
realizes the data equivalence and power trading transparency based on the block-
chain and smart contract technology. The model also uses a dynamic pricing-based 
reverse auction method to guarantee the transaction matching. Simulations verify 
the feasibility of the peer-to-peer transaction model. Deshpande et al. [151] have 
exploited the blockchain capabilities to provide a secure framework for smart vehi-
cle applications. Based on the electronic control unit needs, the framework is pre-
sented on the NXP IMX6Q, Multos M5-P19, MultiChain testbed to show its low 
memory, storage, and processing overhead with high immutability and security. To 
deal with the unwanted decisions and privacy attacks imposed on the central pricing 
systems in IIoT-based smart transportations, Huckle et al. [152] have proposed an 
automatic payment model that allows smart vehicles to synchronize automatically 
with users’ services and pay the costs of external services such as fuel payment. 
Analyzing the results of distributed IIoT architecture using blockchain demonstrates 
the opportunity for offering securely shared economy distributed applications in the 
autonomous vehicle domain. Another research in [153] has studied the potential of 
IIoT and blockchain technology in smart logistics and transportation systems to 
address vulnerability under security attacks.

Finally, Lin et al. [154] have provided a peer-to-peer computing resource trading 
model to handle dynamic demands on the internet of vehicles. It utilizes a consor-
tium blockchain method to support transaction security and privacy protection in 
smart transportation systems. The model also constructs a two-step trading game to 
encourage smart vehicles to join the system and improve buyers’ and sellers’ utili-
ties. Security analysis proves the efficiency of resource trading strategy in collabo-
ration between the buyer and smart vehicle systems. However, access control to 
install/uninstall smart vehicles’ batteries affects the cybersecurity procedure in 
IIoT-based transportation systems. Thus, secure verification of legitimate access by 
users involved in the battery installation/replacements is a significant concern in 
autonomous vehicle applications.

4.8  Multimedia Right Management

Nowadays, the IIoT -based delivery medium becomes the expected standard for 
multimedia transmission instead of past platforms like compact discs. Although 
current digital rights management systems offer reasonable availability, costs, and 
performance, their centralized architecture leads to security and privacy concerns 
[21, 155]. Blockchain technology addresses the sharing and reusing challenges in 
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multimedia right management over IIoT-based systems. The general overview of 
blockchain-based multimedia right management is shown in Fig. 11.

In this aspect, Ghaffar et al. [156] have presented a decentralized research datas-
ets management method based on peer-to-peer networks, a limited number of com-
puting resources, and blockchain technology. It uses blockchain capabilities to 
maintain transaction records in a decentralized public digital ledger. Moreover, a 
smart contract for digital right management is provided for data sharing over IIoT- 
based networks. Finally, a data-sharing case study on the Ethereum contract plat-
form is proposed to achieve access. To address multi-device data redundancy and 
lack of credit guarantee in IIoT, Si et  al. [157] have proposed a light-weight 
blockchain- based data-sharing security framework. It exploits a combination of 
Byzantine fault tolerant-based data and transaction blockchain for secure data stor-
age. The framework also uses a high-trust dynamic game mechanism for device 
cooperation to deal with local malicious attacks. Simulation results demonstrate 
that the framework is efficient, safe, and feasible to verify secure storage system 
information.

Finally, Bhowmik and Feng [158] have introduced a watermarking-based multi-
media blockchain framework to retrieve the transaction trails and the modification 
histories. The watermark data involves two parts, including a cryptographic hash to 
preserve transaction histories and a picture hash to store retrievable original media 
content. The cryptographic hash is passed to a distributed ledger when the water-
mark is extracted for retrieving the historical transaction trail. The picture hash is 
employed to recognize the tampered regions. The simulations prove the efficiency 
of the trusted multimedia right management mechanism. However, current 
approaches have not discussed data storage and its watermarks in detail. Besides, 
unreasonable latency in vital applications and the lack of incentive plans are other 
issues that should be considered in blockchain-based multimedia right management 
in IIoT.
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Fig. 11 The general overview of blockchain-based multimedia right management [155]
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5  Analysis

This chapter has used Google Scholar, Web of Science, Science Direct, and Scopus 
as the search engines to investigate several keywords about blockchain-based IIoT 
applications in recent journals, books, and conference articles. Reports, editorial 
notes, commentaries, book reviews, and written materials in non-English languages 
are neglected in this chapter-book. We highlight the literature, which exploits block-
chain technology to improve IIoT services in various applications, including smart 
city, manufacturing, healthcare 4.0, energy management, agriculture 4.0, smart 
homes, autonomous vehicles, and multimedia right management from 2013 to 2020.

The dispersion of blockchain-based applications in the industrial internet of 
things is shown in Fig. 12 by publication years (from 2013 to 2020). The numerical 
results demonstrate that recently, special attention has been paid to blockchain tech-
nology on IIoT to improve the quality of humans’ everyday life, security/privacy of 
services, and decrease resource consumption. In particular, due to its distribution 
and data disclosure, blockchain technology has been introduced as a decentralized 
approach to support security requirements in IIoT-based applications. It tracks peer- 
to- peer transactions and saves billions of IIoT devices based on decentralized cred-
its in modern systems to offer insecure data management solutions in centralized 
organizations.

Figure 13 illustrates statistical results on different blockchain-based applications 
in IIoT from 2013 to 2020. As shown in this figure, the reviewed applications are 

Fig. 12 Dispersion of blockchain-based applications in IIoT from 2013 to 2020
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classified into eight categories, including smart city, manufacturing, healthcare 4.0, 
energy management, agriculture 4.0, smart homes, autonomous vehicles, and mul-
timedia right management. The results show that authors have focused on smart 
cities and healthcare 4.0 to enhance the quality of secure IIoT-based services com-
pared to other blockchain applications. Furthermore, our analysis demonstrates that 
little work has been done to improve security in manufacturing and multimedia 
right management. Finally, it can be concluded that the smart city and healthcare 4.0 
are more critical than other IIoT-based applications in the blockchain-based scien-
tific and industrial domain. In contrast, there are more weaknesses to address in the 
manufacturing and multimedia right management fields.

6  Challenges and Open Issues

The heterogeneous nature of IIoT has brought together some technical challenges in 
blockchain-based approaches. In others, the heterogeneity in IIoT resources and 
massive data flows need powerful computing, storing, and networking services on 
the Internet. Exploiting distributed edge-cloud systems can address IIoT challenges. 
The edge-cloud systems, coupled with blockchain technology, provide immutable 
traces of IIoT resources from devices/sensors and applications without depending 
on the centralized controller entities. However, distributed blockchain-based sys-
tems face some limitations. In this section, we sum up the concerns about 

Fig. 13 Diversity of blockchain-based applications in IIoT from 2013 to 2020
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blockchain-based applications in the industrial internet of things and introduce 
some research directions to enhance smart society’s performance.

Connectivity Secure connection of millions of devices/sensors is the first chal-
lenge in future IIoT. It affects the structure of classic communication mechanisms 
and underlying technologies [72]. Thus, blockchain-based IIoT applications require 
some paradigms to authorize, authenticate, and connect different entities in a smart 
system. Besides, IIoT devices/sensors should be upgraded to be compatible with the 
high-speed 5G connectivity.

Scalability Current blockchain technologies face another significant concern in 
the wide acceptance and deployment of secure environments, called scalability. 
Since each battery-powered and resource-restricted device/sensor must maintain a 
blockchain copy, it faces enormous storage overhead. This limitation is compounded 
in IIoT scenarios with millions of users and the growing amount of generated data. 
Although light-weight platforms like Ethereum have been introduced to address 
scalability challenges in blockchain-based IIoT, exploring more scalable approaches 
is a milestone to support the resource performance of IIoT devices/sensors [70].

Computational constraints Blockchain technology has been introduced to 
upgrade traditional client-server systems. However, its data should be stored in IIoT 
devices/sensors, which usually have computational limitations and low storage 
capacity. So handling low-power devices/sensors is a critical hurdle in adopting 
blockchain technology [19].

Security and privacy IIoT systems are prone to blockchain-based security vul-
nerabilities (message hijack and smart-contract program attacks) along with com-
mon safety risks (eavesdropping and replay attacks). Besides, privacy leakage is 
another primary concern in blockchain-based IIoT applications due to stored trans-
action data on the blocks [157]. Therefore, the systems’ security and privacy 
requirements combined with IIoT and blockchain need to be explored further.

Industry Standards Since blockchain is a distributed technology without a third- 
party authority, country regulations and industry standards must be executed in such 
systems [94]. With the development of smart IIoT platforms, the need for online 
execution of industry standards for blockchain should be increased even more [39]. 
It also requires to provide international policies for trust and data security in block-
chain systems.

7  Conclusion

In this chapter, we provide a review of blockchain technology applications in the 
industrial internet of things. First, the significant challenges behind IIoT and the 
efficiency of exploiting blockchain technology to tackle them were discussed. Then, 
the blockchain-based approaches in the industrial internet of things were classified 
into eight categories: smart city, manufacturing, healthcare 4.0, energy manage-
ment, agriculture 4.0, smart homes, autonomous vehicles, and multimedia right 
management. Practically, using blockchain technology capabilities could improve 
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the quality of real-world services, but despite all progress in the IIoT domain, con-
nectivity, scalability, computational constraints, security, and industry standards are 
significant challenges in blockchain-based applications. Thus, it is necessary to 
address the system connectivity, scalability, computational limitations of devices/
sensors, security and privacy factors, and international industry standards for the 
next-generation applications of blockchain technology in the industrial internet 
of things.
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1  Introduction

The electrical power utilities have been a vital industry of the modern businesses 
and societies due its importance in enhancing people’s life. It went through a great 
development to make this system reliable and efficient. Moreover, the conventional 
power system (PS) has moved toward the smart grid (SG) during the last two 
decades as a reason of the increasing of the integrated distributed energy recourses 
(DERs), micro-grid, aggregated demand response, and the costumers’ participation 
in generating electric power [1]. That has improved the reliability and offered an 
affective chance to transform the distribution system to be active and controllable 
system (see Fig. 1) [2]. Along beside that development, new challenges have been 
posed in controlling, protecting and monitoring the power system specifically in the 
distribution systems [3]. That has increased the need for providers to improve the 
traditional controlling system in order to mitigate the gap between the technological 
advances in the SG and the conventional power system [4]. The energy management 
system (EMS), which is the responsible of monitoring and optimizing the PS, has 
different departments such as controlling, load forecasting and optimizing. The 
backbone of the EMS is the state estimation (SE) in which it plays a key role to deal 
with the massive network, less predictable load profiles and passive variables. The 
accuracy and reliability of the SE have a significant impact on the operational condi-
tions of the SG in which it moderates losses under drastic changes in the SG behav-
iors by formulating the time-varying nature of the system’s model [5–7].

The concept of SE in power system was established in 1970 [8]. The contribution 
of [8] is to obtain the best state estimates of the power system variables by providing 
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a methodology for processing the measurements from the electric power network. 
Since then, the SE in transmission system (TS) has been used widely and success-
fully. On the other hand, the distribution system (DS) at that time was considered as 
easy to predict and manage due to the unidirectional power flow in which the design 
and operation of the DS was being a passive system. However, the DS has become 
a bidirectional communication infrastructure based on the concept of SG which 
makes the SG more complicated. That requires to develop the modern EMS; in 
particular, the smart grid state estimation (SGSE) which plays a vital rule in the 
EMS to improve the system efficiency and real time operational conditions. A gen-
eral figure of the SGSE and a description of the SGSE general requirements is 
shown in Fig. 2 [5]. Although the state estimation is well developed and widely used 
in the TS, the distribution system or smart grid SG is still the subject of active 
research. A comparison between the transmission system and smart grid factors will 
give an overall figure to overcome the main challenges in SGSE. Firstly, the TS is 
considered observable, unlike the highly uncertainties and unknown nodes in SG 
which means the number of metering devices is very small compare to such a wide-
spread size of the SG networks [9]. The second factor is that SG is extremely unbal-
anced and has a magnificent level of complexity which leads to having a difficulty 
for designing the proper SGSE. The communication system is the third factor where 
the accuracy and the rate of data exchange are limited in the SG duo to the con-
straints [10]. The fourth factor is the integration of DERs which is another consider-
able issue in SGSE that increases the uncertainties in the SG. Lastly, The network 
configuration of the SG creates another degree of complexity duo to the lack of the 
stored topologies and its changeable configurations [11]. Moreover, the lack of the 
observed nodes and the availability of measurements in the SG is the main issue up 
to date, which makes the task of SE more complicated. All these factors drive chal-
lenges in designing the suitable state estimator and disable the implementation of 
the TS state estimators’ methods in SGSE [12].

The main contribution of this review paper is to investigate the scope of SGSE 
and survey the most related papers to the learning-based SGSE. Moreover, it has 

Fig. 1 The smart grid and active DS [2]
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gone through different applications in the SGSE beside the Learning-based methods 
to provide a comprehensive survey for SGSE and to summarize the studies which 
are mainly have focused on learning methods SGSE.

The rest of the paper is organized as follows: Section 2 explains the smart grid 
state estimations. Sections 3 and 4 present fundamental concepts and formulation of 
SE for active distribution networks, respectively. Section 5 presents various applica-
tions in SGSE mainly the conventional approaches and the filter-based models. 
Section 6 defines the main focus of this paper the learning-based applications in 
SGSE. Simulation results for learning-based SE methods are presented in Sect. 7. 
Finally, this paper is concluded in Sect. 8.

2  Smart Grid State Estimation

The SE duty in SG has three main actions starting in processing the received data, 
filtering the measurements from noise and detect gross errors. Any state estimator in 
the SG has to follow certain stages to provide an accurate and reliable state esti-
mates for the operational conditions in SG. These stages are described in five steps 
as shown in Fig. 3 and detailed in the following steps [5, 6, 12]:

Fig. 2 SGSE line diagram in smart grid [5]
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 1. Topology processor: this stage is to aggregate the physical networks’ status data 
in order to formulate the certain on-line configuration of the system.

 2. Observability analysis: it identifies the provided set of measurement either it is 
observed all the required data for the next step or not, which these data are the 
network configuration and the measurements of all the buses.

 3. The state estimation solution: this step is to apply the optimal calculation for the 
state estimates in the SG.

 4. Bad data processing: it distinguishes the gross error as well as the injected bad 
data in order to eliminate them properly.

 5. Interface: it characterizes the structural errors and assure that there is enough 
measurement redundancy by estimating different systemic parameters.

The SGSE can be categorized to three main forms: static state estimation (SSE), 
dynamic state estimation (DSE) and forecast-aided state estimation (FASE) in 
which each form has its own procedure based on the inputs and outputs intervals 
time. The SSE in SG is simply assuming the system is steady state in which it 
applies a conventional computation method for detection, statistics and filtering in 
real time and long term estimation e.g. load forecasting for days or even weeks [13].

The DSE is mainly for estimating the states of the system’s dynamics in real time 
or stamp time a head. It is the preferable state estimation form in the EMS since it 
deals with the real time measurements and network topologies, which these topolo-
gies are greatly changeable in the SG [14]. The DSE facilitates the monitoring 
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State Estimation Solution

Bad Data Processing

Inputs

Interface

Fig. 3 State estimation 
block diagram
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system in EMS effectively in which its estimation procedures are recursively 
updated the system’s state estimates based on the previous and current state esti-
mates in order to detect the changes in the network configuration and to estimate the 
next time state vector. The DSE is superior in supervising the operational conditions 
in the SG and then to act based on the SE results against emergent physical incon-
stancy or bad data injections [7]. Along beside the SSE and DSE is the FASE which 
is technically works like the DSE. However, the DSE is greatly concerned about the 
transient stability studies in the power system whereas the FSAE is considered as a 
combinational method of SSE and DSE. FASE is a new terminology for dynamic- 
static state estimation [15]. All these forms of state estimation in EMS is consider-
ing for planning and analysis purposes in which SSE is significantly used for 
planning and DSE is used in analysis and real time functionality.

In the recent years, the employing of the measurement devices (e.g. Phasor 
Measurement Unit (PMU), Advanced Metering Infrastructure (AMI)) have 
improved the state estimation methods in TS; however, it infeasible to be imple-
mented in the whole SG because of its highly economic costs. The PMU has been 
applied in different SGSE methods with a limited number of devices [15]. The PMU 
is considered as a unique device in the power system in which it has the ability to 
provide the phase angle of the electrical waveforms with sampling rate compare to 
the conventional supervisory control and data acquisition (SCADA) as well as pro-
viding the root mean square (RMS) [16].

3  Fundamental Concepts for State Estimation Concepts 
in Active Distribution System

Distribution system SE (DSSE) is the process of obtaining system state variables 
utilizing a limited number of measurements deployed at specific locations of the 
power grid [5]. Various types of measurements can be used to determine the state of 
the system, but in order to do that, it is necessary to find the relationship between the 
state variables and measurements. This relationship, which is nonlinear in general, 
can be expressed by Eq. (1) [17]:
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where x is the vector of state variables and z is the vector of the measurements. The 
number of state variables and the number of measurements are represented by n and 
m, respectively. The vector of nonlinear functions that related state variables to mea-
surements is denoted by h(x). The noise contribution to the measurement vector is 
represented by w 0~  ,R( ). The measurement covariance matrix is 
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R = …{ }diag mσ σ σ1
2

2
2 2, , ,  assuming that the noise in the measurements is 

uncorrelated.
The measurements vector denoted by z includes measurements of all types 

that is [2]:

• Real-time Synchronized measurements from PMUs like Voltage and current 
measurements along with phase angles.

• Real-time non-synchronized measurements like bus power injections, current, 
and voltage magnitudes, line power flows.

• Pseudo-measurements acquired based on statistical load profiles.

Based on the choice of state variables, there are two main formulations of SE for 
distribution systems: branch-current-based DSSE (BC-DSSE) and Node-voltage- 
based DSSE (NV-DSSE) [5]. Complex node-voltages are defined as state variables 
in the NV-DSSE. The state variables are represented in rectangular coordinates con-
taining the real and imaginary parts of node-voltages such as 
x V V V V V Vr r

N
r x x

N
x= … … 1 2 1 2, , , , , , , , or in polar coordinates such as x = [θ2, θ3, …, θN, 

V1, V2, …, VN], where the number of system buses is represented by N [2].
Bus-1 is normally considered as reference bus and its angle is considered zero 

(i.e. θ1 = 0) when the polar formulation is adopted. Therefore, this phase angle ‘θ1’ 
is excluded from the state-vector and voltage angles of all other nodes are measured 
with respect to this angle. However, ‘θ1’ may be included as one of the state variable 
if the PMU measurements are deployed, since the reference is not needed [2, 18].

In the BC-DSSE method, complex branch currents are considered as state vari-
ables. The rectangular coordinates of state variables are utilized in this formulation. 
When there is no PMU available in the system, the state vector only formed from 
branch currents (real and imaginary components), i.e. x I I I I I Ir r

N
r x x

N
x

b b
= … … 1 2 1 2, , , , , , , ,  

where the number of branches is denoted by Nb [2].

4  State Estimation Problem in Active Distribution Systems

Consider a multi-phase distribution feeder consisting of N buses and L lines that can 
be modeled as a graph G N L:= ,( ) , where  := 1 2, , ,…{ }N  includes all the buses, 
and L N N∈ ×  express the lines in the network. Voltage at all the phases of bus n 
is denoted by vn = [vn,a, vn,b, vn,c ]T. Next, define v v v v1 2:= T T

n
T T

, , ,…   which collects 
the voltages at all the buses n∈  . For each line l m,( )∈, let Z = Ylm lm

−1 represent 
the phase impedance matrix in the π-equivalent model [19].

The objective of DSSE problem (NV-DSSE is investigated in this section) is to 
obtain the system state vector v ∈ ℂ3N from real-time measurements, and pseudo 
measurements. Pseudo-measurements which relate to forecasted loads and renew-
able generation are used as surrogates, since there is limited number of real-time 
measurements. Naturally, the noise level corresponding to the real-time measured 
quantities is lower than the measurement noise level of the pseudo- measurements [19].
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Real-time measurements are provided by placing advanced metering infrastruc-
ture (AMI), supervisory control and data acquisition (SCADA), and μPMUs at 
some locations in the network. The measured quantities are modeled as [19]:

 
� � �� � �z h v w Lm= ( ) + ≤ ≤, 1

 (2)

where the measurement synthesizing functions are represented by functions ��h v( ) 
and can be either quadratic or linear relationships. The measurement noise and the 
modeling inaccuracies are modeled by w



.
Additionally, load and renewable generation forecasting methods are adopted to 

obtain pseudo-measurements, which can be used to enhance the observability of the 
system. The forecasted quantities, which are usually are modeled in Eq. (3) [19]:

 
� �

�� � �z h u Ls= ( ) + ≤ ≤v , 1
 (3)

where 
�
�z  account for forecasted quantities and u



 represents the forecast error.
Define z to be a vector consisting of all the pseudo-measurements and real-time 

measurements, and let h v( ) → +:C R3N L Lm s  be the mapping from the voltage (state) 
vector v to the measurements. The weighted least-squares (WLS) formulation of the 
DSSE problem can be modeled as follows [19]:

 

min
v

v v v

z h v

J w z h w z h
L Lm m

( ) = − ( )( ) + − ( )( ) =

− ( )(
∑ ∑
�

� � �
�

� � �� � � �
� � 2 2

)) − ( )( )T
W z h v

 
(4)

Due to the fact that the measurement mappings h(v) inside the squares in nonlin-
ear, the optimization problem in (4) is non-convex. The measurement functions 
�
�h v( ) and 

�
�h v( )  is comprised of [19]:

• phasor measurements obtained by μPMUs comprise the complex nodal voltages 
vn, and/or current flows. Consequently, the corresponding measurement synthe-
sizing function has a linear relation with the state variable v. complex measure-
ments are expressed as two real measurements. For example, the measurement 
synthesizing functions in Eq. (5) and (6) are used to the obtain real and imagi-
nary part of the complex nodal voltage at bus n for phase φ [19]:

 
R vn

T
n n,ϕ ϕ{ } = +( )1

2
e v v

 
(5)

 
I v

jn
T

n n,ϕ ϕ{ } = −( )1

2
e v v

 
(6)

where eφ is the φ-th canonical basis in ℝ3. Similarly, Eqs. (7) and (8) present the 
real and imaginary parts of the measured complex branch current [19]:
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R i T

l m l mlm, lm lmϕ ϕ{ } = −( ) + −( )( )1

2
e Y v v vv Y

 
(7)

 
I i

j
T

l m l mlm, lm lmϕ ϕ{ } = −( ) − −( )( )1

2
e Y v v vv Y

 
(8)

• real-valued measurements are real and reactive power flow and injection mea-
surements plm, φ, qlm, φ, pn, φ, qn, φ, and voltage magnitudes |vn, φ|, current magnitudes 
|ilm, φ|. They are usually measured by SCADA systems, AMI, or μPMUs. The 
real-valued measurements are nonlinearly related to the state variable v. The 
measured active and reactive power flows, current magnitude square, and the 
voltage magnitude square can be represented as quadratic functions of the state 
variable v. Consequently, all the real-valued measurements can be written as 
quadratic functions of the state variable v [19].

• pseudo-measurements are estimated by exploiting historical data and locational 
information and adopting load and renewable energy generation forecast meth-
ods. Since the accuracy of these measurements is often less than real-time mea-
surements, low weights are considered for their corresponding terms in the WLS 
formulation. Quadratic functions can be used for formulating the mapping from 
the state variable to the forecasted load and renewable energy source injec-
tions [19].

Consequently, Eq. (9) can be used for any measurement synthesizing function 
hℓ(v) [19]:

 h D c cT T T
   

v v v v v( ) = + +  (9)

where Dℓ is a Hermitian matrix. Consequently, J(v) is very difficult to optimize 
because it is a fourth order function of the state variable.

5  Various State Estimation Methods Used in Smart Grid

This section will go through different methods being used for SGSE. Firstly, the SE 
formulation and weighted least square (WLS) is investigated. Then, some Kalman 
filter (KF)-based methods are introduced.

5.1  Conventional Approach

The most common and basic method in the power system state estimation is 
weighted least square WLS [20]. The state estimation problem can be formulated as 
a WLS optimization problem [12]. There are different proposed methods to 
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overcome some of the weaknesses of WLS (e.g. sensitivity to bad data, computa-
tional cost). A least trimmed square (LTS) and least median square (LMS) has been 
describe in detail in [21]. These two methods has slightly improved the problem of 
the presence of outliers. Another algorithm (least absolute value LAV) was applied 
in [22] which has automated the bad rejection. In [23], an approach was proposed to 
increase the robustness by using generalized maximum-likelihood (GM). However, 
the WLS, which is widely used in TSSE, is an optimal solution in the SG since it has 
a high sensitivity to bad data. WLS is being a preferred reference for many proposed 
methods in PSSE to validate their applied algorithms.

5.2  Kalman Filter-Based Approaches

Kalman filter (KF) was established in the early 1960s to achieve the properties of 
any linear dynamic system. It is also known by linear quadratic estimation (LQE) in 
statistics and control theory. The theory of KF relies on iterated procedures in two 
stages, so called prediction stage and update stage in which it recursively minimizes 
the root mean square of the predicted measurements to obtain an optimal estimator. 
The prediction stage is to update the time for the received measurement and states 
based on the previous iteration. While the update stage estimates the real time sys-
tem’s states and detects the uncertainties to update and revise the measurement and 
the weighted average [24]. There are many authors have revised KF to accommo-
date the nonlinear systems e.g. linearizing the nonlinear functions; hence, KF can-
not be optimal for SGSE since SG has high uncertainties and nonlinear system. 
Authors in [25–27] have applied WLS, extended Kalman filter (EKF) and unscented 
Kalman filter (UKF) on a single-machine infinite-bus power system. These 
approaches were compared one to another in different scenarios e.g. noisy condi-
tions, presence of outliers. Based on their results, they claim that the WLS method 
has the lowest accuracy under noise or faulty conditions compare to the more robust 
EKF and UKF. Moreover, the UKF has the suitable results while EKF present an 
acceptable result with less computational time in comparison to UKF due to its 
characteristics based on the first order of mean and covariance approximation. 
Additionally, the result of UKF is advantageous in tracking the true states and it is 
expeditious to adapt the DSE. Another study in [28] has applied EKF and compared 
with WLS which presents a high performance for EKF in estimating the states with 
desirable cost of time and iterations unlike the WLS. Authors in [29] used EKF and 
graphic processing units to propose a robust parallel DSE.  An attack detection 
methodology in [30] was built upon a parallel Kalman filtering algorithm for robust 
DSE. A developed iterated Kalman filter (IKF) was proposed in [16] to be applied 
for nonlinear system which estimates the states in a selected power system properly 
with appropriate performance and accuracy. In [31], a particle filter (PF) was pro-
posed and validates its results with EKF in which the PF is used a recursive Bayesian 
algorithm. It is greatly robust in the faulty conditions and high uncertain data com-
pared with the EKF, it costs a high computational time though. Most of these 
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approaches are dependent on using measurement devices; specifically PMUs, which 
is not preferable in the SGSE since it is effectively expensive and it is an obstacle 
for these techniques. In addition, KF-based is considerably inefficient when the 
uncertainties and nonlinearities are getting higher where the SG normally has these 
specifications.

6  Learning Based Applications in SGSE

Learn-Based method has been widely applied in many applications in the power 
system in which it is based on Machine Learning (ML) and an artificial neural net-
work (ANN) [32–35]. Most of the recent research in PSSE is using different ANN 
approaches, unlike the ML algorithms (e.g. classification, support regression or sup-
port vector machine algorithms) which has applied in a few studies related to the 
PSSE, hence even the ANN state estimators has a limited number of studies in 
SGSE. The models of NN system can be categorized to two main models Feed- 
forward neural network and Recurrent neural network where each on of these mod-
els has different proposed sub-models [36]. Moreover, there are learning methods 
“NN-based” applied in SGSE which are summarized in the three well known 
branches of machine learning (Supervised learning, unsupervised learning and rein-
forcement learning) [37]. Additionally, the supervised learning techniques in SGSE 
can be classified to three main studies: support vector machine, regression analysis 
and Bayesian theorem. The unsupervised learning technique has mainly applied the 
Kernel Principle Component Analysis (KPCA) in PSSE. The learning- based algo-
rithms has shown its ability to improve different issues in the power system. In 
SGSE different approaches has been applied associated with different methods (e,g, 
WLS, Pseudo measurements) or measurement devices (e,g, Phasor measurement 
units (PMU), Advanced Infrastructure Metering (AIM)). Each method has its ben-
efits and drawbacks to the SGSE. The following subsections will explain and dis-
cuses the recent studies in the learning-based SGSE, hence these applications are 
mostly all the available direct studies in SGSE based on a deep research through 
IEEE library and Google Scholar. Moreover, the following learning-based methods 
in SGSE has been applied either by using the ML methods or a combined of ML 
methods as well as a mixture of WLS or filter-base and learning-based. These tech-
niques are described in details as follows: support vector approaches, Bayesian 
theorem approaches, regression analysis approaches and artificial neural network 
approaches.

6.1  Support Vector Machine Approaches

Support vector machine (SVM) has been successfully applied in many applications 
which is based on analyzing data by using regression and classification. The most 
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SVM used in SGSE is the Kernel Principle Component Analysis (KPCA) duo its 
ability to deal with nonlinear functions [38]. SVM analyzes two classes to formulate 
a hyperplane between them to distinguish the classes with minimum error in the 
maximum margin [39].

A dynamic state estimator was proposed in [40] by using KPCA and SVM. It 
uses the KPCA to extract the nonlinear relationship between the SCADA inputs and 
the feature extraction [41]. Then, it employs the extracted data as inputs to the SVM 
to train its model and predict the state estimates. The main aim of this method is to 
handle the problem of the requirement of high dimension inputs for learning algo-
rithms from SCADA and the cost of training time by preprocessing module 
KPCA. It also uses the estimated state after the state estimation iteration to be input 
beside the raw data from SCADA as a closed loop method. The KPCA-SVM esti-
mator’s results claim a better performance compare to SVM results in term of time 
cost and accuracy. Although it reduced the computational time and has high ability 
to generalize the nonlinear system, it still not optimal estimator for a dynamic state 
estimation because this paper does not include the extraction time by KPCA and it 
mentioned that the extraction time raises after each iteration.

A least square support vector machine (LS-SVM) was proposed in [42] which is 
used conjugate gradient optimization algorithm to reduce the training time. It was 
compared with the WLS estimator and demonstrate robust LS-SVM estimator and 
fairly accurate against bad data and topological errors. It improves the power system 
state estimation slightly but it enhance significantly the sparsity in the optimization 
problem. Joint SE and cyber-attack detection based on feature grouping was pro-
posed in [43], in which LS-SVM is used for classification.

6.2  Bayesian Theorem Approaches

A Bayesian network is based on the probabilities of statistics theory and presents a 
set of interactions in probabilistic graphical model [44, 45]. It can be applied in the 
SG since the SG is naturally satisfy the local Markov property. It can observe the 
state parameters from the measurement by using SM or by random variables 
designed as a hidden state module [46].

Since the distribution system has a highly changeable network configurations 
which greatly affects the results of the state estimation, an identifier of network 
configuration changes in distribution system state estimation is proposed in [47] by 
using recursive Bayesian algorithm. A model bank is designed to store different 
network configurations that obtained from parallel WLS estimators as well as from 
the original stored configurations whereas each model has its own real measure-
ments, pseudo and virtual measurements. Then, it uses the Recursive Bayesian 
Probability to compute the error of each model by comparing the real measurements 
and the estimator’s results to provide the correct configuration at a given time. 
Authors of this work claim that this method has a suitable accuracy and acceptable 
computational time.
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A new research field has opened to drive new techniques to handle the problem 
of the limitation of approximation the quantities of real measurement and pseudo 
measurementt by Gaussian distribution [48]. This problem of the different paramet-
ric uncertainties can be formulated as a problem of statistical inference over param-
eter space [49]. A sparse Bayesian learning based harmonic state estimator was 
proposed in [50]. It is applied to locate the harmonic sources and estimate the volt-
ages at those points accurately. It was implemented in small scale TS which does 
not show its efficiency either in high scale TS or in the DS. Another study in [51] 
has proposed DSSE based on Bayes theorem to reduce the measurement uncertain-
ties for the pseudo measurements and the available measurement from the sensors 
in the SG.  For this reason, A Bayesian state estimator is used in [51] for non- 
Gaussian pseudo measurement. This study focus on improving the input of SGSE 
by generating a high quality of pseudo measurement from historical load profiles 
beside the real measurement received from smart meters. Since the uncertainties in 
pseudo measurement is greatly high, authors in [50, 51] claim that the generated 
pseudo measurement by using Bayesian algorithm has improved the quality of the 
inputs of state estimator which leads to having a suitable accuracy on the state esti-
mates. This study shows a promising results of a high quality pseudo measurement 
and a rich description of the uncertainties in such a system which is helpful tool to 
be used in dynamic and static SGSE and in control applications since the available 
state estimators need more accurate input measurements to perform properly.

Another study in [52] has proposed the Bayesian inference with deep neural 
network (DNN) for SGSE. It uses the historical data to learn the distribution of that 
data and then generate the prior distribution data with the association of real mea-
surements. This generate stochastic data goes to the DNN to train it by using gradi-
ent descent algorithm and then the NNs calculate the minimum mean squared error 
(MMSE) to produce the accurate state estimates. Its results in the SG shows its 
robustness against bad data and high computational efficiency; however, the train-
ing and testing could cost expensively computational time for widespread SG since 
this study was for giving an architecture of applying Bayesian and DNN regardless 
the computational time.

A belief propagation-based state estimator was implemented in [53] which is 
based on factor graph rules. It does not need the step of observability analysis in its 
procedures. It specifies the prior distribution and the real measurements of all states 
values which is generated from the historical data from measurement devices like 
SCADA, AMI or PMUs. Then, it estimates the states as a problem of statistical 
inference by the involving of Bayesian rules. It shows its superiority to deal with 
pseudo measurements with less real measurements which could be applied in large 
scale SG because it relies on the proper initialization of the state estimator. The 
main disadvantage of this field of research is that it needs to improve the measure-
ment devices placement.
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6.3  Regression Analysis Approaches

Regression analysis is to estimate the relationship between variables by processing 
a set of statistics. It basically deals with the numeric or continuous output values 
based on the input variables. The regression analysis is described in details in [54].

A numerical analysis was proposed in [55] to demonstrate the ability of describ-
ing unreliable and inaccurate data and the relationship between them by using Fuzzy 
regression analysis. This method was implemented in distribution power system in 
[56]. Authors in [51, 56] suggest that this approach could by adapted to a practical 
algorithm due to its simplicity whereas it is considered a time consumption based 
on the results of [56].

A FASE using regression analysis was proposed in [57]. It considers the effect of 
adjacent buses which creates a nondiagonal transition matrix and update the transi-
tion matrix in certain time by using regression analysis. It is combined of learning 
based and filter-based algorithm by employing time-variant state-transition matrix 
in which it relies on the previous value and the historical data obtained from the 
regression method. This joint technique shows an improvement in the accuracy of 
the DSE using EKF. The same authors of [57] has applied the regression analysis 
FASE algorithm in a large scale power system in [58]. It shows high and accurate 
performance compare to the EKF by itself. In [59] the same method was imple-
mented in the presence of the PMUs. The results in [59] claim an improvement of 
the conventional filter technique for detecting bad data and topological changes as 
well. All the three studies have not mentioned the computational time which is con-
sidered as a significant factor in the DSE.

6.4  Artificial Neural Network Approaches

The ANN is based on human neural network to simulate a mathematical model or 
computational model. It has a single layer or multiple layers connected by neurons. 
These neurons can be adjusted to obtain the desired target. The main properties of 
the NNs is the nonlinear mapping which makes it desirable for the smart grid appli-
cations. Moreover, it deals with: the stochastic variations via the increase of data 
properly, it expedites the online processing and classifications, and it includes a 
potential built in nonlinear modeling for data filtration [60].

A closed-loop state estimation tool to monitor and operate an actual MV network 
was applied in [61]. This method creates a dataset based on adaptive nonlinear auto- 
regressive exogenous (NARX) in which it updates and retrains continuously the 
models’ NN state estimation (NN-SE) by using the feedback of the state estimator. 
NARX applications for a passive system’s control is described in detail in [62]. 
Although the applied network has a limited number of online measurements, it 
relies on the SCADA, recorded smart meter measurements and pseudo measure-
ments. This approach mainly is to reduce the load forecasting error and improve the 
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state estimates’ accuracy. The result of this implementation show a robust state esti-
mator because of the implementation of the load estimation and NARX as closed 
loop in which the state estimates present the result and goes back to the load estima-
tion step to retrain and update. However, this method was assumed a known net-
work topology and a correct network parameters which is not preferable in applying 
SGSE duo to the sudden changes in the SG. Author in [63] has applied the same 
method for the purposes of short term planning in the distribution system by using 
NARX to train the NN-SE. The results in [63] has demonstrated the same result in 
[61] which has a robust static state estimator against bad data and gross errors.

Another state estimator using neural networks was applied in [64]. This tech-
nique samples and solves the input load profiles to feed them to the SE-NN model 
by using quadratic based backward/forward sweep method (QBBFS) [59]. Then, 
the SE-NN model is trained by the created initialize network (output of QBBFS) 
and training parameter. After the SE-NN is learned, the SE-NN can simulate and 
reproduce the output fast and accurately with no need for the QBBFS method. This 
method has a quick response and accurate results compare to other power flow solu-
tions; however, it does not involve any renewable energy resources and large-scale 
distribution system in the simulation which could be challenging for this method.

A closed loop robust distribution state estimator based on machine learning algo-
rithm was proposed in [65]. This algorithm has presented three mechanisms to 
develop a robust state estimator against the measurement errors and the gross errors 
that influences by the pseudo measurements and the smart meters. It directly inters 
the measurement from LV and MV nodes to M-estimator and a machine learning 
algorithm is involved to learn and train itself by having smart meter measurements 
as well as the output of the M-estimator. That makes this method a closed loop 
information flow which guarantees a robust performance for the state estimates in 
comparison with the WLS and re-weighted least square (RWLS). This method basi-
cally based on statistic load profiles to train the machine learning algorithm and to 
identify the patterns which was implemented in the parallel distributed processing 
model (PDP). This method shows a promising results against the measurement 
errors and the configuration errors even though there was temporary failure in the 
smart metering communication system.

A state estimator designed in three stages ANN training stage, error modeling 
stage and the state estimation application stage was applied in [66]. The ANN 
mainly used to generate an accurate pseudo measurement and associated with real 
measurement that used as inputs to the state estimator. The pseudo measurement 
was generated by using real power flow measurements to train the ANN in order to 
have high quality pseudo measurements compare to the traditional methods. Then, 
the output is compared to the load profiles as output target to minimize the error. 
After that, it is applied to WLS estimator with the following inputs: real measure-
ments, pseudo measurements [67] obtained from the proposed method, and the net-
work topology and parameters. Results demonstrate that the ANN generated pseudo 
measurement works well with limited real measurements and produces acceptable 
state estimates’ accuracy. Moreover, this approach can train the network configura-
tion in the future to tackle the issue of topological changes in the smart grids. In 
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term of computational time, the training and testing time could be challenging for 
large systems; however, after it is being trained and tested, it can improve the com-
putational time of the state estimator dramatically.

An online state estimator using NN for a distribution network was proposed in 
[68] and established the results on geographic information system (GIS). The aim 
of this NN-SE is to estimate the voltage of buses which do not have any measure-
ment devices (sensors) for different applied networks that has a limited number of 
sensors. The NN-SE learns from the power flow patterns which is provided by 
K-matrix combined with particle swarm optimization (PSO). It simulates 50 power 
flow patterns that obtained from K-matrix-PSO power flow, hence the inputs are 
loads, line and generation data. The NN-SE is learned from the 50 power flow pat-
terns and then export the estimation data to a database and the GIS to display the 
detailed information of location and utility. This method was proposed to improve 
the operating performance since the online monitoring is required in the smart grids. 
The main drawback of this method is that it does not explain the proper locations of 
this sensors as well as the minimum number of the sensors because it would be 
economically unsuitable for smart grids.

As it is mentioned before the main issue in the SGSE is the observability. If the 
measurements are not observed at all the buses, the Jacobian transforms to a matrix 
composed of undetermined system and the power system might be unobservable 
which diverge the state estimation solution. In [68] it demonstrate that an ANN-SE 
can obtain accurate state estimates in such unobservable system. Authors has imple-
mented multilayers ANN-SE solution by just having the measurements form load 
buses (re/active powers). This method uses a back propagation NN which can accu-
rately map the relationship between the measured variable and other state variables 
like Voltages and its angles. The ANN-SE is used the same equation of defining the 
states in WLS in order to train itself.

The same Authors of [69] has implemented in [70] a technique that used ANNs 
and principal component analysis (PCA) for power system state estimation. PCA is 
a non-parametric statistical method that create a set of uncorrelated variables by 
converting observation of possibly correlated variables. It basically capture all the 
main changes in the system by identifying the significant variables in that system. 
After that, it uses these variable as inputs for training the ANNs which the ANN has 
the ability to deal with less number of measurement compare with conventional 
method WLS.  To provide a faster response, it is applied a feed-forward straight 
operation and it can provide a dynamic response due to ANN can give a time trajec-
tory. This method is considered as a reduced model which will reduce the running 
cost. The main advantage of this simulation is to examine the robustness and accu-
racy of the ANN-SE based on a few number of real measurements. In other word, it 
demonstrates that the scope of ANN-SE in smart grids has promising solutions 
in SGSE.

In [71] a WLS estimator based on PMU was implemented with inserting less 
number of PMUs at strategic buses that can connect all the other nodes. It was 
applied NN-SE by using recursive WLS state estimation as a reference for a power 
system to reduce the number of PMUs at that system. This algorithm eliminates the 
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inputs with minimal or zero effects in order to solve the issue of computational time 
for a large power system. It shows that the WLS estimator is time consuming which 
presents the NN-SE as a suggested solution. The NN will be well trained with less 
real measurement from PMUs which reduces the training time as it is the main con-
cern of NN. The results was compared with the WLS estimator where the NN was 
superior than the WLS in computational cost and accuracy, hence, the WLS needs 
overdetermined system to obtain a reasonable accuracy [72].

A multilayer perceptron neural network (MLPNN) state estimator was proposed 
in [73]. The input/output data for training the NN-SE was reached from the load 
flow simulation. The MLPNN was trained by using the Resilient Propagation algo-
rithm (RProp). This approach is desirable for unchangeable topological systems 
which been assumed in this study. The reason for not changing the topology is that 
MLPNN is capable to solve the issue of approximation where it can detect the pat-
tern and it is fed to the relevant learning data. This approach has an advantage of 
reducing the input measurements as the other NN-SE approaches compare to the 
traditional method WLS. The accuracy of the result was precision even with errone-
ous measurements. However, it is obvious this method cannot be acceptable to be 
applied in the SGSE since the distribution system is considered highly unbalanced.

Based on the applied learning-based methods that was applied in SGSE, the 
ANN is an attractive method for enhancing and compensating the weaknesses in the 
SGSE. The learning-based algorithms has presented promising improvements for 
SGSE.  Based on the available studies in this area, it is still undergoing field of 
research which requires more implementations to obtain the desired state estimator.

False Data Injection (FDI) attacks have the ability to bypass the standard SE used 
in SGs; therefore, a cyber-attacks detection using supervised learning and heuristic 
feature selection was proposed in [74]. An attack detection model was proposed in 
[75] that leverages Deep Neural Network (DNN) and Decision Tree (DT) classifiers 
to detect cyber-attacks from the new representations. A deep unsupervised represen-
tation learning approach for effective cyber-physical attack detection and identifica-
tion on highly imbalanced data was proposed in [76]. A deep and scalable 
unsupervised machine learning system was presented in [77] for cyber-attack detec-
tion in large-scale smart grids.

7  Simulation

The performance of learning-based SE methods is investigated in two case studies:

Case Study 1
Numerical test on the IEEE 33-bus distribution system is presented using DNN- 
based SE model [78]. Real load data and solar generation were collected from Pecan 
Street project [79] with sampling rate of 1 second. The load aggregates at each bus 
were scaled to meet the constraints of the test system. Two different types of mea-
surements are considered: SCADA power flow measurements [78] and line current 
sensors [80]. The MATPOWER toolbox [81] was used to produce the 
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measurements and state variables by solving the AC power flow equations. The 
dataset includes 604,800 samples (voltages and measurements for 1 week with a 
second- by- second reporting rate). The training set and test set consist of 80% and 
20% of the dataset with 483,840 and 120,960 samples, respectively.

Case Study 2
Numerical test on the IEEE 118-bus benchmark system is performed leveraging 
CNN-based SE method. Real load data is based on the 2012 Global Energy 
Forecasting Competition (GEFC) [82]. Dataset consisting of measurements and 
state variables is taken from [83]. The dataset consists of 18,528 samples, 80% and 
20% of which were considered as the training set and test set respectively.

7.1  Case Study 1

The performance of the DNN-based SE model is demonstrated by applying it to the 
IEEE 33-bus test system. The single line diagram of the feeder is illustrated in 
Fig.  4. The DNN model aims to obtain distribution system states with a limited 
number of measurements [78]. The architecture of the DNN model is shown in 
Fig. 5. The inputs and outputs of the DNN model are measurements and estimated 
state variables (bus voltage magnitudes and angles), respectively. The DNN model 
has three hidden layers, each having 128 neurons. The number of neurons in the 
input layer is equal to the number of measurements. Due to the fact that bus-1 is 
considered as reference, the output layer consists of 64 neurons (32 voltage magni-
tudes and 32 phase angle). Two different types of measurements are considered in 
this study:

• SCADA measurements consisting of Line power flows depicted in Fig.  6  
(V1, P1 − 2, P2 − 19, P3 − 23, P6 − 26,Q1 − 2, Q2 − 19, Q3 − 23, Q6 − 26,) [78].

• Line currents Sensors shown in Fig. 7 (I8, I13, I20, I24, I29) [80].

According to the best of the author’s knowledge, this is the first study that per-
forms learning-based SE utilizing low-cost line current sensors. The recent advance-
ments in developing noncontact line current sensors is the reason for choosing this 

Fig. 4 The IEEE 33-bus test system [78]
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type of measurements. Two important features of this sensors are their easier instal-
lation and lower cost compared to the traditional utility sensors that measure voltage 
and power [80]. Recently the utility industry deployed line current sensors for 
installation on power distribution lines [80].

The performance of the DNN-based SE model is assessed in terms of normalized 
root mean-square error (RMSE) [83, 84]:

Fig. 5 The architecture of the DNN-based SE model

Fig. 6 SCADA measurements for line power flow are placed in branches shown with green 
diamonds
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RMSE

N
=

−v̂ v2

 
(10)

where v̂ is the estimate obtained by DNN-based SE method and v is the true value.
The RMSE of the DNN model is determined by calculating the average RMSE 

over 20 independent runs. The average RMSE of the DNN-based SE model is 
4.87 × 10−6 and 1.83 × 10−4 for the first type (SCADA power flow measurements) 
and the second type (line current sensors) of measurements, respectively. The results 
demonstrate the high accuracy of the DNN as a learning-based SE method. Also, the 
computation time takes a few milliseconds, which meets the real-time SE 
requirements.

The estimated bus voltages for the IEEE 33-bus test system using DNN-based 
SE at test instance 10,000 and 100,000 are shown in Figs. 8 and 9, respectively. 
According to the results, the DNN model using SCADA measurements achieves 
great accuracy.

7.2  Case Study 2

The performance of the CNN-based SE method is evaluated by applying it to the 
IEEE 118-bus benchmark system. In this study, CNN model is adopted for SE in 
power grids due to the excellent performance of CNN models in processing data 
with grid-like topology [85, 86]. The architecture of the proposed CNN-based SE 
model is illustrated in Fig. 10. Measurements, which consist of all voltage magni-
tudes, as well as all forwarding-end active (reactive) power flows are the input to the 
CNN model. The output of the CNN is passed through a dense fully connected layer 
with 236 neurons to produce state variables (118 voltage magnitudes and 118 phase 
angles).

The average RMSE of the CNN model is 2.65 × 10−4, which demonstrates the 
high accuracy of the CNN-based SE method. The simulation results presented in 
Figs. 11 and 12 verify its great performance. Figure 11 shows the estimated bus 

Fig. 7 The line current sensors shown with red circles are deployed on line segments of the IEEE 
33-bus test system
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Fig. 8 Estimated voltage magnitudes and angles using DNN model for IEEE 33-bus system at test 
instance 10,000

Fig. 9 Estimated voltage magnitudes and angles using DNN model for IEEE 33-bus system at test 
instance 100,000
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Fig. 10 The architecture of the CNN-based SE model

Fig. 11 Estimated voltage magnitudes and angles of the 118-bus system at test instance 1000
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voltage magnitudes and angles of the 118-bus system at test instance 1000. Also, the 
estimated voltage magnitudes and phase angles of bus 20 from test instance 1000 to 
1060 are illustrated in Fig. 12. It should be noted that the CNN-based SE is executed 
in a few milliseconds (around 2 ms).

According to the simulation results, learning-based methods provide real-time 
and accurate SE, which is critical for the implementation of various features envi-
sioned by the smart grid concept.

8  Discussion

The aim of estimating the SG states is to provide a realistic and real-time knowledge 
about the entire system e.g. real measurement, network configuration. The recent 
studies have focused on different issues in the SE procedures like observability, 
topologies, detecting bad and gross error. To evaluate any estimator, the four criteria 
should be met: (1) Observability: allows the operator to have the entire system 
observed. (2) Reliability: having the ability to detect, identify and correct the bad or 
missed data. (3) Quality: to have the highest accuracy. (4) Robustness: during any 
sudden changes, it should be met all foregoing requisites. Based on these criteria 
and the studies on the SE techniques, we can say that each study normally focusses 
on one or two of these criteria since the SG networks has many challenges to be 

Fig. 12 Estimated voltage magnitudes and angles of bus 20 of the 118-bus system from instances 
1000 to 1060
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entirely observed. In this literature, the main aim is to investigate the learning-based 
methods in SGSE.  The improvement of SGSE could be scoped down to three 
branches: state estimation and load forecasting tool, improving the input of a state 
estimator mainly pseudo measurement, and the available of measurement devices. 
The applications of support vector machine and regression analysis have shown 
their superiority for creating statistical models which are helpful for improving the 
observability with less number of measurements compare to other approaches e.g. 
WLS, EKF. Another finding is that the implementation of load forecasting and state 
estimation together in which the SE can use the load forecasting to improve the 
input in each iteration as well as the load forecast method improves itself by using 
the results of SE. That could be a closed or open loop in which it takes the advantage 
of the prediction and pattern recognition of the AI algorithms.

The AI algorithms have the ability to predict and recognize patterns precisely. 
That can improve the most challenging issue in most of the SGSE studies which is 
the network configuration since it is greatly changeable in the SG. The ANN algo-
rithm has been proposed in different approaches and shows a promising results and 
field of interest for the future works. Moreover, the ANN is a powerful optimization 
technique which can present an effective alternative method to overcome the SGSE 
since the SE problem is formulated as an optimization problem. Another field of 
interest is the pseudo measurement which can fulfill the lack of measurement in SG 
by generating high quality pseudo measurement. The learning based methods could 
improve the pseudo measurement greatly as shown in sect. IV in which it uses the 
load profiles to learn from and then present a more realistic data to the SGSE. It also 
uses the learning method to improve itself frequently to produce the best measure-
ments to the system.

Eventually, the recent improvement in employing the measurement devices in 
the SG will have a huge impact on the SGSE. Taking the advantage of having the 
real time measurements from these devices will be a study of interest since many 
companies have applied them widely. The ANN seems to be preferable since it 
learns from less number of samples which will be provided from the measurement 
devices and then it can learn the topological changes to provide the best state esti-
mator as well as it could reduce the computational cost.
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Analysis
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1  Introduction

A manufacturing execution system is a computerized structure that tracks and moni-
tors all the elements involved in the process of production while documents the 
crucial information [1]. Figure 1 shows a general functionality of smart MES.

MES is an efficient way of gathering and documenting data from the production 
process. It is undeniable that by the rapid improvements in technology, specifically 
in the industrial sector, organizations by any size are obligated to move towards 
computerized tools for managing their business [2, 3]. The industrial internet of 
things (IIOT) made this change possible by using MES as an essential tool that 
helps us decrease mistakes of human intervention and make better decisions for 
future steps.

While IIoT makes the automation process more comfortable, there are many 
challenges as well as security concerns [4]. As machines operate, they generate 
data, which is valuable for the SMES and attractive for attackers [5, 6].

A practical MES is a system that takes control over “data acquisition,” “process 
modelling,” “documentation,” and “decision making” by itself, not by using various 
licensed software among them. Robust and accurate decision-making ability is the 
key that separates an ordinary MES from a forceful one. This is the part where 
Machine Learning (ML) plays a critical role.

Machine learning (ML) is an important method that can be used for data analysis 
to make sense of the data generated from the production by building analytical mod-
els and cyber-attack detection. ML is already known to serve the purpose of 
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knowledge synthesis in engineering automation (Lu 1990*). MES can perform 
learning to apply on a wide range of production data, including optimization of 
individual behavior, optimization across one or more production lines [5]. ML helps 
MES to export useful information from the production modules analyzing with a 
modern computing capability using learning algorithms. This will consequently 
result in exploring new opportunities, business models and solving challenges that 
were not possible before [7]. With the aid of similar systems, not only will the enter-
prise obtains the benefit of Manufacturing Execution Systems (MES), but also the 
advantages of utilizing Artificial Neural Networks (ANN) [8, 9].

ML can also be used in order to detect abnormality and defects in production 
[10]. There are several use cases of ML in smart manufacturing.

ML can be used to obtain better business plans or optimized scheduling and qual-
ity improvement. The best results will be obtained when a comprehensive MES will 
be created that first conducts the optimization, and second, will decrease the amount 
of paid and licensed software in the process. This will focus on what matters in solv-
ing the problems. Furthermore, Enterprises will have more control in personalizing 
the MES for their own purpose.

Cyber-attacks have various derivations, such as Denial of Service (DoS), scan, 
etc. ML can perform a significant role in addressing cyber-attacks, as well as their 
classification. Mohammadi et  al. [11] conducted research in Intrusion Detection 
Systems (IDS) based on feature selection and clustering algorithms and presented 
high accuracy of 95.03% and a detection rate of 95.23% with their proposed model. 
Rouzbahani et al. [12] presented research on using ML algorithms for the classifica-
tion of False Data Injection (FDI) attacks in CPS. Karimipour et al. [13] proposed a 
scalable anomaly detection engine for Cyber-Attack Detection in Large-Scale 
Smart Grids. The result of their deep unsupervised machine learning system dem-
onstrated high accuracy of 99% in addressing cyber-attacks. Sakhnini et  al. [14] 
studied cyber-attacks detection of smart grids by proposing three supervised learn-
ing techniques combined with three feature selection techniques. They concluded 
that supervised Learning combined with heuristic feature selection methods per-
forms better in detecting False Data Injection (FDI) attacks. Rouzbahani et al. [15] 
conducted research and performed cyber-attack detection in smart cyber-physical 
grids by using different ML algorithms combined with Random forest and K-Nearest 
Neighbor (KNN). Jahromi et  al. [16] proposed a deep unsupervised learning 
approach for cyber-physical attack detection and identification on highly imbal-
anced data. Their supervised stacked autoencoder converts the raw features to a 

Fig. 1 General functionality of a smart MES with predictive analysis
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low-dimensional new feature. They used this feature learning technique in different 
methods, and the resulting accuracy, and F1-score was promising.

Rouzbahani et  al. [17] proposed an Ensemble Deep Convolutional Neural 
Network (EDCNN) model for electricity theft detection in smart grids. They used 
an unbalanced dataset, compared the results with other models, and concluded that 
EDCNN could detect electricity theft in smart grids with an accuracy of 0.981, 
indicating that the model is precise. Rouzbahani et al. proposed an Incentive-based 
Demand Response Optimization (IDRO) model in order to efficiently schedule 
household appliances for minimum usage during peak hours [18, 19], which dem-
onstrates noticeable improvements in power factor and cost-saving during peak 
hours for individual households.

These examples and many others demonstrate that the research investigations 
conducted in this field are noteworthy. However, no bibliometric analysis has been 
done to report the impacts and effects of such investigations and research.

Bibliometric is a statistical analysis that helps researchers analyze parameters 
such as citations, publications, and results. It allows researchers to understand the 
characteristics, structure, and patterns of research activities. The research activities 
are also combined into a realistic trend of a research domain by this statistical analy-
sis. This involves literature studies of scientific activities in different contexts such 
as publications, authors, institutions, citations, and countries. Moreover, this method 
reports on the comprehensive evaluation of the expansion of research fields [20–23].

This study aims to investigate the achievements in Cyber Security of SMES. It is 
necessary to know the trending topics and organizations in the field of study before 
conducting scientific research work, as well as well-known researchers. This paper 
intends to find the strengths and weaknesses, and trends in this area of science by 
conducting a bibliometric analysis on relevant papers published in Web of Science 
between 2010 and 2020 and help researchers in their path of performing productive 
research.

In this paper, the methodology is described in Sect. 2. Section 3 presents findings 
and information about the smart manufacturing execution system. Section 4 is 
devoted to the conclusion of this paper.

2  Methodology

There are two main types of data extraction for bibliometric analysis, Content or 
citation analysis [24]. These methods have benefited dramatically from computer-
ized data treatment, and in recent years there has been an immense increase in the 
number of publications within the field. This is partly because of computerized 
methods, but also a bibliometric method has to include a certain volume of data in 
order to be statistically reliable [25].

Citation analysis is probably the most traditional method applied in bibliometrics 
as an approximate measure of scientific quality, particularly in the case of individual 
researchers, rankings of universities and institutions ([26, 27], as cited in Ellegaard 
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[14]). Content analysis can also provide quantitative measures through harvesting 
of keywords [28], like Song and Zhao’s research in forest ecology [29].

In order to conduct a bibliometric analysis, researchers often use three main tools 
WoS, Scopus and Google Scholar. As it has been shown in the work of A. M. Martín 
[30], none of these tools are perfect, but the citation tool in WoS is considered to be 
more accurate because it is an older tool and covers older citations as opposed to 
google scholar and Scopus which were created in 2004. This bibliometric tool has 
over 12,000 titles of journals since 1900–present covers 45 Languages and provides 
citation analysis by author, country, document type, institution, language, publica-
tion year, source title, subject area and funding information. WoS contains citation 
maps that assist with visualizing the result of the citing references. The cited refer-
ence search in WoS is a unique feature that cannot be found in any other database 
[31]. Besides, 94% of Scopus’s highest impact factor journals were indexed in 
WoS [28].

WoS has been used for this bibliometric analysis; some keywords need to be 
selected to start searching for documents related to the topic. There may be other 
keywords related to the articles on this topic, but the main ones have been consid-
ered in this research to expand this search in all types of documents in any category. 
The query of search in this paper is as follows: TOPIC: (((Security) AND (IIOT OR 
Industry 4.0) AND (Manufacturing Execution System OR Smart Manufacturing 
Execution System)))), Timespan: 2010–2020. Databases: WOS, KJD, MEDLINE, 
RSCI, SCIELO.

As it can be observed from the query, the period was selected from 2010 to 2020. 
The databases Web of Science Core Collection (WOS), KCI-Korean Journal 
Database (KJD), MEDLINE, Russian Science Citation Index (RSCI), SciELO 
Citation Index (SCIELO) were selected to cover as many documents as possible. As 
the result, 149 records have been achieved. Figure 2 shows the diagram of the data 
collection process . The criteria of this bibliometric analysis are: (a) productivity, 
(b) research areas, (c) institutions, (d) authors, (e) Impact Publishers, (f) highly 
cited articles and (g) keyword frequency. It should be noted, and no results have 
been found before 2014 for this topic. So, in the rest of this research, presented 
results will be limited to 2014–2019.

Start Input Keywords Search In All 
Databases

149 Records, include: Journals, 
Conferences and others

Exclude non-
relevant 

databases

Analyze and 
visualizeEnd

Fig. 2 The schematic of the data collection process
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3  Findings

In this section, the bibliometric analysis results for Smart Manufacturing Execution 
System will be demonstrated and analyzed. Because the criteria for inclusion in 
Web of Science are based on Scholarly and quality criteria determined by the litera-
ture review committee, the record must also fit the subject matter. The results will 
be high-quality materials to assist researchers in their research.

In the following subsections, the results will be presented, which are productiv-
ity, research areas, institutions, impact journals, authors, highly cited articles and 
keyword frequency. Figure 3 illustrates the number of publications between 2014 
and 2019.

In Fig.  3, categories consist of meetings, articles, and others (early access, 
reviews, and editorials). The meeting category has the highest number of total pub-
lications by 49.12%. In 2016 the number of published articles was higher than the 
meetings category. After 2017 the records of meeting documents have been dropped 
significantly. This change can be observed after 2016 in the article category.

Citation analysis is an approximate measure of scientific quality for both 
researchers and journals. In this study’s findings, the result of citation analysis in the 
time period of 2014 to 2020 is presented in Fig. 4. In 2018 and 2019, the number of 
citations has increased dramatically, and by the time of the conduct of this study 
15th of November 2020, the numbers are less than in 2019, which is not predicted 
to become more than 2019 by the end of the year. Citation is a method of providing 
evidence in investigations, and it can demonstrate the number of activities in a spe-
cific topic of research in publications. The older publication has a higher chance of 
being cited in recent publications, and one factor that affects such probability can be 
earlier studies are more general and can be cited in various category of researches.

2020 2019 2018 2017 2016 2015 2014
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ARTICLE 1 1 3 6 22 23 23

Others 0 0 0 1 1 1 5
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Fig. 3 The number of publications
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3.1  Productivity

In this section, countries’ productivity in conducting studies and the number of their 
publications will be discussed. It will show the strength of each country’s publica-
tions and research in smart manufacturing execution systems and how these coun-
tries are moving forward in this area. Investment and development of these countries 
in the field are higher, and the best organizations and institutions for research and 
funding can be found there.

Figure 5 shows that Germany, China, and Italy are the lead countries in the field 
of SMES, and they have most of the publications in this area combined. Other coun-
tries can be observed in Table 1. This observation can also be discussed in much 
more detail; for instance, the countries concentrating more on different aspects and 
areas of industry 4.0 are developing their manufacturing industry quicker than other 
countries. Therefore, they will have a bigger share of the world’s market in various 
areas in the nearest future.

3.2  Research Areas

The application of a particular topic will not be bound to one area. For instance, one 
topic can emerge from the engineering area, but scientists and researchers will dis-
cover other applications of the topic in biology or the food industry over time. 
Hence, the necessity of having an analysis that will illustrate the application of a 
research topic in all categories of science is vital for the researchers. Research area 
analysis will demonstrate a logical way of understanding how each field can 
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Fig. 4 The number of citations
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connect and affect others as well as the industries. Table 2 shows more details about 
the research areas.

It can be observed in Table 2, that the majority of the publications fall under the 
category of engineering and computer science. Accordingly, computer science and 
engineering are the two main research areas for SMES.

Fig. 5 The most productive countries

Table 1 Productivity Countries Publication No. Publication %

Germany 24 16.22
People’s R China 19 12.84
Italy 16 10.81
China 10 6.76
England 8 5.41
France 8 5.41
Spain 8 5.41
Portugal 7 4.73
Brazil 6 4.05
Greece 6 4.05
Taiwan 6 4.05
USA 6 4.05
Austria 5 3.38
INDIA 5 3.38
New Zealand 5 3.38
UK 5 3.38
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3.3  Institutions

In this section, leading institutions in the field will be demonstrated, based on their 
efforts in conducting studies and publications in the field. As well as their number 
of publications and their countries, institutions can be observed from Table 3. Based 
on Table 3, Fraunhofer-Gesellschaft and the University of Auckland have the high-
est number of publications. Noted that this is the individual work of the institutions, 
in fact, we learned from Table 1 that Germany and China are the leading countries 
by the total number of publications. Nevertheless, from this table, we can recognize 
the leading institutions from each country in the area. The rest of the leading institu-
tions can be observed in Table 3.

3.4  Authors

This section is devoted to the recognition of the most productive authors in the field. 
Results are shown in Table 4. As it can be implied from the number of publications, 
SMES is a relatively new topic, and researchers can still conduct revolutionary stud-
ies in the field.

Table 2 Research areas

Research areas Publication No. Publication %

Engineering 128 86.49
Computer Science 104 70.27
Automation Control Systems 39 26.35
Business Economics 29 19.60
Operations Research Management Science 17 11.49
Robotics 17 11.49
Telecommunications 15 10.14
Instruments Instrumentation 13 8.78
Mathematics 13 8.78
Communication 6 4.05
Science Technology Other Topics 5 3.38
Chemistry 4 2.70
Education Educational Research 4 2.70
Energy Fuels 4 2.70
Environmental Sciences Ecology 4 2.70
Materials Science 4 2.70
Metallurgy Metallurgical Engineering 4 2.70
Geography 3 2.03
Transportation 3 2.03
Physics 2 1.35
Construction Building Technology 1 0.68
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3.5  Publishers

It is significantly important to recognize the lead journals in any category of science 
to publish studies. In this way, the quality of the researcher’s work will be guaran-
teed, but the chance of research citation will be higher. This section analyzed the 
publishers who published the most research in this field. Results of such analysis 
can be found in Table 5, where there are two journals listed. IEEE Access journal 
has roughly all proportion of the publications, ACM journals with only one publica-
tion were added in the table. This result shows that the IEEE journal is the leading 
publisher in the field.

Other results, such as total cites, cited documents, and citations per document, 
can be observed in this table. By comparing these results, we can imply that 
researchers in the area of cybersecurity in SMES tend to publish their work in jour-
nals, specifically in IEEE.

Table 3 Institution

Institutions
Publication 
(No)

Publication 
(%) Country

Fraunhofer Gesellschaft 5 3.38 Germany
University of Auckland 5 3.38 New 

Zealand
Polytechnic University of Turin 4 2.70 Italy
Royal Institute of Technology 4 2.70 Sweden
Siemens AG 4 2.70 Germany
Aalborg University 3 2.03 Denmark
Chinese Academy of Sciences 3 2.03 China
National Central University 3 2.03 Taiwan
Natl Cent Univ 3 2.03 Taiwan
South China University of Technology 3 2.03 China
Technische Universitat Wien 3 2.03 Austria
Universidade Federal De Santa Catarina UFSC 3 2.03 Brazil
University of Basque Country 3 2.03 Spain
University of Hong Kong 3 2.03 Hong Kong
University of Split 3 2.03 Croatia
University of Stuttgart 3 2.03 Germany
CEA 2 1.35 –
Centre National De La Recherche Scientifique 
CNRS

2 1.35 France
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3.6  Highly Cited Articles

In this section analysis of the top 15 articles and their received number of citations 
was conducted. As we understood earlier in this paper, citation demonstrates the 
quality and influence of an article, and the higher number of citations means better 
quality of the article and more significant influence of it on the area of study.

The top article in this category is “Intelligent Manufacturing in the Context of 
Industry 4.0: A Review,” which discusses new concepts and ideas in the fourth 
industrial revolution. The date of publishing of this paper is 2017, and it shows the 
proof of the hypothesis that was mentioned before, the chance of a paper being cited 

Table 4 List of authors Authors Publication (No) Publication (%)

Zhong RY 5 3.38
Xu X 4 2.70
Zhong RY 4 2.70
Di LI 3 2.03
Frazzon EM 3 2.03
Gjeldum N 3 2.03
Huang GQ 3 2.03
Li D 3 2.03
Mantravadi S 3 2.03
Moller C 3 2.03
Tsai WH 3 2.03
Wang LH 3 2.03
Xun XU 3 2.03
Aljinovic A 2 1.35
Bettayeb B 2 1.35
Bratukhin A 2 1.35
Bruno G 2 1.35
Cadavid J 2 1.35
Chen X 2 1.35
Chengliang LIU 2 1.35
Crnjac M 2 1.35
Faccio M 2 1.35
Fumagalli L 2 1.35
Furstner I 2 1.35
Gamberi M 2 1.35

Table 5 List of publishers

Title Type P TC CD CPD

IEEE Journal 31 76 72 2.4

ACM Journal 1 3 3 3

P publication no, TC total cites, CD cited documents, CPD citations per document (2010–2020)
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is higher if the paper is older and is in the database for much longer than others. In 
such a way, it has a higher chance to be shown in other research. The results are 
listed in Table 6.

3.7  Keywords Frequency

This section analyzed keyword frequency in all the articles which have been indexed 
in WOS.  This analysis will show the most frequent keyword related to articles 
whose contexts are related to the cyber security of SMES. In 149 articles, 61 unique 
keywords have been detected, which have been used in these articles 2055 times in 
total. The results can be observed in Table 7, which implies that the most frequent 
title and the keyword is automation and security. From this table, it can be noted that 
keywords and titles such as “Control,” “CPS,” “IoT,” “IIoT,” “MES,” “Attack,” and 
“digital twin” have been frequently used as well.

Figure 6 provides a desirable observation. This figure is a world map created 
from Table 7. It will demonstrate how titles and keywords are connected to each 
other. In this figure, keywords are divided into two clusters based on their relevance 

Table 6 Top 15 highly cited publications

Title
Times 
cited

Intelligent Manufacturing in the Context of Industry 4.0: A Review 395
A dynamic model and an algorithm for short-term supply chain scheduling in the 
smart factory industry 4.0

176

Smart manufacturing systems for Industry 4.0: Conceptual framework, scenarios, and 
future perspectives

123

An event-driven manufacturing information system architecture for Industry 4.0 101
A critical investigation of Industry 4.0 in manufacturing: theoretical 
operationalization framework

74

Part data integration in the Shop Floor Digital Twin: Mobile and cloud technologies 
to enable a manufacturing execution system

37

Defining and assessing industry 4.0 maturity levels - case of the defense sector 32
Context-Aware Cloud Robotics for Material Handling in Cognitive Industrial Internet 
of Things

31

IoT-enabled Smart Factory Visibility and Traceability using Laser-scanners 30
A Fog Computing Based Cyber-Physical System for the Automation of Pipe-Related 
Tasks in the Industry 4.0 Shipyard

27

RFID-based Production Data Analysis in an IoT-enabled Smart Job-shop 21
Review of digital twin applications in manufacturing 16
A Mobile Cloud-Based Scheduling Strategy for Industrial Internet of Things 15
Towards Industry 4.0: Gap Analysis between Current Automotive MES and Industry 
Standards using Model-Based Requirement Engineering

14

Green Production Planning and Control for the Textile Industry by Using 
Mathematical Programming and Industry 4.0 Techniques

13
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and frequency. The size of their related circles demonstrates the higher frequency of 
the keywords.

4  Conclusions

In this bibliometric research, WoS was used as the search engine and discovered all 
publications in the cybersecurity area of SMES between the years 2010 and 2020, 
from all databases. It was found that the publications started to appear from 2014, 
and before that, there was no publication, but the rate of growth of the publications 
from 2014 until 2020 was immense. All publications were analyzed based on sev-
eral criteria such as “productivity,” “research areas,” “institutions,” “authors,” 

Table 7 Frequency of keywords in titles and abstracts

Titles Frequency Keywords Frequency

Automation 151 Security 57
CPS 98 Control 47
IOT 98 Attack 39
Industrial internet 96 Manufacturing execution system 37
Cloud 95 Factory 34
Execution system 93 Level 33
IIOT 88 Smart factory 30
Smart manufacturing 84 Network 24
Application 65 Algorithm 22
Task 58 Algorithm 22
Environment 50 Cyber Security 22
Manufacturing 50 RFID 21
Thing 48 Sensor 20
Device 47 Production planning 19
Analysis 47 Control system 17
Manufacturing system 35 MES 16
Problem 35 Shop floor 15
Service 35 Communication 14
Internet 33 Enterprise 14
Cyber physical system 31 Manufacturing process 14
Resource 22 Vision 14
Scheduling 22 Enterprise resource planning 13
Machine 18 ERP 13
Robot 18 Production process 13
Real time 17 CPPS 12
Simulation 15 Cyber physical production system 11
Digital twin 14 ISA 11
Interaction 13 Radio frequency identification 9
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“impact publishers,” “highly cited articles,” and “keyword frequency.” From this 
analysis, trends, best publishers and institutions, and leading countries in the field 
were discovered.

Germany, China and Italy were the leading countries in the field, but the 
University of Auckland in New Zealand and the Royal Institute of Technology from 
Sweden were productive in this research field. Among publishers, IEEE Journals 
had the highest number of publications in this area.

Lastly, top authors in this field and trends and keywords for better direction in the 
future studies in the field of cybersecurity of SMES were recognized.
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The Role of Machine Learning in IIoT 
Through FPGAs

Behzad Joudat and Mina Zolfy Lighvan

1  Introduction

The most significant advances in industrial manufacturing have been accomplished 
during the last 300 years [1]. As the focus of mankind was about the use of steam 
and water to come up with mechanical innovations in the first industrial revolution, 
in the second one the focus was about advanced machine tools and electrifying them 
and as it continued, the focus changed on the scope of improving the output produc-
tion. The third industrial revolution starting from the 1950s, adopted the use of 
semiconductors and communication networks. Artificial intelligence (AI) and 
machine learning (ML) for enabling the efficiency in processes reducing waste and 
material consumption, better quality and productivity, and safer environments have 
been introduced in the last decade [2–7].

The ongoing and fourth industrial revolution (industry 4.0) is being implemented 
by global industries. It is a combination of the internet of things model and service- 
oriented concepts of industrial manufacturing, leading to complete integrated sys-
tems [8].

In our daily life, technology plays an important role which is the same for every 
other business, agency, and industry. Technologies combined with the Industrial 
Internet of Things can help industries in many ways like object identification, moni-
toring, automation, etc. [9]. In general, they help people to have access to the ser-
vices around the clock and make services available even during natural disasters. 
IIoT, also known as industry 4.0 has been in the background of industrial mutation 
for the best. There has been a dramatic increase in intensity and extensive applica-
tions of information-based technologies, and supply chains and businesses [10].
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With the industrial internet of things managers would have comprehensive con-
trol at hand over their industries. Through IIoT many concepts like machine learn-
ing, artificial intelligence, machine-to-machine communications, distributed 
computing, cloud computing, edge computing, and data analytics are getting 
implanted in factory machines, materials, and methods [11]. Therefore, IIoT is the 
combination of the aforementioned technologies [12].

Looking at this background, following the challenges faced, machine learning 
solutions help us in achieving automated processes.

1.1  Industrial Internet of Things (IIoT)

With recent advances in domains such as industrial wireless networks (IWNs), big 
data, and Cloud/Fog computing, etc., greater opportunities for contributing to indus-
trial improvements arose, granting the definition of the fourth industrial revolution 
referred to as Industry 4.0 known as Industrial internet of things (IIoT). Industry 4.0 
goal is to provide industries with intelligent, interoperable, real-time autonomous 
manufacturing environments [13, 14].

To achieve these goals, industry 4.0 is based on the Internet of Things(IoT) and 
cloud computing [15], therefore an IIoT system contains all subset devices and defi-
nitions related to IoT and cloud computing such as sensors and actuators, intelligent 
system applications, microcontrollers, etc., [6, 16, 17]. Thus attracting research 
interest of academy and industry in a plethora applications, Industry 4.0 is perceived 
to provide competency, flexibility, self-optimization, automation, and complete 
physical and digital complex tasks in the scope of quality requirements [18]. It is 
concluded that almost 81% of global industries consider the critical aspect for the 
success of industries in the future is adopting the industrial internet of things [19].

Looking at the above information, industry 4.0 will be the definition that com-
bines the internet with the ability to control physical systems directly, in the subset 
of the industry. IIoT implementation in the real world will change present industrial 
organizations in a way every person related to IIoT will benefit from it, either cos-
tumers or organizations. Key elements of the Industrial Internet of Things are shown 
in Fig. 1.

1.2  Challenges of IIot

As technology takes over our world and transforms it into a digitally connected one, 
devices and end-users will be in continuous communication with each other. 
Nowadays most organizations in the industry are eager to implement IIoT in their 
businesses, As IIoT in definition makes industries more efficient, improves perfor-
mance and productivity [20]. However, this introduces new challenges for scientists 
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and business owners. In [2] there are some challenges referred to which are shown 
in Fig. 2 and discussed as follows:

1.2.1  Security

Security challenges in IIoT arise from two parts of its architecture as it is connecting 
physical devices and industrial systems to the internet and challenges about security 
in IoT in a fact are a challenge in industrial IoT [21]. In [22] they categorized IoT 
security challenges into three layers of Perception, Transportation, and Application. 
The complete discussion and analysis of every security issue in each layer have 
been provided by [23]. The biggest challenge that IIoT faces is security since the 
smallest warning to components of its architecture could rupture the complete busi-
ness [24]. Due to increased cost and maintenance requirements of solving issues 
related to security in IIoT [25], until a rigid security scheme is implemented in IIoT 
businesses won’t risk it putting IIoT in practice in their firms.

Fig. 1 Key Elements of Industrial Internet of Things

Fig. 2 Challenges of IIoT
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1.2.2  Connectivity

In IIoT it is crucial to make sure all industry’s machines and devices are working 
and are connected to each other and surveillance machines to increase the manufac-
turing outcome, therefore with unacceptable or poor connectivity critical challenges 
in IIoT become apparent. In cases of power failure, internet disconnection, and tech-
nical or physical errors, difficulties of management between different units of IIoT 
machines may arise [26].

1.2.3  IIoT Integration

One of the other challenges IIoT encounters is the integration of information tech-
nology. For providing integration between IIoT and information technology con-
nectivity and synchronization is critical. To execute processes in IIoT systems, the 
data gathered by machines in industries and IT sectors are needed to coordinate with 
each other, and inner organizations [27, 28]. In [29] IoT, IIoT, and cyber-physical 
systems integration through SEPT learning factory has been introduced.

1.2.4  Data Storage

Another important challenge in IIoT is data storage for companies and/or busi-
nesses. Secure data storage is a fundamental part to adopt IIoT in industries. In [30] 
authors have talked about the challenges of storing data and how to secure produced 
data as to use them later, concluded frameworks for searching and storing data in 
IIoT, and designed secure data storage and retrieval systems based on fog and cloud 
computing. Investigation about challenges of data security in edge-based IIoT, such 
as fog in which nodes are not trusted has been investigated [31], and a basic cloud- 
fog- device data storage framework for solving corresponding challenges has been 
proposed.

1.2.5  Analytics Challenges

As to execute processes in IoT architecture it is crucial for data analytics to include 
data processing, cleansing, and representation at the same time [32, 33]. Authors in 
[34] investigated research studies on IIoT related to big data analytics and presented 
frameworks, covered several challenges and opportunities of big data analytics, and 
also case studies of big data analytics used in IIoT systems.

In [35] the use of edge computing architecture in IIoT is discussed and therefore 
the challenges of data analytics in edge computing have been provided, moreover, 
some machine learning regression algorithms for data analytics in state-of-the-art 
research have been discussed. Data analytics plans and the platform’s goals are to 
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eliminate related challenges by transferring part of its processes from the cloud to 
the edge, as to obtain good real-time benefits of data analysis.

2  Machine Learning

Looking at what has been said before, such as the amount of massive data produced 
in IIoT and the challenges it brings, we will discuss machine learning techniques, 
some most used algorithms, and their effects on IIoT in this chapter.

In [36] the importance of machine learning and deep learning for increasing the 
potentiality of big data analytics and IoT platforms have been mentioned, giving 
worth to each of the sections. Furthermore, three types of data that are dealt with in 
industrial IoT are shown as Raw data (untouched and unstructured), Metadata (info 
about data), and Transformed data (valued-added data). Machine learning algo-
rithms are used for identifying, categorizing, and decision-making purposes. Using 
machine learning in industries will provide solutions for challenges IIoT faces and 
will bring forward improvements in operations, production, and services. Leading 
the businesses to better adaptation with technology [37, 38].

By using machine learning models and algorithms in many businesses the cost of 
procedures and manufacturing has been reduced. In industries for production, main-
tenance, software testing, and pattern imaging analytics, machine learning and deep 
learning are being used [39].

Machine learning as a subset of artificial intelligence is divided into sorts such as 
supervised learning, unsupervised learning, reinforcement learning, and deep learn-
ing [40, 41]. Which are discussed as following:

• Supervised learning: is mainly used for classification and regression which in 
this practice known results are put into an algorithm for particular inputs for 
training purposes, in which the most common algorithms are artificial neural 
networks (AANs) and support vector machines (SVMs) [40, 42–44]. Therefore, 
in schemes with tagged data, usually supervised learning is employed.

• Unsupervised learning: is where the ML algorithm finds patterns in unknown 
data sets, thus unlabeled data sets are used for this type of ML [40, 42, 44, 45]. 
One of the most common algorithms in unsupervised learning is principal com-
ponent analysis (PCA) which is used for surveillance objectives [44].

• Reinforcement learning: is for specific performance metrics by examining unsu-
pervised learning operations in which actions result rewards [40]. In RL actions 
are sequential and from their results, the best possible fit for the problem at hand 
is selected.

• Deep learning: is used to make intelligent decisions by building an ANN through 
making use of multiple layers, thus without any human intervention, large 
amounts of data could be handled [40, 46, 47]. Convolutional networks (CNNs), 
restricted Boltzmann machine (RBM), and autoencoders (AE) are some deep 
learning algorithms [47, 48].
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Various classifications of ML with their crucial features are summarized in Fig. 3.
To improve reliability, efficiency, and productivity within industries machine 

learning technologies are used in forms of mobile intelligence and automated guided 
vehicles [49, 50]. Also, machine learning algorithms are used in IIoT for feature 
selection [51], on the data gathered and stored in the cloud from sensors through 
manufacturing processes and products for evaluation and prediction [52].

For smart decision, datasets created by IIoT are trained and tested by ML algo-
rithms and models [53]. To have structured and potent businesses now machine 
learning has become a crucial part of IIoT.

Machine learning has been successful in implementations such as image or video 
recognition, natural language process, etc. [54]. It has the ability to handle the chal-
lenges of IIoT systems in security, accuracy, real-time response, and big data.

To make use of machine learning models in IIoT, it is necessary to select machine 
learning frameworks with open source ml frameworks and their implementation 
processes in industrial IoT are discussed in [55]. Also, it is necessary to have access 
to all data collected by sensors and other equipment from manufacturing, control, 
and monitoring systems. Availability of data increases by coming forth of IIoT, and 
cloud computing getting used more extensively. Leading to the need for immense 
computational need for processing large amounts of data, like multicore central 
processing unit (CPU) architectures, graphic processing units (GPUs), and DL 
libraries [1].

Thus, bearing in mind limitations of power consumption, flexibility in process-
ing different types of data (binary, ternary &, etc.), better performance for DNNs, 
and being more potent than GPUs Field-programmable gate arrays (FPGAs) are 
much more desirable [56].

To use machine learning algorithms and its frameworks there is a need for a good 
processing unit. Therefore, using FPGAs will have a positive effect on the efficiency 
of ML algorithms implemented on embedded systems, in which the processes 
should take place and if that place would be near to edge or in middle frames of 
IIoT. Thus, it would be much more efficient and would help have better results, 
reduce the amount of data sent to other levels of IIoT, and solve some problems 

Fig. 3 Machine Learning Classification
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related to IIoT by doing so. In the next chapter, we will discuss more about the 
FPGAs and then present a dynamic reconfigurable architecture research and the use 
FPGAs near the edge of IIoT and fog so to overcome these challenges.

3  FPGAs

Field Programmable Gate Arrays (FPGAs) are general-purpose multi-level pro-
grammable logic devices customized by end-users [57]. Enabling users to change 
its logic anytime for different processing purposes.

To provide distributed intelligence, towards overcoming challenges like; acting 
in time, working offline, serving many, decreasing the size of transferred data to 
Cloud and improving flexibility, new definitions and methods have been defined, 
like sensor function virtualization (SFV) [58–61].

For any required processes or algorithms written in VHDL/Verilog programming 
languages, FPGAs provide us with the ability to dynamically reconfigure its fabric 
to the selected processes on run time. So, in different hierarchies of IIoT looking at 
the need for any special process over data obtained, these previously written codes 
could be utilized to configure the FPGA. Moreover, it is possible to change the con-
figuration of FPGA during run-time [62–66].

By using FPGAs in different places of IIoT architecture like in monitoring sys-
tems, next to sensors on the production line, gateways, access points, etc., ML algo-
rithms could be implemented and processed independent of the cloud and its 
processing resources. Thus, raw data on edge devices could be preprocessed and the 
extracted knowledge sent to other levels. Therefore, in higher levels of IIoT infra-
structure other processes make use of the knowledge gained instead of raw data. 
This way, we could tackle some difficulties in IIoT.

It is possible to use FPGAs in monitoring systems of IIoT with ML or DL algo-
rithms for the live feed of cameras, etc. As in [67], a way to implement a partial 
FPGA configuration for video applications has been provided. In this research, 
using the partial FPGA configuration feature, a video input has been processed by 
two image processing modules, and a partial reconfiguration was performed on the 
board. The increase in flexibility and speed of the implementation for varied pro-
cesses of video streams was the main purpose of this work.

The approach for improving managements of algorithms used in various con-
figurations and a library to use and store them and an approach to automate the 
necessary automation of operations have been discussed in [63]. consequently, the 
essential activities performed manually with human interaction would be prevented 
and partial configuration processes are executed faster. Giving us the idea of trying 
to automate decision making in IIoT systems using FPGAs.

In [68] different ways to achieve partial dynamic reconfiguration on the FPGA at 
runtime and its methods are presented, resulting in speeding up the implementation 
of the FPGA’s partial and dynamic configuration with the help of an embedded 
software processor.
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Looking at the internet of things architecture, the required services, and pro-
cesses, the ability of communication between all connected devices, low processing 
power on edge devices, and the challenges faced by IoT (e.g. the need for immediate 
response to services, the offline use of devices, …), in [69] they have tried to imple-
ment distributed intelligence in IoT to overcome some existing challenges. However, 
due to the limitation of the device’s communication and processing capabilities in 
IoT, the distribution of necessary processes on all IoT devices was not attainable. 
Leading them to suggest distribution of knowledge and intelligence to routers, gate-
ways, adjacent devices with high-connectivity and processing capabilities, and then 
to Cloud. Approaches to implementing distributed intelligence in the Internet of 
things, applications required, and locations of the appropriate distribution are dem-
onstrated in this document.

In [70] a use case of FPGAs in IIoT for baseband signal processing as a solution 
for wireless communication challenges of industrial IoT is presented. In which 
solutions for multi-user support, high data throughput with low latency, etc. are 
covered.

To the ends of processing power in edge nodes of the industrial internet of things 
in [71] the idea of a smart sensor with characteristics like self-configuration, self- 
optimization, and self-protection is implemented by using FPGAs.

For difficulties faced in IIoT in the reliable data collection process, integration, 
and analysis of data, FPGA-based hardware and software have been introduced, 
resulting in a significant increase in performance and resource utilization decrease 
up to 55% in [72].

In this chapter, with the information said before. It is proposed to use reconfigu-
rable hardware within various hierarchies of the industrial Internet of things, gate-
ways, monitoring systems, edge nodes, and access networks to provide a good 
processing unit and also a flexible solution for different processes. To this end, by 
utilizing FPGAs, it is feasible to distribute required algorithms for particular imple-
mentations into modules, and allocating them to crucial sections. This way, obtained 
data in the first layers of architecture would be processed and the results of pro-
cesses as knowledge gained would be sent to the next layer. Naturally causing a 
decrease in sent data size rather than the raw data, decreasing the amount of traffic 
on the communication network. As shown in Fig. 4.

In the logical part of FPGA, multiple reconfigurable partitions could be imple-
mented. Each partition for different modules, ML, DL, or any other needed pro-
cesses. For the FPGA, the data could be sent through wireless or connected networks. 
After allocating devices, with the use of Microblaze processor implemented in 
Xilinx FPGAs, considering the data received from inputs, chooses which modules 
of algorithms are chosen to be configured. Following, the processor acquires gener-
ated modules of algorithms for the partial configuration of the FPGA, then on the 
selected segment of FPGA fabric configures it for data processing, Fig. 5.

In this work, it is tried to propose the use of FPGAs dynamic partial reconfigura-
tion to overcome problems such as instantaneous response to services, respond to 
several simultaneous needs, acting in multi-user and multiprocessing situations, and 
a way to automate decision making by implementing ML in FPGAs. Other 
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researches like the concept of SFV and distributed intelligence trying to distribute 
the processes to various parts of the Internet of things to resolve these problems and 
eliminate the dependency of the processes to the Cloud for IoT made lead us to the 
use of FPGAs and distribution of processes in IIoT. That’s why in this work, by 
presenting the use of available features of reconfigurable hardware (FPGAs), a new 
architecture based on Use of FPGAs in the industrial Internet of Things in order to 
overcome obstacles of previous works is proposed. In this architecture, multiple 
components of the reconfigurable partition could be used to implement various 
modules, such as image processing, ML, DL, and computational modules. Moreover, 

Fig. 4 Traffic on the communication network

Fig. 5 Different modules to implement in reconfigurable partitions of FPGA
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during the execution of various algorithms on need-based biases, the FPGA fabric 
could be reconfigured and replaced by required modules instead of the old ones that 
are not used anymore.

In papers [73, 74] dynamic partial reconfiguration of PYNQ for different appli-
cations has been covered. As PYNQ is a field-programmable gate array with the 
ability to work with the python programming language, it’s easy to use implementa-
tion for data scientists, and the availability of ML libraries in python makes it inter-
esting to use in IIoT.

4  Case Study

A case study for the use of FPGAs reconfigurability merged with the internet of 
things and image processing was conducted and modules of image processing filters 
were implemented in FPGA. Two reconfigurable partitions were created on FPGA 
logic so to implement image processing filters and numerical computations the “fil-
ter” and “normal”. Sobel and Gaussian image processing filters were to be imple-
mented in the “filter” partition. And the “normal” partition was used for numerical 
computational modules, Fig.  6. The two image processing modules, Sobel, and 
Gaussian were selected regarding [75]. The codes for these modules were written in 
Verilog language and then with the help of ISE software, the corresponding bit-
streams for configuring FPGAs Partitions were generated and stored in a compact 
flash drive connected to FPGA.

Data was fed into the FPGA board via the inquired serial input. Then the Micro- 
blaze processor (Embedded on FPGA Development Board), At this point, looking 
at the received data associating the serial input, looking at the data received the 

Fig. 6 Reconfigurable partitions: filter & normal
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selects the processing module which must be configured (Done manually here by 
giving commands to micro-blaze through a terminal connected to pc). Afterward, 
the generated Bitstream information for the partial configuration of the module is 
acquired by the processor and then configured on the specified partition. After per-
forming processes, results are sent to the serial output, Fig. 7.

In this approach combining the previous architectures, by use of Microblaze pro-
cessor FPGA configuration is executed automatically. Time-consuming manual 
operations necessary to load bitstreams of various modules to related partitions are 
terminated from the configuration steps, thus speeding up the configuration process. 
Moreover, there is a decrease in power consumption, according to the shorter time 
it takes for configuring FPGA comparing to manual configuration processes. For 
evaluating the proposed approach, it was obvious that the need to process images in 
MATLAB (Cloud) by the use of FPGA will be eliminated, resulting in computabil-
ity near the edge devices for better efficiency. After execution of processes over data 
the knowledge afterward will be sent to the cloud if needed, resulting in data size 
reduction. Also, the processes done at the hardware level are executed much faster 
than what occurs with a software like MATLAB.

Resulting in a better understanding of the concept of distributed intelligence, and 
overcoming some obstacles faced by IoT at a small and experimental scale. In 
referred work, we were able to respond to different requests at the same time by 
using FPGAs reconfigurability characteristic, eliminate the dependency on other 
software like MATLAB for processing images, and reduce the size of the data sent 
after processing level to other layers.

5  Challenges and Open Issues

In this section, we will talk about challenges and open issues existing in IIoT that 
could be tackled by researchers. One of the first challenges faced in implementing 
industrial IoT assets is the high investment cost for businesses which rises from 
applying IIoT architecture over the industry and all connected devices to it, which 

Fig. 7 The Case Study
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has maintenance costs from hiring staff and the surveillance of all operations. So, 
there is a chance to create an automated architecture using ML algorithms and 
FPGAs to reduce the costs [76].

Using Machine learning and deep learning algorithms and FPGAs to implement 
them in IIoT will transform industries and will lead them to possible outcomes like 
self-sufficient industries, reducing the faults made by human intervention, securing 
the connected devices of any possible threat in dynamic and real-time situations. 
But there still exist challenges of how to implement and use all these coherently and 
practically, which can be mentioned as open issues to be tackled in the future.

As to implement Machine learning algorithms we need to have access to data 
collected by sensors and other devices in the IIoT network and this data needs mas-
sive computational processing power to be processed. Therefore, the need for hard-
ware with massive computational ability is realized. The influential multi-core 
central processing units (CPUs), graphical processing units (GPUs) are indeed good 
answers giving us parallel and fast computing capability [77]. However, FPGAs 
have shown better processing competencies over GPUs and CPUs in real-time pro-
cessing scenarios with restrictions faced like the amount of power consumption, 
flexibility to process different types of data, and good performance achieved. 
Making use of FPGAs in embedded systems and implement ML and DL algorithms 
on them is also an open issue to tackle.

To make FPGAs work with ml algorithms in a fast and efficient manner it is 
necessary to make libraries of Machine Learning algorithms in hardware level lan-
guage so to be implemented on FPGAs and used with hardware accelerators. 
Moreover, designs of the necessary peripherals in FPGAs architecture are needed to 
be taken care of. To implement ml and FPGAs near edge devices namely fog com-
puting idea there are significant limitations as for limited existing libraries and plat-
forms. And as fog nodes are considered with moderate computational processing 
powers, it is necessary to come up with ideas of using FPGA-based devices near 
edge nodes looking at the fact they consume less power to process data comparing 
to other processing units. To have the ability to use ML near edge devices.

Also, for future work, the big data and data analysis can be a good research scope 
for the use of Machine Learning algorithms. Machine Learning algorithms are 
going to play an important role in the automation of decision making in industry 
reducing the mistakes made by human intervention in decision making. As technol-
ogy advances the threats to security advance too with it. So, regarding all knowl-
edge gained about security using ml models, it is necessary to have advanced ml 
algorithms to keep up with the threats and provide industry safety.

We can summarize open issues as following but not limited to:

• Big data analytics
• Providing effective training data
• Enhanced ML algorithms altered to hardware level languages
• Capable fog devices for processing near edge node
• Designing, implementing and embedding FPGAs in IIoT infrastructure
• Providing Security for software and hardware connected to IIoT
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6  Conclusion

ML plays a key role in IIoT, enabling new possibilities to improve the quality of 
businesses and therefore our lives, by optimizing processes, reducing transferred 
data size, smart decision making, and quality of production. Therefore, in this chap-
ter challenges of IIoT, ML solutions, and at the end the use of FPGAs for imple-
menting machine learning algorithms in IIoT presented. The complete 
implementation of FPGAs in IIoT as a potential solution for some challenges has a 
lot to be done, so it is yet an open issue that can be addressed alongside the chal-
lenges and open issues mentioned in Sect. 5 of this chapter.
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1  Introduction

Cyber-attack is an attempt to expose, alter, destroy, steal, or gain unauthorized 
access to or make unauthorized use of an asset that targets computer information 
systems, infrastructures, computer networks, or personal computers. Connecting 
the Industrial Control System (ICS) networks to the internet in Industry 4.0 defined 
the Industrial Internet of Things (IIoT), made these systems accessible on the inter-
net, and made them a new target for attackers [1, 2]. Based on the SonicWall secu-
rity report, 34.3 million IoT malware attacks were detected in 2019, which shows a 
4.8% increase compared to 2018 [3].

ICS was initially designed to increase performance, reliability, and safety by 
reducing manual monitoring, controlling, and management. Traditionally, the ICS 
security was provided by physical obscurity, or a so-called air gap [4]. By introduc-
ing Industry 4.0, ICS information is routed to sophisticated applications across 
enterprises through the local area network and the internet; and this is where secu-
rity by obscurity is no longer a valid security solution to protect the system.
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Although the integration of the IoT and communication network increases the 
efficiency and agility of ICS, it significantly increases the attack surface and the 
possibility of cyber-attacks [5–7]. Based on the ICS Computer Emergency Readiness 
Team (ICS-CERT) reports, the number of reported ICS incidents increased signifi-
cantly from 2009 to 2016. Figure 1 shows the number of reported ICS attacks in 
each year from 2009 to 2016 [4].

For example, Stuxnet attacked Iranian centrifuges for nuclear enrichment in 
2010, causing severe damage to equipment [8, 9]. Zero-day exploits were mounted 
on a USB drive and injected malicious code into Siemens Programmable Logic 
Controller (PLC) to spin centrifuges at their natural frequencies, causing their wear 
rates to be much higher than expected. A BlackEnergy malware was used in 2015 to 
target the power grids in Ukraine, causing an industrial power outage, which affected 
about 230 thousand people [10, 11]. Another major cyber-attack was reported in 
April 2018 by three US gas pipeline firms claiming a shutdown of electronic cus-
tomer communication systems for several days [12].

Aside from the cyber layer, the physical part of the IIoT network also could be a 
target of a cyber-attack. Operational Technology (OT) devices in IIoT have no built-
 in security, as they were designed to be installed on a network that conveys any 
threat [13]. However, with the convergence of Information Technology (IT) and OT 
networks, devices are now exposed to many types of threats. For example, the 
attacker can manipulate the physical layer device such as a sensor or an actuator to 
unstable the system. Therefore, system-level security methods are required to ana-
lyze the physical behavior and maintain the system’s reliable operation [8, 14]. 
While IT security solutions are mature, they cannot be directly implemented in the 
OT environment due to different reasons. The OT security goals are prioritized in 

Fig. 1 The number of reported ICS incidents per year from 2009 to 2016 [4]
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the order of availability, integrity, and confidentiality, while IT systems are priori-
tized in the order of confidentiality, integrity, and availability [15, 16].

Moreover, due to close coupling between variables of the feedback control loop 
and physical processes, IIoT cyber-attacks have potentially fatal and environmen-
tally damaging effects. In contrast, IT cyber-attacks may cause business continuity. 
Consequently, IIoT and ICS require extremely robust safety and security measure-
ments to detect and prevent intrusions [8]. So, security solutions are required to 
secure connected devices spread across both OT and IT environments.

While security solutions developed for IT are mature, they are insufficient due to 
differences between ICS/IIoT and IT [6, 15]. Most of the available IT cybersecurity 
solutions (e.g., antivirus and firewalls) are oriented to monitor and protect the cyber 
part of the ICS, such as network and device layers. However, IIoT networks are dif-
ferent from ordinary IT networks [17]. Despite the IT networks mainly focusing on 
managing the high throughput of the network, IIoT networks have to carry out tasks 
reliable and punctual. Moreover, the IIoT network often has redundant assets to 
recover the system if it fails and continuously carries out the processes. When fail-
ure occurs, the IIoT network cannot merely be rebooted, like a typical computer 
network [4].

On the other side, IIoT introduces more security vulnerability due to the tight 
integration between the controlled physical environment and the cyber system [14]. 
Most of the industrial control protocols were not designed with inherent stiff secu-
rity requirements. These protocols were implemented under the assumption that 
they will be used in a secure network. So, their operational environments were not 
designed with secured access control. Besides, old variations of industrial network 
protocols such as Supervisory Control And Data Acquisition (SCADA) suffer from 
common security issues such as the absence of authentication, lack of protection or 
security measures for data traversing over the link, and insufficient control measures 
to avoid default broadcast approaches [4]. These protocols were designed to per-
form safely in isolated, self-contained systems or zones. However, they require spe-
cial considerations while using in a public network such as a Wide Area Network 
(WAN). Private firms may not originate from such industrial protocols, and their 
operational methods and structure are readily available in public. Thus, malicious 
actors may use these protocols to hack the control systems for either reconnaissance 
or attack, leading a normal functioning systems operation to an undesirable state. 
Another difference between IT and ICS/IIoT network is that incidents may cause 
severe impacts like an explosion, blackout, and leaking hazardous materials that 
threaten human life and/or the environment.

To mitigate the above challenges, the Canadian government, like the others, con-
siders the ICS/IIoT cyber-security as the first goal of the National Cyber Security 
Action Plan (2019–2024) [18], which shows the importance of this subject in 
this era.

Considering the vital role of ICS/IIoT in critical infrastructural operations, there 
is a significant need for sophisticated security solutions specifically designed for 
IIoT to address the challenges mentioned above.
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Due to the number of assets in IIoT networks, the number of features is signifi-
cantly high. A large number of features makes the manual and traditional statistical 
analysis of the IIoT data time-consuming and even impossible for the large real- 
world IIoT networks. On the other hand, ML-based techniques can analyze this high 
dimensional data autonomously by extracting abstract patterns from the data.

To show the importance of the subject, the Web of Science was used to analyze 
the literature review, the cyber-security in ICS/IIoT. As illustrated in Fig. 2, before 
introducing Industry 4.0, the number of researches on ICS and IIoT security is a few 
and changed linearly. However, after introducing Industry 4.0, this number increased 
significantly from about 30 papers in 2011 to about 300 papers in 2019. This trend 
shows that by integrating the internet with the ICS network, the importance of secu-
rity in this domain has significantly increased.

From 2000, 9165 pieces of research with 76,467 citations were found by the Web 
of Science tool on the ICS and IIoT cyber-attack detection. Except for the years 
between 2010 and 2014, the research trend focused on the attack and intrusion 
detection increased (see Fig.  3a), which shows the importance of this subject in 
cyber-security research. Attack detection in ICS/IIoT research was started in 2014, 
and 57 ICS/IIoT attack detection researchers were found using Web of Science. 
Comparing the trend of ICS/IIoT attack detection and attack detection charts show 
that working on the ICS/IIoT attack detection methods is introduced recently. It is 
in an era that the challenges are almost identified (like the 2010–2014 era of attack 
detection). The number of researches will be increased by resolving these chal-
lenges (see Fig.  3b. Based on Fig.  3 and the Canadian and other governments 
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considering the ICS/IIoT security as a priority in their roadmap, this subject will be 
a field of interest in the following years.

Considering the vital role of ICS/IIoT in critical infrastructural operations, there 
is a significant need for sophisticated security solutions specifically designed for 
ICS to address the challenges mentioned above.

The rest of this chapter is organized as follows. Section 2 defines the cyber-attack 
detection in IIoT and review some recent literature. Section 3 presents machine 
learning (ML) and explains some conventional ML techniques and challenges. In 
Sect. 4, an ML-based attack detection technique is proposed. Section 5 presents the 
experimental setup and evaluation results. This chapter will end with the conclusion 
in Sect. 6.

2  Cyber-Attack Detection

Cyber-threat detection answers the question of “is the incoming packet or flow a 
known (previously seen) cyber-attack?” To mitigate the effect of cyber-attack on 
ICS, attack detection techniques, including signature-based and anomaly-based 
detection systems, are proposed in the literature [19–23]. Signature-based methods 
use databases, and fixed signatures, making them unreliable in detecting unknown 
or new attacks [24–26]. Alternatively, anomaly-based approaches aim to identify 
process patterns or habits that improve the ability to deal with any new or unex-
pected intrusions [27]. Traditionally, attack detection has been widely used as a 
useful security tool to prevent cyber-attacks in CPS. The hybrid attack detection 
combines signature-based and anomaly-based detection, which combines the accu-
racy of signature-based approaches for known attacks with anomaly-based systems’ 
generalizability [23]. While these approaches effectively detect unusual activates, 
they are not reliable due to frequent upgrades in the network, resulting in different 
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Intrusion Detection System (IDS) typologies [28]. Besides that, traditional attack 
detection techniques mainly rely on network metadata analysis, including IP 
addresses, transmission ports, traffic duration, and packet intervals. To overcome 
these issues, ML-based attack detection is proposed.

Moreover, attack detection can also be categorized according to network-based 
or host-based approaches [29]. Supervised clustering [26], single-class or multi-
class Support Vector Machine (SVM) [30, 31], fuzzy logic [28, 32, 33], Deep Neural 
Networks (DNNs) [29, 32, 34] and deep learning [35] are among commonly used 
techniques for attack detection on network traffic. These techniques analyze real- 
time traffic data to detect malicious attacks promptly. However, attack detection that 
considers the only network and host data may fail to detect sophisticated attacks and 
insider exploits. Unsupervised models that incorporate process/physical data must 
monitor the system complementary without relying on detailed knowledge of the 
exploit. In general, a sophisticated attacker with sufficient knowledge and time can 
easily bypass even a robust attack detection [15].

ML-based attack detection techniques work based on a moving target to continu-
ally evolve and learn new vulnerabilities rather than identify the attack signatures or 
the network’s normal pattern [23, 36]. There are different ML algorithms available 
in the literature to detect cyber-attacks compromising data integrity [32, 37, 38], 
availability [39], and confidentiality [33].

In 2016, Shang et al. [36] proposed a one-class SVM (OCSVM) based model to 
detect attacks from a sequence of Modbus function codes. One year later, Ashfaq 
et al. [40] proposed a fuzzy neural network method for attack detection. They did 
not try their method on the ICS data, but their proposed method worked in a semi- 
supervised environment. The research proposed by [41] used the DNN algorithm to 
detect false data injection attacks in power systems as a type of ICS. They have 
tested their proposed method on two datasets and reported 91.80% accuracy for 
their method. Wang et al. [42] proposed a deep learning state estimation method for 
attack detection. In this method, stacked autoencoders were used for state estima-
tion, and an attack was detected by comparing the predicted value with the actual 
one. In 2019, [43] compared several ML algorithms, such as K-Nearest Neighbor 
(KNN), Random Forest (RF), Decision Tree (DT), Logistic Regression (LR), DNN, 
Naïve Bayes (NB), and SVM, to detect backdoor, command, and SQL injection 
attacks in the water storage system. This paper’s results showed that the RF algo-
rithm is the best attack detection model with the recall of 0.9744, while the DNN is 
the fifth algorithm with the recall of 0.8718, and the LR is the worst algorithm with 
the recall of 0.4744. They also reported that the DNN could not detect 12.82% of 
the attacks but consider 0.03% of the normal samples as an attack. Based on the 
results, LR, SVM, and KNN consider many attack samples normal without labeling 
so many normal samples as an attack. It shows that these ML algorithms are sensi-
tive to imbalanced data and are not suitable for ICS attack detection. Moreover, 
Dovom et al. [44] proposed a fuzzy-based technique to detect IoT malware samples 
using their OpCodes. They compared several fuzzy-based techniques in detection 
time, accuracy, and f-measure [45]. suggested a KNN algorithm to detect cyber- 
attacks in the gas pipeline dataset. To decrease the effect of using an imbalanced 
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dataset on the algorithm, they oversampled the data and balanced it. Using the KNN 
on the balanced dataset, they reported an accuracy of 97%, the precision of 0.98, 
recall of 0.92, and the f-measure of 0.95 for the effective eavesdropping attacks 
detection. Sakhnini et al. [46] compared SVM, KNN, and DNN techniques for IIoT 
false injection attack detection in another research. Moreover, they used three fea-
ture selection techniques and reported that the KNN could better detect attack sam-
ples even with less selected features. However, SVM had the best accuracy for all 
the test cases. Wang et al. [47] proposed a state forecasting-based attack detection 
method. They modeled the ICS and compared the model’s states with the normal 
situation to detect an attack. In the same year, Li et al. [48] proposed a cost-sensitive 
online learning approach for attack detection. They compared their proposed 
method with their online learning algorithms to show its advantages. Also, Abokifa 
et al. [49] proposed a prediction-based method for attack detection. In this work, a 
predictive neural network was trained over the normal data. Then, the system’s 
states were predicted using the trained model, and the attack was detected by com-
paring the predicted values and the real ones. Haddadpajouh et al. [50] proposed a 
multi-kernel SVM for IoT malware hunting. They used this technique to hunt mal-
ware samples using OpCode and ByteCode of IoT samples and reported an accu-
racy of 99.63% and an f-measure of 0.996. Fard et al. [51] proposed a multi-view 
sparse representation classifier method to hunt IoT malware samples and reported 
an accuracy of 99.2%. Yang et al. [52] proposed a combination of a long short-term 
memory (LSTM) and a convolutional neural network (CNN) to detect an attack 
based on the network flow fingerprint in ICS.

Most of the existing work on the attack detection in ICSs addresses the chal-
lenges raised by the ICS’s datasets’ imbalanced nature by ignoring the minority 
class or balancing the dataset that both have significant drawbacks. We will discuss 
this challenge in Sect. 3.

3  Machine Learning (ML)

In this section, DNN and autoencoders, as an unsupervised DNN, will be presents. 
Moreover, classification methods that were used in the experiments will be 
introduced.

3.1  Deep Neural Network (DNN)

Until recently, most machine learning and signal processing techniques had 
exploited shallow-structured architecture [53]. These architectures typically contain 
at most one or two layers of nonlinear feature transformation. Examples of the shal-
low architectures are Gaussian mixture models (GMMs), linear or nonlinear 
dynamic systems, conditional random fields (CRFs), maximum entropy (MaxEnt) 
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models, support vector machines, logistic regression, kernel regression, multi-layer 
perceptron (MLP) with a single hidden layer including extreme learning machine 
(ELM) [54, 55].

Deep neural network methods try to learn features hierarchically, in the way that 
features of higher levels are formed by the composition of lower-level features [56, 
57]. Automatic learning of features at multiple levels allows the model to learn more 
complex systems directly from data, without depending on human-crafted features 
[57, 58].

The performance of machine learning methods depends heavily on the choice of 
data representation (or features). Therefore, much of the actual effort to deploy 
machine learning algorithms go into designing preprocessing pipelines and data 
transformations representing the data supporting effective machine learning. Such 
feature engineering is essential but labor-intensive. It highlights the inability of cur-
rent learning algorithms to extract and organize the discriminative information from 
the data. Feature engineering is a way to take advantage of human ingenuity and 
prior knowledge to compensate for that weakness. To expand the scope and ease of 
applicability of machine learning, it would be highly desirable to make learning 
algorithms less dependent on feature engineering so that novel applications could be 
constructed faster, and more importantly, to make progress towards Artificial 
Intelligence (AI). These algorithms are called representation learning (also called 
deep learning or feature learning) [59].

Deep learning solves the central problem in representation learning by introduc-
ing representations expressed in terms of other more straightforward representa-
tions. Deep learning enables the computer to build complex concepts out of more 
straightforward concepts [59].

3.1.1  Autoencoder

An autoencoder is a three-layer neural network trained to attempt to copy its input 
to its output. Internally, it has a hidden layer h that describes a code used to repre-
sent the input. The network may be viewed as consisting of two parts: an encoder 
function h (see Eq. (1)) and a decoder that produces a reconstruction x̂. This archi-
tecture is presented in Fig. 4. If an autoencoder succeeds in merely learning to set 

Fig. 4 The general 
structure of an 
autoencoder, mapping an 
input x to an output (called 
reconstruction) x̂ through 
an internal representation 
or code h [59]
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g(f(x)) = x everywhere, then it is not especially useful. Instead, autoencoders are 
designed to be unable to learn to copy correctly. Usually, they are restricted in ways 
that allow them to copy only approximately and to copy only input that resembles 
the training data. Because the model is forced to prioritize which aspects of the 
input should be copied, it often learns useful properties of the data [60].

As mentioned before, each autoencoder consists of two parts, the encoder and 
the decoder. Equation (1) represents the encoder function of an autoencoder.

 h f x W x b= ( ) = +( )σ 1 1  (1)

where σ is the sigmoid function (σ x
e x( ) =

+ −

1

1
) that is used to make the function 

nonlinear.
Also, Eq. (2) shows the decoder function.

 x̂ g h W h b= ( ) = +( )σ 2 2  (2)

Traditionally, autoencoders were used for dimensionality reduction or feature 
learning. Recently, theoretical connections between autoencoders and latent vari-
able models have brought autoencoders to the forefront of generative modeling and 
representation learning [57, 58]. An autoencoder can capture the most salient fea-
tures of the training data. The learning process is described as minimizing a loss 
function as Eq. (3) [61]. Figure 5 shows an autoencoder model with an encoder and 
decoder layer that encodes the data to the new representation and reconstructs it 
from the new representation.

 
L x g f x L x x, ,( )( )( ) = ( )ˆ  

(3)

Fig. 5 Architecture of an 
autoencoder
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Where L is a loss function penalizing g(f(x)) for being dissimilar from x, such as the 
mean squared error.

When the decoder is linear, and L is the mean squared error, an undercomplete 
autoencoder learns to span the same subspace as Principal Component Analysis 
(PCA). In this case, an autoencoder trained to perform the copying task has learned 
the training’s principal substance as a side effect [60]. However, autoencoders with 
nonlinear encoder function  f, and nonlinear decoder functions g can thus learn a 
more powerful nonlinear generalization of PCA [60].

A stacked autoencoder comprises multiple autoencoders that make the architec-
ture deep to find highly nonlinear and intricate data patterns [62]. Figure 6 illus-
trates the stacked autoencoder model in which multiple encoders and decoders 
exist. In this figure, data encodes from the input to the first latent space, h1, and then 
it encodes to the more abstract representation, h2. Then, it passes through the decoder 
layer to reconstruct the later layer ĥ1 and it passes another decoder to reconstruct the 
input x̂.

Fig. 6 Architecture of 
stacked autoencoder with 
two encoders and decoders
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3.1.2  Long Short-Term Memory (LSTM)

Long-short-term memory (LSTM) networks are a special kind of Recurrent Neural 
Network (RNN) and can learn long-term dependencies. Hochreiter and Schmidhuber 
introduced LSTM to avoid the vanishing gradient problem of previous RNNs [63]. 
LSTM was refined and popularized by many people.

3.2  Decision Tree (DT)

A decision tree algorithm begins with a set of cases or examples and creates a tree 
data structure that can be used to classic new cases. Each case is described by a set 
of values or symbolic values [64].

3.3  K-Nearest Neighbors (KNN)

K-nearest neighbor algorithm is classified according to the distance between feature 
values. The formula for calculating distance mainly includes the Euclidean distance 
or Manhattan distance formula [65].

3.4  Random Forest (RF)

Random forest, developed by Breiman in 2001, is a tree-based ensemble classifier 
[66]. Random forest is widely used and exhibits exceptionally high perfor-
mance [67].

3.5  Support Vector Machine (SVM)

An SVM is an ML technique for separating data in the feature space using an opti-
mal hyperplane. SVM finds the optimal hyperplane using support vectors, the data 
points near that hyperplane [68].
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3.6  Naïve Bayes (NB)

Naïve Bayes is a probabilistic model that assumes all features are mutually indepen-
dent, given a particular variable called the label, and tries to solve the joint distribu-
tion problem [69].

3.7  Challenges of Applying ML on IIoT Data

Despite promising results, most existing ML algorithms suffer from the curse of 
dimensionality due to the large data volume generated in real-world ICS. Therefore, 
feature engineering must reduce the number of features or generate a new represen-
tation of the features to reduce computational overhead. Moreover, an imbalanced 
dataset of the ICS is another challenge that should be considered. Researchers have 
attempted to resolve this issue using oversampling/undersampling, as well as ignor-
ing attack samples and building algorithms using normal samples.

Furthermore, most of the existing approaches ignore ICS data’s imbalanced 
property by modeling only a system’s normal behavior and reporting deviations 
from normal behavior as anomalies. This is, perhaps, due to limited attack samples 
in existing datasets and real-world scenarios. Although using majority class samples 
is a reasonable solution to avoid issues due to imbalanced datasets, the trained 
model will not view the attack samples’ patterns. In other words, such an approach 
fails to detect unseen attacks and suffers from a high false-positive rate [70]. Thus, 
there have been attempts to utilize DNN approaches, for example, to facilitate auto-
mated feature (representation) learning to model complex concepts from simpler 
ones [60] without depending on human-crafted features [59].

Using a conventional unsupervised DNN on an imbalanced dataset yielded a 
DNN model that mainly learned majority class patterns and missed minority class 
characteristics. Most researchers have tried to address this challenge by generating 
new samples or removing specific samples to make the dataset balanced and then 
passing the data to a DNN. However, in ICS/IIoT security applications, generating 
or removing samples are not reasonable solutions. Due to the ICS/IIoT systems’ 
sensitivity, generated samples should be validated in a real network, which is impos-
sible since the generated attack samples may be harmful to the network and cause 
severe impacts on the environment or human life. Besides, validation of the gener-
ated samples is time-consuming. Moreover, removing the normal data from a data-
set is not the right solution since the number of attack samples in ICS/IIoT datasets 
is usually less than 10% of the dataset, and most of the dataset knowledge is dis-
carded by removing 80% of the dataset.

To avoid the above mentioned problems in handling imbalanced datasets, this 
study proposed an unsupervised deep representation learning method to make the 
ML techniques able to handle imbalanced datasets without changing, generating, or 
removing samples.
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4  The Proposed ML-Based Detection Method

To analyze the effect of an unsupervised deep representation learning on the imbal-
anced IIoT and ICS data and extend our previous experiment using deep unsuper-
vised representation learning in [64], a more complex deep representation learning 
consists of two stacked autoencoders will be proposed in this section. This method 
consists of four main steps, including (1) data engineering, (2) data splitting, (3) 
training the model, and (4) evaluating it using several machine learning classifica-
tion algorithms. The first three are covered in this section, but the last one will be 
described in the next section.

4.1  Data Engineering

In the first step of the implementation process, data were analyzed, and useless fea-
tures were deleted. These features are ones with constant values for all samples or 
having many missing values. Moreover, data should be normalized or standardized 
to avoid biasing ML techniques on features. We used normalization, which means 
scaling features values between 0 and 1 based on each features’ maximum and 
minimum. Equation (4) shows the transformation function.

 
X

x x

x xscale =
− ( )
( ) − ( )
min

max min  
(4)

4.2  Data Splitting

To have enough data for the training phase and have unseen data for the test phase, 
datasets were split into two categories, 90% of data was used for the training, and 
the remaining 10% was kept unseen for the test phase. Since our datasets are highly 
imbalanced, we split the dataset so that data distribution is the same in both sets. 
This process was done ten times to shape the ten-fold cross-validation.

4.3  Training the Proposed Method

In this proposed method, to handle the imbalanced IIoT data without ignoring the 
minority data or balancing the dataset, attack and normal samples were separated. 
Each passed through a stacked autoencoder to build its unique representation. These 
representations then fused and formed a super-vector. The resulting super-vector 
passed a PCA for feature extraction and dimensionality reduction. A DT was placed 
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at the end and made the final decision. Figure 7 shows the structure of the pro-
posed method.

The proposed attack detection consists of two parts, the representation learning, 
and the detection phase. DNN by itself cannot perform well on imbalanced data and 
learn the patterns of the majority class and detects most of the minority class sam-
ples as the majority ones, which leads to a low detection rate (recall). A method 
consists of two autoencoder-based representation learning is proposed in this sec-
tion to handle the mentioned challenge. As mentioned before, each autoencoder is 
responsible for learning the representation learning of one class without considering 
the samples of other classes, so each autoencoder’s output represents its input class 
well. The used autoencoder had three encoders and three decoders. After training 
the autoencoders, all normal and attack samples passed through both autoencoders 
and fused into a super-vector to make the new representation of all samples.

In the second phase, the super-vector passed the PCA for feature extraction and 
dimensionality reduction. The extracted features are then passed to a DT classifier 
to make the final decision. DT has been chosen as the final classifier since it is fast 
and robust to the imbalanced data and worked well on IIoT data, based on our previ-
ous experiments [71]. Algorithm 1 shows the procedure of the proposed detec-
tion method.

Fig. 7 Structure of the proposed IIoT attack detection method
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5  Experimental Setup and Evaluation Results

5.1  Dataset

We used Ton_IoT datasets [72], collected at the University of New South Wales, to 
evaluate the proposed IIoT attack detection method. These datasets contain telem-
etry data of IoT/IIoT services, operating system logs, and network traffics. As illus-
trated in Fig. 8, the testbed used for collecting these datasets was designed based on 
the IIoT network elements’ interaction with the three layers of the Edge, Fog, and 
Cloud to simulate a real-world IIoT network [72].

TON_IoT datasets contain normal data and nine types of attack, including scan-
ning, Denial of Service (DoS), Distributed Denial of Service (DDoS), ransomware, 
backdoor, data injection, Cross-site Scripting (XSS), password cracking, and Man- 
in- The-Middle (MITM) were launched against various IoT and IIoT networks. 
Moreover, TON_IoT contains seven datasets: fridge, garage door, GPS tracker, 
Modbus, motion light, thermostat, and weather.

5.2  Attack Scenario

As mentioned before, TON_IoT contains nine types of attack [72].

• Scanning—is the first step of the attack. In this type of attack, the attacker gath-
ers information about the target before launching the actual attack. The useful 
information for the attacker are opening ports and available services.

• Denial of Service (DoS)—is a flooding attack in which an attacker launches sev-
eral malicious attempts to disrupt access to services.

• Distributed Denial of Services (DDoS)—is a type of DoS launched by a large 
number of compromised devices known as bots.

• Ransomware—is a complex type of malware that encrypts user files and limits 
the user access to a system or a service by encrypting them and sell the decryp-
tion key. IIoT devices and applications are victims of IoT ransomware since they 
often carry out critical tasks.

• Backdoors—is an attack that allows the attacker to gain unauthorized remote 
access to an IIoT device.

• Injection attack—tries to execute malicious codes or inject malicious data into 
IIoT servers and applications.

• Cross-site scripting (XSS)—tries to run malicious commands on a Web server in 
the IIoT applications by HTML or JavaScript codes.

• Password cracker—tries to guess IIoT devices and servers using various brute 
force or dictionary attacks.

• Man-in-the-middle (MITM)—is a network attack that can intercept the commu-
nication channel between tao devices and manipulate the data.
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5.3  Evaluation Metrics

In IIoT attack detection, the primary concerns are the high detection rate and the 
ability to avoid false alarms. Therefore, the performance of the proposed method is 
analyzed based on the True Positives (TP), the True Negatives (TN), the False 

Fig. 8 Testbed environment for TON_IOT dataset [72]
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Positives (FP), and the False Negatives (FN), which are defined in Eqs. (5)–(8), 
respectively.

 TP samples correctly classified as calss ii = ∑    (5)

 TN samples correctly classified as other classesi = ∑     (6)

 FP samples wrongly classified as class ii = ∑    (7)

 FN samples wrongly classified as other calssesi = ∑     (8)

Using the above metrics, we can define Accuracy, Precision, Recall, and 
F-measure to measure machine learning algorithms’ performance.

Accuracy indicates the number of samples that were classified correctly over the 
entire dataset [73] (see Eq. (9)).

 
Accuracy

TP TN

TP TN FP FN
=

+
+ + +  

(9)

Precision indicates the number of classified samples correctly over the total sam-
ples classified as the corresponding class (see Eq. (10)).

 
Precision

TP

TP FP
=

+  
(10)

Recall indicates the number of classified samples correctly over the total samples 
of the corresponding class (see Eq. (11)).

 
Recall

TP

TP FN
=

+  
(11)

Also, f-measure is the harmonic value of precision and recall (see Eq. (12)).

 
f measure

Precision Recall

Precision Recall
− =

× ×
+

2

 
(12)

As mentioned before, our task is a three-class classification. Our data is hugely 
imbalanced, so we used the f-measure metric suitable for multiclass classification 
and the classification of imbalanced data by considering TP, FP, and FN of each class.

5.4  Evaluation Results

To evaluate the proposed method and determine the effect of the representation 
learning on imbalanced IIoT datasets, the proposed method was compared with the 
same algorithm without using the representation learning (DT row of Table 1) and 
the evaluation results reported in [72]. Table 1 illustrates the evaluation results.
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Table 1 Evaluation results of the proposed method, DT, and reported results in [57]

Dataset Method Accuracy Precision Recall f-measure

Fridge sensor Proposed method 100 1.0 1.0 1.0
DT 85 0.73 0.85 0.78
KNN [57] 99 0.99 0.99 0.99
RF [57] 97 0.97 0.97 0.97
NB [57] 50 0.53 0.51 0.51
SVM [57] 81 0.86 0.82 0.80
LSTM [57] 100 1.0 1.0 1.0

Modbus Proposed method 99 0.99 0.99 0.99
DT 95 0.95 0.95 0.95
KNN [57] 77 0.77 0.78 0.77
RF [57] 97 0.98 0.98 0.98
NB [57] 67 0.46 0.68 0.55
SVM [57] 67 0.46 0.68 0.55
LSTM [57] 68 0.47 0.68 0.55

Light motion Proposed method 95 0.95 0.95 0.95
DT 86 0.74 0.86 0.80
KNN [57] 54 0.34 0.59 0.43
RF [57] 58 0.34 0.59 0.43
NB [57] 58 0.34 0.59 0.43
SVM [57] 58 0.34 0.59 0.43
LSTM [57] 59 0.35 0.59 0.44

Garage door Proposed method 100 1.0 1.0 1.0
DT 100 1.0 1.0 1.0
KNN [57] 100 1.0 1.0 1.0
RF [57] 100 1.0 1.0 1.0
NB [57] 100 1.0 1.0 1.0
SVM [57] 100 1.0 1.0 1.0
LSTM [57] 100 1.0 1.0 1.0

GPS sensor Proposed method 100 1.0 1.0 1.0
DT 92 0.92 0.92 0.92
KNN [57] 88 0.89 0.88 0.88
RF [57] 85 0.85 0.85 0.85
NB [57] 84 0.86 0.85 0.86
SVM [57] 86 0.88 0.87 0.87
LSTM [57] 87 0.89 0.88 0.88

Thermostat Proposed method 92 0.92 0.92 0.92
DT 81 0.78 0.81 0.79
KNN [57] 60 0.56 0.61 0.57
RF [57] 66 0.59 0.66 0.53
NB [57] 66 0.44 0.66 0.53
SVM [57] 66 0.44 0.66 0.53
LSTM [57] 66 0.45 0.67 0.54

(continued)

Deep Representation Learning for Cyber-Attack Detection in Industrial IoT



158

As shown in Table  1, the proposed method outperformed all other methods, 
including the DT, which has a similar procedure except the representation learning, 
which shows the power of the proposed representation learning on IIoT imbalanced 
datasets. The proposed method has the best recall metric compared to the other 
competitors, which means a higher detection rate. Moreover, it has the best preci-
sion metric among the compared techniques, which shows fewer false alarms.

6  Conclusion

This chapter focused on cyber-attack detection as a part of IIoT cybersecurity. In 
this chapter, an unsupervised deep representation learning approach was proposed 
to handle the IIoT imbalanced data without manipulating it. The proposed approach 
consists of two phases, representation learning, and detection. In the representation 
learning phase, two stacked autoencoders were used to learn independent represen-
tations from normal and attack samples and made the data ready for the detection 
phase. In the detection phase, a decision tree was used to separate normal and attack 
data based on the learned representation. Compared to six conventional ML tech-
niques, the proposed model shows its superior performance in accuracy, precision, 
recall, and f-measure. The higher recall of the proposed method shows its higher 
detection rate, while the higher precision shows the fewer false alarms of the pro-
posed method over the other techniques.

The proposed cyber-attack detection approach will be completed by a cyber- 
attack hunting component that makes a two-stage detection and hunting framework 
to detect the known attack in the first step and hunt the previously unseen attacks in 
the hunting stage.
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Classification and Intelligent Mining 
of Anomalies in Industrial IoT
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1  Introduction

Today, Internet of Things (IoT) is being broadly used across various industries 
including manufacturing, energy, transportation, logistics, etc. It is often assumed 
that IIoT devices have continuous access to the Internet or other internal networks 
in their environment [1]. However, despite all the benefits that network accessibility 
and connectivity brings, it poses new security challenges to the system [2, 3]. 
Specifically, the Internet connectivity and data sharing between different IIoT 
devices increase the risk of various cyber-attacks, aimed at stealing or altering con-
fidential or sensitive data.

In spite of the aforementioned security risks in IIoT systems, most of the machin-
ery and equipment in modern industrial plants are not designed to be securely con-
nected, making them more vulnerable to cyber-attacks [4]. This can in turn lead to 
a series of major problems from an individual machine breakdown to the shutdown 
of the entire production, or even loss of lives at the extreme point [5–11].

However, it should be noted that cyber-attacks are not the only origin of data cor-
ruption. In other words, data trustworthiness in IIoT can also be threatened by other 
reasons such as any hardware or software problems [12], without any motivations 
for a deliberate damage. Furthermore, the large-scale generated data by IIoT and the 
high dynamicity and heterogeneity of the industry environments make IIoT systems 
even more vulnerable to corrupted data [13].

Despite to the all above challenges, there is a general rule which is always 
exploited to improve the trustworthiness of the collected data. This rule is to exclude 
the corrupted data that do not exhibit a data pattern similar to the expected normal 
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behavior. As mentioned earlier, the corrupted data, which are also referred as data 
anomalies, may be a result of a hardware malfunction, a software problem, or even 
a malicious cyber-attack [14]. No matter which reason has caused anomalies, the 
corrupted data should be identified timely, before any critical loss or damage 
occurs [15].

Therefore, efficient anomaly detection schemes are needed to ensure the reliabil-
ity of the collected data and to improve the efficiency of the IIoT. However, conven-
tional security solutions do not meet industry standards and requirements and thus 
novel approaches need to be devised [16].

In this respect, a set of different classification and intelligent mining solutions 
have been proposed for the problem of anomaly detection in IIoT in recent years.

In this chapter, we aim to clarify the main challenges in designing efficient anom-
aly detection solutions in industrial IoT environments. Furthermore, we review the 
existing studies in the literature highlighting their major features. We also discuss the 
remaining open problems in the field that need to be addressed in future researches.

The rest of the chapter is organized as follows. In Sect. 2, we provide some pre-
liminaries including anomaly detection definition and its challenges in IIoT. Next, 
in Sect. 3 we review the proposed intelligent anomaly detection approaches in the 
literature. We provide a discussion over these studies in Sect. 4. Furthermore, we 
highlight the open problems in anomaly detection in IIoT to shed light for future 
researches in this field in Sect. 5. Finally, in Sect. 6 we conclude the chapter.

2  Anomaly Detection and Its Challenges in IIoT

In this section, we provide some preliminary concepts about anomaly detection in 
IIoT. We first provide a general definition of anomaly detection. We then discuss the 
existing challenges in anomaly detection, and particularly in IIoT.

In general, anomaly detection is described as the process of recognizing patterns 
in the data that exhibits a behavior different from the one expected. Such non- 
conforming patterns are usually referred to as anomalies or outliers [17]. Figure 1 
illustrates a two-dimensional dataset in which the observations with a normal 
behavior are shown with blue marks, whereas anomalies demonstrating a very dif-
ferent behavior are shown with blue marks.

The main goal of anomaly detection is to declare any observations outside the 
normal regions as anomalies. However, there are several general challenges for an 
efficient anomaly detection system in all application domains described as follows 
[17, 18]:

• The difficulty of defining normal regions
• Variation of normal behavior over time
• The difference of anomaly notion in various application domains
• Lack of sufficient training/valuation datasets
• Presence of noise in the dataset
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An efficient anomaly detection system is thereby the one that can improve the 
accuracy of detection while lowering the false alert rates.

When anomaly detection is applied in the context of IIoT, its main goal is to 
detect any kind of anomalies to discover any faults, malfunctions, or cyber-attacks 
[19]. However, several other challenges are specifically associated with the IIoT 
domain which we discuss in the following.

The first challenge is the time efficiency of the anomaly detection system which 
highly matters in IIoT.  Therefore, time constraints should be considered in the 
whole process. In the first step, it should be noted that data collections and evalua-
tions must be computed in an online fashion, using the latest data from IIoT devices. 
Next, requirements for a long series of past data should be taken into account, 
depending on the nature of the application of the collected data. Finally, the fast 
declaration of results (i.e. the anomalousness or trustworthiness of data) must be 
highly considered to make quick responses to the cause of the anomaly possible, 
before any critical loss or damage happens.

The second challenge is where the anomaly detection system must be deployed. 
This matters in terms of both computational and communication resources, and also 
security issues. Since, on one hand, anomaly detection systems often require both 
powerful computational resources and high bandwidth communication links. On 
the other hand, the anomaly detection systems usually access a set of sensitive data 
collected from different IIoT devices and thereby they should be able to guarantee 
the security requirements.

3  Literature Review for Anomaly Detection in IIoT

In this section, we review the proposed solutions in the literature for the problem of 
anomaly detection in IIoT and discuss their main features.

Fig. 1 A simple 
demonstration of 
anomalies in a 
2-dimensional dataset
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Peng et al. [20] have addressed the early anomaly detection problem in under-
ground mining environments to improve safety. They propose a multi-source multi- 
dimensional data anomaly detection method based on hierarchical edge computing, 
which enables multi-source data anomaly detection at collection end (sensors) and 
sinks end (base-stations).

More specifically, first they propose a hierarchical edge computing model to 
realize load balance and low-latency data processing at the sensor and base-station 
ends. This model has been shown in Fig. 2.

As it can be seen, the physical structure (Fig. 2a) consists of three major parts 
including remote cloud server, base station and sensor. Also, according to Fig. 2b, 
the logical model consists of two edge computing units which are the base station 
edge and the sensor edge. The base stations have more powerful hardware infra-
structure compared to the sensors. Hence, they are mainly responsible to execute the 
multi-source data anomaly detection algorithm, while the sensor nodes should exe-
cute the single source data anomaly detection algorithm.

Tthe proposed anomaly detection system works as follows. First, each sensor 
periodically collects environmental state data and then performs single source data 
anomaly detection. The proposed algorithm considers the temporal correlation of 
monitoring data in the anomaly detection process. Then, it sends the original data 
along with the detection results to the corresponding base station via a wireless link. 
Once the data is received by the base station, it performs multi-source heteroge-
neous data anomaly detection. It combines the received single-source data anomaly 
detection result with other detection results obtained by other sensors. Indeed, it 
considers the temporal and spatial correlation properties of multi-source data. The 
final result is then sent to the remote cloud with the original data through a wired 
link. Moreover, when an anomalous behavior is detected, the system will start an 

Fig. 2 Proposed hierarchical edge computing model in [20]. (a) Physical structure, (b) Logical 
structure
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emergency warning and treatment plan according to the safety prevention and early 
warning level in underground mining.

Finally, at the highest level, the received data is stored in the database of the 
cloud platform. Then, the decision center uses data mining and other intelligent 
algorithms for analyzing the data and making decision.

Figure 3 illustrates the Flow chart of data anomaly detection over different nodes 
in the proposed hierarchical edge computing model.

Yang et al. [21] propose a secure and efficient distributed k-nearest neighbors 
classification algorithm (SEED-kNN) that can be implemented in the IIoT anomaly 
detection, while supporting large-scale data classification on distributed servers.

As shown in Fig. 4, they assume a system model which consists of three entities, 
namely, the control center, the cloud and the devices. The control center is not only 
responsible for managing directing, or regulating the behavior of devices, it is also 
in charge of running machine learning algorithms on the dataset in cloud to discover 
the added-values for automatic control and industrial process monitoring. The gen-
erated data by devices is pre-processed to provide the training samples and then 
maintained on the cloud infrastructure which includes multiple distributed servers. 
Indeed, each server maintains a different part of training samples.

However, the data exchanged between devices and servers can be vulnerable to a 
variety of cyber-attacks, such as eavesdropping, or intentional or unintentional data 
expose by the cloud. Therefore efficient mechanisms are required to ensure security.

Fig. 3 Flow chart of data anomaly detection over different nodes in the proposed hierarchical edge 
computing model in [20]. (a) Sensor, (b) Base station, (c) Cloud
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Hence, in order to preserve the security of training samples in cloud against data 
leakage, and also to prevent the control information exposure, the authors first 
design a secure and efficient vector homomorphic encryption (SE-VHE) scheme. 
The SE-VHE scheme is designed by constructing a key-switching matrix and a 
noise matrix for data encryption. Then, the SEED-kNN is proposed based on the 
designed SE-VHE to provide a secure and efficient kNN classification over the 
encrypted training samples.

Moreover, since the data are separately maintained on multiple servers, the Map/
Reduce architecture is integrated to achieve the parallel and distributed data classi-
fication. Indeed, the encrypted query for classification which has been issued by the 
control center is split and mapped to all the distributed servers. Then, the classifica-
tion results from servers are gathered and the final class label is returned to the 
control center.

Control
Center

Cloud

kNN Query
Classification

Result

Data and Control Flow
Connections in Cloud

Fig. 4 The proposed system model in [21]
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Muna et al. [22] propose an anomaly detection technique for Internet Industrial 
Control Systems (IICSs) based on deep learning models which are trained and vali-
dated using information collected from TCP/IP packets. In the training phase, a 
consecutive training process executed using an unsupervised Deep Auto-Encoder 
(DAE) algorithm to learn normal network behaviors and produce the optimal 
parameters (i.e., weights and biases). These parameters are then used as an initial-
ization stage for the training of a supervised Deep FeedForward Neural Network 
(DFFNN) to classify network observations. In the testing phase, the DFFNN is used 
to discover attacks.

Figure 5 shows the overall structure of the proposed anomaly detection system. 
As it can be seen, only an unlabeled normal training dataset is used to train DAE to 
learn and discover the most important feature representations for normal behavior. 
Then, the trained model is used as the starting point for training the DFFNN using 
the labeled training dataset. In the testing phase, the new dataset sample is tested 
based on the final constructed network model.

Genge et al. [12] propose an anomaly detection approach in the context of aging 
IIoT. Indeed, a major novelty of this work in the field of anomaly detection systems 
for IIoT is the adding of aging parameter to the anomaly detection process.

In the proposed approach it is assumed that the IIoT’s life cycle is split into dis-
tinct ages, while each age defines an operational time interval. Then, principle com-
ponent analysis is used to create a model for the normal process behavior for each 
age. The proposed approach employs the correlation among process variables to 
detect stealthy cyber-attacks. It is based on Hotelling’s T2 statistics and the univari-
ate cumulative sum. Another novel feature of their approach is the detection of 
attempts to alter the dataset in each age. Moreover, the leveraging of multivariate 

Fig. 5 Proposed architecture of DAE-DFFNN model based ADS for IICs in [22]
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process analysis enables the proposed anomaly detection system to detect stealthy 
attacks that cause minor process deviations by manipulating legitimate sensor data.

Li et al. [23] first propose a method for processing one-dimensional weakly cor-
related feature data. They apply this processing method on the benchmark NSL- 
KDD dataset provided by [24]. Then, they propose a deep learning approach for 
intrusion detection based on multi-convolutional neural network (multi-CNN) 
fusion algorithm. The authors believe that the processed data have a better training 
result for deep learning.

Figure 6 shows the diagram of their proposed intrusion detection system. In the 
first step the input dataset is preprocessed which involves numeralization and nor-
malization. Numeralization is applied so that the one-dimensional feature data is 
converted into a grayscale image. However, normalization is performed to remove 
large numerical differences in the records by moving them within the range of [0, 

Fig. 6 Block diagram of the proposed intrusion detection system in [23]
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1]. This will speed up the convergence speed of the model. The obtained dataset is 
then divided into a training set and a test set.

In the training phase, first data clustering is performed to improve the adaptabil-
ity of the obtained model. According to their proposed approach, a data with m 
features should be divided into n parts according to prior knowledge or common 
clustering methods, where m > n. Then, the different parts of the data are processed 
separately. Hence, with respect to the existing correlation between features of their 
adopted dataset, they have divided the feature data into four parts, which are the 
basic features, the content features, the time-based network traffic statistics fea-
tures, and the host-based network traffic statistics features. Then, the input data is 
converted into the form of images in order to better exploit the advantages of con-
volutional neural networks. Next, the same CNN structure is used for each part of 
the dataset. Finally, model fusion is performed to obtain the prediction result.

Yan et al. [25] propose a new hinge classification algorithm based on mini-batch 
gradient descent with an adaptive learning rate and momentum 
(HCA-MBGDALRM).

The most common method used for optimizing the hinge classification algorithm 
is the stochastic gradient descent. However, one of the major issues of this method 
is that it reduces the gradient descent only when the sample point maximizes the 
loss function. Also, the hinge classification training method is unstable and vulner-
able to noise. Hence, the authors propose HCA-MBGDALRM to address the afore-
mentioned shortcomings.

The algorithm significantly improves the performance of deep network training 
compared with traditional neural networks, decision trees, and logistic regression in 
terms of scale and speed. Indeed, the proposed parallel framework for HCA- 
MBGDALRM divides and executes program tasks on multiple microprocessors, 
accelerating the processing speed of very large traffic datasets.

HCA-MBGDALRM has been implemented using the parameter server architec-
ture which enables distributed machine learning. In this architecture, data and work-
load are allocated to client nodes, while the global variables are retained by the 
server nodes.

In addition, the authors solve the data skew problem in the shuffle phase The 
proposed HCA-MBGDALRM method has been theoretically analyzed which shows 
that it can converge to the globally optimal solution effectively.

Demertzis et  al. [4] propose an anomaly detection framework based on Deep 
Learning network architecture [26]. In this respect, they develop an innovative 
blockchain security architecture that aims to ensure secure network communication 
between the IIoT devices based on deep learning smart contracts. Indeed, a type of 
blockchain communication is considered in which smart contracts programmati-
cally implement a bilateral traffic control agreement. This way, they are capable of 
detecting anomalies based on a trained deep autoencoder neural network. The 
implementation of the proposed approach was in fact based on the unary classifica-
tion philosophy in which a deep autoencoder was trained using a dataset of normal 
IIoT behavior.
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The proposed architecture provides a secure distribution platform for the associ-
ated transactions, without any intervention of a central authority. It can be also con-
sidered as a decentralized, reliable, peer-to-peer network architecture for device 
communication in order to improve security and functionality in industrial 
applications.

The presented architecture consists of three layers including, Authorization, 
Syndication, and Overlay layers [27]. These layers are shortly described as 
following.

The Authorization layer provides levels of access by expressing security policies, 
using entities, namespaces, resources, and delegations of trust. The Syndication 
layer provides publish/subscribe functions to system resources. The subscribe per-
mission allows an entity to receive information from the published resource. The 
publish permission allows an entity to publish information and interact with the 
resources. This layer is directly related to the Authorization layer. Finally, the 
Overlay layer is responsible to form an overlay network over the existing physical 
network. In other words, it forms the communication network between the IoT 
devices.

However, the proposed approach exhibits several disadvantages. First, it assumes 
that the data is easily accessible. Second, the proposed system is not scalable as it is 
not applicable for very large data sets (terabytes).

Liu et al. [28] propose a new anomaly detection framework for sensing time- 
series data in IIoT. The proposed model enables on-device deep anomaly detection 
using Federated Learning (FL). In this model, a cloud aggregator and edge devices 
train a deep anomaly detection model by using a given training algorithm (e.g., 
LSTM) for anomaly detection.

More precisely, the edge devices train a shared global model on their own device 
using their own local dataset (i.e., sensing time series data from IIoT nodes). Then, 
they send their updated models (i.e., gradients) to the cloud aggregator. All the 
received models are then used by the cloud aggregator to obtain a new global model. 
In the end, the cloud aggregator send the new global model to all edge devices to 
achieve accurate and timely anomaly detection. Figure 7 illustrates the above steps.

It should be noted that local on-device training in their proposed model helps to 
preserve the privacy of edge devices, while solving the problem of data islands. 
Moreover, the proposed Attention Mechanism-based Convolutional Neural 
Network-Long Short Term Memory (AMCNN-LSTM) for anomaly detection 
avoids communication overhead during model training. The AMCNN-LSTM model 
uses attention mechanism-based CNN units to extract important fine-grained fea-
tures of historical observation sensing time-series data. This way, memory loss and 
gradient dispersion problems are prevented which are common problems in encoder- 
decoder models such as LSTM model. Furthermore, this model uses LSTM mod-
ules for timeseries prediction. Finally, they propose a gradient compression 
mechanism based on Top-k selection to further improve the communication effi-
ciency of the proposed framework.

Garmaroodi et  al. [29] propose an anomaly detection system for a real-world 
dataset collected from SinaDarou Labs which is an industrial pharmaceutical 

N. Sharghivand and F. Derakhshan



173

company. They specifically address anomaly detection for CHRIST Osmotron 
water purifier.

In this respect, they first collect a dataset of normal and faulty operation samples 
over a two-week time interval. Given the data, they propose two anomaly detection 
approaches to detect system faults. The first one is based on a supervised learning 
model (Fig. 8a). However, due to the lack of enough faults data, the second model 
is based on normal system identification which models the system components by 
artificial neural networks (Fig. 8b).

Wu et al. [30] propose an anomaly detection method in IIoT, which is a synergy 
of the Long Short-Term Memory Neural Network (LSTM-NN) and the Gaussian 
Bayes model. A major employed idea in their work is that the time-dependency is 
closely related to the outlier detection of IIoT data. Because, any anomaly occur-
rence is not only related to the current state, but also related to the past states. 
Therefore, they propose a stacked LSTM model to deal with time series data with 
different types of time-dependency.

The proposed LSTM-NN builds a model on normal time series and then detects 
anomalies by utilizing the predictive error for the Gaussian Naive Bayes model 
[31]. This way, it exploits the advantages of both LSTM and Gaussian Naive Bayes 
models, which are LSTM’s good prediction performance, and the excellent classifi-
cation performance of the Gaussian Naïve Bayes model through the predictive error.

Figure 9 shows the overview of their proposed anomaly detection framework for 
IIoT time series data. As it can be seen, in the first step initial data processing is 
performed via data cleaning, data down-sample, and data normalization. Then, the 
pre-processed data is divided into training sets, validation sets and test sets. The 
training and validation sets contain only the normal data, while the test set contain 
both types of data. The training set is used to optimize and construct the stacked 

Fig. 7 The overview of proposed anomaly detection framework in [28]
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Fig. 8 The proposed anomaly detection approaches in [29]. (a) An anomaly detection model 
based on supervised learning in which abnormal/faulty classes need to be known beforehand [29]. 
(b) An anomaly detection model based on normal system identification in which fault samples are 
scarce [29]
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LSTM model. The validation set is used to select hyper-parameters. Finally, the test 
set is used to obtain error data sets which are also split into two sets of error training 
and error test. The error training set is used to make the maximum likelihood esti-
mation in order to obtain the parameters of the Gauss distribution. These parameters 
are then used by the Naive Bayes model to build a Gaussian Naive Bayes model. 
Once the error test sets are imported into this Gaussian Naive Bayes model, the clas-
sification results are achieved.

Zolanvari et al. [32], study the applicability of ML-based anomaly detection sys-
tems to improve the security of the IIoT systems. In this respect, they first describe 
the four most popular IIoT protocols, along with their main communication network 
vulnerabilities. Then, they use a real-world testbed to deploy backdoor, command 
injection, and SQL injection attacks against the system and then show how an 
ML-based anomaly detection system can be effectively used to detect them.

Finally, a test methodology has been proposed in [33] for the comparison of 
cloud and edge-based implementation of deep learning algorithms for anomaly 
detection in IIoT. Since, deep learning algorithms often demand high computational 
and communication resources, raising serious questions on the system scalability.

In this regard, they use a real-world platform to study the tradeoff between scal-
ability, communication delay, and bandwidth usage when using a full-cloud archi-
tecture and the edge-cloud architecture. They assume three possible architectures 
with respect to the above scenario considering the production Machine, the IIoT 
Edge Computer, and the Cloud App. In the edge-cloud architecture, the deep learn-
ing algorithm is run by the Edge Computer (Fig. 10a); In the full-cloud architecture, 
an Edge Computer is used only as a local gateway for data aggregation and thus the 
deep learning algorithm is executed in Cloud (Fig. 10b); Finally, in the full-cloud 
architecture the production Machine is directly connected to the Cloud (Fig. 10c).

Fig. 9 Overview of the proposes anomaly detection framework for industrial IoT time series 
data in [30]
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According to their obtained results, the complexity of the algorithm plays an 
important role in the decision about which architecture is most suitable. However, 
the full-cloud architecture can outperform the edge-cloud architecture when Cloud 
computation power is scaled.

4  Discussion

The proposed solutions in the literature for anomaly detection can be generally cat-
egorized based on their employed model, which may be parametric (e.g., distribu-
tion functions), or non-parametric (e.g., machine learning techniques). The 
non-parametric models can be also further categorized based on their requirement 
for prior knowledge (i.e., supervised and unsupervised learning) [34].

Most of the proposed models use machine learning-based approaches as they are 
more consistent with the dynamic nature of the IIoT environments. Many of these 
studies employ classification based models, supervised or semi-supervised learning 
techniques, which have expensive training times, but their testing time is much 
faster due to the existence of a pre-trained model.

Since in many application domains data acquisition for training and testing is a 
costly and time-consuming process, hence several works have employed unsuper-
vised learning techniques. However, these models are less robust in handling noisy 
data and thus require prior assumptions on the anomaly distribution.
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Fig. 10 Proposed experimental setup for the measurement of the performance metrics in [33], 
where the anomaly detection can be carried out in either the Edge Computer (a), or in the 
Cloud (b, c)
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5  Open Challenges and Future Research Directions

In this section, we discuss the open challenges in the field to shed light on future 
research works.

5.1  Lack of Training Data Sets

One of the main challenges in IIoT environments is the difficulty of gathering suf-
ficient training data for the anomaly detection system. This is specifically more 
challenging about anomalous samples so that a balanced training dataset can be 
provided. Because supervised learning approaches often show significant perfor-
mance degradation for datasets with imbalanced classes. Hence, new studies are 
required for efficient training of the supervised and semi-supervised anomaly detec-
tion models concerning the aforementioned challenges.

5.2  Real-Time Anomaly Detection

As mentioned in Sect. 2, in many IIoT environments the real-time or near real-time 
detection of anomalies is crucial. If it takes too long to detect a malfunction in the 
system or a cyber-attack, critical losses or damages may happen. Hence, more stud-
ies are required in all aspects of data acquisition and evaluation for timely anomaly 
detection and declaration.

5.3  Adaptive Learning

In many cases, the normal system behavior may change over time. Hence, while 
offline approaches may be applicable in the initial steps, adaptive approaches are 
required to be developed to improve anomaly detection models over time to adapt 
to new changes in the data without requiring extensive retraining of the system.

5.4  Resource and Energy Constraints

Anomaly detection models often require both high computational and communica-
tion resources, raising serious questions on the system scalability because of major 
resource and energy constraints of IIoT devices.
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Data elaboration close to the end IIoT devices (e.g. using on-site computing 
resources or edge computing) can reduce data transfer and thereby improve the time 
efficiency, however it increases imposed costs. In contrast, offloading anomaly 
computations to a distant cloud can decrease the costs, while deteriorating the sys-
tem performance due to high data transfer delays. Therefore, a major challenge is 
where the anomaly detection system should be implemented regarding the perfor-
mance and cost preferences, and the resource and energy constraints of IIoT devices.

5.5  Privacy and Security Concerns

Anomaly detection systems often access a set of sensitive data collected from dif-
ferent IIoT devices. Furthermore, the collected data may contain the user’s private 
data, which arises new security concerns for user privacy. For example, a heart 
abnormal pulse detection model may reveal the patient’s heart disease history [35, 
36]. Hence, the anomaly detection system must be implemented by a trusted party 
in a secure place to prevent any data abuse or privacy leakage.

6  Conclusion

In this chapter, we discussed the necessity of anomaly detection in IIoT environ-
ments and the existing challenges in the field. We demonstrated that conventional 
anomaly detection approaches are not suitable for IIoT environments and novel 
solutions are required for the unique features of IIoT environments. We then 
reviewed existing studies in the literature highlighting their main features and dis-
cussing the overall pros and cons of the proposed solutions. Finally, we discussed 
the remaining open challenges in the field that demand further research.
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1  Introduction

In the past few years, as a result of developments in the field of electronics and 
improvements of wireless systems, the term Internet of Things (IoT) emerged. The 
opportunity to connect devices together and share information and data while per-
forming their individual tasks without being bound to locations and physical equip-
ment [1].

Industrial Internet of Things (IIoT) is a new application of the Internet of Things 
(IoT) in the industrial sector. The IIoT enables an enterprise to perform operations 
in an efficient way while maintaining quality and validation [2]. IIoT makes moni-
toring and maintenance tasks more convenient, which will be discussed under the 
category of smart manufacturing systems [3]. By integrating Cyber-Physical 
Systems CPS, a smart manufacturing execution system can be created such that, 
documents all data obtained from production and performs decision-making based 
on predictions on the data for better and optimized future steps [4]. IoT has been 
progressively used in different sectors of the industry and created a new revolution, 
IIoT or Industry 4.0 [5, 6], which improves the efficiency, security and productivity 
in the industry [7–10]. Based on the environment and the purpose of its application, 
IIoT can have different architectures, but generally, it can be described in a four- 
layered architecture, as can be observed in Fig. 1.

The physical layer, consists of all physical elements such as actuators, sensors, 
machines, etc. The network layer consists of communication networks and 
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protocols. The middleware layer makes the communication between the second 
layer and the first layer possible. It consists of an application programming interface 
(API), database, cloud server, etc. The fourth layer, the application layer, describes 
the application of the IIoT. Some instances of the applications are autonomous vehi-
cles, smart home, healthcare, etc. [11–15]. for instance, Rouzbahani et al. proposed 
an Incentive-based Demand Response Optimization (IDRO) model in order to effi-
ciently schedule household appliances for minimum usage during peak hours [16, 
17], which demonstrates noticeable improvements in power factor and cost-saving 
during peak hours for individual households.

While IIoT is an excellent solution to facilitate industrial processes, it creates 
new challenges with its application. As the devices start to operate simultaneously, 
they generate valuable data for online monitoring and control of the system, which 
can also be used by attacker to manipulate the system performace [18, 19]. There 
are several attacks that can be performed in IIoT, one of such is cyber-attacks, and 
this type of attack has other variations itself, such as Denial of Service (DoS), 
Datatype Probing (DP), Scan, and etc.

Fig. 1 Four layered architecture IIoT

H. M. Rouzbahani et al.



183

In order to perform data processing and analysis, Machine Learning (ML) is 
preferred over the traditional methods due to the huge quantity of data that is being 
generated throughout the operations. ML is considered to be a useful paradigm for 
detecting security threats [20]. Apruzzese et al. [21] conducted an investigation on 
the effectiveness of ML for cyber threat detection to find and address the limitation 
of it in such tasks. Lee et al. [22] conducted the same topic of research, but the focus 
was on the reduction of error in the solution. These are a few instances to show the 
effectiveness of ML in the area of detection and classification of cyber-security 
threats.

In this paper, we proposed a Snapshot Ensemble Deep Neural Network (SEDNN) 
for cyber-attack detection. The model has high accuracy in the detection of cyber 
threats. It is worth noticing that the classification of the attacks was not considered 
in this paper. In sect. II, some previous work on the same area of study will be pre-
sented, section III will be devoted to the methodology, in sect. IV the results will be 
presented and in sect. V conclusion and future steps will be discussed.

2  Previous Works in IIoT Security

As the system becomes more complex and data quantity becomes enormous [23–
25], the computation and control become more challenging, resulting in traditional 
methods not to perform as expected because of latency and long response time [26, 
27]. ML algorithms improve industrial processes’ security and reliability and are 
rapidly used to detect and address security threats in IIoT [28, 29]. Previous studies 
in the area of ML application in IIoT security show promising results in using ML 
algorithms for addressing cyber threats in IIoT.

Rouzbahani, Karimipour and Lei [30] proposed an Ensemble Deep Convolutional 
Neural Network (EDCNN) model for electricity theft detection in smart grids. In 
this study, they used a dataset consisting of the daily consumption of 42,372 users. 
They used an unbalanced dataset in which 8% of customers were attackers, and the 
rest were normal users. They compared the results with other models and concluded 
that EDCNN could detect electricity theft in smart grids with an accuracy of 0.981, 
which indicates that the model is precise.

Farahnakian and Heikkonen [31] approached intrusion detection by presenting a 
Deep Auto-Encoder (DAE) based system. They used the model on the KDD- 
CUP’99 dataset and achieved an accuracy of 94.71% for attack detection, which 
then they concluded that their approach obtained better results as opposed to other 
deep learning-based approaches. Moukhafi et al. [32] chose a novel hybrid genetic 
algorithm and support vector machine with the particle swarm optimization feature 
selection approach for detecting Denial of Service (DoS) attack detection, which 
they implemented on KDD 99 dataset and obtained an accuracy of 96.38%. 
Rouzbahani et al. [33] presented research on using ML algorithms for the classifica-
tion of False Data Injection (FDI) attacks in CPS.
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Vajayanand et al. [34] proposed a support vector machine (SVM)-based model, 
and by doing so, they improved the classification algorithm. They used the 
ADFA-LD dataset for the implementation of their model and obtained an accuracy 
of 94.51%. In the research of Khalvati et  al. [35], they proposed the SVM and 
Bayesian model to successfully classify IoT attacks. They conducted research with 
their proposed model on KDD CUP 99 dataset and achieved an accuracy of 91.50%. 
Li et al. [36] proposed a bidirectional long and short-term memory network with a 
multi-feature layer (B-MLSTM) on the classical IIoT datasets: CTU-13 [37], Gas- 
Water [38], and AWID [39] in order to detect low-frequency and multi-stage attacks 
in IIoT.  After the implementation of the model, an accuracy of 95.01% on the 
CTU-13 and 97.58% on AWID was obtained. Rouzbahani et  al. [40] conducted 
research and performed cyber-attack detection in smart cyber-physical grids by 
using different ML algorithms, which resulted in a great performance for Random 
forest K-Nearest Neighbor (KNN).

Overall, investigations show that ML can efficiently and precisely detect security 
threats in IIoT. What is worth noticing is that the datasets in these studies are clas-
sical datasets that are available on the internet and are considered to be outdated. We 
are obligated to use new datasets because of the modern security requirements of 
IIoT. This paper proposes a modern ML model that will be implemented on newer 
datasets and will also address the compatibility of the model with resource- 
constrained devices.

3  Methodology

In this section, a brief description of the dataset has been presented. The section will 
then continue with a description of the preprocessing of the dataset, the proposed 
model, and evaluation parameters that were considered to evaluate the model’s 
performance.

3.1  Dataset

The dataset used in this paper is an open-source dataset obtained from Kaggle [41]. 
It was provided by Pahl et al. [42]. This dataset contains communications between 
different IoT nodes, sensors and applications. In this dataset, multiple attacks were 
performed on the IIoT applications, for example, “spying”, “wrong setup” and etc., 
which resulted in an anomaly in some of the 357,952 data samples [43, 44]. This 
paper tried to address the cyber-attack performed on the data. Classification of the 
attacks will be discussed in another paper.
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3.2  Preprocessing of Data

In order to obtain acceptable results from ML models, a comprehensive dataset is 
the main requirement. Most of the time in data mining is devoted to data processing 
[45], and the most essential problem in data processing is missing values, which can 
be caused by various reasons such as power outage, sensor damage or cyber- 
attacks [46].

In this dataset, there are missing values. Deleting them can result in losing valu-
able data on other columns. Therefore, the missing values need to be replaced. 
Figure 2 shows a diagram of the algorithm for attack detection. The processing of 
replacing the missing values is as follows:

3.2.1  Features

First, we need to select the features that we want to create our model based on. 
Table 1 shows the features that were selected. It demonstrates which methods were 
considered in order to encode the features as well.

3.2.2  Replacing Missing/NaN Values

Backward Difference Encoding: this coding system is one of the coding systems of 
categorical encoding. When a regression is performed on a set of variables with K 
categories, these variables will enter the regression as a sequence of K-1 dummy 
variables. The regression coefficient of these K-1 variables corresponds to linear 
hypotheses on the cell means.

Dataset

Preprocessing

Sampling

Training set

Test set

SEDNN 
Learning 

Model
Final Model

Evaluation of 
the model

Fig. 2 Diagram of the attack detection algorithm
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In this coding system, the mean of the dependent variable for one level of the 
categorical variable is compared to the mean of the dependent variable for the prior 
adjacent level.

Label Encoding: in this encoding, a number will be assigned to each variable. 
The model should be able to understand the difference between “blank,” “False,” 
and “None” variables. Therefore we cannot assign 0 to all of them. Table 2 demon-
strates the values which were assigned to each variable.

3.3  Snapshot Ensemble Deep Neural Network

In this paper, a Snapshot Ensemble Deep Neural Network (SEDNN) was proposed 
in order to detect cyber-attacks on the dataset. The disadvantage of an ordinary 
Ensemble Deep Neural Network (EDNN) is a high computational cost, so that with 
ordinary hardware, the time of the training and testing will be high. In order to over-
come this problem, this paper approached this problem with an SEDNN model [47]. 
The difference between and ordinary EDNN and SEDNN is that every time the 
SEDNN reaches a local minimum, it will save the model’s weights and biases and 
continues to do so until the model finds the optimal minimum, resulting in a set of 
neural networks with low errors. After this process, the model will ensemble all 
models in this set and obtains the perfect model. The algorithm uses Gradient 
Descent in order to find the minimum in each step. Two types of activation functions 

Table 1 Methods for feature 
encoding

Feature Method

Source ID Label encoding
Source type Label encoding
Source location Label encoding
Destination service type Label encoding
Destination location Label encoding
Accessed node type Label encoding
Operation Label encoding
Source address Backward difference encoding
Destination service address Backward difference encoding
Accessed node address Backward difference encoding

Table 2 Replacing 
missing values

Variable Assigned value

Blank −2
False −1
True 0.1
20 20
None 0
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were considered for the DNN layers, for the first three layers, a “Relu” activation 
function was assigned, and for the last layer, a “Sigmoid” function was considered 
to conduct a binary classification in this paper. As an output, each of the test set data 
will be given a label of 0 (Normal) or 1 (Attack). Figure 3 shows a visualization of 
the proposed algorithm, and the architecture of the DNNs can be observed in Fig. 4.

Fig. 3 Architecture of The Proposed Algorithm
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3.4  Evaluation Parameters

In order to evaluate a ML model, there are some parameters that can be used. In this 
section, these parameters will be briefly explained. There are some terms used in the 
calculation of the evaluation parameters that need to be defined.

True positive is the resulting term where the model correctly predicted the posi-
tive class. True negative is the resulting term where the model correctly predicted 
the negative class. False-positive is the resulting term where the model incorrectly 
predicted the positive class. False-negative is the resulting term where the model 
incorrectly predicted the negative class.

Accuracy is the most common measure for evaluating the ML model, and it is 
defined as the ratio of correctly predicted results to the total predicted results. It may 
be implied that the higher the accuracy, the more precise model. This is not true in 
all possible cases. This assumption is only correct when there are symmetric datas-
ets where false positives and false negatives are almost the same. Therefore, we 
have to look for other parameters to evaluate our model more accurately. The math-
ematical formula for accuracy calculation is described in Eq. 1.

 
Accuracy

T T

T T F F
Pos Neg

Pos Neg Pos Neg

=
+

+ + +  
(1)

Precision is the ratio of true positives to all optimistic predictions. The formula 
for precision calculation is described in Eq.  2. High precision will result in low 
false-positive rate.

Fig. 4 Deep Neural Network Architecture
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Precision

T

T F
Pos

Pos Pos

=
+  

(2)

The recall is the ratio between true positive to all predictions (true positive and 
false negative) of the same class. The formula for recall calculation is described 
in Eq. 3.

 
Recall

T

T F
Pos

Pos Neg

=
+  

(3)

F1-Score is the weighted average of Precision and Recall. Therefore, it takes 
false positives and false negatives into account. The formula for F1-score calcula-
tion is described in Eq. 4.

 
F Score

Precision Recall

Precision Recall
1

2
− =

× +( )
+  

(4)

4  Implementation and Results

In this section, hardware and software equipment will be discussed. The section will 
continue to present the results in detail.

4.1  Software and Hardware

The proposed model has been tested using Python 3.7.4 on a system with an Intel 
Core i7-97580H CPU, 16.0 GB of RAM, and the model’s design is structured based 
on TensorFlow. In order to analyze the performance of the model, we need to obtain 
the confusion matrix, which will offer us true positive, false positive, true negative 
and false negative.

4.2  Results

The general form of a confusion matrix can be observed in Table 3.
In this research, different classifiers have been tested on the dataset in order to 

compare the results and accuracy percentage. In Table 4, the confusion matrix of the 
proposed model can be observed; moreover, Table 5 presents the proposed model’s 
performance with evaluation parameters.
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As it can be implied from Tables 4 and 5, the model presents promising results. 
Obtained accuracy of 90.58% and F1-Score of 90.48% show the great performance 
of SEDNN in detecting cyber-attacks in IIoT applications. Figures 5 and 6 show the 
accuracy and loss rate of the model.

In Fig.  5, the accuracy is not stable, and this is caused by changes of DNN 
between each time it reaches a local minimum, the algorithm uses a new DNN with 
new weights and biases. Overall, the test set’s accuracy is higher than the train set, 
which shows the model’s outstanding performance.

In Fig. 6, we can observe the loss diagram of the train and test set. The nose in 
the test diagram was caused by utilizing multiple DNN in between each local mini-
mum, as was described before. It can be observed that overall, the loss of the test set 
is lower than the train set, which shows the model is performing great.

5  Conclusion and Future Work

In this paper, a SEDNN model was proposed for cyber-attack detection in industrial 
IoT systems. As the model searches for a global minimum, upon finding every local 
minimum, it will save the weights and biases of that particular DNN (Snapshots), 
and when it reaches the global minima, it generates the best possible model from the 
set of DNNs, instead of training and testing different models on the entire dataset. 
The proposed model has a high accuracy of 90.58%, demonstrating the model’s 
excellent performance in cyber-attack detection. The model was tested on an open- 
source dataset, DS2OS, which showed promising results. The dataset consists of 
communication between different IoT nodes such as sensors and actuators. In the 
future steps, more real-time experiments and ìnvestigations can be conducted with 
the proposed model to test the model on real IIoT systems; furthermore classifica-
tion of the attacks with the proposed model will be conducted in future researches.

Table 3 Confusion matrix Actual/Detected Normal Attacker

Normal TPos FNeg

Attacker FPos TNeg

Table 4 Confusion matrix of 
the proposed model

Actual/Detected Normal Attacker

Normal 49,478 7123
Attacker 3285 50,613

Table 5 Result comparison of different classifiers

Classifier Accuracy Precision Recall F1-Score

SEDNN 0.9058 0.8742 0.9377 0.9048

H. M. Rouzbahani et al.
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Privacy Preserving Federated Learning 
Solution for Security of Industrial Cyber 
Physical Systems

Seyed Hossein Majidi and Hadi Asharioun

1  Introduction

Traditionally, monitoring and controlling physical processes were performed using 
embedded computers via a feedback loop [1]. However, the advancement of society 
is directed at using interconnected devices to improve daily life. One of the major 
factors that literally revolutionized economic activities and urban infrastructure was 
the emergence of Information and Communication Technologies (ICTs). This dra-
matic change motivates researchers to investigate the topic of integrating ICTs in 
urban development projects such as smart grids and smart cities.

Today’s industry and society seek to utilize digital infrastructure for regulatory 
and entrepreneurial purposes and embrace ICT in their development strategies [2]. 
This integration of computation technologies with traditional embedded physical 
systems leads to a new type of system, called Cyber-Physical System (CPS). CPSs 
increase the physical system’s efficiency and enhance its monitoring and control 
process [3–7].

The major components of CPS are sensors, actuators, and controllers. The coop-
eration of these components helps to decrease operational costs and optimize the 
data preprocessing. The role of sensors and actuators is communicating information 
between the network and physical components. Also, controllers send commands to 
different parts of the system.

Most CPSs are not centralized, and they consist of many distributed physical 
systems. Cyber systems cooperate with this structure to control all physical sys-
tems. CPSs include several domains such as smart manufacturing, healthcare, smart 
buildings and infrastructures, smart cities, wearable devices, smart grids, etc. [8]. 
For example, in healthcare systems, CPS enables real-time observation of patients’ 
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conditions and reduces costs. In transportation, management and scheduling become 
efficient since vehicles and passengers can be located easily. One of the notable 
examples in this field is European Rail Traffic Management System (ERTMS), 
which manages train scheduling by using communications among Internet of Things 
(IoT) integrated vehicles and devices [9].

The main goals of CPSs can be summarized as the combination of three tech-
nologies, namely computation, communication, and control. In fact, this integration 
distinguishes CPSs from traditional control systems. Improper control of CPSs can 
cause its failure, which can cause adverse effects to machines and humans involved 
in the operation [10]. There are many constraints in the physical aspect of 
CPS. Because of these constraints and ICT limitations, the network’s data is without 
proper security protection. CPS systems’ high dependency on cyber-based tech-
nologies caused them to face various new vulnerabilities like cyber-attacks [4, 11]. 
Therefore, it is critical to consider the security of CPSs [12–14]. However, every 
user involved in CPSs wants to be free of any potential threat and vulnerability, 
which is practically impossible for real-world systems [15].

This paper discusses the CPS security and different threats that endanger CPSs. 
Next, some major attacks in different domains of CPSs are pointed out. After intro-
ducing these attacks, privacy issues and some of its countermeasures are presented. 
Finally, Federated Learning (FL) is introduced as a solution for privacy using 
machine learning models.

2  Cyber-Physical System (CPS) Security

Nowadays, CPSs cover many critical domains of our life. Because of the physical 
and cyber technology aspects of CPSs, those critical domains utilize these aspects 
as well [14]. Because of each of these aspects’ intrinsic vulnerabilities, critical 
domains will expose many cyber threats that can lead to catastrophic consequences. 
As an example, many devices are connected to a network in a hospital. If adversar-
ies try to compromise these devices, it can have some destructive impacts [16]. 
Moreover, it is not just about healthcare. Other domains might also have the same 
devastating results. The next example is concerning smart grid infrastructure. Faulty 
measurements resulting from compromised smart meters lead control centers to 
make wrong decisions, resulting in wrong energy generation and distribution and 
inducing a blackout or physical damage to critical infrastructure [17]. Thus, the 
safety and security of CPS are vital. A secured and functioning CPS is defined by 
satisfying the following categories:

• Confidentiality: some information needs to be private and should not be available 
by unauthorized individuals. Confidentiality is a subcomponent of privacy, and it 
aims to protect personal data. For example, in healthcare systems, patients’ per-
sonal information needs to be transmitted confidentially between doctors and 
medical devices. So, it should be encrypted.
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• Integrity: data needs to be kept complete and accurate in the whole process. This 
is called integrity that data cannot be modified in an unauthorized manner [3].

• Availability: all components and systems in a CPS need to be always available 
and ready for service. This availability should be in both aspects of physical 
control and communication channels.

• Authenticity: It means all transactions and communications need to be real and 
genuine. Authenticity means you make sure that you are really communicating 
with one whom you want to [18, 19].

As mentioned before, the inadequacy of security in CPSs can be catastrophic 
depending on the application. Furthermore, each CPS application’s security viola-
tions could lead to service loss to consumers and financial losses to utility compa-
nies. Base on [20] there are five types of threats including: (1) criminal; (2) financial; 
(3) political; (4) privacy; and (5) physical [20].

• Criminal Threats: Attackers who know the system configuration or are partially 
familiar with the system can exploit wireless capabilities to remotely control an 
industrial control system application and possibly disrupt its operations. Also, 
thieves who try to rob a house can infer private information from communica-
tions between the smart meter and utility company to perform a successful rob-
bery [13].

• Financial Threats: A customer who tricks the utility company by tampering with 
smart meters to reduce the electricity bill is an example of this threat [21]. Also, 
when utility companies collect customers’ privacy information for analyzing 
their electricity usage to infer habits and types of house appliances to sell such 
information for advertisement purposes, it results in privacy violation [22].

• Political Threats: In case of political issues, a country’s policy may lead to a 
cyberwar against another country and gain remote access to the smart grid’s 
infrastructure. Therefore, they can make large-scale blackouts, disturbances, or 
financial losses [23].

• Privacy Threats: Unauthorized access to private data has always been one of the 
motivations for attackers. For example, in healthcare infrastructures, medical 
devices communicate with other parties, such as hospitals. Hence, a large amount 
of private data is stored in various locations, and it may tempt attackers and result 
in privacy invasion [24].

• Physical Threats: For example, in smart grids, attackers may sabotage compo-
nents that are physically exposed across the power grid to cause service disrup-
tion or even potentially blackouts.

2.1  Major Attacks on Cyber-Physical Systems (CPS)

To ensure the security of CPSs, it is required to identify different types of threats 
and vulnerabilities that cause systems to face danger. There are many types of 
attacks that exploit CPS’s vulnerabilities. These attacks can be divided into two 
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categories: passive attacks and active attacks [25]. The goal of passive attacks is to 
be stealthy and undetected over time. These attacks can intercept sensitive data 
without causing any destruction. In contrast, active attacks’ goal is to cause direct 
damage or take control of a system [26]. In general, CPS can endure any of the fol-
lowing attacks [27]:

• Compromised-key attacks: The most important thing in security is the “Key.” 
Attackers who have the key can access any desired information. For example, an 
attacker can compromise the security key with the sensor node’s access having a 
pre-shared key [19].

• False Data Injection Attacks (FDIAs): In this type of attack, attackers try to add 
malicious data to the measurements of the system in order to mislead the state 
estimation and control the performance of the system without being detected by 
any of the existing techniques for bad measurement detection.

• Replay Attacks: Adversaries in this type of attack try to resend a packet. Basically, 
they repeat or even delay a valid data transmission.

• Eavesdropping: An eavesdropping attack, also known as a sniffing or snooping 
attack, is a theft of information transmitted over a network. In an eavesdropping 
attack, the attacker passively listens to network communications to access pri-
vate information, such as node identification numbers, routing updates, or appli-
cation sensitive data. The attacker can use this private information to compromise 
nodes in the network, disrupt routing, or degrade application performance. CPS 
is mostly affected by eavesdropping by traffic analysis and interrupting the data 
in the sensors and monitoring [28].

• Man-in the middle attacks: In these types of attacks, the attacker secretly relays 
and possibly alters the communications between two parties who believe that 
they are directly communicating with each other. False messages are sent to the 
operator, and they form a false negative or a false positive. This is an active 
attack, and many common attacks like modification and replay attacks come in 
these domains.

• Denial of service (DoS): DoS attacks can be categorized into three subclasses: 
permanent DoS, distributed DoS, and reflected attacks [29]. Adversaries can try 
to exploit some of the unpatched vulnerabilities in order to install the firmware. 
This kind of attack is called permanent Dos. However, if an attacker tries to per-
form an attack with multiple systems simultaneously against a single system and 
block its bandwidth, it is called a distributed attack [30]. Some attackers tend to 
send some forged requests to many systems with IP address set to target the vic-
tim. This will lead to a flooded response in the target system. This attack is called 
reflected attacks [31].

• Spoofing: The attacker pretends to be a legal part of a system. Authors in [32] 
named three types of spoofing attacks: Global Positioning System (GPS) spoof-
ing, Address Resolution Protocol (ARP) spoofing and Internet Protocol (IP) 
spoofing. In IP spoofing, the attacker attempts to change IP and pass through 
security systems with the changed IP. On the other hand, GPS spoofing spread 
some wrong signals stronger than the one received from satellite to deceive the 
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victim. ARP spoofing uses some fake ARP messages in order to link the attack-
er’s Media Access Control (MAC) address with IP of the victim.

Different types of CPSs have different susceptibility to particular attacks. For 
example, in the healthcare domain, replay attacks and traffic analysis are more com-
mon. Other CPSs are also vulnerable to this attack, but some critical infrastructures 
have additional vulnerabilities with high potential impact. Therefore, the security of 
these systems like smart grids is a more elaborate task. Additionally, particular 
types of CPSs are susceptible to specific types of attacks specially designed for 
these systems. For example, FDIAs as stealthy attacks try to inject some malicious 
data into system measurements [33, 34]. This attack can potentially cause blackouts 
or serious infrastructural damage [35–37].

Some different CPS applications and their specific attacks were investigated in 
[15]. These attacks are categorized as cyber, physical, and cyber-physical attacks. 
This taxonomy is shown in Table 1.

2.2  Privacy

One of the most important issues in the deployment of CPSs is their privacy since 
any privacy breach can result in severe consequences [38–41]. Particularly, the com-
plex architectures of CPSs, especially in smart grids and healthcare, arise new pri-
vacy issues. Thus, privacy risks are difficult to assess. It is also strenuous to trace, 

Table 1 Different attacks in different domains of CPSs [15]

Industrial control 
systems Smart grids Medical devices

Cyber Communication 
protocols

DoS Replay attacks

Espionage False data injection Privacy invasion
Unintentional attack Customers’ information –
Web-based attacks Untargeted malware –

Physical Untargeted attacks Natural and 
environmental incidents

Acquiring unique IDs

– Theft –
– Car accidents –
– Vandalism –
– Terrorist attacks –

Cyber- 
physical

Legacy communication 
channels

Cyber extortion DoS attacks

Disgruntled insiders Blackouts False data and unauthorized 
commands injection

Modbus worm – Replay attacks
Malware – –
Web-based attacks – –
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identify, examine, and eliminate privacy attacks that may target multiple compo-
nents of CPSs such as real-time sensors, wearable health devices, industrial control 
systems, etc. [39–42].

Data centers that contain a lot of personal and private data and sensors are based 
on CPSs. For example, patients who use some wearable devices for medical cases 
share their real-time and personal data with doctors [43]. If a strong privacy preser-
vation scheme is not considered in this communication, any attacker may hack this 
personal data and use illegal benefits, possibly blackmailing [44, 45].

Many cryptographic techniques are proposed in the literature by researchers to 
preserve data privacy [46–48]. However, most of them need a key to be kept by the 
user, which is computationally expensive. Additionally, it becomes more difficult to 
ensure privacy in a situation when public sharing of data is required. Another pri-
vacy scheme proposed in the literature is anonymization like k-anonymity [49]. 
However, these anonymization strategies do not guarantee a complete level of pro-
tection from adversaries because the chances of re-identification increase if the size 
of attributes in the dataset increases [50].

One of the other privacy schemes proposed by researchers is differential privacy 
introduced to overcome the aforementioned privacy issues [51]. This technique pro-
tects statistical and real-time data by adding a desirable amount of noise and main-
taining a healthy trade-off between privacy and accuracy. However, this approach 
suffers from dimensionality. Also, selecting a desirable trade-off between privacy 
and accuracy is difficult.

3  Federated Learning (FL)

Several directions have been taken to detect and defend against cyber-attacks in 
CPSs. While these directions differ massively, the two main themes are model- 
based detection algorithms and data-driven detection algorithms. In order to imple-
ment model-based algorithms, we need to have a system model and system 
parameters. Also, they are computationally expensive, and they are not scalable for 
large scale systems. Due to these disadvantages, data-driven techniques are becom-
ing more popular in recent studies. Among all the data-driven approaches, machine 
learning-based algorithms achieved more attention in the literature. With the advent 
of information and communications technology, it has become technically easier to 
collect a large amount of data. These data are spread across different edge devices 
owned by different individuals or organizations [51, 52]. All collected data is valu-
able as it contains insights into various application domains. In the traditional cen-
tric approach, data collected is uploaded and processed centrally in a server or data 
center [51, 52].

In the last few years, some legislative attempted to develop new laws about how 
data privacy should be preserved due to privacy concerns. The General Data 
Protection Regulation (GDPR) by European Union (EU) is an example of these 
regulations in 2018. The California Consumer Privacy (CCPA) in 2020 in the United 
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States, California, and China’s Cyber Security Law and the General Provisions of 
Civil Law was implemented in 2017 and imposed strict controls on data collection 
and transactions [53]. Due to these regulations, it is infeasible to bring data from 
different organizations to a data center in a simple way [54, 55]. If privacy protec-
tion is ignored, many cyber threats and risks will threaten sensitive data. Some 
records represent privacy violations in recent years. One of them is Equifax, which 
was attacked in 2017 while having 17.9 million customers. Another record is 
Mariott, which was compromised in 2018 with 500 million customers. Also, eBay 
was attacked in 2014 with 145 million users [56].

Google proposed a privacy-preserving distributed machine learning framework, 
called FL, to train machine learning models without compromising privacy [57–60]. 
Inspired by this framework, different edge devices or clients can contribute to the 
global model training while keeping the training data locally.

Besides privacy and security concerns, centric approaches still involve some 
drawbacks [59–61]. They lead to long propagation delays and incur unacceptable 
latency for applications like self-driving car systems, in which real-time decisions 
have to be made. Another strong motivation for FL is that maximum computing 
power ability at the client can be used. On the client-side, communication is effi-
cient because the only thing transmitted between clients and the server is computed 
result instead of raw data [62].

Multiple clients can collaboratively train a global model on their dataset in a FL 
framework while keeping data locally [53]. This framework has some rounds to do. 
At first, the server initializes a model and share it with other clients. Every client 
trains this shared model with their dataset, and only model updates are sent back to 
the server. Server after a weighted aggregation makes a single update to the global, 
thereby concluding the round. Figure 1 shows the structure of a centralized learning 
network and FL. As shown in Fig. 1a, the server collects all datasets from clients 
and then train the model. However, in Fig. 1b, which is representative of FL frame-
work, just model updates are transmitted, and clients’ dataset is kept locally.
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Fig. 1 Illustration of a centralized learning network and federated learning network
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3.1  Architectures of Federated Learning (FL)

There are some architectures for FL that can be classified into Horizontal Federated 
Learning (HFL), Vertical Federated Learning (VFL), and Federated Transfer learn-
ing (FTL), according to how data’s feature and sample spaces are partitioned among 
various parties.

In the FL network, wherever clients share the same features but have different 
data samples, it is called HFL as shown in Fig. 2. This architecture is also called 
sample-partitioned FL [56, 63]. In contrast, wherever clients share the same data 
samples but differ in data features, it is called VFL as shown in Fig. 3. This archi-
tecture is also called feature-partitioned FL. Finally, FTL is when neither is overlap-
ping in data samples nor features.

Due to minimum accuracy loss in FTL, it is a common architecture in various 
domains like healthcare [64]. In FTL, encryption techniques are used to preserve 
privacy [65]. FTL is shown in Fig. 4.

Some other architectures are proposed in the literature for different domains. A 
study in [54] has surveyed other architectures like Multi-participant Multi-class 
Vertical Federated Learning (MMVFL) framework [66], Federated Learning 
Framework (FEDF), PerFit [67], and Federated-Autonomous Deep Learning 
(FADL) [68]. These papers have considered personalization and also other domains 
like medical devices and IoT etc.

3.2  Algorithms of FL

Algorithms towards FL are proposed in several papers in the literature. Authors in 
[69] introduced and compared several algorithms: Federated Averaging (FedAvg), 
Federated Stochastic Variance Reduced Gradient (FSVGR), and CO-OP.
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Fig. 2 Illustration of horizontal federated learning. Horizontal federated learning shares the same 
data features
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FedAvg is one of the most common algorithms for FL. In the FedAvg algorithm, 
clients train the generic neural network model using the gradient descent algorithm, 
and the trained weights are sent back to the server. The server then takes the average 
of all such updates to return the final weights.

Five parameters matter to FedAvg: the number of clients, batch sizes, number of 
epochs, learning rate, and decay. This is how The FedAvg algorithm works. First, a 
global model is built and is sent to several clients. Then clients train this shared 
model according to batch sizes and epochs of Stochastic Gradient Descent (SGD). 
After training the local model, the client transfers model updates to the server. The 
server aggregates all these updates by taking the average and makes a new global 
model. Despite all of the advantages, this algorithm still has challenges in tackling 
heterogeneity [63].

The FSVRG algorithm concerns the case in which some features are rarely rep-
resented in the dataset, and its main focus is sparse data. In this algorithm, there will 
be just one full calculation, and after that, lots of updates on each client will be 
available [63].

Sahu et al. proposed another algorithm in [70] called FedProx. FedProx is the 
same as FedAvg and can be viewed as a generalization and re-parametrization of 
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FedAvg. This algorithm is introduced to tackle heterogeneity. After training the 
local model and gaining local updates, a global update is produced by grouping all 
these local updates. FedProx is meant to be a modification of the original FedAvg 
algorithm. This algorithm allows for different amounts of work to be performed by 
considering different devices’ performances at different iterations.

Wang et al. proposed an algorithm for FL called Federated Matched Averaging 
(FedMA) in [71]. One of the aspects of FedMA is communication. In this aspect, at 
the beginning of each round, a global model is obtained, and they can modify it as 
their local models with sizes equivalent to the original models. Accordingly, sizes 
can be smaller and therefore easier to manage.

3.3  Challenges and Vulnerabilities of FL

FL networks can be deployed flexibly in various industries and applications. Despite 
all promising FL results in various applications and domains, some challenges still 
make this framework susceptible to threats and prevent FL from being fully adopted. 
These challenges mostly stem from privacy, security, and in some cases the techni-
cal requirements.

The data for training is not always perfect. There may be some missing labels or 
imbalances in some attack and normal samples [71]. This will result in inaccurate 
models. Furthermore, communication, system heterogeneity, and privacy are other 
kinds of FL challenges. In many domains like medical, communication is essential 
for FL [72, 73]. There are lots of devices in FL, so that it can affect communication 
a lot. To solve this issue, a communication-efficiency model is needed [74]. This 
means that smaller messages or smaller model updates are sent over for the training 
process instead of just sending the entire training dataset [75]. Accordingly, two 
factors need to be considered:

• decreasing the iterations for communication
• decreasing each message size for each iteration.

In FL, privacy is often the biggest concern. Sensitive information can be extracted 
in the training phase while communicating model updates [76, 77]. However, there 
have been many papers in literature proposing new methods to tackle privacy, but 
they affect performance and accuracy. It is crucial to find a compromise considering 
this trade-off to solve privacy issues [60, 75]. Also, Wadu et al. in [78] mentioned 
that security and privacy are the main issues in FL.  Consequently, proposing a 
model with high performance and privacy protection while avoiding computational 
burden is desirable [79, 80]. Since local models are continuously updating with new 
data, attackers may affect local datasets and results.

Therefore, in general, since FL relies on all clients’ collaborative effort to train a 
machine learning model, the machine learning model will tamper even if only a few 
clients work abnormally. We can investigate FL vulnerabilities from two aspects 
based on [81]:
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• Malicious clients: Since smart devices are getting more complicated, flaws are 
inescapable, and these devices can get compromised easily. Moreover, many FL 
network designs do not include any security scheme like an authentication mech-
anism, and thus they cannot prevent adversaries from setting up malicious clients 
to join FL networks.

• Insecure Connections: In an FL network, many connections might be insecure, 
but it is not easy to ensure their security and distinguish secure from insecure 
connections. Nowadays, many methods like encryption and verification are used 
to secure the connections, but they lead to other issues like additional overheads, 
and thus, they are not always preferred. Consequently, it is possible that some 
insecure connections exist, over which any of the global model sent by the server 
and local model updates sent by clients can be compromised or manipulated.

The global model aggregation can easily get tampered with, and the performance 
and accuracy be reduced by injecting poisoned model updates and exploiting the 
vulnerabilities of FL networks by an attacker. These kinds of attacks are called poi-
soning attacks. The purpose of poisoning attacks is to achieve a poor accuracy in the 
machine learning model by tampering with the global model aggregation of FL with 
poisoned model updates. According to where a poisoned model update comes from, 
poisoning attacks can be categorized as follows [58]:

• Data Poisoning: Data poisoning can be done by changing the training data in the 
target clients. For example, an attacker can change the signs of the labels in train-
ing data, such that the target clients train the local models using the poisoned 
data and generate false model updates. These attacks can be intentional or ran-
dom. In an intentional attack, the attacker changes the signs of the specific labels. 
On the one hand, unintentional attacks aim at decreasing the prediction accuracy 
on all classes, and thus attackers can change the labels randomly [82–84]. On the 
other hand, the purpose of intentional attacks is to make the machine learning 
model achieve a poor accuracy on only certain classes, for which reason attack-
ers only change the labels of the training data in the targeted classes [84, 85].

• Model Poisoning: To produce poisoned model updates, some rules need to be set 
instead of modifying training data. For example, Dong et al. [86] describe how 
model updates can be sampled from a Gaussian distribution. Additionally, adver-
saries can manipulate benign model updates into poisoned ones. Another way to 
make an aggregated model have lower accuracy is to design some clients to flip 
the sign of benign model updates proposed in [86–88]. As a matter of fact, all the 
aforementioned attacks are not intentional as defined before. Alternatively, inten-
tional ones are considered in [84, 88, 89], where adversaries use a pre-designed 
compromised model to craft poisoned model updates. They try to use the com-
promised model instead of training machine learning models.

Another type of attack that FL is susceptible to is called a Free-Riding Attack, in 
which the adversaries want to leech benefits from the model while keeping them-
selves outside of the learning process. This will lead to using more and more 
resources in the training phase [58].
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3.4  Countermeasures

There are some methods and countermeasures in the literature to decrease the risk 
of poisoning attacks on FL networks. Tan et al. in [81] defined these three categories 
as countermeasures:

• Robust Aggregation: In FL networks, clients send their model updates to the 
server then the server will aggregate by taking the average of them. This will let 
poisoned model updates affect the global model directly. Therefore, proposing a 
method that is robust to poisoned model updates is necessary. In literature, some 
techniques were proposed, namely: Component-Wise Median (COMED), 
Geometric Median (GEOMED) and Component-Wise Trimmed Median 
(COTMED). These methods are used for aggregation and can be used instead of 
average operation [83, 86]. Dong et.al proposed another technique called KRUM 
in [86]. This method tries to find the most representative model update, and then 
it will update the global model. In those studies, the most representative model 
can be, for example, the shortest Euclidean distances from others. In contrast, 
Sun et al. proposed a new method in [89] in which all of the model updates need 
to be in a limited norm. This will avoid overwhelming global model by just a few 
poisoned model updates to prevent global model. Also, Li et al. [87] introduces 
the RSA method. This method uses a robust stochastic aggregation.

• Anomaly Detection: The anomaly detection method is used to distinguish 
between benign and poisoned ones. Benign model updates and poisoned model 
updates are used for different intentions. Li and Munoz et.al in [82, 88] offer to 
calculate models’ cosine similarities and map data into low-dimensional. To ana-
lyze model updates, the anomaly detection method is used to distinguish between 
benign and poisoned ones. Benign model updates and poisoned model updates 
are used for different intentions. Li and Munoz et.al in [82, 88] offer to calculate 
models’ cosine similarities and map data into low-dimensional in order to ana-
lyze model updates.

• Another method proposed in the literature is using a combination of two types of 
methods to leverage the benefits of both of them. It means before aggregating the 
model updates, it is required to evaluate model updates. For example, Fang et al. 
in [82] improved the aforementioned algorithms, COMED, COTMED, and 
KRUM, with a preliminary evaluation procedure. This model will be discarded 
if accuracy and loss are unacceptable. In contrast, authors in, [84, 85] try to 
reweight model updates by evaluation results. In [84], a repeated median estima-
tor is used to build an aggregated confidence record for each client. Base on 
confidence records, it is required to reweight the model updates for aggregation. 
In contrast, Fung et al. in [85] reweight model updates according to their cosine 
similarities. Authors in [81] proposed a new method called Verify Before 
Aggregate (VBA). This method enables the server to distinguish and identify 
poisoned model updates. Then Deep Reinforcement Learning (DRL) is applied 
to learn the clients’ behaving patterns, which are typically determined by attack-
ers and cannot be known to the server. Based on historical identification results 
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with the learned knowledge, DRL allows the server to actively select the clients 
that can provide benign model updates at low training fees.
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1  Introduction

Industrial control systems (ICS) are cyber-physical systems, which incorporate sen-
sors, computers, networks, communications, and other digital management compo-
nents into critical infrastructure to manage or track facilities remotely and 
independently [1]. ICS plays an important role in the monitoring and control of 
critical infrastructures such as smart power grids, oil and gas, aerospace, and trans-
portation [2, 3]. The inclusion of the Internet of Things (IoT) in ICSs increase the 
vulnerabilities of these systems towards cyber-attacks. While the security concerns 
of critical infrastructure facilities are already considered in the Information 
Technology (IT) community, limited efforts have been made to develop security 
solutions that are specific to ICSs [4–9].

ICS has unique performance and reliability requirements and also uses operating 
systems, applications, and procedures that may be considered uncommon by main-
stream IT professionals. Such standards typically reflect the concept of quality and 
integrity, followed by confidentiality, which involves the management of proce-
dures. If not properly enforced, this will pose a major risk to human health and 
safety, environmental damage, and serious financial problems, such as loss of pro-
duction. Sensitive infrastructure (e.g., electrical power, transport) unavailability 
may have an economic effect well beyond immediate and physical harm structures 
[10, 11]. The local, regional, national, and perhaps global economies will suffer 
from these impacts.

Industrial processes require enormous supervision of machinery. As long as a 
system is operating, some knowledge is required to ensure the proper and effective 
operation of the device. If the people do this, the machine must be patrolled 24/7, 
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with constant and tedious data measurements and equipment checks. It is not only a 
waste of technical skill but also expensive for a company to pay for the continuous 
monitoring of a machinery part by a person. The risk of human error is often added 
in a mechanism that includes inherent risks. It allows automation systems such as 
SCADA (Supervisory Controlling and Data Acquisition networks are generally 
referred to as these commercial command and control networks) and Automation 
Monitoring systems [12, 13].

The large, scattered complexes include modern manufacturing plants, such as 
refineries for gasoline, chemical plants, generation plants for electricity, and pro-
duction plants. To ensure their proper service, plant managers need to track and 
control several different parts constantly. This remote access has been understood 
with the advancement of networking technologies. The previous networks of con-
trol were simply point-to-point networks to link a monitoring or control device to a 
remote sensor or actuator. Since then, these are built into complex networks that 
allow communication over a specific communication route between a central con-
trol unit and many remote devices. The nodes of these networks are typically built 
into computing devices, such as switches, actuators, and PLCs, for different 
purposes.

SCADA manages and controls systems or equipment and works from a single 
position with the supervisory staff. It consists of a main SCADA host computer, 
several distributed data units, including sensors, and PLCs that are programmable 
logic controllers.

With ICS and SCADA we have huge datasets that required low cost and high 
computational analysis techniques. Machine Learning is used as an alternate tool or 
an external strategy to analyze these datasets and protect against ransomware, bot-
nets, and other threats [14]. Machine learning technologies are used by many appli-
cations to address network and security-related issues. Anomaly detection is used in 
numerous fields of machine learning, including intrusion detection and fraud detec-
tion. This can help predict traffic patterns and identify anomalies in the behavior of 
the network.

This chapter aims to provide ICS with an efficient method of detecting cyber- 
attacks. It is achieved by a mixture of the analysis of literature and the experiment. 
The main objective of this project is to examine how machine learning can assist in 
the cyber-attack detection in ICS, to analyze how the accuracy and efficiency of 
attack detection algorithms can be improved and to create a multi-stage attack 
detection model.

The remaining structure is as follows:
Section 2 contains context information on the Industrial control system datasets 

and Machine supervised learning algorithms. In Sect. 3 there is an examination of 
the research-related literature contained in this thesis. It begins by recognizing the 
kinds of literature attacks and threats. Section 4 demonstrates the proposed model 
and describe various sections of the multi-stage model and Sect. 5 describes the 
experimental methods used. It highlights the experimental process, explains data 
sets, and experimental processes. Section 6 reveals the outcomes of these research 
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studies and evaluation methods. Section 7 concluded by summarizing its findings 
and proposes potential studies and changes that can be made on this research.

2  Background

This section provides the context required for an interpretation of the research con-
ducted. The chapter starts with the description of the ICS and SCADA infrastruc-
ture, a short overview of datasets, and then addresses techniques of machine learning 
for the experiments (Fig. 1).
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As can be seen in Fig. 2, the architecture of ICS systems has been designed to 
provide tools for discovering, integrating, and responding to user requirements, 
and data products, software, and services (DDSS) [15]. Integrating IoT solutions 
with ICS enables the collection and analysis of a large data set across the entire 
industrial area. These ICS include SCADA and other device configurations, such 
as programmable logic controller (PLCs). SCADA systems typically manage dis-
tributed assets using centralized data storage and monitoring controls as shown 
in Fig. 2.

The SCADA System interacts with the AMI through two methods of communi-
cation, defining precise power usage and appropriately transmitting electricity. Such 
bidirectional connectivity is achieved by various size networks, including the Home 
Area Networks, which allow contact in household communications, the 
Neighborhood Area Networks, and the wide-area Networks, which connect all 
major sections such as plants, sub-stations, and operating centers. The network is 
safely shared between the residences, as well.

ICS and SCADA are used in industries such as electric, water and wastewater, oil 
and natural gas, chemical, and pharmaceutical. Gas pipelines and water storage 
tanks are examples of these systems.
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2.1  Gas Pipeline System

The gas pipeline system for data collection was supplied by the in-house SCADA 
laboratory of the Mississippi state university. The system comprises three main 
components: sensors and actuators, a network of communications and moni-
toring [7].

At a lower level, two actuators with a pressure sensor are included in the gas 
pipeline. To control the physical operation of the system, the actuators, a pump, and 
a solenoid are used to sustain the tension generated by the sensors. There are three 
major modes of gas pipeline system: automated, manual, off. Once the system is 
automatically configured, the supervisory controls have two mechanisms for con-
trolling the load. The first scheme is the pump mode, which activates and deacti-
vates the pump to retain pressure at the specified point in the tubing. This scheme 
has been developed to model a continuous machine load. The second scheme is 
solenoid mode, where the solenoid-controlled relief valve is opened and closed for 
pressure management. Both the pump and the solenoid modes have a PID-Function 
control mechanism. In machine mode, the operator can also be operated manually 
for the pump and the solenoid to be operated manually.

2.2  Water Tank Storage System

The completed water tank system consists of a water tank, a water pump, a source 
reservoir, a solenoid valve, two float sensors, two switches mounted in a switch 
housing unit, and a relay in a NEMA 12 compliant container. SCAD systems have 
elements that are monitored and controlled. The water level of this system inside the 
tank is monitored, and the ability to drain or fill the tank is regulated by automation 
based on my water level.

2.3  Machine Learning Algorithm

2.3.1  Decision Tree

A decision tree is a guided, inverted machine learning (ML) framework, the algo-
rithm in which the internal (non-leaf) node is a (predictor) element, the branch of 
the test outcome is a branch between the node and each leaf node is an entity 
(response variable) entity. The Decision Tree is a Machine Learning(ML) algorithm 
that is managed by an inverted tree structure, wherein each internal (non-page) 
Node represents a function (predictor variable), and the node branches represent the 
test result [8].
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Here ‘pi’ is the probability of class ‘i’, Entropy is computed as the proportion of 
class ‘i’ in the set.

2.3.2  Random Forest

Random forests are an ensemble learning framework that works by constructing a 
range of decision trees through preparation and providing the class that predicts 
class or middle trees. Random forest models are like a decision tree, but random 
forest models generate several decision trees, not just one. The maximum depth was 
set at 2 in our random forest model.

Averaging the predictions from all the individual regression trees (Eq. 2).
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2.3.3  K-Nearest Neighbors

K-nearest neighbors (KNN) is a supervised classification problem-solving learning 
algorithm. The findings of the KNN primarily rely on three elements: distancing 
metric used to determine the closest neighbor, the K-nearest classification distance 
law, and the number of neighbors in the current categorized study. The high- 
performance KNN cyber-attack detector is primarily used as an identification 
algorithm.

Euclidean Distance formula (Eq. 3).
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2.3.4  Logistic Regression

Logistic regression applies if the dependent target is categorical. The logistic regres-
sion is like every regression analysis a statistical model. n Logistic regression is 
used to explain the relationship between one and one or more independent nominal, 
common, and interval or relation-level variables. Logistic regression is frequently 
referred to as log-linear or maximum entropy classification. This states that a cate-
gorical dependent variable can be expected from a certain set of independent 
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variables. The algorithm for logistic regression uses a linear decision area and, 
therefore, cannot solve non-linear issues.

 
l p

p
x x=

−
= + +

1
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(4)

Linear relationship between the predictor variables and the log- odds of the event 
(Eq. 4).

2.3.5  Multi-Layer Perceptron Algorithm

More than one linear layer (combinations of neurons) may exist in the Multilayer 
perceptron, as we can see in Fig. 3. If we take the simple example of a network with 
three layers, the input layer is the first layer, and the output layer last is the hidden 
layer. Our data is added to the input layer, and the output is taken from the output 
layer. We can increase as much as we like the amount of the secret layer to complex 
the model according to our work [9].

Feed-Forward Network, the neural network architecture that is most distinctive. 
Its objective is some function f) (approximate. Given the classification y = f f(x) 
mapping the input x to output y, by defining the mapping, y = f(x; f) and by knowing 
the best parameters̈ ā for that classification, for instance, the MLP can consider the 
best approach to that classification. The MLP networks are made up of many 
chained functions. F(x) = f(3)(f(2).(f(1)(x))) will be a network of three functions or 
layers. Each of these layers consists of units that transform a linear sum of inputs in 
an affiliate way. -- layer has y = f(WxT + b) representations. Where f is the activa-
tion function, W is the layer parameter or weights; x is the vector of entry, which 
may be the value of the previous layer, and b is the vector of inclination. The layers 
of an MLP are several fully connected layers since each device in the previous layer 

Input

Input
Layer

Output
Layer

Output

First
Hidden
Layer

Second
Output
Layer

Fig. 3 Multi-layer perceptron algorithm layer representation
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is connected to all the devices. The parameter of each unit in a completely con-
nected layer is distinct from other units in the layer, which ensures that each unit has 
a special set of weights.

3  Literature Review

Many computer scientists in earlier studies have suggested various solutions to 
cyber threat problems hunting with various machine-learning techniques. This sec-
tion addresses the types of cyber-challenges faced by smart cyber-physical grids, as 
well as the strategies outlined in the literature to counter these challenges. 
Introducing an appropriate approach to this issue includes an in-depth analysis of 
the relevant works.

3.1  Types of Cyber Attacks

Computer Network Attack (CNA) or Cyber Attack is the intentional exploitation of 
computer systems, networks, and technology-dependent enterprises. In this section, 
we will discuss different types of Cyberattacks based on our dataset.

Naïve Malicious Response Injection Naive Malicious Response Injection (NMRI) 
attacks lack sophistication [10, 11]. The NMRI attacks use injecting response packets 
into the network, but it lacks monitoring and control knowledge about the operation. 
Invalid payloads can be sent by NMRI attacks. For example, an attacker might be 
aware that a series of reconciliation attacks have been carried out to learn system 
addresses, function codes, and memory maps, but they lack details of what is the 
monitoring process or details about the valid data content for each server item. In that 
event, an attacker may make an injecting attack with a payload of all zeroes, negative 
numbers, very high numbers, or any other contents that are likely to be invalid. 
Otherwise, NMRI attacks could be based on limited information about the process 
[12]. For instance, an attacker can understand process data such as process limitations 
or valid contents for each server item but cannot perform more advanced attacks. For 
instance, an assailant may cause an alarm. The first NMRI attack is Naïve Read 
Payload Size. The attack on the Naïve Read Payload Size is based on the knowledge 
of the network protocol. The reading coil, discrete inputs, record holders, and input 
registration queries for MODBUS include a quantity field for specifying the number 
of objects the server will return. An NMRI attack can produce malicious reactions, 
including the correct number of returned objects, all or zeroes. The right number of 
products with random content can also be retrieved by the NMRI. In reading coils and 
discreet input situations, random input is especially important since, for each coil or 
discrete input, such returned values must be limited to 0x00 and 0xFF.

P. Semwal



221

Complex Malicious Response Injection Complex Malicious Response Injection 
(CMRI) provides a degree of complexity above the NMRI [10, 11]. CMRI needs an 
understanding of the attacking cyber-physical system. CMRI attacks attempt to 
cover up the real state of the controlled physical process to affect the cyber-physical 
system control feedback loop [12].

Malicious State Command Injection Altered Actuator State is an MSCI attack 
scenario that changes system actuator states one time [10–12]. For the gas pipeline 
system, Altered Actuator State attacks include command injections that turn the 
pump on or off and command injections that open or close the relief valve. For the 
water storage tank system, an Altered Actuator State attack was implemented to turn 
the pump on or off.

Malicious Parameter Command Injection Altered Control SetPoint is an MPCI 
attack which changes device set points. Setpoints are typically used to provide vari-
able control over a system [10, 11]. For example, the water storage tank system uses 
an ON/OFF control scheme to keep the amount of liquid in a tank between a low set 
point and a high set point. A level sensor continuously monitors liquid level as a 
percentage of tank full and turns a pump on an off to add liquid to the tank. A 
MODBUS write register command was used to change both the high and low set-
points [12]. This attack also alters alarm values stored in PLC registers to disable 
alarms by changing setpoints liquid level alarms to values in line with the altered 
high and low setpoints.

Malicious Function Code Injection This attack is part of the subclasses of the 
Command Injection Injection Control. The server will not transmit the data to the 
network anymore because of this attack. Normally, polling techniques such as HMI 
are used for most industrial control systems [12].

Denial of Service Denial of Service (DOS) attacks against industrial control sys-
tem attempt to stop the proper functioning of some portion of the cyber-physical 
system to disable the entire system [10, 11] effectively. As such, DOS attacks may 
target the cyber system or the physical system. DOS attacks against the cyber sys-
tem target communication links or attempt to disable programs running on system 
endpoints that control the system, log data, and govern communications. DOS 
attacks against the physical system vary from the manual opening or closing of 
valves and switches to the destruction of portions of the physical process, which 
prevents operation. This work concentrates on DOS attacks against the communica-
tion system.

Reconnaissance Reconnaissance attacks gather control system network infor-
mation, map the network architecture, and identify the device characteristics such 
as manufacturer, model number, supported network protocols, system address, 
and system memory map [10, 12]. The device identification attack allows an 
attacker to learn a discovered device’s vendor name, product code, major and 
minor revision, et cetera. The points scan allows the attacker to build a device 
memory map.

A Multi-Stage Machine Learning Model for Security Analysis in Industrial Control…



222

3.2  Detection of Cyber Attacks

Numerous reports have addressed the traffic-based intrusion detection network in 
[16], the proposed method the decision tree is used as the classifier. The suggested 
approach was applied to large datasets of KDD Cup 99 in addition to evaluation 
with an accuracy of 95.03%. Similarly, Ghaeini et al. [17] applying this approach 
to the SWaT data collection used in our study. In [18] an optimized SVM solution 
with a mixture of features of two machine learning strategies demonstrated a low 
false- positive rate. In [13], an ensemble approach is tested on several malware 
samples, including Windows, Ransomware, the Internet of Things (IoT). An esti-
mate of the accuracy of 99.65 percent using an IoT-specific data collection. 
Further, [19] proposed a deep learning-based approach for developing an efficient 
and flexible Network Intrusion Detection System. Most research on ICS intrusion 
detection uses unsupervised (learning from unlabeled real data) [20] and semi-
supervised approaches. In other research [21], 1D CNNs can be effectively used 
for detecting cyber-attacks in complex multivariate ICS data. Recent studies [22] 
shows architecture involving ensemble and base classifiers for intrusion detection 
model results in significantly larger improvement of prediction accuracy than the 
base classifiers. In the paper [23], The experimental results revealed that the 
hybrid approach had a significant effect on the minimization of the computational 
and time complexity with low false-negative rates. In 2017, [24] Wathiq Laftah 
Al-Yaseen and Zulaiha AliOthman proposed a multi-level hybrid intrusion detec-
tion model that uses a support vector machine and extreme learning machine to 
improve the efficiency of detecting known and unknown attacks. In [25] a major 
step forward in protecting the entire network by using fuzzy and fast fuzzy pat-
terns or malware detection methods in which malicious activities are detected 
by nodes.

In another paper [26], The model was tested with a data set that contains valid 
and anomalous data. Further, in most cases, confidences measured by the Naive 
Bayes classifier is quite significant, with several predictions above 90%. Another 
paper, [27], uses the Random Forest Algorithm for the identification of cyber threats 
and achieves a significant 94% accuracy. A Machine Learning sequence technique 
(ML) to identify suspect incidents or attacks that may alter CPS behavior [4]. This 
approach not only recognizes the cyber-attack on a physical process layer but also 
recognizes a certain type of attack.

Furthermore, Moshe Kravchik introduced a model based on a 1D convolutional 
neural network that detected 31 out of 36 cyber-attacks successfully [28]. Its supe-
rior operating time and performance have been shown ICS cyber-attack detection 
great promise. In [29] proposed a deep automated, unsupervised representation 
method for detecting the status of the power system using the stacked Auto Encoder 
model. In which an unsupervised ensemble model evaluates a highly imbalanced 
dataset and attack detection with a low amount of false alarms (FP) besides too high 
accuracy (f-measure in multiclass classification).

P. Semwal



223

Similarly, in [30] with C4.5 and iSVM as base classifications, developed a hybrid 
C4.5-iSVM- model and ensemble approach. The empirical results show that C4.5 
provides better or equal accuracy to classes of standard and test and iSVM provides 
better accuracy to classes of standard and DOS. In comparison to individual classi-
fication accuracy, the hybrid C4.5-iSVM classification improves accuracy for R2L 
and U2R classes. Another paper [31] focused on the selection of functions to detect 
distributed cyber-attacks early and carried out the early detection of distributed 
attacks by detecting C&C communication because this communication is at its 
preparation phase.

The list of open ports in a system provides an attacker with very critical informa-
tion. There are many tools for identifying open ports like antivirus and IDS. In [4, 
32], the port scan attempt was based on a new CICIDS2017 data set using deep 
learning and support vector machine (SVM) algorithms, and 97.80% and 69.69% 
accuracy were achieved respectively. On the other hand, Denial-of-service attacks 
can prohibit computers or network infrastructure is used and can be difficult to iden-
tify and counteract as, to a large degree, they exploit the facilities involved accord-
ing to their intended purposes. A support Vector Machine based machine learning 
model is used to learn a pattern and to select suitable detection algorithm features to 
minimize computational costs and look only for the patterns that are most relevant 
to your detection. The experimental results show that 99.19% of LDoS attacks can 
be detected by the proposed method with the time complexity of O(n log n) in the 
best cases [17, 33].

Many IDSs have been developed to detect network attacks, but the problems 
which often arise in the IDS are either false positive or false negative issues. 
This study [34] explores how the precision of threat identification is achieved by 
various approaches of machine learning with the IDS. In this analysis, an IDS 
prototype is anticipated. The IDS system is built with a mixture of machine-
learning approaches to improve precision in detecting multiple attacks. In [35] 
it has been shown that the use of machine learning techniques increases the 
efficiency in state estimation and a promising approach to the problems of Bad 
Data Detection (BDD).

In [36] a supervised model of machine learning to evaluate the detection of 
attacks is proposed. In [6], the authors used unsupervised algorithms to detect 
attacks on physical dataset sensors. Another paper [37] focused on ML-based 
approaches to attack detection for industrial networks.

3.3  Summary

This section shows the types of cyber-attacks studied in previous researches and 
identifies the most common attacks and a literature survey designed to identify the 
types of existing cyber threats and methods of detecting them.
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4  Proposed Models

The method followed to implement the multi-stage model is defined in this section. 
In the first phase, the dataset was analyzed to identify the cyber threat. The feature 
extraction and selection were carried out on the initial dataset during the pre- 
processing period. In the second phase, our machine learning models were analyzed 
based on train and test datasets as shown in Fig. 4 and Table 1. In our experiment, 
we tested the efficiency of the supervised machine learning algorithm in cyber- 
attack detection with a multi-layer perceptron algorithm.

4.1  Dataset Processing

The first feature contains the slave device’s station address. The address of the station 
is a special 8bit value allocated to each master and slave unit. The address is used to 
mark the slave that the master sends commands and the responding slave. The Modbus 
protocol is designed to accept all master transactions from all slave computers. To 
determine whether the message is intended for oneself or another slave computer, the 
slave device must search the station address area. This feature is used to improve sys-
tem scan attack detection, which transmits commands to all possible station addresses 

Fig. 4 Proposed Model: Phase1 (Data Processing), Phase2 (Training and Testing Model), Phase3 
(Working Model Analysis)
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to determine what addresses are active. The second attribute contains the code of the 
method. The main function codes in the gas pipeline can be read (0x03) and write 
(0x16) but there are 256 valid function codes. Certain function codes, such as the 
‘0x08’ function, can be used for malicious purposes. The function code ‘0x08’ is 
commonly used for diagnostic purposes but can be used to force a slave device to 
listen only. A denial of service utilizing a legitimate feature code will result in a simi-
lar attack. This functionality can be used by IDSs to identify irregular function codes. 
The third function includes the length of the Modbus frame. The length of the Modbus 
frame for each command or response query is set in a similar way to the function 
code. A set of writing and reading commands is used for repeated block writing and 
block readings from registers in the gas pipeline system. Frames of a given duration 
are detected as anomalous when attacks are observed [38].

The fourth function contains the set-point value that governs gas pipeline pres-
sure. If the mode is set to ‘automatic,’ the fixed-point function is used. The principle 
of the slave ladder is built to preserve the value set by either opening a valve or flip-
ping on and off the generator. The setpoint feature dramatically affects the physical 
structure and is a specific point for an attacker to be malicious. The following five 
features reflect the importance of the PID controller. Benefit, retrieval rate, dead 
unit, cycle time, and rate are all values that the PID controller can change. Based on 
these five conditions, an error is measured, and the PID controller can be triggered, 
turned, and of the pump to open and shut the relief valve to mitigate the error. The 
tenth feature includes the attribute that governs the service cycle of the system [36].

4.2  Machine Learning Model

The model implemented in this paper is based on an approach of train and test 
model. This section will provide an overview of our multistage model and how it 
helps in attack detection in ICS (Industrial Control System). In our multi-stage 
model, we have two different algorithms running.

Table 1 Dataset features 
description

Features

Address Control scheme
Function Pump
Length Solenoid
Setpoint Pressure measu.
Gain CRC rate
Reset rate Command response
Headband Time
Cycle time Binary result
Rate Categorized result
System mode Specific result
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The first is an algorithm of a decision tree that uses algorithms to divide a node 
into two or more sub-nodes. Sub nodes are generated to increase the homogeneity 
of subsequent sub-nodes. In other words, concerning the target value, we can 
assume that the node’s purity decreases. The decision tree separates the nodes on all 
the variables available and chooses the division, resulting in the most uniform sub- 
nodes [6].

The second algorithm consists of at least three-node layers: the input layer, the 
hidden layer, and an output layer. Multi-layer sensor Each node is a neuron that uses 
a nonlinear activation function except for the input nodes. For training, MLP is 
using a supervised learning method known as backpropagation [37].

4.3  Summary

In this section, the proposed frameworks used to complete each contribution are 
outlined and explained. The chapter discusses the supervised machine learning 
algorithm and multi-layer perceptron model implemented to meet the second con-
tribution of the thesis.

5  Methodology

5.1  Datasets Collection Methodology

For generating the dataset, a new approach has been employed for relaxation and 
data processing. The first step to update the dataset was to parameterize and change 
the order of the attacks. The implementation was achieved by cutting out and exe-
cuting all attacks manually. The aim of the midway is for all types of attacks to be 
included. Such definitions fell in line with the assaults on the gas and water storage 
facilities, but are also more affected. In the following Table 2, the types of attacks 
are shown in the dataset [36].

Table 2 Attack Categorization

Type of Attacks Abbreviation Threat Type

Normal Normal(0) N/A
Naïve malicious response injection NMRI(1) Modification/fabrication
Complex malicious response injection CMRI(2) Modification/fabrication
Malicious state command injection MSCI(3) Modification/fabrication
Malicious parameter command injection MPCI(4) Modification/fabrication
Malicious function code injection MFCI(5) Modification/fabrication
Denial of service DoS(6) Interruption
Reconnaissance Recon(7) Interception
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In Figs. 5 and 6, we have the dataset evaluation based on attack categories. As we 
can see that dataset is highly unbalanced with respect and this may cause unbiased 
learning for our models. In the water tank storage dataset, we have 4132 data entries 
for reconnaissance but for Denial of Service and Malicious Function Code Injection 
we have 135 and 155 data entries respectively.

Fig. 5 Data sample based on Attack categories

Fig. 6 Data sample based on Attack categories
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5.2  Feature Selection Methodology

The method is chosen to minimize duplication, improve consistency, and decrease 
training time. The procedure is a practical alternative. We used additional tree clas-
sifiers for the collection of features-incredibly random trees that selected features 
based on their score using an ensemble learning technique [38].

We performed the function extraction process to reduce the overall dimensional-
ity of the data set. A combination of the Univariate Choice and the Importance of 
Features results in Figs. 7 and 8 show the best feature to contribute to the target 
variable. Extraction of the most popular and highly trained apps.

Univariate Selection Statistical checks should be used to select the most closely 
linked characteristics to the performance component. The scikit-learn library pro-
vides the SelectKBest class to be used to select a certain set of features through a 
series of various statistical checks. As figure reveals. To pick 10 of the best features 
in both data sets, we used the chi-squared (chi2) statistic method to classify non- 
negative features [39].

Feature Importance Use the value of the model feature to obtain the feature of each 
feature of your dataset. For each attribute of your results, the more significant or more 
appropriate the value for your performance variable is. The higher the score, the more 
significant. App value is that we use Extra Tree Classification to select the top 10 data 
set functions from our built-in class for Tree-Based Classifiers [39].

Specs Score
measurements

resp length

resp write fun

response memory
response memory count

response address
LL

sub function
crc rate

H 2 . 797450e+03
3 . 738359e+03
3 . 927969e+03
1 . 251467e+04
1 . 312998e+04
1 . 875711e+04
1 . 875711e+04
4 . 370406e+05
4 . 534864e+05
1 . 487742e+21

Fig. 7 WTS dataset 
Features

Specs Score
pressure measurements

crc rate

setpoint

fucntion

length

cycle time
system mode

command response
control scheme 1 . 072158e+04

1 . 142457e+04
1 . 651371e+04
1 . 777755e+04
2 . 486708e+05
3 . 133059e+05

3 . 252275e+06
gain 1 . 687004e+06

1 . 843978e+07
9 . 631416e+41

Fig. 8 GP dataset Features
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5.3  Machine Learning Classifiers

In the first stage of feature selection, feature extracted from the dataset based on the 
‘Target’ attribute of the dataset. The target attribute is the classification of the data-
set as attack and normal. After the selection of features, the dataset is then divided 
into two different sets, i.e., train and test. These two datasets are now helping to 
evaluate our model based on several computational matrices. First, with the training 
dataset, we train our model with a decision tree algorithm. Our decision tree model 
was trained with the processed dataset. The decision tree model simply designs an 
inverted tree structure on the base of a trained dataset and then classify a sample by 
tracing the down the designed tree.

After training the decision tree model with features extracted in the first step in 
the next step, all the features are again evaluated based on ‘Attack Categories’. 
Attack categories classify dataset in multiple categories such as Naïve Malicious 
Response Injection, Complex Malicious Response Injection, Malicious State, 
Command Injection, Malicious Parameter Command Injection, Malicious Function, 
Code Injection, Denial of Service, Reconnaissance. Now in the next stage, we need 
to train our multi-layer perceptron model. After Training both models, we evaluated 
both models based on the test dataset.

5.4  Summary

In this section, the methods of this research are outlined. First, the general method-
ology of research progress is presented. Then a framework for data collection is 
discussed. This is followed by a thorough explanation of the multi-stage model.

0.00

measurements

0.05 0.10 0.15 0.20 0.25 0.30 0.35

resp length

resp write fun

response memory

response memory count

response address

crc rate

command address

command memory count

H

Fig. 9 WTS dataset Features
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6  Results and Discussion

In this section, the results achieved utilizing machine learning techniques in cyber 
attack detection have been highlighted, and the different measures used to evaluate 
the performance of basic and multi-stage machine learning algorithms are described. 
This model incorporates techniques of generalization for improved scalability and 
performance with imbalanced data.

6.1  Model Performance

The confusion matrix can be used to calculate the efficiency of the implemented 
machine learning system by comparing the actual and expected outcomes for a 
model: True Positive (TP), True Negative (TN), and False Negative (FP) (Table 3). 
The different values in the learning algorithm will be used to determine the various 
steps. In our evaluation methodology, we used four commonly used metrics, namely 
Accuracy (ACC), True Positive Rating (TPR), FPR, ROC, and AUC [40].

Table 3 Description of 
evaluation metric used for 
comparative analysis

Evaluation Metric Description

TPR
TP

TP FN+

FPR
FP

FP TN+

Accuracy
TP TN

TP TN FP FN
+

+ + +

0.00 0.05 0.10 0.15 0.20 0.25

pressure measurement

crc rate

reset rate

setpoint

function

length

time

cycle time

command response

gain

Fig. 10 GP dataset Features
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We have used commonly used evaluation metrics to estimate and compare the per-
formance of models. Table 3 describes the evaluation metrics used for benchmarking.

Both models were tested using the processed water storage tank and gas pipeline 
dataset with the total samples of 27,200 and 274,269 with selected features, respec-
tively. On the processed dataset for binary classification of cyber-attack, the KNN, 
the decision tree, and the random forest model have been trained, and the results 
observed based on assessment metrics (Table 3) are shown in Fig. 11, similarly, for 
multi-label classification of cyber-attack categories, the logistic regression and 
multi-layer perceptron model has been trained and the results observed based on 
assessment metrics (Table 3) are shown in Fig. 12.
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100.00%

80.00%

60.00%

40.00%

20.00%

0.00%
K-Nearest Neighbors Decision Tree Random Forest

95.13%
90.00%
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BINARY Classification Accuracy

GAS PIPELINE

96.22% 92.38% 88.36%
80.10%

Fig. 11 Analysis of K-NN, Decision Tree, and Random Forest
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Fig. 12 Analysis of Logistic Regression and Multi-layer perceptron
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6.2  Summary

In this section, the experimental process of cyber-attack was demonstrated through 
two stages of experiments. Through the results demonstrated in these two experi-
ments, it was shown that the multi-stage model is an effective technique of enhanc-
ing the computational efficiency of machine learning classifiers in the context of 
attack detection.

7  Conclusions

With increased network connectivity, SCADA systems are becoming more vulner-
able to outsiders’ threats. The need for IDS research into an industrial control sys-
tem is increasing. As it has been demonstrated that machine learning can achieve 
attack detection in the industrial control system. We were able to successfully design 
multi-stage machine learning models to accurately classify the cyber-attack samples 
from the data set for the water storage tank and gas pipeline.

The results obtained with the critical evaluation metrics enabled us to perform effec-
tive comparative analysis and to propose the most appropriate algorithm. We achieved 
an overall accuracy of 96.22% and 93.83% for the water tank storage dataset with deci-
sion tree and multilayer perceptron model, respectively. Similarly, with the gas pipeline 
data set, we achieved an accuracy of 92.38% and 81.90%, as shown in Fig. 7.

We found a tradeoff depending on the dataset used for the evaluation. The multi- 
stage model shows a bias in performance based on the data provided to train our 
model. There are several challenges, such as defining an appropriate version of fair-
ness [41–59]. Immediate future research is expected to improve the efficiency of the 
machine learning model in terms of data set independence.

Model Accuracy Analysis
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100.00%

Multi-Layer perceptron

Gas pipeline datasetWater tank stroage dataset

Fig. 13 Working Model Analysis
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A Recurrent Attention Model for Cyber 
Attack Classification

Naseem Alsadi, Hadis Karimipour, Ali Dehghantanha, 
and Gautam Srivastava

1  Introduction

With the proliferation and development of contemporary computer systems, the 
demand for reliable data protection has reached an all-time high. Traditional meth-
ods of malware detection no longer provide systems with the security they so vitally 
need [1]. Attackers have developed a novel and advanced methodologies to disguise 
malicious activity and avoid detection, leaving systems vulnerable to malicious data 
acquisition. Novel algorithms have been developed with aim of detecting and clas-
sifying malicious attacks [2–7]. There are various methods to go about developing 
such algorithms, including operational code analysis.

All software initiates interaction with hardware components, and at some point, 
software intentions will need to be processed as operational codes, whether the 
software is good ware or malware. Operational code data, therefore, presents us 
with valuable information about software and software intentions.

Specifically, polymorphic malware has become increasingly difficult to detect 
due to its dynamic nature. Polymorphic code refers to a species of code that uses a 
mutation engine to change its code whilst keeping the fundamental algorithm the 
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same [8]. This presents a problem for traditional methods that do not account for 
mutations and rely on firm pattern matching to detect anomalies. When polymor-
phic malware mutates it becomes increasingly difficult to relate it to its initial state. 
This necessitates an algorithm capable of recognizing and detecting the overarching 
algorithm structure. Unfortunately, polymorphic malware is not alone [9, 10]. 
Several other malicious attacks were developed to subtly bypass detection systems. 
Therefore, detection systems must be capable of closely analyzing software data 
and extracting software intentions [11]. Visualization of software data, in specific 
operational code data, can provide detection systems with the ability to examine 
program data and instruction correlation.

The use of visualization exploits image texture analysis, a vital subsection of 
computer vision. Allowing us to examine the spatial arrangement of intensity in 
regions of an image [12]. This is very helpful when we are looking to analyze the 
overall structure of the algorithm and analyze the relationship between non- 
adjoining instructions. Additionally, visualization allows for simple data set aug-
mentation, making it easier to expand datasets. Visualization will require an image 
classification architecture. However, neural network-based image classification 
architectures typically have considerably higher computational cost.

The Recurrent Attention Model (RAM) is an alternative to prominent image 
classification models [13]. The RAM draws inspiration from human perception. 
Human focus does not holistically analyze visual input, rather it selects various sec-
tions of the visual space. Over a duration of time, information is gathered from 
variant fixations allowing for a more complete internal representation to be devel-
oped. As a result, images can be analyzed with a higher degree of attention in, 
especially crucial regions.

In this chapter, we focus on malware binary classification using operational code 
data and RAM. Operational code data is initially processed into an image, using 
image processing techniques. This allows for the analysis of the relationship 
between non-adjoining instructions, which may reveal initially obscure software 
intentions. The efficiency of the proposed model is evaluated using several metrics, 
including accuracy, precision, recall, and F-score to evaluate the performance of the 
proposed threat hunting model as follows [14]:

• True Positive (TP): when a malicious sample is predicted as malware.
• True Negative (TN): when a malicious sample is predicted as goodware.
• False Positive (FP): when a benign sample is predicted as malicious.
• False Negative (FN): when a malicious sample is predicted as goodware.

Utilizing the aforementioned core metrics, the performance of machine learning 
systems can be measured using the following formulas:

Accuracy: indicates how the proposed model can accurately predict malware and 
benign samples.

 
Accuracy

TP TN

TP TN FN FP
=

+
+ + +  

(1)
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Precision: Precision for a certain APT group is the number of samples in a class that 
is correctly predicted, divided by the total number of samples that are predicted.

 
Precision

TP

TP FP
=

+  
(2)

Recall: for a certain class, is the number of samples in a class that is correctly pre-
dicted, divided by the total number of samples in that class.

 
Recall

TP

TP FN
=

+  
(3)

F-Score (F1): F-Score is the harmonic mean of Precision and Recall. It can be 
applied as a general classifier performance metric:

 
F

Precision Recall

Precision Recall1 2= ×
×
+  

(4)

2  Previous Work

There has been a lot of research conducted on utilizing opcode data for malware 
classification. Researchers such as Haddadpajouh et  al. proposed a Multi-Kernel 
and Meta-heuristic Feature Selection Approach for cyber threat hunting in an IoT 
environment [1]. The results were promising, with a validation accuracy of 94%.

Researchers at Dongguk University-Seoul and Baewha Women’s University in 
South Korea used operation code data to train a Recurrent Neural Network for the 
identification of malicious activity. The results showed an exceptional accuracy of 
97.59%. They further investigated the use of word2vec encoding against the classi-
cal one-hot encoding. Increased accuracy of 0.5% was reported when using the 
word2vec encoding over the one-hot encoding. However, the researchers report that 
with their proposed method there was a large computational cost, due to having to 
analyze a large set of opcode data [2].

Yuxin et al. at the Harbin Institute of Technology used operation code data to 
identify malicious software using a Deep Belief Network (DBN). The proposed 
model used DBN’s to extract feature vectors and detecting malware. The proposed 
model was compared against three baseline models, which utilized decision trees, 
support vector machines, and the k-nearest neighbor algorithm as core classifiers. 
The proposed method showed that BDN was capable of accurately detecting mal-
ware. However, more importantly to this report, operation code data was used to 
reliably identify malicious programs [3]. Researchers at the Vision Research Lab at 
the University of California used to signal and image processing to examine mal-
ware data. They showed that the visualization of malware data was pragmatic and 
could distinguish between variant malware families. Furthermore, examining 
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program data before execution allows for identifying malicious intent before expos-
ing systems to the risk of attack. Besides, the relationship between non-adjoining 
program instructions can be analyzed through the analysis of spatial arrangement. 
The results showed that the accuracy of the proposed model was exceptionally high 
at 98% [4].

Recent developments in the field of image classification have led to the introduc-
tion of novel architectures. Researchers at Google DeepMind have developed an 
algorithm for image analysis based on RNN and reinforcement learning. The pro-
posed model, named the Recurrent Attention Model (RAM), draws inspiration from 
biological human perception. With human perception, the entire environment is not 
processed at once. Rather, focusing is conducted by selecting particular regions of 
attention. Information is acquired from regions of attention and amalgamated with 
information from other regions of attention. Over time an internal representation is 
developed of the environment. This allows for an in-depth analysis of regions of 
emphasis while allowing the amount of computation to be controlled independently 
of image size. The RAM was compared against various other models including a 
convolutional neural network and a fully connected network. The results show that 
the RAM outperformed the other models and accurately classified input image with 
an error of 1.29% [5].

In conclusion, the proposed models in the literature confirm the validity of utiliz-
ing operation code data to classify malicious [6–15]. Furthermore, the visualization 
of program data has been shown to increase the accuracy of models when identify-
ing malware. Novel image classification architectures allow for unique image anal-
ysis. The RAM allows visualized operation code data to be analyzed, therein 
allowing the relationship between non-adjoining instructions to be further examined.

3  Proposed Approach

The proposed model utilizes a deep reinforcement learning architecture to imple-
ment a vision attention based binomial malware classification system. The system 
is fundamentally composed of multiple processes, each process vitally contributing 
to the whole. The core processes are broken down and novelties are described in 
detail below.

3.1  Data Processing and Visualization

The architecture is initially presented with operational code data, which are essen-
tially sequences of operands that stem from a specific instruction set architecture. 
Before data visualization, it is vital to identify instruction set architecture and 
encode prominent operands into their numerical representations. With a set of N 
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operands, each operand will be assigned a unique numerical value of 0 → N − 1. A 
list of prominent operands obtained from surveying the dataset is displayed in 
Table 1. Numerical vectorization followed for each respective data sample.

Proceeding vectorization, each data sample will need to be visualized using data 
visualization techniques. To do such, all data samples will initially need to be set to 
the same length. Each data sample will need to be reshaped to accommodate a 
height, width, and depth. Essentially, all data samples become a numerical pixel 
map. Any visualization or imaging library can then be utilized to generate an image. 
Figure 1 showcases an abstraction of the visualization procedure.

Figure 2 shows two different visualizations of variant software using operational 
code visualization. It is empirically evident that the two different images clearly 
show variance in texture, consequently supporting the ability to use texture analysis 
in detecting and classifying software. In this paper, visualization is used to exploit 
texture analysis.

3.2  Recurrent Neural Network (RNN)

Recurrent neural networks (RNN) are a category of artificial neural networks where 
a sequential connection is established among nodes. Nodes will be connected to 
other nodes within variant layers in a unidirectional fashion. The flow of data is 
unidirectional, therefore the RNN’s will contain input, hidden, and output layers. 
The temporal flow of data from node to node allows previous outputs to be utilized 
as input for successive nodes. As a result, information from prior input is compiled 
and transferred to subsequent nodes, allowing for the model to dynamically learn 
from the past.

Classical neural networks work well on the presumption that the input and out 
are directly independent of each other, however, this is not always the case. This is 
crucial to the implementation of the proposed method and will be discussed in 
greater detail below.

Figure 3 shows a labeled RNN diagram. At each time step t, a new input xt is 
provided to the network. The hidden section of the network, which compiles and 
stores all previous data, is calculated as ht =  f(Wxxt + Whht − 1). Conclusively, the 
output yt is sequentially generated at each node with yt = softmax(Wy) [16].

Table 1 Prominent Operands

Operand

LDR, MOV, CMP, BL, STR,
ADD, B, BEQ, BNE, LDRB,
STRB, LDMIA, BX, BLE,
MOVNE, MOVEQ, TST, BLT,
SUB, LDMFD
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Opcode
Dataset

Operand Indexing Data Shaping

Fig. 1 Visualization Process

Fig. 2 Visualization of 
Program

Fig. 3 Recurrent Neural Network Diagram
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3.3  Reinforcement Learning (RL)

Reinforcement learning is a subsection of machine learning focused on the mapping 
of optimal actions to specific environment states, with aim of augmenting reward. 
An agent is placed within an environment and equipped with a finite set of possible 
actions. Through repetition, the agent learns optimal behavior within states. The 
foundation of reinforcement learning is the reward function, which drives the agent 
to pursue directed goals.

Reinforcement learning architectures are concerned with the identification of 
optimal action-selection policies for any given Markov Decision Process. A Markov 
Decision Process (MDP) is a mathematical framework for modeling decision- 
making in discrete time. The MDP can be formalized as a 4-tuple [17]:

 S A P Ra a, , ,( ) 
• S: Defines a finite set of states.
• A: Defines a finite action space.
• Pa: The probability that an action, a, whilst in a current state, s, will lead to a 

future state, s’.
• 𝑅𝑎: Defines the reward from conducting the action, a.

The proposed model in this paper is an instance of the Partially Observable 
Markov Decision Process (POMDP). The POMDP is a generalization of the MDP, 
in which the actual state of the environment is never completely observed. Therefore, 
the POMP is required to keep a probability distribution over the set of possible 
states. The POMDP is widely accepted to be capable of being pragmatically imple-
mented across various sequential decision-making applications. The POMDP can 
be formalized as a 7-tuple [18]:

 S A T R Oa, , , , , ,Ω γ( ) 
• S: Defines a finite set of states.
• A: Defines a finite action space.
• T: Defines a finite set of conditional transition probabilities for state transition.
• Ω: Defines the observation space.
• Ra: Defines the reward from conducting the action a at state s.
• O: Defines the conditional observation probabilities.
• γ: Defines the discount factor.

At time step t the agent will select an action 𝑎 from the action space A. Action a 
will create a change in the environment, causing the state of the environment to 
transition to state s′. This transition will occur with a probability of T(s′| s, a). The 
agent is subsequently presented with an observation of the new state. The probabil-
ity of being presented with observation o, provided the most recent action taken 𝑎 
and the new state s′, is O(o| s′, a). Conclusively, the agent is provided a reward for 
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selecting action a in state s, formalized as R(s, a). The agent will aim to select 
actions at time step t, to maximize reward.

In this paper, the agent utilizes vision attention techniques to exploit regional 
texture analysis. The agent will attempt to perform a set of discrete sequential 
actions, which highlight the spatial arrangement of intensity with an image. The 
process aims at the discovery of optimal action sequences, conducted by the agent, 
which reveal an underlying relationship between adjoining and non-adjoining 
instructions, therein unveiling software intentions, which may have otherwise been 
initially obscured. Furthermore, Reinforcement Learning presents the ability to 
learn extensively about families of malware, specifically their polymorphic capa-
bilities and their central entrenched algorithm structure.

3.4  Recurrent Attention Model (RAM)

The Recurrent Attention Model (RAM) is a recurrent neural network that takes 
inputs sequentially from various parts of a selected image to develop a dynamic 
representation of the environment. The RAM can do such by extracting information 
from various fixations, rather than the entire image.

At the time step t, an image of the environment will be provided to the agent, 
this image is named xt. The agent will use a bandwidth-limited sensor p, which 
assists in focusing on a selected location l, to examine the image. The band-
width-limited sensor utilizes a gradually lower resolution for pixels further away 
from l. As a result, the pixels in the region l will have a higher resolution than 
those elsewhere. This process is conducted within the glimpse sensor as seen in 
Fig. 4. The input to the glimpse sensor is the coordinates of the sensor and input 
image. The output is the various resolution patches, which form a retina-like 
representation.

Using an input image x with a selected location l, the retina encoder p(x, l) will 
extract k overlapping square patches with variant sizes. The first patch will be of the 
size gw × gw pixels, subsequent patches will have twice the size of the previous. After 

Fig. 4 Glimpse Sensor [5]
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all the patches are extracted, they will undergo a uniform reshaping to the dimen-
sionality of gw × gw. The glimpse sensor process is completed when the patches have 
been reshaped and then subsequently concatenated.

Throughout the process, the agent keeps an internal state which compiles all 
information extracted from prior observations. The glimpse network utilizes the 
glimpse sensor to extract the retina representation. The retina representation and the 
glimpse location are both independently mapped into a hidden space utilizing linear 
layers. The detached outputs of the linear layers are combined with a final linear 
layer that amalgamates both streams of information. The process is depicted in 
Fig. 5. Fundamentally, the glimpse network fg(x, l) has two fully connected layers. 
The output of the glimpse network can be formalized as g = Rect(Linear(hg) + Line
ar(hl)), where hg = Rect(Linear(p(x, l))), hl = Rect(Linear(l)), Rect(x) =  max (x, 0) 
and Linear(x) = Wx + b.

At each time step, the bandwidth-limited sensors will be deployed. Along with 
the sensors, an environment action is conducted at every time step. For this spe-
cific application, environmental action is a SoftMax layer output. The environ-
ment action is produced by the action network, which makes a classification 
based on the internal state of the model. The action network can be defined using 
a linear SoftMax classifier as fa(h) =   exp  (Linear(h))/Z, where Z is a constant 
chosen for normalization. After the agent has completed the action, he is pre-
sented with a reward rt + 1 and a novel visual observation of the environment xt + 1. 
The reward function is crucial in motivating the agent to choose instrumental 
actions. In the aim of achieving an accurate model, correct binary classification 
is our core aim. An agent receives a reward when a correct classification has been 
made, and none otherwise. The agent aims to perform a sequence of optimal 
actions to the input while maintaining the accuracy of the model. The reward 
function is formalized in Eq. 5.

 r y y y yt pred label pred label= = ={ , ! ,0 1  (5)

The core network of the model uses the glimpse representation produced by the 
glimpse network and amalgamates it with the internal representation at the previous 

Fig. 5 Glimpse Network [5]
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time step, which in turn yields a novel internal state of the model. The core network 
is formalized as ht = fh(ht − 1) = Rect(Linear(ht − 1) + Linear(gt)). The location network 
utilizes the internal state of the model to select the next sensor location, as defined 
by fl(h) = Linear(h).

Keeping in mind the core aim of augmenting the reward achieved by the agent the 
training procedure can be laid out. The training parameters for the agent can be 
defined as θ = {θg, θh, θa}. The training procedure is then directed at learning these 
parameters to maximize the reward achieved by the agent. The action network fa is 
trained via the utilization of backpropagation through the glimpse and core net-
works. The location network fl is trained using the REINFORCE rule. The location 
network training procedure involves manipulating the value of θ to increase the log- 
probability of selected actions which leads to greater reward and decreases that of 
actions that do not. The cumulative diagram is displayed in Fig. 6, which showcases 
the methodology utilized from the data pre-processing phase to completion [5].

Fig. 6 Cumulative Diagram
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4  Experimental Analysis

In this section, we give some descriptions into the two datasets that are used in our 
experimental analysis.

IoT Dataset: An IoT application dataset, which contains various samples of mal-
ware and goodware applications presented in operational code form is used for our 
experiments. Each data sample is obtained while using 32-bit ARM architecture. 
Normalization of data is critical to ensure uniformity of the model during both the 
training and validation phase. The vast majority of IoT platforms are ARM- based. 
Therefore, the utilization of an ARM-based IoT dataset prepares the model for real-
world IoT attacks. The IoT dataset contained a total of 512 data samples, categori-
cally divided into goodware and malware. Each data sample was a sequence of 
operational codes conducted by a specific application at a variant sequence span. 
The initial dataset provided an unbalanced split between goodware and malware, 
which was resolved with the use of image manipulation techniques.

BATADAL Dataset: The Battle of the Attack Detection Algorithms (BATADAL) is 
a dataset that was developed to evaluate and compare the performance of algorithms 
that detect cyber-attacks in water distribution systems. Contemporary water distri-
bution systems utilize computers, sensors, and actuators to create a cyber- physical 
system. The evolution of these systems has improved the overall water distribution 
process; however, the introduction of cyber-physical systems has also increased the 
risk of cyberattacks. The dataset is partially labelled and was accumulated over 
6  months. It contains 4177 data samples, with a mix of both normal and attack 
data [19].

5  Results

The proposed method was assessed using cross-validation. Each dataset was evalu-
ated individually, and the proposed method was compared against various other 
models utilizing the performance metrics discussed prior.

5.1  IoT Dataset

The results for the IoT dataset, which contained 512 data samples are summarized 
in Table 2. As can be seen from the table, the proposed method outperforms all other 
models. The model was trained for 20 epochs over a cumulative period of 1 h. The 
results suggest that the adoption of visualization techniques and deep reinforcement 
learning when classifying operational code data increases model performance.
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5.2  BATADAL Dataset

The results for the BATADAL dataset, which contained 4177 data samples, is 
depicted in Table 3. The results indicate that the proposed method surpassed all 
other models in the selected criteria. The model was trained for 50 epochs over 8 h. 
The results further supplement the claim that an amalgamation of visualization and 
deep reinforcement learning augments model performance.

6  Discussion

In this paper, a method for malware classification was formulated and compared 
against various other models. The proposed method consisted of visualizing opcode 
data and using a RAM to perform a binary malware classification task. The pro-
posed method was attractive for various reasons, including in-depth image analysis. 
This type of analysis is crucial for malware identification, where programs will be 
developed to subtly bypass detection algorithms. The results obtained from the 
experiment indicate that the proposed method performed excellently in accurately 
classifying malicious intention. An IoT dataset, obtained while using 32-bit ARM 
architecture, was utilized to test the accuracy of the proposed method on opcode 
data. The results show that the proposed method performed much better than other 
models. Emphasis must be drawn to the recall metric for malware classification, 
which estimates the rate at which true malware samples were correctly identified. 
Algorithms with low recall allow numerous malicious programs to pass undetected. 
The calculated recall from running the proposed method on the IoT dataset was 
99.59%, which was higher than any of the other models which were analyzed. A 
total of only 1 malware sample went undetected out of a total of 244.

Table 3 Comparative Study of Models on BATADAL Dataset

Architecture Accuracy Precision Recall F-Score

Proposed model 99.95% 99.09% 99.54% 99.31%
Aghashahi et al. [13] 98.6% 75.0% 95.2% 83.9%
Abokifa et al. [19] – – – 88%
Chandy et al. [20] 71.3% 39.2% 85.8% 53.8%

Table 2 Three Comparative Study of Models on IoT Dataset

Architecture Accuracy Precision Recall F-Score

Proposed model 99.63% 99.59% 99.59% 99.59%
Multi-layer perceptron 93.29% 93.29% 93.29% 93.29%
Haddadpajouh et al. [1] 94.0% – – –
Yuxin et al. [3] 96.5% – – –
Santos et al. [9] 95.91% 86.25% 81.55% 86.52%
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The proposed method was also tested on a dataset that did not include opcode 
data. The selected dataset was the BATADAL dataset which was a water distribution 
system dataset containing numerous system attack data. The aim was to test if the 
proposed method could be used across various dataset types with similar accuracy 
in malicious activity identification. The results show that the proposed method per-
formed excellently, scoring a total accuracy of 99.95% and a recall of 99.54%. The 
proposed method was also able to surpass all other models implemented to classify 
malicious activity on this dataset.

Visualization of operational code data provided a reliable and accurate ground-
ing for the model. As a means of protection against polymorphic code, the proposed 
architecture attempts to examine the global structure of the application rather than 
sequential operational code analysis. Successfully, through the use of image pro-
cessing techniques, serial operational code data was manipulated into a visual rep-
resentation that embodied the instructions of an application with numerical 
representations. An empirical examination of a collection of visualized data vividly 
shows the spatial arrangement of intensity across variant regions of an image.

The proposed model excels in its function of visualizing and emphasizing regions 
of operational code data, allowing for focused texture analysis. Moreover, the pro-
posed model allows critical feature exposure, through its use of an RNN to empha-
size and closely analyze distinct textural regions of an image. Future considerations 
include testing the proposed method across the variant dataset.
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