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Abstract. Tensegrity domes are space reticulated pre-stressed systems composed
of bars in compression and cables in tension. They are lightweight flexible systems
with low structural damping, and thus they are sensitive to vibrations induced by
wind or earthquakes. This paper investigates the passive vibration control of a
randomly driven tensegrity dome of Geiger’s type using a Tuned Mass Damper
(TMD). The parameters of the TMD are optimized based on a reliability strategy.
The optimization strategy consists in minimizing a failure probability charac-
terized by the out-crossing, for the first time, of a given threshold value of the
vertical displacement of a given node (of the structure) during a time interval. The
proposed strategy is compared to other strategies from the literature and showed
better capabilities in reducing the vertical vibrations of the cable dome. Indeed,
it has been observed that significant reductions have been obtained especially in
the vicinity of the off-targeted frequencies where the classical tunings showed
low performances. The proposed passive control strategy using a TMD is efficient
in reducing the excessive vibrations of tensegrity systems and significantly less
expensive than active and semi-active control techniques that are usually used in
such a case.

Keywords: Tensegrity · Cable dome · Random vibrations · Reliability based
optimization of TMD

1 Introduction

Tensegrity domes, Geiger’s type (Ouni and Ben Kahla 2014) for instance, are innovative
lightweight space reticulated pre-stressed systems composed of a network of continuous
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tensile cables and discontinuous compressive bars. They are employed as large span
roofs of structures including arenas, stadiums and sport centers. These structures are
very flexible and have low damping and thus they are sensitive to vibrations induced
by wind or earthquakes. In order to control these induced vibrations, several studies
have been carried out and the focus was particularly made on active control techniques
(Ouni and Ben Kahla 2014). Although actives control techniques showed effectiveness,
their implementation in real large scale structures remains of particular complexity. An
alternative to these techniques is the use of passive techniques such as mounting TMD
devices into vibrating structure (Mrabet et al. 2016).

TMD devices are very reliable and efficient in vibration control of structures and
have been widely used for their low cost and design simplicity. Nevertheless, the param-
eters of such devices should be carefully optimized in order to effectively reduce the
vibrations. Several optimization strategies can be found in the literature and among them
the reliability based optimization (RBO) (Mrabet et al. 2016) that has been efficiently
used in the passive control (using TMD) of earthquakes induced vibrations, for instance.
In the present work a TMD device, optimized using the RBO strategy, is used for the
control of a Geiger’s structure. The RBO strategy has been compared to other strategies
and the obtained results showed its superiority in reducing the global vibration of a
Geiger’s structure.

2 Governing Equations, Optimization of the TMD Parameters

Figure 1 shows the considered tensegrity dome of Geiger’s type with its components
of strings and struts. In Fig. 1(a) the nodes are numbered whereas in Fig. 1(b) the
location of the TMD device (on node 2) is showed in a typical section view. The TMD is
characterized by its natural frequency ωT and its damping ratio ξT = cT /2mTωT , where
cT is the damping coefficient and mT = μ ×ms is its mass; μ and ms are the mass ratio
and the mass of the tensegrity structure, respectively.

Let x = (x1, y1, z1, .., x31, y31, z31, zT )T be the (78 + 1) × 1 displacement vector of
the nodes and the TMD device, where zT is the TMD displacement and the superscript
notation T denotes transpose. Assuming that the deformations of the structure is linear
elastic (Feng et al. 2018), the governing equation of motion, around an equilibrium
configuration, of the cable dome equipped with a TMD can be written as follows,

Mẍ+Cẋ+Kx = Wexcit (1)

whereM =
[
M 0
0 mT

]
,C =

[
C 0
0 0

]
+cTb.bT ,K =

[
K 0
0 0

]
+kTb.bT ,Wexcit is the (78+

1)× 1 vector of the point forces that are assumed to be uncorrelated stationary zerosmean
Gaussian white noise; the point forces are applied on the top nodes (1, 3, 5, 8,…., 28, 30)
of the structure along the z-axis (vertical forces). Besides, b = (0, 0, 0, ..,−1, 0, .., 1)T

is the location vector of the TMD; M, C and K are the mass, damping and the tangent
stiffness matrices, respectively. The expressions of these matrices are given in Feng et al.
(2018).
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Fig. 1. (a) The tensegrity dome of a Geiger’s type made up of 13 vertical struts and 60 strings
(Ouni and Ben Kahla 2014), (b) typical section view with the TMD mounted on node2

Equation (1) can be recast in space state form and the covariance responses of the
structure can be obtained, in stationary conditions, using the Lyapunov equation (Wijker
2009) as follows:

AR + RAT + B =0 (2)

where R = 〈
XXT〉

is the covariance matrix, X = (x,Px)T, 〈.〉 denotes the mathematical

expectation, A =
[

0 I

−M
−1

K −M
−1

C

]
, B = GS0GT, G =

[
0 −M

−1
]T

and S0 is the

constant power spectral density (PSD) matrix of the white noise excitations.
In the present work the optimization strategy consists in minimizing the failure prob-

ability Pf characterized by the out-crossing, for the first time, of a given threshold value
β of the vertical displacement of node 2 during some interval time T. The failure proba-
bility can be approximated, using the Rice’s formula based on the Poisson assumptions
(Mrabet et al. 2016), as follows:

Pf = 1 − exp[−T × (σż2/πσz2) × exp(−β2/2σ 2
z2)] (3)
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where σz2 and σż2 are the root mean square (RMS) displacement (z-axis) and velocity
of node 2 of the dome structure, respectively; these quantities can be obtained using
Eq. (2).

Let d = (ωT , ξT )T be the design vector, the optimization problem can be formulated
as follows:

Find d = (ωT , ξT )T to minimize Pf (4)

3 Numerical Example

Tables 1 and 2 show the geometric characteristics of the Tensegrity dome. The elastic
modulus and density of all the elements are equal to 160 GPa and 7.85 × 10−3kg/cm3,
respectively. The cable elements have yield strength of 0.6 GPa and a breaking strength
of 0.8 GPa. The struts are round tubes (diameter = 2.13 cm and thickness = 0.16 cm)
and they have a cross section area equal to 1 cm2. The natural damping of the structure
is assumed equal to 1% for all modes.

A modal analysis of the uncontrolled structure has been conducted and the first three
flexural mode shapes that are sensitive to the vibrations induced by vertical random
excitations are shown in Fig. 2 where their corresponding resonant frequencies are also
presented.

For the sake of comparisons, the performance of the TMD, optimized using the RBO
strategy, has been compared with three other strategies from the literature. The first
strategy is that established by Den Hartog (Warburton 1982), which is a deterministic
strategy, the two other are that of Leung (Leung and Zhang 2009) and that of Warburton
(Warburton 1982) which are stochastic optimization strategies, since they involve white
noise excitations.

The corresponding tuning formulas are shown in Table 3 where ξs is the modal
damping ratio of the structure (the mode to be controlled), � is the target frequency and
μeff is the effective mass ratio as defined by Warburton (Warburton 1982). For the RBO
strategy, the mass ratio is taken μ = 2%, T = 10 s, β = 0.25 m and the PSD intensity of
the forces is taken S0 = 1N2/Hz.

The targeted mode was the first flexure mode of the structure corresponding to the
natural frequency � = 31.95 rad/s and the optimization (RBO) has been carried out.
The optimal parameters are found d∗

RBO = (30.62, 0.26)T and P∗
f = 9.910–4 whereas for

the other strategies d∗
Leung = (29.86, 0.20)T, d∗

Warburton = (29.90, 0.15)T and d∗
DenHartog

= (29.22, 0.18)T.
The performances of theTMDare shown inFigs. 3, 4, 5where the frequency response

functions (FRF) are plotted for three different nodes. Indeed, because of the symmetry
in the dome structure, the FRFs of nodes 4, 9, 14, 19, 24 and 29 are similar and those of
nodes 6, 11, 16, 21, 26 and 31 are also similar.
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Table 1. Initial coordinates of the Geiger’s dome.

Node N° X(cm) Y(cm) Z(cm) Node N° X(cm) Y(cm) Z(cm)

1 0 0 21 17 −30 51.9615 0

2 0 0 15 18 −20 0 18.5

3 20 0 18.5 19 −20 0 4.5

4 20 0 4.5 20 −40 0 11.5

5 40 0 11.5 21 −40 0 −11.5

6 40 0 −11.5 22 −60 0 0

7 60 0 0 23 −10 −17.3205 18.5

8 10 17.3205 18.5 24 −10 −17.3205 4.5

9 10 17.3205 4.5 25 −20 −34.6410 11.5

10 20 34.6410 11.5 26 −20 −34.6410 −11.5

11 20 34.6410 −11.5 27 −30 −51.9615 0

12 30 51.9615 0 28 10 −17.3205 18.5

13 −10 17.3205 18.5 29 10 −17.3205 4.5

14 −10 17.3205 4.5 30 20 −34.6410 11.5

15 −20 34.6410 11.5 31 20 −34.6410 −11.5

16 −20 34.6410 −11.5 32 30 −51.9615 0

Table 2. Cross-section area and initial pre-tension of different cable families.

Cable family Cable number Cross-section area (cm2) Initial pretension (KN)

1 14–19 0.01 0.20

2 20–25 0.01 0.144

3 26–31 0.02 0.519

4 32–37 0.02 0.519

5 38–43 0.04 1.304

6 44–49 0.04 1.304

7 50–55 0.01 0.15

8 56–61 0.02 0.48

9 62–67 0.01 0.15

10 68–73 0.04 1.13
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31.95 rad/s 

60.19 rad/s 

68.54 rad/s 

Fig. 2. Flexural mode shapes sensitive to vibrations induced by a vertical excitation on the upper
nodes of the dome (Ouni and Ben Kahla 2014)

The inspection of Fig. 3 shows good performance of the RBO strategy where signif-
icant reduction has been recorded (19.5 dB) in the vicinity of the targeted frequency. In
addition, although the Leung’s tuning provided better performance (20.5 dB), the RBO
strategy has performed better in the vicinity of the off-target frequencies. Indeed, one
can observe that for the third resonant mode, for instance, the RBO provided a reduction
of 18.1 dB in the FRF magnitude whereas it has been 16.1 dB when the Leung’s tuning
(which is the better among the other strategies) is applied.

Figures 4 and 5 show the FRFs of nodes 4 and 6 where significant reductions of
20.6 dB and 20.4 dB are obtained, respectively, in the vicinity of the targeted frequency.
This fact implies that the RBO strategy provide better global attenuation performances
since all displacement nodes are better controlled. For the other strategies, the best
performance is obtained when the Leung’s tuning has been applied.
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Table 3. The tuning formulas of the TMD parameters.

Tuning ξ∗
T ω∗

T /�

Den Hartog
√

3μeff
8(1+μeff )

1
1+μeff

Warburton
√

μeff (1+3μeff /4)
(1+μeff )(4+2μeff )

√
1+μeff /2
1+μeff

Leung
√

μeff (1+3μeff /4)
(1+μeff )(4+2μeff )

√
1+μeff /2
1+μeff

+ α1α2,

α1 = (−0.5047 + 0.0764
√

μeff

+ 0.6023μeff )

α2 = √
μeff ξs + 0.3737μeff ξ

2
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Fig. 3. FRF (observation node 2)
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Fig. 4. FRF (observation node 4)
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Fig. 5. FRF (observation node 6)

4 Conclusion

In the present work, a passive control of a tensegrity structure using TMD is investi-
gated. The TMD parameters are obtained using a reliability based optimization and the
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TMD showed good performance in the vicinity of the targeted frequency as well as
the off-targeted ones. Compared to other optimization strategies, the reliability based
optimization strategy has shown its superiority especially in the global attenuation of
structural vibrations. Although it needs to be investigated in real scale structures, such
strategy is a promising tool for the TMD design for the passive vibration control of such
types of spatial structures.
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