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Foreword to the Book: Towards Energy
Smart Homes

The Global Issues for Smart Buildings (SBs)

The first reason for this book is that buildings stand as a key pillar of environmental
transition, not only their envelopes and HVAC systems but also their inhabitants.
As written by K. B. Janda (2011), “Buildings Don’t Use Energy: People Do” in
Architectural Science Review, 54(1). Buildings are unique inhabited systems where
occupants spend about 90% of their time: they impact the physics of the buildings
with their complex activities driven by beliefs, desires, and intentions, and at the
same time, occupants have to decide on retrofitting and everyday management, i.e.,
occupants have to take a decision that depends on their behaviors. Like all the book’s
authors, I will start with some key figures and analyze the relationship between the
potential of consumption, production, and flexibility at a different scale: starting
from the building to the eco-district scale. It can be summarized with a couple of
words: buildings with their inhabitants are, on the one side, the biggest consumers
of energy (all energies but electricity in particular in a grid context) and could be,
at the same time, among the most significant producers of renewable energy, mostly
thanks to the concept of positive energy buildings. Additionally, at the same time,
they offer an essential degree of flexibility in energy demand, which can compensate
for the intermittence due to the increasing part of renewables in the production. For
instance, households can improve the matching between their local production and
their power consumption.

SBs: The Biggest Source of Consumption

The main portion of the final consumed energy in France and over the world
is indeed consumed in buildings. An ADEME report indicates that buildings are
among the most significant emitters of CO2, with a 20% ratio, and represent 45% of
the total final energy consumption. France is far from being an exception; all over
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the world, buildings are among the main energy consumers with globally an increase
in the needs, and this tendency is independent of the place in the world and of the
kind of climate. This point is recalled by most of the authors in the introductions to
the majority of the chapters of this book.

SBs: One of the Possible Biggest Producer of Renewable
Energy

The study of the ADEME agency proposes an estimation of the potential of
renewable energy in France for producing electricity. It gives more especially an
idea of the PV Panel potential on the top of building roofs. In this study, which
aimed at estimating whether it is possible to go toward a pure electric renewable
energy mix in France for 2050, it comes out that:

– Firstly, the global potential of renewable energy in France is estimated at
1268 TWh per year, knowing that the report estimates the energy consumption
for 2050 in France at 422 TWh. In other words, the potential is estimated to be
three times higher than the anticipated electrical energy needs.

– Secondly, the report tries to anticipate different scenarios with different renew-
able energy mixes like solar, wind, and hydraulic. An interesting scenario
envisaging an energy produced 100% from renewables, could use the existing
non-cultivated surfaces, i.e. mainly the roofs of the buildings. In this case, PV
could be one of the primary energy production capabilities by representing up
to 34.8% of the network’s global capacity with 68.3 GW for a global estimated
power of 196 GW.

This importance of the production capacity of buildings is not the focus of the
book. Still, it is fundamental to understand why buildings and their inhabitants are
probably the most critical key for the energy transition.

SBs: The Key Issue Regarding Flexibility in Energy Demand
and Consumption

Flexibility and demand response are, respectively, the capability of adapting and
decreasing the energy demand. This is a beneficial property that can be offered
by smart buildings (SBs) in smart grids (SGs). Here again, SBs are the primary
source of flexibility and demand response. This is confirmed by different studies
and experience feedbacks:
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– Modulating the heating energy use of new and existing buildings could provide
10–20 GW of flexible load in France according to the literature and demonstrator
projects.

– A French study by ADEME estimates the available flexibility at a national level
to 18 GW for households equipped with 4 GW of electric hot water tanks, 14 GW
of electric heaters and an air conditioning system, but also 0.695 GW supplied
by an oven and a washing machine.

– A more recent report even evaluates the flexibility of buildings associated with
the coming electric vehicles to an intraday potential of up to 47 GW at horizon
2050.

This potential must be compared, at the French level, to the global need for
power. If we take the historical pic demand of 102 GW of 8 February 2012, the
potential flexibility of SBs represents then from 10 to 17%, and even near from
50%. This brief evaluation confirms the real potential of SBs as a principal and
significant source of flexibility and demand response.

This importance of the production capacity of buildings is not the focus of the
book. Still, it is fundamental to understand why buildings and their inhabitants are
probably the most critical key for the energy transition.

But There Are No Smart Buildings Without Smart Users: The
Need of a “Human-in-the-Loop” Approach

Besides the energy and technological entry, this book must be read by keeping in
mind that there will be no smart buildings without smart users as established by
Social and Human Science. This means a complex multidisciplinary research in
which the inhabitants must be involved as “prosumers,” i.e., active and implicated
designers and users. Some elements explaining why such an approach is mandatory
are going to be given. It explains why the book essentially focused on algorithms,
applied mathematics, applied physics, or even deep learning and Artificial Intelli-
gence with a necessary “Human-in-the-loop” approach.

About the Desire of the Final Users for Being Involved
from the Individual Level to the Collective Level

About the Individual Level

First, there is no smart building without smart users because it seems to exist, at
an individual level, a clear expectation of the final energy consumer to become a
prosumer, in other words, a producer of renewable energy. It has been demonstrated
by opinion polls that take place every year to measure the French citizens’ evolution
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regarding their relationship with the emergence of renewable energies and the
perspective of being involved as an individual and a collective energy producer. One
of the main results is that “a very large majority of French people (88%, stable from
one year to another) would prefer to consume their electricity rather than selling it
if they had solar panels.”

About the Emergence at Collective Level

The same survey reveals that “energy pooling improves social and solidarity
relationships between inhabitants: 23% of French people would choose to sell or
exchange electricity surplus (+2% from 2018 to 2019) and 11% would offer it to an
association or to people in fuel poverty (+1% from 2018 to 2019).”

About the Necessity to Involve the Final User
from the Individual Level to the Collective Level

About the Individual Level

Users are the primary sources of unpredictability and uncertainty. Completely
identical houses can have heating consumptions varying with a two to three times
factor depending on user practices, and comparing households living in similar
houses, electricity consumptions can vary with a factor of 5. It points out that human
practices are determinant for consumption. Because automation cannot cope with
all occupant services, SBs imply occupants’ involvement thanks to interactions and
cooperative search for good solutions. Putting humans “in the loop” is therefore
becoming a necessity, and it is probably the core feature of a SB.

To the Collective Level

“Putting humans in the loop”, both individually and collectively, is being pushed
at a European level, where the concept of local energy market opened for energy
communities through two recent directives enacted by the European Council. These
directives must now be adopted by each country of the European Community so that
those CECs and RECs can have access to the energy market and share and exchange
energy by using the public networks. Typically, CECs aim to be a legal entity
based on voluntary and open participation, effectively controlled by members and
stakeholders, and have the primary purpose of providing environmental, economic,
or social community benefits. REC is defined similarly and is more focused on
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valorization of renewable energy, locally produced by means (Photovoltaïc Panels,
windmills, . . . .) typically implemented near or on buildings’ roofs.

That Is Why It Is a Timely Book for Exploring Innovative
and High-Level Solutions Putting Humans in the Loop
Approach

About a Formal and Linear Description of the Content
of the Book

The book contains 17 chapters.
In chapter “Energy Sobriety: A Behavior Measurement Indicator for Fuel

Poverty Using Aggregated Load Readings from Smart Meters”, Fergus and
Chalmers discuss current fuel poverty strategies across the European Union. The
authors propose a new and foundational behavior measurement indicator to assess
and monitor fuel poverty risks in households via smart meters, customer access
device data, etc., deploying machine learning. In particular, they show that it is
possible to spot early signs of financial difficulty by detecting daily living activities.
Here, we can link with the opinion pool showing that 11% of French people are
ready to offer their excess of locally produced energy to an association or people
in fuel poverty.

In chapter “Energy Sobriety: A Behaviour Measurement Indicator for Fuel
Poverty Using Aggregated Load Readings from Smart Meters”, Santos Silva and
Costa describe urban energy modeling tools’ contribution to the development and
exploitation of smart urban contexts such as smart energy districts and smart energy
cities. An overview of the main urban modeling frameworks is made. A review of
applications of the use of these tools is performed.

Chapter “Standards and Technologies from Building Sector, IoT, and Open-
Source Trends”, written by Delinchant and Ferrari, is devoted to standards and
technologies from the building sector, IoT, and open-source trends, and several
essential notions are explained and discussed. Here, the questions of numerical
standards and technologies, especially around IoT, are addressed.

Chapter “Formalization of the Energy Management Problem and Related Issues”,
by Ploix and Alyafi, is an introductory chapter that states the main issues that
are appearing in building energy management based on practical examples. The
limitations of theory-driven approaches are especially underlined.

In chapter “Dynamic Models for Energy Control of Smart Homes”, Ghiaus
discusses dynamic models for smart homes’ energy control and presents two
algorithms: assembling thermal circuits and extracting the state-space representation
from the thermal circuit. This is a contribution for smartness seen as mathematical
and algorithmic development in a typical theory-driven approach.
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A detailed survey of several machine learning techniques applied for activity
recognition in smart buildings is presented in chapter “Machine Learning for
Activity Recognition in Smart Buildings: A Survey” by Amayri, Ali, Bouguila,
and Ploix. This is again a contribution for smartness seen as mathematical and
algorithmic development in a typical data-driven approach, which is compliant
with this new trend and significant movement linked to Artificial Intelligence.

In chapter “Characterization of Energy Demand and Energy Services Using
Model Based and Data-Driven Approaches”, Santos Silva, Amayri, and Basu
describe state-of-the-art methods to forecast energy consumption and energy ser-
vices in buildings. Here again, several data-driven and model-based approaches
are discussed. A proposal of an interactive learning approach is given, which is
an interesting way for putting the humans in the loop.

Pal and Bandyopadhyay propose, in chapter “Occupant Actions Selection Strate-
gies Based on Pareto-optimal Schedules and Daily Schedule for Energy Manage-
ment in Buildings”, a framework for occupant action selection strategies based on
Pareto-optimal schedules and daily schedules to manage energy in buildings. It is
addressed to the users of SBs, as future “Humans in the Loop” to which efficient
and ergonomic decision tools must be provided.

Different approaches to generate an optimal energy management system strategy
in terms of energy consumption reduction have been proposed and discussed in
chapter “Generation of Optimal Strategies for Complex Living Places” by Ngo,
Joumaa, and Jacomino. It is addressed to the designers of the numerical and
technical systems of SBs.

In chapter “Distributed and Self-Learning Approaches for Energy Management”,
Joumaa, Jneid, and Jacomino discuss distributed and self-learning approaches for
energy management. In particular, they present a reinforcement learning solving-
based approach. It is also addressed to the designers, and it is a contribution to
what can be the algorithmic, Artificial Intelligence, and data-driven approaches
for SBs.

In chapter “Modelling, Forecasting and Control for Smart Buildings”, Thilker,
Junker, Bacher, Bagterp, and Madsen introduce the grey-box modeling principle
and illustrate how it can be used for multilevel control systems of smart buildings
and neighborhoods. This contribution is addressed to designers. It is also a
contribution to the debate for the necessity of theory-driven approaches besides
the emerging data-driven strategies in this movement of adoption of techniques
coming from Artificial Intelligence. A novel stochastic dynamical model is
introduced to take advantage of local weather disturbances to assist occupants
in better understanding their energy management systems.

Alyafi, Reignier, and Ploix present an approach to generate explanation with
knowledge models in chapter “Explanations Generation with Knowledge Models”.
This contribution deals with the involvement of the inhabitants of SBs developing
humans in the loop approaches. Indeed, energy management is conceived as a
symetric learning between humans and artificial system, which provides explana-
tions to empower inhabitants about better energy management strategies, humans
keeping the control of the final decision.



Foreword to the Book: Towards Energy Smart Homes xi

In chapter “The Mondrian User Interface Pattern: Inspiring Eco-responsibility
in Homes”, Laurillau, Coutaz, Calvary, and Van Bao present the Mondrian user
interface pattern intended to help system developers structure and populate the
interactive components of systems that cooperate with residents combined with
digital behavior changes intervention to inspire eco-responsibility. Again, it is
addressed to the users of SBs, as future “Humans in the Loop” to which efficient
and ergonomic decision tools must be provided.

A challenging problem to tackle in building systems is fault diagnosis and
maintenance. This problem is discussed in chapter “Faults and Failures in Smart
Buildings: A New Tools for Diagnosis” by Najeh, Singh, and Ploix, who propose
several new diagnosis tools. It is addressed to the humans involved as designers or
the actors in charge of the maintenance of SBs.

The problem of analyzing load profiles in commercial buildings using smart
meter data is tackled in chapter “Analyzing Load Profiles in Commercial Buildings
Using Smart Meter Data” by Basu, Mishra, and Maulik via the automatic segmen-
tation and symbolic representation of time series.

Kashif, Ploix, and Dugdale develop in chapter “A Nouvelle Approach to Validate
Representative Behavior Models in Energy Simulations” a novel approach to
validate representative behavior models in energy simulation whose primary goal is
to analyze the impact of inhabitants’ behavior on energy consumption in domestic
situations. This contribution proposes modeling of the behavior of the inhabitants
of SBs.

Shalbart, Vorger, and Peuportier propose in chapter “Stochastic Prediction of
Residents’ Activities and Related Energy Management” macroscopic and statistical
models of users. It is a set of tools for the designers in order to give a macroscopical
and statistical view of the final users as humans in the system.

To a Transversal Analysis of the Main Messages of the Book

With a global transversal perspective of the content of the book, the book covers:

– Tools and approaches from the urban scale to the building scale
– Question of the interaction with the building actors, considering the necessity of

putting “Humans in the Loop.”
– Question of the involvement of inhabitants of SBs.
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With Some of the Main Scientific and Fundamental Debate
Linked on SBs put on the Table by the Book

It must also be noticed that the book is addressing some essential questions related
to the so-called SBs. Among the most interesting, we will remember the following
ones.

Compromise Between Data-Driven Approach and Theory-Driven
Approach?

This question is typically addressed for instance in chapters “Formalization of
the Energy Management Problem and Related Issues”, “Dynamic Models for
Energy Control of Smart Homes”, “Machine Learning for Activity Recognition
in Smart Buildings: A Survey”, “Distributed and Self-Learning Approaches for
Energy Management”, “Modelling, Forecasting and Control for Smart Buildings”,
and “Explanations Generation with Knowledge Models” showing alternatively the
power and the limits of the data-driven approach, as well as of the theory-driven
model. The perspectives are then probably to explore a mix of both paradigms, and
this can be well organized by designers of the system, and well understood and well
used by the final users of the systems.

Compromise Between Complete Automatic Delegation to Numerical
System, or Buildings and Dwellings Entirely (or only) Controlled
by Inhabitants?

This question is put on the table by all the chapters talking about data-driven
approaches. Behind all those approaches is the question of the complement of
human and artificial smartnesses. The chapters dedicated to the generation of
explanations, to the involvements, and to the interactions with the SB users and
the designers, suggest that there are no “smart buildings” without “smart users” and
“smart designers.”

The Need to Introduce an Interdisciplinary Approach: The Book Is a Main
Contribution of the Cross-Disciplinary Program Eco-SESA

In conclusion, this book is a clear demonstration of the need to develop an
interdisciplinary approach. There is no way for developing SBs only with an
energy/technical/numerical approach. This book demonstrates this with high-level
contributions in mathematical and computer science approaches for designing
systems in interaction with designers, and final users are becoming prosumers. This
approach is compliant with the CDP eco-SESA projects in which many contributors
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of the book have been associated, and that is studying with an interdisciplinary
approach what can be the new trends and solutions for valorization of locally
produced energy, from the building level, to the eco-district level, with an efficient
interaction between social, economic, territorial, energy, numerical, and technical
networks.

That is why, as co-leader of the Cross-Disciplinary Program eco-SESA of
the Université Grenoble Alpes Institut D’Excellence, I warmly congratulate the
contributors of this book, and I am proud to propose this foreword of this very
important book for our interdisciplinary community.
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Urban Modeling and Analytics
in a Smart Context

Francisco P. Costa and Carlos A. Santos Silva

1 Introduction

The twenty-first century is characterized by a strong urbanization trend. In the
report from [26] it has been estimated that in 2018 55% of the world population
already lived in cities and it is expected that this number grows to 68% by 2050.
This urbanization trend is driven by the potential access to better jobs and salaries,
education, health and cultural services. However, the urban lifestyle requires a
high level of resources demand—food, water, energy—and generates a significant
amount of waste flows—material waste, wasted water, emissions. Cities are today
responsible for 70% of the resources, 67–76% of total energy consumption, and 71–
76% of CO2 emissions [2]. Therefore, the challenge of addressing climate change
by developing more sustainable energy systems is entangled with the urbanization
trend, which means that the energy transition needs to be addressed at the urban
level.

Building occupants, especially in urban contexts, spend in average 87% of the
time inside buildings [11]. Several papers emphasize the importance for the society
to design better the living spaces, in order to make them more comfortable to
occupants, while respecting the environmental constraints in an economical way,
in a symbiotic balance between all these dimensions [16]. Hence, it is important to
understand and model this particular sector of consumption in order to design better
urban spaces.

For decades, the energy analysis of the built environment has been done at
the individual building level, but many solutions are more economically and
environmentally viable if implemented at a larger scale (neighborhood, district, or
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even city scale). Therefore, over the last years, a new set of tools, generally called
Urban Building Energy Models (UBEM), have been developed as tools that model
the energy of built environment at larger scales [18].

The information generated by these tools is especially useful for different
stakeholders, from architects or engineers that develop the technical solutions, to
investors and promoters that finance the projects, to policy makers and governmental
agencies that license the urban developments. This type of tool—UBEMs—helps all
these stakeholders to make better informed decisions, in construction, design, and
planning. The advantage is that these tools enable the modeling of large areas—from
neighborhoods, districts, or the whole city—and therefore estimate and analyze
the impact of interaction of multiple buildings, which does not correspond to the
simple extrapolation of the impact of a single building. As examples, consider the
analysis of the impact in PV generation of a building due to the shadow effects of
neighbor buildings, or the impact in the energy supply network of the combined
energy demand of buildings with different heating needs due to their orientation.

Despite its importance, the evolution and impact of UBEM is not yet sufficiently
covered in literature. Not only is a very recent field—its roots come from the first
attempts at modeling buildings energy in an urban environment, but there have been
very few attempts to organize the evolution of this field—actually one of the first
articles explicitly using this expression was released only in 2016 [18].

This chapter discusses the contribution of urban energy modeling tools to the
development and exploitation of smart urban contexts, like smart energy districts or
smart energy cities. We start by the definition of what is a smart urban context and
then we introduce the concept of urban energy modeling tools and how these tools
can be used to design, implement, and evaluate smart contexts. An overview of the
main urban modeling frameworks is made and a review of applications of the use
of these tools is done. It can be concluded that all the urban energy modeling tools
share a common integration framework, even if the tools that are used are different.
Further, the available analytics are still centered only in general energy demand
and generation indicators but complementary analytics like life cycle assessment
or indoor comfort are becoming available. Finally, the number of applications and
case studies has been exponentially increasing, which demonstrates the advantage
of using these tools. At the end, we discuss and summarize a potential evolution
roadmap for these tools in the coming years.

2 Definitions

In this section we introduce the core concepts of smart urban contexts and urban
energy models.
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2.1 Smart Cities and Smart Urban Contexts

Bibri and Krogstie [2] present a detailed overview of the origin of the use of the term
“Smart Cities” in the literature and demonstrate that there is yet an inconsistent use
of it. Still, most of the literature converges in the use of ICT across urban different
urban infrastructures and its application to manage operations or services provision
and design to citizens across multiple domains, such as traffic management, street
lighting, air quality monitoring, or energy networks monitoring.

In parallel, it is possible to find in the literature the term “sustainable city.” The
term is still mostly used in the context of urban planning [2, 15, 16], as an urban
environment that contributes to environmental quality and protection, and also and
to social equity and well-being by adopting sustainable development strategies to
foster advancement and innovation in built environment, infrastructure, operational
functioning, planning, and ecosystem and human service provisioning. However,
Taipale et al. [24] had already highlighted that to develop sustainable environments,
the use of ICT is key factor for success. This interlink between smart cities and
sustainable cities has been captured by the “smart sustainable cities” concept [2]
which basically emphasizes that ICT are enabling technologies that will induce
transformational effects in urban environment to increase its sustainability.

In this work, in line with [2], we sustain also that to achieve sustainable urban
environments, it is necessary to develop a smart urban context, i.e. a context where
ICT is present in different spatial scales in urban infrastructure—buildings, vehicles,
water and energy networks, waste bins, traffic and street lights—to collect real time
information to be used by applications that provide services to citizens, manage
operations, support decision making systems in multiple domains, from mobility, to
energy or healthcare.

2.2 Urban Energy Modeling Tools

The first use of “Urban Energy Modeling” (UBEM) tools as such was in [18],
to coin a nascent field related to the development of tools that are able to model
energy consumption in urban environments. Still, this definition is not established,
and in the literature we can find many works that fall under this category but are
classified simply as urban energy simulation tools [8], framework for the analysis
and optimization of energy systems in neighborhoods and city districts [6], or Urban
Scale Energy Models [22]. Here we will use the UBEM term.

Originally, UBEM was defined as a tool that applies physical models of heat
and mass flows in and around buildings to predict operational energy use, as well
as indoor and outdoor environmental conditions for groups of buildings [18]. In
this work, we broaden the definition to frameworks that can estimate the energy
consumption of more than one building taking into consideration the existing
interaction between them. This relaxation allows to include in the definition data
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driven models [8] and to include other potential outcomes such as retrofit measures
[8], or Life Cycle analysis [6].

We can trace the goal of developing urban modeling tools to the late 1990s, such
as the work of [9] and since then, some systematic reviews can be found in [10, 18]
or more recently [22]. Here, we take a different approach from those reviews to
characterize the evolution and impact of the field, by performing a systematic review
of the literature and map the research front in this field by performing a bibliometric
analysis coupled with a content analysis, using a set of analytical rules of documents
[25]. In this case, some themes were retrieved and automated analysis of titles and
abstracts of the articles was performed to characterize its contents. The analysis
uses the database of Web of Science (WoS) [1], which is a daily updated dataset that
contains more than one billion searchable cited references in more than 12,000 of
journals, along with conference proceedings, book contents and other materials.

The search method was fully updated in 10-02-2020, and consisted in using
the keywords “urban,” “building,” “energy” and “model,” and their variations in
title, abstract, or keywords of the documents. The search returned 3024 results that
were screened to remove incomplete records, and the sample narrowed down to
2960 articles. All idioms or languages were selected for the results, but only peer-
reviewed documents were selected: journal articles, reviews, proceedings papers,
data papers, hardware reviews, and software reviews. The results are presented in
Figs. 1 and 2.

Figure 1 shows that 1995 was the first year where a publication fitting all the
search criteria was identified [3], and in 1998, the number of publications per
year reached more than ten. The UBEM field has grown steadily surpassing 100
publications per year in 2006.The number of different authors per publication yearly

Fig. 1 Total number of published papers in the period 1995–2019
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has varied between 2 and 3, but lately it has stabilized to 3 in this field. The number
of citations has grown significantly, with peaks in 2012 and 2015.

The variation in annual publications can be explained with high coefficient of
determinations (R2) both by:

• the exponential logistic growth function that describes the productivity phase
introduced in [23] (97.3% considering the curve Y (t) = 0.278× e0.2385(t−1995);

• the logistic curve following Kuhn’s paradigm shift theory to explain scientific
revolutions [12] (98.8% considering the curve Y (t) = 600

1+e(−0.4×(t−2015)) .

However, we can see that for the last 2 years, 2018 and 2019, the exponential
curve is no longer well adjusted, while the logistic curve fits if we consider a ceiling
of 600 publications per year and that the inflection point occurred in 2015. This
means that the field is mature.

A word frequency analysis was also performed to identify the more frequently
used words by the authors in the keywords, abstract, and title. The results are
displayed in Fig. 2. In the picture we cluster the results by methodology (represented
in lines), by application (represented in dotted lines) and by scale (represented by
columns). Regarding the scale, we can see that most papers focus on mesoscale,
which in the urban context usually means large areas of the cities, but more
recently the number of papers restricted to smaller scales (campus, small districts or
neighborhoods) has been increasing. Regarding the application, most of the papers
refer to the study of urban heat island effect closely followed building shading,
while the application in the smart grid context is very recent and still not very
significant. Regarding the methodological approach, GIS is often referred as the

80

Number of papers by main methodology, application and scale

70

60

50

40

30

20

10

0

Mesoscale (81)

CFD (182)

Machine Learning (20)

Building Shading (253)

Microscale (58)

Archetypes (36)

Dashboards (2)

GIS (231)

BIM (35)

Urban heat island effect (434)

Campus (70)

Internet of Things (39)

Gognitive (11)

Smart Grid (23)

19
95

19
96

19
97

19
98

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

20
15

20
16

20
17

20
18

20
19

Fig. 2 Total number of published papers by methodology (continuous), application (dashed) and
scale (columns)



6 F. P. Costa and C. A. S. Silva

main technology, followed by CFD, but over the last years, the use of archetypes
or BIM has been increasing, together with IoT and Machine Learning or Cognitive
technologies. This shows that also in this field of study the importance of data is
being acknowledge. A result that is very interesting is the fact that dashboard is
rarely used as a keyword, demonstrating that the representation advantage of these
tools is not particularly highlighted in the scientific community yet.

From this analysis we can conclude that the development and application of
urban energy modeling tools is already a mature field, with a significant number
of publications per year. The field has evolved from the foundational methodologies
of GIS and CFD to model urban heat island effect and building shading effects to
focus more on the use of data collected by IoT devices, the use of machine learning
techniques applied to the models, which demonstrates that the researchers are more
or more using these tools in the framework of the smart urban contexts.

3 Urban Energy Modeling Tools

Based on the literature survey, in this section we define the general framework of an
Urban Energy Modeling tool and we analyze in detail the current tools that fit this
framework, discussing the similarities and differences between them.

3.1 Framework

Figure 3 presents the basic UBEM framework.
As the UBEM primary objective is to simulate the energy consumption of

buildings at an urban scale, i.e. more than one building, the core module is a
simulation engine for the building energy consumption. There are many tools for
building energy simulation, as thoroughly described in [7]. Most of these tools focus
on thermal modeling, as in general, more than half of the buildings’ energy use is
spent in heating and cooling. The most used tool is Energyplus [5], but many other
tools can be used [7, 22].

The main inputs for the simulation engine are the following:

• the weather file that describes the climatic outdoor conditions in which the
building is located, like temperature, humidity, wind speed, and radiation;

• the geometric information of the building, like the orientation of the walls—for
instance, to include the impact of solar radiation—or the existence of different
thermal zones—for instance, to distinguish areas that need to be heated like
rooms and areas that do not need heating, like attics or basements;

• building physical characteristics from the constructive solutions—like the ther-
mal resistances, widths of the materials, and areas of application;
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Weather

Geometry

Constructive 
solutions

Equipment

Occupation

Simulation Engine

Urban energy model

Geography

Fig. 3 Urban Energy Modeling tools framework

• the existing equipment, with the description of nominal powers, efficiency, and
thermal losses;

• the schedule of occupation is also very important, to infer about the use of the
different appliances and systems, the set-points definition, and the calculation of
the internal gains.

There are other energy uses in buildings which are not necessarily tackled by
thermal simulation tools, like lighting, cooking, hot water, or electrical appliances.
In general, most of the tools used for thermal simulation do not consider other
energy uses directly, unless they influence thermal behavior like lighting or internal
gains from electrical appliances. An example of this is the use of RC models, which
use an electric system as an analogue model of a thermal system. However, for a
complete modeling of energy consumption, all uses should be considered, thus it is
also necessary to provide information on the existing equipment and its use (also
through the schedule of occupation), in order to guarantee that the building energy
simulation tool accounts for all the energy uses.

This information is in general enough to grasp the basic thermal behavior of a
single building, but for the simulation at the urban scale, the fundamental difference
from an Urban Building Energy Model (UBEM) and a Building Energy Model
(BEM) lays on two dimensions: the fact that it is necessary to take into consideration
the effects of other buildings in the envelope of each building and then apply this
model to more than one building.

Regarding the first aspect, the use of Geographic Information Systems (GIS)
allows that the simulation tool knows the exact location of each building (and
use, for example, the closest available weather file) and provides the thermal
simulation tool automatically with the information regarding the relative distance
and orientation of the different buildings under analysis. Therefore, as indicated in
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Fig. 3, the fundamental input data that characterizes UBEMs is the geographical
data.

Regarding the simulation of multiple buildings, in general the simulation engine
performs the simulation of each building taking into consideration the influence
of the remaining buildings in the envelope. Depending on the detail of the model
(simple RC model or Eplus model with multiple thermal zones), the computational
time might be very significant. To handle the computational complexity, two
different approaches may be followed.

On the one hand, instead of using detailed and specific descriptions of each
building information (geometry, constructive solutions, equipment, and schedules),
we can archetypes, which are building definitions that represent a group of
buildings with similar properties (geometry, construction solutions, equipment, and
schedules). In this case, only one archetype can be simulated and the results of the
archetype are assigned to all the buildings represented by that archetype.

Another approach is to simulate all the buildings, but considering simplification
assumptions in terms of geometry (simple rectangular polyhedron geometry, with
singe thermal zone and simplified equipment and schedules).

At the end, the results may be presented by building, usually using a GIS
tools, 2D, or 3D. The model outputs, the urban energy model, may be the total
consumption of each building, disaggregated or not by energy vector (electricity,
heat) and/or the energy use (heating, cooling, appliances), but other outputs are
possible like radiation in the different surfaces (which can be used to estimate solar
PV generation potential), indoor temperature, interior light levels, etc.

In the following subsection, we analyze the existing UBEM tools.

3.2 UBEM Tools

There are currently several tools that follow the baseline framework described in
the previous section, which represents the minimum set of features of an UBEM.
The most mature tools, by chronological order of seminal publications, are: City
Energy Analyst (CEA) [6], Urban Modeling Interface (UMI) [18], City Building
Energy Simulation (CityBES) [8]. Many other projects are being developed, such
as Tool for Energy Analysis and Simulation for Efficient Retrofit (TEASER) [19],
Urban planning decision support tool (URBio) [20], or URBANopt [14], but the
level of maturity is lower or the framework does not include all the previous features.
Therefore, in this work, we analyze in detail the tools UMI, CIYBES, and CEA,
since these tools that have already some track-records of application to different case
studies, in different areas. The analysis is detailed in Tables 1, 2, and 3 according to
the framework described in Sect. 3.1.

In the next subsections, further detail is provided for each tool.



Urban Modeling and Analytics in a Smart Context 9

Table 1 UBEM tools
comparison—CEA

CEA

URL cityenergyanalyst.com

Overview paper Fonseca et al. [6]

User Interface Desktop IDE

Simulation Engine RC model

Geography Open Street Maps

Weather Eplus weather file

Database tool QGIS

Outputs Energy demand,
Energy Supply, LCA,
Comfort

Applications Zurich, Singapore and
Amsterdam

Table 2 UBEM tools
comparison—UMI

UMI

URL web.mit.edu/sustainable
designlab/projects/umi/
index.html

Overview paper Reinhart and Cerezo
Davila [18]

User Interface Rhinoceros and Web
Browser

Simulation Engine Eplus

Geography Rhinoceros

Weather Eplus weather file

Database tool SQLite

Outputs

Applications Chicago, Lisbon,
Kuwait, Boston

Table 3 UBEM tools
comparison—CityBES

CityBES

URL citybes.lbl.gov

Overview paper Hong et al. [8]

User Interface Web Browser

Simulation Engine Eplus

Geography CityGML

Weather Eplus weather file

Database tool QGIS

Outputs

Applications San Francisco,
Chicago, Boston and 7
other US cities
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3.2.1 CEA

The CEA framework can be freely downloaded. The user interface is a Desktop
IDE built on top of Python and uses Open Street map as the main source for
GIS data. The weather data is based on Eplus weather files and the simulation
engine runs a RC model of the buildings. The Desktop IDE allows the users
to parametrize the archetypes of buildings (constructive solutions, equipment for
multiple uses, schedules), but QGIS can also be used to change the databases. It has
been successfully used for different locations such as Singapore or Zurich.

3.2.2 UMI

The UMI framework requires Rhinoceros 3D, a commercial tool, and includes an
Application Programming Interface (API) for developers. The weather data is based
on Eplus weather files and the simulation engine runs also Eplus for archetypes of
the buildings. The main limitation at the moment is the need to use Rhinoceros 3D.

3.2.3 CityBES

The CityBES framework supports online based simulations in the cloud. The
weather data is based on Eplus weather files and the simulation engine runs also
Eplus for all the buildings. The databases have to be build using CityGML and at
the moment, provided to the team managing the software. In the web browser, it
is possible to use the software upon urban environments previously uploaded. The
main limitation is the need to develop the urban database in CityGML and upload
to the system.

4 Case Studies

In this section, we show the application of the different tools to urban case studies.
The case studies are not directly comparable (since due to limitations of the different
tools, it is not easy to apply them to the same exact case study). In this sense,
we evaluate the tools using available case studies, to clearly highlight the possible
applications of each tool, their advantages, and disadvantages.

4.1 CEA

The CEA tool, from the three analyzed tools, is the one which is more mature, with
a broader spectrum of applications, and the one which is easier to use for none
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experts. The tool is subjected to constant update releases and the current version has
an autonomous, user-friendly dashboard that enables to develop case studies easily
in any city in the world.

Figure 4 presents a picture of the dashboard, for an application in Zurich.
The tool starts by importing the shape file from open street maps. In case the

file is not available, it is possible to go to open street maps and manually define
the shape files, for example, in the case of buildings which are yet to be built. This
can also be done in QGIS. It also allows the user to easily define the individual
characteristics of the buildings (number of floors, height, construction age, schedule,
type of use, equipment). There are archetypes previously defined for two geographic
areas (Switzerland and Singapore), but from those it is easy to define archetypes for
different areas (this is an area that in terms of user friendliness could definitively
improve). The user can also easily choose the weather file and the flow of sequential
steps required to perform an analysis is straightforward to follow.

The tool has a broad spread of features that can be evaluated. Apart from the
energy demand, which relies on RC models and not on Eplus, it evaluates the fuels
use, and the disaggregated energy uses. In terms of energy supply, it allows to test
not only the PV panels, as in UMI and CityBES, but also solar thermal and even
hybrid PVT systems. In Figs. 5 and 6, it is possible to observe the results for a
particular house, namely the energy demand and the potential for PV generation in
each surface. Like UMI and CItyBES, it also provides a Life Cycle Assessment tool.

The tool includes many additional features compared to UMI and CItyBEs, in
particular, the possibility to model district heating and cooling networks, electrical
networks and also to evaluate the shallow geothermal potential. The design of the
network is done using a multiobjective algorithm, based on genetic Algorithms, and
also performs a sensitivity analysis.

Fig. 4 CEA results for a case study in Zurich, Switzerland
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Fig. 6 Monthly PV supply of household “B108”

The tool presents some disadvantage, compared to the other tools. Firstly, the
simulation engine is a simple RC model, which accelerates the simulation at the
expense of simplifying the conditions, therefore, the results are expected to be less
accurate. For example, the roof surfaces are always considered to be flat, which
introduces errors in the evaluation of the PV potential. The study of retrofit measures
can only be done indirectly by changing the archetypes definitions.

Overall, it is definitely the easiest tool to use from the three, especially for a non-
specialist, and the one that provides currently a broader spectrum of applications
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specifically related to energy. However, the simulation engine is the least accurate.
This easiness of use and the fact that the simulation engine is less accurate makes
this tool the perfect tool to perform preliminary analysis, both for existing areas
or new urban areas, to estimate the potential impact in energy networks, with or
without local energy generation. Then, for detailed retrofit studies, moving from
CEA to CityBEs would be advisable, or to UMI, especially when other studies, like
lighting or air quality are required. Thus, although from a general overview the tools
are currently competitive, they cannot yet be used exactly for the same applications
and the choice of the tool should be driven by the final application purpose.

4.2 UMI

As previously explained, UMI is a Rhinoceros plug-in, so the location, geometry,
weather, constructive solutions, schedules, and equipment are defined in the tool.
In Fig. 7, we can see a figure of the web interface of UMI for an application in
Boston (Seafront area), with the results of new buildings for that area, in particular,
regarding energy use intensity. It is also possible to check other results, like the life
cycle assessment of the buildings, the daylight, walkability and lately there are other
tools, like a tool to access the potential for urban agriculture.

The main advantage of UMI is that, as a plug-in of Rhinoceros 3D—a software
for 3D modeling—it enables users to design detailed geometric information and
constructive solutions, and in that way, perform thorough analysis of the thermal
behavior, but also lighting, ventilation, and other physical parameters that directly
influence the energy consumption in building. From the three analyzed tools, UMI
is the one that allows for more rigorous analysis of the buildings. Further, it allows
the users to develop analysis in other fields related to urban environment, like
transportation (walkability or bikeability) or sustainability on a broader scope. The
main disadvantage is the need to have the commercial tool Rhinoceros, which is not
free and which requires some experience to work width and up to a certain extend

Fig. 7 City Energy Analyst dashboard for Boston, USA
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is only accessible to practitioners, like architects. Further, although it can be used
to model the potential for energy supply, especially solar technologies, currently
it is limited to explore the design of the supply energy system of a district, when
compared to CEA.

In conclusion, UMI is great tool for architects to work in the urban design of the
cities and evaluate the different impacts, not only in energy but also in other areas
related to the quality and sustainability of urban environments, based on rigorous
simulations. It is a tool that can be used for preliminary studies, but due to the
current complexity, definitely should be used to develop the final projects of urban
designs.

4.3 CItyBES

In [13] several examples can be found of the use of CityBES for different cities
in the USA, namely San Francsico, Chicago, Boston in a total of 10 cities. Within
each city, we can find examples of particular districts and in each district, we can
choose the buildings to be analyzed, by type of use (e.g. office or residential), by
year of construction or area. An example can be found for San Francisco (downtown
district) for small office buildings in Fig. 8.

In the dashboard, we can see results from energy consumption (e.g. energy
intensity like in UMI or CEA) using baseline information, but also considering
different types of retrofit measures or even a package of measures, centered in the
envelope or systems, including PV generation. The tool also shows the urban climate
and allows the simulation also of Life Cycle Assessment.

The main advantage of CityBES is the capacity to test different retrofit measures
of the buildings, by allowing the parametrization of the simulation in Eplus, like the
definition of the thermal zones. The dashboard is easy to use and intuitive.

The main disadvantage has to do with the fact that it requires the definition of
the areas in cityGML, an open data model and XML-based format for the storage

Fig. 8 CityBES results for San Francisco, USA
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and exchange of virtual 3D city models, which presents a significant barrier even
for practitioners, as is not yet a wide adopted standard. And even if the model is
available, it is not yet possible to upload it directly in the platform. Further, as the
CityBES approach is to simulate all buildings individually, the computational effort
associated with the simulation is quite high. In fact, due to this, not all case studies
can be simulated in the platform. Finally, like UMI, it can be used to model the
potential for solar PV, but the tool is limited to explore the design of the supply
energy system of a district, when compared to CEA.

In conclusion, CityBES is good platform to test retrofit packages in buildings
environments, based on rigorous simulations using Eplus. However, from the three
analyzed tools is the one which has more limited features, and the one which
presents more barriers to be used.

5 The Evolution of UBEM Systems for Smart Urban
Contexts: The Cognitive UBEMs

As it discussed in the previous sections, UBEM tools rely currently on static data
(data that does not change after being recorded), like shape files, constructive
solutions data, or even weather data files based on historical time-series. However, in
the framework of a smart urban context, data is updated periodically so the UBEM
tools must evolve to include dynamic, real time datasets.

As examples, the weather data can use real time data from local weather stations,
or the constructive solutions can be based on updated information on municipality
records or energy performance certificates after retrofit. The access to real time
updated data can then be used to give UBEM the capability to adapt the models
to new changing conditions, i.e. adding a cognitive layer. In this sense, we advocate
that the UBEM systems need to evolve to provide some of features that are discussed
in the following subsections. To demonstrate these capabilities, we will resort to the
COgnitive UBEM tool being currently develop at IST [4].

5.1 The Use of 3D and Time

The tools analyzed in Sect. 3 do not fully explore yet the 3D representation
capabilities, as now they mostly provide a representation of the results—e.g. energy
demand—in the urban shape for one period (typically 1 year). However, the fact
that we have access to representation in 3D allow us to differentiate the different
units inside the same building and see specific information about that. In Fig. 9, we
provide an example of the energy performance certificate (EPC) information for
a particular household of a building with two households in the neighborhood of
Encarnação in Lisbon, Portugal.
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Fig. 9 3D visualization of the energy performance certificate (EPC) information for different
households in a building

Fig. 10 Real Time visualization of environmental conditions in real time at IST campus amphithe-
ater GA1

The tools can also be used to visually display the evolution of the different
results in time, e.g. as an animated sequence of frames, to represent the time-based
information.

5.2 Use of Real Time Data

Another obvious development of UBEM tools is the integration of real time data.
This data can be collected from energy or environment conditions monitoring
devices. In Fig. 10, we provide an example of the real time environmental conditions
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for amphitheater GA1 of IST Alameda Campus, in Lisbon, Portugal, which
combines the use of 3D information and use of real time data.

5.3 Integration of Machine Learning Models with UBEM

As shown previously, the number of articles using machine learning algorithms in
the field of UBEM has been growing. An example on how these tools can be used is
the one in [21], where Bayesian models are used to calibrate unknown or uncertain
parameters in archetype descriptions as probability distributions, using measured
energy data. Other examples can be the energy demand forecast using the real data
[17] and the models or energy generation forecast [27].

5.4 UBEM for Operational Real Time Energy Management

At the end, these new features will enhance UBEM tools in a way that will enable
its use beyond planning purposes, in particular, for operational real time energy
management. As described in Sect. 3, these tools present in general a dashboard
to present the results and enable the users to test different parameters. Thus, the
combination of the previous features—spatial 3D resolution, real time information
and the integration of machine learning models—in a dashboard-like tool will
enable UBEM to be used to compare real time consumption data with forecast
or baseline data, to test in real time different operation strategies and therefore
contribute to a more efficient real time energy management of campus, micro-grids,
or neighborhoods operating as energy communities.

6 Conclusions

The current trend of increasingly using information and communication technolo-
gies in urban environments is creating a context that enables the development and
provision of more sustainable solutions to citizens, like aiding in the decision of the
best energy efficiency measures or the best local renewable generation solutions.

Urban Energy Modeling (UBEM) tools have been developed over the last decade
to provide these types of answers at the urban scale. Currently there are at least three
tools that have reached the maturity—CEA, UMI, and CityBES—and have proven
to be able to simulate energy consumption of neighborhoods and therefore can be
used to aid decision makers regarding the design ore retrofit of new neighborhoods
in different parts of the world.

The tools work currently with static, historical data, but the smart urban context
that is being developed can induce the development of new features. In particular,
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we propose that the next evolution of the UBEMs should focus on the use of 3D and
time dimensions to represent information, the update of the input data with real time
data in the models and the integration of machine learning modules in the analysis.

In this way, we envisage that in a near future, these tools can be used to optimize
in real time the operation of energy systems like campus, micro-grids, or energy
communities in a smarter, more sustainable way.
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Energy Sobriety: A Behaviour
Measurement Indicator for Fuel Poverty
Using Aggregated Load Readings
from Smart Meters

Paul Fergus and Carl Chalmers

1 Introduction

Fuel poverty describes members of a household that cannot afford to adequately
warm their home or run the necessary energy services needed for lighting, cooking,
hot water, and electrical appliances [1]. It is estimated that between 50 and 125
million households are affected in Europe (EPEE, 2009). In the UK, approximately
four million households are classified as being fuel poor (15% of all households)—
613,000 in Scotland (24.9% of the total); 291,000 in Wales (23% of the total);
160,000 in Northern Ireland (22% of the total); and 2.55 million in England (11%
of the total) [2]. The problem is complex but is typically caused by three factors:
low income, high energy costs, and energy-inefficient homes [1, 3–5].

In the UK, financial support is provided for low-income households through the
Warm Home Discount Scheme, Cold Weather Payments, and Winter Fuel Payments
(similar support is provided in other EU member states) [6]. According to a UK
report written in 2018, the government provided £1.8 billion in funding annually for
Winter Fuel Payments, £320 million for the Warm Homes Discount Scheme, and
£600 million for the Energy Company Obligation Scheme [7]. Schemes like this
provide temporary relief, but do not tackle the underlying causes of fuel poverty [8,
9].

Currently, fuel bills in the UK cost on average £1813 a year, a 40% increase from
£1289 in 2015 [10]. The Office of Gas and Electricity Markets (Ofgem) caps the
maximum price that consumers can pay for electricity and gas; however, the recent
lifting of price caps has seen a £1.7bn increase in consumer bills [11]. Subsequently,
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rising energy prices force more people to live in fuel poverty rather than easing the
financial pressures fuel-poor households already have [12].

Alongside low income and rising fuel costs, a substantial share of the residential
housing stock in Europe is older than 50 years with many in use reportedly hundreds
of years old [13]. More than 40% were constructed before the 1960s when energy
regulations were limited [14]. The performance of buildings depends on the installed
heating system and building envelope, climatic conditions, indoor temperatures and
fuel poverty [15]. This means that largest energy savings often come from improving
older buildings, particularly poorly insulated properties built before the 1960s.

In the UK, the energy efficiency of homes is measured using the Standard
Assessment Procedure (SAP) rating [16]. During the winter months colder weather
lowers the energy efficiency of the property and increases domestic energy demand.
The performance of the heating system, appliances, and the number of people living
in the property (and how long they say in the home throughout the day) determine
the household fuel bill. In low-income and energy-inefficient homes the winter
months are particularly problematic and a source of constant worry for occupants
about debt, affordability, and thermal discomfort [17]. The impact this has on health
is significant given that fuel-poor households spend increased amounts of time in the
cold. Hence, poor health among this social group is prevalent [18]. In fact, evidence
shows us that fuel-poor occupants are more likely to experience poor health, miss
school [19–24], and report absences from work [17, 25].

According to the E3G, the UK has the sixth-highest rate of Excessive Winter
Deaths (EWD) of the 28 EU member states—a large number have been directly
linked to cold homes [19, 26]. EWD is the surplus number of deaths that occur
during the winter season (in the UK this is between the 22nd of December and
20th of March) compared with the average number of deaths in non-winter seasons
[19]. The main causes of EWD are circulatory and respiratory diseases [27]. It is
estimated that about 40% of EWD are attributable to cardiovascular diseases, and
33% to respiratory diseases [22]. According to the Office of National Statistics
(ONS), there were 50,100 EWDs in England and Wales in the 2017–2018 winter
period, the highest recorded since the winter of 1975–1976 [28]. Cold homes have
also been linked with high blood pressure [29], heart attacks, and pneumonia,
particularly among vulnerable groups such as children and older people [22, 23,
30–33]. This often leads to inhabitants experiencing loss of sleep, increased stress,
and mental illness [17].

Alongside serious health outcomes, cold homes are uninviting leaving inhabi-
tants stigmatized, isolated, and embarrassed because they are often forced to put
on additional clothing, wrap up in duvets or blankets, and use hot water bottles
to stay warm [34]. This undoubtably increases the likelihood of depressions and
other mental illness. Epidemiological studies show that occupants in damp homes
are more likely to have poorer physical and mental health [35]. According to the
Building Research Establishment (BRE) poor housing costs the National Health
Service (NHS) £1.4 billion each year [36]. The World Health Organization (WHO)
commissioned a comprehensive analysis of epidemiological studies and concluded
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that a relationship exists between humidity and mould in homes and health-related
problems [37].

Fuel poverty is a focal point for the EU; however, as the figures show, current
policy has had/is having little effect on reducing the number of fuel-poor house-
holds. This is hardly surprising given the EU does not provide a common definition
of fuel poverty or a set of indicators to measure it [38]. This means that fuel poverty
numbers vary depending on what measurement indicator is implemented.

2 Measuring Fuel Poverty

Measurement indicators are used to identify which households are considered to be
in fuel poverty—in the UK, this is the responsibility of the Department for Business,
Energy & Industrial Strategy (BEIS) [39]. A detailed report, commissioned by
the EU in 2014, found that 178 indicators exist: of which 58 relate to income
or expenditure and 51 to physical infrastructure [40]. Indicators related to energy
demand and demographics amount to 10 and 15, respectively. 139 are single metric
indicators and 39 combinatory or constructed indicators, representing 22% of the
total and mostly falling under the category of income/expenditure. Among the
identified energy poverty metrics, 10 are consensual-based, 42 expenditure-based,
and 11 outcome-based, while another 14 indicators comprise a combination of
metrics. The two main approaches used today are expenditure-/consensual-based.
Only the most common indicators within both approaches will be considered in this
chapter. For a more detailed discussion the reader is referred to [40].

2.1 Expenditure-Based Indicators

Expenditure-based indicators focus primarily on the proportion of the household
budget used to pay for domestic fuel [41]. The best-known indicator is the 10%
rule proposed by Boardman in the early 1990s [1] which was adopted in the UK in
2001. A household is classed as being fuel poor if more than 10% of its income is
spent on fuel to maintain an acceptable heating regime [42]. The indicator uses
a ratio of modelled fuel costs and a Before Housing Costs (BHC) measure of
income [43]. Modelled fuel costs are derived from energy prices and a modelled
consumption figure that includes data about property size, the number of people in
the property, the household’s energy efficiency rating, and the types of fuel used.
Fuel-poor households are those with a ratio greater than 1:10 (10%).

The Hills report in 2011, commissioned by the Department of Energy and
Climate Change (DECC) (now BEIS), triggered a replacement of the 10% indicator
with the Low Income High Cost (LIHC) indicator [44]. LIHC is now used in the UK
to measure fuel poverty and has attracted considerable attention within different
national contexts [43, 45–47]. The LIHC indicator is calculated using a national
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income threshold and a fuel cost threshold [42, 44]. A household is classified as
fuel poor if it exceeds both thresholds. The fuel cost threshold is a weighted median
of the fuel costs for all households, weighted according to the number of people
in a property. This average fuel cost value is the assumed cost of achieving an
adequate level of comfort. The threshold is the same for all households of equivalent
size. The income threshold is calculated as 60% of the weighted national median
for income After Housing Costs (AHC) are accounted for. The income figure for
each household is also weighted to account for the number of people living in the
property. This figure is combined with the weighted fuel costs of the household. The
income threshold is therefore higher for those that require a greater level of income
to meet larger fuel bills.

2.2 Consensual-Based Indicators

Consensual-based indicators on the other hand assess whether a person is in fuel
poverty by asking them. The approach was initially based on Townsend’s early
relative poverty metric [48] and later on the consensual poverty indicator proposed
in [49, 50]. The fundamental principle is centred on a person’s inability ‘to afford
items that the majority of the general public considered to be basic necessities of
life’ [50].

Using surveys, household occupants are asked to make subjective assessments
about their ability to maintain and adequately warm their home and pay their utility
bills on time. The EU has adopted the core principles of the consensual model and
implemented the Survey on Income and Living Conditions (EU-SILC) [51]. EU-
SILC includes a set of questions that asks whether the household (a) is able to keep
their home warm during winter days, (b) has been in arrears with utility bills, and
(c) has leakages or damp walls [52]. The recommendation was launched in 2003
and was the first micro-level data set to provide data on income and other social and
economic aspects of people living in the EU [51].

EU-SILC has a rotating panel that lasts 4 years; a quarter of the sample is
replaced each year by new subsample members [53]. During the 4 years, households
are contacted up to four times. The consensual approach has been acclaimed
for being easy to implement and less complex, in terms of collecting data, than
expenditure-based indicators. A key feature of the EU-SILC dataset is that it
provides an important basis for identifying and understanding fuel poverty and the
differences that exist across all EU member states [54].

2.3 Limitations

Fuel poverty measures have several limitations, primarily because of the multidi-
mensional nature of the phenomenon, which makes it difficult to adequately capture
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or measure it using a single indicator [40]. Additionally, most indicators have been
disparaged for focusing solely on fuel expenditure without consideration for under-
consumption which has led to governments underestimating the real extent of fuel
poverty [44, 55]. In the case of expenditure-based approaches, the main issue is
the lack of available data, particularly on the contributing factors needed to assess
the extent of fuel poverty. This is alleviated with consensus-based approaches given
that micro-level data is collected. However, the approach has also been criticized for
being too subjective and exclusive [56].

In the case of the 10% rule, it does not respond to variations in income,
fuel prices, or energy efficiency improvements [57] and this has led to skewed
results [58]. Hills suggested that ‘flaws in the 10% indicator have distorted policy
choices, and misrepresented the problem’. Therefore, relatively well-off households
in energy-inefficient properties have been identified as being fuel poor [57, 59].

The LIHC indicator on the other hand excludes low-income, single-person
households [59, 60]. Moore argues that this indicator obscures increases in energy
prices, as its introduction has led to a fall in fuel-poor households, in spite of
significant increases in energy costs during the same period [58]. This has been
described by some as an attempt to move the goalposts in order to justify missing
targets for the eradication of fuel poverty, which was a target for all households by
2016 [61]. Middlemiss adds that the LIHC prioritizes energy efficiency as a solution
to fuel poverty distracting from other drivers, such as the wider failure of the energy
market to provide an affordable and appropriate energy supply to homes [62].

Finally, the EU-SILC consensus-based approach has been criticized for (a) only
including specific household types, (b) containing anomalies in the data collected
(i.e. missing data), (c) being subjective due to self-reporting, and (d) providing a
limited understanding of the intensity of the issue due to the binary character of the
metrics [56]. Participants do not view judgements like ‘adequacy of warmth’ in the
same way while some households may not even identify themselves as being fuel
poor due to pride even though they have been characterized as being fuel poor under
other measures [56]. It is not unusual for fuel-poor residents to deny the reality of
their situation and report that they are warm enough when they are in fact not.

3 Smart Meters

Residential homes consume 23% of the total energy delivered worldwide (29% in
the UK) [63]. Industries consume 37%, and this is closely followed by transportation
which is 28% [64]. Household energy consumption is considered a multidimen-
sional phenomenon rooted within a socio-cultural and infrastructure context, and as
such occupant behaviour is complex. Existing measurement indicators, as we have
seen, fail to capture the behavioural traits associated with individual households.
Yet, with the current smart meter rollout well underway in many developed countries
which facilitates the automatic reporting of energy usage, it is now possible to
capture the behavioural aspects of energy consumption through data provided by
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CADs paired with smart meters [65]. CADs provide data every 10 s for all energy
consumed within the home at the aggregated level [66]. This data combined with
advanced data analytics allows us to determine whether a house is occupied, what
electrical appliances are operated, and when they are being used [67, 68]. Such
insights provide the based for routine formation which we will return to later in the
chapter.

3.1 Smart Meter Infrastructure

Smart meters measure gas and electricity consumption and send usage information
to energy suppliers and other interested parties. This (a) removes the need for home
visits and manual meter readings and (b) allows consumption data to be used by the
smart grid, to balance energy load and improve efficiency [69]. According to the
International Energy Agency (IEA), smart grids are essential to meet future energy
requirements [70], given that worldwide energy demand is expected to increase
annually by 2.2%, eventually doubling by 2040 [71].

Energy consumption data in the smart grid is received directly from smart
meters and stored, managed, and analysed in the Meter Data Management System
(MDMS) [66]. The MDMS is implemented in the data and communications layer
of the Advanced Metering Infrastructure (AMI) and is a scalable software platform
that provides data analytic services for AMI applications, i.e. data and outage
management, demand and response, remote connect/disconnect, smart meter events,
and billing [66]. Data contained in the MDMS is shared with consumers, market
operators, and regulators.

Smart meters in the UK collect and transmit energy usage data to the MDMS
every 30 min [72]. Higher sample rates are possible, but this increases the costs
for data storage and processing. Data transmitted through a smart meter consists
of (a) aggregated energy data in watts (W), (b) a Unix date/time stamp, and
(c) the meters personal identification number (PID). The energy distribution and
automation system collects data from sensors dispersed in the smart grid. Each
sensor generates up to 30 readings per second and includes (a) voltage and equip-
ment health monitoring and (b) outage voltage and reactive power management
information. External data sets by third-party providers are also used to facilitate
demand and response subsystems. OS/firmware software provides a communication
link between the MDMS and smart technologies and this allows geographically
aggregated load readings to be analysed to ensure-efficient grid management. The
OS/firmware system also manages OS/firmware version patching and updating.
Figure 1 shows a typical MDMS system and its common components.

Information stored in the MDMS is a significant data challenge that requires data
science tools to maintain optimal operational function [73, 74] and derive insights
from the information collected [75, 76]. This allows decision-making and service
provisioning to be implemented directly atop the smart meter infrastructure [77–
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Fig. 1 Meter data
management system for
processing home energy
usage and automated billing

81]. Services exploit the smart grid infrastructure to provide application support in
different domains, i.e. health, climate change, and energy optimization [82].

3.2 Smart Meter Sampling Frequencies

Most studies do not use actual smart meter data for monitoring. Smart meter
readings are provided every 30-min in the UK (other countries have different sample
frequencies) [83]. With 30-min data it is possible to detect occupancy; however
no reliable appliance information can be noticed at this frequency [84]. Therefore,
electricity monitors are either paired with the smart meter using a consumer access
device (CAD), CT Clip, or sensor plugs attached to the actual appliance when higher
sample frequencies are required as shown in Fig. 2.

CADs are an inexpensive way to obtain whole-house measurements at higher
sampling rates (i.e. readings every 10 s in the UK). With a CAD you can detect
when high-energy appliances, such as an oven, kettle, and microwave, are being
operated. CT Clips are used when either a smart meter has not yet been installed
in a household or when sample frequencies higher than every 10 s are required. CT
Clips, clamped around the power cable (live or natural), can sample the aggregated
energy feed thousands of times every second. However, the approach is more costly
than a CAD as additional hardware and software need to be installed. With a
CT Clip, it is possible to detect faulty appliances and overlapping use, including
low-energy appliances, such as lights and audio equipment. Device types will be
discussed in more detail later in the chapter.
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Fig. 2 Capabilities based on sampling frequency

3.3 Load Disaggregation

Load disaggregation is a broad term used to describe a range of techniques for
splitting a household’s energy supply into individual electrical appliance signatures,
for example, a kettle, microwave or oven [68]. There are a number of reasons
why load disaggregation is important. In the context of fuel poverty, appliance
detections provide the basis for habitual appliance usage patterns, which manifest as
routine household behaviours [68, 83]. Through an understanding of normal routine
behaviour it is possible to identify anomalies and assess whether they are linked to
fuel poverty indictors—more on this later [83].

Disaggregating electrical device usage is called Appliance Load Monitoring
(ALM) [85]. ALM is divided into two types: Non-Intrusive Load Monitoring
(NILM) [86] and Intrusive Load Monitoring (ILM) [87]. NILM is a single point
sensor, such as a smart meter or CT clip. In contrast, ILM is a distributed sensing
method that uses multiple sensors—one for each electrical device being monitored
[87]. ILM is more accurate than NILM as energy usage is read directly from sensors
attached to each electrical appliance being measured. The practical disadvantages
however include high costs, multi-sensor configuration, and complex installation
[88]. More importantly, ILM sensors can be moved between different devices and
this can skew identification and classification results.

NILM on the other hand is less accurate than ILM and more challenging as
appliances are identified from aggregated household energy readings [89]. NILM
was first developed in the mid-1980s [90]. Since then academic interest in the field
has increased rapidly [91]. More recently there has been significant commercial
interest [92]. This has been primarily driven by an increased focus on energy
demand combined with significant reductions in the cost of sensing technology,
and equally, improvements in machine learning algorithms. Commercial interest is
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directly linked with the huge commercial potential of services that exploit the smart
metering infrastructure, for example, in health, energy management, and climate
change.

3.4 Electrical Device Types

Electrical appliances, alongside their normal on-off states, run in multiple modes.
Many devices have low power requirements or standby modes, while appliances
like ovens operate using several control functions. Understanding different device
categories is important in NILM, as they define different electrical usage character-
istics. Device categories include Type 1, Type 2, Type 3, and Type 4. The associated
signals for each are illustrated in Fig. 3.

The characteristics for each appliance type are described as:

• Type 1 devices are either on or off. Examples include kettles, toasters, and
lighting. Figure 4 illustrates a power reading for a kettle—(a) shows a series
of devices being used in conjunction or in close succession; while (b) presents
evenly distributed single device interactions.

• Type 2 devices, known as Multi-State Devices (MSD) or finite state appliances,
operate in multiple states and have more complex behaviours than Type 1
devices. Devices include washing machines, dryers, and dishwashers.

• Type 3 devices, known as Continuously Variable Devices (CVD), have no fixed
state. There is no repeatability in their characteristics and as such they are
problematic in NILM. Example devices include power tools such as a drill or
electric saw.

Fig. 3 Appliance type energy readings
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Fig. 4 Aggregated load readings highlighting unique device signatures

• Type 4 are fairly new in terms of device category. These devices are active for
long periods and consume electricity at a constant rate—they are always on.
Hence, there is no major events to detect other than small fluctuations. Such
devices include smoke detectors and intruder alarms.

Understanding device types is important in any load disaggregation system, as
electrical appliances are often used in combination, typically when preparing meals.
This can affect the performance in classification tasks due to the boundaries that
exist between device classes, making them difficult to identify. The boundaries
between classes provide guidance on what classifiers to use (i.e. linear, quadratic, or
polynomial) within the same feature space [93].

4 BMI: A Behaviour Measurement Indicator for Fuel
Poverty Assessments

Measuring and monitoring household fuel poverty is challenging as we have seen
[40]. Expenditure-based approaches lack data on all the contributing factors needed
to sufficiently assess the extent of fuel poverty. Using this method, the data is
often derived from a subjective and generalized view of households, including
their occupants and how energy is consumed. In fact, data is often skewed or
contaminated given that households may not even identify themselves as being in
fuel poverty due to pride [94]. The remainder of this chapter proposes a different
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point of view that incorporates personalized household behaviour monitoring using
activities of daily living. By doing this it is possible to understand the unique
characteristics of each household in terms of what, when, and how often electrical
appliances are used. The hope is to derive some useful insights and provide a more
objective measure of fuel poverty from a socio-behavioural view point to better
support the occupants and their energy needs.

4.1 BMI Framework

The Behaviour Measurement Indicator (BMI) proposed was initially developed
and evaluated in partnership with Mersey Care NHS Foundation Trust to measure
appliance usage in dementia patients and derive routine behaviours for social care
support [83, 95]. Here we consider an extension to the existing framework and build
on the behavioural monitoring aspects of the system to provide a household BMI
indicator for fuel poverty assessment.

The BMI builds on the existing smart meter infrastructure. Smart meters in
households, paired with a CAD using the ZigBee Smart Energy Profile (SEP)
[96], provide access to aggregated power usage readings every 10 s. This sample
frequency allows high-powered appliances associated with ADLs to be detected
and used to establish household behavioural routines. Appliances such as a kettle,
microwave, washing machine, and oven are regarded as necessary appliances used
by occupants to live a normal life (ADLs). Therefore, appliances such as TVs,
mobile chargers, computers, and lighting are of limited interest as they do not
contribute to ADL assessment, for example, TVs are often left on for background
noise and provide no information about what an occupant in a household is doing
[83].

The BMI operates in three specific modes in order to achieve this: device training
mode, behavioural training mode, and prediction model.

• In device training mode power readings are obtained from the CAD and
recorded to a data store. Readings alongside device usage annotations are used
to train the machine learning algorithms to classify appliances from aggregated
load readings. Features automatically extracted using a one-dimensional con-
volutional neural network (discussed in more detail later in the chapter) act
as input vectors to a fully connected multi-layer perceptron (MLP) for device
classification.

• In behavioural training mode features from device classifications are extracted
to identify normal and abnormal patterns in behaviour. The features allow the
system to recognize the daily routines performed by occupants in a household,
including their particular habits and behavioural trends.

• In prediction mode both normal and abnormal household behaviours are
detected and remediated.
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Fig. 5 System framework showing the end-to-end components

The framework implements web services for machine-to-machine communica-
tions using enterprise-ready protocols, Application Programming Interfaces (API’s)
and standards. The monitoring application interfaces with web services to receive
real-time monitoring alerts about the household’s status (i.e. green for normal
behaviour, amber for unusual behaviour, and red when drastic changes occur). The
complete end-to-end system is shown in Fig. 5.

4.2 Data Collection

The training dataset for device classification is constructed using energy monitors
(i.e. a CAD paired with a household smart meter). CAD payload data contains
the aggregated energy readings generated every 10 s. To detect ADLs, a kettle,
microwave, washing machine, oven, and toaster are used, although others could be
included if required, such as an electric shower depending on the relapse indicators
of interest in fuel poverty.

Generating device signatures is achieved using a mobile app to record when each
appliance is operated (annotation). Time-stamped recordings are compared with
mobile app recordings to extract specific appliance signatures. Each signature is
labelled and added to the training data and subsequently used to train the machine
learning algorithms for appliance classification.
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4.3 Data Pre-processing

CAD energy readings are filtered and transformed before they are used to train
machine learning algorithms. A high-pass filter is implemented to remove back-
ground noise below 300 watts (although this value needs to be personalized based
on individual household energy usage as each home will be different)—signals
below this threshold typically represent Type 4 electrical appliances which cannot
be detected using CAD data.

Device signatures are obtained by switching appliances on and off individually
and filtering normal background noise. Individual appliance signatures are com-
bined to generate new appliance usage patterns that represent composite appliance
usage. For example, Fig. 6 shows that when the individual energy readings for three
appliances (kettle, microwave, and toaster) are combined (i.e. they are operated in
parallel) a ‘Total Load’ signature is produced.

The aggregated signature (total load) describes the three appliances being used
in parallel. Repeating this process for all device combinations yields different
aggregate signatures that describe which devices are on and which are not. Hence, a
dataset is built containing individual and combined appliance usage signatures and
used to train and detect which of the ADL appliances are in use.

Fig. 6 Whole household aggregated power consumption and individual device power consump-
tion



34 P. Fergus and C. Chalmers

4.4 CAD NILM Machine Learning Model for Appliance
Disaggregation

In contrast to manually extracted features based on input from domain knowledge
experts (i.e. peak frequency and sample entropy), features can automatically learn
from appliance energy signatures using a one-dimensional convolutional neural
network (1DCNN) [97]. Appliance signatures are input directly to a convolutional
layer in the 1DCNN. The convolutional layer detects local features along the time-
series signal and maps them to feature maps using learnable kernel filters (features).
Local connectivity and weight sharing are adopted to minimize network parameters
and overfitting [98]. Pooling layers are implemented to reduce computational
complexity and enable hierarchical data representations [98]. A single convolutional
and pooling layer pair along with a fully connected MLP comprising two dense
layers and softmax classifier output (an output for each appliance being classified)
completes the 1DCNN network as the time-signals are not overly complex. The
proposed architecture is represented in Fig. 7.

The network model is trained by minimizing the cost function using feedforward
and backpropagation passes. The feedforward pass constructs a feature map from
the previous layer to the next through the current layer until an output is obtained.
The input and kernel filters of the previous layer are computed as follows:

zlj

Ml−1∑

l−1

1dconv
(
xl−1
i , kl−1

ij

)
+ blj

where xl−1
j and Zl

j are the input and output of the convolutional layer, respectively,

and kl−1
ij the weight kernel filter from the ith neuron in layer l − 1 to the jth neuron

in layer l; 1dconv represents the convolutional operation and blj describes the bias

of the jth neuron in layer l. Ml − 1 defines the number of kernel filters in layer l − 1.

Fig. 7 One-dimensional
convolutional neural network
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A ReLU activation function is used for transforming the summed weights and is
defined as:

xlj = ReLU
(
zlj

)

where xlj is the intermediate output at current layer l before downsampling occurs.
The output from current layer l is defined as:

ylj = downsampling
(
xlj

)
xl+1
j = ylj

where downsampling() represents a max pooling function that reduces the number
of parameters, and ylj is the output from layer l and the input to the next layer l + 1.
The output from the last pooling layer is flattened and used as the input to a fully
connected MLP. Figure 8 shows the overall process.

The error coefficient E is calculated using the predicted output y:

E = −
∑

n

∑

i

(Yni log (yni))

where Yni and yni are the target labels and the predicted outputs, and i the number
of classes in the nth training set. The learning process optimizes the network’s free
parameters and minimizes E. The derivatives of the free parameters are obtained
and the weights and biases are updated using the learning rate (η). To prompt rapid
convergence, Adam is implemented as an optimization algorithm and He for weight

Fig. 8 Convolution and max
pooling process
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initialization. The weights and bias in the convolutional layer and fully connected
MLP layers are updated using:

klij = klij − η
∂E

∂klij

blj = blj − η
∂E

∂blj

Small learning rates reduce the number of oscillations and allow lower error rates
to be generated. Rate annealing and rate decay are implemented to address the local
minima problem and control the learning rate change across all layers.

Momentum start and ramp coefficients are used to control momentum when
training starts and the amount of learning for which momentum increases—
momentum stable controls the final momentum value reached after momentum
ramp training examples. Complexity is controlled with an optimized weight decay
parameter, which ensures that a local optimum is found.

The number of neurons and hidden layers required to minimize E, including
activation functions and optimizers, can be determined empirically. Input and hidden
layers are also determined empirically depending on data and the number of softmax
outputs required for classification. The network’s free parameters can be obtained
using the training and validation sets over a set number of epochs and evaluated with
a separate test set comprising unseen data.

The 1DCNN approach allows the unique features from single appliance and
composite appliance energy signatures to be automatically extracted and used in
subsequent machine learning modelling for classification tasks. This removes the
need for manual feature engineering and simplifies the data analysis pipeline.

4.5 Measuring Behaviour

Current fuel poverty measurement indicators cannot directly collect, monitor, or
assess fuel poverty in households in real time. ADL is a term used in healthcare to
assess a person’s self-care activities [99]. With smart meters, CADs and 1DCNNs,
the BMI platform can analyse electrical appliance interactions and detect ADLs
(routine behaviours) in all households connected to the smart grid using smart
meters [78–80, 84]. Household occupants carry out ADLs each day as part of their
normal routine behaviour. These include preparing breakfast, lunch, and dinner,
making cups of tea, switching on lights, and having a shower. While such tasks
are common to us all, there will be differences. For example, one household may
use the toaster to make toast for breakfast, while another might use the cooker to
make porridge. Some might boil the kettle to make tea in the evening after finishing
work, while others might prefer to have a glass of wine. Some households might
use the shower (likely at different times of the day and frequency, i.e. one or two
showers a day), while others might prefer to have a bath.

These activities can be easily detected through ongoing interactions with home
appliances. This is useful for deriving normal routine behaviours within households,
but more importantly to detect anomalies, for the purpose of safeguarding vulnera-
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ble homes against fuel poverty risks. How we interact and use energy in our home
will likely be affected by our circumstances, i.e. having a baby, children moving out
of the family home, gaining employment (or losing a job) as well as caring for an
elderly family member who has moved in.

Such circumstantial changes directly alter our routine use of electrical appliances.
For example, in the case of having a baby, the microwave, kettle, or oven hob may
be operated throughout the night for a period of time to heat the milk required to
bottle-feed babies. In the unfortunate situation where a person has lost their job,
household occupants may have to substitute fresh food cooked using the oven and
hob for more cheaper food options, such as microwave meals. These are clues that
household circumstances have changed. Families experiencing financial difficulties
may have to cut heating-based appliance usage and ration hot water—this will lead
to an overall dip in energy consumed by that household.

Significant changes in behaviour will act as key indicators and facilitate decision-
making strategies to support struggling households. For example, appliances oper-
ated during abnormal times of the day (when this is not normal behaviour for that
household) may indicate that occupants are experiencing difficulties (i.e. making
tea in the early hours of the morning could be due to sleep disturbances possibly
caused through financial worry; conversely occupants staying in bed for longer
periods of time or not cooking meals may indicate severe financial difficulty or
energy disconnection issues). The BMI system can detect significant changes in
behaviour like these as we see in the next section.

4.5.1 Vectors for Behavioural Analysis

Individual device detections classified by the CAD NILM machine learning model
are combined as feature vectors for behaviour analysis. Predicted classes are given
a unique device ID and assigned to an observation window depending on the time
of day the appliance is used, i.e. during breakfast or evening meal times.

Observation windows can be defined and adjusted to meet the unique behaviours
of each household. This is performed automatically following a baseline learning
period for each household connected to the smart grid. Observation windows
capture routine behaviour and act as placeholders for the fuel poverty relapse
indicators being measured and monitored (these will need to be defined by fuel
poverty experts). This allows the system to construct a personalized representation
of each household and assign device usage to specific observation windows common
to that household. Continually repeating this process allows routine behaviours
to be identified and anomalies in behaviour to be detected. Figure 9 describes
seven possible observation windows in a 24-h period. Each observation window
is configurable to meet the unique needs of the application or service.

The order of device interactions is not necessarily important unless there is a
clear deviation from normal behaviour. From the behaviour vectors it is possible to
see the degree of correlation between appliance usage and the hour-of-day (strong
routine behaviour). Figure 10 shows the correlations for different home appliances
used over a 6-month period [100].
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Fig. 9 Device assignment for identifying key activities within significant observation periods

Fig. 10 Degree of correlation between device usage and hour

The figure shows quantitative information relating to flows, including relation-
ships and transformations. The lines between appliances and time-of-day, like ant
pheromone trails, show the established routine behaviour for a particular home.
For example, it is possible to see that the microwave is mostly used at 06:00 h
and 18:00 h. Alternations in either link proportionality or association may indicate
the early signs of circumstantial change which could be linked to fuel poverty
risk factors. Anomalies are progressed through a traffic light system—red would
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Fig. 11 Sleep disturbances for an occupant using Z-score anomaly detection

suggest a sustained change in routine behaviour over a period of time (time period
would be set by expert in fuel poverty) and may or may not indicate that the house
is experiencing financial difficulties. Conversely, green would show that normal
routine behaviour has been observed and that no support or intervention is required.
Amber would flag the house as worrisome (this does not necessarily mean the house
is transitioning into a fuel poverty state, simply that a change in behaviour has been
detected). This could be caused by circumstantial changes, i.e. people coming to
stay or household occupants going on holiday. Viewing Fig. 6 periodically we would
expect to see changes between correlations and their associated strengths for those
households experiencing significant changes in normal routine behaviours.

Anomalies in device usage can be seen with the Z-score technique to describe
data points in terms of their relationship to the mean and the standard deviation
of a group of points. Figure 7 shows the inliers in green which represent normal
appliance interactions for that household. Each cluster represents a specific appli-
ance class. The outliers are depicted in red where both the kettle and toaster classes
in this case reside outside the household’s normal routine behaviour. Figure 11
shows that in total three kettles were used on three separate occasions between
the hours of 00:00 and 05:00 and a single interaction with a toaster was detected
during the same observation period. In the context of fuel poverty such results
may provide interesting insights when managing fuel poverty households. As the
household continues to struggle financially, we would expect routine behaviour to
become more erratic (or even disappear for long periods) leading to an increase in
the number of anomalies detected.

The BMI framework presents the first platform of its kind that capitalizes on
the smart meter infrastructure to describe a behaviour measurement indicator for
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Fig. 12 Association rule mining for the identification of behavioural patterns

use in fuel poverty assessments. It has been designed to exploit the smart metering
infrastructure and provide foundational services to more accurately assess fuel
poverty in real time within individual households [77]. Obviously, future trials are
required to test the applicability of the BMI system and evaluate whether it has
any real potential in tackling fuel poverty. Based on our previous use of the system
in dementia, the technology is a powerful tool for assessing routing behaviour and
detection anomalies. We therefore think the solution will lend itself to household
behaviour analysis (in terms of electricity consumption) in fuel poverty assessment
[83].

The use of association rule mining within load disaggregation is also an interest-
ing technique that can uncover relationships and their associated strengths using
transactional data. Identifying device relationships (what devices are commonly
used together or in sequence) and their relationship with the time of day can expose
strong behavioural traits within the dwelling. Reoccurring deviation from identified
routine patterns or the weakening of common relationships could be used to trigger
an intervention where fuel poverty is suspected. Figure 12 highlights the use of
association rule mining to determine the relationship strength between an appliance
and time of day.
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Association rule mining can be used to provide a more abstracted view above and
beyond the aggregated load level of a dwelling. Instead, the collective behaviour of
entire regions could be monitored to assess the impact of shifting financial and social
economic changes, for example, raising fuel prices or the closure of large employers
(retail/manufactures) and reduction in the associated foot flow to a region. By using
association rule mining the impact can be objectively measured and the effectiveness
of any intervention/recovery passively monitored.

5 Discussion

As this chapter has highlighted, fuel poverty affects a significant number of
households in Europe and indeed globally. The problem is primarily caused by
a combination of low income, high energy costs, and energy-inefficient homes.
In the UK, four million households are currently in fuel poverty, which, among
other things, contributes to poor health and premature winter deaths. Poor-quality
housing has also been linked with fuel poverty which is hardly surprising given that
a substantial share of the residential stock in Europe is older than 50 years.

The problem is recognized by governments; however, the EU has not yet adopted
a common definition of fuel poverty, nor a set of common indicators to measure it,
making a standardized approach difficult to implement. Many households move in
and out of fuel poverty but there are households that find themselves persistently
trapped in fuel poverty [101]. Measuring and monitoring fuel poverty is challenging
as we have seen [40], and while Expenditure-based approaches have been proposed,
they lack data on all the contributing factors needed to sufficiently assess fuel
poverty. Consensus-based approaches on the other hand have data, but this is only
from snap shots in time, meaning data is often outdated, subjective, and exclusive
in nature.

Of the 178 measurement indicators reported in the literature, many do not
respond to variations in income, circumstantial changes, fuel prices, or energy
efficiency improvements. They exclude low-income and single-person households
[59, 60] and this has distorted policy choices, and misrepresented the problem.
Against this negative backdrop and an overall distrust of government bodies and
energy providers, fuel-poor customers feel that the intensity of the issue is not fully
understood by those developing policies to combat it [56].

We proposed the BMI system to monitor a household’s activities of daily living
and understand routine behaviour in order to gain insights into how energy is
consumed [78–80, 84]. Households behave in different ways. While there may be
common tasks, such as meal preparation, there will be differences. By detecting
ADLs using appliance interactions, it is possible to derive routine behaviour for
each household. This makes BMI highly personalized and sensitive to the unique
characteristics of each household connected to the smart grid.

Changes in behaviour can be identified and investigated and support services
provided if and when they are needed. Modelling ADLs in households will allow
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the onset of fuel poverty issues to be identified much earlier. When households
are identified, appropriate packages can be put in place to help mitigate the
adverse effects fuel poverty has on fuel-poor occupants. Detecting self-disconnect
in households, particularly among the most vulnerable in society, such as young
children and the elderly, would allow appropriate support services to be put in place
to ensure homes are appropriately warm.

The identification of expected behaviour and relapse indicators aids in the
selection of appropriate analytical techniques. Establishing routines facilitates the
detection of abnormal behaviour. Combining this with unique energy signatures
within each household a new and foundational fuel poverty indicator is possible
that is adaptable and reflective of household circumstances. We believe that the
BMI system could contribute significantly to the fuel poverty domain. To the best
of our knowledge BMI is the first of its kind as currently there is no fuel poverty
measurement indicator that can measure household energy usage interactions and
derive routine behaviour in every home fitted with a smart meter. The approach
is highly personalized and closely aligned with the different routines households
exhibit despite the size of the house or the number of occupants. Once routine
behaviour has been established, BMI is highly sensitive to change; using a traffic
light system it is therefore possible to target and support households classified as
being fuel poor.

6 Conclusions

This chapter discussed the many aspects of fuel poverty and the government policies
put in place to combat it. The key message is that cold homes waste energy and harm
their occupants. Most fuel-poor indicators are derived from generalized estimates
disconnected from the unique characteristics of individual households. Houses
and occupants do not behave the same—they have their own socio-behavioural
characteristics that affect how and when energy is consumed. Therefore, coupled
with the household envelope and the many other factors that influence household
behaviours, there is a disparity between existing measurement indicators and fuel
poverty prevalence.

The only way to fully understand fuel poverty is to measure high-risk households
and the unique characteristics and behaviours they exhibit in terms of energy
consumption and ADLs. We believe that the BMI system can do this with minimal
installation requirements as the solution exploits the existing smart meter infras-
tructure to provide appropriate services. System operation requires no input from
household occupants as BMI is based on the assessment of ADLs (the everyday
things that people do in their home in order to survive) captured through normal
appliance interactions.

The BMI has been previously evaluated in a clinical trial with Mersey Care NHS
Foundation Trust to model the ADLs of dementia patients [83]. However, it has been
possible to extend the system to include fuel poverty risk factors following minor
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changes to observation periods and fuel poverty related relapse indicators. Future
work will focus on a trial to evaluate the BMI system in fuel and non-fuel poverty
homes. Cases will include households that find themselves in and out of fuel poverty.
Controls will be those households that have not previously experienced fuel poverty
or had difficulties with paying bills and keeping their home warm. The measurable
outputs will be to evaluate whether the BMI system can detect which houses are in
or likely to be in fuel poverty and those that are not.

To the best of our knowledge this is the first fuel poverty measurement indicator
that builds on the existing smart meter infrastructure and associated CAD tech-
nology to carry out NILM and personalized ADL monitoring in every household
connected to the smart grid that is designed to safeguard households and occupants
against fuel poverty.
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1 From Home Automation to Smart Home

In the 2010s, everything had to be smart. This qualifier can be applied to systems
capable of capturing, communicating, and acting. In particular, in 2009, with the
explosion of the theme of smart grids (Fig. 1), linked to the decentralization of the
electricity network, a direct consequence of the need to improve the penetration of
renewable energies, such as solar photovoltaics, distributed on the territory. The
same goes for Smart Home, the use of the term listed by Google [1] takes off
again during this period and is followed by the smart city which integrates energy,
transport but also security issues with especially facial recognition systems.

It all began in the twentieth century with the introduction into the house of
motorized equipment to relieve tedious tasks within the house such as washing
clothes (1904), cooking (oven, refrigerator, robot ...), washing dishes, clean (vacuum
cleaner, etc.), etc. This equipment introduces the concept of home automation or
“home automation” which appears as the contraction of the Latin word domus
(home) and the word robotics. But beyond this individual equipment, automating
previously manual activities, home automation introduces the concept of automated
and centralized control. The very first protocol for controlling home appliance was
the X10 developed in 1975 by Pico Electronics of Glenrothes, Scotland. Its objective
was to remotely operate the power supply to light fixtures or electrical equipment
plugged into an outlet. Its principle is based on the power line carrier (Powerline
Carrier Systems (PCS)). X10 is a technology still existing, which is also able to use
other media such as radio frequency, but which retains characteristics that can be
called archaic, sending for instance the signal three times to increase the probability
of being received.
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Fig. 1 Google trends for smart grid, smart home, and smart city (https://trends.google.com/trends/
explore?date=all&q=smart%20grid,smart%20home,smart%20city)

In the early 1990s, home automation had to overcome a large number of
challenges such as high costs at all levels, from development to maintenance,
including manufacturing and installation [2]. In addition, their use was reserved for
interested people mastering the technologies and agreeing to spend time on GUIs
that are not very ergonomic.

In a more recent study [3], the authors always indicate a high overall cost, a
complexity linked to incompatible equipment, a lack of reliability, and always a
great difficulty of handling by an average user.

Associated with Building Automation, the term Intelligent Building appeared in
the 1980s. The vision, and therefore the definition, that we attribute to intelligent
building is largely dependent on the authors and their point of view, but we can also
consider that they evolve over time. In particular, Wigginton and Harris have listed
30 different definitions [4]. The first were purely technological, such as in 1983
when Cardin refers to Intelligent Buildings as “Buildings which have fully auto-
mated building service control systems.” Others have a broader vision which is part
of a compromise between the well-being of the occupant and the optimization of
resources. “A building that creates an environment that maximizes the efficiency of
the occupants of the building while at the same time allowing effective management
of resources with minimum life-time costs” [Intelligent Buildings International
(IBC) cited by Wigginton and Harris [4]]. The latter definition is also used in
numerous scientific publications on the intelligent building.

https://trends.google.com/trends/explore?date=all&q=smart%20grid,smart%20home,smart%20city
https://trends.google.com/trends/explore?date=all&q=smart%20grid,smart%20home,smart%20city
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According to Ghaffarianhoseini [5] “Current definitions of IBs have gradually
considered the users’ interactions and even the social values of users [ . . . ] raise the
idea that intelligent living environments must be aware of and responsive to their
occupants’ demands and activities”.

Wilson in [6] is dividing research topics on smart homes into three categories:

1. Functional: considers the smart home as a way of better managing the daily
living demands.

2. Instrumental: focuses on managing and reducing energy demand in households
towards a low-carbon future.

3. Socio-technical: considers smart homes as the next wave of development
regarding daily life digitization.

Responding to the well-being of the occupant is therefore a first challenge, and
this requires an environment capable of capturing and acting according to the needs
of the occupants and their well-being. Generally speaking, it is the interaction
with the occupants which makes it possible to achieve the objectives of the smart
building, which can go beyond the well-being of the occupant. This is particularly
the case for the current objectives linked to the energy transition, to which this work
is addressed.

2 Standards and Performance Indicators from Building
Sector

2.1 Standards to Deploy Energy-Efficient Technologies

Directives and associated standards have been in place for several years aimed at
massively deploying energy performance technologies in buildings. In 2018, the
European Parliament updated directives 2010/31/EU on the energy performance
of buildings and 2012/27/EU on energy efficiency. In particular, emissions from
European buildings will have to be reduced by 80–95% by 2050, compared to
1990. This challenge can partly be met by the residential sector and monitoring,
interaction, and piloting technologies.

The new 2018 directives on the energy performance of buildings (2010/31/EU)
and energy efficiency (2012/27/EU) are translated into standards (see Fig. 2).
Throughout this chapter, we will have the opportunity to cite a number of these
standards and see how smart home technologies are adapted to them or not.

We can already evoke with Fig. 2 that a certified building (ISO 50001), that
is to say having implemented an energy management system, is exempt from the
obligation of energy audit (EN 16247). In France, for example, a company building
with more than 250 people or a condominium with more than 50 dwellings must
undergo an energy audit every 4 years. This is an exhaustive examination and
analysis of the energy use and consumption of a site or a building, with the aim
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of identifying energy flows and potential for improving the energy efficiency and
then report on it. Individual houses are subject to a much less restrictive Energy
Performance Certificate (in French “DPE”) at the time of sale. We could imagine
that an equivalent system could be developed in smart home in order to lead to a
continuous improvement in the energy performance of all housing.

Energy Efficiency Directive
(EED) 2012/27/EU

Obligation to
perform Energy
Audit

Exemption if
Energy
Management
System (EnMS)

EN16247
Energy Audits

ISO 50001
Energy
Management
Systems

TR 16103 - Energy management and energy efficiency - Glossary of terms
ISO 13273 - Energy efficiency and renewable energy sources - Common international
terminology 

TR 16212 - Energy Efficienty and Savings Calculations
EN 16231 - Energy efficiency benchmarking methodology
ISO 50006 - Energy Baseline and Energy Performance Indicators (EnPIs)

EN 15900
Energy
Efficiency
Services

EN 15232
Impact of BMS
on Energy
Performance

Promotion of
Energy
Efficiency
Services

Building
renovation
roadmap

Energy Performance of
Buildings Directive
(EPBD) 2010/31/EU

Fig. 2 Consistency between regulations and standardization—European Level. (Source: Obara
[7])

In Sect. 3.2.3, we will discuss the energy management methodology defined in
the ISO 50001 standard as well as the associated services that can be offered by
Energy Service Company (ESCO) in the framework of EN 15900: 2010—Energy
efficiency services.

Finally, we will more particularly develop energy management systems (EMS)
and their performance defined in standard EN 15232.

2.2 The Benefits of Energy Monitoring

2.2.1 Measure and Verification (M&V), from Design to Real
Performances

A delivered building does not operate efficiently immediately. The building and its
equipment must be regulated and its occupants informed and accompanied during
the first year of operation according to the uses and seasons. This year of learning the
building is very important to avoid consumption drifts and/or user discomfort. The
commissioning and monitoring of technical installations must not be left to chance.
Only energy and technical An effective building monitoring will be able to identify
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deviations, anomalies and give indications to reduce or even eliminate them in the
best of cases. This monitoring is all the more essential since it still happens that,
despite the drifts observed and reported, certain problems remain unsolved 2 years
after their commissioning. Good practice requires that M&V is well integrated into
the process of identifying, developing, procuring, installing, and operating energy
conservation measures (ECM).

There is often a distortion between the consumption assumptions, studied in
design, and the actual consumption of a building in operation. The causes of
these distortions can be numerous: deviations in particular related to the choice of
materials and their implementation, the climate, the conditions of occupation or
management of equipment, the varied behavior of users, etc.

Post Occupancy Evaluations (POE) based on questionnaires and on-site physical
measurements is used to improve the ways that buildings are used to support
productivity and well-being. Specifically it is used to account for building con-
struction quality. According to Leitner [8], the most used evaluation methods are
questionnaires and on-site physical measurements. The most frequently evaluated
criteria were lighting, internal temperature and thermal comfort, and acoustic
comfort. In Di Giuda [9] authors are exploring the potential application of IoT
sensors and Machine Learning techniques to POE.

An effective building monitoring will reduce the majority of overconsumption,
dysfunctions, and therefore the satisfaction of the occupants, but also improve
knowledge of the systems in use and their daily operation. The monthly invoice
control is the first monitoring tool to be implemented. However, this control is not
sufficient to identify precisely the causes of possible overconsumption. To maintain
the level of performance and the loads linked to the building, only real follow-
up after reception makes it possible to identify and understand the origin of these
distortions in order to reduce them quickly.

2.2.2 Energy Performance Contracting

In order to ensure that the performance defined in the design for a new construction
or renovation will be achieved, an energy performance contract (EPC) can be
established between a project owner and an operator in order to set an energy
efficiency objective.

An international standard call International Performance Measurement and
Verification Protocol (IPMVP

®
) defines best practice for quantifying the results of

energy efficiency investments and increase investment in energy, demand manage-
ment and renewable energy projects.

Indeed, energy savings cannot be directly measured, because savings represent
the absence of energy consumption. Instead, savings are determined by comparing
measured consumption before and after implementation of a program, making
suitable adjustments for changes in conditions. The comparison of before and after
energy consumption should be made on a consistent basis, using the following
general equation:
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Fig. 3 International performance measurement and verification protocol (IPMVP
®

). Source:
Efficiency Valuation Organization (https://evo-world.org/en/products-services-mainmenu-en/
protocols/ipmvp)

Savings = (Baseline Period Energy− Reporting Period Energy)± Adjustments

IPMVP’s framework requires certain activities to occur at key points in this
process and describes other important activities that must be included as part of
good M&V practice (Fig. 3).

Some researchers are looking for key factors like competence, integrity, commu-
nication, or reciprocity in generating trust and cooperation in energy performance
contracting (EPC) [10]. Other are looking for Blockchain and smart contracts to
provide a trading platform that enables the execution and enforcement of agreements
between untrusted parties without involving a trusted third party [11]. This kind of
new smart contract can be easier to extend to smart home.

2.2.3 Impact of End-User Energy Consumption Feedbacks

Numerous studies have analyzed the effects of providing feedback to the occupant
on energy consumption. Ehrhardt-Martinez et al. [12] in particular identified
36 studies carried out between 1995 and 2010 and categorized the impact of
the technology used on energy saving. The category called indirect feedback is
characterized by global information such as the monthly invoice, provided with a
consequent delay of several months. The energy savings linked to this feedback are
relatively low, up to 8% with daily information. The other category corresponds
to real-time feedback, that is to say directly related to the occupants’ action. This
instantaneousness is much more beneficial in improving occupant behavior, which
can reach average savings of more than 10% (Fig. 4).

https://evo-world.org/en/products-services-mainmenu-en/protocols/ipmvp
https://evo-world.org/en/products-services-mainmenu-en/protocols/ipmvp
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Fig. 4 Average Household electricity savings (4–12%) by feedback type. (Source: Ehrhardt-
Martinez et al. [12])

Table 1 French RT2012 monitored usages

Heating (except for
individual wood
systems)

For the individual systems, the consumptions of the auxiliaries can be
taken into account in this item or in the “other” item. For collective
systems, auxiliaries are not taken into account

Cooling
Dwelling Hot Water
Electrical outlets These are devices connected to electrical outlets. The specialized circuits

intended for the cooking department are counted in the “other” item
Other These are real estate lighting, specialized circuits for the hob and

nonelectric oven (gas) of the individual air conditioning or individual
automations

New French buildings are subject to thermal regulation (e.g., RT2012), which
require them to have an energy consumption monitoring system that informs
occupants, at least monthly, of their energy use, by energy type. However, sub-
metering by usage or by dwelling is not required if a mathematical desegregation
method is defined and indicated to the occupant. The usages considered are heating,
cooling, and dwelling hot water (DWH), as well as electrical outlets and others (see
Table 1).

The regulations do not impose a technical solution and give full freedom to go
beyond. In particular, certain items are not considered (lighting for accommodation,
thermal auxiliaries, parking lighting, exterior lighting, inverter, etc.) or for collective
buildings, consumption linked to common areas (elevators, ventilation boxes,
lighting of common areas, etc.). In addition, there is no obligation to install sensors
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for the system operation monitoring. Finally, the parameters of thermal comfort in
all seasons are not controlled, while the installation of temperature sensors in several
representative zones as well as outside would provide a lot of information for a more
detailed analysis of consumption linked to heating and cooling.

This requirement of consumption display in the residential sector is an important
advance for the involvement of the occupants in sobriety and energy performance.
Supervision, via a set of communicating sensors and a data centralization system,
is the first tool of a more complex system called the Building Management System
(BMS) or Technical Building Management (TMB). These BMS were first developed
in large buildings (tertiary and industrial) due to the high cost and their complexity.
Although in a different situation, the residential sector must take advantage of
existing developments, in particular existing standards.

2.2.4 Beyond the Building, Interaction with the Power Grid

The classical steps for building design from bioclimatic design to energy system
design and renewable energy production on site can be extended to the district level.
Step 4 in Fig. 5 includes Smart Building into the urban district/urban system. The
goal is to address the overall system of district/city/region, including the interaction
of the building with the infrastructure (building to grid). Then several optimizations
can be done regarding load management, building as energy storage, building as
energy consumer and producer (prosumer), and control engineering to facilitate
interaction with the occupant and (energy) infrastructure (smart grids).

This is also the concept of transactive energy networks which could turn homes
from passive energy consumers into intelligent, active energy storage and service
providers for the future grid [14] as described in Fig. 6.

Fig. 5 Methodology for efficient and sustainable building design including the integration into the
urban district/urban system. (Source: Märzinger and Österreicher [13])
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Fig. 6 Illustration of transactive energy networks. (Source: Wang [14])

2.3 Standardized Performance Indicators

Higher-level measures and indicators must be defined in order to quantify how far
the building is to the targets and then to the objectives. An indicator used to set
targets corresponds, for example, to the consumption in kWh per unit of use. The
nature of the energy consumed, the duration considered, and the unit representative
of the use are indicated. For example, this may be the electrical energy consumption
for air conditioning in kWh/m2/year of occupied room. These indicators can be
corrected by climatic conditions, they can be corrected by the actual durations
of use of the premises. Other indicators are used to monitor performance drifts
in energy systems. These are, for example, the efficiency of fuel generators or
the performance coefficients of thermodynamic equipment (COP, EER), or the
consumption of ventilation which may indicate overconsumption probably linked to
the fouling of filters. In the following we will draw a review on available indicators
from smart home.

2.3.1 Disaggregation of Overall Consumption and Categorization

We saw previously that a real-time display by usage could be important. A
building’s energy use can be divided into heating, cooling, domestic hot water, air
movement, lighting, household/office equipment, indoor transportation, auxiliary
devices, and cooking, as shown in Fig. 7.
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Domestic Hot Water

Air Movement

Lighting

Fig. 7 Classification of end-use energy consumption. (Source: Jin [15])

Fig. 8 Energy consumption
of a building by boundaries in
ISO 12655:2013

International Standard ISO 12655:2013, about presentation of measured energy
use of buildings, is considering boundaries described in Fig. 8, which is used to
decompose the energy flows. This standard was last reviewed and confirmed in
2018 and remains current. But with the arrival of Zero Energy Buildings, other
boundaries can be considered, especially to calculate indicators such as Load
Matching indicators and Grid interaction Indicators [16] (see Fig. 8).
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2.3.2 Standards on Performance Indicators

The European Committee for Standardization (CEN, French: Comité Européen de
Normalisation) published in 2007 two standards on performance indicators. EN
15603 provides methods for measuring and calculating the energy use of buildings,
and EN 15217 tells how to represent it on a scale or a label. These two standards led
to two ISO standards:

– ISO 16346: Energy performance of buildings—Assessment of the overall energy
performance (an improvement and generalization of EN 15603).

– ISO 16343: Energy performance of buildings—Methods for expressing energy
performance and for energy certification of buildings, which succeeds to EN
15217.

They have been replaced recently by (EN) ISO 52003-1 and (CEN) ISO/TR
52003-2. ISO 52003 defines overall energy performance feature, such as total
primary energy use, nonrenewable primary energy use, renewable primary energy
use, renewable energy ratio, greenhouse gas emissions, and annual energy costs. It
also defines numeric indicator such as total primary energy use per useful floor area
[kWh/m2], total primary energy use [kWh], and nonrenewable primary energy use
per useful floor area [kWh/m2].

In order to generalize indicators definition, IEA presents in IEA [17] a conceptual
framework for the development of building energy performance metrics with
examples for metric parameters (Fig. 9).

Fig. 9 Conceptual framework for the development of building energy performance metrics.
(Source: IEA [17])
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Fig. 10 Schematic description of indicators usage from ISO 52003 [18]

The framework uses four basic metric parameters: input, output, scope, and
normalization factors. The input is the amount or cost of the energy by fuel source;
this could be expressed as final (also known as delivered or site) energy, or as
primary energy, or as the cost of energy. It is also possible to express these input
into environmental impact such as CO2 emissions. The output reflects the service
provided by the energy, and can include the building space (floor area) served, the
number of people or number of buildings served, or the amount of cooling and
heating provided. The scope is a classification of the metric, such as the portion of
the buildings sector under consideration (e.g., the entire buildings sector, or certain
building types, or energy end uses). Finally, the normalization factors are used
to modify the basic input-per-output metric values, such as economic purchasing
power differences among regions, climate differences that impact heating and
cooling energy use, and change in time relative to a reference or base year.

And finally, Van Orshoven and van Dijk [18] provides a description of EN ISO
52003 to make intelligent use the Energy Performance Building (EPB) assessment
outputs based on indicators (Fig. 10).

2.3.3 Smart Readiness Indicator (SRI)

The 2018 revision of the European Energy Performance of Buildings Directive
(EPBD) aims to further promote smart building technologies, in particular through
the establishment of a Smart Readiness Indicator1 (SRI) for buildings. As part of
indictors, SRI aims at providing simple and understandable criteria to rank smart

1https://smartreadinessindicator.eu

https://smartreadinessindicator.eu
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buildings regarding several criteria in order to reach a better energy performance.
As described in Fig. 11, the expected advantages of smart technologies in buildings
are:

• Optimized energy use as a function of (local) production
• Optimized local (green) energy storage
• Automatic diagnosis and maintenance prediction
• Improved comfort for residents via automation

The three functionalities of smart readiness in buildings are:

• Readiness to adapt in response to the needs of the occupant
• Readiness to facilitate maintenance and efficient operation
• Readiness to adapt in response to the situation of the energy grid. As described

in Fig. 12, Verbeke et al. [19] outlines a quantitative approach based on the
load shifting potential using BMS and energy storages, and then a subsequent

Fig. 11 Expected advantages of smart technologies in buildings. (Source: Verbeke et al. [19])

Fig. 12 System boundaries of SRI calculation. (Source: Verbeke et al. [19])
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active interaction of the building (energy use and production) with energy grids,
including electrical, thermal, and gas.

Most of smart services are related to the automation of the control of technical
building systems, as defined in the technical standard EN 15232 already introduced
in part Standards to deploy energy-efficient technologies.

According to Hogeling [20] SRI will characterize the ability of a building:

• To manage itself
• To interact with its occupants
• To take part in demand response and contribute to smooth, safe, and optimal

operation of connected energy assets

Other initiatives, such as the one of Smart Building Alliance2 (SBA), a French
association, is also addressing SRI questions since several years, defining certifica-
tion schemes for smart buildings such as Ready2Services for commercial buildings
and Ready2Grids.

3 Building Automation and Control System

3.1 Introduction to BACS

The global and integrated vision of Building Automation and Control Systems
(BACS) is essential and goes beyond the simple regulation implemented on isolated
equipment. Indeed, multiple interactions take place in a building and the centralized
vision of the BACS makes it possible to obtain control aimed at optimizing all the
criteria at the same time. For example, if you consider HVAC (Heating Ventilation
and Air Conditioning) systems that deal with both heating/cooling and ventilation,
you could say that opening a window disrupts its operation. Likewise lighting or
obscuring solar gain also disturbs thermal regulation. The lighting is also subject to
the windows shutter. We therefore see that all these devices interact and a global
centralized vision is necessary (Fig. 13).

Building Automation and Control Systems (BACS) or simply Building Automa-
tion System (BAS) aim at providing smart functionalities. BACS is generalized with
Building Management System (BMS), and when considering energy explicitly, it is
called Building Energy Management System (BEMS) [21].

According to Research and Markets [22], the major factors that drive the market
for BMS are significant cost benefits to industrial, commercial, and residential users,
simplified building operations and maintenance, increasing demand for energy-
efficient and eco-friendly buildings, and growing integration of IoT. It places energy
and IoT as a central key words of building management systems.

Regarding standards, the ISO 16484-1:2010 defines the operational implementa-
tion of BACS during the different phases of a project:

2https://www.smartbuildingsalliance.org/

https://www.smartbuildingsalliance.org/
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Fig. 13 Integrated global
control is required in order to
cope with physical
interactions

Fig. 14 Typical building automation system. (Source: Manic [23])

• Design (determination of project requirements and production of design docu-
ments including technical specifications)

• Engineering (detailed function and hardware design)
• Installation (installing and commissioning of the BACS)
• Completion (handover, acceptance, and project finalization)

It is addressing the various aspects relating to project specification and imple-
mentation, hardware, functions, data communication protocol, and data communi-
cation conformance testing.

The following figure (Fig. 14) illustrates the operation of a classic BACS offering
standard functionalities that will be detailed in the next section.
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3.2 Building Management System Functions

The functions of the BMS can be categorized as follows:

• Monitoring: Functions which facilitate the tasks of technicians who maintain the
functionality of the equipment, with the aim of minimizing downtime.

• Supervision: Functions that allow technical managers to know, record and
manage operations. The objective is to control the installations as close as
possible to occupations and uses, to know the operations, the consumption of the
equipment, the interventions to be carried out and those that have been carried
out.

• Energy efficiency continuous improvement: Functions that measure efficiency
and thus provide elements to maintain and improve it. The objective is to estab-
lish consumption indicators, adapt supplies as closely as possible, implement
energy improvements, minimize expenses, measure the savings made.

3.2.1 Monitoring

Monitoring makes it possible to maintain the availability of operations by informing
the technical managers and the interveners who ensure the maintenance of the
equipment of significant events and of the alarms which call for an intervention.

The functions for monitoring are based on binary input state, coming from
state detectors, or created when exceeding the limits assigned to the measurements
or counting. Procedures for the transmission and presentation of information are
defined with priority levels, acknowledgment procedures, and logging.

3.2.2 Supervision

Supervision allows you to know the status of the equipment and to control its
operation:

• Inform in real time the stakeholders who perform technical management and
operational tasks. For this, the measurements, counts, operating states, and events
are centralized, transmitted remotely, and presented in dashboards.

• Adapt the management of the equipment to the uses by easy means of action to:
control, remotely adjust, configure the operating conditions, and derogate from
the automated systems.

• Record technical data for technical management, operating tasks and allow
monitoring for energy efficiency to be carried out.

The supervised equipment can be, among other things, the power supply (elec-
trical board); emergency power (generators, batteries), lighting, heating, ventilation
and air conditioning (HVAC), plumbing (lift pumps, tanks, etc.), access control, fire
devices (alarms, extinction).
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We generally categorize physical data according to their discrete or continuous
type:

• States (operation modes of equipment, position, command return, etc.);
• Measurements (temperature, operating time, number of failures, etc.).

We can extract from these physical points other information such as alarms
(failure, abnormal stop, measurement exceeding a threshold, etc.) or additional
quantities such as the thermal power calculated from flow rate and supply/return
temperatures.

A dashboard is presenting the dynamic states of points on images corresponding
to their location: plans of the premises, photos of the equipment, or block diagrams
of the installations. The displayed points: operating states, commands, settings,
measurements, or counts are selected according to their interest for the supervisors.
Meters can be grouped according to their nature (electrical energy, thermal energy,
water) and their location (general and on each zone) (Fig. 15).

The means of action can be manual commands such as starting, stopping,
and/or operating an appliance at partial load. It can also be a programming of
the intermittences of the equipment. Several pieces of appliances are controlled
by recorded periodic programs (day, week, or year) such as thermal equipment,
lighting, domestic hot water, fans, elevators, load shedding of power stations ...3

It can also involve the offloading of electricity consuming stations to reduce costs
by adapting their operations to tariff signals, or by a forecast algorithm (chilled
water generators with hourly or daily storage, kitchen equipment ...), while retaining
the possibility of temporarily derogating from this automation.

Advanced management strategies can also be implemented, such as night
ventilation for cooling the structures; natural cooling by introducing outside air;
free cooling by outdoor air-water exchange; integrated control of solar protection,

Fig. 15 Examples of smart home dashboards. (Source: Manic [23]) (https://www.pinterest.com/
pin/302726406202699573/)

3https://dribbble.com/shots/4612989-Smart-home-dashboard-concept

https://www.pinterest.com/pin/302726406202699573/
https://www.pinterest.com/pin/302726406202699573/
https://dribbble.com/shots/4612989-Smart-home-dashboard-concept
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lighting and air conditioning terminals. The parameters of these automations are
adjusted to adapt them to weather conditions or to the particularities of use.

Finally, regulation algorithms are implemented to maintain set points such as
ambient temperatures. Rising and lowering of temperatures can be optimized,
that is to say, anticipated or delayed, taking into account ambient and/or outdoor
temperature measurements.

All of the time-stamped data can be recorded in a trend log. The conservation
period is to be configured according to the needs and capacities of the available
equipment. These time series can be consulted a posteriori to analyze and optimize
monitoring.

3.2.3 Energy Efficiency Continuous Improvement

A continuous improvment process allows a more efficient use a continuous improve-
ment process for more efficient use of energy through an energy monitoring plan
as well as energy analyses based on the monitoring and supervision data described
above. This approach directly linked to the ISO 50001 energy management standard,
is based on the PDCA (Plan-Do-Check-Act) methodologies. PDCA is an iterative
four-step management method used in business for the control and continuous
improvement of processes and products (Fig. 16).

Plan: An energy plan is the determination of the initial energy baseline, the
energy performance indicators, the strategic and operative energy objectives, and the
action plans. These data and evaluations form the basis of the following improve-
ment processes. They also make it possible to identify potential for improvement of
energy efficiency.

Do: In this phase, planning and action takes place, improvements are aimed for
and implemented. Indicators and objectives for energy performance are defined on

Fig. 16 Continuous quality improvement with PDCA. (Source: Johannes Vietze, CC BY-SA 3.0)
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Fig. 17 Typical process of providing energy efficiency services (EN 15900:2010)

the basis of the results of the energy assessment. In doing so, action plans are also
created, with which the objectives for the improvement of energy performance can
be achieved.

Check: The plans executed in the “Do” phase must continually be checked to
ensure that they are effective. To do this, core processes that are significant to the
energy-related performance are monitored and measured in this phase. The results
are compared to the previously established objectives.

Act: The constant measurements are broken down in reports. These form the
basis for further studies, in order to improve the energy-related performance and the
BEMS.

The data must be kept in order to conduct comparative analyses over different
periods (annual in general). It is important to regularly update the use of the building,
in order to adapt the targets depending on some changes like space allocation, energy
contracting prices, etc. Finally, it is important to communicate these analyses,
in particular with occupants. Whether it is information concerning the energy
consumption observed but also the actions that make it possible to reduce it.

Figure 17 presents a typical process of providing energy efficiency services (EN
15900:2010).

3.3 Energy Management Algorithms

3.3.1 Overall Energy Performance Assessment

Since 2017, the ISO 52000 series aims to reorganize all the standards relating to
the energy performance of buildings. ISO 52000 contains a comprehensive method
of assessing energy performance as the total primary energy used for heating,
cooling, lighting, ventilation, and domestic hot water of buildings. According to
Elizabeth Gasiorowski-Denis [24], it will help accelerate progress in building
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energy efficiency utilizing new technologies and approaches to building design,
construction, and management.

Here we are focusing on building management parts of ISO 52000. For instance:
ISO/DIS 52120-1 helps on building automation and controls and building

management:

• A structured list of control, building automation and technical building manage-
ment functions which contribute to the energy performance of buildings.

• A method to define minimum requirements or any specification regarding the
control, building automation and technical building management functions,
contributing to energy efficiency of a building, to be implemented in building
of different complexities.

• A factor-based method to get a first estimation of the effect of these functions on
typical buildings types and use profiles.

• Detailed methods to assess the effect of these functions on a given building.

ISO/DIS 52127-1 “Building management system” is relative to operational
activities, overall alarming, fault detection and diagnostics, reporting, monitoring,
energy management functions, functional interlocks, and optimizations to set and
maintain energy performance of buildings (equivalent to standard EN 16947).

In Fig. 18, Hogeling [20] presents the set of standards supporting the implemen-
tation of the Energy Performance of Building Directive in Europe and specifically

Fig. 18 The set of standards supporting the implementation of the Energy Performance of
Building Directive in Europe
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Fig. 19 Four energy-efficient
BACS and TBM according to
EN-15232

addressing the relation between ISO52000 and other standards. One can notice that
standard EN-15232 on Building Automation & Control Systems is contributing
transversally to most of energy domains. This standard is detailed in the next section.

3.3.2 Impact of Building Automation

EN 15232-1: 2017 is on Impact of Building Automation, Controls and Building
Management. It lists the regulation functions, with a residential/nonresidential
distinction, and realizes a distribution in efficiency classes (A, B, C, and D) (see
Fig. 19). It also defines methods (detailed or simplified estimation) for calculating
the impact of BACS and Technical Building Management (TBM) functions on
energy performance.

3.3.3 Control of Energy Systems

Among the systems that have an impact on consumption, HVAC is certainly the
most important. The current control systems must make it possible to modulate
ventilation, heating, and cooling as required. Conventionally based on a calendar,
the control of HVAC systems is increasingly becoming a function of sensors
which allow real needs to be achieved. This has, for example, been the case with
thermostats for heating systems, with temperature set point avoiding to control
directly the power, which must adapt automatically by a regulation loop including a
temperature sensor which activates or modulates the power.

Similarly, we are now looking to be as close as possible to the needs of the
occupants, with radiant heating with presence detector which is activated only in
occupied rooms. It is the same idea with the lighting, first we modulate according to
the needs (close to the bay windows or rather in the dark corners), then we activate
only if there is occupation, more or less fine (at room level, or on each lamp).

Occupancy detection capacity is therefore increasingly important for integrating
energy systems into a control loop. This function can be performed by various
devices such as infrared sensors (PIR motion sensor) or even measurements of the
CO2 concentration in the air. Even more sophisticated systems of Indoor Positioning



70 B. Delinchant and J. Ferrari

Systems (IPS) appear based on radar technologies or indoor geolocation using
radiofrequency technologies (bluetooth).

Electric motors are used at all levels in the energy systems of buildings, whether
they are compressors for cooling units, fans, circulators, or pumping. According to
GIMELEC [25], the average load rate for engines under 500 kW is around 55–60%.
At 80% of the load, the energy consumption is 95% of the nominal on/off operation,
50% with continuous variation systems. Thus, it is possible to optimize the operating
point on ventilation systems (resp. Pumping) up to 50% of energy savings generated
(resp. 30%), and a payback time of less than 2 years (resp. 3 years).

However, these conventional methods of regulation are not optimal because of
the systems’ dynamics, in particular those related to heating due to thermal inertia.
Indeed, this can range from a few minutes for radiant systems to several hours for a
heated floor for example. It is therefore necessary to anticipate to better control.

3.3.4 Adaptive Behavior, Predictive Automation, Control,
and Maintenance

The regulatory functions presented above offer significant efficiency gains and
can be implemented without the need to deploy complex and smart technologies.
Intelligence in buildings are features such as anomaly detection, predictive mod-
eling, optimization, and perhaps one of the most important premises of artificial
intelligence, learning on their own. With the increasing amounts of diverse and
dynamically changing data, extracting relevant and actionable information through
legacy BEMS is difficult. This leads to a flood of data and decreased situational
awareness, which may result in suboptimal building behavior.

Furthermore, the control strategies employed are often static and non-predictive;
hence, they fail to adapt to changing environments and deteriorating building states.
According to Manic [23], BEMS needs to be adaptive in order to cope with constant
changes inside and outside the building such as occupancy patterns, aging of
materials and equipment, floor plan changes, etc. As described in Fig. 20, BEMS
functionalities are going further than simple regulation, they may use adaptability,
predictive modeling, multisensor fusion, dynamic optimization, state-awareness,
providing actionable information, etc.

Thus, techniques based on Model Predictive Control (MPC) (Artiges, [26]) are
developing more and more. Commercial connected thermostat solutions (Netatmo,
Qivivo, Nest, etc.) anticipate, for example, the heating restart in order to reach the
set point taking into account the building’s thermal inertia. The models being, for
these thermostats, obtained by machine learning methods on the basis of the history
of the data collected.

Finally, it should be noted that the challenges linked to the introduction of
renewable energies go far beyond the regulation and control functions which we
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Fig. 20 Smart BEMS architecture. (Source: Manic [23])

have just discussed. Measures to reduce consumption can also be combined with
intelligent management of costs depending on the energy sources available. In
particular, the photovoltaic production during the day to operate, for example, a
washing machine.

Energy systems such as HVAC are intended to be regularly maintained and
controlled. In a house with dual-flow ventilation, it is, for example, recommended
to change the filters every 6 months. Malfunction or degradation of HVAC system
components causes reduced comfort on the one hand, and approximately 15–30%
waste of energy on the other hand (Katipamula, 2005).

In the same way that a gas boiler is annually checked by a technical agent, it
becomes necessary to generalize these scheduled preventive maintenance operations
to all equipment. On the other hand, these visits can be costly; moreover, it is
possible that a defect appears between two visits, or even that a defect is not detected
by a visual examination.

Based on real-time monitoring of energy systems, it is possible to perform Fault
Detection and Diagnostics (FDD) but also predictive maintenance. It is indeed
possible by artificial intelligence algorithms to detect drifts and intervene before it is
too late. Numerous research studies still make it possible to develop these techniques
to make them truly operational, in particular to adapt easily to changes in piloting
mode and to different configurations of the building (Verbert, [27]).
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3.4 Technical Building Management

3.4.1 Architecture

Industrial control system theory traditionally describes Building Automation &
Control System (BCAS) using three levels (see Fig. 21):

• Management System level: a subsystem for user interactive interface
• Automation level: a data processing software for processing sensory data and

performing energy-saving strategies
• Field level:

– A sensory infrastructure for monitoring energy consumption and environmen-
tal features

– An actuation infrastructure for modifying the environmental state

Each level are able to communicate using many communication protocols and are
physically linked with specific equipment such as device controllers and gateway.

H. Michael Newman, who was the father of BACNet4 (Building Automation and
Control Networks), defines these three levels:

The management level is where the majority of operator interface functions
reside. Additional functions include communication with controllers, monitoring,

Managment System Level:
Supervision, Database

Automation Level:
Programmable Logic

Controlers (PLC)

Field Level: sensors,
actuators and controllers

Fig. 21 Architecture of a building automation and control system

4https://www.big-eu.org/en/news/news-press-releases/news/mike-newman-the-father-of-bacnet-
has-passed-away

https://www.big-eu.org/en/news/news-press-releases/news/mike-newman-the-father-of-bacnet-has-passed-away
https://www.big-eu.org/en/news/news-press-releases/news/mike-newman-the-father-of-bacnet-has-passed-away
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alarm, trend logging and statistical analysis, centralized energy management func-
tions, and communication with, or coordination of, dedicated non-HVAC systems
such as fire alarm and security control. As a practical matter, most of the devices at
this level are personal computer workstations.

The automation level is where the majority of real-time control functions are
carried out. The devices tend to be general-purpose, programmable controllers.

The field-level contains the devices that connect to sensors and actuators.
We would tend to think of field-level devices as unitary or application-specific
controllers.

Through years, supervisory control and data acquisition (SCADA) has been more
and more connected5:

• First generation: “monolithic/standalone”
• Second generation: “distributed” across multiple stations, which were connected

through a LAN
• Third generation: “networked” with standardized communication protocols
• Fourth generation: “web-based” through Internet and without dedicated software.

As illustrated in Fig. 22, in such a fourth generation, energy systems such as
chiller, Air Handling Unit (AHU), Uninterruptible Power Supply (UPS), and Diesel
Generators (DG sets) are still connected to BMS but also to Cloud platform in order
to access data and alert from everywhere. It allows also nonfunctional services such
as data safety and security that do not have to be addressed by the building itself.

Fig. 22 Web-based SCADA. (Source: Calvert Controls [28])

5https://en.wikipedia.org/wiki/SCADA

https://en.wikipedia.org/wiki/SCADA
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Fig. 23 Third-party services on top of web based. (Source Totonchi [29])

Then, third parties can benefit from this architecture in order to provide services
in a more scalable manner as described in Fig. 23.

3.4.2 Communication Technologies

Building Automation count a lot of communication technologies that can be
categorized depending on several criteria such as the openness, centralization, or
versatility [30]:

– Openness describes dependency of a system on a manufacturer. Open protocols
are BACnet, KNX, LonWorks, DALI, OpenTherm, EnOcean... Nowadays most
of protocols tends to be open. Proprietary protocols are developed by one or a
consortium but does not open specifications such as Universal Powerline Bus
(UPB).

– Centralization describes the degree of independency of each component of the
communication network. Centralized systems are based on PLC using protocols
such as Modbus, while decentralized or distributed systems allow peer-to-peer
(P2P) communication such as KNX.

– Versatility represents the ability of a system to cover one or more control tasks in
building and home automation. KNX or LON are able to control HVAC, lights,
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shutters/blinds . . . While DALI bus is specialized on light control or OpenTherm
focused on heating control.

Home networks can use either wired or wireless technologies to connect
endpoints. But classical building automation is using mainly wired technologies:

– Twisted pair of copper cables is mostly common wired physical support. This
medium provides for instance the physical connectivity between the Ethernet
interfaces present on a large number of building IP-aware devices, but also RS845
widely used for field buses.

– Fiber optics offer much higher bandwidth and/or lower latency characteristics
associated with end-to-end optical signaling.

– Power lines are also used to communicate over existing power wiring, using
devices also known as HomePlug.

Protocols can address field, automation, or management levels as shown in
Fig. 24 for some protocols. There can be high-level versatile protocols such as
BACNet (Building Automation and Control Networks) or WEB-Service oBIX
(open Building Information Exchange) which are designed for applications such as
HVAC, lighting control, access control, and fire detection and provides mechanisms
for building automation devices to exchange information, regardless of the particular
building service they perform.

There can be field-level protocols as shown in Fig. 25 that can also be versatile
protocols such as Modbus or specific ones like M-Bus for Automatic meter reading
or DALI for light control.

Fig. 24 Communication protocols can cover different level of BMS. (Source Siemens Building
Technologies [31])
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Fig. 25 Automatic meter reading using Filed bus (M-Bus & Modbus) connected to the automa-
tion level using Ethernet physical support and TCP/IP protocols. (Source: http://energycare.dk/
portfolio-item/meter-gateway/)

Fig. 26 From building automation to home automation. (Source: Bonino [32])

Building Automation protocols and technologies are not covering exactly the
same requirement than Home Automation, that is why other protocols are more
dedicated to Home Automation, and some of them are coming from Internet
technologies or Computer technologies. Wireless technology are especially more
developed for Home Automation than in Building Automation as described in
Fig. 26.

http://energycare.dk/portfolio-item/meter-gateway/
http://energycare.dk/portfolio-item/meter-gateway/
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4 Home Automation Technologies

4.1 Home Automation Market

4.1.1 Home-Specific Constraints

The principles of energy efficiency in buildings are based on technological solutions
that we have just reviewed, but these are expensive and complex to deploy and
therefore mainly reserved for the tertiary sector, hotels or high residential standing.
With lower resources, the installation costs of smart home technologies must be
drastically reduced, hence the emergence of free/open-source solutions, Do It
Yourself (DIY) solutions. The market is less structured and the standards presented
before are not really used. Smart home solutions are built as occupants need them,
exacerbating the need for interoperability and adaptable wireless technologies. The
generalization to all housing and the advent of the smart-home can only be done
through a technological revolution, a paradigm shift such as that of the wireless
Internet of things (IoT), Cloud services, and open-source/open-hardware as it can
be represented in the following figure (Fig. 27).

Fig. 27 Example of home automation architecture. (Source: Hackaday, https://hackaday.io/
project/166414-home-automation-architecture-based-on-lora)

https://hackaday.io/project/166414-home-automation-architecture-based-on-lora
https://hackaday.io/project/166414-home-automation-architecture-based-on-lora
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4.1.2 Smart Home Key Technologies and Market

The Hype cycle for emerging technologies (Fig. 28) shows that “Connected Home”
and “IoT Platform” have already reached the Peak of Inflated Expectations and
are now going to the stable position (Plateau) between 2023 and 2028. “Virtual
assistants” also reached the peak but is going faster to mature products (before
2023). This technology can advise end-user, and interact with natural language
processing (NLP) such as chat-based solutions that uses text or audio commands, to
monitor and control the home appliances [34]. But the next revolution with artificial
intelligence will be in the capacity of virtual assistant to really advice end-users and
not only to control home appliance.

According to the Gartner report [33], the increasing number of IoT and related
services is leading to a growth of 700 million smart homes in 2020. According
to Research and Markets [35], the smart home technology market is expected to
reach an estimated $112.8 billion by 2024 with a consumer need for simplicity
and personalized experience, and the growing adoption of cloud-based technologies.
According to another source [36], using Statista6 data, the size of the world smart
home market is about 33.4 billion US dollars in 2017 and is expected to rapidly
increase to 78.2 billion US dollars by 2022.

Fig. 28 Hype cycle for emerging technologies—Gartner [33] (https://blogs.gartner.com/
smarterwithgartner/files/2018/08/PR_490866_5_Trends_in_the_Emerging_Tech_Hype_Cycle_
2018_Hype_Cycle.png)

6https://www.statista.com/

https://blogs.gartner.com/smarterwithgartner/files/2018/08/PR_490866_5_Trends_in_the_Emerging_Tech_Hype_Cycle_2018_Hype_Cycle.png
https://blogs.gartner.com/smarterwithgartner/files/2018/08/PR_490866_5_Trends_in_the_Emerging_Tech_Hype_Cycle_2018_Hype_Cycle.png
https://blogs.gartner.com/smarterwithgartner/files/2018/08/PR_490866_5_Trends_in_the_Emerging_Tech_Hype_Cycle_2018_Hype_Cycle.png
https://www.statista.com/
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Emerging trends, which have a direct impact on the dynamics of the smart home
industry, include development of voice assistant technology for high-end automated
households or emergence of air quality sensor devices that measure volatile organic
compounds (VOCs).

According to Qolomany [37], 33% of IoT smart building market will be supplied
by artificial intelligent technologies by 2023, and automation systems of smart
building will grow up to 48.3% CAGR (Compound Annual Growth Rate) from
2018 to 2023. By 2025, the growth of connected home living will reach 3.7 billion
smartphones, 700 million tablets, 520 million wearable health-related devices, and
410 million smart appliances in the connected person world.

According to Lobaccaro [38], IoTs are becoming increasingly embedded in the
society by allowing faster and more efficient interaction between users and both
public and private environments. IoT development has been recognized as having
significant potential to create an interactive energy management system for homes.

4.2 Internet of Things (IoT) Technology

4.2.1 IoT Definition and Characteristics

The Smart Sustainable Cities group (SSC) of the International Telecommunication
Union (ITU) defines Internet of things in ITU-T SSCIoT 2 [39] as a global infras-
tructure for the information society, enabling advanced services by interconnecting
(physical and virtual) things based on existing and evolving interoperable informa-
tion and communication technologies. Through the exploitation of identification,
data capture, processing, and communication capabilities, the IoT makes full use
of things to offer services to all kinds of applications, while ensuring that security
and privacy requirements are fulfilled. From a broader perspective, the IoT can be
perceived as a vision with technological and societal implications.

According to the Cluster of European Research Projects on the Internet of Things
[CERP-IoT] [40], an autonomous home network has to be intelligent and capable
of sensing and adapting to environment changes while performing self-capabilities
(e.g., configuration, healing, optimization, protection). Autonomy will make home
network architecture highly dynamic and distributed enabling the interworking of
several devices and systems. Interworking of home networking systems and devices
with other systems and devices external to the intranet will be achieved via Personal
Virtual Private Networks (VPN). Any device or thing that has human input controls
can be used to securely interface with the building’s services to monitor status and
change its settings. Using home automation devices with wireless communication
technologies, all of building’s “things” can have two-way communication with
each other. For example, the thermostat can be controlled from the console of the
refrigerator, or the detection of a mobile phone entering a room allows to configure
automatically the light atmosphere. The washing machine can stop if the oven is
switched on in order to respect the electric subscription limit, etc.
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Fig. 29 Technical overview of the IoT and interactions between physical devices [39]

The IoT is expected to greatly integrate leading technologies, such as technolo-
gies related to advanced machine-to-machine communication, autonomic network-
ing, data mining and decision-making, security and privacy protection and cloud
computing, with technologies for advanced sensing and actuation.

As represented in Fig. 29, a physical thing may have a mapping with one
or more virtual things in the information world. Virtual thing can also exist
without any associated physical thing. A device has the mandatory capabilities of
communication and optional capabilities of sensing, actuation, data capture, data
storage, and data processing. Devices communicate with other devices through the
communication network, with (case a) or without (case b) a gateway, or directly
(case c).

The fundamental characteristics of the IoT are defined by [39] as follows:

– Interconnectivity: With regard to the IoT, anything can be interconnected with
the global information and communication infrastructure.

– Things-related services: Such as privacy protection and semantic consistency
between physical things and their associated virtual things.

– Heterogeneity: The devices in the IoT can be heterogeneous, based on different
hardware platforms and networks.

– Dynamic changes: The number of devices, their own state and their context
change dynamically (e.g., sleeping/waking up, connected/disconnected, location,
speed, etc.)

– Enormous scale: number of connected devices, communication triggered, data
generated and processed can be huge.
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Associated to the previous fundamental characteristics, IoT may provide high-
level requirements such as context-awareness, interoperability, security, or
privacy that can be detailed here.

4.2.2 Context-Aware IoT

Ubiquitous or context-aware computing has proven to be successful in understand-
ing sensor data. Collection, modeling, reasoning, and distribution of context in
relation to sensor data plays critical role in adding value to raw data and to help
understanding it.

According to Perera [41], a system is context-aware if it uses context to provide
relevant information and/or services to the user, where relevancy depends on the
user’s task. Where context is any information that can be used to characterize the
situation of an entity. Where an entity is a person, place, or object that is considered
relevant to the interaction between a user and an application, including the user and
applications themselves.

Figure 30 presents contextual information who (identity), where (location),
when (time), what (activity), in two different columns, depending on how they are
obtained. First column is about information retrieved directly from sensors (e.g.,
GPS sensor readings as location information), while second column corresponds
to virtual sensors, where information are computed using primary context, using
sensor data fusion operations or data retrieval operations such as web service calls.

Fig. 30 Context information
collected by real sensor or
calculated by virtual sensor.
(Adapted from Perera [41])
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4.2.3 IoT Interoperability

Interoperability needs to be ensured among heterogeneous and distributed systems
for provision and consumption of a variety of information and services. Interop-
erability can be first achieved using standards defined by organizations such as IP
Smart Objects (IPSO) alliance, European Telecommunications Standard Institute
(ETSI), AllSeen alliance with AllJoyn open-source software framework, Open
Interconnect Consortium (OIC) with IoTvity open-source software framework or
IoT-A forum with OpenIoT open-source platform for connecting physical and
virtual sensors to the Cloud. Interoperability has also been attempted to be solved by
using Semantic Ontologies which provide deeper understanding of the raw sensor
data enabling machines to take decisions based on simple rules [42]. Semantics
provide a different dimension to the data interoperability at a higher level than what
just raw data gives; Sensor Semantic Network (SSN) provides a comprehensive set
of ontologies for interpreting the sensor data. SenML (Sensor Markup Language)
has proposed to provide a common media-type for sensor data exchange.

Tayur and Suchithra [42] defines the application layer interoperability require-
ments:

– Protocol: defines preferred language of communication such as HTTP, CoAP, or
MQTT

– Message: specifies the encoding and structure of the data based on JSON, XML,
or Binary

– Semantics: allow interpretation of the meaning and context via established
ontologies which work on the raw sensor data converted into web data inter-
change format RDF (Resource Description Framework)

– Behaviors: indicate the list of operations either configuration or management that
are available and it must be context specific.

– Properties: define the list of attributes and properties of the device that can be
used for configuration and operations (example can be vendor name, light on/off
status).

OFFIS—Institute for Information Technology represent in Fig. 31 the distance
to bridge between two systems interface that need to communicate. These systems
can be natively interoperable, of some adaptation have to be done more or less
easily depending on this distance if they are sharing common semantic model (CIM:
Common Information Model), common syntax, or nothing [43].

4.2.4 IoT Security

In the IoT, everything is connected which results in significant security threats,
such as threats towards confidentiality, authenticity, and integrity of both data
and services. A critical example of security requirements is the need to integrate
different security policies and techniques related to the variety of devices and user
networks in the IoT.
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Fig. 31 Semantic integration distance for interoperability. (Source: OFFIS)

The 2017 attack by the Triton malware, which targeted critical systems of petro-
chemical plant in Saudi Arabia through the Triconex safety controller (Schneider
Electric), showed the potential destruction that these types of threats can bring. With
the convergence of operations technology (OT) and internet technology (IT), as well
as the robust adoption of the Industrial Internet of Things (IIoT) by ICS operators,
risks have grown. IoT that provides external access of home network are a gateway
for criminals who can attack personal data such as bank access codes, or demand
ransom for intimate data.

Based on the literature survey [44], a few threats to the SCADA systems in IoT-
cloud environments are defined below:

– Advanced Persistent Threats: An unauthorized person attempts to gain access to
the system using zero-day attacks (unknown attack) with the intention of stealing
data rather than causing damage to it.

– Lack of Data Integrity: Data integrity is lost when the original data are destroyed,
and this could happen through any means such as physical tampering or
interception.

– Man-in-the-Middle (MITM) Attacks (spoofing and sniffing attacks): In a spoof-
ing attack, a program or person masquerades as another program or person to
gain illegitimate access to the system or the network. In a sniffing attack, the
intruder monitors all the messages being passed and all the activities performed
by the system.

– Replay Attacks: A valid message containing some valid data is repeated again
and again; in some cases, the message may repeat itself. These attacks affect the
performance of SCADA systems and can be serious threats when a replay attack
delays messages sent to physical devices.
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– Denial of Service (DoS) Attacks: It makes a service unavailable for the intended
user, for instance by overloading computer resources.

In Alrawi et al. [45], author has developed a methodology to analyze security
properties for home-based IoT devices defining scores7 depending on the device,
mobile application, cloud endpoint, and network.

– Device: Vulnerabilities in IoT systems manifest themselves in hardware, soft-
ware, and side-channels and they are exacerbated when combined. Mitigating
vulnerabilities relies on vendors, adopting mature technologies.

– Mobile Application: Trusted by IoT devices, mobile applications are attack
points and still suffer from over-privileged permissions, programming errors, and
hard-coded sensitive data. Vendors should make conservative assumptions about
the trust relationship and limit the interactions with core services.

– Cloud endpoint: Are suffering from misconfiguration and vulnerable services
that can be properly secured using industry standards. Third-party cloud
providers play an important role by offering securely managed IoT platforms,
which vendors are adapting.

– Communication: IoT devices may still rely on insecure protocols that do not offer
confidentiality or integrity but mitigate them by using TLS/SSL protocols. Many
devices lack encryption on the LAN, which leave them susceptible to MITM
attacks.

For instance, to assess and analyze the old but still used Modbus communication
protocol’s vulnerability and risks, Byres [46] used an attack tree model, revealing
that the Modbus protocol is weak and lacks basic security requirements such as
integrity, confidentiality, and authentication. They recommended using firewalls,
Intrusion Detection Systems (IDSs), and encryption techniques for secure commu-
nications.

More recently, Fouladi and Ghanoun [47] performed MITM Attacks on a Z-Wave
door lock, causing a lot of turmoil in the security and home automation world. They
were able to intercept the unencrypted packets being sent between devices and the
controller, and easily retrieve the home and node IDs. They could easily dissect
packets for timestamps, home IDs, sources, and targets, as none of this information
is encrypted. Using this information, the team was able to spoof the controller,
sending raw packets to devices that appeared to come from the real controller.
This attack relies greatly on the lack of encryption in the first generation of Z-
Wave. Therefore, in the later generations, Z-Wave radio chips support encryption
to increase security.

Protocols are more and more secured, but some attacks are not related to
technology issues but user lack of awareness. For instance weak password or
manufacturer default password can be used to easily access home network.

7https://yourthings.info

https://yourthings.info
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4.2.5 IoT Privacy

Identification and access control technologies provide link between data and user’s
devices. Sensed data of things may contain private information concerning their
owners or users. Profiling methods based on linked records can reveal unexpected
details about users’ identity and private life. The IoT needs to support privacy
protection during data transmission, aggregation, storage, mining, and processing.

Privacy is more than security; for instance, it has been proved in Caputo [48] that
cloud traffic analysis allows to detect the presence of a person in a house equipped
with a Google Home device, even if the same person does not interact with the smart
device.

Moreover, vendor or third parties have grant access to your data; that is why the
EU General Data Protection Regulation (GDPR) provides an essential guidance to
achieve a fair balance between the interests of IoT providers and users. But many
challenges are still to be met, such as those detailed in Wachter [49] about:

• Profiling, inference, and discrimination
• Control and context-sensitive sharing of identity
• Consent and uncertainty
• Honesty, trust, and transparency

4.3 IoT Architecture

4.3.1 Four Layers Architecture

It is usual to represent communication system in the classical seven level OSI model.
Here IoT is simplified to four layers levels (Fig. 32):

Fig. 32 Four level layers of IoT reference model [39]
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• Application layer contains IoT application.
• Service support and application support layer contains generic support capabili-

ties such as data processing or data storage and specific ones.
• Network layer contains networking and transport capabilities, providing relevant

control functions of network connectivity, such as access and transport resource
control functions, mobility management or authentication, authorization and
accounting (AAA), and transport capability for data information, IoT-related
control and management information.

• The device layer contains device capabilities such as direct and indirect inter-
action with the communication network to gather and upload information with
or without gateway, Ad-hoc networking construction (to increased scalability
and quick deployment), Sleeping and waking-up . . . The device layer contains
also gateway capabilities such as multiple interfaces support (e.g., USB, ZigBee,
Bluetooth, or Wi-Fi), and protocol conversion at device level (e.g., ZigBee and
Bluetooth) or at both device and network layer (e.g., ZigBee and 4G)

In a similar way to traditional communication networks, IoT management
capabilities cover the traditional fault, configuration, accounting, performance,
and security (FCAPS) classes, i.e., fault management, configuration management,
accounting management, performance management, and security management.

Security capabilities are present at each layers. It can be authorization, authen-
tication, data confidentiality and integrity protection, privacy protection, security
audit and anti-virus, and integrity protection and validation, access control . . .

4.3.2 Cloud-Based Architecture

Smart Home solutions architecture (Fig. 33) is mostly based on a gateway with
an intelligent part to manage local automation and a cloud part to manage user
interaction and database.

Fig. 33 Classical architecture of Smart Home solutions
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Fig. 34 IoT business solution. (Source: Gartner [50])

Fig. 35 IoT deployment in a
cloud-based architecture.
(Source: Alrawi et al. [45])

Moreover, third parties’ access grant is part of the new architectural model of IoT
(Fig. 34).

Installation of such a device follows a classical scheme (Fig. 35), where low-
energy (LE) devices are connected (e.g., Bluetooth) to an IoT hub or directly to the
vendor mobile application in order to configure network connection, then able to
access cloud platform.

Let us consider Netatmo, a French company that offers a connected thermostat, a
weather station, and a face recognition security system. The data can be consulted by
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Fig. 36 Netatmo thermostat data viewed on the cloud application. (a) During 1 month, with
manual remote heating restart before the come back from holidays. (b) During 1 day with heating
restart by machine learning

smartphone application, and by website. Figure 36 illustrates the Thermostat’s web
interface with manual remote heating restart and automatic learning-based morning
restart:

(a) Manual remote heating restart: has been used here to reactivate heating
system before coming back to home at the end of holidays. The graph shows
a temperature decrease from 19 ◦C to 12.3 ◦C in one week, and a rise back to
19 ◦C during 2 days. It leads to no heating consumption during a week, and
double consumption during 1 day to retrieve the initial temperature.

(b) Learning-based morning heating restart: While user set point has been
defined to have 18 ◦C when occupants wake-up (7 am), the controller has
learnt the thermal behavior and anticipate the heating at 05:36 in order to reach
temperature at the desired time. It is the same for the evening, starting heating
from 3:30 am taking temperature rise into account.

We have just seen that Netatmo data is accessible from a remote server. The
data is automatically uploaded from the IoT device and is accessible as long as
the company maintains the service. But the data is also available through API
(Application Programing Interface8) so that anyone can develop applications using
these sensors. The owner of the IoT can then grant access to his data for a third-party
application and benefit from new services.

As discussed in IoT privacy part above, it is important to know about the
data access possibilities of connected systems that appear on the market. The first
precaution concerns the property of the data which must remain with the owner
rights, including the data remove. Then, the security of the data, if those data are
available on a server, they must be accessible by secured manner, and if accesses
are authorized, to know the treatments and objectives of these treatments.

In Table 2 below are summarized some manufacturers that can be currently met
on the home automation market in terms of monitoring and control.

8https://dev.netatmo.com/

https://dev.netatmo.com/


Standards and Technologies from Building Sector, IoT, and Open-Source Trends 89

Table 2 Some example of home-automation device manufacturers and prices

Providers Protocols Approximated prices

Xiaomi Home Zigbee
Wifi

Gateway: 20 AC. Device price is varying from
10 AC the temperature/humidity sensor up to
300 AC the robot vacuum cleaner

Fibaro Zwave Gateway: 40 AC. Device price between 50AC
and 100AC

IKEA Zigbee Gateway: 30 AC. Device price from 15 AC for
a socket plug, up to 150 AC for connected
blinds

Somfy 433mhz Very varied price
DeltaDore X3D Gateway: 100AC. Device 50AC
Smappee Wifi, bluetooth, Modbus,

MQTT
Gateway: 300AC. Device 50AC

4.3.3 Typical IoT for Home Energy Monitoring

The following figures illustrate typical monitoring for three specific flux, namely
electrical, gas, and water fluxes.

Figure 37 is relative to typical IoT for home electrical consumption monitoring.
They can be placed on the electrical distribution board or directly on appliances. It
can also use existing measurements such as the main electricity meter such as Linky
smart meter or pulse-based electrical counter (Table 3).

Figure 38 is focusing on electricity monitoring for PV system generation. A
storage can be added and energy flux can be monitored with different control
strategies such as self-consumption (Table 4).

Figure 39 is relative to typical IoT for gas-based heating and hot water consump-
tion monitoring (Table 5).

Figure 40 is relative to typical IoT for water consumption monitoring (Table 6).

4.4 Wireless Communication Energy Consumption

4.4.1 Wireless Characteristics

As described in Fig. 41, wireless protocols have to be chosen depending on data rate
and range required by application domain. For instance, home automation range is
from 10 to 100 m, then technologies such as Z-Wave or EnOcean are widely used,
associated with a mesh network which uses nearby devices to piggyback commu-
nication to devices in all buildings rooms. Depending on the range, the network is
called a Wireless Local Area Network (WLAN, e.g., Wifi) or a Wireless Personal
Area Network (WPAN, e.g., bluetooth). Multimedia communication requires high-
rate protocol such as wifi, but for home automation, low-rate (about 100 kb/s) is
still enough. The target is then to reach as close as possible the targeted application.
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Fig. 37 Typical IoT for home electrical consumption monitoring

Indeed, if one increases the range or data rate, the consumption is increasing too.
That is why we are focusing on Low-Rate Wireless Personal Area Network (LR-
WPAN). Other protocols are available for LR-WPAN such as 6LoWPAN, BLE
(Bluetooth low energy), Thread, UWB (Ultra WideBand), ZigBee, and ANT+.

IEEE 802.15.4 is a technical standard which defines the operation of LR-WPAN.
It specifies the physical layer and media access control for LR-WPAN, and is
maintained by the IEEE 802.15 working group, which defined the standard in
2003. It is the basis for the Zigbee, ISA100.11a, WirelessHART, MiWi, 6LoWPAN,
Thread, and SNAP specifications.
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Table 3 References and properties of electrical meters

Meter Reference Measurements communication

Main electricity meter GCE electronics TELEINFO – All data
provided by main
counter (Linky)
such as index,
power, high/low
period . . .

USB

Main electrical circuit
meter (distribution
board)

Schneider electric iEM2050 – Active and
reactive energy
– Active and
reactive power
– Power factor
– Current
– Voltage
– Frequency

Modbus

Sub circuit meter
(distribution board)

GCE electronics X400-CT – Current (hot
plug using tore)

Ethernet

sub circuit meter Eltako FWZ61-16A – Active energy
– Active power

Enocean

sub circuit meter &
switch

SonOff POW R2 – Active energy
– Active and
reactive power
– Power factor
– Current
– Voltage

Wifi

socket meter & switch Fibaro FGWPE-102-ZW5 – Active energy
and power
– Remote
switch

Zwave

Fig. 38 Autoconsumption system monitoring composed of PV production based on micro-
inverters and energy storage system
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Table 4 References and properties of photovoltaic production and storage system

Meter Reference Measurements Communication

Electrical production
and storage

Enphase
Envoy-S Metered

– Transmit PV
production for each
micro-inverter and
Battery storage

Wifi

PV panel + Inverter Enphase IQ7 – Monitoring of
production

Power-line
communication (PLC)

Battery Enphase AC
Battery

– Control
strategies:
• Self-consumption
• Dynamic tariff
adaptation
• Limitation of
energy injection

Power-line
communication (PLC)
and TCP/IP

Fig. 39 Typical IoT for gas-based heating and hot water consumption monitoring

Table 5 References and properties of gas-based heating and hot water meters

Meter Reference Measurements communication

Main gas meter Schneider electric
Wiser Link

– Pulse-based gas
consumption (m3)

Radio + Ethernet

Boiler proprietary
meter

Weishaupt
WCM-COM

– All data
provided by boiler

Ethernet

Heater regulator Danfoss
Living connect
Z LC13 POPP

– Heater
temperature

Radio (ZWave)

Ambiance sensor NODON
NOD_STP-2-1-05

– Temperature
– Humidity

Radio (EnOcean)
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Fig. 40 Typical IoT for water consumption monitoring

Table 6 References and properties of water meters

Name Provider Measurements Communication

Main water meter GCE electronics ecodevice – Pulse meter Ethernet
Domestic hot water meter Sensus SWM301 – Pulse meter Z-Wave
Shower meter Hydrao shower head – Consumption Bluetooth
Hot water switch Fibaro FGS-211 – Smart switch Z-Wave

Fig. 41 Range/data rate of the main wireless protocols

4.4.2 Will There Be Only One Standard?

Manufacturer are using different standards for wireless communication protocols.
A non-exhaustive list with some properties is given in Table 7.
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Table 7 Some communication protocols with their properties

Protocols Frequencies Range Type of protocol
Number of
nodes Advantages

X3D 434/868 MHz 200/300 m Proprietary
protocol

16 nodes for
each gateway

Dual-band
technology.
High resilience
to interference

Zigbee 868mhz/2.4
Ghz

100 m in mesh
network

OpenSource 65,000 nodes Anyone can
easily make
nodes

Zwave 868 MHz in
Europe

100 m in mesh
network

Proprietary
protocol

232 nodes for
each gateway

meshed
network

Enocean 868 MHz in
Europe

200 m with max
2 jumps

Open and
interoperable

unlimited Energy-
efficient
technology

Bluetooth
Low Energy

2.4 GHz 100 m Open unlimited low latency

Wifi 2.4Ghz/5 GHz 250 m Open 256 Technology
found in
almost all
buildings

In the past few years, there has been a battle for the short-range, low-power
protocol for smart home IoT applications between ZigBee and Thread. ZigBee
started in 2005 and has millions of devices on the market. Thread is from Google
Nest Labs and started in 2015. Thread/Weave was a Google/Nest play but now joins
forces with the other two: Amazon and Apple. The new standard will be managed
under Zigbee9.

ZigBee (3.0/pro) and Thread are both open standard builds on the same physical
and link layer protocol stacks (IEEE 802.15.4). Whereas their biggest competition
in this space, Z-Wave, is using a proprietary Z-Wave standard.

Zigbee operates primarily in the 2.4 GHz radio band; however, some devices
operate in the higher end of the MHz range (e.g., 868 MHz in EU, 915 MHz in the
US).

Z-Wave is another mesh network; however, it operates at a lower frequency band
of 918/860 MHz. This allows for a better device-to-device signal range at the cost
of reduced data rates.

In contrast to the above technologies, Thread is a much younger and less
established mesh networking standard. It is also built on IEEE 802.15.4 using
2.4 GHz radiofrequency. It is defined up until the Application Layer, which means
that other application layer protocols such as MQTT can be used [51].

9Hui Fu, The IoT Smarthome Battlefield: A Jointly Endorsed IoT Standard for the Home Area
Network (HAN), IoT for all, February 12, 2020. Ref: https://www.iotforall.com/connected-home-
over-ip/

https://www.iotforall.com/connected-home-over-ip/
https://www.iotforall.com/connected-home-over-ip/
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The question of one unique protocol is still open, but the history shows that it is
better to invest on open and interoperable standards instead of waiting for the Holy
Grail.

4.4.3 Energy Harvesting

The EnOcean solution has particularly benefited from the fact that it integrates
energy recovery solutions to power its sensors making them autonomous and
without intervention. This is, for example, the EnOcean PTM210 switch with
an ECO 200 harvester (Fig. 42) which by mechanical-magnetic conversion will
generate a pulse of electrical energy sufficient to supply the transmission and
reception of a radio signal frequency.

For the EnOcean heater thermostat, the Seebeck effect (inverse of the Peltier
effect) is used to transform a temperature gradient into electrical voltage. A very
low voltage conversion module (ECT 310) is then necessary to exploit this energy
to transmit the RF signal.

A more common energy recovery is that coming from light radiation by the use of
photovoltaic cells integrated into the sensor. These include the EnOcean temperature
and humidity measurements (Fig. 43a) or the Z-Wave anemometer (Fig. 43b).

In this area, the French company Enerbee10 has developed an innovative solution
for generating energy from all types and speeds of movement, for comfort and air
quality applications based on HVAC control. Energy peaks are converted to useable
energy delivering energy in the 100 μW to 10 mW range, which can be stored in a
supercapacitor and managed using ultra-low leakage power management (Fig. 44).

These battery-less power solutions still pose some difficulties. Regarding the
temperature sensor, it is necessary for the O2Line model (Fig. 43a) to have an
average brightness greater than 100Lux (i.e., > 300 Lux, 8 h per day). However,
certain areas of the buildings are particularly dark like some corridors. Thus, data

Fig. 42 EnOcean, Energy harvesting. (Source: EnOcean)

10www.enerbee.fr

http://www.enerbee.fr
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Fig. 43 Photovoltaic (PV) energy harvesting. (a) EnOcean temperature and humidity sensor
(NodOn and O2Line). (b) Z-Wave anemometer (POPP Z-Weather)

Fig. 44 Mechanical rotation energy recovery. (Source: Enerbee)

Fig. 45 Anemometer measurements (POPP Z-Weather) and reconstruction of missing data

gaps are appearing during the night. This is why it is actually recommended to use
versions including batteries, as is the case with the NodOn model (Fig. 43a).

Intelligent energy management can be implemented as in the case of the POPP
Z-Weather module (Fig. 43b), with a much reduced data emission at night (Fig. 45).
In addition, to limit the amount of data sent, the wind speed is coded on very few bits
with a poor resolution of 1 m/s. In reality, it would have been better to size the PV
cell and a storage allowing the transmission of the measurements more frequently
because the reconstruction of the missing data is of very poor quality (Fig. 45).
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5 Open-Source Home Automation

5.1 Open-Source Projects

5.1.1 Home Automation Software

We have seen in the previous section that commercial home automation proprietary
solutions are available (Table 2), based on IoT with wireless communication and
a cloud architecture. But free and Open-Source Software (OSS) home automation
platform are numerous today as it is possible to find many11 like: openHAB which
can integrate with over 1500 devices and which has one of the biggest community
with 33,000 members; Home Assistant, similar to openHAB, very flexible from
the developer side; Jeedom, well known mostly for French community; Domoticz,
with many step-by-step guidance on their web site.

These software have become more and more popular thanks to cheap nano-
computers such as the well-known Raspberry Pi where these solution can be
installed easily by end-users. The classical architecture presented in Fig. 33 is
becoming the following one (Fig. 46) with an internal structure based on a main
Core System using different plugins or add-on and a local database.

Compared to a fully cloud-based platform, these solutions are keeping data
locally with the possibility or not to expose them on the Internet. Some solutions are
easy to administer, others require more skills in network configuration and time on
community forums. The IoT can then be connected to this home automation server,

Fig. 46 Smart Home solution with local server implement of low-cost nano-computer

11https://ubidots.com/blog/open-source-home-automation/

https://ubidots.com/blog/open-source-home-automation/
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Table 8 Smart Home open-source project programming standards and technologies

Programming language Database Configuration

Openhab Java RRD4J Textual and graphic
Home Assistant Python SQLite Yaml files
Jeedom PHP Mariadb Web interface
Domoticz LUA SQLite Web interface

which must therefore communicate in all the protocols involved, and have physical
equipment supporting the communication. Conventionally, a module (expansion
card or dongle) is required per protocol, hence the need to limit the number of
protocols in a single installation to facilitate interoperability.

The software is then able to code/decode the communication frames transmitted
to/by the IoT. This layer can be provided with the device, available as OSS
(OpenZWave), or reimplemented in specific environments. This is the case, for
example, with openHAB and Jeedom where the EnOcean drivers have been written
from specifications. The main feature of these environments is to integrate the
different technologies in an agnostic way (Abras, [52]) in order to treat them in
the upper layers independently of the wireless communication layer.

They generally allow to interact directly with the system in read/write (sen-
sor/actuator), to archive the data in databases, and to visualize them. OSS generic
solutions are also available for time series database (e.g., InfluxDB) and for
visualization (e.g., Grafana).

Most of home automation project use similar architecture but with different
standards and technologies for programming language, database, and configuration
(Table 8).

Programming technologies are becoming major characteristics for OSS since
users are interested in understanding the code and may contribute to the software.
If a user wants a plug and play system without having to do much programming,
he will probably choose Jeedom or Domoticz, while another user wants to fully
customize its interface, he will probably choose openHAB or Home Assistant.

This can also bring third-party commercial services. For instance, the simplicity
of Jeedom is counterbalanced through some plugins which are not free (e.g.,
EnOcean protocol), while it is free in openHAB, but require more time and tips
to be implemented.

5.1.2 Low-Cost Hardware

As already illustrated with nano-computer and the success of Raspberry Pi for home
automation servers, recent advances in wireless technologies and embedded sys-
tems, based on Open-Hardware (Arduino), ANT wireless technology (nRF24L01+
module), low-cost wireless sensors and actuators network (WSAN) for building
energy services is available [53]. Moreover, unlike commercial products, this
WSAN is customizable and easy to be extended for adapting different research
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Fig. 47 Arduino Pro mini and nRF24L01+ module

Fig. 48 nRF52 chip and its communication antenna which can also be used for energy harvesting

situations. RF24Network is a network layer for Nordic nRF24L01+ radios running
on Arduino-compatible hardware (Fig. 47).

On the other hand, connected things are not necessarily intended to fit into
such a wireless network, but can simply be connected to the Internet through the
mobile phone using bluetooth then 4G, or through the home automation box using
Wifi then ADSL or fiber. Solutions integrating this type of communication become
very affordable with the rise of the IoT and announce very low consumption. For
example, Nordic Semiconductor’s NRF52 (Fig. 48) is based on an ARM Cortex-
M4 processor incorporating a 2.4 GHz transmitter for Bluetooth Low Energy (BLE)
communication, as well as the Thread protocol. For its part, the Chinese company
Espressif offers the ESP32 (about 5 AC), a more powerful solution (double heart
clocked at 240 MHz backed by 4 MB flash memory) integrating in addition to BLE,
WiFi and a cryptographic chip supporting the latest data security standards.

Both software bricks and hardware components are available on the shelf in order
to create innovative open-source project, with active community, in order to promote
energy efficiency, sobriety and make our home smarter and ready for the energy
transition.

5.1.3 Definition and History of Open-Source Projects

First of all, it is important to understand the difference between OSS and free
software. OSS can be the base of commercial software (e.g., sold with hardware
and/or services), and free software can be proprietary software. The key difference
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between OSS and proprietary software is that the OSS publishes the source code
whereas the proprietary software retains the source code.

Motivations to create OSS are various among a desire for improved transparency,
or new business models based on service rather than in software, but it is probably
mainly for involving many people within a dedicated home energy management
community. In the current context of struggle against climate change, it is a great
challenge to develop new collaborative and open organizations, involving citizen
through energy communities. A good home automation needs an equally strong
community that is willing to back it up and improve upon its initial state.

The general idea of Open Source (OS) dates back to the 1970s through projects
driven by electronic enthusiasts such as the Homebrew Computer Club12, which
aimed to exchange ideas and components in order to create computers. In the
1980s, the movement weakened as most activists joined Silicon Valley businesses.
Although Open-Source Software (OSS) was well established, it was not until the
early 1990s that Open-Source Hardware (OSH) regained a second youth thanks to
the advent of FPGA (Field-Programmable Gate Array).

Since the concept of OS, it has widened and has touched more and more areas.
In recent years and with the advent of the Arduino project [54], we have seen an
explosion of Do It Yourself (DIY) projects where the spirit of open source is a real
driver. This OSS and OSH card project opened access to the “smart” part of the
projects because it was designed like a real electronic Swiss Army knife and can be
made by anyone with a minimum of hardware and programming knowledge.

It is important to distinguish hardware from software because OSH only covers
the creation of material products13. However, if software is necessary to operate
OSH, it may be required by the various existing licenses that the interfaces be
sufficiently detailed to allow writing OSS to ensure its essential functions.

In recent years, a debate has been animating the community through to find out
the difference between the term free software and OSS. Fortunately, the nuance is
clearer with regard to the hardware because an OSH is supplied with plans and
diagrams allowing everyone to be able to reproduce it, while an open hardware is
supplied with complete specifications allowing a user to interact with it without
necessarily knowing what is going on inside. Most of the time, OSHW depends on
open hardware.

As an example, 3D printers use stepper motors which one can have all the
specifications to operate them without needing the information necessary for their
production.

12https://www.computerhistory.org/revolution/personal-computers/17/312
13https://www.oshwa.org/definition/

https://www.computerhistory.org/revolution/personal-computers/17/312
https://www.oshwa.org/definition/
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5.1.4 Efficient Open-Source Projects

The community structure that is generally found in Open-Source project is called a
contributor funnel14. It is like the four basic sales funnel stages (Awareness, Interest,
Decision, Action) but applied on members roles (Users, Contributors, Maintainers)
as described in Fig. 49. It means that the project has to bring awareness and interest
to users, which can decide to become a contributor and make actions until becoming
a maintainer, with higher rights on the project.

In order to bring user from the top of the funnel to the way down, it is important
to ensure that users have easy victories as a contributor to encourage them to do
more. Efforts are also made in terms of documentation because the majority of open-
source contributors are “occasional contributors,” because they do not necessarily
have time to get to know the whole project.

In 2017, GitHub conducted a survey on open source15 and demonstrated that
incomplete or confused documentation is an obstacle for most open-source users.
This is why the projects that work have good documentation, invites people to
interact with the project and to contribute to it. Gathering points are also created
through the establishment of forums and are also an important part of this kind of

Fig. 49 Open-source community, contributor funnel. (Source: McQuaid [55])

14https://mikemcquaid.com/2018/08/14/the-open-source-contributor-funnel-why-people-dont-
contribute-to-your-open-source-project/
15https://opensourcesurvey.org/2017/

https://mikemcquaid.com/2018/08/14/the-open-source-contributor-funnel-why-people-dont-contribute-to-your-open-source-project/
https://mikemcquaid.com/2018/08/14/the-open-source-contributor-funnel-why-people-dont-contribute-to-your-open-source-project/
https://opensourcesurvey.org/2017/
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Fig. 50 Ingredients for an
effective open-source project

community because they allow to open debates on the project and to submit ideas
on the future of it (Fig. 50).

It is through these three pillars (community, good documentation, and forum)
that the virtuous circle of open-source projects exists. In recent years, this scheme
has encouraged more and more manufacturers to open up the sources of their
product and to offer well-documented APIs (Application Programming Interfaces).
Companies find the advantages of having feedback from their users, of being more
reactive to competition, and of increasing their brand image. At the user level, this
also translates into increased confidence in the purchased products and a feeling of
listening to their needs.

5.1.5 How to Protect This Model?

Most of the time when a creative work is done (code, plans, ...) the law indicates that
only the author has an exclusive copyright by default. This implies that no one else
can use, copy, distribute, or modify this work without risking litigation and legal
consequences. Regarding open source, the author expects just the opposite because
he wants others to use, modify, and share his work. It is because of this legal flaw
that the author of an open-source project needs a license that explicitly states these
permissions.

There are several types of licenses more or less open rights to the use, modifi-
cation, and distribution of the work that has been made by a contributor. There are
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Table 9 Creative commons licensing

(BY)
Attribution

(ND) No
Derivatives

(NC)
Non-Commercial

(SA)
Share Alike

CC0

CC-BY X

CC-BY-ND X X

CC-BY-NC-ND X X X

CC-BY-NC X X

CC-BY-NC-SA X X X

CC-BY-SA X X

different criteria in order to choose the appropriate open-source license16; it will
depend on the strategy, commercial and/or community aim of the project.

In the software domain, there are two main licenses:

• The MIT License which is the simplest and most permissive because it allows
people to do almost anything they want with your project, like making and
distributing closed source versions.

• The GNU GPLv3 license which will protect and ensure that improvements and
modifications made by someone are always distributed open.

In the non-software domain, there are also creative commons licenses17 which,
depending on the options chosen, will more or less authorize certain rights of use,
modification, or distribution. It is thanks to these licenses that Open-Source projects
have a legal framework and guarantee freedom to share the ideas emerging in them.
The six main ones are listed in Table 9 based on the following criteria:

• Attribution (BY): Licensees may copy, distribute, display, and perform the work
and make derivative works and remixes based on it only if they give the author
or licensor the credits (attribution) in the manner specified by these.

• Share-alike (SA): Licensees may distribute derivative works only under a license
identical (“not more restrictive”) to the license that governs the original work
(copyleft).

16https://choosealicense.com/
17https://creativecommons.org/

https://choosealicense.com/
https://creativecommons.org/
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• Non-commercial (NC): Licensees may copy, distribute, display, and perform
the work and make derivative works and remixes based on it only for non-
commercial purposes.

• No Derivative Works (ND): Licensees may copy, distribute, display, and perform
only verbatim copies of the work, not derivative works and remixes based on it.

5.2 Review of Some Smart Home Projects

In this last part, we would like to detail some existing open-source projects relative
to smart home.

5.2.1 Smart Citizen Kit

The main objective of the Smart Citizen project18 is to offer citizens easy-to-
access measurement tools so that they can get involved in local environmental
pollutions. This project gives free access to an Open-Source kit capable of capturing
and analyzing various environmental data in real time. This project offers the
possibility of purchasing the components and/or of assembling them itself as well
as of making modifications in the code provided. Measures are about weather
conditions (Temperature, Humidity, Air pressure), Light pollution, Air Quality
(Indoor/Outdoor), Noise Pollution.

It is a project resulting from the collaboration between the Institute of Advanced
Architecture of Catalonia and the “Fab Labs” of Barcelona. Currently, there are 230
active stations around the world that can be localized in a map19 (Fig. 51).

Fig. 51 Smart Citizen kit and Internet world map for online monitoring

18https://www.seeedstudio.com/smartcitizen
19https://smartcitizen.me/kits/1352

https://www.seeedstudio.com/smartcitizen
https://smartcitizen.me/kits/1352
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Fig. 52 Open Energy Monitor device with four current measurement, and monitoring

5.2.2 Open Energy Monitor

This project20 aims to develop tools to help people who want to understand energy
systems and their use. It is aimed at all types of profiles, from the novice who can
buy the material already made to the expert who can adapt the source codes as well
as the hardware in order to match his needs.

It is more a project aimed at monitoring and understanding energy in the building
than a system dedicated to home automation.

The measurement systems currently available are:

– Electricity, gas, and water consumptions monitoring
– PV production
– Electric vehicle charging monitoring
– Monitoring for heat pump
– Monitoring of climatic conditions

This project is supported by fifteen participants from all backgrounds and draws
on feedback from its user community (Fig. 52).

5.2.3 A4H Smart Home

The smart home of Amiqual4Home21 is a space of about 90 m2 simulating a home.
It serves as a tool for usage experiments actors who work in the field of research
and innovation on smart housing. The 87 m2 was renovated and equipped with
home automation systems, multimedia, water and electricity meters, and means
for observing human activity. It is also equipped with all the actuators capable of
controlling all the devices present such as the kettle, the lights, or the roller shutters.
All measurements and equipment are linked to a central home automation system
which allows an operator to act as the wizard of OZ during the experiments.

20https://openenergymonitor.org/
21https://amiqual4home.inria.fr/tools/smart-home/

https://openenergymonitor.org/
https://amiqual4home.inria.fr/tools/smart-home/
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Fig. 53 Three main power consumption profiles of home electric appliances

This smart home was for instance used to publish open dataset22 (CC-BY)
containing real-life sensor data of a person living in a smart home. It is a high-
quality dataset with a dense but nonintrusive sensor infrastructure [56]. A deep
sensing approach was used with over 200 variables measured. These include all
doors (rooms, cabinets, fridge) state, light states, temperature, CO2 levels, noise
levels, weather, appliances (oven, stove, TV, coffee maker . . . ) state. Nine daily
living activities are self-annotated (taking shower, using toilet, sleeping, cooking,
going outside, washing dishes, eating, and working).

Figure 53 plots three main home appliances consumption, namely the dish-
washer, the washing machine, and the oven, extracted for this open data base.

5.2.4 G2Elab Smart Home and Open-Source Tutorials

G2Elab Smart Home project provides data from a 120 m2 household where a five
people family is living in. This project grant an access to about 340 measuring
points for scientists, accessible in real time through a Grafana portal with Influxdb
database. There are measures of:

– Electricity, gas, and water consumption of each device
– Temperature, humidity, brightness of each common room
– Opening position of each door and window
– Motion sensors
– The state of each light
– Air analysis of each room
– Outdoor weather conditions

Expe-Smarthouse is developed based on Open-Source Hardware and Software.
Many tutorials have been made based on this house and from students projects from
G2Elab (Grenoble Electrical Engineering lab), and posted in miniprojets.net website

22https://data.mendeley.com/datasets/fcj2hmz5kb

http://expe-smarthouse.duckdns.org
http://miniprojets.net
https://data.mendeley.com/datasets/fcj2hmz5kb
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Fig. 54 G2Elab Smarthouse devices and multi-protocol gateway

(in French). It is then accessible for citizens who want to set up their own smart
home with commercial or homemade hardware and software (Fig. 54).

6 Conclusions

Is open source the solution of the future for the democratization of the smart
home? We wanted to finish with this last part on open source to show that
movements complementary to commercial solutions could find their place in this
highly technological field. The massive arrival on the market of low-cost IoT,
connecting directly to the Internet, or through home automation gateways greatly
modifies the previous monolithic paradigm of a single solution provider.

Interoperability and the openness of standards has for several years shown its
interest, and now open-source continues this advance to offer ever more accessible
services to citizens. Standards from the world of building automation, necessary to
structure and optimize an industrial organization, have given way to agile solutions
exploiting plug-and-play and cloud infrastructure. These solutions do not require
the intervention of experts in situ, and thus optimize the benefits.

IT players have entered this market historically occupied by manufacturers from
building management systems. Today, developments and innovations are largely
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driven by these new players, and the smart home is distinguished from home
automation by the arrival of end-users services. These can be artificial intelligence
based predictive energy management, as well as new interaction modes such as
voice assistants or chat bot. The myriad of sensors, pushing data back into the
cloud from a targeted consumer service provider, raises the question of privacy.
European people can be more confident than other countries thanks to the General
Data Protection Regulation (GDPR), but the citizens have still to be aware about
IoT they bring in their own information system, even if there are from well-known
companies, or verifiable open-source solutions.
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Formalization of the Energy
Management Problem and Related Issues

Stephane Ploix and Amr Alzouhri Alyafi

1 Introduction

Coping with climate challenges is usually dealing with reduction of energy needs,
i.e. with better energy efficiency and sobriety. Nevertheless, reduction of envi-
ronmental impacts also leads to the massive development of distributed energy
production means to collect renewables all over a large territory. Except for hydro-
power plants, most renewable energy production means are fatal: they cannot be
consumed when needed but they have to be used when energy is available. Conse-
quently, until solutions for massive energy storage within a day, but also between
seasons, become feasible and economically viable, energy has to be consumed when
it is produced. Therefore, for now, tackling climate changes are not only a matter
of reduction; it is also a matter of balancing consumption with production at any
time. As seen in Chap. “Energy Sobriety: A Behavior Measurement Indicator for
Fuel Poverty Using Aggregated Load Readings from Smart Meters”, adjustments
of consumption are named demand response mechanism. It aims at increasing the
flexibility of energy use, which is very critical for electricity. Indeed, in France,
for instance, 68% of the electricity is feeding residential and office buildings: it’s
obvious that they have an important role to play and that it will impact the way of
life in buildings.

Various automatic “demand response” solutions have been considered: deactiva-
tion of electric heating and cooling systems for domestic hot water production [1],
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for heating or cooling buildings, etc. . . [2]. However, these solutions remain difficult
to implement today because of the diversity of appliances and their usage (domestic
boilers are not always present, and if so, they are not always electric and, not
always used when consumption reduction is needed, and not always controllable).
Interruption of such appliances leads to a rebound effect to compensate the
temperature decrease or increase [4]. It increases the risk of discomfort for users
and the competition between energy distributors is discouraging these kinds of
incentives because resellers prefer to set up seducing offers to attract new customers.
As an alternative to these injunctive approaches, other approaches aim to involve
and empower electricity users: for example, sending messages (nudges) indicating
the green hours (it is recommended to consume more) and the red hours (try to
reduce consumption) [6, 11] or analyses of practices, explanations, and suggestions
for action. The latter approaches aim at involving energy consumers in the energy
process rather than doing without their participation. This potentially opens up new
horizons.

Encouraging self-consumption is an additional way to make people more
concerned by energy mechanisms. Increasing the part of the energy produced locally
in the consumption leads to a better involvement of actors in the everyday energy
because the money they expend in energy is dependent of their own behavior. For
instance, launching a washing machine is more interesting during sunny periods.
Therefore, not only the quantity of energy matter but also the time it is used does
also. Europe is promoting the massive use of energy from renewables with the
2018/2001 directive voted in December 11th, 2001 asking the European countries
to allow collective self-consumption, i.e. the pooling of means of production on a
micro-grid connected to the distribution network, in association with energy users,
who must coordinate each other to consume preferably when renewable is available.
For energy users, the consequence is that not only the quantity of energy matter, the
time it is consumed but also what the neighbor are doing also comes up into the
decisions of actions. However, this new context, when it concerns buildings and
residential areas, cannot be easily implemented because the investment capacities
of these types of actors are limited and prohibit expensive approaches for having
the best use of residential micro-grids. A building embedding an artificial system,
supporting the inhabitants of a building in the everyday energy management,
is an energy Smart-Building, energy Smart-Home, or energy Smart-Office. The
upcoming increasing complexity justifies such solutions: INSEE, a French survey
institute, stated that people spend about 90% of daytime located in buildings,
while smart-phone applications are mainly supporting outdoor activities like GPS,
shopping, leisure time,. . . almost nothing is available for the remaining 90% of
people time. Because of sobriety, flexibility, and coordination within communities,
the complexity is becoming higher and user-friendly decision aiding solutions
become more important.
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2 Sobriety and Flexibility Issues at Dwelling Scale

A building is designed to provide services to inhabitants like protecting from the
rains, snow, solar radiations,. . . , providing thermal comfort and good air quality at
an affordable price. A building contains also specific appliances providing special-
ized services: washing and drying clothes, keeping and cooking the food, lighting,
multimedia,. . . Therefore, a building can be seen as a place where a set of services
are provided to people. Residential and office buildings are usually distinguished for
several reasons that lead to different solutions for aiding people. In office building,
CAPEX is usually higher and the diversity of inhabitant activities more limited:
automation based on PLC, SCADA, Building Energy Management Systems more
or less advanced are quite common. Indeed, because of the limited diversity of
activities, it is relatively easy to guess occupants’ intentions. Additionally, contrary
to residential buildings, inhabitants are not building office managers. If automation
seems relevant for office building, it is more questionable for residential buildings
for exactly the opposite reasons: little CAPEX, high diversity of activities and
people more demanding of comfort because they’re generally the home building
managers but with little expertise. In homes, automations are frequently limited
to HVAC systems and possibly to triggering of boilers for Domestic Hot Water if
there are storage tanks. Home solutions for aiding people in everyday energy are
therefore more complex to design: they have to guess occupants’ intentions; they
have to be cheap and user-friendly. Whereas main services like heating, cooling,
lighting can be automatized in office buildings, many services related to multimedia,
gaming, cooking,. . . cannot and flexibility requirements should involve occupants in
decisions.

Taking good decisions might seem easy for occupants but actually, it’s not. Most
phenomena are not visible (air quality, energy fluxes going through walls, doors
and windows) and complex. For instance, opening a window can be justified during
winter for improving air quality but for a given time, heating or cooling a room,
which is rarely occupied, is an energy waste, the door position might highly impact
the air quality, the temperature, and the power consumption in a room. Occupying
a room in a low consumption building might also have a strong impact. [20] did
a Morris sensitivity analysis in an efficient building and showed that the model
parameters mainly impacting the energy performances are dealing with human
practices. Phenomena are also complex because they are highly dependent on
human practices, which are most of the time, not conscious: sociologists pointed out
[3] that human practices are mainly routines not involving cognitive mechanisms.
This is complex because residents are often unaware of their own practices; this
is especially true if an area is shared by several people. Additionally, because
occupants lack of information and possibly knowledge, they might develop fake
beliefs like the windows have to be kept opened for 1 h every day to remove
microbes. . . Phenomena will grow in complexity when the timing of an action
will become important due to the requirements of flexibility and coordination.
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Building optimized energy management points out that without occupants’ comfort
expectations, building doesn’t require energy [7].

To face the increasing complexity, new decision aiding services are needed.
Two complementary approaches can be followed: (1) improvement of existing
automations and (2) better involvement of inhabitants. Approach (1) requires better
recognition of people expectations and intentions in order to apply the most
relevant strategy to each context in order to maximize the occupant satisfaction
while minimizing different kinds of costs like environmental, economic, cognitive
costs,. . . It requires estimation from sensor data, learning of user profiles and
adaptation of the building configuration, with possible anticipation (see Model
Predictive Control approaches in related chapters), to each context. The difficulty
in this approach is due to the specificities of building systems: they are composed
of envelope, appliances but also of occupants which are both highly affecting the
overall behavior with their actions and metabolisms, and are also decision maker
assessing the quality of the services provided by the energy management system.
Therefore, building systems are very special because there are highly human-
centric. The second approach aims at involving occupants in the everyday building
energy management. Indeed, occupants’ assets are complementary to the ones of
an information system and the final decisions are co-determined thanks to human-
machine interactions:

• occupants:

– have a more global qualitative perception of the current building system
because sensors are limited in number and cannot perceive all what human
can easily do (bad smell, broken device, people visit, . . . )

– can easily change a configuration, like a door position, . . .
– have an updated representation of the building system global behavior because

of their perception capabilities
– know occupants’ expectations and intentions

• information systems:

– have a partial precise perception of the building system thanks to sensors
– can precisely adjust set-points and possibly change configurations providing

that actuators are available
– embed a more or less precise, but costly to update, numerical representation

of the behavior of building systems, at least a model implicit to control rules,
and sometimes an explicit causal model

The second approach aims at developing cooperation between occupants and
information system to get the best of each for emerging solutions yielding best
quality of services for occupants and costs compromises. It can be simply a GUI
displaying mirroring indicators for the occupants to figure out what they are doing
and what are their impacts of the building system. It can also be a system sending
nudges to influence the energy consumption of the occupants. Because occupant
behavior is determined mostly by routines, i.e. unconscious habits, a set of pinned
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indicators for improvement can be focused to follow a step-by-step way to better
sobriety, flexibility, and coordination. More advanced system could also propose
building energy management strategies to inhabitants either in the past (what I could
have done) or in the present and future (what I could do). Additionally, generation
of explanation to justify a strategy can also be done (see related chapter).

3 Illustrative Examples

The first illustrative example that will be used all along this book is an office named
“H358” containing 4 desks. It is particularly interesting because both it is simple,
in that such, it can be used as a first illustrative example, and it is equipped with
18 sensors, appearing in the square boxes of Fig. 1. Data are available from the
beginning of 2015 till now but with gaps (see Chap. “The Mondrian User Interface
Pattern: Inspiring Eco-Responsibility in Homes” for handling). It is representative
of real life because ENOCEAN sensors are leading to time series:

• with irregular time samples: to avoid useless repetitive data, low consumption
radio sensors send data when a significant change with the previous measurement
data is detected according to sensor resolution threshold. Collected data should
be resampled at regular sample times or time quantum.
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Fig. 1 H358 office map with available sensors
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• with a regular sample time after resampling which might vary depending on the
problem to solve. Therefore, resampling should be a dynamic process.

• with gaps: sequences of data without gaps have to be detected. After more than
4 years of recording, the length of the longest contiguous set of data series is
lasting 40 days!

• with outliers: they have to be detected and weird values replaced by realistic ones.
Outlier detection can be done by detection of a sudden significant increase and
then a sharp decrease of consecutive data values but also when data values are
out of the meaningful data value range.

In the office, the heating level is considered as proportional to the difference
between the temperature close to surface of the radiator (Theater) and the room
temperature of the office (Toffice_reference): it is named “dT_heat = Theater -
Toffice_for_heater”. The proportional gain is estimated using a physical model
together with a global parameter estimation approach. The occupancy, i.e. the
average number of occupants during a sample time is deduced from computer
laptop consumptions and possibly from motion detections, CO2 concentration,
average acoustic pressure during a time quantum (sample time) and much more (see
Chap. “Occupant Actions Selection Strategies based on Pareto-Optimal Schedules
and Daily Schedule for Energy Management in Buildings”). Nebulosity, outdoor
temperature, humidity,. . . are collected through the Internet from weather forecast
webservices, and used in particular to calculate the solar power coming through the
windows to the office by using a model of the sun w.r.t. earth position [5]. During
winter, the door and the window (one big window composed of all the 5 windows)
positions can be modified by occupants providing there are present (ζdoor ∈ [0, 1]
and ζwindow ∈ [0, 1], corresponding to the fraction of the sample period during
which the door or one of the windows remained open). A remotely controllable
thermostat is available for the heater, therefore automatic control can be considered
during winter. Heating system is off during summer time, of course. The office is
relatively closed to home context: occupants must be in the energy management loop
because at least, they are the only ones to be able to open the door or the windows.

A second example is given to illustrate more modern buildings with advanced
air handling units, dual duct system, and heat recovery from stale air to fresh air.
Figure 2a shows the global HVAC system connected to the MHI classroom platform
dedicated to experiments. It is equipped both by legacy sensors and by Z-wave and
Enocean sensors like for “H358” office. The air handling unit (AHU) is located
at the rooftop. In and out filters and blowers can be seen as well as the rotating
honeycombs wheels exchanging from extracted stale air to injected fresh air in the
middle of the AHU. There is a coil fed by warm or cold water, 25–30◦C during
winter and 19–23◦C during summer, to pre-heat or pre-cool the air in the duct
feeding the rooms with a set-point equal to 22◦C during daytime and weekdays. At
the AHU level, there is also a pressure control for each local room air renewal not
to influence others. In the inlet duct, the pressure is set to 120hPa during daytime
and working days and to 110hPa in the outlet duct. Therefore, the blowers of the
AHU adapt their speed in order to keep a pressure difference of 10hPa between
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Fig. 2 MHI classroom platform and its HVAC system

the air injection and extraction of each connected room. Among the connected
rooms, there is the so-called Monitoring and Habitat Intelligent (MHI) classroom
platform in which the fresh air arrived through passive blowing beams located at
the ceiling Fig. 2c and stale air is removed thanks to air outlets in red in Fig. 2b.
The blue air inlet duct passes through a variable air volume (VAV) box, which is
composed of a damper to control the air flow and a coil fed by the same water than
the one use in the coil of the main AHU. It is used to control the local temperature
of the room by adding or removing heat, respectively, to the pre-heat or pre-cool
air flow coming from the AHU. Figure 2d shows the control law that is used to
provide good air quality to room occupants: the ventilation air flow is dependent of
the CO2 concentration in the room. The system decouples the room controls from
the global AHU systems: each connected room receives the same pressures and the
air temperature. For such systems, automation with presence anticipation is suitable
but in home context, a better involvement of occupants is generally more relevant.
Let’s study a third example.

Figure 3 deals with a typical 4 rooms plus kitchen apartment. To keep the
temperature at an acceptable level, there are 2 systems for heating. An air-to-air heat
pump split system in the living room given with a coefficient of performance equal to
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2.5 i.e. 1 kWh of electricity1 produce about 2.5 kWh of heat in standard conditions.
To heat the rooms, there are electric heating panels controlled by a programmable
controller, with a resolution of 30 min for a whole week. Each heater temperature
set-point can be set to its own preferred temperature (T ∗) and the control system
can set the temperature set-point to T ∗, T ∗—1◦C, T ∗—3◦C, T ∗—5◦C, or off.
But, there are only 2 control channels: kid and Parents’ bedroom are connected
to the same channel and office, living room, and kitchen to the other one. During
summertime, either the split air conditioning system is cooling the room or it is off.
The apartment is equipped with 65 sensors appearing in red on Fig. 3. PLC, SCADA,
or any other kind of actuators are not relevant for such building systems. The first
difficulty people have to face is to know what is actually happening related to the
energy consumption knowing that they are several inhabitants not always present
at the same time. Just displaying the measurements of the sensors is not enough
because there are 65 curves that have to be cross-analyzed to extract meaningful
information about impact of family’s actions (events) and activities (with duration),
which will be called practices. Different complex questions arise for the family,
some are seasonal, some are not:

Fig. 3 Standard flat with sensors

1Depending on the outdoor temperature: the closer to the indoor temperature, the best.
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• the electricity tariff is time-varying: a cheap tariff, about 6 cents/kWh, from 11pm
to 7am and from 12:30 to 2pm, and a normal tariff, about 12 cents/kWh, for the
rest. The question is: does the family practices adapted enough to the tariff to
meet the expected compromise between comfort (services achieved on time,. . . )
and cost. This problem can even be more complex in case of photovoltaic panels
with a self-consumption schema that encourages people to consume their own
energy. Mirroring occupant practices at a relevant level making it easy to check
whether practices are suitable or not.

• during winter, there are 2 heating systems: an air/air heat pump located in the
living room and electric radiative heating panels in the other rooms. How to
determine set-points of the 2 groups of heating panels but also the set-points
of the heat pump? what are the best temperature profiles taking into account the
maximum power of the heating devices, the outdoor temperature, the solar gains
through the windows, the positions of the doors, windows, and shutters, the room
occupancy and the occupants’ intentions and preferences?

• during summer, the split air conditioning system can be switched on or off, and
the set-point can be adjusted but how to adjust these degrees of freedom taking
into account the outdoor temperature, the solar gains, the positions of the doors,
windows, and shutters, the room occupancy and the occupants’ intentions and
preferences?

• additionally, metabolisms and breaths generate CO2, whose concentration indi-
cates a level of confinement. It’s also representative of the level of dusts with
mites, and the smells. Because the air is extracted from the toilets, bathroom,
and kitchen in the apartment, if the room doors and windows are kept closed, the
concentration of CO2 in the bedrooms can reach very high values, till 5000 ppm
at the end of the night. But keeping the windows and doors opened has a strong
influence on the heating system consumption. What is the best strategy depending
on occupancy and on thermal phenomena?

There are much more complex questions that people sometimes do not figure out
regarding the usage of domestic hot water vs heating cold water, the usage of the
fridge and freezer,2 the best room to stay,. . . They are problems not easy to solve
because most of the phenomena are not perceivable and because there are all inter-
dependent. Most of all, people use to follow routines, i.e. they don’t frequently
question about the environmental impacts of their practices. The decision-aided
services coming with the smart-homes are going to support the solving of all these
problems; everyone has to solve on an everyday basis.

2Which use to cause the main consumption in many home settings if the HVAC system is set apart.
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4 Problem Statement of Energy Management in Smart
Buildings

To state the smart building energy management problem in a general way, let’s
distinguish different kinds of phenomena that can be modeled by variables: there
are the causes and the consequences but also the performances (see Fig. 4):

• causes:

– context variables model phenomena that cannot be modified and impact effect
variables

– action variables model phenomena that can be controlled and impact effect
variables

• consequences:

– intermediate variables model phenomena that are consequences of causes but
that are not appearing directly in the performance evaluation

– effect variables model phenomena that are consequences of causes and that
are appearing directly in the performance evaluation

• performance variables model both the quality of a service delivered to occupants
and the economic, environmental, and/or cognitive costs. It depends on effect
variables but it might also depend on context and action variables.

For instance, Fig. 4 represents the different types of phenomena related to H358
office. Contextual variables are related to the temperature and CO2 concentration of
the juxtaposed corridor, outdoor temperature, occupancy, and solar energy coming
through the windows. Action variables can be context-dependent like door and
window openings as a ratio of chosen time quantum3 considered as time samples.
Indeed, actions cannot be carried out in case of absence, i.e. it is dependent on
the occupancy. The heating level, as a ratio of the maximum heating power, is
not context-dependent because it is operated by an automatic control system. The
average temperature of the envelope cannot be measured because it is an equivalent
temperature but it can be estimated. It is an internal state variable which is set to
intermediate variable. Temperature and CO2 concentration in the office are the effect
variables because they are consequences of the actions that directly determined the
performances of the living area.

In Fig. 4 are shown the main variables influencing the thermal phenomena
and the air quality in the office H358 (see Fig. 1). The context variables are: the
temperature of the nearby corridor, the CO2 concentration in the corridor, the
outdoor temperature, the occupancy (that globalizes body metabolisms and personal
electricity consumption of laptops), and the solar radiations coming through the

3Typ. 1 h but it could also be 30 min or even 10 min even if weather forecasts are usually given per
hour.
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Fig. 4 Different kinds of phenomena modeled by variables

window. The possible actions are limited: opening or not the office door and opening
the window (0 means always closed during the considered sample time and 1
always opened, with intermediate values possible), but it can be opened only in
case of someone is present in the office. Moreover the level of heating (0 for no
heating and 1 for full power) can be changed during winter, when the central boiler
is on. The structure temperature is here the equivalent temperature of the heavy
parts of the office, like slab and concrete walls: it is an intermediate phenomenon,
which provides inertia for indoor temperature. The resulting effect phenomena are
the office temperature and the resulting concentration of CO2. Performances are
deduced from the context (occupancy) and the effect phenomena. It is dealing with
thermal comfort and air quality dissatisfactions together with the energy cost. It will
be detailed in the next.

Notice that the decomposition into types of variables is not ontological: it’s just a
way of modeling. For instance, if room occupancy can be changed, asking people to
move to another place, then occupancy will be modeled by an action variable instead
of a context variable. Causality is also not ontological but a part of the modeling. For
example, the indoor temperature is an effect variable when there is no HVAC system.
When an HVAC system is operating, the indoor temperature can be equated to the
setpoint temperature and, assuming perfect control, the temperature becomes an
action while the energy consumed by the HVAC system becomes an effect variable.

Typical performance variables are:
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Fig. 5 Typical shapes of dissatisfaction functions

• quality of services, modeled by dissatisfactions4 to be minimized where 0 stands
for perfect quality and 1 (and higher) for not acceptable

– thermal discomfort, modeled by a dissatisfaction function usually depending
on room operative temperature, which is always null in case of absence of
occupants (see (a) in Fig. 5)

– air quality discomfort, modeled by a dissatisfaction function usually depend-
ing on CO2 concentration, which is always null in case of absence of
occupants (see (b) in Fig. 5)

– possibly temporary service discomfort, to help deciding when to start an
appliance like a washing machine, modeled by a dissatisfaction function
usually depending on the expected ending time of the related appliance (see
(c) in Fig. 5)

• costs, which should be normalized to get a cost scale comparable to dissatisfac-
tions, belonging to [0, 1]
– energy cost, corresponding to the quantity of the needed energy
– economical cost, corresponding to money expended for the needed energy
– environmental cost, corresponding, for instance, to the equivalent quantity of

CO2 rejection in the atmosphere
– cognitive cost, corresponding, for instance, to the number of actions occupants

have to do to adapt the configuration of his living place.

The concept of dissatisfactions is interesting because it normalizes comfort
performances, but is it possible to determine an overall dissatisfaction D from
specific dissatisfactions Di like those related to air quality or indoor temperature?
Should we sum up, multiply? Let’s state the problem:

• D ∈ [0, 1] and Di ∈ [0, 1]; i ∈ {0, n − 1}, where 0 stands for totally satisfied
and 1 for totally dissatisfied.

• the global dissatisfaction is a function of specific ones: D = D(D0, . . . , Dn−1)

• an increase of a specific dissatisfaction cannot decrease the global dissatisfaction:
D(D0, . . . , Di, . . . , Dn−1) ≥ D(D0, . . . , Di + ε, . . . ,Dn−1) with ε > 0, i.e.

4Dissatisfaction can be minimized like cost, whereas satisfaction, equal to 1 minus dissatisfaction,
has to be maximized.
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∀i, d

dDi

D(D0, . . . , Di, . . . , Dn−1) ≥ 0

• a priori, specific dissatisfactions should impact differently the global dissatisfac-
tion: i �= j → dD

dDi
�= dD

dDj

• if an occupant is totally dissatisfied with all the specific dissatisfactions, he
will be globally totally dissatisfied and same with total satisfaction. It yields:
D(0, . . . , 0) = 0 and D(1, . . . , 1) = 1.

Linear functions for merging are good candidates although more complex
merging function can be imagined. A linear function for D(D0, . . . , Di, . . . , Dn−1)

that satisfies the statements are:

D(D0, . . . , Di, . . . , Dn−1) =
∑

i

αiDiwith
∑

i

αi = 1

It is therefore a multi-objective problem where comfort criteria are modeled by
dissatisfactions and costs modeled by normalized functions. The best compromise
is reached when the following objectives are minimum:

∀i, min
actions

∑

k

Di(k) (1)

∀j, min
actions

∑

k

Cj (k) (2)

where i stands for a type of comfort, j a type of cost, and k a sample time
belonging to a considered time horizon. There is an implicit contextual5 Pareto
front (Fig. 6) that represents all the contextual optimal cost-comfort compromise,
i.e. there is no one optimal compromise for a given context but one best compromise
for each activities and presences. Let’s normalize the costs by solving the following
problems:

C
¯ j
(actions∗j ) = minactions

(
Cj

) ; j ∈ J (3)

and define:

C̄j = max∀l �=jCj (actions∗l ) (4)

Consequently, all the criteria can be normalized. The normalized problem to be
solved is

5For a given set of values of contextual variables over a given time period.



126 S. Ploix and A. A. Alyafi

Fig. 6 Avoiding waste can be modeled as a distance to a theoretical contextual Pareto front

�γj ;j∈J (actions∗) = minactions

⎛

⎝λ
∑

k

∑

i

αiDi(k)+ (1− λ)
∑

j∈J
γj
Cj − C

¯ j
C̄j − C

¯ j

⎞

⎠

(5)
∑

i

αi = 1; ∀i,
∑

i

γj = 1; ∀j, λ ∈ [0, 1] (6)

Of course, C
¯ j

and C̄j can be estimated without solving an optimization problem
for each cost criteria. αi represent the relative occupant preferences between comfort
dissatisfactions, γj the relative occupant preferences between normalized costs and
λ, the relative importance of comfort versus cost.

The optimization problem cannot be decomposed in time because of inertia in
thermal phenomena but also in CO2 concentration: the current state depends on the
previous state. Moreover, decomposing in space can also be problematic because
phenomena might not be independent depending on the situation. For instance,
the temperature or the CO2 concentration in a nearby room considered as a limit
condition can highly be influenced by the studied room for computation of best
energy strategies.

Solving an optimization problem might not provide a helpful service to inhabi-
tants because:

• models might not exist and if so, they might be imprecise or far from reality
• sensors might not be enough or could be faulty with generally gaps in the data
• occupant preferences and intentions might not be known
• automatized control systems might not be able to solve optimization problems

and apply a best energy strategy
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• in home settings, actuators are usually occupants: they act on their home.
Therefore interactive problem solving approaches have to be designed.

Therefore, energy smart-home services cannot be reduced to computing actions
yielding best compromises between comforts and costs according to occupants’
preferences. It is just a theoretical formalization of the best way to manage energy
in a dwelling. Perfect sobriety doesn’t mean no consuming any energy but it
means avoiding energy waste in being as close as possible to the Pareto front
of a best comfort/cost compromise consistent with occupants’ preferences and
intentions. As mentioned earlier, there are other energy services that reflect occupant
behaviors and their impacts. Conversely to common perceptions, an energy smart-
home or smart-office, which will call indistinctly energy smart-home for the sake
of readability in the next, is not a place with an intelligence guessing inhabitant
intentions and assisting them in the everyday life, but rather a place equipped with
perception means, using sensors or interactions with inhabitants, that mirrors users’
practices, suggests and explains what are the consequences of recorded actions. The
management of some services can be partially delegated to an automation system
but a full delegation for all services rather looks like a nightmare for most people
because automation has to assume inhabitant intentions to take the right decision.
Many people experimented situations with motion detector assuming absence or
automated shutters opening when intention is to display slides. Guessing intentions
is a lot more tough in residential settings where diversity of human practices is much
higher.

5 The Model Issue

In order to be able to determine the consequences of actions, a model is needed
but what kind of models? and most importantly, how easy it is to get it? This
is a critical point for the spreading of the so-called energy smart-home. Indeed,
without cause-effect contextualized representation of the impacts of actions, how
is it possible to aid occupants in their everyday decisions? If setting up a model
is too costly, it is going to slow down the deployment of such technologies. Only
dashboard with mirroring functionalities would spread. Figure 7 points out that there
are different natures of models composing a global behavioral model for a home (or
office) system. Firstly, there is the inhabitant model that relates perceptions yielding
dissatisfactions and appreciations of costs to decisions of actions. Because it is
usually several inhabitants sharing a place, such a model should represent routines
and homeostatic unconscious behaviors, beliefs, desires, intentions (committed plan
of actions) and also deliberative behaviors representing social interactions. Kashif
et al. [9] proposed a multi-agent model for the inhabitant model. Modeling building
behavior yields to the so-called performance gap whose one of the most important
cause is the difficulty to model human behavior. Research is currently developing
tools for representing human behavior (IEA Annex 66). Different approaches have
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Fig. 7 Different kinds of models for a home system

been proposed, which can be split into 2 categories: the average general hybrid
models that combine time of use surveys, and specific observation models. The
average general hybrid models can be average profiles or stochastic models using,
for instance, Hidden Markov models [16], whereas specific observation models
rely on similar buildings with similar household. Belief-Desire-Intention Multi-
agent systems with cognitive and deliberative capabilities [8] have been used but
the number of parameters to tune is huge: it requires questionnaires and parameter
estimations but also a long observation period. Alternatively, simplified observation
models have been also used based on Bayesian networks learnt from sensor data and
inhabitant feed-back about their activities [19]. Even if these models are mostly used
for the design of buildings, it is interesting to note that the behavior of inhabitants is
highly influencing the energy consumption of a low consumption building.

The control model is required when occupants delegate part of the energy
management to controllers and more generally to energy management systems
(EMS). These automations are generally dedicated to HVAC systems and to
the management of domestic hot water (DHW), batteries and energy generators.
The control model establishes a relationship between the context variables, the
automated actions managed by the EMS, and the resulting effects.
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The third model, called physical model, is the most useful for decision support
systems because it links user actions to effects, taking into account contextual
phenomena. It includes the control model with possible simplifications because the
time for control systems is much faster than psychological time for inhabitants. It
allows us to determine the values of the intermediate phenomena and the resulting
effects. The modeling step is more subtle than for the design because the building
system is existing and the simulation results have to match on-site phenomena,
whereas for design results have to be realistic enough with sufficient details to
determine in which way each design option will modify the overall performances.
There are different papers REF that compare the simulation results obtained by
common building simulators for the same building: it comes out that the overall
performances can vary up to 300%. . . with the same assumptions on usage profiles!
Nevertheless, even if such discrepancies are known, the most important is to obtain
the trend of an option on the overall results. Let’s summarize the differences in the
model requirements for design and for runtime management.

Typical requirements Design Runtime

Time horizon 1 year 1 day

Time step 1 h 10 min and possibly less for

automated control

systems, to 30 min

and 1 h in case of

human interactions

Number of No limit provided Limited because values

parameters values can be assigned have to be adjusted in

(from experiments or order to match measurements:

knowledge) too many values might yield

identifiability issues

Accuracy Expected in trends Should comply with actual

phenomena, according to

inhabitant perceptions

Representativity Models represent Models contain virtual

internal phenomena parameters that can represent

that can be reduced in each several phenomena:

complexity for the sake there are more or less

of simulation speed: dependent on the current

there are context independent context, i.e. parameter values

don’t match all the contexts

Self-learning Not meaningful Strong requirement

Usage All-year simulation, Parameter estimation,

sensitivity analysis, day simulation,

design parameter action optimization,

optimization state estimation,

generation of explanations
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Basically, there are two main kinds of physical models, with respective advan-
tages:

• knowledge model, whose structure is inspired from physical knowledge. The
structure of these models is dependent of the underlying physics and it is
generally well-representing the relationships between phenomena but conversely
it is not adapted to the way the model is going to be used. Nguyen Hong et
al. [15] showed that parameter estimation is not an easy task when using such
models: minimizing the output simulation error cannot be managed with descent
approaches and using meta-optimization technics to avoid getting stuck in local
minima is not always successful. Moreover, these models require knowledge to
be designed and also updated: it implies manpower that can be relatively costly
particularly in multi-zone home systems.

• learnt model, whose structure is depending of the type of regressor used, like,
for instance, linear or artificial neural network based regressors. The structure is
regular and generally suitable for learning of parameter values from collected
dataset. Because their structure can be fairly representative of the physical
phenomena, these models might fail to represent accurately the physics whatever
the context is.

Another type of model is under development (see Sect. 8): the case-based data
model, based on historical data. This is a promising approach because it requires
little design work, but a large amount of sensor data together with a causal modeling
of phenomena. Other alternative can also be considered like context-dependent
linear regressor. . . but let’s focus on existing solutions. To illustrate the capability
of both approaches for representing runtime behavior, let’s analyze the real H358
office platform with recorded measurements: detailed measurements over a long
time period with real occupancy are not that common in the scientific literature.

5.1 Modeling from Knowledge

Let’s discuss the right type of model for energy smart-homes and use the H358
office (Fig. 1) to illustrate the differences. It’s an interesting example because more
than 4 years of recorded sensor data are available from January 1st, 2015 till
the end of 2019 but with regular gaps due to missing data. Before comparison,
let’s start by establishing a simple knowledge model representing the relationships
between phenomena. The model complexity is limited to one differential equation
for representing the thermal inertia and another one for the evolution of CO2 con-
centration, although some authors [12] recommend more, but with less parameters,
identifiability issues are less because the number of parameters to learn is less, but
depending on the data, the discussion is still open. Although there is no mechanical
ventilation system in the office, the knowledge model for the office system is
nonlinear but it is modeled by a time-varying state space model. Figure 4 points
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Fig. 8 Lumped element model for the H358 office

out the phenomena used by the model. Thermal phenomena are represented by a
lumped element model in Fig. 8:

• outdoor temperature is written Tout , τ is the equivalent structure temperature,
which cannot be measured.

• Tcorridor (in Celsius degrees), written Tn: it is the air temperature in the corridor,
which is assumed to be not influenced by the office room phenomena.

• Qw and QD stand for the air flows passing, respectively, through the window to
outdoor and through the door to the corridor. CO2 concentration in the corridor
is considered as not influenced by the office CO2 concentration. QW and QD

are assumed to be in an affine relation with the ratios of opening time zW and
zD , which are deduced from contact sensors: QW = Q0

W + ζWQ
1
W and QD =

Q0
D + ζDQ

1
D . ζW = 0 stands for window closed and ζD = 0 stands for door

closed, and other values are constant parameters to be estimated.
• ϕi , ϕD , ϕW , ϕout , and ϕin stand for heat flows in Watt. ϕi is the power exchange

with the office structure. ϕD and ϕW are heat flows going through the door and
windows that depend on air flows as shown in Eqs. (7a), (7c), (7h), (7b), (7c),
and (7g). ϕout is the power exchanged through the wall with outdoor.

• ϕin is the sum of ϕsun (phi_sun), the solar power passing through the window
calculated by a solar model using cloud cover and outdoor temperature provided
by weather forecasts, ϕbody = npmetabolism where n is the number of occupants
(see Chapter 6 for estimation) and pmetabolism the average metabolic power
generated by a body, ϕappliances the power generated by electrical appliances and
ϕheat = Kheat (Theater−Tin) is the power of the heater whereKheat is a parameter
to be estimated.

The following equations correspond to the lumped element model given in Fig. 8:

QD = Q0
D + ζDQ

1
D (7a)
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Nomenclature Cout Outdoor CO2 concentration

A Set of variables related to
occupants’ actions

Eelec, Efuel Expense incurred for hourly
consumption of electricity and
fuel

C Set of variables related to
physical context that cannot
be

Cin, Cn CO2 concentration indoor and
in adjacent corridor
(time-variant)

modified by the occupants Q,Qin,Qn, Air flow, air flow to inside of
room, with adjacent corridor,

S Set of variables for
assessment of occupants’
satisfaction (effects)

Qout ,QW ,QD outdoor, through window,
through door

I Set of intermediate
variables having two
subsets I1 and I2

SCO2 Breath production in CO2
(8.73× 10−6 mol.m3s−1 per
person

I1 Set of variables estimated
through physical models
like ϕ, Q, etc.

per mol of air)

I2 Set of some variables
measured through sensors
like Tin, Cin, etc.

σtemp Thermal dissatisfaction
(time-variant)

ζD Opening of door
(time-variant)

σair CO2 based air quality
dissatisfaction (time-variant)

ζW Opening of window
(time-variant)

σcost Overall energy consumption
related expense (time-variant)

ζH Switching on/off of heater
(time-variant)

�(.) Quantitative to qualitative
transformation function, i.e.
amount of

ζpair Opening of door/window,
i.e. ζpair = (ζW , ζD)

(time-variant)

change in a variable is
quantized into seven levels
using thresholds

δWD Binary variable for changes
in recommended actions

at v−3, v−2, v−1, v1, v2, v3

(time-variant) �x Amount of change in a variable

n Number of occupants at
office room (time-variant)

x� Optimal value of a variable

τ Average temperature of
building envelope

x̃ Usual value of a variable
(historical value)

Rn,Rout , Thermal resistances with
neighboring zones, outdoor

H Historical database

RW ,RD windows and doors V Volume of the room

Ri, Ci Equivalent resistance and
capacitance due to inertia

t, k Continuous and discrete time
variables

Req Overall equivalent
resistance of thermal model

Savg Array of occupants’
satisfaction values averaged
over a day

ρair , cp,air Air density and specific
heat of air at room
temperature

APS Pareto-optimal set of routines
(occupants’ actions)
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Tin, Tn, Tout Temperatures inside, in
adjacent corridor and outside

SPFavg Pareto front (quantified
effects of optimal actions)

(time-variant) Srefavg Reference value for
decision-making from a set
of trade-offs

ϕ, ϕbodies , Heat flow, human body
metabolism, total indoor
energy gains,

w1, w2, w3 Weights representing
preference of each kind of

ϕin, ϕn, ϕout heat flow with adjacent
corridor, outdoor

and w4 satisfaction (optimization
objectives)

Pelec or Electric power consumption
from work-associated
routine

T Differential explanations
table

ϕappliances appliance heat power
(time-variant)

tstart , tend Start and end time for
differential explanations
table

Pfuel Energy drawn to heat water
for heater (time-variant)

Âj A routine (occupants’
actions) identical to
Pareto-optimal routine

Pmax
heater Energy consumption for

hourly heater usage
except the action at the j th

time is replaced by the
historical action

QW = Q0
W + ζWQ

1
W (7b)

RD(ζD) = 1

ρaircp,airQD

(7c)

RW(ζW ) = 1

ρaircp,airQW

(7d)

Tn − Tin = Rnϕn (7e)

Tin − Tout = Routϕout (7f)

Tin − Tout = RW(ζW )ϕW (7g)

Tn − Tin = RD(ζD)ϕD (7h)

Tin − τ = Riϕi (7i)

Ci
dτ

dt
= ϕi (7j)

ϕn + ϕD + ϕin = ϕi + ϕout + ϕW (7k)

τ(0) = . (7l)

with cp,air = 1004 and ρair = 1.204.
Some authors suggest that a first order model is not enough and recommend

higher order. Actually, it depends on the context, on the sampling time, on the
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time horizon, but most of all on the identifiability of the parameters and on the
performance of the parameter estimation method because conversely to building
design where assumptions can be easily done, in energy management, the building
is existing and simulated data have to match recorded data. Too many parameters
might lead to poor results because of bad parameter estimation. Indeed, spectral
analysis of measurement signals reveals poor dataset with a dominant frequency
corresponding to 24h, then less energy at 12h and eventually a little energy at 6h
period. Spectral energy at other frequencies is almost not visible: it points out how
tough is the parameter estimation problem also self-tuning of physical models is a
major issue.

The previous equations can be combined in order to get the following state space
model where some parameters are time-varying:

dτ

dt
= R(ζD, ζW )− Ri

R2
i Ci

τ + R(ζD, ζW )

RiCi

(
1

Rout
+ 1

RW(ζW )

)
Tout + . . .

· · · + R(ζD, ζW )

RiCi

(
1

Rn
+ 1

RD(ζD)

)
Tn + R(ζD, ζW )

RiCi
ϕin

Tin = R(ζD, ζW )

Ri
τ + R

(
1

Rout
+ 1

RW(ζW )

)
Tout + . . .

· · · + R(ζD, ζW )

(
1

Rn
+ 1

RD(ζD)

)
Tn + R(ζD, ζW )ϕin

with:

1

R(ζW , ζD)
= 1

Ri
+ 1

Rout
+ 1

Rn
+ ζW

RW
+ ζD

RD

ϕin = Psun + Pelec + Pbody ×
∑

j

(Plaptop,j > 15W)

In energy management problems, the differential equations are not used directly
but there are integrated over a constant time quantum, named sample time, to get
recurrent equation able to model the behavioral evolution from one ample time to
another. There are different points of views regarding the most relevant sample time
for home systems. Some people recommend 10 min and, at the other extreme, there
is 1 h. Let’s discuss these 2 options:

• finest weather forecast is given with a 1-h time step
• changing the configuration of a home system can be tiring for people if changes

are perceivable
• 1 h time step is a long time period considering adjustments to unpredicted

changes in occupancy and in occupant activities
• predicting occupant behavior with a 10 min time resolution is much more

challenging than with a 60 min time step.
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According to these facts, it comes out that:

• 10 min or even less is in a better option for automatized controlled systems
dealing with not perceivable changes for the occupants like in HVAC, DHW,
battery, and power generator management. A sliding time window with a time
horizon of a couple of hours is generally used to anticipate scheduled and more
certainly ongoing events. A permanent readjustment is then used to cope with
unpredicted events [10].

• 1 h is a better option for involving occupants in the energy management and
interacting with them. Recommendations can be computed once a day and
occupants will adjust it themself depending on the actual context.

In the next, a 1-h time resolution is used but it can easily change to 10 min.
Using Euler approximation of the derivative6 with a sampling time �, it yields

τk+1 = �Rk + (1−�)Ri

Ri
τk +�Rkϕin,k +�Rk

(
1

Rout
+ ζW,k

RW

)
Tout,k + . . .

· · · +�Rk

(
1

Rn
+ ζD,k

RD

)
Tn,k (8a)

Tin,k = Rk

Ri
τk + Rkϕin,k + Rk

(
1

Rout
+ ζW,k

RW

)
Tout,k + Rk

(
1

Rn
+ ζD,k

RD

)
Tn,k

(8b)

Air quality has also to be modeled. Even if there are many pollutants like carbon
monoxide, fine particles, microbes, VOC, radon, ozone,. . . , the CO2 concentration
is usually used to estimate a level of confinement like in the ICONE indicator [14].
The level of confinement is meaningful for regularly occupied houses but for others,
VOC and radon, for instance, can accumulate during absence and require a deep air
renewal before occupying the place. Because the office is regularly occupied, a CO2
concentration model is established:

�nCO2,room = V
dCin

dt

�nCO2,out = QW (Cout − Cin)

�nCO2,cor = QD (Ccor − Cin)

�nCO2,room = �nCO22,out +�nCO2,cor + SCO2n(t)

where SCO2 stands for average breath production of CO2 per person, n(t) for the
average number of occupants during a sampling period, �n for variations in the
number of molecules of CO2 and Cx for CO2 concentrations.

It yields the following differential equation:

V
dCin

dt
= − (QW +QD)Cin +QWCout +QDCcor + SCO2n(t) (9)

6Exact discretization can also be done numerically.
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It can be discretized in time using Euler approximation as well or exact integration
over a sample time. With Euler approximation, it comes

Cin,k+1=1−�(QW,k +QD,k)

V
Cin,k+�QW,k

V
Cout + �QD,k

V
Ccor,k + �SCO2

V
nk

(10)

with Cout ≈ 400 ppm, QD,k = Q0
D + ζD,kQ

1
D , and QW,k = Q0

W + ζW,kQ
1
W

In the next, the difference between knowledge model and regressive observation
model is going to be discussed.

5.2 Learning Parameters of Knowledge Models

Parameter values can be assigned from physical knowledge but because they
represent several phenomena by only few parameters, like the resistances or the
capacitance, their value can just be roughly estimated. Therefore, since the model is
highly nonlinear in the parameters, descent approaches such as sequential quadratic
programming do not yield reproducible results. A metaoptimization approach has
been developed, but repeatability of the estimated parameter values is still not
achieved and the best parameter values are often at the limits of the possible
value domains for the parameters, even if the value domains are extended. Some
authors like [18] used a Bayesian Inference approach of parameter estimation
in order to take into account an a priori knowledge of the parameter values to
master the convergence but such estimations are not that easy to obtain because
most parameters represent multiple physical phenomena. An exploratory approach
is going to be used because it led to the most repetitive meaningful results for
knowledge model: it’s time consuming (about 10 min of computations), but the
convergence is repeatable and parameter values don’t slide to the bounds. In Fig. 9, a
differential evolution optimization has been used. It belongs to the family of genetic
algorithms. For the thermal part, a state observer has been used to replace the state
once a day, the equivalent temperature for structure, by a measurement corrected
better estimation at 0am. Indeed, anticipation is re-performed everyday taking into
account weather forecasts, occupancy previsions, etc. . .

Figure 9 shows 2 situations of learning stage and validation stage for the
parameter adjustment of models defined by (8) and (10). In the left hand side,
both datasets are consecutive, and in the middle and right side, the datasets are
separated by 3 months. Although a knowledge model is supposed to be context
independent and applies independently of the time, the second case reveals a
poor estimation quality during validation for the indoor temperature. Some would
say that the model is not complex enough but complexity makes convergence of
nonlinear optimizations more difficult. Let’s remind that establishing simplified
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Fig. 9 Parameter estimation of physics inspired model of H358 office is context-dependent

runtime knowledge models and calculated meaningful parameter values is costly,
even for monozone offices like H358.

It would be useful if regression could lead to good predictions but their structure
is not adapted to the physics. Context-dependent models can be expected: let’s
investigate this approach.

5.3 Learning Parameters of Regressive Models

The structures of linear (ARX, ARMAX, . . . ) and nonlinear (artificial neural
networks) regressive models are such that parameter estimation is easier than
knowledge models, which are usually highly nonlinear in the parameters. For the
H358 model of the office, because temperature and CO2 concentration are relatively
independent phenomena (with common causes like door and window openings),
2 linear regressions are going to be used: one for anticipating indoor temperature
and another one for indoor CO2 concentration. Let’s analyze the results to point
out the specificities of regressive models. Firstly, let’s notice that regressive models
embed a little physical knowledge in the choice of inputs and outputs but also in
their structure. Both linear regressions have inputs and outputs inspired by physical
knowledge:

• thermal regressive model has inputs: “Tout”, “Tcorridor”, “window_opening”,
“door_opening”, “total_electric_power”, “phi_sun”, “dT_heat”, “occupancy”
and output: “Toffice_reference”

• air quality regressive model has inputs: “corridor_CO2_concentration”,
“window_opening”, “door_opening”, “occupancy” and output: “office_CO2_
concentration”
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The order of both models is 1 because higher values didn’t yield significant
improvements. Typical learnt models look like:

Toffice_referencek = +0.896665Toffice_referencek−1

. . .+ 0.037271Toutk − 0.030218Toutk−1

. . .+ 0.628310Tcorridork − 0.534000Tcorridork−1

. . .− 0.236362window_openingk + 0.056120window_openingk−1

. . .− 0.250519door_openingk + 0.135190door_openingk−1

. . .+ 0.003684total_electric_powerk − 0.000847total_electric_powerk−1

. . .+ 0.000377phi_sunk − 0.000250phi_sunk−1

. . .+ 0.024356dT_heatk − 0.003150dT_heatk−1

. . .− 0.065434occupancyk + 0.055590occupancyk−1

− 0.795588

office_CO2_concentrationk = +0.671016office_CO2_concentrationk−1

. . .+ 0.451932corridor_CO2_concentrationk

. . .− 0.209482corridor_CO2_concentrationk−1

. . .− 154.093078window_openingk + 45.894794window_openingk−1

. . .+ 47.667825door_openingk − 27.245011door_openingk−1

. . .+ 97.997477occupancyk + 8.604379occupancyk−1

+ 28.190620

The left hand side and the middle curves of Fig. 10 show that for the same
non-consecutive periods that before, excellent results are obtained for the training
dataset, comparable to those obtained with knowledge model but with validation
dataset. Results for temperature anticipation are very poor. Nevertheless, it’s not
directly comparable because the model is not adjusted once a day to match the
measurements. To better match the objective of a multi-24 h prediction, jumping
(sliding day by day) models have been run: they anticipate one day using the 8
previous days for training with a maximum memory of 12 days. The right hand side
of Fig. 10 shows excellent results for both previsions. The regressive models are
permanently adapting to the context. For instance, the resulting pole for temperature
model is belonging to [0.79, 0.83], which leads to mode attenuation between 13 and
17 h.

Jumping linear regressors operate very well for the H358 office: it’s a good news
because it makes self-learning approaches possible. The approach can be easily
extended to multi-zone homes like the one presented at the beginning of the chapter.
Regarding more complex systems like the MHI classroom platform with adaptative
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Fig. 10 Linear regressions are also context-dependent but with a day “jumping” window, results
are excellent for H358 office

ventilation, recursive multi-layer artificial neural networks can be used to represent
nonlinear phenomena but datasets have to be much more important (8 days were
enough for H358 office) because the number of parameters to be tuned is huge
comparing to the available data in building.

6 Mirroring Inhabitant Service

Avoiding energy and comfort wastes has been formalized as a contextual multi-
objective problem were best compromises have to be met as shown in Fig. 6. It’s
not easy to meet because of unconscious phenomena, fake beliefs, and routines.
A first approach, which does not require complex technologies except sensors
and relevant Graphic User Interfaces (see Chap. “Explanations Generation with
Knowledge Models”), is to mirror occupant activities together with their relative
impacts. It is a way to support occupants to become more conscious of what’s going
on in their home. Waste can be detected using general indicators, whose values
depend on inhabitant activities and presences. According to the illustrative examples
at the beginning of the chapters, 20–80 IoT sensors are common for an energy smart-
home to get a fine analysis of people practices. Nevertheless, such a big number of
sensor data are quite long to analyze. Let’s consider that 10 s are required to analyze
the data of a sensor, and that the meaning of curves results from correlating curves,
like presence, openings, temperatures together, which requires also 10 s for each
data correlation. If n is the number of sensors, the number of combinations of curves
to watch is

n∑

p=1

(
n

p

)
= 2n − 1
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For 20–80 sensors, it leads to 121 days to almost 4 years for analyzing data! Of
course, all the combinations are not going to be investigated because there are
independent data, etc. . . but still, it’s time consuming and moreover, values and
curves are not necessarily meaningful for inhabitants. Therefore, what is needed
is indicators extracting meaningful information from multiple sensor data.

Let’s consider a couple of illustrative examples, which does not require input-
output models. Consider the analysis of the usage and the performance of a fridge:
the difficulty does not come from the number of signals to correlate but from the
complexity of the power consumption signal (see Fig. 11). The daily average power
consumption can be computed but does a greater consumption means a lack of
efficiency of a fridge, or an expensive usage? The indicator is computed on a daily
basis, to avoid variations due to intermittent consumption, by removing the basic
consumption, which dependents on the room temperature. Some questionable data
have been removed for household 2 using a 3-clustering approach, keeping the
cluster with the most days. Then, the basic power consumption is obtained with
a linear interpolation of the Pareto front (green points on the left side of Fig. 11),
considering the minimum consumption for each temperature. The slope Rfridge
of the red line Troom(d) = RfridgePbase(d) + T0 stands for the fridge sensitivity
around average room temperature. Right hand side curves show the usage power:
Pusage(d) = Pfridge(d) − Pbase(Troom(d). The following indicators facilitate the
comparison between the 2 usages of fridges:

Indicator Household 1 Household 2 Comment

Average base power consumption (W) 84 51 Average for records

Average usage power consumption (W) 10 8 Average for records

Thermal sensitivity Rfridge (W/◦C) 6.9 1.3

Fig. 11 Example of fridge usage indicator applied to 2 households
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These types of indicator are also used for washing and drying machine, dish-
washers,. . . by distinguishing the average consumption per cycle, from the average
number of cycles a week. Many others can be imagined to aid inhabitants to get a
better understanding of their practices.

There is another kind of indicators that extract information from different
measurement signals. Let’s take another example dealing with energy waste through
a window. When a window is opened, the power loss is given by Ploss =
ζwṁcp(Tout−Tin) where ζw is the opening ratio of the window and ṁ the mass flow
through the window. Because ṁ is not easy to measure, the loss can be expressed in
◦C.h/day:

∑
h∈day (Tout (h)− Tin(h)) considering ṁ as a constant value. This loss

becomes a waste if a heating (cooling) system is operating (OHVAC = 1) AND air
quality is poor, which can be expressed by a dissatisfaction function D(CO2) like in
Fig. 5. The day waste can be expressed in ◦C.h/day, as:

Ww(d) =
∑

h∈day

OHVACD(CO2(h)) (Tout (h)− Tin(h))

OHVAC can be obtained either from a power meter or, more easily, from a
temperature sensor properly installed. Figure 12 shows this indicator assessing the
usage of a main entrance door leading to a living room. The focus was on May 3,
2020 as this day was detected as particularly important. It points out the hours with
questionable behaviors. It can also be applied for monitoring the window usages but
because the air mass flow is not known, comparison is not meaningful.

Other indicators related to the estimation of people activities (Chap. “Occupant
Actions Selection Strategies Based on Pareto-Optimal Schedules and Daily Sched-

Fig. 12 Assessment of wastes through an entrance door leading to a living room on May, 3rd 2020
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ule for Energy Management in Buildings”) can be designed for better adaptation to
practices, like the preferred temperature during meal, reading,. . .

Remembering Fig. 6 raises a question: how to determine how far are the practices
from the Pareto front of best compromises without input-output models? Historical
data can be used assuming best compromises have been met sometimes in the
past. Best compromises are context-dependent: therefore, with a day basis, context-
similar days have to be gathered but variable values should be normalized to be
comparable. Because the value domains are usually open-scaled, a sensitive index is
introduced for the sake of normalization of each variable. Let vi be a variable value
from the n-dimensional variable space S = (vi)i∈{1,...,n} and �i be a minimum
sensitive difference for the i-th value of v ∈ S. A sensitive distance between 2
vectors v1, v2 ∈ S2 is given by

d�(v1, v2) = 1

n

n∑

i=1

|v1,i − v2,i |
�i

(11)

Thanks to this sensitive distance, context-similar days can be found by clustering.
Concerning the redline H358 office example, the following value sensitive resolu-
tions for context variables have been used:

Context variable V Granularity �V

Tout 1 ◦C
Tcorridor 0.5 ◦C
Occupancy 0.2 person

phi_sun, total_electric_power 50 W

Corridor_CO2_concentration 200 ppm

Considering the periods from 17/09/2015 to 3/11/2016 with a 1h sample time,
together with the period 29/02/2016 to 25/03/2016, because there are lots of missing
data in between, a hierarchical clustering has been used to gather similar days
according to the contextual sensitive distance defined in Eq. (11). Each day is
modeled by a data vector of 144 elements: 24 values for “Tout”, “Tcorridor”, “occu-
pancy”, “phi_sun”, “total_electric_power”, and “corridor_CO2_concentration”. 15
clusters of similar days have been found:

• cluster 0 (2 elements): 12/03/2016, 13/03/2016
• cluster 1 (2 elements): 05/03/2016,06/03/2016
• cluster 2 (7 elements): 01/03/2016, 02/03/2016, 03/03/2016, 04/03/2016,

08/03/2016, 09/03/2016, 11/03/2016
• cluster 3 (2 elements): 10/03/2016, 14/03/2016
• cluster 4 (3 elements): 15/03/2016, 17/03/2016, 18/03/2016
• cluster 5 (7 elements): 16/03/2016, 19/03/2016, 20/03/2016, 21/03/2016,

22/03/2016, 23/03/2016, 24/03/2016
• cluster 6 (1 elements): 07/03/2016
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• cluster 7 (9 elements): 14/10/2015, 15/10/2015, 16/10/2015, 17/10/2015,
18/10/2015, 19/10/2015, 20/10/2015, 21/10/2015, 22/10/2015

• cluster 8 (18 elements): 03/10/2015, 04/10/2015, 07/10/2015, 08/10/2015,
09/10/2015, 10/10/2015, 11/10/2015, 13/10/2015, 23/10/2015, 24/10/2015,
25/10/2015, 26/10/2015, 27/10/2015, 28/10/2015, 29/10/2015, 30/10/2015,
31/10/2015, 01/11/2015

• cluster 9 (1 elements): 12/10/2015
• cluster 10 (2 elements): 05/10/2015, 06/10/2015
• cluster 11 (3 elements): 23/09/2015, 28/09/2015, 02/10/2015
• cluster 12 (5 elements): 24/09/2015, 25/09/2015, 29/09/2015, 30/09/2015,

01/10/2015
• cluster 13 (6 elements): 19/09/2015, 20/09/2015, 21/09/2015, 22/09/2015,

26/09/2015, 27/09/2015
• cluster 14 (1 elements): 18/09/2015

It can be noticed that although beginning and ending winter days in France
appears to be closed, actually the days from these 2 periods are not mixed into
clusters: they are not that similar.

For the sake of clarity, let’s focus on 2 small clusters: number 0 with 2 similar
days and number 8 with 3 similar days. Figure 13 shows the contextual variables
for cluster 0: it gathers cold days without occupancy. The left side of Fig. 16 shows

Fig. 13 Context variables for cluster 0 of similar contextual sensitive days
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Fig. 14 Effects and actions during days in cluster 0

the corresponding performances. Comfort dissatisfaction is calculated with the 2
functions on the left and on the middle of Fig. 5 provided there is a presence
detected, otherwise comfort dissatisfaction is set to 0. Weight has been set to 0.5
for each kind of dissatisfaction. Cost corresponds to energy consumed by the heater.
March 12th is clearly dominated by March 13th because comfort is perfect in both
cases but on 13th, the heater consumption is less than half. So, in this context, March
13th can be given as an example of sobriety. Indeed, when considering Fig. 14, it
appears that March 13th is better because there is less power dissipated by the heater
while there is no one in the office. Conclusion is obvious here.

Cluster 4 stands for mild sunny winter days with late office occupancy as shown
in Fig. 15. Right side of Fig. 16 points out that March 17th is dominated but March
15th and 18th, which are both dominating compromises. It’s not obvious when
looking at recorded data. Figure 17 shows effects and actions in cluster 4: it comes
out that on 17th, the heater is operating almost like during the 18th and therefore
indoor temperatures are similar but on 18th, window has been opened during the
afternoon while the outdoor temperature was around 15 ◦C. The air quality has then
been significantly improved. During the 15th, the heater consumption is less but the
air quality is poorer.

These results show that it’s possible to advice inhabitants about better practices
without tuning any input-output model: it’s a case-based reasoning approach.
Nevertheless, it must be verified that same causes, including context and action
variables, lead to the same effects. A checking methodology is presented in Sect. 8.
For instance, if a non-measured electric heater is operating, conclusions won’t be
valid. Figure 18 summarizes the principle of the case-based model validity checking
and prevision. Each color for the context variables (c), the action variables (a), or for
effect variables stand for similar value sets (there is no connection between colors
of different types of variables). The validity checking consists in checking whether
the same colored (c) + (a) yields the same colored (e). It’s represented by red, green,
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Fig. 15 Variables for cluster 4 of similar contextual sensitive days

Fig. 16 Performances of days from clusters 0 and 4 with Pareto front

and grey circles in Fig. 18. Case-based advice in a given context (c) consists in
searching among the same contexts (c) of historical data, which actions (a) led to
the best effects (e).
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Fig. 17 Effects and actions during days in cluster 4

7 Input-Output Model Based Inhabitant Services

Figure 16 showed that March 17th, 2016 was a day whose energy strategy can be
improved. Similar days like 15th or 18th can be followed but Fig. 15 shows that days
are not that similar and additionally, there are 3 days in the cluster, i.e. experiences
for these kinds of days are limited. Adjusted models given in Sects. 5.2 or 5.3 make
it possible to assess the impact of different actions: this inhabitant service is called
replay service. It is a fast way to experiment an energy strategy without waiting for
a similar day. Let’s exemplify this with the 1-day sliding regressive model shown in
Fig. 10.

Figure 19 represents 3 different strategies for the upper plots and the bottom left
corner one:

• in blue, what has been measured
• in orange, what has been simulated with same actions than the ones recorded
• plots ending with “_door_closed” stands for same actions than before but door is

kept closed
• plots ending with “_door_closed_window_opened” stands for same actions than

before but window is opened 1 h during 6 to 7pm.

Keeping the door closed doesn’t change a lot the comfort. The bottom right corner
plot is a simulation with door closed and window opened 3 h from 4 to 6pm.
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Fig. 18 Principle of case-based model validity checking and prevision

The CO2 concentration decreases significant, even more than it could be in reality
because values below 400 ppm can’t be reached. It points out a drawback of the
regressive models: their structure does guarantee the consistency with physics.

Let’s now illustrate another inhabitant service named suggest that solves the
so-called inverse problem instead of the direct one. It can be used for a past day
like March 17th, 2016, or for the upcoming day provided context variables can
be predicted (weather forecast services are available and SARIMA approaches, for
instance, can be used for other signals). When the approach is automatized with a
sliding time window anticipating the future, it is called Model Predictive Control
in the literature (see Chap. “Faults and Failures in Smart Buildings: A New Tools
for Diagnosis”). Here, we focus on inhabitant services with a 1 h-time step and on
24 h time horizon, but, from an algorithm perspective, the discussion can easily
be extended to other problems. This time, we are going to use a knowledge based
model but input-output regressive models can be used alternatively. The inverse
problem consists in finding a best cost-comfort weighted compromise for a day by
determining the optimal values for action variables while respecting the model, seen
as a set of constraints, and according to the context variables. Many optimization
algorithms can be used. Here is a couple of them with their features:

Most optimization algorithms are widely used. Let’s focus on dynamic program-
ming, which is a general approach for problem solving adapted to optimization.
It relies on graph problem formulation and amount to search for the shortest path
composed of valued edges in a graph. The algorithm applies to a problem if the
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Fig. 19 Different strategies tested to discover how to improve days like March 17th, 2016 in H358
office

Bellmann-Ford lemma is satisfied. Let Ni and Nj be 2 nodes of a graph. The lemma
stating that the shortest path corresponds to the global optimum assumes that:

• each edge joining 2 nodes has a positive value, named distance
• each node is discrete, represented by discrete values
• the distance from Ni to Nj is equal to a sum of distances along a path joining Ni

to Nj

• let p be a path from Ni to Nj , then the minimum distance from Ni to Nj is lower
or equal to the distance along path p.

For energy strategy calculation, each node is related to a stage corresponding to a
time step in the solving as shown on Fig. 20. A node corresponds to a state belonging
to a discrete grid with pre-defined resolution. The values of context variables are
known in between 2 time stages. All possible discrete actions can be applied to each
state of stage k to lead to a continuous state belonging to a cell of stage k + 1.
The state can be composed of state variables for state space models, or to estimated
outputs for input-output models. Each edge is weighted by the cost-comfort criterion
(stage cost and dissatisfaction) resulting from the actions leading from an original
state at stage k to the state corresponding to the consecutive state at stage k+ 1. All
the paths leading to cells of stage k+1 are shrunk: the sum of cost-comfort criterion
along the path from the initial state are compared within a same grid cell and only
the path leading to the smallest value is kept per cell. The solving is going one
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Fig. 20 Adaptation of dynamic programming to computation of best energy strategies

step forward and is recursively solved. A backward solving is not possible because
without shrinking, the number of possible states is diverging.

For small to medium size problems, dynamic programming proved to be very
efficient. For large size problem, MILP solving is the recommended approach
although it is complex to setup. For human interactions, energy strategies usually
cover an 24 h horizon with a 30 min/1 h time step. If a state space knowledge model
is used, the initial state has to be estimated from input but also output recorded
measurement values: setting up a state observer [13] is useful.

The next table, different performance indicators of the best energy strategies
obtained with different optimization algorithms are appearing for March 17th,
2016 in H358 office with a 1-h sampling time. Possible actions are adjustment



Formalization of the Energy Management Problem and Related Issues 151

of temperature set-point of the heater, window, and door openings (percentage
of the time it is opened). It has been obtained with an input-output knowledge
model whose parameters have been retrained with the preceding 2 weeks data.
The blue curves stand for actual recorded data and the orange curves (init) for
the re-simulated data. There is no difference for the cause (context and action)
variables but differences can be seen in the CO2 concentration and in the indoor
temperature. This shows that there can be discrepancies between what is predicted
by the model and reality: this can be explained by an inappropriate model structure
(this is why the model is re-trained just before the strategy calculation with a period
from February 29, 2016 to March 16, 2016 included with a time step of 3600
s), but also by unmeasured events such as undetected visitors, apertures detected
as open but in reality closed, a wrong estimation of the initial temperature of the
structure,. . . . . . It can be stated that because of these gaps, the computed energy
strategies should not be considered as truth but as suggestions that could be tested.
Actual accuracy of the suggested plan should be evaluated for occupants to trust
or not the energy management decision-aided system. The computation of energy
strategy can be seen as a complementary mechanism to case-based reasoning (see
Sect. 8) because it can only cope with the analysis of similar contexts, whereas
strategy computation can drive occupants in exploring new strategies. On March
17, 2016, from a numbers perspective, the best strategy is the one computed by
the sequential quadratic programming algorithm, followed by differential evolution,
which takes much longer but leads to the same results, although it is less sensitive
to local minima. Simulated annealing is not operating well here. From an occupant
perspective, dynamic programming might seem more interesting because the action
is discretized: close or open door and window, which is more easy to apply than
something like “open the window 35% of the hour. Temperature set-points are also
discretized into 5 levels, just like the thermostatic valve is graduated. Dynamic
programming is all the more interesting here that it guarantees the global optimum
and it is very fast in terms of computation times. Nevertheless, problem complexity
might reduce the interest of dynamic programming, in this case, more complex
approaches requiring problem automatic reformulation into mixed integer linear
programming can be used.

In Fig. 21, it can be noticed how the energy strategy is adapting to the occupancy
of the H358 office.

There is another paradigm than the “doing with occupants”, which puts humans
into the loop, the “doing instead” but it’s not relevant in this case because doors
and windows cannot be moved automatically, but it can be applied in some specific
contexts dealing with the adjustment of temperature set-points. It is usually solved
using shorter time horizon, smaller sampling time and sliding optimization time
window with possibly a short-term reactive mechanism that is adjusting the control
to cope with unexpected discrepancies, while recomputing a long-term energy
strategy taking into account the current context [17].
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Indicator Initial SQP SA DIFEVO DYNPROG

Global objective 0.049 0.026 0.043 0.027 0.032

Average thermal dissatisfaction 0.022 0.0005 0.022 4.635 0.008

Average heating level 0.123 0.053 0.096 0.060 0.069

Average temperature during
presence (Celsius)

21.3 21.1 21.3 21 21.3

Average 10% lowest temperature
during presence

20.4 21 20.4 21 20.8

Average 10% highest temperature
during presence

22.1 21.5 22.2 21.3 22

Average CO2 concentration
during presence (ppm)

582 582 582 582 581

Average 10% lowest CO2
concentration during presence

489 489 489 489 489

Average 10% highest CO2
concentration during presence

668 668 668 669 666

Computation time in seconds NA 13 18 203 0.02

Fig. 21 Energy strategies computed with different optimization algorithms

8 Case-Based Inhabitant Services

Let’s investigate the computation of energy strategies without designing input-
output model (neither from knowledge nor from observations), which is often a
big issue for the deployment of smart-home technologies.

8.1 Proposed Approach

Let’s push the clustering of Sect. 6 one step further ahead in order to implement
the case-based approach represented in Fig. 18. In order to cluster vectors of
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heterogeneous variables dealing with a specific day, a sensitive distance has been
introduced in Eq. (11). It is a way to normalize different types of variables like
temperature, power, CO2 concentration,. . .

The principle of the case-based reasoning is to do clusters of context-similar
days, i.e. days for which context variable values are closed. Then, the search for a
good energy strategy among days similar in context to the day studied, allows us
to determine whether the actions recorded led to better performance on the effect
variables. It’s a self-experimental approach, where occupants experiment different
strategies and the energy management decision-aided system determine what was
the best strategy ever experimented.

Nevertheless, the number of measurements has to be big enough to ensure that
same recorded context variable values and same recorded action variable values lead
to the same recorded variable effects. To establish this completeness property, the
distance is highly determinant but the sensitive distances are arbitrary defined by
an expert: it’s not satisfactory. This distance is expanded to a weighted sensitive
distance.

Definition: Weighted Sensitive Distance

d�,W (v1, v2) = 1

n

n∑

i=1

wi

|v1,i − v2,i |
�i

(12)

W ∈ R
n/

n∑

i=1

Wi = 1

The vector of weights W is going to be adjusted so that the same context and the
same actions lead to the same effects, as much as possible. In order to determine
whether 2 vectors of effects are similar, a threshold is needed. The expert-defined
sensitive value �i related to each effect variable is going to be used: it stands for the
human perceivable sensitivity to a variation of �i in the value of the variable vi .

Definition: Effect-Similar Vectors Two vectors of effect variables V and V ′ are
similar if

∀i ∈ {1, . . . , dim(V )}, |Vi − V ′i | < �i (13)

Establishing the completeness of a case-based reasoning problem consists in
computing whether there exists a weight vector W such as when the W -weighted
sensible distance between 2 cause vectors (context and action variables) is small,
it implies that the resulting effects are similar. An optimization approach is
proposed:

1. set i = 0
2. choose an initial weight vector Wi for causes (for instance, n times 1/n), i.e.

context and action variables
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3. gather the causes, which are closed, using a k-mean clustering approach with the
weighted sensitive distance d�,Wi

(v1, v2) and initially k = n.
4. adjust Wi to Wi+1 so that the clusters’ magnitude, i.e. the average sensitive

distance within the effects in each cluster of similar causes is as small as possible,
and the number of clusters is as small as possible

5. if Wi+1 is almost same than Wi , stop and check among each cluster whether
all the couples of effect vectors v1 and v2 are similar, i.e. ∀i, |Vi − V ′i | < �i ;
otherwise, increment i and go to point 3.

Once the weighted sensitive distance defined and completeness verified, similar
context days of a current day context v ∈ Vc can be selected. Let’s consider the
maximum weighted sensitive distance Tc delimiting a neighborhood around the
current day context v: Nc(v, η) = {vi; d�,W (v, vi) ≤ η; v ∈ Vc, vi ∈ Vc,∀i}.
Then among this neighborhood, the best effects will be selected (let’s say day i∗)
and it will determine the best actions ever seen.

8.2 Results for H358 Office

This section presents a demonstration for the proposed approach applied to the H358
office. The sensors data and weather conditions have been recorded for a period of
time starting from April 2015 and going till October 2016 with a 1-h time step.
Table 1 describes the different variables, their units and in which group they were
allocated (Context, actions, effects) depending on their roles.

During the summer (from April to September 2015), the heater does not
work, and some of the data are missing specially during some holidays such
as 29/05/2015–01/06/2015 and 20/06/2016–22/06/2016. Only working days were
chosen (no weekends or closed days, as there are no occupants in these days) for
periods: 01/05/2015–28/05/2015, 01/06/2015–23/07/2015, 11/05/2016–31/05/2016
and 02/06/2016–19/06/2016; after filtering, 100 days have been found for training
the model.

Table 1 Table of features in the building
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When applying the proposed approach, using a Mac laptop with Core-i5 (2,7
Ghz) processor and 8 Giga Bytes of memory, the genetic algorithm needed 6900 s
about 2 h with 11 iterations. The algorithm leads to the following W vector:

W =[0.031813, 0.962732, 0.450447, 0.501815, 0.008006, . . .

. . . 0.001168, 0.006802, 0.039470, 0.7701]

It represents the relative weights for the different variables, respectively: Tout,
Tcorridor, window opening, door opening, total electric power, phi sun, occupancy,
nebulosity, Corridor CO2 concentration.

With weighted sensitive distance, it is possible to get the similar days and extract
from the recorded history the day with the best satisfaction and recommend it to the
occupants as in Figs. 22 and 23.

Fig. 22 Applying the case-based approach on a day 19/8/2016
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Fig. 23 Applying the case-based approach on a day 27/8/2016

The recommended day is the day with the best performance, here in terms of
user satisfactions, among the similar context days. It presents how the occupants
can change his actions and the expected improvement on his satisfaction.

In the next, the solving approach is validated and it reveals how it can improve
the user satisfaction.

8.3 Validation for H358 Office

Validating the proposed case-based approach for H358 office is carried out in 2
steps: validation of the completeness and validation of the effect improvement.
Nevertheless, to avoid wrong conclusions due to modeling errors, the recorded effect
variables have been replaced by re-simulated effect variables using the knowledge
model given by Eqs. (8) and (10).
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Fig. 24 Results of applying recommended actions

Let’s validate the completeness of the available data for H358 for the following
set of days: From 22/06/2016 to 30/07/2016, . . . according to the weighted distance
W resulting from GA optimization. Figure 24 shows that when applying the same
set of actions to two similar context days, their effects are similar. For example, with
09/07/2016, the proposed approach finds 21/07/2015 as similar day. When applying
the set of actions from 21/07/2015 to 09/07/2016, the obtained indoor temperature
and CO2 concentration are similar to those of 21/07/2015, the indoor temperature
difference between the two days is about 1.5 ◦C and this metric for the CO2 level is
less than 150 ppm.

For each day i of the 34 testing days, suppose that �E = |E∗ − Ē| and
�T,�CO2 are the difference of indoor temperature and CO2 concentration of �E,
respectively. �T and �CO2 are computed by the maximum difference between
each hour of two days, respectively. It has been tested with 34 days, and the result is
showed in Fig. 25. The mean difference of temperature—�T is about 1.56 ◦C and
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Fig. 25 Table of results for validating the hypothesis

the mean difference of CO2—�CO2 is about 199 ppm with all pairs of days. The
maximum value of �T is 2 ◦C and the maximum value of �CO2 is 400 ppm.

The second validation step consists in checking whether there are improvements
in resulting best effects but using re-simulated effects to avoid impacts of modeling
errors. For each day, it consists in determining the best actions from recorded similar
context days and to simulate the resulting effects from action and context variables
in order to compare the resulting performances between recorded data and best
effects. How much is the improvement?

For a specific day i with context vc,i ∈ Vc, let’s denote | = {j ; i �= j, vc,j ∈
Nc(vc,i , η)}, the context-similar days for day i. Let’s denote i∗ ∈ J , the best
context-similar effect days from historical recorded data. va,i∗ ∈ Va denotes
the best set of actions according to the recorded history. Let’s verify that the
recommended set of actions enhance the occupant’s satisfaction. To do that, let’s
compare the best effect ve,i∗ of the day i∗ to re-simulated similar context days to the
re-simulated effect ve,i with the real actions va,i of occupants during the day. From
that, it could estimate the enhancement of recommended actions to the occupant’s
satisfaction defined in Fig. 5. The concept of this validation method is shown in
Fig. 26.

For this validation test, the effect vector contains the resulting occupant satisfac-
tion S(ve,i), which is composed of thermal and air quality satisfactions. The global
satisfaction is given by

S(ve,i) = α ∗ T S(ve,i)+ (1− α) ∗ CS(ve,i) (14)

with α ∈ (0, 1). It represents the relative importance of thermal satisfaction (TS)
with the air quality satisfaction (CS) (as shown in Fig. 5).

Suppose that S(ve,i∗) is the occupant’s satisfaction obtained for effect ve,i∗ . The
enhancement obtained when applying the recommended set of actions is computed
as follows:

H(S(ve,i), S(ve,i∗)) = S(ve,i∗)− S(ve,i)

| S(ve,i) | (15)
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Fig. 26 The concept of recommended actions validation

Fig. 27 Results of recommended actions to enhance global satisfaction (When no similar context
day is not found the same actions of the test day are used for simulation)

If H(S, S∗) > 0, it means that the recommended actions enhanced the
satisfaction of occupants compared to the real actions. However, due to the limited
number of data (34 testing days), we could recommend a set of actions to only 13
days, so there are 21 days we could not find similar days from the past days. This is
the result of comparing recommended satisfaction with real satisfaction in this case.

From Fig. 27, it can be seen that, with 13 days, the recommended set of actions
could enhance the satisfaction for 10 days (77%). There are 21 days where the
approach could not find similar Context days and recommend actions due to the
limitation of data.

In different days, the recommended actions could improve from 8 to 18%
occupants’ global satisfaction. Regarding the example shown in Fig. 28, when
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Fig. 28 Results of applying recommended actions between 14/07/2016 and 16/07/2016

applying recommended actions between 14/07/2016 and 16/07/2016, the global
satisfaction was better by 18 and 11%, respectively, than real satisfaction; the
detailed results of these days are shown in Fig. 28.

It can be seen in Fig. 28, for 14/07/2016, when applying recommended actions,
the recommended actions could reduce the indoor temperature by about 1 circC and
with 16/07/2016, the indoor temperature could decrease by 0.5 circC.

Limitation of data is the challenge of this approach. For some days, the work
could not find any day having similar context features because of the restriction of
data. It is necessary to have enough significant data to find similar days and choose
the best set of actions.
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9 Conclusion

In this introductory chapter, the different issues to be solved for decision-aided
systems dedicated to energy smart-homes have been pointed out and the different
kinds of problems to be solved stated. It has been shown that variables belong to
different categories: context and action variables among the causes, and effect and
performance variables among the consequences. It has been discussed that a living
area (home/office) is providing services to inhabitants, some are energy consuming
and the energy management problem consists in supporting people in taking relevant
decisions taking into account that most phenomena are invisible, preferences are
personal, sobriety and flexibility are important issues. The modeling problem was
presented as a major barrier to the diffusion of energy smart building technologies.
Knowledge models are difficult to establish because their structure is generally not
suited for parameter estimation but they are by nature yielding physically consistent
simulated data. Conversely, regressive models are easy to adapt to recorded data
but they are highly dependent of the content of the dataset used for parameter
adjustment: physical inconsistencies might appear, even for sliding models with
adaptative learning. Case-model based only on data, without formalized relations
between data, is a promising approach. Mirroring services have been exemplified as
well as replay and suggest services where different optimization algorithms can be
used with discussed specificities.

All the topics of this chapter are further investigated in the book. One important
issue in building sector is to cope with gaps into datasets, which are quite common,
and faulty component. It’s discussed in chapter 13.
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Dynamic Models for Energy Control
of Smart Homes

Christian Ghiaus

1 Introduction

Dynamic models are widely used for optimization of energy consumption in
buildings, both in design and operation phase. A vast literature exists on modelling
and software implementation for thermal simulation of buildings based of physical
laws of energy and mass transfer [1–3].

The design of control systems requires thermal models of the building. Linear
Time Invariant (LTI) models, such as state-space representations, transfer functions
or zero-pole-gain models, are widely used for this aim. However, obtaining LTI
models for the thermal behaviour of the buildings is difficult for two reasons. First,
buildings are complex objects modelled by a set of partial differential equations
and non-linear functions that describe the heat transfer by conduction, convection
and radiation and energy transport by advection. For the range of variables involved
in heat transfer occurring in buildings, these equations can be considered linear or
are locally linearizable. The problem is to obtain the models for a whole building
by using the models of the components. Second, the models used in heat transfer
are thermal networks, while the models used in control theory are LTI models. The
problem is to transform models with hundreds of parameters from thermal networks
to LTI representation.

This chapter deals with these two problems. It presents two algorithms, one
for assembling the thermal circuits and the other for extracting the state-space
representation from the thermal circuit. Although the examples are given for thermal
models of buildings, the two algorithms are of general interest.
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2 Thermal Networks

There are three forms of heat transfer: conduction, convection and radiation. Heat
is also carried by mass flow or advection. Heat transfer can be modelled by thermal
circuits or networks composed of nodes and branches. The nodes, which may
have capacities, are connected by conductances. There are two types of sources
in the thermal networks: temperature (on the branches) and heat flow rate sources
(connected to nodes).

2.1 Heat Sources

2.1.1 Temperature Sources

A temperature source (Fig. 1a) represents a difference of temperature on a branch
which does not change with the flow rate crossing the branch. In the case of
buildings, typically they model:

– Outdoor air which does not change its temperature with the temperature of the
surfaces of the buildings.

– Temperature of the ground at a depth at which it is not influenced by the building.
– Adjacent spaces that have their temperature controlled by thermostats.

2.1.2 Heat Flow Rate Sources

A heat flow rate source (Fig. 1b) represents a thermal energy rate that does not
change with the temperature node in which it is entering. In the case of buildings,
typically they model:

– Solar (or short wave) radiation on the surfaces of the building
– Electrical power from household appliances which is transferred to the indoor air

through convection

Fig. 1 Sources of: (a)
temperature; (b) heat flow
rate
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– Heat transferred through convection from occupants to the indoor air.

The solar (or short wave) radiation in a building is entering through the windows,
touches some surface of the indoor walls and then it is multi-reflected. This heat
flow rate is modelled by heat flow rate sources. For finding the values of these
sources, let us consider radiation exchange between opaque, diffuse, grey surfaces
in an enclosure formed by j = 1 . . . n surfaces Sj with reflection coefficient ρj. The
view factors between the surfaces are Fij. The direct irradiance of each surface is
E0
j . The total thermal flux received by the surface Si directly and after reflection is

SiEi = SiE
0
i +

n∑

j=1

FjiSjρjEj (1)

By using the reciprocity relation for view factors, FijSi = FjiSj, Eq. (1) becomes:

Ei −
n∑

j=1

FijρjEj = E0
i (2)

The set of Eq. (2) can be written in matrix form

⎡

⎢⎢⎣

1− ρ1F11 −ρ2F12 . . . −ρnF1n

− ρ1F21 1− ρ2F21 . . . −ρnF2n

. . . . . . . . . . . .

− ρ1F1n −ρ2F2n . . . 1− ρnFnn

⎤

⎥⎥⎦

⎡

⎢⎢⎣

E1

E2

. . .

En

⎤

⎥⎥⎦ =

⎡

⎢⎢⎣

E0
1

E0
2

. . .

E0
n

⎤

⎥⎥⎦ (3)

or

(I− Fρ)E = E0 (4)

where

I =

⎡

⎢⎢⎣

1 0 . . . 0
0 1 . . . 0
. . . . . . . . . . . .

0 0 . . . 1

⎤

⎥⎥⎦ ;F =

⎡

⎢⎢⎣

F11 F12 . . . F1n

F21 F21 . . . F2n

. . . . . . . . . . . .

F1n F2n . . . Fnn

⎤

⎥⎥⎦ ;ρ =

⎡

⎢⎢⎣

ρ1 0 . . . 0
0 ρ2 . . . 0
. . . . . . . . . . . .

0 0 . . . ρ3

⎤

⎥⎥⎦

(5)

and the vectors

E =

⎡

⎢⎢⎣

E1

E2

. . .

En

⎤

⎥⎥⎦ ;E0 =

⎡

⎢⎢⎣

E0
1

E0
2

. . .

E0
n

⎤

⎥⎥⎦ (6)
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The vector of irradiance of the surfaces is then

E = (I− Fρ)−1 E0 (7)

Then, the heat flow rate source for each surface Si is qi = EiSi.
Calculating the view factors Fij may be complicated [4]. A simple but rough

estimation for rooms with planar surfaces is

Fij ∼= Sj∑
k �=j Sk

;Fii = 0 (8)

which complies with the summation rule of view factors,
∑n

j=1 Fij = 1, but not
with the reciprocity relation, FijSi = FjiSj. Another simplified estimation,

Fij ∼= Sj∑
k Sk

(9)

complies with the summation rule and with reciprocity relation but results in Fii �= 0.

2.2 Heat Resistances (or Conductances)

The three modes of heat transfer (conduction, convection and radiation) and the heat
advection can be modelled by thermal resistances or conductances (Fig. 2).

2.2.1 Conduction

Thermal conduction is the heat diffusion in solids in the direction of the temperature
gradient (Fig. 2a). Fourier law, the equation relating the thermal heat flow rate in a

Fig. 2 Conductances in heat transfer and energy advection: (a) conduction; (b) convection; (c)
radiation; (d) advection
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direction , qx, to the temperature gradient, dθ /dx, in the direction x is:

qx = −κS dθ

dx
(10)

where S is the area of the surface perpendicular to the heat flow rate qx. The minus
sign shows that heat transfer is from high to low temperature.

Let us consider stationary conduction in a stream tube in a homogenous and
isotropic material without internal heat sources (Fig. 3a). Since the heat flow rate q
is conserved, Fourier law in section s of the streamline is

q = −κS dθ

ds
(11)

where the conductivity κ = κ(s) and the area surface S = S(s) depend on the
curvilinear coordinate s. By separating the variables, Eq. (11) becomes:

q
ds

κS
= −dθ (12)

By integrating Eq. (12) from s0 to s, the temperature variation with the distance,

q

∫ s1

s0

ds

κS
= −

∫ θ1

θ0

dθ (13)

can be written as

qR = θ0 − θ (14)

where

Fig. 3 Steady-state thermal conduction: (a) stream tube; (b) thermal network model
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R =
∫ s

s0

ds

κS
(15)

is the thermal resistance of the stream tube between s0 and s.
If there are internal sources, the variation of the heat flow rate along the

curvilinear coordinate ds is

dq = p dV (16)

where dV is the infinitesimal volume. If ds → 0, then dV = S ds + dS ds. By
integrating Eq. (16) between s0 and s,

∫ q
q0

dq = ∫ s
s0
p S ds, it becomes:

q(s) =
∫ s

s0

p S ds + q0 (17)

The flow rate getting out through the surface S1 is:

q1 =
∫ s1

s0

p S ds + q0 (18)

where q0 is the heat flow rate entering through the surface S0. Substituting (18) in
(11), we obtain after integration

θ1 =
∫ s1

s0

1

κS

(∫ s

s0

− p S ds′
)

ds − q0

∫ s1

s0

1

κS
ds + θ0 (19)

By substituting in Eq. (19) the expression of thermal resistances given by
Eq. (15),

R0 =
∫ s1

s0

ds

κS
(20)

we obtain

θ1 = −
∫ s1

s0

1

κS

(∫ s

s0

p S ds′
)

ds − R0q0 + θ0 (21)

Equations (18) and (21) can be represented by the thermal circuit presented in
Fig. 3b where the heat rate low source is

f1 =
∫ s

s0

p S ds (22)

and the temperature source is
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b0 =
∫ s1

s0

1

κS

(∫ s

s0

p S ds′
)

ds (23)

Equation (23) can be integrated by parts. By noting u ≡ ∫ s1
s0

pSds and v′ ≡ 1
κS

,

the integration by parts
∫

uv
′
ds = uv − ∫

u
′
v ds of Eq. (23) becomes

b0 = −
⎛

⎝
s1∫

s0

pS ds

⎞

⎠

⎛

⎝
s1∫

s0

1

κS
ds

⎞

⎠+
s1∫

s0

pS

⎛

⎝
s∫

s0

1

κS
ds′

⎞

⎠ ds (24)

By substituting in Eq. (24) the expressions of R given by Eq. (15) and R0 given
by Eq. (20), we obtain:

b0 = −R0

s1∫

s0

p S ds +
s1∫

s0

R p S ds (25)

With these notations, Eq. (18) becomes

q1 = q0 + f1 (26)

and Eq. (21) becomes

θ0 − θ1 + b0 = R0q0 (27)

where

e0 = θ0 − θ1 + b0 (28)

is the difference of temperature across the thermal resistance R0.

2.2.2 Convection

Convection implies heat transfer in fluids (Fig. 1b). If steady state is considered,
Newton’s law of convection is used, which is a phenomenological simplification
having an expression similar to Fourier law:

q = hS (θ0 − θ1) (29)

where h is the convective coefficient determined experimentally [4]. Typical values
of the heat convection coefficient are hi = 8 W/m2K inside and ho = 25 W/m2K
outside the building [1].
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2.2.3 Long-Wave Radiation

Long-wave radiation exchange is between two surfaces that are facing each other
and that have different temperatures (Fig. 2c). The radiative heat flow rate between
two black body surfaces i and j is [4]

qij = SiFij

(
Mo

i −Mo
j

)
(30)

where

Si is the area of the surface;
Fij—view factor between surface i and surface j;

Mo
i and Mo

j —the black body radiant emittance of the surfaces i and j, respectively.
By using Stefan–Boltzmann law,

M = σT 4 (31)

where σ is Stefan–Boltzmann constant and T is the temperature of the surface
expressed in kelvin, Eq. (30) becomes

qij = SiFij σ
(
T 4
i − T 4

j

)
(32)

The two temperatures T 4
i and T 4

j may be linearized around a mean value T ,

T 4
i = T

4 + 4T
3 (
Ti − T

)
(33)

and

T 4
j = T

4 + 4T
3 (
Tj − T

)
(34)

By subtracting Eq. (34) from (33), we obtain

T 4
i − T 4

j = 4T
3 (
Ti − Tj

)
(35)

The exact value of the mean value T can be obtained from the equivalence of Eq.
(35) with

T 4
i − T 4

j =
(
T 2
i + T 2

j

) (
Ti + Tj

) (
Ti − Tj

)
(36)

as

T = 3

√
1

4

(
T 2
i + T 2

j

) (
Ti + Tj

)
(37)
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Substituting (37) in (32), we obtain the linear expression of the heat flow rate:

qij = SiFij σ4T
3 (
Ti − Tj

)
(38)

where SiFij σ4T
3

may be considered as a thermal conductance. For 15
◦
C < θ < 30

◦
C,

i.e. 288.15 K < T < 303.15 K, the value of σ4T
3

is about 6 W/m2K, more exactly

5.41 < σ4T
3
< 6.31 W/m2K.

The radiosity of a surface represents the radiative fluxes leaving an opaque,
diffuse, grey body surface

Ji = εMo
i + ρiEi (39)

where

εiM
o
i is the emitted radiant flux, with εi the emissivity and Mo

i the black body
radiant emittance of the surface i;

ρiEi—the reflected radiant flux, with ρi the reflectivity and Ei the incident radiant
flux on the surface.

The radiative exchange between two opaque, diffuse, grey surfaces may be
expressed by an equation similar to (30):

qij = SiFij
(
Ji − Jj

)
(40)

Following the same reasoning as before, the linear expression of (40) is

qij = SiFij4σT
3 (
Ji − Jj

)
(41)

where T is given by (37).
An example of transforming a radiative network into a thermal network is given

in Fig. 4. The conductances for the radiation network are:

Fig. 4 Radiation networks and their transformation to thermal networks: (a) an example of
radiation network; (b) same network as in (a) but arranged to have a source of emittance on
branch; (c) thermal network of the radiation network from (b)—the sources and the conductances
are changed
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G1 = ε1

1− ε1
S1;G2 = F12S1;G3 = ε2

1− ε2
S2;G4 = F13S1;G5 = F23S2

(42)

The oriented incidence matrix A, the conductance matrix G and the vector of inputs
b are:

A =

⎡

⎢⎢⎢⎢⎢⎣

1 0
− 1 1

0 1
− 1 0

0 −1

⎤

⎥⎥⎥⎥⎥⎦
;G =

⎡

⎢⎢⎢⎢⎢⎣

G1 0 0 0 0
0 G2 0 0 0
0 0 G3 0 0
0 0 0 G4 0
0 0 0 0 G4

⎤

⎥⎥⎥⎥⎥⎦
;b =

⎡

⎢⎢⎢⎢⎢⎣

Mo
1
0

Mo
2

−Mo
3

−Mo
3

⎤

⎥⎥⎥⎥⎥⎦
(43)

respectively (see Sect. 3.2 for their definition). The radiosities j≡ [J1 J2]T are given
by:

j =
(

AT GA
)−1

AT Gb (44)

(see Sect. 4.1 for details).
The radiative network, in which the unknowns are radiosities, can be transformed

into a thermal network, in which the unknowns in the nodes are temperatures, by
using the transformations for emittances and radiosities.

Mo = σT 4 and J = σθ4 (45)

where T is a temperature source and θ is an unknown temperature. The conduc-
tances for the temperature network become:

G1= ε1

1−ε1
S1σ4T

3;G2=F12S1σ4T
3;G3= ε2

1− ε2
S2σ4T

3;G4=F13S1σ4T
3;

G5=F23S2σ4T
3

(46)

2.2.4 Advection

Energy advection is the transport of energy by a mass flow rate entering and leaving
a control volume (Fig. 1d). For example, this is the case of energy transported by air
in ventilation. The heat flow rate transported is:

q12 = ṁc (θ1 − θ2) (47)

where ṁ is the mass flow rate and c is the heat capacity of the fluid.



Dynamic Models for Energy Control of Smart Homes 173

Table 1 Values of airflow rates in air changes per hour as a function of the position of the
window [5] Table 1.12.1-4

Position of the window Air changes per hour

Closed windows, closed doors 0–0.5
Tilt window, closed jealousy 0.3–1.5
Tilt window, no jealousy 0.8–4.0
Half-opened window 5–10
Full-opened window 9–15
Windows and French-windows fully opened About 40

Table 2 Typical values of airflow rate per person [5] §3.5.1.1.2

Typical situations Volumetric airflow m3/h per person

Theatre, concert, cinema, exhibition halls, supermarkets,
museums, gyms

20

Restaurants, rest area, conference rooms, classrooms,
auditorium

30

Office rooms 40
Open office rooms 60

The mass flow rate is calculated from the volumetric flow rate V̇ :

ṁ = ρV̇ (48)

where ρ is the fluid density. The volumetric flow rate V̇ is obtained from hydraulic or
aeraulic calculations. the infiltration (or the airtightness) of the building is measured
by a blower door. It may be expressed in “air changes per hour” which represents
the number of volumes of air contained by the building which are vehiculated in
an hour. Some indicative values are given in Table 1. Typical values for airflow per
person are given in Table 2.

2.3 Heat Capacities

The heat capacity C of a control volume is the amount of heat �Q that needs to be
added in order to increase the temperature by �θ :

C = lim
Δθ→0

ΔQ

Δθ
(49)

For a homogeneous object of mass m having the specific heat c,

C = mc (50)
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From Eq. (49), the flow rate entering the body is

q = Cθ̇ (51)

3 Assembling of Thermal Networks

Buildings are systems composed of elements such as walls, windows and doors
connected through heat and mass transfer. Therefore, the models of whole buildings
are obtained by combining the models of individual components. Two important
methods for obtaining large models are coupling and assembling. In coupling, the
system of equations, which is obtained from the models of each element, is solved
iteratively [6–8]. For example, building energy software tools use iterative methods
to solve the coupled equations: EnergyPlus uses Gauss-Seidel successive substitu-
tion or Newton-Raphson method [2, 9], TRNSYS uses successive substitutions and
Powell’s method [3], ESP-r solves independently the domain equations and then the
coupling [6], IDA ICE uses a modular approach [10].

The assembling of models is very different of coupling. While in coupling
the models of the elements are separate, in assembling the complex model is a
system of linear equations, at least at a certain moment during an iterative solving
procedure. Assembling is an important reason for the use of models such as transfer
functions in thermal modelling of buildings. More generally, input-output linear
time invariant (LTI) models, such as state-space, transfer function, zero-pole-gain
models [11] or two-port networks [12–15] may be connected to obtain a new,
more complex, model. The model obtained by assembling has the advantage that
can be analysed (e.g. find the eigenvalue and the time constants, the static gain,
stability, controllability, observability, identifiability). However, these techniques
are not applicable to networks or circuits that model transport phenomena in which
the connections are done by conservation laws (such as conservation of mass,
energy, momentum and electrical charge). The usual technique used for network
models is coupling.

Circuits, networks or bond graphs are widely used for modelling transfer
phenomena [16–17]. The method of thermal networks (or circuits) is present in
almost any primer on heat transfer. The heat conduction equation, introduced by
Fourier, has been used for about two centuries to describe diffusion phenomena in
dynamical physical systems. Ohm work on electricity was inspired by Fourier’s heat
conduction model; he considered the flow of electricity as being exactly analogue
to the flow of heat. Fick also used an analogy with Fourier equation for transient
diffusion of solutes in liquids. Models influenced by the diffusion equation are used
for diffusion of gases, Brownian motion, flow in porous materials, random walk,
etc. [18]. Therefore, it is important to have a procedure for assembling the networks
(or the circuits).
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There are well-established algorithms for assembling models represented by
finite elements [19–21]. However, for thermal networks the solution is obtained by
solving iteratively the set of equations of the elementary models [22].

This section proposes a data structure for thermal networks and an assembling
procedure. Then, aspects of software implementation are discussed. The example
is given for a very simple, yet relevant, network on which the procedure can be
checked by hand.

3.1 Defining the Problem of Circuit Assembling

Given a number of thermal circuits, TC1, TC2, . . . , TCn, and knowing that some of
their nodes are in common, find the assembled circuit TC. A simple example is given
in Fig. 5. There are four thermal circuits, TC1, TC2, TC3, TC4, having in common
some of their nodes: the node 5 of TC1 is common with the node 1 of TC2, the node
2 of TC2 is common with node 2 of TC3 and the node 3 of TC2 is in common with
the node 2 of TC4 (Fig. 5b). Find the model of the assembled circuit TC shown in
Fig. 5a.

From conservation of energy, it results that if there is a flow source in the node of
the assembled circuit TC, it needs to be the sum of the sources in the respective
nodes of each circuit TCk. For example, the flow source in the node 5 of the
assembled circuit from Fig. 5a is the sum of flow sources present in node 5 of
TC1 and the flow source present in node 1 of TC2. Since the thermal capacity is
proportional to mass, from the conservation of mass, it results that if there is a
capacity in a node of the assembled circuit, it needs to be the sum of the capacities
in the respective nodes of each circuit TCk. For example, the capacity in node 5 of
the assembled circuit from Fig. 5a is the sum of capacities present in node 5 of TC1
and in node 1 of TC2 shown in Fig. 5b.

To exemplify the procedure, we will use a toy model representing a building
formed by an insulated concrete wall and a glass wall. The room is ventilated and
its air temperature is controlled by a P-controller. Auxiliary load is added to the
room (Fig. 6). The toy model is used to show specific aspects of the assembling
procedure, not for the correctness of the modelling.

We would like to construct separate models for concrete wall, glass wall,
ventilation, and room air (Fig. 7) and to assemble them into one model (Fig. 6).

3.2 Algebraic Description of the Thermal Circuits

A circuit is a weighted oriented graph with node representing temperatures,
branches representing heat flows and the weights representing the thermal conduc-
tances. Some nodes have thermal capacities, but not all of them. Some branches
have temperature sources and some nodes have flow sources, but not all of them.
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Fig. 5 Example of the problem of assembling thermal circuits: given four circuits, assemble them
knowing the common nodes. (a) Assembled circuit. (b) Four disassembled circuits. (c) Assembling
matrix. (d) Algebraic description of each disassembled circuit
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Fig. 6 Toy model used for example

Fig. 7 Model for components to be assembled

The sources represent the input (i.e. the independent) variables of the model. The
temperatures of the nodes and the flows in the branches represent the unknowns
for which the problem is solved. Usually, only some of the temperatures of the
nodes and/or flow in the branches are of practical interest and represent the output
of the model. If the heat flow rate of a branch is considered as an output, then
the temperatures in the nodes of the branch need to be found; the flow in the
branch is calculated as the product between the conductance and the difference of
temperatures.

A thermal circuit may be described by three matrices and three vectors. The
matrices are:

1. A is an oriented incidence matrix with the number of rows equal to the number of
branches and the number of columns equal to the number of nodes of the thermal
circuit. The elements of matrix A are:
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aij =
⎧
⎨

⎩

0 if the heat flow rate i is not connected to the node j
− 1 if the heat flow rate i leaves the node j
1 if the heat flow rate i enters the node j

(52)

2. G is a diagonal matrix of conductances of dimension equal to the number of rows
of A, i.e. the number of branches or the number of conductances. The elements
of matrix G are:

gij =
{
R−1
i for i = j

0 for i �= j
(53)

Note that each branch needs to have a conductance.
3. C is a diagonal matrix of capacitances of dimension equal to the number of

columns of A, i.e. the number of nodes of the thermal circuit. The elements of
matrix C are:

cij =
{
Ci for i = j

0 for i �= j
(54)

Note that not all nodes have a thermal capacity. Since the thermal capacity is
proportional to mass and the mass proportional to volume, a node representing a
surface will always have a zero capacity.

The vectors are:

1. b is a vector indicating the branches which have temperature sources. Its size is
equal to the number of rows of matrix A, i.e. the number of branches. Its elements
are:

bi =
{

1 if there is a temperature source on branch i
0 otherwise

(55)

2. f is a vector indicating the nodes which have a heat flow rate sources. Its size
is equal to the number of columns of matrix A, i.e. the number of nodes. Its
elements are:

fi =
{

1 for flow source in node i
0 otherwise

(56)
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3. y is a vector indicating the temperatures that are considered as outputs. Its size is
equal to vector f. Its elements are:

yi =
{

1 for temperature of node i as output variable
0 otherwise

(57)

Any thermal circuit TC can be described by the list of arrays: {A, G, C, b, f, y}
(Fig. 5d).

3.3 Numbering the Thermal Circuits

The construction of the list of arrays {A, G, C, b, f, y} requires the numbering
of circuits. In principle, the numbering of the nodes and branches can be done
arbitrarily. Once the numbering of the elementary circuits is done, the numbering
of the assembled circuit is automatic.

3.3.1 Numbering Elementary Circuits

The connections between nodes are indicated by the oriented incidence matrix A.
Since numbering becomes tedious for large circuits, the following rules may be
adopted (Fig. 5b):

– Number the nodes in order (from left to right or from right to left).
– Number the branches in increasing order of nodes and orient them from the lower

to the higher node. Note: reference temperature is node 0.

As an example, for the thermal circuit TC1 (red in Fig. 5b), the branches are:

First node Second node Branch

0 1 1
1 2 2
2 3 3
3 4 4
4 5 5

For TC2 (blue in Fig. 5b), the branches are:

First node Second node Branch

1 2 1
1 3 2
2 3 3
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For TC3 (green in Fig. 5b), the branches are:

First node Second node Branch

0 1 1
1 2 2

For TC4 (violet in Fig. 5b), the nodes have the same numbers:

First node Second node Branch

0 1 1
0 1 2

3.3.2 Numbering the Assembled Circuit

When assembling the thermal circuits, some nodes are put in common. Therefore,
the number of nodes in the assembled circuit will be smaller than the sum of the
nodes of elementary circuits. The number of branches will not change. The nodes
and the branches of the assembled circuit will be in the order of assembling (Fig.
5a, Table 3).

The assembling of the circuits is indicated by the assembling matrix. Each row
of this matrix has four elements that indicate two nodes that will be put together:

– Number of circuit 1
– Node of circuit 1
– Number of circuit 2
– Node of circuit 2

For our example, the assembling matrix is:

Ass =
⎡

⎣
1 5 2 1
2 2 3 2
2 3 4 1

⎤

⎦ (58)

The description of the assembled circuit, given by the list TC = {TC1, . . . , TCi}
of list of arrays TCi = {Ai, Gi, Ci, bi, fi, yi} (Fig. 5c), and the assembling matrix Ass
contain all the necessary information for obtaining the assembled circuit.

Table 3 Local and global
indexing of nodes

Thermal circuit TC1 TC2 TC3 TC4

Local node index 1 2 3 4 5 1 2 3 1 2 1
Global node index 1 2 3 4 5 5 6 7 8 6 7
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3.4 Assembling the Circuits

The analysis (or the direct problem) of a thermal circuit TCi is to solve for qi and θi

the equation:

[
G−1

i Ai

− AT
i Ci s

] [
qi
θi

]
=

[
bi
fi

]
(59)

or find ui from equation:

Kiui = ai (60)

where

Ki =
[

G−1
i Ai

− AT
i Ci s

]
;ui =

[
qi
θi

]
; ai =

[
bi
fi

]
.

Let’s note the dissembled block vectors ud, ad and matrix Kd:

ud =
⎡

⎣
u1

. . .

un

⎤

⎦ ; ad =
⎡

⎣
a1

. . .

an

⎤

⎦ ;Kd =
⎡

⎢⎣
K1 0 0

0
. . . 0

0 0 Kn.

⎤

⎥⎦

There is a disassembling matrix Ad which transforms the assembled vectors (i.e.
the block vector of elementary circuits) into disassembled vectors:

ud = Adu; ad = Ada; (61)

The assembled matrix and vectors are obtained by using disassembling matrix
Ad:

K = AT
d KdAd (62)

u = AT
d ud (63)

a = AT
d ad (64)

The elements of the assembled circuit, A, G, C, b, f, y, are then obtained from:
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K =
[

G−1 A
− AT Cs

]
;u =

[
q
θ

]
; a =

[
b
f

]
(65)

3.5 Algorithm

3.5.1 Obtaining the Global Indexes of the Assembling Matrix

In order to indicate the common nodes of the circuits, it is convenient to give the
assembling matrix Ass, of which an example is given in Eq. (58), with four elements
on each line (Fig. 8):

1. Number of the first circuit
2. Local number of the node of the first circuit
3. Number of the second circuit
4. Local number of the node of the second circuit

We need to obtain an assembling matrix Ass of two columns of global disassem-
bled nodes that are put in common. For our example (Fig. 5):

– The node 5 of TC1 is put in common with the node 1 of TC2, which has the global
value 5 + 1 = 6 (5 = number of nodes of TC1, 1 = local index in TC2).

– The node 2 of TC2 (global value 5+ 2) is put in common with the node 2 of TC3
(global value 5 + 3 + 2 = 10, where 5 = number of nodes of TC1, 3 = number
of the nodes of TC2, 2 local index in TC3).

– The node 3 of TC2 (global value 5 + 3 = 8) is put in common with the node 1
of TC4 (global value 5 + 3 + 2 + 1 = 11, where 5 = number of nodes of TC1,
3 = number of the nodes of TC2, 2 = number of nodes in TC3, 1 = local index
in TC4).

From

AssX =
⎡

⎣
1 5 2 1
2 2 3 2
2 3 4 1

⎤

⎦ (66)

we obtain:

Ass =
⎡

⎣
5 6
7 10
8 11

⎤

⎦ (67)

The information on the number of branches and nodes for each thermal circuit
TCk is taken from the length of the vector b.
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Fig. 8 The disassembling matrix: rows correspond to disassembled circuits; columns correspond
to assembled circuits

3.5.2 Obtaining the Disassembling Matrix

The disassembling matrix Ad transforms the assembled vectors into dissembled
vectors (i.e. the block vector of elementary circuits):

ud = Adu; ad = Ada; (68)

The assembling implies that some of the nodes are merged: their number
decreases and their “global” index changes.

First, create a block matrix that keeps the indexes of the temperature nodes:
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Then add the columns that merge:

[1 5 2 1]
col5=col5+col6

[2 2 3 2]
col7=col7+col10 [2 3 4 1]

col7=col7+col10

Eliminate the columns that correspond to the eliminated nodes to obtain

The branches (flows) keep their global number. The disassembling matrix is then
obtained from the block matrix (Fig. 9a) by rearranging the rows in order correspond

to the vector (Fig. 9b):
[

qT1 θT1 qT2 θT2 qT3 θT3 qT4 θT4

]T
.

3.5.3 Algorithm for the Disassembling Matrix

Having the disassembling matrix Ad, the assembling

K = AT
d KdAd (69)

needs the matrix Kd which is a block matrix

Kd =
⎡

⎢⎣
K1 0 0

0
. . . 0

0 0 Kn

⎤

⎥⎦

of block matrices of each thermal circuit TCi

Ki =
[
G−1
i Ai

− AT
i Cis

]
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Fig. 9 Obtaining the disassembling matrix: (a) block matrix for
[
qT1 qT2 qT3 qT4 θT1 θT2 θT3 θT4

]T
.

(b) Block matrix rearranged for
[
qT1 θT1 qT2 θT2 qT3 θT3 qT4 θT4

]T
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Fig. 10 Obtain matrix temperature nodes Adθ : (a) create diagonal matrix; (b) add the column of
the second node to the column of the first node in merging: [1 5 2 1] ➔ col5 = col5 + col6; [2 2 3
2] ➔ col7 = col7 + col10; [2 3 4 1] ➔ col8 = col. 8 = col11; (c) delete the columns of the second
node in merging; (d) obtain matrix Adθ

Fig. 11 Obtain matrix for
flow branches Adq

Algorithm for obtaining the dissembling matrix (Figs. 10, 11, and 12)

3.5.4 Assembled Circuits

The assembled matrix and vector are obtained by using the disassembling matrix
Ad:

K = AT
d KdAd (70)

The elements of the assembled circuit, A, G, C, b, f, y, are then obtained from:
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Fig. 12 Block matrix for
[
qT1 qT2 qT3 qT4 θT1 θT2 θT3 θT4

]T
(first flow branches, then

temperature nodes)

K =
[

G−1 A
− AT Cs

]
;u =

[
q
θ

]
; a =

[
b
f

]
(71)

3.5.5 Global Assembled Indexes

The global indexes of the assembled circuit (Fig. 13) result from the calculation of
the dissembling matrix Ad (Fig. 14).

4 Transforming Thermal Circuits into State-Space
Representation

Thermal circuits are linear models with constant coefficients. However, in control
theory, the state-space representation is widely used. The aim of this chapter is to
transform a thermal circuit, formed by resistors, capacities, temperature sources
and heat flow sources, into its state-space representation. The problem in this
transformation is that some capacities may be zero.
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Fig. 13 Matrix Ad for
[
qT1 θT1 qT2 θT2 qT3 θT3 qT4 θT4

]T
after rearranging in order to

obtain in the order of thermal circuits

Fig. 14 The relation between
the local indexes of the
blocks of circuits and the
global indexes of the
assembled circuit

In this section we will use a very simple model of heat transfer through a wall
(Fig. 15). The model is very simplified (e.g. the number of meshes in the wall is too
small) in order to keep the presentation manageable by hand calculations (Figs. 16
and 17).
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Fig. 15 Typical thermal circuit for heat balance method: (a) usual representation; (b) representa-
tion in the form of typical branches
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Fig. 16 Temperature nodes are ordered so that the capacity matrix contains zero-blocks

Fig. 17 Temperature nodes need to be re-ordered

4.1 Obtaining the System of Differential-Algebraic Equations

The system of equations corresponding to a thermal circuit may be obtained by
using the Kirchhoff’s laws and the constitutive laws for thermal transfer [17, 23].
The steps needed to obtain the differential-algebraic system of equations may be
synthetized in the following algorithm:

1. Group the temperatures according to the type of node: without capacitance (θ so,
θ si, θa), and with capacities (θw1, θw2):

θ = [
θso θsi θa θw1 θw2

]T
(72)
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2. Write the matrices describing the circuit (see an example in Figs. 18 and 19 for
the thermal circuit given in Fig. 15):

(a) Transform the thermal circuit in an oriented graph by indicating the direction
of the heat transfer rate for each branch. The directions are arbitrary (if the
nodes are numbered, can be in increasing order of the node numbering).

(b) Write the oriented incidence matrix A, Eq. (52), conductance matrix G, Eq.
(53), and capacitance matrix C, Eq. (54).

(c) Write the vectors of temperature sources b given by Eq. (55), of flow rate
sources f given by Eq. (56) and of outputs y given by Eq. (57).

3. Apply Kirchhoff’s laws and the constitutive laws to obtain the differential-
algebraic system of equations:

C θ̇ = −AT G A θ+ AT G b+ f

By writing the differences of temperature according to Eq. (28) (equivalent to the
Kirchhoff’s voltage law),

e = −A θ+ b (73)

the balance of heat rates in nodes (equivalent to the Kirchhoff’s current law),

C θ̇ = AT q+ f (74)

and the constitutive laws for heat transfer,

Fig. 18 Obtaining the differential-algebraic equations for the circuit from Fig. 17
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Fig. 19 Obtaining the differential-algebraic equations for the circuit from Fig. 17

q = G e (75)

we obtain the differential algebraic equations describing the thermal circuit:

C θ̇ = K θ+Kb b+ f; (76)

where

K ≡ −AT G A θ and Kb ≡ AT G (77)

If the diagonal matrix C has elements on the diagonal which are zero, the system
of Eq. (76) is a system of differential algebraic equations.

4.2 Obtaining the State-Space Representation
from the Thermal Circuit

If the thermal circuit contains nodes without capacitance, the matrix C is singular.
In order to obtain the state-space model, the equations corresponding to the nodes
without capacitance need to be eliminated from the system of Eq. (76) [23]. By
partitioning the matrix C,

C =
[

0 0
0 CC

]
(78)
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where CC corresponds to the nodes having capacities, the set of Eq. (76) may be
written as:

[
0 0
0 CC

] [
θ̇0

θ̇C

]
=

[
K11 K12

K21 K22

] [
θ0

θC

]
+

[
Kb1

Kb1

]
b+

[
I11 0
0 I22

] [
f0

fC

]
(79)

where

θ0 and f0 correspond to the nodes without thermal capacity;
θC and fC correspond to the nodes with thermal capacity;
CC is the bloc of the partitioned matrix C for which the elements on the diagonal

are non-zero;
K11, K12, K21 and K22 are blocs of the partitioned matrix K obtained according to

the partitioning of the matrix C;
Kb1 and Kb2 are blocs of the partitioned matrix Kb obtained according to the

partitioning of the matrix C;
I11 and I22 are identity matrices.

The state equation of the state-space model is

θ̇C = ASθC + BSu (80)

where the state matrix is

AS = C−1
C

(
−K21K−1

11 K12 +K22

)
(81)

and the input matrix is

BS = C−1
C

[−K21K−1
11 Kb1 +Kb2 −K21K−1

11 I
]

(82)

For the numerical example of the thermal circuit shown in Fig. 15 with the values
of its parameters given in Table 4, the state variables are

θ = [
θa θw1 θw2

]T
(83)

and the bloc vector of inputs is:

u = [
b f0 fC

]T
(84)

The numerical values of the matrices of the model are:
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Table 4 Parameter of the thermal network shown in Fig. 1

Parameter Value

Indoor air capacity, Ca 82 • 103 J/K
Wall capacity, Cw1 = Cw2 2 • 106 J/K
Thermal conductance of the wall, R−1

w 1.45 W/K
Thermal conductance of one third of the wall, R−1

w1 = R−1
w2 = R−1

w3 = 3 R−1
w 4.35 W/K

Thermal conductance of the window and due to losses by ventilation, R−1
v 38.3 W/K

Outdoor convection conductance, R−1
co 250.0 W/K

Indoor convection conductance, R−1
ci 125.0 W/K

(85)

(86)

(87)

Substituting these matrices in Eq. (81), we obtain the state matrix:

AS =

⎡

⎢⎢⎣

−5.18 · 10−4 0 5.13 · 10−5

0 −4.31 · 10−6 2.17 · 10−5

2.10 · 10−6 2.17 · 10−5 −4.28 · 10−5

⎤

⎥⎥⎦ (88)

The input matrix BS has 11 columns, corresponding to the input vector

u = [
bT fT0 fTC

]T = [
Tow 0 0 0 0 Tov Q̇o Q̇i Q̇aux 0 0

]
(89)

The inputs corresponding to zeros are useless and can be eliminated. Therefore,
from the 11 columns of the input matrix BS it can be retained only the columns
corresponding to inputs 1, 6, 7, 8 and 9:
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BS =
⎡

⎣
0 4.67 · 10−4 0 1.18 · 10−5 1.22 · 10−5

2.14 · 10−6 0 8.55 · 10−9 0 0
0 0 0 1.68 · 10−8 0

⎤

⎦ (90)

The output matrix of the state-space representation extracts the output, i.e. the
indoor air temperature θa which is the first element from the state vector:

CS =
[

1 0 0
]

(91)

For the thermal circuit given in Fig. 15, the feedthrough matrix is zero,

DS = 0 (92)

The complete state-space representation of the thermal circuit from Fig. 15, with
the values of its parameters given in Table 4, is

{
θ̇C = ASθC + BSθC

θa = CSθC + DSu
(93)

with the values of the matrices given by Eqs. (88), (90) and (91).
If the term Ca = macaθ̇a is zero, then the state vector is

θ̇ = [
θw1 θw2

]T
(94)

which implies that the matrices in Eqs. (85)–(87) are partitioned correspondingly.
In our numerical example, the first three equations need to be eliminated from the
system of Eq. (76). The state matrix AS, obtained with the expression (81), is

AS =
[−4.31 · 10−6 2.17 · 10−6

2.17 · 10−6 −4.07 · 10−6

]
(95)

The input matrix BS, obtained with the expression (82) and retaining only the
columns corresponding to inputs 1, 6, 7, 8 and 9, is:

BS =
[

2.14 · 10−6 0 8.55 · 10−9 0 0
0 1.89 · 10−6 0 6.46 · 10−8 4.95 · 10−8

]
(96)

The observation equation can be obtained from the first row of Eq. (79) [23]

θ0 = −K−1
11 (K12θC +Kb1b+ I11f0) = −K−1

11

⎛

⎝K12θC +
[

Kb1 I11 0
]
⎡

⎣
b
f0

fC

⎤

⎦

⎞

⎠

(97)
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Then, the output equation is

CS = −K−1
11 K12 (98)

and the feedthrough matrix is

DS = −K−1
11

[−Kb1 I11 0
]

(99)

Keeping only the non-zero inputs
[
Tow Tov Q̇o Q̇i Q̇aux

]
from the input vector

u given by Eq. (89), the output and feedthrough matrices for our numerical example
are:

CS =
[

0 9.89 · 10−2
]

(100)

and

DS =
[

0 9.01 · 10−1 0 2.27 · 10−2 2.35 · 10−2
]

(101)

5 Conclusions

Thermal networks are widely used to model heat transfer. The phenomena of
conduction, convection, radiation and advection can be linearized; as a consequence,
the thermal networks, which are weighted oriented graphs, can be represented by
matrices and vectors.

State-space representation is widely used in the analysis and synthesis of control
systems. Linear time invariant models may be used as local linearized models
of non-linear systems. Therefore, the linear algebra representation of state-space
models has a large field of applications.

This chapter described succinctly the modelling of heat transfer by thermal
networks and emphasized the fact that the temperature and heat-flow rate sources
are inputs (or independent variables), the temperatures in nodes and the flow rates
are outputs (or dependent variables), and the resistances and the capacities are
parameters of a model structure. A data structure composed of matrices and vectors
was proposed. The novelty of the data structure is the definition of an output vector
which represents a subset of temperatures that are needed as observables.

A second novelty presented in this chapter is the assembling of thermal circuits.
This technique allows us to construct large models from constitutive blocs. For
example, the model of a complex building may be obtained by interconnecting
typical blocs such as walls, floors, doors and windows. Complex systems can be
obtained also by coupling the equations of the typical blocs and solving iteratively
the system of equations. The advantage of assembling is that the model of the whole



Dynamic Models for Energy Control of Smart Homes 197

system is a single thermal network that can be analysed. The key point in assembling
is obtaining the disassembling matrix. An algorithm for obtaining it is presented.

The third novelty is the transformation of thermal circuit in state-space rep-
resentation. While examples for simple circuits are abundant and other methods
(such as Kirchhoff laws and nodal analysis) are available, the method proposed is
directly related to the matrix representation of the thermal circuits. The principal
characteristic of the method is Gauss elimination of the block matrices and vectors
related to node temperatures that do not have capacities (i.e. that are not state
variables).

Assembling thermal circuits and obtaining state-space models from them can be
used in at least two important fields. The first is Building Information Modelling
(BIM): each component has its model and the model of the building can be
obtained by assembling the models of components. The second is system theory
in which the state space is a suitable form of the model for system analysis
and synthesis: eigenvalue decomposition, model order reduction, model predictive
control, observability, controllability and identifiability, etc.
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Machine Learning for Activity
Recognition in Smart Buildings: A
Survey

Manar Amayri, Samer Ali, Nizar Bouguila, and Stephane Ploix

1 Introduction

New buildings (e.g., commercial, residential, public) are now generally equipped
with a variety of smart sensors and smart meters. This makes these buildings smart
with improved capacities, opportunities, and applications related, for instance, to
energy management systems which main goal is to decrease waste mainly due to
irresponsible human behaviors [1]. Indeed, energy deficiency represents a global
problem. Hence, energy generation increase and consumption efficiency are two
active areas of research [2]. Nonetheless, energy usage is ever in demand particularly
given the various technological advances that rely on electrical power for operating.

The automatic reduction of energy requirements in buildings has received a lot
of attention recently [3] and early attempts included automatic regulation of light or
heating in home automation. However, these approaches were deemed inappropriate
due to improper reaction to the expectations of the users; i.e., the occupants [4].
The majority of recent studies has shown the importance of putting the users in
the energy-saving loop while ensuring their comfort [5]. Occupants’ behavior has
a major influence on building energy consumption [6–9]. Hence, [10] introduced
methods for modeling occupant behavior and quantifying its impact on building
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energy use. The major themes include advancements in analytic data collection
techniques, modeling methods, and applications that provide insights into behavior-
related energy saving’s potential and impact [11]. There is a large gap between the
predicted energy demand and the actual consumption, once the building is in use
[12]. According to [13], occupants’ behaviors account for significant uncertainty
in building energy use. One cause could be that occupant behavior might not fit
with the energy concept and thus cause counterproductive effects [14]. Occupants
have influence due to their presence and activities in the building and due to their
control actions, which aim to improve indoor environmental conditions (thermal,
air quality, light, noise). Consequently, the weight of the user behavior on the
energy balance of a building increases [15]. Indeed, several studies suggest huge
energy savings in buildings just by detecting occupancy (presence/absence) as
shown, for instance, in [10] where motion sensors and magnetic door switches
are used to detect occupancy in offices and HVAC (Heating, Ventilation, and air-
conditioning) control, thereby estimating potential energy savings from 10–15%.
Similarly, [16] focus on how to estimate the number of occupants in a room by
processing CO2 concentration, temperature, and HVAC actuation levels in order
to identify a dynamic model. Additionally, there is a lot of potential for energy
savings and increasing occupants’ comfort by detecting activities and this motivates
to carry forward the activity recognition task [17]. Methods investigated for finding
occupancy using common sensors vary from basic single feature classifiers that
distinguish between two classes (presence and absence) [17, 18] to multi-sensor
multi-feature models [16, 19–22]. A primary approach, which is prevalent in many
commercial buildings, is to use passive infrared (PIR) sensors for occupancy
estimation. However, motion detectors fail to detect presence when occupants
remain relatively still. This is quite common during activities like regular deskwork.
Furthermore, drifts of warm or cold air on objects can be interpreted as motion
leading to false positive detection. This makes the use of PIR sensors alone, less
attractive for occupancy counting purposes. Fusion of PIR sensor data with other
sensors can be useful as discussed in [10]. As such, motion sensors are usually
paired with magnetic reed switches for occupancy detection in order to increase
the efficiency of HVAC systems in smart buildings in a simple and non-intrusive
manner. Acoustic sensors may also be used [23]. However, environment audio
signals may cause many false positives when no support from other sensors is
available. The use of pressure, PIR, and acoustic sensors to detect occupancy in
single desk offices has been discussed in [24]. Further tagging of activities is based
on this knowledge, where a pressure sensor detects chairs occupancy with the offices
filmed and then the footage is used to manually classify the activities of people over
time.

Smart buildings related tasks in general and activity recognition in particular have
been widely approached using classic optimization models (e.g., meta-heuristics,
linear programming, dynamic programming, etc.). Unfortunately, these approaches
do not take full advantage of the large-scale data generated by smart buildings
settings. In order to extract and exploit the knowledge hidden in these data, recent
trend and efforts in smart building applications have been based on data mining and
machine learning techniques [25]. The main goal is to build specific models from the
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available data with respect to the task to tackle. A typical data mining and machine
learning framework is generally based on the following steps. The first step is data
collection from the available sensors. The second step concerns preprocessing (e.g.,
data cleaning, data enrichment, normalization, feature selection and/or extraction,
outliers rejection, etc.) the collected data. Finally, a model learning step is performed
in which a machine learning technique is applied.

Different learning approaches have been deployed in the past in smart building
applications. In [26], for instance, hidden Markov models (HMMs) [27] have
been used for estimating occupancy using a wireless ambient sensing system,
CO2 sensors, and a wired camera network in order to establish actual occupancy
levels. The large variance in the energy consumption was found to be primarily
due to the operating mode; occupants that are elected to run their AC for longer
durations, at lower set points and/or throughout a larger space, consumed more
energy than occupants that did not [28]. Consequently, energy reduction methods
must encompass a combination of technological development, building physics, and
occupants’ behavior to achieve the desired performance [29]. As such, numerous
studies have developed control systems and modeling methodologies to better assist
occupants to play active roles in buildings. In [30], a supervised learning approach
is investigated. It initially determines the common sensors to be used to estimate
and classify the approximate number of people (within a range) in a room and
their activities. Means to estimate occupancy include motion detection, power
consumption, CO2 concentration sensors, microphone, or door/window positions.
The most useful measurements in calculating the information gains when added
to the classification algorithm are then determined. Next, estimation that relies
on decision tree and random forest learning algorithms is performed. The reason
behind the choice of the algorithms is that they yield decision rules readable by
humans, which correspond to nested if-then-else rules, where thresholds can be
adjusted depending on the considered living areas. One office has been used for
testing and two video cameras have been used in this approach. This highly limits
the implementation of the application because of the privacy issues.

Studying occupants’ activity and behavior is a key for building adaptation and
energy saving, thus not limited to occupancy detection and estimation only [31–
33]. The primary motivation behind studies of activity recognition is to contribute
to buildings, while a comprehensive model can improve the energy performance
of a building. This has been studied by previous research in this area, and large
savings can be obtained with activity aware building energy management system.
Such building energy management system can also warn users about activities
or behaviors that adversely affect energy savings of the building. This induces
an energy aware behavior that can add one-third to a building’s designed energy
performance [17]. Thus, the goal of this chapter is to provide a review on
machine learning approaches related to activities recognition in smart buildings.
Furthermore, it serves to facilitate the definitions and introduction of machine
learning techniques to domain beginners and practitioners alike. Moreover, the
chapter also sheds light on the various advancements made in activity recognition in
smart homes using machine learning, presenting the first survey of such methods, to
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the best of our knowledge. Several machine learning models have been deployed
over the years for activity recognition [34–36]. The process generally involves
learning activity models from training data. The model learns to recognize patterns
that differentiate various classes in the training data and apply this knowledge for
the prediction and classification over the test data. This allows the actualization
of a solution without necessarily providing domain specific knowledge. Since the
problem emanates from pattern recognition or data analysis, such methods are
termed data-driven. [37] identify such data-driven approaches and categorize them
into generative, discriminative, and heuristic-based modeling:

1. Generative modeling: uses training data samples to form a description of the
complete input space. Probabilistic models like Bayesian networks, Gaussian
mixture models, and HMMs fall under this category. The underlying assumption
of this model is that the training samples are representative of the entire input
space/distribution and thus enough data must be available to learn the complete
probabilistic representation.

2. Discriminative modeling: has the primary objective of finding a decision bound-
ary or boundaries, rather than representing the entire input space. A basic
example of this model is K-nearest neighbor (KNN) classifier, where a test point
is assigned to a cluster that is at a minimum distance (the notion of distance may
vary accordingly) to it. Similarly, but better performing algorithms in the same
category, are decision trees and SVMs [38].

3. Heuristic-based modeling: uses a combination of both generative and discrimi-
native models along with some heuristic information [39].

It is noteworthy that other approaches that take advantage of both generative
and discriminative learning simultaneously, called hybrid generative discriminative
approaches, have been proposed recently in the literature [40–43]. When training
data (i.e., labeled data where the output’s correct value for each instance is known)
are considered, the learning approach is called supervised. Classification and
regression are typical examples of supervised learning tasks. Using a set of training
data grouped into classes, the goal of classification is to build a classifier to predict
to which class a new observation should be assigned. Examples of classification
approaches include support vector machine (SVM), decision trees, random forests,
artificial neural networks, and K-nearest neighbors. Regression, on the other hand,
is related to predicting a numerical value using a function built by relating outputs
to inputs. Examples of regression approaches include linear regression and support
vector regression. In many cases, however, the data are unlabeled and need the
deployment of unsupervised learning technique to infer possible regularities (e.g.,
clusters) in the input space. Clustering (partitional or hierarchical) is the main
example of unsupervised learning and consists of grouping observations such that
intraclass and interclass similarities are maximized and minimized, respectively
[44]. Partitional approaches include both centroid-based (ex. K-Means) and density-
based (ex. DBSCAN) clustering. Hierarchical approaches include both divisive (i.e.,
top down) and agglomerative (i.e., bottom up) approaches. A compromise between
supervised and unsupervised learning, called semi-supervised learning, allows to
consider labeled data jointly with unlabeled data. An example of semi-supervised
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learning techniques is active learning which necessitates an interaction with the user
to get the desired outputs for new test data. In order to avoid collecting data from
scratch and disturbing the daily life of users some activity recognition approaches
have been based on transfer learning. The main idea consists of transferring learned
knowledge as much as possible from an existing environment, the so-called source
domain, to a new target one (i.e., the environment where knowledge is applied) to
reduce data collection effort. It is noteworthy that in transfer learning, feature sets,
label sets as well as learning tasks in both source and target domains datasets can be
different. Transfer learning approaches can be roughly classified into three groups
of approaches: instance-, feature-, and parameter-based transfer techniques.

The rest of this chapter is organized as follows: Sect. 2 describes the machine
learning algorithms and reviews the relevant papers in the literature pertinent to the
topic at hand, Sect. 3 presents an extensive case study, and finally Sect. 4 concludes
the chapter.

2 Activity Recognition in Smart Buildings

In this section, we overview the main families of approaches that have been
deployed for activity (e.g., cooking, sleeping, eating, etc.) recognition in smart
buildings: classification, regression, and clustering. The first two are often referred
to under the umbrella of supervised learning while the latter is an unsupervised
learning method. These form the two main branches of machine learning. Other
derivatives and hybrid categories such as semi-supervised learning [45] and the
popular deep learning methods [46] have been researched extensively recently.
However, they are usually founded on one of the two main categories or even
combines both of the approaches. It is noteworthy to mention that when deep
learning techniques studies arise in the literature, we list them as part of the
supervised learning approach.

Supervised learning refers to methodologies whereby input data has explicit
labels for each of its entries or objects, depending on the nature of the pertaining
data. Such data is then split into training and testing sets that are used for the learning
of the parameters of the desired algorithm. Specifically, classification is presented
in Sect. 2.1 and regression in Sect. 2.2. On the other hand, unsupervised learning
has to be carried out without the availability of labels for the data at hand. We also
review the relevant literature of the latter method applied for activity recognition in
smart buildings, as appropriate. Clustering is detailed in Sect. 2.3. A complete list
of the papers with the respective algorithm(s) used as well as other miscellaneous
details is described in Sect. 2.4.
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2.1 Classification

This section is split into two subsections whereby Sect. 2.1.1 presents general
classification approaches for activity recognition and Sect. 2.1.2 expands on HMMs
and their utilization in the field.

2.1.1 General Classification Approaches

Given a set of data with discrete labels or classes that may be used for training,
Classification then refers to the correct identification of the label or class that testing
data falls under. Mathematically, classification is a mapping between input data x
and output label y such that:

y = g(x|θ) (1)

where g() represents the classification function or algorithm, and θ is its respective
parameters. The function uses the training data to approximate the parameters. The
closer the approximation to the true parameters, the better the fit and hence the
performance of the classification algorithm. Thus, g() can also be viewed as a
separator between the data points of the various classes or labels in a problem.

This approach has been critical in developing various activity recognition
approaches in smart buildings. For example, [47] use ontological modeling and
semantic reasoning for a real-time multisource sensor data based activity recog-
nition system in smart homes. The algorithm first converts detected sensor activa-
tion corresponding properties into context ontologies. This constructs an activity
description and then equivalency and subsumption reasoning are performed for
activity recognition. Finally, semantic retrieval is used for obtaining the set of atomic
activity concepts.

Hu et al. [48] present a new classification algorithm based on feature incremental
random forests. Random forests are another classification algorithm that may be
utilized for activity recognition. They are based on decision trees whereby the
overfitting is addressed by reporting the final classification result as the mode of the
various individual trees. Indeed, a decision tree approach is used for the real-time
smart watch system presented in [49] for activity recognition. Incremental learning,
on the other hand, refers to updating the existing model dynamically with new data
or sensors instead of retraining the model from scratch and disposing of the existing
one.

It is sometimes referred to by online learning in the machine learning community
[50, 51]. This proposed method [48] has been tested on three different datasets and
reportedly consistently outperformed other incremental learning methods. Similarly,
[52] also investigate a new methodology to incorporate incremental learning for
dynamic activity recognition using random forests. However, the latter is compara-
ble to the performance of batched random forests and extremely randomized trees.
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Batch learning is the opposing concept to online learning and refers to retraining
the entire model as new data or data sources, such as new sensors in the case of
activity recognition, become available. Online or incremental learning is usually
used because it saves time and resources as well as enables real time processing for
real world applications.

Gu et al. [53] introduce a classification approach based on emerging patterns
that defines significant changes between different activity classes. Hence, it has
the advantage of independence from the dataset used for training given that it
identifies the underlying sequential patterns of an activity regardless of whether it
is interleaved or concurrent. This brings us to two other important definitions in
action recognition: Concurrent activities refer to ones in which each of the activity
can be broken down into multiple ones that are carried out at the same time or
simultaneously such as eating or walking. Interleaved activities refer to simple
activities such as a wave of the hand or sleeping.

A three phased activity recognition method is proposed in [54]. Classification
of the activities is carried out by four different machine learning models: random
forests, K-nearest neighbors, support vector machines, and decision trees. In normal
activity detection, the four models perform comparably, while the random forest
approach outperforms all others in interleaved activity recognition. Support vector
machine are also used for activity recognition in smart homes in [55].

Multiple classification algorithms are studied in [56] for activity recognition.
These include decision tables, decision trees (C4.5), K-nearest neighbors, support
vector machines, and naive Bayes. Interestingly, meta classifiers are also compared
for designing the optimum classifier for the problem. These include boosting,
bagging, and plurality voting. This represents the first investigation carried out to
find whether combining classifiers trained on accelerometer features would result in
an improved result, as claimed by the authors. Data was collected for eight different
activities carried out by two individuals over different days in multiple setups and
with no noise filtering. The activities were standing, walking, running, climbing
up stairs, climbing down stairs, sit-ups, vacuuming, and brushing teeth. Gradient
boosting, K-nearest neighbor, linear discriminant analysis, and random forests are
also researched for activity recognition in smart homes in [57] as well as kernel
Fisher discriminant analysis and extreme learning machine in [58].

All in all, plurality voting was found to be the optimum implementation with
consistent performance across different setups [56]. It is noteworthy to mention
that an accelerometer is a well-researched sensor for activity recognition. Indeed,
the utility of even simple sensors has proven effectiveness such as in [59], even
with an elementary classifier such as the naive Bayes [60] or with deep learning
techniques such as convolutional neural networks and long short-term memory
[61]. For instance, [62] use accelerometer data from 20 individuals each with five
different accelerometers and a decision tree classier setup. The results suggest that
the use of multiple accelerometers improves recognition.

Long short-term memory and convolutional neural networks are also used in
[63], while only the latter is deployed in [64] and compared to the K-nearest
neighbor and support vector machine methods. Other deep learning techniques such
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as recurrent neural networks are also studied in [65] (with support vector regression)
and in [66] (with support vector machine, naive Bayes, and logistic recognition).

2.1.2 Hidden Markov Models

HMMs are one of the most popular methods used in the field due to the sequential
nature of the problem [67, 68]. An HMM is a well-received double stochastic model
that uses a compact set of features to extract underlying statistics [69]. Its structure is
formed primarily from a Markov chain of latent variables with each corresponding
to the conditioned observation. A Markov chain is one of the least complicated ways
to model sequential patterns in time series data. It allows us to maintain generality
while relaxing the independent identically distributed assumption [70].

Mathematically, an HMM is characterized by an underlying stochastic process
with K hidden states that form a Markov chain. Each of the states is governed by an
initial probability π , and the transition between the states at time t can be visualized
with a transition matrix B = {bii′ = P(st = i′|st−1 = i)}. In each state st , an
observation is emitted corresponding to its distribution which may be discrete or
continuous. This is the observable stochastic process set (Fig. 1).

The emission matrix of the discrete observations can be denoted by � =
{�it (m) = P(Xt = ξm|st = i)} where [m, t, i] ∈ [1,M] × [1, T ] × [1,K],
and the set of all possible discrete observations ξ = {ξ1, . . . , ξm, . . . , ξM }. On
the other hand, the respective parameters of a probability distribution define the
observation emission for a continuous observed symbol sequence. The Gaussian
distribution is most commonly used which is defined by its mean and covariance
matrix � = (μ,�) [71–73]. Consequently, a mixing matrix must be defined
C = {cij = P(mt = j |st = i)} in the case of continuous HMM emission
probability distribution where j ∈ [1,M] such that M is the number of mixture
components in set L = {m1, . . . , mM}. Hence, a discrete or continuous HMM may
be defined with the following respective parameters λ = {B,�, π} or {B,C, �, π}.

For the thorough explanation of the HMM algorithms to follow, we also introduce
another visualization that depicts the graphical directed HMM structure as shown

Fig. 1 A typical hidden Markov chain structure representation of a time series where z1 denotes
the first hidden state z1 and X1 denotes the corresponding observed state X1. This is shown
accordingly for a time series of length T
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in Fig. 2. Figure 3 shows transitions then when they become trellis or lattice.
Indeed, Rabiner first introduces the three classical problems of HMMs in [71] as:
(1) evaluation or likelihood, (2) estimation or decoding, and (3) training or learning.
These are described as follows:

1. The evaluation problem is mainly concerned with computing the probability that
a particular sequential or time series data was generated by the HMM model,
given both the observation sequence and the model. Mathematically, the primary
objective is computing the probability P(X|λ) of the observation sequence X =
X1, X2, . . . , XT with length T given an HMM model λ.

2. The decoding problem finds the optimum state sequence path I = i1, i2, . . . , iT
for an observation sequence X. This is mathematically s∗ = argmaxsP(s|X, λ).

3. The learning problem refers to building an HMM model through finding or
“learning” the right parameters to describe a particular set of observations.
Formally, this is performed with maximizing the probability P(X|λ) of the
set of observation sequence X given the set of parameters determined λ.
Mathematically, this is λ∗ = argmaxλP (X|λ).
In the following discussion, we present the respective solutions for each of

the HMM problems. We assume discrete emission observations. However, it is
straightforward to extend these solutions to the HMM of continuous emission
distributions given their parameters and mixing matrix. We also briefly recall the two
conditional independence assumptions that allow for the tractability of the HMM
algorithms [74]:

1. Given the (t − 1)st hidden variable, the t th hidden variable is independent of all
other previous variables such that:

P(st |st−1, Xt−1, . . . , s1, X1) = P(st |st−1) (2)

Fig. 2 An HMM transition
diagram with three states
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Fig. 3 Lattice or trellis
HMM structure which is a
representation of the hidden
states

2. Given the t th hidden variable, the t th observation is independent of other
variables such that:

P(Xt |sT ,XT , sT−1, XT−1, . . . , st+1, Xt+1, st , st−1, Xt−1, . . . , s1, X1)

= P(Xt |st ) (3)

The first problem we address is the evaluation problem.
The forward algorithm calculates the probability of being in state si at time t

after the corresponding partial observation sequence given the HMM model λ. This
defines the forward variable ρt (i) = P(X1, X2, . . . , Xt , it = si |λ) which is solved
recursively as follows:

1. initiate the forward probabilities with the joint probability of state si and the
initial observation X1: ρ1(i) = πi�i(X1), 1 � i � K;

2. calculate how state qi′ is reached at time t + 1 from the K possible states si ,
i = 1, 2, . . . , K at time t and sum the product over all the K possible states:

ρt+1(j) =
[∑K

i=1 ρt (i)bij

]
�j(Xt+1) for t = 1, 2, . . . , T − 1, 1 � j � K

3. Finally, compute P(X|λ) =∑K
i=1 ρT (i).

The forward algorithm has a computational complexity of K2T which is consid-
erably less than a naive direct calculation approach. A graphical depiction of the
forward algorithm can be observed in Fig. 4.

Next, the Viterbi algorithm aims to find the most likely progression of states
that generated a given observation sequence in a certain HMM. Hence, it offers
the solution to the decoding problem. This involves choosing the most likely states
at each time t individually. Hence, the expected number of correct separate states
is maximized. This is illustrated in Fig. 5. To perform this algorithm, we need to
define the following:
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Fig. 4 Graphical
representation of the
evaluation of the ρ variable of
the forward algorithm in an
HMM lattice fragment

Fig. 5 Graphical
representation of two
probable pathways in an
HMM lattice fragment. The
objective of the Viterbi
algorithm is to find the most
likely one

γt (i) = P(it = si |X, λ) = ρt (i)θt (i)

p(X|λ) (4)

where γt (i) is the probability of being in state si at time t given the observation
sequence X and the HMM λ.

The main steps of the Viterbi algorithm can then be summarized as:

1. Initialization

δ1(i) = πi�i(X1), 1 � i � K (5)

ψ1(i) = 0 (6)

2. Recursion

For 2 � t � T , 1 � i′ � K (7)
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δt (i
′) = max1�i�K [δt−1(i)bii′ ]�i′(Xt ) (8)

ψt(i
′) = argmax1�i�K [δt−1(i)bii′ ] (9)

3. Termination

P ∗ = max1�i�K [δT (i)] i
∗
T = argmax1�i�K [δT (i)] (10)

4. State sequence path backtracking

i∗t = ψt+1(i
∗
t+1), for t = T − 1, T − 2, . . . , 1 (11)

Finally, and in order to address the third HMM problem, we first describe another
important algorithm. Similar to the forward algorithm, but now computing the tail
probability of the partial observation from t+1 to the end, given that we are starting
at state si at time t and model λ, is the backward algorithm. This has the variable
θt (i) = P(Xt+1, Xt+2, . . . , XT , it = si |λ) and is solved as follows:

1. Compute an arbitrary initialization θT (i) = 1, 1 � i � K;
2. θt (i) =∑K

i′=1 bii′�i′(Xt+1) for t = T − 1, T − 2, . . . , 1, 1 � i � K

Figure 6 depicts the computation process of the backward algorithm in an HMM
lattice structure. Together with the forward algorithm, this forms the forward-
backward algorithm through consequent iteration. In the context of HMMs, the
forward-backward algorithm is of extreme importance and is also known as the
Baum Welch algorithm [71]. The Baum Welch algorithm is traditionally used to
solve the estimation problem of HMMs. This iterative algorithm requires an initial

Fig. 6 Graphical
representation of the
evaluation of the θ variable of
the backward algorithm in an
HMM lattice fragment
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random clustering of the data, is guaranteed to converge to more compact clusters
at every step, and stops when the log-likelihood ratios no longer show significant
changes [75].

In order to apply the Baum Welch algorithm, we must define

ϕt (i, i
′) = P(it = si, it+1 = s′i |X, λ) =

ρt (i)bii′�i′(Xt+1)θt+1(i
′)

p(X|λ) (12)

where ϕt (i, i
′) is the probability of path being in state si at time t and then

transitioning at time t + 1 with bii′ to state s′i , given λ and X. ρt (i) then considers
the first observations ending at state si at time t , θt+1(i

′) the rest of the observation
sequence, and bii′�i′(Xt+1) the transition to state si′ with observation Xt+1 at time
t + 1. Hence, γt (i) may also be expressed as:

γt (i) =
K∑

i′=1

ϕt (i, i
′) (13)

whereby
∑T−1

t=1 ϕt (i, i
′) is the expected number of transitions made from si to si′

and
∑T−1

t=1 γt (i) is the expected number of transitions made from si .
The general re-estimation formulas for the HMM parameters π , B, and � are

then:

1. π̄i = γ1(i), 1 � i � K

2. b̄ii′ =∑T−1
t=1 ϕt (i, i

′)/
∑T−1

t=1 γt (i)

3. �̄i′(k) =∑T
t=1
Xt=k

γt (i
′)/

∑T
t=1 γt (i

′)

Oliver et al. [76] utilize an extension, layered HMMs to detect various activities
like deskwork, phone conversations, presence, etc. The layered structure of their
model makes it feasible to decouple different levels of analysis for training and
inference. Each level in the hierarchy can be trained independently, with different
feature vectors and time granularity. Once the system has been trained, inference can
be carried out at any level of the hierarchy. One benefit of such a model is that each
layer can be trained individually in isolation, and therefore the lowest layer that is
most sensitive to environment noises and flickers can be retrained without touching
the upper layers. HMMs and conditional random field (CRF) have been used in [77]
to recognize seven different activities (leave house, toileting, showering, sleeping,
preparing breakfast, preparing dinner, preparing a beverage) in a home setting. An
HMM-based approach to recognize independent and joint activities among multiple
residents in smart environments has been proposed in [78].

Nonetheless, HMMs suffer from some drawbacks that [79] aimed to overcome
by introducing a new variant; namely, Switching Hidden Semi-Markov Model.
This model supplements HMMs with a hierarchical structure to benefit from the
natural hierarchy depicted by humans in activities. It also incorporates explicit
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state duration though the semi-HMM to address the violation of the Markovian
assumption when the duration of the state is no longer geometric. The system
reportedly outperforms both a traditional HMM as well as a hierarchical one.

2.2 Regression

Regression is often viewed as a variant of classification whereby the data or the
variables at hand are, in contrast, of continuous nature. Specifically, Regression
is the prediction of continuous labels given a set of labeled training data. It is
also sometimes referred to as prediction and is closely related to classification.
As a matter of fact, Eq. (1) can also be used to represent regression whereby g()

represents the regression function that is used to fit the data x to find out y. Notice
that while the first assumption of the best function is a linear approximation, it is
not always the case. Indeed, higher order approximations are usually used to better
estimate the true distribution of the training data.

Given its nature of continuous predictions, it is not often used in the area of
activity recognition due to the discrete nature of the data. Nonetheless, regression,
in particular linear regression, remains one of the most traditional machine learning
methods and the problem may be posed within a continuous framework for its use.
For example, linear regression is used for classification of human activities in smart
homes and inspires a new regression-tree-based activity forecasting algorithm in
[80].

However, while linear regression is a powerful technique, it is not necessarily
the most suitable in all cases. The best approach machine learning approach to be
used is always dependent on the nature of the data itself. This is investigated in [81]
whereby the authors argue that prior statistical analysis of the problem is imperative
for choosing the best machine learning algorithm. They compare the use of random
forests and linear regression finding out that the prior outperforms the latter due to
the nonlinear nature of the data.

2.3 Clustering

A significant problem when tackling the activity recognition problem using super-
vised learning approaches is collecting ground truth information. Indeed, the
large variety of possible activities makes their recognition in a supervised way
challenging.

Since no labels are available in clustering, this presents an added challenge in
finding homogeneous groups within the input data. The objective in such algorithms
can be straightforwardly defined as: Finding homogeneous groups or clusters in
data such that the intra-distance between the data points is minimized and the inter-
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distance between the data homogeneous groups or clusters is maximized is known
as Clustering.

The most famous clustering approach is using mixture models. Consider a set of

N observation vectors X = {−→X 1, . . . ,
−→X N } represented in D-dimensional space

where each vector
−→X � =

(
X�1, . . . ,X�D

)
. If we assume that each vector

−→X � is
generated from a finite mixture model with � components, then the likelihood of
the data is defined as:

p(
−→X �|κ,�) =

�∑

ς=1

κςp(
−→X �|�ς) (14)

where p(
−→X �|�ς) is the mixture distribution at hand that is used to statistically

model the observations or data X , �ς is the respective set of component parameters
for the distribution, and κς is the mixing coefficient of the mixture component ς with
κ = (κ1, . . . , κ� ). The mixing coefficients vector follow constraints of positivity

and unit summation resultant on the κ . Each of the data observation vectors
−→X �

is assigned to all of the mixture components with a responsibility or posterior

probability p(ς |−→X �) ∝ κςp(
−→X �|�ς).

Clustering represents an attractive solution as it is easy to obtain unlabeled
samples from routine experiments; they do not require human effort. This is also
applicable for the problem at hand though more research can be invested in this
particular area. For example, k-means algorithm is applied in [82] to cluster sensor
readings collected from smart homes for activity recognition. Classification of non-
separated activities within each cluster is then carried out by K-nearest neighbor
classification approach. This also represents a system where a hybrid approach
improves the overall classifier performance.

2.4 Miscellaneous

So far, we have presented papers in the literature that address the problem of
activity recognition in smart buildings using supervised and unsupervised learning
techniques. A summary of these papers can be observed in Table 1. On the
other hand, semi-supervised learning techniques applied in [84] and [85] represent
another learning approach aiming to address activity recognition issue. It exploits
unlabeled data in order to improve model performance. For example, [83] introduce
a method for human activity recognition that benefits from the structure and
sequential properties of the training and testing data. In the training phase, a
fraction of data labels has been obtained and used in a semi-supervised method
for recognizing the user’s activities. Label propagation has been used on a K-
nearest neighbor graph to calculate the probability of the unlabeled data in each
class in the training phase. These probabilities have been used to train an HMM
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Table 1 A list of the papers detailed in this chapter for activity recognition in smart buildings with
the respective machine learning (ML) technique utilized and the algorithm(s) used

Paper ML technique Algorithm(s)

[47] Classification Ontology modeling and semantic reasoning

[48] Classification Feature incremental random forests

[49] Classification Decision trees

[50] Classification Support vector machines/naive Bayes/hidden Markov
models/conditional random fields

[52] Classification Incremental learning random forests

[53] Classification Emerging pattern technique

[78] Classification Hidden Markov models

[76] Classification Layered hidden Markov models

[77] Classification Hidden Markov models/conditional random field

[79] Classification Switching hidden semi-Markov model

[56] Classification Decision tables/decision trees (C4.5)/K-nearest
neighbors/support vector machines/naive Bayes (with
meta classifiers setup)

[60] Classification Naive Bayes

[62] Classification Decision trees (multiple accelerometers)

[61] Classification Convolutional neural networks and long short-term
memory

[80] Regression Linear regression/regression-tree-based activity
forecasting algorithm

[81] Classification/regression Random forests/linear regression

[82] Clustering/classification k-Means algorithm/K-nearest neighbors

[83] Semi-supervised learning K-nearest neighbors/hidden Markov model

[54] Classification Random forests/K-nearest neighbors/support vector
machines/decision trees

[65] Regression/classification Support vector regression/recurrent neural network

[66] Classification Support vector machine/naive Bayes/logistic
recognition/ recurrent neural network

[55] Classification Support vector machine

[58] Classification Kernel Fisher discriminant analysis/extreme learning
machine

[57] Classification Gradient boosting/K-nearest neighbor/linear
discriminant analysis/ random forest

[63] Classification Convolutional neural networks and long short-term
memory

[64] Classification Convolutional neural networks/K-nearest
neighbor/support vector machine

[59] Classification Naive Bayes/K-nearest neighbor/support vector
machine

in a way that each of its hidden states corresponds to one class of activity. Some
semi-supervised approaches have been based on active learning, also. For instance,
different active learning strategies have been investigated in [86]. In particular, a
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dynamic k-means clustering approach has been proposed to discover unseen new
activities spontaneously. These unseen activities are detected as outliers which make
the clustering algorithm sensitive to the number of clusters that can increase at every
iteration. The overall clustering error was recorded using an error function on the
set of clusters defined as the sum of the Euclidean distances between the different
data instances and the clusters centers. An objective function based on entropy is
then defined to fetch the most informative data instances. The activities that were
considered are cooking, sweeping, washing, and cleaning which were used for the
passive learning. Three other activities, namely eating, sleeping, and talking, on the
phone were left to the active learner to discover.

Some recent approaches have been based on transfer learning. In [87], for
example, the authors proposed a feature-based approach to reuse learned knowledge
form an original environment and tested it successfully to extract and transfer
knowledge between two different smart home environments by considering only
single-resident scenarios. The problem was formulated as classification task using
SVM by matching the different features of the source and target environments. Two
cases were considered. In the first one labeled datasets from both environments were
supposed to be available. In the second one labeled data are available only in the
source environment and the information from the target one is limited to sensor
deployment considered as background knowledge.

Another issue refers to the features used. In any of the machine learning
techniques, or any algorithm for that matter, the importance of extracted features
to be used cannot be overstated. Indeed, some studies were carried out in [88, 89] to
analyze the various features and their importance in activity recognition. This falls
outside the scope of this chapter, but an interested reader is referred to the paper for
further details.

Furthermore, in order to ensure the completeness of the activity recognition
survey, it is noteworthy to mention that not all methods are dependent on machine
learning techniques. For instance, [90–92] present other algorithms that do not fall
under the scope of this survey. An interested reader is referred to [93] for a general
reference on human action recognition.

3 Case Study

To evaluate the deployment of machine learning approaches in smart buildings in
general and their potential in activity recognition, we present three recent methods
for occupancy estimation that have been applied in an office H358 case study
(see Chapter “Formalization of the Energy Management Problem and Related
Issues”). Extensive work is currently conducted to apply these approaches for
activity recognition. The proposed approaches are:
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1. Estimating occupancy with a set of sensors, and possible manual labeling by an
expert.

2. Estimating occupancy with a set of sensors without manual labeling but using a
knowledge-based approach.

3. Estimating occupancy with a set of sensors with self-labeling by occupants
(interactive learning).

These approaches depend mainly on collecting and analyzing data from non-
intrusive sensors. The use of such sensors is based on the hypothesis that humans
interact with their surroundings, i.e., performing some activities. It affects envi-
ronmental conditions that can be in the form of CO2 concentration, moisture,
temperature rise, or sound. As it is mentioned in Chapter “Formalization of the
Energy Management Problem and Related Issues”, different sensors exist in the
H358 office, i.e., PIR motion sensors, CO2 sensors, indoor air temperature, and
relative humidity sensor, pressure sensors, acoustic sensors, ultrasonic sensors,
power consumption sensors, in order to define the occupancy level.

To perform the task of finding the number of occupants, a link needs to be
observed between the office context and the number of occupants in it. The office
context can be described as a collection of state variables, St = [s1, s2, . . . , sn]t .
This group of state variables S must characterize occupancy at each time step t .

A state variable can be presented as a feature, and therefore the features are
displayed as a feature vector. Thus, the multidimensional space that includes all
potential values of such a feature vector is the feature space. The underlying
approach for the experiments is to formulate the classification problem as a
mapping from a feature vector into a feature space that comprises several classes
of occupancy. Therefore, the success of such an approach depends strongly on
how useful (features which give maximum distinction between classes) the chosen
features are. In this case, features are attributes from multiple sensors collected over
a time interval. The selection of interval duration is highly context-dependent and
has to be done according to the required granularity. The results presented here are
based on an interval of Ts = 30 min (which has been referred here as one quantum).

From the large set of features discussed in [30], some of them may not be worth
considering in order to achieve the target of occupancy classification. These features
are the ones which, when added to the classification algorithm, make no difference
to the overall output. In other words they are not useful enough for our purpose. For
example, absolute humidity readings would be useless, as it is not representative of
occupancy at all. Defining the most important features (sensors) is considered as a
necessary study in a smart building application. It can give an essential conclusion
for the required installation of the sensor in the buildings, which leads to minimizing
the total cost.

Before any features are extracted for the training data, some basic preprocessing
had to be done: application of an outliers removal algorithm and interpolation for
non-existent data. The interpolation part is necessary for filling in missing values
from the sensor data. Amayri et al. [30] concludes the most relevant features for the
occupancy estimation problem in the office:
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1. power consumption.
2. motion counter.
3. acoustic pressure recorded by a microphone.

These three features will be used in the three following experiments of applying
machine learning techniques for occupancy estimation.

3.1 Estimating Occupancy with a Set of Sensors, and Possible
Manual Labeling by an Expert

Let us start with the first experiment, where supervised learning has been deployed.
Collecting the required training data has been done by counting occupancy manually
using two video cameras in office H358. The average number of people visiting the
office was registered every 30 min during the day.

Different supervised learning methods have been investigated (i.e., support
vector machine, decision tree, random forest, linear regression). A decision tree-
based classification approach has been selected as our prediction model because it
provides human-readable results that can be analyzed and easily adapted. Providing
decision rules is one crucial aspect from the energy point of view to generalize the
model for another similar context.

Power consumption, motion counter, and acoustic pressure are the main features
for building our model. Five occupancy levels have been chosen to generate decision
trees due to the maximum number of occupants met while collecting the dataset.

3.2 Resulting Occupancy Estimators

From the collected data in the office H358, a training dataset covering 11 days
from 04-May-2015 to 14-May-2015 has been used. Moreover, a validation dataset is
collected over 4 days from 17-May-2015 to 21-May-2015. Figure 7 shows the result
obtained from the decision tree and random forest, considering the three features.
It leads to occupancy estimation with an accuracy of 81.7% and an average error
of 0.26 person, while random forest accuracy is 84%, and the average error is 0.26
person (Table 2).

The above results indicate that using the decision tree and random forest
rules give quite a reasonable estimation of occupancy. Because of the limitation
of the need to have labeled training data when deploying supervised learning,
unsupervised learning based on collecting knowledge and questioning will be
discussed in the next section. It will help to facilitate and generalize the occupancy
estimation process.
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Fig. 7 Occupancy estimation from DT using three features

Table 2 Decision tree
classification results after
selecting main features

Average error decision tree Support

Class 1 0.02 132

Class 2 0.49 22

Class 3 0.88 23

Class 4 1.27 11

Class 5 1.75 4

Avg/total 0.26 192

3.3 Designing Estimators from Knowledge and Adjusting from
Data

Similarly to the first approach, designing estimators from knowledge is based on
sensor data and knowledge coming, respectively, from observations and question-
naires to build the estimation model. The proposed technique relies on a Bayesian
Network (BN) algorithm to model human behavior with probabilistic cause-effect
relations and states based on knowledge and questionnaire [94, 95].

The same case study of an office (H358) is considered as a simple and essential
one-zone context with lots of sensors. Motion detection, power consumption, and
acoustic pressure recorded by a microphone are used to feed this model. Collecting
occupancy and activity feedbacks is very easy in the office context. Besides, there
is a facility of questioning the occupants during design and validation periods of
occupancy model. Unsupervised learning algorithms are used to solve problems
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where the solution is not known. In this case, usually, the structure is derived by
clustering the sensor data based on relationships among the variables. While in the
case of collecting training period, it becomes similar to supervised learning methods
with the difference in prediction techniques. For each feature, different levels have
been considered. For example, the power consumption values discretize in three
levels: low consumption, medium consumption, and high consumption, or L, M,
and H, respectively. It gives a probability table with nine values. The probability
table for power consumption has been defined by proposing different questions to
the office occupants. For example: when occupants are arriving and leaving the
office? What is the average time for using the laptop during the working hours?
According to the user answers, the conditional probabilities are either calculated
or filled directly in the tables. The same process can be repeated for the recorded
signal from the microphone. At the same time, two different levels have been defined
for the microphone low acoustic pressure and high acoustic pressure or L and H,
respectively, see Fig. 8. Three occupancy levels have been considered to generate a
Bayesian Network (BN): Low, Medium, and a High number of occupants. While
the probabilities table for motion counter has been suggested according to the
general knowledge for three different cases, low motion, medium motion, and high
motion, or L, M, and H, respectively. Figure 8 shows the results obtained from the
Bayesian network for three levels and three main features. Both actual and estimated
occupancy profiles have been plotted in a graph with the number of occupants and
time relations (quantum time was 30 min). The accuracy achieved from the Bayesian
network was 91% (the number of correctly estimated points divided by the total
number of points), and the average error was 0.08 persons. Table 3 represents the
average error values for each class of estimation. While “support” indicates the
number of events (sensor data each quantum time) in each class, and average support
indicates the sum of all events in the three classes (Fig. 9).

Fig. 8 Bayesian network
(BN) structure of an office
H358
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Table 3 Bayesian network
estimation results

Classes Accuracy-BN Average error-BN Support

Class 1 97% 0.001 400

Class 2 84% 0.2 170

Class 3 79% 0.5 54

Average 91% 0.09 624
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Fig. 9 Occupancy estimation from Bayesian network

Using the knowledge domain and questionnaire with data sensors in the unsuper-
vised learning method is more flexible and open for different types of applications,
with acceptable average errors for occupancy estimations. Besides, avoiding the use
of video cameras has been achieved. This approach can be used widely in different
contexts. Still, due to a few possibilities to validate the estimation model and poor
performance in some testing period, a new innovative approach is proposed in the
next section. It depends on estimating occupancy with a set of sensors, and self-
labeling by occupants.

3.4 Designing Estimators from Interactive Learning

A novel way of supervised learning is analyzed to estimate the occupancy in a
room where actual occupancy is interactively requested to occupants when it is the
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most relevant to limit the number of interactions. Occupancy estimation algorithm
relies on machine learning: it uses information gathered from occupants. In this
section, an interactive technique has been investigated to solve the problem of
getting the required labels used in the supervised method. In practical applications,
the limitation arises due to the occupant’s privacy issues. Accurately estimating
occupancy with a set of sensors and self-labeling by interaction with occupants are
the main goals of this section.

3.4.1 The Principle of Interactive Learning

Obtaining training data is a challenging task for smart home applications in general
and activity recognition in particular. Some approaches have been proposed to
involve the occupants to collect informative training data. An interesting approach
called interactive learning has been proposed in [96]. Interactive learning is a
process involving an exchange of information with the users to collect some
essential data according to the problem context. In supervised learning methods,
which are widely used in a lot of applications, the problem of the required
target arises in the determination of the number of occupants, i.e., the labeling
issue is usually tackled using video cameras. Utilizing a camera is generally not
acceptable in many places to respect the privacy of occupants. Interactive learning
is an extension of supervised learning that determines the occupancy by collecting
the required labeling from the occupants themselves. The problem statement of
occupancy estimation has been explained in [96].

Three rules are considered to determine whether an interaction space (ask) is
potentially useful or not:

1. The density of the neighborhood: It is the number of existing records in the
neighborhood of a potential ask. The neighborhood is defined by the infinite
distance with a radius equal to one, because of the normalization. The record is
a vector of features obtained in which values are obtained from the sensors. The
neighborhood can be modified according to ε ∈ [0, 1].

2. The classifier estimation error in the neighborhood of the potential ask leads to
the concept of neighborhood quality. If the classifier estimation error is very high
for a record, this record is removed from the neighborhood because of the poor
quality. Er ∈ [1, 2) typically is an error ratio that can be adjusted. However, a
value smaller than 1 means a record is considered as good. Conversely, if Er is
big, equal to 2, for instance, it means you accept error twice as big as the average
error. Theoretically, Er belongs to [0,∞), but it is limited in our experiments to
2.

3. The minimum class weight: i.e., the minimum number of records for each
class. The minimum class weight, weight(class x) < Cw, which can be adjusted
according to the problem.
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Fig. 10 Occupancy estimation from interactive learning

Table 4 Number of asks

Day 1 2 3 4 5 6 7 8 9 10

Number of asks 10 4 0 0 2 1 2 1 0 0

All the potential asks that satisfy the above three rules are asked to the occupants
in order to become an additional record, possibly. The three previous rules have been
checked with each new record. As a first validation, the occupant reaction has to be
taken into account as a response probability whether the occupants answer or not.
In a given context, the number of asks relies on the classifier used for estimation
occupancy. To evaluate the interactive approach, we deploy the decision tree to
compare it with the manual label approach. According to our study in [96, 97],
Five occupancy levels to generate decision tree with an average error of 0.03
(see Fig. 10). Decision tree needs 21 asks for training data to build an acceptable
estimator see the following Table 4.

Occupancy estimation using decision tree and interactive learning with an
average error 0.03 person is more efficient than using decision tree and manually
labeling from the video camera with an average error of 0.2 person. The precise
answers to the questions can explain this improvement in occupancy estimation
results. An occupant has replied to them during a training period of the decision tree.
While in manually labeling from a video camera, average values of occupancy have
been obtained, with some human mistakes during labeling. Probably the average
error will decrease if the end-user does not feel concerned by the estimation process.
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Table 5 Knowledge based vs manual labeling vs interactive learning occupancy estimation
comparison

Case study office
H358

Supervised
learning Interactive learning

Based knowledge
learning

Average error 0.18 0.03 0.19

Requirements Labels from
video, keyboard

Frequent questions Collecting knowledge
from questioning and
observation

Adaptation with
high number of
occupants

+ ++ +/−

4 Conclusion

The Internet-of-Things (IoT) revolution has provided a variety of affordable sensors
that new buildings are equipped with as well as data acquisition devices, and cloud
storage. This has resulted in an unprecedented generation of raw data from sensors
and smart meters. Many data mining approaches and machine learning techniques
have been proposed to extract hidden knowledge from these data and then to build
learning machines for a variety of applications and tasks. Activity recognition
in smart buildings is one of the tasks that received a lot of attention due to its
importance in energy management systems, for instance. The goal of this chapter
was to review a variety of machine learning techniques that have been applied
for activity recognition. Moreover, a case study and a methodology that concern
occupancy estimation and that can be easily adopted for activity recognition have
been presented and discussed. The results in this case study lead to the conclusion
that the interactive learning approach is more efficient for occupancy estimation
than the other methods taking into account the context. Two points can explain
occupancy estimation improvement using interactive learning: firstly, the probability
of making some human mistakes during manually labeling while using the video
camera; secondly, the training period cannot be sufficient by missing some cases
from the studied area. Using the ask technique considers all the events that occur
when a new question is sent for each unique and different situation. This allows
also to take into account the quality of the training data as deeply discussed in
[98]. Interactive learning is the primary step to collect knowledge about the relations
between user behavior and energy use. Moreover, its deployment allows involving
occupants and increasing their awareness of energy systems. It depicts the future
vision to develop energy systems, and it presents how much it is essential to put
occupants in the energy process loop (Table 5).
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Characterization of Energy Demand
and Energy Services Using Model-Based
and Data-Driven Approaches

Carlos A. Santos Silva, Manar Amayri, and Kaustav Basu

1 Introduction

The residential building sector is the second largest single consumer of final energy
in Europe, accounting for 26% of the final energy consumption in 2018 and 16.6%
of the primary energy [18], just behind the transportation sector (30%) and ahead
of industry (25%) and services (15%). In terms of energy resources, natural gas
accounted for 32%, electricity for 25%, renewable resources for 20%, and oil
products 12%. In terms of end-uses, space heating accounted for 64%, followed
by water heating 14.8%, lighting and appliances with 14%, and cooking with 6%.

In general, the energy efficiency in the residential sector can be improved
by using more efficient energy equipment, by upgrading the building envelope
characteristics, or by inducing changes in the consumer’s behavior [5, 27]. The
overall effects can be tracked by analyzing the trends of residential space heating
intensity (energy consumption per floor area) as the largest end-use is usually space
heating [27] or by analyzing the energy consumption historical time series and
correlating it with the introduction of policy instruments like the building codes
or appliance energy labels [5].
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To estimate and/or measure the impact of such actions in particular buildings or
households, one should be able to develop accurate dynamic models of building’s
energy consumption [6]. As buildings are complex systems, the energy consumption
is influenced by a combination of factors, including the age and location of the
building, the household size, and the penetration of appliances and electronic
devices—including the type, function, dimension, quantity, and efficiency [16].
However, two households with similar characteristics and equipment will present
different energy consumption, as occupants’ behavior will be different. Occupants’
behavior in residential buildings can be described as the occupants’ presence and the
consequent use of active systems—like lighting, equipment, heating and cooling
systems—and the interaction with other devices passive systems as windows and
blinds that influence energy consumption. Thus, knowing the occupants’ behavior
is a key aspect to develop accurate models of energy consumption [26].

To describe occupant’s behavior, it is necessary to perform occupancy surveys
and occupants’ monitoring (through sensors or direct observations), which can be
time consuming and intrusive [44]. Currently, the deployment of smart meters is
making the information about energy use more available [15]. In fact, EU has
adopted a number of initiatives aiming to improve energy consumption awareness,
including the replacement of at least 80% of electricity meters with smart meters by
2020 [17]. The smart meters data allows for a temporal assessment of the electricity
use, which holds the potential to reveal insights about the electricity consumption
and the behavioral and technological drivers of that consumption. In this way, the
accuracy of the building’s energy models can be increased, enabling the simulation
of impactful measures for the improvement of the energy efficiency in the residential
sector [37].

Most authors categorize energy consumption models in two classes: top-down
approaches, where energy consumption is estimated by means of macroeconomic
variables, like income, fuel prices, or average household floor area; and bottom-
up approaches that estimate the energy consumption by synthesizing the energy
consumption from the consumption of individual appliances or services [30, 43].
The first type of approaches is used when there is no specific detailed data about
the households under study and therefore the energy consumption is inferred from
related data, while the second is preferred when data is available. Top-down models
only provide us information regarding the use of a certain type of energy in a yearly
time scale and are valuable to infer general variables like total energy demand
forecast [43]. However, to understand clearly the dynamics of appliances’ use we
need to use bottom-up models, which can be categorized into two sub-classes:
engineering models, which are based on physical models of the buildings and
the appliances; and statistical or data-driven models, which are based on energy
consumption data.

This chapter describes the state-of-the-art methods to characterize the energy
consumption and energy services in residential buildings. Firstly, a review is done
spanning from model-based approaches—like building thermal simulation tools—
to data-driven approaches—like Non-Intrusive Load Monitoring (NILM). This
study discusses the context under which each of the approaches should be followed,
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such as the sampling rate of data and the available data features or even the evolution
of equipment’s and appliances under the new IOT setting. We also discuss the
integration of these approaches, like using the model-based approaches to generate
data from data-driven approaches in context with scarce data or the use of data-
driven models to learn model-based models and replace them in context of real-time
applications where the available computational time is low. Finally, some results are
presented using two novel approaches, one based on interactive learning and another
using factorial hidden Markov models, to demonstrate that it is possible to achieve
reasonable demand characterization models for energy services in the residential
sector.

2 Engineering Models

2.1 Building Energy Simulation Models

Building Energy Simulation (BES) models are frequently used to evaluate the
effect of the energy efficiency measures, since they allow to study different retrofit
solutions as envelope improvement, HVAC and lighting systems improvement and
operation, or occupants’ behavior change [6]. They are bottom-up models.

For the past 50 years, a wide variety of building energy simulation tools
have been developed and enhanced throughout the building energy simulation
community [12]. These building energy simulation software have different features
and various capabilities such as: general geometry modeling; definition of zonal
internal loads; building envelope properties, daylight and solar radiation; infiltration,
ventilation, and multi-zone airflow; renewable energy systems; electrical systems
and equipment; HVAC systems; environmental emissions; economic evaluation;
climate data availability, results reporting, and validation [11].

Several limitations arise related with the simulation outputs, since buildings
monitoring often identifies significant gaps between the predicted and actual energy
use of buildings and its thermal behavior [11]. Consequently, several techniques
have been developed to support building simulation analysis, including parametric
simulation, sensitivity analysis, simulation-based optimization, meta-model analy-
sis, etc. Still, the calibration process with measurements values of building models
tends to be difficult and time consuming. The amount of parameters that are
uncertain and could affect the outputs of the model is normally high and difficult
to identify [11].

One of the parameters that has been acknowledged to introduce more uncertainty
is the occupants’ behavior, as its randomness is hard to model and is influenced by
multiple contextual factors [26]. Moreover, the data to support these assumptions are
hard to find, as it is usually gathered through surveys, literature review, occupancy
sensors and, more recently, from smart meters. To overcome this problem, typical
or average profiles describing the occupants’ presence are often used in energy
simulations. However, the main criticism of this approach is the oversimplification,
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where the behavioral differences between occupants and the variability of occu-
pants’ behavior throughout the year are not considered.

2.2 Technological Models

Technological models assume that the energy consumption in a household is the sum
of the use of different appliances. Therefore it requires the knowledge or assumption
of what appliances exist in a household, and then the power consumption of each
appliance and the time of use. These models require the existence of extensive
databases of empirical data to support the description of each appliance. Often
these models complete the bottom-up information with top-down information, like
appliance ownership or appliance efficiency. As examples of use, we have [25] that
present an approach to a bottom-up model at the energy service level, or [23] that
estimate the heating, cooling, and domestic appliances’ energy use for different
climatic regions in Algeria.

2.3 Time-of-Use-Surveys Models

Time-of-use surveys (TUS) are surveys completed by residents, usually by keeping
logbooks or diaries about the time use of activities an individual engages in during
a specific time interval throughout the day. This information is extremely important
to characterize the occupants’ behavior and can therefore be used in building
simulation models or technological models.

As examples of use of TUS, [46] analyzed the UK’s time use survey 2005 to
identify how social practices in the household take place in relation to the time of
the day, including preparing food, washing, cleaning, washing clothes, watching
TV, and using a computer. Fischer et al. [21] used the German TUS to develop a
stochastic bottom-up model that generates synthetic electrical load profiles taking
into consideration the seasonal occupant behavior and the correlation between the
start time and the duration of an activity. More recently, [22] created models to
generate a daily electricity demand profile that can be representative of a large
number of Danish households using TUS.

2.4 Using Smart Meter Data to Improve Engineering Models

Electricity consumption data can provide useful information about the consumers
and their habits. In fact, there has been an increasing use of smart meters data
in current studies, namely to identify various types of consumers for short-term
and midterm load forecasting, time-of-use (ToU) tariff design, and demand-side
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management (DSM) strategies [45]. Other studies focus only on the residential
load characterization [42], or on inferring about the drivers behind the residential
consumption, in terms of socio-economic status, appliances stocks, and dwellings
characteristics [33]. Finally, electricity consumption disaggregation, appliances,
lighting and plug load profiles distinction, as well as occupancy inference and
inhabitants’ routines are other uses of smart meter data [37]. Thus, smart meter
data can be used to characterize the activities and equipment in building simulations
and therefore used to calibrate and validate engineering models. This approach
is particularly useful when it is necessary to extrapolate the energy consumption
models for cities or regions based on the detailed monitoring of few households
[24].

3 Data-Driven Models

Another approach to characterize energy demand characterization is to monitor
in detail the energy consumption. Several load monitoring techniques can be
implemented to determine the consumption and status of different appliances to
understand the behavior of the different essential loads in the household. These
techniques can be divided into two main types: Intrusive Load Monitoring (ILM)
and Non-Intrusive Load Monitoring (NILM).

3.1 Intrusive Load Monitoring

Intrusive Load Monitoring (ILM) is a data-collection technique where measurement
devices are installed at each appliance node to detect its power consumption [38]
and therefore characterize in detail the household consumption. The main benefit
of this technique is the accuracy of the results; however, it requires expensive and
complicated installation systems [38].

The databases generated by ILM systems can be labeled in two ways: manually,
which means that the appliance that is being monitored is labeled by the user;
automatically, which means that the system is trained with examples from typical
appliances and then recognizes the appliance that is being used. In general, manual
setup ILM systems outperform automatic setup ILM systems.

3.2 Non-intrusive Load Monitoring (NILM)

Non-Intrusive Load Monitoring (NILM) technique is an alternative process, in
which one single monitoring device is installed at the main distribution board at
the household and an algorithm is applied to determine the energy consumption
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and the state of operation for each individual appliance [40]. As expected, the main
advantage of NILM is the fact that only one single monitoring device is required
thus lowering significantly the cost and the intrusion at the household level. The
main disadvantage is the lower accuracy compared to ILM systems, in particular,
those with manual labeling.

In general, any household appliance can be categorized in one of these classes
[40]:

• on/off appliances, e.g., light bulbs, which have only two states: off (no consump-
tion) and on, with a fix power demand. The duration depends on the user;

• finite-state appliances, e.g., fridges or dish-washers, which have multiple states,
each one with its own power demand, and where the duration of each state is
usually fixed and cyclic;

• continuously varying appliances, e.g., laptops, which have infinite states (contin-
uous power demand) and which behavior is not cyclic;

• permanent demand appliances, e.g., routers or alarm-clocks, which are always
On with a fixed power demand.

The appliances can be detected by “event-based” algorithms that detect the
On/Off transitions or by “non-event-based” or “energy-based” methods that detect
whether an appliance is On during the sampled duration [8].

These algorithms can use different measurements and features data, such as
active and reactive power, voltage and current measurements, signal waveform and
current harmonics signatures or high frequency electromagnetic interference (EMI).

The sampling rate is an important parameter in the complexity level of the
disaggregation methods, as it affects not only the type of feature that can be
measured but also the type of algorithm that can be used. A detailed discussion
on the features and algorithms can be found in [41].

A high frequency (1 s–1 m) sample data rate allows more accuracy and detailed
analysis to detect appliances loads. However, the large amount of measured data
requires higher quality hardware and requires storage and processing capacity
(locally or in the cloud) to run the disaggregation algorithms.

Recently the challenges in NILM approach focus in solving the disaggregation
problem for the regular smart meters, which measure data at a lower frequency. The
sampling rate varies between 15 min and one hour, according to the recommendation
of the Energy Regulatory Authority of 2010, which states that the smart meters
installed in each household must have the ability to measure the power consumption
and save the actual data for at least 15-min-periods [49].

The methodologies to solve NILM problems encompass a mixture of domains.
A majority of the earliest research focused on this problem from a signal processing
perspective. The focus was on identifying different appliance signatures which
distinguishes one appliance from another by analyzing with mathematical tools
(for example, wavelet transformation) [9]. Subsequent research also considered the
problem as a blind source separation task and proposed relevant techniques in that
direction [32]. The details of the approaches can further be understood for the data
distribution perspective.
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3.2.1 NILM for High-Sapling Rate

A high-sampling rate NILM approach is generally a sampling rate of around 1
sample per second (1 Hz). In the last two decades, there has been a considerable
amount of work to this effect. Each new method proposes to reduce the limitations
of the previous ones both in term of signatures or applying state of the art
pattern recognition techniques. The identified features are known as appliances
signatures. Approaches typically consist of identifying the steady state or in some
cases transient state features [51]. Subsequently, these signatures are matched with
earlier learned models using a pattern recognition algorithm [9]. The drawbacks of
these approaches are mainly the hardware requirement to monitor and process the
information [19].

These methods do not fit well into the smart meter sampling rate, so a separate
device has to be installed for training, visualization, and communication to the grid.
This is a major drawback for these methods, commercially and practically speaking.
The load separation at a high-sampling rate of all the appliances also raises privacy
concerns as user activity can be easily detected, interpreted, and monitored [10].

3.2.2 NILM for Low Sampling Rate

At a low sampling rate (a sampling rate in the order of minutes) switching events
are difficult to detect so non-event-based methods are more suited. The major
issue at low sampling rate is that low energy consuming devices are difficult to
be detected. However, high energy consuming appliances, such as water heater or
washing machine, can still be identified with reasonable precision even at sampling
rate of 15 min for example [28].

Considering the constraint of low sampling rate, the differentiation of the
methods is directly dependent on the choice of algorithms. A method that partially
disaggregates total household electricity usage into five load categories has been
proposed at a low sampling rate in [32], where different sparse coding algorithms are
compared and a Discriminative Disaggregation Sparse Coding algorithm is tested.
A feature-based Support Vector Machine classifier accuracy is also mentioned but
is not presented. The method of [32] is an implementation of the blind source
separation problem, which aims at disaggregating mixture of sources into its
individual sources. In the NILM context, the problem is undermined as there is only
one mixture and a large number of sources. Another issue in using blind source
separation is the assumption of no prior information about the sources. On the
contrary, in this context, the sources (appliances) do have separate usage patterns
which could be used. Nevertheless, blind source separation still remains a promising
direction of research in this domain.

Temporal graphical models such as Hidden Markov Models also have been
promisingly used in this domain as they are a classical method for sequence learning
[34]. They have been successfully used in many domains, especially in speech
recognition. In this context, the problem is to learn the model parameters given
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the set of observations as input sequence and appliances states as output. Hidden
Markov Models also consider sequential patterns in consumption but in NILM
problems, at a very low sampling rate it seems to have a high sensibility to training
noise.

3.2.3 New Approaches Based on Machine Learning Algorithms

More recently, as in other domains, machine learning algorithms have been getting
attention to solve the NILM problem [40]. Both supervised and unsupervised
approaches can be used, but unsupervised methods have the advantage of not
requiring a preliminary dataset to train the algorithms.

In supervised methods, the applications span from Bayesian classifiers which
assume that the states of the appliances are independent although this is often not
true in practice [7], to Support Vector Machine [20], Hidden Markov Models [52],
or Artificial Neural Networks [47].

For unsupervised methods, most of the research is based on Hidden Markov
Models, as it not required to perform event detection. This makes these algorithms
suitable for low frequency samples as event detection is very difficult or not
possible. In particular, Factorial Hidden Markov Model is a popular approach, as
the observation for each appliance results from the output of each individual Markov
model [31].

4 Case Study: Application to Residential Energy
Consumption in France

In this section, we present the application of different types of methods to character-
ize energy demand and energy services in the residential sector using model-based
and data-driven approaches for the case of France.

Between 2006 and 2008, a European project called REMODECE [13] was devel-
oped with partners from 12 EU countries that did a very detailed characterization
of the electricity consumption of the residential sector in Europe. The large-scale
monitoring campaign and a consumer survey around 1300 households and the study
involved the collection of 6.000 questionnaires. About 11.500 single appliances
were analyzed.

In the case of France, a large dataset denominated IRISE was collected, which
includes the total energy consumption and particular appliances consumption in 100
households in France between 1998 and 2000. The dataset considers a broad set of
electrical appliances spanning from low power-low consumption appliances such as
lights to large power-large consumption appliances, such as DHW systems, HVAC
systems, and wet appliances. Over the last years, this database has been used to
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calibrate, validate, and develop several models of the energy consumption in the
residential sector in France.

After discussing the different methodological approaches to characterize the
energy consumption and energy services for the residential sector, in this section
we lay the foundations to discuss the applicability of each type of methods. For the
engineering models, first we summarize the findings of several research papers that
have been published using the IRISE dataset by type of model and then we propose
a novel data-driven model to perform the characterization of energy demand, based
on a new approach, the Interactive Learning [2, 3] and we compare it with standard
NILM approaches for the same datasets.

4.1 Engineering Models

4.1.1 Building Energy Simulation Model

Kashif et al. [29] proposed a co-simulation environment for energy smart homes
that takes into account inhabitants’ dynamic and social behavior. To do that, the
set-points for different controllers are adjusted using a physical building energy
simulation model. To model the human behavior, the Brahms environment was used.
The IRISE dataset was used to understand how inhabitants’ behavior affects energy
consumption. Subsequently, to model the behavior, a questionnaire was used that
captured the context and the time-of-use of devices that impact the consumption.

Plessis et al. [36] proposed also a co-simulation environment using an Agent-
Based Modeling (ABM) to simulate occupant behavior and a building energy
simulation model that uses hybrid and differential algebraic equations to perform
the dynamic thermal modeling. The “Mozart” house was modeled as it is one of
the most representative houses in the French residential building stock (medium
size detached house of 100 m2 of living surface area and an air volume of
252.15 m3). The FMI standard for co-simulation was used to couple the SMACH
occupant behavior simulator and a building energy model built with the BuildSysPro
Modelica library. Again, the IRISE dataset was used to describe the occupants’
behavior.

From these examples, we can conclude that the use of building energy simulation
models is mostly adequate to forecast the thermal behavior of a household given a
set of different control parameters (e.g. switch on the heating or cooling system,
increase the set-point temperature, close the blinds or open the windows), which
has a significant impact in the energy demand of a household.

4.1.2 Technological Models

Almeida and Fonseca [1] describe the detailed monitoring campaign done under
the REMODECE project and, based on that analysis, propose a technological
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model that describes the average energy consumption in the residential sector in
Europe. From the data, they extracted the average power consumption for different
appliances and the average time of use. They concluded that at the time, the
electronic loads were a key contributor to the power demand and that there was
a wide range of performance levels in the models available in the market. They also
looked into detail into the patterns of residential lighting use, in which an increasing
penetration of CFLs was being partly compensated by an increasing penetration of
halogen lighting. Residential air conditioning was growing fast and was already a
major contributor to summer peak demand in Mediterranean countries, as shown
by the summer load curves from very hot days. Finally, based on the technological
models, they were able to evaluate the potential energy savings from improving the
efficiency of different appliances.

From this example, we can conclude that technological models are useful to
estimate the impact of energy efficiency measures based on the replacement of
appliances with low efficiencies.

4.1.3 Time-of-Use Survey Model

De Lauretis et al. [14] try to correlate the average energy and expenditure intensities
of time uses of the total population as well as of income, household-composition and
housing-type subgroups. To do that, they use a time-of-use survey done in France
from 2009 to 2010. They find out that income is an obvious driver of energy and
expenditure intensities but is revealed to influence time use as well. Household
composition and housing type are also associated with substantial variations in
activity patterns and in the energy and expenditure intensities of activities, even
within a given income group. In conclusion, they underline the importance of
household disaggregation in household energy analyses, to properly account for
such disparities.

Robinson et al. [39] have proposed a structure for a new multi-agent simulation
system in which occupants’ presence, activity, behavior, comfort, and investments
are each simulated in a coherent way using time-of-use surveys and bottom-
up technological models. They suggest that this forms a robust basis for future
simulations at the range of scales, from the building to the urban and beyond, with
which we wish to examine occupants’ impacts on sustainability and test strategies
for ameliorating these impacts.

From these examples, we can conclude that time-of-use surveys are important
source of information to describe the activities in the residential sector and therefore
can replace detailed monitoring campaigns or questionnaires to characterize the
activities in a household. Together with a technological model of the appliances that
are used during each type of activity, it is possible to build a detailed disaggregated
model of energy consumption.
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4.2 Data-Driven Models

4.2.1 Intrusive Load Monitoring

The IRISE dataset was built using an Intrusive Load Monitoring approach [1, 13].
Basu et al. [8] perform a detail analysis for all the 100 households and conclude

that they can be clustered in 4 main classes depending on the average load, average
deferable load, area, and number of occupants.

Here, we chose to include houses with both Water Heating and Electric Heating
Appliances. From the available dataset, 3 houses have been chosen: 28, 38, and 78.
These houses also have other appliances with high power, such as the “Electric
Cooker” or “Micro Wave Oven” that during the identification process might
introduce uncertainty. Compared to the work of [8], house 28 would fall in the
cluster "2," 38 would fall in cluster "1," and 78 in cluster "3."

Table 1 summarizes the main indicators regarding the consumption in each
household. We can see that the houses present different profiles: house 38 has
high consumption, distributed throughout the day. Houses 28 and 78 have low
consumption and the consumption patterns more concentrated in specific periods
(dawn for 28 and evenings and dawns for 78).

4.2.2 Non-intrusive Load Monitoring

The IRISE dataset was already used to develop Non-Intrusive Load Monitoring
approaches, as describes in [8]. That work proposes a generic methodology using
temporal sequence classification algorithms, based on an innovative time series
distance-based approach that uses k-nearest classifier using different distance
metrics (Euclidean, dynamic time warping, and temporal correlation), with 10%
training and 90% testing. The results are compared with a standard NILM applica-
tion based on the hidden Markov model (HMM) algorithm, using precision, recall,
and F-measure, commonly used in information theory studies [48], but the proposed
approach outperformed the HMM.

Table 1 Energy consumption of the houses in the dataset

House 28 38 78

Total yearly consumption (kWh) 8943 14031 8264

Average hourly consumption (kWh) 1.02 1.60 0.94

Standard deviation of hourly consumption (kWh) 1.27 1.97 1.22

Hourly peak (kW) 6.9 4.6 7.9

Water heater 16.71% 15.57% 67.19%

Electric heating 58.31% 52.25% 1.72%

Clothes drier 0.74% 2.14% 4.48%
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The results for the k-nearest approach using the dataset with 10 min resolution
to detect the ON event are described in Table 2. Notice that these results are not
specific for houses 28,38, and 78, but for houses in the same cluster.

For this work, we asked the company WATT-IS to run the results for the
chosen houses [50]. This algorithm combines the traditional NILM techniques
based on “event detection”—which explores heuristics derived from the power
demand, power variation, and total energy consumed for each event from different
appliances—and unsupervised machine learning techniques (as there is no labeled
data), like clustering to identify similar events and feature selection, to identify the
most relevant data attributes. The algorithm is totally unsupervised.

The results for the NILM using the dataset with 10 min resolution are described
in Table 3. We cannot directly compare these results with the ones in [8]—as those
ones are for different houses within a cluster that presents similar characteristics, so
the relative weight of the appliances and even the use of the appliances is different.
Still we can see that the F-score is lower than the k-nearest supervised approach
from [8], which demonstrates that at this sample rate, the water-heater loads, electric
heating, and clothes drier, the signals can be mixed.

Finally, we also applied an algorithm based on Factorial Hidden Markov Model
from [35], which was based on [31].

Table 2 Results for NILM
approached based on
k-nearest classifier from [8]:
10 min

House Appliance F-score

Cluster 2 (28) On Water heater 94%

Electric heating n.a.

Clothes drier n.a

Cluster 1 (38) On Water heater 91%

Electric heating n.a.

Clothes drier n.a.

Cluster 3 (78) On Water heater 91%

Electric heating n.a.

Clothes drier 39%

Table 3 Results for NILM:
10 min

House Appliance Precision Recall F-score

28 On Water heater 32% 40% 36%

Electric heating 66% 68% 67%

Clothes drier n.a. n.a n.a.

38 On Water heater 66% 45% 54%

Electric Heating 33% 75% 45%

Clothes drier n.a. n.a n.a.

78 On Water heater 45% 31% 37%

Electric heating 13% 1% 2%

Clothes drier n.a. n.a n.a.
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Table 4 Results for factorial
hidden Markov models:
10 min

House Appliance Precision Recall F-score

28 On Water heater 93% 65% 75%

Electric heating 80% 72% 75%

Clothes drier n.a. n.a n.a.

38 On Water heater 91% 67% 77%

Electric heating 55% 68% 60%

Clothes drier n.a. n.a n.a.

78 On Water heater 93% 62% 74%

Electric heating n.a. n.a. n.a.

Clothes drier n.a. n.a n.a.

The results are described in Table 4. The results show that for water heater and
electric heating, the algorithm presents higher performance and is comparable to the
supervised approach presented in [8].

As a conclusion, NILM approaches can be used to disaggregate the use of
the appliances, especially the ones that present a significant weight in the overall
consumption. The approach presented in [8] appears to capture fairly well the water
heater, but is uses a training set. The NILM proposed by WATT-IS, which does
not use any labeled training data, is able to capture fairly well the appliances if the
relative weight in the consumption is high, as it is the case of electric heating in
houses 28 and 38 and Water heating in house 78. The NILM using Factorial Hidden
Markov Model performs well, except if the relative weight in the consumption is
small, like the electric heater in house 78. Overall, even with low resolution data,
NILM models can be used to obtain detailed disaggregated data without resorting
to ILM, in order to supply information of occupants’ behavior for other models, like
building simulation models or technological models.

4.3 A New Approach to Develop Data-Driven Models:
Interactive Learning

In this work the deployment of Interactive Learning (IL) is used to disaggregate
the appliances consumption. IL is a supervised learning methodology that involves
the exchange of information with the user to collect a training dataset related to
a specific context [2]. One of the advantages of IL is that useful feedback can be
obtained from the end-user and increase their awareness of energy systems. This
algorithm, proposed by Amayri et al. [2], has been successfully applied to estimate
the occupancy in office rooms, using different sensors and avoiding the use of
cameras [3]. Besides, the concept of interactive learning allows us to evaluate and
improve the quality of the database [4].

In Interactive Learning, each data point is a list of features coming from sensors,
which is called an “ask.” In our case, the features correspond to the list of features
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which include the current and the previous total electricity consumption data, the
hour of the day and the derivative of electricity consumption. The data point
may include a label provided by the feedback of the user regarding the use of a
certain appliance. The main problem in interactive learning is to determine when a
candidate “ask” should be considered for collecting occupant feedback, considering
the existing database. The density of the neighborhood, average error estimation,
the weight of each class, and the score of the spread of the data (Qscore), are
used to define the valuable time to interact with the end users. In [3, 4], the IL
approach is enhanced to define the right time to question occupants when relevant,
by limiting the number of interactions and maximizing the information gain. The
classifier construction is part of the method, so the IL will determine what is the
expected state of the appliance at the next instant.

In this work, the algorithm of IL is used as a multi-label classification model (i.e.,
three appliance states, on/off). The interactivity depends mainly on the methodology
used to define when it is necessary to ask occupants information about the state of
the appliances. It does so by limiting the number of interactions and maximizing the
information’s usefulness about the disaggregated appliances.

The first step for the validation is to apply IL approach with the spread rate
concept [4] on IRISE case study. At this step, Human Machine Interface (HMI)
interaction with end users in the IRIS houses is simulated, using as the answers
of the “asks” the data labels obtained from the power consumption sensors which
are connected to each appliance. Naive Bayes classifier has been applied with the
interactive learning process.

In Table 5 we present the number of “asks” over 18 days and Table 6 presents the
results.

Comparing IL to the NILM results, we can see that in general, the IL method
outperforms the NILM for the Water Heater and Electric Heating, especially for the
houses where the performance of NILM was lower (water heater On in house 38 and
Electric Heating ON in house 78). Further, IL presents the advantage of identifying
the clothes drier, although the accuracy of the ON detection is low (around 30%).
This is due the fact that the weight of this type of appliance in the total consumption

Table 5 Number of asks each day: 10 min for one appliance

Day 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Number of
asks with 100
% replies (28)

18 3 0 0 0 1 0 0 2 1 0 0 2 1 0 1 0 0

Number of
asks with
100% replies
(38)

16 3 0 0 0 0 0 2 1 0 0 2 0 0 1 0 0 0

Number of
asks with
100% replies
(78)

20 0 1 2 0 0 0 0 0 1 0 0 0 0 1 0 0 0
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Table 6 Results for
Interactive learning: 10 min

House Appliance Precision Recall F-score

28 On Water heater 85% 76% 81%

Electric heating 50% 34% 66%

Clothes drier 24% 33% 37%

38 On Water heater 54% 33% 30%

Electric heating 77% 64% 70%

Clothes drier 35% 10% 14%

78 On Water heater 90% 89% 87%

Electric heating 99% 99% 99%

Clothes drier 25% 70% 41%

is small, so there are not a lot of data to perform well the classification, compared to
the other appliances.

5 Discussion and Conclusions

In this section, we summarize the findings regarding the use of the different types of
approaches that can be used to characterize the energy demand and energy services
in the residential sector.

The choice of the approach to use regarding the model is based on two
dimensions: the objective of the study and the available data. Firstly, engineering
models like building energy simulation models or technological models have to
be used to estimate the energy service demand (heating and cooling needs, water
heating, lighting, cooking), which are extremely difficult to obtain from data-driven
models, as these are complex to measure directly. Consequently, if the objective of
study is to develop an energy management system or evaluate the impact of energy
management strategies, whether it refers to changing the set-points of appliances or
the replacement of the appliances, it is necessary to resort to an engineering model.
No data-driven model “per se” will be able to provide conclusive answers regarding
the changes in consumption caused by changes in the operation of the appliances.

In any case, engineering models require in general the modeler to consider sev-
eral assumptions, like, for example, the occupant’s behavior in terms of schedules
or set-points. In this case, time-of-use surveys provide this information, as they
describe the type of activity and eventually details about the use. On its own, TUS
cannot be used to characterize the energy consumption, only if coupled with an
engineering model.

Finally, data-driven models can only be implemented directly to characterize
energy consumption, as this is the variable which is usually measured. In case of
ILM approaches, the details of the demand characterization (for example, when
each appliance is operating) depends directly on the monitoring system. However,
in most cases, only aggregated measurements and with low resolution are available.
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In that case, NIML approaches can disaggregate information. The challenge for
NILM approaches is that the data being monitored is in general low resolution data,
without labeling. The comparison between three different NILM approaches shows
some differences between the algorithms, but in general for this low resolution, these
algorithms are able to capture the operation of the appliances that are relevant in the
overall consumption (water heaters, heating systems). Even the detection of large
white appliances presents a significant challenge if no labeled data is used.

To solve this challenge, we propose here the use of Interactive Learning, which
is a learning method that can label data directly with the user feedback in case the
available data is not enough to perform the classification. As shown in the results,
after a first initial set of questions on the first days, the need to ask the user for
additional information is sparse. It presents the advantages of NILM (only using
aggregated data) with the advantages of ILM, which is the access to labeled data.
In this way, we find IL a very promising approach to disaggregate total energy data,
even for low resolution data and with the additional capability of disaggregating the
use in other appliances.

The disaggregation provided by NILM models, even if the accuracy it is not
very high, can replace to a certain extent the Time-of-use-surveys, as often specific
activities are related to the use of specific appliances. This is the case of an electric
oven (used when people are cooking) or a TV. However, this is not necessarily true
for heating systems (they can operate while people are cooking, watching TV or
sleeping) or water heaters with storage tanks (they can heat the water before people
take their shower or when they are not at home). Again, the use of an approach
like IL is less invasive than performing a detailed questionnaire regarding the use of
appliances.

Finally, to characterize the energy services, it is necessary to couple the data-
driven model with a technological model or energy simulation model. Take as
an example the hot water service. Measuring water heating consumption without
measuring the water temperature or the water consumption requires a technological
model to infer the service from the data. The same applies for heating needs. Even
with the temperature of the room, it is necessary to know the area of the heated
space, the type of equipment to estimate the service.

From the examples described, we see that most of the works that perform detailed
energy demand characterizations often use co-simulation frameworks, integrating
different types of models. Thus, we believe that in the current context of large-
scale deployment of smart meters in the residential sector, it becomes feasible to
characterize in detail the energy consumption and energy services in the residential
sector.

With the aggregated electricity consumption data, and using NILM or Inter-
active Learning, it is possible to disaggregated energy consumption, replacing
ILM approaches. From multiples households disaggregated data it is possible to
build appliances databases and generate technological models from it. This allows
to identify households with poor performance equipment or inadequate uses of
equipment (e.g., water heaters operating during the day and not taking advantage
of lower tariffs in the evening). From disaggregate data from multiple households
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in the same location, e.g., neighborhood, it is possible to infer the parameters about
the houses for energy simulation models. Take the example of several households
that use the air-conditioning in the same building. By comparing the use of it,
we can estimate infiltration or envelop losses using energy simulation models.
And with good calibrated simulation models, it is possible to design smart energy
management systems that learn the behavior of the user, learn the characteristics
of the equipment and the buildings and optimize the energy system by minimizing
consumption while providing the correct comfort level of energy service.
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Occupant Actions Selection Strategies
Based on Pareto-Optimal Schedules
and Daily Schedule for Energy
Management in Buildings

Monalisa Pal and Sanghamitra Bandyopadhyay

1 Introduction

Building energy management is a globally important topic of interest as it con-
tributes to nearly 40% of global energy consumption [3, 23–25]. Architectural
and technological developments [25, 28] provide solutions to decrease energy
consumption while meeting the occupants’ demands, such as comfort, cost, etc.
However, such solutions either require the construction of new buildings (also
known as the green buildings) or require installation of new devices [15, 25].
Nonetheless, the occupants’ demands can be met to some extent by regulating the
actions of the occupants [3, 24]. Such a solution to the building energy management
problem is more beneficial as it not only helps in decreasing the occupants’ demands
but also can be applied to existing buildings without any extra construction or
installations [17, 25]. Thus, such solutions are also known as zero-cost solutions
for the building energy management problem.

A building energy management problem is, thus, characterized by occupants’
actions, occupants’ demands, the testbed zone (room, floor, building, neighbor-
hood, etc.), and granularity (hourly, daily, monthly, seasonal, yearly, etc.) of
data [17, 25]. The actions of the occupants, which can influence the occupants’
demands, comprise opening and closing of doors, windows and window blinds, and
turning on or off of electrical devices (like heater, monitor, etc.) [17, 25]. Under a
given physical context (outdoor weather), these occupants’ actions create various
environment-building-occupant interactions through airflow and heat flow, which
affect the indoor ambience, such as indoor temperature, indoor CO2 concentration,
and indoor humidity [17, 25]. These physical variables create an impact on the
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occupants’ demands like thermal discomfort [3], air quality discomfort [3], and
expenses incurred due to heater operations [25]. Thus, the occupants’ actions are
the controllable causes that are capable of creating various desirable effects. These
causal phenomena [3, 9] are the fundamental factors driving the zero-cost solution
for the building energy management problem.

Due to the mathematical formalism of various physical knowledge models, it is
difficult for the occupants to learn the impact of their actions on desirable effects [3].
On the one hand, machine learning approaches [18, 34] have often been adopted
to simulate the occupant-building interactions. On the other hand, multi-objective
optimization (MOO) approaches [3, 6, 15] are also adopted to yield occupants’
actions for a preferable indoor ambience. However, merely recommending actions
does not create the necessary awareness among the occupants to modify their habits
towards an energy-efficient routine [3]. Towards employing this awareness in prac-
tice, various explanation generating engines [2, 25] are developed, which analyze
why a recommended action is important and what happens if the recommended
action is not implemented.

The MOO module generates a list of action schedules compromising among the
various demands [20, 25]. However, much attention has not been provided towards
the selection of the most relevant action schedule from the list of Pareto-optimal
action schedules. To meet this research gap, several strategies for selecting this
relevant action schedule are investigated in this work considering the data collected
using various sensors in an office room at Grenoble Institute of Technology, France,
where four researchers work. An MOO framework is considered for obtaining the
Pareto-optimal set of schedules of occupants’ actions (opening and closing of doors
and windows over 12 h with hourly granularity), under a recorded physical context,
while minimizing two criteria: thermal dissatisfaction and CO2 based air quality
dissatisfaction. The most relevant Pareto-optimal schedule is then chosen following
the decision-making strategy presented in this work. This optimal schedule and the
historical (recorded) schedule of occupants’ actions can then be utilized by any
explanation generating engine to describe the causal changes.

The organization of the rest of this article is as follows. In Sect. 2, a literature
survey on various decision-making strategies for choosing the relevant Pareto-
optimal schedule is provided. It also highlights the novelty and the importance of
the proposed work for selecting relevant occupants’ actions. Section 3 discusses
the specifications of the various constituents involved in the problem formulation
along with the operation of the proposed approach to address the building energy
management problem. The proposed evolutionary framework and the occupants’
actions selection strategy are analyzed with real-world data in Sect. 4. Finally, the
article is concluded in Sect. 5 while mentioning the possibilities to further extend
this work.
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2 Brief Review on Decision-Making Strategies in Presence
of Multiple Compromises of Interest

The objectives of the building energy management problem consider occupants’
comfort, economy, and ecology, which are conflicting in nature. Hence, in the
past decade, related problems are often formulated as multi-objective optimization
problems.

Earlier studies, such as [14] and [7], are noteworthy research works where multi-
objective optimization problems for physical retrofit planning are investigated.
Installations of windows, roof, and solar panels are planned to minimize energy
consumption while balancing the stakeholders’ gain and the occupants’ demands
using Tchebycheff programming in [6] and mixed-integer non-linear programming
in [15]. However, in these works, scalarization functions are used to transform
the multi-objective problems entirely into a single objective optimization problem,
which yields a single optimal solution. Thus, the need for decision-making does
not arise but the entire search space is also not thoroughly explored due to these
transformations.

In a related building energy management problem, the first multi-objective
optimization approach (using second-generation non-dominated sorting genetic
algorithm, NSGA-II [13]) has been employed in [26]. The estimated Pareto-Front
provides a set of alternative solutions which is beneficial for the decision-making
process. However, it specifies the requirement of expert knowledge or user prefer-
ence for selecting one of the several alternatives from the estimated set of solutions
[26].

Another multi-objective optimization approach (using differential evolution for
multi-objective optimization, DEMO [29]) proposed the use of distance to best
compromises [3] for an automated decision-making process. This approach is
motivated to choose the best trade-off with equal preference to all objectives. Thus,
the solution with the minimum sum of objectives (closest to the ideal minima or
the origin of the objective space) is chosen by this approach as the recommended
schedule of occupants’ actions.

For allowing more control to the users, a user interface is developed in [19].
In this approach, several radial basis functions are fitted on the estimated Pareto-
Front to generate the global response surface [1]. This allows the users to smoothly
navigate various co-dependent sliders along each objective and the optimal solution
is generated by inverse mapping and interpolation of objective functions.

When decision-making involves specifying preferences, usually a single
decision-maker is considered. In the presence of multiple occupants with different
preferences, multiple preferences are often managed by imposing a hierarchy or
priority order among the multiple occupants [17]. A decision-making strategy using
a Nash-bargaining like approach is proposed in [21] to yield the fair consensus
solution concerning multiple preferences. By varying its α parameter, the kind of
fairness can also be regulated to manage situations of similar occupants’ preferences
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Fig. 1 Roadmap of occupants actions selection strategies

with a very diverse preference of an occupant. Thus, the fair consensus solution
becomes the final chosen solution by this approach.

The above-mentioned decision-making approaches, even those considering occu-
pants’ preferences, only deal with solutions in the objective space. Moreover, the
next goal in the building energy management problem is to motivate the occupants
to adjust their actions as per the recommended schedule by providing explanations.
Differential explanations and causal graphs suggest that occupants’ actions at the
time instants t and (t + k) may both affect the indoor ambience at (t + k),
i.e., different actions can generate similar effects. Equivalently, multiple action
schedules can generate nearly the same objective values (multi-modal nature of
building energy management problem). Among various estimated Pareto-optimal
action schedules, the schedule closely resembling the historical (recorded) schedule
can be considered to be highly relevant as this provides a better alternative without
highly varying the usual routine of the occupant. Thus, it will be easier to motivate
the occupants to incorporate these small changes in their routine for a more energy-
efficient routine. Thus, the novel contribution of this work is twofold:

1. Design a multi-modal multi-objective optimization framework that can explore
both actions and effects and is capable of generating equivalent action schedules
for nearly the same objective values.

2. Design an automated decision-making strategy to select (post-optimization) the
relevant Pareto-optimal action schedule, which closely resembles the historical
(recorded, past) schedule.

The roadmap of occupants’ actions selection strategies leading to the proposed
work is briefly summarized in Fig. 1.

3 Determining the Best Schedule of Occupant Actions

The underlying causal relations [3, 25] occur among various physical variables,
which can be grouped into four categories as follows:
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• Occupants’ actions (XB ): This is the set of variables that are directly controllable
by the occupants. The scope of this work involves actions like opening/closing
of doors (ζD(t)) and opening/closing of windows (ζW (t)) at time instant t .

• Physical context (PB ): This is the set of variables which are not controllable
by the occupants. This involves variables like outdoor temperature (Tout (t)),
occupancy (n(t)), wind speed, humidity, etc. at time instant t .

• Effects (FB ): These are the set of variables that help in quantifying various effects
desired by the occupants. The scope of this work involves effects like thermal
dissatisfaction (σtemp(t)) and air quality dissatisfaction (σair (t)) at time instant
t .

• Intermediate variables (IB ): This forms the set of remaining variables. It has
two distinct subsets: (1) variables which can be measured using sensors such as
indoor temperature (Tin(t)) and CO2 concentrations (Cin(t)) and (2) variables
which are estimated through simulation models such as airflow (Q(t)) and heat
flow (ϕ(t)).

The causal relation [3, 25] can be summarized as in Eq. (1). This represents that
under a given context PB , the set of actions XB causes the effects FB through the
intermediate variables IB .

XB,PB
IB−→ FB (1)

The goal of the building energy management problem is to generate optimal
occupants’ actions for desired effects (multi-objective optimization). Let the rele-
vant optimal actions be X�B . When X�B is used to simulate the building model under
the same physical context PB , the obtained level of satisfaction is given by F �

B and
the associated physical phenomenon is I�B which assists in achieving F �

B . Thus, in

formal terms: X�B,PB
I�B−→ F �

B .
The following sub-sections describe the various modules to construct the frame-

work for achieving this above-mentioned goal.

3.1 Description of Experimental Testbed

The layout of the office room in the Grenoble Institute of Technology is shown in
Fig. 2, which forms the experimental testbed. It is fitted with 27 sensors, which
record indoor physical variables like humidity, temperature (Tin in ◦C), CO2
concentration (Cin in ppm), motions (to assist in occupancy estimation [4, 5]),
etc. These sensors also record the corridor variables like temperature (Tn), CO2
concentration (Cn), etc. Other contextual variables like outdoor temperature (Tout ),
wind speed, illuminance, etc. are available from the weather forecast. These sensors
are used to create a historical database (HDB ), which provides data to tune the
physical knowledge models and the reference schedule (X̃B ) for decision-making.
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Fig. 2 Layout of the office room (testbed)

The data is available for the operational duration of the office for approximately 100
days (April 1, 2015, to July 9, 2015, 8 am to 8 pm).

3.2 Physical Knowledge Models for Simulation

As this study considers optimization objectives (effects of occupants’ actions) as
the thermal and CO2 based air quality dissatisfaction, physical knowledge models
are fitted to simulate indoor temperature (Tin(t)) and indoor CO2 concentration
(Cin(t)) for a given physical context and a given set of actions. It is interesting
to note that both Tin(t) and Cin(t) are intermediate variables which are influenced
by occupants’ actions (present and past values of ζW (.) and ζD(.)) and physical
context and, in turn, influences the indoor comfort (σair (t) and σtemp(t)). The lack
of appropriate physical knowledge models for a building zone limits the scope of
the current research problem. Nonetheless, the thermal and aeraulic models of the
office, whose layout is shown in Fig. 2, have been thoroughly explored in Sect. 5.1
of Chapter “Formalization of the Energy Management Problem and Related Issues”,
and the best-fitted models are available for further use in this experiment.
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3.3 Formulation of the Optimization Problem

The concerned zero-cost building energy management problem is an optimization
problem that uses the causal relation in Eq. (1) and the physical knowledge models
in Sect. 5.1 of Chapter “Formalization of the Energy Management Problem and
Related Issues” for optimizing FB (XB | PB). For a formal definition to obtain the
Pareto-optimal set of occupants’ actions, this work considers the following encoding
of N -dimensional solution vector (XB with N = 24) and M-dimensional objective
vector (FB with M = 2), which are derived from occupants’ actions (XB ) and
effects (FB ), respectively.

• Encoding of actions for the optimization module: As the work considers an
hourly granularity (counting 8 am as the first hour), the status of opening and
closing of door and window at every hour helps in the construction of the 24-
dimensional binary solution vector (XB ) as shown in Eq. (2). Thus, the schedule
of door and window opening/closing can easily be extracted from this encoding.

XB =
[
xB,1, . . . , xB,N

] =
[
ζ 1
W, . . . , ζ

k
W , . . . , ζ

12
W , ζ 1

D, . . . , ζ
k
D, . . . , ζ

12
D

]

where, ζ kW =
{

1, if window is open at kth hour between 8am and 8pm

0, if window is closed at kth hour between 8am and 8pm

and ζ kD =
{

1, if door is open at kth hour between 8am and 8pm

0, if door is closed at kth hour between 8am and 8pm
(2)

• Desired effects of occupants’ actions forming the optimization objectives: As this
work considers minimization of thermal and CO2 based air quality dissatisfac-
tion, a transformation of indoor temperature (T k

in) and CO2 concentrations (Ck
in)

to quantifiable dissatisfaction values over an entire day is required.
At the kth hour, thermal dissatisfaction (σktemp) and CO2 based air quality

dissatisfaction (σkair ) are computed using Eqs. (3) and (4), respectively. It is
not surprising to note that when the office room is unoccupied (nk = 0), the
respective dissatisfaction values are zero. The indoor temperature (T k

in) and CO2

concentrations (Ck
in) at the kth hour are obtained using the physical knowledge

models, described in Sect. 3.2.

σktemp

(
T k
in

)
=

⎧
⎪⎪⎨

⎪⎪⎩

21−T k
in

21−18 , if T k
in < 21 and nk > 0

0, if 21 ≤ T k
in ≤ 23 or nk = 0

T k
in−23

26−23 , if T k
in > 23 and nk > 0

(3)
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σkair

(
Ck
in

)
=

{
0, if Ck

in ≤ 400 or nk = 0
Ck
in−400

1500−400 , if Ck
in > 400 and nk > 0

(4)

The overall thermal and CO2 based air quality dissatisfaction over the entire
day forms the two optimization objectives and is obtained in terms of the
arithmetic mean over the operational duration of the office by using Eq. (5).

FB =
[
fB,1, . . . , fB,M

] =
[

1

12

12∑

k=1

σktemp,
1

12

12∑

k=1

σkair

]
(5)

Thus, with these definitions, the historical database and the simulation models, an
evolutionary algorithm could be used to generate an estimate of the Pareto-optimal
set of solutions (action schedule) from which the relevant schedule of door and
window opening/closing is further selected for recommending to the occupants.

3.4 Proposed Framework to Generate Relevant Compromises

Among several multi-objective evolutionary algorithms (MOEAs), decomposition-
based algorithms have superior exploration capabilities due to partitioning of the
objective space into multiple sub-spaces and solving the multi-objective optimiza-
tion problem within each sub-space in a collaborative manner [10]. Furthermore,
integration of decomposition strategies with Pareto-dominance based strategies
have huge potential to improve the estimation of the Pareto-optimal solutions
[12, 31]. Moreover, only recent MOEAs, such as DE-TriM [22], take advantage
of both decomposition and Pareto-dominance and are also capable of exploring
the decision space to find equivalent solution vectors, which have nearly the same
objective vectors. If a set of such equivalent Pareto-optimal solutions are available,
the solution closely resembling the historical schedule (a schedule with minimal
changes from the past schedule) can be recommended to the occupants as the first
step towards learning the energy-efficient routine.

As DE-TriM was developed for real-valued solution space [22], whereas the
building energy management problem has binary-valued solution space, binary
reproduction operators such as those of Genetic Algorithm (single point binary
crossover and bit-flip mutation) could be used instead of the operators of Differential
Evolution. Thus, with some minor changes to DE-TriM, this work proposes
the framework of GA-TriM (Genetic Algorithm for Multi-Modal Multi-objective
problems) to address the concerned zero-cost building energy management problem.

The steps of the GA-TriM for estimating the Pareto-optimal solutions of a
multi-modal multi-objective problem are outlined in Algorithm 1. Aside from the
objective functions (Eq. (5)), the population size (npop), termination condition
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Algorithm 1 General Framework of GA-TriM
Input: FB(.): Objectives of building energy management problem corresponding to N -

dimensional decision space (lower-bounded by XL
B and upper-bounded by XU

B ) and M-
dimensional objective space; npop: Population size;Gmax : Maximum generations (termination
condition);W: ndir number of M-dimensional reference vectors

Output: AGmax : Estimated Pareto-optimal sets;AF,Gmax
: Estimated Pareto-Front

1: procedure GATRIM(FB(.), npop , Gmax ,W)
2: AG=1 ← An npop ×N matrix is randomly initialized, bounded by XL

B and XU
B

3: AF,G=1 = {FB (XB) | XB ∈ AG=1} (Fitness is evaluated)
4: Initialize mutation probability, Pmut = 2/N for all candidates
5: ParrG=1 ← A vector of length ndir to store sub-population sizes, initialized with npop/ndir

for all directions
6: for G = 1 to Gmax (until termination) do
7: μPmut ←Mean over Pmut of all candidates inAG

8: for k = 1 to ndir (for each direction) do
9: Asub_k

G ← Create a sub-population with Sk,G ∈ ParrG candidates fromAG which are
closest to Wk ∈W in terms of d2 (Eq. (8))

10: Xparent
B ← Any XB ∈ Asub_k

G is assigned as the parent candidate

11: Pmut ← N
(
μPmut , 0.1

)
for Xparent

B such that Pmut ∈ (0, 1]

12: Xchild
B ← Reproduce

(
Xparent
B , Pmut ,Wk,W

)
(Algorithm 2)

13: AG: Append Xchild
B toAG

14: AF,G: Append FB
(
Xchild
B

)
toAF,G

15: end for
16: AG+1andAF,G+1: Create population of size npop for next generation using non-

dominated sorting and SCD (as secondary criteria) onAGandAF,G
17: IAD : Find indices of the directions inW to which each candidate ofAG+1 is closest to

in terms of d2 (Eq. (8))
18: ParrG+1 = Feedback_Allocation

(
IAD, npop, ndir

)
(Algorithm 3)

19: if G is divisible by 10 then
20: Re-assign Pmut = 2/N for all candidates
21: end if
22: end for
23: ReturnAGmax andAF,Gmax

24: end procedure

Gmax , and a set W of ndir reference vectors1 to partition the objective space are
considered as inputs to GA-TriM. It estimates the Pareto-optimal set of solutions
(AGmax ), whose corresponding non-dominated set in the objective space (AF,Gmax

)
yields the estimated Pareto-Front. GA-TriM consists of the following steps:

1. Initialization steps (Lines 2–5): In line 2, a population (AG=1) of N -dimensional
solutions are randomly initialized such that each solution is a random unique
vector according to the definition in Eq. (2). In line 3, the objective vector for each
solution of the population is evaluated to create the matrixAF,G=1. In line 4, the
mutation probabilities (Pmut ) for each solution is initialized to (length of solution

1Reference vectors [11, 12] are obtained from http://worksupplements.droppages.com/refvecgen.

http://worksupplements.droppages.com/refvecgen
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Algorithm 2 Reproduction of new candidates (in decision space)

Input: Xparent
B : A parent solution vector; Pmut : Variable-wise mutation probability; Wk : kth

weight vector;W: set of all weight vectors
Output: Xchild

B : Child solution vector
1: procedure REPRODUCE(Xparent

B , Pmut , Wk ,W)
2: Xparent

B,1 = Xparent
B

3: Wr ← Nearest neighbor of Wk

4: Xparent

B,2 ← A random candidate associated, in terms of d2 (Eq. (8)), to Wr

5: if rand(0, 1) < 0.5 then
6: Extract the ζW variables from Xparent

B,1 and Xparent

B,2 to yield Xpar

1 and Xpar

2
7: else
8: Extract the ζD variables from Xparent

B,1 and Xparent

B,2 to yield Xpar

1 and Xpar

2
9: end if

10: Generate X1 and X2 using binary crossover between Xpar

1 and Xpar

2
11: if rand(0, 1) < 0.5 then
12: Xc ← Flip variables of X1 with probability less than Pmut
13: else
14: Xc ← Flip variables of X2 with probability less than Pmut
15: end if
16: Xchild

B ← Replace Xpar

1 in Xparent

B,1 with Xc

17: Return Xchild
B

18: end procedure

Algorithm 3 Feedback for resource allocation to determine sub-population sizes
Input: IAD : A vector of length npop representing indices (j ) of directions (Wj ∈ W) to which

XB ∈ AG is closest to in terms of d2 (Eq. (8)); npop: Population size; ndir : Number of
reference vectors

Output: ParrG+1: A vector of length ndir with updated sub-population sizes
1: procedure FEEDBACK_ALLOCATION(IAD , npop , ndir )
2: for k = 1 to ndir (for each direction) do
3: nsub: Calculate the number of indices in IAD that are equal to k
4: Nshare

k = nsub×100
npop

(Calculate the share of population closest to kth direction)

5: Sk,G+1 = 100−Nshare
k

ndir−1 × npop
100 (Larger sub-population sizes for directions with smaller

shares and vice versa)
6: end for
7: Return ParrG+1 =

[
round(S1,G+1), . . . , round(Sndir ,G+1)

]

8: end procedure

vector/number of possible actions at each hour)−1 = 1/(N/2) = 2/N . Finally, in
line 5, the size of the sub-populations associated with each reference vector is
declared as ParrG=1 =

[
S1,G=1, . . . , Sndir ,G=1

]
=
[
npop/ndir ,

ndir. . ., npop/ndir
]
.

2. Optimization loop (Lines 6–22): This is the for loop which iterates until the
termination condition is met. The steps in this optimization loop are followed for
any generation G. In line 7, the arithmetic mean of the mutation probabilities of
all candidates in the current population is adaptively estimated as μPmut , which is
to be used later in the hyper-parameter estimation step of the reproduction loop.
The for loop in line 8–15 iterates over all the ndir directions, which is involved in
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the generation of a new solution. This reproduction loop is explained in the next
point. At the end of line 15, there are npop old (parent) solutions and ndir new
(child) solutions from which only npop solutions can pass to the next generation.
Hence, the elitist selection is performed in line 16.

The selection of npop compromises (trade-off solutions) is dictated by the
Pareto-dominance relation where XB,1 Pareto-dominates XB,2 (XB,1 ≺ XB,2)
according to Eq. (6).

∀i ∈ {1, . . . ,M},fB,i(XB,1) ≤ fB,i(XB,2) and

∃j ∈ {1, . . . ,M},fB,j (XB,1) < fB,j (XB,2) (6)

Thus, when two solution vectors are compared with respect to Pareto-dominance
relation, either of the three alternatives can take place: XB,1 ≺ XB,2, XB,2 ≺
XB,1 or XB,1 and XB,2 are non-dominated. Non-dominated solutions are con-
sidered to be equivalent. Moreover, the set of non-dominated solutions (which
are not dominated by any solution) gives the estimation of the Pareto-optimal
set. Such solutions are also known as the rank-one solutions (R1). The non-
dominated set of solutions obtained after removing R1 from AG yields the
rank-two solutions (R2) and so on. Non-dominated sorting of the populationAG

of size (npop + ndir ) partitions the population into R1, R2, . . .. Each rank of
solutions is directly propagated to the population of the next generation AG+1
until a rank of solutions just exceeds npop. This last essential rank of solutions
is further sorted based on special crowding distance (SCD) [22, 33] and only the
required number of candidates are passed on to the next generation to fulfill the
size requirement as shown in Fig. 3a. Special crowding distance (SCD) combines
crowding distance in both objective (CDF) and decision (CDX) space according
to Eq. (7) and thus, helps in maintaining diversity in both the spaces. Crowding
distance of a solution is proportional to the perimeter of the hyper-rectangle
formed by the neighbors of solutions [13]. It is due to the use of this SCD that
the GA-TriM framework is capable of retaining solution vectors that have similar
objective vectors and thus, helps GA-TriM in addressing the multi-modal multi-
objective problem.

SCD(XB) =

⎧
⎪⎪⎨

⎪⎪⎩

max (CDX(XB), CDF(XB)) , if CDX(XB) > CDX(XB)

or CDF(XB) > CDF(XB)

min (CDX(XB), CDF(XB)) , otherwise
(7)

In line 17, a vector IAD of length npop is created whose ith element represents
the index k of the direction Wk with which the solution vector XB,i is associated.
This association between Wk and XB,i is dictated by the d2 distance as given by
Eq. (8) and illustrated in Fig. 3b.
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Sub-space associated with Wk : {FB(XB) | d2 (XB |Wk) ≤ d2
(
XB |Wj

)}
where, j = {1, 2, . . . , ndir },k �= j,

d1 =
∥∥∥
(
FB

(
XB,i

))T Wk

∥∥∥
‖Wk‖ and d2 =

∥∥∥∥FB
(
XB,i

)− d1
Wk

‖Wk‖
∥∥∥∥

(8)
The sub-population sizes in ParrG are readjusted, using Algorithm 3, in line

18. With the new sub-population sizes in ParrG+1, the next generation takes place.
However, after every small number of generations (10 generations), the mutation
probabilities are re-initialized (in lines 19–21) to forget the past landscape and
adapt the hyper-parameters as per the present landscape.

3. Reproduction loop (Lines 8–15): For the kth iteration of the reproduction loop,
in line 9, a sub-population Asub_k

G is created with Sk,G candidates from AG

which are nearest to Wk . From this sub-population, any random candidate is
chosen in line 10 as the parent candidate (Xparent

B ) for reproduction. In line
11, the mutation probability is sampled from a normal distribution whose mean
was evaluated as μPmut in line 7. This is the hyper-parameter estimation step.
The mutation probability and the parent candidate participate in Algorithm 2 to
generate the new child candidate (Xchild

B ) in line 12. The child solution vector is
appended toAG and its objective vector is appended toAF,G in lines 13 and 14,
respectively. In line 12, the reproduction loop calls Algorithm 2 where another
parent (Xparent

B,2 ) is randomly chosen from the sub-population associated with a
neighboring direction. The two parents engage in the if-else tree of Algorithm 2
to create Xchild

B as exemplified in Fig. 3c.
4. Termination (Line 23): At the end of Gmax generations, the evolved population

of solution vectors is returned inAGmax and its associated set of objective vectors
is returned inAF,Gmax

.

As mentioned, line 18 of Algorithm 1 calls Algorithm 3 for the re-adjustment
of sub-population sizes. Algorithm 3 calculates nsub as the number of candidates
associated with direction k. Then, it evaluates the percentage of the total population
associated with a direction in Nshare

k . Negatively correlating the sub-population size
(Sk,G+1) with the percentage of associated candidates (Nshare

k ), the sub-population
size (Sk,G+1) is re-evaluated to allow more exploration (diverse candidates lead
to global search) of less explored sub-spaces and to allow more exploitation (less
diverse candidates lead to local search) of already explored areas. Thus, instead
of forming sub-population with associated candidates, a predetermined number
of candidates form sub-populations by borrowing or donating candidates from
neighboring sub-spaces in line 9 of Algorithm 1. The feedback of sub-population
size is explained through the working of Algorithm 3 using an example in Fig. 4.
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3.5 Proposed Schedule Selection Approach

Once the estimated Pareto-optimal set (AGmax ) and Pareto-Front (AF,Gmax
) are

obtained, one of relevant action schedule (solution vector) is to be chosen. From
the literature survey, it can be seen that most of the contemporary decision-making
approaches [19, 21, 26] are based on the users’ preference. Only the method of
distance to best compromises, used in [3, 25], is an automated decision-making
approach.
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W1 4 40% 1.50 2
W2 2 20% 2.00 2
W3 0 0% 2.50 2
W4 1 10% 2.25 2
W5 3 30% 1.75 2
Total 100 100% 10.00 10

Fig. 4 Feedback on sub-population sizes in order to allocate more candidates (with respect to
number of associated candidates) for exploring less explored areas (e.g. sub-space associated with
W3) and less candidates for exploring more explored areas (e.g. sub-space associated with W1).
The goal is to allocate candidates such that the size of all the sub-populations, associated with ndir
directions, evolves to npop/ndir for uniform diversity

Recent literature shows an incremental mindset/incremental motivational frame-
work [16, 27, 30] as a powerful teaching method. Thus, a subset of estimated
Pareto-optimal solutions can be chosen, which shows minimal changes from the
historical schedule. The motivation for such an approach is to convey the message
to the occupants: “Even with little variations in the usual routine, a large amount
of change in comfort can be attained.”Once this subset of Pareto-optimal solutions
is obtained, the method of distance to best compromises can be applied to generate
the most relevant action schedule for a recommendation. This proposal of schedule
selection strategy is outlined in Algorithm 4.

In Algorithm 4, lines 2–5 determine the minimum deviation (�sch
min) over all

the schedules in the Pareto-optimal set from the historical schedule (X̃B ). Next
step (line 6) obtains the subset of those solutions (pruned Pareto-Front, Asch

F,Gmax
)

which can generate �sch
min. The objective vector (F�B ) showing minimum net global

dissatisfaction [3, 25] among those in Asch
F,Gmax

is obtained in line 7 and its
corresponding solution vector (action schedule) is obtained in line 8. This action
schedule (X�

B ) is finally returned as the estimate of the most relevant Pareto-optimal
schedule of actions in line 9 from Algorithm 4. In this work, the evaluation of net
global dissatisfaction considers the origin of the objective space as the reference
objective vector (FrefB ).

In the next section, the proposed action schedule selection approach is validated
using real-world data.

4 Discussion on Various Schedule Selection Strategies

The proposed approach (GA-TriM) is implemented on a computer having 8 GB
RAM and 2.20 GHz Intel Core i7 processor using Python 3.4. The data collected
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Algorithm 4 Choosing relevant solution vector from estimated Pareto-optimal set

Input: AGmax : Estimated Pareto-optimal set; FrefB : Reference objective vector; X̃B : Historical
schedule fromHDB

Output: X�
B : Relevant solution vector

1: procedure SCHEDULE_SELECT(AGmax ,AF,Gmax
, X̃B )

2: for i = 1 to npop (for each solution vector inAGmax ) do
3: �XB,i =

∑N
j=1

∣∣x̃B,j − xB,i,j
∣∣ (Net deviation of ith solution from historical schedule)

4: end for
5: �sch

min ←Minimum deviation in schedule over all �XB,i

6: Asch
F,Gmax

= {FB(XB) | �XB = �sch
min} (Obtain the subset of objective vectors for those

solution vectors which generate �sch
min)

7: F�B = argmin
∑M

j=1

∣∣∣f ref
B,j − fB,j

∣∣∣ over all FB ∈ Asch
F,Gmax

(Find best objective vector from

pruned Pareto-Front using distance to best compromises [3])
8: X�

B = arg
(
F�B

)
(Obtain the corresponding solution vector)

9: Return X�
B

10: end procedure

in the database HDB from Grenoble Institute of Technology helps in analyzing the
efficacy of the proposed approach.

In the first experiment, the effectiveness of GA-TriM as a multi-objective
evolutionary algorithm is assessed. For this purpose, the estimated Pareto-Front
from GA-TriM is compared with those obtained from other optimization algorithms
in terms of purity metric.

Purity metric [8] reveals the proportion of non-dominated solutions contributed
by the ith non-dominated solution set (AF,i) towards the union of KPF sets of
non-dominated solutions (A�

F = non-dominated set with respect to ∪KPF

i=1 AF,i). The
purity metric (PM) for the ith approximation of Pareto-Front is formally evaluated
using Eq. (9).

PM
(
AF,i ,A�

F

) =
∣∣AF,i ∩A�

F

∣∣
∣∣AF,i

∣∣ , for i = 1, 2, . . . , KPF (9)

GA-TriM is compared with those MOEAs which have already established their
effectiveness in addressing the concerned building energy management problem.
Along with these MOEAs, a recent decomposition and dominance based MOEA
(known as NAEMO [31]) is also used in the comparison. The specifications of these
MOEAs, used in this experiment, are mentioned in Table 1. It should be noted that a
generation of GA-TriM is over ndir directions, not over npop candidates. Hence,
Gmax is different for GA-TriM. However, for a fair comparison, the number of
evaluations of objective functions is kept constant at 6000 for all the MOEAs.

Comparison of the abilities of MOEAs in obtaining a better Pareto-optimal
approximation is assessed in Table 2 in terms of purity metric for 15 days. Moreover,
for a fair comparison, 20 candidates are randomly sampled from AGmax (output of
GA-TriM) such that the final population size of all the algorithms is equal.
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Table 1 Specifications of different MOEAs compared with GA-TriM for solving the MOO
problem of building energy management

GA-TriM ndir = 10, npop = 10× ndir = 100, Gmax = 6000/ndir = 600

DEMO [3] DE/rand/1/bin, crossover rate (CR) = 0.8, scale factor (FDE)
∈ [0, 2], npop = 20, Gmax = 300

NSGA-II [13, 23, 26] Single point binary crossover, binary tournament selection, bit-flip
mutation (mutation probability = 1/24), npop = 20, Gmax = 300

AGE-II [25, 32] Single point binary crossover, binary tournament selection, bit-flip
mutation (mutation probability = 1/24), degree of additive
approximation (ε) = 0.01, npop = 20, Gmax = 300

NAEMO [31] npop = ndir = 20, Gmax = 300, remaining parameters are set as
specified in [31]

Table 2 Purity metric (rank of algorithm) to compare the quality (number and Pareto-optimality)
of the solution vectors estimated by various MOEAs where best and second-best performing
values are highlighted in dark and light shades of gray, respectively

Sl. No. Date AGE-II [25] DEMO [3] GA-TriM NAEMO [31] NSGA-II [23]

1 01-Apr-2015 0.3333 (4) 0.2222 (5) 1.0000 (1) 0.8333 (3) 0.8500 (2)

2 08-Apr-2015 0.0000 (4) 0.6667 (3) 0.7500 (2) 0.0000 (4) 0.8889 (1)

3 10-Apr-2015 0.0000 (2) 1.0000 (1) 0.0000 (2) 0.0000 (2) 0.0000 (2)

4 15-Apr-2015 0.0000 (2) 0.0000 (2) 1.0000 (1) 1.0000 (1) 1.0000 (1)

5 20-Apr-2015 0.0000 (3) 0.0000 (3) 1.0000 (1) 1.0000 (1) 0.9474 (2)

6 30-Apr-2015 0.0000 (2) 0.0000 (2) 1.0000 (1) 1.0000 (1) 1.0000 (1)

7 06-May-2015 0.0000 (2) 0.0000 (2) 1.0000 (1) 1.0000 (1) 1.0000 (1)

8 11-May-2015 0.0000 (2) 0.0000 (2) 1.0000 (1) 1.0000 (1) 1.0000 (1)

9 20-May-2015 0.0000 (2) 0.0000 (2) 1.0000 (1) 1.0000 (1) 1.0000 (1)

10 26-May-2015 0.0000 (3) 0.0000 (3) 0.6667 (1) 0.5000 (2) 0.6667 (1)

11 01-Jun-2015 0.0000 (2) 1.0000 (1) 0.0000 (2) 0.0000 (2) 0.0000 (2)

12 10-Jun-2015 0.0000 (2) 0.0000 (2) 1.0000 (1) 1.0000 (1) 1.0000 (1)

13 19-Jun-2015 0.0000 (2) 0.0000 (2) 1.0000 (1) 1.0000 (1) 1.0000 (1)

14 30-Jun-2015 0.0000 (3) 1.0000 (1) 0.6667 (2) 1.0000 (1) 0.6667 (2)

15 07-Jul-2015 0.0000 (2) 0.0000 (2) 1.0000 (1) 1.0000 (1) 1.0000 (1)

Average ranks 2.47 2.20 1.27 1.47 1.33

The following insights are noted from the observations in Table 2:

• In 11 out of 15 cases, GA-TriM has a purity metric of 1, which implies that
all the candidates from GA-TriM are superior over the non-dominated solutions
generated by other MOEAs.

• In several cases, NSGA-II, NAEMO, and GA-TriM tie in the resulting purity
values. Thus, these algorithms have nearly similar capabilities to approximate
the Pareto-optimal solution set. The poor performance of DEMO [3] can be
attributed to its non-elitist nature. For AGE-II [32], the additive approximations
render several objective vectors (not equivalent in terms of Pareto-dominance) to
be equivalent.
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• In terms of purity metric, the overall rank of GA-TriM is the highest over 15
days, followed by NSGA-II.

In the second experiment, two automated decision-making approaches
(new/distance to best compromises in pruned Pareto-Front versus old/distance to
best compromises in estimated Pareto-Front) are compared for 15 days. Comparison
is done in the objective space in terms of net global dissatisfaction attained when
the recommended routine (new/old) is followed versus when the usual routine is
followed. Comparison is also done in the decision space in terms of the percentage
of net deviation required from the usual routine to follow the recommended routine
(new/old). These results are mentioned in Table 3.

The following insights are obtained from the observations in Table 3:

• On all the days, the net global dissatisfaction can be reduced using the GA-TriM
recommended schedule from the usual schedule.

• Using the existing schedule selection strategy (distance to best compromises [3,
25]), although a lower net dissatisfaction can be obtained, the numerical value is
very close to that obtained by the proposed schedule selection strategy. Moreover,
this net dissatisfaction can be obtained with much less disturbance to the original
schedule of the occupant.

Pareto-Fronts estimated by GA-TriM are also visualized in Fig. 5, for 2 days,
to compare the position of various compromises of interest.

Table 3 Comparison of proposed decision-making strategy (New) with existing decision-making
strategy (Old) for recommending the occupants actions schedule where best and second-best
performing values are highlighted in dark and light shades of gray, respectively

Net global dissatisfaction Net deviation (%) in schedule

Sl. No. Date Usual GA-TriM GA-TriM) GA-TriM GA-TriM

(New) (Old) (New) (Old)

1 01-Apr-2015 0.3912 0.3605 0.3603 25.00 33.33

2 08-Apr-2015 0.7300 0.7172 0.7126 33.33 41.67

3 10-Apr-2015 0.2062 0.1955 0.1955 41.67 45.83

4 15-Apr-2015 0.5066 0.4151 0.4150 58.33 62.50

5 20-Apr-2015 0.5976 0.5952 0.5948 25.00 41.67

6 30-Apr-2015 0.3717 0.3652 0.3652 37.50 45.83

7 06-May-2015 0.3506 0.2243 0.2242 45.83 50.00

8 11-May-2015 0.6536 0.5761 0.5759 29.17 45.83

9 20-May-2015 0.3967 0.3930 0.3930 42.00 42.00

10 26-May-2015 0.5038 0.4660 0.4660 54.17 62.50

11 01-Jun-2015 1.3041 1.1661 1.1661 79.17 87.50

12 10-Jun-2015 1.1021 1.1013 1.1013 29.17 29.17

13 19-Jun-2015 0.7829 0.7828 0.7828 4.17 8.33

14 30-Jun-2015 1.9972 1.9963 1.9963 25.00 45.83

15 07-Jul-2015 3.2075 3.1834 3.1834 45.83 58.33
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(a)

(b)

Fig. 5 Estimated Pareto-Fronts using real-world data showing equivalent objective vectors are
distributed over the entire Pareto-optimal surface where cyan square objective vectors correspond
to action schedules having equal deviation from the historical schedule, blue square and violet
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• On several days (such as on 30-Apr-2015, 01-Jun-2015, etc.), both the strategies
yield similar net global dissatisfaction. Yet the proposed strategy can be consid-
ered to be better as it attains this value with fewer changes. This result is possible
only because GA-TriM facilitates discovering the equivalent solution vectors for
the same objective vectors.

• The net dissatisfaction values attained after June 2015 (summer), are higher than
those obtained before. Even with high percentage of changes in action schedule
(such as on 01-Jun-2015), the net dissatisfaction value cannot be minimized any
further. This situation necessitates the use of HVAC in the office room, as has
been discussed in [24, 25].

5 Conclusion and Scope of Further Research

As building energy management is a global concern, this research domain is of vital
importance. Several existing works have considered the optimization of the impact
of occupants’ actions so that occupants’ dissatisfaction is reduced by enforcing an
energy-efficient schedule of opening/closing of doors/windows. However, multi-
objective optimization algorithms result in a set of trade-off solutions. From this
solution set, only one relevant solution can be implemented for practical application.

Selection strategies for choosing this relevant occupants’ action schedule are
known as decision-making. The present work discusses various decision-making
approaches and notices that existing schedule selection strategies are based on
preferences in the objective space. Moreover, when an optimal action schedule
is directly recommended to occupants, the necessary awareness is not created to
modify their habits. However, it will be easier to convince the occupants to introduce
small changes in their action schedule. With this motivation, a schedule selection
strategy is proposed in this work which creates a subset from the estimated Pareto-
optimal solution set by selecting action schedules that have the minimum deviation
from the historical schedule. Then, the schedule selection strategy continues over
this subset of solutions in the objective space as done in earlier works. However,
to find various equivalent solutions over the entire Pareto-optimal surface it is
necessary to design a multi-objective evolutionary algorithm that is capable of
exploring the solution space (in addition to the objective space) such that multiple
action schedules for the same objective vector can be found. This is the multi-modal
nature of the building energy management problem. Thus, a genetic algorithm for

�
Fig. 5 (continued) square correspond to relevant solutions using old decision-making approach [3]
and this proposed decision-making approach, respectively. Additionally, user position (blue cross)
marks the objective vector resulting from the historical routine of the occupant. (a) 08-April-2015.
(b) 20-April-2015
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multi-modal multi-objective problems (GA-TriM) is designed in this work which
helps in addressing the concerned the building energy management problem.

The result demonstrates the superiority of GA-TriM in comparison to other algo-
rithms that have been previously used for building energy management. Moreover,
the proposed schedule selection strategy also demonstrates that nearly the same
optimal value of objectives (net global dissatisfaction) can be attained with fewer
changes in the action schedule. However, the present framework suffers from the
following limitations, and future work can be carried out to overcome each of these
limitations:

1. Lack of data and physical knowledge models of various physical parameters
such as humidity, pollutants, etc. create a bottleneck to expand the current
framework. Moreover, every new zone requires new models to be fitted. Machine
learning models (such as neural networks, logistic regression, etc.) or time-series
processing methods may be used to bypass these simulation models. However,
research in this aspect is still in its infancy.

2. Seasonal variations in outdoor weather heavily influence the indoor ambience.
However, due to the unavailability of data for random extreme fluctuations (like
natural disasters), it cannot be concluded whether the existing framework can
operate effectively in such situations. Data acquisition and rigorous investiga-
tions in these aspects are extremely important in this era of global warming.

Acknowledgments The authors would like to thank Prof. Stéphane Ploix for allowing us to utilize
the data acquired at Grenoble Institute of Technology, France, for building energy management
associated research studies.

This work is partially supported by the Indian Statistical Institute, Kolkata, and J. C. Bose
Fellowship (SB/SJ/JCB-033/2016) of the Department of Science and Technology, Government of
India.

References

1. P. Alotto, M. Gaggero, G. Molinari, M. Nervi, A “design of experiment” and statistical
approach to enhance the “generalised response surface” method in the optimisation of
multiminima problems. IEEE Trans. Magn. 33(2), 1896–1899 (1997). https://doi.org/10.1109/
20.582657

2. A.A. Alyafi, V.B. Nguyen, Y. Laurillau, P. Reignier, S. Ploix, G. Calvary, J. Coutaz, M. Pal,
J.P. Guilbaud, From usable to incentive-building energy management systems. Model. Using
Context 2(Issue 1), 1–30 (2018). https://doi.org/10.21494/ISTE.OP.2018.0302

3. A. Alzouhri Alyafi, M. Pal, S. Ploix, P. Reignier, S. Bandyopadhyay, Differential explanations
for energy management in buildings, in IEEE Technically Sponsored SAI Computing
Conference (2017), pp. 507–516

4. M. Amayri, S. Ploix, S. Bandyopadhyay, Estimating occupancy in an office setting, in
Sustainable Human–Building Ecosystems (2015), pp. 72–80

5. M. Amayri, A. Arora, S. Ploix, S. Bandhyopadyay, Q.D. Ngo, V.R. Badarla, Estimating
occupancy in heterogeneous sensor environment. Energy Build. 129, 46–58 (2016)

6. E. Asadi, M.G. Da Silva, C.H. Antunes, L. Dias, Multi-objective optimization for building
retrofit strategies: a model and an application. Energy Build. 44, 81–87 (2012)

https://doi.org/10.1109/20.582657
https://doi.org/10.1109/20.582657
https://doi.org/10.21494/ISTE.OP.2018.0302


Occupant Actions Selection Strategies 269

7. E. Asadi, M.G. da Silva, C.H. Antunes, L. Dias, L. Glicksman, Multi-objective optimization
for building retrofit: a model using genetic algorithm and artificial neural network and an
application. Energy Build. 81, 444–456 (2014)

8. S. Bandyopadhyay, S.K. Pal, B. Aruna, Multiobjective GAs, quantitative indices, and pattern
classification. IEEE Trans. Syst. Man Cybern. B Cybern. B 34(5), 2088–2099 (2004)

9. B. Bredeweg, K.D. Forbus, Qualitative modeling in education. AI Mag. 24(4), 35–46 (2003).
http://www.aaai.org/ojs/index.php/aimagazine/article/view/1729

10. C.A.C. Coello, Recent results and open problems in evolutionary multiobjective optimization,
in Theory and Practice of Natural Computing, ed. by C. Martín-Vide, R. Neruda, M.A. Vega-
Rodríguez (Springer International Publishing, Cham, 2017), pp. 3–21

11. I. Das, J.E. Dennis, Normal-boundary intersection: a new method for generating the pareto
surface in nonlinear multicriteria optimization problems. SIAM J. Optim. 8(3), 631–657 (1998)

12. K. Deb, H. Jain, An evolutionary many-objective optimization algorithm using reference-point-
based nondominated sorting approach, part I: solving problems with box constraints. IEEE
Trans. Evol. Comput. 18(4), 577–601 (2014)

13. K. Deb, S. Agrawal, A. Pratap, T. Meyarivan, A fast elitist non-dominated sorting genetic
algorithm for multi-objective optimization: NSGA-II, in Parallel Problem Solving from Nature
PPSN VI. PPSN 2000, ed. by M. Schoenauer et al. Lecture Notes in Computer Science, vol.
1917 (Springer, Berlin, 2000), pp. 849–858

14. C. Diakaki, E. Grigoroudis, D. Kolokotsa, Towards a multi-objective optimization approach
for improving energy efficiency in buildings. Energy Build. 40(9), 1747–1754 (2008)

15. Y. Fan, X. Xia, A multi-objective optimization model for building envelope retrofit planning.
Energy Procedia 75, 1299–1304 (2015)

16. E.A. Gunderson, N.S. Sorhagen, S.J. Gripshover, C.S. Dweck, S. Goldin-Meadow, S.C. Levine,
Parent praise to toddlers predicts fourth grade academic achievement via children’s incremental
mindsets. Dev. Psychol. 54(3), 397 (2018)

17. T. Hong, S.C. Taylor-Lange, S. D’Oca, D. Yan, S.P. Corgnati, Advances in research and
applications of energy-related occupant behavior in buildings. Energy Build. 116, 694–702
(2016)

18. J. Langevin, J. Wen, P.L. Gurian, Modeling thermal comfort holistically: Bayesian estimation
of thermal sensation, acceptability, and preference distributions for office building occupants.
Build. Environ. 69, 206–226 (2013)

19. Y. Laurillau, V.B. Nguyen, J. Coutaz, G. Calvary, N. Mandran, F. Camara, R. Balzarini, The
TOP-slider for multi-criteria decision making by non-specialists, in Proceedings of the 10th
Nordic Conference on Human-Computer Interaction (ACM, New York, 2018), pp. 642–653

20. A.T. Nguyen, S. Reiter, P. Rigo, A review on simulation-based optimization meth-
ods applied to building performance analysis. Appl. Energy 113, 1043–1058 (2014).
https://doi.org/10.1016/j.apenergy.2013.08.061. http://www.sciencedirect.com/science/article/
pii/S0306261913007058

21. M. Pal, S. Bandyopadhyay, Consensus of subjective preferences of multiple occupants for
building energy management, in 2018 IEEE Symposium Series on Computational Intelligence
(SSCI), pp. 1815–1822 (2018). https://doi.org/10.1109/SSCI.2018.8628670

22. M. Pal, S. Bandyopadhyay, Differential evolution for multi-modal multi-objective problems, in
Proceedings of the Genetic and Evolutionary Computation Conference Companion, GECCO
’19 (ACM, New York, 2019), pp. 1399–1406. http://doi.acm.org/10.1145/3319619.3326862

23. M. Pal, R. Sengupta, S. Bandyopadhyay, A.A. Alyafi, S. Ploix, P. Reignier, S. Saha, Analysis
of optimizers to regulate occupant’s actions for building energy management, in 2017 Ninth
International Conference on Advances in Pattern Recognition (ICAPR) (2017), pp. 1–6. https://
doi.org/10.1109/ICAPR.2017.8593024

24. M. Pal, A.A. Alyafi, S. Bandyopadhyay, S. Ploix, P. Reignier, Enhancing comfort of occupants
in energy buildings, in Operations Research and Optimization. FOTA 2016, ed. by S. Kar,
U. Maulik, X. Li. Springer Proceedings in Mathematics & Statistics, vol. 225 (Springer,
Singapore, 2018), pp. 133–144

http://www.aaai.org/ojs/index.php/aimagazine/article/view/1729
https://doi.org/10.1016/j.apenergy.2013.08.061
http://www.sciencedirect.com/science/article/pii/S0306261913007058
http://www.sciencedirect.com/science/article/pii/S0306261913007058
https://doi.org/10.1109/SSCI.2018.8628670
http://doi.acm.org/10.1145/3319619.3326862
https://doi.org/10.1109/ICAPR.2017.8593024
https://doi.org/10.1109/ICAPR.2017.8593024


270 M. Pal and S. Bandyopadhyay

25. M. Pal, A.A. Alyafi, S. Ploix, P. Reignier, S. Bandyopadhyay, Unmasking the causal rela-
tionships latent in the interplay between occupant’s actions and indoor ambience: a building
energy management outlook. Appl. Energy 238, 1452–1470 (2019). https://doi.org/10.1016/j.
apenergy.2019.01.118. http://www.sciencedirect.com/science/article/pii/S0306261919301047

26. S. Papadopoulos, E. Azar, Optimizing HVAC operation in commercial buildings: a genetic
algorithm multi-objective optimization framework, in Proceedings of the 2016 Winter
Simulation Conference (IEEE Press, Piscataway, 2016), pp. 1725–1735

27. D. Park, E.A. Gunderson, E. Tsukayama, S.C. Levine, S.L. Beilock, Young children’s
motivational frameworks and math achievement: relation to teacher-reported instructional
practices, but not teacher theory of intelligence. J. Educ. Psychol. 108(3), 300 (2016)

28. S. Ramakrishnan, X. Wang, J. Sanjayan, J. Wilson, Thermal performance assessment of phase
change material integrated cementitious composites in buildings: experimental and numerical
approach. Appl. Energy 207, 654–664 (2017). https://doi.org/10.1016/j.apenergy.2017.05.
144. http://www.sciencedirect.com/science/article/pii/S030626191730689X. Transformative
Innovations for a Sustainable Future – Part II
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Generation of Optimal Strategies
for Energy Management of Living Area
Depicted by Thousands of Constraints

Quoc-Dung Ngo, Hussein Joumaa, and Mireille Jacomino

1 Introduction

Nowadays, the residential energy consumption is about 27.2% of the EU final
energy consumption, representing the second largest consuming sector after trans-
port [1]. Therefore, energy consumption reduction in building has become an
important challenge for researchers. A lot of Building Energy Management Systems
(BEMS) have been proposed [2–5] aiming at minimizing the daily electrical
consumption while maintaining a satisfactory level of comfort for occupants.
Modern dwelling systems may be complex in terms of number of appliances,
including production and storage means but also in terms of applications such as
monitoring and model-based estimation energy management. Several approaches
are proposed in order to deal with the problem of generation of optimal strategies for
energy management. In recent years, sophisticated methods, formalisms, and tools
have been developed for different applications in order to better master dwelling
energy consumption such as:

• G-homeTech, MACES, A Mathematical Programming Language (AMPL) for
energy management. Actually, an energy management plan for instance proposed
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by G-homeTech aims at proposing to occupants the best configurations of
appliances for next 24 h in order to optimize the compromise comfort/cost. To
deal with thousands of variables and constraints problems in reasonable time, a
mixed-integer linear programming (MILP) solver is used. Therefore, an acausal
linear problem is required for this application.

• Matlab/Simulink, Modelica for simulation or parameter estimation. These tasks
aim at simulating the dwelling behavior during a given time or at calculat-
ing parameters required for physically explicit models. In these applications,
Matlab/Simulink, Modelica can handle causal models including both linear and
non-linear ones.

However, these tools require for each a special formalism to be executable. It also
means that a complex model developed in Matlab/Simulink for a simulation purpose
cannot be reused in G-homeTech for example. This major drawback implies a
rewriting process manually of models for each target application that represents
time-consuming and error-prone. Therefore, tools to handle and transform models
are required. This chapter presents different approaches proposed to generate
an optimal strategy for energy management system and ends by presenting a
solution to handle and transform models. Section 2 presents the regular/centralized
solving approach based on mixed-integer linear programming (MILP) optimization.
Section 3 presents an overview of works based on model predictive control (MPC).
In Sect. 4, a solution for automatic model generation for energy management is
presented.

2 Principle of Regular/Centralized Solving Approach

Components like rooms and appliances are elements of the structural representation
of dwellings, but functional representation is more relevant for global energy
management because it points out the role of each element. The concept of service is
proposed in order to incorporate the functional representation of these components
in the energy management solving process.

2.1 The Concept of Service

2.1.1 Definition of Service

A functional entity, a service SRVi , is defined by:

• A set of supporting components and appliances of the dwelling
• A time period Ti where the service may occur: for instance, the time period in

which a washing machine may consume power to do a specific washing
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• A set of actions Ui(Ti) that may modify the achievement of the service: it may
be set points or controlled variables

• A set of available observations Yi(Ti) that provide information about an actual
behavior: it has to include consumed, stored, or provided powers because energy
is focused.

• A set of modeling constraints Ki,j (Ui(Ti), Yi(Ti)) = 0,∀j that depict the links
between actions and observations: these constraints depend on the supporting
components and appliances

• A set of operational constraints K ′i,k (Ui(Ti), Yi(Ti)) � 0,∀k1 that depict the
operational limits of the dwelling: these constraints depend on the supporting
components and appliances

• A service performance indicator Si (Ui(Ti), Yi(Ti)): it may be an occupant com-
fort level indicator, a quantity of stored energy or a cost (energy or environmental
cost for instance).

2.1.2 Type of Services

Dwellings with appliances aim at providing comfort to inhabitants as a final aim.
Services can then be decomposed into three kinds:

• The end-user services that provide directly comfort to inhabitants
• The intermediate services that manage energy storage
• The support services that produce electrical power to intermediate and end-user

services

Support services usually deal with electric power supplying thanks to conversion
from a primary energy to electricity. Fuel-cells-based generators, photovoltaic
power suppliers, and grid power suppliers belong to this class. Intermediate services
are generally achieved by electrochemical batteries. Among the end-user services,
the well-known services such as cloth washing, water heating, specific room
heating, cooking in oven, and lighting can be found.

2.1.3 Service Qualification

Let us assume a given time range for anticipating the energy needs (typically 24 h).
A service is qualified as permanent if its energetic consumption/production/storage
covers the whole time range of energy assignment plan; otherwise, the service is
named temporary service. Table 1 gives some examples of services according to
this classification.

The services can also be classified according to the way their behavior can be
modified.

1� stands for a comparison operator.
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Table 1 Examples of temporary and permanent services

Temporary services Permanent services

Support services Photovoltaic panels Power provider

Intermediate services – Storage

End-user services Washing Room heating

Whatever the service is, an end-user, an intermediate, or a support service, it can
be modifiable or not. A service is qualified as modifiable by an energy management
system if the energy management system is capable to modify its behavior (the
starting time for example).

There are different ways of modifying services. Sometimes, modifiable services
can be considered as continuously modifiable such as the temperature set points
in room heating services or the shift of a washing. Some other services may be
modified discretely such as the interruption of a washing service. The different
ways of modifying services can be combined: for instance, a washing service can be
considered both as interruptible and as continuously shiftable. A service modelled
as discretely modifiable contains discrete decision variables in its model, whereas a
continuously modifiable service contains continuous decision variables. Of course,
a service may contain both discrete and continuous decision variables.

A service can also be characterized by the way it is known by an automation
system. The consumed or produced power may be observable or not. Moreover, for
end-user services, the impact of a service on the inhabitant comfort may be known
or not.

Obviously, a service can be taken into account by an energy management system
if it is at least observable. Some services are indirectly observable. Indeed, all not
observable services can be gathered into a virtual non-modifiable service whose
consumption/production is deduced from a global power meter measurement and
from the consumption/production of all observable services. In addition, a service
can be taken into account for long-term scheduling if it is predictable. In the
same way as for observable services, all the unpredictable services can be gathered
into a global non-modifiable predictable service. A service can be managed by an
automation system if it is observable and modifiable. Moreover, it can be long-term
managed if it is predictable and modifiable.

2.2 Principle of Control Mechanism

An important issue in dwelling energy management problems is the uncertainties
in the model data. For instance, solar radiation, outdoor temperature, or services
requested by inhabitants may not be predicted with accuracy. In order to solve this
issue, a three-layer architecture is proposed: a local layer, a reactive layer, and an
anticipative layer.
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The anticipative layer is responsible for scheduling end-user, intermediate,
and support services taking into account predicted events and costs in order to
avoid as much as possible the use of the reactive layer. The prediction procedure
forecasts various information about future user requests but also about available
power resources and costs. Therefore, it uses information from predictable services
and manages continuously modifiable and shiftable services. This layer has slow
dynamics (e.g., a 1 h sampling time) comparing to other layers and includes pre-
dictive models with learning mechanisms, including models dealing with inhabitant
behaviors. This layer also contains a predictive control mechanism that schedules
energy consumption and production of end-user services several hours in advance.
This layer computes plans according to available predictions. The sampling period
of the anticipative layer is denoted as �. This layer relies on the most abstract
models.

The reactive layer has been detailed in [6]. Its objective is to manage adjustments
of energy assignment in order to follow up a plan computed by the upper anticipative
layer in spite of unpredicted events and perturbations. Therefore, this layer manages
modifiable services and uses information from observable services (comfort for
end-user services and power for others). This layer is responsible for decision-
making in case of violation of predefined constraints dealing with energy and
inhabitant comfort expectations: it performs arbitrations between services. The
set points determined by the plan computed by the upper anticipative layer are
dynamically adjusted in order to avoid user dissatisfaction. The control actions
may be dichotomic in enabling/disabling services or more gradual in adjusting set
points such as reducing temperature set point in room heating services or delaying
a temporary service. Actions of the reactive layer have to remain transparent for
the plan computed by the anticipative layer: it can be considered as a fast dynamic
unbalancing system taking into account actual dwelling state, including unpredicted
disturbances, to satisfy energy, comfort, and cost constraints. If the current state is
too far from the computed plan, the anticipative layer has to re-compute it.

The local layer is composed of devices together with their existing local control
systems generally embedded into appliances by manufacturers. It is responsible for
adjusting device controls in order to reach given set points in spite of perturbations.
This layer abstracts devices and services for upper layers: fast dynamics are hidden
by the controllers of this level. This layer is considered as embedded into devices.

2.3 Modeling and Solving Approach

2.3.1 Modeling Services

The model of a service can be decomposed into two aspects: the modeling of the
behaviors with operational constraints, which depends on the types of involved
models, and the modeling of the service performances, which depends on the types
of service. Whatever the type of model it is, it has to be defined all over a time
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horizon K × � for anticipative problem solving composed of K sampling periods
lasting � each.

2.3.2 Modeling Behavior of Services

In order to model the behavior of different kinds of services, three different types
of models have been used: discrete events are modelled by finite-state machines,
continuous behaviors are modelled by differential equations, and mixed discrete and
continuous evolutions are modelled by hybrid models that combine the two previous
ones. In this chapter, we present the case of finite-state machines. Other models are
presented in [5].

Finite-State Machines (FSM)

A finite-state machine dedicated to a service, denoted SRV , is composed of a finite
number of states {Lm;m ∈ {1, . . . ,M}} and a set of transitions between those
states {Tp,q ∈ {0, 1}; (p, q) ∈ S ⊂ {1, . . . ,M}2}. Each state Lm of a service
SRV is linked to a phase characterized by a maximal power production Pm > 0 or
consumption Pm < 0.

A transition triggers a state change. It is described by a condition that has to be
satisfied to be enabled. The condition can be a change of a state variable measured
by a sensor, a decision of the anticipative mechanism, or an elapsed time for phase
transition. If it exists a transition between the state Lm and Lm′ , then Tm,m′ =
1, otherwise Tm,m′ = 0. An action can be associated to each state: it may be a
modification of a set point or an on/off switching. As an example, let us consider a
washing service.

The service provided by a washing machine may be modelled by a FSM with
4 states: the first state is the stand-by state L1 with a maximal power of P1 =
−5W (it is negative because it deals with consumed power). The transition toward
the next state is triggered by the anticipative mechanism. The second state is the
water heating state L2 with P2 = −2400W . The transition to the next state is
triggered after τ2 time units. The next state corresponds to the washing characterized
by P3 = −500W . And finally, after a given duration τ3 depending on the type of
washing (i.e., the type of requested service), the spin-drying state is reached with
P3 = −1000W . After a given duration τ4, the stand-by state is finally recovered.
Considering that the initial state is L1, this behavior can be formalized by

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

(state = L1) ∧ (t = tstart ) → state = L2

(state = L2) ∧ (t = tstart+τ2) → state = L3

(state = L3) ∧ (t = tstart+τ2+τ3) → state = L4

(state = L4) ∧ (t = tstart+τ2+τ3+τ4) → state = L1.

(1)
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2.3.3 Modeling the Performance of Services

Depending on the type of service, the quality of the service achievement may
be assessed in different ways. End-user services provide comfort to inhabitants,
intermediate services provide autonomy, and support services provide power that
can be assessed by its cost and its impact on the environment. In order to evaluate
these qualities, different types of criteria have been introduced. In this chapter, the
case of end-user services is presented. Other types of services are treated in [5].

End-User Services

The global function of comfort is very complex to compute. This function not only
depends on the satisfaction regarding each service (heating, cooking, washing,. . . )
taken on its own but also on psychological complex factors. Let us try to specify
how is this global satisfaction function.

Let σ be the global function of comfort or the global function of satisfaction
in a living space. Leaving implicit psychological factors, it can be stated: σ =
σ(σ1, . . . , σn), where σi represents the satisfaction related to a service SRVi .

Each satisfaction function σ or σi takes a value in the interval [0, 1] with 0 the
limits of acceptability and 1 the ideal value. The global satisfaction function has to
satisfy:

1. σ = σ(σ1, . . . , σn).
2. If γ > 0 is a satisfaction increase σi + γ ≤ 1 of an end-user service,

σ(σ1, . . . , σi + γ, . . . , σn) ≥ σ(σ1, . . . , σi, . . . , σn), it can be translated by
δσ (σ1,...,σn)

δσi
≥ 0,∀i.

3. The global marginal satisfactions regarding the different services are possibly
different: possibly, δ

δσi
σ �= δ

δσj
σ if i �= j .

4. The bound conditions lead to: s(0, . . . , 0) = 0 and s(1, . . . , 1) = 1.

The global satisfaction function is complex, but it can be studied in a particular
validity domain: ∀i, σi ∈

[
σ imin, 1

]
and σ ∈ [σmin, 1]. Let σ ∗ be the middle point of

a validity domain: σ ∗ = 1
2 (1+ σmin). σ ∗ can be studied:

σ(σ1, . . . , σn) ≈ σ(σ ∗, . . . σ ∗)+
∑

i

δσ (σ1, . . . , σn)

δσi

∣∣∣∣
σi=σ ∗∀i

(σi − σ ∗). (2)

Considering the both bound condition, it yields

1 = σ(1, . . . , 1) (3)

σmin = σ
(
σ 1
min, . . . , σ

n
min

)
.

With (2) and (3), it comes out:



278 Q.-D. Ngo et al.

∑

i

δσ (σ1, . . . , σn)

δσi

∣∣∣∣
σi=σ ∗∀i

= 1

σ(σ ∗, . . . , σ ∗) = σ ∗.

With other terms, if ∀i, σi ∈
[
σ imin, 1

]
and σ ∈ [σmin, 1], we can present the

global average satisfaction function with

σ(σ1, . . . , σn) ≈
∑

i

aiσiwith∀i, ai > 0 and
∑

i

ai = 1 (4)

or, using dissatisfaction D = 1− σ instead of satisfaction:

D(D1, . . . , Dn) ≈
∑

i

aiDiwith∀i, ai > 0 and
∑

i

ai = 1. (5)

Let us now consider indicators to assess the performance of some services. In the
next, indicators have to be considered as proposals, but alternative indicators coming
from further researches could also be used and then they can be reformulated with
a MILP formalism.

Generally speaking, modifiable permanent services use to control a physical
variable: the user satisfaction depends on the difference between an expected value
and an actual one. Let us consider for example the temperature of a room heating
service. A dwelling can usually be split into several heating services related to rooms
(or thermal zones) assumed to be independent.

Let us consider the comfort standard 7730 [7] for thermal comfort assessment.
According to the comfort standard 7730 [7], three qualitative categories of thermal
comfort can be distinguished: A, B, and C. In each category, typical value ranges for
temperature, air speed, and humidity of a thermal zone that depends on the type of
environment have been proposed [7]: office, room,. . . These categories are based on
an aggregated criterion named predictive mean vote (PMV) modeling the deviation
from a neutral ambience.

The absolute value of this PMV is an interesting index to evaluate the quality
of a HVAC service related to a thermal zone because it can be easily transformed
into a MILP formalization. In order to simplify the evaluation of the PMV, typical
values for humidity and air speed are used. Therefore, only the ambient temperature
corresponding to the neutral value of PMV (PMV = 0) is dynamically concerned.
Under this assumption, an ideal temperature Topt is obtained. Depending on the
environment, an acceptable temperature range coming from the standard leads to
an interval [Tmin, Tmax]. For instance, in an individual office in category A, with
typical air speed and humidity conditions, the neutral temperature is Topt = 22◦ and
the acceptable range is [21◦, 23◦].

Therefore, considering the HVAC service SRV (i), the discomfort criterion
D(i, k), which in our case is more usable than comfort criterion, is modelled by
the following formula where assumptions are depicted by two parameters a1 and
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a2:

D(i) =

⎧
⎪⎪⎨

⎪⎪⎩

f (i)− fopt (i)

fmax(i)− fopt (i)
if f (i) > fopt (i)

fopt (i)− f (i)

fopt (i)− fmin(i)
if f (i) ≤ fopt (i).

(6)

Generally speaking, modifiable temporary end-user services do not aim at
controlling a physical variable. Temporary services such as washing are expected
by inhabitants to finish at a given time. Therefore, the quality of achievement of
a temporary service depends on the amount of time it is shifted. Therefore, in the
same way as for permanent services, a user dissatisfaction criterion for a service
SRV (i) is defined by

D(i, k) = |PMV (Tin(i, k))| =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

a1 × (Topt − Tin(i, k))

Topt − TMin

if Tin(i, k) ≤ Topt

a2 × (Tin(i, k)− Topt )

TMax − Topt
if Tin(i, k) > Topt

,

(7)
where fopt stands for the requested end time and fmin and fmax stand, respec-

tively, for the minimum and maximum acceptable end times.

2.3.4 Formulation of the Anticipative Problem as a Linear Problem

Formulation of the energy management problem contains both behavioral models
with discrete and continuous variables, differential equation, and finite-state models,
and quality models with non-linearities such as in the PMV model. In order to
get mixed-linear problems that can be solved by well-known efficient algorithms,
transformations have to be done. The ones that have been used are summarized in
[5].

2.3.5 Formalizing Time Shifting

Temporary services are modelled by finite-state machines. The consumption of a
state can be shifted such as task in scheduling problems. The starting and ending
times of services can be synchronized to an anticipative period [8]. It leads to
a discrete-time formulation of the problem. However, this approach is both a
restriction of the solution space and an approximation because the length of a time
service has to be a multiple of �. The general case has been considered here.

In the scientific literature, continuous-time formulations of scheduling problems
exist [9–11]. However, these results concern scheduling problems with disjunctive
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Fig. 1 Shift of temporary
services

state 1 of SRV(i)

time

Δ
duration

1 2 3 4 5 6 7 8

E(i, 1, 2) E(i, 1, 3) E(i, 1, 4) E(i, 1, 5)

fmin(i, 1) fmax(i, 1)

f(i, 1)

consumed
energy

DUR(i, j)

resource constraints. Instead of computing the starting time of tasks, the aim is
to determine the sequence of tasks on shared resources. In energy management
problems, the matter is not restricted to determine such sequence because several
services can be achieved at the same time.

Figure 1 presents an example of a state in temporary services. Temporary services
can be continuously shifted. LetDUR(i, j), f (i, j), and p(i, j) be, respectively, the
duration of the state j of service SRV (i), the ending time, and the power related
to the service SRV (i) during the state j . f (i, j) is defined according to inhabitant
comfort models: they correspond to extrema in the comfort models presented in
Sect. 2.3.3.

According to [12], the potential consumption/production duration (effective
duration if positive) d(i, j, k) of a service SRV (i) in state j during a sampling
period [k�, (k + 1)�] is given by (see Fig. 1)

d(i, j, k) = min(f (i, j), (k + 1)�)−max(f (i, j)−DUR(i, j), k�). (8)

Therefore, the consumption/production energy E(i, j, k) of the service SRV (i)
in state j during a sampling period [k�, (k + 1)�] is given by

E(i, j, k) =
{
d(i, j, k)p(i, j) if d(i, j, k) > 0

0 otherwise
, (9)

where d(i, j, k) stands for the duration of the state j of the service i during the
period k. It is null if the state j of service i does not intersect the anticipative period
k. p(i, j) is the power consumed during the state j of the service i.

E(i, j, k) can be modelled using a binary variable: δt0(i, j, k) = (d(i, j, k) ≥ 0)
and a semi-continuous variable: zt0(i, j, k) = δt0(i, j, k)d(i, j, k). It leads to the
following inequalities:

d(i, j, k) ≤ δt0(i, j, k)K� (10)

d(i, j, k) > (δt0(i, j, k)− 1)K� (11)
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E(i, j, k) = zt0(i, j, k)p(i, j) (12)

zt0(i, j, k) ≤ δt0(i, j, k)K� (13)

zt0(i, j, k) ≥ −δt0(i, j, k)K� (14)

zt0(i, j, k) ≤ d(i, j, k)+ (1− δt0(i, j, k))K� (15)

zt0(i, j, k) ≥ d(i, j, k)− (1− δt0(i, j, k))K�, (16)

where zt0(i, j, k) is an abstract semi-continuous variable.
But the model still contains non-linear functions min and max in the expression

of d(i, j, k). Therefore, Eq. (8) has to be transformed into a mixed-linear form. Let
us introduce two binary variables δt1(i, j, k) and δt2(i, j, k) defined by

δt1(i, j, k) = (f (i, j)− k� ≥ 0)

δt2(i, j, k) = (f (i, j)−DUR(i, j)− k� ≥ 0) .

Using transformations, it yields

f (i, j)− k� ≤ δt1(i, j, k)K� (17)

f (i, j)− k� ≥ (δt1(i, j, k)− 1)K� (18)

f (i, j)−DUR(i, j)− k� ≤ δt2(i, j, k)K� (19)

f (i, j)−DUR(i, j)− k� ≤ (δt2(i, j, k)− 1)K�. (20)

Therefore, min and max of Eq. (8) become

fmin(i, j, k) = δt1(i, j, k + 1)(k + 1)�+ (1− δt1(i, j, k + 1)) f (i, j) (21)

smax(i, j, k) = δt2(i, j, k)(f (i, j)−DUR(i, j))+ (1− δt2(i, j, k)) k� (22)

with min(f (i, j), (k+1)�) = fmin(i, j, k) and max(f (i, j)−DUR(i, j), k�) =
smax(i, j, k).

The duration d(i, j, k) can then be evaluated:

d(i, j, k) = fmin(i, j, k)− smax(i, j, k). (23)

Equations (10)–(23) model the time shifting of a temporary service.
Some services have been modelled by mixed-integer linear form. Other services

can be modelled in the same way. Anticipative control in dwelling energy manage-
ment can be formulated then as a multi-criteria mixed-linear programming problem
represented by a set of constraints and optimization criteria. The regular solving
approach is presented in [5].
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3 Model Predictive Control for Energy Management

Approaches based on model predictive control (MPC) become a significant part of
solutions proposed to design efficient energy management systems in building. This
is due to its ability to compute near-optimal solution while handling multi-variable
character and respecting the constraints of the problem.

Among these works, there is a group based on the stochastic model predictive
control as in [13], where a stochastic control has been applied to building heating
control. The objective of the controller is to reduce the internal air temperatures in
the morning and overnight, in anticipation of solar gains during the day in order to
reduce the energy consumption and improve the comfort of the occupants.

Borrelli et al. [14] propose a MPC-based controller for the thermal energy storage
in building. A dual-stage optimization is used in order to tackle complexity and
feasibility issues: the first stage operates using heuristic rules, while the second stage
optimally controls based on a periodic moving window blocking strategy that is
used in order to reduce the computational time associated with the resulting non-
linear constrained optimization. The approach has been tested on the campus of the
University of California. The results of the simulation showed that, using the MPC-
based controller, the daily electricity bill can be reduced of 24.5% compared to the
manual control sequence.

Collazos et al. [15] proposed a management of polygeneration systems with pre-
dictive techniques. A model-based predictive controller has been developed using
a mixed-linear and integer programming model to define the optimal management
strategy of micro-cogeneration systems in building applications. The model includes
the balance of the hot-water storage as well as the heat accumulation in the building
envelope.

Negenborn in [16] proposes a model predictive controller (MPC) that uses
mixed-logical framework to model and control the energy flows in buildings. This is
one among the few works, based on model predictive control, that focuses on energy
flows including power generation, energy storage capabilities, and the possibility
of energy exchange with an external energy supplier. Most studies based on MPC
are exclusively centered on thermal aspects. Other shortcomings included non-
linear (bilinear) characteristics are scarcely explicitly handled as in [14]. Non-linear
heat emission characteristics of Fan Coil Units are generally linearized around a
functioning point. Other similar works are in [15, 17–19].

Lamoudi in [20] mentions that most studies show at least one of the following
drawbacks:

• Focus is exclusively centered on thermal aspects.
• Non-linear (bilinear) characteristics are scarcely explicitly handled.
• Non-linear heat emission characteristics of Fan Coil Units are generally lin-

earized around a functioning point.

Lamoudi in [20–23] proposes a solution based on a distributed model predictive
control framework to overcome these drawbacks. The designed solution explicitly
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handles the non-linear features of the system model, and the comfort variables in
the solution are addressed while meeting specific power limitations for each energy
type (power from the grid, local solar production, etc.). This chapter does not detail
this solution here.

4 Automatic Model Generation for Energy Management

4.1 Introduction

Automatic model generation becomes a promising approach to handle and transform
models required for energy management systems. In this perspective, gPROMS [24]
or General Algebraic Modeling System (GAMS) [25] is developed allowing the user
to concentrate on the modeling problem by forgetting the application formalism
requirement. Once the core model is defined, the system takes care of the time-
consuming details of the specific machine and system software implementation to
transform this model into different formalisms. Nevertheless, such an automatic
transformation cannot always be performed in dwelling energy management appli-
cations. Indeed, it is not always sure to get an acausal linear model for energy
management application from an initial non-linear model for example if there are
non-linearizable terms inside.

The model construction of a whole dwelling is not a trivial task. Moreover,
dwelling model is not really stable due to equipment (add/remove) changes. It means
that dwelling model construction also needs to be flexible. Therefore, it is not a
good solution to build a whole dwelling model at once but to compose step-by-step
equipment models to get the final model afterwards. When there is a change, it needs
just to add/remove the corresponding equipment model into/from the final model.

Based on the MDE approach, this section presents a method consisting in
automatically manipulating equipment models to get a dwelling final model, the
so-called pivot model, and then automatically projecting this pivot model into target
application models.

4.2 Problem Formulation

In this section, different key concepts aiming at composing a generic dwelling
model, based on the Model-Driven Engineering (MDE) approach, are presented
with the the help of an illustrative example.
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4.2.1 Concept of Model Transformation

Let us consider resistor modelled by

C0 : U1 = R1 × I1. (24)

This simple model may be used by a designer into different optimization problems,
adding information like lower and upper bounds of variables and an objective
function for instance:

C0 : U1 = R1 × I1 (25)

C1 : 0 ≤ R1 ≤ 5 (26)

C2 : 0 ≤ U1 ≤ 4 (27)

Objective : MaxI1. (28)

In spite of its simplicity, if another resistor R2 is added in parallel, the whole system
model has to be rewritten as

C0 : U1 = R1 × I1 (29)

C1 : U2 = R2 × I2 (30)

C2 : Itotal = I1 + I2 (31)

C3 : 0 ≤ R1 ≤ 5 (32)

C4 : 0 ≤ R2 ≤ 3 (33)

C5 : 0 ≤ U1 ≤ 4 (34)

C6 : 0 ≤ U2 ≤ 4 (35)

C7 : U1 = U2 (36)

Objective : MaxItotal . (37)

Although the rewriting process is not time-consuming for this example, it
becomes a tough work for complex systems that contain hundreds of variables and
constraints. In addition, model may also have to be rewritten depending on the target
application. For instance, some optimization algorithms require a causal ordering
(simulated annealing), and some others require linearization (mixed-integer linear
programming). Therefore, two difficulties to be dealt are:

• A model must be composed of elements that can be reused.
• A model has to be transformable.

To handle model transformation in optimization problems, the concept of pivot
model is used. Actually, a pivot model is a high-level application-independent
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description that can be transformed into target application formats. This section is
aiming at automatizing the model rewriting processes.

In the computer science literature, model rewriting processes are usually man-
aged using the concept of Model-Driven Engineering (MDE).

4.3 Concept of MDE

Basically, the Model-Driven Engineering (MDE) approaches aim at separating
models based on company know-how and those related to software implementations
in order to maintain the sustainability of the company know-how in spite of the
changes of development environment [25]. To do this, it is necessary first to define
Platform-Independent Models (PIM), i.e., pivot model, technically independent
from execution platform. It enables the generation of a set of Platform-Specific
Models (PSM) afterwards. Based on the MDE approach, the problem can be
decomposed into 2 abstraction levels. The two concepts of PSM and PIM are
corresponding, respectively, to the levels M0 and M1. Shortly, the signification of
each level is:

• Level M0 (PSM) is the real system that contains executable object.
• Level M1 (PIM) is the model that represents the system.

Then, the main objective of this approach is to be able to perform transformations
to generate different models related to the levels. There are two types of transforma-
tions of models:

• Transformation model to code (PIM to PSM)
• Transformation model to model (PIM to PIM)

Generally speaking, the transformation model to code can be viewed as a special
case of model-to-model transformation. Basically, a transformation model to model
is performed with the help of transformation rules that consist in transforming a set
of input models to targeted models.

4.4 Concept of Pivot Model

Thanks to this architecture and based on the MDE concept, a pivot model can
be considered as a PIM (level M1) and the PSM can be associated to a specific
optimization model format. Basically, PIM is supposed to be available initially, and
then PIM to PSM or PIM to PIM transformations have to be computed by applying
transformation processes. Generally speaking, the PIM construction is built from
elementary models, denoted as EM , that describe element parts in the system. An
elementary model EM , in the field of optimization, is associated with a subspace of
a vector space defined on R

n. It is considered that integer set N is a specialization of
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the real number space R: N ⊂ R and that True, False are modelled by a binary set
{0,1}, which is a specialization of N. An element model representing an element in
a given mode is defined as

Definition 1 EM : mode(EM)↔VS ∈ E; E ⊂ dom(S) ⊂ R
n

with:

• VS = {v0, . . . , vn−1 } is a set of variables, respectively, related to the tuple of
symbols S = {symbol0, . . . , symboln−1}.

• dom(S) = dom(symbol0)× . . .× dom(symboln−1) is the set of value domains
of symbols corresponding to variables.

• Mode is generally and implicitly ok (except in diagnosis analysis) for normal
behavior.

• The subspace E is defined by a set of nj constraints K defined over Rn.

K = {Kj (S) � 0; ∀j} (38)

where � stands for a comparison operator.

The notion of element has to be clarified. Let us consider a dual-flow ventilation
system; it is composed of two speed variation control devices and two electric drives
associated with the extraction and insufflated air. An element of this ventilation
system model can be a variation control device model or an electric drive level but
at a higher level of consideration. By the way, the whole ventilation system can
also be seen as an element of the dwelling system depending on the point of view.
Therefore, the more the elements are decomposed, the more they can be reused.

Actually, a pivot model is composed step by step by adding required element
models (EMs). This solution facilitates the pivot model construction for system
designer because instead of building a unique model containing all the needed
constraints, the designer can compose components by composing different EMs.
Moreover, these blocs can possibly be reused afterwards to get bigger ones and
so on before they are used for building a pivot model. A pivot system model PM
= (K∑(S∑, dom(S∑)) is an union of elementary models EMi plus connection
constraints Kj .

In this chapter, two application models that are used the most in BEMS are
considered: simulation model and energy management model using the MILP
formalism. Let us consider the pivot system model PM = (K∑(S∑, dom(S∑));
constraints can be decomposed into equality constraints, denoted as K=∑, and

inequality constraints, denoted as K
�
∑. A model is said to be simulable if it exists a

function ϕ: Sin∑ → Sout∑ such as K=∑(S∑) ↔ ϕ(Sin∑) = Sout∑ on dom(S∑) with

(Sin∑,Sout∑ ) is a partition of S∑.
Transforming PM into simulation model, denoted as PMSA, consists in select-

ing and projecting K=∑(S∑) into ϕ(Sin∑) = Sout∑ , and a causal ordering has
to be performed. It requires usually to set values of some variables that will
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become parameters and input variables. The Dulmage–Mendelsohn algorithm [26]
is generally used providing K=∑(S∑).

A MILP model is defined as PMMILP = (KMILP∑ (SMILP∑ , dom(SMILP∑ )) with

KMILP∑ (SMILP∑ linear). Transforming PM into PMMILP relies on linearization
transformation that may require the introduction of new variables, The specification
of the domains of some variables, and the introduction of new constraints. A MILP
model also contains criteria to be optimized expressed by a linear function of S∑.

Different transformation processes for composing a pivot model then project this
pivot model into simulation, and MILP formalism is detailed in Sect. 4.5.

4.5 Transformation Process Principles

This section gives an overview on different transformation process principles by
using an illustrative example. A transformation is composed of two main steps. The
first one aims at manipulating element models to build a pivot model. Then, different
projection processes are applied to obtain target application models. The simulation
and energy management using MILP formalism models are shown in this section.

4.5.1 Composition Process

This sub-section focuses on how a pivot model is built. Thus, the most important
step to build a pivot model is the composition of different element models. The
objective of composition is to encourage the reusability of element models and make
the pivot model construction more modular. A composition can be applied for a set
of element models, a set of compositions of element models, a set of compositions
of compositions, and so on. Moreover, recursive compositions can be performed
unlimitedly to get bigger compositions. To illustrate this point, consider now an
electric circuit as presented by Fig. 2.

The system presented in Fig. 2 is composed of two blocs of four electrical
resistors R1, R2, R3, and R4. Independently of any formalism, the construction of

Fig. 2 Example of electric
circuit R1 R3

R4R2
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such a pivot model can be done by composing first a bloc of 2 parallel resistors.
Then, the pivot model is built by duplicating this bloc and connecting the whole
system.

When composing step by step the pivot model, there are two remaining problems
that have to be considered. The first one consists in specializing all resistors with
the corresponding values, and the second one consists in establishing different
connections between element models.

To deal with the first problem, each element model (EM) is necessarily special-
ized before being used in a composition. The specialization concept presented in
[27] is well suited to this problem. It makes an element more specific by adding
some supplementary information like a prefix or a type. According to the definition
given in Part 1, the specialization of an EM consists only in adding a distinct
prefix to symbol representing a variable each time it is used. For instance, R1.U
is not the same as R2.U and so on. An EM could be specialized as many times as
desired. The more specialized an EM is during a composition process, the more
specific it is. For instance, bloc1.R1.U is not the same as bloc2.R1.U. Nevertheless,
a set of specialized EMs cannot form a composition without connection between
them. Indeed, two specialized EMs, for instance resistor R1 and resistor R2, require
explicitly the following connecting equations, which is a common concept in [27]:

R1.U = R2.U

Itotal = R1.U

R1.R
+ R2.U

R2.R
.

These connecting equations are added into the compositions. The pivot model of
this system could be:

• The parallel bloc composition with the dots “.” represents suffixes of prefixes.

C0 : R1.U = R1.R × R1.I (39)

C1 : R2.U = R2.R × R2.I (40)

C2 : R1.U = R2.U (41)

C3 : Itotal = R1.U

R1.R
+ R2.U

R2.R
. (42)

• By duplicating the parallel bloc composition above twice and by adding connect-
ing equations can be established the final circuit. The system pivot model is thus
built:

C0 : bloc1.R1.U = bloc1.R1.R × bloc1.R1.I (43)

C1 : bloc1.R2.U = bloc1.R2.R × bloc1.R2.I (44)

C2 : bloc1.R1.U = bloc1.R2.U (45)
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C3 : bloc1.Itotal = bloc1.R1.U

bloc1.R1.R
+ bloc1.R2.U

bloc1.R2.R
(46)

C4 : bloc2.R1.U = bloc2.R1.R × bloc2.R1.I (47)

C5 : bloc2.R2.U = bloc2.R2.R × bloc2.R2.I (48)

C6 : bloc2.R1.U = bloc2.R2.U (49)

C7 : bloc2.Itotal = bloc2.R1.U

bloc2.R1.R
+ bloc2.R2.U

bloc2.R2.R
(50)

C8 : bloc1.Itotal = bloc2.Itotal (51)

C9 : Utotal = bloc1.R1.U + bloc2.R1.U. (52)

To recapitulate the above pivot model construction, the resistor model (24) is
first used two times to create two different resistors. Then, a bloc of two parallel
resistors is created by adding connecting equations. Finally, the pivot model is built
by duplicating this parallel bloc and adding new connecting equations. This pivot
model can automatically be generated if these three steps are defined in a recipe.
The notion of recipe is also the main idea of this chapter aiming at automatizing the
generation between models. In other words, an expert has to list all steps required
for:

• Generating a pivot model from different element models
• Generating a pivot model into different target application models

Each step is considered as a transformation rule that is implemented and put into
a common rule set. This rule set contains all rules that are required for these two
points above. Then, expert can create recipes that call gradually implemented rules
from the rule set to get desired formalisms. However, the equation manipulation to
create such a pivot model is not a trivial task. To automatize the prefix adding,
connecting equation adding, or constraints duplication, an engine that handles
symbolic constraints is strongly required.

In the recent decades, symbolic computation or computer algebra [28, 29]
has become an important research area of mathematics and computer scientists
aiming at developing tools for solving symbolical equations. The capabilities of
major general-purpose Computer Algebra Systems (CAS) are presented in [30, 31].
Moreover, among the mathematical features of a CAS, there are transformations
allowing to manipulate and optimize symbolic computations in order to automati-
cally generate optimization code [32].

The GIAC/XCAS CAS [33] has been developed to solve a wide variety of
symbolic problems and was awarded the 3rd price at the Trophées du Libre 2007
in the scientific software category http://www-fourier.ujf-grenoble.fr/~parisse/giac.
html. This CAS has been used for symbolic manipulation of all the constraints in the
pivot model. With GIAC/XCAS, each constraint is treated as a n-ary tree equation as

http://www-fourier.ujf-grenoble.fr/~parisse/giac.html
http://www-fourier.ujf-grenoble.fr/~parisse/giac.html
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Fig. 3 Equation (43) n-ary
tree representation

presented in Fig. 3. This tool is also the core of the implemented program allowing
to carry out all the manipulations and transformations symbolically.

Finally, the set of required manipulations for composing a pivot model is,
respectively, summarized as follows:

• Specialization of EM by adding prefixes
• Adding connecting equations

4.5.2 Projection Process

Once a pivot model is composed, the next step consists in applying different
projection processes to get desired formalisms. These projection processes can
always be detailed in recipes to automatize the transformation between models. This
sub-section shows different steps to get simulation and energy management using
MILP formalisms. These processes are summarized in Fig. 4.

Energy management application using MILP formalism requires an acausal
linear model containing 3 kinds of variables: binary, continuous, and integer, and
2 kinds of constraints: equality and inequality. It means that MILP transformation
process aims at projecting dwelling pivot model including appliance phenomena
physics, occupant requirement, and energy flows into MILP formalism as follows:

• Transform all constraints into equality and inequality constraints.
• Linearize all non-linear terms.

Based on the platform PREDIS/MHI model that is detailed in Sect. 4.6, the
first point is necessarily performed to transform all ordinary differential equations
(ODE) and logical constraints into equality and inequality constraints. In this study
case, an approximation of ODE time discretization is shown instead of the exact
transformation solution. This approximation consists in developing the derivative
variable into

dvi

dt
= vi(t + 1)− vi(t)

t
(53)

with vi ∈ VS and t is the predefined time step.
This time discretization transformation of all ODEs, dvi

dt
= f (VS), is performed

symbolically as presented by Fig. 5.
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Fig. 4 Example of two projection processes

Fig. 5 Time discretization
pattern

=

f(νs)(vi(t+1) – vi(t))
t

The main idea of this transformation is the same for logical constraint trans-
formation, and it can be found in [5]. Once this step is completed, the pivot
model contains equality and inequality constraints. The next step to do consists in
searching and linearizing all non-linear terms.

The difference between non-linear terms is based on the nature of variables
and/or the nature of functions that contain variables. Indeed, product of two discrete
variables cannot be linearized in the same way than a production of two continuous
variables or a cosine function for example. To linearize the pivot model, it is
preferable to sort out all the non-linear terms in different kinds of non-linearity first.
Then each kind of non-linearity is linearized by corresponding rules. It means that
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recipes, rules, and rule set have to be easily extended to cover all eventual changes.
The whole linearization process is summarized in Fig. 6.

This schema makes the linearization process automatically using different
patterns that were presented in [5, 34] and linearization patterns that can be
automatically performed are:

• Product of m binary variables with m ≥ 1
• Product of l discrete variables with l ≥ 1
• Product of m binary variables and l discrete variables
• Product of m binary variables and 1 continuous variable
• Product of l discrete variables and 1 continuous variable
• Product of m discrete variables and l discrete variables and 1 continuous variable

However, there are some terms for which the linearization process cannot be
automatized, but a human intervention is required, for instance the product of n (n ≥
1) continuous variables. Indeed, it does not exist a linearization pattern for this type
of non-linearity to be performed directly. Linearizing such non-linearity requires a
preliminary step consisting in discretizing the domain of n− 1 continuous variables

Fig. 6 Linearization process
pivot model

Non-linear
terms

scanner
End

Put non-linear terms
in the common form

Check the
availability of
linearization

pattern

Show non-
linear terms

Linearize non-linear
terms by hand

Linearize non-linear
terms

Linearized terms

Non Available

Available
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into sets of discrete values. Then, the pattern of discrete and continuous product can
be used to get a linear term. Discretization also means approximation to realistic
values; therefore, the choice of discrete values impacts strongly on final results, and
this step cannot be automatically performed by system. Only expert who masters
his dwelling system can take good values for linearization process afterwards.

Let us linearize the circuit system (25) by discretizing for instance the resistor
into R = {3, 4}. Then, the discrete and continuous linearization patterns can be
used by introducing a new variable, denoted as Z, representing the product R × I

with

Z = R × I = (δ1 × v1 + δ2 × v2)× I (54)

with δi is a binary variable that takes value {0, 1}. Actually, the goal is to select
the best value among those of R to maximize or minimize the objective function.
Equation (54) can be factorized as

Z = δ1 × v1 × I + δ2 × v2 × I (55)

with v1 and v2 parameters. There are two binary and continuous products to be
linearized. Let us linearize for instance the first binary and continuous product term:
δ1× v1× I . The corresponding pattern implies to create a new continuous variable,
denoted as Z

′
with 4 new constraints delimiting the bounds of Z

′
as follows:

Z
′ ≤ δ1 × v1 × I (56)

Z
′ ≥ δ1 × v1 × I (57)

Z
′ ≤ (I − I × (1− δ1))× v1 (58)

Z
′ ≥ (I − I × (1− δ1))× v1 (59)

with I and I are, respectively, the lower and upper bounds of the continuous variable
I . The second binary and continuous production δ2×v2×I is linearized in the same
way. Once all of the non-linear terms are linearized, the MILP model formalism is
obtained.

Regarding the simulation model formalism, the required projection aims at
making the pivot model simulable. First, a model is simulable if and only if it is
a just-determined model structurally meaning that the number of variables is equal
to the number of equality constraints; therefore, variables could have exactly one
solution. Dulmage–Mendelsohn algorithm [26] is used for checking these criteria.
However, a pivot model is not necessarily just determined, but it could also be:

• Under-determined structurally meaning that there are fewer equality constraints
than variables. In this case, variables can have no solution or infinitely many
solutions making the pivot model non-simulable. This kind of model could be
only used by energy management application.
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• Over-determined structurally meaning that there are more equality constraints
than variables. In this case, variables can have no solution or only one solution.
This kind of model could be used only by diagnosis application for which
Analytical Redundancy Relations (ARR) for fault detection are performed.

Normally, a correct simulation model gives only a just-determined set, while
other sets are empty. The equality constraints can be reorganized according to the
upper-triangular just-determined part of the incidence matrix of equality constraints.
The presence of an under-determined set or of an over-determined part means that
the whole model cannot be simulated and it is necessary to recheck the element
models.

Usually, in building energy management, the reorganized matrix is strictly upper
triangular with no bloc on the diagonal but sometimes blocs may appear. In this
case, the projection cannot be fully automatized because there is no general process
to solve implicit systems of non-linear equations.

It is important to note that only equality constraints are taken into account for
generating the simulation model formalism. It means that a preliminary step to
extract equality constraints from logical operator constraints, ODE, and inequality
constraints. Then, if the simulability criteria of this set of equality constraints are
verified, the next step consists in making this pivot model causal. In other words,
this pivot model S∑ needs to be separated into Sin∑ and Sout∑ . Therefore, causal
ordering process is necessary to be performed. After this step, a resolution sequence
of variables is obtained to provide to the simulator.

Let us consider an academic example consisting in simulating the first parallel
bloc described by the equations

C0 : R1.U = R1.R × R1.I (60)

C1 : R2.U = R2.R × R2.I (61)

C2 : R1.I = R1.U

R1.R
(62)

C3 : R2.I = R2.U

R2.R
(63)

C4 : R1.U = R2.U = 220 V (64)

C5 : R1.R ∈ [100, 200]ohm (65)

C6 : Itotal = R1.I + R2.I. (66)

The objective is to maximize the variable Itotal . This model is simulable because
it is just determined and the reorganized incidence matrix is given by Table 2.

The constraint order computation is [C5, C2, C0, C4, C3, C1, C6].
In order to automatize the whole transformation process, a software architecture

is proposed in Fig. 7.
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Table 2 Obtained result
from Dulmage–Mendelsohn
computation

I total R2.I R2.R R2.U R1.U R1.I R1.R

C6 1 1 0 0 0 1 0

C1 0 1 1 1 0 0 0

C3 0 1 1 1 0 0 0

C4 0 0 0 1 1 0 0

C0 0 0 0 0 1 1 1

C2 0 0 0 0 1 1 1

C5 0 0 0 0 0 0 1

Application Specific

Dulmage
Mendelsohn

Simplification

Time Discretization

Variable Restriction

Linearization

Index Expansion

RuleSet

Pivot Model

Pivot Model

simulation
application

Simulation
application

Model

Element ModelsSystem Models

Application Model

simulation
application

Energy management
application using
MILP formalism Energy management

application using
MILP formalism

Energy management
application using
MILP formalism

Recipes

Fig. 7 Software architecture

In this section, the different steps to transform a pivot model into two target
application models:

• Energy management model using MILP formalism is obtained after all of the
non-linear terms are linearized as shown by equations.

• Simulation model is obtained with Dulmage–Mendelsohn computation.

The next section is used for illustrating the application of this proposed method on
model transformation of the platform PREDIS/MHI.
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4.6 Application on PREDIS/MHI

This section aims at presenting an implementation of this proposed method to
deal with energy management problem of the platform PREDIS/MHI located in
Grenoble, France. The “Monitoring and Habitat Intelligent” PREDIS platform is a
research platform for company and academic researchers working on energy man-
agement. This platform is an office low-consumption building highly instrumented
where most of the energy flows are measured using different sensor technologies.
The structure of this platform is given by Fig. 8. For the sake of clarity, this section
focuses on the classroom zone that is equipped with computers for students and a
heating and ventilation system containing:

• An air treatment unit model:

AirF low = coef ×QAir (67)

PairT reatementUnit = Pventilation + Pheating (68)

• A thermal balance model:

PhiT otal = PhiSun + Pheating + PhiOccup (69)

• A thermal comfort model distinguishing whether there is someone or not in the
classroom:

Fig. 8 An overview of PREDIS/MHI platform
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If presence = 1 : (70)

Tf elt < Tpref ⇒ sigmaincomf ort =
1/(Tpref − Tmax)× Tf elt − Tpref /(Tpref − Tmax)

Tf elt >= Tpref ⇒ sigmaincomf ort = (71)

1/(Tmax − Tpref )× Tf elt − Tpref /(Tmax − Tpref )

If presence = 0 : sigmaincomf ort = 0 (72)

Tf elt <= Tmaxabsence

Tf elt >= Tminabsence

• A thermal zone model:

RVentilation =1/((1− eff iciency)× CpAir (73)

× rhoAir × AirF low)

REq =1/(1/(RV entilation + Rw) (74)

+
∑

(1/R[neighborhood]))

d

dt
Tw =− 1/(REq × Cw)× Tw + 1/((RV entilation (75)

+ Rw)× Cw)× Tout +
∑

(T [neighborhood]/
(R[neighborhood] × Cw))+ RVentilation × Phitotal/

(Cw × (RV entilation + Rw))

TIn =RVentilation × Tw/(RV entilation + Rw) (76)

+ Rw/(RV entilation + Rw)× TOut

+ RVentilation × REq × Phitotal/(RV entilation + Rw)

• A CO2 comfort model:

sigmaCO2 = (CCO2 − Cfav)/(Cmax − Cfav) (77)

• A CO2 zone model:

d

dt
CInCO2

=QBreath × occupancy (78)

× (CBreath − CInCO2
)/V olZone

+ AirF low × (COutCO2 − CInCO2
)/V olZone
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• Finally, the total power consumption model:

Ptotal =PairT reatementUnit + Plighting + Pcomputer (79)

T otalcost =Ptotal × PriceP erKwh (80)

These models describe only the physical phenomena of PREDIS/MHI. In this
section, the goal is to build up the pivot model of the classroom and then to project
it into MILP formalism and simulation model. To automatically generate these
different models, the following recipe is used:

• Pivot model composition recipe of the classroom is realized in 3 steps:

– Compose the CO2 system:

· Specialize: CO2 comfort with prefix: CO2Comfort
· Specialize: CO2 zone with prefix: CO2Zone
· Connect: CO2Comfort.CCO2 = CO2Zone.CInCO2

– Compose the thermal system:

· Specialize: thermal comfort with prefix: thermalComfort
· Specialize: thermal zone with prefix: thermalZone
· Connect: thermalComfort.Tf elt = thermalZone.TIn

– Compose the final pivot model:

· Specialize: CO2 system with prefix: CO2System
· Specialize: thermal system with prefix: thermalSystem
· Specialize: power consumption with prefix: powerConsumption
· Specialize: thermal balance with prefix: thermalBalance
· Specialize: air treatment unit with prefix: airTreatmentUnit
· Connect: airTreatmentUnit.AirF low = thermalSystem.AirF low
· Connect:

airTreatmentUnit.PairT reatementUnit = powerConsumption.
PairT reatementUnit

· connect: thermalBalance.Pheating = airTreatmentUnit.Pheating

Initially, element models of PREDIS/MHI are represented in textual description
files. Thanks to GIAC/XCAS CAS symbolic mathematical system [33], each
constraint is represented as a n-ary equation tree. Different variables inside this
constraint are detected and memorized under different distinct symbols. After
the parsing process, an EM is represented by a set of n-ary equation trees that
facilitate the different manipulations and projection afterwards. Considering now
the representation of the CO2 zone model, its n-ary equation tree representation is
given by Fig. 9.

At this stage, constraints are specialized with a given prefix, and the new
connecting equation is also added to compose the pivot model. Each projection
rule has been defined in the common rule set, and these steps are also found in
the corresponding application recipe. Let us develop some specific rules to illustrate
how the symbolical transformation is performed: time discretization, linearization
for getting a MILP formalism.



Generation of Optimal Strategies for Energy Management of Living Area. . . 299

Fig. 9 CO2 zone model n-ary representation

Fig. 10 CO2 zone model after the ODE transformation process

To provide a discretized linear model to MILP solver, the required projection is
the time discretization. Based on a daily period plan, the time is discretized into
24 sampling steps of 1 h. It means that there is one best appliance and envelope
configuration for each hour. To process it, the time discretization multiplies 24 times
each constraint of pivot model with time index ranging from 0 to 23. The ODE
implementation of CO2 zone at 5th time step is given by Fig. 10.

The next important projection rule consists in linearizing all the non-linear terms
inside constraints of pivot model. First, all of the non-linear terms are detected by a
checker process. Once they are detected, the nature of each term is checked before
being linearized. Let us linearize the binary–continuous product:

CO2Zone.QBreath×CO2Zone.occupancy in the CO2 zone model where occu-
pancy is 0 whenever there is nobody or 1 otherwise. In this case, a temporal
variable, denoted as z, is used for replacing the considered term in the corresponding
constraint as given by Fig. 11.

In order to keep the same meaning of the non-linear term, pivot model adds four
new constraints resulting of this binary–continuous product linearization pattern
transformation: z_4 ≤ CO2Zone.occupancy_4× CO2Zone.QBreath_4
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Fig. 11 CO2 zone binary model after the first linearization process

z_4 ≥ CO2Zone.occupancy_4× CO2Zone.QBreath_4
z_4 ≤ CO2Zone.QBreath_4-(1-CO2Zone.occupancy_4) × CO2Zone.QBreath_4

z_4 ≥ CO2Zone.QBreath_4-(1-CO2Zone.occupancy_4) × CO2Zone.QBreath_4.
The result of this linearization pattern represents exactly the considered binary–

continuous product because:

• If occupancy_4 = 1:
z_4 ≤ sup(CO2Zone.QBreath_4)
z_4 ≥ inf (CO2Zone.QBreath_4)
z_4 ≤ CO2Zone.QBreath_4
z_4 ≥ CO2Zone.QBreath_4.
In this case, the first two constraints are always true so they can be eliminated.
The last two constraints make it possible to take into account the real values of
CO2Zone.QBreath_4.

• If occupancy_4 = 0:
z_4 ≤ 0
z_4 ≥ 0
when there is nobody in the classroom, it means that the QBreath is equal to 0,
too.

Once all the non-linear terms are linearized, the optimized anticipative model is
obtained. After the computation with MILP solver (IBM ILOG CPLEX 12.3), the
result obtained within 2 min for next 24 h is given by Fig. 12.

4.6.1 Transformation of the PREDIS/MHI Pivot Model to the Fast
Simulated Annealing Optimization Model

In order to handle the simulated annealing process, a causal ordering has to be
performed in order to get a problem looking like:
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Fig. 12 Results of classroom temperature plan and power cost corresponding for next 24 h
generated by MILP solver

Y = f (X);X ∈ Rm, Y ∈ Rn

X � 0

Y � 0,

where � stands for comparative operators.
Therefore, transforming the pivot non-linear model of PREDIS/MHI into the

SA application starts by distinguishing equality constraints from inequalities. Then,
equalities have to be reorganized to be solved. A Dulmage–Mendelsohn decomposi-
tion [26] has been done in the same way as it is done in Modelica [27]. It reorganized
an incidence matrix into an upper block triangular matrix using the Hopcroft–Karp
bipartite maximum matching search algorithm, which isO((|V |+|E|)3.5), where V
and E are, respectively, variables and equality constraints. Then, the presence of an
under-determined set is searched to check whether the problem can be solved or not.
Finally, the presence of an over-determined part is also searched: it should be empty;
otherwise, contradictions may occur between over-determined variables. Whenever
it has been checked that the under- and over-determined sets are empty, the equality
constraints can be reorganized according to the upper-triangular just-determined
part of the incidence matrix of equality constraints. Generally, in building energy
management, the reorganized matrix is strictly upper triangular with no block on
the diagonal but sometimes blocks may appear. In this case, the transformation
cannot be fully automatized because there is no general process to solve implicit
systems of non-linear equations. Generally speaking, the transformation can be fully
automatized whether:
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1. The system does not contain an under-determined part: data are missing for
causal ordering.

2. The system does not contain an over-determined part: the system is over-
constrained, i.e., model has to be rechecked.

3. The system does not contain implicit non-linear subsystem to solve.

Actually, because the first two points are not frequent, the third one is the most
problematic ones and it may involve specific solving for highly connected equation
subsystems.

The PREDIS/MHI pivot model has been transmitted to Dulmage–Mendelsohn
algorithm. Inputs correspond to variables restricted to single values. In this case,
the equality equations lead to just-determined system. It means that the solution
for causality exists and the problem has exactly one solution. The problem can
be resolved automatically: output values can be deduced directly from inputs. The
inputs will be adjusted by SA to satisfy inequality constraints while minimizing
objective. Giac symbolic mathematical system is used to reformulate constraints
and solve them in order to carry out the SA process.

Simulated annealing uses this model as a simulation problem to optimize a part of
its inputs according to an objective computed iteratively. A part of inputs is imposed
as parameters and others as degrees of freedom to be optimized. The simulated
annealing algorithm chooses the new value for each degree of freedom randomly.
A variable called temperature is updated for each iteration of the program, and
it decreases exponentially. The optimization process keeps in memory the chosen
values of degrees of freedom from the last iteration. If the new values improve the
objective, these new values replace the old ones in memory. If the new values worsen
the objective, they can replace or not the old values in the memory according to the
results of this condition:

proba > exp(−δ/temperature)

where:
proba: a random value generated by random method.
δ: the difference between the old and new objective values.
temperature: a variable that decreases exponentially during the evolution of the

algorithm.
To avoid repetitions in values instantiation, a tabu list is added in the algorithm.

For each random choice, the tabu list is checked before validation of this new value.
The simulated annealing optimization supports the interactions with occupants.

The pivot model used in the MILP optimization and the SA optimization is the
same, but the differences are in variables considering as degrees of freedom for
solvers. In MILP optimization, degrees of freedom are fixed by expert when the
transformation from pivot model to applicative model is done. In SA optimization,
occupants choose the variables that they want to change according to their personal
requirements interactively. The rest of the variables are for the results of MILP opti-
mization, and the initial values of their variables are taken from MILP optimization
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Fig. 13 Results of new classroom temperature plan and new power cost correspondingly gener-
ated by SA solver

results. The requirements of occupants can be expressed as additional constraints on
variables.

Consider now the SA computation within few seconds for the new temperature
set points. The new optimized plan is given by Fig. 13.

5 Conclusion

This chapter presented (Sect. 2) a global model-based anticipative energy man-
agement system to generate an optimal strategy in order to harvest the maximum
energy. This model has been adapted and applied to the CANOPEA building
prototype proposed by the Rhône-Alpes team for Solar Decathlon Europe 2012
contest [35]. The BEMS of CANOPEA building prototype was able to compute
energy management strategies and to propose advices to occupants.

Approaches based on model predictive control (MPC) proposed to design
efficient energy management systems in building have also been presented in Sect. 3.
These approaches have the ability to compute near-optimal solution while handling
multi-variable character and respecting the constraints of the problem.

Finally, a model transformation methodology based on MDE approach is
proposed aiming to automatically generate application models in building energy
management. The core specifications to transform a pivot model into application
models are defined. A prototyped software has been developed for PREDIS/MHI
platform to validate the proposed approach. It has been shown that the proposed
approach can be advantageous in BEMS problem where two kinds of optimizations
are presented: an initial global MILP optimization and several SA fast optimizations
to support interaction with occupants. It is under development to handle other kinds
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of applications including simulation, parameters estimation, and so on in order to
get a better efficiency in building energy management.
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Distributed and Self-learning Approaches
for Energy Management

Hussein Joumaa, Khoder Jneid, and Mireille Jacomino

1 Principle of Distributed Solving Approach

The role of a power management system is to adapt the power consumption to the
available power resources and vice versa, taking into account inhabitant comfort
criteria. It has to reach a compromise between the priorities of the inhabitant in
terms of comfort and in terms of cost while satisfying technological constraints
of devices. The problem is distributed by nature. It deals with heterogeneous
multi-services having different types of models and divergent preferences, it is
evolutive. The centralized optimization is not able to take into account this kind
of service representation which forces its resolution to be distributed as well. The
distributed artificial intelligence approaches or Multi-agent approaches have been
used to manage these services. The interesting capabilities in terms of openness and
adaptability, while solving problems, of such systems motivate for solving energy
management problems using the Multi-Agent Systems (MAS).

The first MAS approach for energy distribution has been presented in [12] and
[19]. Kok et al. [14] put forward a market-based control concept for the supply
and demand matching (SDM) in electricity networks. It aims to propose a Multi-
Agent System for the electronic market. Its purpose is to control tasks in future
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electricity network which is expected to develop into a network of networks with
a vast number of system parts communicating and coordinating with each other.
The developments of solutions based on Multi-Agent Systems, well suited to
solve spatially distributed and opened problems, permit to imagine an intelligent
Multi-Agent Home Automation system. The multi-agent approaches have some
advantages but, generally speaking, cannot ensure an optimal solution of the energy
management problem contrary to the centralized approaches. An agent-based
architecture, MAHAS (Multi-Agent Home Automation System) was proposed in
[2–4, 6, 7, 13] in order to solve the energy management problem. The architecture
proposes an agent modeling decomposed into two complementary mechanisms: an
anticipative mechanism which computes, through a negotiation protocol (solving
strategy) between agents, a solution for power management problem, and a reactive
mechanism that protects from constraint violation.

Multi-agent approaches allow the agents to cooperate and coordinate their
actions in order to find an acceptable solution for power management. As the
verification and the control of the emergent behavior of multi-agent systems is
extremely complex, the performance of the centralized system is when possible
better than that obtained with distributed systems. On the other hand, the distributed
system based on Multi-Agent System techniques does offer advantages over the
centralized approach: its openness, its scalability, and its capability to manage
diversity.

2 Principle of Mixed Solving Approach

An alternative approach, noted mixed approaches, proposes a formulation to
combine the centralized solving approach [11] for energy management problem
in homes with a multi-agent solving system. This approach uses the multi-agent
systems by integrating the agentified-equipment models in the global solution of
the problem that is provided by a centralized way. The proposed system is a mixed
centralized/distributed approach [1, 5, 7, 10, 13] for the resolution of global energy
management problem.

These solutions integrate mainly three parts (Fig. 1):

• The regular services: the services that can be integrated directly into a centralized
energy management problem without the limits cited before. For example, these
services consist of the ones having a mixed integer linear model that can be
integrated directly into the energy management problem in [15].

• The singular services (agents): All the other services having models that cannot
be integrated into the global solving process. For example in the energy
management system [15], all singular services that do not have a mixed integer
linear model and should communicate with the solver to give their energetic
profiles can be considered singular services or agents. The solving process and
the orchestration between regular and singular services use a specific protocol of
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The solver

Global solution Agent service 
solution

regular service 
solution

Agents Regular services 

if
else

Regular services consumption Global energy consumption Agent services consumption 

Fig. 1 Global architecture of the mixed solving system

communication to incorporate agents and regular services into a main system,
in order to compute a global energy consumption plan. An example of this
orchestration strategy is presented in the following parts.

• The solver is usually the “orchestrator” between regular and agent services.
In many works, the solver consists of a regular solver with the ability to
communicate with agents. The solver integrates the information sent by the
agent’s local solvers with regular service models in order to generate a global
problem to solve.

2.1 The Solving Strategy in Mixed Solving Approach

The system is composed of regular services having a linear model and agents that
use several different models that are not explicit for the mixed solver.

There is only one communication needed between the regular services and the
solver. At the beginning of the solving process, the solver receives the linear model
from the regular services. The models are used all along the solving process.

In the case of agents, a lot of communications are needed with the solver.
Each exchange between the agents and the solver is considered as a step in the
solving process. In each step, an intermediate problem is created by the solver then
computed. The solver decides which information is needed to be sent to the agents
in the next step. The agent takes into account the information sent by the solver
and sends energetic profiles that are the exchange data from the singular services
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to the solver. The energetic profiles will be presented later. The solving process is
presented in the following in three parts:

• The progress of the problem solving during one solving step.
• The solver’s behavior during the solving process.
• The agent’s behavior during the solving process.

2.1.1 One Step Solving

Figure 2 presents the information exchanged between the solver, the regular
services, and the agent services during the first step in the solving process.

First, the solver receives the linear models of the regular services. This operation
is the initialization of the problem. Once initialization is done, the solver computes
the relevance indicator. It is an indicator which aims at directing the local solving
problem for the agents. When this indicator is computed, it is sent to all agents.

The agents do not have any information about the environment, but they have
the ability to solve their own local problem. When agents receive the relevance
indicator, they compute their solutions taking into account this indicator serving as
information about their environment. They obtain several solutions, which are called
energetic profiles. It is the consumption for the concerned agent for each period of
the optimization horizon. All these profiles are sent back to the solver which in turn
includes them in the problem to be solved at this step together in the global problem
with all the services.

Next, the solver begins a new step by computing the relevance indicator taking
into account the received energetic profiles sent by the agents in order to improve
the global solution at each step in the solving process.

2.1.2 Solver’s Role

The solver has two tasks to do in each step. In order to formulate these tasks, we
introduce some notations:

Fig. 2 Solving process
during one step
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– k is the index of anticipative period
– S is the set of services
– SL is the set of regular services
– SD is the set of singular services
– S is a service included in S
– Emax

k is the available energy during the period k before any optimization

– E
j
k (S) is the consumed energy by the regular service S ∈ SL during the period

k in the step j
– E

j
k (S, i,Pk) is the consumed energy by the agent service S ∈ SD during the

period k for the ie profile in the step j
– Ck is the cost of energy during the period k
– υ(S) is the characteristic of inhabitant request for the service S
– D(υ(S)) is the dissatisfaction of the regular service S ∈ SL
– D(υ(S), i,Pk) is the dissatisfaction of the agent service S ∈ SD for the ie profile
– Pk,∀k is the relevance indicator for the current step of resolution

Optimization Problem

At each step, the solver computes a linear problem to find a solution. The regular
services models are represented in [9]. This problem is extended by including agent
services. Some equations are added to take into account the agent services. The
solver has to choose the most pertinent energetic profiles amount those given by the
agents. A new set of variables for each agent service is introduced (see Eq. (1)).
ζi(S) is a binary variable whose value is 1 if the profile i of the agent service S is
chosen by the solver, 0 otherwise. Combined with Eq. (2), ensure the solver to keep
only one profile for each agent service in the solution.

ζi(S) ∈{0, 1},∀i (1)
∑

i

ζi(S) =1 (2)

The criterion to minimize is modified and becomes a two parts criterion (3). The
first part concerns the regular services and the second part the agent services. They
are designed on the same scheme to have a standardized criterion. This scheme splits
into two influences:

• The influence on the cost: the global energy cost must be minimized.
• The influence on the inhabitants: the dissatisfaction of the inhabitants must be

minimized.
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Jiter =
∑

S∈SL

(
∑

k

CkEk(S, θ(S))+ λ×D(υ(S, θ(S)))

)

+
∑

S∈SD

∑

i

ζi

(
∑

k

CkEk(S, i,Pk)+ λ×D(υ(S), i,Pk)

)
(3)

Those influences can be found in both regular services part and agent services
part. But there is a fundamental difference between these two parts, and it is
symbolized by the sum on the index i in the agent services part. The solver keeps
for each service agents only one profile. For each profile, the solver receives one
consumption plan and an associated dissatisfaction. The sum in the criterion with
binary variables forces to keep only one profile for each agent for the minimization.

Figure 3 shows the complexity of the problem to be solved at each step. Each
service agent provides n profiles, if there are m singular services, then there are nm

different solutions. But the solver has to minimize the criterion to keep one.

Relevance Indicator

The relevance indicator is computed during each solving step to direct the local
solving process of service agents for the next step. After the solving step j , the
relevance indicator is computed with Eq. (4). The purpose of this approach is to

Fig. 3 Solution found by the solver
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share the information about the energy consumption and price between solver and
service agents. The service agents integrate the received information in their local
solving process of the step j+1. This indicator is high when the consumed energy is
important or/and when the energy is expensive. This indicator aims to improve the
current solution. During the first step, the consumption of the agent services is null.

P
j
k =

1+ Emax
k

1+ Emax
k −∑

S∈SL E
j
i (S)

Ck (4)

2.1.3 Role of the Agents

An agent is dedicated to a specific entity whose behavioral model cannot be
conveniently linearized and then taken into account directly by the centralized
solver. In this part, the algorithm used by agents in order to provide energy planning
is explained using an example of a washing machine service agent.

The washing machine service agent has its internal state model. The states are
shown by Fig. 4. They consist of:

• Some behavioral states like heating, prewash, washing, and spin-drying
• Two states representing the beginning and the end of the service
• Some states denoting wait i that represents the waiting time between behavioral

states
• Some states modeling the interruption within each state, denoted interrupted

state

The standard behavior of the washing machine service is given by the state
sequence scenario [start, heating, prewash, washing, spy-drying, end]. The other
states are only visited when the service agent tries to find some neighboring

Start
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Fig. 4 State model of the washing machine service agent
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energetic profiles in order to respond to some criteria sent by the solver that
coordinates the agents to deal with global optimization of energy consumption.

Each visit to an interrupted state has a fixed time period τinterrupted . It is possible
to visit the interrupted state more than once in order to increase the interruption time
in a state. For example, in the state sequence scenario [start, heating, interrupted
heating, heating, interrupted heating, prewash, washing, spy-drying, end], the time
spent in the interrupted heating state is 2 ∗ τinterruption.

A behavioral profile is the state sequence scenario with the date of each state
visit. The behavioral profile is characterized by:

• The starting time of the service
• The number of visits to each interrupted state and the number of visits for each

wait i state
• The date of each visit to interrupted states and wait i states.

These characteristics are denoted in the following parameters of behavioral
profile. It is interesting to note that a behavioral profile is computed in order to
be converted into an energetic profile. The energetic profile consists of the energy
consumed by the service in each period of the anticipative horizon. The energetic
profile is then sent to the solver.

The agent satisfaction is computed according to the energetic profile. The
satisfaction depends on the number of visited interrupted states and also on the
effective ending time regarding its expected value by the occupants. The increase
in the number of interruptions affects the agent satisfaction.

2.1.4 Agent Solving Algorithm

The agent solving algorithm is presented in Fig. 5.
First, the agent receives the relevance indicator. The relevance indicator consists

of information about the penalization and the energy price during the anticipative
horizon. The agent receives also the chosen energetical profile at step j .

The first step in the algorithm is to normalize the values of relevance indicators
(5). The goal of this step is to obtain RIk(normalized) that can be used in the
computation of CAk , the agent coefficient. It is composed of both the information
received from the solver and on the local satisfaction computed by the agent.

RIk(normalized) = RIk/Max(RIk) (5)

where Max(RIk) is the maximum value of relevance indicator associated with
energetic profiles received for the period p.

The second step consists of the computation of the agent coefficient CAk . The
CAk merges the information about the penalization, the energy price, and the agent
dissatisfaction denoted Ik (6).

CAk = RIk + λ ∗ Ik (6)
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Fig. 5 Solving algorithm in the agent

In order to generate an energetic profile, the first step is to compute the behavioral
profile. The parameters of the behavioral profile are listed above. The first one is the
starting time of the service. We begin by finding the best intervals over 6 periods in
the 24 h horizon according to the values CAk . For each interval j we compute Xj

(7).

Xj =
⎛

⎝
∑

k∈[j,j+6]
CAk

⎞

⎠ /6 (7)

The minimum of the list Xj is denoted Xjmin .
Then we try to find the intervals having no significant difference with Xjmin . We

denote Lmin, the list:

Lmin = {k/1− (Xjmin/Xk) < 0.1} (8)

The interval χ with the maximum variance in Lmin is chosen for the optimiza-
tion. The starting time of the service corresponds to the starting time of the chosen
interval χ .

The parameters of the optimization are presented in Fig. 6 where NSi is the
number of interruptions in the state Si. WSi is a value to select the time for
interruption within the state.

A branch and bound optimization is performed on this parameter (Fig. 7)
within the chosen interval χ . Each agent solves the optimization problem with this
function. It represents the minimization of the energetic cost and dissatisfaction
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Fig. 6 Parameters of a profile

Fig. 7 Optimization using branch and bound

from a local point of view. The function to be minimized (9) is similar to the one
presented for the solver.

minθj+1J
k+1 =

∑
Ek(θ

j+1)P
j
kT

j
k + λDi(θ

j+1)) (9)

θj+1 represents the parameters of the user that define the usage conditions. The
function is composed of two parts: the first one is the influence of the energetic cost
and the second one is the influence of the satisfaction of the agent.

The result of this optimization is a list of parameters required to generate the
behavioral profile (parameters of behavioral profile). Then, the energetic profile can
be computed and sent to the solver to be integrated in the global problem solving.
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2.2 Results of the Implementation

The implemented system consists of five components (Fig. 8):

• The classical regular solver used in [9]
• The global solver including regular services and agent services
• The broker agent is a communication component that receives all the local

problems from service agents and constructs one global service agent problem.
This problem is then sent to the global solver. The broker receives also the
relevance indicator from the solver and dispatches the information to service
agents

• The service agents with the capabilities to solve a local problem.

The system is tested by using two service agents and some regular services.
Figure 9 presents simulation results. The first part of the figure presents the
anticipated consumption of an agent in the next 24 h. The second part presents the
anticipated consumption of a regular service. The system delivers also the computed
temperature setpoints for the next 24 h.

The system has been tested in order to identify the relation between the different
parameters. The goal of the presented tests is to improve the solution and to decrease
the execution time of the system. Figure 10 presents the relation between the
criterion values (the criterion is the function to be minimized J [Eq. (3)]) and the
number of iterations. For 30 profiles sent by the agents, the value of the criterion
is not dependent on the number of iterations. In other cases, the value of criterion
has an optimum for 15 iterations. Figure 11 presents the variation of the time of
execution with the number of iterations. The time of execution increases slowly
for 18 profiles around 15 iterations. Figure 12 presents the relation between the

Fig. 8 The components of the mixed solving system
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Fig. 9 Anticipating regular and service agents

Fig. 10 The relation between the criterion values and the number of iterations
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Fig. 11 The variation of the time of execution with the number of iterations

Fig. 12 The number of profiles sent by the solver and the value of the criterion
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Fig. 13 The relation between the number of profiles and the time of execution

number of profiles sent by the solver and the value of the criterion. The value of
optimization criterion is better when the number of profiles is higher. These results
are not related to the number of iterations. Figure 13 presents the relation between
the number of profiles sent by the agents and the time of execution. The time of
execution is higher when the number of profiles sent by the solver is higher. This
is related to the treatment time of the information received needed in the solver and
the agents.

3 Principle of Solving Approach Using Reinforcement
Learning

3.1 Reinforcement Learning

Reinforcement learning (RL) is a subcategory of machine learning that involves
learning by interaction [20]. Two main players exist in this kind of learning: the
agent and the environment. The agent is the learner and decision maker at the same
time. The environment is the thing or system the agent interacts with. It generates
rewards that represent an evaluative feedback for the agent. A reward is a scalar
value that represents the quality of the action taken by the agent at a specific state;
such as +1 for rewarding a good action and −1 for penalizing a bad action.
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Fig. 14 Agent–environment
interaction

The agent learns through trial and error and then a great number of interactions
with the environment is needed to learn the optimal actions. The agent–environment
interaction is illustrated in Fig. 14. At each time step t, the agent observes the state
St that includes a reward Rt then takes an action at . The environment will move
then to a new state St+1, and the agent will receive an evaluative feedback of the
action taken, reward Rt+1. The agent’s goal is to learn the optimal policy π∗ that
maximizes the cumulative or discounted reward at a given state. The optimal policy
specifies the best action to take at a specific state. The discounted reward (return) is
computed as follows:

rt+1 + γ rt+2 + γ 2rt+3 + . . . = E

[ ∞∑

k=0

γ krt+k+1

]
(10)

γ ∈ [0, 1] is called a discount factor.

3.1.1 Markov Decision Process

RL problems are modeled as a Markov decision process (MDP), since the transition
from state (s) to a new state (s′) after executing action (a) depends only on the current
state and not the history of the passed states. A MDP can be described using these
four concepts: States, actions, probabilities, and rewards:

• S represents the state space.
• A represents the action space.
• p(st+1|st ,at ) represents the state transition probability.
• q(st+1|st ,at ) represents the probability governing the reward received when

moving to a new state after an action’s execution.

MDP results an optimal policy that maps between states and actions and
thus guides the agent through time to maximize the reward. Having a complete
knowledge of the environmental model (S, A, p, q), the problem can be solved using
dynamic programming to obtain an optimal policy.

However, the environmental model is not fully observable, especially p and q, and
then the optimal policy cannot be obtained using traditional dynamic programming.
A solution to compute the optimal policy is through estimating the missing model
(model-based RL) or through learning directly the policy (model-free RL).
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3.1.2 Model-Based vs Model-Free RL

RL algorithms are divided into two subcategories: model-based and model-free
algorithms. In model-based algorithms, the agent learns a model of the environment
by observing how the state is changed when an action is taken and thus learning the
state transition function. When a model of the environment is learned, it could be
coupled then with a planning algorithm to obtain the optimal policy such as explicit-
explore and exploit [17].
However, model-free algorithms do not need a model of the environment, and they
learn the policy through trial and error aiming to have an approximation of the
optimal policy. Most of the used RL algorithms belong to the model-free algorithms
such as: Q-learning [17] and SARSA [18]. Model-free algorithms are mainly used
in the literature because they are less computationally expensive and do not require
estimating an environmental model that could be a complex task.

3.1.3 Q-learning

Q-learning is widely used in RL and is a model-free method. Q-learning outputs a
Q-table mapping states to actions, Q = S X A. The policy followed by the agent in
order to take an action is determined by this table. The Q-table is updated at each
step the agent takes an action (a) that generates a reward (r), as follows:

Q(st , at ) = (1− α)Q(st , at )+ α[r + γ max
at

Q(st+1, at )−Q(st , at )] (11)

α ∈ [0, 1] represents the learning rate and γ ∈ [0, 1] is called the discount factor.
The discount factor represents the importance given for future rewards. A discount
factor equals to 0 leads to a greedy agent that considers only immediate rewards
whereas a value equals to 1 leads to an agent that considers a long-term reward. The
discount factor specifies how much the agent should exploit and explore.

3.1.4 Deep Reinforcement Learning (DRL)

Tabular methods such as Q-learning, SARSA, face complexity problems when
dealing with high dimensional state and action spaces. The Q-table for example will
become very large and infinite with continuous state and action spaces. Thus, tabular
methods are not scalable in complex problems. A way to overcome this issue is to
use deep reinforcement learning where a deep neural network is used as a function
approximator to replace for example the Q-table and then approximation the policy.
Deep reinforcement learning has been used widely recently in atari games such as
Alpha GO and in chess game where they have showed outstanding results.
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3.2 Optimizing HVAC Systems Using RL

Reinforcement learning has shown interesting results in robotics and playing video
games. Recently, it has been used in the domain of building energy management,
especially on Heating, Ventilation, and Air Conditioning systems (HVAC) but just
inside simulated environments. In this section, we present the literature review that
has been done so far in this area.

3.2.1 Learning a Simple Thermostat Controller

In [8], the authors first develop a physical model for a room equipped with an HVAC
system. Then, they develop a prediction model that can predict if the room will be
occupied or not. Using the physical model with the occupancy prediction model,
they use reinforcement learning to learn a zone thermostat controller that has four
actions:

• Heaton: turns on heating
• Heatoff turns off heating
• Coolon turns on cooling
• Cooloff turns off cooling

Whereas the state space depends on:

• Tin: room indoor temperature
• tto: time to occupancy using the occupancy model
• Tout : outdoor temperature

Concerning the rewards, they are designed according to certain scenarios. The
rewards are scalar values that represent the quality of the action. Here are some
rewards for some scenarios:

1. (Room.occupied = false) (Action = Heaton) (rt > sp || rt < sp); R = 0
2. (Action = Heatoff ) (rt = sp); R = 1
3. . . .

sp is the setpoint temperature and thus the agent should take optimal actions that
drive the room temperature to this setpoint. The state and action spaces are kept
small so that the problem can be tractable using simple reinforcement learning like
tabular methods. Even though only three state variables are used, the state space
can go very large, for instance the outdoor temperature can have very high range.
Q-learning is used by the authors to learn the thermostat controller that leads to
10% of energy saving over the initial controller. The energy minimization was in
the heating energy because of the limitations of the data used.
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3.2.2 Zone Air Flow Controller

In [22], the authors study a variable-air-volume (VAV) system, which is simulated in
the software EnergyPlus. In VAV system, a building is divided into many zones, and
every zone is equipped with a VAV box which is responsible of regulating the air
flow inside the zone to meet a specific temperature setpoint. The zone temperature
at a specific time step depends only on the previous zone temperature and some
environmental parameters as well as the conditioned air input coming out from the
HVAC system, the VAV box specifically. Therefore, the HVAC control can be treated
as a Markov decision process (MDP) and hence the authors used DRL to control the
VAV box.

Control Actions The building is divided into n zones and every zone has a local
VAV box. The VAV box provides the conditioned air to the zones with a specific
flow rate. The control actions are then related to regulating the air flow rate in every
VAV box and thus having an independent control for every zone. The control action
could be discretized into many values such as F = (f1, f2, f3, f4, . . . , fm). For n
zones then, we will have an action space that has nm possible actions. Obviously,
the action space highly increases with the increase of the number of zone and the
number of actions and taking more time for the agent to converge. As a result, the
authors use a DRL algorithm to regulate the air flow inside every zone.

System States The agent observes the environment first to decide then what
action to take. The environmental or system states are considered to be: zone
temperature, outdoor temperature, equipment power, occupants activities, solar
irradiance intensity, time, and some forecast values of outdoor temperature. By
considering forecast values of outdoor temperature, the DRL agent will have the
ability to take a proactive control since it can learn the weather trend or pattern.

Reward Function The DRL agent aims in this study at regulating the VAV box
airflow of every zone to meet the desired temperature while minimizing the energy
cost. The reward function at time step t is as follows:

rt = − cos t (at−1, st−1)− λ
∑

i

([T i
t − T̄ i

t ]+ + [T i
t − T i

t ]+) (12)

T̄ i
t is the desired upper bound temperature of zone i at time step t, and T i

t

is the desired lower bound temperature. The reward function includes the energy
cost and the temperature violation. λ represents the weight of the temperature
violation. The reward described here is negative. Therefore, the DRL algorithm aims
at maximizing the reward and thus minimizing the energy cost and the temperature
violation by having a good control of VAV box air flow. The results of this study
achieve 19% of energy reduction over the EnergyPlus baseline for an area with five
zones.
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3.2.3 Cooling Optimization of a Simulated Data Center

In [16], the authors use deep reinforcement learning to optimize a simulated data
center in EnergyPlus where the objective is to reduce the power consumption while
maintaining the thermal comfort. The data center consists of two zones (server
rooms). Each zone is equipped with an HVAC system that consists of:

• A mixing box that exchanges air between outdoor and indoor.
• A variable air volume (VAV) fan that takes in the outdoor air at a specific flow

rate.
• Many coils that have a common setpoint temperature to meet and are responsible

for lowering or cooling the temperature so that the zone temperature meets the
zone setpoint.

The optimization of the data center is considered as a deep reinforcement
learning that is composed of three main components: state, action, and space.
State: The state space contains the following:

• Outdoor air temperature in [−20 °C, 50 °C]
• Zone air temperature (zone 1 and zone 2) in [−20 °C, 50 °C]
• Total electric demand power in [0 W, 1 GW]
• Non-HVAC electric demand power in [0 W, 1 GW]
• HVAC electric demand power in [0 W, 1 GW]

Action: The actions considered to optimize are the VAV fan flow rate and the
common coils’ setpoint temperature of each zone.
Reward: The aim of the DRL model is to reduce the power consumption of the
data center while maintaining the thermal comfort. Thus, the reward function should
reflect this goal by penalizing a temperature violation and high power consumption.

rt = −Pt − λ

z∑

i=1

([T i
t − T̄ i

t ]+ + [T i
t − T i

t ]+) (13)

Pt is the total power consumption at time t and z is the number of zones.

The DRL controller shows 22% reduction of total electric demand power. The
work is applied on a simulated data center, and the next step is thus to test the model
on a real system.

3.3 Discussions

In the domain of HVAC systems, reinforcement learning has been used mainly
in simulated environments. The reason behind this is that reinforcement learning
requires a lot of interactions with the environment since it learns through trial and
error. The agent needs to explore the environment in order to learn the optimal
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policy of taking an action at a specific state. Hence, learning the optimal policy
online (in real environment) can be computationally expensive and can lead to
taking very dangerous and bad actions during learning, which result in high energy
consumption and bad comfort. As a result, accurate simulators are needed so that
the RL agent learns offline a good initial policy that can be tuned later and used in a
real system. Another solution would be to use model-based reinforcement learning
where the agent learns at first a model of the environment and thus can learn not
to take critical actions. However, learning environmental models (the physics of the
building: indoor temperature evolution, air quality evolution, power consumption,
. . . ) requires a lot of representative data (yearly dataset) that may not be available.

References

1. S. Abras, S. Ploix, S. Pesty, M. Jacomino, A multi-agent home automation system for power
management, in Informatics in Control, Automation and Robotics III (2006)

2. S. Abras, S. Ploix, S. Pesty, M. Jacomino, A Multi-agent design for a home automation system
dedicated to power management, in IFIP International Federation for Information Processing,
Volume 247, Artificial Intelligence and Innovations 2007: From Theory to Applications, ed. by
C. Boukis, L. Pnevmatikakis, L. Polymenakos (Springer, Boston, 2007), pp. 233–241

3. S. Abras, S. Ploix, S. Pesty, M. Jacomino, A multi-agent design for a home automation system
dedicated to power management, in International Federation for Information Processing
Digital Library: Artificial Intelligence and Innovations 2007: From Theory to Applications
(2007)

4. S. Abras, S. Ploix, S. Pesty, M. Jacomino, An anticipation mechanism for power management
in a smart home using multi-agent systems, in Information and Communication Technologies:
From Theory to Applications, 2008. ICTTA 2008

5. S. Abras, S. Ploix, S. Pesty, M. Jacomino, Advantages of MAS for the resolution of a
power management problem in smart homes, in 8th International Conference on Practical
Applications of Agents and Multi-Agent Systems, PAAMS’2010 (2010)

6. S. Abras, S. Ploix, S. Pesty, M. Jacomino, Advantages of MAS for the resolution of a power
management problem in smart homes, in Advances in Practical Applications of Agents and
Multiagent Systems (2010)

7. S. Abras, S. Ploix, S. Pesty, Managing power in a smart home using multi-agent systems, in
Housing, Housing Costs and Mortgages: Trends, Impact and Prediction (2010)

8. E. Barrett, S. Linder, Autonomous HVAC control, a reinforcement learning approach, in Joint
European Conference on Machine Learning and Knowledge Discovery in Databases (Springer,
Cham, 2015)

9. G. De Oliveira, M. Jacomino, D.L. Ha, S. Ploix, Optimal power control for smart homes, in
18th IFAC World Congress, 2011 (2011)

10. A.M. Elmahaiawy, N. Elfishawy, M.N. El-Dien, Anticipation the consumed electrical power in
smart home using evolutionary algorithms, in MCIT 2010 Conference (2010)

11. S. Ha, H. Jung, Y. Oh, Method to analyze user behavior in home environment. Personal
Ubiquitous Comput. 10, 110–121 (2006)

12. N. Jennings, The ARCHON system and its applications, in 2nd International Conference on
Cooperating Knowledge Based Systems (CKBS-94), Keele (1994), pp. 13–29

13. H. Joumaa, S. Ploix, S. Abras, G. De Oliveira, A MAS integrated into Home Automation
system, for the resolution of power management problem in smart homes, in 1st Conference
and Exhibition Impact of Integrated Clean Energy on the Future of the Mediterranean
Environment (2011)



Distributed and Self-learning Approaches for Energy Management 327

14. J.K. Kok, C.J. Warmer, I.G. Kamphuis, PowerMatcher: multiagent control in the electricity
infrastructure, in Proceedings of the Fourth International Joint Conference on Autonomous
Agents and Multiagent Systems (2005)

15. H.D. Long, J. Hussein, P. Stephane, M. Jacomino, An optimal approach for electrical
management problem in dwellings. Energy Build. 45, 1–340 (2012)

16. T. Moriyama et al., Reinforcement learning testbed for power-consumption optimization, in
Asian Simulation Conference (Springer, Singapore, 2018)

17. S. Ray, P. Tadepalli, Model-based reinforcement learning, in Encyclopedia of Machine
Learning (Springer, Boston, 2010), pp. 690–693

18. G.A. Rummery, M. Niranjan, On-Line Q-Learning Using Connectionist Systems, vol. 37
(University of Cambridge, Cambridge, 1994)

19. O. Sousa, Z. Vale, C. Ramos, J. Neves, Object-oriented agents in power distribution
automation, in 2000 10th Mediterranean Electrotechnical Conference. Information Technology
and Electrotechnology for the Mediterranean Countries. Proceedings. MeleCon 2000 (Cat.
No. 00CH37099) (2000)

20. R.S. Sutton, A.G. Barto, Reinforcement Learning: An Introduction (The MIT Press, Cam-
bridge, 2011)

21. C.J.C.H. Watkins, Learning from Delayed Rewards (1989)
22. T. Wei, Y. Wang, Q. Zhu, Deep reinforcement learning for building HVAC control, in

Proceedings of the 54th Annual Design Automation Conference 2017 (2017)



Model Predictive Control Based on
Stochastic Grey-Box Models

Christian Ankerstjerne Thilker, Rune Grønborg Junker, Peder Bacher,
John Bagterp Jørgensen, and Henrik Madsen

Acronyms

ACF Autocorrelation function
AIC Akaike’s information criterion
AR Autoregressive
CCF Cross-correlation function
CDEKF Continuous–discrete extended Kalman filter
CTSM-R Continuous-time stochastic modelling in R
EKF Extended Kalman filter
EV Electrical vehicle
FF Flexibility function
FI Flexibility index
HMM Hidden Markov model
KF Kalman filter
LRT Likelihood-ratio test
LS Least squares
MLE Maximum likelihood method
MPC Model predictive control
PI Proportional integral
PID Proportional integral derivative

C. A. Thilker (�) · R. G. Junker · P. Bacher · J. B. Jørgensen
Technical University of Denmark, Lyngby, Denmark
e-mail: chant@dtu.dk; rung@dtu.dk; pbac@dtu.dk; jbjo@dtu.dk

H. Madsen
Technical University of Denmark, Lyngby, Denmark

Norwegian University of Science and Technology, Trondheim, Norway
e-mail: hmad@dtu.dk; henrik.madsen@ntnu.no

© Springer Nature Switzerland AG 2021
S. Ploix et al. (eds.), Towards Energy Smart Homes,
https://doi.org/10.1007/978-3-030-76477-7_11

329

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76477-7_11&domain=pdf
mailto:chant@dtu.dk
mailto:rung@dtu.dk
mailto:pbac@dtu.dk
mailto:jbjo@dtu.dk
mailto:hmad@dtu.dk
mailto:henrik.madsen@ntnu.no
https://doi.org/10.1007/978-3-030-76477-7_11


330 C. A. Thilker et al.

PV Photo-voltaic cells
SDE Stochastic differential equation
SOC State of charge
RMS Root mean square

1 Introduction

If the proliferation of renewable energy sources is to be continued, solutions for the
related problems have to be implemented. The problems include, but are not limited
to, mismatch in generation and load, voltage deviation, congestion, and demand
ramps. While historically these problems were manageable through control of the
generation, this will not be an option in the future, as a majority of power generation
will be coming from intermittent renewable energy sources. On the other hand,
recent advances and adoption of digital solutions and smart devices present new
opportunities for smart energy demand [33, 44, 49, 50], by utilising the inherent
energy flexibility [25]. With buildings accounting for around 40% of energy demand
[31], they have been identified as key assets in this context [34]. However, to actually
make buildings smart and unlock the inherent energy flexibility, suitable methods
for controlling them have to be employed. While smart buildings seek to resolve
high-level problems, there remains the dilemma that the buildings themselves are
subject to decentralised and independent control and given over to the controllers
commissioned by the building owners. To deal with this, it has been proposed to
use a two-level control hierarchy [12, 17, 58] in which the upper level consists
of controllers that formulate price signals. The price signals are then sent to the
lower-level controllers that are controlling energy flexible systems such as smart
buildings. The objective of the lower-level controllers is to minimise costs that, if
the price signals are formulated correctly, also solve the grid problems [19, 29].
A generalisation of this hierarchical setup of nested controllers is described as the
smart-energy operating system (SE-OS) in [36, 44, 45].

For smart control of buildings, both one-way and two-way communication setups
are used—often referred to as indirect and direct control, respectively. The simplest
and most resilient setup is achieved by one-way communication where a price signal
is sent to a group of buildings in a certain part of the grid. In the paper [12], it is
shown how consumers, which are sensitive to varying prices, can be used to control
the electricity load using a one-way price signal. Estimation of the price response
is based on data measurable at grid level, removing the need to install sensors and
communication devices between each individual consumer and the price-generating
entity.

A sizeable list of examples of smart control of buildings from EBC’s Annex 67
project can be found in [24] with details on the central control strategies presented in
[56]. The potential of the energy flexibility of buildings was thoroughly investigated
in this project, and it was found that by applying suitable control methods, it was
found that the suitable application of control methods exposed enormous potential
for energy flexibility in buildings. Another important project in regards to this is
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the SmartNet project, which, together with the CITIES project, demonstrated the
potential of automatic energy flexible control for a number of buildings with an
indoor swimming pool [4, 36].

In this chapter, special focus will be put on how to formulate extended and
advanced disturbance models in such a way that short-term forecasts are well
described by them—the most important disturbances to consider for smart control
of buildings are weather-related.

The models will be formulated as stochastic grey-box models. This modelling
framework bridges the gap between physical and statistical modelling that makes it
possible to combine knowledge from physics and statistics in an optimal way. The
grey-box models will be formulated using discretely observed stochastic differential
equations written down as continuous–discrete-time stochastic state-space models.
In statistics, such models are also called continuous state-space Hidden Markov
models.

Grey-box models are typically rather simple models in terms of physics, but they
are formulated with emphasis on the stochastic part of the models. This implies that
we will be able to use rigorous statistical model techniques and that the models
enable for an efficient use of online sensors for control and forecasting. This
modelling framework has been used to describe the thermal dynamics of buildings
[5, 9, 26, 27, 40] and energy systems in many control-oriented projects [16].

First, we will describe the grey-box modelling framework in Sect. 2. Next, we
shall describe some examples of grey-box models for buildings and smart building-
related components in Sect. 4. This includes models for heat pumps, stationary, and
mobile batteries (EVs).

The states of a building, e.g., the indoor air temperature, are heavily influenced
by the weather conditions, and a special focus of this chapter is to establish rather
simple stochastic models for the most important weather variables. In relation
to control, the weather acts as a disturbance, and in order to obtain the best
possible controllers, it is important that the controllers are able to take advantage of
short-term forecasts of the disturbances. Models for the most relevant disturbance
variables for control of buildings are described in Sect. 5.

The theory for model predictive control is outlined in Sect. 6. A special emphasis
is put on how models for predicting the weather variables can be integrated into the
concepts of model predictive control, and this is the topic of Sect. 7.

2 Grey-Box Models

The models in this chapter are based on the grey-box modelling framework. This
framework is typically based on a non-linear model with a partial theoretical
structure and some unknown parts derived from data. Consequently, the grey-box
framework bridges the gap between models based on first principle (white-box
models) and models based solely on data (black-box models) (Fig. 1).
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Fig. 1 Grey-box modelling bridges the gap between white- and black-box modelling

Grey-box models are formulated as a state-space model where the dynamics of
the states is described in continuous time by a set of stochastic differential equations
(SDEs) (system equations). The discrete-time observations are related to the states
by a set of static equations (observation equations). Hence, a grey-box is formulated
as continuous–discrete-time stochastic state-space model in the form

dx(t) = f (x(t),u(t), d(t), t)dt︸ ︷︷ ︸
Drift

+ g(x(t),u(t), d(t), t)dω(t)︸ ︷︷ ︸
Diffusion

, (1)

yk = h(x(tk))+ vk , vk ∼ N(0,Rv) , (2)

where x is the system vector, ω is a standard Wiener process (also often called a
Brownian motion), and f and g are the drift and diffusion functions, respectively.
h is the observation function and vk is the observation noise. The drift function is
the deterministic part of the SDE, whereas the diffusion function describes all the
uncertainties not properly described in the drift.

If the system in (1)–(2) is linear, the model is written as

dx(t) = (Ax(t)+ Bu(t)+ Ed(t)) dt +�dω(t) , (3)

yk = Cx(tk)+ vk , vk ∼ N(0,Rv) , (4)

where A, B, E, C, and � are matrices governing the state evolution, input,
disturbance, observation, and noise, respectively.

Modelling physical systems using SDEs provides a natural method to represent
the phenomenon as it evolves in continuous time. In contrast to discrete-time
models, prior physical knowledge about the system can rather easily be included,
and the estimated parameters do not depend on the sampling time.

There are many reasons for introducing the system noise (the diffusion term):
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• Modelling approximations. For example, the dynamics, as described by the drift
term, might be an approximation to the true system.

• Unrecognised and unmodeled inputs. Some variables that are not considered,
such as wind speed, may affect the system.

• Noise in measurements of input variables. In such cases the measured input
signals are regarded as the actual input to the system, and the deviation from
the true input is described by the noise term.

In the observation equation, a noise term is also introduced. The reason for this
noise term is:

• Noise in measurements of output variables. The sensors that measure the output
signals are affected by noise and drift.

It seems reasonable to assume that the system noise and the measurement noise
are independent.

This chapter focuses on simple grey-box models, describing the heat dynamics of
a building and related components such as a heat pump and batteries (stationary and
mobile). The main purpose is to describe the dynamics of the building and relevant
components. In particular we shall focus on how the heat dynamics are affected by
outdoor climate.

2.1 A Simple Linear Grey-Box Model

Let us consider a simple second-order grey-box model for the thermal dynamics of a
building ([40]). Here, the so-called RC formulation is used and the thermal capacity
is lumped into two states, and each of these states has an associated thermal mass.

[
dTm

dTi

]
=

[ −1
ricm

1
ricm

1
rici

−
(

1
raci

+ 1
rici

)
][

Tm

Ti

]
dt

+
[

0 0 Awp/cm

1/(raci) 1/ci Aw(1− p)/ci

]⎡

⎣
Ta

φh

φs

⎤

⎦ dt +
[
dωm(t)

dωi(t)

]
. (5)

T r (t) =
[

0 1
]
T (t)+ e(t) . (6)

The states of the model are given by the temperature Tm of a large heat
accumulating medium with the heat capacity cm and by the temperature Ti of the
room air and possibly the inner part of the walls with the capacity ci . The term
ri is the resistance against heat transfer between the room air and the large heat
accumulating medium, while ra is the resistance against heat transfer from the room
air to the ambient air with the temperature Ta .
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The input energy is supplied by the electrical heaters φh and the solar radiation
that penetrates through the windows facing south Awφs , where Aw is the effective
window area. The effective window area is the window area corrected for shade
effects and absorption and reflection by the triple glazed windows. Note that only
the indoor air temperature is measured.

This model has been identified in [40]. It is concluded that for the considered
building, this second-order model provides a good description of all the variations
in the data since the residuals are white noise. In that paper, it is described how the
parameters are estimated using a maximum likelihood method, and furthermore,
it was concluded that all the solar radiation is influencing the indoor air since the
assumption p = 0 seems reasonable (the parameter p was not significant).

3 Identification of Grey-Box Models

Formulating suitable grey-box models is an iterative process in which physical
considerations are combined with information obtained by statistical observations.
The typical starting point is to formulate the mathematical equations governing the
most important physical dynamics. These equations are then used as the initial
model. Next, the parameters of the model are estimated, and finally, the model is
used to generate residuals. These residuals are key to the model validation step, and
if it is concluded that the residuals still show systematic behaviour, then the residuals
are analysed in order to identify how the model can be improved and extended.

3.1 Initial Model Structure Identification

Typically, the initial model order, i.e., the number of state equations, and the
dominating structure of the model are determined by physics. However, also
statistical methods are useful. For instance, it is well known that the autocorrelation
and partial autocorrelation function contain important information about the order
of (linear) models. The following step-by-step guide summarises the procedure of
formulating grey-box models:

1. Make a drawing of the physical system that includes the various methods for heat
transfer (conductive, convective, and radiation).

2. Write down the mass and energy balance equations for the system.
3. Determine the causality of the system. Which time series data can be considered

as input and which as output? For instance, for a building with feedback or
controlled internal air temperature, the output could be the heat consumption,
whereas for a building with no feedback, e.g., when the heating signal is
determined by a PRBS signal, the internal air temperature could be the output.
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4. Evaluate if any non-linear phenomena must be taken into account explicitly
in the initial phase (later on statistical methods can be used for identifying
non-linear phenomena). Such phenomena could be significantly influenced by
wind speed, complicated glass construction, humidity, influence from rainfall,
etc. Some non-linear effects can be described by a transformation of the input
variables. In [54] the non-linear effect of solar radiation is described in a grey-
box model using spline basis functions.

5. Evaluate if any non-stationary phenomena must be taken into account explicitly
in the initial phase (later on statistical methods can be used for identifying non-
stationary phenomena). Examples of such phenomena could be the fermentation
of a new concrete building, moisture in the construction, opening of windows and
doors, etc. For control applications, slowly varying non-stationary phenomena
can be handled by considering adaptive and recursive methods [1, 38].

3.2 Estimation of Model Parameters

Typically, the model parameters are estimated either using the least squares method
(LS) or the maximum likelihood estimation (MLE) method. The advantage of the
MLE method is that this method also allows for estimating the parameters related
to the noise term. Here, we briefly introduce the MLE method for estimating
parameters in grey-box models. The method is described in detail in [30].

Given a sequence of measurements YN = {Y 1,Y 2, · · · ,YN }, the likelihood
function is the joint probability density of all the observations but considered as a
function of the unknown parameters. Thus, the likelihood function can be written as
the product of the one-step ahead conditional densities:

L(θ |YN,UN) =
N∏

k=1

p(Y k|θ,Yk−1,Uk)p(X0|θ) , (7)

where p(Y k|θ,Yk−1,Uk) is the probability of observing Y k given the previous
observations, inputs, and set of parameters θ . This is the so-called exact likelihood
function that contains a parameterisation of the density associated with the initial
state X0.

Since the systems are assumed to be driven by Wiener processes for which
the increments are Gaussian, the one-step ahead density for linear systems is also
Gaussian. For most non-linear systems, this is still a reasonable assumption, and this
assumption can be checked—see, e.g., [6].

In the Gaussian case, the conditional density is completely characterised by the
conditional mean (the prediction) and the conditional covariance. By introducing
the one-step prediction error (also called the innovation error or residuals)

εk|k−1 = Y k − Ŷ k|k−1 , (8)
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and the associated covariance, Rk|k−1 = Var(Y k|Yk−1, θ), the likelihood function
can be written as

L(θ;YN,UN) = p(YN |UN, θ) (9)

=

⎛

⎜⎜⎝
N∏

k=1

exp
(
− 1

2ε�k|k−1R
−1
k|k−1εk|k−1

)

√
det

(
Rk|k−1

) (√
2π

)L

⎞

⎟⎟⎠p(X0|θ) , (10)

where L is the dimension of the observation space. Using the logarithm, we obtain
the log-likelihood function

l(θ;YN,UN) = −1

2

N∑

k=1

(
ε�k|k−1R

−1
k|k−1εk|k−1 + log

(
det

(
Rk|k−1

)
(2π)

L
2

))

+ log(p(X0|θ)).

The parameter estimates are found by maximising the log-likelihood function

θ̂ = arg max
θ

{
l(θ;YN,UN)

}
. (11)

The corresponding value of the log-likelihood is the observed maximum likelihood
value given the available data set.

For linear models, the conditional mean and covariance are calculated using an
ordinary Kalman filter, while for non-linear models, an extended Kalman filter is
used. See [30] for further details.

3.3 Uncertainty of Parameter Estimates

Uncertainty of parameter estimates is an essential output of any statistical parameter
estimation scheme. This uncertainty lies in the facilitation of subsequent statistical
tests. For the software implementation used here [28, 39], an estimate of the
uncertainty of the parameter estimates is obtained by using the fact that by the
central limit theorem the ML estimator is asymptotically Gaussian with mean θ

and covariance:

�
θ̂
= H−1, (12)

where the matrix H is given by

hij = −E
{

∂2

∂θi∂θj
(l(θ |YN))

}
,i, j = 1, . . . , p .
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An approximation to H can be obtained from

hij ≈ −
(

∂2

∂θi∂θj
(l(θ |YN))

)∣∣∣
θ=θ̂ ,i, j = 1, . . . , p ,

which is simply the Hessian evaluated at the maximum of the log-likelihood
function. To obtain a measure of the uncertainty of the individual parameter
estimates, the covariance matrix is decomposed as

�
θ̂
= σ

θ̂
Rσ

θ̂
, (13)

into σ
θ̂
, which is a diagonal matrix of the standard deviations of the parameter

estimates, and R, which is the corresponding correlation matrix.

3.4 Selection of Model Structure

Basically, the two main categories of problems related to the order of the model are:

1. Model too simple: A common problem is that the residuals for a given model
are autocorrelated. In this case the model needs to be extended (for grey-box
models, more states are needed). Another common problem is that the residuals
are cross-correlated with some explanatory variables (e.g., large residuals for
large wind speeds). In this case, this (or these) explanatory variable needs to be
included in the model.

2. Model too large: A common problem is that some of the parameters are
insignificant. In order to ensure a reliable estimation of the performance, the
amount of parameters must be reduced by removing insignificant parameters.

3.5 Model Validation

If the residuals from a given modelling step show systematic variation, then the
model is too simple and it can be improved. Consequently, model validation is a
very important step in model building.

The following methodologies can be used in relation for model validation:

1. Test for white noise residuals.
Typically, the autocorrelation function (ACF) of the residuals is used here. If a
test for white noise residuals fails, then the model must be extended by extending
the model order, which for grey-box models is the number of states.

2. Test for dependency with inputs.
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Plot residuals against the inputs to see if any dependency exists. The cross-
correlation function (CCF) (see [38, p. 230]) can be used to identify linear
dependencies that have to be added to the model.

3. Test for parameter significance.
See the next section on model validation. Here, it is mentioned that if a parameter
is found to be insignificant, then in general this parameter should be removed
from the model and the parameters of the reduced model are estimated.

4. Check for correlation between parameters.
Most software for parameter estimation provides a correlation matrix of the
estimated parameters. A numerically very high (say larger than .98) correlation
between two parameter estimates indicates that one of these two parameters
should be either excluded from the model or fixed to some physically assumed
values.

3.6 Comparison of Models

1. Test between (nested) models.
If two models are nested, i.e., the smaller model (B) can be found just by

removing parts of a larger model (A), then the likelihood-ratio test (LRT) is very
useful. The LRT value is given as D = 2(logL(A)− logL(B)), where logL(A)
is the logarithm of the likelihood function for model A. For grey-box modelling,
the asymptotic test principles based on Wilks’ Theorem are used. Given that
the model can be reduced to model B, the quantity D is according to Wilks’
Theorem asymptotically χ2(k−m) distributed, where k and m are the number of
parameters in models A and B, respectively. For large values of D, it is concluded
that the best model is the larger model. See, e.g., [42] for further details.

In CTSM-R, the value logL is found using summary().
2. Comparison between (non-nested) models. If two models are non-nested, then

methods based on information criteria can be used—see page 174 in [38]. This
consists of computing an information criterion, such as the AIC or BIC:

AIC = 2k − 2 logL(A), BIC = 2 log(N)− 2 logL(A) .

The preferred model is then simply found as the model with the lowest infor-
mation criteria. Alternatively, and preferably, when a lot of data are available,
cross-validation can be used [8]. In its simplest form, this procedure can be
summarised as:

a. Split data into two parts,YTrain andYValidate. A typical split is 80% forYTrain
and 20% for YValidate.

b. Estimate model parameters using only the data contained inYTrain. With these
model parameters, compute the one-step residuals for YValidate.
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c. Using these residuals, evaluate either the likelihood function (9) or the sum of
squared residuals (RMS).

d. The model with the highest likelihood or lowest RMS is preferred.

4 Smart Building-Related Models

This section presents multiple models for a building where the model of the building
itself is the same, but the heating system models and control strategies are different.
The first model uses conventional electrical heaters (radiators) to supply heat to the
room air. The second model uses a heat pump: a compressor heats water, which then
flows into pipes based under the floor. This ground-sourced heating is very efficient
electricity-wise due to the compressor and is thus an attractive solution for heating.

The models are formulated using stochastic differential equations (SDEs), and
the stochastic model for the building is closely related to the simple model
introduced in Sect. 2.1.

4.1 The Heat Pump Model

Halvgaard et al. [20] describe a model for a building with a heat pump that is reused
in this chapter. The model includes the same two important states as the model in
Sect. 2.1: the room air temperature and the floor medium temperature. Additionally,
it includes the temperature of the water connected to the heat pump. That makes the
system states x(t) = [

Tr(t), Tf (t), Tw(t)
]T . Table 1 lists and describes all variables

in the model, and Fig. 2 shows an illustration of the smart building model and the
directions of the heat dynamics.

Regarding the disturbances of the model, two elements are of high importance:
the solar radiation and ambient air temperature. The solar radiation generally plays a
double role regarding the heating of buildings: it directly enters a building through,
e.g., windows, but it also highly influences the ambient air temperature, which in

Table 1 Description of the variables in the heat pump model

Variable Unit Description

Tr
◦C The room air temperature

Tf
◦C The temperature of the floor medium

Tw
◦C The temperature of the water in the compressor and pipes

Ta
◦C The ambient air temperature

Wc W The energy delivered to the compressor of the heat pump

φs W/m2 The solar radiation entering the building
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Fig. 2 An illustration of the
smart house model. Each
state has an associated heat
capacity and temperature. The
arrows indicate the positive
direction of energy flow

Heat pump

Condenser tank

turn affects the building. Later sections will describe and model these dynamics and
cross-correlations.

Based on Fig. 2, the equations below describe the overall building dynamics

CrdTr(t) =
(
Qfr(t)−Qra(t)+ Awpφs(t)

)
dt + σrdωr(t) ,

Cf dTf (t) =
(
Qwf (t)−Qfr(t)+ Aw(1− p)φs(t)

)
dt + σf dωf (t) ,

CwdTw(t) =
(
ηWc(t)−Qwf (t)

)
dt + σwdωw(t) ,

(14)

where Cr , Cf , and Cw are heat capacities for the room air, floor, and water,
respectively. ωr , ωr , and ωw are Wiener processes for each state, and σr , σf , and
σw are noise constants. The heat flows are given by

Qra(t) = r−1
ra (Tr(t)− Ta(t)) ,

Qf r(t) = r−1
f r

(
Tf (t)− Tr(t)

)
,

Qwf (t) = r−1
wf

(
Tw(t)− Tf (t)

)
.

(15)

We can write the set of SDEs in linear form as in (3)

A =
⎡

⎢⎣
− 1

rf rCr
− 1

rraCr

1
rf rCr

0
1

rf rCf
− 1

rwf Cf
− 1

rf rCf

1
rwf Cf

0 1
rwf Cw

− 1
rwf Cw

⎤

⎥⎦ , B =
⎡

⎢⎣
0
0
η
Cw

⎤

⎥⎦ ,

E =
⎡

⎢⎣

1
rraCr

Aw
(1−p)
Cr

0 Aw
p
Cf

0 0

⎤

⎥⎦ , C = [
1 0 0

]
,

(16)
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with the variables x(t) = [
Tr(t), Tf (t), Tw(t)

]T , u(t) = Wc(t), d(t) =
[Ta(t), φs(t)]T . Table 2 lists and briefly describes all the parameters in the model.

4.2 The Electrical Heater Model

The model using electrical heaters is almost identical to the one introduced in
Sect. 2.1, with the exception of p, which is significant. Otherwise the parameters for
this model are the same as used for the heat pump model. By separating the input
and disturbance variables in the previous introduced model, we obtain the following
linear second-order system:

A =
[− 1

rf rCr
− 1

rraCr

1
rf rCr

1
rf rCf

− 1
rf rCf

]
, B =

[
1
Cw

0

]
,

E =
[

1
rraCr

Aw
(1−p)
Cr

0 Aw
p
Cf

]
, C = [

1 0
]
,

(17)

with the variable x(t) = [
Tr(t), Tf (t)

]T , u(t) = Wc(t), d(t) = [Ta(t), φs(t)]T .

4.3 Buildings with Stationary Batteries and Electrical Vehicles

In the very near future, electrical vehicles (EVs) will be in almost every household,
and it is believed by many that future smart buildings will include stationary

Table 2 The values used in the model for a single smart home in (14) and (17)

Parameter Value Unit Description
Cr 810 kJ/◦C Heat capacity constant for the room air
Cf 3315 kJ/◦C Heat capacity constant for the floor
Cw 836 kJ/◦C Heat capacity constant of the water in the pipes
rra 0.036 kJ/(◦C h) Resistance against heat transfer between the room air and

the ambient air
rf r 0.0016 kJ/(◦C h) Resistance against heat transfer between the floor and the

room air
rwf 0.036 kJ/(◦C h) Resistance against heat transfer between the water and the

floor

p 0.1 The fraction of energy from the solar energy into the room
air

η 3 The heat pump coefficient of performance

Aw 2.9 The effective window area
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batteries [21, 57, 63]. The latter has the purpose of storing electricity harvested from
photo-voltaic cells (PVs) and to buy and sell electricity from the market when the
price is low and high, respectively. Adding a stationary battery and potentially an EV
also greatly increases the flexibility of a building. We follow the modelling approach
as in [63]. For more extended state-space models for batteries, see [7, 62]. We shall
not, however, use or demonstrate these models in this chapter.

The fundamental differential equation governing the state of charge (SOC) of an
(very simplified) integrating battery has the form

γ̇ (t) = V (t)

Q
i(t) , (18)

where γ ∈ [0, 1] is the SOC (0 is discharged, while 1 is fully charged), V is the
voltage, Q is the total battery capacity, and i is the current. We can rewrite this as
the power flowing in and out of the battery

γ̇ (t) = 1

Q

(
η+P+(t)− η−P−(t)

)
, (19)

where P+ and P− are the power flow in and out of the battery and η+ and η− are
the respective efficiency constants. The corresponding SDE formulation is

dγ (t) = (
η+P+(t)− η−P−(t)

)
dt + σγ dω(t) . (20)

If the smart building is equipped with both a stationary battery and an EV, then we
need a description of both

dγev(t) =
(
η+evP+ev(t)− η−evP−ev(t)

)
dt + σevdωev(t) , (21a)

dγbat (t) =
(
η+batP

+
bat (t)− η−batP

−
bat (t)

)
dt + σbatdωbat (t) , (21b)

where γev and γbat are the EV and stationary battery SOC, respectively. P+bat and
P−bat are the bought and sold electricity from the market, and P+ev and P−ev are
charging and discharging the EV battery, respectively.

The two batteries thus add two additional states to the smart building state-
space model. To write the model in state-space form requires some assumptions.
First, we assign the EV usage as a disturbance variable, dev(t) = P−d,ev(t).
Second, we assume that all the electricity generated by PVs and bought from
the market go directly to the stationary battery. The solar radiation is thus also
a disturbance, dbat (t) = φs(t). The input variable for the battery is ubat (t) =[
P+bat (t), P

−
bat (t),Wc(t), P

+
ev(t)

]T
. Writing the state-space formulation for the

entire smart building including batteries, the state-space variables become x(t) =[
Tr(t), Tf (t), Tw(t), γev(t), γbat (t)

]T , u(t) = [
P+bat (t), P

−
bat (t),Wc(t), P

+
ev(t)

]T
,

and d(t) = [
Ta(t), φs(t), P

−
ev(t), φs(t)

]T . Similarly, the continuous-time linear
system likewise is
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A =
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, (22a)

B =

⎡
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η
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⎤

⎦ , (22b)

E =

⎡

⎢⎢⎢⎢⎢⎢⎣

1
rraCr

(1−p)
Cr

0 0

0 p
Cf

0 0

0 0 0 0
0 0 − ηev

Qev
0

0 0 0 ηbat
Qbat

ηpvnpv

⎤
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. (22c)

5 Disturbance Modelling

In this section, we shall use the well-documented meteorological data presented in
[3] as the foundation for the grey-box models for the disturbances. Table 3 lists and
describes each attribute of the data, which is collected from two weather stations in
Værløse and Taastrup in Denmark. Samples are taken hourly from January 1, 1967
to December 31, 1973. The cloud cover is measured on the so-called okta scale.
An okta is an integer in the range from 0 to 9, where 0 is completely clear skies,
gradually gets more cloudy up till 8 that is fully overcast. Okta 9 is the class of
non-observable cloud cover conditions, e.g., in foggy weather or heavy snow fall.
We thus denote the okta state space by

C = {0, 1, . . . , 8, 9} . (23)

Table 3 Facts about the data and they are measured

Attribute Notation Unit Measurement method

Cloud cover {c′, c, κ, Zκ } okta Measured once every hour

Diffuse radiation ID W/m2 The average of 6 observations within an hour

Direct radiation IN W/m2 The average of 6 observations within an hour

Net radiation Rn W/m2 The average of 6 observations within an hour

Ambient air temperature Ta
◦C The average of 6 observations within an hour
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5.1 Cloud Cover

The type, height, and amount of cloud cover have enormous influence on energy
levels and balances of the lower atmosphere, i.e., the local weather close to Earth’s
surface. The variations of the solar radiation are mainly due to the absorption of
energy by the molecules of the clouds. For example, in case of a heavy cloud cover,
much less solar radiation gets through the atmosphere down to the surface. In a
control context of a smart building that has PVs and is able to harvest energy from
the sun, it is crucial to know the amount of solar radiation available. The cloud cover
is undoubtedly the single most important factor in this case. The cloud cover also
has a big impact on the air temperature in the lower atmospheric layers. When the
rays from the sun hit the Earth’s surface, a certain fraction gets absorbed and heats
up the soil that, in turn, heats up the air. A good model for the cloud cover is thus a
crucial element of a disturbance model for describing the local weather.

5.1.1 Discrete State-Space Cloud Cover Model

Figure 3 shows a plot of the cloud cover data from March. The overall dynamics
seems fluctuating and is to some extend random. However, the cloud cover seems
to spend more time and be more stable at both the ends of the scale (around okta 0
and 8).

Due to the discrete measure of the cloud cover, it is tempting to opt for a discrete
state-space model to describe the cloud cover. An example of this is a continuous-
time Markov model, see, e.g., [53]. The literature does describe successful models
of this kind using both homogeneous and in-homogeneous models to describe the
diurnal behavioural variation of the cloud cover in Denmark [41, 43]. The results
confirm that the cloud cover is more stable in the clear sky and overcast states, with
greater fluctuation in the middle states.

This model very well describes the probabilistic dynamics of the cloud cover. It
also supplies estimates of the future expected value through the Kolmogorov forward
equations. But the rest of the disturbance models will be formulated as continuous
state-space models and rely on SDEs. Therefore, in a combined disturbance model
for the smart building and in an MPC framework, a SDE describing the cloud cover

Fig. 3 A sample visualisation of the cloud cover data in March
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becomes more convenient. For this reason, we shall now formulate, estimate, and
validate a SDE-based model for the cloud cover.

5.1.2 Continuous State-Space Model Based on Stochastic Differential
Equations

Recall the typical form of SDEs, explained in Sect. 4

x(t) = f (x(t), t)dt + g(x(t), t)dω(t) . (24)

The analysis from the results of the Markov models in, e.g., [43] show that the cloud
cover is governed by very special dynamics. It turns out that the process is less likely
to move when it is in the end points (okta 0 and 8) and more likely for middle oktas.
Formulating a SDE with these dynamics is not a trivial process. A first observation
is that the cloud cover state space has boundaries. It is thus important to ensure that
the SDE does not allow the process to go outside the boundaries. Let K = [0, 1] be
the set of real numbers from 0 to 1, and let κ ∈ K denote the cloud cover state on
some normalised scale. Starting with the diffusion, g, a very appropriate function
can be

g(κ(t), t) = σκκ(t) (1− κ(t)) , (25)

where σκ is a constant (Fig. 4). This choice ensures that the diffusion goes to zero
in both ends of the okta scale and is also largest in the middle—which is desirable
in order to make the process stay at either end longer time while ensuring that the
middle states are more transient. In the grey-box modelling framework, we should
assume some structure on the drift function, but it can be useful to also use some
flexible functions such as the Legendre polynomials to allow the data to freely form
them to easily maximise the likelihood function. The work in this chapter uses the
following mean reverting process:

dκ(t) = θ (κ(t)) (μ(κ(t))− κ(t)) dt + σκκ(t)(1− κ(t))dω(t) , (26)

where μ is the mean value and θ is the reversion speed. This SDE has a state-
dependent diffusion term that has some nice modelling features, but it also has some
pretty significant disadvantages from an estimation and simulation standpoint. The
next part will detail these disadvantages.

5.1.3 Transformation into a State-Independent Diffusion Process

State-dependent diffusion terms in SDEs give rise to problems in estimation and
simulation [46]. Two of the more influential problems are:
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Fig. 4 The diffusion function
in (25) with σκ = 1

• Simulation from a SDE with state-dependent diffusion can have slower conver-
gence rate and then require more computational power.

• Predictions using methods like the extended Kalman filter (EKF) can be wrong
and even illegal if they go outside of the bounds of the domain due to the
linearisation.

A popular solution to this problem in the literature is to use the so-called Lamperti
transformation [48].

The Lamperti transformation heavily relies on the result from stochastic calculus
called Ito’s lemma. Informally speaking, Ito’s lemma corresponds to the chain rule
for stochastic calculus: given a process, X, and a function, ψ(X), Ito’s lemma states
the derivative of the function as a stochastic process Z = ψ(X). That way, we can
alternatively view the lemma as the equivalence of two processes, X and Z, by a
closed formula using a transformation ψ . Consider a strictly positive process: by
taking the natural logarithm of the process, we create a new process that lives on the
entire real line. To obtain the differential equation governing this process, usually
we would use the chain rule. But for a stochastic process, we need Ito’s lemma. The
special case where we choose a function that results in a constant diffusion term, we
call the Lamperti transformation. Let us start by stating Ito’s very famous lemma
[22] (using some simplifying notation).

Lemma 1 (Ito’s Lemma) Let X be an Ito’s process in the form

dX = f (X, t)dt + g(X, t)dω.

Let the function ψ(X, t) ∈ C2(R× [0,∞)), and then the process

Z = ψ(X, t)

is an Ito’s process. Furthermore, Z is governed by the process

dZ=
(
∂ψ

∂t
(X, t)+f (X, t) ∂ψ

∂X
(X, t)+ 1

2

∂2ψ

∂X2
(X, t)g(X, t)2

)
dt+ ∂ψ

∂X
(X, t)g(X, t)dω.
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By choosing ∂ψ/∂X(X, t) to be equal to 1/g(X, t), the diffusion term becomes
exactly a unit for the Ito-transformed process, Z. The following theorem states this
result [22, 46].

Theorem 1 (Lamperti Transformation) Let X be an Ito’s process as in Lemma 1.
Define the function

ψ(X, t) =
∫

1

g(x, t)
dx

∣∣∣∣
x=X

. Ifψ(X, t) is bijective onto R, then Z has a unit diffusion term and has the following
process:

dZ =
(
∂ψ

∂t
(ψ−1(Z, t), t)+ f (ψ−1(Z, t), t)

g(ψ−1(Z, t), t)
− 1

2

∂g

∂X
(ψ−1(Z, t), t)

)
dt + dω.

Applying the Lamperti transformation on the specific SDE in (26) (except for
leaving a constant on the diffusion term), the Lamperti-transformed process, Zκ =
ψ(κ, t), is

Zκ = ψ(κ, t) =
∫

1

x(1− x)
dx

∣∣∣∣
x=κ

= log(κ)− log(1− κ) = log

(
κ

1− κ

)
.

(27)

For κ ∈ K , the process Zκ is in all of the real numbers, R. The inverse of ψ is

κ = ψ−1(Zκ, t) = exp(Zκ)

1+ exp(Zκ)
. (28)

Using Theorem 1, the state-independent Lamperti-transformed process becomes

dZκ =
(

0+ f (κ, t)

κ(1− κ)
+ κ − 1

2

)
dt + σψdω

=
⎛

⎝
f
(

exp(Zκ )
exp(Zκ )+1 , t

)

exp(Zκ )
exp(Zκ )+1

(
1− exp(Zκ )

exp(Zκ )+1

) + exp(Zκ)

exp(Zκ)+ 1
− 1

2

⎞

⎠ dt + σψdω

dZκ = fψ(Zκ)dt + σψdω .

(29)

To get an intuition of how the Lamperti transformation works, Fig. 5 shows an
example of a SDE with simple linear drift while having the diffuse function as in
(25), together with the Lamperti-transformed drift. For the Lamperti-transformed
process, the drift will make sure that it always stays around 0 and does not go
towards ±∞. But the most interesting feature of the Lamperti drift is perhaps that
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Fig. 5 A simple linear drift function (left) and its Lamperti-transformed equivalent (right) from
the process dX = 0.1 · (0.5−X)dt +X(1−X)dω

there is a stable stationary point at Zk = 0 driving the process towards zero. The
explanation should be found in the shape of the diffusion function that is largest
in the middle and goes to zero in the ends. Around Zk = 0, the diffusion is the
dominating force and has zero mean—i.e., is expected to keep the process around
zero due to the zero mean (at least expectation-wise). The variance, however, will
make sure to drive the process away from zero. But when the process gets too far
out, the drift will dominate again and force it towards zero.

Due to the advantages of dealing with a state-independent SDE, all estimation,
simulation, and prediction happen in the Lamperti domain in (29) and are subse-
quently transformed back to the original cloud cover domain by ψ−1. We now turn
to estimate parameters in (26).

5.1.4 Estimation of Parameters Embedded in the SDE

As previously mentioned, we need to base the choice on the drift function of the
SDE on physical properties of the process we attempt to model. We choose to use
the following SDE:

dκ = θ
√
κ(1− κ)

(
exp(P7(κ))

1+ exp(P7(κ))
− κ

)
dt + σκ(1− κ)dω , (30)

where P7(κ) is a linear combination of the first seven Legendre polynomials. The
model in (30) has a very complex mean value. The intuition is that it allows the mean
value to move rather freely in the range from 0 to 1, depending on the cloud cover
state. The reverting-speed term

√
κ(1− κ) may seem like an over-complication in

the model. But previous cloud cover modelling attempts suggest that the process
spends more time in the ends of the okta scale. The term

√
κ(1− κ) makes the drift

smaller at the ends of the scale and therefore intuitively makes the process stay there
for longer before reverting back to the middle.
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Before we are able to estimate parameters in the SDE in (26), we require a
transformation of the data, ζ : C → K , due to the diffusion term (since it requires
the process to be in the interval K = [0, 1]). First, we let okta 9 be missing
observations in the data, such that the observable okta state space (and the state
space we should model) is {0, 1, . . . , 8}. Choosing a good transformation is not
straightforward. We cannot simply divide the okta state space by 8. Doing so implies
that okta 0 in C corresponds to 0 in K and likewise okta 8 corresponds to 1 in K .
But the drift and diffusion of the SDE equal zero for κ = 0 and κ = 1 and the SDE
gets stuck. Furthermore, the Lamperti transformation is not well defined for these
values.

In the discrete okta state space, C, the distance between each pair of neighbouring
states is the same. However, in the continuous state space K , this is definitely not
given. In fact, the definition of the oktas [3] indicates that the end points of okta
pairs {0, 1}, {7, 8} ∈ C are more alike compared to the rest of oktas. Thus by moving
the end points of the okta scale closer together as in Fig. 6 before dividing by 8, we
might obtain a good transformation that behaves well. We thus choose the following
transformation for the cloud cover to get it into K :

κ = ζ(c) = c/8 , c ∈ C , κ ∈ K , (31)

where the oktas 0 and 8 have been perturbed according to Fig. 6. But how much
should we move the end points as to get the best model? To answer this question,
we use Akaike’s information criterion (AIC) as a measure to compare estimated
models. We perform a small grid search for the positions of oktas 0 and 8 around
the points 0.5 and 7.5 and choose the model that performs best in terms of the AIC
value.

To estimate the parameters in the SDE, we apply ML estimation using the
continuous–discrete extended Kalman filter (CDEKF), see, e.g., [10, 23]. We use
the CDEKF to predict from the SDE. Let θ denote the set of parameters in the
model. Given θ , we use the CDEKF to calculate the 1-step prediction and variance
of the state, κ̂k|k−1(θ) and Rk|k−1(θ). Let εk(θ) = κ̂k|k−1(θ)− κk be the prediction
error of the state using θ , and then the ML estimate is given by (9).

Table 4 shows the result of the grid search and suggests that the perturbation
(okta0, okta8) = (0.6, 7.4) is by far the best choice in terms of AIC—not
surprisingly, since we expected the end points to behave more like their neighbours.

Figure 7 shows histograms of the long-term distributions of the data and model 3
using the state transformation in Fig. 6 with the values (okta0, okta8) = (0.6, 7.4).

1 2 3
8

74 65
0

Okta

Fig. 6 An improved cloud cover transformation, ζ . Due to oktas 0 and 1, and okta 7 and 8,
supposedly being more alike compared to the other oktas, we propose the following transformation
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Table 4 The AIC value for
each combination of end
points in the grid search using
the model in (30)

Okta 0
Okta 8 7.40 7.45 7.50 7.55

0.50 21079 21432 22436 22557
0.55 21330 21591 21680 26515
0.60 20442 22817 23294 24994

Fig. 7 The long-term distribution of the data (left) and model 3 (right) using the improved state
transformation in (31) with oktas 0 and 8 moved to 0.6 and 7.4, respectively

Fig. 8 The autocorrelation
function of the 1-step
prediction residuals of model
using the okta transformation
as in (31)

Table 5 Parameter estimates for the model in (30) with the locations of oktas 0 and 8 moved to
0.60 and 7.40. p̂i , i = 1, . . . 7, is the parameter for the ith Legendre polynomial

Parameter p̂1 p̂2 p̂3 p̂4 p̂5 p̂6 p̂7 θ̂ σ̂

Estimate –53.1 14.6 –42.3 8.8 –58.1 –30.3 –45.7 0.187 0.835

Std. Err. 2.13 0.831 1.715 0.434 2.273 1.329 1.873 0.003 0.012

Even though the distributions are not identical, the model mimics the overall pattern
very well. The autocorrelation function in Fig. 8 is also close to zero as desired.

Table 5 shows the parameter estimates for the model. It can be hard to interpret
the model by simply looking at the parameters since the Legendre polynomial
parameters do not make much sense by themselves. Instead, we show the drift and
Lamperti drift functions of the cloud cover state in Fig. 9 to give an intuition of
the model. It truly has a very non-trivial and complex shape. It is partly the mean
value function, exp(P7(κ))/ (1+ exp(P7(κ))), and the reverting-speed function,
θ
√
κ(1− κ), that makes this possible. The former allows the drift function to make
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Fig. 9 Left: The drift function of model 3 in (30) using the state transformation in (31). Right:
The same drift function, but in the Lamperti domain. The dashed line simply indicates the zero line

sudden changes from positive to negative and vice versa (which happens around
κ = 0.6 and κ = 0.9). The ladder makes sure that the drift goes to zero in both ends
and gives it the overall bending shape. The very sharp bend seen in the drift around
κ = 0.9 surely seems odd and out of place. But it has a crucial role in the long-term
distribution. It creates a stable stationary point for the process and therefore makes
the process stay in the overcast states for more time. This is especially visible in
the long-term distribution by the larger density in the overcast state compared to the
clear skies states.

The Lamperti drift is harder to interpret, as it lives in the logistic domain. But it
illustrates how the Lamperti process behaves and how the state dependence affects
it.

5.2 Solar Radiation

Now that we have established a model describing the cloud cover dynamics based
on SDEs, we move on to describe the next component of an advanced disturbance
model: the solar radiation. It is responsible for some of the fast heating dynamics
influencing the indoor air temperature and is thus an important disturbance.

5.2.1 Modification of the Cloud Cover Data

The data introduced in Sect. 5.1 are averages of multiple observations within an
hour, except for the cloud cover. The cloud cover value taken at time tk is thus not
representative for the cloud cover in the interval [tk, tk+1]. To obtain better estimates
for such cloud cover values, we use the average of the cloud cover at time tk and
tk+1

ck+1 = (c′k+1 + c′k)/2 , (32)
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where c′k is the raw cloud cover data. The corrected cloud cover values live in the
state space ck ∈ {0, 0.5, 1, . . . , 8.5, 9}. We use these values for the cloud cover
throughout this section.

5.2.2 Solar Radiation Components and Modelling Approach

The term global solar radiation covers all the short-wave radiation at the surface of
the Earth. These are high-energy rays that transfer large amounts of energy that turns
into heat when absorbed by objects or electricity by the PVs. Previous modelling
attempts range from simple polynomial fits to complex black-box neural networks,
see, e.g., [15, 59, 60, 65]. The global solar radiation consists of two components:
diffuse and direct radiation. The direct radiation is all short-wave radiation travelling
undisturbed to the Earth’s surface. The diffuse radiation is all short-wave radiation
that is reflected from molecules in the atmosphere. The fundamental relationship is

φs(t) = IN(t) sin(α(t))+ ID(t) , (33)

where φs , IN , and ID are the global, direct, and diffuse radiation, respectively, and
α is the solar elevation angle. That is, obtaining models for each component gives
a model for the global radiation. Lambert–Beer’s law gives an analytical expression
for the intensity of the radiation when it arrives at the Earth’s surface

Iλ = I0λe
− ∫

μλ(s)ds , (34)

where I0λ is the initial intensity and μλ is the attenuation of the medium the ray
travels in. The integral in (34) is hard to evaluate since κaλ is difficult to estimate
for the atmosphere due to its very non-uniform density and dependence on the solar
elevation.

We shall employ a more data-driven approach, namely kernel regression [64]. It
estimates the conditional expectation, E(Y |X = x), of a variable. In our case, we
estimate the expected solar radiation given the cloud cover okta, c ∈ C, and the
solar elevation angle, α(t). Local linear regression has an advantage over constant
regression in that it generally induces less bias in the ends of the support. Figure 10
shows the direct radiation for some selected oktas (the diffuse radiation is omitted).
It shows that for larger oktas, the data seem more scattered—and behave very poorly
for okta 8.

Figure 11 shows the result of applying local linear kernel regression on the direct
and diffuse radiation data for each okta. The conditional expectations are in line with
the physical properties of the radiation types: The direct radiation is highest when
there is close to zero clouds, while the diffuse radiation tops for a certain presence
of clouds.
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Fig. 10 The direct radiation for some example oktas: 0, 2, 3, 5, 6, and 8

Fig. 11 The results from the kernel regression applied on the direct and diffuse radiation. For
simplicity, only half of the okta values are shown

5.2.3 Describing the Deviation and Autocorrelation

Now that we have described the conditional expectation, we move on to describe the
deviation and the potential autocorrelation left in the residuals. Figure 12 shows the
residuals of the kernel regression applied to the direct radiation (we omit the diffuse
radiation due to space limitation, but the behaviour is the same). It also suggests a
rough linear increase in the standard deviation is the case (the same is true for the
diffuse radiation). That is, we employ the following model for the standard deviation
for each okta:

σ (c)(t) = β
(c)
0 + β

(c)
1 α(t) , (35)

for both the direct and diffuse radiations. β(c)0 and β
(c)
1 are constant parameters

for each c ∈ C. Let ε(c)k = ŷ
(c)
k − y

(c)
k be the residual, and let

√
Rk = σ

(c)
k be

the standard deviation at time tk , k = 1, 2 . . . N , for okta c. The above sets of
parameters, {β(c)0 , β

(c)
1 }, can be estimated using ML estimation as in (9) using a

numerical solver. The parameter estimates can be found in [61].
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Fig. 12 The residuals for the direct radiation

Fig. 13 The ACF for the direct and diffuse radiations

The cloud cover is not the single cause of variation in the solar radiation. For
example, vapour, dust, ozone, and other particles give rise to autocorrelation. Let

e(t) = ε̂(c)(t)

β̂
(c)
0 + β̂

(c)
1 α(t)

(36)

be the standardised residuals of the direct and diffuse data (i.e., two processes).
Note that each of the processes is standard normal distributed and independent of
the cloud cover. We consider the two processes as a multivariate time series with
the variable, ek =

[
eN,k, eD,k

]T , with missing observations (during night-time). See
[38] for how to deal with missing observations in a time series. Figure 13 now shows
the autocorrelation in ek . The fast exponential decay in the first few lags suggests
that a first-order autoregressive (AR) model is necessary

ek =$ek−1 + εk ,

ak =ek + εa,k ,
(37)
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where $ is the AR coefficients and εk ∼ N(0,Qe) and εa,k ∼ N(0,Ra) are the
process and observation noise, respectively. ek is thus the noise process driven by
its previous values and a noise term, εk . The observation equation (ref equation) is
a white noise process that encumbers the observations with noise, εa,k , which we
also need to estimate. We estimate the parameters by applying ML estimation and
use the Kalman filter to estimate the covariance matrices for the noise terms. The
results become

$ =

⎡

⎢⎢⎣

0.609 0.109
(0.013) (0.009)

0 0.675
(0.010)

⎤

⎥⎥⎦ , Ra =

⎡

⎢⎢⎣

0.160 0
(0.011)

0 0.162
(0.019)

⎤

⎥⎥⎦ , Qe =

⎡

⎢⎢⎣

0.466 0.160
(0.019) (0.005)

0.160 0.456
(0.005) (0.016)

⎤

⎥⎥⎦

(38)
with the standard errors in parentheses beneath the estimate.

5.3 Net Radiation

The net radiation itself is not directly important for describing the heat dynamics of
a building. But it is an important meteorological variable that heavily influences the
ambient air temperature. The model for the ambient air temperature thus requires
a model for the net radiation. The net radiation, also known as the net flux, is the
balance of the total energy at the boundary of the atmosphere. It is simply the sum of
the total outgoing and incoming energy of the atmosphere. A negative net radiation
corresponds to more energy leaving the atmosphere and vice versa. In general, the
net radiation, Rn, is given by the analytical formula [2]

Rn = (1− αg)φs + Lu + Ld , (39)

where αg is the albedo fraction and Lu and Ld are the upward and downward
components of the long-wave radiation. The albedo is the fraction of global solar
radiation that is reflected on the Earth’s surface into space, and (1−αg) is therefore
the fraction of global radiation that is partly absorbed and that becomes long-wave
radiation.

Figure 14 shows the net radiation for a single March, which makes the depen-
dence on the time of the day clear. A simple and convenient model to use for our
purpose is the following, suggested by [37], which relies on the current cloud cover
and the global radiation

Rn(c(t), φs(t), t) = Kc + kcφs(t)+ kα(t)2 + ε(t) , (40)

where Kc and kc are constants that are dependent on the present cloud cover and
α is the solar elevation. The model in (40) is linear in its parameters. This makes
linear least squares estimation useful to fit the parameters
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Fig. 14 The net radiation
during March

min
x
‖Ax − b‖2

2 , (41)

having the unique solution

x̂LS = (ATA)−1(AT b) . (42)

A and b in (41) have the forms

A =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

eTc0
eTc0

φs(0) h(0)2

eTc1
eTc1

φs(1) h(1)2

...

eTci eTci φs(i) h(i)2

...

eTCN eTcN φs(N) h(N)
2

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, b =

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Rn(0)
Rn(1)
...

Rn(i)
...

Rn(N)

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (43)

where N is the total number of observations and ei is a vector of zeros with a
one in the ith entry. ci is the cloud cover index of the ith observation—recall the
modified cloud cover data state space is {0, 0.5, . . . , 8.5, 9}. x is thus the parameters,
x = (K0,K0.5,K1, . . . , K9, k0, k0.5, k1, . . . , k9, k). Table 6 shows the estimated
parameters in (40). The increasing trend in constant net radiation, K̂c, with the
increasing amount of cloud cover indicates that the clouds ‘contain’ the net radiation
(net energy flux) within the atmosphere. This can be recognised by the phenomenon
that colder nights typically appear when the skies are completely clear.

5.4 Ambient Air Temperature

The only missing piece in the puzzle now in the advanced disturbance model is
the ambient air temperature. While the net radiation describes the net flux at the
boundary of the atmosphere, the following fundamental relationship describes the
heat fluxes: close to Earth’s surface
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Table 6 The estimated
parameters of the model in
(40). Even though we have
not imposed any
regularisation or other things
that tie the estimates together,
the values are somewhat
nicely distributed

Cloud cover okta K̂c k̂c σ̂ε k̂

0 –69.2 0.549 40.1 0.0418

0.5 –68.2 0.551 38.5 0.0418

1 –74.1 0584 38.3 0.0418

1.5 –74.9 0.576 37.7 0.0418

2 –74.1 0.571 39.7 0.0418

2.5 –75.5 0.566 45.2 0.0418

3 –73.6 0.565 48.4 0.0418

3.5 –71.5 0.566 54.4 0.0418

4 –73.6 0.589 58.1 0.0418

4.5 –67.5 0.606 57.9 0.0418

5 –69.5 0.661 59.8 0.0418

5.5 –63.6 0.695 60.7 0.0418

6 –56.5 0.717 59.7 0.0418

6.5 –46.5 0.699 56.7 0.0418

7 –29.5 0.595 49.4 0.0418

7.5 –13.5 0.461 43.5 0.0418

8 2.5 0.150 31.8 0.0418

Fig. 15 The hourly mean
values of the ambient air
temperature and the net
radiation during a day. The
delayed response from the
ambient air temperature
suggests that a dynamic
model is necessary

Rn = Lf + Sf +Gf , (44)

where Rn is the net radiation described in Sect. 5.3 and Gf is the soil heat flux. Lf
and Sf are the latent and sensible heat fluxes. The latent heat flux is heat gradients
related to absorbed or released heat due to phase changes by matter—e.g., when
water evaporates, it absorbs heat in order to decrease the molecule density. The
sensible heat flux is all energy required to change the temperature of matter without
phase changes taking place. The latent and sensible heat fluxes thus relate to the
gradients of the air temperature. To get an idea of the kind of model needed to
describe the air temperature, Fig. 15 shows the diurnal mean value variations of the
net radiation and ambient air temperature. It supports the fact that the net radiation is
an important explanatory variable to describe the air temperature. It further suggests
that a dynamical model is needed due to the time lag between the peak values of
3–4 h.
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Fig. 16 An illustration of the
dynamical model describing
the ambient air temperature.
The states are indicated by
the squares containing the
heat capacities

The atmospheric air directly above the Earth’s surface has a relatively small
heat capacity, making it quick to respond to level changes in the net radiation.
Water in contrast has a very large heat capacity. The temperature of the seas thus
highly regulates the temperature of the air above it. The air masses above sea and
land interact due to climatic motions, and the sea consequently regulates the land
air temperature. For instance, it is well known that the largest annual temperature
difference occurs in the middle of large continents. Hence, the level of regulation
by the sea depends on geographical location and local climate. Using the above
knowledge about the behaviour and balances of the air temperatures, we are ready
to formulate the stochastic dynamical model describing the ambient air temperature
above land

CwdTw(t) =
(

1

Rwl
(Tl(t)− Tw(t))

)
dt + σwdωw(t) , (45a)

CldTl(t) =
(

1

Rwl
(Tw(t)− Tl(t))+ 1

Rl∞
(T∞ − Tl(t))+ Rn(t)

)
dt + σldωl(t) ,

(45b)

T (tk) = Tl(tk)+ vk, vk ∼ N(0, Rv) , (45c)

where Cw and Cl are the heat capacities for sea and land, Rwl and Rl∞ are the
resistances against the heat flows between the states, ωw and ωl are the standard
Wiener processes, and vk is the observation noise. The model is also illustrated in
Fig. 16: The solar radiation influences the net radiation, which in turn acts as an
input to the land air temperature. The land air temperature interacts with the sea
temperature and a constant outflow of energy, T∞, to counteract heat inputs and
to ensure stability of the model. Equation (45) thus uses the sea temperature as a
hidden state to describe the land air temperature.

Since this is a continuous-time model, we use the continuous–discrete Kalman
filter to calculate one-step predictions and estimate the observation variance to
compute one-step predictions and filter the estimates. Let x̂k|k−1(θ) and Rk(θ) be
the one-step prediction and observation variance for xk at time tk , calculated using
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Table 7 The parameter estimates in (45) and the corresponding standard errors

Parameter Ĉw Ĉl R̂wl R̂l∞ σ̂w σ̂l

Estimate 534.56 58.99 0.0145 0.1017 0.913 0.0003

Std. Error 8.44 0.49 0.0001 0.0026 0.0123 0.0001

a given set of parameters θ = (Cw,Cl, Rwl, Rl∞, σw, σl). Then, the ML estimate is
the solution to the problem in (9).

Using the data from Højbakkegård, Table 7 shows the estimation results for the
model in (45). As expected, the heat capacity for the sea is much larger compared to
the land air. Also note the very small process noise for the land air temperature,
ωl , compared to the sea temperature. This indicates that it is primarily the sea
temperature that drives the land air temperature.

6 Model-Based Predictive Control

The previous sections focused on establishing statistically determined dynamical
models for the smart building and the most important disturbances. This section
shows the potential benefits of using the advanced disturbance models for fore-
casting. We start by introducing model predictive control (MPC) and deriving the
optimisation problem involved with computing the optimal control. Furthermore,
we discuss how to incorporate and use the given disturbance forecasts in the MPC
algorithm. Lastly, we present a more classical method for handling disturbances in
an MPC setup, where the disturbances are not modelled but instead an integrator is
introduced to estimate the current disturbances. Even though the method provides
offset-free control, we discuss why it is not ideal when dealing with very fast
dynamics (as with the solar radiation).

6.1 Constrained Model Predictive Control

Many variations of MPC exist and have gained high popularity for control purposes
due to the framework’s superiority over non-predictive control schemes such as
PI/PID control [35] and its simplicity. In general, the MPC framework is given by
the following (Bolza) problem:

J (x̂k|k, {d̂k+i|k}i∈N ) = min
u

∫ tk+Np

tk

%(x(τ ),u(τ ), d(τ ))dτ + %b(x(tk+Np)),

(46a)

s.t. x(tk) = x̂k|k , (46b)
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d(t) = d̂k+i|k, t ∈ [tk+i , tk+i+1[ , (46c)

dx(t) = f (x(t),u(t), d(t))dt , (46d)

x(t) ∈ X(t) , u(t) ∈ U(t) , (46e)

whereN = {0, 1, . . . , Np−1} is the control times and Np is the prediction horizon.
J is the cost function, x is the system, u is the input, and X(t) and U(t) are the
allowed sets for x and u. x̂k|k is the filtered estimate of x at time tk and acts as

the initial condition. {d̂k+i|k}i∈N is the sequence of disturbances, which in general
comes from outside of the MPC framework. In this text, we get it from the separate
disturbance model developed in the previous sections. %b is a cost on x on the
boundary of the time domain sometimes called a cost-to-go term.

The cost function in (46a) involves evaluation of an integral. In practice though,
a computer can only deal with discrete time. Consequently, the problem in (46) is
typically reformulated as a discrete problem (in the case of a linear system)

J (x̂k|k, {d̂k+i|k}i∈N ) =min
ûk

∑

i∈N

[
%k(x̂k+i+1, ûk+i , d̂k+i )

]
+ %Np(x̂k+Np) ,

(47a)

s.t. x̂k = x̂k|k , (47b)

d̂k+i = d̂k+i|k , (47c)

x̂k+i+1 = Adx̂k+i + Bdûk+i + Edd̂k+i , (47d)

x̂k+i+1 ∈ Xk+i+1 , ûk+i ∈ Uk+i , (47e)

i ∈ N , (47f)

where the subscript d in (47d) indicates that the matrices are discretised. We obtain
such a discrete system using, e.g., zero-order hold. That is, we assume that the
input variable is constant during each preferably small time sample u(t) = uk , for
t ∈ [tk, tk+1], k ∈ N . (47d) describes the dynamics of the system and provides the
so-called Kalman predictions given by the recursion. The disturbances, {d̂k+i|k}i∈N ,
are again obtained from the separate disturbance model. We let the cost-to-go term
be zero %Np(x̂k+Np) = 0. But it can be very important to include in some cases.
For example, when batteries are included, the controller will try to sell all stored
electricity (which we do not immediately want) since it minimises the cost. Unless
we include a cost-to-go term, that weights the value of the electricity left in the
battery [57].

The cost function is of crucial importance in terms of defining the behaviour
of the controller. It is important that it minimises a term that reflects the desired
behaviour and ensures stability. The latter is usually not a problem when dealing
with systems of slow dynamics such as the temperature of a building. Often the cost
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function is minimising some distance between a control variable and a set point.
For building climate control, the control variable can be the room air temperature
and the set point can be the desired temperature. Two common examples of cost
functions are the following:

Quadratic cost xTQx + uTRu , (48a)

Economic (linear) cost cT u . (48b)

The quadratic cost function typically minimises a relative weighting between the
variables and can provide a trade-off between the input and the regulation of
the system. The linear cost function measures an amount of some resource. In
temperature regulation of a building, it is often the energy consumption or price. But
in general, the resource is an abstract size and can also measure the CO2 emission
from electricity generation or even a generic penalty signal manually designed to
force a certain behaviour. For our purpose, we use economic MPC, while also
softening the constraints

J (x̂k|k,{d̂k+i|k}i∈N ) = min
ûk,ŝk

∑

i∈N
ck+i ûk+i +

∑

i∈N+
ρk+i ŝk+i , (49a)

s.t. x̂k = x̂k|k , (49b)

d̂k+i = d̂k+i|k , i ∈ N ,

(49c)

x̂k+i+1 = Adx̂k+i + Bdûk+i + Edd̂k+i , i ∈ N ,

(49d)

ŷk+i = Cdx̂k+i , i ∈ N+ ,

(49e)

ŷk+i − ŝk+i ≤ ymax,k+i , i ∈ N+ , (49f)

ymin,k+i ≤ ŷk+i + ŝk+i , i ∈ N+ ,

(49g)

�umin,k+i ≤ �ûk+i ≤ �umax,k+i , i ∈ N ,

(49h)

umin,k+i ≤ ûk+i ≤ umax,k+i , i ∈ N , (49i)

0 ≤ ŝk+i , i ∈ N+ , (49j)

whereN+ = {1, 2, . . . , Np}, �ûmin,i and �ûmax,i are the minimum and maximum
allowed changes of input, and ŝi and ρi are the slack variable and slack penalty,
respectively. umax,i and umin,i are the upper and lower constraints on the input, and
ŷmax,i and ŷmin,i are the upper and lower constraints on the observed variables.
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The slack variable has the purpose of softening the constraints. That is, it allows the
solution to move outside of the constraints without making the problem infeasible—
but at a cost!

6.1.1 Rewriting the State Equations of the Optimisation Problem

We are now familiar with the objective of MPC and what the purpose of the
constraints is, but it is not directly clear how to write out the optimisation problem
such that we can implement it. First, we need to recognise that the variables of the
optimisation problem are the input and the slack variables, [uk, sk]. That is, we need
to write each constraint in (49) as an equation using uk and sk . To do this, we use
the Kalman predictions of the system to obtain a matrix expression for the states
for all prediction times in N . Writing out the observed system using the Kalman
predictions is

ŷk = Cdx̂k = Cd(Adx̂k−1 + Bdûk−1 + Edd̂k−1) ,

= CdAdx̂k−1 + CdBdûk−1 + CdEdd̂k−1 .
(50)

The state development for x̂k is again given by the Kalman predictions, where
x̂k−1 = Adx̂k−2 + Bdûk−2 + Edd̂k−2. Inserting this into (50) yields

ŷk = CdAd

(
Adx̂k−2 + Bdûk−2 + Edd̂k−2

)
+ CdBdûk−1 + CdEdd̂k−1 ,

= CdAd
2x̂k−2 + Cd(AdBdûk−2 + Bdûk−1)+ Cd(AdEdd̂k−2 + Edd̂k−1) .

Continuing this approach until an initial state is reached (and shifting the time to
start at tk and end at tk+Np), the result is

ŷk+Np = CdAd
kx̂k + Cd

Np−1∑

i=0

Ad
iBdûk+Np−1−i + Cd

k−1∑

i=0

Ad
iEdd̂k+Np−1−i .

(51)
Let Ŷ k+1 be a vector containing the predictions Np steps ahead starting from

tk+1, Ŷk+1 = [ŷTk+1, ŷ
T
k+2, . . . , ŷ

T
k+Np

]T . Then (51) shows how to formulate an

expression for ŷk+i for i ∈ N+ using a convenient matrix-vector notation

Ŷ k+1 = $x̂k + &U k +�D̂k , (52)

where
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$ =

⎡

⎢⎢⎢⎢⎢⎣

CdAd

CdAd
2

CdAd
3

...

CdAd
Np

⎤

⎥⎥⎥⎥⎥⎦
, & =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

CdBd 0 . . . . . . 0

CdAdBd CdBd
. . . 0

CdAd
2Bd CAB CdBd

. . .
...

...
...

. . . 0
CdAd

Np−1Bd CdAd
Np−2Bd . . . . . . CdBd

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

U k =

⎡

⎢⎢⎢⎢⎢⎢⎣

uk

uk+1

uk+2
...

uk+Np−1

⎤

⎥⎥⎥⎥⎥⎥⎦
, � =

⎡

⎢⎢⎢⎢⎢⎢⎢⎣

CdEd 0 . . . . . . 0

CdAdEd CdEd
. . . 0

CdAd
2Ed CdAdEd CdEd

. . .
...

...
...

. . . 0
CdAd

Np−1E CdAd
Np−2Ed . . . . . . CdEd

⎤

⎥⎥⎥⎥⎥⎥⎥⎦

,

D̂k =

⎡

⎢⎢⎢⎢⎢⎢⎣

d̂k

d̂k+1

d̂k+2
...

d̂k+Np−1

⎤

⎥⎥⎥⎥⎥⎥⎦
.

(53)

6.1.2 Rewriting the Constraints in the Optimisation Problem

Now that we have an expression for ŷk+i , i ∈ N+, we are able to eliminate the
dependence on ŷk+i in the constraints. Starting with (49f)

Ŷ k − Sk+1 ≤ Ymax ,

 ⇒ $x̂k + &U k +�D̂k − Sk+1 ≤ Ymax ,

 ⇒ &U k − Sk+1 ≤ Ymax −$x̂k −�D̂k ,

where Sk+1 = {sk+i}i∈N+ is a vector with the slack variables. We can do the same
thing with the lower constraint for ŷk+i ,

− &U k − Sk+1 ≤ −Ymin +$x̂k +�D̂k . (54)

To rewrite (49h), we need the following transcription:
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⎡

⎢⎢⎢⎣

�umin + u−1

�umin
...

�umin

⎤

⎥⎥⎥⎦ ≤

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

I 0 · · · 0
−I I 0

0 −I I 0
...

...
. . .

. . .
. . .

. . .

0 −I I 0
0 · · · 0 −I I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

U k ≤

⎡

⎢⎢⎢⎣

�umax + u−1

�umax
...

�umax

⎤

⎥⎥⎥⎦ , (55)

where u−1 is the input given to the system at time tk−1, and I is the identity matrix
with the same size as the length of uk . Denoting the matrix in (55) by �, then the
constraint in (49h) is

−�U k ≤ −�Umin ,

�U k ≤ �Umax .
(56)

(49i) is straightforward in the sense that it requires no further notational introduction

−U k ≤ −Umin ,

U k ≤ Umax .
(57)

Finally, we demand the slack variables to be non-negative, −Sk+1 ≤ 0. We are now
able to write the problem in (49) as an expression of the input and slack variables

J = min
U k,Sk+1

[
CT
u P T

s

] [ U k

Sk+1

]

s.t.

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−& −I
& −I
−I 0
I 0
−� 0
� 0
0 −I

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

[
U k

Sk+1

]
≤

⎡

⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−Ymin +$x̂k +�D̂k

Ymax −$x̂k −�D̂k

−Umin

Umax

−�Umin

�Umax

0

⎤

⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

(58)

where Cu = [cTk , . . . , cTk+Np−1]T and P s = [ρTk+1, . . . , ρ
T
k+Np

]T are the elec-
tricity costs and the slack variable penalty, respectively. We have now written the
optimisation problem in (49) as a constrained linear program that gives us the
optimal input, Ûk

∗ = [û∗Tk , . . . , û∗Tk+Np−1]T , that minimises the cost J based on

initial conditions for the system, x̂k|k , and disturbance forecasts, {d̂k+i}i∈N . This
is referred to as optimal control. Figure 17 displays the overall MPC framework
and how the elements interact. Very often, for systems governed by uncertainty, it
is necessary to use a moving horizon scheme, where only the current optimal input
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Fig. 17 The MPC framework for the smart building and how the disturbance model is incorpo-
rated

is applied to the system, u∗k . When arriving at the next time step, tk+1, the optimal
control problem is computed again and the current input is applied. This is known
as closed-loop feedback control and ensures stability of the system as the controller
can account for unforeseen uncertainty in the system between time steps. As this
is a linear in-equality constrained problem, a closed-form solution to (58) does not
exist in general. We therefore use numerical optimisation to find the unique solution
that exists due to convexity as long as the problem is well posed.

6.2 Offset-Free Control Without Separate Disturbance Model

In more conventional MPC setups where separately modelled disturbance models
are not feasible, there exist ways to deal with unforeseen disturbances. In practice,
parameter uncertainties, lack of model accuracy, and non-modelled disturbances all
usually necessitate some kind of action; otherwise, offsets can arise. For example,
if the disturbances act with a constant (or slowly varying) force, we can obtain a
non-zero distance between the system state and the desired set point. The literature
suggests multiple ways to deal with this [51, 52, 55], and this is still an active
research area. A popular method (among others) is known as the augmented
disturbance model. In practice, two variants are widely used and well studied:
the input and output disturbance models.

Morari and Stephanopoulos [47] derive some important concepts and results
regarding disturbance modelling for continuous-time systems in the deterministic
case. Consider a continuous-time linear state-space system of the form

dx(t) = (Ax(t)+ Bu(t)) dt ,

yk = Cx(tk) ,
(59)

where x ∈ R
n, A ∈ R

n×n, u ∈ R
nu , B ∈ R

n×nu , and C ∈ R
ny . Note that the

disturbances are not a part of the model in the first place. The augmented disturbance
model approach assumes that the disturbances act on the system as integrated white
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noise; that is, we can add an integrator as an independent state, η ∈ R
nd in the

system by

dx(t) =
(
Ax(t)+ Bu(t)+ B̄η(t)

)
dt ,

dη(t) = �̄dω̄(t) ,

yk = Cx(tk)+ C̄η(tk) ,

(60)

where B̄ ∈ R
n×nd and C̄ ∈ R

n×nd are the disturbances on the input and output
(hence the name). We shall assume Cd = 0 in the rest of this section. The case
when the disturbances only act on the system is called input disturbances because
it acts as an input on the system. We can augment the disturbance and obtain the
augmented system

d

[
x(t)

η(t)

]
=

([
A B̄
0 0

] [
x(t)

η(t)

]
+

[
B
0

]
u(t)

)
dt +

[
0
�̄

]
dω̄(t) ,

yk =
[
C 0

] [x(t)

η(t)

]
.

(61)

Note that we are (obviously) not able to influence the disturbances and (in general)
know nothing about them. However, it is crucial for us to estimate them in order
to obtain offset-free control. Observability is an important concept that relates to
whether we are able to estimate all states in the given system, x, based on the
observed information we have, y. We say that the system (C,A) in (59) is observable
if

rank

⎡

⎢⎢⎢⎣

CA
CA2

...

CAn−1

⎤

⎥⎥⎥⎦ = n . (62)

In general, we are able to estimate all states in a system if and only if it is observable.
That is, we need to make sure that the augmented system in (61) is observable—
otherwise we cannot estimate the disturbances and in turn not obtain offset-free

control. The system

([
C 0

]
,

[
A B̄
C 0

])
is observable if and only if the following

requirements are fulfilled [47]:

1. The system (C,A) is observable.

2. rank

[
A B̄
C 0

]
= n+ nd .
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This implies that we are able to insert at most ny (the number of independently
observed variables) integrators into the system while ensuring observability of
the augmented system. We can estimate the disturbance states simply by using
the Kalman filter or Luenberger observer [32] (treating them as any other hidden
state). This method also supplies disturbance forecasts by computing the predictions
supplied by the system. It is easy to see that it corresponds to zero-order disturbance
forecasts also called persistent forecasts, see, e.g., [38, p. 333] and [11]. For this
reason, the integrator approach works best when the disturbance dynamics are
slow—and not very well for faster dynamics such as the solar radiation for a smart
building. We will show this in the next section.

7 Predictive Control with Embedded Disturbance Models

We now combine the individual weather models in the previous sections into a
combined disturbance model framework. Ultimately, we want to show that by
modelling the disturbances, we can obtain more accurate control than using, e.g.,
augmented integrators. The advanced disturbance model should return a vector,
d(t) = [

dTa (t), dφs (t)
]T , containing the solar radiation and ambient air temperature.

Writing up all equations for the individual disturbances gives the following complete
description:

Cloud cover model

{
dZκ = fψ(Zκ)dt + σψdωκ

c = ζ−1(ψ−1(Zκ))

Solar radiation model
{
φs = IN(c, t)+ ID(c, t)

Net radiation model
{
Rn = Rn(c, φs, t)

Air temperature model

{
dTw = fTw(Tl, Tw)dt + σwdωw

dTl = fTl (Tl, Tw,Rn)dt + σldωl

Observations

⎧
⎪⎪⎨

⎪⎪⎩

dφs = φs + vφs , vφs ∼ N(0, Rφs )

dTa = Tl + vTa , vTa ∼ N(0, RTa )

d = [
dTa , dφs

]T
.

(63)

Since the disturbance model in (63) is based on SDEs, we are able to use
the CDEKF to compute certainty equivalent Kalman predictions—which MPC
requires. This procedure requires numerical solutions of coupled differential equa-
tions, which in turn requires initial conditions preferably from observations coming
from the building site in order to ensure accuracy. Due to the one-way coupling of
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the individual weather models, the computation of the predictions becomes much
easier, as it can be split into smaller and simpler calculations:

1. Compute the cloud cover predictions {ĉk+i|k}i∈N .
2. Compute the solar radiation predictions {φ̂s,k+i|k}i∈N .
3. Compute the net radiation predictions {R̂n,k+i|k}i∈N .
4. Compute the ambient air temperature predictions {T̂a,k+i|k}i∈N .

7.1 Comparison of Advanced Disturbance Forecasts and
Persistent Forecasts

All the necessary elements are now introduced for us to demonstrate how to control
the room air temperature of a smart building presented in Sect. 4 using the advanced
disturbance forecasts from (63). Additionally, we want to show that the great effort
put into modelling the disturbances actually improves the quality of the smart
building regulation. To do this, we compare the advanced disturbance forecasts
with a more typical and conventional kind of offset-free control that is explained
in Sect. 6.2. In this text, we use persistent forecasts, which are often used as a
reference model for weather and energy forecasting models. It uses the following
constant predictions:

d̂k+i|k = d̂k|k , i ∈ N . (64)

That is, we assume that all future disturbances equal the disturbance at the present
time, tk , and we assume that we actually observe them.

Figure 18 shows the persistent and advanced disturbance forecasts using a
prediction horizon of 96 h. The simplicity of the persistent forecasts becomes very

Fig. 18 The persistent forecasts against the advanced disturbance forecasts. The latter is computed
by integrating (63) forward using the current observations as initial conditions
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visible compared to the complex dynamics of the true disturbances. The advanced
disturbance forecasts are of course most accurate in a short future time span due
to the initial conditions. They then drift towards some stationary dynamics, highly
dictated by the stationary points of the cloud cover that can be seen in Fig. 9. We
therefore cannot hope to accurately forecast the disturbances 96 hours into the
future using these methods—instead they give expected disturbance values. For this
reason, the literature normally uses meteorological forecasts. They are, however,
less accurate for short-term predictions. [66] suggest that in practice, the advanced
disturbance forecasts work best 4–10 h into the prediction horizon and from that
point on meteorological forecasts in general perform better. The latter is based
on large systems of differential equations and is calculated using very powerful
computers. In practice, it is believed that a combination of short- and long-term
forecasts will be the best solution.

8 Simulation Results

As previously mentioned, we use data from March as the true disturbances acting
on the smart building. This gives us 7 months of data to simulate control of the
smart building using the two forecasting schemes. In this section, we show the
results of controlling the smart buildings presented in Sect. 4. Furthermore, we
present the results where the heat pump is combined with both electrical heaters
and air conditioners (for cooling). Recall that the heat pump is a factor 3 more
efficient compared to the electrical heaters, which makes it economically attractive
and interesting to combine.

All simulations in this section use a prediction horizon of 96 h, a time sample
of 1 hour, and temperature constraints Tr,min=20 C◦ and Tr,max=24 C◦ (which are
softened). We use the slack penalty suggested by [57], ρk = 5000. The electricity
price is taken from Nord Pool and is the average over all March data and equals to
ck = 0.27 · 10−3 EUR/Wh.

Figure 19 shows a 15-day sample of the 7 months of simulation for two smart
buildings: one using electrical heaters and one using a heat pump. The smart
building equipped with electrical heaters acts faster and is therefore more capable
of adjusting to sudden changes from the disturbances. This is borne out by the
electrical heaters that operate at a level that sets the room air temperature to the
lower constraint to minimise costs—except when the sun shines and additional heat
is not needed. The differences between two forecasting schemes are not greatly
visible from this sample, however, due to the effect of the control feedback every
hour.

The solution for the smart building equipped with a heat pump looks much
different. The overall dynamics are much slower. In contrast to the case with the
electrical heaters, the advanced disturbance forecasts seem to enable the controller
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Fig. 19 A 15-day sample of the total 7 months of simulation. It shows the indoor air temperature
and the heat input for the two scenarios at the same point in the time series of simulation. The black
dashed lines are the constraints
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Fig. 20 A 15-day sample of the total 7 months of simulation. It shows the indoor air temperature
and the heat input for the two scenarios where the heat pump is combined with faster heating inputs
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to much better keep the room air temperature on the right side of the constraints—
the baseline forecasts go above the upper constraint a couple of times during this
sample.

Figure 20 shows a 15-day sample of two extended smart buildings. The 3rd
scenario is a simulation of a smart building equipped with both a heat pump and
an electrical heater. This enables the smart building to heat efficiently using the heat
pump but also to make fast corrections using the electrical heaters. The 4th scenario
considers a smart building equipped with a heat pump and an air conditioner such
that it is also able to cool if necessary. Visible in both scenarios is the fact that
the advanced disturbance forecasts use the expensive electrical heaters and air
conditioners less often and are therefore able to obtain cheaper control.

In an attempt to draw asymptotic conclusions, we turn to consider how well
the forecasting schemes minimise the actual cost function in (49) of the entire
simulation of the 7 months, as this is what the solutions are based on. Table 8 shows
the constraint violations of the entire simulations corresponding to the second term
in (49a). Additionally, it shows the results for a controller that uses perfect forecasts:
this gives a theoretical upper boundary on the performance using the settings in
this chapter. The advanced disturbance forecasts seem to outperform the persistent
forecasts in all scenarios. Especially in the case of the heat pump alone: this is
perhaps the most realistic case—that houses equipped with a heat pump do not have
addition heating or cooling (at least in Denmark).

Looking at the cost term in (49a), Table 9 shows the total electricity cost
for all scenarios. It is obvious that the cost for the electrical heaters is almost
identical for all scenarios since the total heat needed is the same. In the heat pump
scenario, however, the advanced disturbance forecasts use much less electricity
compared with the persistent forecasts. This is also the case for scenarios 3 and
4—the advanced disturbance forecasts seem to offer a significant decrease in
electricity consumption and in general are very close to the perfect forecasts. This
is also visible from the simulation samples in Figs. 19 and 20 where the advanced
disturbance forecasts almost at all times lie below the persistent forecasts.

Table 8 The constraint violations (the second term in the cost function in (49a)) for all heating
strategies for each forecasting scheme

Constraint violation of the control simulations

Forecasting method Persistent Advanced disturbances Perfect

Scenario 1: Electrical heater 48.5 39.6 25.11

Scenario 2: Heat pump 157.9 12.3 1.7

Scenario 3: Heat pump plus electrical heater 48.0 6.7 1.2

Scenario 4: Heat pump plus AC 4.4 2.4 0
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9 Hierarchical Control

In the next section, we will first illustrate how the controllers described in the
previous sections can be considered as the low-level controllers of a multi-level
or hierarchical control setup for solving grid or ancillary service problems in future
smart energy systems. Subsequently, we shall briefly outline how these principles
can be generalised to multi-level and hierarchical control problems. This section will
also outline how to establish a connection between the multi-level control problems
and conventional electricity markets.

9.1 Two-level Control for Utilising Energy Flexibility

In the previous sections, it has been shown how to develop controllers for controlling
smart buildings according to forecasts of prices, weather conditions, and indoor
climate requirements. In this section, it will be explained how to leverage this
by generating prices that are used indirectly to control the demand of the smart
buildings. The basic concept is illustrated by Fig. 21, where a smart building,
from an external perspective, takes an input (price) and gives an output (demand).
Analysed in this way, a model, termed the Flexibility Function, can be developed
that predicts demand as a dynamic function of price. The Flexibility Function could
be any dynamic model. In [18], a linear model (finite impulse response model) is
suggested, but in [19], it is shown that a grey-box model using stochastic differential
equations is more appropriate.

Table 9 The electricity price in EUR (the first term in the cost function in (49a)) for all heating
strategies for each forecasting scheme

Electricity cost of the simulations

Forecasting method Persistent Advanced disturbances Perfect

Scenario 1: Electrical heater 303.2 302.2 302.0

Scenario 2: Heat pump 117.3 110.4 107.7

Scenario 3: Heat pump plus electrical heater 113.0 108.2 107.5

Scenario 4: Heat pump plus AC 117.9 108.3 107.5

Fig. 21 The demand of a
smart building can be
predicted as a function of
prices
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Fig. 22 Using a Flexibility Function to generate price signals and demand as control feedback

Once a Flexibility Function has been estimated, a second controller can be
formulated where the objective is to control demand according to some criteria,
and the decision variable is the price. As shown in Fig. 22, the Flexibility Function
can be used to generate prices according to some reference. Notice how the demand
acts as the feedback to the controller, closing the loop.

If FF is the Flexibility Function that takes prices as input and gives expected
demand as output, while rl is a reference load, then a naive upper-level optimisation
problem can be written as

min
Cu

(FF(Cu)− rl)
2. (65)

Obviously, it might be necessary to impose limits on how much the price can
change, requirements on the average value, and a more sophisticated optimisation
problem than the minimum variance formulation as discussed in [17]. Combining
this optimisation problem with the one presented in (58) reveals how the price
signal, Cu, couples the two in an elegant fashion
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Notice how the two optimisation problems are solved independently from
each other, thus preserving autonomy and privacy for the building owners while
simultaneously allowing an aggregator to utilise the energy flexibility. In practice,
there are going to be a lot of smart buildings for each aggregator that all have
independent control problems. This method scales well to this case since the
computational burden for the upper level remains constant—with the Flexibility
Function simply representing the aggregated response from the smart buildings.

In [29], it is shown how the Flexibility Function can be used to generate a
Flexibility Index for a building.

9.2 Multi-Level Control and Markets

Ultimately, the purpose of the future smart-energy system is to establish a con-
nection between the controllers operating at local scales and high-level markets
operating at large scales. Essentially, a spectrum of all relevant spatial aggregation
levels (building, district, city, region, country, etc.) has to be considered. At the same
time, control or market solutions must ensure that the power system is balanced
at all future temporal scales. Consequently, data-intelligent solutions for operating
flexible electrical energy systems have to be implemented on all spatial and temporal
scales.

To address these issues, several solutions have been proposed in the literature in
recent years. These major solutions are transactive energy, peer-to-peer, and control-
based solutions, as described in [13].

Traditionally power systems are operated by sending bids to a market. However,
in order to balance the systems on all relevant horizons, several markets are needed.
Examples are day-ahead, intra-day, balancing, and regulation markets. The bids are
typically static consisting of a volume and duration. However, we believe that we
need a disruption related to principles for activating low-level flexibility.

Given all the bids, the so-called supply and demand curves for all the operated
horizons can be found. Mathematically, these supply and demand curves are
static and deterministic. Merit order dispatch is then used to optimise the cost
of generation. However, if the production is from wind or solar power, then the
supply curve must be stochastic, and the demand flexibility has to be described
dynamically, by the introduced Flexibility Function. Consequently, we need to
introduce new digitised markets that are dynamic and stochastic. And instead
of using a large number of markets for different purposes (frequency, voltage,
congestion, etc.) and on different horizons, we will suggest to use concepts based
on the Flexibility Function and stochastic control theory, exactly as described in
the previous section for the two-level case. We call this a Smart-Energy Operating
System (SE-OS) [36, 44, 45].

If we zoom out in space and time, i.e., consider the load in a very large area on a
horizon of days, or maybe next day, then both the dynamics and stochasticity can be
eliminated, and hence, we can use conventional market principles as illustrated in
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Fig. 23 Hierarchical control and markets

Fig. 23. If we zoom in on higher temporal and spatial resolutions (like for instance
a house), the dynamics and stochasticity become important, and consequently, we
will suggest to use the control-based methods for the flexibility as discussed in this
chapter.

The total setup consists of a combination of all these options, and the best option
depends on the zoom level. The conclusion is that we need new future digitised
refined market principles, which operate as a hierarchy of conventional market-
based bidding and clearing on the higher levels and control-based approaches on
the lower level—see Fig. 23.

All these principles for forecasting, control, and optimisation are included in
the so-called Smart-Energy Operating System (SE-OS), which is used to develop,
implement, and test solutions (layers: data, models, optimisation, control, com-
munication) for operating flexible electrical energy systems at all scales. See
[14, 36, 44, 45] for further information.

10 Summary

In this chapter, we have presented methods for modelling relevant for the con-
trol of smart buildings. Specifically, we have introduced the grey-box modelling
framework, and we have used this modelling framework to establish models for a
building—as well as for some of the most important weather-related disturbances—
namely cloud cover, solar radiation, net radiation, and ambient air temperature.
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Most importantly, the grey-box principle bridges the gap between models based on
first principles (physics) and models based on information obtained from the data
(statistics).

Further, methods for model development are suggested. For parameter estima-
tion, we suggest using the maximum likelihood method as this method allows for
an integrated estimation of parameters related to the embedded description of the
stochastic part.

Having models for the buildings and disturbance models as stochastic differential
equations enables and promotes the use of model predictive control (MPC) as the
regulation scheme for the indoor air temperature. MPC is widely described and
used in the literature for building climate control problems. We introduced and
formulated the mathematical optimisation problem involved with MPC and showed
how to numerically compute the optimal control solution. We explained the problem
of dealing with disturbances in control and showed how to incorporate them—both
by simple means (using an augmented integrator) and by embedding the advanced
disturbance models to supply forecasts. The last section presented simulation-based
results of MPC applied to the presented smart building models using different
heating strategies. The obtained results strongly suggest that the use of sophisticated
disturbances models over conventional methods to supply weather forecasts can
improve the building climate control.

Lastly, we have briefly explained how energy flexibility can be leveraged
through price-based control, by utilising a two-level framework in which prices are
generated by a controller to actuate the energy flexibility of the smart buildings.
These principles are generalised to multi-level controllers for solving all types of
ancillary and balancing service problems in future weather and data-driven energy
systems.
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Explanations Generation with
Knowledge Models

Amr Alzouhri Alyafi, Patrick Reignier, and Stephane Ploix

1 Problem Statement and General Solving Principles

This work tackles the problem of generating causal explanations from a physical
model-based EMS (as an example of knowledge models), to involve occupants in
the loop with their EMS.

Due to the complexity and mathematical formalism of the knowledge models,
they are not suitable for interactions with inhabitants: the intrinsic knowledge they
contain is not directly intelligible. Human beings are trained, since elementary
school, to think and to understand the world through causal representations like:
what happens, when does it happen, what affects it, and what does it affect [1].
The equations of the EMS are elaborated by experts whose goal is to predict the
evolution of physical variables, not to model causality. These equations, which
are not designed to produce explanations, do not represent causal relationships
explicitly. As a result, causal relationships cannot be determined automatically from
the analysis of the equations. This causal knowledge is hidden inside the equations
and should be extracted to be made explicit.
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Causality from sensory data is difficult to model mathematically. Effects can
be directly observed, but causal relationships cannot. Considering phenomena as
events, a cause (C) always precedes the observation of an effect (E), but an effect
(E) observed after (C) and correlated with it does not necessarily mean that (C) is the
cause of (E). The “car allergic to vanilla ice cream” scenario illustrates this case [2]:
a man used to buy ice cream after dinner for his family. He complained to General
Motors that every time he bought vanilla ice cream, he had difficulties in starting
the car engine (other ice cream flavors were fine). General Motors engineers finally
found that the cause of the problem was vapor lock. Actually, it took less time to buy
vanilla ice cream than for other flavors because of a dedicated counter. As a result,
the engine remained too hot for the vapor lock to dissipate. The co-occurrence of
buying vanilla ice cream and the car not starting did not mean that buying vanilla
ice cream was the cause of the car failure.

As illustrated in Fig. 1, the co-occurrence (with a potential time delay dt) of two
phenomena calls for several interpretations: precedence only (Fig. 1a), direct causal
relationship (Fig. 1b), and consequences of a third phenomenon that may be outside
of perception (Fig. 1c). For instance, having a flu may first cause fever and then
coughing. Ignoring the existence of viruses may lead to the belief that the fever is
the cause of coughing.

The work focuses on the generation of explanations about energy impact of user
actions. Explanations occur in different ways [3] and for different reasons. One
of the main motivation for having explanations is to be able to behave in a better
way if similar events or scenarios arise in future [4]. Explanations usually rely on
causal relationships. There are at least four kinds of causal explanations: common
cause, common effect, linear causal chains, and causal homeostasis (cyclic causal
relationships) [5]. According to [6], explanations are ubiquitous, come in a variety of
forms and formats, and are used for a variety of purposes. Still, the common feature
about most explanations is their limitation. For most natural phenomena and many
artificial ones, the full set of relations to be explained is complex and far beyond the
grasp of any one individual.

Cooperation between inhabitants and EMSs can be built using explanations as
a powerful and intuitive tool to transfer knowledge with expert systems. This work
proposes two approaches to generate causal explanations from EMSs: differential

Fig. 1 Causal relationships between co-occurrent phenomena
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explanations and direct explanations. These two approaches rely on a model-based
EMS (knowledge model).

The next section will describe the generation of explanations using the described
energy models and data collected from the previous chapter (Chap. 4).

2 Generating Explanations

From the model-based EMS (presented in Chap. 4), Figs. from 2, 3, 4, and 5 present
different outputs of the system for May 5, 2015 throughout the day from 8 a.m.
to 8 p.m. (normal working hours for the office). In Fig. 2, it can be seen on the
left the different window actions registered on that day and the recommended
actions generated by the system (window-opening-best); on the right, there are
the same actions but for the door opening. Figure 3 represents the different
simulated intermediate variables (heat flow on the left and air flow on the right).
Figure 4 presents the solar radiation on the left and the estimated occupancy on the
right. Figure 5 left presents the different inside temperature, outside temperature,
corridor temperature, and the best temperature simulated when the occupant follows
the recommended actions. The right part is associated to the air quality (CO2
concentrations).

From this first simple example (office with only one thermal zone), we can
already observe:

1. The difficulty for the user, to understand his/her environment. He/She needs
to know and correlate the different variables present in the environment to
understand how they are impacting his/her comfort criteria (here, the effects).

2. The importance of the occupant’s actions. The simulated effects in Fig. 5 show
how two simple actions like opening the door and window have a considerable
impact on the comfort criteria.

Fig. 2 Window (left)/door (right) opening (measured and recommended)
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Fig. 3 Different estimations of the heat flow (left) and air flow (right)

Fig. 4 Solar radiation (left) and estimated occupancy (right)

Fig. 5 Outside, corridor, inside, best (with recommended actions) temperature (left) and corridor,
inside, recommended air quality (right)
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3. The cognitive dissonance problem (between occupant’s goals and actions).
Inhabitants may act in contradiction to their goals (their comfort criteria, cost,
. . . ) because they do not understand the impact of their actions. In this example,
the occupant’s goal is to maintain a good level of air quality, yet he/she closed
the window in the morning contrary to what he/she should have done to reach
his/her objective.

This shows why it is very important for occupants to understand the impact of
their actions, and here explanations can be very helpful in doing that.

The next section describes differential explanations and how they are generated.

2.1 Differential Explanations

Differential explanations are constructed by analyzing the difference between two
scenarios. Scenarios can be measured, simulated, or imagined; they can be set in
the past, present, or future. For example, the occupants can compare a past day’s
actions with an imaginary plan of actions and learn the impact of those actions on
their comfort criteria. The scenario can also be a comparison between what the user
has done and the recommended actions generated by the EMS to see what he can
gain if he applied the recommended actions, as in Fig. 7. This comparison can also
be done between recommended actions for a future day and what the inhabitant
likes to do, or simply any plans of actions for that day. This comparison with the
recommended actions is important as it could play a role in persuading occupants to
change their behavior and follow the recommended one. The comparison includes
the set of actions, the intermediate variables, and the effects. Intermediate and effects
variables emphasize the consequences of the difference between the user’s actions
and the recommended actions for instance and form the basis for the explanations.

Effect variables are impacted by changes in the actions and also by the context
variables. To clearly understand the difference between occupants’ different actions,
scenarios that are compared must have a similar context (as defined in the next
paragraph) to visualize the actions’ effects. Otherwise, the different effects may be
related to the difference in the context variables and not the occupants’ actions.
For instance, opening a window in summer or in winter does not have the same
consequences.

To reduce the risk of false causal relationships or circular explanations, the
available variables are classified into four groups: actions, context, intermediate,
and effects variables, as shown in Fig. 6. From actions to effects corresponds to the
natural tendency of causal relations between the groups of variables depending on
their role. This is considered as expert abstract knowledge [7].

More precisely, the different groups are:

1. Context group: It contains all the uncontrollable variables that the system needs
to take into consideration like the outside temperature Tout , the temperatures in
the neighbor zones Tcor , the number of occupants, etc.
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Fig. 6 General schema to generate explanations

Fig. 7 Differential explanations through difference between the historical scenario and a Pareto-
optimal scenario for 5 May 2015. A door or window with an uprising arrow means it should have
been opened longer for the corresponding period of time

2. Action group: It contains all the different actions that the system can propose to
the occupants to enhance their comfort levels (like opening the window ζw and
opening the door ζD).

3. Effect group: It contains the variables that will be directly experienced by the
occupants like thermal dissatisfaction σT and air quality dissatisfaction σair .

4. Intermediate group: It contains different sub-groups and different levels for
multiple intermediary variables. These variables are either measured like the
indoor temperature Tin and the indoor CO2 concentration Cin or estimated like
the heat flow ϕheat and the air flow ϕair .

In Fig. 7, the differential explanations are illustrated in a table where the first
column represents the difference of occupants’ actions with what the occupant
should have done according to the recommended plan, as shown in Eq. (1).
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A�
k − Ãk = �Ak, (1)

where A�
k represents the action calculated by the energy model (or any other

scenario) at instant k, while Ãk represents a measured occupant’s action at the same
instant. The variable, k, can take any integer value representing hours in the day.
In this example, k = 8, . . . , 20 because it focuses on the time where occupants are
potentially present (daytime period). At 8 a.m., for instance, the inhabitant should
have opened the window longer during this time slot. At 4 p.m., the user behaves
according to best scenario.

The second column presents the effects (Fig. 6), like in the thermal comfort and
the air quality. This is given by Eq. (2).

E�
k − Ẽk = �Ek, (2)

where E�
k represents the calculated effect by the system at instant k, while Ẽk

represents the measured effect. The right-hand side of Eqs. (1) and (2) denotes the
difference in actions of the occupants and the resulting difference in the effect at
the k-th instant, respectively. This differential explanation does not explicitly expose
causal relationships but only differences of actions and effects between two different
scenarios.

To add more information, the intermediate variables are added in the fourth
column of Fig. 7. Those variables are explicitly extracted from the system.

The last row, labeled ALL, represents the overall gain or loss in the comfort
criteria throughout the day, to generate a small summary and give the inhabitant
an indicator of their enhancement in general, for the entire day if they follow the
recommendations.

When computing the differential explanation, it is necessary to transform
quantitative variable values into qualitative ones for a better understanding by the
occupants and to define the qualitative distance. For instance, telling the occupant
that closing the door at 2 p.m. will cause a large decrease in the airflow and that
he will obtain a significant decrease in the air quality level is easier to understand
than telling him/her that a difference in airflow of 30% will lead to a difference in
CO2 concentration of 400 ppm. The transformation from quantitative to qualitative
data here is done by dividing the value domain of a variable into 7 sub-domains (3
positive, 3 negative, and 1 no-change levels). Those levels were chosen from human
feelings according to their impact on the occupants.

The levels for variations in thermal dissatisfaction are determined with the help
of an expert:

�T−0.25,−0.15,−0.05,0.05,0.15,0.25

(
�σkT (Tin)

)
.

The levels for the variations in air quality dissatisfaction are given by

�
CCO2−0.2,−0.1,−0.05,0.05,0.1,0.2

(
�σkair (Cin)

)
.



388 A. A. Alyafi et al.

The levels for the variations in the opening of the door and the window are given
by

�
opening

−0.7,−0.5,−0.2,0.2,0.5,0.7(�ζD)

�
opening

−0.7,−0.5,−0.2,0.2,0.5,0.7(�ζw).

The arguments of each of these discretization functions describe the difference
of the measured quantity with the proposed optimal value of the quantity.

Except for the no-change level, where arrows are omitted, 1 to 3 arrows have been
used to represent the associated sign of variation (arrows direction) and intensity
(number of arrows). For instance, in Fig. 7, the logo of window with three adjacent
upward arrows means that the occupant should have opened the window for a much
longer period of time during the corresponding time period. Algorithm 1 presents
the different steps needed to obtain the differential explanations.

It can be seen that the differential explanations are much easier to understand than
the analysis of the 13 plotted curves (Figs. 2, 3, 4 and 5) where the inhabitant has to
correlate the different actions, effects, and intermediate variables. With a differential
explanation, it is easy for an occupant to identify the actions that need to be
modified, and monitor the difference gained with respect to different criteria while
at the same time using the intermediate variables as elements of understanding.

Algorithm 1 Tabulating differential explanations
Require:
1: Scenario 1: Ã, C.
2: Scenario 2:A�, C.

Ensure: T : table for differential explanations

3: Use physical model to get Ĩ and S̃: Ã,C Ĩ→ S̃
4: Use physical model to get I� and S�:A�,C I

�→ S�
5: for k = tstart to tend do
6: row = k − tstart + 1
7: Trow,1 ← k

8: Obtain ζ �,k fromA� Different actions at instance k
9: Obtain ζ̃ k from Ã

10: Calculate �ζk = ζ �,k - ζ̃ k

11: Obtain σ�,k from S� obtain user satisfaction
12: Obtain σ̃ k from S̃
13: �σk = σ�,k - σ̃ k

14: Obtain Q�,k from I�
15: Obtain Q̃k from Ĩ
16: �Qk = Q�,k - Q̃k

17: Trow,2 ← Qualitative transformation of �ζk

18: Trow,3 ← Qualitative transformation of �σk

19: Trow,4 ← Qualitative transformation of �Qk

20: end for
21: T(row+1),3 ← Qualitative transformation of average values of �σ
22: T(row+1),4 ← Qualitative transformation of average values of �Q
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2.2 Differential Explanations with Contextual Causality

The differential explanation is yielding a list of behavior modifications (opens
the door for a longer period, for instance) with a list of impacts. However, there
are limitations with such descriptions. In particular, there is not a direct link
between an action modification and its corresponding impact. There is no explicit
causal relationships between actions and effects. Buildings have inertia, i.e., energy
dynamically stored in their structure. This inertia causes a delay and has a smoothing
effect on different changes in the building preventing a rapid degradation or
augmentation in temperature. Inertia is also present in the room volume for the
CO2 concentration. Thus, an impact may not be on the same time slot as the action:
occupant actions might have a delayed impact.

In Fig. 8, closing the door at 10am does not have an immediate impact, but it does
have a strong impact on the air quality at 12 p.m.: it is a calculated delayed impact.

Second, not all the proposed action modifications have the same importance;
some of them have a limited impact and could be skipped if necessary (the inhabitant
might not want, for instance, to interrupt his/her current activity to close the
window). But some of them should be followed because of their high impact on
the selected criteria (like the previous door example having a strong impact on the
air quality).

To evaluate the impact of the ith action at the j th quantum time, i.e., Aj
i ,

the difference between the following two scenarios needs to be calculated: (1) a
scenario (the recommended one or any other scenario for that day) (A�) and (2) a
second scenario (like a measured one) (Âj ). But when calculating this difference
(differential explanation), we first replace the ith action at the j th quantum time

Fig. 8 Differential explanations with contextual causality
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(A�j
i ) by the action on the same slot from the second scenario (like what the

occupant has done) (Ãj
i ) as shown in Eq. (3). Both scenarios are simulated using

the physical model of the office. The difference between the effects indicates the
impact of not performing the first scenario actionA�j

i .

Âj =
{
A�k
i ; ∀k �= j

}
∪
{
Ãj
i

}

where,Ai ∈ {ζW , ζD} . (3)

It is interesting to note that when the differences between these two scenarios are
considered, Eq. (4) follows, i.e., the difference in actions is zero for all time slots
except the j th time slot and at the kth time slot, and the difference is identical to the
difference between the actual and recommended scenarios. Hence, by considering
change in actions between these two scenarios, the change in the ith action at the
j th hour can be isolated and its effects can be investigated.

�Aj
i = Aj�

i − Âj
i =

{
0, ∀k �= j

A�j
i − Ãj

i , k = j.
(4)

Using Algorithm 2, the impact of the ith action at the j th hour (Aj
i ) can be

obtained. For a complete list of impacts, Algorithm 2 has to be repeated for every
ith kind of action (Ai) and for every j th time slot. For instance, opening the door
between 12 a.m. and 1 p.m. not only impacts the air quality and thermal comfort
in the same time slot but also impacts the air quality and thermal comfort in the
succeeding time slot (1–2 p.m.). This is also an example of a common cause leading
to multiple effects.

Algorithm 2 Tabulating differential explanations with contextual causality
Require: T0: Differential explanations from Algorithm 1
Ensure: T : differential explanations with contextual causalities

1: From T0 get: Ã,C Ĩ→ S̃
2: From T0 get:A�,C I

�→ S�
3: for j = tstart to tend do
4: for k = tstart to tend do
5: if k = j then thenA�,j =Ãk

6: end if
7: apply differential explanations Algorithm 1 to obtain Tk
8: Compare between Tk and T0 if there is any difference insert an arrow between the

between theA�,j and the different satisfaction
9: end for

10: end for
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2.3 Model Fragment

The effect variables are caused through intermediate variables like air flow and heat
flow.

Using the equations of the energy models, it is possible to generate cause and
effect relations between actions and final effects, but the causality between the
different levels of the intermediate variables and the final effects are indiscernible
because their changes cannot be monitored with the energy models [8], as shown in
Fig. 9.

Integrating relations between the intermediate and final variables is important
to provide occupants with complete explanations. To overcome this difficulty, we
propose the model fragment, inspired from GARP3.1 GARP3 is a workbench
that allows modelers to build, simulate, and inspect qualitative models of systems
behavior [9].

A model fragment represent potential causalities as well as impossible ones. It is
generic expert knowledge based on physical laws. For instance, heat flow may have
an influence on air temperature but not on CO2 concentration, as shown in Fig. 10.

ξw

ξD

Actions

Context

Final Effects

Intermediate variables

Computed
impact

Tout

Tin σT

σairCin

Tcor

.

.

.

.

.

.

.

.

.

.

ϕheat

ϕair

I1 I2

?
?

Fig. 9 Undetected causality between intermediate variables and effects

1https://ivi.fnwi.uva.nl/tcs/QRgroup/QRM//software/.

https://ivi.fnwi.uva.nl/tcs/QRgroup/QRM//software/
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Fig. 10 The representation of the potential and forbidden causalities

Potential causality (pc) is a structural causal relation from a cause variable v1
to a target variable v2. A potential causality does not assume anything about the
direction of variation of the values for v1 and v2 (v1 and v2 are labels with domains
dom(v1) and dom(v2)).

It is represented as: v1
pc−→ v2 or v1 �

pc v2 for the forbidden ones. The forbidden
causality helps to avoid the false causality caused by the co-occurrence of different
events.

Conditional potential causality: A conditional potential causality is activated by
a specific condition modelled as a logic proposition applying to values of variables.
For example, the causality link between the heater and the inside temperature is
correct only when the heater is ON; when the heater is OFF, it is a forbidden
causality even if a co-occurrence appeared between the heater temperature and the
inside temperature.

By integrating calculated causalities and potential ones, a full causal graph for
the whole system can be done. Part of this diagram is represented in Fig. 11 where
five categories of nodes appear, viz. actions (red), context (yellow), air flow (blue),
heat flow (orange), and effects (green). It can be seen that action nodes have several
outward edges and several paths from actions eventually leading to some effects.
For example, opening the door between 9 am and 10 am (ζ 9

D) not only leads to
thermal comfort (σ 9

temp) through heat flow from the corridor (φ9
n) but also leads to

air-quality-based comfort between 11 a.m. and 12 p.m. (σ 11
air ).
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Fig. 11 Causal graph

Thus, differential explanations allow the occupants to have an explanation based
on the cause–effect relations of their actions, and they may decide to change
their routines or learn from their historical actions. Chapter six presents how the
generated explanations can be transformed into natural language to be shared with
occupants. The next section describes the second form of the causal explanations:
“direct explanations,” based on Bayesian networks. It will also present an initial
proof of concept.

3 Direct Explanations

As we have seen in the previous section, a differential explanation is a relative
explanation that highlights the consequences of a behavior change in relation to
a behavior (scenario) taken as a reference. We will now describe the construction
of an explanation no longer based on this reference scenario but establishing causal
relations between the actions (and no longer the changes in action) and the physical
quantities: the direct explanation.

Direct explanations are based on Bayesian networks learned from many different
simulations generated by the EMS for a day. These different simulations with the
model fragments (presented earlier) are used as an input for a Bayesian search
algorithm to learn the Bayesian network structure.

Bayesian networks are a member of a vast class of models, ones that can be
used to describe nested, acyclic statistical models of virtually any kind of non-
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pathological joint probability distribution [10]. Their signature characteristic is their
ability to encode directional relations that can represent cause–effect relationships,
compared to other graphical models that cannot, e.g., Markov networks [11].

Learning a Bayesian network from data in general involves two sub-tasks:
learning the structure of the system (i.e., determining what depends on what) and
learning the parameters (i.e., the strength of these dependencies). Learning the
parameters for a given structure from a complete data set is trivial (the observed
frequencies are optimal with respect to the maximum likelihood estimation [12]).
We will focus on the structure learning aspect, which is a central for explanations.

The Bayesian search structure learning algorithm is one of the earliest algo-
rithms. It was introduced in [13] and was refined somewhat in [14]. It follows
essentially a hill climbing procedure (guided by a scoring heuristic) with random
restarts. The algorithm has the following parameters:

Max Parent: count limits the number of parents that a node can have because
the size of conditional probability tables of a node grows exponentially by the
number of the node’s parents.

Iterations: sets the number of restarts of the algorithm. Generally, the algorithm
is searching through a hyper-exponential search space, and its goal can be
compared to searching for a needle in a haystack. Restarts allow for probing
more areas of the search space and increase the chance of finding a structure that
will fit the data better. The number of iterations gives an idea of how long the
algorithm will take when the number of iterations is large.

Sample size: is a factor in the score calculation, representing the inertia of the
current parameters when introducing new data.

Seed: (default 0) is the initial random number seed used in the random number
generator. A seed equal to zero (the default) makes the random number generator
really random by starting it with the current value of the processor clock.

Link Probability: (default 0.1) is a parameter used when generating a random
starting network at the outset of each of the iterations. It essentially influences
the connectivity of the starting network.

Max Time: (seconds) (default 0, which means no time limit) sets a limit on the
runtime of the algorithm. It is a good idea to set a limit for any sizable data set
so as to have the algorithm terminate within a reasonable amount of time.

Accuracy: as a scoring function (default OFF). When checked, the algorithm will
use the classification accuracy as the scoring function in search for the optimal
graph.

The algorithm produces an acyclic directed graph that gives the maximum score.
The score is proportional to the probability of the data providing the structure,
which, assuming that the same prior probability was assigned to any structure, is
proportional to the likelihood of the structure given the data. The algorithm allows
the injection of expert knowledge in the form of potential/forbidden causalities
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(model fragments). This is helpful in organizing the variables and eliminating the
correlation between variables and extracting causalities.

To apply the Bayesian search algorithm in the case study, presented in Fig. 12,
300 simulations were obtained from a genetic algorithm used by the EMS to
optimize actions and find the recommended actions. This might have had an effect
on the learning of the structure as the simulations are not completely random. They
are oriented by the genetic algorithm that searches the best set of actions according
to occupants’ preferences (more details about the genetic algorithm used are in
Appendix 1). The model fragments are presented in the form of potential causalities,
as in Fig. 13. For instance, the heat flow cannot be the cause for the change in the
CO2 concentration.

Direct explanations is a set of probability cause–effect relationships between the
variables in general. However, direct explanations cannot present the cause–effect
relationships for each action at any time. They also cannot represent the delayed
impact of each action on the different criteria. Another limitation is that for any 1
day the algorithm cannot learn the impact of the contextual variables on the comfort
criteria because there is not enough variation in the context variables to detect their
causality. The inertia in the buildings limits the learning of the Bayesian network,
as the impact of the action is delayed by the inertia, and the search algorithm cannot
learn that. One possible solution that we must investigate is to use the dynamic
Bayesian network to overcome this difficulty.

The next section describes the field studies that had been done to validate the
explanations and their utility.

Fig. 12 Direct explanations
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Fig. 13 Model fragment in the form of potential causalities (figure is realized using the BayesFu-
sion (http://www.bayesfusion.com) program)

4 Validation Scenario for the Generated Explanations

4.1 Context and Goals

Introduction to the validation scenario:

Homes are complex systems where different phenomena are present. Occupants generally
would like their comfort criteria (like thermal comfort and air quality) to be at the optimum
level without increasing their consumption or energy bill. Yet, within these complex
systems, occupants have difficulties in determining the optimal set of actions they should
perform within a specified context or being able to estimate the impact of their actions.
For this reason, this work proposes an assisting tool (‘the explanation generator’) to help
occupants to understand the impact of their actions and the cause-effect relations between
different variables within different contexts.

The objective is to measure how the causal explanations proposed in this work
might assist occupants to better understand their homes. For that, three criteria need
to be satisfied. Are the generated explanations:

1. Intelligible?
2. Credible?
3. Easy for the user to understand them?

http://www.bayesfusion.com


Explanations Generation with Knowledge Models 397

4.2 Method

The method aims to evaluate if the proposed tool to generate explanations can
help the users to understand their energy systems or not. To do that, the first step
(a training phase) immerses the participant in the scenario: an office (the case
study) with an energy system. This allows us to evaluate their initial knowledge
of the system and to aid them in thinking deeper into the problem. The generated
explanations are provided to the participants. Then, they are given the second task
to evaluate the utility of those explanations. Finally, a registered semi-structured
interview takes place with each participant to get their feedback about:

• If the participant finds the explanations intuitive or not
• If the explanations are clear or not
• If the participant is ready to adopt them or not
• The form of explanations
• Other comments

Their feedback is analyzed to determine their understanding of the different
phenomena.

4.3 Participants

The 10 participants were between 18 and 65 years old, 5 women and 5 men. The
participants were from different backgrounds (scientific and non-scientific), none of
them from the domain of the research and never worked on the problem of energy
management. They were also volunteers and were not paid for their participation.

4.4 Independent Variables

In order to get a valid comparison, all the tests were done in an office in the G-SCOP
laboratory considering the same day: 05/05/2015 (chosen randomly from the set of
days available in our sensors database). All the participants were asked to perform
the same actions: opening of the window and door. The measured variables were the
proposed programs for the opening of door/window throughout the day. The results
were evaluated using a physical model and evaluated by how much they improved
the comfort of occupants.

The participants were interviewed by a researcher from the human and social
sciences (Hélène Haller2) not directly involved in this research. All interviews were
recorded via two microphones and then analyzed.

2helene.haller@umrpacte.fr.

www.helene.haller@umrpacte.fr
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Fig. 14 Office with sensors: the only possible actions are window and door openings during
summer

4.5 Tasks

The participants were asked to perform two tasks. In Task 1 (T1), the participants
were instructed to look at data from the 5th of May 2015 with the context variables
for the case study. Then they were asked to determine the best window/door position
to enhance their comfort. Task 2 (T2) was repeating the first task after having been
given the system’s explanations. Then, a short semi-structured interview with each
participant was done to see if they had any preference or any comments on the
explanations.

4.6 Scenario of the Interview

This section describes the exact introductory speech and questions presented to the
different participants:

We thank you for agreeing to participate in this experiment. It is part of a doctoral work
on the realization of an energy management system. This system is based on the generation
of explanations, containing tips for users. Today, we wish to observe whether the proposed
explanations are understandable and acceptable for you.

For this, we offer a scenario, during which we will ask you several questions. (Give
Fig. 14—office and sensors.) The questions we will ask you are related to this office, located
in the laboratory G-SCOP. This office is equipped with different sensors. The only possible
actions on this room are to open or close the window and the door. Now imagine that we
are May 5th 2015. (Give image Fig. 15—office registered sensor data for the 5th of May
2015.) Here are the data provided by the sensors installed in the office, data relating to
the air quality, the number of occupants, the outside temperature (context), the corridor
temperature, and the office temperature at 8 am.
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Fig. 15 Office registered sensor data for the 5th of May 2015

Given these data, what are in your opinion the best sequences of actions (opening
door/window) to get the maximum comfort in this office? Generally, comfort is defined
by a temperature between 21◦ and 23 ◦C and a CO2 concentration as low as possible. I
will now show you how schematically the generation of direct explanations works. (Give
picture Fig. 16—model for direct explanations.) I will let you read it.

Given this pattern, what would you do to get the maximum comfort in this office? I
remind you that comfort is generally defined by a temperature between 21 ◦C and 23 ◦C
and a CO2 concentration as low as possible.

• Do you find that the direct explanations I showed you were logical or not? Why?
• Did those explanations help you better understand how to get maximum comfort in the

office? Why?
• Do you find this type of explanation (direct explanations) intuitive/understandable for

you?
• Do you think that these explanations could be better presented? If yes, how?

(Give picture Fig. 17—Recommended solution.) Here are the actions recommended
by the system for maximum comfort. Do you understand these recommendations? I will
now show you a differentiated causal explanation. (Give picture Fig. 18—Differential
explanations.) Between 8 am and 9 am, if you left the window and the door open longer,
there would have been a light heat input from the outside and from the corridor, which will
improve your thermal comfort in the 9h–10h time slot and improve the air quality in the
time slot 10h–11h.
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Fig. 16 Direct explanations

• Do you find these explanations logical? Why?
• Have these explanations helped you better understand how to get maximum comfort in

the office? Why?
• Do you find this type of explanation (causal explanations) intuitive?
• Do you think that these explanations could be better presented?
• Have explanations and understandings encouraged you to follow the recommendations

of the system?
• Have these explanations increased confidence in the system?
• Could you give an estimate of the improvement of your understanding of the environ-

ment following these explanations?

Before concluding this interview, I would like to ask you two questions:

• By comparing the two types of explanations (direct explanation/differentiated causal
explanation), which one do you find the best? Why?

• If you had these explanations at home, would you use them? If yes, how often? In what
occasion?

4.7 Results

In the first task (T1), participants in general were a little bit lost and tried to imagine
scenarios that were far from what the system would recommend them to do (the best
solution). In general, they based their decisions on their habitual activities or certain
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Fig. 17 Recommended solution

beliefs (like “we should open the window each morning”), except for one participant
who tried to analyze the context data and seemed to have a better understanding.
After showing the direct explanations, participants were asked to complete the task
(T2). A clear improvement was noticed, as they (from what they reported) started to
know what were the variables affecting the comfort variables (inside temperature,
air quality). So they had started to realize the relation between actions and resulting
effects.

Then, the differential explanations were introduced with the optimal solutions.
Finally, the participants were asked to compare the differential and direct explana-
tions and give their opinions.

Participants in general did appreciate the explanations, and most of them repeated
the same words “I learned new things” or “I didn’t know that before” or “It
confirmed what I thought.” Around 10% of the participants preferred the direct
explanations, others preferred the differential explanations and also liked the natural
language form of the explanations. In remarks, they said in general that “heat flow”
is not clear for them and asked for an easier term to replace it.

Participants said that they would like to get the explanations and system
recommendations, even if they would not follow them all the time. They will
consult the explanations more when they suspect that something is not right (like
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Fig. 18 Differential explanations

to checking it when they feel cold even when the heater is ON), or, in the case of
pollution periods, to know what to do. One participant said that she will check it
each day to confirm the air quality for her children.

5 Second Validation

A second field study by the IIHM team at the LIG laboratory was done to evaluate
the UI and the causal explanations that were part of it after being integrated [15].

This study was done with a different interviewer, different buildings, and with
different participants from the previous validation study. 13 participants from
different backgrounds, age, and sex were chosen. For the explanation part, all of
the participants understood well the explanations provided by the e-consultant, and
most of them found the explanations well formulated; results are presented in the
following table.
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Yes NO

Value Percentage % Value Percentage %

Could you understand the explanations
provided by the system?

13 100 0 0

Would you formulate the explanations
differently?

2 15.3 11 84.7

Do you find the explanations useful? 13 100 0 0

Do you think that explanations are necessary
to understand how the e-consultant works?

8 61.5 5 38.5

Would you find it useful to provide the
system with explanations regarding your
behavior?

10 76.9 3 23.1

Only two participants declared they would formulate explanations differently.
Nevertheless, they used different terms to express their understanding of the purpose
of explanations such as: “reasons” (Participant 1), “explain (ations)” (Participants
2, 5, 7, 11, 12, and 14), the “Why” (Participant 3), “consequences” (Participants 4
and 14), “motivator” (Participant 6), and “utility” (Participant 8). All participants
declared they found the explanations useful, and a majority (8/13) found them
necessary in order to understand how the e-consultant works. In addition to use-
fulness, explanations appeared to contribute generally in a positive way regarding
the differences as highlighted by the verbatim report below (some of them are in
French and translated into English):

1. Answer:
«C’est exactement ça, on te demande de faire des trucs. Du coup, par défaut,
ça m’énerve parce que je n’ai pas envie de faire des trucs ; et, du coup, mais il
m’explique ; je vais t’expliquer pourquoi quoi. Donc, ça, c’est bien. Du coup,
quand il m’explique comme ça ; moi, après, je comprends et je dis OK . . . Et ben,
c’est directement lié aux motivations quoi. Donc, si je suis motivé par la raison,
si je n’en ai rien à foutre . . . C’est pour ça que j’imaginerais la possibilité de lui
dire mes motivations. S’il sait exactement la température que je préfère, ça, c’est
parfait. Du coup, je n’ai pas trop à m’en occuper ». (Participant 2)
English translation:
“That’s exactly it, you’re asked to do things. So, by default, it annoys me because
I do not want to do things; and suddenly, but he explains to me; It explain why.
So, that’s good. So, when it explains me like that; me, after, I understand and I
say OK . . . Well, it’s directly related to what motivations. So, if I am motivated
by reason, if I do not give a fuck . . . That’s why I would imagine the possibility of
telling him my motives. If he knows exactly the temperature that I prefer, that’s
perfect. So, I do not have too much to take care of it” ». (Participant 2)

2. Answer:
«Oui, parce que la première fois, tu as envie de savoir pourquoi. Est-ce que c’est
par rapport à ce que tu penses ; est-ce que ça confirme tes attentes ? Des fois,
c’est une autre raison. Voilà, c’est pour conforter l’utilisateur ». (Participant 5)

English translation:
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«Yes, because the first time, you want to know why. Is it in relation to what you
think; does that confirm your expectations? Sometimes, that’s another reason.
That’s it to comfort the user »(Participant 5)

3. «This is, I guess, some information that makes you motivated. Why should I do
this now? You will have your answer ». (Participant 6)

4. Answer:
«En fait, ça te donne une explication . . . L’explication qu’il y a derrière l’action,
derrière son conseil . . . parce qu’en fait, te dire : ferme la fenêtre, ouvre la fenêtre,
mais si tu ne sais pas pourquoi tu le fais, ça peut te . . . A un moment, tu peux te
dire : pourquoi je le fais ; tu peux t’arrêter mais, quand tu vois une explication,
en plus qui est plausible, qui tient la route, tu vas te dire : je le fais ». (Participant
11)
English translation:
«In fact, it gives you an explanation . . . The explanation behind the action, behind
his advice . . . because in fact, tell you: close the window, open the window, but if
you do not know why you can do it, it can . . . At a certain moment, you can say
to yourself: why I do it; you can stop but, when you see an explanation, besides
which is plausible, who holds the road, you will say to you: I do it ». (Participant
11)

These two field studies demonstrate the importance of explanations for occu-
pants. They present the explanations’ utility in allowing the occupants to understand
how the environment is functioning and why the e-consultant is recommending
different actions at different times.

6 Conclusion

This chapter presents the generation of explanations with the use of knowledge
models. Knowledge models can be any type of model that can provide simulation
between input variables and output ones, like physical models or linear regression
models [16]. This chapter described with a real case study the difficulty in
understanding these types of systems, and at the same time why it is very important
for occupants to understand the impact of their actions.

Then, it describes the different steps to obtain differential/direct explanations,
and how they can help the occupants to understand the impact of their actions. It
presents how it is possible to explore the implicit causality in the knowledge-based
EMS and render it explicit through the differential explanations with contextual
causality. This chapter also presents the model fragments concept to allow the
injection of the expert knowledge and help determining the causalities. It also
describes direct explanations and their limitations.

Finally, it presents the field studies to validate the direct/differential explanations’
usefulness and acceptance by occupants.
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The Mondrian User Interface Pattern:
Inspiring Eco-responsibility in Homes

Yann Laurillau, Joëlle Coutaz, Gaëlle Calvary, and Van Bao

1 Introduction

Domestic energy consumption represents approximately one-third of the worldwide
total energy consumption, with a projected increase of up to 40% by 2040 [1]. This
increase in energy demand has motivated a large body of research, using a diverse
collection of approaches to reduce domestic energy use. One possible approach is
purely technical, as illustrated by autonomous smart energy management systems.
For example, using sensing and machine learning, such systems can predict
occupancy and adjust temperature accordingly [2]. At the other extreme, the task of
reducing energy use is delegated to building occupants, by making them aware of the
problem and providing them with quantitative information about their consumption,
or by using popular media hammering home the message that global warming is a
critical societal challenge.

Between these two extremes—full machine autonomy vs. full human respon-
sibility, the current popular approach is to support a strong positive collaboration
between the system and residents. Typically, based on users’ preferences and the
physical characteristics of the habitat, the system is able to optimize cost and
comfort. This means that the system takes decisions on the users’ behalf and has
control of the home, at least temporarily [3]. However, by recommending users to
perform eco-responsible actions along with explanations, the system can improve
the sense of agency [4]. In this case, the research question becomes “How to support
Human-System collaborative interaction in the context of eco-responsibility”?

In this chapter, we present the Mondrian User Interface (Mondrian UI) as
a UI design pattern that can help system developers to structure and populate
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the interactive components of their system in order to inspire eco-responsibility.
In the following, we synthesize the key lessons drawn from the state of the art
used to inform the design of the Mondrian UI pattern. This includes results from
research on domestic environments, on properties of ambient displays, as well as on
informational representations relevant to eco-responsibility. We then give a detailed
description of the design pattern followed by an illustrative example with the user
interface of an e-coach smart energy management system [5].

2 Domestic Environment and Design Implications

Previous research on domestic environments has been conducted for diverse pur-
poses including household communication [6, 7], time management and planning,
technology control [8], as well as energy use in everyday life [9]. With regard to
energy, it has been demonstrated that few people are aware of their consumption
[10, 11]. To address this problem, many forms of eco-feedback [12] as well as
theoretical work on persuasive technologies have been developed [13–18], seeking
to change human behavior without coercion or deception. However, as demonstrated
by Erickson et al. in their longitudinal experiment with a web portal aimed at
supporting reductions of electricity consumption, people “keep forgetting” or “do
not have time” to use the system [19].

Thus, households need to be provided with “a low-cost way to modify existing
behaviors” [8] that can be integrated in their life style and routines. In turn, routines
evolve periodically and opportunistically, typically when an exception occurs [20].
In their ethnographic study, Davidoff et al. observe that ordinary life is punctuated
by key moments, such as leaving for work, that require focusing attention on
demanding activities. In addition, users’ knowledge about technical and persuasive
systems improves over time, which in turn may result in loss of interest [21, 22].

These observations call for a UI solution based on calm technology, notably
the concept of ambient display that can support different levels of users’ attention
investment [4]. In particular, when users are in a hurry, it is essential that information
be glanceable, possibly catching the eye in the case where an urgent decision
is required. On the other hand, when people are willing to invest more attention
in the system, a zoomable UI is more relevant provided that information is
“meaningful and contextually appropriate” [23]. As interest and engagement have
to be maintained, aesthetics has a role to play [24].

3 Ambient Displays and Aesthetics

Ambient displays “move to the center of attention only when appropriate and
desirable” [25], while the use of aesthetics and lifelike forms are promising
techniques to inspire positive changes in human behavior [26]. The combination
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The use of ambient and
artistic displays. (With
permission of Paay et al. [28])

of ambient displays with aesthetics is believed to raise at-a-glance awareness [23],
to increase inhabitants’ engagement and to promote intrinsic motivations [26, 27].
Figure 1 shows examples of ambient displays using aesthetic content for eco-
feedback and eco-responsibility.

3.1 Design for the Periphery

As a calm technology, ambient displays seamlessly provide information in a non-
intrusive manner in the periphery of an occupant’s attention [26, 29]. According to
[30], calm technology provides background information that does not continuously
force the user to actively pay attention. Jafarinaimi [26] and Ferscha [25] observe
that calm technology allows users to interact with the system when they desire,
rather than passively receive pushed information from the system. Paay et al. [28]
found that the “ambiency” of real-time eco-feedback keeps inhabitants in context,
moving their attention from the periphery to focus, then possibly to actions aimed
at reducing energy use. This focus change relates to Fogg’s notion of a trigger, an
important factor of his theoretical model of behavior change [13].

3.2 Aesthetic Representations

In Human-Computer Interaction, aesthetics and enjoyment are considered to be
essential to the user’s experience [31]. Aesthetics provide motivational affordances
and improves system attractiveness, and is a key dimension of several persuasive
design spaces [11, 27] and design principles [32]. Aesthetic values inspire positive
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emotions as well as intrinsic motivations [33, 34], which in turn may foster sustain-
able behavior change. Artistic representations also avoid negative reinforcements
that some pragmatic and metaphoric visualization techniques may convey [27, 34].

However, as discussed by Petersen et al., designing aesthetic interactive systems
is not limited to providing users with pleasing visual effects [35]. Aesthetic
interaction should promote aesthetics of use as well as aesthetics of appearance.
“Aesthetic of use” is tightly connected to the context of use whereas “aesthetic
of appearance” is limited to superficial beauty. Aesthetic interaction “is about
triggering imagination, it is thought-provoking and encourages people to think
differently about the encountered interactive systems, what they do and how they
might be used differently to serve differentiated goals” [35]. Finally, in the context of
domestic use, aesthetic displays participate to the personal decoration of the interior.

Aesthetic representations fall within three categories: abstract representations,
metaphorical representations, and informative art.

3.2.1 Abstract Representations

Abstract representations are intended to raise curiosity and, from there, to increase
awareness about the system behavior [26]. Abstraction can bundle large data sets
into synthetized at-a-glance information. For instance, in Fig. 2, the particles that
fall from the top of the screen at different speeds, sizes, and colors express the
electricity consumption of an office building in real time [21]. On the other hand,
People Garden message board is a flower garden that informs users about their social
environment [36]: each user is represented by an abstract flower whose shape, color,
and position evolve according to time and the number of messages posted by this
person. Abstraction may also be used to hide personal information [37].

Rodgers & Bartram [23] consider abstraction as a suitable solution for designing
in the periphery. They have explored different data representations via abstract
geometric shapes for a variety of contexts of energy consumption (see Fig. 3-

Fig. 2 Particles as an abstract representation of electricity consumption. (Image taken from [21])
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Fig. 3 (top) Energy consumption through pinwheels visualization (with permission of Rodgers et
al.), (bottom) users’ activities reflected as globular objects. (With permission of Nakajima et al.
[38])

top). Similarly, Nakajima & Lehdonvirta [38] present users’ activities as the
transformation of globular objects (see Fig. 3-bottom).

3.2.2 Metaphorical Representations

Metaphorical representations “refer to the understanding of one idea, or conceptual
domain, in terms of another” [27]. They are often used to visualize data in a pro-
environmental manner, using nature-inspired elements such as trees, animals, earth,
and forest. For instance, Fig. 4 (left) shows a landscape to reflect electricity usage
in the home [34]. The more the appliances are turned on, the more nature-based
elements (here, animals and flowers) appear in the landscape.

3.2.3 Informative Art

Informative art consists of augmenting artworks, such as paintings and posters, with
additional information [30, 40]. For instance, in order to motivate users to walk
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Fig. 4 (left) A Landscape metaphorical representation to illustrate household consumption (with
permission of Nisi et al. [34]), (right) Nuage vert as a metaphorical representation of a city’s energy
consumption. (With permission of Evans et al. [39])

Fig. 5 (left) Mona Lisa’s face reflects user’s walking activities (with permission of Nakajima et al.
[38]), (middle) Mondrian-inspired prototype illustrates email-traffic (with permission of Redström
et al. [30]), (right) earthquake activities inspired from Richard Long’s artworks. (With permission
of Holmquist and Skog [41])

more, the number of steps that users have walked is reflected on Mona Lisa’s face
[38]. As shown in Fig. 5 (left), Mona Lisa looks older if the user has not walked
enough. As another example, the representation of email traffic of Fig. 5 (center)
is inspired from the paintings of Dutch artist Piet Mondrian where each rectangle
represents the email activity of a person [30]. With Stone Garden (Fig. 5 right),
earthquakes are represented as types of stone [41]. The size and position of a stone
represent the magnitude as well as the latitude/longitude of an earthquake. This
representation looks like the artwork of the famous English artist Richard Long.

Although aesthetic representations play an important role in inspiring eco-
responsibility, in some situations, users want to “see the numbers” [23]. The
combination of aesthetics with pragmatic representations is one way to satisfy this
need.

3.3 Combining Aesthetics with Pragmatic Representations

Whereas aesthetic representations are primarily thought-provoking and support at-
a-glance sensemaking, pragmatic representations provide “concrete quantitative
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information” using traditional scientific visualization techniques such as bar charts
and scatter plots. By contrast with aesthetics representations, pragmatic represen-
tations are expected to be explicit and unambiguous. A number of studies have
shown that, although occupants understand the mapping of their energy use into
artistic illustrations, they also need clear quantitative information for a deeper
understanding [23, 34]. Spark [37] and PowerViz [28] illustrate the combined use
of aesthetic and pragmatic representations.

In Fig. 6, the Spark system uses shapes of different colors and sizes to represent
users’ daily activities complemented with a quantitative chart-based representation.

Similarly, PowerViz combines a metaphorical representation with analytic tools
to help inhabitants to understand their domestic consumption at the appliance level
[28]. As shown in Fig. 7, PowerViz consists of a screen saver, a usage history,
and an appliance usage. The screen saver uses a metaphorical visualization to
“create ongoing engagement with the system while giving a playful overview of
total household energy consumption” [28]. The other two displays are intended for
in-depth analysis of energy consumption over time as well as for comparing the
energy consumption of individual appliances. Comparative analysis may allow the
detection of “greedy” appliances whose usage may then be reduced.

The combined use of aesthetic and pragmatic representations raises the following
question: “How to provide an easy transition between the representations?” In Pow-
erViz, switching from the metaphorical view to the pragmatic views is performed
by touching the screen. Although touching involves minimal motor effort, it is not
sufficient to support the change at the cognitive level. We address this question with
the concept of Zoomable UI coupled with Focus+context techniques.

Fig. 6 Spark: Art-based visualizations of people activities using various types of shapes (top, left
to right): Spiral, Rings, Bucket, Pollock, (bottom) users can also track their activities as a bar chart.
(With permission of Fan et al. [37])
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Fig. 7 (left) PowerViz: light bulbs metaphorical real-time representation of the domestic power
usage at the appliance level, (right) screens for in-depth analysis: (from top to bottom) Usage
History and Appliance usage. (With permission of Paay et al. [28])

4 Zoomable User Interface and Focus+Context Techniques

Zoomable user interfaces allow users to change the scale of graphical contents in
order to see more or less details. Zoomable user interfaces are known to provide
an easy transition between multiple levels of details. They are therefore good
candidates to satisfy “easy transition to more in-depth information,” a criterion that
Mankoff et al. recommend for evaluating the usability and effectiveness of ambient
information systems [42].

However, zooming introduces a temporal separation, leaving the user to assimi-
late and remember the relations between views [43]. Zooming is thus not sufficient
to support smooth transitions between radically distinct representations as exem-
plified by PowerViz when it comes to switching between the metaphorical and the
pragmatic representations. Focus+context techniques, on the other hand, suppress
temporal separation.

4.1 Focus+Context Techniques

Focus+Context “integrates the [visual] focus and its [visual] context into a single
display where all parts are concurrently visible: The focus is displayed seamlessly
within its surrounding context.” [43]. This technique eliminates the temporal
separation used by zooming and, at the same time, minimizes the spatial separation
by displaying the focused item within its context. “By presenting all regions in
a single coherent display, focus+context systems aim to decrease the short term
memory load associated with assimilating distinct views of a system, and thus
potentially improve user ability to comprehend and manipulate the information”
[43].



The Mondrian User Interface Pattern: Inspiring Eco-responsibility in Homes 415

Fig. 8 DateLens [44] explores the Focus+Context approach for a calendar display. (With
permission of Cockburn et al. [43])

Fisheye lens, a popular focus+context technique, combines entirety and details
in a single view using various forms of visual distortion. Visual distortion must be
designed carefully as it may impede legibility and interpretation [43]. Tablelens [45]
and DateLens [44], illustrated in Fig. 8, both use a fisheye geometric transformation
that preserves the rectangular format of all the regions of the display.

TableLens provides a condensed overview of large datasets by displaying rows
and columns as rectangular bars. Users can expand a specific block of information
based on the selected row and column. The zoomed block reveals additional data
values. Similarly, DateLens (Fig. 8-right) uses a fisheye Focus+Context approach
for displaying calendars on small-size screens.

4.2 Semantic Zoom

Focus+Context results in magnifying the focused region while shrinking the other
areas. Semantic zoom is generally used to adapt the presentation of data items at
different scale levels based on the available space. DateLens, for example, uses three
zoom factors simultaneously: information for the day of interest is fully available
as text in a focused large rectangular area. The days of the week that form the close
temporal context of the day of interest show the number of meetings as colored
vertical bars displayed in smaller vertical rectangles, while the other days, further
away from the temporal context, are denoted as a day number in even smaller
rectangles (see Fig. 8). A major difficulty for system designers is first to identify
the information users need at each level of details, and then to decide how this
information is represented at different scales.

The Mondrian UI pattern, presented next, brings together the key results
discussed above into a holistic interaction framework that system developers can
use to integrate multiple forms of eco-responsibility techniques.
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5 The Mondrian User Interface Pattern

In this section, we provide the overall description of the Mondrian UI pattern. We
explain the benefits provided by the artistic style that Mondrian developed for his
Compositions, and explain how we have augmented Mondrian’s Compositions with
interactive capabilities.

5.1 Overall Description

As Fig. 9 shows, the Mondrian UI pattern organizes the user interface of a system
as a focus+context tiled display, where each tile can be zoomed in and zoomed
out to support multilevel representations of the same semantic information while
maintaining informational context accessible. In order to minimize attentional

Fig. 9 The overall structure and interactive principles of the Mondrian UI pattern
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effort, the top-level content of a tile is intended to communicate information at a
glance while the other levels provide analytic details on demand with minimalist
one-click interaction.

Each tile of the Mondrian UI is populated with a specific type of content:
eco-inspiring content and/or utilitarian content. Eco-inspiring content includes
spatiotemporal information about energy use, recommendations and explanations,
social incentives such as intra- and inter-social comparisons and gaming. Utilities
are services that family members have the habit of consulting frequently such as
the weather forecast, stock market, time, or the local traffic conditions. In addition
to semantic zoom, tiles may include horizontal scrolling as a mechanism to switch
between sets of multilevel representations. This can be used to switch from a set of
pragmatic representations to a set of artistic and metaphoric expressions of the same
semantic information.

In order to be unavoidable without being intrusive, the Mondrian UI pattern
has been devised as an always-on ambient display running on tablets located in
a socializing space of the home such as the kitchen or the entrance hall [6]. As
an element of the interior decoration, the ambient display has to be aesthetically
pleasing and attractive. This requirement for aesthetics has motivated the use of
Mondrian’s abstract Compositions to structure the display.

5.2 Mondrian’s Abstract Compositions and Their Benefits

As illustrated by the Composition shown in Fig. 10 (left), Mondrian uses black,
or gray, lines to divide the canvas into rectangles of different sizes, and paints the
rectangles in primary colors. For the De Stijl avant-garde movement, Mondrian’s
Compositions define a new aesthetic language. From our perspective, the Composi-
tions bring additional benefits:

• Familiarity with tiled screens as used by popular systems such as Windows
applications (see illustration in Fig. 10, right).

Fig. 10 (left) An example of Mondrian’s composition, (right) Windows 8 screen consists of tiles,
each tile referring to one block of functions ((c) Microsoft)
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• Easy mapping between the rectangles and information: rectangles can be pop-
ulated with specific types of content and primary colors can serve to convey
content types.

• Direct application of the focus+context technique, as Mondrian’s rectangles are
of different sizes.

• Extensibility and support for iterative and incremental development: rectangles
can be added or removed in phase with the development process of the system.
Alternatively, some rectangles can be populated with content while others can
be left as empty “pure Mondrian” tiles for further increments. In addition, the
design of the content of a particular rectangle can be modified iteratively without
affecting the others.

The next paragraph shows how Mondrian’s Compositions can be augmented with
interactive capabilities.

5.3 Mondrian’s Compositions Augmented with Multilevel
Interaction

As discussed above, people’s attention investment depends on the context of use
[46]. Users may feel too busy to interact with the system, they may forget to use it,
or may have lost interest. On the other hand, when mentally available, they may want
to explore the system in depth, to learn and understand, or to find the cause of some
unexpected system behavior. We propose to augment Mondrian’s Compositions
with multilevel interaction that enables users to transition freely between their levels
of attention. Multilevel interaction combines focus+context and semantic zoom
techniques with several levels of physical involvement.

5.3.1 Three Levels of Interaction: At-A-Glance, At-One-Click,
At-Additional Zoom

At-a-glance UI. This level of interaction does not require any physical contact with
the display, except looking at the screen. Utilitarian content of daily interest along
with a well-thought out location of the display in the home, for example, the kitchen,
makes the display physically unavoidable, thus “glanceable.” At this level, eco-
inspiring content is represented in a way that makes sense at a glance, typically
using metaphorical representations.

At-One-click UI. This level of interaction implies direct and short interaction
with the system, typically accepting an eco-challenge from the system or selecting
another tile related to eco-information. This class of interaction aims at involving
the user in a more complex process beyond glancing at the display.
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At-Additional-zoom UI. At the next level of interaction, the UI enables the user
to explore the system facilities in depth by zooming in and out while supporting
transitioning between the Mondrian’s tiles.

5.3.2 Transitioning Between the Mondrian’s Tiles

Figure 11 illustrates the two types of transition: (a) transitions from ambient to focus
and (b) transitions within a focused view.

Figure 11a-left shows an ambient screen composed of 6 tiles. By tapping a tile—
in this example Tile 1, the tile of interest is magnified while the other tiles are shrunk
(cf. 11-a-center). Focus is now on Tile 1 and its content is semantically zoomed
in while the content of the other tiles are zoomed out. As illustrated in Fig. 11a-
right, moving the focus from Tile 1 to Tile 3 is performed in one single action by
tapping the “shrunk Tile 3” shown in 11-a-center. As the focus migrates from tile
to tile, the geometric reconfiguration of the tiles as well as the coloring used by the
focus+context technique preserves the Mondrian’s style. By doing so, we support
both aesthetics of use and aesthetics of appearance.

Some tiles, such as Tile 1 in Fig. 11b, may offer more than one level of
focus+context interaction. Within such tiles, the same interactive behavior applies
as described above. For example, focused Tile 1 is zoomed in as 4 sub-tiles denoted
as a, b, c, d. Tapping sub-tile a brings the focus on 1-a (center), and from there,
tapping b brings the focus to 1-b (right).

We now illustrate the application of the Mondrian UI pattern with the user
interface of an e-coach system.

Fig. 11 (a) Transitions from the ambient screen (left) to focused Tile 1 (center) and from Tile 1
(center) to Tile 3 (right), (b) transitions within focused Tile 1 (left) to focused Tile 1-a (center) and
from Tile 1-a (center) to Tile 1-b (left)
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6 The E-coach Mondrian User Interface

The user interface described in this section is the front-end of a cooperative e-
coach management system for domestic use. At the time of this writing, this user
interface serves as a proof of concept for the Mondrian UI pattern. Some tiles have
been implemented and validated with end-users in controlled experiments [47], but
deployment in real-world settings has yet to be performed.

6.1 Overall Structure of the e-Coach UI

As Fig. 12 shows, the overall structure of the e-coach UI is a combination of
utilitarian and eco-inspiring tiles whose colors and interactive behavior comply with
the Mondrian UI pattern. Utilities include the weather forecast and the current date.
Eco-information is expressed as spatial, temporal, or social incentives, as well as in
terms of explainable recommendations and human control. To serve as an ambient
display, the tiles of the home screen are intended to make sense at a glance.

In the following, we describe the content of the tiles as users move their focus of
interest.

Fig. 12 The home screen of the e-coach is an “at-a-glance ambient display” that applies the
Mondrian UI pattern
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6.2 Spatial Eco-information

Spatial eco-information relates to the home as a set of places. A place is a space
where specific types of activities and interactions take place. As an initial prototype
design, we have assimilated places to rooms, although in real-world settings, a
physical room may include distinct places. Spatial eco-information is displayed on
the representation of an abstracted floor plan whose rectangles comply with the
Mondrian style.

6.2.1 At-A-Glance Spatial Eco-information

As shown in Fig. 13, a circle is used to represent the overall status of the habitat. The
color and animation of the circle are inspired from the semantics of traffic lights:
green when everything is fine (Go! You can leave for work, as illustrated in Fig.
12), yellow as a warning signal (there may be something to check before leaving
for work), or, as illustrated in Fig. 13, blinking red to force attention (Stop! Action
is required). The rooms/places of the floor plan that need to be checked display an
icon that denotes the level of urgency and cause of the problem.

Fig. 13 The blinking red
circle denotes the existence of
problem(s): icons represent
the issues that need human
attention (e.g., water is
running in the kitchen where
no one is present)
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Note that the tile of the weather forecast is purposefully close to the spatial
representation of the habitat to augment the chance that people check the overall
status of their home frequently.

6.2.2 At-One-Click Spatial Eco-representation

Tapping the spatial eco-information tile of Fig. 13 results in the display presented
in Fig. 14. The inhabitant has now access to additional information to analyze the
situation, to understand the impact of the household behavior, and from there, to
decide to behave differently. In this example, the outdoor of the office is opened.
Although it is currently 1:35 pm and sunny, the outside temperature is 8 ◦C, while
that of the office is 22 ◦C. Consequently, the air flows towards the exterior resulting
in energy loss. If we refer to the Habit Alteration Model [16] and to the Dual
Process theory, the repetition of this situation should break the habit of leaving doors
inadvertently opened, and to form new eco-responsible habits.

Fig. 14 One-click access to spatial eco-information of the home. Arrows show how airflows
circulate within the habitat
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6.2.3 Additional Zoom-In of Spatial Eco-information

By zooming the tile of a room/place one level down, the inhabitant obtains the
temporal evolution of the ambient conditions of the room. Figure 15 shows the
display that results when tapping the office tile of Fig. 14.

Whereas “one-click eco-visualization” shows the value of the key indicators in
real time, additional zoom-in allows inhabitants to monitor the indicators of a room
through time. In this situation, a chronogram shows the “heart beat” of the room
at the top of the zoomed-in tile. In the example of Fig. 15, the chronogram shows
that state changes are concentrated in the morning. The red vertical ruler allows the
exploration of the states across the time lines so that causalities between the states
can be detected. In the example, at 8:05 am, the temperature in the office was 22 ◦C,
the office was occupied by 2 persons, and the level of CO2 was fine as the window
was left opened ajar for a while early in the morning.

Whereas “additional zoom-in of room tiles” allows access to information that is
primarily space-based, eco-information discussed next is primarily time-based.

Fig. 15 Additional zoom-in of the office to support analytic tasks. The tiles of the other rooms
display overview indicators
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6.3 Temporal Eco-information Combined with Utilitarian
Information

Our representation of temporal eco-information is based on the popular clock
metaphor. Clock-based visualizations are often used in persuasive interactive
systems such as eForecast [48] and Clock Cast [49] to indicate when energy price
is cheap. Similarly, EnergyAwareClock [50] uses a clock to display domestic 24-h
electricity consumption. The utilitarian function of a clock is also a key factor for
using this metaphor.

6.3.1 At-A-Glance Temporal Eco-information

As shown in Fig. 12, the clock tile occupies most of the screen real estate to promote
its utilitarian function. An analog clock is augmented with an abstract representation
of the hourly consumptions of the household on a 24-h time period. We have used
a spiral-based layout, as this technique is appropriate for the analysis of cyclic data
[51, 52].

The spiral-based visualization presented in Fig. 12 shows both real-time and past
consumptions of electricity, water and heater, each one associated with a colored
circle. For ambient purpose, this visualization provides an at-a-glance overview and
progress of the consumptions in a way that does not overload the interface and that
keeps the aesthetics pleasant.

At-One-Click and At-Additional-Zoom Temporal Eco-information

Our contribution is limited to the “at-a-glance” level of interaction. For “at-
one-click” and “additional zoom-in,” we recommend drawing from the research
developed on interactive visualizations of temporal data. For example, Activelec is
an interactive visualization system that helps households to analyze their consump-
tion [53].

6.4 Social Eco-information

At the time of this writing, the prototype covers social eco-information in a very
limited way. This is illustrated in Fig. 12 with the tiles at the top-right corner of
the display. These tiles include a combination of goal setting, challenges, and social
comparison. In most theories of behavior change, goal setting and challenges are
effective incentives for triggering eco-responsibility [12]. In addition, it is believed
that goal setting is even more effective when coupled with feedback about self-
monitoring as well as related to social and normative comparisons [54–56].
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Fig. 16 (left) Social eco-information as goal setting and social comparison, (right) the correspond-
ing at-one-click view

As illustrated in Fig. 16-left, occupants can track their progression at a glance
and have an idea about how their goal compares with that of others. Figure 16-right
shows an example of “at-one-click” social eco-information.

So far, we have described the tiles of the Mondrian UI with examples of eco-
information that mainly serves as eco-feedback. We need now to address human
control and collaboration with the e-coach.

6.5 Human Control and Collaboration

Informed by users’ preferences in terms of thermal comfort, air quality, and cost,
the e-coach system generates recommendations along with their explanations. The
tile with a black background at the bottom center of the Mondrian UI is dedicated
to this human-system collaboration.

6.5.1 At-A-Glance Human Control and Recommendations

As shown in Fig. 12, the collaboration tile tells the occupant which action to perform
next so that the ambient comfort of the home can be maintained in accordance with
the household preferences. In this example, the e-coach recommends to open the
door of the office for 1 h between 14:00 and 15:00. If needed, a “See why” button
tells why this action is appropriate. The green happy status-man indicates that, so
far, all recommended actions have been performed and that the system can maintain
the ambient comfort as requested.
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Fig. 17 At-one-click human control and recommendations. The action plan consists of a sequence
of actions recommended to users in order to maintain comfort in conformity with their preferences

6.5.2 At-One-Click Human Control and Recommendations

Figure 17 shows the display when the focus moves to the “Human Control and
Recommendations” tile. Recommendations are presented as a sequence of actions,
such as opening and closing windows, that the system is unable to perform on
human’s behalf, but that should be performed so that ambient comfort is maintained
in conformity with the users’ preferences. This action plan, however, is not coercive:
it is browsable and editable (recommended actions can be suppressed and the system
will note this); the plan may be executed partially by the users, or even completely
ignored. The status man is updated accordingly to show how far the occupant is, or
will be, from optimal behavior.

6.5.3 Additional Zoom-In of the Human Control and Recommendations

Additional zooming allows users to express their preferences in terms of cost,
thermal comfort, and air quality, using the TOP-sliders shown in Fig. 18. Many
studies show that people want to stay in control and be involved in the housing
management process. Giving the control to occupants is key to inspire eco-
responsibility.
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Fig. 18 The TOP-Sliders allow users to find the best tradeoff between conflicting criteria, financial
cost, thermal comfort, and air quality

The TOP-Sliders help occupants to find optimal compromises between tightly
coupled and conflicting criteria such as cost, temperature, and air quality. The
precise details of the interactive behavior of the TOP-sliders, along with their
usability, are described in [47]. Once the user has found the best compromise, the
e-coach generates the appropriate action plan, which in turn can be edited, possibly
leading users to modify their preferences (or just leave things as they are), and with
time, learn and move towards eco-responsible behavior.

The combined and simultaneous availability of eco-information, TOP-Sliders,
and explainable and editable action plan at multiple levels of interaction is one
way “to support Human-System collaborative interaction in the context of eco-
responsibility.”

7 Conclusion

Our contribution is the conceptual Mondrian user interface aiming at supporting
long-term user interaction to accompany a behavior change and supporting multiple
contexts of use. The design rationale relies on applying ambient/artistic approaches
in an always-on display, on the combination of pragmatic and artistic representa-
tions, and on semantic zoom techniques to provide a multilevel user interaction. As
a proof of concept, we instantiated this concept for INVOLVED project’s e-coach
engine [5], aiming at supporting end-users in promoting sustainable behavior in
energy in residential context. Household contexts introduce various constraints such
as appliance placement, visibility, aesthetic choices, and interactive affordances
[23]. Besides, home settings include issues related to how occupants are willing
to interact with the smart system, and how to effectively design user interface that
adapt to these constraints and complexities.

We emphasize that the purpose of this study is an exploration of practical design
approaches and the identification of very basic interactional bricks rather than an



428 Y. Laurillau et al.

evaluative study. We conducted a literature review about current persuasive system
for energy in household. We present our design solution and some interactional
bricks with justification of chosen approaches. However, there exist some aspects
that could be improved.

7.1 Personalization

As an e-coach system for household, it needs to adapt to different contexts, purposes,
and especially people. It is relevant to one criticism of persuasive technology about
how designers define what is “good” or “bad” for users [54]. Because there is
no “one-size-fit-all” solution, hence the needs to personalize the system in terms
of functionalities, design elements are obvious. For instance, in our case, rather
than Mondrian style, alternative modes could be given for customization purpose.
Besides, we could imagine artistic styles as items that can only be unlocked for
usage when occupants accomplished certain tasks and challenges.

7.2 Long-Term Study

As behavior change is a long-term and complex process, the study must involve a
longitudinal evaluation in order to measure the persuasive aspect, and more impor-
tantly in our case, how chosen design elements affect the change. Therefore, future
works include a longitudinal study of whether persuasive interaction respecting
on user values actually promoted desired change in energy consuming behaviors.
Currently, a long-term evaluation is out of the scope of this work but constitutes a
mandatory perspective.
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Faults and Failures in Smart Buildings: A
New Tool for Diagnosis

Houda Najeh, Mahendra Pratap Singh, and Stephane Ploix

1 Introduction

Building systems are becoming more and more efficient as well as deliver useful
building services that make occupants comfortable by providing them thermal com-
fort, air quality, . . . They are an important provider of technology systems as well as
they include HVAC systems, sophisticated controllers, energy management systems,
and a large number of sensors. However, they are vulnerable to various faults,
failures, and various events that could cause a discrepancy in building performance
and consequently a discomfort to occupants. Fault diagnosis and maintenance of
a whole building system is a complex task to perform. Available building fault
detection and diagnosis tools are only capable of performing fault detection using
behavioral constraints analysis. Singh et al. [53] proposes to use heterogeneous tests
with validity constraints in the context of building fault diagnosis, but the proposed
approach assumes that the sensors are reliable.

In a building system, a universal model, i.e., valid whatever the context, is
difficult to set up . Different parts, such as the building envelop, the use and behavior
of occupants, the devices for energy management, and various appliances interact,
and it is difficult to model this interaction and the model is in most cases rather good
±◦C. Diagnosis reasoning must differ in different scenarios, e.g., fault detection and
diagnosis approaches should be different for normal working days and a vacation
period. However, there are contextual models with limited validity. The problem
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is that the validity is measured with potentially faulty sensors. If these sensors are
faulty, the diagnostic result is not guaranteed, and there is a need for an indicator to
assess a level of validity of a test. Nevertheless, the diagnostic result is calculated
from a set of tests, each one defined by its level of validity. The question that arises
is how to conclude in terms of diagnosis and how to take into account the level of
validity in the diagnosis.

A test relies on several variables and that all the data should be available along
a given time period. However, the data gaps are the main sensor fault in buildings
and performing test could be an issue. Sensor values are not uniformly sampled, and
the delay depends on the measured value and the type of sensor. The problem is to
decide from which delay the sensor becomes faulty?

The objective of this work is to highlight these challenges as well as to provide
a strategy about how to solve them. This chapter is motivated by new challenges
as well as new solutions for diagnosis in building are proposed. A state of the
art about diagnosis in buildings is presented in Sect. 2. In Sect. 3, the major
challenges that lie in this problem domain are identified. Section 4 discusses the
need for new services for diagnosis in building. Sections 5 and 6 present respectively
the application example and the proposed methodologies for diagnostic reasoning.
Finally, a conclusion is presented in Sect. 7.

2 Fault Diagnosis in Buildings: State of the Art

2.1 Faults in Buildings

It is difficult to obtain detailed information on energy consumption in buildings
since it requires more detailed monitoring and measurements than what is usually
available. However, the energy consumption yearly report [58] shows how the total
energy consumption can be divided into different end-uses in buildings (Table 1).
The statistics show that the energy end-uses of commercial building are as follows:
lighting 20.2%, spacing heating 16.0%, spacing cooling 14.5%, ventilation 9.1%,
refrigeration 6.6%, and other end-uses 33.6% [57, 58]. The faults in the system can
occur in connection with each of these end-uses. This figure reveals how costly
a fault could be in terms of its energy use. Studies show that 25–45% of energy
HVAC energy consumptions are wasted due to faults, i.e., to a difference between
the characteristic observed on the device and the reference characteristic when it
is out of specification, including improper control logic and strategy, malfunction
of controllers and controlled devices, etc. [1]. In addition, the waste of energy is
also due to a non-optimal control. In fact, a number of studies [35, 39] indicated
that optimal control strategies can reduce the energy waste and improve the overall
building energy efficiency.
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Table 1 Commercial energy
end-use spilt

Source Percentage

Lighting 20%

Space heating 16%

Space cooling 15%

Ventilation 9%

Refrigeration 7%

Water heating 4%

Electronics 4%

Computers 4%

Cooking 1%

Other 15%

Adjust to SEDS 5%

Common faults in buildings are:

Breakdown
The assets within buildings may be classified as parts of several systems according
to the services they provide to owners. For example, HVAC systems provide hot
water and heat and electrical systems provide electric power and possibly heat.
However, each building system breaks down over time, and regular maintenance,
repairs, and renewals are required to keep a building in working order. For example,
items such as light fixtures and control panels in electrical part in buildings are
subject to breakdown. In addition, the HVAC system in buildings are responsible for
the heating, domestic hot water, ventilation, and cooling of a building. It consists of
assets such as pumps, filters, boilers, fans, and air-conditioning equipment. These
assets tend to have short to medium service lives, breaking down due to regular
wear.

Misusage
Another important type of faults in buildings is misusage, but it has not yet received
much attention in the scientific literature. Usage in general refers to the function
of serving or using something. We must think and conceive quality, not only from
techniques and standards but also from the user as a human and social being.

When users occupy a building, they appropriate these three entities: envelope,
equipment, and internal organization, and adjust them as much as possible to their
own comfort level. Occupants interact with the environment around them. One of
the main criteria of the comfort of occupants is the control of these interactions. In
general, users prefer simple and modular equipment and systems. All stages of the
project life influence the final quality of the building. Therefore, even if the use of a
building is only effective during its operational phase, it is important to ensure that
certain good practices are followed during each stage of the building’s life in order
to guarantee good quality of use.

The notion of quality of use is a factor that must be integrated when planning
the building. About 65% of the discomfort encountered during the follow-up is due
to errors made during the programming and design phases. The evolution of home
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automation in buildings certainly requires a new grip on the part of the user, but it
must not be forgotten that this is the building that must adapt to the needs of the user
and not the other way around.

Misuse of the building may have effects harmful to:

• The comfort of the user
• The health of the user
• The durability of the building
• The environment with overconsumption linked to poor control of the equipment

The bad uses are almost the same in any residential dwelling. The consideration of
human behavior is essential in the application of diagnosis in buildings. Let us take
the following examples: frequent door opening and use of an important number of
appliances.

Human Mistake
Human mistake is another important type of faults in buildings which has not
received an adequate level of attention. Beyond the construction literature, it is
common ground that human error, not technology, predominates in failures of all
types [22, 48]. Examples of such faults are HVAC left on when space is unoccupied.

Human mistake is a very known fault type in diagnosis domain. A lot of studies
like [5] show the role of early detection of human errors in building projects.

Wrong Configuration
Further investigation shows that faults due to the wrong configuration are also a
typical fault in new buildings, which has not received an adequate level of attention
[38, 55]. Examples of such faults are: wrongly configured building equipment,
where the setting of the equipment is wrong and misplaced or wrongly wired sensors
and actuators.

Data Failure
Data failure is another important type of faults in buildings. The applications for
sensor technology are increasing rapidly. Sensors are currently being used for
applications in buildings. Sensors are continually being developed with advanced
capabilities, such as more reliable data extracting. These sensors can also be used
to better control the building but also to estimate occupant practices essential for
energy consumption by estimating the number of occupants per area and their
metabolic contribution, their activities, and their routines [2]. With the cost and size
of sensors becoming cheaper and smaller at a fast rate, it has been forecasted that
sensors in the near future will be installed in dense arrays to eventually monitor
the entire built environment [17]. There is currently a gap between modern sensing
technologies and their application and applicability in the field for monitoring the
performance of buildings. Research and experimental validation tests are required
to assess the limitations, challenges, and performance of installing new sensor
technologies to monitor certain aspects of concrete structures [51]. The concept of
healthy sensors is known in the literature. Authors like [33] assumed that there are
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two groups of sensors: sensors that correctly measure structural responses (termed
as “reference sensors”) and failed (or uncertain) sensors.

Roth et al. [49] concluded that typical faults in commercial buildings consist
of 13 types of faults. The annual impact of each of them in terms of energy
consumption is presented in Fig. 1.

All the types of faults mentioned above are faults of the type “normal faults,”
i.e., easy to reveal. On the other hand, there are other insidious types of faults. For
example, the absence of noise in the ventilation system does not imply no fault, but
no fault has been revealed.

A few studies like [25] defined the concept of insidious faults. In this study,
authors show that rising damp refers to ground water seeping up through the footings
and base walling of houses due to the absence of damp proof courses, or these being
poorly edited or dislodged. It is an insidious fault that can be difficult to address,
without understanding scientific concepts such as capillary action of water, drainage,
and hydrostatic pressure of ground water.

Fault
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Duct leakage
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space unoccupied

Light left on when
space unoccupied
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Fig. 1 The annual impact of faults in terms of energy consumption [49]
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2.2 Overview of General Diagnosis Methods

Over recent years, FDD became an appealing area of research for building
researchers. Various methodologies and tools have been developed to identify the
faults in buildings to track the whole building performance.

Plenty of published research and survey papers are available to classify the
building diagnostic techniques [27, 55]. Lately, building’s faults and failures are
covered at a more granular level with an impact analysis in the terms of energy
consumption and financial consequences [18, 49]. Hybrid diagnosis approaches
have shown an improved result over the conventional model-based diagnosis
approaches [15, 32].

Katipamula and Brambley [27] presents a detailed review of fault detection and
diagnosis techniques in buildings.

In August 1996 (Revised in 2001), International energy agency (IEA) published
Annex-25, “Building optimization and fault diagnosis source book” [12, 24]. This
work is considered as a beginning of fault detection and diagnosis in smart buildings.
The aim of this work is to highlight the major faults that affect HVAC systems
and controllers. In 2002, a technical report called NBCIP1 was published by Iowa
Energy Center and United States Environmental Protection Agency (USEPA) [4].
The report articulates 67 case studies with 110 field studies for buildings. The
aim of this work is to highlight the main source of faults in buildings coming
from humans, software, and hardware. In more recent works, the Automatic Build-
ing Commissioning Analysis Tool (ABCAT), and Whole Building Diagnostician
(WBD) developed by Texas A& M University and Pacific Northwest National
Laboratory (PNNL) have been developed as new tools for identifying the whole
building level faults [7, 29]. Recently, the Lawrence Berkeley National Laboratory
and Simulation a model-based diagnostic tool has been developed [6].

In general, all the major approaches that have been used for building diagnoses
are quantitative (model-based), qualitative (rule-based), or signal-based methods.

2.2.1 Building Fault Diagnosis Using Model-Based Techniques

Model-based diagnosis (MBD) uses an explicit model of the system under diag-
nosis. It can be qualitative or quantitative models. In general, all the model-based
diagnosis approaches consist of three important stages: symptom generation, symp-
tom evaluation, and fault isolation.

Quantitative model-based approaches are based on physical models and require
detailed mathematical relations among all the operating variables with the char-
acteristic of all components within the system. Mostly, these models are in form
of a differential equation or state-space model and presume to have additional
knowledge of the normal operation of system under the investigation. Unlike,
the quantitative model-based diagnosis, qualitative model-based uses qualitative
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reasoning or knowledge-based information to conclude whether system or its
components are in the faulty or normal state.

Dexter and Ngo [12] presented a fuzzy model to diagnose several faults in the air
handling unit. Through comparing the outputs of the fuzzy model with those of the
reference model, the faults that occurred in the air handling unit can be diagnosed.
Norford et al. [44] developed a physical model to detect commonly occurred faults
in the air handling unit. Castro [9] presented a physical model to detect the faults
in the chillers. Wang and Chen [59] also presented the model-based strategy to
diagnose the sensor faults in the chilling plant system. Yu et al. [63] presented
a virtual model to estimate the supply airflow rate in the rooftop air-conditioning
units. Employing the mass balance and energy balance, the physical residues can be
calculated by comparing the outputs of the models with real measurements. Besides
the physical diagnosis models, the gray-box [26] and black-box [3] models have also
been developed to diagnose the chiller faults. Generally, the model-based methods
[62] have been most widely developed in the HVAC systems. The application of the
model-based FDD method relies on the accurate mathematical physical models.

Qualitative model-based approach uses a set of rules to diagnose the system
abnormality. For example, [19] proposed a fault diagnosis of air-conditioning
systems based on a qualitative bond graph. The main privilege of model-based
techniques is that they require only a knowledge of normal operation and a reasoning
method based on consistency. The model-based diagnosis has been developed by
two communities: fault detection and isolation (FDI) community in the field of
automatic control and Logical Diagnosis (DX) in the field of artificial intelligence
(AI).

Model-based fault detection and isolation methods rely on an analytical model, derived
from a physical relation. In connection with buildings, it is really impossible to develop a
complete physical-model matching accurately the reality for a whole building system. The
modeling of various phenomenon like heat transfer from facade or unplanned occupancy is
a challenge. In addition, they believe only in behavioral constraints and assumed to be true
in all circumstances. However, universally valid behavioral models i.e. valid whatever the
contexts are difficult to set up.

Model-based fault diagnosis and isolation techniques assumes that model represents the
reality of building operation independately of the current context and any fault can be
detected by measuring the physical variables and checking the consistency with a reference
model. A physical variable is a potentially observable element of information about the
actual state of a building system. Nevertheless, universal models are difficult to set up.
Erroneous all-context models might lead to invalid diagnoses [45].

These approaches are relevant for data failure, human mistake, and breakdown type
faults, but they augmented a full analytical model.

2.2.2 Building Fault Diagnosis Using Rule-Based Techniques

Knowledge-Based FDD methods require a sufficient amount of historic data.
These methods use methods from artificial intelligence to extract the knowledge
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based from the historic data reflecting the relationship between system variables.
The behavior of the system is monitored in real-time and is compared with the
knowledge base to detect possible deviations and make fault diagnosis decisions.
Depending on the knowledge extraction process in this category, the methods could
be divided into qualitative methods [23, 40] and quantitative methods [34, 64]. Some
of the most popular qualitative knowledge-based FDD methods are those that are
based on expert systems. This approach basically evaluates real-time data according
to a set of rules, which are derived from the knowledge of an expert human operator.

There are a number of papers that discuss expert system applications for fault
diagnosis of specific systems. Initial attempts at the application of expert systems
for fault diagnosis can be found in [10, 43]. The objectives of this expert system
were twofold. First, the system classifies the reasons for the observed problem as an
operator error, equipment failure, or system disturbance. Second, the expert system
offers prescriptive remedies to restore the process to normal operation.

In parallel, a contemporary group of researchers also focused on qualitative
models for fault diagnosis analysis. In buildings, rule-based qualitative models are
used to diagnose faults in air handling units or other parts of HVAC [21, 28, 50].
With a set of rules, the faults that occurred in the air handling unit can be diagnosed
successfully. Also, rule-based diagnosis methods are also adopted in the literature to
manage the whole building [13]. In this work, authors present an intelligent decision
support model using rule sets based on a typical building energy management sys-
tem. In addition, the model’s impact on the energy consumption and indoor quality
of a typical office building in Greece is presented. The model can control how the
building operational data deviates from the settings as well as carry out diagnosis
of internal conditions and optimize building’s energy operation. In this context,
the integrated “decision support model” can contribute to the management of the
daily energy operations of a typical building, related to the energy consumption, by
incorporating the following requirements in the best possible way: the guarantee of
the desirable levels of living quality in all building’s rooms and the necessity for
energy savings.

Qualitative models are not enough to cover all the possible actions by following rules.
Moreover, tests derived from rules are challenged by their validity. For instance, testing
indoor temperature without validating door or window position might lead to a false alarm.

In addition, the application of rule-based FDD methods depends on the rules constructed.
For example, for testing a HVAC system using a set of rules, if the rules are not detailed
enough, the diagnosis efficiency may be limited.

These approaches are relevant to human mistake and breakdown type faults.

2.2.3 Building Fault Diagnosis Using Signal-Based Techniques

Signal-based FDD methods mainly use signals, which are obtained from measure-
ments for diagnostics [20]. The algorithms within this category derive symptoms of
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a healthy system as an output of the symptom analysis and the knowledge of the
system, which are at disposal. When a system is faulty, symptoms that appear in
the measured signal differ from those of healthy systems. Typically, these methods
analyze signals in either time domain or frequency domain. However, there are also
methods in this category that use both time and frequency domains. The difference
between signal-based and rule-based diagnostic methods is explained by the fact
that signal-based methods are based on signal processing techniques, whereas rule-
based methods are based on rules coded in the form of if-then-else statements.

As a new FDD method, recently, the data-driven methods have been paid more
attention in HVAC field. The data-driven method such as principal component anal-
ysis [14], neural network [65], etc.. . . never need to build the accurate mathematical
physical models or detailed experience rules.

Authors in [30] presented a general regression neural network in the air handling
unit. It can be used to diagnose the abrupt and performance degradation faults. Wang
and Chen [59] developed a detection model based on neural network in the variable
air volume systems. The neural network can be used to diagnose the faults of
outdoor air, supply air, and return air flow rate sensors after training using operation
data. A fault detection and diagnosis strategy using combined neural networks and
subtractive clustering analysis is presented in [16].

Actually, the data-driven FDD methods usually take advantage of the intrinsic
relations among the various data. Through calculating the deep intrinsic mathematic
relations of the variables, the normal and abnormal operation can be distinguished.
When faults occur, the intrinsic relations among variables will be broken, which is
different from that under normal conditions.

These methods are relevant for data failure and might detect fault signature for
breakdown type fault.

Most signal-based fault detection and isolation techniques in the literature are interested
only by the following known fault types: drift, outliers and bias. The occurrence of data gap
faults has also not been given an adequate span of attention in the academia.

3 Diagnosis in Buildings: New Challenges

Current work highlights the following key challenges in building fault diagnosis:

• Complexity
• Modeling difficulty
• No universal model
• Unreliable sensors in buildings

Following sub-sections explain these issues and proposed methodology in detail.
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3.1 Complexity

The first challenge is complexity in testing a whole building system using both rule
and pure model-based tests. Buildings are complex systems, and the relations among
the different sub-systems are intricated.

Buildings are becoming more complex because of the higher expectations of
users as well as the ongoing integration of many technologies. They are equipped
with HVAC systems, sensors, building automation system, and supervisory con-
trollers.

According to [31], the problems in building complex systems often arise in the
interfaces between the various elements such as hardware, software, and human
components.

Complexity is defined as uncertainty in [8, 60], ambiguity in [36], variability in
[46], and dynamism in [37, 61], which are caused by changes in organizational and
technological project environments. Changes may result from either the stochastic
nature of the environment or a lack of information and knowledge about the project
environment.

3.2 No Universal Model

In connection with buildings, it is tough to develop a physical model that matches
precisely the reality. The various phenomenon like heat transfer from facade or
unplanned occupancy are challenging jobs to model. Clarke et al. [11] show that
models simulate reality within +/ − 1◦C (well enough). The problem is the
inputs. The IEA EBC Annex 58-project “Reliable Building Energy Performance
Characterisation Based on Full Scale Dynamic Measurements“ [47] is developing
the necessary knowledge and tools to achieve reliable in situ dynamic testing
and data analysis methods that can be used to characterize the actual thermal
performance and energy efficiency of building components and whole buildings.
For identifying systems, ARX-models are one of the standard tools. ARX model
structure is a linear difference equation which relates the current output at time t
to a finite number of past outputs and inputs. The main problem when applying
ARX-models is the inputs which are obtained from potentially faulty sensors.

Singh [52] proposed the concept of contextual model, i.e., a model valid under
specific contexts. These local contexts define the validity constraints. For example,
for testing the indoor temperature, we should take into account several factors such
as occupancy, the door and window positions, and weather conditions. The validity
is measured with possibly faulty sensors. In fact, these sensors are subject to bias,
outliers, or could be missed. The problem is how to conclude about a test that can be
valid or not knowing that validity can only be tested with possibly faulty sensors?
This is a challenge.
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3.3 Unreliable Sensors in Buildings

In buildings, an important amount of data is available from sensors. Sensor values
are not necessarily uniformly sampled. While after pre-processing the sensors report
values regularly, reality shows that quite many values are missing. The gaps that as
a result exist are sometimes too small to be visible on a graph.

4 Need for New Services for Diagnosis in Buildings

This section discusses the need for new services for diagnosis in buildings.

4.1 Need for Testing in Specific Context Under the Hypothesis
of Fault Modeling

In the domain of fault diagnosis, a symptom is defined as a measurable change
in the behavior of a system from its normal behavior i.e. an indication of fault.
Conventional model or rule-based behavioral tests are used to generate only
symptoms. These models appear in the behavioral constraints and it is assumed
that the behavioral test could be applied to any situation without taking into account
different contexts. These tests can be more or less valid due to the difficulty of
getting good datasets in building and to sensor aging. If the validity is not taken
into account during the conception of tests, false symptoms may be produced and
consequently a false diagnosis. The aim of this work is to explicitly take into account
the validity of the tests to make the diagnostic decision.

However, a model valid for all context is difficult to design and the validity
of a test result is always questioned in fault diagnosis. In addition, the validity is
measured with potentially faulty sensors. In fact, sensors are subject to different
kinds of faults. The data can be biased, subject to outliers or missing.

The test of the space of validity consists of observation points given either by the
sensors or by an expert. If the sensors are in operating mode, then the performance
guarantee is assured. Otherwise, there is no guarantee. The question is: Is the test
space always covered or not? Hence the need for an indicator to assess the level of
validity for each test.

An example of contextual test considering the building thermal performance test
is given in Fig. 2.

Let’s consider a range-based test that checks the indoor temperature Tin for the
building shown in Fig. 2 is estimating and testing the indoor temperature with a
behavioral constraint i.e. Tin lies between the maximum temperature (Tmax) and
minimum temperature (Tmin). This model-based thermal test only considers the
behavioral constraint and evaluates symptoms under the predetermined thermal
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(Data & measurements)
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Behavioral test
(Model + Behavioral

contraint)
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Diagnosis reasoning
Ambiguous diagnoses
(valid or invalid)

Invalid event: open window

Valid diagnosesConsistency analysis

Fig. 2 Behavioral and contextual test for diagnosis

bounds for a specific building. However, no validity constraints are integrated with
the test. Figure 2 illustrates the significance of behavioral and contextual tests along
with an example of an invalid event, i.e., open window. In this case, the following
validity constraints are needed to be combined with behavioral constraints:

• Testing indoor temperature without verifying occupancy level for all times might
lead to a false alarm.

• The door and window position need to be verified for all times because these
inputs are not easy to model.

• Similarly, outdoor weather condition needs to be verified for all times.

These validity constraints are difficult to model and due to the lack of knowledge
about the validity. A pure model-based test might lead to an ambiguous test result.
In conclusion, model validity is another kind of knowledge about the behavior. In
order to launch a valid diagnosis analysis, each test needs to satisfy the validity
constraints V and behavioral constraints B simultaneously (see Table 2).

4.2 Need for Indicators to Assess a Level of Validity of a Test
and a Confidence Level for Global Diagnosis

A test is performed in a period of time considering behavioral and validity
constraints. Validity constraints evaluate whether the tests can be performed or not.
However, the validity is measured with potentially faulty sensors. If the sensors are
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Table 2 Table of validity B V Conclusion

Satisfied ∀t Satisfied ∀t Normal behavior

Satisfied ∀t Non-satisfied Invalid

Non-satisfied Satisfied ∀t Abnormality

Non-satisfied Non-satisfied Invalid

Satisfied ∃t Satisfied ∃t Normal behavior

Satisfied ∃t Non-satisfied Invalid

Non-satisfied Satisfied ∃t Abnormality

Non-satisfied Non-satisfied Invalid

in OK state, the test result is always guaranteed. If the sensors are faulty, there is no
longer guarantee and the question that arises is how to evaluate the level of validity
of a test in the presence of sensor faults? Hence, there is a need for an indicator to
assess a level of validity for each test.

The diagnostic result is calculated from a set of tests, each defined by its level
of validity. The problem is how to evaluate the confidence level of diagnoses in the
presence of partially valid tests? Hence, there is a need for a confidence level for
global diagnosis.

4.3 Need to Know the Periods of Good Operation of Sensors

After receiving signals from a sensor, these signals need to be processed. An
acceptable and accurate process of these signals requires:

1. Full knowledge regarding the operation of the sensors and the nature of signals:
In order to be able to use signals’ information correctly, the operation of a

sensor, and the nature of signals they produce should be well understood. By
having this knowledge, we are able to choose the right tools for the acquisition
of data from the sensor. For instance, if the sensor produces a time varying signal
where the information is embedded in its frequency signatures, then a frequency
counter and possibly a frequency analyzer are needed.

2. Posteriori knowledge regarding the received signals:
A posteriori knowledge about the received signals is important in order to

assure that the data will be interpreted correctly and that the right device is used
in the measurement process. We need to have a good understanding of what is
expected from the sensor and system. The measured value can be significantly
different from the real measurand.

A posteriori knowledge is dependent on experience.
3. Information about the dynamic and static characteristics of the sensing systems:

The characteristics of a sensor can be classified into two groups: static and
dynamic. Understanding the dynamic and static characteristics behaviors is
imperative for mapping the output versus the input of a system (measurand).
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Fig. 3 Time of recordings for door contact sensor and CO2 concentrations sensor

With the increasing number of sensor devices, as well as sensor data types, the
acquisition of the sensor data samples becomes time and energy consuming, which
is undesirable on low power wearable devices.

Many values are missing. Figure 3 shows the evolution of raw sensor measure-
ments for two different sensors: a door contact sensor and a CO2 concentration
sensor.

Sensor values are not necessarily uniformly sampled. There are no regularly
delayed data for a variable. Delays depend not only on the type of sensor but also on
the measured values. The question that arises is from which delay can we say that
the sensor becomes faulty? Hence, the necessity for automatic thresholding for data
gap detection for heterogeneous sensors in instrumented buildings.

5 Application Example

In this section, a case study is presented to discuss the challenges in building
diagnosis.

5.1 Presentation of the Platform

The test bed is a classroom in the University of Southern Denmark (see Fig. 4).
The classroom is equipped with about 40 sensors that measure the indoor

temperature, the CO2 concentrations, the airflow, the heat from the radiators, the
rpm of the ventilation system, the number of occupants, the illuminance, the corridor
temperature, and the corridor CO2 concentrations and many more. Two types of
heating are installed in the platform: hydraulic heating and forced air heating from
the ventilation system.
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Fig. 4 Test bed

The ventilation systems at OU44 are of the type VAV (Variable Air Volume)
which serves three floors called the ground floor, living room, and 1st floor. Living
room and ground floor are divided into zones with one or more VAV dampers.
On the first floor, there is an office area where the offices are provided with VAV
dampers and common exhaust with a pressure holding damper which regulates the
total extraction in relation to the total supplied air. Each AHU unit has an exhaust
fan, outside and supply airflow measuring stations, mixing box, pre-filter, final filter,
heating hot water coil, chilled water coil, and supply fan. A centrifugal fan provided
by NK Industri (NKI) is installed in the ventilation unit. NKI climate control units
are integrated with either centrifugal fans, axial fans, or chamber fans.

The fan type is suitable for installations, with changes in air performance and
energy consumption. At the start of the HVAC system, the main damper is opened.
The air flow for each fan is calculated in CTS (Clear-to-send) programs based on
pressure measurements at the input rings for supply and return fan, respectively. Fan
electricity consumption (absorbed electrical power) should be provided in the CTS
system with a continuous exercising. Air flow sensors are installed inside the air
flow measuring stations in the Schneider BMS system to record the air flow rate for
three ventilation fan units. Accuracy of the airflow measuring satiation is marked as
±2% at 6000 feet per minute and ±0.5% at 2000 feet per minute. A graphical user
interface sMAP 2.0 is a plotting engine to display the raw data. In order to deal with
missing data and ambiguity in measurements, the measured data is re-sampled with
the one minute sample period.
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5.2 Diagnosis Challenges in Danish Platform

In this section, the major challenges that lie in diagnosis in the Danish platform are
identified.

The Performance Gap is Due to the Absence of Universal Test
The performance gap, i.e., the gap between actual classroom performance and
the prior estimates, is a problem of fault detection and diagnosis because of the
unavailability of a universal test i.e. a test valid in all contexts. The fault diagnosis
analysis is generated from the modeled behavior of the system thanks to detection
tests. Conversely, there are several situations in which diagnosed faults are not
correct due to change in the local context of the classroom because underlying
tests are not context independent. Diagnosis reasoning must differ in different
scenarios, e.g., fault detection and diagnosis approaches should be different for
normal working days and a vacation period. Variables like the position of the blind
are neglected in the modeling. The major difficulties faced during the test include
the lack of detailed information on the constitution of the classroom, the uncertainty
about occupant use, and behavior. For example, for testing the indoor temperature,
several factors are linked with each other, and it is necessary to model the airflow
through the windows and through the corridor, the airflow from the ventilation
system, the weather station, the thermal conduction of walls. These local contexts
are hard to model and lead to invalid diagnosis results. So, it is difficult to build a
universal test.

The Contextual Test Facilitates Testing
The contextual test [53] consists of testing the behavior only in a particular context.
For example, for testing the indoor temperature in the classroom, the test is made
only in the following contexts: absence, door and window closed, and an outdoor
temperature between a determined upper and lower limits. The contextual test
combining different events is based on validity constraints [53] for a test. The
validity is measured with potentially faulty sensors. Let us consider the example
of the indoor temperature test where the behavioral constraint is defined by a
behavioral constraint Bτ (XT) ∈ Bτ : Tin ∈ [−3, 12◦C],∀t ∈ T and a validity
constraint defined by Vτ (XT) ∈ Vτ : Tout ∈ [T min

out , T
max
out ]∧ζD = 0∧ζW = 0,∀t ∈

T where T, Tin, Tout , ζD , and ζW represent respectively the time period, the indoor
temperature, the outdoor temperature, and the positions of the door and the window.
Figure 5 shows the door position over 23 hours in June 3rd, 2016 from t = 00:00 to
t = 23:00.

The door contact sensor always shows that the door is closed, but at a defined
time (t = 9 h), the door is open. The question that arises is how to conclude that this
test is valid or not knowing that the door contact sensor is faulty?

Missing Data
Missing data is the most interesting fault type for a building system. To make a
test, the first step is to identify the periods when the datasets are complete. Figure 6
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Fig. 6 Detection of data gaps

shows respectively the detection of data gaps for the indoor temperature sensor, the
radiator opening sensor, and the outdoor temperature sensor.

An algorithm based on statistical approaches [42] is used for this purpose.
The idea is to determine the non-healthy periods for each sensor then make the
intersection of the periods and distinguish the healthy periods from the non-healthy
ones. Table 3 shows the non-healthy periods for only these three sensors.
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Table 3 Non-healthy periods for sensors in Danish application

Sensor Non-healthy periods

Temperature From 01/02/2017 22:51:04 to 02/02/2017 14:42:18

From 22/02/2017 08:54:44 to 22/02/2017 17:14:43

From 01/02/2017 17:54:18 to 02/02/2017 15:39:45

Outdoor temperature From 02/02/2017 16:49:25 to 03/02/2017 08:25:52

From 07/02/2017 17:29:20 to 08/02/2017 08:12:17

From 12/02/2017 17:26:20 to 13/02/2017 08:16:07

From 01/02/2017 13:04:40 to 03/02/2017 07:36:12

Radiator opening From 03/02/2017 07:53:48 to 06/02/2017 07:45:11

From 17/02/2017 08:30:16 to 19/02/2017 00:01:46

3.0
invalide
valide

from 02/03/2016 00:00:00 to 02/03/2016 23:59:00

window_opening
door_opening
occupancy

2.5

2.0

1.5

1.0

0.5

0.0

02/03 00.00 02/03 23.00

t=19:00: test is invalid

Fig. 7 24 h validity test

The intersection of the non-healthy periods for all the sensors installed in the
platform is from February 9th, 2017, to February 15th, 2017.

Good Behavior and Validity Require Infinite Time to Confirm Consistency
A single instant is enough to reveal an anomaly if the validity is checked. Good
behavior and validity require infinite time to confirm consistency. However, it is
difficult to test over an infinite time because the data are unavailable for long periods
of time. To overcome this problem, the tests are performed over a finite time, and if
the conclusion of the test is ok over a finite time, then it is also ok over an infinite
time. Another problem is related to testing over a continuous period of time. Let us
go back to the temperature test where the validity constraint is defined by Vτ (XT) ∈
Vτ : Tout (t) ∈ [T min

out , T
max
out ] ∧ ζD(t) = 0 ∧ ζW (t) = 0,∀t ∈ T. Figure 7 shows the

satisfaction of the validity constraint over a continuous period of 24 h on March 2,
2016, from t = 00:00 to t = 23:59.

The test is invalid, for example, at t = 19 h because the validity constraint is
not satisfied. Also, we note that the validity is discontinuous. There are invalid
periods designated by a red color and other invalid periods designated by a green
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color. Therefore, testing over a continuous period always results in the conclusion
of an invalid test. To overcome this problem, testing over discontinuous periods
makes testing easier. The test period consists only of the instants where the validity
constraint is checked.

6 Diagnostic Analysis in Danish Application

6.1 Design of Partial Valid Tests

Let us consider the following tests in the framework of the Danish application:

Test 1: Damper
This test verifies if the damper is faulty or not. T est1 generates test results about the
presence/absence of fault in the damper using a set of rules.

T est1 =
{
B(XT) ∈ Bτ ∧ V (XT) ∈ Vτ → ok(�)

B(XT) /∈ Bτ ∧ V (XT) ∈ Vτ → ¬ok(�)

Since it is difficult to establish a linear law between the concentration of CO2 and the
position of damper, we tried to define a law of control experimentally (see Fig. 8).

This test is always valid. This test is defined by a behavioral constraint Bτ (XT) ∈
Bτ with Bτ : CO2(t) ≥ 800 ∧ damperposition(t) ≥ 50,∀t ∈ T

The bunch of data required for the test of behavioral constraint is
damperposition(T) and CO2(T). They are a sequence of similar intervals of damper
positions and CO2 concentrations measured respectively by damper position sensor
and CO2 concentrations sensor installed in Denmark application.

This test is also defined by a test support. The possible fault explanations for
this test in case of inconsistency are ¬ ok(damper) ∨ ¬ ok(damper controller) ∨ ¬
ok(damper sensor) ∨ ¬ ok(CO2 concentrations sensor)

Fig. 8 Law of control
between the concentration of
CO2 and the position of
damper
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Test 2: Efficiency of the Heater Exchanger
This test verifies the efficiency of the heater exchanger. This test is defined by a
validity constraint Vτ (XT) ∈ Vτ with Vτ : rpm(t) > 0 ∧ airflow(t) > 0,∀t ∈ T.
This test is also defined by a behavioral constraint Bτ (XT) ∈ Bτ with Bτ :
efficiency(t) ≥ 70%,∀ ∈ T with efficiency is the efficiency of the heating
exchanger and it is calculated by:

efficiency(t) = �T 1 −�T 2

100
,∀t ∈ T (1)

with

�T 1 = TSuply air − Tintake air (2)

�T 2 = Texhaust air − Tintake air (3)

The bunch of data required for the test of behavioral constraint are TSuply air(T),
Tintake air(T), and Texhaust air(T). They are sequences of similar intervals of supply
air temperature, intake air temperature, and exhaust air temperature measured
respectively by supply air temperature sensor, intake air temperature sensor, and
exhaust air temperature sensor. The bunch of data required for the test of validity
constraint is rpm(T) and airf low(T). They are a sequence of similar intervals
of rotation speed per minute of the fan and airflow measured respectively by
the rotation speed sensor and airflow sensor. The rpm is used to model that the
ventilation system is in mode ON.

This test is also defined by a test support. The possible fault explanations for
this test in case of inconsistency are ¬ ok (heater exchanger) ∨¬ok(temperature
controller) ∨¬ ok(supply air temperature sensor) ∨¬ ok(intake air temperature
sensor) ∨¬ok(exhaust air temperature sensor) ∨¬ ok(rpm sensor) ∨¬ ok(airflow
sensor).

Test 3: Performance of the Fan [54]
Ventilation fans are an important component of any mechanically ventilated build-
ing. Poor fan performance could significantly affect the whole building performance
metrics and more precisely and according to the literature. Air Handling Unit fans
are responsible for approximately 40% of all electricity consumption in a HVAC
system. There are several issues such as dirty blades and mechanical wear that
could impact the fan’s performance. This test evaluates the building ventilation
system fan operation using a performance curve [56]. The test is defined by
a validity constraint Vτ (XT) ∈ Vτ with Vτ : electricity(t) > 0,∀t ∈ T.
The test is also defined by a behavioral constraint Bτ (XT) ∈ Bτ with Bτ :
Pexpected-DN+ < Pmeasured < Pexpected+DN-, DN+ and DN- are upper and
lower value of performance design number and can be obtained from the ventilation
commissioning team (DN+ = 30% and DN- = 30%), Pexpected and Pmeasured
represent receptively the expected and the measured power consumption. A set of
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fan performance curve (FPC), provided by NK Industry is used for the modeling
purpose.Expected fan performance is modeled with the help of manufacturer data
and compared against the real-time fan performance. Two data-driven models are
developed and implemented. The first model is used to compute expected total fan
pressure at a given airflow rate while second is a Support Vector Regression (SVR)
model, to predict the fan efficiency. The performance monitoring of the ventilation
fan unit is determined in terms of expected and actual fan energy consumption.

To estimate expected fan energy consumption of ventilation system fan using
airflow measurement, it is necessary to model total fan pressure in the terms of
measured airflow. A second model requires to estimate expected fan efficiency
followed by the expected fan energy consumption [54].

This test is also defined by a test support. The possible fault explanations for
this test in case of inconsistency are ¬ ok(fan) ∨¬ ok(electricity meter sensor)∨¬
ok(energy consumption sensor)∨¬ ok(airflow sensor).

Test 4: Indoor Air Quality
Here is an example of a range-based test that verifies the indoor air quality (i.e.,
CO2 concentrations) range in the classroom in the University of Southern Denmark.
T est4 generates test results for the deviation of indoor air quality performance.
Possible fault explanations for this test combine all the major components that
potentially affect the office air quality performance. For example, a faulty ventilation
system or an important number of occupants could be responsible for the poor
air quality performance. Possible fault explanations include sensor level fault. For
instance: ok(indoor CO2 sensor) → obs(Cin) = Cin where ok signifies the non-
faulty behavior of CO2 concentrations sensor and obs stands for an observed value.
Indoor air quality test is given as:

Test 4 is always valid. This test is also defined by a behavioral constraint
B(XT) ∈ Bτ with Bτ = Cin(t) ∈ [Cmin, Cmax],∀t ∈ T where Cmin, Cmax
represent respectively the lower and the upper values for CO2 in fault free case
of sensor in the month of March, 2016 (Cmin=390 ppm, Cmax=1828.6 ppm).

The bunch of data required for the behavioral constraint is Cin(T). It contains
the measurements of CO2 concentrations during the valid time period T. These
measurements are collected from CO2 concentrations installed in the classroom.

This test is also defined by a test support. The possible fault explanations for Test
4 in case of inconsistency are: ¬ ok (CO2 concentration sensor) ∨ ¬ ok (ventilation
system) ∨ ¬ ok(damper).

6.2 Diagnosis Reasoning for Danish Application

This section deals with performing diagnosis in the Danish platform with partially
valid tests. In the following, 3 methods for diagnostic analysis are discussed:
visual diagnostic analysis, diagnostic analysis by [53], and the proposed diagnostic
analysis [41].
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6.2.1 Visual Diagnostic Analysis

This section discusses the visual diagnostic analysis. We have simulated a fault
scenario that we ask the reader to guess. Figures 9, 10, 11, and 12 show respectively
the CO2 concentrations as a function of the damper position, the efficiency of the
heat exchanger, the fan power, and the air quality.

The tests 1, 2, and 4 are inconsistent because the behavioral constraint is not
satisfied during the valid time period. The third test is consistent because the
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Fig. 10 Behavioral constraint satisfaction for Test 2
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behavioral constraint is satisfied during the valid time period. The question that
arises is: What is the simulated fault? We conclude that it is difficult to conclude on
the source of default.
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6.2.2 Diagnostic Analysis by Singh et al. [53]

The building diagnosis framework proposed by [53] is decomposed on the following
steps:

• Perform rule, range, and model-based tests
• Define behavioral and validity constraints and a set of explanations in case of an

anomaly for each test
• Perform diagnosis analysis from first principle
• Collect minimum diagnostic explanations

According to [53], the diagnoses are calculated from only inconsistent and valid
tests, i.e. from tests 1, 2, and 4 (see Table 4)

Singh et al. [53] uses the diagnosis according to first principle to calculate the
diagnoses because the supposed faults are not necessarily revealed and because it
allows to calculate the minimum explanations at the component level and it allows
the detection of multiple faults. With the method proposed by [53], we obtain 27
diagnoses, but none of which is right. In this work, only diagnoses number 0, 6, 8,
12, 26, and 27 are presented (see Table 5).

The simulated fault is an offset on the CO2 concentrations sensor, a bias on the
air temperature supply sensor, and an offset on the rpm sensor.The obtained result
is inexact. The diagnoses are calculated from the 3 tests which are Test1, Test2, and
Test4. In this case, a bias is applied to the rpm sensor which intervenes in the validity
of test 2. So, with [53], the diagnoses are calculated by 3 tests, the validity of one of
which is measured by a faulty sensor.

6.2.3 Proposed Diagnostic Analysis [41]

The methodology proposed by [41] assumes that the validity is measured with
faulty sensors. In the beginning, for each inconsistent test, a level of completeness
(i.e., a level of validity) is calculated using a partitioning approach (see Table 7).
The diagnostic result is calculated from a set of tests, each one defined by its
completeness level. To compute the confidence level of a global diagnosis deduced
from a set of tests, in which some have a completeness level lower than 1, we are
going to adapt a method based on fuzzy logic reasoning. Table 6 summarizes the
two cases for fuzzy logic reasoning.

Table 4 Diagnosis analysis
by [53]

Tests Consistent/inconsistent Valid/invalid

Test1 Inconsistent Valid

Test2 Inconsistent Valid

Test3 Consistent Valid

Test4 Inconsistent Valid
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Table 5 Diagnosis analysis by [53]

Results according
Diagnostics found to the proposed approach Fault probability

D0 Heater exchanger AND 100%
damper

D6 Heater exchanger AND CO2
concentrations sensor

100%

D8 Air temperature supply sensor
AND CO2 concentrations
sensor

100%

D12 Airflow sensor AND damper 100%

D26 Fan AND rpm sensor AND
damper

83.33%

D27 Fan AND 83.33%
Airflow sensor AND damper
position sensor

Table 6 Confidence level with fuzzy logic reasoning

∃ negative ∃ doubtful tests Confidence
tests mostly negative Conclusion level

Case 1 Yes Yes/no Diagnostics calculated 1
from safe negative tests

Case 2 No Yes Diagnostics calculated Max (degrees of belonging to
from doubtful tests Not Ok of doubtful tests
mostly negative mostly negative)

Table 7 Results using partitioning approach

Completeness level
Tests Consistent/inconsistent using partitioning approach Membership level to False

Test 1 Inconsistent 1 Negative

Test 2 Inconsistent 0.5 0.75 (doubtful mostly negative)

Test 3 Consistent – –

Test 4 Inconsistent 1 Negative

In this case of calculation of completeness level using partitioning approach,
tests 1 and 4 are negative and test 2 is doubtful mostly negative because μ(T est2 =
False) = 0.75 ≥ 0.5. Table 7 summarizes these results.

With the proposed methodology, we obtain 4 diagnoses of which 1 is correct (see
Table 8).

The simulated fault is an offset on the CO2 concentrations sensor, a bias on the
air temperature supply sensor, and an offset on the rpm sensor. The obtained result is
inexact. The diagnoses are calculated from only 2 tests which are Test 1 and Test 4.
In fact, a bias is applied to the rpm sensor which intervenes in the validity of test 2.
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Table 8 Proposed diagnostic analysis [41]

Results according
Diagnostics found To the proposed approach Fault probability

D0 CO2 concentrations sensor 100%

D1 Damper 100%

D2 Fan AND 83.33%
temperature controller

D3 Fan AND 83.33%
damper position sensor

Table 9 Comparison between different diagnosis methods

Visual diagnostic Diagnostic analysis Proposed diagnostic
analysis by Singh et al. [53] analysis

Remarks No formal tests Reliable sensors Validity measured by
potentially faulty sensors

Conclusion No idea about Diagnostics calculated Diagnostics calculated
the simulated fault by three tests by two tests

Table 9 summarizes a comparison between the different diagnosis methods.

7 Conclusion

Accurate diagnosis of faults in buildings presents a significant building operation
cost saving opportunity. With the needs of new retrofitting and building intelligence
solutions, diagnosis has become significantly more important and, thus, requires
new approaches to be designed, as well as a further enhancement of the existing
ones. In this chapter, we have summarized the efforts in the area of fault detection
and diagnosis for smart buildings with the aim of identifying the gaps and challenges
that have not yet been given an adequate span of attention. This also highlights the
scope of our research and has yielded an initial framework for addressing these
issues.

The majority of existing building fault diagnosis techniques rely on behavioral
knowledge. Model-based fault diagnosis and isolation techniques (FDI) assume
that the model represents the reality of building operation independently of the
current context and any fault can be detected by measuring the physical variables
and checking the consistency with a reference model. A physical variable is a
potentially observable element of information about the actual state of a building
system. Nevertheless, behavioral models always valid in any context are difficult
to set up. Erroneous all-context models might lead to invalid diagnoses. This is a
challenge.

Complexity in testing a whole building system using both rule and pure model-
based test, insidious faults, and unreliable sensors are also challenging one.
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Thus, this work on building diagnosis differs from previous approaches since
we are proposing some solutions for modeling, complexity, testing in a specific
context taking into account that the validity is measured with possibly faulty sensors,
confidence level for diagnosis, and unreliable instrumentation in buildings.
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Analyzing Load Profiles in Commercial
Buildings Using Smart Meter Data

Srinka Basu, Kakuli Mishra, and Ujjwal Maulik

1 Introduction

Buildings consume majority of global electricity produced. With the advent of
advanced metering infrastructure (AMI) [34] in smart grids and buildings, mining
information from the growing electricity consumption data has opened many new
challenges. Mining the electricity consumption of buildings has a great potential
to solve the problems like load forecasting, clustering [14], classification, anomaly
detection [5], demand side management programs [11, 25]. The electricity consump-
tion in buildings also gives an idea about the behavioral usage of consumers in the
buildings [14], their occupancy/in-occupancy states [2], based on which the load
shifting operation can be decided.

However, not all the historic data stored are equally important. Hence, to extract
useful information from the existing time series data sets, several compact time
series representation techniques have been proposed in literature. The time series
discretization into symbols is one such dimensionality reduction technique that has
allowed efficient manipulations based on the applications [22].

Existing literature on segmentation and symbolic representation breaks the time
series into pre-determined fixed length segments. One of the limitation of fixed
length segmentation is that it might fail to identify the critical breakpoints that fall
within a window, as a result, a single window might contain two very different
patterns. In addition, determining the window size might be difficult for real life
applications. Figure 1 is a time series sample which has been segmented with a fixed
length of size 10. However, the rising and falling trend patterns in each segment
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Fig. 1 Sample time series data showing the limitations of fixed window length. The time series
has fixed window length of 10; the red dotted and the blue dashed lines denote the varying window
length

could not be detected as a result of the fixed length windows. The ideal breakpoints
for capturing the trend pattern in the time series has been shown in blue dashed
lines.

Given the limitations of the existing segmentation techniques, in this work we
propose an automatic segmentation and symbolic representation based approach for
analysis of load profiles in commercial buildings. The major contributions of this
work are given below:

• We first propose an automatic segmentation of the original building load data
into varying length time windows where two successive segments demonstrate
statistically significant difference in load patterns. We use a piecewise polyno-
mial regression to model a segment with an initial window length decided on
the basis of periodicities present in the time series data obtained from partial
autocorrelation function (PACF). Successively a local search based approach
that minimizes Bayesian information criterion (BIC) is used to decide the length
of a segment. The proposed approach breaks a time series in piecewise non-
linear statistically significant segments and thus can also be used for break-point
identification.

• We next propose a symbolic representation of time series by encoding each
window obtained from the segmentation process based on average load during
the time indicated by the window and shape of the load pattern. The symbolic
representation of a segment by the mean usage, the leading coefficient of the
fitted polynomial, intercept of the fitted polynomial, and the degree of the best
fit polynomial allows dimensionality/numerosity reduction of the original time
series while preserving the characteristics of each window.

• We then propose a measure based on intercluster and intracluster similarity of
the time series, to benchmark the symbolic representation of time series focusing
on their ability to cluster multiple time series.
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• We finally cluster the buildings on the basis of their symbolic representation and
propose a data analysis method to identify the most frequently occurring patterns
(MFOP) within building and across buildings.

The article has been organized into seven sections. First we discuss the literature
in Sect. 2, subsequently the proposed method in Sect. 3, experimental setup in
Sect. 4, results and analysis in Sect. 5, and finally with the conclusions and future
work in Sect. 6.

2 Literature Survey

Due to growing surge in building load consumption data, researchers in smart grid
area have emphasized on dimensionality reduction techniques for time series data
mining [32]. Dimensionality reduction of time series can be carried out in time
domain or after transforming the time series data in other domain, for example,
frequency domain. One of the popular time domain based dimensionality reduction
technique is the piecewise aggregate approximation (PAA) [16], which captures
the mean of the segments. The segmentation step is extensively used for similarity
search while mining large time series [23]. The length of the window in case of
segmentation can either be fixed or computed. The advantage of using a fixed
window length is that it reduces the time complexity for the data mining operations
because no analysis needs to be done to determine the window length. Fixed
window length can very easily discover the motif and discord in time series [24], if
chosen correctly. Storing the means of the segments in PAA is rather a simplified
representation of the time series data, but we cannot interpret the shape or shift in
the window by the mean values.

Following PAA, Keogh et al. proposed a varying window length based segmen-
tation in [17]. Varying length windows can efficiently capture the motif, discord
in the time series. Authors in [5] have evaluated the window length using the
classification and regression tree algorithm (CART). The authors in [1] review
different supervised and unsupervised techniques to identify the breakpoints for
segmentation. Window lengths have also been determined using the polynomial
approximation of time series. The piecewise linear approximation (PLA) approach
originally proposed in [3] and has been used in [19] refers to the approximation
of time series of length n with K straight lines. Authors in [38] have proposed a
variant of PLA with an aim to reduce the number of lines required to generate the
time series by adjusting each line segment to approximate the maximum number of
stream points. In the context of data mining, the PLA has been used in change point
detection [29], estimate the trend of patent publishing [6], similarity measure [20],
time series indexing [17]. Three major dynamic time series segmentation techniques
used in PLA are sliding window, top-down, and bottom-up [13]. In case of
sliding window approach, the window length is grown until it exceeds some error
bound [18]; however, it gives poor results in case when abrupt changes are present
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in the data [31]. In literature, the breakpoints in case of sliding window based
segmentation have been decided based on some error calculation which is often not
well approximated [9, 21]. In case of top-down approach, a time series is recursively
partitioned until some criteria is met [18] and in the bottom-up approach, smaller
length subsequences are repeatedly merged until some criteria is met [18]. The
performance of both top-down and bottom-up is dependent on selection of the error
criteria [13].

One limitation of PLA is that due to its simple linear representation, the curves
in the time series are discarded. The piecewise polynomial approximation (PPA)
is a non-linear representation of the time series with polynomials of any arbitrary
degree. In [9] authors have proposed an online segmentation of time series using
PPA. The segment length is decided on the basis of the coefficients of orthogonal
polynomials. Deciding the segment length on the basis of polynomial coefficients
in [9] cannot capture the correlated power readings. Other than time series seg-
mentation, PPA has been used in a wide variety of data mining applications, like
the authors in [8] have used PPA for classification of time series. Not only in
real valued time series data, the polynomial based features have been used for
motion based activity recognition in image data sets [4]. Unlike [9], we propose an
automatic segmentation approach in addition to symbolic representation technique
that captures the features of the time series.

As this paper aims to segment the time series data based on piecewise polynomial
approximation and represent the time series data symbolically for further analysis,
below we discuss some of the existing symbolic representation techniques and
analyses on time series data. Applications of symbolic representation include motif
discovery [27, 30], discord discovery [22, 33], clustering [10, 24], classification [15],
all-pairs-similarity-search[35]. Symbolic Aggregate Approximation (SAX) [22]
converts the PAA transformed time series data to a symbolic representation by
using the mean values of each segment. The PAA transformed data follows a
Gaussian distribution as a result of which an equiprobable set of breakpoints are
defined that are represented as symbols based on the region to which it falls [22].
As SAX becomes a smoothed representation, the extended SAX in [23] is an
improvement which uses two other symbols besides mean: minimum and maximum.
The minimum and the maximum values improve the preciseness in the symbolic
representation. Authors in [37] propose an improvement in SAX by integrating the
standard deviation in addition to the mean and confirm both the highest classification
accuracy and the highest dimensionality reduction ratio with respect to the existing
SAX techniques. Some of the symbolic representation techniques follow the trend
based approaches [36] where the authors compute the trend distance factor and trend
shape factor for each segment. However, the trend based approaches cannot capture
the shift in the pattern. Authors in [12] have proposed a symbolic representation
of time series segments where they capture the Harr wavelet coefficients and other
defined key points of the segment. The authors claim that the advantage of their
method [12] over others is that they have proposed a parameter free approach for
symbolic representation. But analysis of the segments on Haar wavelet transformed
data is a computationally intensive process.



Analyzing Load Profiles in Commercial Buildings using Smart Meter Data 467

Based on analysis of the symbolic representation of time series, in [24], the
authors have identified the weekday and weekend motifs by extracting the most
frequently occurring patterns using a visualization tool called suffix tree. No major
contribution has been done on any of the symbolic representation or the analysis
part in [24]. Authors in [5] have proposed a methodology to identify the infrequent
time series patterns from a set of building data.

Most of the proposed symbolic representation techniques in literature have
used fixed length segments and have analyzed the performance by computing the
distance between time series based on their proposed symbolically represented data.
Analyzing the performance of the proposed symbolic representation only on the
basis distance measures does not add to the application area of the work. Moreover,
the symbolic representation varies with the change in segment length. In this work,
we decide the segment length on the basis of correlation, hence all the autocorrelated
values being placed in a window add a relationship among the load values in the
window, which is an additional information integrated in the segmentation step.
The proposed symbolic representation can capture the average, peak/off-peak, shift,
and shape of the segment. In case of DSM policies, the symbolic representation
assists in analyzing the common patterns, properties of the pattern, analyzing the
time during which the load pattern is common in an area of interest. However, in
literature, authors have focused only on capturing the motif and discord from the
symbolically represented data, but we aim to integrate the above analyses on the
proposed symbolically represented data. Motifs are basically the most frequently
occurring patterns in a time series data. Most of the works in literature have obtained
motif on a single building level, however in this work, we define the most frequently
occurring patterns as the patterns which not only occur at single building level but
also can be present in multiple buildings.

3 Proposed Method

Given the short comings of the fixed length partitions in finding the right patterns
from a time series and the limitations of the existing methods for symbolic
representation of time series to group such patterns having similar load profile,
peak-off-peak time, and average consumption, we propose a new approach to load
profile analysis as discussed in this section. The proposed method first partitions a
given time series into variable length segments and successively finds the symbolic
representations of the respective segments. The symbolic representations can further
be used to group the segments having similar load profile, peak-off-peak time, and
average consumption that in-turn can help to mine useful insight about the building
load profiles like, the most frequently occurring pattern in a given building, the time
duration when similar consumption pattern is exhibited across buildings, and many
more.
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3.1 Segmentation

The objective of the segmentation approach is to partition a given time series into
non-overlapping, contiguous segments such that:

(a) all the data points lying in a segment demonstrate a particular pattern,
(b) two successive segments of a time series exhibit two different patterns, and
(c) the boundary points of two successive segments are considered as break points

showing a sharp change in pattern.

To meet the objectives, we propose an approach based on piecewise polynomial
fitting discussed as below.

• Given a time series, a segment is determined using a sliding window protocol
where initial window size is determined by a parameter named as init_window.
The parameter init_window is considered to be a small value sufficient enough
to fit a polynomial of low degree.

• The window size is gradually increased in every incremental step to include
additional data points until the breakpoint criteria are satisfied or the window
size reaches a maximum window length.

• In every incremental step, we find the best fitted polynomial by minimizing the
Bayesian Information Criteria (BIC).

• Subsequently, from all possible windows, the polynomial having the minimum
BIC value is chosen as the best fitted polynomial that can represent the segment.

• The maximum window size is decided based on the periodicity of a stationary
time series. For any given time series, we may find the maximum window
using the partial autocorrelation factor (PACF) test on the differenced time series
as differencing ensures removal of trend, seasonality from the data and PACF
gives the maximum lag up to which the differenced values are autocorrelated
irrespective of the previous lags.

• The process of segmentation is continued from the data point of time series which
lies immediately after the currently obtained segment.

The procedure to obtain the maximum window length using PACF lag is
discussed in Algorithm 1. The maximum window length, lag in Algorithm 1, is
approximated by finding the time t at which the PACF value exceeds the 95%
confidence band. If no value beyond t exceeds the PACF at t , then lag = t else
the differencing is repeated as shown in step 1d. The output of Algorithm 1 is the
maximum window length, lag which is chosen as the maximum window length
throughout the time series T .

The procedure to find the best fitted polynomial is discussed in Algorithm 2. In
Algorithm 2, the BIC is computed as:

BIC(Ts) = k log n− 2(L(θ)) (1)
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Algorithm 1 Find maximum window length: findLag(T)
Input: Time series data T
Output: Maximum length lag of time series window.

1. for i = 1 : |T | do

a. Obtain a differenced time series T̃ of lag i.
b. Compute PACF for the differenced time series and get the PACF plot.
c. pac ← PACF exceeding the confidence band; t ← time at which pac is obtained.
d. if PACF [t + 1 : |T |] < pac then

lag=t
else

continue
end

end
2. return (lag)

Algorithm 2 Best Fit polynomial: bestFit(Ts)
Input: Time series segment Ts
Output: Degree of polynomial deg and bic.

1. n← "length(Ts)/ 2#
2. for i = 1 : n do

a. Fit a polynomial regression line of degree i.
b. B[i] ← BIC value of the fitted polynomial regression line.
c. deg[i] ← i

end
3. bic← arg min(B)
4. deg← arg min(deg)
5. return (bic, deg)

where n is length of segment Ts , k is the number of parameters estimated by the
polynomial, L(θ) is the likelihood of all the parameters θ of polynomial [26].

The breakpoint criteria are determined using two conditions:

(a) The degree of the best fitted polynomial in the incremented window should be
the same as the degree of the best fitted polynomial of the original window. If
there is a change in the degree of the best fitted polynomial, then the breakpoint
criteria are satisfied assuming that there is a change in the load consumption
pattern.

(b) Simultaneously, if the BIC value of the fitted polynomial in two successive
windows are greater than given threshold ε, then it is assumed that the break
point lies between the previous window and the current window as a result of
which the break-point criteria is satisfied when the fraction of change in BIC
over the average BIC information is greater than ε.

The details of segmentation process are discussed in Algorithm 3 which initially
computes the maximum window length using the given Algorithm 1. Segmentation
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Algorithm 3 Segmentation: segment (T )
Input: A time series T
Output: Segmented time series, T̂

1. lmax = f indLag(T )

2. lmin = |init_window|, i = lmin
3. deg, bic = bestF it (init_window)
4. while i <= |T | − lmin do

a. store_b = NULL

b. for j in i + 1 : lmax do

i. init_window=append T [j ] to init_window
ii. newdeg, newbic = bestF it (init_window)

iii. store_b[j ] = newbic

iv. α = abs(newbic − bic)/mean(store_b)
v. if newdeg == deg and α < ε then

continue
else

A. init_window = T [j : (j + lmin)]
B. deg, bic = bestF it (init_window)
C. breakpoint ← j

end
vi. T̂ [i] ← init_window

end
c. i = j

end
5. return (T̂ )

process starts by computing the best fit polynomial on init_window. l_min in
step 2 is the initial window length or the length of init_window. In step 3, we
compute the degree and BIC for init_window shown in Algorithm 2. To avoid the
over fitting issue on each window, we continue to append values to init_window
given in step 4(b)i, based on the two conditions. The threshold α is computed as the
absolute difference between the original BIC of the init_window to that of the BIC
obtained after an append of an element to init_window divided by the mean BIC
value. We continue this operation until the entire time series is segmented.

A Toy Example of Segmentation Process We explain the segmentation process with
an example. Let us assume a time series T and its difference time series T̃ as shown
in Fig. 2. The PACF plot obtained through PACF test as shown in Fig. 2c has a
confidence band. The last value that exceeds the confidence band is at lag 34, that
is up to lag 34, the values are correlated. Hence using Algorithm 1, we obtain the
maximum window length as 34. Let us also assume that the length of init_window
parameter value is 6. In the first iteration, initially the segment length is assumed
as T [6] = {0.90, 0.8, 0.91, 0.91, 0.90, 0.7}. The best fitted polynomial for T [6]
is found to have polynomial degree 3 with BIC value as −8.9. By appending
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Fig. 2 An example of segmentation procedure. (a) shows the segments with different colors. The
length of the segment is varying. (b) shows the differenced time series, and (c) shows the PACF
plot

an additional data point to T [6], we obtain T [7] as described in step 4(b)i of
Algorithm 3. The best fitted polynomial of T [7] has degree 3 and BIC −8.11.
Assuming the ε = 0.2, we get α = abs(−8.11 + 8.9/ − 8.51) = 0.09. As the
condition 4(b)v of Algorithm 3 is satisfied, we continue appending the next data
point to T [7] and obtain the new window T [8]. Degree of the best fitted polynomial
in T [8] is 4 with BIC−12.23. As this violates condition 4(b)v of Algorithm 3, T [7]
is assumed to be the first segment and the process is restarted from the 8th data
point. By repeating the above process until condition 4 of Algorithm 3 is satisfied,
we obtain 8 segments as shown in Fig. 2a. The lengths of the segments obtained are
7, 6, 6, 8, 7, 8, 6, 6. As shown in Fig. 2, every two successive segments represent
two different patterns unlike the fixed length partitions.

3.2 Symbolic Representation

The objective of the proposed method is to encode pattern based information of
a segment along with peak/off-peak information and average consumption value.
However, the existing symbolic representation primarily uses the average value of
the segment in SAX or some additional statistics about the maximum or minimum
values of the segment like in E-SAX. In PLA, only the trend information of the
segment can be captured using the slope. To the best of authors’ knowledge, none of
the existing methods can capture information about the pattern of a segment along
with the peak/off-peak information and average value. In order to meet the objective,
we use a minimum of four criteria for symbolic representation as discussed below:

(a) Average value of the segment.
(b) Leading coefficient (LC) of the best fitted polynomial obtained using Algo-

rithm 2 which gives relative information about the maximum amplitude.
(c) Intercept of the best fitted polynomial obtained using Algorithm 2 which gives

a relative information about the shift.



472 S, Basu et al.

(d) Degree of the best fitted polynomial obtained using Algorithm 2 which repre-
sents the shape and pattern of the segment particularly the peak/off-peak times.

As all the abovementioned information are real continuous values, we use
discretization approach for the symbolic representation. The discretization approach
used is similar to SAX where the number of letters constituting the alphabet and
their respective range are decided using the probabilistic approach. We imple-
ment the multi-criteria symbolic representation using two different techniques as
described below:

(1) Sequential encoding: This is a sequential encoding approach where in every
step, a criterion is considered eventually forming a hierarchical group. For
the symbolic representation, the mean of the segment is converted to symbols
using the equiprobability rule in SAX technique. However, for degree, LC,
and intercept, we follow a histogram based approach where the bin sizes are
obtained using Sturges algorithm [28]. The rare values falling beyond μ± 3σ ,
where μ is the mean and σ is the standard deviation, are discarded. The number
of alphabet and their respective range corresponds to number of bins in the
histogram.

We illustrate the symbols obtained from the sequential encoding approach in
Fig. 3.

At level 1, we show the window patterns with same SAX symbol. The
windows in group a and group b clearly show that they do not have segregated
patterns inside. This signifies that mean of the window cannot carry all the
information. In the second level, we group on the basis of LC symbols and
obtain a group ac, where a is the SAX symbol and c is the LC symbol. In the

Fig. 3 An example of the sequential encoding
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second level, we obtain a distinct pattern in the windows unlike first level. In
the 3rd level, we group on the basis of intercept symbols and obtain acf and
acg and bbc, where f , g, c are the intercept symbols, respectively. The window
pattern of symbol acf has a rising pattern followed by a fall, whereas in case of
window pattern with intercept symbol acg, we get a continuous falling pattern.
At level 4, the patterns are segregated based on degree of the polynomial fit like
the symbol acf d has degree d and has two windows in it. Symbols achc and
bbdc have unique pattern and have been segregated from the rest. Hence, the
example clearly shows that at each level, we obtain better patterns in the groups
formed by the symbols.

(2) Simultaneous encoding: All the four criteria are considered simultaneously,
that is, the degree, LC, intercept, and the mean of all the segments across all
the buildings are considered for formation of respective probability density
function. The advantage of this method is that the alphabet range remains
comparable across all the groups.

A Toy Example of Symbolic Representation In Fig. 4, we illustrate the segmentation
process for first five segments of the time series shown in Fig. 2. The segments
are formed based on the four criteria mentioned in Sect. 3.2. For the first segment,
shown in color green, the value of the average is −0.59, LC is 0.0008, intercept is
0.49, degree is 3, and it gets the symbol bccf . For second symbol shown in color
blue, the value of average is 0.70, LC is−0.05, intercept is 18, degree is 4, and it gets
the symbol dcce. For the third segment, shown in color red, the value of average is
−0.78, LC is 0.0009, intercept is −5.94, degree is 4, and it gets the symbol, dcae.
For the fourth segment, shown in color black, the value of average is −0.63, LC
is −0.001, intercept is −3.67, degree is 3, and it gets the symbol bcef . For the
fifth segment, shown in color skyblue, the value of average is −0.63, LC is 0.001,
intercept is 1.04, degree is 3, and it gets the symbol bccf .

Fig. 4 An example of symbolic representation in a sample time series with five segments colored
in green, blue, red, black, and sky blue, respectively
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3.3 Time Complexity Analysis

Complexity of Algorithm 3 is dominated by two factors: time to compute the
maximum window length lmax and the time to find the best fitted polynomial for
every segment. For the segmentation process, the time taken to fit a k degree
polynomial in a segment of size s isO(k2×s×β), where β = lmax−lmin. To obtain
all the segments of a given time series of length n, the segmentation time required is
O(k2×n×β). In our case, the maximum allowed degree kmax = lmax/2; therefore,
the worst case time complexity of the segmentation process is O(l3max × n× β). As
lmax $ n, segmentation process is a linear time process.

For the symbolic representation process, assume there are w segments obtained
after the segmentation technique. For each symbol, if the alphabet size is a, the time
required for symbolic representation in both the techniques, sequential encoding and
the simultaneous encoding, is O(wa). The maximum value of w= n/lmax , where n
is the length of time series. Hence, the total complexity for symbolic representation
is (n/lmax)× a. As a/lmax << n and is a constant, hence symbolic representation
takes linear time.

4 Experimental Setup

To evaluate the performance of the proposed method we carry out two sets of
experiments. We first assess the accuracy of the proposed method in identifying a set
of artificially planted pattern. Planted patterns are the artificially generated patterns
placed within a random time series data. Successively we assess the performance of
the proposed method in clustering similar segments through a comparative analysis
on the data set discussed in the following section using the parameters mentioned
below.

The value of init_window is based on the data frequency. In our experiments,
the parameter init_window is kept as 6. We did not choose a lesser value because
in case of commercial buildings, a minimum 6 h data are required to identify a
pattern in the load values. The ε value is kept 0.2, which gave good set of results.
The proposed symbolic representation technique has been compared with Extended
SAX [23] and Piecewise Linear approximation (PLA). The fixed length window
for E-SAX has been chosen as 8. For PLA, we used the proposed segmentation
technique to segment the time series data. The symbols used in PLA are mean, LC,
and intercept. The ε in PLA is same as that in our experiments, that is 0.2.

4.1 Data Description

The experiments are performed on four different data sets collected by Commission
of Energy Regulation, Ireland (CER-IRISH) each containing half-hourly readings of
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small and medium enterprise (SME) buildings. The buildings have been categorized
into industrial, office, retail, and enterprise professional (EP). For our experiments
we used 40 industrial buildings, 60 office buildings, 40 retail buildings, and 40 EP
buildings, each building having 6 month data during the year 2009. In addition to the
power readings, the data set contains information about the number of employees in
the building, the working hours, and the electrical devices used. Some of buildings
have missing values which are replaced by moving averages.

4.2 Quality Measure

To measure the performance of the symbols in clustering, we propose a quality
measure as described below:

Tightness Measure (T ) Let C = {c1, c2, . . . cm} where each ci , for i = 1 to m

represents all the time series segments having the symbolic representation as ci .
Let F(ci) be a matrix that represents the pairwise intracluster distance between all
the elements of ci and G(ci) be the matrix representing the pairwise intercluster
distance between the elements of ci and all the elements that belong to (C − ci).
This is given as

F(ci) =
[
DTW(tp, tq)

]

∀(tp,tq )∈ci
(2)

G(ci) =
[
DTW(tp, tq)

]

tp∈ci ,tq∈C−ci
(3)

Let min and max functions be defined on a matrix as: min(.) returns the
minimum value of a matrix and max(.) returns the maximum value of a matrix.
Tightness is computed as:

T =
∑

∀ci∈C

(max(F (ci))−min(F (ci)))
2

(max(G(ci))+min(G(ci))+ &)2
(4)

where T is the tightness. The power factor 2 introduces a penalty on the higher
values of distance over the lower values of distance. To avoid the divide by zero
error, we introduce parameter &. The value of & is zero in our experiments as
because there do not exist any undefined condition in our case. The generic family
of function to measure the tightness given as T̈ can be written as:

T̈ =
(
(α ×max(F ))− ((1− α)×min(F ))

(α ×min(G))+ ((1− α)×max(G))

)η
(5)
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The above T̈ converges to Dunn score [7] when α = 1 and η = −1. Dunn score
is biased toward partitions having exactly one good cluster while the rest of the
clusters may be of inferior quality. In our proposed measure, the quality of all
the clusters is considered, unlike the Dunn score. The other descriptive statistics
like mean and standard deviation can be used in place of maximum and minimum
distances; however, for simplicity we chose only the maximum and minimum value.

Consider an example of the intracluster and intercluster matrices obtained from
the group acf d in Fig. 3, formed by s1 and s2. The intracluster matrix F(acf d) is
a 2× 2 matrix and the intercluster matrix G(acf d) is a 2× 6 matrix where the rows
correspond to the segments s1 and s2, respectively, and the columns corresponds
to s3, s4, s5, s6, s7, and s8. Each cell (i, j) of the matrices contains pairwise DTW
distance between the two time series segments corresponding to the ith row and the
j th column, respectively.

5 Results and Analysis

In this section, we first report the results of the accuracy of the proposed method
in identifying the planted patterns. We subsequently discuss the results of the
comparative analysis, followed by the application of the proposed method for
analysis of MFOP and DSM.

5.1 Planted Patterns

To estimate the accuracy of the proposed symbolic representation in case of planted
patterns, we integrate repeated patterns into five random time series data. The
detected patterns obtained have been illustrated in Fig. 5.

The length of the planted patterns ranges from 6 to 12. For example, in time
series (a) in Fig. 5, all the planted patterns are of same length but in time series
(c), the planted patterns are of different length; however, the proposed symbolic
representation successfully captures all the varying length patterns.

5.2 Comparative Analysis

Table 1 shows the results of the clustering obtained in case of E-SAX and PLA and
the proposed method measured in terms of the tightness measure T and Dunn score.
The segments obtained using SAX technique fall into as many clusters as the size
of the alphabet. Due to the nature of the encoding used in SAX, no representative
pattern is observed in any of the groups. As a result SAX is not directly considered
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Fig. 5 Planted patterns in five different time series data are shown in red: subfigures (a)–(e) show
the five different time series along with the planted patterns

Table 1 The table shows the comparison of the proposed symbolic representation technique with
others. The best values of the tightness measure T and Dunn score are marked with boldface

T Dunn score

Type E-SAX PLA Proposed E-SAX PLA Proposed

Industrial 0.94 0.41 0.19 0.004 0.0002 0.0001

Office 0.49 0.68 0.26 0.0002 0.0002 0.001
Retail 0.34 0.51 0.28 0.007 0.001 0.001
EP 0.32 0.29 0.35 0.0001 0.0002 0.0001

for the clustering of the segments. As shown in the Table 1, the proposed symbolic
representation outperforms other methods in 3 out of 4 data sets. Though, PLA is
found to outperform other methods in 3 out of 4 data sets in terms of Dunn score,
the values obtained using Dunn Score are very low and performance of the proposed
method is very close to the performance of PLA. It is also important to note that,
the Dunn score is biased toward partitions having fewer good clusters while the rest
of the clusters may be of inferior quality while the proposed measure considers the
quality of all the clusters.

5.3 Most Frequently Occurring Pattern (MFOP)

The MFOP is described as the symbol with highest frequency of occurrence. We
analyze the most frequently occurring pattern (MFOP) at two levels: segment level
and building level. At segment level, we analyze the MFOP for sequential encoding
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and simultaneous encoding. At the segment level, the analysis is carried out across
all buildings with the objective to identify the most frequently occurring pattern
of load consumption in a set of buildings. This information may help the utility
supplier in their long term planning. Similarly, the MFOP analysis can be carried
out at a more granular building level, to understand what is the most frequently
occurring pattern of load consumption in a building. This analysis is carried out on
every time series using the simultaneous encoding.

5.3.1 Analysis of MFOP for Sequential Encoding Technique

Figure 6 shows the frequency of occurrence of the MFOP obtained for each data set.
We analyzed the symbol edad for EP type buildings because of its highest

frequency of occurrence. We studied the survey data of the CER-IRISH and
discovered some common properties of the buildings with pattern edad. The
selected buildings have maximum 50 employees. Most of the buildings with pattern
edad have 8–12 working hours during weekdays from 9 a.m. to 5 p.m. or 10 a.m.
to 6 p.m.

With reference to the MFOP given in Fig. 6, we obtain two groups common in
all data sets, that is edac and f cac. In Fig. 7, we illustrate the common groups
and analyze the common patterns. In case of group edac, the office and retail type
buildings have the matching peaks. The mean of the industrial and EP buildings lies
in the range of 0 to 2.00, that is the similar range out of all four data sets. As shown
in the Fig. 7, in case of group f cac, the patterns of office and EP type buildings are
similar with a sharp rise at the end of the segment.

Fig. 6 Frequency of occurrences of top 4 most frequently occurring patterns for all data sets
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Fig. 7 Segments belonging to the common groups representing the MFOP “edac” and “fcac” for
all four data sets industrial, office, retail, and EP buildings in the sequential encoding approach

Fig. 8 Frequency of occurrences of each encoding for EP, industrial, and retail data sets

5.3.2 Analysis of MFOP for Simultaneous Encoding Technique

In Fig. 8, we plot the frequency of occurrence of the MFOP in respective data sets.
For groups cehe, ceie, cf he, cf ie, EP has the maximum frequency. All the symbols
have large frequency of occurrence except the last three: chhe, chie, cihe.

We illustrate the patterns of the common groups in Fig. 9. Although mean and
degree of all the groups shown in Fig. 9 lie in the same range, the LC or intercept
is varying. The groups cehe and ceie have varying range of the LC, that is in cehe,
LC ranges from−0.00414 to−1.04729, while in ceie, the LC ranges from 0.00087
to 1.99564. There exists a total of 100 unique buildings with patterns cehe and 80
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Fig. 10 Representative of groups formed by sequential encoding technique. Given groups are:
ceje—industrial buildings, beeh and chif —office buildings, celf —retail buildings, cehe and
eggh—EP buildings

buildings with pattern ceie, cf he, cf ie. In all the groups, and all data sets, more
than 50% of the buildings have 1–5 employees. The working hours for the buildings
ranges from approximately 8–10 h on weekdays.

We illustrate the representative patterns of the groups formed by simultaneous
encoding in Fig. 10. Each group captures distinct characteristics of the load patterns.

The group ceje captures the patterns with two peaks. In case of group ceje,
majority of the segments falls into time 5 : 00 a.m.–10 : 00 a.m. The mean
electricity consumption is lower during that time. On analyzing the buildings in
group ceje, we discovered that those buildings mostly use heating and cooling
appliances during times of low electricity use, to adjust the temperature of the
building. Hence the electricity consumed between 5 : 00 a.m.–10 : 00 a.m. is
mostly due to the use of heating and cooling appliances. Majority of windows in
case of industrial buildings falls into c, d, and h symbols. The mean of the windows
in c SAX symbol ranges from 0 to 2.73, for d the mean ranges from 0.19 to 3.8,
and h has the windows with highest power readings with mean ranging from 1.54
to 26.64.

The group beeh for office data set has a constant pattern at the beginning of the
window, and then a rising trend is observed. The group chif for office building has
two peaks at the end of the window. The frequently occurring SAX symbol here are
b, c, and d. Here, the range of mean in case of SAX symbols b ranges from 0 to 1.9,
for c, the mean ranges from 0 to 3.17, for d, mean ranges from 0.63 to 4.94.
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In case of retail buildings, the group celf have a similar pattern to beeh of office
building. The SAX symbol c ranges from 0 to 2.7 in case of retail buildings. Group
cehe of EP data set is similar to cehf . In case of EP buildings, the majority of the
SAX symbols obtained are c, d, and e. The mean in case of SAX symbol c ranges
from 0 to 2.59, for d it ranges from 0.13 to 3.87, and for e it ranges from 0.61 to
5.16.

5.4 Analysis of MFOP of Individual Buildings

Figure 11 shows the MFOP obtained from 7 randomly chosen buildings. The
symbols ccbe and dcce and bcae are obtained from three different industrial
buildings. ccbbe identifies the constant power consumption, dcce, bcae identifies
the wavy pattern. The next two bcae in the second row are for the office and retail
type buildings respectively. It is important to note that as the alphabet range of
each symbol used in the encoding is dependent on the distribution of the data,

Fig. 11 MFOP obtained from 7 randomly chosen buildings. The red parts in the plots mark the
segments with the given symbols. The symbols from top left are—ccbe, dcce, bcae: industrial data
set, bcae: office data set, bcae: retail data set, bcaf : retail data set, bcaa: retail data set
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same encoding may represent two different patterns in two different data sets. For
example, the encoding bcae shows different patterns in office and retail data sets.
The symbol bcaf is obtained from a retail type building. The pattern bcaa obtained
from retail type building shows that the proposed symbolic representation identifies
the pattern which exists for the longest period of time.

5.5 Applications Toward Demand Side Management (DSM)

Here, we discuss how the discovered MFOPs obtained from sequential encoding,
simultaneous encoding, and building level can be helpful in DSM operations.

• Sequential encoding
Identifying the common hours of usage of a symbol type can help the utility

providers to manage the loads and in load shifting operations in case of peak
hours. In case of the common groups detected like edac, f cac, and echj given
in Fig. 6, we extract the hours where it has the highest frequency of occurrence
shown in Table 2. The group edac, which occurs in all the data sets, shown in
Fig. 6 has common hours, 07 : 00–12 : 00 in industrial and retail data sets.
Similarly, the group echj has its occurrence from 00 : 00–5 : 00 in both office
and retail data sets. This common interval existing in multiple building signifies
some common behavior being captured in the group and that time can be opted
for load shifting in case of peak hours of usage.

Similarly the group f cac has common hours, 20 : 00 : 00–02 : 00 : 00
in case of office and EP data sets. In case of group edad, the pattern does not
start at the same time but the duration of occurrence is same and also there is a
coincidence of 3 h, that is from 05 : 00 : 00 to 08 : 00 : 00 a.m. Hence, the hour
of coincidence can be considered as the peak hour for the utility providers.

• Simultaneous Encoding
In Table 3 we summarize the time range of the groups common in industrial,

office, and EP data sets obtained from simultaneous encoding technique. For
each of the given groups in Table 3, the time range of windows is either common
or there exists an hour of phase shift. For example, as shown in Table 3, for

Table 2 Table showing the
similarity in time usage
obtained from sequential
encoding

Group Data set Time-From Time-To

edac Industrial 07:00:00 00:00:00

Retail 07:00:00 00:00:00

fcac Office 20:00:00 02:00:00

EP 20:00:00 02:00:00

edad EP 03:00:00 08:00:00

Industrial 05:00:00 10:00:00

echj Office 00:00:00 05:00:00

Retail 00:00:00 05:00:00
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Table 3 Table showing the
similarity in time usage
obtained from simultaneous
encoding

Groups Data set Time-From Time-To

cehe Industrial 00:00:00 05:00:00

EP 00:00:00 05:00:00

cgie Industrial 00:00:00 07:00:00

Office 00:00:00 07:00:00

chhe Industrial 22:00:00 06:00:00

Office 21:00:00 05:00:00

chie Industrial 14:00:00 22:00:00

Office 14:00:00 22:00:00

groups cehe, cgie, and chie, the time duration of the load pattern is common
for the given data sets. However, in case of group chhe, the industrial and office
buildings have an hour of phase shift. Discovery of these coincident groups with
same time duration will help in load shifting operations.

• Building level
With respect to the patterns obtained at building level analysis shown in

Fig. 11, we discuss some of the applications toward DSM below:

– Locating the peaks: Identifying the peaks at regular intervals can help in
load balancing. For example in dcce in Fig. 11 for the industrial buildings, the
peaks are synchronized in time and have same patterns, which makes it easier
for utility providers to maintain the demand–supply equilibrium.

– Energy saving: The symbol bcae in Fig. 11 for three different buildings has
different patterns. A peak exists in the third bcae, that is for the retail type
building, however, no peak in the first bcae, that is for the industrial data
set. With an aim to energy saving policy, identifying the buildings with lower
load consumption in segments can act as an ideal building, that is the bcae
in the industrial data set. The discovery of ideal building can be used as an
example for others to manage their respective loads thus helping in energy
saving policy.

6 Summary and Conclusions

In this article, we developed an automatic segmentation and symbolic representation
technique for time series to analyze the load profiles obtained from the smart meter
data in commercial buildings. The limitations of the existing literature are that it
breaks the time series into pre-determined fixed length segments and represents
the segments based on the statistical measures of the data which fails to capture
information about the pattern of a segment along with the peak/off-peak information
and average value. We develop a piecewise polynomial regression model to segment
a time series that can also be used for break-point identification. We next develop a
symbolic representation of time series by encoding each segment by the mean value,
the leading coefficient of the fitted polynomial, intercept of the fitted polynomial,
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and the degree of the best fit polynomial. The encoding allows dimensionality
reduction of the original time series while preserving each unique pattern. We finally
propose a measure to quantify the performance of any symbolic representation based
method in clustering time series segments. The proposed method emphasizes on
the quality of each cluster formed, unlike the common clustering indexes. One of
the limitations of the proposed tightness measure, however, is that it is sensitive
to outliers. In case of outliers, the max(F (ci)) will increase and as a result the
numerator value will be very large. Suppose max(F (ci))−min(F (ci)) ≈ γ . Now,
even if the two different clusters are dissimilar, the denominator too will be very
large, that is, max(G(ci)) + min(G(ci)) ≈ γ , hence T ightness ≈ 1, which
signifies a poor clustering.

The performance of the proposed method evaluated for plated pattern identifica-
tion and clustering is found to be an improvement over the existing methods. The
developed method is applied for the analysis of the load profiles in commercial
buildings and applied for demand side management. The results show that the
common groups discovered across the buildings exhibit common load consumption
pattern which can help in aggregated DSM applications.

The current study also opens many important questions for future analysis,
like:

• What would be a data driven approach to learn the various parameters involved
in the proposed segmentation and symbolic representation based approach?

• What would be the data driven approach for symbolic representation of univariate
times series that optimize multiple criteria like dimensionality reduction, infor-
mation loss while preserving the unique patterns?

• How can the information about the similarity in load profile across consumers be
exploited for better energy management and generation of renewable energy?

Research attempting to address these questions would further enrich the field of
smart energy.
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A Modern Approach to Include
Representative Behaviour Models
in Energy Simulations

Ayesha Kashif, Stephane Ploix, and Julie Dugdale

1 Introduction

Energy simulations take into account inhabitants’ behaviour in modelling energy
trends because their decisions and actions have a strong impact on the energy
consumption. These are benchmarked at the office buildings using controlled
activity profiles and predefined scenarios. However, at home this behaviour is quite
complex and difficult to predict as compared to at work. This requires dynamic
(reactive, deliberative, social) inhabitants’ behaviour to be taken into account
to fully understand its potential effect on energy consumption and modelling
energy trends. In this chapter, a methodology to generate and validate inhabitants’
dynamic behaviour model is presented. In this methodology, a concept of fine-
tuning parameters is proposed where simulated consumption curves, as inhabitants’
behaviour, are mapped to actual consumption curves with model fitting methods.
The resulting models exhibit behaviour closer to what could possibly happen in
inhabitants’ daily life. This will provide an opportunity to analyse more realistic
impact of these behaviours on the energy consumption patterns.

Energy management approaches of living places put emphasis on modelling
and simulating various physical factors related to energy consumption e.g. thermal
performance of insulation, energy used by heating and cooling, and other electrical
appliances, outdoor environment, and energy efficient appliances. Modelling rep-
resents system elements and their interactions whereas simulation helps to analyse
responses of the system to some change which in real life might not be possible.
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Fig. 1 Fridge freezer consumption patterns from the Irise dataset

In this section, the focus is not only on the physical aspects of the building
and appliances but also on the inhabitants’ dynamic behaviour because learning
ecological behaviours and temperance will empower the energy simulations to
understand energy consumption trends and reduce energy waste.

In order to understand how inhabitants’ behaviour impacts energy consumption,
the results from an analysis performed on different appliances in the Irise dataset1

are presented. They help to assess the sensitivity of these appliances to inhabitants’
behaviour. The results of the analysis performed on the fridge freezer are presented
in Fig. 1. The x-axis shows the size of the fridge freezer in each house and the
y-axis shows the energy consumption. Each point in the graph corresponds to the
energy consumption of a fridge freezer over the period of a year along with the
number of persons in each house represented by different colours. In some cases,
the energy consumption depends upon the size of the fridge freezer and the number
of people in the house, but in others it does not. An example of where the energy
consumption does not depend upon the number of people in the house nor on
the size of the fridge freezer, is shown with an oval. This shows that the energy
consumption of the fridge freezer does not necessarily depend upon the number of
people in the house nor on the size of the appliance. Instead, it depends on how
the inhabitants use the appliance, i.e. their behaviours. This analysis also provides
a good justification that simple presence/absence profiles are insufficient in order
to model the household behaviour, especially for cold appliances. Figure 2 shows
the yearly energy consumption of 12 place setting dishwashers for all houses in
Irise that have a dishwasher. The box plot shows that the fluctuation of energy
consumption among these houses is irrespective of the number of people inside
the house. The example of one of the extreme cases is the 1 person house where

1This is part of the European Residential Monitoring to Decrease Energy Use and Carbon
Emissions (REMODECE) project. It contains energy consumption data, for each appliance from
98 French houses, recorded at every 10 min, over a one year period.



A Modern Approach to Include Representative Behaviour Models in Energy. . . 491

Fig. 2 Dishwasher yearly
energy consumption for all
houses in Irise dataset

Fig. 3 Microwave oven yearly energy consumption for all houses in Irise dataset

the dishwasher consumes more than the 5 person houses (the “Median” value)
irrespective of the fact that both have a 12 place setting dishwasher. Figure 3 shows
the yearly energy consumption of the microwave ovens of different sizes. In this
example, also no strict correlation between the number of persons in the house and
the size of appliance with the consumption is found. The ovals show the case where
a 12kw microwave in a 2 person house is consuming more than a 335kw microwave
in a 4 person house. There could be certain reasons e.g. the inhabitants in a 2 person
house eat ready meals at home most of the time and those in the 5 person house use
the standard cooker every time they want to eat. Similarly, covering the food while
warming up, the duration for which the food is warmed up, etc. impacts the overall
consumption. These factors, however, belong to inhabitants’ behaviour rather than
the size of the appliance or the number of persons in the house and hence are
important to be considered in energy simulations and demand predictions. There are
certain environmental parameters that impact the inhabitants’ behaviour regarding
energy consumption. These include seasons, day type (weekday, weekend), day time
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Fig. 4 Consumption of the TV for all the houses from the Irise dataset. (a) Higher consumption
in the evening. (b) Higher consumption in the afternoon

(morning, afternoon, evening, night), and weather conditions (sun, rain, etc.). These
parameters are also somehow influenced by the behaviour of occupants. Figure 4
shows the energy consumption of the TV in all houses in the Irise database. There
is more consumption in the evening (Fig. 4a) as mostly people are at home and
like to watch TV during this period. There are however some houses where the
inhabitants watch TV mostly in the afternoon (Fig. 4b). In these houses, the second
most probable time to watch TV is at night. This could be due to the fact that in
these houses most of the family members stay at home, perhaps because they are
elderly and retired or housewives or kids watching cartoons, etc.The consumption
of the water heater in Fig. 5a is more in the evening as compared to other periods
of the day. This is because during these periods inhabitants are mostly at home and
interact more with thermostat settings or windows, etc. Figure 5b shows another case
where consumption is more at nights rather than in the evenings.Figure 6a shows
an example of a washing machine where there is significantly more consumption
on weekends than weekdays. Conversely, the houses in Fig. 6b do not have a
significant difference between the energy consumption on weekdays and weekends.
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Fig. 5 Water heater consumption for all the houses from the Irise dataset. (a) Higher consumption
in the evening. (b) Higher consumption at night

Fig. 6 Washing machine consumption of the averaged over weekdays and weekends. (a) Signifi-
cant difference in consumption. (b) Small difference in consumption. (c) Higher consumption on
weekdays

Figure 6c shows the houses where the washing machine is used more on weekdays
than on weekends. Thus high variability is found in the inhabitants’ behaviours
regarding the weekdays and weekend consumptions. In addition to the parameters
discussed above, the weather is another important factor that affects inhabitants’
way of interacting with some appliances. For example, if the weather is good it
may influence the inhabitants’ desire to eat out. This behaviour could vary from one
family to another based on their norms, culture, region, etc. In order to see the impact
of weather on cooking behaviour, an analysis is performed on the houses in the Irise
database. In this analysis, the consumption of the electric cooker (hotplate+oven)
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Fig. 7 Impact of weather conditions on appliances’ consumption behaviour. (a) Cooker con-
sumption during different weather conditions for a house in the Irise database. (b) Total-Lighting
consumption during different weather conditions

is summed up for each day for the whole year. Also the weather condition for
each day during the year is registered. Finally, the consumption is averaged for
each of the weather conditions. Figure 7a shows an example where the average
consumption of the cooker for different weather conditions is averaged over the
whole year. It shows that during most of the times when weather is not sunny
the consumption is higher compared to when it is sunny. There could be certain
reasons behind this consumption behaviour of this family, e.g. the tendency to eat
out when the weather is good, or the inhabitants are eating cold food (salads, etc.). In
literature weather is found to be one of the most important and influencing factors
on energy consumption [1]. Another analysis is performed to find the impact of
different weather conditions on the usage of lights. The experiment is performed
on a house in the Irise database where the total-lighting consumption is summed
for each morning during the period of a month. Then the consumption against each
weather condition is summed up. The results shown in Fig. 7b clearly depict that as
the weather is getting worse the usage of lights is significantly increased.

Including behaviour in energy control and management is currently focused
on either static profiles or predictive models (sensor based inhabitants’ occupancy
detection). However, current approaches are also based on single user interactions
with the environment and do not include reactive/deliberative decision making
or complex human behaviours. The purpose of this research is to capture the
behaviour that not only represents a simple presence or absence of an inhabitant
in an environment but also represents a realistic interaction of the human with
the environment. This means that the dynamic, reactive, deliberative, and social
behaviour of inhabitants must also be taken into account in order to fully under-
stand its possible effect on energy consumption. Such an approach considers the
inhabitants as reactive, intelligent agents instead of simply “fixed metabolic heat
generators passively experiencing the indoor environment” [23].
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2 Inclusion of Occupants’ Behaviour in Buildings Energy
Management

The literature suggests that behaviour strongly influences energy consumption
patterns and is an important factor for energy waste reduction in buildings. Certain
programs that can improve consumption based behavioural efficiency have been
found to be quite effective [2]. Azar and Menassa [3] observed significant sensitivity
levels taking into account the behavioural parameters that vary with the building
size and weather conditions. Building energy simulation tools are used to evaluate
building designs, energy efficiency, demands, human comfort, emissions, and
associated costs during design stages and performance predictions. The existing
simulation tools exhibit significant differences in predicted and simulated energy
consumptions. This is due to the fact that factors influencing energy consump-
tions in buildings, (i) outdoor/indoor climate, (ii) building characteristics and (iii)
inhabitants’ behaviour are poorly understood and included only with standard basic
assumptions. The role of inhabitants’ behaviour clearly indicates our inability to
properly model inhabitants’ complex behaviour, taking into account the reactive and
deliberative mechanisms and to better quantify uncertainties in energy efficiency
predictions.

Repetitive inhabitants’ actions are included in same simulation tools (e.g.
DAYSIM) as intelligent algorithms [4] and [5], but they are not representative of
the actual behavioural variations. Inclusion of inhabitants’ behaviour within energy
simulations is discussed in literature across two dimensions: (i) behaviour models
based on statistical algorithms [6] and (ii) predefined fixed schedule based behaviour
models [7]. The statistical behavioural models are based on stochastic processes
with probabilities of control events, but fixed schedules refer to deterministic,
predictable and repeatable behaviours. This is an important limitation in these
simulation tools that restrict us to achieve more accurate energy estimates and
predictions. The inclusion of a probabilistic discomfort model in addition to a
stochastic behavioural model [8] often results in more realistic simulations, but
occupancy model with only presence and absence profiles is still a challenge.

The approaches used for energy simulations in buildings do not include the social
interactions of occupants inside the building. The importance of social interactions
in human societies as explained by [9] is that as compared to the linear systems
where the properties of the whole system are a simple aggregation of its parts, the
human societies are different. Human societies are rather complex as their behaviour
cannot be determined by partitioning it and understanding the behaviour separately
for each part. This complexity is due to the non-linear interactions between the
people where the exchange of knowledge and materials affects the recipient’s
behaviour. Thus in case of humans, the behaviour emerges from the actions of its
units.

Recently, the multi-agent systems (MAS) are being used in the domain of energy
management within buildings. For example, a MAS approach is used in monitoring
and controlling the Heating, Ventilation and Air Conditioning (HVAC) system and
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lighting in office buildings [10]. In smart homes, the approach has also been used
for the anticipatory and reactive control of HVAC and lighting [11]. Likewise, an
agent based control system was used for the optimization of a simulated residential
water heating system [12]. The prediction of the mobility patterns and device usage
of inhabitants has been done in the MAVHome project in order to satisfy the tradeoff
between cost and comfort [13]. Abras and his colleagues [14] gave the control of
appliances and sources to the software agents that are used in a home automation
system. Liao and Barooah [15] developed a multi-agent system to predict and
simulate the occupancy at room and zone level in commercial buildings.

Lopes et al. [16] proposed that the behavioural aspects should be included with
a multidisciplinary approach that integrates engineering and social science together.
They also found that the energy based behaviours are highly dynamic that can cause
inconsistencies, so need to be properly investigated. Surveys have been designed
to identify the wasteful behaviours and indicated that between different dwellings,
energy efficient behaviours account for 51%, 37% and 11% of variance in heat,
electricity and water consumption, respectively [24]. Hoes et al. [17] reported
that occupant’s comfort is negatively affected if they are not given the control
over environment e.g. thermostat, windows, blinds fans, etc. Thus, the occupants
should be provided with control over their environment to increase their comfort
levels [18]. Liu et al. [19] Environmental factors and variations lead to conscious
or unconscious adaptive behaviours, such as restraining physical activity levels,
changing or adjusting clothes, opening or closing windows, adjusting thermostat,
etc.

3 Multi-Agent Based Approach for Dynamic Behaviour
Model Generation and Validation

The approaches mostly used for taking into account human behaviour in building
simulations are based on purely stochastic methods. They are based on already
established statistical models and hence are more reliable. These processes take
the presence and/or activity profiles and reproduce the consumption behaviour
according to what is real or measured. They also enable the prediction of such profile
patterns for different appliances to help analyse the power demand or generate load
profiles in advance.

Another approach for including occupant’s behaviour in realistic building energy
simulations is to not only consider behaviour as fixed profiles but to also model the
reactive, deliberative, social and group phenomenon taking place in real situations.
It also involves the stochastic process but mixed with an artificial intelligence based
multi-agent human behaviour model. The key advantages of this approach over
purely statistical approach are that it helps in finding out: (i) how to identify the
high energy impacting behaviours, (ii) how the complex i.e. reactive, deliberative,
social and group behaviour can be co-simulated with the thermal model of the
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Fig. 8 Methodology to validate behaviour model

building and physical models of appliances in residential buildings, (iii) how can
the complex behaviour models be validated to ensure its representativeness and
(iv) how to validate BEMS with building system and inhabitants. The proposed
dynamic behaviour generation and validation methodology is shown in Fig. 8.
Step-1 involves data analysis and data pre-processing. An analysis of the Irise
energy consumption dataset is performed to find the energy consumption behaviour
of households. The data in Irise is further complemented with some additional
information in order to understand the effect of certain other parameters on the
energy consumption behaviour of households. This information includes the day
of the week (i.e. weekend or weekdays), holidays, the state of the weather and the
parallel usage of other appliances. The pre-processing step also involves the field
studies and experiments where both the consumptions and the activities behind these
consumption patterns are recorded. In order to further elaborate certain consumption
patterns, the reasons behind certain activities are also recorded.

In step-2, the physical model of the building envelop and/or the appliance is
constructed. The important inputs for this step include the data about the household
activities and the data about the consumption of appliance. The impact of the usage
of one appliance on another is also important to construct the model of appliances.
This impact can be analysed both from the Irise database and the field studies.
However, the impact of specific actions on appliance consumption is analysed
through field studies.
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Step-3 concerns with exploring the important behavioural parameters identified
during step-1. They are selected to be used for building the inhabitants behaviour
model and later fine-tuning them for validating the models. Based on these param-
eters, in step-4 representative behavioural groups are identified using clustering
techniques to find the houses with identical behaviours. In step-5 the inhabitant’s
behaviour model is built. The H-BDI (Homeostasis-Belief Desire Intention) model
is based on the BDI (Belief Desire Intention) agent architecture, where homeostasis
captures the unconscious physical phenomenon in humans that can indirectly influ-
ence the belief generation process. In step-6, both the physical and human behaviour
models are implemented taking into account different parameters that could possibly
affect consumption distributions of household appliances. The physical models for
appliances can be built using the generic model based design environments, e.g.
matlab/Simulink or some specific behaviour modelling environments e.g. Brahms.
The Inhabitant’s behaviour model is built in Brahms multi-agent modelling and
simulation environment.

In step-7, the impact of household energy consumption behaviours on the
appliances is visualized and validation is done using the probability distributions.
Likewise, the simulated consumptions are also computed while tuning the values of
the previously identified behavioural parameters. These simulated distributions are
then compared to the actual distributions obtained from the dataset. The purpose
of this comparison is to see how close the proposed behaviour model and scenario
implemented in Brahms (multiagent system) is to reality. The process of tuning the
parameters continues until the actual and simulated error is significantly reduced.
Besides the interaction with appliances, the co-simulations also involve the building
envelop models and the Building Energy Management Systems (BEMS). These co-
simulations help to identify and validate the role of BEMS while the inhabitants are
also part of the whole process.

3.1 Data Collection, Pre-Processing and Analysis (Step 1)

In order to co-simulate the inhabitants’ behaviour with the physical model of the
appliance, both the consumption of the appliance and the actions behind these
consumption patterns are required. However, the benchmarked Irise dataset only
contains information about the consumption of electrical appliances as shown in
Fig. 9. It does not include any information about the activities behind those con-
sumption patterns. The question is to how the energy consuming behaviours could
be deduced from consumption that would be used later for building behavioural
models. In order to identify the energy consuming behaviour of inhabitants, Irise
database is pre-processed to identify the behaviour of inhabitants based on critical
parameters as consumption behaviours based on seasons, weekend, weekdays,
holidays, and the impact of usage of one appliance over another. The sections
below provide the detail of how the pre-processing is done to complement Irise
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Fig. 9 Complementing the dataset

database with the extra information as, weather, appliance correlation patterns and
inhabitants’ behaviour, etc.

3.1.1 Case Study of a Fridge

Since, it is critical to complement the structural discrepancy of missing activities
information against energy consumption trends in the Irise dataset we performed
certain experiment on fridge freezer. The goal was to find energy consumption
patterns associated with behavioural actions. This includes identifying the reasons
behind certain activities and to link these to the consumption data in the Irise
database. These behaviours are then mapped to data in the Irise database in order
to provide heuristic rules that will be used in the co-simulator. The experiments
were very carefully designed to model the impact of an action on the fridge freezer
cycles to predict (i) when the current fridge cycle shall end, (ii) what will be the
length of the next fridge cycles, (iii) how many cycles it will take to reach a stable
cycle period and (iv) duration of stable cycle. Firstly the cycles of an empty fridge
are modelled against controlled experimental conditions and then with food having
different characteristics as (i) different quantity, (ii) different temperature and (iii)
covered/uncovered was added to the fridge at different fridge cycle positions, e.g.
start, middle and end of cycle periods.

3.1.2 Fridge Freezer On-Cycle Durations Computation

The fridge freezer needs a pre-processing step as compared to other appliances,
because it consumes power in continuous (on and off) cycles, whereas, other
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Fig. 10 Fridge on-cycle durations

appliances consume only when they are turned on. Thus, cycles of the fridge freezer
need to be computed from its consumption. In Fig. 10 a snapshot of the data file from
the Irise database shows the consumption of the fridge every 10 min time stamp.
However, these consumption values are not very meaningful in their present form
because the compressor works in continuous cycles. Thus, it is important to extract
“on” and “off” cycle durations from the consumption. The flowchart in Fig. 12a
explains the process of how the on and off cycles are actually computed from the
Irise database. A list of selected houses is made where both the electric cooker and
the fridge freezer are in the kitchen. A new field “Duration” is added to each house
table in the Irise database, where the values in minutes for on and off cycles are
stored. Similarly, “Cycle” field tags the computed duration with text “On” and “Off”
if the duration corresponds to the “on” or “off” fridge cycles, respectively (Fig. 10).
The on-cycles include the consumption values for the fridge that are above 3Wh
during 10 min, whereas, when the fridge consumption is less than or equal to 3Wh,
this consumption is added to the off-cycle. The reason for putting the values below
or equal to 3Wh in the off-cycle is that in some houses the consumption of the fridge
never goes to 0 when the compressor is off, but remains at some small value e.g. 1, 2,
3 or occasionally 4 and 5Wh. If this fact is neglected during the computation of the
cycle duration, the compressor cycle will never come back to the off state. Further,
the difference between the times where the values are either below (off-cycle) or
above (on-cycle) 3Wh is used to compute cycle durations, respectively.
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3.1.3 Impact of Seasons, Day Type and Cooking Activity

In this analysis, the global impact of the different parameters e.g. cooking activity,
seasons, day types on both the fridge freezer and fridge consumption cycles is
considered. This is achieved by clustering the houses in the Irise database that
identify the similarities and differences that exist in the behaviour of inhabitants
regarding the usage of appliances. However, it is necessary to pre-process the data
for clustering by extracting the information about all the other parameters that
impact the consumption. The pre-processing is done not only to complement the
Irise database with additional information but also to organize the information in a
meaningful way to be input to a clustering algorithm. Since, one of most important
factors that impact the consumption of the fridge is the cooking activity, the houses
in Irise database with both a cooker and a fridge are selected for pre-processing.
Only those houses where the fridge is located in the kitchen are selected. This
selection is made because the impact of the cooking activity on the fridge cycles
is not only due to the interactions with the fridge but also due to the temperature
change in the kitchen. Thus, the houses with fridges located in other areas e.g. living
room or utility room are not included in the experiments.

3.1.4 How the Impact of Cooking Activity on Fridge On-Cycles Is
Computed

In order to find the impact of the cooking activity on the consumption of the fridge,
the on-cycle duration is computed when the cooker in turned on. The impact of the
cooking activity on the fridge cycles is not only considered for the cycles where
cooker was on but also on the subsequent fridge cycles as well. There are multiple
reasons for this, e.g. the temperature increases in the kitchen affecting the fridge,
the inhabitants interact with the fridge often more during the cooking activity, the
inhabitants can put warm food inside the fridge, etc. This means that the fridge
cycles after the cooker has been turned off must be taken into account. Hence, the
fridge consumption cycles are considered to be impacted by the cooking activity
until they become normal or stable.

Different trends have been observed in the fridge on-cycle durations during the
cooking activity. Figure 11 shows that as a result of the cooking activity, the on-
cycle duration increased compared to the previous on-cycle. Then, the subsequent
on-cycle also increased showing an increasing trend in on-cycle durations. Then
it started to decrease before increasing again. The decision about which cycles
should be considered as being impacted by the cooking activity based on different
trends is explained through an example in Table 1. Before explaining the example,
the flowchart to compute the impact of the cooking activities on the fridge cycle
durations is shown in Fig. 12a. It starts by taking as input all the houses where
both the fridge and the electric cooker are in the kitchen. Then for every month,
for each house, the “normal” compressor cycle durations are computed. “Normal”
compressor cycles are those that are not influenced by the cooking activity or some
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Fig. 11 Different trends identified in on-cycle durations

other activity that affects the fridge consumption. These are the cycles where the
fridge is assumed to behave in the standard way and are assumed to lie in the first
quartile of data. A list of SQL queries is prepared to compute the fridge on-cycle
durations based on different criteria i.e. seasons and day types. This step is important
as the fridge cycle durations are impacted by not only the cooking activity but also
the season and day type (weekday/weekend).

3.1.5 Heuristic Approach to Compute Fridge Consumption During
Cooking Activity

The important variables used in this algorithm are cVal, Dc, Dp and myFlag. The
variable cVal is a pointer that scrolls down in the “OnCycle” field. This field contains
the on-cycle durations of the fridge (Fig. 12b). The pointer stores the current value
of the on-cycle in the OnCycle field. The Dc and Dp variables correspond to
current and previous differences, computed from three consecutive fridge on-cycle
durations. These variables identify the increasing or decreasing trends in the fridge
cycles. The myFlag [0,1,2] variable is computed based on the Dc and Dp values to
see whether the impact of cooking activity on the subsequent fridge cycles should be
included or not. There could be an increasing trend (myFlag=0), decreasing trend
(myFlag=1), increasing then decreasing trend (myFlag=1) (the decision criteria are
the same in the last two cases, so myFlag is given the same value) and decreasing
then increasing trend (myFlag=2). These values are further used with cutoff criteria
(i.e. whether the normal OnCycle is reached) to decide the cooking impact on the
next on-cycles.
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Fig. 12 Flowchart for
average on-cycle duration
computation based on the
cooking activity
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Table 1 Iterations for on-cycle duration computation

Fig. 13 Impact of cooking activities on fridge cycle durations

All these trends are shown in Table 1, with the help of an example taken from
house 2000912 in the Irise database. The iterations show for how long the cooker
impacts the fridge on-cycle durations. Figure 13 shows the graph of the same
example; here on-cycles that are included under the impact of cooking activity can
be clearly seen. The normal on-cycle duration computed for this house is 140 min.
The first row of the table shows the on-cycle duration (190 min) where the cooker
was turned on (Table 1). This cycle is impacted by the cooking activity.

In order to decide whether the next cycle (650 min) should be considered as
impacted by the cooking activity as well, the difference between the current cycle
duration and the next cycle duration is computed. If the current difference (Dc =
460) is larger than the previous difference (Dp = 0) and the on-cycle duration is
larger than the normal cycle duration, it means that the current on-cycle is impacted
by the cooking activity. This shows an increasing trend in the on-cycle duration
and is represented by myflag = 0. The next on-cycle duration is 240 min and in
order to decide whether this cycle has to be considered under the impact of cooking
activity the same process is repeated, i.e. the difference between current cycle and
the previous cycle is computed. The current difference (Dc= −410) is less than the
previous difference (Dp = 460). The trend between the three consecutive cycles is
increasing then decreasing, thus myFlag = 1. Although the current on-cycle duration
has decreased, it needs to be compared with the normal on-cycle duration (cut
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off criteria). Since the current cycle duration is greater than the normal on-cycle
duration, it is considered to be impacted by the cooking activity. The next on-cycle
duration is 160 min that again shows a decreasing trend. Now the three consecutive
on-cycles have a decreasing trend, and the current on-cycle duration is greater than
the normal cycle. Thus, it is included under the impact of cooking activity. The
next on-cycle duration is 180 min, and the trend between three consecutive cycles is
decreasing and then increasing (myflag = 2). This cycle will not be considered under
the impact of cooking activity. This is because once the cycle durations gradually
decrease and then increase again, it is assumed that the inhabitants have performed
some activity other than cooking that caused the cycles to become larger. Thus,
these cycles are not considered to be impacted by the cooking activity. If there is no
further cooking impact on the on-cycles, then the pointer cVal returns to the previous
bookmarked on-cycle record i.e. the previous on-cycle duration it has stored. The
cooker variable is set to “Off” and all other pointers are initialized to 0. The process
is repeated until all the on-cycle durations for the current SQL query are computed
and averaged. The process will then start for the next SQL query for the same house,
until all the queries have been run. It will then move to the next house in the given
list of houses. Figure 10 shows that final output of the above process, giving average
fridge cycle durations based on seasons, day type and the cooking activity.

3.2 Physical Behaviour Modelling (Step 2)

Physical behaviour modelling is building the models for the building envelope or
the appliances inside the building.

3.2.1 Building Envelop Modelling

The thermal model of the building used in this work is for the house called the
SIMBAD-MOZART as was built in Matlab/Simulink by CSTB (Centre Scientifique
et Technique du Bâtiment). SIMBAD-MOZART calculates the temperature in each
zone by taking into account various input variables. Some of the most important
variables, in Fig. 29, include the power of all the different appliances present in the
zone, the position of the blinds e.g. open/closed, number of occupants in the zone,
respiration flow rate, weather data, artificial lighting and ventilation. The impact of
window states (opened/closed) is also taken into account through ventilation, i.e. the
air mass flow between the inside and outside of the building.

3.2.2 Appliance’s Behaviour Modelling

Based on the case study of the fridge, the consumption data along with the
experimental results help in building a physical model for the fridge. Figure 14
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Fig. 14 Fridge behaviour model

Table 2 Variables used in the fridge model

Variable Description

Tf ridge(k) Inside fridge temperature during reactive time k, =>
Tf ridge(k)ε[Tmin; Tmax ]

Tset (k) Setpoint temperature

Troom(k) Ambient room temperature

Mfood Food quantity

Cfood MfoodCp , capacity of what is inside fridge

Mnew Quantity of a new food

Tnew New food temperature

Rfood Resistivity to heat exchange between food and fridge

Cnew MnewCp , capacity of a new food added to fridge

Rnew Resistivity to heat exchange between new food and fridge

Rf ridge Ropen + ζ(Rclose − Ropen) resistivity for heat exchange between inside
fridge and room

σ Dead zone: represents the temperature zone where compressor stops the
refrigeration cycles

below shows the model where the description of different variables used in the
model is given in Table 2.

The fridge controller provides the cooling power$cool that maintains the setpoint
temperature. $0 is the impact of heating power of the room on fridge. Its impact
depends on resistance of the fridge Rf ridge. $food and $new are the heating power
coming from the food already present in the fridge and the newly introduced food,
respectively. Their effect on the fridge temperature depends upon their capacity and
mass as well as the corresponding resistance. The heat pump is an important element
in modelling fridge cycles; let ρ be the performance factor of the heat pump that
yieldsCelec = ρ$cool . The fridge controller is made to follow the following criteria:
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Tf ridge(t)− Tset (t) < −σ → ζ(t + dt) = 0 (1)

−σ ≥ Tf ridge(t)− Tset (t) ≤ −σ → ζ(t + dt) = ζ(t) (2)

Tf ridge(t)− Tset (t) > −σ → ζ(t + dt) = 1 (3)

$Cool(t) = ζ(t)$Cool (4)

We have modelled three major events for the fridge: (a) permanent mode, where the
fridge operates following the normal refrigeration cycles, (b) temporary mode when
the fridge door is opened and closed; as a result, heat is exchanged and the inside
temperature rises to impact the instantaneous refrigeration cycles and (c) temporary
mode when food is introduced in the fridge.

(a) The model for the permanent state or normal cycles is proposed as below:

d

dt
[Tf ridge] =

[
− 1

Rf ridgeCf ood

] [
Tf ridge

]

+
[−ρφcool
Cf ood

1

Rf ridgeCf ood

] [
ξ

Tnew

]
(5)

Tf ridge(0) = T init
f ridge (6)

The model of the permanent state (1st order) is obtained when Tnew = Tf ridge.
(b) The model for the temporary mode follows that of the permanent state, but with

a change in the resistance of the fridge as below:

Rf ridge = Ropen + ξ(Rclose − Ropen) (7)

(c) The model for the mode when new food is introduced is proposed as below:

d

dt

[
Tf ridge

Tnew

]
=

[
− Rnew+Rf ridge

RnewRf ridgeCf ood

1
RnewCfood

1
RnewCnew

− 1
RnewCnew

][
Tf ridge

Tnew

]

+
[−ρ$Cool

Cf ood

1
Rf ridgeCf ood

0 0

][
ξ

Troom

]
(8)

with

Tf ridge(t)− Tset (t) < −σ → ζ(t + dt) = 1 (9)

−σ ≥ Tf ridge(t)− Tset (t) ≤ −σ → ζ(t + dt) = ζ(t) (10)

Tf ridge(t)− Tset (t) > −σ → ζ(t + dt) = 0 (11)

ζ(0) = 0 (12)

$Cool(t) = ζ(t)$Cool (13)
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We make the following assumptions in modelling the fridge:

(i) Opening the door modifies Rf ridge.
(ii) Removing food from the fridge is assumed to have a very small impact (except

for the door opening).
(iii) Adding food sets a new value to Tnew (the temperature of the food) and

parameters like Cnew and Rnew may be adjusted depending on the food.

3.3 Tune Parameters of Inhabitant’s Behaviour Models
(Step 3)

Based on the experiments and field studies, identify the important parameters that
impact the consumption behaviours of inhabitants.

Weekend and Weekday Cooking Probabilities This defines the probability that
the family cooks more during weekends or weekdays. While cooking, the agents
interact more with the fridge. If a higher probability is assigned to weekend cooking,
then the family will interact more with the fridge during weekends compared to
weekdays when they may eat out or use the food they have already cooked during
weekends.

Weather This defines and controls the perception by agents about the outside
weather. It means that if the weather is good, e.g. sunny and warm, then the family
might prefer to eat out.

Communication Based Agreement/Disagreement over Cooking or Dining Out
This involves the social interaction between agents where they agree or disagree
on dining out or cooking at home. The purpose of introducing this parameter is to
show how the social interactions of agents are interesting to include in simulations
in order to make them closer to reality.

Guests This is a random parameter that increases the interactions with the fridge
resulting in larger fridge cycles, hence large energy consumptions.

3.4 Clustering Houses with Similar Behaviours (Step 4)

The impact of the cooking activity on the consumption of the fridge due to the
inhabitants’ behaviour varies with different seasons and day types (weekdays and
weekends). The stacked chart for average on-cycle durations for the fridge in all
the houses in the Irise database, where both the cooker and fridge are located in
the kitchen, is shown in Fig. 15. On the x-axis there is the season (one month from
each season is taken), day type and whether it is cooking activity or not; on the y-
axis there is the fridge on-cycle durations in minutes. This graph shows that when
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Fig. 15 Fridge consumption during cooking and non-cooking activity

inhabitants are involved in the cooking activity in most of the houses the fridge
consumption cycles become longer than when there is no cooking activity.

3.4.1 Identifying Representative Behaviours

All the houses in Fig. 15 are further clustered to identify representative behaviours
based on their fridge consumption based on time of season, day type and cooking
activity. The houses in Table 3 are clustered based on how the cooking activity,
seasons and day types (weekend/weekdays) affect the fridge consumption.

The different clusters obtained after applying k-means clustering on the data are
given in Table 3. The seasons and day type is on the x-axis whereas average on-cycle
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Fig. 16 Similarities in clusters

duration of the fridge in minutes is on the y-axis. One month from each season is
taken as representative i.e. April for Spring, June for Summer, October for Autumn
and January for Winter. Each graph represents a cluster, where the consumption
behaviour of the fridge is different based on the season and the day type while the
occupants are involved in the cooking activity.

From the above clusters, some general consumption patterns on the population
can be seen. These patterns are summarized in the similarity matrix in Fig. 16. A
similarity of 50% is observed in inhabitants’ consumption behaviours during Winter,
Summer and Spring weekdays. The highest similarity (83%) is observed during the
Summer season where globally there is more consumption as compared to the other
seasons. Similarly, on Winter weekends there is 66% similarity in the behaviour of
inhabitants.

3.5 Inhabitant’s Reactive, Deliberative Behaviour Modelling
(Step 5)

The inhabitants filled the information in an activity journal not only about the actions
they performed on the household appliances but also the reasons that caused these
actions over the period of three weeks. Hence, these results helped us to derive
generic rules about how the individual and group behaviours evolve.

Figure 17 shows the model of inhabitants’ behaviour that starts with perception
of the environment, passes through the instinctive and cognitive phases and ends
up with actions back on the environment. The outside environment includes the
location and physical building models that provides the information about where
the agent is. The objects, appliances, other agents, agent belongings, weather and
BEMS informs the agent about what are the other things around the agent. The
time provides the information about when the agent is perceiving its surroundings
or taking actions. All these environmental elements are then perceived by the agent.
Upon the perception, the agent will translate these elements as its beliefs, shown by
the “Beliefs” part of the cycle. Beliefs represent the mental state of the inhabitant
and are the first important concept in BDI architecture.
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In the model in Fig. 17, however, another concept is introduced in addition
to beliefs that relates to the physical state of an inhabitant. Thus the inhabitant
has perception not only about the outside environment but also about its internal
physical state. The question is why introduce the physical state of the inhabitant,
as the agent’s physical state also becomes its belief. The reason is that there are
some physical phenomena that the agent could not directly perceive. For example,
one can perceive the internal physical state of being thermally uncomfortable, but
could not directly perceive his metabolism. Metabolism is a physical phenomenon
that continues to happen in the body without notifying the person about its value.
Similarly, the increase of CO2 level in the room can impact on a person’s mood,
but he could not directly perceive the CO2 level and identify it as a cause of his
stress. That is why the physical phenomena taking place inside human body are put
under Homeostasis, rather than just beliefs. The agent then has the beliefs about its
homeostasis, the outside environment. Based on these beliefs the agent can have
certain desires; however, due to the external environmental constraints only one of
them is converted to the agent’s intention. The intention then leads to the process of

Fig. 17 H-BDI dynamic behaviour representation model
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generating plans of how to fulfil the intention. Finally, the agent follows this plan to
perform actions on the environment.

3.6 Implementation and Co-simulation of Behaviour Models
(Step 6)

In addition to the language constructs, Brahms has models that are used in
simulation [20]. The reason for selecting the Brahms simulation environment is that
all the elements considered important in behaviour representation can be mapped to
Brahms models, Fig. 18. The behaviour elements When, What, Why, Where, Who
and How are mapped to the Timing, Object, Knowledge, Geography, Agent and
Activity models, respectively.

Agent Model This model contains all the agents, the groups to which they belong,
and how these groups are related to each other, resulting in a group hierarchy. Agents
have common or specific beliefs, facts and attributes. Agent thoughtframes drive the
thought processes and decision making capabilities of agents. Workframes define
how they actually perform the activities in accordance to the decisions made.

Object Model Object model contains different objects which can make a hierarchy
and inherit the attributes of the root class. They can also perceive the environment
and communicate or broadcast their state to other agents and objects.

Geography Model In this model, geography is described through the concepts of
area, area definitions and paths. The agents can change their location by moving
from one location to another. The movement is modelled using the “move” activity.

Activity Model Figure 18d shows the activity model that is used to represent the
activities performed by agents and objects. Activities take some time and may
have an associated priority. Figure 18d shows different types of activities, i.e. the
move, broadcast, primitive, composite and Java activities. Each activity has a set
of parameters and belongs to some workframe where it is realized based on the
preconditions.

Knowledge Model In this model, the agent’s reasoning mechanism is represented
as forward chaining production rules, called thoughtframes. Thoughtframes can be
represented at group or class levels and can be inherited. Perception is modelled as
conditions. These conditions are attached to workframes and are called detectable.
Thus observation is dependent on what the agent is doing. Figure 19 shows
a thoughtframe “tf_perceive_comfort” that receives the comfort value from the
comfort calculator and changes the agent’s perception of comfort at each simulation
time step. The workframe that is attached to this thoughtframe is the “Watch_TV”,
where among the other preconditions to watch TV are that the agent’s comfort value
lie between 0.5 and −1. If the agents’ perception of comfort lies between these
values, it will continue watching TV. However, as soon as the value will be out of
this range, one of the detectable in the detectables list will be triggered.
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Fig. 18 Implementation of behaviour model into Brahms. (a) Agent model. (b) Object model. (c)
Geography model. (d) Activity model
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Fig. 19 Knowledge model

Timing Model This model enforces the constraints of when activities in the activity
model can be performed, Fig. 20. This is represented as preconditions of situation-
action rules (workframes). Activities take time (predefined duration of primitive
actions) and workframes can be interrupted and resumed, making the actual length
of an activity situation dependent. This model is built in the simulator by first
building a clock, and then sending the clock time to every agent and object in the
environment.
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Fig. 20 Timing model

Communication Model This model includes the actions by which agents and
objects exchange their beliefs. The communication includes telling someone some-
thing or asking a question. Conversation is modelled as an activity with commu-
nication actions. Figure 21 shows how the communication between two agents is
made in order to open the window. The communication activity is realized in the
workframe “DemandToOpenWIndow”. When the Wife agent perceives the belief
of the Husband agent, it checks for the other constraints before replying back to the
Husband agent.

3.6.1 Scenario Implementation

A scenario consisting of a 2 person house will be considered where husband and
wife are modelled as agents. It will show how the decisions taken by the agents
affect the energy consumption. Figure 22a shows that the husband and wife are
sitting in the living room and watching TV (perception of environment). The hunger
level for the wife gradually increases with time (physical homeostasis calculation).
When it reaches beyond some threshold (internal state belief generation rules), she
communicates with the husband to have their meal together (generation of desire in
wife and communication activity to convey the husband about desire). The husband
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Fig. 21 Communication model

usually likes to eat at a restaurant if there is a beautiful weather outside; otherwise
he prefers to eat at home (desire generation rules for husband). If the husband agrees
based on perception about the weather (social behaviour as a result of external state
belief), she moves to the kitchen, opens the fridge, takes the things out and prepares
the dining table (plan generation to be followed in dining activity). If however, the
husband does not agree to eat at home (social constraint), she puts the warm food,
which she had already prepared for their meal into the fridge (action on appliance)
and they go out to the restaurant.

The simulation results are presented in Fig. 22a. The output is generated
randomly based on the agents’ belief certainty. Belief certainty is the concept used in
Brahms which assigns a probability between 0 to 100 to agents’ beliefs and the facts
in the environment. Beliefs and facts with varying probabilistic values influence
agents’ actions accordingly. For example, if for the communication between the
agents, the husband agrees to eat at home, there is a higher probability that the wife
will not put the warm food which she had prepared for the meal into the fridge. Also,
if the husband agrees to eat at home, the duration of the activity of opening the door
of the fridge and taking the things out is a random value between a minimum and
maximum duration. Thus, every time the wife opens the fridge door for different
durations resulting in varying behaviours of the fridge. In Fig. 22, the horizontal bar
on the top represents the movements of agents to different locations. Below this is
the timeline, which shows the simulation time in the agent world. The vertical bars
represent the communication between agents and the broadcast activity where the
agents transfer their beliefs to each other. For example in Fig. 22b, the vertical bar
coming down from Wife agent to Husband agent at the moment when the Wife agent
moves from the kitchen to the living room, represents the Wife agent’s belief which
she transfers to the husband to go to the restaurant. The bulb symbols are used to
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Fig. 22 Simulation results against simulated inhabitants’ behaviour. (a) Social agreement between
agents to have meal at home. (b) Social agreement between agents to eat out

represent the thoughtframes or beliefs of agents. Thoughtframes are changed with
the passage of the simulation time and on the different perceptions of the agents
from their environment.

3.7 Co-simulate the Complex Behaviour with Physical Models
(Step 6)

As mentioned in Fig. 8, the 7th step of validation methodology is to compute
the consumption distribution of an appliance from the Irise database and then
compare it with the simulated consumption distribution. This could be done by
modelling and simulating the behaviour of occupants from some house in the Irise
database. However, in the Irise database only the consumption of appliances is
available and not the activities. In this section, the inhabitants’ energy consuming
behaviour is extracted by analysing the appliances’ consumption patterns. This is
done by first pre-processing the Irise database to enrich it with some additional
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information. Then, the houses in Irise are clustered based on identical energy
consuming behaviours. Further, the representative behaviour for some cluster is
co-simulated with the selected appliance and the consumption distribution for that
appliance is obtained after simulation. This simulated consumption distribution will
be used in the next step where it will be compared with the actual consumption
distribution for the house benchmarked for that cluster. Since, the energy consuming
behaviour of inhabitants’ belonging to a cluster is identical, the same simulated
consumption is also compared with the actual consumption of other members of the
cluster.

In the above section, the houses in the Irise database are clustered based on the
generic energy consuming behaviour of inhabitants. In this section, more specific
behaviour of inhabitants will be modelled and simulated. Some of the parameters
and their impact on energy consumption e.g. seasons, weekday, weekend, impact
of an appliance usage over another (e.g. cooking activity) are already known.
However, there are still situations where high consumption is not explained by the
above-mentioned parameters but some other unknown reason. In these situations,
the results from field studies are used to find the reasons behind these high
consumptions. Thus, the additional parameters that will be used while modelling
and simulating the behaviour of inhabitants from the Irise database are the social
behaviour of the family and the arrival of guests. Since there is a combination of
parameters, ones that are observed from the Irise database and others from local field
studies, their values need to be tuned during the simulation to see if the simulated
behaviour is realistic. This simulated behaviour will generate the consumption
distribution of the appliance (in this example a fridge freezer). Consumption
distribution obtained from the simulated results will then be compared with the
original consumption distribution of the same house to see if they follow the same
trend. Further, this simulated distribution will be compared with other members
of the same cluster. The proposed tuning parameters are weekend and weekday
cooking probabilities, impact of weather on cooking at home, communication
between agents, the involvement of factors other than normal routine e.g. the arrival
of guests.

3.8 Tune Parameters of Inhabitant’s Behaviour Models
(Step 7)

Different combinations of values for these parameters result in different consump-
tion simulation results, one of which is shown in Fig. 23. The values of these
tuning parameters are first initialized in Brahms simulation environment. These
fall between the probabilistic values of 0 and 1 and are randomly selected by the
Brahms simulator during simulations. The goal is to find optimal values of these
tuning parameters such that they generate the consumption distribution close to the
benchmarked distribution.
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Fig. 23 Brahms scenario simulation results

Brahms has been used to implement a scenario of a husband and wife concerned
with a cooking activity. The scenario is highly dynamic and random because of
the probabilistic values of the tuning parameters. Figure 23 shows a snapshot
of a Brahms simulation over a one-month period. The bar with the light-bulb
symbols shows the thoughtframes, where the agents reason based on different
perceptions (such as time, day of the week, weather) coming from the environment.
The colourful vertical bars in the area just behind the thoughtframes show the
workframes, where we have the activities of the agents, these may be composite
activities or primitive ones. A composite activity is composed of primitive activities,
e.g., the “prepare lunch” composite activity can be decomposed into the “open
fridge”, “close fridge” and “cook food” primitive activities. The vertical bars going
from one agent’s workframe area to another shows the communication between
agents or the broadcasting of information (beliefs) that may in turn invoke actions
in other agents.

There are many random variables in the simulation e.g. the probability of cooking
on a weekday and weekend, the probability of how often the inhabitants go out to eat
instead of eating at home, the probability of social agreement between inhabitants
to eat at home or outside based on the weather, the probability of arrival of guests
at home. Based on the combination of these probabilistic values the agents interact
with the fridge more or less often, they may put hot food in the fridge, they prepare
food at home or not, etc. Also, the activities performed by the agents do not always
have the same duration, e.g. the cooking activity on one day may take 30 min
while on another day it could take 50 min. This means that every day during
the period of simulation run (1 month) not only the agents’ perception about the
environment and choice of actions change but also the duration of activities change
as well. Thus, the probability of occurrence of some random variable along with the
duration of activities needs to be averaged. Figure 24 explains the process, where,
for some particular probability values for each parameter, several simulations are
run (n times) and then the results are averaged. Similarly, the probability values
are changed for the next runs and the results are again averaged. The process of
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Fig. 24 How to get fridge cycle durations from simulations

changing these probabilities continues until the selected probability values match
the observed behaviour of the people and the consumption trends start matching
with each other. The next step is to calibrate the simulator by matching fridge freezer
cycle distributions computed from the behaviour simulations with those from the
Irise database. The Brahms simulation results are combined into a text file. A parser
was developed to read these files and compute the energy consumption associated
with the duration of fridge cycles. The initial results with the initial set of tuning
parameters are presented in Fig. 25 for the reference. The probabilities for each
parameter are set at the start of the simulation. For example, if the probability that
the inhabitants will cook more on weekdays is set to 40%, they will cook on different
days for each simulation run, but not for more or less than 40% of the time.

3.8.1 Tune Parameters of Inhabitant’s Behaviour Models (Step 7)

Figure 25a shows that the weather is often not sunny during the month and
inhabitants are cooking mostly on weekdays, which is not inline with the actual
behaviour in cluster1, hence the actual and simulated curves do not match. In
Fig. 25b there is more cooking on weekends but the social agreement’s value is
inconsistent with reality. Finally, in Fig. 25c the values of these parameters are tuned
in accordance with the observations. In this case not only the reference distribution
and the statistical curves are in compliance with each other but also the simulated
behaviour is realistic.

In Fig. 25, the behaviour model is validated based on the comparison between
actual and simulated energy consumption curves for the fridge. However, after
clustering the energy consumption behaviour of occupants during cooking activity,
the simulated energy consumption of the fridge is compared with another house
(2000964) that is a member of the same cluster. Figure 25 shows the difference
between the consumption distribution for house-2000964 and simulated curves for
house-2000912. The difference between these distributions is bigger as compared
to the benchmarked house (house-2000912). In Fig. 25, the comparison of the same
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Fig. 25 Comparison with another member of the same cluster
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simulated distribution is made with another member of the same cluster (house-
2000964) that causes the error to increase but still it is realistic and follows almost
the same trend.

4 Validate the Models with Building System and BEMS

Figure 26 explains the process of how the co-simulation between different modules
is performed. The inhabitants in the “Human Agent” module continuously perceive
their comfort and react to the environment. The notion of comfort in the inhabi-
tants is introduced using the Fanger’s comfort model [21]. This model computes
the thermal comfort conditions for inhabitants based on their clothing, activity,
temperature in surroundings and some other parameters detailed in the upcoming
sections. The values of these parameters are computed in separate modules i.e.
the “Clothing Index Computation”, “Metabolic Rate Assignment”, and “Mozart
Building” modules, respectively. In “Mozart Building” module the temperatures (air
and radiant temperatures) are calculated by the SIMBAD thermal model and sent
back to the “Thermal Comfort (PMV) Computation” module. The inhabitants based
on their perceived comfort levels further control the appliances or objects in the
environment through the “Control (Setpoint, Appliances and Objects)” module. This
control over the environment, however, can also be taken by the “Building Energy
Management System” module that maintains the thermal comfort of inhabitants.
The detail about the different modules is given in the upcoming sections.

4.1 Inhabitants’ Behaviour Simulation

Since the thermal model used in the simulation is of the reference house MOZART,
the same house is used for developing a scenario of inhabitants’ presence and their
activities. The purpose of modelling the inhabitants’ behaviour is to see how their
choices and control of household appliances can impact the energy consumption.
An important element of this behaviour is the perception of comfort, i.e. how the
inhabitants’ behaviour will be impacted by the feeling of comfort or discomfort and
how it will lead to the choice of certain actions. The comfort is introduced in the
agents through the Fanger’s thermal comfort model [22].
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Fig. 26 Co-simulation between inhabitant’s behaviour, SIMBAD and BEMS
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4.2 Fanger’s Thermal Comfort Model and Inhabitants’
Behaviour

Occupants’ comfort is given in the American Society Heating Refrigerating and
Air Conditioning Engineers (ASHRAE) Standard Number 55, as “the condition of
mind that expresses satisfaction with the thermal environment and is assessed by
subjective evaluation”. Thermal comfort is ensured by heat conduction, convection,
radiation and evaporative heat loss. Thermal comfort is maintained by maintaining
thermal equilibrium with the surroundings i.e. there is a balance between heat
production and heat loss. Fanger describes his heat balance model as “Since the
purpose of the thermoregulatory system of the body is to maintain an essentially
constant internal body temperature, it can be assumed that for long exposure to
a constant (moderate) thermal environment with a constant metabolic rate a heat
balance will exist for the human body, i.e., the heat production will equal the heat
dissipation, and there will be no significant heat storage within the body”. The heat
balance condition is:

H − Ed − Esw − Ere − L = K = R + C

Where

H = the internal heat production in the human body
Ed = the heat loss by water vapour diffusion through the skin
Esw = the heat loss by evaporation of sweat from the surface of the skin
Ere = the latent respiration heat loss
L = the dry respiration heat loss
K = the heat transfer from the skin to the outer surface of the clothed body

(conduction through the clothing)
R = the heat loss by radiation from the outer surface of the clothed body
C = the heat loss by convection from the outer surface of the clothed body

Based on the heat balance equation, Fanger proposed an index in order to analyse
the thermal environment. This gives the Predicted Mean Vote (PMV) of subjects
according to the following psycho-physical scale (Fig. 27).
The PMV value is calculated through the following equation:

PMV = (0, 303e − 0.036 ∗ M + 0, 028) ∗ [(M − W) − 3, 05 ∗ 10 − 3 ∗
5733− 6.99 ∗ (M −W)− pa − 0.42 ∗ (M −W)− 58.15 − 1.7 ∗ 10 − 5 ∗
M ∗ (5867 − pa) − 0, 0014 ∗ M ∗ (34 − ta) − 3, 96 ∗ 10 − 8 ∗ fcl ∗
(tcl + 273)4− (tr + 273)4− fcl ∗ hc ∗ (tcl − ta)]

M = Metabolism, W/m2(1 met = 58.15 W/m2)
W = External work met. Equal to zero for most metabolisms
lcl = Thermal resistance of clothing, clo (1 clo = 0.155 m2K/W)
fcl = The ratio of the surface area of clothed body to the surface area of nude body
ta = Air temperature, ◦C



528 A. Kashif et al.

tr = Mean radiant temperature, ◦C
var = Relative air velocity, m/s
pa = Water vapour pressure, Pa
hc = Convective heat transfer coefficient, W/m2K
tcl = Surface temperature of clothing, ◦C
Similarly, the level of discomfort called PPD (predicted percentage of dissatisfied)

is calculated as
PPD = 100-95.e−(0.03353.PMV 4+0.2179.PMV 2).

Figure 27 shows how the values for different clothes are calculated. In Brahms,
the agents are provided with multiple options for each piece of clothing, e.g. for
the choice of shirts, pants and sweaters. The reason for making these choices
for each type of clothes randomly is that the clothes impact the thermal comfort
levels. Although, the choices of clothes are dependent on the season and weather,
however, in order to demonstrate the impact of different clothing combinations
on the calculation of PMV, the choices are made randomly by the agents during
simulation. The comfort of an agent is not solely based on the temperature but
a more complex model of thermal comfort i.e. Fanger’s thermal comfort model.
Figure 27 explains how Fanger’s model is used in the co-simulation and the
different input variables required for calculating the PMV value. The agents in the
Brahms simulation continuously perceive their comfort. This perception of comfort
is provided by the Fanger’s thermal comfort model. Some of the variables i.e. the
air velocity and humidity are kept constant in the simulation. The air temperature
and mean radiant temperature is calculated by the SIMBAD thermal model, the
metabolic rate depends upon the activities of agents and the clothing level depends
upon the agents’ choices of clothes. The variations in these variables impact the
agents’ comfort who then act on household appliances and objects to maintain

Fig. 27 Fanger’s model in co-simulation
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the comfort level. Figure 28 shows how the PMV value is calculated. The PMV
calculator continuously perceives the input variables coming from the “temperature
receiver”, “clothing index computation” and “metabolic rate assignment” modules.
It then uses Fanger’s model in order to calculate the comfort level for each agent
separately and then broadcasts it to them.

4.3 Co-Simulation Environment

The Brahms-SIMBAD-G-HomeTech2 co-simulation environment is shown in
Fig. 29. The Brahms-BEMS-Interface module provides the interconnection of
SIMBAD thermal model with both the BEMS and the Brahms simulation
environment. The input that goes to this module from the SIMBAD thermal model is
the air temperature and mean radiant temperature. Other inputs include the electric
power of appliances, the setpoint temperature and the appliance mode (on/off).
The BEMS will use these variables to compute the energy plan and to control the
appliances. Conversely, in Brahms these variables are perceived by the agents, who
further take certain actions to control their thermal environment.

The output from this interface module either comes from the Brahms simulation
environment or the BEMS. The output from Brahms simulation environment
consists of occupancy data in each room in the house and the status/modes (on/off,

Fig. 28 Thermal comfort (PMV) computation module

2G-HomeTech is commercialized by Vesta System. The interconnection of BEMS with the co-
simulator is established by Vesta System.
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Fig. 29 SIMBAD-MOZART thermal model

open/closed) of all household appliances or objects. Similarly, the output from the
BEMS consists of the setpoints and appliance modes.

4.4 Eco vs Non-Eco Behaviours

Figure 30 shows one of the possible situations of agents’ behaviour among many.
This figure explains how the different concepts in the model are implemented
inside Brahms. The EcoHusband agent builds its initial external state beliefs
from the perception of outside environment, as shown in the “Cognitive.Beliefs”
block. Similarly, it perceives the thermal comfort level computed by the “Ther-
malComfortCalculator” function in the “Physical.Homeostasis” block. Based on
this perception, the agent will build the internal state belief as shown in the
“Cognitive.Beliefs” block. The values computed by this function lie in a range of−3
to 3 corresponding to different comfort conditions e.g. comfortable, slightly cool,
etc. These comfort conditions are realized by the concept of workframes, where
there are multiple workframes available at the same time. This is shown in the
“Belief Generation” block that defines the agent’s internal state belief generation
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Fig. 30 A situation modelled in Brahms

rules through a set of workframes. However, depending upon the output of the
“ThermalComfortCalculator” function one of them would be executed.

The agent is already in a state of watching TV as shown in the “AgentActivity”
block inside “External (environment)” block which turns into its belief about its
activity. If the agent is comfortable, slightly cool or slightly warm it would complete
its current activity. For the other comfort conditions it could either continue the
activity or abort it. An example of the “Cool” workframe is given in the “Belief
Generation” block. This workframe says that if the agent’s comfort level is between
−1 and−2, it is cool. This will generate some desires in the agent to be comfortable.
The “Desire Generation” block shows the rules that will lead to the generation of
these desires. These rules are realized by the thoughtframes where based on the
fact that agent’s comfort level is below −1, that agent will conclude some other
beliefs. These beliefs will be transformed into agent’s desires based on the “belief
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certainty” value. The higher value of this variable shows strong chances that the
desire will transform into an intention and vice versa. The “Desire” block shows two
desires that are generated, i.e. turn on heater and put on sweater. However, the low
“belief certainty” becomes a constraint for the desire “wantToPutOnSweater” to be
transformed into an intention. Based on this intention, the agent turned on the heater
and adjusted its setpoint as shown in the “Action” block. When the agent will turn on
the heater and adjust its setpoint, the object heater will change its state. The changing
states of objects will be captured again by the agents. This is done by the objects that
broadcast the information about their states as soon as they are changed. The new
beliefs of changing states of objects are further captured by the agents through the
concept of thoughtframes that replace the old beliefs with the new ones. Now based
on the state of the appliance and their impact on the temperature, the agent’s comfort
level will change. The agent will remain in the workframe “Cool” and continue
watching TV in the state of being cool until its comfort level is changed. As soon as
the comfort level is changed, some other workframe, from the available ones, will
be executed based on the comfort value as shown in the “Belief Generation” block.
The execution of some other workframe can further lead to the generation of some
new desires. In the sections below the effect on environment by both types of agents
(Eco and NonEco) and with and without the presence of BEMS is shown. This will
help to analyse, how different behaviours with and without the BEMS could result
in different energy consumption patterns.

4.5 Eco Agent Controls the Environment Without BEMS

Both the eco and non-eco agents can have control over the environment. However,
the agent that is uncomfortable first will take the decision to control the environment.
Figure 32c shows the PMV value of the EcoHusband agent while in the living
room. At the start the PMV value is low, meaning that the agent is uncomfortable,
but the agents are still watching TV comfortably. This is shown by the “watch tv
comfortably” tool tip on the white coloured workframe in the EcoHusband agent’s
space at the start of the simulation, Fig. 31. This is due to their dynamic comfort.
However, after sometime they start perceiving the real comfort value and being
uncomfortable. The EcoHusband agent increases the temperature using the heater’s
thermostat to warm up the room. The control over the heating system is shown by
yellow coloured workframes. The change in the state of heater by the EcoHusband
agent is perceived by the heater, shown by the workframes in LivingroomHeater
objects’ space. The blue lines show the connection between the change in heater’s
state by the EcoHusband agent and the perception of this state by the heater. The
LivingroomHeater object then broadcasts this change in its state to the other agents
around, the blue lines show the signals sent to other agents. Figure 32a shows the
state of the appliance as the agent acts upon it. Figure 32b shows that initially
the temperature in living room was set to 18◦C, it started increasing due to new
thermostat settings of the heater by the EcoHusband agent.
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Fig. 31 Brahms simulation: perception of comfort during watching TV activity

Fig. 32 State of the appliance/object, temperature, and PMV perceived while watching TV.
(a) Control over appliance/object by EcoHusband. (b) Temperature as a result of control over
environment. (c) PMV EcoHusband while watching TV. (d) PMV NonEcoWife while watching
TV
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Figure 31 shows that when the agent is watching TV, it repeatedly controls
the heater and its clothes to achieve comfort. The EcoHusband agent puts on the
sweater or takes it off which is shown by the yellow coloured workframes with
“put off sweater” activity. The first time agent puts off sweater is shown by the
“put off sweater” activity tool tip around 6:26 pm. This information is sent to the
clothing index calculator, shown by the blue lines between the EcoHusband and
CloIndexCalculator. Removing a thick sweater made its thermal comfort jump from
warm to comfortable. This jump is shown by the yellow downward arrow (between
18h30 and 18h45) pointing from the warm to the comfortable direction. Similarly,
when the temperature falls below its comfort level it turns on the heater again and
puts on the sweater. Putting on the sweater again makes the agent feel comfortable
quickly. This is shown by the upward arrow (around 19h15) pointing from cool to
comfortable. The effort made by EcoHusband agent could help him to save energy,
but are not efficient in the longer run in terms of achieving comfort. This shows that
the decisions taken by the eco agent are short term decisions, as they have some fixed
control over the environment, i.e. the heating system. Figure 32c shows the thermal
comfort perceived by NonEcoWife agent during watching TV while EcoHusband
agent controls the heater. At the start it feels cold (around 16h10, dark blue curve),
but then after the temperature has been increased it just starts to feel cool (around
16h20, blue curve). As the heating system increasingly warms up the room it feels
comfortable (between 17h30 and 18h30, green curve) until the EcoHusband agent
turns off the heater again. The reason that the agent is cold most of the time, is its
clothing is not warm enough.

4.6 Non-Eco Agent Controls the Environment with BEMS

In the above section, the impact on the temperature of the room is analysed while
the NonEecoWife agent who does not care about energy saving, leaves the heater
on while opening the window. Figure 34c,d shows the thermal comfort perceived
by the agents. Figure 34c shows the thermal comfort of NonEcoWife agent. At
the start it is feeling slightly cool (light blue curve at around 16h15) with the
temperature set to 18◦C. As the agents entered in the room, EcoHusband agent
increased the setpoint temperature. This is shown by the yellow coloured workframe
with “Adjust Heater Setpoint” activity in Fig. 33 that caused the NonEcoWife
agent feel comfortable as shown in Fig. 34c with green curve between 16h20
and 17h30. EcoHusband agent however still remains cool (shown by the blue
curve) due to its less warm clothes becoming comfortable later at around 17h30
(Fig. 34d). Figure 34b shows the temperature in the living room. As the temperature
reaches above NonEcowife agent’s comfort which is 24◦C, it becomes slightly
warm, shown by the pink curve in Fig. 34c, at around 17h30. However, as the
temperature reaches 26◦C, it becomes warm and then opens the window shown
by the yellow coloured workframe with “Open window” activity in NonEcoWife’s
space. However, the BEMS would perceive that the agent has opened the window,
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Fig. 33 Brahms simulation: NonEcoWife and BEMS controls the environment

Fig. 34 State of the appliance/object, temperature, and PMV perceived while NonEcoWife
controls the environment with BEMS. (a) Control over appliance/object by EcoHusband. (b)
Temperature as a result of control over environment. (c) PMV EcoHusband while watching TV.
(d) PMV NonEcoWife while watching TV



536 A. Kashif et al.

controlled the heater and lowered down the setpoint temperature. This is shown
by the workframe in EnergyManager’s space with “Set Temperature Intelligently”
activity. As the temperature in the living room now comes down more quickly to
a level where NonEcoWife agent starts feeling slightly cool, it closes the window
earlier than in the absence of a BEMS. Figure 34a shows the status of the window
under “Livingroomwindow State” where the window is closed. Thus, there is less
energy loss by reducing the time period where the heater is trying to reach a higher
setpoint and the window is open. Afterwards, the BEMS maintains the temperature
at a setpoint where the agents feel comfortable in the longer run and do not need
to control the environment by themselves. Thus, the BEMS not only saves energy
and makes the agents comfortable over the longer run, but reduces their cognitive
workload.

4.7 Eco vs Non-Eco Behaviours with and Without BEMS

In this section, an analysis of the cost-comfort tradeoff for the situations with and
without the BEMS will be given. Note that the BEMS does not take the decisions
alone but the agents are also part of the control. Thus the role of BEMS becomes
more challenging as it has to put more effort in order to minimize the cost and
maximize the comfort. To quantify the comfort of agents, the PMV values obtained
after the simulation runs are summed up for different PMV levels as shown in
Fig. 35. Since EcoHusband agent is concerned not only about the comfort but also
the energy savings and in this effort it remains less comfortable than NonEcoWife
agent (Fig. 35a). Mostly, it remains in slightly cool or slightly warm due to having
more interactions with the heater to control the temperature. NonEcoWife agent,
however, remains more comfortable than EcoHusband agent, as it is not concerned
about energy savings and wants to achieve comfort at any cost. Figure 34 shows
the thermal comfort durations of agents with the inclusion of a BEMS in the
system. In this case, the divergence of agents’ comfort levels is reduced and they
converge to the comfortable zone. Also, the agents remain comfortable for a longer
time duration as compared to before i.e. without BEMS. In this case, EcoHusband
agent’s comfort is better than NonEcoWife agent. The improvement in the comfort
is due to the better decisions taken by the BEMS based on the knowledge that
the BEMS has about the internal and external environmental conditions, weather
forecasts, inhabitant’s comfort and self-learning algorithms. Figure 36 shows the
power consumption of the electric heater while the environment is controlled by
different agents with and without the BEMS. The highest power consumed is due to
the behaviour of NonEcoWife agent since it tries to achieve comfort by opening and
closing the window. This assessment of BEMS when co-simulated with building
system and inhabitants shows that the BEMS is capable of not only saving the
inhabitants from cognitive workload but also of providing them with better comfort
and energy savings. Figure 37a shows that after 16h00 when it is in the living room
and controlling the window, the heater has to put more effort to warm up the room
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Fig. 35 Comfort of agents: with and without the control of BEMS. (a) Agents’ thermal comfort
without BEMS. (b) Agents’ thermal comfort with BEMS

Fig. 36 Energy consumed during control over environment by different agents with/without
BEMS

and the controller never stops. However, the inclusion of BEMS helps it to achieve
comfort earlier by lowering the setpoint when it detects the opening of window,
forcing the NonEcoWife to close the window earlier and save energy (Fig. 37b). The
EcoHusband agent is however an eco-person and tries to behave the way an BEMS
do, thus the energy consumption when EcoHusband is controlling the environment
is much less as compared to NonEcoWife agent. However, it has to control the
heating system multiple times and put extra efforts (Fig. 37c). In case of control by
the BEMS, however, it helps him to control the heater and adjust the setpoint such
that even if it puts on/off its extra clothing, it remains comfortable most of the time
(Fig. 37b) by saving even more energy than it tries to save by its control (Fig. 37d).
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Fig. 37 Livingroom heater power while NonEcoWife and BEMS control the environment.
(a) NonEcoWife controls environment without BEMS. (b) NonEcoWife controls environment
with BEMS. (c) EcoHusband controls environment without BEMS. (d) EcoHusband controls
environment with BEMS

5 Conclusions and Discussions

The work done in this research analyses the impact of inhabitants’ behaviour
on energy consumption in domestic situations. It has identified the high energy
consuming activities of inhabitants; the reasons behind certain energy impacting
behaviours; the extent to which these behaviours have been captured in the past; and
given the motivation to improve the energy simulations with new requirements and
challenges, specially, with the advancements in smart grid technology. The study has
also addressed whether it is important to take into account the complex behaviours,
i.e. the reactive, deliberative, social, and reasoning and cognitive elements of
inhabitants’ behaviour in building energy simulations and how these behaviours
could be validated to ensure their representativeness. This section synthesizes the
findings in order to answer the following research questions:

1. How to identify the energy impacting behaviours? The analysis of energy
consumption patterns for different household appliances has revealed that these
patterns are highly variable. This variability in consumption patterns is found to
be linked with inhabitants’ behaviour and the activities they perform in their
day to day living on appliances. Hence, it is important to analyse both the
consumption and behaviour patterns to identify those behaviours that are respon-
sible for high energy consumptions. The identification of inhabitants’ energy
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impacting behaviours is done through data analysis. In order to perform this
task, the availability of both the energy consumption data and the corresponding
inhabitants’ activities and behaviours data is necessary. Thus, the Irise energy
consumption data is used and complemented with the inhabitants’ behaviour
information through field studies.

The behaviours represent not only the simple actions but a complete reasoning
process on how these actions are reached. They are influenced by certain
parameters that ultimately affect the energy consumption. These parameters
include the environmental variables (e.g. season, weekdays, weekends etc.),
specific interactions with appliances (e.g. turn on/off, put food in fridge etc.),
relation between appliance usages (e.g. the impact of the cooking activity on the
fridge consumption) and the reasons behind certain actions (e.g. why the cooker
is used more on a particular day?). These parameters serve as important inputs
to identify inhabitants’ representative energy consuming behaviours from Irise
database. The identified behaviours are then used in building and validating the
model through the co-simulation of inhabitants’ and appliances behaviours.

2. How the complex (reactive, deliberative, social and group) behaviours can be
co-simulated with the thermal model of the building and physical models of
appliances in residential buildings? The answer to the previous research question
revealed that inhabitants’ energy impacting behaviours are complex as they are
based on intricate reasoning mechanisms. Thus a conceptual, BDI based model is
built to capture the complete process of how the inhabitants perceive the outside
environment and the internal physical homeostasis. The model describes how
these perceptions convert into their beliefs, how these beliefs trigger a cognitive
process of building some desires, taking into account various environmental and
social constraints, how these desires turn into an intention and how based on this
intention some action on the appliances, objects or building envelope are taken.

This behaviour model is implemented in the Brahms agent based modelling
and simulation environment. In this environment a complete system consisting of
objects, appliances, time, inhabitants and their internal and external state beliefs
is constructed. The different elements of this system interact with each other
and react to change that occurs in the environment. The complexity exhibited
by the inhabitants’ reasoning and cognitive aspects as well as the social and
group behaviours is successfully captured and simulated in Brahms. Similarly,
the behaviour of an appliance or object can also be modelled to some extent
inside Brahms. However, it is not easy to build the complex physical models of
appliances or a thermal model of a building, etc. inside Brahms. Thus, it is better
to build the physical systems outside, in an environment that is specifically built
for this purpose. For example, the thermal model of the building is constructed
in Matlab/Simulink, which computes the temperature in the zone and sends this
information to the inhabitants in Brahms environment. The agents in Brahms
then act upon the heater, air conditioner or windows, etc. inside Brahms. The
information about the changing state of the appliances or objects inside Brahms
goes back to the thermal model. This is used to compute the new temperature
of the zone, which is then sent back to Brahms. In this way a co-simulator is
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built through a Java interface between the two systems. Similarly, the complex
physical models of appliances can also be built this way in Matlab/Simulink e.g.
a fridge freezer and co-simulated with the behaviour model in Brahms.

In addition, an energy management system is also included in the co-simulator
environment. This either controls the appliances on behalf of the inhabitants or
gives them advice for improving their energy consuming behaviours. In these
co-simulations, the randomness and variability is introduced. Firstly, when the
human agents goes through the cognitive process and acts on the building system,
the variation in the state of the physical systems change their old perceptions
about the environment. This will impact their cognitive process and cause them
to behave differently in the new situation. Secondly, in each changing situation
the agent does not necessarily behave in a single way. Rather, it could behave in
multiple ways depending upon the probabilistic values for its different beliefs.
These probabilities are assigned to beliefs inside the Brahms environment.
Thirdly, the introduction of environmental and social constraints in the system
will make the agents behave more like real humans. Fourthly, some random
variables, which are difficult to model in Brahms, are also introduced through
Java activities. This allows agents to make some decisions depending on the
value of the random variable e.g. allowing agents to choose a combination of
clothes, etc. The algorithm to compute the values for these random variables is
computed in Java and sent back to the agents in Brahms. Thus a combination
of all of these different elements of randomness creates interesting situations to
analyse different behaviours of agents and their impact on the physical aspects
of the building.

3. How can the complex behaviour models be validated to ensure its representative-
ness? A methodology is proposed and implemented to validate the inhabitants’
behaviour model. In this methodology, the behaviour of the inhabitants in the
Irise database is captured by complementing it with additional information.
This information actually comprises the impact of certain parameters on inhabi-
tants’ energy consuming behaviour, e.g. seasons, weekdays and weekends, the
impact of the usage of one appliance over the other, etc. Then the houses
with similar behaviours are clustered to find the representative behaviours.
Then the co-simulation of the inhabitants’ behaviour model is done with the
selected appliance. The different parameters in the model e.g. seasons, weather,
weekday/weekend, social behaviour, etc. are assigned different probability values
or weights to make them tuneable. This co-simulation gives the simulated energy
consumption of the appliance. From the Irise database, the actual energy con-
sumption of the appliance is also available. The appliance energy consumption
distributions for both the actual and simulated situation are then compared. If the
simulated behaviour is realistic, the distributions will follow the same trend. If the
trends are dissimilar, the parameters are tuned such that their values come closer
to the observed behaviour of that cluster and the error is significantly reduced.
Similarly, the same simulated behaviour is then compared with another member
of the same cluster with the same values of the tuning parameters to analyse how
representative is the behaviour model of its cluster.
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4. How to validate BEMS with building system and inhabitants? The BEMS
controls the household appliances and objects e.g. lights and shutters, etc. and
also gives advice to the inhabitants. This advice is given based on the anticipative
plan that is computed based on signals coming from the grid. The anticipative
plan is updated at every hour, hence the advice is given every hour. However,
in order to evaluate that based on different reactions by the inhabitants, how
efficiently the BEMS recomputed its strategies, whether they are feasible and
whether the inhabitants are saved from cognitive workload and are provided with
better comfort and energy savings, a mechanism is required. Thus, the BEMS is
co-simulated with the building system and the inhabitants where the inhabitants
can either directly control the appliances and objects or through building BEMS.
Different stereotypes of inhabitants i.e. having Eco and non-Eco behaviours are
also defined and the strategies of BEMS are assessed by putting it in different
complex situations.

The work done in this research is different from the previous works in several
ways. Most of the previous works focus on office buildings where human behaviour
is relatively less complex as compared to home situations. In order to capture the
behaviour in domestic settings the behaviour needs to be captured in much more
detail than simple presence/absence profiles. Similarly, the previous works done for
energy management in home situations focus on demand side predictions associated
with turning on/off the electrical appliances. The work in this research is oriented
more towards finding the specific usages or activities behind consumptions that
impact energy consumption. These actions are the result of a complete process
from perception to cognition and then to action. The introduction of inhabitants’
reasoning processes towards their actions on the physical environment will give
energy simulation tools more realism. By creating and putting inhabitants in
different situations, it will lead them to reason differently about the situation and
solve it in another way than before. Although, it is not easy to capture all different
types of reasoning processes behind the different behavioural patterns, some high
level categories are identified through field studies. The purpose is to analyse how
the introduction of these type of reasoning processes and complex behaviours could
help to bring the building energy simulations closer to reality and to reduce the gap
between actual and simulated situations. In this work we have shown that complex
behaviour taking into account BEMS can be managed by the proposed approach.
Nevertheless, less complex behaviours, in offices for instance, can also be managed
by this approach.
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Stochastic Prediction of Residents’
Activities and Related Energy
Management

Patrick Schalbart, Eric Vorger, and Bruno Peuporter

1 Introduction

1.1 Context

The building sector has a great potential to reduce energy consumptions and
environmental impacts on a global level. Despite the progress in dynamic building
energy simulation (DBES) models concerning deterministic phenomena [1–8], the
ability to predict energy consumption is limited by the non-deterministic boundary
conditions, especially those related to occupants’ behaviour:

• Metabolic heat dissipation.
• Window openings.
• Action on shading devices.
• Artificial lighting.
• Electrical equipment.
• Temperature setpoints.
• Domestic hot water consumption.

This often yields higher actual energy consumptions than expected, particularly
in recent high-performance buildings. The traditional use of standard scenarios
shows its limitations and asks for new models. This is all the more important for
architects and engineers in the design phase, when the future occupants’ behaviour
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is unknown. Typical applications include being able to predict the probability
distribution of energy consumption for energy performance guarantee contracting.

Two types of models have been developed to tackle this issue. In the first type,
discomfort drives actions. It needs to define discomfort and the process leading
from the discomfort situation to an action. In the second type, actions derive
from probability distributions generated out of observations; the physiological and
psychological processes leading to an action are not described.

1.2 DBES Reliability

Evaluation of buildings energy consumption for heating and cooling through models
has been developed over the last four decades. Nowadays, architects and engineers
widely use DBES tools to design high energy performance buildings. Despite
extensive validation campaigns of such models, significant differences have been
observed between predicted consumptions and those measured during operation.
Oftentimes, consumptions are larger than expected; this can be problematic for
building renovation for example, because financing is associated with expected
return on investment [9]. In most cases, this overconsumption is due to occupants’
behaviour who have a strong influence on energy consumption [10–16]. Andersen
[10] showed that the heating and domestic hot water (DHW) consumption of 290
identical dwellings varied from 1 to 20.

1.3 Various Occupants’ Behaviour Modelling

Besides the traditional deterministic approach describing actions according to
specified schedules and/or thresholds, agent-based and stochastic approaches have
a great potential to grasp the complexity of occupants’ behaviour.

1.3.1 Agent-Based Approach

Agent-based approaches represent occupants as autonomous agents interacting with
each other and with their environment. The general structure of such models is
shown in Fig. 1. According to MacAl and North [17], it includes:

• A population of agents with attributes and behaviour.
• A set of rules defining relations and interactions between agents.
• An environment with which agents interact.

Agents are autonomous; their states determine their behaviours. The state of all the
agents characterise the state of the system. In some cases, agents can adapt their
behaviour based on experience. They can have a goal, selecting actions that bring
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Fig. 1 Typical agent in an
agent-based model [17]

Agent Interactions with
Other Agents

Agent Interactions with
the Environment

Agent
Attributes:

Methods:

Behaviors
Behaviors that modify behaviors
update rules for dynamic attributes
...

Static: name,...
Dynamic: memory, resources, neighbors,...

them closer to their objectives. They are connected to each other through topologies
that vary from one model to another. The concept of neighbour defines how agents
can interact.

Kashif et al. [18] used this type of approach to describe buildings’ occupants
electricity use in a household. Two types of rules are introduced: those defining
thoughts and beliefs, and those defining their actions.

In a similar manner, Bonte et al. [19] created neural networks to reproduce
efficient behaviour for an agent to ensure its comfort. After a training phase, agents
know which actions are susceptible to increase their comfort in various possible
environmental conditions.

Lee and Malkawi [20] proposed an agent-based model for office buildings based
on thermal comfort, integrating perception, reflexion, action, and knowledge update.
Agents can modify their activities’ intensity and their clothing, can handle shading
devices, turn on a ventilator, and open windows and doors. A significant number of
parameters need to be specified, through assumptions and calibration.

Moujalled [21] developed an adaptive behaviour model, and linked it to a DBES
tool. Windows, stores, lighting, temperature setpoint, and clothing are driven by two
factors: the difference between real and expected comfort, and the expected result
of actions.

Agents perceive their environment, based on their physiological and psycholog-
ical characteristics, and take action based on their knowledge to achieve a goal. For
instance, an agent feels discomfort due to high temperature; based on experience, he
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knows that opening a window is potentially interesting; he therefore wishes to open
the window, asks permission to its neighbours, and if they agree, opens the window.
As a result, the environment will be modified (e.g. temperature evolution evaluation
through a DBES tool); the difference between the expected and actual outcome is
an input to update the agent’s knowledge.

This type of model is appealing because it aims at reproducing the reality of
human behaviour by taking into account phenomena such as perception, memory,
logic, and choice [20]. The difficulty is that the functions linking the environment
to the psychological state cannot be easily defined. What is the temperature beyond
which an agent is hot? When is it so unbearable that he decides to take action? The
hierarchy among various aspects of comfort is hard to specify. Moreover, modelling
occupants’ behaviour as perfectly rational, at least from the thermal comfort point
of view, is a strong assumption.

1.3.2 Stochastic Approach

Nicol et al. [22] suggested that occupants’ behaviours is a non-deterministic
stochastic process. For instance, they stated that there is not a precise temperature
above which everybody opens their windows, but rather an increasing probability
that the window is opened as the temperature increases.

The stochastic approach tries to reproduce reality without explicitly linking
causes and effects. Probabilities are evaluated from observations. Thus, for an input
variable, there is not one unique output but a distribution of outputs. The difficulty
is to make sure that the inputs’ probability distributions are built on reliable and
representative data.

Stochastic behaviour models are usually established from measurement cam-
paigns where states (e.g. if a window is open or closed) are recorded with
environmental data (indoor and outdoor temperatures, solar radiation, etc.). A
knowledge-based statistical approach links the explanatory variables with the
variable of interest, based on the detection of significant relationships. The key
elements of this type of methods are [23]:

• Being based on measurement and not on surveys, it is less susceptible to include
bias.

• The relationships grasp a whole ensemble of hidden phenomena whose explicit
modelling would be difficult. Thus, comfort (in all its aspects) appears as a driver
in an indirect manner. The process leading from the state of the environment to
an action, via perception and evaluation of the desire to take action from beliefs,
is included in the function expressing the probability of action.

• Statistical models validity is based on their capacity to reproduce reality. The
quality of their prediction is particularly scrutinised.
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Stochastic models have a tendency to produce average behaviours, softening the
variability that exists between individuals. Parys et al. [24] list three methods
to reproduce diversity: the creation of statistics based on individuals [25], the
calculation of standard deviations associated with the average parameters’ values
[26] and the division between “active” and “non-active” categories [24, 27]. The
first two methods require large datasets. The third method was integrated in the
model.

1.4 Chapter Outline/Objectives

This chapter presents a stochastic occupants’ activities modelling approach for
residential buildings, drawing from existing models from the literature for each
submodel. One of the main objectives of the proposed modelling approach is to
make it possible to obtain, at the output of the simulation, distributions of the
building’s energy consumption (heating, cooling, specific electricity), instead of
single values based on deterministic scenarios. This is achieved thanks to the
Monte Carlo method consisting running many simulations from randomly drawn
the inputs’ probability distributions. This approach is shown schematically in Fig. 2.

Section 2 introduces the 5 W approach with people’s presence (Who), activities
(What, When and Where) and related electrical equipment (With). Section 3
presents adaptive behaviour such as windows opening, action on shading devices or
temperature setpoints. Section 4 introduces electrical equipment models to evaluate
energy consumption. In Sect. 5, these models are applied to a case study in an energy
performance guarantee context.
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Fig. 2 General stochastic methodology
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2 Modelling of Presence, Activities and Related Electrical
Equipment

2.1 Introduction

The presence profiles in residential buildings are diverse and impact many aspects
related to the building’s energy consumption. Considering a given dwelling, it is
obvious that its use is very different depending on whether it is inhabited by a retired
couple, a single working person or a family with three small children. The variety of
uses inevitably leads to a variety of energy consumption. A single dwelling therefore
has as many potential consumption values as there are potential households.

This diversity is completely neglected in regulatory calculations since there is
a single conventional scenario of presence in housing which considers that the
inhabitants are absent during the day in weekdays and present the rest of the time.
However, the presence profiles are infinitely more diverse and these profiles, which
one could qualify as “classic”, do not necessarily match the majority.

The first requirement of the model is therefore to account for the diversity of
presence profiles according to the type of inhabitants. Meeting this objective by
means of deterministic scenarios would require listing scenarios corresponding to
all the different possibilities. This method is excluded for several reasons. First of
all, establishing a typology would be extremely tedious and would need extensive
data for its calibration. In fact, to create, for example, the scenario corresponding
to the “retired couple” type, it would be necessary to average the presence profiles
of a significant number of retired couples. Moreover, this method would neglect the
differences between households of a given type. In other words, it is not enough to
dissociate a working couple from a retired couple since two couples of the same
category can have significantly different profiles of presence at their home.

The ability to produce diverse presence profiles for individuals of the same type
therefore constitutes a second requirement of the model. The stochastic character of
the desired model is therefore essential.

The state of the art of stochastic occupancy models for residential buildings
reports several studies, the most interesting of which are based on time-use surveys
(TUSs) data. Each TUS respondent is associated with a socio-demographic descrip-
tion, and an activity log corresponding to a full day is completed with a high level
of precision. This material can therefore support the modelling not only of presence
but also of activities. Knowledge of activities offers several attractive perspectives to
study the impact of occupants’ behaviour on the energy performance of buildings.
They can be used as a basis to model electrical uses, and they make it possible to
locate the occupants in the dwelling, provided a certain number of hypotheses which
associate the activities with the rooms. They can also provide information on factors
influencing windows’ opening (e.g. people tend to open the kitchen window after
cooking or the bathroom window after showering). Furthermore, an advantage of
TUSs is linked to the size of the population samples on which they are carried out.
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A better representativeness of the results is ensured compared to a study carried out
on an instrumented building with its own specificities.

2.2 Presence Modelling

Wilke et al. [28] presented a simplified model. This is a zero-order (no memory)
model calibrated over the 1999 French time-use survey.1 Starting from the overall
probability of presence at each time step, it makes it possible to generate presence
profiles by a Bernoulli process (which directly determines the state of presence at
each time step as a function of the probability of presence at this step time). As this
model is independent of individual characteristics, it is denoted IIM (for Individual
Independent Model).

Two other models for predicting the presence of occupants in dwellings were
developed by Wilke et al. [28]. Both are based on inhomogeneous Markov chains.
The first is a first-order model in which the presence state is predicted at the next
time step by comparing the probability of change of state (specific to the individual,
day of the week and time step) to a random number drawn according to a uniform
law on [0; 1].

The second is a hybrid model, named “high-order Markov model”. When
a presence begins, the duration of the presence period is calculated from the
probability distribution of the periods of presence (also specific to the individual,
to the day of the week and to the time step). The calculation is performed by the
inverse transformation method (ITM). The higher order of this second model has
several advantages:

• Unlike offices for which the periods of presence and absence are highly con-
trasted (high probability of presence in the middle of the morning and afternoon
and low at night), housing often has time slots during which the probabilities
of presence have intermediate values. With a first-order model, there is a risk
of fluctuations. For example, in the hypothetical case where the probability of
an individual’s presence is around 0.5 from 10 a.m. to noon, the first-order
model risks overestimating the number of alternations between presence and
absence. However, the reality is certainly closer to the statement “there is a one
in two chance that the person will be absent in the morning”. If this is the case,
calculating the duration will allow a more realistic prediction.

• By limiting the number of presence/absence fluctuations, one can a priori better
model the activities since they are necessarily interrupted each time the occupant
leaves.

• The method is not more computationally expensive since the prediction of the
duration is compensated by an interruption of the Markov process as long as the

1http://www.epsilon.insee.fr:80/jspui/handle/1/101557

http://www.epsilon.insee.fr:80/jspui/handle/1/101557
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presence lasts. The time steps are simply decremented and the process resumes
when the occupant leaves.

The first-order Markov model meets the objectives better, in particular because the
high-order model tends to homogenise the presence profiles between individuals
with different characteristics.

2.2.1 Transition Probabilities

Hourly Calibration

The results of the survey are interpreted in terms of presence and absence by
associating activities with one or the other situation. The transition probabilities
are calibrated for hourly time steps due to the “response rounding” bias. Thus, the
probability of presence at time n + 1 is linked to the probability of presence at time
n by the relation:

P (n+ 1) = T1h(n)P (n) (1)

T1h(n) =
(
t11 t01

t10 t00

)

n

is the transition matrix with an hourly resolution (n). tij is the

probability of moving from state i to state j in one time step (presence: 1; absence:
0).

P is defined by:

P(n) =
(

p(n)

1− p(n)

)
(2)

p(n) is the presence probability at t = n. Therefore, 1 − p(n) is the absence
probability.

The transition probabilities depend on the characteristics of the individual (age,
sex, day, dwelling location, age of children, income, occupation, civil status,
ownership status, health . . . ) grouped in a vector of indicator variables x = (x1, . . . ,
xM). Indicator variables are binary variables constructed from the different states
that the variables can reach (a variable which can have four values is transformed
into four indicator variables).

Given the high number of variables in the survey (around 30), only binary
variables having a significant effect on the probability of transition are kept. For
each hour, the selection is made as follows: all possibilities of dividing the sample
into two subgroups are tested and the division that gives rise to the most significant
difference in the proportion of transitions is kept. All possible divisions are then
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tested for each of the two resulting subgroups and so on until no further subgroup
can be divided in the sense that the two subgroups would not be significantly
different (with a 5% risk). Thus, 17 of the survey variables plus the day of the week
are used to create 64 indicator variables for the presence model.

From the state in which he (or she) is (present or absent), an occupant can either
remain in his (or her) state or transition into the other state. To model its probability,
logistic regressions are fitted for each hour on the variables which have previously
been retained for this hour. The transition probabilities obtained have the following
form in which β i are the parameters of the logit model (M + 1 parameters in total):

t01 (x, n) = 1

1+ exp
(− (

β01
0 (x, n)+ β01

1 (x, n) x1 + · · · + β01
M (x, n) xM

))

t10 (x, n) = 1

1+ exp
(− (

β10
0 (x, n)+ β10

1 (x, n) x1 + · · · + β10
M (x, n) xM

)) (3)

The other values of the transition matrix are obtained by the relations:

t11 + t10 = t01 + t00 = 1 (4)

Derivation for Smaller Time Steps

For more detailed scenarios, smaller time steps are required. In the following, a 10-
min time step is selected. The Markov chain matrices are obtained thanks to the
Chapman-Kolmogorov equation according to which at a given time t:

T10 min(t) = T1h(t)
1/6 (5)

The values are attributed to the time step at the middle of the hour. The values
for the other time steps are determined by linear interpolation.

When calculating the sixth roots of the matrices T1h(n), in the rare occasion
(0.5% of the cases) that the second eigenvalue which is 1 − (t10h(n) + t01h(n))
is negative (the first being 1), a complex sixth root is obtained. In this case, it is set
to 0. For the positive eigenvalues, the positive values of the sixth roots are selected.

At this point, the 24-h transition probabilities are determined with a 10-min
resolution depending on the characteristics of the individual and the day of the week.
Figure 3 gives the average, over the entire survey population, of the values of t01 and
t10 with a resolution of 10 min.
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Fig. 3 Average over the entire survey population of the values of t01 and t10 with a resolution of
10 min

2.2.2 Presence Duration

Disaggregation According to Individual Characteristics and Approximation
by Weibull Laws

Due to the same biases that affected the transition probabilities, the distributions
of the duration of the presence periods are calculated for hourly time steps. The
individual characteristics and the day of the week are taken into account using a
recursive method which has similarities to the method used to select the variables
influencing the transition probabilities. From the survey, for a given hour, the
number of arrivals during that hour is recorded as well as each of the associated
presence duration. All the possible divisions into two subgroups, relative to the set
of binary variables describing the individual and the day, are tested by comparing
the average attendance times of each of the two subgroups (Z-tests). The division
resulting in the greatest difference between the mean durations of the subgroups is
kept, and the operation is repeated within each subgroup until no further distinction
can be made with a risk of error smaller than 5%. Thus, the number of final
subgroups varies from hour to hour. For example, it is 91 between 12 a.m. and
1 a.m.; it is 1 between 5 a.m. and 6 a.m. (no significant division is detected).

For each final subgroup, the distribution of the durations of presence is mod-
elled by a Weibull law. Considering a subgroup of the hour h (h ∈ �1; 24�)
associated with the pair of Weibull parameters (λ, k). For an individual and a
day corresponding to this subgroup, the probability density function PDF of the
durations of presence starting during the hour h (i.e. at the time step ts with
ts ∈ �(h − 1) × 6; (h − 1) × 6 + 5�) is given by:

fts (t) =
k

λ

(
t

λ

)k−1

exp

(
−
(

t

λ

)k
)

(6)

The shape and scale parameters, respectively, λ and k, are determined by the
maximum likelihood method. This means that their values are set in such a way
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as to maximise the probability of reproducing, by a Weibull law, the observed
distribution.

Dealing with the Midnight Discontinuity

Due to the format of the survey, all periods of attendance which have not ended
earlier are interrupted in the evening at midnight. There is every reason to believe
that they should have continued beyond that; they are qualified as “right-truncated”.

In order to account for this discontinuity, the distribution of durations is corrected
based on the assumption that the durations interrupted at midnight can be replaced
by the sum of the duration remaining until midnight and a new duration which
would begin at midnight the next day. For set of characteristics x,denoting ρts (x)

the percentage of durations starting at ts that were truncated, fts ,u (x, t) the PDF
of the non-truncated durations starting at ts, and f1(x, t) the PDF of the durations
starting during the first hour of the day, the corrected PDF is given by:

fts (x, t) =
(
1− ρts (x)

)
fts ,u (x, t)+ ρts (x)f1 (x, t − (24h− ts)) (7)

The characteristics are structured by dissociating the criteria linked to the
individual and those linked to the day in order to be able to calculate weekly
presence profiles. Therefore, the PDF f1(x, t) of the next day can be used (e.g. to a
duration which starts on Friday evening and which is censored, is added a duration
calculated from the distribution of durations from Saturday at 0:00 and not from
Friday at midnight).

Binary Trees

The distributions of the duration of presence depend on the time of day, the day of
the week and the characteristics of each individual. They are characterised by their
parameters k and λ (Weibull laws). A classification of the different distributions
in the form of a binary tree for each hour of the day follows logically from
the procedure of decomposition into successive subgroups described above. As a
reminder, the most significant division into two subgroups (with respect to a binary
variable) is sought for each hour. The operation is repeated within each subgroup.
For example, the most significant division separates Sunday from the other days of
the week and then within the subgroup which includes the “other days of the week”
the most significant division splits the population between retirees and non-retirees,
etc.

In the binary tree structure used, the nodes are associated with:

• A possible value of a binary variable.
• A “left child” and a “right child” which each represents one of the two values of

the same binary variable (which can have child nodes, and so on).
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Fig. 4 Presence durations binary tree at noon

The last nodes, the only ones that have no children, are called “leaves” and
correspond to the final subgroups of the differentiation process. They are associated
with the parameters of the Weibull law of the distributions of the durations of
presence corresponding to this subgroup.

Figure 4 shows the binary tree of the durations of presence which start at noon.
The names of the labels correspond to the variables that characterise the individuals
as presented. The tree given as an example reads like this: if an occupant arrives
in his dwelling at noon, the time he will stay in his home depends first of all on
whether or not he is retired. If he is (Retired_1), the next main distinction is his level
of education. If he does not have a high school diploma or equivalent (EdTry_1), the
following distinction is made according to his civil situation (living with a partner or
not). If he lives as a couple (CivStat_1), the most representative distinction separates
men and women. Within the subgroups thus formed (“retired, no diploma, couple,
man” and “retired, no diploma, couple, woman”), no distinction is significant, they
can no longer be subdivided. If the occupant is a man (Sex_1), the period of presence
which begins is determined by the ITM on a Weibull law with parameters λ = 44.9
and k = 2.0.

Some distinctions are not necessarily the most intuitive, but one must not lose
sight of the existence of multi-collinearities between the characteristics of an
individual. In the example, the level of education of a retired person is certainly
correlated with his standard of living, his state of health, his leisure activities, etc.
Thus, the fact that this variable is the most significant to divide a group means that
it “contains” the most information, this information going beyond the variable itself
if it were considered alone.
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Computer Implementation

The model was developed in Delphi environment. It comprises 24 trees for the
durations of presence and 20 × 24 trees for the durations of the 20 activities. Each
of them is built at the start of the simulation (common step to all occupants) from the
corresponding text file, according to an ascending grouping method: the algorithm
creates a new node when it identifies two nodes which constitute the left and right
children of the same father until reaching the initial node.

2.2.3 First-Order Model Selection

High-order model tends to perform better than first-order model regarding the
durations of presence (even if the Weibull laws present limits, for example, to take
into account the bimodal character of the distribution of the durations at certain
times). However, the first-order model is better at predicting the probabilities of
presence over all the time steps at certain hours, especially at night. The zero-order
model is inferior to the two Markov models in terms of both duration and profile
prediction.

Figure 5 compares the mean profile from the survey and the mean profiles
from the simulation with the Markov models (first-order FOMP and high-order
HOMP). For each individual in the survey, 1 day was simulated (i.e. 15,441 days),
considering its characteristics and the day of the week. Although the statistical
quality indicators show similar performances, it appears that the first-order model
(FOMP) generates presence profiles that are closer on average to the results of the
survey. In particular, the night presence is better represented. There are two main
reasons for this:

• Respondents begin to fill in activity diaries at midnight, generally with the
“sleep” activity; this results in an underestimation of arrivals in the early hours
of the day.

• The representation of durations by Weibull’s laws in the HOMP model leads to
predictions of durations that are too short for the presences which start at the first
hour of the day.

Presence is underestimated in the morning by the first-order model while it is
overestimated in the afternoon by the high-order model. In general, it seems that
an underestimation of presence is less of a problem than an overestimation of the
same magnitude. Indeed, the individuals of the same household being simulated
completely independently, the model probably naturally tends to overestimate
the total duration during which the dwelling—inhabited by several people—is
occupied, due to the overlap of the periods of presence.
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Fig. 5 Comparison of the average presence profiles for all TUS individuals, generated by the
HOMP (blue) and FOMP (red) models and measured by the survey (green)

Note
With regard to the modelling of activities, it is necessary to proceed according to
a principle equivalent to that of the high-order presence model, i.e. calculating the
duration of a period when it begins. Indeed, the choice no longer concerns only two
states (present/absent) but 20 states, and certain choices are unlikely. A model which
would work according to a Markov principle of order one, choosing an activity
at each time step, would tend to quickly interrupt the unlikely activities and to
homogenise the series. By calculating the duration of actions, the scarcity of an
activity at a certain period is reflected only by its probability of occurrence and
not by its duration. In addition, the inability of Weibull’s laws to represent bimodal
distributions is less problematic in the case of activities. Indeed, for the presence
model, an arrival at 1 p.m., for example, could be associated with two main modes,
the first corresponding to “going home for lunch break” followed by a departure at
the beginning of the afternoon (i.e. a mode centred on a duration of around 1 h)
and a second mode corresponding to “going home for the night” (i.e. centred over a
duration of around 18 h). There is no equivalent case with regard to activities.

2.2.4 Presence Model Results

In Fig. 6, the presence profile of the French 2012 standard (RT2012) calculation
method is compared to the presence profile generated by the model (FOMP) for
the 15,441 individuals in the survey. Each individual is simulated for a full week.
It appears that the regulatory scenario greatly underestimates the presence rate
during the day for the weekdays (which in reality hardly ever drops below the 40%
mark) and just as greatly overestimates it on weekends. Moreover, the model results
indicate that weekend days (on average over the 15,441 individuals) are not that
different from weekdays. The presence rate is generally lower in the evening and
at night while it is higher in the morning and afternoon, but the occupants do not
remain confined to their homes. The presence rate never reaches 100% but tops out
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Fig. 6 Weekly presence profiles generated for the 15,441 individuals in the survey by the model
(in red), and according to the French 2012 standard scenario (in black)
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Fig. 7 Weekly presence profiles generated by the model for the employees (in purple), and the
retired (in orange)

at around 90% during the night. This is in part due to the fact that some people do
not sleep at home or work at night.2

The following figures (Figs. 7, 8, 9, and 10) present the average daily profiles
generated by the model for different subcategories of the survey: employees–retirees
(Fig. 7), men–women (Fig. 8), weekdays–week-ends (Fig. 9), urban–rural area (Fig.
10).

2In France, 15% of employees (i.e. 3.5 million people) work at night (between midnight and 5 a.m.
Source: http://travail-emploi.gouv.fr/IMG/pdf/2014-062.pdf

http://travail-emploi.gouv.fr/IMG/pdf/2014-062.pdf
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Fig. 8 Weekly presence profiles generated by the model for the men (in purple), and the women
(in orange)
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Fig. 9 Weekly presence profiles generated by the model for the week-ends (in purple), and the
weekdays (in orange)

2.3 Residential Activities Modelling

The activity prediction model developed by Wilke et al. [28] works as follows. For
each occupant, the activities are modelled after his presence profile is established.
When a period of presence begins, an activity also begins, and a duration is assigned
to it. If the activity ends before the occupant leaves, a second activity starts. As
soon as the occupant is absent, the activity in progress is interrupted. The process
is resumed when the occupant returns home. The selection of the activity is carried
out by a multinomial logit model which integrates the day of the week and the
characteristics of the individual. The duration of the activity is calculated by the
ITM from the distribution of the durations of this activity at the time considered,
which also depends on the day of the week and the characteristics of the individual.
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Fig. 10 Weekly presence profiles generated by the model for the urban areas (in purple), and the
rural areas (in orange)

Note
Several methods used in this part are inspired by research in the field of eco-
nomics/econometrics [29] but especially by research in the field of transport and
mobility. Discrete choice models have been the subject of important developments
and are commonly used to predict, for example, modal choices or journeys as a
function of time and of household characteristics. In particular, Ben-Akiva and
Lerman [30], Ben-Akiva and Bierlaire [31] and Bierlaire et al. [32] studied the
theory on discrete choice models and applied it to the field of transport. Zhang et al.
[33] used the same type of techniques based on TUS data.

2.3.1 Activities’ Probabilities

Multinomial Logit Model

The expressions of the transition probabilities t01 and t10 as a function of the
explanatory variables (individual characteristics and day of the week) were obtained
by means of logistic regressions. They are in fact binary variables: the occupant
changes state or remains in his current state. For activities, this involves evaluating
the probability one activity starts out of the 20 possible ones. The corresponding
model is a multinomial discrete choice model. The influence of the explanatory
variables is captured by a random utility model (RUM). In order to take into account
the dependence of the choice probabilities of activities on the time of day, 24 random
utility models have been developed. For each hour h, the utility functions Vh, j of the
activities j (j ∈ �1; 20�) are expressed by linear functions of the explanatory variables
xi, i ∈ �1; M�:

Vh,j (x) = αh,j + βh,j,1x1 + βh,j,2x2 + · · · + βh,j,MxM (8)
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The explanatory variables are, similarly to the presence model, binary variables
characterising the individual and the day of the week. For the probabilities of
presence/absence transition, 64 significant variables were retained; they are 41 for
the probabilities of starting the activities (i.e. M = 41).

The multinomial logit model proposes to express the probability of the start of
activity j at hour h, ps, j, from the utility functions as follows:

ps,j (x, h) = eVh,j (x)

∑20
j ′=1 e

Vh,j ′(x)
(9)

The parameters αh, j and βh, j, i, (h ∈ �1; 24�, j ∈ �1; 20�, i ∈ �1; 41�) are
calculated using the free software Biogeme3 developed by EPFL (Michel [34])
for the estimation of discrete choice models. The parameters are set to maximise
the likelihood. The existence of several optimal solutions requires that certain
parameters be fixed.

Eliminating Non-influential Parameters and Model Variants

24 models linking 20 activities to a hundred variables represent a total of several
tens of thousands of parameters. Somehow, a large number of parameters can
be eliminated. First of all, all the estimated β coefficients whose significance is
insufficient are discarded.

The significance of each coefficient is evaluated using a Student test. This test
verifies whether the null hypothesis (H0), namely that the regression coefficient is
equal to zero, can be rejected and this with a desired degree of confidence (generally

90, 95 or 99%). The test is based on the calculation of the following statistic: t = β̂
S
β̂

(ratio of the estimated value of the parameter by the estimated standard deviation of
this parameter). If the null hypothesis is true (and under certain conditions, notably
the normal distribution of the residuals of the regression), the test statistic follows a
Student’s law with n-k-1 degrees of freedom (where n is the number of observations
and k the number of explanatory variables). The probability of observing a value
greater than t under the hypothesis H0 (called p-value) is therefore known and can
be compared with a chosen threshold α (e.g. 5%) corresponding to a risk of error.
If the p-value is less than this threshold, then the H0 hypothesis can be discarded
with the desired degree of confidence (e.g. 95%) and the regression coefficient β̂ is
kept in the model. In the opposite case (p-value> α), even if the test does not strictly
allow to validate the hypothesis H0, the coefficient β̂ is considered to be equal to
zero.

An additional step is proposed by Wilke et al. [28] in order to retroactively
eliminate some of the parameters selected in the previous step. Let k ∈ N be

3http://biogeme.epfl.ch/

http://biogeme.epfl.ch/
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the number of parameters in the model, the k models with k − 1 parameters are
compared with the initial model with k parameters by a likelihood4 ratio test. If
there is at least one k − 1 parameters model which cannot be considered to be
significantly different from the initial model, then the k − 1 parameter models with
the lowest likelihood ratio replaces the initial model and the operation is repeated
with the k − 1 models with k − 2 parameters. This process was carried out with two
values of the threshold α (5 and 10%), leading to the creation of two new models.

The three models presented above are noted S5, S10 and S100 (S: Starting,
followed by the threshold value). Not applying the process is equivalent to its
application with a threshold of 100%.

Two additional models of the probabilities of starting activities are proposed,
bringing the total to five. The fourth model integrates an additional effect: the
influence of the previous activity j on the starting activity j’ (e.g. the probability
of washing the dishes is higher if the occupant finished his meal). This can be
achieved by adding, for all combinations (j, j

′
), additional terms βj ′,j xj to the

utility functions, xj being the binary variable indicating that the previous activity
was j. In order not to avoid unnecessary burden, these terms are included only
if, at the time considered, the probability that activity j’ follows activity j is
significantly different (Z-test) from the probability that j’ starts independently of
previous activity. Furthermore, if the number of occurrences of the sequence j→ j

′

is less than five over the entire survey, the terms βj ′,j are not added. The integration
of the influence of the previous activity constitutes somehow a Markov property.
Consequently, this model is denoted SM (Starting Markov).

The size of the survey is sometimes insufficient to correctly capture the influence
of variables on certain entry probabilities. This problem was treated by merging at
each time step the activities, qualified as “small”, having started less than 50 times

at this time step in the survey. An activity
∼
j which encompasses these activities is

created at each time step. The activities that it groups together do not have their

own starting probability. A starting probability is assigned to
∼
j for this hour. It is

calculated from the non-disaggregated survey results. If the stochastic process starts

activity
∼
j , activity j included in

∼
j is chosen relative to the proportion of j in

∼
j .

The evaluation of the models which justified our choice is carried out on the
complete models which include, in addition to the starting probabilities, the duration
distributions. The modelling of the latter is the subject of the next paragraph.

Note
Another model corresponding to a calibration on aggregated data was also built. It
will be noted SG (Starting Generic) when comparing the performance of the models.
The probability of starting activity j is calculated directly for each hour on the entire

4The likelihood ratio, in case of equality of models, follows a χ2 law to a degree of freedom. The
probability of obtaining the calculated ratio (p-value) can therefore be compared to the risk of error
α that was set.
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survey population. It is defined as the ratio of the number of starts of activity j to the
total number of activities that started at the same time.

2.3.2 Activities’ Duration

The modelling of activities’ durations is carried out in a very similar way to that of
the periods of presence (§ 2.2), each of the 20 activities being associated with 24
distributions of durations approximated by Weibull laws (6).

Distributions of Non-individualised Durations

A specific treatment is necessary when there are few occurrences of certain activities
at certain times (mainly at night). In this case, the distributions are not tailored
according to the characteristics of the individuals. Assuming that the distribution of
durations does not change abruptly from 1 h to another, the applied distribution can
be calculated by grouping together several adjacent time steps for more significance.
This is carried out after making sure that the distributions calculated independently
of the two time steps are not significantly different (application of the Z-test to the
parameters λ and k of the two laws).

Out of the 20× 24= 480 distributions of activities’ durations, this concerned 108
out of which 94 correspond to hours between midnight and 8 a.m. For the others,
the number of activities’ starts on the time step was sufficient to study the influence
of individual characteristics on the distribution of the durations.

Disaggregation of Distributions According to Individual Characteristics

When possible, the model attempts to capture the influence of the day of the
week and individual characteristics on the activity duration distributions. The same
methodology as the one used for the modelling of the presence durations is applied
(§ 2.2.2). The start of activities plays a role equivalent to the arrivals. The binary
trees structure of the data is identical. There were 24 binary trees containing the
parameters of the Weibull laws of the presence durations; there are 480 binary trees
for the activities’ durations of which 108 are composed of a single leaf.

In order to assess the interest of the disaggregation of durations, a model
composed simply of non-individualised durations was included in the evaluation.
It is noted DG for “Duration PDFs modelled Generically”. The model comprising
the disaggregated durations is denoted DI for “Duration Individual-specific”.
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2.3.3 Evaluation of the Models and Selection

The five variants of starting probabilities modelling combined with the two variants
of duration modelling constitute a total of ten “complete” models. Their respective
performances were evaluated by comparing their predictions to the observations of
the survey. To do this, Wilke [35] suggested reasoning on two indicators.

The first characterises the average relative deviation between forecasts and
observations for all activities over the total aggregate population. It is characterised
by the parameter D (Deviation):

D = 1

p

1

N.tend

N∑

j=1

tend∑

t=1

∣∣pj,sim(t)− pj,obs(t)
∣∣ (10)

with N the number of activities (equal to 20); tend = 24 because the simulated and
observed probabilities are averaged hour by hour to avoid the rounding bias of the
survey (§ 2.2.1); p = 1

N
, the average probability of doing one of the N activities;

pj, sim(t) and pj, obs(t), respectively, the simulated and observed probabilities of doing
activity j at time step t. The best model with regard to this criterion is the one with
the smallest D value.

The second indicator (noted A for Activity) is the percentage of time steps for
which the predicted activity is exact. It consists in comparing the series of activities
generated and observed at the level of the individual. There is a single indicator for
the entire population: the number of time steps for which the activity is correctly
planned over the number of time steps of presence at home. The ratio is therefore 1
if the predictions are perfect and 0 if the predictions and observations are discordant
over all the time steps. Due to its length, the “sleep” activity was excluded from the
calculation in a variant of the indicator denoted Ans (“A no sleep”). The model that
best predicts the series of activities is the one with the highest A and Ans values.

Two validation processes were carried out with these indicators. Firstly, a cross
validation was performed. Each of the ten versions of the model was calibrated on
a random sample made up of one tenth of the individuals in the survey, then its
predictions were evaluated against the observations on the remaining nine tenths.
Secondly, the models were calibrated and tested on all the individuals in the survey.
The indicators were also calculated for subsets of the population, for example,
distinguishing between individuals according to whether or not they have a job.

From the results of these multiple evaluations, detailed in Table 1, the SMDI
(Starting Markov, Durations Individualised) model was selected. In this model, the
calculation of the starting probabilities takes into account the previous activity,
and the durations’ distributions depend on individual characteristics. This model
obtained on the whole the best results for the various evaluations. In fact, this is the
most refined model so these results are quite consistent. The better precision of this
model justifies its higher level of complexity in terms of implementation time and
calculation time.
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Table 1 Comparison of the performance of different activity prediction models, source (Urs
[35])

Model Whole population Cross-validation Sub-population
D A Ans D A Ans D(Cw) D(Cnw)

SGDG 10.10 39.11 14.83 12.72 ± 0.34 39.09 ± 0.15 14.81 ± 0.07 16.17 14.28
S5DG 10.22 40.35 16.48 12.58 ± 0.36 40.33 ± 0.20 16.43 ± 0.09 11.22 11.14
S10DG 10.19 40.44 16.54 12.57 ± 0.35 40.38 ± 0.16 16.48 ± 0.08 11.20 11.04
S100DG 10.29 40.71 16.87 12.59 ± 0.47 40.62 ± 0.19 16.75 ± 0.11 10.54 11.83
SGDI 9.01 40.18 14.92 11.48 ± 0.46 40.86 ± 0.18 14.89 ± 0.07 15.03 13.52
S5DI 8.44 41.47 16.66 11.22 ± 0.41 42.07 ± 0.21 16.54 ± 0.08 9.09 10.08
S10DI 8.39 41.55 16.73 11.18 ± 0.40 42.12 ± 0.20 16.61 ± 0.08 9.12 9.99
S100DI 8.41 41.80 17.03 11.14 ± 0.44 42.32 ± 0.22 16.86 ± 0.08 8.77 9.91
SMDG 9.06 41.48 16.79 12.42 ± 0.38 40.42 ± 0.16 16.54 ± 0.11 9.73 10.71
SMDI 8.15 42.04 17.19 10.79 ± 0.44 41.89 ± 0.29 16.91 ± 0.10 9.54 8.83

SG and SM stand for “Starting Generic” and “Starting Markov”; the number (5, 10 or 100)
corresponds to the risk of error in the procedure eliminating non-significant parameters; DG and
DI stand for “Duration–Generic” and “Duration–Individualised”

2.4 Presence and Activities Simulation Results

2.4.1 Algorithm

The algorithm generates randomly a weekly presence and activities profile for all
occupants of a dwelling (it can be part of a larger building). With a resolution
of 10 min, each occupant is attributed a state of presence/absence and, in case of
presence, an activity. The same week is then reproduced throughout the year. Several
reasons justify this decision:

• The month of the year, recorded in the TUS was not found to have a significant
influence on the presence and activities profiles.

• The calculation is only performed once instead of 52.
• Intuitively, the timetables must be relatively similar from 1 week to another (same

days and hours of work, repetition of leisure activities on the same days at the
same hours, etc.).

Note
Due to the non-continuity of the survey at midnight, it was necessary to stop
activities every evening at midnight. Otherwise, the activities in progress logically
continued beyond that time and the “sleep” activity was greatly underestimated.
Indeed, the survey bias created an over-concentration of the start of sleep at the first
time step of the day. When this time step was exceeded, the probability of starting
a sleep phase during the following time steps was low and the “sleep” activity was
clearly under-represented.

The complete algorithm is described in Fig. 11 for the FOMP variant which is the
one that will be used. The dark blue box (in the top) corresponds to the initialisation
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Preliminary step (once for all individuals):
- Load regression coefficients of the presence transition probabilities;
- Load presence duration binary trees (24 trees);
- Load activities’ duration binary trees (21 × 24 trees).

Generate hourly Markov matrices
Deduce 10 min Markov matrices

List the individual’s characteristics (for the binary trees)
Initialise presence state (present at t = 0, Monday 0:00 – 0:10)

Present at t Absent at t

t ≠ end t ≠ end
t = end

No
t := t + 1

Yes
t := t + 1

Weekly presence profile P(t)

Absent at t
t := t + 1 until occupant’s arrival or end of week

Present at t
Determine which activity "j" starts

Calculate activity duration Dj

While P(t) = "present" and t ≤ t + Dj and t < end, then:
activity "j" continues
t := t + 1

If t = t + Dj +1 If P(t) = "absent" If t = end

If P(t) = "absent"

Weekly activity profile Act(t)

Yes
t := t + 1

No
t := t + 1

( ) (( )( ) )

Fig. 11 Algorithmic diagram of the presence and activities model in dwellings with the FOMP
variant of the presence model

step (carried out once for all occupants) and the sky blue boxes correspond to
the steps reproduced for each occupant. The algorithm first generates the presence
scenario P(t), t ∈ �0, 1007�, and then the activity scenario Act(t), t ∈ �0, 1007�.

2.4.2 Simulation Results

Figure 12 shows the daily activities profile (when the occupants are present in their
home) averaged for the 15,441 individuals in the survey. The profile corresponds
well to the TUS. It is also in agreement with common sense. The most important
“sleep” activity is largely at night and decreases rapidly in the morning. It is also
found at the beginning of the afternoon in a much more attenuated way. Meals, as
well as the “kitchen-dishwashing” activity, are grouped around noon and 8 p.m. The
“television” activity is mainly represented in the evening and therefore undergoes
interruptions that are doubtless inconsistent at midnight (due to the continuity
problem). The “dressing-shower-toilet” activity takes place rather at the start and



566 P. Schalbart et al.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
20 - Other
19 - Other leisure
18 - Entertaining friends
17 - Relax
16 - Reading
15 - Study, homework
14 - Watching TV or video
13 - Listening to music
12 - Party
11 - Civic/Religious activities
10 - Sleep
9 - Meals and snacks
8 - Dress/personal care
7 - Childcare
6 - Gardening
5 - Odd jobs
4 - Housecleaning
3 - Cook, wash up
2 - School, classes
1 - Paid work

Fig. 12 Average profile over 1 day of the activities generated by the model for the 15,441
individuals in the survey
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Fig. 13 Example of an individual’s daily activities scenario; the colour legend is the same as Fig.
12

end of the day. The other activities are either more marginal or distributed more
evenly throughout the day.

A daily scenario generated by the model is presented in Fig. 13. It is a Monday,
the individual is a 51-year-old woman living in a couple without children, owner of
a home in an urban area, whose household is in the third quartile of the population
in terms of income, not having a diploma, employed full time, working between 21
and 40 h per week, not suffering from disability, having no person to help on a daily
basis, with a level of health ranging between good and very good, having a computer
at home and not owning a car.

Figure 14 shows the average of the weekly profiles. It contains both information
on absence and activities during periods of presence. The survey bias generating
a discontinuity at midnight is clearly visible. This discontinuity, present in the
survey records, is logically reproduced by the model. Figures 15 and 16 compare the
presence and activity profiles averaged over a day of two subgroups of the survey,
retirees (3791 individuals) and full-time employees (6359 individuals).
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Fig. 14 Simulated weekly profiles of presence and activities of the 15,441 individuals from the
1999 TUS
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Fig. 15 Average simulated profiles of daily presence and activities of retirees

2.5 Creation of a Household

2.5.1 Introduction

The implemented model makes it possible to take into account at a very fine level
the influence of socio-demographic parameters of individuals on their timetables.
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Fig. 16 Average simulated profiles of daily presence and activities of employees

Our objective is to take advantage of this level of detail in the representation of the
diversity of occupants to carry out series of simulations for the same dwelling with
different inhabitants. So far, the characteristics of the occupants of the TUS were
used to test the models. They will now help generating new virtual occupants. For
example, the same dwelling will be successively simulated by being occupied by a
large family, then by a couple of working individuals, then by a retired person living
alone, etc. The next step is to build a model capable of answering the question: who
can live in the dwelling?

As it stands, the occupancy model requires the number of household members
and their individual characteristics. This step is not feasible in practice in most
cases, because users of DBES tools do not have sufficient information in the design
phase. The rare models that take into account the individual characteristics of the
occupants propose simple archetypal arrangements (e.g. “working man”), based
on purely intuitive characteristics. The variety of situations is only very partially
reproduced; moreover, the detailed composition of the household is left to the user.
However, a large amount of data is necessary to accurately represent occupants.

The probability of a dwelling being occupied by one type of household or another
depends strongly on the its characteristics. A house of 150 m2 will more likely be
inhabited by a large household than a studio apartment of 20 m2. With the same
living area, a dwelling will on average be more densely populated in urban areas
than in rural areas. A large apartment in an urban area is unlikely to be occupied
by an individual living alone with a very low income, etc. In order to carry out
successive simulations by varying occupancy, it is necessary to generate types of
households according to realistic probabilistic characteristics.
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The presence and activities model described above requires, for all the members
of the households, a number of socio-demographic characteristics. These are
strongly intercorrelated. Age, marital status, age of children, employment status,
income, retired or student status . . . , obviously cannot be determined independently.
It is therefore necessary to ensure the good coherence between these characteristics
when creating an individual.

The characteristics of the different members of a household must be realistic
at the individual level but also at the household level. Some are common to all
its members, such as household income, possession of a vehicle or the age of the
youngest child. Others are specific to the dwelling and therefore characterise the
household, such as location (urban/rural) or ownership status (tenant or owner). For
the rest, the characteristics of the members of the same household must be consistent
with each other (e.g. if an individual in the household is reported as living in a couple
or with a child under 5 years old, the spouse or child in question must be created in
the household).

These three objectives of consistency (dwelling, individual characteristics,
household characteristics) were met by using statistics from INSEE5 (Institut
national de la statistique et des études économiques) from the 2010 Population
Census and associated surveys, such as the 2010 Housing Survey and the 2010
Household Survey. For certain variables that are strongly correlated and for which
no usable statistics were found, the population sample of the 1999 TUS survey was
used.

2.5.2 Household Model Description

The model developed by Vorger [23] was designed with minimal required inputs
while leaving the possibility of integrating as much information as possible (optional
inputs). The thermal zones of the building model are grouped to form housing zones,
office zones or other types of zones. For each housing zone, an object is created
that will contain the information about the zone. Housing zones are grouped into
dwellings.

Each “housing zone” inherits parameters from the thermal zone (DBES model)
such as the floor area. It is also associated with:

• A type (e.g. “bathroom”, “kitchen”, “kitchen” + “living room” + “bedroom”,
etc.) which will make it possible to locate the occupants and place the household
electrical equipment.

• A “household” which aims at establishing the link between a space and the
inhabitants who will be attached to it. The areas associated with this object are
considered to be fully included in the dwelling. A dwelling cannot encompass
several households. On the other hand, a dwelling can be made up of several

5INSEE is the French “National Institute of Statistics and Economic Studies”: https://www.insee.
fr/

https://www.insee.fr/
https://www.insee.fr/
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housing zones. This is even recommended to benefit from the precision made
possible by the location of occupants and equipment. In order for the capabilities
of the model to be exploited to the maximum, a relatively fine distinction between
thermal zones (e.g. one room per zone) is desirable. However, the model is
flexible and can deal with a dwelling with a unique zone comprising all the
functions.

Information related to the dwelling need to be filled:

• The “type of dwelling”, namely house, apartment or other (hostel, separate room,
hotel room, etc.). This characteristic is not a parameter of the presence and
activities model, but is required during the household generation procedure.

• The “location”, urban–suburban or rural–semi-rural.
• The “number of rooms in the dwelling”. By default, it is the number of housing

zones (“living room”, “kitchen” or “bedroom”) attached to the dwelling.

These three parameters (type of dwelling, location and number of rooms) must be
entered by the user. All subsequent parameters, on the other hand, are defined by
default as “unknown” and the user is asked to specify them only if he/she has
the correct information. The values of the unknown parameters are determined
randomly by the household model from their PDFs. For each of the parameters
listed below, the value “unknown” is proposed. It is not indicated here to lighten
this presentation.

The “ownership status” parameter, which defines whether occupants are owners,
tenants or free occupants of the dwelling, can sometimes be a characteristic of the
dwelling (this is the case, for example, for social housing where the inhabitants are
tenants). But more generally, there is reason to believe that DBES user probably has
access to this information. In any case, filling in this parameter is not required.

The following parameters characterise the household and are therefore common
to all its members:

• Type of household (single individual, single couple, couple + others or other
type of household).

• Age of the youngest child in the household (0–4, 5–12, 13–17, 18+).
• Monthly household income (<700 AC, 700–1900 AC, 1900–4000 AC, >4000 AC).
• Possession of a motorised vehicle (none, 1, 2+).
• Possession of a computer (yes, no).

The last set of parameters that the user can enter is specific to each member of the
household. It is first proposed to indicate their value for the reference occupant of
the household and then, possibly, for other inhabitants. These parameters are:

• Age (between 0 and 120).
• Gender (man, woman).
• Marital status (adult between 18 and 39 years old without a minor co-resident,

adult with a co-resident under 5 years old, adult with a co-resident between 5
to 17 years old and no co-resident under 5 years old, adult over 40 years old



Stochastic Prediction of Residents’ Activities and Related Energy Management 571

without a minor co-resident, minor living with parents/guardians, minor living
under a different or unknown arrangement).

• Single parent (yes, no).
• Civil status (not in a couple, lives with his spouse/partner).
• Employment status (full-time, part-time, employed - status unknown, not work-

ing).
• Retired (yes, no).
• Student (yes, no).
• Number of hours worked per week (1–20, 21–40,> 40).
• Level of studies (no secondary studies, secondary studies completed at baccalau-

réat6 level, university licence degree or equivalent, higher university degree).
• General state of health (from poor to fair, from good to very good).
• Takes care of/helps (daily) a person with health problems (yes, no).
• Invalidity (yes, no).

Note
• The information entered is kept in the form of a text file in the working folder.

If the Monte-Carlo method is applied, they do not have to be filled in at each
iteration.

• The procedure to generate the occupants of each dwelling is stochastic. Their
characteristics are drawn randomly from calibrated probability distributions. The
inhabitants created are therefore different for each simulation, unless the user fills
in exactly all the characteristics of the inhabitants.
The generation of occupants of a household is carried out in several steps. The

concept of reference household member,7 commonly used in economic and social
statistics, plays a central role. From the attributes of the dwelling, the number
of household members are determined, then the characteristics of the reference
occupant, then the characteristics of his co-residents.

The procedure is described below if the user only entered the mandatory
information, namely the type of accommodation and its location. The aim is to
present how the different characteristics are determined as clearly as possible. In

6French secondary education diploma.
7In the population census, the reference household member is determined automatically using a
rule which only takes into account the three oldest persons of the household (ranked in descending
order) and considers their potential relationships:

– If there is only one person in the household, this person is the reference person.
– If the household comprises two people: if they are of different sex and identified as forming

a couple, the man is the reference person; otherwise the reference person is the oldest active
person, or if neither of the two is active, the oldest person.

– If the household comprises three or more people: if a couple made up of a man and a woman is
identified, the man of the couple is the reference person; otherwise the reference person is the
oldest active person, or if none of the three considered persons is active, the oldest person.

Source: http://www.insee.fr/fr/methodes/default.asp?page=definitions/pers-ref-menage-
exp-prin-rrp.htm

http://www.insee.fr/fr/methodes/default.asp?page=definitions/pers-ref-menage-exp-prin-rrp.htm
http://www.insee.fr/fr/methodes/default.asp?page=definitions/pers-ref-menage-exp-prin-rrp.htm
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practice, the procedure is flexible and allows the user to enter any characteristic. This
requires dealing with clearly contradictory or inconsistent data (e.g. a retiree cannot
be full-time employed). This also requires to take into account the consequences of
filling in a variable on the other variables for a given occupant and for the members
of the same household (e.g. if the user specifies that an occupant is in a couple and
works, then the type of household, the age of this occupant and, by extension, that
of the other members must be determined accordingly). This requirement which
consists in allowing the user to fill in as much information as possible generates a
series of particular cases that are automatically managed (not detailed here).

2.5.3 Number of Household Members

The most relevant data on this subject come from the 2010 French Housing
Survey.8It lists the main residences by type of dwelling, number of rooms and
household size, for each municipality. Access to the disaggregated results via the
INSEE site makes it possible to divide the municipalities according to whether
they have more or less than 20,000 inhabitants. Any other value could be used, but
this corresponds to the border between urban and rural locations in the 1999 TUS
(according to which the presence and activities model is calibrated). The objective
of this division is to take into account the difference in terms of occupancy density
between dwellings located in urban areas and others. The data format allows a more
detailed breakdown which would isolate, for example, big cities. However, it was
not considered necessary to further increase the precision of the model at this point,
especially since the “house/apartment” distinction is already strongly correlated
with urban or rural location.

As an example, the distributions of the number occupants are shown for five-
room houses and two-room apartments (Figs. 17 and 18), for which the proportion
of “rural” is, respectively, 82% (out of a total of approximately 4,500,000 dwellings)
and 29% (out of a total of approximately 2,900,000 dwellings). It should be noted
that the separation assigns the “rural” and “urban” categories, respectively, to 16
and 11 million dwellings.

The number of rooms is between 1 and “6 and more” as is the number of
people (when the number of members, determined by the ITM, is “6 or more”,
it is set randomly to 6, 7 or 8 with equal probabilities), and there are three types
of accommodation. By adding the distinction between urban site and rural site, the
number of values integrated into the model amounts to 6 × 6 × 3 × 2 = 216. They
are stored in a text file which contains all the statistical data useful for the creation
procedure of a virtual household.

8Main residences by type of dwelling, number of rooms and household size: https://www.insee.fr/
fr/statistiques/2051951?sommaire=2403791&q=r%C3%A9sidences+principales+en+2010

https://www.insee.fr/fr/statistiques/2051951?sommaire=2403791&q=r%C3%A9sidences+principales+en+2010
https://www.insee.fr/fr/statistiques/2051951?sommaire=2403791&q=r%C3%A9sidences+principales+en+2010


Stochastic Prediction of Residents’ Activities and Related Energy Management 573

0%

5%

10%

15%

20%

25%

30%

35%

40%

45%

1 2 3 4 5 6

Number of household members

5-room houses

Municipality < 20,000 inhabitants

Fig. 17 Distribution of the number of household members living in 5-room houses

0%

10%

20%

30%

40%

50%

60%

70%

80%

1 2 3 4 5 6
Number of household members

2-room apartments

Municipality < 20,000 inhabitants Municipality > 20,000 inhabitants

Fig. 18 Distribution of the number of household members living in 2-room apartments



574 P. Schalbart et al.

2.5.4 Ownership Status

The ownership status is also determined from the dwelling according to statistics
from the 2010 Housing Survey which associate it with the type of dwelling and
the number of rooms. The same distinction between rural and urban areas as in the
previous subsection was made. The distributions of ownership status are given for
houses with 5 rooms and apartments with 2 rooms, respectively, in Figs. 19 and 20.
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Fig. 19 Distribution of the ownership status for 5-room houses
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Fig. 20 Distribution of the ownership status for 2-room apartments
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Note
The difference between municipalities with more and less than 20,000 inhabitants
is not very large for houses, but it is not negligible in the case of apartments or
dwellings in the “other” category.

2.5.5 Type of Household and Reference Household Member’s
Characteristics

The type of household (single individual, single couple, couple + others or other
type of household) is determined according to the number of members. Several
characteristics of the reference person which depend on the type of household are
filled: the age of the youngest child, marital status, single parent status, gender, age
and marital status. Many possible cases exist and the reader is invited to consult
Vorger [23] for the details. An example for a single individual is given hereafter.

If there is only one member, the household is of the “single individual” type. In
this case, the household characteristic indicating the age group of the youngest child
is set to “no child”. The reference person is informed as not being in a couple and
not being a single parent. Its gender is randomly determined from population census
statistics which indicate a proportion of 42% men and 58% women among people
living alone in their accommodation. The distribution of people living alone by age
groups for each of the sexes (Fig. 21) makes it possible to obtain the age group; the
age is drawn randomly (according to a uniform law) from the interval. Depending
on the age, the family situation is set to “adult aged between 18 and 39 years without
a minor co-resident”, “adult over 40 years without a minor co-resident” or “minor
living with another or unknown arrangement”.
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2.5.6 Remaining Household Member’s Characteristics

At this point, the following variables, describing the household or its reference
person, are known:

• Type of household.
• Age of the youngest child.
• Age.
• Gender.
• Family status.

The remaining household member’s characteristics (employment status, income,
education, health, vehicle, computer . . . ) are determined in a similar manner [23].

2.6 Activities’ Location

2.6.1 Association of Occupants and Zones

All the dwelling’s zones are associated with one or more of the following types9:

• Living room/main room.
• Master bedroom.
• Kitchen.
• Main bathroom.
• second bedroom
• third bedroom
• Other bedroom*.
• Other living room*.
• Office*.
• second bathroom
• Other bathroom*.
• Cellar*.
• Corridor*.
• Laundry room*.
• Other*.
• T1 to T510 (including all the types typically found in these dwellings to speed up

data input when zone covers a complete dwelling).

From this information, each member of the household is allocated five zones in
which he will live: “kitchen”, “bedroom”, “living room”, “bathroom” and “office”
according to the following rules, fixed a priori.

9The asterisk “*” indicates zones that can appear multiple times in a dwelling.
10In France, TN refers to an apartment with N main rooms (living room, bedroom).
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The reference person and his (or her) possible spouse use the main bedroom,
bathroom and living room. The other occupants are distributed over the remaining
rooms as long as they are not all assigned. If the number of rooms is insufficient,
several people (especially children) occupy the same rooms. If there is no more
available room for adults, an “other living area” type area or the main living area
may be designated as their bedroom. There is at most one kitchen per dwelling
which is therefore the kitchen for all members of the household.

Members other than the reference person (and his/her spouse) are assigned to
the second, third . . . bathrooms (if they exist). When there is no unused bathroom,
occupants are randomly assigned to those already in use.

If there are several living rooms, the occupants other than the reference occupant
(and his/her spouse) are randomly assigned to one of them (including the living
room/main room).

The available offices are allocated primarily to the reference person and then to
their spouse. When there is no more office available, an occupant’s office area is
his bedroom, unless the household has only one or two members in which case the
occupants’ office area is the main room.

2.6.2 Association of Occupants’ Activities and Zones

From the activities scenario, it is possible to locate an occupant inside the accom-
modation thanks to rules associating activities with his five zones. These rules are
grouped together in Table 2. When the total of the probabilities for an activity does
not reach 100%, it means that it sometimes take place outside the dwelling.

When an activity takes place in a zone, there is a probability that it is associated
with an electrical equipment (§ 3). This results in electricity consumption and
internal heat input. Moreover, metabolic heat is taken into account with default
values (Table 3).

2.7 Discussion on Presence and Activities Modelling

Several limitations of the presence and activities model can be noted. First of all,
the scenarios are generated independently for each individual whereas it would
be more realistic to take into account interactions between household members.
It is for instance likely that they will eat their meals together. The algorithm could
be completed in this sense to force the occupants of a household to synchronise
with the reference person. By integrating interaction rules between occupants, the
model would take an “agent-oriented” tint. One can imagine, for example, that all
the occupants present when the reference occupant begins to eat, interrupt their
current activity to join him. It would then be necessary to count the occurrences
of the “meal” activity during a day to prevent an individual from taking several
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Table 2 Zones activities probabilities

Activity Living room Kitchen Bedroom Office Bathroom

1-paid work – – – 100% –
2-school, classes 30% – – 70% –
3-cook, wash up – 100% – – –
4-housecleaning 25% 25% 15% 10% 25%
5-odd jobs 25% – – 25% –
6-gardening 25% – – – –
7-childcare 100% – – – –
8-dress/personal care – – 10% – 90%
9-meals and snacks 25% 75% – – –
10-sleep – – 100% – –
11-civic/religious activities 75% – 25% – –
12-party 100% – – – –
13-listening to music 50% – 50% – –
14-watching TV or video 75% – 25% – –
15-study, homeworka – – – 100% –
16-reading 25% – 75% – –
17-relax 25% – 75% – –
18-entertaining friends 100% – – – –
19-other leisure 50% – 50% – –
20-other 25% 25% 25% – 25%

aFew children have a dedicated office room. Therefore, their homework activity takes place in their
bedroom or in the living room

Table 3 Metabolic heat
input values

Sleep Wake

Age >10 years old 80 W 100 W
Age ≤10 years old 50 W 70 W

consecutive meals. Such complexity was not added to the model. More attention is
paid to this synchronisation problem when modelling electrical equipment (§ 3).

The number of predicted activities is high and partly superfluous for DBES. It
was kept intact because the calibration of a model comprising a reduced number
of activities according to the method employed by Wilke et al. [28] would have
been cumbersome. The detailed level of activities remains useful to position the
occupants in the zones and to model the use of equipment (including electrical
appliances).

The presence and activities model takes into account a large number of socio-
demographic characteristics. Due to its stochastic nature, it generates different
scenarios for individuals with identical characteristics. It would be interesting to
evaluate the share of diversity respectively linked to characteristics and stochastic
nature.

The data used for the construction of the model has flaws which have been
addressed several times. Thus, the model reproduces certain TUS biases such as
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the discontinuity at midnight. More data, collected with particular care with regard
to the sources of errors, would significantly improve the quality of the model.

Holidays and sick leave were not included in the model and are among the
potential improvements.

The allocation of rooms in a dwelling to its occupants and then their location
based on their current activity are based solely on pragmatic assumptions. The
results of surveys could provide more information on the way in which the members
of a household are distributed among the available rooms, or on the rooms in which
they prefer to have their meals, watch television, etc.

If the model is applied to buildings comprising a large number of dwellings,
imposing at least one thermal zone per dwelling leads to an increased simulation
time. However, with an identical number of thermal zones, the increase in compu-
tation time is quite negligible. In a collective housing comprising 16 dwellings, the
creation of the inhabitants and the generation of their activity scenarios over a year
(52 identical weeks) took less than a second on a PC with a capacity of 8.00 GB
of RAM and with an Intel (R) Core (TM) i7-3520M processor with a frequency of
2.90 GHz. Markov processes are inexpensive given the speed of the pseudo-random
number generation function.

3 Electrical Equipment Modelling

Specific electricity is electricity used for services that cannot be provided by
any other source of energy. The specific electricity consumption of a dwelling
therefore includes the consumption of electrical appliances for cooking, cooling,
washing, leisure and office automation. Heating, air conditioning and domestic
hot water (DHW) do not fall under specific electricity. From the point of view of
building energy, the use of electrical devices results, in addition to the electricity
consumption, in a release of heat due to the Joule effect. This induces a heating load
reduction in winter, and discomfort increase in summer (or cooling load increase if
air conditioning is used).

Specific electricity consumption varies greatly from one household to another.
Households own and use more or less electrical appliances depending on the number
and age of their members, their income, their activities, etc. Behavioural diversity
is currently neglected in standard calculations, which consider simple deterministic
scenarios inducing an error in the prediction of the comfort and the heating and
cooling loads.

3.1 General Principles

Electrical equipment are modelled explicitly. Compared to a direct conversion
“activity→ electricity consumption” as proposed by Tanimoto et al. [36] or Widén
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et al. [37] in the first version of their model, explicit modelling of devices offers
several advantages:

• It is possible to account for households’ variability in terms of equipment.
• It is possible to generate variability between power inputs of devices of the same

type (not all televisions will have the same operating and standby power).
• It is possible to generate variability for the same device (e.g. washing machines

have several operating options).
• It is possible to specify the exact characteristics if the information is available.
• The model is scalable and can be updated easily. This point appears essential

due to the evolution of specific electricity consumption, which is very rapid with
regard to the lifespan of the buildings. The performance of existing devices can
be changed as technology evolves, and new devices can be integrated without
questioning the structure of the model.

• In connection with its evolutionary nature, the model can be used in a prospective
approach focusing on specific electricity consumption, but also the thermal
behaviour of buildings (in particular regarding summer comfort). It makes it
possible to simulate a proliferation of devices, improvements in performance,
technological breakthroughs, or even behavioural changes linked to new con-
straints on electricity costs or to awareness campaigns (in which case the
integration of socio-demographic factors is also of interest).

The model consists in randomly populating the dwelling with electrical devices
(based on statistics), defining probabilities of associating an activity with an
equipment, specifying the operating characteristics (including sleep mode), and
calculating the electrical load [38] and internal heat input. These steps are detailed
in Vorger [23].

3.2 Simulation Results

3.2.1 Single Dwelling Electricity Load

Load curves generated for three random dwellings during the first week of the
year are shown in Figs. 22, 23, and 24. For dwelling N◦1 (Fig. 22), repetitive
consumption of lighting and audiovisual can be observed in the evening as well as
two marked peaks related to kitchen occurring on Tuesday noon and Sunday noon.
The laundry cycles appear in pairs on Wednesday and Saturday indicating that they
would be washing machine cycles followed by tumble dryer cycles. Dwelling N◦2
consumes more energy on average (Fig. 23). There is a significant proportion of
audiovisual standby consumption. Dwelling N◦3 stand out by daily use of cooking
appliances at noon (Fig. 24).
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Fig. 22 Detailed load curve during the first week of the year for dwelling No. 1
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Fig. 23 Detailed load curve during the first week of the year for dwelling No. 2

3.2.2 Aggregated Electricity Load

In Fig. 25, the power load of 100 random dwellings is aggregated. The peaks that
appear in the individual curves are no longer visible. The maximal electricity load
for dwelling n◦2 was 3937 W; the average aggregated maximal load is 690 W.
Limitations of the lighting model are visible, in particular an excessively sudden
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Fig. 25 Detailed load curve during the first week of the year, aggregated for 100 random dwellings

variation in lighting consumption at the end of the afternoon and at midnight.
Lighting consumption at the end of the day could be smoothed by introducing
a gradual switch-on probability. The sharp drop at midnight is an artefact of the
activity model (§ 2.4).

Figures 26 and 27 display, respectively, the average (100 dwellings) “summer”
(May 15th to October 14th) and “winter” (October 15th to May 14th) electricity
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Fig. 27 Average daily winter load curve (100 dwellings)

load. The daily consumption is 8.06 kWh and 8.55 kWh, respectively, in summer
and winter. The consumption for cooling (refrigerator) is higher in summer, but the
washing, cooking and lighting consumptions are lower. The peaks are around noon
and 7:30 p.m. in both cases. In summer, the highest peak is at noon while in winter
it is at 7:30 p.m.

3.2.3 Internal Heat Input

The electrical equipment model is used to generate scenarios of internal heat inputs
for the DBES. Electricity consumption is converted into heat input through a few
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assumptions. The part of the electricity consumed that is released in the form of heat
inside the dwelling depends on the activity:

• It is 90% for cooking appliances. The remaining 10% corresponds to the energy
consumed to heat water that is either evaporated and evacuated by the ventilation
system, or goes to waste (grey water).

• It is 60% for dishwashers and 20% for washing machines. The remaining 40%
and 80% are evacuated with grey water.

• It is variable for tumble dryers depending on their technology. 60% of tumble
dryers are vented, that is, they take in indoor air and reject the water vapour
outdoor or in a ventilated room. In this case, the contribution to internal heat
(Joule effect + ventilation) is negative in winter and positive in summer (heating
loads are increased and summer comfort degraded). The model considers internal
heat of -0.3 × Pfonc in winter and 0.3 × Pfonc in summer, Pfonc being the power
load of the dryer. The remaining 40% are thermodynamic clothes dryers that
condense water vapour instead of rejecting it. The (sensible) heat balance for the
room is therefore limited to the Joule effect; 100% of the electricity consumed is
released in the form of heat in the room.

• It is 100% for all remaining equipment.

As a reminder, the devices can be located outside the heated space, for example, in
garages.

The internal heat input scenario corresponding to the first week of the year for
dwelling n◦1 is shown in Fig. 28 alongside the electric load. If the dwelling consists
in several thermal zones, the heat inputs are distributed according to the location of
the equipment.

From the 100 simulated dwellings, it is possible to suggest average internal heat
input scenarios per square meter (the average surface area of the simulated dwellings
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Fig. 28 Internal heat input curve—dwelling No. 1
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is 93 m2). A distinction between “summer” and “winter” and between weekdays and
weekends is proposed (Figs. 29 and 30).
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Fig. 29 Daily average internal heat input scenarios for summer
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Fig. 31 Weekly scenario of internal heat input, modelled yearly average for 100 dwellings (red)
and 2012 French standard (black)

Differences are relatively small between weekdays and weekends; these two
types of day are not fundamentally different on average across the population.
The introduction of simplified differences between weekdays and weekends in
conventional scenarios results from a subjectivity bias. Since their authors have
“classic” work weeks, they logically tend to assume that most of the population
is in the same situation. The average weekly scenario obtained for 100 dwellings is
compared to the 2012 French standard scenario in Fig. 31. Similarly to the presence
rates, the standard scenario underestimates the internal heat input in the middle of
weekdays and at night, and overestimates them during the weekends. Internal heat
input are also overestimated in the mornings (between 6 a.m. and 10 a.m.) and in
the evening (between 6 p.m. and 10 p.m.) during the week.

4 Adaptive Behaviour

4.1 Windows Opening

The opening of windows by occupants is one of the main factors influencing the
ventilation of buildings. According to studies conducted in Japan and Denmark
respectively, Iwashita and Akasaka [66] and Kvisgaard and Collet [67] attributed
87% and 63% of air renewal in dwellings, respectively, to occupants’ behaviour.
The influence on the thermal state of the building depends on the difference between
indoor and outdoor temperatures. The management of openings is therefore a major
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topic in the literature on occupants’ behaviour, especially regarding its impact on
the energy consumption of buildings.

Since Dick and Thomas [39], it has been established that actions on windows are
correlated with outdoor temperature and marginally with wind speed. This has been
subsequently corroborated by several studies.

Warren and Parkins [40] in particular, from measurements in five offices in
Great Britain, evaluated the contribution of outdoor temperature, solar radiation and
wind speed at 76%, 8% and 4%, respectively, in the explanation of the variance
of the opening state of windows (considering two states: open or closed). They
performed linear regressions to establish a relationship between the percentage of
open windows and outdoor temperature, differentiating between small and large
opening times. Their measurements revealed that actions on small openings were
much less correlated with temperature than those on large ones, which seemed to
indicate that the former were driven by air quality and the latter by thermal comfort.

Fritsch et al. [41] constructed the first predictive model of the state of windows
opening on the basis of measurements made at LESO-PB11 (Solar Energy and
Building Physics Laboratory). A Markov process defined the transition probabilities
between six possible opening angles over four temperature ranges. Air quality was
not taken into account in this model. The indoor temperature was the only parameter.
According to the authors, this model is only valid for outdoor temperatures below
18 ◦C.

At the end of the 1990s, several measurement campaigns were conducted in
Europe and Pakistan as part of research on the adaptive approach to thermal comfort
[22, 42, 43]. The data made it possible to establish a first predictive model of
window condition as a function of indoor or outdoor temperatures based on logistic
regressions. As a first step, Nicol [44] recommends using the outdoor temperature
as a parameter, since this is an input to simulation software. Subsequently, Nicol et
al. [22] demonstrated that indoor temperature is a more relevant parameter. Even
if the outdoor temperature appears to be more strongly correlated with the actions
on the windows than the indoor temperature, a model calibrated on the outdoor
temperature alone will be unreliable when it is used on another building (since the
indoor temperature dynamics are different even for the same outdoor climate).

The original model of Nicol [44] was improved and implemented in the DBES
ESP-r software as “Humphreys Adaptive Algorithm”. This calculates the comfort
temperature as a function of the sliding average outdoor temperature. If the
difference between the operative temperature and the comfort temperature is greater
than 2 ◦C, the probability of action is calculated by a logit model depending on the
outdoor and indoor (operative) temperatures. The probability is then compared to a
random number to determine whether or not the action takes place. In order to avoid
possible oscillations (succession of openings-closings), a hysteresis effect of 2 ◦C
on the indoor temperature and of 5 ◦C on the outdoor temperature was introduced.

11https://www.epfl.ch/labs/leso/

https://www.epfl.ch/labs/leso/
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Herkel et al. [45], on the basis of measurements carried out in 21 offices over
13 months in Freiburg (Germany), proposed a stochastic model of management of
windows by occupants which uses Markov chains with probabilities of transitions
as a function of outdoor temperature. The model considers three distinct phases to
account for the observation that the frequencies of actions are significantly higher
at the time of the arrival or departure of occupants. This phenomenon has also been
noted by Haldi [46], Mahdavi and Pröglhöf [47] and Yun and Steemers [48].

Page [49] developed a model in which the occupants open windows if the
pollutant concentration exceeds a critical threshold—following Fanger [50], or if
the atmosphere no longer corresponds to the conditions of comfort thermal defined
according to the rational approach.

Based on measurements taken in summer (3 months) in six offices in two
separate buildings, Yun and Steemers [48] proposed a stochastic model based
on Markov chains to predict windows opening. Indoor temperature is preferred
over outdoor temperature as the main explanatory variable, in accordance with the
principles of adaptive comfort. The analysis showed that outdoor temperature is not
significant (however, the measurements only covered the summer period). Windows
are assumed to be systematically closed when occupants leave. During the arrival
periods, the opening probabilities are calculated by a logit model as a function
of indoor temperature, while the probabilities of actions during the intermediate
periods follow a linear function of indoor temperature. An extension was made
to take into account the possibility of night ventilation. Differences in behaviour
between different individuals were highlighted; therefore, the model defines three
categories of occupants: active, average and passive.

Haldi and Robinson [51] undertook a large measurement campaign, in 14
offices of the LESO-PB building during 7 years. They developed and compared
several discrete models (with 10 min resolution). The comparisons demonstrated
the superiority of Markov models over Bernoulli models, that is, the prediction
of transitions over the prediction of positions. In the best-performing Markov
model, the probabilities of actions are determined by logit models (one for each
type of period of presence). This Markov model is completed by a continuous
process. When a window is open, the duration during which it will remain in this
state is calculated. In case of departure, the closing is decided or not according
to a probability. The performance of the model was evaluated through various
tests on the LESO-PB measurement samples but also by cross-validations from
measurements taken on other buildings. Haldi et al. [52] showed that the model
calibrated on the measurements at LESO-PB allowed a good prediction of the
actions recorded in an office building in Austria and vice versa. Schweiker et
al. [53] extended the process to three apartments located in Switzerland and one
student residence located in Japan. Validation tests between Swiss homes and
offices revealed an acceptable robustness of the models. Japanese data was not
correctly predicted, even by the model calibrated on Japanese data, indicating that
its formulation and/or the selection of explanatory variables were unsuitable in this
context. This can be explained by significant variations in terms of climate (humidity
in particular) and habits (e.g. use of air conditioning). According to Schweiker et
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al. [53], the calibrated model of Haldi and Robinson [51] can be used for office
buildings or bedrooms and living rooms of dwellings in a climatic and cultural
context close to Switzerland and Austria.

Andersen et al. [54] developed a window opening model dedicated specifically
to housing. Indoor and outdoor environmental conditions were measured in ten
apartments and five houses for 8 months in Denmark. The dwellings were divided
into four groups according to whether they were inhabited by tenants or owners
and ventilated mechanically or naturally. By logistic regressions, the opening and
closing probabilities were evaluated for the four groups by distinguishing bedrooms
and living rooms as well as periods of the day (“morning”, “day”, “evening” and
“night”) and, optionally, season. The resolution of both models and measurements
was 10 min. Depending on the groups, certain variables appeared to be dependent
on the dwelling and were therefore removed from the models (e.g. indoor and
outdoor temperatures were removed from the window opening model, and indoor
temperature for the group “owner households, mechanical ventilation”). Overall, the
most influential variable on the probability of opening is the CO2 concentration in
the room, while the probability of closing depends mainly on outdoor temperature.

Only the models of Andersen et al. [54] and Haldi and Robinson [51] are
candidates to model windows opening in residential buildings. Both were only
calibrated and evaluated for bedrooms and living areas.

The model of Andersen et al. [54] has not been validated. The quality of its
predictions is unknown, nor its validity under conditions different from the Danish
climate. Moreover, it is not possible to diversify individual behaviours, for example,
by creating “active” and “passive” categories with different properties.

According to Schweiker et al. [53], the model of Haldi and Robinson [51]
developed for offices is sufficiently robust to be transposed to homes under certain
conditions. The predictions of the actions in three apartments in Switzerland are in
relatively good agreement with the observations.

Following the state of the art, the model of Haldi and Robinson [51] was selected.
It is based on the largest sample of measurements and was submitted to several
validation procedures. Important limitations remain: IAQ is not taken into account
and the potential for generalisation needs to be confirmed. The model is described
in Vorger [23]. It calculates air flowrates that are input to DBES models.

4.2 Temperature Setpoint

4.2.1 State of the Art

In France, the value of 19 ◦C has been in the 1974 standard following the oil crisis.
According to Brisepierre [55], this normative approach is based on the following
erroneous assumptions:
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• Residents have the means to precisely adjust the temperature in their homes
during heating periods.

• Thermal needs are uniform in all rooms regardless of the socio-demographic
profile of the inhabitants, their way of living.

Huebner et al. [56] confirmed that the first hypothesis is not realistic. Their study is
based on the measurement of the temperatures of the main rooms of 248 various
dwellings in the United Kingdom for 1 year at a time step of 45 min. With an
algorithm that analysed the evolution of indoor temperature, they found that the
(desired) setpoint temperature was 20.6 ◦C on average, while the average indoor
temperature when the heating is on was only 19.5 ◦C. The presence of additional
heating equipment, as well as the testimonies of residents, attests to the inability to
always reach the desired temperature [55].

Numerous data from measurements or surveys indicate that the second hypothe-
sis is also false. Wei et al. [57] reviewed the literature on the factors that influence
heating behaviours. Table 4 lists the most influential factors and specifies whether
they relate to occupants’ behaviour or the ability to reach the setpoint (by the heating
system).

From a behavioural modelling perspective, the difference between the setpoint
and the actual temperature is not essential. The goal is to predict the temperature
that occupants want to reach at a given time. Depending on the characteristics of the
heating system, the available power may be insufficient, in which case the setpoint is
not reached. The inability of the system to meet residents’ expectations can influence
behaviour. One can easily imagine residents not reducing the setpoint in case of
absence knowing that it will be difficult to get back to it, or even overheating and
storing heat when they have the possibility in anticipation of future cold wave. These
aspects are not integrated in the proposed model: the inhabitants define a setpoint
independently of the system; then, the system succeeds or fails to meet the demand.

4.2.2 Temperature Setpoint Model Principles

Parys et al. [58] proposed a model consisting in assigning a setpoint to each
dwelling, by drawing randomly in a distribution resulting from measurements. In
this section, it is completed by integrating spatial and dynamic variations:

• In a first step, a main comfort temperature Tbase corresponding to the desired
temperature is set randomly for each home from a distribution resulting from
measurements.

• In a second step, Tbase is modified according to the characteristics of the
household, according to Table 4.

• A comfort temperature for each zone is deduced depending on the type of room.
The setpoint reduction is drawn randomly from a uniform range, for example,
the temperature in a bedroom is between 0 and 2 ◦C lower than the main comfort
temperature. The thermal zone temperature setpoint is calculated by a weighted
average of the rooms it contains.
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Table 4 Factors influencing the temperature setpoint or the ability to reach it

Factor Description of the influence

Type of room The main rooms have higher setpoints and have longer heating periods
Type of control Centralised thermostats are generally counterproductive due to their

complexity, which causes residents to use them in “constant
temperature” mode
Thermostatic valves are sometimes used for the sake of financial or
energy savings. Insufficient technical knowledge hinders their proper
use. It is often assumed that the taps control the power and therefore the
setpoint will be reached more quickly by the highest setting (whereas
they only cut off the water circulation once the setpoint is reached)

Age of occupants The elderly who are generally less active and more often at home prefer
higher temperatures. Families with young children also have a tendency
to heat their homes more, for health reasons

Household size The temperature in dwellings with large households tends to be warmer
than average. However, the cause-and-effect relationship between
household size and setpoint is blurred due to the fact that internal and
metabolic heat are greater for large households.
Setpoint reductions are less frequent, probably because the periods of
occupancy overlap

Ownership status Tenants set higher setpoints
Time The setpoints change with time depending on the presence and activities

of the occupants. They are lower during the night (whereas the
conventional scenarios consider a reduction during the day)
Contrary to conventional scenarios, weekdays and weekends do not
appear to be fundamentally different

Gender Women seem to prefer higher temperatures. Men, often more interested
in technical aspects, use thermostats more frequently

Climate Paradoxically, several studies reveal higher winter temperatures in colder
climates

Type of dwelling Apartments are generally warmer in winter than houses. Several reasons
can explain this phenomenon: Collective dwellings are warmer because
they are more compact, while houses have higher surface to volume
ratios. In multi-family buildings, the hottest dwellings cause the
temperature of the entire building to rise due to the flow of heat passing
through the uninsulated interior walls. The correlation between the type
of housing and the ownership status is another explanatory factor for the
observed differences
Residents lower the setpoint more frequently in apartments than in
houses. We can assume that, since the setpoint can be more easily
reached by the heating system, residents are less reluctant to lower the
temperature when they are away from home

Age of dwelling,
insulation

The age of the building is strongly correlated with its level of insulation.
The temperatures are lower in the less insulated buildings, probably no
by choice of the occupants but rather because of the difficulty of the
systems to reach the setpoint
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• A probability of reducing the temperature during periods of absence or sleep is
assigned to each household.

• A final random parameter is set, indicating whether the unused rooms (bedrooms,
bathrooms, or even living rooms for spacious dwellings) are heated or not, in
which case a reduction is considered. This parameter aims at accounting for the
partitioning strategy [59] observed among residents who only heat the inhabited
part of their home.

• A heating scenario is generated for the dwelling: when at least one inhabitant is
present and not asleep, all zones are heated to their comfort temperature (except
unused zones if the parameter indicates that they are not heated). If a period
of sleep or absence begins and if the probability of going into reduced mode
is greater than a random number between 0 and 1, the reduced temperature is
considered in all the zones until the return/awakening of an inhabitant.

• The heating scenario is constructed during a pre-process, and then used as input
to DBES tools.

The same comfort temperatures and probabilities of temperature reduction are
assigned to all members of one household. This is a reasonable approximation
according to Lomas and Kane [60] who found that a household can be seen as a
single organism with its shared perception of what is or is not comfortable. Fabi
et al. [61] also observed variable temperature preferences from one household to
another but homogeneous setpoints within the same household.

Note
• Individual heating and collective heating are not differentiated. In the case of

district heating, this corresponds to assuming an optimal situation in which the
occupants can control the temperature according to their wishes thanks to the
thermostatic valves.

• The influence of the type of heating element on behaviour is not integrated. The
use of underfloor heating, for example, should be dealt separately.

• The case of electric heating is special because, with the exception of pro-
grammable radiators, the setpoint is not explicitly defined. It is therefore likely
that the equivalent setpoint is more variable with electric heating, just as it is
likely that occupants change it more frequently. This aspect is not modelled but
could easily be added, by incorporating a modification of the setpoint upon the
arrival of residents, for example.

4.2.3 Temperature Setpoint Data

The data used in this part come from a census of several measurement campaigns
carried out by Enertech12 (Table 5). The sample includes collective (in a large
majority) and individual buildings, new and renovated buildings which are all highly

12https://www.enertech.fr/

https://www.enertech.fr/
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Table 5 List of dwellings in which the temperature setpoint was measured

Building City (France)

Number of
monitored
dwellings

Temperature
setpoint (◦C)

New buildings Damidot Villeurbanne (69) 10 21.3
Le Concerto Grenoble (38) 6 21.5
Le Henri IV Grenoble (38) 3 19.8
Le Connestable Grenoble (38) 12 20.4
Le Carré d’Or Grenoble (38) 4 20.2
Jardins de Bonne +
Pallium dauphinois

Grenoble (38) 7 21.5

Le Vendôme Grenoble (38) 4 21.3
Patio Lumière Grenoble (38) 4 21.1
Zac du Fort Bron (69) 5 21.9
Residence Le claret Revel (38) 3 22.7
Les Santolines Ancône (26) 4 21.2
MINERGIE Epagny (74) 11 20.7
Le Pérenne Epagny (74) 5 22.2
Ambroise Croisat Venissieux (69) 6 22.7

Renovated buildings: Quartier Mulhouse (68) 3 21.9
Franklin 3 20.3

5 18.5

insulated. The indoor temperature was monitored in the living rooms and sometimes
in bedrooms. The setpoint (during the heating period) is assumed to be equal to the
average temperature during the coldest 2 months of the year. For each building, the
value indicated is an average of the monitored dwellings of the building.

The overall average temperature setpoint is 21.1 ◦C. It is consistent with the
mean deduced by Huebner et al. [56] for 248 homes in Great Britain (20.6 ◦C, with
a standard deviation of 2.5 ◦C). It is also in agreement with the results of a survey
of passive houses which showed that the desired temperatures were between 17 and
25 ◦C with an average of 20.5 ◦C [62]. The standard deviation cannot be estimated
from the aggregated results. For a design stage, a value of 2 ◦C is set by default.

For each dwelling, a temperature Tbase is drawn randomly according to a normal
PDF with mean 21.1 ◦C and standard deviation 2 ◦C. In order to avoid inconsistent
values, the law is truncated between 17.5 ◦C and 25 ◦C.

4.2.4 Thermal Zones Temperature Setpoint

The influence of the households’ socio-demographic characteristics is reflected in a
modification of Tbase. The values of the coefficients XV associated with influential
variables V are determined randomly according to laws based on assumptions
inspired by the qualitative remarks from the literature (Table 6). A new temperature
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Table 6 Coefficients quantifying the influence of socio-demographic characteristics on the
temperature setpoint

Coefficient PDF

Xâge If at least one occupant is older above 70 years old or under 12 years old, then
Xage ∼ U (0; 1)
Else Xâge ∼ U (−1; 0)

Xgender If there is a single female occupant, Xsex ∼ U (0; 1)
If there is a single male occupant, Xsex ∼ U (−1; 0)
Else Xsex = 0

Xfees If the occupants are tenants who do not pay for heating (50% of tenants by
default), then Xfees ∼ U (0; 2).
Else Xfees ∼ U (−0.6; 2).
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Fig. 32 Distribution of Tbase and Tcons − princ for 1000 simulations

called the main setpoint temperature, Tcons − princ, is obtained by adding the
coefficients (positive or negative) to Tbase.

Tcons−princ = Tbase +
∑

V

XV (11)

Figure 32 presents the distributions of Tbase and Tcons − princ obtained from 1000
simulations. Even if Tbase is bounded between 17.5 ◦C and 25 ◦C, Tcons − princ can
cross these bounds. The theoretical minimal and maximal values for Tcons − princ are,
respectively, 15.9 and 29 ◦C; however, the observed values in this experiment were
between 16.5 and 26.8 ◦C. The normal distributions with same means and standard
deviations are also displayed.

From Tcons − princ, a setpoint temperature is calculated for each zone in the
dwelling. The setpoint in the bedrooms is supposed to be lower. The temperature
difference between a room “i” and the living room, �Ti, is drawn randomly (one
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value per dwelling) according to a uniform law between 0 and 3 ◦C. The kitchens,
bathrooms and hallways are supposed to have the same setpoint as the living room.
Sometimes rooms are not used: bedrooms in particular (for example, a single person
in a house with two bedrooms) but also bathrooms or living rooms. Some rooms are
systematically unused (from the point of view of the temperature setpoint model)
such as cellars. The algorithm considers by default a probability of 75% that unused
rooms temperature setpoint will be: Tcons − princ −�Ti.�Ti is drawn randomly (one
value per dwelling) in a uniform law between 1 and 4 ◦C. The setpoint for a zone
is finally obtained by averaging the temperatures of its rooms. Since the surface
areas associated with the rooms are not known, the living rooms are weighted by a
factor of 3 (estimated average ratio of their surface area to the surface areas of other
rooms). Therefore, for a zone comprising a living room associated with a 21 ◦C
setpoint and two bedrooms associated with 19 ◦C setpoints, the global setpoint will
be (21 × 3 + 19 × 2) /5 = 20.2 ◦C. The general setpoint formula is:

Tcons−zone =
∑Nb of rooms

i=1 αi
(
Tcons−princ −ΔT i

)
∑Nb of rooms

i=1 αi
(12)

αi = 3 if room i is a living room, otherwise αi = 1. ΔT i ∼ U (0; 3) if room i is a
bedroom; ΔT i ∼ U (1; 4) if room i is unused.

Note
The difference between apartments and houses is not directly integrated by a
coefficient modifying the main setpoint. In a context of efficient buildings, the
inhabitants of houses are expected to have the same requirements as those of
apartments; on the contrary, in less insulated houses, the inhabitants know that
they cannot maintain temperatures at high levels). On the other hand, houses have
on average more unoccupied rooms than apartments, and therefore the model will
generate lower zone setpoints in houses than in apartments.

4.2.5 Temperature Setpoint Management

The model considers that residents are likely to lower the setpoint when they are
away or when they go to bed. As soon as they are present and awake, the setpoint
corresponds to their desired level of comfort. When a potential reduction period
begins, the probability of a decrease is compared to a random number between 0 and
1. The probabilities, Preduced, are set randomly to reflect the diversity of households
in this area. Thus, some people will always lower the setpoint when they are away,
others will sometimes do it, and others will never. The probabilities intervals as
well as the reduction values corresponding to the periods of absence and of sleep
are given in Table 7.

Setpoint reduction probabilities do not depend on their amplitude. It is likely that
in reality these parameters are correlated. Frugal occupants, for example, will focus
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Table 7 Possible setpoint reduction periods and corresponding values

Period Setpoint reduction probability PDF

Sleep Preduced−sleep ∼ U (0; 0, 5) ΔT sleep ∼ U (0, 5; 1, 5)
Long absence (>2 days) Preduced−long abs ∼ U (0; 1) ΔT long abs ∼ U (3; 5)
Short absence (>4 h) Preduced−short abs ∼ U

(
0;Preduced−long abs

)
ΔT short abs ∼ U (1, 5; 2, 5)

Table 8 Locations and types
of dwellings probabilities

Location House Apartment Other

Urban area 10.8% 29.4% 0.5%
Rural area 46.1% 12.8% 0.4%

Table 9 Results of the setpoint model for 1000 random dwellings

Parameter Average value (1000 dwellings)

Number of used rooms 1.2
Number of setpoint reductions—long absence 2.10−4 day−1

Number of setpoint reductions—short absence 0.05 day−1

Number of setpoint reductions—sleep 0.18 day−1

Duration of setpoint reductions—long absence 27 min/day
Duration of setpoint reductions—short absence 0.6 min/day
Number of setpoint reductions—sleep 92 min/day

their attention on both setpoint and control. If the data confirms this, the model could
be modified accordingly.

4.2.6 Temperature Setpoint Results

The model was tested on 1000 random dwellings generated from French statistics
Table 8. The distributions of the number of rooms for each type of dwelling are
known from the population census. From this information, households are created
automatically following the stochastic process described in § 2.5. The results of the
model for 1000 random dwellings (and therefore 1000 households) are shown in
Table 9.

The average number of unused rooms is not negligible. The proportion of
households not heating unused rooms is set by default at 75%. The number of
setpoint reductions to long absence (greater than 2 days) is not significant since
these are not frequent. The integration of holidays in the presence model for housing
constitutes a research perspective. The number of setpoint reductions corresponding
to short absence or periods of sleep are more frequent and constitute significant
periods of time.
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5 Application

5.1 Implementation

The model was implemented in a DBES tool (Pleiades13) according to the algorithm
described in Fig. 33. It can be used for various objectives including robust optimi-
sation [63], uncertainty propagation [64], and energy performance contracting [65].

5.2 Case Study

The case study is one of the experimental houses built at INES (National Institute
of Solar Energy) in Chambéry, France. It is a two-storey 90 m2 house with concrete
walls reaching the “Passive house” performance. PV panels were installed on the
roof to potentially reach the zero-energy level. A detailed description is available
in Munaretto [5]. For the simulation, it was divided in 11 thermal zones (Fig. 34).

Crea�on of virtual households
Each occupant is described by a set of socio-demographic characteris�cs

Genera�on of ac�vi�es’ scenarios for each
occupant (10 min resolu�on)

A�ribu�on of electrical appliances
Descrip�on of appliances’ duty cycles

Simula�on of the use of the electrical appliances and the ar�ficial ligh�ng
Calcula�on of the corresponding internal heat input

PREPROCESSING

Outputs of the preprocessing:
for each zone, annual scenarios for presence and internal heat input 

due to occupants’ metabolism and use of electrical equipment

Ac�ons on 
windows

Thermal calcula�on at
each �me step (BES model)

Clima�c data, T°zones

Modifica�on of air flows

Repe��on of 
the complete
simula�on 
(Monte Carlo)

THERMAL SIMULATION

Fig. 33 Algorithm of the integrated behavioural model coupled to the DBES tool

13https://www.izuba.fr/logiciels/outils-logiciels/std-comfie/

https://www.izuba.fr/logiciels/outils-logiciels/std-comfie/
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Fig. 34 3D model of the house, southwest corner (a) and northeast corner (b) (Pleiades software)
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Fig. 35 Heating load distribution of the house due to occupancy

The models developed in this chapter can be used in an uncertainty propagation
procedure. Assuming constant values for the building envelope characteristics,
occupancy variability yields a distribution of heating load (Fig. 35). The annual
primary energy balance is symbolic of the influence of occupants’ behaviour: the
objective of a positive balance (energy production larger than energy consumption)
is reached in 70% of cases (Fig. 36).

The level of comfort also varies with occupancy. The distribution of the summer
comfort indicator over the 3000 simulations is shown in Fig. 37. In 40% of cases,
there is no discomfort due to high temperature. The average deviation from the
comfort zone is less than 1 ◦C in 40% of cases, but for some households it reaches
5.5 ◦C, which means that on average, when the inhabitants were present, the
temperature was 5.5 ◦C above the comfort zone.
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Fig. 37 Comfort indicator distribution due to occupancy

The distribution of the average indoor temperatures for the period between
May 15th and October 15th is shown in Fig. 38. Globally, the average is 26 ◦C.
Nevertheless, in 9% of cases, the average temperature is larger than 28 ◦C. The
issue of summer comfort in highly insulated buildings calls for particular vigilance.
Night ventilation would improve summer comfort in this concrete house.
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6 Conclusion

A comprehensive stochastic model of occupants’ behaviour in residential buildings
is proposed. It integrates an original model for the creation of virtual individuals
described by a set of socio-demographic parameters. This allows a high degree
of refinement in the generation of schedules and in the attribution of equipment
to households according to statistical data. The use of electrical appliances and
lighting is modelled on the basis of inhabitants’ activities with a higher accuracy
than existing models in the literature, through data from several measurement
campaigns. A reference model for interactions of occupants with windows was
adapted. The whole model is integrated to a DBES tool with no more necessary input
than the building description. However, any available information on inhabitants’
characteristics or equipment can be filled by the user to refine the results. The
Monte Carlo method is used to obtain the distribution of the simulation outputs.
Applications of this type of model include among others uncertainty propagation,
energy performance guarantee, and robust optimisation.
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CANOPEA building prototype, 303
CAPEX, 115
Case-based inhabitant services

H358 office, 154–156
H358 office, validation for, 156–160
proposed approach, 152–154

Case-based model, 147
Causality, 381
Chapman-Kolmogorov equation, 551
Circuit assembling problem, 175
CITIES project, 331
City Building Energy Simulation (CityBES),

8–10, 14–15
City Energy Analyst (CEA), 8–13
CityGML, 10
Classical building automation, 75
Classification and regression tree algorithm

(CART), 465
Classifier estimation error, 221
Climate control, 361
Clock-based visualizations, 424
Closed-loop feedback control, 365
Cloud-based architecture, 86–89
Cloud cover, 376
Cloud cover transformation, 349
Clustering, 202, 212–213, 463, 466, 474–477,

485
Clustering houses, 508–513
Cluster of European Research Projects on the

Internet of Things (CERP-IoT), 79
Cognitive UBEM tool

integration of machine learning models, 17
operational real time energy management,

17
real time data, 16–17
3D and time, 15–16

Cold homes, 22
Comfort dissatisfaction, 144
Commission of Energy Regulation, Ireland

(CER-IRISH), 474
Communication model, 518, 519
Completeness level, 456, 457
Conditional mean, 336
Conditional potential causality, 392
Conditional random field (CRF), 211
Conduction, 166–169
Confidence level, 444, 445, 456, 457, 459
Consensual-based indicators, 24
Constant regression, 352
Constraint violations, 372
Consumed energy, 312
Context-Aware IoT, 81

Context group, 385–386
Contextual test, 448
Continuous–discrete extended Kalman filter

(CDEKF), 349
Continuous–discrete Kalman filter, 358
Continuous–discrete-time stochastic

state-space model, 332
Continuously variable devices (CVD), 29, 32
Continuous variable, 293
Control mechanism

anticipative layer, 275
local layer, 275
reactive layer, 275

Convection, 166–169
Convenient matrix-vector notation, 362
Conventional market principles, 375
Conventional model, 443
Convolutional neural networks, 205
Cost function, 360
Covariance, 336
CO2 zone model, 299
Cross-correlation function (CCF), 338
Cross-disciplinary program Eco-SESA, xii–xiii

D
Damper, 451
Data-driven approach, 352
Data-driven energy systems, 377
Data-driven models, 233, 243

intrusive load monitoring, 233
non-intrusive load monitoring, 233–234

for high-sapling rate, 235
for low sampling rate, 235–236
machine learning algorithms, new

approaches based on, 236
residential energy consumption, application

to
Interactive Learning, 241–243
intrusive load monitoring, 239
non-intrusive load monitoring, 239–241

Data gaps, 434, 441, 446, 449
DBES ESP-r software, 587
DBES reliability, 544
Decision-making strategies, 251–252, 267
Deep reinforcement learning (DRL), 322
Demand flexibility, 375
Demand response solutions, 113
Demand side management (DSM)

building level analysis, 484
sequential encoding, 483
simultaneous encoding, 483–484

Demand-side management (DSM) strategies,
232–233
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Derivative variable, 290
DE-TriM, 256, 257
Device signatures, 33
Device training mode, 31
Differential-algebraic equations, 190–193
Diffuse radiation, 352
Dimensionality reduction, 463, 465, 466, 485
Direct radiation, 352, 353
Disassembling matrix, 181, 183–186, 197
Discrete-time observations, 332
Discrete variables, 291
Discretization, 293
Discriminative Disaggregation Sparse Coding

algorithm, 235
Discriminative modeling, 202
Distributed solving approach

cooperate and coordinate, 308
supply and demand matching (SDM), 307

Disturbance modelling
ambient air temperature, 356–359
cloud cover

continuous state-space model, 345
discrete state-space cloud cover model,

344–345
estimation of parameters, 348–351
state-independent diffusion process,

345–348
net radiation, 355–356
solar radiation

components and modelling approach,
352–353

deviation and autocorrelation, 353–355
modification of cloud cover data,

351–352
Disturbance variable, 342
Do It Yourself (DIY) projects, 100
Domestic energy consumption, 407
Domestic Hot Water, 115
Domestic hot water (DHW), 128, 544, 579
Domoticz, 97
Dulmage–Mendelsohn algorithm, 293, 295,

301
Dwelling, 568–570
Dwelling Scale, 115–117
Dynamical model, 357, 358
Dynamic behaviour model, 489

generation and validation, multi-agent
based approach for, 496–498

behaviour models, implementation and
co-simulation of, 515–520

clustering houses with similar
behaviours, 508–513

cooking activity, on fridge on-cycles,
501–502

co-simulation, complex behaviour with
physical models, 520–521

fridge, 499
fridge freezer on-cycle durations

computation, 499–500
heuristic approach, 502–505
inhabitant’s behaviour models, tune

parameters of, 508, 521–525
inhabitant’s reactive, deliberative

behaviour modelling, 513–515
physical behaviour modelling, 505–508
seasons, day type and cooking activity,

501
multi-agent based approach for, 496–498

Dynamic building energy simulation (DBES)
models, 543, 544

Dynamic models for energy control, See
Thermal networks

Dynamic programming, 147

E
E-coach Mondrian user interface

human control and collaboration, 425–427
overall structure of, 420
social eco-information, 424–425
spatial eco-information

additional zoom-in of spatial
eco-information, 423

at-a-glance spatial eco-information,
421–422

at-one-click spatial eco-representation,
422

temporal eco-information, 424
Eco behaviours, 530–532
EcoHusband agent, 530, 532, 534, 536
Effect group, 386
Effective building monitoring, 52, 53
Effect-similar vectors, 153–154
Effect variables, 391
Electrical equipment modelling, 579, 583

aggregated electricity load, 581–583
internal heat input, 583–586
principles, 579–580
single dwelling electricity load, 580–582

Electrical heaters, 369, 372
Electrical vehicles (EVs), 341
Electricity consumption, 583–584
Electromagnetic interference (EMI), 234
Elementary circuits, 179
End-use energy consumption, 58
End-user services, 277–279
Enerbee, 95, 96
Energetic profiles, 310, 314
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Energy-based methods, 234
Energy conservation measures (ECM), 53
Energy consumption, 230, 271, 312, 313
Energy demand and services, 330

data-driven models, 233, 243
intrusive load monitoring, 233
non-intrusive load monitoring, 233–236
residential energy consumption,

application to, 239–243
engineering models

building energy simulation models,
231–232

technological models, 232
time-of-use-surveys models, 232
using smart meter data, 232–233

Energy flexibility, 330, 375
Energy harvesting, 95–96
Energy management, 52, 128, 271, 489, 540

anticipative control, 281
automatic model generation for, see

Automatic model generation
formulation of, 279
model predictive control (MPC)

distributed model predictive control
framework, 282

dual-stage optimization, 282
non-linear features, 283
polygeneration systems, 282

models, 295
multi-criteria mixed-linear programming

problem, 281
optimization criteria, 281
plan, 271
set of constraints, 281
time shifting, 279–281

Energy Performance Building (EPB)
assessment, 60

Energy Performance Certificate (DPE), 52
Energy performance certificate (EPC), 15, 16
Energy performance contract (EPC), 53, 54
Energy Performance of Buildings Directive

(EPBD), 60
EnergyPlus, 174, 325
Energyplus, 6
Energy Service Company (ESCO), 52
Energy simulations, 489

dynamic behaviour model generation and
validation, 496–498

behaviour models, implementation and
co-simulation of, 515–520

clustering houses with similar
behaviours, 508–513

cooking activity, on fridge on-cycles,
501–502

co-simulation, complex behaviour with
physical models, 520–521

fridge, 499
fridge freezer on-cycle durations

computation, 499–500
heuristic approach, 502–505
inhabitant’s behaviour models, tune

parameters of, 508, 521–525
inhabitant’s reactive, deliberative

behaviour modelling, 513–515
physical behaviour modelling, 505–508
seasons, day type and cooking activity,

501
models with building system and BEMS,

validation, 525
co-simulation environment, 529–530
eco agent controls environment without

BEMS, 532–534
eco vs non-eco behaviours, 530–532
eco vs non-eco behaviours with and

without BEMS, 536–538
Fanger’s thermal comfort model and

inhabitants’ behaviour, 527–529
inhabitants’ behaviour simulation,

525–526
non-eco agent controls environment

with BEMS, 534–536
Energy smart-home services, 127
Energy usage, 199
Engineering models

building energy simulation models,
231–232

technological models, 232
time-of-use-surveys models, 232
using smart meter data, 232–233

EnOcean, 95
ENOCEAN sensors, 117–118
Eplus weather files, 10
Equality constraints, 293, 294
ESP-r, 174
Euler approximation, 135, 136
European Committee for Standardization, 59
Event-based algorithms, 234
Excessive Winter Deaths (EWD), 22
Expected disturbance values, 369
Expenditure-based indicators, 23–24
Expe-Smarthouse, 106
Explanations, generation of

causal homeostasis, 382
cognitive dissonance problem, 385
common cause, 382
common effect, 382
with contextual causality, 389–390
co-occurrent phenomena, 382
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Explanations, generation of (cont.)
corridor temperature, 383
differential explanations, 385–388, 393
direct explanations

cause–effect relationships, 395
maximum likelihood estimation, 394
model fragments, 395
probability cause–effect relationships,

395
linear causal chains, 382
model fragment, 391–393
second validation, 402–404
simulated intermediate variables, 383
solar radiation, 383, 384
tabulating differential explanations, 388
validation scenario

context and goals, 396
independent variables, 397–398
introductory speech and questions,

398–400
method, 397
participants, 397
results, 400–402
tasks, 398

F
Factorial Hidden Markov Model, 240
Fanger’s thermal comfort model, 527–529
Fan performance curve (FPC), 453
Fault Detection and Diagnostics (FDD), 71
Fault detection and isolation (FDI) community,

439
Faults and failures, in SBs

acceptable and accurate process of signals,
445–446

behavioral and contextual test for diagnosis,
444

breakdown, 435
challenges

complexity, 442
no universal model, 442
unreliable sensors in buildings, 443

commercial energy end-use spilt, 434, 435
conventional model or rule-based

behavioral tests, 443
in Danish application

design of partial valid tests, 451–453
data failure, 436–437
diagnosis challenges in Danish platform

contextual test facilitates testing, 448
good behavior and validity require

infinite time to confirm consistency,
450–451

missing data, 448–450
performance gap, 448

diagnosis reasoning for Danish application
diagnostic analysis, 456
proposed diagnostic analysis, 456–458
visual diagnostic analysis, 454–455

human mistake, 436
knowledge-Based FDD methods, 439–440
misusage, 435–436
model-based diagnosis, 438–439
need for indicators to assess a level of

validity of a test, 444–445
presentation of the platform, 446–447
rule-based techniques, 439–440
signal-based FDD methods, 440–441
thermal performance test, 443
wrong configuration, 436

Feature-based Support Vector Machine
classifier, 235

Field-Programmable Gate Array (FPGA),
100

Filed bus, 76
Finite-state machines (FSM), 276
Flexibility Function, 373, 374
Flexibility, in energy demand consumption,

vi–vii
Flexible electrical energy systems, 375
Forecasting schemes, 369
Formalisms, 271
Formalization, of energy management problem

and related issues
air handling unit, 118, 119
case-based inhabitant services

H358 office, 154–156
H358 office, validation for, 156–160
proposed approach, 152–154

Dwelling Scale, sobriety and flexibility
issues at, 115–117

ENOCEAN sensors, 117–118
H358, 117
illustrative model, 117–127
input-output model based inhabitant

services, 146–152
knowledge models, 161
limitation of data, 160
mirroring inhabitant service, 139–146
modeling problem, 161
model issue, 127–130

knowledge models, learning parameters
of, 136–137

modeling from knowledge, 130–136
regressive models, learning parameters

of, 137–139
monitoring and habitat intelligent, 118–119
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smart buildings, problem statement of
energy management in, 122–127

standard flat with sensors, 119–120
during summer, 121
during winter, 121

Forward-backward algorithm, 210
Fourier equation, 174
Fourier law, 166, 167, 169
Fridge behaviour model, 505–508
Fridge freezer on-cycle durations computation,

499–500
Fuel poverty, 21, 23

assessments, BMI for, 30–31
appliance disaggregation, CAD NILM

machine learning model for, 34–36
behavioural analysis, vectors for, 37–41
data collection, 32
data pre-processing, 33
framework, 31–32

behavioural patterns, association rule
mining for identification, 41

measurement
consensual-based indicators, 24
expenditure-based indicators, 23–24
limitations, 24–25

Functional representation, 272

G
GARP3, 391
Gauss-Seidel successive substitution, 174
G2Elab (Grenoble Electrical Engineering lab)

smart home project, 106
General Data Protection Regulation (GDPR),

108
Generative modeling, 202
Genetic algorithm, 256
Geographic Information Systems (GIS), 7
Geography model, 515, 516
G-homeTech, 271, 272
Global assembled indexes, 187, 188
Global indexes of assembling matrix, 182–183
GNU GPLv3 license, 103
Google Nest Labs, 94
Graphic User Interfaces, 139
Green buildings, 249
Grenoble Institute of Technology, 250, 253,

263
Grey-box models

continuous state-space Hidden Markov
models, 331

control-oriented projects, 331
disturbance modelling

ambient air temperature, 356–359

cloud cover, 344–351
net radiation, 355–356
solar radiation, 351–355

initial model structure identification,
334–335

mobile batteries (EVs), 331
model validation, 337–338
nested models, 338
non-nested models, 338–339
selection of model structure, 338
simple linear grey-box model, 333–334
smart building-related models, 339–343
uncertainty of parameter, 336–337

Grid interaction Indicators, 58

H
H358, 117, 131, 137, 154–156
H-BDI dynamic behaviour representation

model, 514
Heat capacity, 173–174
Heater exchanger efficiency, 452
Heat flow rate source, 164–166
Heat fluxes, 356
Heating, ventilation, and air conditioning

systems (HVAC), 495
simple thermostat controller, 323
simulated data center, 325
zone air flow controller, 324

Heat resistances
advection, 172–173
conduction, 166–169
convection, 169
long-wave radiation, 170–172

Heuristic-based modeling, 202
Hidden Markov models (HMM), 128, 201,

206–212, 235, 239
Hierarchical control

energy flexibility, 373–375
multi-level control and markets, 375–376

High-sampling rate NILM approach, 235
Home Assistant, 97
Home automation

challenges, 50
definition, 49
software, 97–98

Home automation technologies
home automation market

home-specific constraints, 77
smart home key technologies and

market, 78–79
Internet of Things (IoT) architecture

cloud-based architecture, 86–89
four layers architecture, 85–86
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Home automation technologies (cont.)
gas-based heating and hot water

consumption monitoring, 89, 92
gas-based heating and hot water meters

references and properties, 92
home electrical consumption

monitoring, 89, 90
photovoltaic production and storage

system references and properties, 92
references and properties of electrical

meters, 91
water consumption monitoring, 89, 92
water meters references and properties,

93
Internet of Things (IoT) technology

characteristics, 79–81
context-aware, 81
definition, 79, 80
interoperability, 82
privacy, 85
security, 82–84

wireless communication energy
consumption

communication protocols with their
properties, 93, 94

energy harvesting, 95–96
wireless characteristics, 93–94

Homebrew Computer Club, 100
Homeostasis-Belief Desire Intention (H-BDI)

model, 498
Hopcroft–Karpbipartite maximum matching

search algorithm, 301
Household creation, residents’ activities,

567–569
household member’s characteristics, 576
household members, number of, 572–573
household model description, 569–572
household types and reference household

member’s characteristics, 575
ownership status, 574–575

Housing zone, 569
“Human-in-the-loop” approach, vii
Human Machine Interface (HMI), 242
Humphreys Adaptive Algorithm, 587
Hybrid generative discriminative approaches,

202

I
IDA ICE, 174
IEA EBC Annex 58-project, 442
Implemented system

anticipated consumption, 317
components, 316–317

criterion values, 317, 318
mixed solving system, 316, 317
optimization criterion, 319
service agents and regular services, 317
value of criterion, 317

Indoor air quality, 453
Indoor air temperature, 370, 371
Indoor temperature evolution, 326
Inequality constraints, 294
Inertia, 389
Influxdb database, 106
Inhabitant model, 127
Inhabitants’ behaviour, 490, 493

Fanger’s thermal comfort model and,
527–529

models with building system and BEMS,
validation, 525–526

tune parameters of, 508, 521–525
init_window parameter, 468, 474
Innovation error, 335
Input disturbances, 366
Input-output model based inhabitant services,

146–152
Integrating calculated causalities, 392
Intelligent Building, definition, 50, 51
Intelligent Buildings International (IBC), 50
Intelligent energy management, 96
Interactive Learning (IL), 241–243
Interactive learning, principle of, 221–223
Intermediate group, 386
Intermittent renewable energy sources, 330
Internal heat input, 583–586
International Energy Agency (IEA), 26
International energy agency (IEA), 438
International Performance Measurement and

Verification Protocol (IPMVP®),
53, 54

International Standard ISO 12655:2013, 58
International Telecommunication Union (ITU),

79
Internet of Things (IoT)

characteristics, 79–81
cloud-based architecture, 86–89
context-aware, 81
definition, 79, 80
four layers architecture, 85–86
gas-based heating and hot water

consumption monitoring, 89, 92
gas-based heating and hot water meters

references and properties, 92
home electrical consumption monitoring,

89, 90
interoperability, 82–85
privacy, 85
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photovoltaic production and storage system
references and properties, 92

references and properties of electrical
meters, 91

revolution, 223
security, 82–84
water consumption monitoring, 89, 92
water meters references and properties, 93

Interrupted state, 313
Intrusive load monitoring (ILM), 28, 233, 239
Iowa Energy Center, 438

J
Jeedom, 97

K
Kalman filter, 336, 355
Kalman predictions, 360, 362
Kernel regression, 352, 353
Kirchhoff’s law, 190, 191
K-nearest neighbor graph, 213
Knowledge-Based FDD methods, 439–440
Knowledge model, 130, 136–137, 161, 515,

517
Kolmogorov forward equations, 344
Kuhn’s paradigm shift theory, 5

L
Lambert–Beer’s law, 352
Lamperti drift, 350, 351
Lamperti process, 351
Lamperti transformation, 346, 347
Latent heat flux, 357
Lawrence Berkeley National Laboratory and

Simulation, 438
Learning environmental models, 326
Learnt model, 130
Legendre polynomial parameters, 350
Legendre polynomials, 345, 348
LESO-PB building, 588
Life Cycle analysis, 4
Life Cycle Assessment tool, 11
Linear cost function, 361
Linearization, 298
Linearization process, 291, 292
Linear least squares estimation, 355
Linear time invariant (LTI) models, 163, 174,

196
Load disaggregation, 28–29
Load matching indicators, 58
Load profiles, in commercial buildings

AMI, 463
BIC, 464
CART, 465
comparative analysis, 476–477
data description, 474–475
demand side management

building level analysis, 484
sequential encoding, 483
simultaneous encoding, 483–484

limitations of existing segmentation
techniques, 464

MFOP
definition, 477–478
individual buildings, 482–483
sequential encoding technique, 478
simultaneous encoding technique,

479–482
motifs, 467
PAA, 465
PACF, 464
PLA approach, 465
planted patterns, 476
PPA, 466
quality measure, 475–476
SAX, 466
segmentation approach, 468–471
suffix tree, 467
symbolic representation, 471–473
time complexity analysis, 474

Local linear kernel regression, 352
Local linear regression, 352
Logical constraints, 290, 291
Logical Diagnosis (DX), 439
Logical operator constraints, 294
Logit model, 588
Long short-term memory networks, 205
Long-wave radiation, 170–172
Low-cost hardware, 98–99
Low Income High Cost (LIHC) indicator, 23,

25
Low-sampling rate NILM approach, 235–236
Lumped element model, 131

M
MACES, 271
Machine learning models, 205
Machine learning, smart buildings

activity recognition in, 203
clustering, 212–213
general classification approaches,

204–206
hidden Markov models, 206–212
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Machine learning, smart buildings (cont.)
miscellaneous, 213–215
regression, 212

approaches, 215–216
building energy management system, 201
different learning approaches, 201
discriminative modeling, 202
energy deficiency, 199
features, 216
generative modeling, 202
heuristic-based modeling, 202
hidden Markov models, 201
interactive learning, principle of, 221–223
knowledge and adjusting, designing

estimators from, 218–220
occupancy estimators, 217, 218
occupants’ behavior, 199, 200
passive infrared sensors, 200
sensors and manual labeling, estimating

occupancy with, 217
Markov chain matrices, 551, 588
Markov model, 555, 587, 588
Mathematical optimisation problem, 377
Matlab, 498, 539
Matlab/Simulink, 272
MAVHome project, 496
Maximum likelihood estimation, 394
Maximum likelihood method, 377
M-Bus, 75, 76
Mean reverting process, 345
Measure and Verification (M&V), 52–53
Merit order dispatch, 375
Mersey Care NHS Foundation Trust, 31
Metaoptimization approach, 136
Meter Data Management System (MDMS), 26
MILP model formalism, 293
Minimum variance formulation, 374
Mirroring inhabitant service, 139–146
Missing data, 448–450
MIT License, 103
Mixed-integer linear form, 281
Mixed-integer linear programming (MILP),

150, 272
Mixed solving approach

agentified-equipment models, 308
agent solving algorithm, 314–316
architecture of, 309
energetic profiles, 310
global energy consumption plan, 309
linear model, 309
one step solving, 310
regular services, 308, 309
role of agents, 313–314
singular services, 308

solver’s role, 310–313
solving process, 310

Modbus, 75, 76
Model-based diagnosis (MBD), 438–439
Model-based estimation energy management,

271
Model-based reinforcement learning, 326
Model development, 377
Model-free algorithms, 322
Modelica, 272
Modeling and solving approach

end-user services, 277–279
finite-state machines (FSM), 276
modeling services, 275–276

Modeling services, 275–276
Modelling approximations, 333
Modelling represents system, 489
Model predictive control (MPC), 70, 147, 272,

303
constrained model predictive control,

359–365
offset-free control, 365–367

Molecule density, 357
Mondrian user interface pattern

abstract compositions and benefits,
417–418

aesthetic representations
abstract representations, 410–411
informative art, 411–412
metaphorical representations, 411
with pragmatic representations,

412–414
compositions, 418–419
domestic environment and design

implications, 408
focus + context techniques, 414–415
overall structure and interactive principles,

416
periphery, design for, 410
semantic zoom, 415

Monitoring and habitat intelligent (MHI), 119
Monte Carlo method, 600
Morris sensitivity analysis, 115
Most frequently occurring patterns (MFOP),

465
definition, 477–478
individual buildings, 482–483
sequential encoding technique, 478
simultaneous encoding technique, 479–482

Motifs, 467
Motorized equipment, 49
Mozart house, 237
Multi-agent based approach

for dynamic behaviour model, 496–498
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behaviour models, implementation and
co-simulation of, 515–520

clustering houses with similar
behaviours, 508–513

cooking activity, on fridge on-cycles,
501–502

co-simulation, complex behaviour with
physical models, 520–521

fridge, 499
fridge freezer on-cycle durations

computation, 499–500
heuristic approach, 502–505
inhabitant’s behaviour models, tune

parameters of, 508, 521–525
inhabitant’s reactive, deliberative

behaviour modelling, 513–515
physical behaviour modelling, 505–508

for dynamic behaviour model generation,
496–498

Multi-Agent Home Automation system, 308
Multi-agent systems (MAS), 495
Multi-layer perceptron (MLP), 31
Multi-modal multi-objective optimization

framework, 252
Multinomial logit model, 559–560
Multi-objective evolutionary algorithms

(MOEAs), 256, 263, 264
Multi-objective optimization approach, 250,

251
Multiple classification algorithms, 205
Multi-state devices (MSD), 29

N
Nash-bargaining, 251
Netatmo data, 88
Net radiation, 376
Network model, 34
Newton-Raphson method, 174
NK Industri (NKI), 447
NodOn model, 96
Non-eco behaviours, 530–532
NonEcoWife, 536–538
Non-event-based methods, 234
Non-intrusive load monitoring (NILM), 28,

230, 233–234, 239–241, 244
for high-sapling rate, 235
for low sampling rate, 235–236
machine learning algorithms, new

approaches based on, 236
Non-linear functions, 281
Non-linearity, 291, 292, 331, 335
Non-stationary phenomena, 335

O
Object model, 515, 516
Observability, 366
Observation equations, 332
Occupancy model, 568
Occupants’ behaviour

in buildings energy management, 495–496
residents’ activities

agent-based approach, 544–546
stochastic approach, 546–547

Office of National Statistics (ONS), 22
Okta transformation, 350
O2Line model, 95, 96
OnCycle field, 502
One-dimensional convolutional neural network

(1DCNN), 34, 36
One-way communication, 330
Open energy monitor, 105
openHAB, 97
Open-Source Hardware (OSH), 100
Open-source home automation

A4H smart home, 105–106
G2Elab, 106–107
open energy monitor, 105
open-source projects

definition, 99–100
efficient open-source projects, 101–102
history of, 99–100
home automation software, 97–98
licenses, 103, 104
low-cost hardware, 98–99

open-source tutorials, 106–107
smart citizen kit, 104

Open-Source Software (OSS), 100
Open Street map, 10
OpenZWave, 98
Optimal policy online, 326
Optimization

branch and bound, 315, 316
problem, 311–312

Optimization process, 302
Ordinary differential equations (ODE), 290
OU44, 447
Ownership status, 574–575
Ownership status parameter, 570

P
Pacific Northwest National Laboratory

(PNNL), 438
Parameters estimation, 304
Parameter significance, 338
Pareto-Fronts, 265, 266
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Pareto-optimal schedule, 250
Pareto-optimal set, 263
Pareto-optimal solutions, 262
Partial autocorrelation function (PACF), 464,

468
Partial valid tests, 451–453
Passive infrared (PIR) sensors, 200
Performance gap, 127, 448
Persistent forecasts, 367

advanced disturbance forecasts and,
368–369

of coupled differential equations, 367
Personal identification number (PID), 26
Personalization, 428
Photo-voltaic cells (PVs), 95, 342
Physical behaviour modelling

appliance’s behaviour modelling, 505–508
building envelop modelling, 505

Physical knowledge models, 250, 254
Physical model, 129
Pico Electronics, 49
Piecewise aggregate approximation (PAA),

465
Piecewise linear approximation (PLA)

approach, 465, 474
Piecewise polynomial approximation (PPA),

466
PI/PID control, 359
Pleiades software, 597, 598
POPP Z-Weather module, 95, 96
Post Occupancy Evaluations (POE), 53
Potential causality, 392
Powell’s method, 174
Power consumption, 219, 326
Power generation, 330
Powerline Carrier Systems (PCS), 49
Prediction mode, 31
Predictive mean vote (PMV) modeling, 278
PREDIS/MHI model, 290

application on
air treatment unit model, 296
CO2 comfort model, 297
CO2 zone model, 297, 299
heating and ventilation system, 296
MILP formalism and simulation model,

298
linearization, 298
pivot model composition, 298
thermal balance model, 296
thermal comfort model, 296–297
thermal zone model, 297
time discretization, 298, 299
total power consumption model, 298

transformation of, 300–303

Presence modelling
residents’ activities, 549–550

first-order model selection, 555–556
presence duration, 552–555
presence rate, 556
symbolical transformation, 298
transition probabilities, 550–552

Price signals, 330
Privacy, IoT, 85
Proportional gain, 118
Proposed diagnostic analysis, 456–458
Psychological factors, 277

Q
Q-learning, 322
Quadratic cost function, 361
Qualitative model-based approaches, 438–439
Quantitative model-based approaches, 438

R
Radiation network, 171, 172
Random forests, 204
Random utility model (RUM), 559
Raspberry Pi, 97
Ready2Grids, 62
Ready2Services, 62
Real time data, 16–17
Recommended actions validation, 159
Reference sensors, 437
Regression, 212
Regressive models, 137–139
Regularisation, 357
Regular services, 311, 312
Reinforcement learning (RL), 325

agent–environment interaction, 320, 321
discount factor, 321
Markov Decision process, 321
model-based vs model-free RL, 322
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