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1 Introduction

New buildings (e.g., commercial, residential, public) are now generally equipped
with a variety of smart sensors and smart meters. This makes these buildings smart
with improved capacities, opportunities, and applications related, for instance, to
energy management systems which main goal is to decrease waste mainly due to
irresponsible human behaviors [1]. Indeed, energy deficiency represents a global
problem. Hence, energy generation increase and consumption efficiency are two
active areas of research [2]. Nonetheless, energy usage is ever in demand particularly
given the various technological advances that rely on electrical power for operating.

The automatic reduction of energy requirements in buildings has received a lot
of attention recently [3] and early attempts included automatic regulation of light or
heating in home automation. However, these approaches were deemed inappropriate
due to improper reaction to the expectations of the users; i.e., the occupants [4].
The majority of recent studies has shown the importance of putting the users in
the energy-saving loop while ensuring their comfort [5]. Occupants’ behavior has
a major influence on building energy consumption [6–9]. Hence, [10] introduced
methods for modeling occupant behavior and quantifying its impact on building
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energy use. The major themes include advancements in analytic data collection
techniques, modeling methods, and applications that provide insights into behavior-
related energy saving’s potential and impact [11]. There is a large gap between the
predicted energy demand and the actual consumption, once the building is in use
[12]. According to [13], occupants’ behaviors account for significant uncertainty
in building energy use. One cause could be that occupant behavior might not fit
with the energy concept and thus cause counterproductive effects [14]. Occupants
have influence due to their presence and activities in the building and due to their
control actions, which aim to improve indoor environmental conditions (thermal,
air quality, light, noise). Consequently, the weight of the user behavior on the
energy balance of a building increases [15]. Indeed, several studies suggest huge
energy savings in buildings just by detecting occupancy (presence/absence) as
shown, for instance, in [10] where motion sensors and magnetic door switches
are used to detect occupancy in offices and HVAC (Heating, Ventilation, and air-
conditioning) control, thereby estimating potential energy savings from 10–15%.
Similarly, [16] focus on how to estimate the number of occupants in a room by
processing CO2 concentration, temperature, and HVAC actuation levels in order
to identify a dynamic model. Additionally, there is a lot of potential for energy
savings and increasing occupants’ comfort by detecting activities and this motivates
to carry forward the activity recognition task [17]. Methods investigated for finding
occupancy using common sensors vary from basic single feature classifiers that
distinguish between two classes (presence and absence) [17, 18] to multi-sensor
multi-feature models [16, 19–22]. A primary approach, which is prevalent in many
commercial buildings, is to use passive infrared (PIR) sensors for occupancy
estimation. However, motion detectors fail to detect presence when occupants
remain relatively still. This is quite common during activities like regular deskwork.
Furthermore, drifts of warm or cold air on objects can be interpreted as motion
leading to false positive detection. This makes the use of PIR sensors alone, less
attractive for occupancy counting purposes. Fusion of PIR sensor data with other
sensors can be useful as discussed in [10]. As such, motion sensors are usually
paired with magnetic reed switches for occupancy detection in order to increase
the efficiency of HVAC systems in smart buildings in a simple and non-intrusive
manner. Acoustic sensors may also be used [23]. However, environment audio
signals may cause many false positives when no support from other sensors is
available. The use of pressure, PIR, and acoustic sensors to detect occupancy in
single desk offices has been discussed in [24]. Further tagging of activities is based
on this knowledge, where a pressure sensor detects chairs occupancy with the offices
filmed and then the footage is used to manually classify the activities of people over
time.

Smart buildings related tasks in general and activity recognition in particular have
been widely approached using classic optimization models (e.g., meta-heuristics,
linear programming, dynamic programming, etc.). Unfortunately, these approaches
do not take full advantage of the large-scale data generated by smart buildings
settings. In order to extract and exploit the knowledge hidden in these data, recent
trend and efforts in smart building applications have been based on data mining and
machine learning techniques [25]. The main goal is to build specific models from the
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available data with respect to the task to tackle. A typical data mining and machine
learning framework is generally based on the following steps. The first step is data
collection from the available sensors. The second step concerns preprocessing (e.g.,
data cleaning, data enrichment, normalization, feature selection and/or extraction,
outliers rejection, etc.) the collected data. Finally, a model learning step is performed
in which a machine learning technique is applied.

Different learning approaches have been deployed in the past in smart building
applications. In [26], for instance, hidden Markov models (HMMs) [27] have
been used for estimating occupancy using a wireless ambient sensing system,
CO2 sensors, and a wired camera network in order to establish actual occupancy
levels. The large variance in the energy consumption was found to be primarily
due to the operating mode; occupants that are elected to run their AC for longer
durations, at lower set points and/or throughout a larger space, consumed more
energy than occupants that did not [28]. Consequently, energy reduction methods
must encompass a combination of technological development, building physics, and
occupants’ behavior to achieve the desired performance [29]. As such, numerous
studies have developed control systems and modeling methodologies to better assist
occupants to play active roles in buildings. In [30], a supervised learning approach
is investigated. It initially determines the common sensors to be used to estimate
and classify the approximate number of people (within a range) in a room and
their activities. Means to estimate occupancy include motion detection, power
consumption, CO2 concentration sensors, microphone, or door/window positions.
The most useful measurements in calculating the information gains when added
to the classification algorithm are then determined. Next, estimation that relies
on decision tree and random forest learning algorithms is performed. The reason
behind the choice of the algorithms is that they yield decision rules readable by
humans, which correspond to nested if-then-else rules, where thresholds can be
adjusted depending on the considered living areas. One office has been used for
testing and two video cameras have been used in this approach. This highly limits
the implementation of the application because of the privacy issues.

Studying occupants’ activity and behavior is a key for building adaptation and
energy saving, thus not limited to occupancy detection and estimation only [31–
33]. The primary motivation behind studies of activity recognition is to contribute
to buildings, while a comprehensive model can improve the energy performance
of a building. This has been studied by previous research in this area, and large
savings can be obtained with activity aware building energy management system.
Such building energy management system can also warn users about activities
or behaviors that adversely affect energy savings of the building. This induces
an energy aware behavior that can add one-third to a building’s designed energy
performance [17]. Thus, the goal of this chapter is to provide a review on
machine learning approaches related to activities recognition in smart buildings.
Furthermore, it serves to facilitate the definitions and introduction of machine
learning techniques to domain beginners and practitioners alike. Moreover, the
chapter also sheds light on the various advancements made in activity recognition in
smart homes using machine learning, presenting the first survey of such methods, to
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the best of our knowledge. Several machine learning models have been deployed
over the years for activity recognition [34–36]. The process generally involves
learning activity models from training data. The model learns to recognize patterns
that differentiate various classes in the training data and apply this knowledge for
the prediction and classification over the test data. This allows the actualization
of a solution without necessarily providing domain specific knowledge. Since the
problem emanates from pattern recognition or data analysis, such methods are
termed data-driven. [37] identify such data-driven approaches and categorize them
into generative, discriminative, and heuristic-based modeling:

1. Generative modeling: uses training data samples to form a description of the
complete input space. Probabilistic models like Bayesian networks, Gaussian
mixture models, and HMMs fall under this category. The underlying assumption
of this model is that the training samples are representative of the entire input
space/distribution and thus enough data must be available to learn the complete
probabilistic representation.

2. Discriminative modeling: has the primary objective of finding a decision bound-
ary or boundaries, rather than representing the entire input space. A basic
example of this model is K-nearest neighbor (KNN) classifier, where a test point
is assigned to a cluster that is at a minimum distance (the notion of distance may
vary accordingly) to it. Similarly, but better performing algorithms in the same
category, are decision trees and SVMs [38].

3. Heuristic-based modeling: uses a combination of both generative and discrimi-
native models along with some heuristic information [39].

It is noteworthy that other approaches that take advantage of both generative
and discriminative learning simultaneously, called hybrid generative discriminative
approaches, have been proposed recently in the literature [40–43]. When training
data (i.e., labeled data where the output’s correct value for each instance is known)
are considered, the learning approach is called supervised. Classification and
regression are typical examples of supervised learning tasks. Using a set of training
data grouped into classes, the goal of classification is to build a classifier to predict
to which class a new observation should be assigned. Examples of classification
approaches include support vector machine (SVM), decision trees, random forests,
artificial neural networks, and K-nearest neighbors. Regression, on the other hand,
is related to predicting a numerical value using a function built by relating outputs
to inputs. Examples of regression approaches include linear regression and support
vector regression. In many cases, however, the data are unlabeled and need the
deployment of unsupervised learning technique to infer possible regularities (e.g.,
clusters) in the input space. Clustering (partitional or hierarchical) is the main
example of unsupervised learning and consists of grouping observations such that
intraclass and interclass similarities are maximized and minimized, respectively
[44]. Partitional approaches include both centroid-based (ex. K-Means) and density-
based (ex. DBSCAN) clustering. Hierarchical approaches include both divisive (i.e.,
top down) and agglomerative (i.e., bottom up) approaches. A compromise between
supervised and unsupervised learning, called semi-supervised learning, allows to
consider labeled data jointly with unlabeled data. An example of semi-supervised



Machine Learning for Activity Recognition in Smart Buildings: A Survey 203

learning techniques is active learning which necessitates an interaction with the user
to get the desired outputs for new test data. In order to avoid collecting data from
scratch and disturbing the daily life of users some activity recognition approaches
have been based on transfer learning. The main idea consists of transferring learned
knowledge as much as possible from an existing environment, the so-called source
domain, to a new target one (i.e., the environment where knowledge is applied) to
reduce data collection effort. It is noteworthy that in transfer learning, feature sets,
label sets as well as learning tasks in both source and target domains datasets can be
different. Transfer learning approaches can be roughly classified into three groups
of approaches: instance-, feature-, and parameter-based transfer techniques.

The rest of this chapter is organized as follows: Sect. 2 describes the machine
learning algorithms and reviews the relevant papers in the literature pertinent to the
topic at hand, Sect. 3 presents an extensive case study, and finally Sect. 4 concludes
the chapter.

2 Activity Recognition in Smart Buildings

In this section, we overview the main families of approaches that have been
deployed for activity (e.g., cooking, sleeping, eating, etc.) recognition in smart
buildings: classification, regression, and clustering. The first two are often referred
to under the umbrella of supervised learning while the latter is an unsupervised
learning method. These form the two main branches of machine learning. Other
derivatives and hybrid categories such as semi-supervised learning [45] and the
popular deep learning methods [46] have been researched extensively recently.
However, they are usually founded on one of the two main categories or even
combines both of the approaches. It is noteworthy to mention that when deep
learning techniques studies arise in the literature, we list them as part of the
supervised learning approach.

Supervised learning refers to methodologies whereby input data has explicit
labels for each of its entries or objects, depending on the nature of the pertaining
data. Such data is then split into training and testing sets that are used for the learning
of the parameters of the desired algorithm. Specifically, classification is presented
in Sect. 2.1 and regression in Sect. 2.2. On the other hand, unsupervised learning
has to be carried out without the availability of labels for the data at hand. We also
review the relevant literature of the latter method applied for activity recognition in
smart buildings, as appropriate. Clustering is detailed in Sect. 2.3. A complete list
of the papers with the respective algorithm(s) used as well as other miscellaneous
details is described in Sect. 2.4.



204 M. Amayri et al.

2.1 Classification

This section is split into two subsections whereby Sect. 2.1.1 presents general
classification approaches for activity recognition and Sect. 2.1.2 expands on HMMs
and their utilization in the field.

2.1.1 General Classification Approaches

Given a set of data with discrete labels or classes that may be used for training,
Classification then refers to the correct identification of the label or class that testing
data falls under. Mathematically, classification is a mapping between input data x

and output label y such that:

y = g(x|θ) (1)

where g() represents the classification function or algorithm, and θ is its respective
parameters. The function uses the training data to approximate the parameters. The
closer the approximation to the true parameters, the better the fit and hence the
performance of the classification algorithm. Thus, g() can also be viewed as a
separator between the data points of the various classes or labels in a problem.

This approach has been critical in developing various activity recognition
approaches in smart buildings. For example, [47] use ontological modeling and
semantic reasoning for a real-time multisource sensor data based activity recog-
nition system in smart homes. The algorithm first converts detected sensor activa-
tion corresponding properties into context ontologies. This constructs an activity
description and then equivalency and subsumption reasoning are performed for
activity recognition. Finally, semantic retrieval is used for obtaining the set of atomic
activity concepts.

Hu et al. [48] present a new classification algorithm based on feature incremental
random forests. Random forests are another classification algorithm that may be
utilized for activity recognition. They are based on decision trees whereby the
overfitting is addressed by reporting the final classification result as the mode of the
various individual trees. Indeed, a decision tree approach is used for the real-time
smart watch system presented in [49] for activity recognition. Incremental learning,
on the other hand, refers to updating the existing model dynamically with new data
or sensors instead of retraining the model from scratch and disposing of the existing
one.

It is sometimes referred to by online learning in the machine learning community
[50, 51]. This proposed method [48] has been tested on three different datasets and
reportedly consistently outperformed other incremental learning methods. Similarly,
[52] also investigate a new methodology to incorporate incremental learning for
dynamic activity recognition using random forests. However, the latter is compara-
ble to the performance of batched random forests and extremely randomized trees.
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Batch learning is the opposing concept to online learning and refers to retraining
the entire model as new data or data sources, such as new sensors in the case of
activity recognition, become available. Online or incremental learning is usually
used because it saves time and resources as well as enables real time processing for
real world applications.

Gu et al. [53] introduce a classification approach based on emerging patterns
that defines significant changes between different activity classes. Hence, it has
the advantage of independence from the dataset used for training given that it
identifies the underlying sequential patterns of an activity regardless of whether it
is interleaved or concurrent. This brings us to two other important definitions in
action recognition: Concurrent activities refer to ones in which each of the activity
can be broken down into multiple ones that are carried out at the same time or
simultaneously such as eating or walking. Interleaved activities refer to simple
activities such as a wave of the hand or sleeping.

A three phased activity recognition method is proposed in [54]. Classification
of the activities is carried out by four different machine learning models: random
forests, K-nearest neighbors, support vector machines, and decision trees. In normal
activity detection, the four models perform comparably, while the random forest
approach outperforms all others in interleaved activity recognition. Support vector
machine are also used for activity recognition in smart homes in [55].

Multiple classification algorithms are studied in [56] for activity recognition.
These include decision tables, decision trees (C4.5), K-nearest neighbors, support
vector machines, and naive Bayes. Interestingly, meta classifiers are also compared
for designing the optimum classifier for the problem. These include boosting,
bagging, and plurality voting. This represents the first investigation carried out to
find whether combining classifiers trained on accelerometer features would result in
an improved result, as claimed by the authors. Data was collected for eight different
activities carried out by two individuals over different days in multiple setups and
with no noise filtering. The activities were standing, walking, running, climbing
up stairs, climbing down stairs, sit-ups, vacuuming, and brushing teeth. Gradient
boosting, K-nearest neighbor, linear discriminant analysis, and random forests are
also researched for activity recognition in smart homes in [57] as well as kernel
Fisher discriminant analysis and extreme learning machine in [58].

All in all, plurality voting was found to be the optimum implementation with
consistent performance across different setups [56]. It is noteworthy to mention
that an accelerometer is a well-researched sensor for activity recognition. Indeed,
the utility of even simple sensors has proven effectiveness such as in [59], even
with an elementary classifier such as the naive Bayes [60] or with deep learning
techniques such as convolutional neural networks and long short-term memory
[61]. For instance, [62] use accelerometer data from 20 individuals each with five
different accelerometers and a decision tree classier setup. The results suggest that
the use of multiple accelerometers improves recognition.

Long short-term memory and convolutional neural networks are also used in
[63], while only the latter is deployed in [64] and compared to the K-nearest
neighbor and support vector machine methods. Other deep learning techniques such
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as recurrent neural networks are also studied in [65] (with support vector regression)
and in [66] (with support vector machine, naive Bayes, and logistic recognition).

2.1.2 Hidden Markov Models

HMMs are one of the most popular methods used in the field due to the sequential
nature of the problem [67, 68]. An HMM is a well-received double stochastic model
that uses a compact set of features to extract underlying statistics [69]. Its structure is
formed primarily from a Markov chain of latent variables with each corresponding
to the conditioned observation. AMarkov chain is one of the least complicated ways
to model sequential patterns in time series data. It allows us to maintain generality
while relaxing the independent identically distributed assumption [70].

Mathematically, an HMM is characterized by an underlying stochastic process
with K hidden states that form a Markov chain. Each of the states is governed by an
initial probability π , and the transition between the states at time t can be visualized
with a transition matrix B = {bii′ = P(st = i′|st−1 = i)}. In each state st , an
observation is emitted corresponding to its distribution which may be discrete or
continuous. This is the observable stochastic process set (Fig. 1).

The emission matrix of the discrete observations can be denoted by � =
{�it (m) = P(Xt = ξm|st = i)} where [m, t, i] ∈ [1,M] × [1, T ] × [1,K],
and the set of all possible discrete observations ξ = {ξ1, . . . , ξm, . . . , ξM }. On
the other hand, the respective parameters of a probability distribution define the
observation emission for a continuous observed symbol sequence. The Gaussian
distribution is most commonly used which is defined by its mean and covariance
matrix � = (μ,�) [71–73]. Consequently, a mixing matrix must be defined
C = {cij = P(mt = j |st = i)} in the case of continuous HMM emission
probability distribution where j ∈ [1,M] such that M is the number of mixture
components in set L = {m1, . . . , mM}. Hence, a discrete or continuous HMM may
be defined with the following respective parameters λ = {B,�, π} or {B,C, �, π}.

For the thorough explanation of the HMM algorithms to follow, we also introduce
another visualization that depicts the graphical directed HMM structure as shown

Fig. 1 A typical hidden Markov chain structure representation of a time series where z1 denotes
the first hidden state z1 and X1 denotes the corresponding observed state X1. This is shown
accordingly for a time series of length T
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in Fig. 2. Figure 3 shows transitions then when they become trellis or lattice.
Indeed, Rabiner first introduces the three classical problems of HMMs in [71] as:
(1) evaluation or likelihood, (2) estimation or decoding, and (3) training or learning.
These are described as follows:

1. The evaluation problem is mainly concerned with computing the probability that
a particular sequential or time series data was generated by the HMM model,
given both the observation sequence and the model. Mathematically, the primary
objective is computing the probability P(X|λ) of the observation sequence X =
X1, X2, . . . , XT with length T given an HMM model λ.

2. The decoding problem finds the optimum state sequence path I = i1, i2, . . . , iT
for an observation sequence X. This is mathematically s∗ = argmaxsP(s|X, λ).

3. The learning problem refers to building an HMM model through finding or
“learning” the right parameters to describe a particular set of observations.
Formally, this is performed with maximizing the probability P(X|λ) of the
set of observation sequence X given the set of parameters determined λ.
Mathematically, this is λ∗ = argmaxλP (X|λ).

In the following discussion, we present the respective solutions for each of
the HMM problems. We assume discrete emission observations. However, it is
straightforward to extend these solutions to the HMM of continuous emission
distributions given their parameters and mixing matrix. We also briefly recall the two
conditional independence assumptions that allow for the tractability of the HMM
algorithms [74]:

1. Given the (t − 1)st hidden variable, the t th hidden variable is independent of all
other previous variables such that:

P(st |st−1, Xt−1, . . . , s1, X1) = P(st |st−1) (2)

Fig. 2 An HMM transition
diagram with three states

b21 b11

b12

b13

b31

b23

b33

b32

b22

k=2

k=3

k=1
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Fig. 3 Lattice or trellis
HMM structure which is a
representation of the hidden
states

2. Given the t th hidden variable, the t th observation is independent of other
variables such that:

P(Xt |sT ,XT , sT −1, XT −1, . . . , st+1, Xt+1, st , st−1, Xt−1, . . . , s1, X1)

= P(Xt |st ) (3)

The first problem we address is the evaluation problem.
The forward algorithm calculates the probability of being in state si at time t

after the corresponding partial observation sequence given the HMM model λ. This
defines the forward variable ρt (i) = P(X1, X2, . . . , Xt , it = si |λ) which is solved
recursively as follows:

1. initiate the forward probabilities with the joint probability of state si and the
initial observation X1: ρ1(i) = πi�i(X1), 1 � i � K;

2. calculate how state qi′ is reached at time t + 1 from the K possible states si ,
i = 1, 2, . . . , K at time t and sum the product over all the K possible states:

ρt+1(j) =
[∑K

i=1 ρt (i)bij

]
�j(Xt+1) for t = 1, 2, . . . , T − 1, 1 � j � K

3. Finally, compute P(X|λ) = ∑K
i=1 ρT (i).

The forward algorithm has a computational complexity of K2T which is consid-
erably less than a naive direct calculation approach. A graphical depiction of the
forward algorithm can be observed in Fig. 4.

Next, the Viterbi algorithm aims to find the most likely progression of states
that generated a given observation sequence in a certain HMM. Hence, it offers
the solution to the decoding problem. This involves choosing the most likely states
at each time t individually. Hence, the expected number of correct separate states
is maximized. This is illustrated in Fig. 5. To perform this algorithm, we need to
define the following:
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Fig. 4 Graphical
representation of the
evaluation of the ρ variable of
the forward algorithm in an
HMM lattice fragment

Fig. 5 Graphical
representation of two
probable pathways in an
HMM lattice fragment. The
objective of the Viterbi
algorithm is to find the most
likely one

γt (i) = P(it = si |X, λ) = ρt (i)θt (i)

p(X|λ)
(4)

where γt (i) is the probability of being in state si at time t given the observation
sequence X and the HMM λ.

The main steps of the Viterbi algorithm can then be summarized as:

1. Initialization

δ1(i) = πi�i(X1), 1 � i � K (5)

ψ1(i) = 0 (6)

2. Recursion

For 2 � t � T , 1 � i′ � K (7)
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δt (i
′) = max1�i�K [δt−1(i)bii′ ]�i′(Xt ) (8)

ψt(i
′) = argmax1�i�K [δt−1(i)bii′ ] (9)

3. Termination

P ∗ = max1�i�K [δT (i)] i∗T = argmax1�i�K [δT (i)] (10)

4. State sequence path backtracking

i∗t = ψt+1(i
∗
t+1), for t = T − 1, T − 2, . . . , 1 (11)

Finally, and in order to address the third HMM problem, we first describe another
important algorithm. Similar to the forward algorithm, but now computing the tail
probability of the partial observation from t +1 to the end, given that we are starting
at state si at time t and model λ, is the backward algorithm. This has the variable
θt (i) = P(Xt+1, Xt+2, . . . , XT , it = si |λ) and is solved as follows:

1. Compute an arbitrary initialization θT (i) = 1, 1 � i � K;
2. θt (i) = ∑K

i′=1 bii′�i′(Xt+1) for t = T − 1, T − 2, . . . , 1, 1 � i � K

Figure 6 depicts the computation process of the backward algorithm in an HMM
lattice structure. Together with the forward algorithm, this forms the forward-
backward algorithm through consequent iteration. In the context of HMMs, the
forward-backward algorithm is of extreme importance and is also known as the
Baum Welch algorithm [71]. The Baum Welch algorithm is traditionally used to
solve the estimation problem of HMMs. This iterative algorithm requires an initial

Fig. 6 Graphical
representation of the
evaluation of the θ variable of
the backward algorithm in an
HMM lattice fragment



Machine Learning for Activity Recognition in Smart Buildings: A Survey 211

random clustering of the data, is guaranteed to converge to more compact clusters
at every step, and stops when the log-likelihood ratios no longer show significant
changes [75].

In order to apply the Baum Welch algorithm, we must define

ϕt (i, i
′) = P(it = si, it+1 = s′

i |X, λ) = ρt (i)bii′�i′(Xt+1)θt+1(i
′)

p(X|λ)
(12)

where ϕt (i, i
′) is the probability of path being in state si at time t and then

transitioning at time t + 1 with bii′ to state s′
i , given λ and X. ρt (i) then considers

the first observations ending at state si at time t , θt+1(i
′) the rest of the observation

sequence, and bii′�i′(Xt+1) the transition to state si′ with observation Xt+1 at time
t + 1. Hence, γt (i) may also be expressed as:

γt (i) =
K∑

i′=1

ϕt (i, i
′) (13)

whereby
∑T −1

t=1 ϕt (i, i
′) is the expected number of transitions made from si to si′

and
∑T −1

t=1 γt (i) is the expected number of transitions made from si .
The general re-estimation formulas for the HMM parameters π , B, and � are

then:

1. π̄i = γ1(i), 1 � i � K

2. b̄ii′ = ∑T −1
t=1 ϕt (i, i

′)/
∑T −1

t=1 γt (i)

3. �̄i′(k) = ∑T
t=1

Xt=k

γt (i
′)/

∑T
t=1 γt (i

′)

Oliver et al. [76] utilize an extension, layered HMMs to detect various activities
like deskwork, phone conversations, presence, etc. The layered structure of their
model makes it feasible to decouple different levels of analysis for training and
inference. Each level in the hierarchy can be trained independently, with different
feature vectors and time granularity. Once the system has been trained, inference can
be carried out at any level of the hierarchy. One benefit of such a model is that each
layer can be trained individually in isolation, and therefore the lowest layer that is
most sensitive to environment noises and flickers can be retrained without touching
the upper layers. HMMs and conditional random field (CRF) have been used in [77]
to recognize seven different activities (leave house, toileting, showering, sleeping,
preparing breakfast, preparing dinner, preparing a beverage) in a home setting. An
HMM-based approach to recognize independent and joint activities among multiple
residents in smart environments has been proposed in [78].

Nonetheless, HMMs suffer from some drawbacks that [79] aimed to overcome
by introducing a new variant; namely, Switching Hidden Semi-Markov Model.
This model supplements HMMs with a hierarchical structure to benefit from the
natural hierarchy depicted by humans in activities. It also incorporates explicit
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state duration though the semi-HMM to address the violation of the Markovian
assumption when the duration of the state is no longer geometric. The system
reportedly outperforms both a traditional HMM as well as a hierarchical one.

2.2 Regression

Regression is often viewed as a variant of classification whereby the data or the
variables at hand are, in contrast, of continuous nature. Specifically, Regression
is the prediction of continuous labels given a set of labeled training data. It is
also sometimes referred to as prediction and is closely related to classification.
As a matter of fact, Eq. (1) can also be used to represent regression whereby g()

represents the regression function that is used to fit the data x to find out y. Notice
that while the first assumption of the best function is a linear approximation, it is
not always the case. Indeed, higher order approximations are usually used to better
estimate the true distribution of the training data.

Given its nature of continuous predictions, it is not often used in the area of
activity recognition due to the discrete nature of the data. Nonetheless, regression,
in particular linear regression, remains one of the most traditional machine learning
methods and the problem may be posed within a continuous framework for its use.
For example, linear regression is used for classification of human activities in smart
homes and inspires a new regression-tree-based activity forecasting algorithm in
[80].

However, while linear regression is a powerful technique, it is not necessarily
the most suitable in all cases. The best approach machine learning approach to be
used is always dependent on the nature of the data itself. This is investigated in [81]
whereby the authors argue that prior statistical analysis of the problem is imperative
for choosing the best machine learning algorithm. They compare the use of random
forests and linear regression finding out that the prior outperforms the latter due to
the nonlinear nature of the data.

2.3 Clustering

A significant problem when tackling the activity recognition problem using super-
vised learning approaches is collecting ground truth information. Indeed, the
large variety of possible activities makes their recognition in a supervised way
challenging.

Since no labels are available in clustering, this presents an added challenge in
finding homogeneous groups within the input data. The objective in such algorithms
can be straightforwardly defined as: Finding homogeneous groups or clusters in
data such that the intra-distance between the data points is minimized and the inter-
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distance between the data homogeneous groups or clusters is maximized is known
as Clustering.

The most famous clustering approach is using mixture models. Consider a set of

N observation vectors X = {−→X 1, . . . ,
−→X N } represented in D-dimensional space

where each vector
−→X � = (

X�1, . . . ,X�D

)
. If we assume that each vector

−→X � is
generated from a finite mixture model with � components, then the likelihood of
the data is defined as:

p(
−→X �|κ,�) =

�∑
ς=1

κςp(
−→X �|�ς) (14)

where p(
−→X �|�ς) is the mixture distribution at hand that is used to statistically

model the observations or data X , �ς is the respective set of component parameters
for the distribution, and κς is the mixing coefficient of the mixture component ς with
κ = (κ1, . . . , κ� ). The mixing coefficients vector follow constraints of positivity

and unit summation resultant on the κ . Each of the data observation vectors
−→X �

is assigned to all of the mixture components with a responsibility or posterior

probability p(ς |−→X �) ∝ κςp(
−→X �|�ς).

Clustering represents an attractive solution as it is easy to obtain unlabeled
samples from routine experiments; they do not require human effort. This is also
applicable for the problem at hand though more research can be invested in this
particular area. For example, k-means algorithm is applied in [82] to cluster sensor
readings collected from smart homes for activity recognition. Classification of non-
separated activities within each cluster is then carried out by K-nearest neighbor
classification approach. This also represents a system where a hybrid approach
improves the overall classifier performance.

2.4 Miscellaneous

So far, we have presented papers in the literature that address the problem of
activity recognition in smart buildings using supervised and unsupervised learning
techniques. A summary of these papers can be observed in Table 1. On the
other hand, semi-supervised learning techniques applied in [84] and [85] represent
another learning approach aiming to address activity recognition issue. It exploits
unlabeled data in order to improve model performance. For example, [83] introduce
a method for human activity recognition that benefits from the structure and
sequential properties of the training and testing data. In the training phase, a
fraction of data labels has been obtained and used in a semi-supervised method
for recognizing the user’s activities. Label propagation has been used on a K-
nearest neighbor graph to calculate the probability of the unlabeled data in each
class in the training phase. These probabilities have been used to train an HMM
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Table 1 A list of the papers detailed in this chapter for activity recognition in smart buildings with
the respective machine learning (ML) technique utilized and the algorithm(s) used

Paper ML technique Algorithm(s)

[47] Classification Ontology modeling and semantic reasoning

[48] Classification Feature incremental random forests

[49] Classification Decision trees

[50] Classification Support vector machines/naive Bayes/hidden Markov
models/conditional random fields

[52] Classification Incremental learning random forests

[53] Classification Emerging pattern technique

[78] Classification Hidden Markov models

[76] Classification Layered hidden Markov models

[77] Classification Hidden Markov models/conditional random field

[79] Classification Switching hidden semi-Markov model

[56] Classification Decision tables/decision trees (C4.5)/K-nearest
neighbors/support vector machines/naive Bayes (with
meta classifiers setup)

[60] Classification Naive Bayes

[62] Classification Decision trees (multiple accelerometers)

[61] Classification Convolutional neural networks and long short-term
memory

[80] Regression Linear regression/regression-tree-based activity
forecasting algorithm

[81] Classification/regression Random forests/linear regression

[82] Clustering/classification k-Means algorithm/K-nearest neighbors

[83] Semi-supervised learning K-nearest neighbors/hidden Markov model

[54] Classification Random forests/K-nearest neighbors/support vector
machines/decision trees

[65] Regression/classification Support vector regression/recurrent neural network

[66] Classification Support vector machine/naive Bayes/logistic
recognition/ recurrent neural network

[55] Classification Support vector machine

[58] Classification Kernel Fisher discriminant analysis/extreme learning
machine

[57] Classification Gradient boosting/K-nearest neighbor/linear
discriminant analysis/ random forest

[63] Classification Convolutional neural networks and long short-term
memory

[64] Classification Convolutional neural networks/K-nearest
neighbor/support vector machine

[59] Classification Naive Bayes/K-nearest neighbor/support vector
machine

in a way that each of its hidden states corresponds to one class of activity. Some
semi-supervised approaches have been based on active learning, also. For instance,
different active learning strategies have been investigated in [86]. In particular, a
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dynamic k-means clustering approach has been proposed to discover unseen new
activities spontaneously. These unseen activities are detected as outliers which make
the clustering algorithm sensitive to the number of clusters that can increase at every
iteration. The overall clustering error was recorded using an error function on the
set of clusters defined as the sum of the Euclidean distances between the different
data instances and the clusters centers. An objective function based on entropy is
then defined to fetch the most informative data instances. The activities that were
considered are cooking, sweeping, washing, and cleaning which were used for the
passive learning. Three other activities, namely eating, sleeping, and talking, on the
phone were left to the active learner to discover.

Some recent approaches have been based on transfer learning. In [87], for
example, the authors proposed a feature-based approach to reuse learned knowledge
form an original environment and tested it successfully to extract and transfer
knowledge between two different smart home environments by considering only
single-resident scenarios. The problem was formulated as classification task using
SVM by matching the different features of the source and target environments. Two
cases were considered. In the first one labeled datasets from both environments were
supposed to be available. In the second one labeled data are available only in the
source environment and the information from the target one is limited to sensor
deployment considered as background knowledge.

Another issue refers to the features used. In any of the machine learning
techniques, or any algorithm for that matter, the importance of extracted features
to be used cannot be overstated. Indeed, some studies were carried out in [88, 89] to
analyze the various features and their importance in activity recognition. This falls
outside the scope of this chapter, but an interested reader is referred to the paper for
further details.

Furthermore, in order to ensure the completeness of the activity recognition
survey, it is noteworthy to mention that not all methods are dependent on machine
learning techniques. For instance, [90–92] present other algorithms that do not fall
under the scope of this survey. An interested reader is referred to [93] for a general
reference on human action recognition.

3 Case Study

To evaluate the deployment of machine learning approaches in smart buildings in
general and their potential in activity recognition, we present three recent methods
for occupancy estimation that have been applied in an office H358 case study
(see Chapter “Formalization of the Energy Management Problem and Related
Issues”). Extensive work is currently conducted to apply these approaches for
activity recognition. The proposed approaches are:
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1. Estimating occupancy with a set of sensors, and possible manual labeling by an
expert.

2. Estimating occupancy with a set of sensors without manual labeling but using a
knowledge-based approach.

3. Estimating occupancy with a set of sensors with self-labeling by occupants
(interactive learning).

These approaches depend mainly on collecting and analyzing data from non-
intrusive sensors. The use of such sensors is based on the hypothesis that humans
interact with their surroundings, i.e., performing some activities. It affects envi-
ronmental conditions that can be in the form of CO2 concentration, moisture,
temperature rise, or sound. As it is mentioned in Chapter “Formalization of the
Energy Management Problem and Related Issues”, different sensors exist in the
H358 office, i.e., PIR motion sensors, CO2 sensors, indoor air temperature, and
relative humidity sensor, pressure sensors, acoustic sensors, ultrasonic sensors,
power consumption sensors, in order to define the occupancy level.

To perform the task of finding the number of occupants, a link needs to be
observed between the office context and the number of occupants in it. The office
context can be described as a collection of state variables, St = [s1, s2, . . . , sn]t .
This group of state variables S must characterize occupancy at each time step t .

A state variable can be presented as a feature, and therefore the features are
displayed as a feature vector. Thus, the multidimensional space that includes all
potential values of such a feature vector is the feature space. The underlying
approach for the experiments is to formulate the classification problem as a
mapping from a feature vector into a feature space that comprises several classes
of occupancy. Therefore, the success of such an approach depends strongly on
how useful (features which give maximum distinction between classes) the chosen
features are. In this case, features are attributes from multiple sensors collected over
a time interval. The selection of interval duration is highly context-dependent and
has to be done according to the required granularity. The results presented here are
based on an interval of Ts = 30min (which has been referred here as one quantum).

From the large set of features discussed in [30], some of them may not be worth
considering in order to achieve the target of occupancy classification. These features
are the ones which, when added to the classification algorithm, make no difference
to the overall output. In other words they are not useful enough for our purpose. For
example, absolute humidity readings would be useless, as it is not representative of
occupancy at all. Defining the most important features (sensors) is considered as a
necessary study in a smart building application. It can give an essential conclusion
for the required installation of the sensor in the buildings, which leads to minimizing
the total cost.

Before any features are extracted for the training data, some basic preprocessing
had to be done: application of an outliers removal algorithm and interpolation for
non-existent data. The interpolation part is necessary for filling in missing values
from the sensor data. Amayri et al. [30] concludes the most relevant features for the
occupancy estimation problem in the office:
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1. power consumption.
2. motion counter.
3. acoustic pressure recorded by a microphone.

These three features will be used in the three following experiments of applying
machine learning techniques for occupancy estimation.

3.1 Estimating Occupancy with a Set of Sensors, and Possible
Manual Labeling by an Expert

Let us start with the first experiment, where supervised learning has been deployed.
Collecting the required training data has been done by counting occupancy manually
using two video cameras in office H358. The average number of people visiting the
office was registered every 30min during the day.

Different supervised learning methods have been investigated (i.e., support
vector machine, decision tree, random forest, linear regression). A decision tree-
based classification approach has been selected as our prediction model because it
provides human-readable results that can be analyzed and easily adapted. Providing
decision rules is one crucial aspect from the energy point of view to generalize the
model for another similar context.

Power consumption, motion counter, and acoustic pressure are the main features
for building our model. Five occupancy levels have been chosen to generate decision
trees due to the maximum number of occupants met while collecting the dataset.

3.2 Resulting Occupancy Estimators

From the collected data in the office H358, a training dataset covering 11 days
from 04-May-2015 to 14-May-2015 has been used. Moreover, a validation dataset is
collected over 4 days from 17-May-2015 to 21-May-2015. Figure 7 shows the result
obtained from the decision tree and random forest, considering the three features.
It leads to occupancy estimation with an accuracy of 81.7% and an average error
of 0.26 person, while random forest accuracy is 84%, and the average error is 0.26
person (Table 2).

The above results indicate that using the decision tree and random forest
rules give quite a reasonable estimation of occupancy. Because of the limitation
of the need to have labeled training data when deploying supervised learning,
unsupervised learning based on collecting knowledge and questioning will be
discussed in the next section. It will help to facilitate and generalize the occupancy
estimation process.
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Fig. 7 Occupancy estimation from DT using three features

Table 2 Decision tree
classification results after
selecting main features

Average error decision tree Support

Class 1 0.02 132

Class 2 0.49 22

Class 3 0.88 23

Class 4 1.27 11

Class 5 1.75 4

Avg/total 0.26 192

3.3 Designing Estimators from Knowledge and Adjusting from
Data

Similarly to the first approach, designing estimators from knowledge is based on
sensor data and knowledge coming, respectively, from observations and question-
naires to build the estimation model. The proposed technique relies on a Bayesian
Network (BN) algorithm to model human behavior with probabilistic cause-effect
relations and states based on knowledge and questionnaire [94, 95].

The same case study of an office (H358) is considered as a simple and essential
one-zone context with lots of sensors. Motion detection, power consumption, and
acoustic pressure recorded by a microphone are used to feed this model. Collecting
occupancy and activity feedbacks is very easy in the office context. Besides, there
is a facility of questioning the occupants during design and validation periods of
occupancy model. Unsupervised learning algorithms are used to solve problems
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where the solution is not known. In this case, usually, the structure is derived by
clustering the sensor data based on relationships among the variables. While in the
case of collecting training period, it becomes similar to supervised learning methods
with the difference in prediction techniques. For each feature, different levels have
been considered. For example, the power consumption values discretize in three
levels: low consumption, medium consumption, and high consumption, or L, M,
and H, respectively. It gives a probability table with nine values. The probability
table for power consumption has been defined by proposing different questions to
the office occupants. For example: when occupants are arriving and leaving the
office? What is the average time for using the laptop during the working hours?
According to the user answers, the conditional probabilities are either calculated
or filled directly in the tables. The same process can be repeated for the recorded
signal from the microphone. At the same time, two different levels have been defined
for the microphone low acoustic pressure and high acoustic pressure or L and H,
respectively, see Fig. 8. Three occupancy levels have been considered to generate a
Bayesian Network (BN): Low, Medium, and a High number of occupants. While
the probabilities table for motion counter has been suggested according to the
general knowledge for three different cases, low motion, medium motion, and high
motion, or L, M, and H, respectively. Figure 8 shows the results obtained from the
Bayesian network for three levels and three main features. Both actual and estimated
occupancy profiles have been plotted in a graph with the number of occupants and
time relations (quantum time was 30min). The accuracy achieved from the Bayesian
network was 91% (the number of correctly estimated points divided by the total
number of points), and the average error was 0.08 persons. Table 3 represents the
average error values for each class of estimation. While “support” indicates the
number of events (sensor data each quantum time) in each class, and average support
indicates the sum of all events in the three classes (Fig. 9).

Fig. 8 Bayesian network
(BN) structure of an office
H358
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Table 3 Bayesian network
estimation results

Classes Accuracy-BN Average error-BN Support

Class 1 97% 0.001 400

Class 2 84% 0.2 170

Class 3 79% 0.5 54

Average 91% 0.09 624
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Fig. 9 Occupancy estimation from Bayesian network

Using the knowledge domain and questionnaire with data sensors in the unsuper-
vised learning method is more flexible and open for different types of applications,
with acceptable average errors for occupancy estimations. Besides, avoiding the use
of video cameras has been achieved. This approach can be used widely in different
contexts. Still, due to a few possibilities to validate the estimation model and poor
performance in some testing period, a new innovative approach is proposed in the
next section. It depends on estimating occupancy with a set of sensors, and self-
labeling by occupants.

3.4 Designing Estimators from Interactive Learning

A novel way of supervised learning is analyzed to estimate the occupancy in a
room where actual occupancy is interactively requested to occupants when it is the
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most relevant to limit the number of interactions. Occupancy estimation algorithm
relies on machine learning: it uses information gathered from occupants. In this
section, an interactive technique has been investigated to solve the problem of
getting the required labels used in the supervised method. In practical applications,
the limitation arises due to the occupant’s privacy issues. Accurately estimating
occupancy with a set of sensors and self-labeling by interaction with occupants are
the main goals of this section.

3.4.1 The Principle of Interactive Learning

Obtaining training data is a challenging task for smart home applications in general
and activity recognition in particular. Some approaches have been proposed to
involve the occupants to collect informative training data. An interesting approach
called interactive learning has been proposed in [96]. Interactive learning is a
process involving an exchange of information with the users to collect some
essential data according to the problem context. In supervised learning methods,
which are widely used in a lot of applications, the problem of the required
target arises in the determination of the number of occupants, i.e., the labeling
issue is usually tackled using video cameras. Utilizing a camera is generally not
acceptable in many places to respect the privacy of occupants. Interactive learning
is an extension of supervised learning that determines the occupancy by collecting
the required labeling from the occupants themselves. The problem statement of
occupancy estimation has been explained in [96].

Three rules are considered to determine whether an interaction space (ask) is
potentially useful or not:

1. The density of the neighborhood: It is the number of existing records in the
neighborhood of a potential ask. The neighborhood is defined by the infinite
distance with a radius equal to one, because of the normalization. The record is
a vector of features obtained in which values are obtained from the sensors. The
neighborhood can be modified according to ε ∈ [0, 1].

2. The classifier estimation error in the neighborhood of the potential ask leads to
the concept of neighborhood quality. If the classifier estimation error is very high
for a record, this record is removed from the neighborhood because of the poor
quality. Er ∈ [1, 2) typically is an error ratio that can be adjusted. However, a
value smaller than 1 means a record is considered as good. Conversely, if Er is
big, equal to 2, for instance, it means you accept error twice as big as the average
error. Theoretically, Er belongs to [0,∞), but it is limited in our experiments to
2.

3. The minimum class weight: i.e., the minimum number of records for each
class. The minimum class weight, weight(class x) < Cw, which can be adjusted
according to the problem.
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Fig. 10 Occupancy estimation from interactive learning

Table 4 Number of asks

Day 1 2 3 4 5 6 7 8 9 10

Number of asks 10 4 0 0 2 1 2 1 0 0

All the potential asks that satisfy the above three rules are asked to the occupants
in order to become an additional record, possibly. The three previous rules have been
checked with each new record. As a first validation, the occupant reaction has to be
taken into account as a response probability whether the occupants answer or not.
In a given context, the number of asks relies on the classifier used for estimation
occupancy. To evaluate the interactive approach, we deploy the decision tree to
compare it with the manual label approach. According to our study in [96, 97],
Five occupancy levels to generate decision tree with an average error of 0.03
(see Fig. 10). Decision tree needs 21 asks for training data to build an acceptable
estimator see the following Table 4.

Occupancy estimation using decision tree and interactive learning with an
average error 0.03 person is more efficient than using decision tree and manually
labeling from the video camera with an average error of 0.2 person. The precise
answers to the questions can explain this improvement in occupancy estimation
results. An occupant has replied to them during a training period of the decision tree.
While in manually labeling from a video camera, average values of occupancy have
been obtained, with some human mistakes during labeling. Probably the average
error will decrease if the end-user does not feel concerned by the estimation process.
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Table 5 Knowledge based vs manual labeling vs interactive learning occupancy estimation
comparison

Case study office
H358

Supervised
learning Interactive learning

Based knowledge
learning

Average error 0.18 0.03 0.19

Requirements Labels from
video, keyboard

Frequent questions Collecting knowledge
from questioning and
observation

Adaptation with
high number of
occupants

+ ++ +/−

4 Conclusion

The Internet-of-Things (IoT) revolution has provided a variety of affordable sensors
that new buildings are equipped with as well as data acquisition devices, and cloud
storage. This has resulted in an unprecedented generation of raw data from sensors
and smart meters. Many data mining approaches and machine learning techniques
have been proposed to extract hidden knowledge from these data and then to build
learning machines for a variety of applications and tasks. Activity recognition
in smart buildings is one of the tasks that received a lot of attention due to its
importance in energy management systems, for instance. The goal of this chapter
was to review a variety of machine learning techniques that have been applied
for activity recognition. Moreover, a case study and a methodology that concern
occupancy estimation and that can be easily adopted for activity recognition have
been presented and discussed. The results in this case study lead to the conclusion
that the interactive learning approach is more efficient for occupancy estimation
than the other methods taking into account the context. Two points can explain
occupancy estimation improvement using interactive learning: firstly, the probability
of making some human mistakes during manually labeling while using the video
camera; secondly, the training period cannot be sufficient by missing some cases
from the studied area. Using the ask technique considers all the events that occur
when a new question is sent for each unique and different situation. This allows
also to take into account the quality of the training data as deeply discussed in
[98]. Interactive learning is the primary step to collect knowledge about the relations
between user behavior and energy use. Moreover, its deployment allows involving
occupants and increasing their awareness of energy systems. It depicts the future
vision to develop energy systems, and it presents how much it is essential to put
occupants in the energy process loop (Table 5).
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