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Here, on the level sand,
Between the sea and the land,
What shall I build or write
Against the fall of the night?

Tell me of runes to grave
That hold the bursting wave,
Or bastions to design
For longer date than mine.

A.E. Housman, Smooth between sea and
land, quotation taken from Hardy’s book
A mathematical Apology [3, p. 77]



Preface

In this volume we present 12 refereed papers written by field experts for the
conference New directions in function theory: From complex to hypercomplex to
non-commutative, held at Chapman University from November 21 to November
26, 2019. This conference was part of an on-going series of yearly mathematics
conferences and workshops held at Chapman University since 2010 (temporarily
interrupted during the fall of 2020 by the corona pandemic). Another example of
such work is the volume (see [1]) which the first and fourth editors assembled for a
similar occasion, a conference with a different topic held in 2017.

Our 2019 Conference held 42 presentations (see the program below) on a wide
range of topics pertaining to the theme of hypercomplex function theory. The papers
submitted to this volume can be divided in the following overlapping categories: two
papers on hypercomplex analysis, three pertaining to Schur analysis and de Branges
spaces, five exploring new aspects of classical function theory, and two related to
infinite dimensional analysis. At least three of the works have a very strong signal-
processing flavor. More precisely, we have the following classification:

Function theory and harmonic analysis: In the chapter “Differential Subordi-
nations in Harmonic Mappings”, authors M. Aydogan, Daoud Bshouty, Sanford S.
Miller, and F.M. Sakar extend results from the theory of differential subordination
(see [6]) to complex harmonic mappings, that is, functions of the form h(z)+ g(z),
where f and g are analytic in a given open subset of the complex plane. In
“Representation Formulae for the Determinant in a Neighborhood of the Identity”,
Denis Constales and Alí Guzman Adan give a formula for a power series
expansion for det(I + M)−1 for suitable matrices M , and provide applications to
the Taylor expansion of the Dirac distribution. In “The Wiener Algebra and Singular
Integrals”, E. Liflyand extends to the multivariable case some of his earlier work
[5] and gives necessary conditions in terms of singular integrals for a function to
be in the Wiener algebra. Ronen Peretz, in “Techniques to Derive Estimates for
Integral Means and other Geometric Quantities Related to Conformal Mappings”,
uses the Goluzin inequalities and Riemann sum approximation and obtains estimates
on integral means associated to univalent functions. In particular, the author obtains
a new and surprising inequality in terms of positive definite kernels for univalent

vii
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functions in the disk such that f (0) = 0 and f ′(0) = 1. In “Harmonic Analysis of
Some Arithmetical Functions”, Ahmed Sebbar and Roger Gay consider analytic
number theory and associate Hilbert spaces and a law of composition to arithmetical
functions. The notion of functions satisfying a Kubert identity [4], namely functions
defined on Q/R or R/Z satisfying

f (x) = ms−1
m−1∑

k=0

f

(
x + k

m

)

where s is some fixed parameter, which plays an important role.
Schur analysis, de Branges spaces, and function theory: In the paper “On

Parseval Frames of Kernel Functions in de Branges Spaces of Entire Vector Valued
Functions”, Saud Al-Sadi and Eric S. Weber use Naimark dilation theorem to
study Parseval frames and application to multiplexing (transmission of several
signals at the same time over a single communications channel). In the chapter
“On the Carathéodory-Fejér Interpolation Problem for Stieltjes Functions”,
by Vladimir Bolotnikov, an important point is that the truncated problems with
even and odd numbers of conditions lead to quite different type of results in the
solution of the stated interpolation problem. Another point of special interest is the
Schwartz-Pick type reduction given for Stieltjes functions. In “Parametrization of
the Solution Set of a Matricial Truncated Hamburger Moment Problem by a Schur
Type Algorithm”, authors Bernd Fritzsche, Bernd Kirstein, Susanne Kley, and
Conrad Mädler develop Schur analysis for the Hamburger moment problem, both
on the level of sequences and functions, in the matrix-valued setting. The chapter
is a part of a systematic program of creating a Schur analysis approach to matricial
versions of truncated classical power moment problems, such as the Hamburger,
Stieltjes, and Hausdorff moment problems.

Hypercomplex analysis: In “The Segal-Bargmann Transform in Clifford Anal-
ysis”, Swanhild Bernstein and Sandra Schufmann study the Segal-Bargmann
transform in its connection to the windowed Fourier transform and time-frequency
analysis in the Clifford setting. In “Complex Ternary Analysis and Applications”,
Mihaela B. Vajiac presents a theory of functions on complex ternary algebras. In
opposition to the real ternary case (see [2] for the latter), one has a one-dimensional
theory in one ternary variable, which has a dual nature: an element that cubes to ±1
on the one hand, and a theory of one bicomplex variable and one complex variable
entangled by algebraic relations on the other hand.

Infinite dimensional analysis and non-commutative theory: In “Symmetric
Measures, Continuous Networks, and Dynamics”, Sergey Bezuglyi and Palle E.T.
Jorgensen extend the basic definitions and results of the theory of weighted
networks (known also as electrical or resistance networks) to the case of mea-
sure spaces. In “Multi Variable Semicircular Processes from ∗-homomorphisms
and operators”, Ilwoo Cho and Palle E.T. Jorgensen study in non-commutative
probability theory new construction of semicircular elements. This is of special
importance since the semicircular law plays in the non-commutative setting the role
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of the Gaussian law in classical (commutative) probability theory; see [7] for an
introduction to non-commutative probability.

Orange, CA, USA Daniel Alpay
Beer Sheva, Israel Ronen Peretz
Holon, Israel David Shoikhet
Orange, CA, USA Mihaela B. Vajiac
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On Parseval Frames of Kernel Functions
in de Branges Spaces of Entire Vector
Valued Functions

Sa’ud Al-Sa’di and Eric S. Weber

Abstract We consider the existence and structure properties of Parseval frames
of kernel functions in vector valued de Branges spaces. We develop some suffi-
cient conditions for Parseval sequences by identifying the main construction with
Naimark dilation of frames. The dilation occurs by embedding the de Branges space
of vector valued functions into a dilated de Branges space of vector valued functions.
The embedding also maps the kernel functions associated with a frame sequence of
the original space into a Riesz basis for the embedding space. We also develop some
sufficient conditions for a dilated de Branges space to have the Kramer sampling
property.

Keywords de Branges Spaces · Entire vector valued functions · Parseval
frames · Kramer sampling formula

Mathematics Subject Classification (2000) Primary: 94A20; Secondary 30D10,
47A20

1 Introduction

The theory of de Branges spaces of entire functions can be extended with suitable
hypotheses to spaces of entire vector valued functions. Spaces of entire vector
valued functions were introduced and extensively studied by Louis de Branges
and have been developed in view of the model theory for linear transformations in
Hilbert spaces [13]. These spaces have played a central role in applications to direct
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2 S. Al-Sa’di and E. S. Weber

and inverse problems for canonical systems of differential and integral equations
and Dirac-Krein systems, see for example [5–7].

The main goal of the present paper is to extend some results on de Branges
spaces of scalar valued functions obtained in [3] to de Branges spaces of vector
valued functions. We consider the existence and structure properties of Parseval
frames of kernel functions in vector valued de Branges spaces. In Sect. 1.3 we shall
review some definitions and necessary facts from the theory of reproducing kernel
Hilbert spaces of vector valued functions. As a special case of such spaces the
de Branges spaces of vector valued functions is reviewed in Sect. 1.4. Sections 2
and 3 are devoted to developing new results on the construction of dilated de
Branges spaces of vector valued functions and orthogonality of embeddings within
the dilation spaces. We develop some necessary conditions for Parseval sequences in
vector valued de Branges spaces by identifying the main construction with Naimark
dilation of frames via embedding the de Branges space into a dilated de Branges
space. The embedding identifies the kernel functions associated with a frame
sequence as a summand for a Riesz basis for the dilated space. We also obtain some
sufficient conditions for a dilated de Branges space to have the Kramer sampling
property in Sect. 4 as well as results concerning the multiplexing of samples in the
dilated space.

1.1 Notation

Some notations are necessary to describe the spaces we will consider here, see [7,
12] for additional information. C will denote the complex plane, C+ (resp., C−) the
open upper (resp., lower) half plane, Cp the complex p × 1 vectors. The notation
Cp×q stands for the set of all p × q matrices with complex entries, the identity
matrix that belongs to Cp×p will be denoted by Ip . A Cp vector valued function
f (z), defined in a region � of the complex plane C, is said to be analytic in � if the
complex valued function u∗f (z) is analytic in the region for every choice of vector
u ∈ Cp. A continuous Cp×p matrix valued functionF(z), defined in �, is said to be
analytic in the region if u∗F(z)v is analytic in the region for every choice of vectors
u and v in Cp. A matrix valued function with entries that are analytic in the full
complex plane is said to be entire matrix valued function. f ∗(z) is the Hermitian
transpose of the matrix valued function f (z), and f #(z) = f ∗(z̄).
H
p×q
2 is the Hardy space ofp×q matrix valued functions with entries in the classical

Hardy space H2 with respect to C+, with norm

‖f ‖2
2 = sup

y>0

∫ ∞

−∞
trace{f ∗(x + iy)f (x + iy)}dx <∞.
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(H
p×q
2 )⊥ = {f : f # ∈ H

q×p
2 } (the superscript ⊥ means that Hp×q

2 and (Hp×q
2 )⊥

are orthogonal to each other when regarded as subspaces of Lp×q2 ). We shall use the

symbol Hp
2 for Hp×1

2 , and (Hq
2)
⊥ for (Hq×1

2 )⊥.

H
p×q∞ is the Hardy space of holomorphic p× q matrix valued functions in C+ with

‖f ‖∞ = sup{‖f (z)‖ : z ∈ C+} <∞.

The Schur class Sp×p is the class of p × p matrix valued functions s(z) that are
holomorphic and contractive in C+, i.e.,

Ip − s∗(z)s(z) � 0, for z ∈ C+.

Sp×pin is the class of matrix valued functions f ∈ Sp×p which are inner, i.e., Ip −
f ∗(t)f (t) = 0 for a.e. point t ∈ R.

The generalized backward-shift operator Rω is defined for entire vector valued
functions by

(Rωf )(z) =
{

f (z)−f (ω)
z−ω if z 	= ω

f ′(ω) if z = ω

for every z, ω ∈ C.

1.2 Frame Theory

A sequence {fn}∞n=1 is a frame for a separable Hilbert space H if there exists
constants 0 < A ≤ B <∞ such that

A‖f ‖2 ≤
∞∑

n=1

|〈f, fn〉|2 ≤ B‖f ‖2, for all f ∈ H, (1)

The constants A and B are called lower and upper frame bounds, respectively.
The frames for which A = B = 1 are called Parseval frames. A frame which is
a basis is called a Riesz basis. It is easy to see that a Parseval frame {fn}∞n=1 for a
Hilbert space H is an orthonormal basis if and only if each fn is a unit vector. If the
upper bound in (1) is satisfied, then we say that {fn}∞n=1 is a Bessel sequence with
Bessel bound B.

Let {fn}∞n=1 be a Bessel sequence in H. The analysis operator � : H → �2,
which is bounded because of (1), is defined by

� : f → (〈f, fn〉);
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and the synthesis operator �∗ : �2 → H, which is the adjoint operator of �, is
defined by

�∗ : (cn)∞n=1 →
∞∑

n=1

cnfn.

Additionally, the sum
∑∞

n=1 cnfn converges in H for all (cn)∞n=1 ∈ l2 (see [14]),
and so the synthesis operator is also well defined and bounded.

The operator S := �∗� : H → H is called the frame operator, and we have

Sf =
∞∑

n=1

〈f, fn〉fn ,∀f ∈ H.

The canonical dual frame is denoted by {f̃n}∞n=1, and is defined by f̃n = S−1fn.
Furthermore, for each f ∈ H we have the frame expansions

f =
∞∑

n=1

〈f, fn〉f̃n =
∞∑

n=1

〈f, f̃n〉fn, (2)

with unconditional convergence of these series.
If F = {fn}∞n=1 and G = {gn}∞n=1 are two Bessel sequences in H, define the

operator

�∗
G
�F : H → H : f →

∞∑

n=1

〈f, fn〉 gn.

If �∗
G
�F = 0 then the two Bessel sequences F and G are said to be orthogonal

[18]. An extensive study of orthogonal frames can be found in the papers [10, 23].
If F and G are both Parseval frames and orthogonal to each other, then for any
f, g ∈ H

f =
∑

n

(〈f, fn〉 + 〈g, gn〉)fn, and g =
∑

n

(〈f, fn〉 + 〈g, gn〉)gn

In other words, both functions can be recovered from the summed coefficients
〈f, fn〉+ 〈g, gn〉. This procedure is called multiplexing, and can be used in multiple
access communication systems. In the proof of our main results we also need a
concept of similar frames: two frames F = {fn}∞n=1 and G = {gn}∞n=1 are said to
be similar if there is an invertible operator T : H → H such that Tfn = gn. Two
frames F and G are similar if and only if �F(H) = �G(H) [11].

Let P be an orthogonal projection from a Hilbert space K onto a closed subspace
H, and {fn} be a sequence in K. Then {Pfn} is called orthogonal compression of
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{fn} under P , and {fn} is called an orthogonal dilation of {Pfn}. A classical fact
on dilation of frames, which can be attributed to Han and Larson [17], says that a
Parseval frame in a Hilbert space H is an image of an orthonormal basis under an
orthogonal projection of some larger Hilbert space K ⊇ H onto H. This result can
be considered as a special case of Naimark’s dilation theorem for positive operator
valued measures, see [20, 21]. In particular, Han and Larson proved the following
result.

Theorem 1 Let {fn}∞n=1 be a sequence in a Hilbert space H. Then

(i) {fn} is a Parseval frame for H if and only if there exists a Hilbert space K ⊇ H
and an orthonormal basis {en} for K such that if P is the orthogonal projection
of K onto H then fn = Pen, for all n ∈ N.

(ii) {fn} is a frame for H if and only if there exists a Hilbert space K ⊇ H and a
Riesz basis {un} for K such that if P is the orthogonal projection of K onto H
then fn = Pun, for all n ∈ N.

Orthogonality of frames and Naimark dilation of frames are related in the
following way (see [8, 17]): If {un} is a Riesz basis for K and P is the projection
onto H ⊂ K, then {Pun} and {(I − P)un} are orthogonal frames for H and H⊥,
respectively. Conversely, if F = {fn} and G = {gn} are orthogonal frames for H1
and H2, respectively, then {fn + gn} is a frame for H1 ⊕ H2. Note that the sum
of the frames need not be a basis for the direct sum in general–however, it will be
provided that

�F(H1)⊕�G(H2) = �2.

1.3 Reproducing Kernel Hilbert Spaces of Vector Valued
Functions

In this section a number of facts about reproducing kernel Hilbert spaces of vector
valued functions that will be used frequently are reviewed briefly; more details and
supporting proofs may be found in [4–7]. For related results concerning operator
valued reproducing kernel spaces, see e.g. [1, 2].

A Hilbert space H of p×1 vector valued functions defined on a subset � of C is
said to be a reproducing kernel Hilbert space (RKHS) if there exists a p× p matrix
valued function Kw(z) (for (z,w) ∈ � × �) such that for every choice of w ∈ �,
u ∈ Cp, and f ∈ H:

1. Kw(z)u ∈ H, as a vector valued function of z,
2. The reproducing kernel property

〈f (.),Kw(.)u〉H = 〈f (w), u〉C = u∗f (w) (3)

The matrix valued function Kw(z) is called a reproducing kernel (RK) of the
RKHS H. The existence and uniqueness of a RK is guaranteed by the Riesz
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representation theorem [15]. The following properties of RKHS are well known
and easily checked, see [16] for more details:

1. 〈Kw(.)u1,Kv(.)u2〉H = u∗2Kw(v)u1, for all w, v ∈ C, u1, u2 ∈ Cp, and

‖Kwu‖2
H = u∗Kw(w)u. (4)

2. ‖f (w)‖ ≤ ‖f ‖H‖Kw(w)‖1/2, for all w ∈ � and f ∈ H.
3. The RK is positive in the sense that

n∑

i,j=1

u∗jKwi (wj )ui ≥ 0 (5)

for every choice of points w1, . . . , wn ∈ � and vectors u1, . . . , un ∈ Cp and
every positive integer n. Consequently, the set {Kw(.)u : w ∈ �, u ∈ Cp} is
total in H, that is

H = span{Kw(.)u : w ∈ �, u ∈ Cp}.

The following theorem is a matrix version of a theorem of Aronszajn in [4].

Theorem 2 Let � be a subset of C and let the p × p matrix valued kernel Kω(z)

be positive on �×�. Then there is a unique Hilbert space H of p×1 vector valued
functions f (z) on � such that

Kωu ∈ H, and 〈f,Kωu〉H = u∗f (ω)

for every ω ∈ �, u ∈ Cp and f ∈ H.

Example 1 ([7]) The Hardy space Hp
2 is a RKHS of p × 1 vector valued functions

that are holomorphic in C+ with RK

Kω(z) = Ip

−2πi(z− ω̄)
, for z, ω ∈ C+

A RKHS H of p×1 vector valued functions is said to have the Kramer sampling
property if there is a sequence of points {wn}∞n=1 ⊂ � and a sequence of vectors
{ξn}∞n=1 ∈ Cp, such that the set {Kwn(.)ξn}∞n=1 is a complete orthogonal set in H,
i.e., every f ∈ H can be expressed in the form

f (z) =
∞∑

n=1

〈f,Kwnξn〉H
Kwn(z)ξn

‖Kwnξn‖2

=
∞∑

n=1

ξ∗n f (wn)
Kwn(z)ξn

‖Kwnξn‖2
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In other words, functions of the space H are uniquely determined and recon-
structible from their samples [19].

The notation

Hω = {f ∈ H : f (ω) = 0}

for RKHS’s H of entire vector valued functions will be useful.

1.4 de Branges Spaces of Vector Valued Functions

In this section we shall present a number of facts from the theory of de Branges
spaces of vector valued functions that will be needed in the sequel. Most of this
information can be found in the papers [5–7, 12].

An entire p × 2p matrix valued function E(z) = [E−(z) E+(z)] is called an
entire de Branges matrix with p × p blocks E±(z) that are matrix valued entire
functions, if

detE+(z) 	≡ 0, in C, and χE := E−1+ E− ∈ Sp×pin . (6)

The determinant of an entire matrix valued function is an entire function. Conse-
quently, if the determinant of the entire matrix valued function E+(z) does not
vanish identically, the given entire matrix valued function has invertible values at
all but isolated points in the complex plane. Since E±(z) are entire matrix valued
functions, the condition in (6) ensures that (see [16])

E+(z)E#+(z) = E−(z)E#−(z), for all z ∈ C. (7)

Definition 1 Given a de Branges matrix E, the set of entire Cp vector valued
functions f (z) satisfying

E−1+ f ∈ H
p
2 and E−1− f ∈ (H

p
2 )
⊥ (8)

is a reproducing kernel Hilbert space with reproducing kernel

KE
w (z) =

{
E+(z)E∗+(w)−E−(z)E∗−(w)

2πi(w̄−z) , if z 	= w̄
E′+(w̄)E∗+(w)−E′−(w̄)E∗−(w)

−2πi , if z = w̄
(9)

with respect to the inner product

〈f, g〉B = 〈E−1+ f,E−1+ g〉st =
∫ ∞

−∞
g∗(t)	E (t)f (t) dt, (10)
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where

	E (t) = {E+(t)E∗+(t)}−1 = {E−(t)E∗−(t)}−1,

for all t ∈ R at which detE±(z) 	= 0.

The Hilbert space corresponding to the de Branges matrix E is called the de
Branges space B(E); for every w ∈ C, every u ∈ Cp, and every f ∈ B(E)
1. KE

wu ∈ B(E) and
2. 〈f,KE

w u〉B(E) = u∗f (w)

Remark 1 If E(z) is a scalar valued entire function which has no real zeros and
|E(z)| > |E(z̄)| for all z ∈ C+, then B(E) with E = [E#(z) E(z)] is just the
usual de Branges space corresponding to the de Branges function E(z).

Example 2 ([16]) If Et+(z) = e−izt Ip and Et−(z) = eizt Ip for t > 0, then it is easy
to see that Et (z) = [Et−(z) Et+(z)] is an entire de Branges matrix, and the space
B(Et ) is a vector Paley-Wiener space with RK

KEt
w (z) = sin(z − w̄)t

π(z− w̄)
Ip.

There is a connection between de Branges spaces B(E) of entire vector valued
functions that are invariant under the action of the generalized backward-shift
operator Rω and the Kramer sampling property, the following is found in [16,
Theorem 9.4].

Theorem 3 Let H be the de Branges space B(E) based on the de Branges matrix
E with RK Kω(z). If

(1) RωHω ⊆ H for every point ω ∈ C, and
(2) Kω(ω) � 0 for at least one point ω ∈ C,

then B(E) has the Kramer sampling property.

A sufficient condition for the space Hω to be invariant under the operator Rω is
given by the next lemma [16, Lemma 6.4].

Lemma 1 Let H be the de Branges space B(E) based on the de Branges matrix E,
then:

(1) RωHω ⊆ H for every point ω ∈ C+ at which E+(ω) is invertible.
(2) RωHω ⊆ H for every point ω ∈ C− at which E−(ω) is invertible.
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2 The de Branges Space B(F � E)

In this section a number of results on constructing the dilated de Branges space
B(F � E) will be obtained. The space B(F � E) is a simultaneous dilation of two de
Branges spaces B(E) and B(F). We will consider the class of p × p entire matrix
valued functions F(z) such that det(F (z)) 	≡ 0 in C, and F−1F # ∈ Sp×pin . We will
denote this class by Ninv(C

p×p). If F ∈ Ninv(C
p×p), the conditions in (6) and (7)

imply that

F(z)F #(z) = F #(z)F (z), for all z ∈ C.

Hence, the p × 2p matrix

F := [F #(z) F (z)]
is a de Branges matrix, with corresponding de Branges space B(F).
Example 3 For n ∈ N, define the family of 2n× 2n entire matrix-valued functions

F(z) =
[
ef1(z)In 0

0 ef2(z)In

]
,

where f1(z) = g1(z) + α1 + β1iz, f2(z) = g2(z) + α2 + β2iz, for some
α1, α2, β1, β2 ∈ R, and entire functions g1, g2 which are real on the real line. Then
it is readily checked that the matrix valued functions UF(z)U∗ belongs to the class
Ninv(C

2n×2n) for any 2n× 2n constant unitary matrix U .

Definition 2 Given de Branges matricesF := [F #(z) F (z)],E = [E−(z) E+(z)],
where F(z) ∈ Ninv(C

p×p), we define

F � E := [F #(z)E−(z) F (z)E+(z)].

Our main results will utilize the following additional commutation assumption:

F #E− = E−F # and FE+ = E+F. (11)

Under this additional assumption on the matrix valued functionsF andE± we prove
that the space B(F � E) is a RKHS whose kernel can be expressed in terms of
the kernels for B(F) and B(E). Throughout the rest of this paper, unless otherwise
specified, we will assume that the de Branges matrices F = [F #(z) F (z)] and
E = [E−(z) E+(z)] with F(z) ∈ Ninv(C

p×p). We begin with a lemma.

Lemma 2 Assume F andE satisfy the hypotheses of Definition 2 and Equation (11).
Then the following hold:

(i) FE− = E−F ;
(ii) F�E+ = E+F�;
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(iii) FE−1+ = E−1+ F ;
(iv) F−1E− = E−F−1;
(v) E−1− (F �)−1F = (F �)−1FE−1− .

Proof By virtue of F(z) ∈ Ninv(C
p×p), we have that F ∗F = FF ∗ on the real axis.

Item (i) holds by Fuglede’s Theorem: F ∗ is normal on the real axis and F ∗E− =
E−F ∗ holds on the real axis by eq. (11). An analogous argument shows that (ii)
holds. Items (iii), respectively (iv), hold because of eq. (11), respectively (i), and a
standard Neumann series argument. Item (v) holds by Eq. (11) and (iv). ��
Theorem 4 Let F and E be two de Branges matrices that satisfy Definition 2 and
eq. (11). Then

(i) F � E is a de Branges matrix, and
(ii) the corresponding de Branges space is B(F � E), with RK

KF�E
w (z) = F(z)KE

w (z)F
∗(w)+ E−(z)KF

w(z)E
∗−(w). (12)

Proof Since det(E±(z)) 	≡ 0, det(F (z)) 	≡ 0, and det(F #(z)) 	≡ 0 in C, then

det(F #(z)E−(z)) 	≡ 0 and det(F (z)E+(z)) 	≡ 0 in C.

To show that the function χF�E := (FE+)−1(F #E−) ∈ Sp×pin , we use the fact that

both functions χE := E−1+ E− and χF := F−1F # belongs to the class Sp×pin . By
Lemma 2 (ii), we have F #E−1+ = E−1+ F #. Thus, again using Lemma 2,

χF�E = (FE+)−1(F #E−) = (E+F)−1(F #E−)

= F−1E−1+ F #E− = F−1F #E−1+ E− = χFχE.

This proves that F � E is a de Branges matrix.
The RK of the space B(F � E) is

KF�E
w (z) = F(z)E+(z)(F (w)E+(w))∗ − F #(z)E−(z)(F #(w)E−(w))∗

2πi(w̄ − z)

= F(z)E+(z)E∗+(w)F ∗(w)− F #(z)E−(z)E∗−(w)(F #(w))∗

2πi(w̄ − z)

= F(z)E+(z)E∗+(w)F ∗(w)− F(z)E−(z)E∗−(w)F ∗(w)
2πi(w̄ − z)

+F(z)E−(z)E∗−(w)F ∗(w)− F #(z)E−(z)E∗−(w)(F #(w))∗

2πi(w̄ − z)

= F(z)KE
w (z)F

∗(w)+ E−(z)KF
w(z)E

∗−(w)

since FE− = E−F and F #E− = E−F # by Lemma 2. ��
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Example 4 Consider the matrix valued function F(z) given in Example 3 and the
matrix valued functions E+(z), E−(z) given in Example 2, then

F = [F # F ], E = [E− E+]

satisfies the conditions of Definition 2.

3 Orthogonality in B(F � E)

Now we prove that the spaces B(E) and B(F) can be embedded into the larger space
B(F � E).
Proposition 1 Let F and E be two de Branges matrices that satisfy Definition 2 and
Eq. (11). The operator I : B(E) → B(F � E), defined by I(f ) = Ff , is a linear
isometry.

Proof We first prove that I is well defined, i.e., for every f ∈ B(E), Ff ∈
B(F � E), that is

(FE+)−1Ff ∈ H
p
2 , and (F #E−)−1Ff ∈ (H

p
2 )
⊥,

Let f ∈ B(E), then by Definition 1

E−1+ f ∈ H
p

2 , and E−1− f ∈ (H
p

2 )
⊥, (13)

hence, (FE+)−1Ff = E−1+ f ∈ H
p
2 . On the other hand, (F #E−)−1Ff =

E−1− (F #)−1Ff = (F #)−1FE−1− f belongs to (H
p
2 )
⊥, since E−1− f ∈ (H

p
2 )
⊥ and

(F #)−1F is the inverse of a matrix valued inner function.
Let f1, f2 ∈ B(E), then

〈I(f1),I(f2)〉B(F�E) =
∫ ∞

−∞
(F (t)f2(t))

∗	F�E(t)(F (t)f1(t)) dt

=
∫ ∞

−∞
f ∗2 (t)F ∗(t)(FE+( FE+)∗ )−1(t)F (t)f1(t) dt

=
∫ ∞

−∞
f ∗2 (t)F ∗(t) (F ∗(t))−1(E∗+(t))−1E−1+ (t)F−1(t)F (t)f1(t) dt

=
∫ ∞

−∞
f ∗2 (t)(E∗+(t))−1E−1+ (t)f1(t) dt

=
∫ ∞

−∞
f ∗2 (t)	E(t)f1(t) dt = 〈f1, f2〉B(E).

��



12 S. Al-Sa’di and E. S. Weber

A similar argument as in the proof of Proposition 1 can be used to proof the next
proposition.

Proposition 2 Let F and E be two de Branges matrices that satisfy Definition 2 and
Eq. (11). The operator J : B(F)→ B(F � E), defined by J (g(z)) = E−(z)g(z) is
a linear isometry.

Theorem 5 Let F and E be two de Branges matrices that satisfy Definition 2 and
Eq. (11). The images of the operators I and J are orthogonal in B(F � E).
Proof Let f ∈ B(E) and g ∈ B(F), then

〈
(FE+)−1Ff, (FE+)−1E−g

〉
=

〈
(E+)−1f, (E+)−1E−F−1g

〉
= 0,

because f ∈ B(E) if and only if E−1+ f ∈ H
p

2 � (E+)−1E−Hp

2 . ��
Remark 2 Given ω ∈ C and u ∈ Cp the vector valued function KF�E

w (z)u ∈
B(F � E) as a function of z. Likewise,KE

w (z)F
∗(w)u ∈ B(E) andKF

w(z)E
∗−(w)u ∈

B(F). It follows from (12) that for any w ∈ C and u ∈ Cp

KF�E
ω (z)u = F(z)

(
KE
ω (z)F

∗(ω)u
)+ E−(z)

(
KF
w(z)E

∗−(ω)u
)

= I(KE
w (z)F

∗(w)u
) + J (

KF
w(z)E

∗−(w)u
)

(14)

Consequently, since the set {KF�E
w (z)u : w ∈ C, u ∈ Cp} spans the space

B(F � E), the set

I
(
{KE

w (z)F
∗(w)u : w ∈ C, u ∈ Cp}

)
∪J

(
{KF

w(z)E
∗−(w)u : w ∈ C, u ∈ Cp}

)

spans B(F � E) whenever det(F ∗(ω)) 	≡ 0 and det(E∗−(ω)) 	≡ 0. Indeed, for any
finite set of points ω1, . . . , ωn ∈ C and vectors u1, . . . , un ∈ Cp, then by (12) we
have

KF�E
ωk

(z)uk = F(z)KE
ωk
(z)F ∗(ωk)uk + E−(z)KF

ωk
(z)E∗−(ωk)uk.

Setting ξk = F ∗(ωk)uk and ηk = E∗−(ωk)uk we get

n∑

k=1

KF�E
ωk

(z)uk = F(z)

(
n∑

k=1

KE
ωk
(z)ξk

)
+ E−(z)

(
n∑

k=1

KF
ωk
(z)ηk

)
.

On the other hand, for any ω ∈ C and u ∈ Cp, by Eq. (4) we have

‖KF�E
ω u‖2

B(F�E) = u∗KF�E
ω (ω)u

= u∗F(ω)KE
ω (ω)F

∗(ω)u + u∗E−(ω)KF
ω (ω)E

∗−(ω)u

= ‖KE
ω F

∗(ω)u‖2
B(E) + ‖KF

ω E
∗−(ω)u‖2

B(F).
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Let PE be the orthogonal projection of B(F � E) onto the image of I, and PF be the
orthogonal projection of B(F � E) onto the image of J . We have

PE(h) = Ff1 and PF(h) = E−f2,

for some f1 ∈ B(E) and f2 ∈ B(F). The next Theorem shows that the space
B(F � E) admits an orthogonal direct sum decomposition using the spaces B(E)
and B(F). For this, we define

FB(E) = {Ff : f ∈ B(E)}
E−B(F) = {E−f : f ∈ B(F)}

Theorem 6 Let F and E be two de Branges matrices that satisfy Definition 2 and
Eq. (11). Then

B(F � E) = FB(E)⊕ E−B(F)
i.e., for any h ∈ B(F � E), there exist a unique f1 ∈ B(E) and f2 ∈ B(F) such that
h = Ff1 + E−f2, and

‖h‖2
B(F�E) = ‖f1‖2

B(E) + ‖f2‖2
B(F).

Proof It is easily checked that K(1)
ω (z) := F(z)KE

ω (z)F
∗(ω) is a reproducing ker-

nel with corresponding RKHS B1 = FB(E), and K(2)
ω (z) := E−(z)KF

ω (z)E
∗−(ω)

is a reproducing kernel with corresponding RKHS B2 = E−B(F). Furthermore,
Theorem 5 implies that B1 ∩ B2 = {0}.

Since K(1)
ω (z)+K(2)

ω (z) is a RK, and KF�E
ω (z) = K

(1)
ω (z)+K(2)

ω (z), this implies
that

B(F � E) = B1 ⊕ B2 = FB(E)⊕ E−B(F).

It follows that the orthogonal complement of B1 in B(F � E) is the space B2. The
claim now follows from orthogonality and the isometry properties of I and J . ��
Theorem 7 Let F and E be two de Branges matrices that satisfy Definition 2 and

Eq. (11). If {ωn} ⊂ C and {un} ⊂ Cp are such that

{
KF�E
ωn

(.)un√
u∗nK

F�E
ωn (.)un

}
is a complete

orthonormal set for B(F � E) then

1.

{
KE
ωn
(.)F ∗(ωn)un√

u∗nKF�E
ωn (.)un

}
is a Parseval frame for B(E), and for every f ∈ B(E)

f (z) =
∑

n

u∗nF (ωn)f (ωn)
KE
ωn
(z)F ∗(ωn)un

u∗nK
F�E
ωn (ωn)un

. (15)



14 S. Al-Sa’di and E. S. Weber

2.

{
KF
ωn
(.)E∗−(ωn)un√

u∗nKF�E
ωn (ωn)un

}
is a Parseval frame for B(F), and for every g ∈ B(F)

g(z) =
∑

n

u∗nE−(ωn)g(ωn)
KF
ωn
(z)E∗−(ωn)un

u∗nK
F�E
ωn (ωn)un

. (16)

Proof By Eq. (14) we have

KF�E
ωn

(.)un√
u∗nK

F�E
ωn (ωn)un

= I (
KE
ωn
(.)F ∗(ωn)un

)
√
u∗nK

F�E
ωn (ωn)un

+ J (KF
ωn
(.)E∗−(ωn)un)√

u∗nK
F�E
ωn (ωn)un

,

hence,

PE

⎛

⎝ KF�E
ωn

(.)un√
u∗nK

F�E
ωn (ωn)un

⎞

⎠ = I (
KE
ωn
(.)F ∗(ωn)un

)
√
u∗nK

F�E
ωn (ωn)un

.

Since

{
KF�E
ωn

(.)un√
u∗nKF�E

ωn (ωn)un

}
is an orthonormal set for B(F � E) and I is an isometric

from B(E) onto I(B(E)) then

I (
KE
ωn
(.)F ∗(ωn)un

)
√
u∗nK

F�E
ωn (ωn)un

(17)

is a Parseval frame for I(B(E)). Applying I∗ to (17) we obtain the first claim.
Consequently, given any f ∈ B(E) we have

f (z) =
∑

n

〈
f,

KE
ωn
(.)F ∗(ωn)un√

u∗nK
F�E
ωn (ωn)un

〉

B(E)

KE
ωn
(z)F ∗(ωn)un√

u∗nK
F�E
ωn (ωn)un

=
∑

n

u∗nF (ωn)f (ωn)
KE
ωn
(z)F ∗(ωn)un

u∗nK
F�E
ωn (ωn)un

.

Using an analogous argument we obtain the second claim. ��
Now we show that the Parseval frames for B(E) and B(F) given in Theorem 7

are orthogonal.
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Theorem 8 Assume the hypothesis of Theorem 7, then

1. For every f ∈ B(E),

∑

n

u∗nF (ωn)f (ωn)
KF
ωn
(.)E∗−(ωn)un

u∗nK
F�E
ωn (.)un

= 0. (18)

2. For every g ∈ B(F),

∑

n

u∗nE∗−(ωn)g(ωn)
KE
ωn
(.)F ∗(ωn)un

u∗nK
F�E
ωn (.)un

= 0. (19)

Proof Let f ∈ B(E). Since Ff ∈ B(F � E) and

{
KF�E
ωn

(.)un√
u∗nKF�E

ωn (.)un

}
is a complete

orthonormal set for B(F � E) then

I(f )(z) = F(z)f (z)

=
∑

n

〈Ff, KF�E
ωn

(.)un√
u∗nK

F�E
ωn (ωn)un

〉 KF�E
ωn

(z)un√
u∗nK

F�E
ωn (ωn)un

=
∑

n

u∗nF (ωn)f (ωn)
KF�E
ωn

(z)un

u∗nK
F�E
ωn (ωn)un

=
∑

n

u∗nF (ωn)f (ωn)
F (z)KE

ωn
(z)F ∗(ωn)un + E−(z)KF

ωn
(z)E∗−(ωn)un

u∗nK
F�E
ωn (ωn)un

=
∑

n

u∗nF (ωn)f (ωn)
I (

KE
ωn
(z)F ∗(ωn)un

)+ J (
KF
ωn
(z)E∗−(ωn)un

)

u∗nK
F�E
ωn (ωn)un

Applying J ∗ to the last line above, and using the fact that J ∗(Ff ) = 0 we obtain
Eq. (18). Similar argument applying I∗ to E−g yields Eq. (19). ��

4 Sampling in the Space B(F � E)

The next theorem shows that if a de Branges matrix G = [G−(z) G+(z)] can be
factored as

G−(z) = F #(z)E−(z), and G+(z) = F(z)E+(z),
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with F(z) ∈ Ninv(C
p×p) and Eq. (11) holds, then the space B(G) will have

the Kramer sampling property whenever the de Branges space B(E) satisfies
the conditions of Theorem 3. The sampling problem can be considered dual to
the interpolation problem [22]; results concerning interpolation in vector valued
reproducing kernel spaces can be found in [9].

Theorem 9 Let F and E be two de Branges matrices that satisfy Definition 2 and
Eq. (11). Suppose further that detE+(·) is nonvanishing in C+ and detE−(·) is
nonvanishing in C−. If KE

α (α) � 0 for some point α ∈ C, then the space B(F � E)
will have the Kramer sampling property.

Proof Using Theorem 3 it is enough to show that RωBω(F � E) ⊆ B(F � E) for
every point ω ∈ C, and KF�E

α (α) � 0 for the given α ∈ C.
First, let ω ∈ C+ then F(ω)E+(ω) is invertible because detE+(ω) 	= 0 by the

hypothesis. Hence RωBω(F � E) ⊆ B(F � E) for every point ω ∈ C+ by Lemma 1.
Similarly, F(ω)E−(ω) is invertible because detE−(ω) 	= 0 by the hypothesis,
hence RωBω(F � E) ⊆ B(F � E) for every point ω ∈ C−.

Let α ∈ C be such that KE
α (α) � 0. Then u∗KE

α (α)u > 0 for every nonzero
vector u ∈ Cp. Hence, by Eq. (12) and using the fact that F ∗(α)u ∈ Cp, E∗−(α)u ∈
Cp, KE

α (α) � 0, and KF
α (α) � 0, by (5) we get

u∗KF�E
α (α)u = u∗F(α)KE

α (α)F
∗(α)u+ u∗E−(α)KF

α (α)E
∗−(α)u > 0

i.e., KF�E
α (α) � 0 for the given α ∈ C. This completes the proof of the theorem.

��
Example 5 Consider the de Branges space B(G) with

G = [G−(z) G+(z)]

and

G−(z) = F #(z)E−(z), G+(z) = F(z)E+(z)

where F(z) and E±(z) as in Example 4. Then it is evident that the space B(G) have
the Kramer sampling property by Theorem 9.

4.1 Multiplexing the Sampled Vector Valued Functions

Multiplexing refers to the transmission of several signals simultaneously over a
single communications channel. Generically, multiplexing occurs when two (or
more) signals x and y are encoded into X and Y in such a way that x and y can
each be recovered from X + Y . The signals we consider here are elements of a de
Branges space and the encoding involves the sampling of the signal. Specifically, if
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f ∈ B(E) and g ∈ B(F), we encode both f and g into the multiplexed samples:

{u∗nF (ωn)f (ωn)+ u∗nE∗−(ωn)g(ωn)}n (20)

which are transmitted in some fashion. The goal then is to recover f and g from
these mixed samples.

Corollary 1 Assume the hypotheses of Theorem 7, f ∈ B(E) and g ∈ B(F).
Given the samples {f (ωn)} and {g(ωn)}, f and g can be reconstructed from the
multiplexed samples in (20) as follows:

f (z) =
∑

n

(
u∗nF (ωn)f (ωn)+ u∗nE∗−(ωn)g(ωn)

) KE
ωn
(z)F ∗(ωn)un

u∗nK
F�E
ωn (ωn)un

(21)

g(z) =
∑

n

(
u∗nF (ωn)f (ωn)+ u∗nE∗−(ωn)g(ωn)

) KF
ωn
(z)E∗−(ωn)un

u∗nK
F�E
ωn (ωn)un

. (22)

Proof Equations (21) and (22) follow immediately from Eqs. (15), (16), (18),
and (19). ��
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Abstract Differential subordination of analytic functions proved to be useful in
many applications. The book of Miller and Mocanu ((2000) Differential Sub-
ordinations. In Theory and applications, monographs and textbooks in pure and
applied mathematics, vol 225. Marcel Dekker Inc, New York) sums up most of
the advancement in the field and the references to the date of its publication. The
theory of harmonic mappings can benefit from this theory. We attempt to discuss
some aspects of this generalization.
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1 Introduction

Differential subordination is a global name to differential inequalities and differen-
tial subordination of analytic functions in the complex plain. They were first used
in the studies of geometric properties of analytic functions as early as the nineteen
thirties by Goluzin, Gennadii M. and Robertson, Malcolm S. Their interest grew
due to their application to numerous fields including differential equations, partial
differential equations, harmonic functions, integral operators, Banach spaces and
functions of several complex variables. We shall extend the technique to harmonic
mappings in the plane.

Let w(z) be an analytic function in the unit disk U = {|z| < 1}. Then the tangent
vector of w(reit ); 0 ≤ t ≤ 2π at ζ = reit0 ∈ U is given by

dw(reit )

dt
|t=t0 = ireit0w′(reit0) = iζw′(ζ )

and the direction of the outside normal is

−i dw(re
it )

dt
|t=t0 = ζw′(ζ ).

The earliest problem in differential subordination was introduced by Miller [2]

Problem Let D be a domain in C and w(z) an analytic function in U. For which
continuous functions h(u, v)

h(w(z), zw′(z)) ∈ D; z ∈ U ⇒ w(z) ∈ D; z ∈ U.

In this paper we shall concentrate on the case where D is the unit disk U . A typical
example is the following

Theorem A (Miller [2, Ex.1], Miller and Mocanu [3]) Let w(z) be analytic in
the unit disk U, and satisfies

|w(z)+ zw′(z)| < 1; z ∈ U. Then |w(z)| < 1; z ∈ U. (1)

A geometric proof of this result is due.

Proof For each 0 < r < 1 consider the curve w(reit ) at the point ξ = reit0 where
|w(ξ)| = w0 = max|z|=r |w(z)|. The circle |w| = |w0| is tangential to |w(reit )| at
w0, and in particular, the exterior normal to w(reit ) at the point ξ, ξw′(ξ), is in the
direction of w(ξ). Then

|w(ξ)+ ξw′(ξ)| = |w(ξ)| + |ξw′(ξ)| < 1 (2)

and thus |w(ξ)| < 1. We conclude that max|z|=r |w(z)| < 1 for all 0 < r < 1 and
the result follows. �
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Definition 1 Let w = f (z) be defined on U. A point denoted ξ in U will always
represent the preimage of

w0 = max|z|=r |f (z)|,

for some 0 < r ≤ 1. It is right to call it a Clunie-Jack point.

Theorem 1 Let w(z) be analytic in the unit disk U, and satisfies

|w(z)+ zw′(z)| < 2; z ∈ U. Then |w(z)| < 1; z ∈ U.

Proof Indeed, by Clunie-Jack Lemma ([1] Lemma 1, [4] Lemma 2.2a) we have
|ξw′(ξ)| ≥ 1. We follow the proof of Theorem A and note that

|w(ξ)| = |w(ξ) + ξw′(ξ)| − |ξw′(ξ)| < 2 − 1 = 1.� (3)

In the seminal paper of Miller [ibid.], the author investigates the problem above
where D is the unit disk. His results rely on two points, namely

(I) A Maximum Principle of the involved function, w(z), and
(II) A lower bound of |ζw′(ζ )| in U (Clunie-Jack Lemma).

In order to generalize the above result for harmonic mappings we need to find the
appropriate tools and their estimates.

2 Harmonic Mappings

Let f be a complex harmonic mapping defined in the unit disk U. Then f (z) =
u(z) + iv(z) where u, v are real harmonic functions. Such functions admit the
representation

f (z) = h(z)+ g(z); h, g analytic in U.

This representation is unique if we assume that g(0) = 0. The second dilatation of
f (z) is

a(z) = g′(z)
h′(z)

which is meromorphic in U . f (z) is sense-preserving if, and only if, |a(z)| <
1; z ∈ U, in which case a(z) admit removable singularities and is analytic in
U. The mapping f (z) satisfies the Maximum Principle.
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For z = reit ∈ U we set

Df (z) ≡ −i ∂f (re
it )

∂t
= −i(h′(reit )reit i + g′(reit )reit i) = zh′(z)− zg′(z),

which coincide with the normal direction of F1(θ) = f (reiθ ) at θ = t, and

Df (z) ≡ r
∂f (reit )

∂r
= r(h′(reit )eit + g′(reit )eit ) = zh′(z)+ zg′(z),

which coincide with the radial direction of F2(ρ) = f (ρit ) at ρ = r. For a sense-
preserving harmonic mapping f we have

Df (z)

Df (z) =
zh′(z)− zg′(z)
zh′(z)+ zg′(z)

= 1 − zg′(z)
zh′(z)

1 + zg′(z)
zh′(z)

and since
∣∣∣ zg

′(z)
zh′(z)

∣∣∣ = |a(z)| < 1, therefore

�
{
Df (z)

Df (z)
}
> 0. (4)

We shall follow Lemma A in Miller and Mocanu [3] to get an appropriate Clunie-
Jack Lemma for Harmonic functions.

Lemma 1 Let f (z) be a sense-preserving harmonic mapping defined on U of the
form f (z) = h(z)+ g(z); f (0) = 0. For fixed r; 0 < r < 1, let ξ = reit0 satisfy

|f (ξ)| = max|z|≤r |f (z)|

then

Df (ξ)

f (ξ)
= m > 0; (5)

and
∣∣∣∣
Df (ξ)
f (ξ)

∣∣∣∣ ≥
2

π
≡M.
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Proof For z = reit ∈ U, set f (z) = R(r, t)ei�(r,t). Then

Df (z)

f (z)
= �t − i

Rt

R
,

and since R(r, t); 0 ≤ t ≤ 2π attains its maximal value at ξ = reit0, we have
Rt(r, t0) = 0 and we conclude that

Df (ξ)

f (ξ)
= �t(r, t0) = m > 0.

Indeed, as explained in the introduction of this section, Df (ξ) is in the direction of
f (ξ) so thatm ≥ 0. Furthermore,Df (ξ) = zh′−zg′ 	= 0 since Jf = |h′|2−|g′|2 >
0 in U. Furthermore, from (4) and (5) we conclude that

�
{Df (ξ)
f (ξ)

}
> 0. (6)

Let f̃ (z) = f (ξz)
f (ξ)

which is harmonic in U and satisfies f̃ (0) = 0 and for z ∈ ∂U

|f̃ (z)| ≤ max0≤t≤2π |f (eit ξ)|
|f (ξ)| ≤ 1.

The Schwarz Lemma for harmonic mappings is |f̃ (z)| ≤ 4
π

arctan |z| and in
particular we have

lim
r↑1

1 − |f̃ (r)|
1 − r

≥ d

dr

(
4

π
arctan(r)

)∣∣∣∣
r=1

= 2

π
=M.

Then

Df (ξ)
f (ξ)

= d

dr

(
f (rξ)

f (ξ)

) ∣∣∣∣
r=1

= lim
r↑1

f (ξ)− f (rξ)

(1 − r)f (ξ)

= lim
r↑1

[
1 − f (rξ)

f (ξ)

]
1

1 − r

and

∣∣∣∣
Df (ξ)
f (ξ)

∣∣∣∣ ≥ lim
r↑1

1 − |f̃ (r)|
1 − r

≥ 2

π
= M. �
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Two generalizations of Theorem A for sense-preserving harmonic mappings are

Corollary 1 Let f (z) be a sense-preserving harmonic mapping defined on U and
satisfies

|f (z)+Df (z)| < 1; z ∈ U. Then |f (z)| < 1; z ∈ U.

Proof Assume to the contrary that the set S = {f−1(eit ), 0 < t ≤ 2π} is nonempty.
Let r = minz∈S |z|. Choose a point ξ = reit0 on Ur = {|z| ≤ r}. Then ξ admits the
same properties of its alike in Theorem 1. Using (5) we have

|f (ξ)+Df (ξ)| = |f (ξ)+mf (ξ)| = (1 +m)|f (ξ)| = 1 +m > 1

a contradiction. �
Corollary 2 Let f (z) be a sense-preserving harmonic mapping defined on U and
satisfies

|f (z)+Df (z)| < 1; z ∈ U. Then |f (z)| < 1; z ∈ U.

Proof We follow the same proof as in Corollary 1. From (6) �
{Df (ξ)

f (ξ)

}
> 0. Then

|f (ξ)+Df (ξ)| =
∣∣∣∣1 +

Df (ξ)
f (ξ)

∣∣∣∣ |f (ξ)| ≥
(

1 +�
{Df (ξ)
f (ξ)

})
|f (ξ)| > 1.

a contradiction. �
In [2, Theorem 1], Miller proves the following subordination principle

Theorem B Let h(r, s) be a continuous complex function in a domain D ⊂ C2

satisfying the following conditions:

(I) (0, 0) ∈ D and h(0, 0) < 1,
(II) h(eit , keit ) ≥ 1 when (eit , keit ) ∈ D and k ≥ 1 and t ∈ R.

If w(z);w(0) = 0, is an analytic function in U and for z ∈ U

(a) (w(z), zw′(z)) ∈ D, and
(b) |h(w(z), zw′(z))| < 1,

then |w(z)| < 1; z ∈ U.

A generalization of Miller’s [2] Theorem 1 is

Theorem 2 Let h(r, s) be a continuous complex function in a domain D ⊂ C2

satisfying the following conditions:

(I) (0, 0) ∈ D and h(0, 0) < M = 2
π
, and

(II) h( e
is

M
, keit ) ≥ 1 for all t, s ∈ R, |t − s| ≤ π

2 and k ≥ 1.
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If f (z); f (0) = 0, is a sense-preserving harmonic mapping in U and for z ∈ U

(a) (f (z),Df (z)) ∈ D, and
(b) |h(f (z),Df (z))| < 1,

then |f (z)| < 1
M
= π

2 ; z ∈ U.

Proof Suppose that ξ = reit0 is a point in U such that

max|z|≤r |f (z)| = max|z|=r |f (z)| = |f (ξ)| = 1

M
= π

2
.

By Lemma 1 we have
∣∣∣Df (ξ)
f (ξ)

∣∣∣ ≥ M so that |Df (ξ)| ≥ 1 or

Df (ξ) = keit ; k ≥ 1, t ∈ R.

Set f (ξ) = eis

M
, s ∈ R, then by (5) |t − s| ≤ π

2 . By (b)

|h(f (ξ),Df (ξ))| = |h(e
is

M
, keit )| < 1,

which contradicts (II). Therefore |f (z)| < 1
M
= π

2 ; z ∈ U. �
The first theorem by Miller and Mocanu [3] of second order differential

subordination of positive real analytic functions is one of many. It turns out that
it can be used to get results on second order differential subordination of bounded
analytic and harmonic mappings, in the case of linear operator. To simplify the
formulas, we shall consider a first order version for harmonic mappings.

Theorem C (Miller and Mocanu [3], Special Case) Let ψ(r, s) be a continuous
complex function in a domain D ⊂ C2; r = r1 + ir2; s = s1 + is2, satisfying the
following conditions:

(I) (1, 0) ∈ D and �{ψ(1, 0)} = 1, and

(II) for (ir2, s1) ∈ D, if s1 ≤ − 1+r2
2

2 then �{ψ(ir2, s1)} ≤ 0.

Let p(z) = 1 + p1z+ p2z
2 + . . . be analytic in U and if

�{ψ(
p(z), zp′(z)

)} > 0; z ∈ U then �{p(z)} > 0.

The next theorem is an improvement of Theorem 2 when ψ is a linear operator.

Theorem 3 Let f (z); f (0) = 0, be a sense-preserving harmonic mapping in U.
We further assume that

ψ(q(z),Dq(z)) = αq(z)+ βDq(z); α, β ∈ C
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and Let ψ(r, s) be as in Theorem C (In this case it reduces to
∣∣∣  {α}�{β}

∣∣∣ < 1). Then

if |ψ(f (z),Df (z))| < 1; z ∈ U then |f (z)| < 1; z ∈ U.

For the proof of Theorem 3 we start by observing

Proposition 1 Let a complex function f (z) be defined on some domain � ⊂ C.

Then |f (z)| < 1 in � if, and only if, for all t ∈ R we have

�{eitf (z)} > −1; z ∈ �.

Definition 2 Let f (z) = h+g be harmonic inU. The shear of f (z) in the direction
of the imaginary axis is defined by [f ]I = h+ g.

In particular �{f } = �{h+ g} = �{h+ g} = �{[f ]I }, therefore

|f | < 1 ⇒ −1 < �{f } = �{[f ]I } < 1.

Proposition 2 Let f and [f ]I be as in Definition 2. Then |f | < 1 if, and only if,
for all t ∈ R

−1 < �
{[
eitf

]

I

}
= �{eitf } = �{eith+ e−it g} < 1.

Both propositions are trivial and we omit their proofs.

Proof of Theorem 3: Let f (z) = h(z) + g(z) where f (0) = 0. If |ψ(f (z),
Df (z))| < 1, then

|eitψ(f (z),Df (z))| < 1; t ∈ R.

In particular

�{eitψ(f (z),Df (z))} + 1 > 0; t ∈ R.

By assumption we have

�{ψ(eit f (z),D(eitf (z))} + 1 > 0,

and if we set F(z) = eitf (z)+ 1, then

�{ψ(F(z),DF(z))} > 0.

Using the shear it can be written in the form

�{ψ([F(z)]I , [DF(z)]I )} > 0
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and since ψ(r, s) satisfy the assumptions in Theorem C and, [F(z)]I and [DF(z)]I
are normalized analytic functions as in Theorem C as well, we conclude that for
real t

�{[F(z)]I } = �{[eitf (z)+ 1]I } > 0 ⇔ �{eitf (z)+ 1} > 0

and therefore, �{eitf (z)} > −1; t ∈ R, which by Proposition 1 implies |f (z)|
< 1. �
Remark 1 In Theorem 3

(I) Df can be replaced by Df.
(II) α and β could be any two continuous complex functions.

As an example for (II), consider

Theorem D ([4] Theorem 2.4f, p. 39) Let F(z); F(0) = 1 be analytic in U and
Q(z);Q(0) = 1 be analytic in U with �{Q} > 0. If in U

�{F(z)+Q(z) · zF ′(z)} > 0,

then �{F(z)} > 0.

The same proof of Theorem 3 implies

Theorem 4 Let f (z); f (0) = 0, be a sense-preserving harmonic mapping in U

and Q(z);Q(0) = 1 be analytic in U with �{Q} > 0. If in U

|f (z)+Q(z) ·Df (z)| < 1 then |f (z)| < 1.
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signal from the position space L2(R

m,R) is mapped to the phase space of wave
functions, or Fock space, F2(Cm,C). We extend the classical Segal–Bargmann
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1 Introduction

Due to the importance of the Segal–Bargmann transform, there are various gen-
eralizations into quaternion and Clifford analysis. In particular, the Bargmann-
Segal transformation has been studied in the theory of slice monogenic functions
[2, 11, 12, 22]. Our interest doesn’t lie in these theories. We are interested in the
importance of the Segal–Bargmann transform in its connection to the windowed
Fourier transform and time-frequency analysis.

Time-frequency analysis is an important method in signal processing, because it
allows to analyse a given signal simultaneously in the time and frequency domains.
A well-known tool is the short-time Fourier transform. Another closely related tool
is the Segal–Bargmann transform, which is our main focus in this paper.

The classical Segal–Bargmann transform maps a square integrable function to
a holomorphic function square-integrable with respect to a Gaussian identity. In
signal processing terms, a signal from the position space L2(R

m,R) is mapped to
the phase space of wave functions F2(Cm,C). In the early 1960s, V. Bargmann and
I. Segal independently investigated this space [4, 25]. While Bargmann developed
a theory about the space and the corresponding transform in the finite-dimensional
case, Segal focused primarily on the infinite-dimensional version of the now-called
Segal–Bargmann space(s) [20].

The space F2(Cm,C) has a wide number of applications such as in infinite-
dimensional analysis and stochastic distribution theory. As early as 1932, V. Fock
introduced a more general, infinite-dimensional version of this space as a quantum
states space for an unknown number of particles [16], which is now called Fock
space. In quantum mechanics, the reproducing kernels of the Fock spaces are the
so-called coherent states. Segal and Bargmann showed that an infinite union of the
spaces F2(Cm,C), m ∈ N, is isomorphic to a certain case of the Fock space, which
is why the Segal–Bargmann spaces are sometimes also called Segal–Bargmann-
Fock space(s) or only Fock space. For this work, we will stick to the notion of
Segal–Bargmann space.

In signal and image processing not only scalar-valued but also quaternion- and
Clifford-valued signals are of interest. A monogenic signal [5, 6, 14], for example,
consists of a scalar-valued signal and vector components, which are the Riesz
transformations of the scalar-valued signal. Other applications deal with colour
images of which the colours are separated and considered as components of a
Clifford-valued signal, see for example [10, 13, 21, 27].

The main purpose of this paper is to investigate the Segal–Bargmann transform
B of Clifford algebra-valued functions, which has also been the focus of D. Peña
Peña, I. Sabadini and F. Sommen [23]. We will define and examine the Segal–
Bargmann module F2(Cm, C�Cm), a higher-dimensional analogue of the classical
Segal–Bargmann space.

It is known that there is a close relationship between the Gabor transform
(short-time Fourier transform with a Gaussian window) and the Segal–Bargmann
transform. Recently, this connection has been used to filter a signal embedded in
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white noise [1, 15]. Therefore, we investigate the mapping properties of the Segal–
Bargmann transform in the context of Clifford estimators.

We prove that B is a unitary operator up to a scaling constant, and that it maps an
orthonormal basis of L2(Rm, C�Rm) to an orthonormal basis of the Segal–Bargmann
module F2(Cm, C�Cm). For that, we will use Sommen’s Clifford-Hermite functions{
φl,k,j

}
as an L2 basis.

We also lay out that the Segal–Bargmann transform can be expanded to a series

(Bf )(z) =
∞∑
l=0

∞∑
k=0

dim(M+
l (k))∑

j=1
�l,k,j (z)〈φl,k,j , f 〉 with a dictionary

{
�l,k,j

}
of the

Segal–Bargmann module and that this series converges absolutely locally uniformly.
The paper is organised as follows. In Sects. 2.1 and 2.2 we give an overview

of basic Clifford analysis and of Hilbert Clifford-modules, which replace Hilbert
spaces in our context. Section 2.3 deals with a certain class of Clifford-valued
functions, the inner spherical monogenics, which are central to the construction
of a basis for the function spaces that we deal with. In Sect. 2.4, we present the
short-time Fourier transform as in important tool for our work.

After we have established these preliminary notes, we introduce Sommen’s
generalized Clifford Hermite polynomials and their relevant properties in Sect. 3.
In Sect. 4, we formally introduce the Segal–Bargmann transform and the Segal–
Bargmann space of the classical, non-Clifford case, before we establish its analogue,
the Segal–Bargmann module, in Sect. 5 and show some important properties of
the Segal–Bargmann transform of Clifford algebra-valued functions. We con-
clude our paper with Sect. 6 by constructing a dictionary

{
�l,k,j

}
for the Segal–

Bargmann transform and proving the convergence of the series representation
∞∑
l=0

∞∑
k=0

dim(M+
l (k))∑

j=1
�l,k,j (z)〈φl,k,j , f 〉.

2 Preliminaries

2.1 Clifford Algebras

While real Clifford algebras have gained much interest in mathematical research
since W. Clifford wrote about them in 1878, cf. [19], complex Clifford algebras
are a fairly recent topic of interest. In our work, we deal with both cases. We take
notations and properties mainly from [7], in which the real version is displayed, and
adopt them to fit the complex case. For that, we work close to J. Ryan’s Complexified
clifford analysis [24], in which a detailed extension of real to complex Clifford
algebras is developed.
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We will write N = {1, 2, 3, . . . } and N0 = {0, 1, 2, . . . }. Let n ∈ N0 and C�Rn
denote the real Clifford algebra over Rn and C�Cn the complex Clifford algebra over
Cn. Both are based on the multiplication rules

eiej + ej ei = 0, i 	= j,

e2
j = −1, i = 1, 2, . . . , n.

and have e0 ≡ 1 as their unit element.
An arbitrary element of C�Rn or C�Cn is called a Clifford number and is given by

a =
∑

A

aAeA,

where aA ∈ R or aA ∈ C, resp., and for each A = (n1, . . . , nl) with
1 ≤ n1 < n2 < . . . < nl ≤ m, it is eA = en1en2 . . . enl . The coefficient a0 is
called the scalar part of a and a = ∑n

j=1 ajej a Clifford vector.

Similar to the complex conjugation C, we can define involutions for the real
and † for the complex Clifford algebra. Let

eA = (−1)
|A|(|A|+1)

2 eA.

Then

a =
∑

A

aAeA

for a ∈ C�Rn , and

a† =
∑

A

aCAeA

for a ∈ C�Cn .
We refer to [17] and state that C�Rn becomes a finite dimensional Hilbert space

with the inner product

(a, b)0 = [ab]0 =
∑

A

aAbA

for all a, b ∈ C�Rn , and has Hilbert space norm

|a|0 =
√
(a, a)0 =

√∑

A

|aA|2.
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The inner product on C�Rn extends to a sesqui-linear inner product

(a, b)0 = [a†b]0 =
∑

A

aA
CbA

for a, b ∈ C�Cn .
It can be shown that Clifford algebras are C∗-algebras, see [17].

Proposition 2.1 Under the involution a → a† each C�Cn is a complex C∗-algebra
which is a complexification of the real C∗-algebra C�Rn .

2.2 Hilbert Clifford-Modules

We want to consider spaces of C�Rm- or CC
m-valued functions. For that purpose, we

need an anologue to the classical L2 spaces. Since the elements of a Clifford algebra
do not form a field, we work in Clifford-modules. The following two definitions
are taken from [7] and adapted for the complex case; the real case is contained
implicitly.

Definition 2.2 X(r) is a unitary right C�Cn -module, when (X(r),+) is an abelian
group and the mapping (f, a)→ f a from X(r) × C�Cn → X(r) is defined such that
for all a, b ∈ C�Cn and f, g ∈ X(r) :
1. f (a + b) = f a + f b,

2. f (ab) = (f a)b,

3. (f + g)a = f a + ga,

4. f e0 = f.

We define an inner product on a unitary right C�Cn -module as follows.

Definition 2.3 Let H(r) be a unitary right C�Cn -module. Then a function 〈·, ·〉 :
H(r) × H(r) → C�Cn is an inner product on H(r) if for all f, g, h ∈ H(r) and
a ∈ C�Cn ,
1. 〈f, g + h〉 = 〈f, g〉 + 〈f, h〉
2. 〈f, ga〉 = 〈f, g〉a
3. 〈f, g〉 = 〈g, f 〉†
4. 〈f, f 〉0 ∈ R+0 and 〈f, f 〉0 = 0 if and only if f = 0
5. 〈f a, f a〉0 ≤ |a|20〈f, f 〉0.

The accompanying norm on H(r) is ‖f ‖2 = 〈f, f 〉0.

We now give an important property of the inner product.
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Proposition 2.4 If 〈·, ·〉 is an inner product on a unitary right C�Cn -moduleH(r) and
‖f ‖2 = 〈f, f 〉0 then

|〈f, g〉|0 ≤ 2n ‖f ‖ ‖g‖

for all f, g ∈ H(r).

Proof We use the definition of the norm on C�Cn , |a|20 =
∑
A

|aA|2, and the fact that

[aeA]0 =
[
∑

B

aBeBeA

]

0

= [aAeAeA]0 = −aA (2.1)

for all a ∈ C�Cn . Also, if we consider H(r) to be a vector space over C with inner
product 〈·, ·〉0, we know that the Cauchy-Schwartz inequality

|〈f, g〉0|2 ≤ 〈f, f 〉0 · 〈g, g〉0 = ‖f ‖2 ‖g‖2 (2.2)

has to be true. Now, we get

|〈f, g〉|20 =
∑

A

|〈f, g〉A|2 (2.1)=
∑

A

∣∣[〈f, g〉eA]0

∣∣2

(ii)=
∑

A

|〈f, geA〉0|2
(2.2)≤

∑

A

‖f ‖2 ‖geA‖2

(v)=
∑

A

‖f ‖2 ‖g‖2 · |eA|20 =
∑

A

‖f ‖2 ‖g‖2

= 2n‖f ‖2 ‖g‖2.

��
As an analogue to Hilbert (vector) spaces, we now define Hilbert modules.

Definition 2.5 Let H(r) be a unitary right C�Cn -module provided with an inner
product (·, ·). Then it is called a right Hilbert C�Cn -module if it is complete for
the norm topology derived from the inner product.

Let m ∈ N = {1, 2, 3, . . . }. We now consider the unitary right C�Rm-module of
functions from Rm to C�Rm. A function f : � ⊂ Rm → C�Rm maps the vector variable
x = ∑m

j=1 xj ej to a Clifford number and can be written as

f (x) =
∑

A

eAfA(x),

where fA : Rm → R [7]. We define an inner product as follows.
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Definition 2.6 Let h be a positive function on Rm. Then the inner product
〈·, ·〉L2(Rm,h,C�Rm) is defined as

〈f, g〉L2(Rm,h,C�Rm) =
∫

Rm

f (x)g(x)h(x)dx,

where dx stands for the Lebesgue measure on Rm, and the associated norm is

||f ||2
L2(Rm,h,C�Rm) =

[
〈f, f 〉L2(Rm,h,C�Rm)

]

0
.

The unitary right Clifford-module of measurable functions on Rm for which
||f ||L2(Rm,h,C�Rm) < ∞ is a right Hilbert Clifford-module, which we denote by

L2(Rm, h, C�Rm). In this paper, we will focus on the case where h(x) = 1. Then
the right Hilbert Clifford-module will simply be denoted by L2(Rm, C�Rm) and the
inner product by 〈·, ·〉L2(Rm,C�Rm).

We also work on functions with values in a complex Clifford algebra, i.e. f :
� ⊂ Cm → C�Cm. For z = ∑m

j=1 zj ej , with complex zj , j = 1, . . . ,m, we have

f (z) =
∑

A

eAfA(z)

with fA : Cm → C. Analogously to the real case, we can define the right Hilbert
Clifford-moduleL2(Cm, h, C�Cm), where h is a positive function over Cm. Here,

〈f, g〉L2(Cm,h,C�Cm) =
∫

Cm

f †(z)g(z)h(z)dx dy

with z = x+ iy, where † denotes the involution on C�Cm, cf. page 32. The associated

norm is ||f ||2
L2(Cm,h,C�Cm) =

[
〈f, f 〉L2(Cm,h,C�Cm)

]

0
. Particularly important to our

work will be those spaces L2(Cm, h, C�Cm) for which h is defined as the Gaussian

function h(z) = e−|z|2/2

πm
, cf. Sect. 5.

Proposition 2.7

1. Let f ∈ L2(Rm, h, C�Rm). Then

||f ||2
L2(Rm,h,C�Rm) =

∫

Rm

∣∣f (x)
∣∣2
0 h(x)dx.

2. Let f ∈ L2(Cm, h, C�Cm). Then

||f ||2
L2(Cm,h,C�Cm) =

∫

Cm

∣∣f (z)
∣∣2
0 h(z)dx dy.
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Proof We only show (ii) since the real case is equivalent,

||f ||2
L2(Cm,h,C�Cm) =

[
〈f, f 〉L2(Cm,h,C�Cm)

]

0

=
∫

Cm

[
f †(z)f (z)

]

0
h(z)dx dy =

∫

Cm

∣∣f (z)
∣∣2
0 h(z)dx dy.

��

2.3 Inner Spherical Monogenics

Since many of the following results are similar for functions of real and complex
Clifford algebras, we will state them for the real case and give the complex case
in ().

Of particular importance, when dealing with Clifford algebra-valued functions,
is the Dirac operator

Dx =
m∑

j=1

ej ∂xj (Dz =
m∑

j=1

ej ∂zj ).

Left nullsolutions of Dx (Dz) are called (complex) left monogenic functions.
Let m ∈ N and Ps be the space of scalar-valued polynomials in Rm (Cm). Then

a Clifford polynomial is an element of Ps ⊗ C�Rm (Ps ⊗ C�Cm).
An important class of polynomials are the so called (complex) inner spherical

monogenics. A left inner spherical monogenic of order k is a left monogenic
homogeneous Clifford polynomial Pk of degree k. The set of all left inner spherical
monogenics of order k is denoted by M+

l (k) and has the dimension [8]

dim(M+
l (k)) =

(
m+ k − 2

k

)
,

(with dim(M+
l (0)) = 1 for all m ∈ N).

We will deal with inner spherical monogenics over both Rm and Cm. To
differentiate, we will write Pk(x) : Rm → C�Rm and Pk(z) : Rm → C�Cm.

2.4 Short-time Fourier Transform

An important tool in time-frequency analysis is the short-time Fourier Transform.
It allows to analyse a given signal simultaneously in the time and in the frequency
domain, because it calculates the Fourier Transform not over the whole signal, but
small blocks of it.
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Given a signal f (t) and a window function ϕ(t), the short-time Fourier Trans-
form (Vϕf )(t, ω) is classically defined as

(Vϕf )(t, ω) = 1√
2π

m

∫

Rm

f (x)ϕ(x − t)
C
e−iω·xdx.

A commonly used window function is the Gaussian window because it provides
a very good resolution of the studied signal [18].

It is given by h(x) = e−
|x|2

4 .

3 Clifford Hermite Polynomials

We will now consider Clifford Hermite polynomials as a special class of Clifford
polynomials.

In the classical case, the Hermite polynomials over R can be obtained from the
Taylor expansion of the function z $→ ez

2/2,

ez
2/2 =

∞∑

n=0

ex
2/2 t

n

n!Hn(ix).

They can also be calculated explicitly by

Hn(x) = (−1)nex
2 dn

dxn
e−x2

.

Through a similar expansion for Rm, F. Sommen defined radial Hermite
polynomials [26], which are explicitly given by

Hk,m(x) = (−1)ke
|x|2

2 Dk
xe
− |x|2

2 .

Since the radial Hermite polynomials only form a basis for a certain kind of L2

functions, i.e. such functions that are defined on the real line, Sommen developed
a more complex set of polynomials, starting from the monogenic extension of
e−|x|2/2Pk(x), where Pk(x) is a left inner spherical monogenic of degree k, cf.
Sect. 2.3. This lead him to what he called the generalized Hermite polynomials,
which can be used to construct a basis of L2(Rm, C�Rm).
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Definition 3.1 The generalized Clifford Hermite polynomials Hl,m,k, l, k ∈ N0,
are given by

Hl,m,kPk(x) = e−
|x|2

2 (−1)lDl
x

(
e−

|x|2
2 Pk(x)

)
(3.1)

where Pk(x) is a left inner spherical monogenic of degree k.

An important property of the generalized Clifford Hermite polynomials is their
orthogonality [9].

Theorem 3.2 Let Hl,m,k1 and Ht,m,k2 be generalized Clifford Hermite polynomials
and Pk1(x) and Pk2(x) inner spherical monogenics of order k1 and k2, resp. Then

∫

Rm

e−
|x|2

2 Hl,m,k1(x)Pk1(x)Ht,m,k2(x)Pk2(x) dx = γl,k1δl,t δk1,k2,

with

γ2p,k = 22p+m/2+kp!√πm� (
m
2 + k + p

)

�
(
m
2

) ,

γ2p+1,k = 22p+m/2+k+1p!√πm� (
m
2 + k + p + 1

)

�
(
m
2

) .

Building on the orthogonality, Sommen and his colleagues established an
orthonormal basis of L2(Rm, C�Rm), cf. [9, 26].

Theorem 3.3 Let γl,k, k, l ∈ N0, be as defined in Theorem 3.2. For each k ∈ N0,

let further
{
P
(j)

k (x)
}

j=1,2,...,dim(M+
l (k))

be an orthonormal basis of M+
l (k).

{
1√
γl,k

Hl,m,k(x)P
(j)

k (x)e−
|x|2

4 : l, k ∈ N0, j ≤ dim(M+
l (k))

}
(3.2)

forms an orthonormal basis of L2(Rm, C�Rm).
Each element of (3.2) depends on l, k and the chosen basis of M+

l (k), which

contains dim(M+
l (k)) =

(
m+k−2

k

)
elements, cf. Sect. 2.3.

4 Segal–Bargmann Transform

The first very general version of the Segal–Bargmann space goes back to V. Fock’s
theory of 1932 of the quantum state space of particles [16]. Here, we will consider
the more specific finite-dimensional version of the following definitions taken from
[23]. We will transfer those definitions to the Clifford case in Sect. 5.
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Definition 4.1 The Segal–Bargmann space F2(Cm,C) is defined as the
Hilbert space of entire functions f in Cm which are square-integrable with respect
to the 2m-dimensional Gaussian density, i.e.,

1

πm

∫

Cm

e−|z|2 |f (z)|2 dx dy <∞, z = x + iy.

It is equipped with the inner product

〈f, g〉F2(Cm,C) =
1

πm

∫

Cm

e−|z|2f (z)g(z) dx dy.

The Segal–Bargmann transform connects the Bargmann space with the Hilbert
space L2(Rm,R) by mapping the ladder onto the former.

Definition 4.2 The Segal–Bargmann transform B from L2(Rm,R) to
F2(Cm,C) is defined by

(Bf )(z) = 1√
2π

m

∫

Rm

e−
z·z
2 +x·z− x·x

4 f (x) dx, (4.1)

with x · z = ∑m
j=1 xj zj , for any f ∈ L2(Rm,R).

The Segal–Bargmann transform is a linear operator. It can also be expressed in
terms of a short-time Fourier Transform (cf. Sect. 2.4).

Proposition 4.3 Let B be the Segal–Bargmann transform and Vϕ the short-time

Fourier Transform with window ϕ(x) = e−
|x|2

4 . Then for all f ∈ L2(Rm,R),

(Vϕf )(2t,−ω) = e−
|z|2

2 eit ·ω
(Bf )(z), z = t + iω.

Proof

(Vϕf )(2t,−ω) = 1√
2π

m

∫

Rm

f (x)e−
|x−2t|2

4 eiω·xdx

= 1√
2π

m

∫

Rm

f (x)e−
|x|2

4 +x·t−|t |2eiω·xdx

= 1√
2π

m e
− |t|2

2 e−
|ω|2

2 eit ·ω
∫

Rm

f (x)e−
|x|2

4 +x·(t+iω)− (t+iω)2
2 dx

= 1√
2π

m e
− |t|2

2 e−
|ω|2

2 eit ·ω
∫

Rm

f (x)e−
|x|2

4 +x·z− z·z
2 dx

= e−
|z|2

2 eit ·ω
(Bf )(z)

��
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A well-known property of the Segal–Bargmann transform is that it is a unitary
operator up to a scaling constant.

Proposition 4.4 Let B : L2(Rm,R) → F2(Cm,C) be the Segal–Bargmann
transform (4.1). Then

〈Bf,Bg〉F2(Cm,C) =
1√

2π
m 〈f, g〉L2(Rm,R).

Proof We use Proposition 4.3, i.e.

(Bf )(z) = e
|z|2

2 e−it ·ω(Vϕf )(2t,−ω),

with z = t + iω and ϕ(x) = e−
|x|2

4 . Then

〈Bf,Bg〉F2(Cm,C) =
1

πm

∫

Cm

(Bf )(z)C(Bg)(z)e−|z|2dx dy

= 1

πm

∫

Cm

e
|z|2

2 eit ·ω
(
Vϕf

)
(2t,−ω)C

· e |z|
2

2 e−it ·ω
(
Vϕg

)
(2t,−ω)e−|z|2dω dt

= 1

πm

∫

Cm

(
Vϕf

)
(2t,−ω)C(Vϕg

)
(2t,−ω)dω dt

= 1

πm

∫

Cm

1√
2π

m

∫

Rm

f (x)e−
|x−2t |2

4 eiω·xdx
C

· 1√
2π

m

∫

Rm

g(x)e−
|x−2t|2

4 eiω·xdx dω dt.

Let ϕ(· − 2t) denote the Gaussian window translated by −2t and F the Fourier
Transform in Rm. Thus

〈Bf,Bg〉F2(Cm,C) =
1

πm

∫

Cm

F−1
(
f · ϕ(· − 2t)

)
(ω)

CF−1(g · ϕ(· − 2t)
)
(ω)dω dt.
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The Plancherel Theorem now gives us

〈Bf,Bg〉F2(Cm,C) =
1

πm

∫

Rm

∫

Rm

f (x)e−
|x−2t |2

4

C

g(x)e−
|x−2t |2

4 dt dx

= 1

πm

∫

Rm

f (x)g(x)

∫

Rm

(
e−

|x−2t|2
4

)2

dt dx.

Last, we substitute u = 2t − x, and use the fact that
∫

Rm

e−
|u|2

2 du = √
2π

m
. So,

〈Bf,Bg〉F2(Cm,C) =
1

πm

∫

Rm

f (x)g(x)dx

∫

Rm

e−
|u|2

2
du

2m

= 1√
2π

m 〈f, g〉L2(Rm,R).

��
Another important property of the Segal–Bargmann transform is its invertibility.

Proposition 4.5

1. F 2(Cm,C) is the image of L2(Rm,R) under the Segal–Bargmann transform.
2. The Segal–Bargmann transform is invertible.

Proof For the proof of (i) we refer to [18]. (ii) then follows directly from the fact
that the transform is unitary up to a constant, cf. Proposition 4.4. ��

5 Segal–Bargmann Modules

We will now look at how the Segal–Bargmann transform of Definition 4.1 acts
on Clifford algebra-valued functions. So, from now on, let f be an element of
L2(Rm, C�Rm). Then,

(Bf )(z) = 1√
2π

m

∫

Rm

e−
z·z
2 +x·z− x·x

4 f (x) dx,

is a function with values in the complex Clifford algebra, Bf : Cm → C�Cm. Note
that Proposition 4.3 holds for functions of L2(Rm, C�Rm) as well.

Consider the function space L2(Cm, e
−|z|2
πm

, C�Cm) as defined in Sect. 2.2. Just as in
the real case, the Segal–Bargmann transform of Clifford algebra-valued functions is
unitary up to a scaling constant, as the following proposition shows.
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Proposition 5.1 If f ∈ L2(Rm, C�Rm), then

〈Bf,Bg〉
L2(Cm, e

−|z|2
πm

,C�Cm)
= 1√

2π
m 〈f, g〉L2(Rm,C�Rm).

Proof Since the Segal–Bargmann transform is linear, f = ∑
A

fAeA implies that

Bf =∑
A

BfAeA. Hence,

〈Bf,Bg〉
L2(Cm, e

−|z|2
πm

,C�Cm)
= 1

πm

∫

Cm

(Bf )†
(z)

(Bg)(z)e−|z|2dx dy

=
∑

A,B

1

πm

∫

Cm

(BfA
)C
(z)eA

(BgB
)
(z)eBe

−|z|2dx dy

=
∑

A,B

〈BfA,BgB〉F2(Cm,C)eAeB

In Proposition 4.4 we have shown that 〈Bf,Bg〉F2(Cm,C) = 1√
2π

m 〈f, g〉L2(Rm,R)

is true for the classical Segal–Bargmann transform B : L2(Rm,R) → F2(Cm,C).
Therefore

〈Bf,Bg〉
L2(Cm, e

−|z|2
πm

,C�Cm)
=

∑

A,B

1√
2π

m 〈fA, gB〉L2(Rm,R)eAeB

= 1√
2π

m

∑

A,B

∫

Rm

fA(x)gB(x)eAeBdx

= 1√
2π

m

∫

Rm

f (x)g(x)dx = 1√
2π

m 〈f, g〉L2(Rm,C�Rm)

��
A direct consequence is the following corollary.

Corollary 5.2 Let ‖·‖
L2(Cm, e

−|z|2
πm

,C�Cm)
=

√√√√
[
〈·, ·〉

L2(Cm, e
−|z|2
πm

,C�Cm)

]

0

. Then

‖Bf ‖2

L2(Cm, e
−|z|2
πm

,C�Cm)
= 1√

2π
m ‖f ‖2

L2(Rm,C�Rm) .

Thus B is an isometry from L2(Rm, C�Rm) into L2(Cm, e
−|z|2
πm

, C�Cm) up to 1√
2π

m .
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In Theorem 5.3, an orthonormal basis of the space L2(Rm, C�Rm) was established.
The following theorem shows that the Segal–Bargmann transform maps the ele-
ments of this basis onto functions zlPk(z).

Theorem 5.3 Let B be the Segal–Bargmann transform, Hl,m,k a generalized
Clifford Hermite Polynomial as defined in Definition 3.1 and Pk an inner spherical
monogenic of degree k. Then

(
B
(
Hl,m,k(x)e

− |x|2
4 Pk(x)

))
(z) = zlPk(z)

Proof Our first step follows [23]. Here,
(
B
(
Hl,m,k(x)e

− |x|2
4 Pk(x)

))
(z)

= 1√
2π

m

∫

Rm

e−
z·z
2 +x·z− x·x

2 Hl,m,k(x)Pk(x)dx

(3.1)= (−1)l√
2π

m

∫

Rm

e−
z·z
2 +x·zDl

x

(
e−

|x|2
2 Pk(x)

)
dx

= 1√
2π

m

∫

Rm

Dl
x

(
e−

z·z
2 +x·z

)
e−

|x|2
2 Pk(x)dx

= 1√
2π

m z
l

∫

Rm

e−
z·z
2 +x·z− x·x

4 Pk(x)e
− |x|2

4 dx

= zl
(
B
(
Pk(x)e

− |x|2
4

))
(z).

Next, we calculate B(Pk(x)e−|x|2/4) using the windowed Fourier transform. We
obtain

Vϕ

(
Pk(x)e

− |x|2
4

)
(2t,−ω) = 1√

2π
m

∫

Rm

Pk(x)e
− |x|2

4 e−
|x−2t|2

4 eiω·xdx

= 1√
2π

mPk
(−i∂ω

) ∫

Rm

e−
|x|2

4 e−
|x|
4 +x·t−|t |2eiω·xdx

= 1√
2π

mPk
(−i∂ω

) ∫

Rm

e−
|x|
2 +x·t− |t|2

2 e−
|t|
2 eiω·xdx

= 1√
2π

m e
− |t|2

2 Pk
(−i∂ω

) ∫

Rm

e−
|x−t|2

2 eiω·xdx

= 1√
2π

m e
− |t|2

2 Pk
(−i∂ω

) (
eiω·t

∫

Rm

e−
|x|2

2 eiω·xdx
)
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Since 1√
2π

m

∫
Rm e

− |x|2
2 eiω·x dx is the inverse Fourier Tranform of e−

|ω|2
2 , which

is an invariant, we get

Vϕ

(
Pk(x)e

− |x|2
4

)
(2t,−ω) = e−

|t|2
2 Pk

(−i∂ω
) (

eiω·t−
|ω|2

2

)

= e−
|t|2

2 Pk
(−i(it − ω)

) (
eiω·t−

|ω|2
2

)

= e−
|t|2

2

(
eiω·t−

|ω|2
2

)
Pk(z)

= e−
|z|2

2 eiω·tPk(z)

with z = t + iω. Because of Proposition 4.3, this leads to

(
B
(
Pk(x)e

− |x|2
4

))
(z) = Pk(z).

Together with the first step, the proof is complete. ��
We can now define an analogue to the classical Segal–Bargmann space.

Definition 5.4 The closure of

span
{
zlP

(j)
k (z)

∣∣∣l, k ∈ N0, j = 1, . . . , dim(M+
l (k))

}

is called Segal–Bargmann module F2(Cm, C�Cm).
Remark 5.5 In this definition and what follows we drop the property that a function
of the Segal–Bargmann module (or space) has to be an entire functions. That means
we consider the Segal–Bargmann module just as a weighted L2-module.

A consequence of Theorem 5.3 is the following.

Corollary 5.6 For all l, k ∈ N0, let
{
P
(j)
k (x)

}

j=1,2,...,dim(M+
l (k))

be an orthonor-

mal basis of M+
l (k) and γl,k defined as in Theorem 3.2. Then

{√
(2π)m

γl,k
zlP

(j)
k (z)

∣∣∣∣∣l, k ∈ N0, j = 1, . . . , dim(M+
l (k))

}

is an orthonormal basis of the Segal–Bargmann module F2(Cm, C�Cm).
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Proof Since the Segal–Bargmann transform is linear, Theorem 5.3 shows that it
maps an element

φl,k,j (x) = 1√
γl,k

Hl,m,k(x)P
(j)
k (x)e−

|x|2
4

of the orthonormal basis of L2(Rm, C�Rm) (see Theorem 3.3) onto

(Bφl,k,j
)
(z) = 1√

γl,k
zlP

(j)
k (z).

The statement now follows directly from Proposition 5.1 and Corollary 5.2,
which say that∥∥Bφl,k,j

∥∥
L2(Cm, e

−|z|2
πm

,C�Cm)
= 1√

2π
m

∥∥φl,k,j
∥∥
L2(Rm,C�Rm) =

1√
2π

m

and B is unitary up to the scaling constant. ��
Theorem 5.7 The Segal–Bargmann module is the image of L2(Rm, C�Rm) under the
Segal–Bargmann transform, i.e.

F2(Cm, C�Cm) = L2

(
Cm,

e−|z|2

πm
, C�Cm

)
.

Proof First, let F ∈ F2(Cm, C�Cm). By construction there has to exist a function
f ∈ L2(Rm, C�Rm) so that Bf = F . Since B is unitary up to a constant, we know

that F ∈ L2
(
Cm, e

−|z|2
πm

, C�Cm
)

. Hence

F2(Cm, C�Cm) ⊆ L2
(
Cm, e

−|z|2
πm

, C�Cm
)

.

We now show the opposite inclusion. Let F ∈ L2
(
Cm, e

−|z|2
πm

, C�Cm
)

. Then F can

be written as F = ∑
A FAeA with FA : C�m → C for all A. Since

‖F‖
L2

(
Cm, e

−|z|2
πm

,C�Cm
) = 〈

∑

A

FAeA,
∑

B

FBeB〉0

=
∑

A

‖FA‖
L2

(
Cm, e

−|z|2
πm

,C�Cm
) =

∑

A

‖FA‖
L2

(
Cm, e

−|z|2
πm

,C

)

is finite if and only if ‖FA‖
L2

(
Cm, e

−|z|2
πm

,C

) is finite for every A, we know that FA ∈

L2(Cm, e
−|z|2
πm

,C) = F2(Cm,C), cf. Proposition 4.5(ii).
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Proposition 4.5(i) tells us that B : L2(Rm,R)→ F2(Cm,C) is invertible, so for
each A there exists fA ∈ L2(Rm,R) so that BfA = FA. Since B is linear,

F =
∑

A

FAeA =
∑

A

(BfA)eA = B
(
∑

A

fAeA

)
,

so there exists a function
∑

A fAeA = f ∈ L2(Rm, C�Rm) such that Bf = F .
Therefore F ∈ F2(Cm, C�Cm). ��

6 A Dictionary for the Segal–Bargmann Transform

In this section, we want to give a series representation for the Segal–Bargmann
transform B on the right Clifford-module L2(Rm, C�Rm). By demonstrating that this
representation converges absolutely locally uniformly, we will show that Bf is well-
defined and can be represented in kernel form. We work close to R. Bardenet and A.
Hardy [3], who have shown similar characteristics of the classical Segal–Bargmann
transform on L2(Rm,R) and other transforms.

For the rest of this section, we will shorten our notation by writing
L2 = L2(Rm, C�Rm), F2 = F2(Cm, C�Cm), 〈·, ·〉F2 = 〈·, ·〉

L2(Cm, e
−|z|2
πm

,C�Cm)
and

‖ · ‖F2 = ‖ · ‖
L2(Cm, e

−|z|2
πm

,C�Cm)
.

Since the set
{
φl,k,j

}
l,k∈N0,j∈{1,...,dim(M+

l (k))} of Hermite functions

φl,k,j (x) = 1√
γl,k

Hl,m,k(x)P
(j)
k (x)e−

|x|2
4 (6.1)

is a basis of L2, see Sect. 3, each Clifford algebra-valued square integrable function
f (x) can be expanded as

f (x) =
∞∑

l=0

∞∑

k=0

dim(M+
l (k))∑

j=1

φl,k,j (x)〈φl,k,j , f 〉L2 .

Hence,

(Bf )(z)

= 1√
2π

m

∫

Rm

⎛

⎝
∞∑

l=0

∞∑

k=0

dim(M+
l (k))∑

j=1

φl,k,j (x)〈φl,k,j , f 〉L2

⎞

⎠ e−
z·z
2 +x·z− x·x

4 dx
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=
∞∑

l=0

∞∑

k=0

dim(M+
l (k))∑

j=1

⎛

⎝ 1√
2π

m

∫

Rm

φl,k,j (x)e
− z·z

2 +x·z− x·x
4 dx

⎞

⎠ 〈φl,k,j , f 〉L2

=
∞∑

l=0

∞∑

k=0

dim(M+
l (k))∑

j=1

(Bφl,k,j
)
(z)〈φl,k,j , f 〉L2

=
∞∑

l=0

∞∑

k=0

dim(M+
l (k))∑

j=1

1√
γl,k

zlP
(j)
k (z)〈φl,k,j , f 〉L2

=
∞∑

l=0

∞∑

k=0

dim(M+
l (k))∑

j=1

�l,k,j (z)〈φl,k,j , f 〉L2 (6.2)

with �l,k,j (z) = 1√
γl,k

zlP
(j)
k (z).

To be able to show convergence of the series expansion (6.2), we need the
following two lemmas.

Lemma 6.1 Let Ps(z) = ∑
|α|=s

aαz
α be a homogeneous C�Cm-polyomial of degree s,

with aα ∈ C�Cm for all |α| = s. Then

1.
∥∥Ps(z)

∥∥2
F2 = ∑

|α|=s
|aα|20 α!,

2.
∣∣Ps(z)

∣∣2
0 ≤ 1

s!
∥∥Ps(z)

∥∥2
F2

∣∣z
∣∣2s
0 .

Proof

1. We have

∥∥Ps(z)
∥∥2
F2 =

[〈Ps(z), Ps(z)〉F2

]
0 =

1

πm

∫

Cm

[
P †
s (z)Ps(z)

]

0
e−|z|2dx dy

= 1

πm

∫

Cm

⎡

⎣

⎛

⎝
∑

|α|=s
a†
α(z

C)α

⎞

⎠

⎛

⎝
∑

|β|=s
aβz

β

⎞

⎠

⎤

⎦

0

e−|z|2dx dy

= 1

πm

∑

|α|=s

∑

|β|=s

[
a†
αaβ

]

0

∫

Cm

(zC)αzβe−|z|2dx dy.
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We solve the integral by transforming the complex coordinates to polar
coordinates, i.e. zj = rj e

iϕj , j = 1, . . . ,m. Then,

∥∥Ps(z)
∥∥2
F2 = 1

πm

∑

|α|=s

∑

|β|=s

[
a†
αaβ

]

0

∫

[0,∞)m

∫

[0,2π]m
r
α1+β1
1 . . . rαm+βmm

· ei(β1−α1) . . . ei(βm−αm)e−r2
1−···−r2

mr1 . . . rmdϕdr

The integral
∫ ∫

. . . dϕdr is 0 if αj 	= βj for any j = 1, . . . ,m. So, we get

with
∫∞

0 r2n+1e−r2
dr = n

2 ,

∥∥Ps(z)
∥∥2
F2 = 1

πm

∑

|α|=s

[
a†
αaα

]

0
(2π)m

∫

[0,∞)m

r
2α1+1
1 . . . r2αm+1

m e−r2
1−···−r2

mdr

= 2m
∑

|α|=s
|aα|20

m∏

j=1

αj !
2

=
∑

|α|=s
|aα|20α!

2. We use the generalization of the Binomial theorem,

|z|2s0 =
(
|z1|2 + · · · + |zm|2

)s =
∑

|α|=s

s!
α! |z|

2α, (6.3)

and Cauchy-Schwartz (CS) to get

∣∣Ps(z)
∣∣2
0 =

∣∣∣∣∣∣

∑

|α|=s
aαz

α

∣∣∣∣∣∣

2

0

≤
⎛

⎝
∑

|α|=s

∣∣aαzα
∣∣
0

⎞

⎠
2

=
⎛

⎝
∑

|α|=s

√
α!
s! |aα|0

√
s!
α!

∣∣zα
∣∣

⎞

⎠
2

CS≤
⎛

⎝ 1

s!
∑

|α|=s
α! |aα|20

⎞

⎠

⎛

⎝
∑

|α|=s

s!
α!

∣∣zα
∣∣2
⎞

⎠

(i),(6.3)= 1

s!
∥∥Ps(z)

∥∥2
F2

∣∣z
∣∣2s
0 .

��
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Lemma 6.2 Let �l,k,j be defined as in (6.2). Then,

sup
z∈K

∞∑

l=0

∞∑

k=0

dim(M+
l (k))∑

j=1

|�l,k,j (z)|20 <∞

for any compact set K ⊂ Cm.

Proof Let SUP = sup
z∈K

∞∑
l=0

∞∑
k=0

dim(M+
l (k))∑

j=1
|�l,k,j (z)|20. We first note that each

�l,k,j (z) = 1√
γl,k

zlP
(j)

k (z) is a homogeneous C�Cm-polyomial of degree l+k. Hence,

with Lemma 6.1(ii), we get

SUP ≤ sup
z∈K

∞∑

l=0

∞∑

k=0

dim(M+
l (k))∑

j=1

1

(l + k)!
∥∥�l,k,j (z)

∥∥2
F2

∣∣z
∣∣2l+2k
0 .

We know that �l,k,j (z) = (Bφl,k,j
)
(z) (cf. Theorem 5.3 and the proof of

Corollary 5.6) and that

‖Bf ‖2
F2 = 1√

2π
m ‖f ‖2

L2

for all f ∈ L2 (cf. Corollary 5.2). Hence,

∥∥�l,k,j

∥∥2
F2 = 1√

2π
m

∥∥φl,k,j
∥∥2
L2 = 1√

2π
m .

We also know that dim(M+
l (k)) =

(
m+k−2

k

)
, cf. Sect. 2.3. Together, we get

SUP ≤ 1√
2π

m sup
z∈K

∞∑

l=0

∞∑

k=0

(
m+ k − 2

k

)
1

(l + k)!
∣∣z
∣∣2l+2k
0

≤ 1√
2π

m sup
z∈K

( ∞∑

l=0

1

l!
∣∣z
∣∣2l
0

)( ∞∑

k=0

(
m+ k − 2

k

)
1

k!
∣∣z
∣∣2k
0

)

= 1√
2π

m sup
z∈K

( ∞∑

l=0

1

l!
∣∣z
∣∣2l
0

)( ∞∑

k=0

(
m+ k − 2

k

)
1

2mkk!
(

2m
∣∣z
∣∣2
0

)k
)
.
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It can be shown via induction that
(
m+k−2

k

) ≤ 2mk for all k ∈ N0. Hence,

SUP ≤ 1√
2π

m sup
z∈K

( ∞∑

l=0

1

l!
∣∣z
∣∣2l
0

)( ∞∑

k=0

1

k!
(

2m
∣∣z
∣∣2
0

)k
)

= 1√
2π

m sup
z∈K

e|z|20 · e2m|z|20 <∞.

��
We are now fully equipped to show convergence of the series expansion (6.2).

Proposition 6.3 Let φl,k,j be defined as in (6.1) and let�l,k,j be defined as in (6.2).
Then, for each compact set K ⊂ Cm,

sup
z∈K

∣∣∣∣∣∣

∞∑

l=0

∞∑

k=0

dim(M+
l (k))∑

j=1

�l,k,j (z)〈φl,k,j , f 〉L2

∣∣∣∣∣∣
0

<∞.

Proof Let SUM =
∞∑
l=0

∞∑
k=0

dim(M+
l (k))∑

j=1
�l,k,j (z)〈φl,k,j , f 〉L2 . Since | · |0 is submulti-

plicative, we have

|SUM|0 ≤
∞∑

l=0

∞∑

k=0

dim(M+
l (k))∑

j=1

∣∣�l,k,j (z)〈φl,k,j , f 〉L2

∣∣
0

≤
∞∑

l=0

∞∑

k=0

dim(M+
l (k))∑

j=1

∣∣�l,k,j (z)
∣∣
0 ·

∣∣〈φl,k,j , f 〉L2

∣∣
0

We now use Proposition 2.4 and
∥∥φl,k,j

∥∥
L2 = 1, so

|SUM|0 ≤
∞∑

l=0

∞∑

k=0

dim(M+
l (k))∑

j=1

∣∣�l,k,j (z)
∣∣
0 2m

∥∥φl,k,j
∥∥
L2 ‖f ‖L2

= 2m ‖f ‖L2

∞∑

l=0

∞∑

k=0

dim(M+
l (k))∑

j=1

∣∣�l,k,j (z)
∣∣
0

≤ 2m ‖f ‖L2

√√√√√
∞∑

l=0

∞∑

k=0

dim(M+
l (k))∑

j=1

∣∣�l,k,j (z)
∣∣2
0.

Together with Lemma 6.2 the proof is complete. ��
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Proposition 6.3 shows that
∞∑
l=0

∞∑
k=0

dim(M+
l (k))∑

j=1
�l,k,j (z)〈φl,k,j , f 〉L2 is absolutely

convergent locally uniformly in z ∈ Cm. Since Bf is the uniform limit of the triple
sum on every compact subset of Cm, it is well-defined and B can be represented as

(Bf )(z) =
∞∑

l=0

∞∑

k=0

dim(M+
l (k))∑

j=1

�l,k,j (z)〈φl,k,j , f 〉L2

=
∞∑

l=0

∞∑

k=0

dim(M+
l (k))∑

j=1

�l,k,j (z)

∫

Rm

φl,k,j (x)f (x)dx

=
∫

Rm

∞∑

l=0

∞∑

k=0

dim(M+
l (k))∑

j=1

�l,k,j (z)φl,k,j (x)f (x)dx

=
〈 ∞∑

l=0

∞∑

k=0

dim(M+
l (k))∑

j=1

�l,k,j (z)φl,k,j , f

〉

L2

=
〈 ∞∑

l=0

∞∑

k=0

dim(M+
l (k))∑

j=1

φl,k,j�l,k,j (z) , f

〉

L2

.

Thus,

T (x, z) =
∞∑

l=0

∞∑

k=0

dim(M+
l (k))∑

j=1

φl,k,j (x)�l,k,j (z) = 1√
2π

m e
− z·z

2 +x·z− x·x
4

is the kernel of the Segal–Bargmann transform on L2(Rm, C�Rm).
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On the Carathéodory-Fejér Interpolation
Problem for Stieltjes Functions

Vladimir Bolotnikov

Abstract The following Carathéodory-Fejér problem is considered: given a point
x0 < 0 and numbers c0, c1, . . . , cN ≥ 0, to construct a Stieltjes-class function f

such that f j (x0)/j ! = cj for j = 0, 1, . . . , N . The cases where N is odd or even
are quite different. For each case, the solvability criterion is given along with the
parametrization of the solution set in the indeterminate case.

1 Introduction

Stieltjes functions appeared in [30] as continued fractions of certain type and as
Stieltjes transforms of positive measures on R+ = [0,∞). Being special instances
of absolutely monotone, operator monotone, and Pick functions, they have been
extensively studied in various contexts [2, 18–21, 28, 32].

We denote by P the Pick class of functions analytic and with nonnegative
imaginary part in the upper half-plane C+ = {z :  z > 0} and recall that any
such function admits the Nevanlinna–Herglotz representation

f (z) = α + βz+
∫

R

(
1

t − z
− t

1 + t2

)
dμ(t),

∫

R

dμ(t)

1 + t2
<∞, (1.1)

with (uniquely defined by f ) α ∈ R, β ≥ 0 and a positive measure μ subject to the
growth condition as above, and that f ∈ P if and only if the associated kernel

Kf (z, ζ ) := f (z)− f (ζ )

z− ζ
is positive definite (Kf � 0) on C+.
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The Stieltjes class S is defined as the set of all functions f ∈ P that have an analytic
continuation to C\R+ and such that f (x) ≥ 0 for x < 0. Since S ⊂ P , any f ∈ S
is of the form (1.1); the extra condition f |R− ≥ 0 turns out to be equivalent to

supp(μ) ⊂ R+, β = 0 and γ := α −
∫

R+

dμ(t)

t + 1
≥ 0, (1.2)

which eventually (we refer to [17, 21] for details) leads to the following two
characterizations of the class S. The first identifies Stieltjes functions vanishing
at infinity (i.e., with γ = 0) with Stieltjes transforms of positive measures on R+,
while the second one characterizes the class S in terms of two different (although
closely related) positive kernels.

Proposition 1.1 A function f belongs to S if and only if it is of the form

f (z) = γ +
∫

R+
dμ(t)

t − z
, where γ ≥ 0,

∫

R+
dμ(t)

1 + t
<∞. (1.3)

Proposition 1.2 f ∈ S if and only if f ∈ P and zf ∈ P , i.e., the kernels

Kf (z, ζ ) = f (z)− f (ζ )

z− ζ
and K̃f (z, ζ ) = zf (z)− ζf (ζ )

z− ζ
(1.4)

are positive definite on C+.

The remarkable “if” part in the last characterization is due to M. Krein. The “only
if” part follows from Proposition 1.1: for f of the form (1.3), the kernels (1.4) can
be written as

Kf (z, ζ ) =
∫

R+
dμ(t)

(t − z)(t − ζ )
, K̃f (z, ζ ) = γ +

∫

R+
t dμ(t)

(t − z)(t − ζ )
, (1.5)

so that their positivity not only on C+, but on the whole C\R+ is clear, once we
observe that f (z) = f (z), by the reflection principle and define, by continuity,

Kf (z, z) = f ′(z) and K̃f (z, z) = zf ′(z)+ f (z) (z ∈ C\R+).

Restrictions of Stieltjes functions to the negative half-axis R− = (−∞, 0) are
characterized by the integral representation (1.3) restricted to R−. Several intrinsic
real-valued characterizations of the class S|R− are collected in Proposition 1.3
below. We recall that a function f : R− → R is called operator-monotone on
R− if f (A) & f (B) for any two real negative definite matrices A & B ≺ 0, and it
is called absolutely monotone if f (n)(x) ≥ 0 for all n ≥ 0 and x < 0.
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Proposition 1.3 Given f : (−∞, 0)→ R, the following are equivalent:

1. f is the restriction of a Stieltjes function to R−, i.e., it is of the form

f (x) = γ +
∫

R+
dμ(t)

t − x
(x < 0), where γ and μ are as in (1.3). (1.6)

2. f is a nonnegative operator-monotone function on R−.
3. the functions f and xf are operator-monotone on R−.
4. f ∈ C1 and the kernels (1.4) are positive definite on R−.
5. f ∈ C∞ and for each x < 0, the Hankel matrices

H
f
n (x) =

[
f (i+j+1)(x)

(i + j + 1)!

]n−1

i,j=0

, H̃
f
n (x) =

[
xf (i+j+1)(x)

(i + j + 1)! +
f (i+j )(x)
(i + j)!

]n−1

i,j=0

(1.7)

are positive semidefinite for all n ≥ 1.
6. f ∈ C∞ and (xkf (x))(n+k) ≥ 0 for all x < 0 and k, n ≥ 0; equivalently,

n∑

j=0

(
n

j

)
xjf (k+j)(x)
(k + j)! ≥ 0 for all k, n ≥ 0. (1.8)

7. f ∈ C∞, f (x) ≥ 0 and (xkf (x))(2k−1) ≥ 0 for all x < 0 and k ≥ 1.

The equivalence (3)⇔(4) is due to Löwner [24], while (3)⇔(5) was established
by Dobsch [11]. The implication (2)⇒(1) is essentially due to Löwner: if f is
operator monotone on R−, it admits the Nevanlinna–Herglotz representation (1.1)
with supp(μ) ⊂ R+, and the condition f (x) ≥ 0 implies the two other relations
in (1.2) leading to the representation of f as in part (1). We next observe that the
implication (1)⇒(4) follows from representations (1.5) restricted to z, ζ ∈ R−.
Furthermore, if f and xf are both operator-monotone on R−, then their derivatives
are nonnegative on R− and therefore, f (x) = (xf (x))′ − xf ′(x) ≥ 0 for all x < 0,
which justifies (3)⇒(2). The equivalences (1)⇔(6)⇔(7) are due to Widder [32,
Theorem 12.5]; see also [7, 29] for related results.

Note that the equivalence (1)⇔(4) is the real-valued analog of Proposition 1.2.
Inequalities in part (6) mean that the functions (xkf )(k) are absolutely monotone
for all k ≥ 0, thus characterizing the class S within the class of absolutely
monotone functions. Part (7) shows that seemingly weaker conditions still guarantee
an absolutely monotone function to be in the class S.
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Note that the requirement “for all x < 0” in part (7) is essential: for example,
the function f (x) = − ln (−x) does not belong to the Stieltjes class, although it
satisfies conditions f (x) ≥ 0 and (xkf (x))(2k−1) ≥ 0 for k ≥ 1 at each point
x ∈ [− 1

e
, 0), as is readily seen from the formulas

(xf (x))′ = − ln (−x)− 1, (xkf (x)(2k−1) = (−1)k−1 k!(k − 2)!
xk−1 for k ≥ 2.

On the other hand, conditions (1.7) and (1.8) can be (equivalently) restricted to a
single point x0 < 0 providing two characterizations of Stieltjes-class functions in
terms of their Taylor coefficients.

Proposition 1.4 Given a point x0 < 0 and a sequence {ck}k≥0, the power series

f (x) =
∑

j≥0

cj (x − x0)
j (1.9)

extends to a Stieltjes function if and only if the matrices

Hn :=
[
ci+j+1

]n−1
i,j=0 � 0 and H̃n :=

[
x0ci+j+1 + ci+j

]n−1
i,j=0 � 0 (1.10)

are positive semidefinite for all n ≥ 1, or equivalently,

m∑

j=0

(m
j

)
ck+j xj0 ≥ 0 for all k,m ≥ 0. (1.11)

The “only if” part follows from Proposition 1.3. For the “if” part, we refer to Bendat-
Sherman results [3], according to which inequalities (1.10) guarantee that f of the
form (1.7) and the associated function xf are operator-monotone on (2x0, 0) and
hence, extend to Pick functions. Therefore f ∈ S, by Proposition 1.2. Both (1.10)
and (1.11) are equivalent to the existence of a measure dσ ≥ 0 such that

ck =
∫

[0,− 1
x0
]
tkdσ (t) for all k ≥ 0, (1.12)

and hence, they are equivalent to each other. For x0 = −1, inequalities (1.11)
mean that the sequence {ck} is completely monotone; the characterization of such
sequences in terms of a power moment problem over the interval [0, 1] is due to
Hausdorff [15]; we refer to [21] for the general case.

Remark 1.5 Although conditions (1.10) (for all n ≥ 1) and (1.11) are equivalent,
their truncations are not. More precisely,

(1) If (1.10) hold for some n, then inequalities (1.11) hold for all k +m ≤ 2n+ 1.
(2) For any x0 < 0 and N ≥ 1, there exist c0, . . . , cN ∈ R such that

inequalities (1.11) hold for all k +m ≤ N , but H2 =
[
c1 c2
c2 c3

] 	� 0.



Carathéodory-Fejér Problem for Stieltjes Functions 57

For part (2), we take (without loss of generality) x0 = −1 and let cj =
(

2N−j
N

)

for j = 0, . . . , N . Part (1) follows from Theorem 1.6 below and Proposition 1.4.
The proof goes through the Stieltjes-class Carathéodory-Fejér problem CFSN
which we now formally introduce:

CFSN : Given x0 < 0 and c0, . . . , cN ∈ R, find f ∈ S (if exists) of the form (1.9),
i.e., such that

f (k)(x0)

k! = ck for k = 0, . . . , N. (1.13)

This problem was originally studied in [8, 9, 27, 31] for functions analytic on the
open unit disk D and bounded by one in modulus (Schur-class functions) or with
nonnegative real part (Carathéodory-class functions). The classical Stieltjes moment
problem [21, 30] can be viewed as the boundary Carathéodory-Fejér problem at
x0 = −∞. Another boundary case x0 = 0 appears naturally in the context of
the strong Stieltjes moment problem [16, 19, 26]. The problem (1.13) with x0 	∈
R has appeared as a particular example in several general interpolation schemes
[1, 5, 6, 12]. The problem (1.13) with N = 2n − 1 has been specifically addressed
in [4, 14].

Theorem 1.6 The problem CFS2n−1 has a solution if and only if conditions (1.10)
hold. The solution is unique if and only if Hn or H̃n is singular.

Along with the matrices Hn and H̃n, we may consider the Hankel matrix

Pn =
[
ci+j

]n−1
i,j=0 = H̃n − x0Hn, (1.14)

which is positive definite, if at least one of Hn and H̃n is. In the case of the odd
problem CFS2n with given c0, . . . , c2n−1, c2n, we can define not only Hn and H̃n

by formulas (1.10), but also the matrix Pn+1 =
[
ci+j

]n
i,j=0, and all three matrices

Hn, H̃n, Pn+1 being positive semidefinite is necessary for the problem CFS2n to
have a solution. If either Hn or H̃n (or both) are singular, the only solution f of the
truncated problem CFS2n−1 is or is not a solution of the problem CFS2n depending

on whether or not f(2n)(x0)
(2n)! = c2n. The rest is covered below.

Theorem 1.7 Let us assume that Hn � 0, H̃n � 0, Pn+1 � 0. The problem CFS2n

is indeterminate if and only if Pn+1 � 0 and
[
P−1
n+1

]

11
>

[
H̃−1
n

]
11

, and it has a

unique solution if and only if either rankPn+1 = n or Pn+1 � 0 and
[
P−1
n+1

]

11
=

[
H̃−1
n

]
11

.
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The main results concerning the problem CFS2n are recalled in Sect. 2 along with
the parametrization of the solution set in the indeterminate case. Parallel results
concerning the problem CFS2n are presented in Sect. 3, where we also discuss
linear fractional transformations mapping the Stieltjes class into itself. In Sect. 4,
we identify unique solutions of determinate problems CFSN as extremal solutions
of certain truncated Carathéodory-Fejér problems.

2 The Even Case

In this section we present the results concerning the problem CFS2n−1. We first
observe that Hankel matrices Hn and H̃n defined in (1.10) satisfy the identity

H̃n −HnT
∗ = ce∗. (2.1)

where T ∈ Rn×n and c, e ∈ Rn are given by

T =

⎡

⎢⎢⎢⎢⎣

x0 0 . . . 0

1 x0
. . .

...

. . .
. . . 0

0 1 x0

⎤

⎥⎥⎥⎥⎦
, e =

⎡

⎢⎢⎢⎣

1
0
...

0

⎤

⎥⎥⎥⎦ , c =

⎡

⎢⎢⎢⎣

c0

c1
...

cn−1

⎤

⎥⎥⎥⎦ . (2.2)

In the rest of the paper, all functions are real-valued and all matrices are real; by A∗
we will mean the transpose of a real matrix A.

Theorem 2.1 Let us assume thatHn and H̃n are positive definite. Then all solutions
f to the problem CFS2n−1 are given by the formula

f = T� [h] := �11h+�12

�21h+�22
, � =

[
�11 �12

�21 �22

]
, h ∈ S (2.3)

where S := S ∪ {∞} and where �ij are rational functions defined by

�11(x) = 1 + c∗(xI − T ∗)−1T ∗H̃−1
n e, (2.4)

�12(x) = −c∗(xI − T ∗)−1H−1
n c, (2.5)

�21(x) = xe∗(xI − T ∗)−1H̃−1
n e, (2.6)

�22(x) = 1 − e∗(xI − T ∗)−1H−1
n c. (2.7)

Although the result is known, we present a proof emphasizing details needed later
for the odd case CFS2n. The proof consists of four parts.
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Step 1: For any h ∈ S and x < 0, we have ϕ(x) := �21(x)h(x)+ �22(x) 	= 0,
and hence the formula (2.3) makes sense.

Proof Upon applying the well-known inversion formula

(I −XZ−1Y )−1 = I +X(Z − YX)−1Y (2.8)

(I stand for an identity matrix) to (2.7) and making use of identity (2.1) we get

�22(x)
−1 = (1 − e∗(xI − T ∗)−1H−1

n c)−1

= 1 + e∗
[
Hn(xI − T ∗)− ce∗

]−1 c = 1 − e∗
(
H̃n − xHn

)−1c. (2.9)

We next combine (2.9) with (2.6) and again use (2.1) to get

�22(x)
−1�21(x) = x

(
1 − e∗

(
H̃n − xHn

)−1c
)
e∗(xI − T ∗)−1H̃−1

n e

= xe∗
(
H̃n − xHn

)−1 (
H̃n − xHn − ce∗

)
(xI − T ∗)−1H̃−1

n e

= xe∗
(
H̃n − xHn

)−1(
HnT

∗ − xHn

)
(xI − T ∗)−1H̃−1

n e

= −xe∗
(
H̃n − xHn

)−1
HnH̃

−1
n e

= e∗H̃−1
n e− e∗

(
H̃n − xHn

)−1e. (2.10)

If x < 0, then H̃n − xHn � H̃n � 0, and we see from (2.9) and (2.10) that

�22(x) 	= 0 and �21(x)
�22(x)

> 0. Therefore, ϕ(x) = �22(x)
(
�21(x)
�22(x)

h(x)+ 1
)
	= 0 for

any h ∈ S. ��
Let the matrix J and the matrix-function Jx,y be defined as

Jx,y :=
[

0 x−1

−y−1 0

]
, J = J1,1 =

[
0 1
−1 0

]
. (2.11)

Step 2: The function � =
[
�11 �12
�21 �22

]
is J -unitary on R\{x0}, while the kernels

K�,J (x, y) = �(x)J�(y)∗ − J

y − x
, K̃�,J (x, y) = �(x)Jx,y�(y)

∗ − Jx,y

y − x

(2.12)

extended by continuity to x = y by K�,J (x, x) = −� ′(x)J�(x)∗ and

K̃�,J (x, x) = −1

x
� ′(x)J�(x)∗ + 1

x2

[
0 −�12(x)

�21(x) 0

]
J�(x)∗,

are positive definite on R\{x0}.
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Proof All statements follow from the identities

�(x)J�(y)∗ = J + (y − x)

[
c∗
e∗

]
(xI − T ∗)−1H−1

n (yI − T )−1
[
c e

]
, (2.13)

�(x)Jx,y�(y)
∗ = Jx,y + (y − x)

[
1
x

c∗T ∗
e∗

]
(xI − T ∗)−1H̃−1

n (yI − T )−1
[

1
y
T c e

]
.

holding for all x, y ∈ R\{x0} and verified entry-wise by straightforward computa-
tions relying (as in Step 1) solely on the identity (2.1) and explicit formulas (2.4)–
(2.7). Letting y = x in (2.13) we conclude that� is J -unitary on R\{x0}. Therefore,

�(x)−1 = −J�(x)∗J =
[

�22(x) −�12(x)−�21(x) �11(x)

]
, (2.14)

and it is clear from (2.14) that det�(x) = 1 for all x ∈ R\{x0}. Identities (2.13)
provide explicit formulas for the kernels (2.12) which show in particular, sinceHn �
0 and H̃n � 0, that the latter kernels are positive definite on R\{x0} and the rank of
each kernel equals n. ��
Remark 2.2 Upon making use of equalities J 2 = J ∗ = −I2 and (2.14) it is easy
to verify that

�(y)−∗J�(x)−1 = −J�(y)J�(x)∗J.

Combining the latter equality with (2.13) (with x and y switched) we arrive at the
identities

�(y)−∗J�(x)−1

y − x
= J

y − x
−

[
e∗
−c∗

]
(yI − T ∗)−1H−1

n (xI − T )−1
[
e −c

]
,

(2.15)

�(y)−∗Jy,x�(x)−1

y − x
= Jy,x

y − x
−

[
ye∗

−c∗T ∗

]
(yI − T ∗)−1H̃−1

n (xI − T )−1
[
xe −T c

]
,

which will play a crucial role in Step 4 below.

Step 3: For any h ∈ S, the function f = T� [h] belongs to S.

Proof For a fixed h ∈ S, let ϕ = �21h + �22 and f = T� [h]. Then the kernels
Kf , K̃f given in (1.4) and similar kernels Kh, K̃h associated with h are related as
follows:

Kf (x, y) = Kh(x, y)

ϕ(x)ϕ(y)
+ [

1 −f (x)]K�,J (x, y)
[

1−f (y)
]
, (2.16)

K̃f (x, y) = K̃h(x, y)

ϕ(x)ϕ(y)
+ [

1 −f (x)] K̃�,J (x, y)
[

1−f (y)
]
. (2.17)
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Indeed, we see from (2.14) and definitions of ϕ and f , that

[
1 −h]�−1 = ϕ

[
1 −f ] . (2.18)

Then we compute

Kf (x, y) =
[
1 −f (x)

] J

x − y

[
1

−f (y)

]

=
[
1 −f (x)

]
K�,J (x, y)

[
1

−f (y)

]
+

[
1 −f (x)

] �(x)J�(y)∗

x − y

[
1

−f (y)

]
,

and note that the second term on the right equals, on account of (2.18), to

ϕ(x)−1 [1 −h(x)] J

x − y

[
1

−h(y)
]
ϕ(y)−1 = Kh(x, y)

ϕ(x)ϕ(y)
,

which justifies (2.16). The equality (2.17) is verified similarly.
Since h ∈ S, the kernels Kh and K̃h are positive on R−. Since the kernels

K�,J and K̃�,J are positive on R\{x0} and ϕ is continuous and non-vanishing on
R−\{x0}, it follows from (2.16) and (2.17) that the kernels Kf and K̃f are positive
definite on R−\{x0} and hence (by the Chandler’s result [10]), they are positive on
the whole R−. Therefore, f ∈ S, by Proposition 1.3.

Finally, the function fK = T� [∞] = �11
�21

belongs to S, due to relations

KfK (x, y) =
[
1 −fK(x)

]
K�,J (x, y)

[
1−fK(y)

]
� 0, (2.19)

K̃fK (x, y) =
[
1 −fK(x)

]
K̃�,J (x, y)

[
1−fK(y)

]
� 0,

which are easily verified. ��
Step 4: Any f ∈ S satisfying conditions (1.13) is of the form (2.3) for some

h ∈ S .

We will handle this part using the intermediate step characterizing solutions of
an interpolation problem in terms of “extended” positive kernels. This approach
goes back to Potapov’s method of Fundamental Matrix Inequalities which in the
Stieltjes-class context first appeared in the series of papers [13].

Lemma 2.3 If f ∈ S satisfies conditions (1.13) then the kernels

[
Hn (xI − T )−1 (ef (x)− c)

(f (y)e∗ − c∗) (yI − T ∗)−1 Kf (x, y)

]
� 0, (2.20)

[
H̃n (xI − T )−1 (xef (x)− T c)

(yf (y)e∗ − c∗T ∗) (yI − T ∗)−1 K̃f (x, y)

]
� 0, (2.21)
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(where Kf , K̃f , T , e, c are defined in (1.4), (2.2)) are positive on R−. If moreover,
Hn and H̃n are positive definite, then f is of the form (2.3) for some h ∈ S.

Proof If f ∈ S satisfies conditions (1.13), then it admits the Herglotz representa-
tion (1.6) in terms of which conditions (1.13) can be written as

γ +
∫

R+

dμ(t)

t − x0
= f0,

∫

R+

dμ(t)

(t − x0)k+1 = fk (k = 1, . . . , 2n− 1). (2.22)

We next combine (2.22) with the equality

(xI − T )−1e =

⎡

⎢⎢⎢⎢⎢⎣

1
x−x0

0 . . . 0

1
(x−x0)2

1
x−x0

. . .
...

...
. . .

. . . 0
1

(x−x0)
n . . . 1

(x−x0)2
1

x−x0

⎤

⎥⎥⎥⎥⎥⎦

⎡

⎢⎢⎢⎢⎢⎣

1
0
...

0
0

⎤

⎥⎥⎥⎥⎥⎦
=

⎡
⎢⎢⎢⎢⎣

1
x−x0

1
(x−x0)2

...
1

(x−x0)n

⎤
⎥⎥⎥⎥⎦

to represent Hn, H̃n and c in the compact integral form as follows:

Hn =
∫

R+
(tI − T )−1e dμ(t) e∗(tI − T ∗)−1, (2.23)

H̃n =
∫

R+
(tI − T )−1e tdμ(t) e∗(tI − T ∗)−1 + eγ e∗, (2.24)

c =
∫

R+
(tI − T )−1e dμ(t)+ eγ. (2.25)

We next consider two positive kernels defined by the integrals

∫

R+

[
(tI − T )−1e

1
t−y

]
dμ(t)

[
e∗(tI − T ∗)−1 1

t−x
]
� 0, (2.26)

[
e
1

]
γ
[
e∗ 1

]+
∫

R+

[
(tI − T )−1e

1
t−y

]
tdμ(t)

[
e∗(tI − T ∗)−1 1

t−x
]
� 0 (2.27)

and show that these kernels coincide with those in (2.20) and (2.21). The diagonal
entries are indeed the same, by (2.23), (2.24) and formulas (1.5) restricted to x, y ∈
R−. Multiplying the identity

(t − x)−1(tI − T )−1 = (xI − T )−1
(
(t − x)−1I − (tI − T )−1

)
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by e on the right and integrating the resulting equality against the measure μ, we
get, on account of (1.6) and (2.25),

∫

R+
(tI − T )−1e

dμ(t)

t − x
= (xI − T )−1 (ef (x)− c) . (2.28)

Representing t
t−x as t

t−x = x
t−x + 1 and making use of (2.28) we get

∫

R+
(tI − T )−1e

tdμ(t)

t − x
= x(xI − T )−1 (ef (x)− c)+

∫

R+
(tI − T )−1e dμ(t)

= (xI − T )−1 (xef (x)− T c)− eγ. (2.29)

Equalities (2.28) and (2.29) confirm that the off-diagonal entries in kernels (2.26)
and (2.27) are the same as those in (2.20) and (2.21). Since the kernels (2.26) are
positive definite, the first statement of the lemma follows.

To justify the second statement, we assume that Hn � 0 and H̃n � 0 and observe
that the Schur complements of these blocks in positive kernels (2.20), (2.21) are also
positive kernels on R−:

Kf (x, y)−
(
f (y)e∗ − c∗

)
(yI − T ∗)−1H−1

n (xI − T )−1 (ef (x)− c) � 0,
(2.30)

K̃f (x, y)−
(
yf (y)e∗ − c∗T ∗

)
(yI − T ∗)−1H̃−1

n (xI − T )−1 (xef (x)− T c) � 0.

Making use of the matrices (2.11), we can rewrite inequalities (2.30) as

[
f (y) 1

] { J

y − x
−

[
e∗
−c∗

]
(yI − T ∗)−1H−1

n (xI − T )−1 [e −c
]} [

f (x)

1

]
� 0,

[
f (y) 1

] { Jy,x

y − x
−

[
ye∗

−c∗T ∗
]
(yI − T ∗)−1H̃−1

n (2.31)

× (xI − T )−1 [xe −T c
] } [

f (x)

1

]
� 0,

and furthermore, on account of identities (2.15), as

[
f (y) 1

] �(y)−∗J�(x)−1

y − x

[
f (x)

1

]
� 0 (x, y ∈ R−), (2.32)

[
f (y) 1

] �(y)−∗Jy,x�(x)−1

y − x

[
f (x)

1

]
� 0 (x, y ∈ R−). (2.33)
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If we define differentiable functions u, v : R− → R by

[
u

v

]
:= �−1

[
f

1

]
=

[
�12f −�12

�11 − �21f

]
, (2.34)

then the kernels (2.32) and (2.33) can be written in terms of u and v as

Ku,v(x, y) := u(x)v(y)− v(x)u(y)

x − y
� 0, (2.35)

K̃u,v(x, y) = xu(x)v(y)− yv(x)u(y)

x − y
� 0. (2.36)

If v(x) 	= 0 for all x < 0, then the function h = u

v
is well defined on R−, and it

follows from (2.34) that f = T� [h]. Furthermore, h ∈ S, since the kernels

Kh(x, y) = Ku,v(x, y)

v(x)v(y)
and K̃h(x, y) = K̃u,v(x, y)

v(x)v(y)

are positive definite on R−. If v(t) = 0 for some t < 0, then

Ku,v(t, t) = u′(t)v(t) − u(t)v′(t) = −u(t)v′(t) ≥ 0,

K̃u,v(t, t) = (tu′(t)+ u(t))v(t) − tu(t)v′(t) = −tu(t)v′(t) ≥ 0.

Since t < 0 and u(t) 	= 0 (by (2.34)), the two latter inequalities imply v′(t) = 0.
Then Ku,v(t, t) = 0 and, since the kernel Ku,v is positive on R−, we also have
Ku,v(x, t) = 0 for all x < 0, which implies that v(x) = 0 for all x < 0. In this case,
we conclude from (2.34) that f = �11

�21
= fK = T� [∞]. ��

Step 4: For any h ∈ S, the function f = T� [h] satisfies interpolation
conditions (1.13) for k = 0, . . . , 2n− 1.

We first write the linear fractional formula (2.3) in the Redheffer form.

Remark 2.4 Let Hn � 0 and H̃n � 0 be subject to equality (2.1) and let �ij be
defined as in (2.4)–(2.7). Then (2.3) can be written as

f = �11h+�12

�21h+�22
= fF + ϒ2

1h

1 +ϒ2h
(2.37)
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where

fF (x) = �12(x)�22(x)
−1 = c∗

(
H̃n − xHn

)−1c, (2.38)

ϒ1(x) = �22(x)
−1 = 1 − e∗

(
H̃n − xHn

)−1c, (2.39)

ϒ2(x) = �22(x)
−1�21(x) = e∗H̃−1

n e− e∗
(
H̃n − xHn

)−1e, (2.40)

Indeed, it is readily seen that

�11h+ �12

�21h+ �22
= �12

�22
+ h ·�−2

22 · det�

�−1
22 �21h+ 1

,

and since det� ≡ 1, the latter equality justifies the representation (2.37) with fF ,
ϒ1 and ϒ2 defined by the first equalities in (2.38)–(2.40). The second equalities
in (2.39) and (2.40) were confirmed in (2.9) and (2.10), respectively. The second
equality in (2.38) follows by combining (2.10) and (2.5) and making use of (2.1):

�12(x)�22(x)
−1 = −c∗(xI − T ∗)−1H−1

n c
(
1 − e∗

(
H̃n − xHn

)−1c
)

= c∗(xI − T ∗)−1H−1
n

(
xHn − H̃n + ce∗

)(
H̃n − xHn

)−1c

= c∗(xI − T ∗)−1H−1
n (xHn −HnT

∗)
(
H̃n − xHn

)−1c

= c∗
(
H̃n − xHn

)−1c,

In what follows, ek will denote the k-th column of the identity matrix In. We also
recall the Hankel matrix Pn = H̃n − x0Hn (see (1.14)) which is positive definite, if
Hn and H̃n are.

Lemma 2.5 If the matrix Pn is positive definite, then

(1) The function fF given by (2.38) admits the Taylor expansion

fF (x) = c0 + . . .+ c2n−1(x − x0)
2n−1 +

∞∑

k=0

e∗nHn(P
−1
n Hn)

k+1en(x − x0)
2n+k.

(2.41)

(2) The function ϒ1 given by (2.39) admits the Taylor expansion

ϒ1(x) = −(x − x0)
ne∗1P−1

n Hnen −
∞∑

k=n+1

(x − x0)
ke∗1(P−1

n Hn

)k−n+1en.

(2.42)
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Furthermore, ϒ1 has zero of multiplicity n at x0 and does not have other zeros
if and only if e∗1P−1

n Hnen 	= 0 ⇐⇒ Hn � 0. Otherwise, ϒ1 ≡ 0.
(3) The function ϒ2 given by (2.40) admits the Taylor expansion

ϒ2(x) = e∗1H̃−1
n e1 − e∗1P−1

n e1 −
∞∑

k=1

e∗1(P−1
n Hn

)k
P−1
n e1(x − x0)

k. (2.43)

Proof Making us of the identity H̃n = Pn + x0Hn, we compute the Taylor series
expansion of the rational matrix-function (H̃n − xHn)

−1 at x0:

(H̃n − xHn)
−1 = (

Pn − (x − x0)Hn

)−1 (2.44)

= (
I − (x − x0)P

−1
n Hn

)−1
P−1
n =

∞∑

k=0

(x − x0)
k(P−1

n Hn

)k
P−1
n .

Upon multiplying both parts in (2.44) by e∗1 on the left and by e1 on the right, and
substituting the outcome into (2.40) we arrive at (2.43). We next multiply both parts
in (2.44) c = Pne1 on the right:

(H̃n − xHn)
−1c =

∞∑

k=0

(x − x0)
k(P−1

n Hn

)ke1. (2.45)

Since the k-th column of Hn is equal to the (k + 1)-th column of Pn, we have

P−1
n Hnek = ek+1 for k = 1, . . . , n− 1, (2.46)

from which we recursively get

(P−1
n Hn)

k−1e1 = ek for k = 1, . . . , n. (2.47)

Multiplying the latter equalities and (2.45) by e∗1 on the left and substituting the
resulting equalities into (2.39) we get

ϒ1(x) = 1 −
∞∑

k=0

(x − x0)
ke∗1(P−1

n Hn

)ke1

= 1 −
n−1∑

k=0

e∗1ek(x − x0)
k −

∞∑

k=n
(x − x0)

ke∗1(P−1
n Hn

)k−n+1en

= −(x − x0)
ne∗1P−1

n Hnen −
∞∑

k=n+1

(x − x0)
ke∗1(P−1

n Hn

)k−n+1en,

(2.48)
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which verifies (2.42). Thus, ϒ1 is a rational function of degree at most n (by (2.39))
and has zero of multiplicity at least n at x0 (by (2.42)). Therefore, either we have
equalities in both cases, and hence, e∗1P−1

n Hnen 	= 0 and ϒ1(x) 	= 0 for all x 	= x0,
orϒ1 ≡ 0. On the other hand, n−1 leftmost columns inHn are linearly independent,
by (2.46). Thus, Hn is singular if and only if Hnen is a linear combination of
Hne1, . . . , Hnen−1, which is equivalent (again by (2.46)) to e∗1P−1

n Hnen = 0. If
so, ϒ1 ≡ 0, by (2.48). This completes the proof of part (2).

We next multiply the equality(2.45) by c∗ = e∗1Pn on the left, arriving, on account
of (2.38), at

fF (x) =
∞∑

k=0

(x − x0)
ke∗1Pn(P−1

n Hn

)ke1.

To complete the proof, it remains to verify that

e∗1Pn(P−1
n Hn

)ke1 = ck for k = 0, . . . , 2n− 1 (2.49)

and

e∗1Pn
(
P−1
n Hn

)2n+ke1 = e∗n(HnP
−1
n )k+1Hnen for all k ≥ 0. (2.50)

Multiplying equalities (2.47) by e∗1Pn on the left we get

e∗1Pn
(
P−1
n Hn

)k−1e1 = e∗1Pnek = ck−1 for k = 1, . . . , n,

verifying the first n equalities in (2.49). Taking adjoints in (2.47) we get

e∗1(HnP
−1
n )k−1 = e∗k,

which being combined with (2.47) (for k = n) leads us to

e∗1Pn
(
P−1
n Hn

)n+j e1 = e∗1Pn
(
P−1
n Hn

)j+1en

= e∗1(HnP
−1
n )jHnen = e∗j+1Hnen = cn+j

for j = 0, . . . , n − 1, thus confirming the remaining equalities in (2.49). We next
pursue the last calculation for j = n+ k as follows:

e∗1Pn
(
P−1
n Hn

)2n+ke1 = e∗1(HnP
−1
n )n+kHnen = e∗n(HnP

−1
n )k+1Hnen,

thus arriving at (2.42). ��
We now complete Step 4: If Hn � 0, then H̃−1

n � (H̃n − xHn)
−1 for all x < 0,

and hence we see from the formula (2.40) that ϒ2(x) > 0 for all x < 0. By part (2)



68 V. Bolotnikov

in Lemma 2.5, ϒ1 has zero of multiplicity n at x0. Therefore, we have

ϒ2
1 (x)h(x)

1 +ϒ2(x)h(x)
= O((x − x0)

2n)

for any h ∈ S , Therefore, for any f of the form (2.37), f (k)(x0) = f
(k)
F (x0) for

k = 0, . . . , 2n− 1, which, due to (2.41), completes Step 4.
Combining Remark 2.4 and Lemma 2.5 leads us to the following result.

Lemma 2.6 Let f be of the form (2.37) for some h ∈ S. Then

f (2n)(x0)

(2n)! = α + β2h(x0)

1 + δh(x0)
, where (2.51)

α = e∗nHnP
−1
n Hnen, β = e∗1P−1

n Hnen, δ = e∗1H̃−1
n e1 − e∗1P−1

n e1. (2.52)

Proof By formulas (2.41), (2.42) and (2.43),

fF (x) = c0 + . . .+ c2n−1(x − x0)
2n−1 + α(x − x0)

2n +O((x − x0)
2n+1),

ϒ1(x) = −β(x − x0)
n +O((x − x0)

n+1), ϒ2(x) = δ +O((x − x0)).

(2.53)

Substituting the latter expansions into (2.37) we get the Taylor expansion for f of
the form (2.37) at x0:

f (x) = c0 + . . .+ c2n−1(x − x0)
2n−1 +

(
α + β2h(x0)

1 + δh(x0)

)
(x − x0)

2n

+O((x − x0)
2n+1, (2.54)

which implies (2.51). ��

2.1 Extremal Solutions

Let Sol(CFS2n−1) denote the set of all solutions to the problem CFS2n−1. The
functions fF = T� [0] = �12

�22
and fK = T� [∞] = �11

�21
are extremal elements of

this set in the following sense.

Proposition 2.7 For any f ∈ Sol(CFS2n−1) different from fF and fK ,

fF (x) < f (x) < fK(x) for all x < 0 (x 	= x0), (2.55)

f
(2n)
F (x0) < f (2n)(x0) < f

(2n)
K (x0). (2.56)
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Furthermore, {f (x) : f ∈ Sol(CFS2n−1)} = [fF (x), fK(x)] for each fixed x < 0,
and {f (2n)(x0) : f ∈ Sol(CFS2n−1)} = [f (2n)F (x0), f

(2n)
K (x0)].

Proof We first observe the equalities

fF (x)+ ϒ2
1 (x)

ϒ2(x)
= fK(x) and

f
(2n)
K (x0)

(2n)! = α + β2

δ
,

which follow, by (2.52), upon letting h ≡ ∞ in (2.37) and (2.51), respectively. Since
all solutions of the problem CFS2n−1 are parametrized by the formula (2.37) and
since the value h(x) of the parameter h ∈ S at x varies in R+, it suffices to verify
that for any fixed x < 0, the function

y $→ fF (x)+ ϒ2
1 (x)y

1 +ϒ2(x)y

maps (0,∞) onto (fF (x), fK(x)). This is indeed the case, since ϒ2(x) > 0 and
ϒ1(x) 	= 0, by Lemma 2.5, The proof of (2.56) is similar: due to formula (2.51),

it suffices to show that the function y $→ α + β2y
1+δy

maps bijectively (0,∞) onto

the interval (α, α + β2

δ
) = (f (2n)F (x0)

(2n)! ,
f
(2n)
K (x0)

(2n)!
)
. This is again the case, since δ =

ϒ2(x0) > 0 and β 	= 0, by Lemma 2.5. ��
We conclude this section with another feature of extremal solutions.

Remark 2.8 The only f ∈ Sol(CFS2n−1) for which the extended Hankel matrices
H

f

n+1(x0) and H̃ f

n+1(x0) (see (1.7)) are both singular, are f = fF and f = fK .

Proof Relations (2.30) show that the kernels KfF and K̃fF are of rank n each and

hence, the extended Hankel matrices HfK
n+1(x0) and H̃ fK

n+1(x0) are both singular. It
follows from integral representations (2.26) and (2.27) that the ranks of the matrix-
valued kernels (2.20) and (2.21) are equal to the ranks of the kernels Kf and K̃f ,
respectively. Then by the Schur complement argument as in the proof of Lemma 2.3,
we conclude that

rankKf = n+ rankKh, rankK̃f = n+ rankK̃h, if f = T� [h], h ∈ S.
(2.57)

If the matrices HfK
n+1(x0) and H̃

fK
n+1(x0) are singular, then Kh = K̃h ≡ 0, which

hold true only for h ≡ 0. ��

3 The Odd Case

We now consider the problem CFS2n with given c0, . . . , c2n. We still assume that
Hn � 0 and H̃n � 0 so that the matrix Pn (1.14) is also positive definite. In the
present case (that is with the given c2n) we can define extended matrix Pn+1 =
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[
ci+j

]n
i,j=0 and the inequality Pn+1 � 0 is another necessary condition for the

problem CFS2n to have a solution. Writing Pn+1 in the block form as

Pn+1 =
[

Pn Hnen
e∗nHn c2n

]
=

[
In 0

e∗nHnP
−1
n 1

] [
P−1
n 0
0 c2n−e∗1HnP

−1
n Hnen

] [
In P−1

n Hnen
0 1

]
,

and making use of α defined in (2.52), we see that Pn+1 � 0 if and only if

c2n − e∗nHnP
−1
n Hnen = c2n − α ≥ 0 (3.1)

and that Pn+1 � 0 if and only if the inequality (3.1) is strict. In the latter case, we
write P−1

n+1 in the block form

P−1
n+1 =

[
In −P−1

n Hnen
0 1

][
P−1
n 0
0 1

c2n−α

][
In 0

−e∗nHnP
−1
n 1

]
� 0,

and compute its leading entry in terms of α,β, δ defined in (2.52):

[
P−1
n+1

]

11
= [

e∗1 −e∗1P−1
n Hnen

]
[
P−1
n 0
0 1

c2n−α

][
e1

−e∗nHnP
−1
n e1

]

= e∗1P−1
n e1 + β2

c2n − α
= [

H̃−1
n

]
11
+ β2

c2n − α
− δ.

The latter equality shows that if c2n − α > 0 (i.e., Pn+1 � 0), then

c2n ≤ α + β2

δ
⇐⇒ [

H̃−1
n

]
11
≤

[
P−1
n+1

]

11
.

Theorem 3.1 If Hn � 0 and H̃n � 0, then the problem CFS2n is indeterminate if

and only if Pn+1 � 0 and
[
P−1
n+1

]

11
>

[
H̃−1
n

]
11

or equivalently, if and only if

α < c2n < α + β2

δ
, (3.2)

where α,β, δ are defined in (2.52). The problem is determinate if and only if
either

(1) c2n = α (i.e., rankPn+1 = n), in which case the unique solution of the problem
is fF = �12

�22
. or

(2) c2n = α + β2

δ
(i.e., Pn+1 � 0 and

[
P−1
n+1

]

11
= [

H̃−1
n

]
11

), in which case the

unique solution is fK = �11
�21

.
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Proof Solving the Eq. (2.52) for h(x0) and replacing f (2n)(x0)
(2n)! by c2n, we then

combine Theorem 2.1, Remark 2.4, and Lemma 2.6 to conclude: ��
Remark 3.2 A function f is a solution to the problem CFS2n if and only if it is of
the form (2.37) for some h ∈ S subject to the interpolation condition

h(x0) = h0 := c2n − α

β2 − δ(c2n − α)
. (3.3)

If c2n = α, then (3.3) amounts to h(x0) = 0 which implies h ≡ 0 and hence, the
function fF given by (2.38) is a unique solution to the problem CFS2n. Similarly,

the equality c2n = α+ β2

δ
forces h ≡ ∞ and consequently fK be the unique solution

to the problem CFS2n. For any c2n subject to strict inequalities (3.2), the expression
on the right side of (3.3) defines a positive number, so that condition (3.3) is satisfied
by infinitely many h ∈ S and the consequently, the problem CFS2n has infinitely
many solutions. Equivalent formulations of all statements in terms of Pn+1 and H̃n

follow from the discussion preceding the theorem.

3.1 Schwarz-Pick Theorems

To get a parametrization of the set Sol(CFS2n) in the indeterminate case, we need to
describe all functions h ∈ S subject to the sole interpolation condition (3.3). As was
pointed out in [27] in the Schur-class setting, such a description can be derived from
the Schwarz-Pick theorem. The Stieltjes-class real-valued Schwarz-Pick theorem is
the following.

Theorem 3.3 Let f be a non-zero Stieltjes function. Then for every x0 < 0, the
function

g(x) = f (x)− f (x0)

xf (x)− x0f (x0)
(3.4)

belongs to the extended Stieltjes class S .

Proof We start with trivial cases. If f (x) ≡ γ ≥ 0 or f (x) = −α
x

for some α > 0,
then the holds true with g ≡ 0 and g ≡ ∞, respectively. In all other cases,

c0 := f (x0) > 0, c1 := f ′(x0) > 0, p := x0c1 + c0 > 0.

Considering f as a solution of the interpolation problem CFS1 we observe that in
this case H1 = c1, H̃1 = p, T = x0, c = c0, e = 1, so that formulas (2.4)–(2.7)
amount to

�11 = px − c1x
2
0

(x − x0)p
, �12 = − c2

0

(x − x0)c1
, �21 = x

(x − x0)p
, �22 = c1x − p

(x − x0)c1
.
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By Theorem 2.1, f admits the representation (2.3), i.e.,

f (x) = �11h+�12

�21h+�22
= (x − c1p

−1x2
0)h(x)− c2

0c
−1
1

p−1xh(x)+ x − pc−1
1

for some h ∈ S̃.
(3.5)

Straightforward calculations (relying on the equality p = x0c1 + c0 only) show that
for f of the form (3.5),

f (x)− f0

x − x0
= x0c1p

−1h(x)− c0

p−1xh(x)+ x − pc−1
1

,

xf (x)− x0f0

x − x0
= xh(x)− c0pc

−1
1

p−1
1 xh(x)+ x − pc−1

1

.

The ratio of the two latter equalities equals

g(x) = f (x)− f (x0)

xf (x)− x0f (x0)
= x0c1p

−1h(x)− c0

xh(x)− c0pc
−1
1

, h ∈ S. (3.6)

If h = ∞, then g(x) = x0c1

px
belongs to S (since x0c1

p
< 0). Otherwise, we compute

for g given by (3.6) and arbitrary x, y ∈ R−,

g(x) − g(y)

x − y
= x0c1p

−1(y − x)h(x)h(y) − x0c0(h(x) − h(y)) + c0(xh(x) − yh(y)

v(x)v(y)(x − y)
,

where we have set for short, v(x) := xh(x)− c0pc
−1
1 . The latter equality represents

the kernel Kg in terms of the kernels Kh and K̃h (see (1.4)):

Kg(x, y) = −x0c1p
−1 h(x)h(y)

v(x)v(y)
− x0

v(x)v(y)
Kh(x, y)+ c0

v(x)v(y)
K̃h(x, y).

(3.7)

Since h ∈ S, the kernels Kh and K̃h are positive definite on R−. Since c0, c1, p are
positive and x0 is negative, the kernel Kg(x, y) in (3.7) is positive definite on R−
as the sum of three positive definite kernels. Therefore, g is operator-monotone on
R−. Since h(x) ≥ 0 for all x < 0 (as h ∈ S), it follows from (3.6) that g(x) > 0 for
all x < 0. Therefore, g ∈ S. ��
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Corollary 3.4 Given x0 < 0 and c0 > 0, all functions f ∈ S such that f (x0) = c0
are parametrized by the formula

f (x) = c0 · x0g(x)− 1

xg(x)− 1
(3.8)

with free parameter g ∈ S.

Proof If f ∈ S and f (x0) = c0, then the function

g(x) = f (x)− c0

xf (x)− x0c0

belongs to S, by Theorem 3.3, Solving the latter equality for f gives (3.8).
Conversely, if g is any nonnegative function on R−, the formula (3.8) defines f
which is positive on R− and satisfies f (x0) = c0. For f defined as in (3.8) we have

f (x)− f (y)

x − y
= c0

v(x)v(y)

(
−x0g(x)g(y)− x0

g(x)− g(y)

x − y
+ xg(x)− yg(y)

x − y

)
,

where we let v(x) = xg(x)− 1. In other words,

Kf (x, y) = c0

v(x)v(y)

(−x0g(x)g(y)− x0Kg(x, y)+ K̃g(x, y)
)
. (3.9)

Since g ∈ S, the kernelsKg and K̃g are positive on R−. Since x0 < 0 and c0 > 0, it
now follows from (3.9) that the kernel Kf is positive on R−. Hence, f is a positive
operator-monotone function on R− and therefore, f ∈ S. It remains to note that
g ≡ ∞ leads via formula (3.8) to the constant Stieltjes function f ≡ c0. ��
A slightly different parametrization of the set Sol(CFS0) was established in [22]
using essentially complex-analytic approach. Note that the complex analog of
Theorem 3.3 fails to be true: if f is a Stieltjes function extended to C+\R+ and
x0 is not real, then the function g defined in (3.4) does not belong to S. It can be
shown, however, that for f ∈ S (such that both f and zf are not constant functions)
there exists h ∈ S such that

f (z)− f (z0)

zf (z)− z0f (z0)
= 1

d
· z0h(z)− df (z0)

zh(z)− df (z0)
, d = z0f (z0)− z0f (z0)

f (z0)− f (z0)
> 0.

(3.10)

The latter relation is quite different from (3.4): if we let z = x ∈ R− and z0 = x0+iε
in (3.10) and then take the limits as ε → 0, we get

f (x)− f (x0)

xf (x)− x0f (x0)
= 1

d
· x0h(x)− df (x0)

xh(x)− df (x0)
, d = x0f

′(x0)+ f (x0)

f ′(x0)
.
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3.2 Parametrization of Sol(CFS2n)

By Corollary 3.4, all functions h ∈ S subject to condition (3.3) are parametrized by
the linear fractional formula

h = T�[g], g ∈ S, �(x) =
[
x0 −1

xh−1
0 −h−1

0

]
. (3.11)

Combining (3.11) with Remark 3.2 and taking into account that T� ◦ T� = T��,
we get the following result.

Theorem 3.5 Assume that Hn, H̃n, Pn+1 are positive definite and ẽ∗1P
−1
n+1̃e1 >

e∗1H̃−1
n e1. Then all solutions f to the problem CFS2n are given by the formula

f = TA[g] := A11g + A12

A21g + A22
, g ∈ S, A =

[
A11 A12

A21 A22

]
= �� (3.12)

where � and � are given in (2.3) and (3.11), respectively.

3.3 Extremal Solutions

We now consider the extremal solutions fF = TA[0] and fK = TA[∞] of the
problem CFS2n. Since T�[0] ≡ h0 and T�[∞] = x0h0

x
by (3.11) (where h0 is

given by (3.3)), we have

fF = T� [T�[0]] = T� [h0] = fF + ϒ2
1

h−1
0 +ϒ2

, (3.13)

fK = T� [T�[∞]] = T�

[
x0h0

x

]
= fF + ϒ2

1
x
x0
h−1

0 +ϒ2
, (3.14)

where the rightmost equalities in both formulas follow from (2.37). Combin-
ing (3.13) and (3.14) gives

fK = fF −
(x − x0)h

−1
0 ϒ2

1

(h−1
0 + ϒ2)(xh

−1
0 + x0ϒ2)

. (3.15)
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More generally, letting h = T�[g]) in (2.37) leads the Redheffer type version of the
parametrization formula (3.12):

f = A11g + A12

A21g + A22
= fF +

(x − x0)ϒ
2
1h

−1
0 g

(h−1
0 + ϒ2)2

(
1 − xh−1

0 +x0ϒ2

h−1
0 +ϒ2

g

) (3.16)

The next proposition is the “odd” counter-part of Proposition 2.7

Proposition 3.6 For any f ∈ Sol(CFS2n) different from fF and fK ,

fF (x) < f (x) < fK(x) for all x > x0, (3.17)

fK(x) < f (x) < fF (x) for all x < x0, (3.18)

f
(2n+1)
F (x0) < f (2n+1)(x0) < f

(2n+1)
K (x0). (3.19)

Furthermore, {f (2n+1)(x0) : f ∈ Sol(CFS2n+1)} = [f(2n)F (x0), f
(2n+1)
K (x0)], and,

for each fixed x < 0, {f (x) : f ∈ Sol(CFS2n)} is the open interval with the
endpoints fF (x) and fK(x).

Proof Since for any fixed x < 0, the function

y $→ ϒ2
1h

−1
0 y

(h−1
0 +ϒ2)2

(
1 − xh−1

0 +x0ϒ2

h−1
0 +ϒ2

y

)

maps (0,∞) onto

(
0,− ϒ2

1h
−1
0

(h−1
0 +ϒ2)(xh

−1
0 +x0ϒ2)

)
, the inequalities (3.17) and (3.18)

follow from (3.15) and (3.16). Making use of Taylor expansions (2.53), we
differentiate equalities (3.15) and (3.16) at x0 to get

f
(2n+1)
K (x0)

(2n+ 1)! = f
(2n+1)
F (x0)

(2n+ 1)! −
β2h−1

0

x0(h
−1
0 + ϒ2(x0))2

, (3.20)

f (2n+1)(x0)

(2n+ 1)! = f
(2n+1)
F (x0)

(2n+ 1)! +
β2h−1

0 g(x0)

(h−1
0 +ϒ2(x0))2(1 − x0g(x0))

, (3.21)

and inequalities (3.19)follow, since 0 <
g(x0)

1−x0g(x0)
< − 1

x0
and since the function

y → y
1−x0y

maps (0,∞) onto (0,− 1
x0
). ��

Remark 3.7 Let fF and fK be the extremal solutions of a (indeterminate) problem

Sol(CFS2n). Then the matrices (see (1.7)) H̃ fF
n+1(x0) and H

fK
n+1(x0) are positive

definite, whereas the matrices H fF
n+1(x0) � 0 and H̃ fK

n+1(x0) � 0 are singular.
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Proof As has been implicitly mentioned in (3.13), (3.14), the extremal functions
fF and fK of various solvable problems Sol(CFS2n) appear as the outcomes of the
linear fractional transformation (2.3) and correspond to parameters h(x) ≡ h0 and
h(x) = x0h0

x
, respectively, where h0 > 0 is defined in (3.3). For h ≡ h0 > 0, we

have Kh ≡ 0 and K̃h ≡ h0. On the other hand, if h = x0h0
x

, then Kh(x, y) = − x0h0
xy

and K̃h ≡ 0. By (2.57),

rankKfF = n = rankK̃fF − 1, rankK̃fK = n = rankKfK − 1,

which imply all desired statements. ��

3.4 Linear Fractional Transformations Mapping the Extended
Stieltjes Class into Itself

In this section we discuss three particular examples of linear fractional transforma-
tions mapping S into itself and embed them into a more general setting. We start
with the following observation.

Proposition 3.8 Let � =
[
�11 �12
�21 �22

]
be a rational 2 × 2 matrix-function with

det� 	≡ 0 and let us assume that the following two kernels are positive on R−:

K�,J (x, y) = a(x)a(y)�(x)J�(y)∗ + b(x)b(y)�(x)Jx,y�(y)
∗ − J

y − x
� 0,

(3.22)

K̃�,J (x, y) = c(x)c(y)�(x)J�(y)∗ + d(x)d(y)�(x)Jx,y�(y)
∗ − Jx,y

y − x
� 0,

(3.23)

where J , Jx,y are defined in (2.11) and where a, b, c, d are rational functions. Then
the transformation T� : h $→ �11h+�12

�21h+�22
maps S into itself.

Proof We first verify h = ∞ and h = 0. If �21 ≡ 0, then �11 	≡ 0, �22 	≡ 0 (since
det� 	≡ 0) and hence, T�[∞] = ∞. Similarly, if �22 ≡ 0, then �12 	≡ 0, �21 	≡ 0,
and hence, T�[0] = ∞. If �21 	≡ 0, then for fK := T�[∞] = �11

�21
, we have

[
1 −fK(x)

]
�(x) = det�(x)

[
0 −1

]
.

Similarly, if �22 	≡ 0, then for the function fF := T�[0] = �12
�22

, we have

[
1 −fF (x)

]
�(x) = det�(x)

�22(x)

[
0 −1

]
.
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It follows from the two last relations and (3.22), (3.23) that the functions f = fK
and f = fF are subject to inequalities

Kf (x, y) =
[
1 −f (x)]K�,J (x, y)

[
1−f (y)

]
� 0,

K̃f (x, y) =
[
1 −f (x)] K̃�,J (x, y)

[
1−f (y)

]
� 0. for f = fK, fF .

The positivity of the latter kernels on R− implies fK, fF ∈ S, by Proposition 1.3.
For any h ∈ S, we now define two differentiable functions u, v : R− → R by
equivalent formulas

[
u

v

]
= �

[
h

1

]
=

[
�11h+�12

�21h+�22

]
⇐⇒ [

v −u]� = det� · [1 −h] . (3.24)

The kernels (2.35) and (2.36) associated with this pair are expressed in terms of the
kernels (3.22) and (3.23) as follows:

Ku,v(x, y) =
[
v(x) −u(x)]K�,J (x, y)

[
v(y)

−u(y)
]

(3.25)

+ det�(x)

(
a(x)Kh(x, y)a(y)+ b(x)

x
K̃h(x, y)

b(y)

y

)
det�(y),

K̃u,v(x, y) = x
[
v(x) −u(x)] K̃�,J (x, y)

[
v(y)

−u(y)
]
y (3.26)

+ det�(x)
(
xc(x)Kh(x, y)c(y)y + d(x)K̃h(x, y)d(y)

)
det�(y).

Indeed, by (2.35) and (3.22),

Ku,v(x, y) =
[
v(x) −u(x)] J

x − y

[
v(y)

−u(y)
]

= [
v(x) −u(x)]K�,J (x, y)

[
v(y)

−u(y)
]

+ [
v(x) −u(x)] a(x)a(y)�(x)J�(y)

∗

x − y

[
v(y)

−u(y)
]

+ [
v(x) −u(x)] b(x)b(y)�(x)Jx,y�(y)

∗

x − y

[
v(y)

−u(y)
]
.
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By (3.24), the second term on the right side equals

a(x) det�(x)
[
1 −h(x)] J

x − y

[
1

−h(y)
]

det�(y)*a(y)

= a(x) det�(x)Kh(x, y) det�(y)a(y)

while the third term equals

b(x) det�(x)
[
1 −h(x)] Jx,y

x − y

[
1

−h(y)
]

det�(y)*b(y)

= b(x) det�(x)

x
K̃h(x, y)

b(y) det�(y)

y
.

Combining the three latter equalities leads us to (3.25). Relation (3.26) is verified
similarly. Since h ∈ S, the kernels Kh and K̃h are positive on R−. Then it follows
from (3.22)–(3.26) that the kernels Ku,v and K̃u,v are positive on R−. As in the
proof of Lemma 2.3, we now conclude that either v(x) 	= 0 for all x < 0 or v ≡ 0.

In the first case, the function T�[h] = u

v
(by (3.24)) belongs to the Stieltjes class,

since the kernels

Ku
v
(x, y) = Ku,v(x, y)

v(x)v(y)
and K̃ u

v
(x, y) = K̃u,v(x, y)

v(x)v(y)

are positive on R−. To consider the remaining case, we assume that

v = �21h+�22 ≡ 0, u = �21h+�22 	≡ 0, h 	≡ 0; (3.27)

the second relation in (3.27) follows from the first, since det� 	≡ 0, and the last
assumption can be made since the case h ≡ 0 has been already handled. We will
show that assumptions (3.27) are not consistent with the kernels (3.22) and (3.23)
be positive.

By (3.27), the kernels (2.35) and (2.36) are equal to zero kernels. The formu-
las (3.25) and (3.26) represent each of these kernels as the sum of three other positive
kernels, from which we conclude that

a(x)Kh(x, x) = c(x)Kh(x, x) = b(x)K̃h(x, x) = d(x)K̃h(x, x) ≡ 0. (3.28)

and that the bottom diagonal entries in K�,J and K̃�,J are also zero kernels.
Therefore, the off-diagonal entries in K�,J and K̃�,J are identical zeros as well:

[
1 0

]
K�,J (x, y)

[
0
1

] ≡ 0,
[
1 0

]
K̃�,J (x, y)

[
0
1

] ≡ 0. (3.29)
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Since h 	≡ 0, at least one of the kernels Kh and K̃h is not the zero kernel. If both of
them are non-zero, then it follows from (3.28) that a = b = c = d ≡ 0, which is
not possible, since in this case, the kernels (3.22) and (3.23) are not positive.

If Kh ≡ 0 and K̃h 	≡ 0, then it follows from (3.28) that b = d ≡ 0, in which case
identities (3.29) can be equivalently written as

a(x)a(y)
(
�11(x)�22(y)−�12(x)�21(y)

)− 1 ≡ 0,

c(x)c(y)
(
�11(x)�22(y)−�12(x)�21(y)

)− 1

x
≡ 0.

Combining the latter two identities give a(x)a(y) ≡ xc(x)c(y) which implies a =
c ≡ 0, which is not possible, as in the previous case. The assumptions Kh 	≡ 0 and
K̃h ≡ 0 lead to a contradiction in a similar way, which completes the proof. ��

Although we assumed that the functions � and a, b, c, d in Proposition 3.8 are
rational, the same proof goes through for functions differentiable on R− except for
a discrete set of points at which they have poles.

We next observe that the kernels (2.12) are particular cases of those in (3.22)
and (3.23) corresponding to b = c ≡ 0 and a = d ≡ 1. If � is such that the
kernels (2.12) are positive on R−, then the relation (2.16) guarantees that for any
h operator monotone on R− (i.e., such that the kernel Kh is positive definite on
R−), the kernel KT� [h] is also positive definite on R− (in more detail, the function
�22
�21

belongs to the Stieltjes class, by positivity of the bottom diagonal entries of the
kernels (2.12), and hence, any monotone function h may take the same value as the
decreasing function −�22

�21
at most one point (say ζ ∈ R−); therefore the function

φ in (2.16) does not vanish on R−\{ζ }, so that the KT� [h] is positive definite
on R−\{ζ }, and therefore, on the whole R−). We conclude: the linear fractional
transformation (2.3) based on a function � such that the kernels (2.12) are positive
on R−, maps the set MR− of operator-monotone functions on R− into itself and
similarly, it maps the set 1

x
MR− into itself as well (by (2.17)). For most of classical

interpolation problems in the Stieltjes class (in particular, for all problems that can
be embedded into general interpolation schemes in [1, 5, 6, 12]) the solution sets are
parametrized by linear fractional transformations of the type described above.

Letting a = d ≡ 0, b(x) = x, c ≡ 1 in (3.22) and (3.23) we get the kernels

xy�(x)Jx,y�(y)
∗ − J

y − x
� 0,

�(x)J�(y)∗ − Jx,y

y − x
� 0 (x, y ∈ R−).

(3.30)

It turns out that the linear fractional transformation T� based on the function �

subject to conditions (3.30) maps MR− into 1
x
MR− and it maps 1

x
MR− back into

MR− . A particular example of such function is given by

�0(x) =
[

0 − 1
x

1 0

]
: �0(x)J�0(y)

∗ = Jx,y, xy�0(x)J�0(y)
∗ = J.
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Since T�0 is a bijection on S, it follows that any � subject to (3.30) is of the form
� = �0� for some � such that the kernels (2.12) are positive on R−.

We next point out that for the function A parametrizing the set Sol(CFS2n)

in formula (3.12), neither the kernels KA,J , K̃A,J , nor the kernels (3.30) are
positive. However, two positive kernels on R− associated with A exist and are of
the form (3.22) and (3.23):

KA,J (x, y) = a(x)a(y)A(x)JA(y)∗ + xyc(x)c(y)A(x)Jx,yA(y)
∗ − J

y − x
� 0,

(3.31)

K̃A,J (x, y) = c(x)c(y)A(x)JA(y)∗ + a(x)a(y)A(x)Jx,yA(y)
∗ − Jx,y

y − x
� 0,

(3.32)

where

a(x) =
√−x0h0

x − x0
, c(x) =

√
h0

x − x0
. (3.33)

To justify (3.31) and (3.32), we first compute the inverse of the function� in (3.11):

�(x)−1 = 1

x − x0

[−1 h0

−x x0h0

]

and then use it to verify that with a and c defined as in (3.33),

�(x)−1J�(y)−∗ = a(x)a(y)J + xyc(x)c(y)Jx,y − (y − x)a(x)a(y)

[
0 0
0 1

]
,

(3.34)

�(x)−1Jx,y�(y)
−∗ = c(x)c(y)J + a(x)a(y)Jx,y − (y − x)c(x)c(y)

xy

[
1 0
0 0

]
,

(3.35)

By (3.12), A�−1 = � , where � is defined in (2.3)–(2.7). With this substitution
and subsequent use of relations (3.34) and (3.35), the positive kernels (2.12) can be
written in terms of the kernels (3.31) and (3.32) as

K�,J (x, y) = A(x)�(x)−1J�(y)−∗A(y)∗ − J

y − x

= KA,J (x, y)− a(x)a(y)A(x)

[
0 0
0 1

]
A(y)∗ & KA,J (x, y),
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K̃�,J (x, y) = A(x)�(x)−1Jx,y�(y)
−∗A(y)∗Jx,y − Jx,y

y − x

= K̃A,J (x, y)− c(x)c(y)

xy
A(x)

[
1 0
0 0

]
A(y)∗ & K̃A,J (x, y),

which imply that the kernels KA,J and K̃A,J are also positive.
Proposition 3.8 presents sufficient conditions for a linear transformation T� to

map the extended Stieltjes class into itself. A follow up question (which we leave
open for now) is to which extent conditions (3.22) and (3.23) are necessary and, if
they are, is it true that the functions a, b, c, d can always be chosen so that a(x) =
d(x) and b(x) = xc(x) for all x < 0 (which indeed is the case in all three examples
considered above).

4 Determinate Cases

In this section we survey the cases where the problem CFSN is determinate and
identify the unique solution f for each case as the extremal solution of certain
subproblem. Note that by the identity (2.1),

|rankH̃n − rankHn| = |rankH̃n − rank(HnT
∗)| ≤ rank(e∗c) = 1. (4.1)

Since Pn � Hn and Pn −Hn(T
∗ − x0I) = e∗c we also have

rankHn ≤ rankPn ≤ rankHn + 1. (4.2)

Case 1: The matrix Hn � 0 is singular and rankHn = r . In this case, the measure
μ from the integral representation (2.23) is supported by r points and therefore,
any solution f to the problem CFS2n−1 is rational with deg f = r , and the
leading submatrix Hr of Hn is positive definite. By Kronecker’s theorem [23],
there is a unique rational function of degree r with the first 2r + 1 Taylor
coefficients at x0 equal c0, . . . , c2r and therefore, this function is f, the unique
solution of the problem CFS2n−1. Since rankH f

m(x0) = r for all m ≥ r (again by

Kronecker’s theorem) all Taylor coefficients cm := f(m)(x0)
m! are uniquely defined

by c1, . . . , c2r via the recursion formula

cm = [
cm−r cm−r+1 . . . cm−1

]
H−1
r

⎡

⎢⎣
cr+1
...

c2r

⎤

⎥⎦ , m > 2r. (4.3)
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The function f can be explicitly written (in the spirit of Loewner pencil
realizations in [25]) as

f(x) = c0 + (x − x0)e∗1Hr (Hr − (x − x0)Gr)
−1 Hre1, (4.4)

where e1 denotes the first column of the matrix Ir and Gr = [
ci+j+2

]r−1
i,j=0.

Computations similar to those in the proof of Lemma 2.5 verify that the first
2r + 1 Taylor coefficients of the function on the right side of (4.4) at x0 are
indeed c0, . . . , c2r .

Case 2: The matrix H̃n � 0 is singular and rankH̃n = r . By applying the previous
case to H̃n and xf(x) (rather than Hn and f, we see that the leading submatrix H̃r

of H̃n is positive definite and that the only solution f to the problem CFS2n−1 is
recovered from the realization formula

xf(x) = c0 + x0c1 + (x − x0)e∗1H̃r

(
H̃r − (x − x0)G̃r

)−1
H̃re1,

where G̃r = [
x0ci+j+3 + ci+j+2

]r−1
i,j=0. Furthermore, the Taylor coefficients

cm := f(m)(x0)
m! are uniquely defined for m > 2r by c1, . . . , c2r via the recursion

formula

cm = −cm−1

x0
+

[
cm−r + cm−r−1

x0
. . . cm−1 + cm−2

x0

]
H̃−1
r

[
x0cr+1+cr

...
x0c2r+c2r−1

]
.

(4.5)

The next theorem identifies the unique solution of a determinate problem
CFS2n−1 with extremal solutions of its truncations.

Theorem 4.1 Given x0 < 0 and c0, . . . , c2n−1, let us assume thatHn � 0, H̃n � 0.
Let min{rankHn, rankH̃n} = r < n and let fF , fK and fF , fK be the extremal
solutions of the even problem CFS2r−1 and solutions of the odd problem CFS2r ,
respectively. Then the unique solution f to the problem CFS2n−1 is equal to

f =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

fF , if rankHn = rankH̃n = rankPn = r,

fK, if rankHn = rankH̃n = r, rankPn = r + 1,

fF , if rankHn = r, rankH̃n = r + 1,

fK, if rankHn = r + 1, rankH̃n = r.

(4.6)

Proof By the definition of r , we have Hr � 0, H̃r � 0, and at least one of
the matrices Hr+1 and H̃r+1 is singular. If both of them are singular, then f is
equal either to fF or to fK , by Remark 2.8. If rankPr+1 = r , then f = fF , by
Theorem 3.1, and since Pr+1 is singular, the extended matrix Pn has the same rank
r . If rankPr+1 = r + 1, then f = fF and, in case r < n − 1, the matrix Pr+2 is
singular, by (4.2). Therefore, rankPn = rankPr+2 = r + 1, which completes the
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verification of the two top cases in (4.6). Two other cases follow by Remark 3.7.
By (4.1), the cases listed in (4.6) cover or possible degeneracies of Hn and H̃n. ��

We next consider the odd problem CFS2n. In each singular case listed in (4.6),
the problem CFS2n has the same unique solution f if the given c2n happens to be

equal to f(2n)(x0)
(2n)! and has no solutions otherwise. Below, we classify these cases in

terms of the rank of Hn.

Theorem 4.2 Given x0 < 0 and c0, . . . , c2n−1, c2n, let us assume that Hn � 0,
H̃n � 0 and Pn+1 � 0. The problem CFS2n has a unique solution if and only if one
of the following holds:

1. rankHn ≤ n− 2;

2. rankHn = n− 1 and c2n =
[
cn+1 cn+2 . . . c2n−1

]
H−1
n−1

⎡

⎢⎣
cn
...

c2n−2

⎤

⎥⎦;

3. Hn � 0, rankH̃n = n− 1 and

c2n = −c2n−1

x0
+

[
cn+1 + cn

x0
. . . c2n−1 + c2n−2

x0

]
H̃−1
n−1

⎡

⎢⎣
x0cn + cn−1

...

x0c2n−2 + c2n−3

⎤

⎥⎦ ;

4. Hn � 0, H̃n � 0 and c2n = α or c2n = α + β2

δ
(see (2.52)).

Proof Let rankHn ≤ n−2 and let f be the unique solution to the problem CFS2n−1.
Then the matrices

[
f(i+j)(x0)

(i + j)!

]n

i,j=0

and Pn+1 =
[
ci+j

]n
i,j=0

are positive semidefinite Hankel extension of Pn. Since rankHn ≤ n− 2, the matrix
Pn is singular (by (4.5)) and therefore, it admits a unique positive semidefinite

Hankel extension. Therefore, f(2n)(x0)
(2n)! = c2n and f solves the problem CFS2n, which

completes the proof of (1). Part (2) follows from Case 1 considered above and the
formula (4.3) for r = n − 1 and m = 2n. Similarly, part (3) follows from Case 2
and formula (4.5). Part (4) has been covered in Theorem 3.1 ��
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Harmonic Analysis of Some Arithmetical
Functions

Roger Gay and Ahmed Sebbar

Abstract We study three functions which are power series in the variable z,
Dirichlet series in the variable s and with coefficients given by arithmetical
functions. A strong point is to relate these functions to some Hilbert spaces. Three
main ingredients are used: an estimate of Davenport on sums of Möbius functions, a
result of Lucht on convolutions of arithmetical Dirichlet series and the introduction
of an operation ⊗ on power series, naturally associated with the mentioned Hilbert
spaces.

Keywords Arithmetical functions · Franel integral · Riesz basis ·
Smith determinant
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1 Introduction

Several formal trigonometrical expansions of the Analytic Number Theory are of
Harmonic Analysis nature. For instance, they are periodic or almost periodic Fourier
series of their sums. The main goal of the present paper is to prove a corresponding
result for three arithmetical functions called Ls , Ms , Cs . The first is the classical
polylogarithm function, the second is built from the Möbius function μ(n) and
the third from the Ramanujan sums. The most salient results of the paper can be
summarized as follows. We will study some possible links between Ls , Ms , Cs

R. Gay
University Bordeaux, IMB, Bordeaux, France
e-mail: roger.gay@math.cnrs.fr

A. Sebbar (�)
University Bordeaux, IMB, Bordeaux, France

Chapman University, One University Drive, Orange, CA, USA
e-mail: sebbar@chapman.edu; ahmed.sebbar@math.u-bordeaux.fr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Alpay et al. (eds.), New Directions in Function Theory: From Complex
to Hypercomplex to Non-Commutative, Operator Theory: Advances
and Applications 286, https://doi.org/10.1007/978-3-030-76473-9_5

87

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76473-9_5&domain=pdf
mailto:roger.gay@math.cnrs.fr
mailto:sebbar@chapman.edu
mailto:ahmed.sebbar@math.u-bordeaux.fr
https://doi.org/10.1007/978-3-030-76473-9_5


88 R. Gay and A. Sebbar

by using a theorem of Lucht [31]. For some arithmetical functions, as for example
σs(n)

ns
, σs(n) =

∑

d |n
ds, �s > 0 we study the existence of Ramanujan expansion

and give the Ramanujan coefficients. The third objective is to look at the problem
from Kubert’s identities point of view, first solved by Besicovitch [6], of giving an
example of a non-trivial real continuous function f on [0, 1] which is not odd with
respect to the point 1

2 and which has the property that for every positive integer k

k∑

h=0

f (
h

k
) = 0.

Bateman and Chowla [4, 13] gave the two explicit examples of such functions

f1(t) =
∞∑

n=1

μ(n)

n
cos(2πnt)

f2(t) =
∞∑

n=1

λ(n)

n
cos(2πnt)

where μ is the Möbius function and λ is the Liouville’s function λ, defined by
λ(1) = 1 and λ(n) = (−1)j if n is the product of j (not necessarily distinct) prime
numbers. The Liouville’s function is a multiplicative function, closely related to the
Möbius μ function for they coincide on square-free integers. These two functions
share many properties, as we will see in the last section.

We introduce some Hilbert spaces and build some Riesz basis from the function
Ls and determine an bi-orthogonal basis. The characterizations of the Riesz basis
highlight some Dirichlet series as well as some extension of the famous Smith
determinant. We illustrate the Fourier Analysis aspect through the Ramanujan
series and their use in the development of arithmetical functions. The last section
briefly presents an opening towards dynamical systems, to emphasize that the path
inaugurated by Aurel Wintner, Norbert Wiener and Marc Kac may experience a
revival in dynamical systems, as in the conjectures of Chowla and Sarnak.

2 Arithmetical Functions

Lambert series are, by definition, series of the form

∞∑

n=1

an
xn

1 − xn
, an ∈ C.
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They were considered in connection with the convergence of power series. If a series
∞∑

n=1

an converges, then the Lambert series converges for all x 	= ±1. Otherwise it

converges for those values of x for which the series
∞∑

n=1

anx
n converges [46], and

the references therein. In all that follows, it would be of some interest to highlight
three equivalences which will be used more or less explicitly in this paper. Formally
we have the following diagram, where f and g are two arithmetical functions

f (n) =
∑

d |n
g(d) ⇐⇒

∞∑

n=1

f (n)

ns
= ζ(s)

∞∑

n=1

g(n)

ns
⇐⇒

∞∑

n=1

f (n)xn =
∞∑

n=1

g(n)
xn

1− xn
.

This is exactly the essence of our work: we are constantly moving between three
aspects: arithmetical convolution, Dirichlet series and power series. This is done
through the Riemann zeta function or its inverse. To illustrate this, we give some
examples [38] (Part Eight), some of which will be used and all the definitions will
be given,

1. If g(n) = μ(n), the Möbius function, then

∞∑

n=1

μ(n)
xn

1− xn
= x.

2. If g(n) = λ(n), the Liouville function, the associated Lambert series is the Jacobi
theta function

∞∑

n=1

λ(n)
xn

1 − xn
= x + x4 + x9 + x16 + · · · .

3. If �(n) is Euler’s totient function, then for |x|<1

∞∑

n=1

�(n)
xn

1 − xn
= x

(1 − x)2
.

4. If G1(x) =
∞∑

n=1

g(n)
xn

1 − xn
and G2(x) =

∞∑

n=1

g(n)xn, then

G1(x) =
∞∑

n=1

G2(x
n).



90 R. Gay and A. Sebbar

When g(n) is a known arithmetical function, likeμ(n) or λ(n) or�(n), the previous
relations reflect deep arithmetical identities. On the other hand some elementary

functions g(n) can produce non trivial sums. For example if g(n) = 1

n
and G1(x) =

∞∑

n=1

1

n

xn

1 − xn
, then

e−G1(x) =
∞∏

n=1

(1 − xn),

a well known function in the theory of partitions.
The notion of Kubert’s identity is important for us, before defining it we

introduce a fundamental function

{t} =
⎧
⎨

⎩

t − ,t- − 1
2 if t 	= ,t-

0 if t = ,t-
(2.1)

admitting the Fourier expansion

{t} = − 1

π

∞∑

n=1

sin(2πmt)

m
,

which extends into a formal summation expansion

∞∑

n=1

an

n
{nt} = − 1

π

∞∑

n=1

An

n
sin(2πnt),

where An =
∑

d |n
ad. This reveals a property of the sequence ({nt})n≥1, closely

related to the main concern of this paper. We have the well known result

∫ 1

0
({rt}{st}) dt = gcd(r, s)

12 lcm(r, s)
= gcd(r, s)2

12rs
. (2.2)

Another example that we will meet is the expansion, t /∈ 2πZ

log

(
2

∣∣∣∣sin
t

2

∣∣∣∣

)
= −

∞∑

n=1

cosnt

n
(2.3)
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which leads to the formal identity, for irrational t

∞∑

n=1

cn log(2| sinnπt|))
n

= −
∞∑

n=1

Gn cos(2nπt)

n
,

where again Gn =
∑

d |n
cd . The validity of this equality has been discussed by

Davenport in [14] and also by Chowla in [12], who observed that

∫ 1

0
log (2| sin rπt|) log (2| sin sπt|) dt = π2

12

gcd(r, s)2

rs
. (2.4)

The formulas (2.2) and (2.4) are named Franel integrals in [43]. Beside Number
Theory, the functions (2.1) and (2.3) appear in Fourier and Harmonic Analysis
where (2.2) and (2.4) find an interpretation. To give the mean idea we cite the
following fact: the sequence of functions

1, {t}, {2t}, · · · {nt}, · · ·

is a basis for the Hilbert space (L2([0, 1
2 ), dt), dt being the Lebesgue measure. This

kind of results, with very interesting connections with questions in Number Theory,
appeared in [22, 48].

Another point of view, which we only briefly evoke here and also in the Sect. 8,
is the following: We fix a positive integer p and define on the unit interval the p-
Bernoulli map, an extension of (2.1), the function

ψp(x) = px − ,px-, {x}p = ψp(x)− 1

2

which admits the Fourier series expansion

{x}p = −
∑ 2 cos(2nπx − 1

2pπ)

(2nπ)p
. (2.5)

We look at ψp(x) as a one-dynamical system on the space (0, 1), as in [23]. The
associated Perron–Frobenius operator Pψp is defined by

(
Pψpu

)
(x) =

∑

y∈ψ−1(x)

u(y)

|ψ ′(y)| =
1

p

{
u(
x

p
)+ u(

x + 1

p
)+ · · · + u(

x + p − 1

p
)

}
.

If u is an eigenvector of Pψp , associated to the eigenvalue λ, then

λpu(px) = u(x)+ u(x + 1

p
)+ · · · + u(x + p − 1

p
). (2.6)
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We see that if, for example, λ = 1, the eigenfunctions satisfy certain functional
equations, similar to those satisfied by the function log�. We give few fundamental
examples:

1. Bernoulli polynomials are given by

tetx

et − 1
=

∞∑

n=0

Bn(x)t
n, B0(x) = 1, B1(x) = x−1

2
, B2(x) = x2−x+1

6
, · · ·

and they satisfy

∞∑

n=0

(
Bn(x)+ · · · + Bn(x + k − 1

k
)

)
tn = k

∞∑

n=0

(
t

k
)nBn(kx).

So the eigenvalues are λ = k−n.
2. Hurwitz zeta function, defined for �s > 1 by

ζ(s, x) =
∞∑

n=0

1

(x + n)s

for which we have

ζ(x, s)+ · · · + ζ(x + k − 1

k
, s) = ksζ(kx, s)

and the eigenvalues are λ = ks−1. It satisfies for �s > 1
2 the Franel type integral

[33]

∫ 1

0
ζ({ax}, 1− s)ζ({bx}, 1− s) dx = 2�2(s)ζ(2s)

(2π)2s

(
gcd(a, b)

lcm(a, b)

)s
.

The integral diverges for �s ≤ 1
2 .

3. The polylogarithm function defined (for |z| < 1,�s ≥ 1 or |z| ≤ 1,�s > 1) by

Ls (z) =
∑

n≥1

zk

ks
.

For s = k an integer the polylogarithm function is related to the Bernoulli
polynomial Bk(X) by

Bk(,θ-) = −
∑

n	=0

e2iπnθ

nk
,
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which is just (2.5) when k = p = 1. In order to study their relation to the Perron–
Frobenius operator we introduce a new notion.

Definition 2.1 According to Kubert [29, 34] we say that a function f (x), where
x varies over Q/R or R/Z, satisfies a Kubert identity if it verifies the functional
equations

f (x) = ms−1
m−1∑

k=0

f

(
x + k

m

)
(�s)

for every positive integer m. Here s is some fixed parameter.

It is apparent that this definition is more restrictive than the one given for
eigenfunctions of the Perron–Frobenius operator. The derivative of a differentiable
function satisfying (�s) satisfies (�s−1). A very instructive example is given by the
following example: From the polynomial relation

Xn − 1 =
∏

ηn=1

(ηX − 1)

we deduce that

e2iπnx − 1 =
n−1∏

k=0

(e2iπ(x+ k
n ) − 1), x ∈ Q/Z, x 	= 0

so that if f (x) := log |e2iπx − 1|, then

f (nx) =
n−1∑

k=0

log |2 sinπ(x + k

n
)| =

n−1∑

k=0

f (x + k

n
). (2.7)

This property of the function f (x) := log |e2iπx − 1| is connected with the Franel
type equality (2.4).

Let Ks , s ∈ C, be the complex vector space of all continuous maps f : (0, 1)→
C which satisfy the Kubert identity (�s) for every positive integer m and every x

in (0, 1). It is easy to see directly that the function Ls (z) satisfies the relation (�s).
More precisely [34, p.287]

Theorem 2.2 The complex vector space Ks has dimension 2, spanned by one even
element (f (x) = f (1 − x)) and one odd element (f (x) = −f (1 − x)). Each
f (x) ∈ Ks is real analytic.

This is an interesting interpretation of an important result. In fact if

l(x) = Ls(e
2iπx)
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we should have, according to this theorem, a linear combination

l(x) = Asζ(1 − s, x)+ Bsζ(1 − s, 1 − x).

The values of the coefficients are given in [34, p.308]

As = i(2π)se− iπs
2

2�(s) sin(πs)
, Bs = −i(2π)se iπs

2

2�(s) sin(πs)
.

This is precisely an another formulation of Lerch’s transformation formula for the
function

�(z, s, ν) =
∞∑

n=0

zn

(n+ ν)s
, |z| < 1, ν 	= 0,−1,−2, · · ·

which is [18, p.29]

�(z, s, ν) =

iz−ν(2π)s−1�(1 − s)

{
e
−iπs

2 �[e−2iπν , 1 − s,
(log z)

2iπ
] − eiπ(

s
2+2ν)�[e2iπν , 1 − s, 1 − (log z)

2iπ
]
}

and which reduces to the functional equation of the Riemann zeta function when
z = 1, ν = 0,�s > 1.

Remark 2.3 The theorem of Milnor stated above asserts that every function in
the space Ks is real analytic. These functions are eigenfunctions corresponding
to the eigenvalue λ = 1 of the Perron–Frobenius operator. However the later has
eigenfunctions corresponding to the eigenvalue λ = 1

2 which are continuous but
nowhere differentiable. As mentioned in [23, p.361] the Tagaki function (or the
blancmange function) T (x) is an example of a such function. This function is
defined by

T (x) =
∞∑

n=1

�(2nx)− 1

2
,

where

�(x) = inf{|x − n|, n ∈ Z} =
∣∣∣∣x − 2

⌊
x + 1

2

⌋∣∣∣∣

is the sawtooth function, periodic of period 1.
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3 Three Power Series

The essential of the analytic properties of the polylogarithm function Ls(z) =
∑

n≥1

zk

ks
come from the integral representation

Ls(z) = z

�(s)

∫ ∞

0

ts−1

et − z
dt, �s > 0, z /∈ (1,∞).

Let ϑ = z
d

dz
be Boole’s differential operator. We define an inverse of ϑ by

ϑ−1f (z) =
∫ z

0
f (u)

du

u

defined on the class of analytic functions near the origin, and vanishing at the origin.
For s = n a positive integer we have the symbolic representation as an iterated
integral

Ln(z) = ϑ−n z

1 − z
. (3.1)

To define the next function we recall first the definition of the Möbius arithmetical
function

μ(n) = μn =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

1 if n = 1

0 if n has one or more repeated prime factors

(−1)k if n is the product of k prime factors.

The importance of the Möbius function lies in the following inversion

f (n) =
∑

d |n
g(d) ⇐⇒ g(n) =

∑

d |n
f (d)μ(

n

d
) =

∑

d |n
f (

n

d
)μ(d). (3.2)

The generalized Möbius inversion may be formulated as follows: If t varies on
the half-line t > 0, and if either g(t) = O(t−1−η) holds for some η > 0 or h(t) =
O(t−1−δ) holds for some δ > 0 then

h(t) =
∞∑

n=1

g(nt)
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is equivalent to

g(t) =
∞∑

n=1

μ(n)h(nt).

The main objective of this section is the study the relationships between the three
functions Ls(z),Ms (z) and Cs(z) defined by the following power series:

1. Ls(z) =
∑

k≥1

zk

ks
, |z| ≤ 1, �s > 1 or |z| < 1, �s ≥ 0,

2. Ms(z) =
∑

k≥1

μk
zk

ks
, |z| ≤ 1 �s > 1 or |z| < 1, �s ≥ 0. This series is most

known when s = 0 and |z| < 1. It amounts to the series
∑

k≥1

μkz
k studied by

Bateman and Chowla [4, 13]. They use the crucial estimates for sums of Möbius
functions values, due to Davenport [14]: For every A > 0, there exists a constant
D(A) such that, uniformly for |z| ≤ 1

∣∣∣∣∣∣

∑

0<j≤x
μ(j)zj

∣∣∣∣∣∣
≤ D(A) log(x + 1)−A. (3.3)

3. Cs,l(z) =
∑

k≥1

ck(l)
zk

ks
|z| ≤ 1 �s > 1 or |z| < 1, �s ≥ 0,

where ck(l) is the Ramanujan sum

cq(n) =
n∑

a=1
(a,q)=1

e
2iπ an

q =
n∑

a=1
(a,q)=1

cos(2π
an

q
).

As we will see the series Cs,l(z) =
∑

k≥1

ck(l)
zk

ks
is most known only when z = 1 and

�s > 1. Its sum was given by Ramanujan, and simplified methods were found by
Estermann and others.

For fixed n, cq(n) is a multiplicative function: if q1, q2 are relatively prime, then

cq1(n)cq2(n) = cq1q2(n).

Moreover cq(n) is a periodic function of n with period q . When (m, k) = 1 we have
ck(m) = μk , and when (m, k) = k we have ck(m) = �(m), � being the Euler’s
totient function, with for every positive integer N , �(N) is the number of positive
integers less than or equal to N and relatively prime to N . More generally Hölder



Harmonic Analysis of Some Arithmetical Functions 97

[25] showed that Ramanujan’s sum can also be expressed in closed form as follows:

ck(m) = �(m)

�
(

m
(k,m)

)μ
(

m

(k,m)

)
.

Three well known properties of the �-function are important for further extension.
For every positive integer N

N =
∑

d |N
�(d)

�(N) = N
∏

p|N
p prime

(
1 − 1

p

)
. (3.4)

An important property of the Ramanujan coefficients is their orthogonality, that can
be used to compute the Ramanujan coefficients

Lemma 3.1 (Orthogonality Relations) Let � the Euler’s totient function, then

lim
x→+∞

1

x

∑

n≤x
cr (n)cs(n) = �(r)

if r = s and zero otherwise. More generally

lim
x→+∞

1

x

∑

n≤x
cr(n)cs(n+ h) = cr(h)

if r = s and zero otherwise.

The functions Ms,Ls , tough different in nature, share the same difference-
differential equation

z
∂

∂z
f (z, s) = f (z, s − 1), (3.5)

but the series Ms (z) does not seem to have attracted much attention. For the
particular case z = 1 and �s > 1 we have with σs−1(n) =

∑

d |n
ds−1

Ls (1) = ζ(s), Ms (1) = 1

ζ(s)
, Cs,l(1) = σs−1(n)

ns−1ζ(s)
.

The last equality can be understood in the framework of Ramanujan-Fourier series:
Given an arithmetical function a : N → C, the Ramanujan-Fourier series for a is
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the series

a(n) =
∞∑

q=1

aqcq(n), n ∈ N.

The coefficients can be computed by using the previous orthogonality relations, but
we will be concerned by a different kind of approach.

Let f, g : N→ C two arithmetical functions. The Dirichlet convolution product
of f, g is defined by

f � g(n) =
∑

d |n
f (d)g(

n

d
), n ∈ N.

For example if 1 : n → n is the identity arithmetical function, the inversion
formula (3.2) is just

f = g � 1 ⇐⇒ g = f � μ.

To study the expansion in Ramanujan series, or to find relations between the three
series Ls(z),Ms(z) and Cs,l(z) we will make use of a result of H. Delange [16] and
a result of L. Lucht [31].

Theorem 3.2 (Delange) Suppose that

f (n) =
∑

d |n
g(d) = (g � 1)(n)

and that

∞∑

n=1

2ω(n)
|g(n)|
n

<∞, (3.6)

where ω(n) is the number of distinct prime divisors of n. Then f admits a Ramanujan
expansion with

f̂ (q) =
∞∑

m=1

g(qm)

qm
.

More precisely for each n the sum

∞∑

q=1

f̂ (q)cq(n)

is absolutely convergent and is equal to f (n).
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We can weaken this statement by observing that from the prime decomposition of a

positive integer n =
k∏

i=1

p
ei
i , ei ≥ 1, the number of divisors d(n) and the number of

prime divisors ω(n) are related by

d(n) = (e1 + 1)+ · · · + (ek + 1) ≥ 2ω(n).

So the condition (3.6) can be weakened by asking only

∞∑

n=1

d(n)
|g(n)|
n

<∞. (3.7)

To give an application of this theorem we begin by a review of some additional
properties of Ramanujan sums. First of all for z = 1 the sum is the celebrated
formula of Ramanujan [40] (p.199): For k > 1 and s ∈ C \ {1} with �s > 0

∞∑

m=1

ck(m)

ms
= ζ(s)

∑

d |k
d1−sμ( k

d
), (3.8)

and even for s = 1 we have [40] (p.199)

∞∑

m=1

ck(m)

m
= −

∑

d |k
μ(

k

d
) log d = −!(k),

where k > 1 and !(k) is Mangoldt’s function

!(n) =
⎧
⎨

⎩

logp if n = pm for somem ≥ 1

0 else

Another formula of Ramanujan [40] (p.185) is

∞∑

k=1

ck(m)

ks
= σ1−s(m)

ζ(s)
, (3.9)

valid for �s > 1 and also for s = 1. In this case the sum vanishes. According to
Ramanujan this assertion is equivalent to the Prime Number Theorem

This formula results directly from Delange’s theorem. The next role will be
played by the following lemma.
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Lemma 3.3 (Romanoff [42]) If k < n and f (u) is any function defined on the
positive integers then

∑

d |n
μ(

n

d
)f ((d, k)) = 0. (3.10)

This Lemma can be proved, for example, by establishing that

∑

d |n
μ(

n

d
)f ((d, k)) =

∑

δ

f (δ)
∑

d |n
(d,k)=δ

μ(
n

d
).

This lemma is very important of the following reason. Let (xn) be a sequence in a
Hilbert space H with an inner product 〈, 〉 and let g : N × N \ {(0, 0)} → C be an
arithmetical function such the 〈xn, xm〉 = g(n,m). Then the sequence

yn =
∑

d |n
μ(

n

d
)xd

is an orthogonal sequence. Another important result is the following

Theorem 3.4 (Lucht) Let g : N → C be an arbitrary arithmetical function. Then
the following assertions are equivalent:

1. The series ĝ(k) =
∑

n≥1

g(n)cn(k) converges (absolutely) for every k ∈ N∗ and

determine an arithmetical function ĝ.
2. The series γ (k) = k

∑

n≥1

μ(n)g(kn) converges (absolutely) for every k ∈ N∗ and

determine an arithmetical function γ .

In the case of convergence we have the convolution products γ = μ�ĝ or 1�γ = ĝ.

As a first application we take g(n) = gz,s(n) = zn

ns
, with |z| ≤ 1, �s > 1 or

|z| < 1, �s ≥ 0 to obtain by the theorem of Lucht:

ĝ(k) = ĝz(k) =
∑

n≥1

cn(k)
zn

ns
= Cs,k(z).

Hence

γ (k) = γz,s(k) = 1

ks−1

∑

n≥1

μn
znk

ns
= 1

ks−1Ms(z
k).
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For s = 1 the uniform convergence on the unit closed disk of the series
∑

n≥1

μ(n)

n
zn

results from the uniform convergence on R of the series
∑

n≥1

μ(n)

n
e2iπθ , resulting

from (3.3) and the maximum principle. For the sake of completeness we give all the
details of this important result. The following lemma, due to Cahen and Jensen, is
classical [21]:

Lemma 3.5 If the Dirichlet series f (s) =
∞∑

k=1

ake
−λks is convergent for s0, then

it is also convergent for any s in the cone | arg(s − s0)| ≤ α < π
2 (Stolz angle).

Furthermore the series is uniformly convergent on any compact set of the cone, as
well as any of its derivatives and

f (n)(s) = (−1)n
∑

anλ
n
ke
−λns.

Accordingly

lim
s→1

Ms(e
2iπθ ) =M1(e

2iπθ)).

The Ramanujan-Fourier transform of the arithmetical function g(n) = zn

n
is

ĝ(k) =
∑

n≥1

cn(k)
zn

n

which converges for |z| < 1. It also converges for |z| = 1. In fact

γ (k) = k
∑

n≥1

μ(n)
znk

nk
=

∑

n≥1

μ(n)
znk

n

converge uniformly on the closed unit disc by Davenport’s estimate (3.3). By
using 3.4 we obtain the convergence of the series ĝ(k) with γ (k) = M1(z

k), and
finally

∑

n≥1

cn(l)
zn

n
=

∑

d |l
M1(z

d)

for |z| = 1, by using a Möbius inversion of γ = μ � ĝ. The maximum principle
asserts that this equality continues to be valid even for |z| ≤ 1.
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In the same vein we have:

Cs,l(z) =
∑

d |l
d1−sMs (z

d),

which is an interesting link between the two series Cs,l(z) and Ms (z). The following
lemma is elementary and it is just a variation of (2.7).

Lemma 3.6 We have

∑

1≤h≤m
e2iπ nhk

m =
⎧
⎨

⎩

m if m|nk

0 otherwise.
,

or, equivalently, for all n,m ∈ N∗ and w, z ∈ C, we have

∑

w:wm=z
wn = mz

n
m

if m|n and zero otherwise.

Remark 3.7 The meaning of nk ∈ mN∗ is the following: We first observe that
kZ ∩mZ = lcm(k,m)Z, hence

nk ∈ lcm(k,m)N∗ ⇐⇒ n ∈ δ(k,m)N∗, δ(k,m) := lcm(k,m)

k

and

∑

1≤h≤m
e2iπ nhk

m =
⎧
⎨

⎩

m if n ∈ δ(k,m)N∗

0 otherwise
(3.11)

If we choose z = e2iπ h
m with some fixed m ∈ N∗ and 1 ≤ h ≤ m, and denote

simply

gz,1(n) = g h
m
(n) = e2iπ nh

m

n
, γz,1 = γ h

m

we get

γ h
m
(k) = k

∑

n≥1

μ(n)g h
m
(kn) = k

∑

n≥1

μ(n)
e2iπ nkh

m

nk
=M1(e

2iπ hk
m )
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and

∑

1≤h≤m
γ h
m
(k) = m

∑

n∈δ(k,m)N∗
μ(n)

n

or

∑

1≤h≤m
M1(e

2iπ hk
m ) = m

∑

n∈δ(k,m)N∗
μ(n)

n
= 0.

As the argument usually used in the proof of the last equality is very present in
the present study we give a slightly more general result. We are going to show the
following lemma

Lemma 3.8 We have for �s > 1

∑

n≥1

μ(qn)

ns
= μ(q)qs

�s(q)ζ(s)
, (3.12)

with

�s(q) = qs
∏

p|q
(1 − p−s ) =

∑

d |q
dsμ(

q

d
).

In particular

1.
∑

n≥1

μ(qn)

n
= 0 for every q ∈ N∗.

2. For d ∈ N∗ we have
∑

n∈dN∗
μ(n)

n
= 0

Indeed

1

ζ(s)
=

∑

n≥1

μ(n)

ns
=

∏

p

(1−p−s ) =
∏

p|q
(1−p−s ).

∏

p�q

(1−p−s ) = �s(q)

qs

∑

n≥1, (n,q)=1

μ(n)

ns

�s(q)

μ(q)qs

∑

n≥1, (n,q)=1

μ(qn)

ns
.

The lemma is obtained by using the Lemma 3.5, or the classical Ingham’s Tauberian
theorem [28] (p.133). One can show that

∑

n∈δ(k,m)N∗
μ(n)

n
= μδ(k,m) lim

s→1

(
1

ζ(s)
∏

p|δ(k,m)
(1 − 1

ps
)

)−1

= 0.
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It is easily seen that
∑

1≤h≤m
γ h
m
(k) = 0. Hence

∑

1≤h≤m
M1(e

2iπ hk
m ) = 0.

From the relation μ �
∑

1≤h≤m
ĝ h
m
= 0 we conclude again, by Cahen-Jensen lemma

and Möbius inversion, that

lim
s→1

∑

j≥1

cjm(k)

j s
=

∑

j≥1

cjm(k)

j
= 0.

Indeed we have
∑

1≤h≤m
ĝ h
m
= 0, so for every k ∈ N∗

lim
s→1

m1−s ∑

j≥1

cjm(k)

j s
= lim

s→1

∑

j≥1

cjm(k)

j s
= 0

since

∑

1≤h≤m

∑

n≥1

cn(k)

ns
e2iπ nk

m = m1−s ∑

j≥1

cjm(k)

j s
.

We also have

lim
s→1

∑

1≤h≤m
Cs,l(e

2iπ h
m ) =

∑

d |l

⎛

⎝
∑

1≤h≤m
M1(E

2iπ hd
m )

⎞

⎠ = 0

by using

Cs,l(z) =
∑

d |l
d1−sMs(z

d).

This lemma, applied to γ h
m (k)

= M1(e
2iπ hk

m ) and with δ(k,m) = lcm(k,m)

k
,

gives

∑

1≤h≤m
M1(e

2iπ hk
m ) = m

∑

j≥1

μjδ(k,m)

jδ(k,m)
= m

δ(k,m)

∑

j≥1

μjδ(k,m)

j
= 0.
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Thus we have a nontrivial example of a function solving the initial Besicovich
question. A natural question suggested by the Lemma 3.8 is: Find all the sequences
a = (an)n≥1 satisfying the relations

∑

j≥1

ajm = 0 for every m ∈ N∗. According to

[39] (p. 294) if

∞∑

n=1

|an| <∞,

∞∑

n=1

ajn = 0, j = 1, 2, · · ·

then an = 0 for every n ≥ 1. As was pointed out in [39] (p.294) the absolute
convergence is necessary. We give here an example [32] (p.219) completing (3.12)
and showing the necessity of the absolute convergence. It is

∞∑

m=1
(m,n)=1

|μ(m)|
ms

= nsζ(s)

ψn(s)ζ(2s)
, (3.13)

with

ψn(s) =
∑

d |n
ds |μ(n

d
)|.

It is interesting to consider the following question later a more general question: For
which sequences a = (an)n≥1 ∈ l2 we have

lim
s→1�s>1

1

ms−1

∑

n≥1

an

⎛

⎝
∑

j≥1

μjδ(m,k)

j s

⎞

⎠ = 0.

As we saw in 3.8 we have lim
s→1�s>1

∑

j≥1

μjδ(m,k)

j s
= 0 for every k ≥ 1.

4 Three Examples of Hilbert Spaces

4.1 Preliminaries

We propose to introduce a binary operation ⊗ to combine two power series. Let D
be the open unit disk and

H 2
0 (D) =

⎧
⎨

⎩
∑

n≥1

anz
n, an ∈ C,

∑

n≥1

|an|2 <∞
⎫
⎬

⎭ .
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Let H the space of functions defined almost everywhere on R, odd and 2-periodic,
such that f|(0,1) ∈ L2(0, 1) (that is we will consider only Fourier sine series
expansion of any f ∈ L2(0, 1)) and finally let

H 2 =
⎧
⎨

⎩
∑

n≥1

an

ns
, an ∈ C,

∑

n≥1

|an|2 <∞
⎫
⎬

⎭ .

It is remarkable that from the Hilbert point of view these three spaces are isomorphic
but the analytical properties are different but enrich each other. The power series Ls

and Ms belong to H 2
0 (D) provided that �s > 1

2 and will play a preponderant role.
We need the following definition [46]

Definition 4.1 Let A(z) =
∞∑

p=1

apz
p and B(z) =

∞∑

p=1

bpz
p be two power series.

We define their Dirichlet product as

∑

p≥1

apz
p ⊗

∑

p≥1

bpz
p =

∑

p≥1

ap(
∑

q≥1

bqz
qp) =

∑

q≥1

bq(
∑

p≥1

apz
pq) =

∑

n≥1

(a � b)nz
n

where a � b stands for the Dirichlet convolution of the sequences (an)n≥1 and
(bn)n≥1. It is clear that the identity element for the binary operation ⊗ is e(z) = z.

It should be noted that this product comes from the natural formal product of the

two Dirichlet series
∞∑

n=1

an

zn
and

∞∑

n=1

bn

zn
. In other words the map

S :
(
H 2

0 (D),+,⊗
)
−→ (H,+, .) , S(

∞∑

n=1

anz
n) =

∞∑

n=1

an

zn
(4.1)

is a ring homomorphism.

It is possible to define, transferring ⊗ by the map S, a product on the set of
Lambert series. But, instead, we give few examples, in particular to show how to
compute M0(z)⊗M0(z) and evoke the problem that Cs,l(z)⊗ Cs,l(z) poses.

First, we have two useful properties

1. Ls(z
m)⊗Ms (z

n) = zmn, m, n ∈ N∗.
2. The functions Ls (z) and Ms(z) are mutual inverses for the operation⊗.

Second, According to [32] (p.40) we introduce d(n, k) the number of ways of
expressing n as a product of k positive factors (of which any number may be unity),
expressions in which the order of the factors is different being regarded as distinct.
It is a multiplicative function satisfying the functional equation

d(n, k + 1) =
∑

d |n
d(n, k).
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In particular, d(n, 2) = d(n) =
∑

d |n
1, the number of divisors of n. By a simple

induction we have

Ls (z)⊗ · · · ⊗ Ls (z)︸ ︷︷ ︸
k times

=
∞∑

n=1

d(n, k)

ns
zn.

Third, we compute the square of the Möbius function μ for the convolution.
For any real number α, we denote by μα the multiplicative function defined for all
primes p and positive integer k by Dickson [17]

μα(1) = 1, μα(p
k) = (−1)k

(
α

k

)
,

with
(
α

k

)
= α(α − 1) · · · (α − k + 1)

k! .

Then μ1 = μ, the Möbius function, μ−1 = 1, the constant arithmetical function
1, and μ0 = e with e(1) = 1, e(n) = 0 if n > 1, the neutral element for the
Dirichlet convolution. The function μα may be defined even for complex α since it
is a polynomial in α [9]. It satisfies

μα+β = μα � μβ

for all real numbers α and β. Let na be the number of simple prime divisors of n,
that is those primes whose square do not divide n, then

μ � μ(n) = (−2)na .

For sake of completeness we give a very quick proof of this result. Since μ � μ is
multiplicative, it is enough to know μ � μ(pe) for a prime p. But

μ � μ(pe) =
e∑

k=0

μ(pk)μ(pe−k)

= μ(pe)+ μ(p)μ(pe−1)+ · · · + μ(pe−1)μ(p)+ μ(pe).

If e ≥ 3 and 0 ≤ k ≤ e, one of the integers k, e − k is greater than 2, so
μ(pk)μ(pe−k) = 0 and μ(pe) = 0.
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If e = 2

μ � μ(p2) = μ(p2)+ μ(p)μ(p)+ μ(p2) = μ(p)μ(p) = 1.

If e = 1, μ(p) = −1, μ � μ(p) = μ(p) + μ(p) = −2. So only the simple prime
divisors of n contribute, each by −2. This proves the formula above. It follows that

Proposition 4.2

M0(z)⊗M0(z) =
∞∑

n=1

(−2)na zn.

This shows the surprising and not so known formula

1

ζ 2(s)
=

∞∑

n=1

(−2)na

ns
.

The same method gives

Ms (z)⊗Ms (z) =
∞∑

n=1

(−2)na

ns
zn.

If we set

Ms(z)⊗ · · · ⊗ Ms (z)︸ ︷︷ ︸
k times

=
∞∑

n=1

d ′(n, k)
ns

zn

we get from the equality
1

ζ k+1(s)
= 1

ζ k(s)

1

ζ(s)
the relation

d ′(n, k + 1) =
∑

d ′|n
d ′(n, k)μ(k), d ′(n, 2) = (−2)na = μ � μ(n).

As far as we know the map n→ d ′(n, k) does not seem to have been studied to the
point like what we have, for example, in the estimate (3.3).

Remark 4.3 The situation for the series Cs,l(z) is not as manageable as it is for
Ls (z) and Ms(z). The product Cs,l(z) ⊗ Cs,l(z) is not apparently easy to compute,
as we have

cq1(n)cq2(n) = cq1q2(n)
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only when q1, q2 are relatively prime. We modify the binary operation⊗ by defining
for two arithmetical function f = f (n), g = g(n) the following operation [32]
(p.154)

(f � g)n =
∑

pq=n
(p,q)=1

f (p)f (q),

known as the unitary product, and extend it to powers series by

∑

n≥1

f (n)zn �
∑

n≥1

g(n)zn =
∑

n≥1

(f � g)nzn.

With f (n) = cn(l)

ns
we get

(f � f )n =
∑

pq=n
(p,q)=1

f (p)f (q) = d̃(n)
cn(s)

ns
,

where d̃(n) =
∑

(p,q)=1, pq=n
1, so that

Cs,l(z)� Cs,l(z) =
∑

n≥1

cn(l)
zn

ns
�

∑

n≥1

cn(l)
zn

ns
=

∑

n≥1

d̃(n)cn(l)
zn

ns
.

The arithmetical function d̃(n) is known as the unitary divisor function. It coincide
with d(n) if n is square free.

To understand the Hilbert space structure of H 2
0 (D) we recall that the Bergman

space B(D) is the space of holomorphic functions f in D for which the integral

(f, f ) =
∫ ∫

D

|f (z)|2dx dy <∞.

The system of functions {1, z, z2, · · · } is an orthogonal set. Indeed we have

(zn, zm) =
∫ ∫

|z|<1
znz̄mdxdy = 1

2i(m + 1)

∫

|z|=1
znz̄m+1dz = 1

2(m+ 1)

∫ 2π

0
ei(n−m)θ dθ.

The orthonormalized set is

vn(z) =
√
n+ 1

π
zn.
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The Fourier coefficients of f ∈ B(D),

f (z) = a0 + a1z+ a2z
2 + · · ·

are

bn =
√
n+ 1

π

∫ ∫

|z|<1
f (z)z̄ndxdy = lim

r→1

√
n+ 1

π

∫ ∫

|z|<r
f (z)z̄ndxdy =

√
π

n+ 1
an

so that the norm given in the space H 2
0 (D) ⊂ B(D) can be written in terms of the

Fourier coefficients

∞∑

n=0

|an|2 = π

∞∑

n=0

|bn|2
n+ 1

.

The following lemma from [46] is the analogue of the classical Cauchy’s theorem
for the new binary operation ⊗
Lemma 4.4 (Spira) If f (z) =

∑

p≥1

apz
p and g(z) =

∑

p≥1

bpz
p are two holomor-

phic functions on the open disk D then so is f ⊗ g. Furthermore if Rf ,Rg,Rf⊗g
are the radius of convergence of f, g, f ⊗ g repectively, then

min(1, Rf ,Rg) ≤ Rf⊗g.

Proof For every fixed n ≥ 3 and 2 ≤ p ≤ n − 1 we have p + n

p
≤ n for each

divisor p of n. In fact It suffices to show it when 2 ≤ p ≤ n

2
, and in this case

p + n

p
≤ n

2
+ n

2
= n. For |z| ≤ 1 we have |z|n ≤ |z|p|z| np and for large N :

∑

2≤n≤N

( ∑

p|n, 2≤p≤n−1

|ap||b n
p
|
)
|z|n ≤

∑

2≤n≤N

( ∑

p|n
2≤p≤n−1

|ap||b n
p
|
)
|z|p|z| np

≤ ( ∑

2≤p≤N−1

|ap||z|p
)( ∑

2≤q≤N−1

|bq ||z|q
)

≤ (∑

p≥1

|ap||z|p
)(∑

q≥1

|bq ||z|q
)
.

(4.2)
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This means that for large N :

( ∑

1≤p≤N
|ap||z|p

)⊗
( ∑

1≤q≤N
|bq ||z|q

)

≤ |a1|
∑

q≥1

|bq ||z|q + |b1|
∑

p≥1

|ap||z|p +
( ∑

1≤p≤N
|ap||z|p

)( ∑

1≤q≤N
|bq ||z|q

)

≤ |a1|
∑

q≥1

|bq ||z|q + |b1|
∑

p≥1

|ap||z|p +
(∑

p≥1

|ap||z|p
)(∑

q≥1

|bq ||z|q
)
.

(4.3)

Hence the conclusion. ��

4.2 Historic Facts

1. Around 1944 A. Wintner [48] shows that for u(t) = {t}, the sequence u(nt) is
total in L2(0, 1

2 ) and observes, for the eventual totality of a sequence (ϕ(nt))n≥1,
the possibility to express the conditions in terms of the Möbius inversion. He
uses the associated Dirichlet series and shows that the sequence of dilates ϕτ (nt)

for ϕτ (t) =
√

2
∑

n≥1

sin nt

nτ
with �τ > 1

2 is total in ∈ L2(0, 1).

2. In 1945 A. Beurling [8] considers the problem of deciding if the system of the
dilates (ψ(nt))n≥1 of a functionψ ∈ L2(0, 1) is a total system inL2(0, 1). To the

development
∑

n≥1

anϕ(nt) of the function ψ in the basis ϕn(t) =
√

2 sinπnt =

ϕ(nt) with ϕ(t) = √
2 sinπt , he associates the Dirichlet series f (s) =

∑

n≥1

an

ns
,

which converges for �s > 1
2 , and studies the initial problem using the properties

of the Dirichlet series f .
3. From 1990, very intensive research was carried out to link and exploit the

correspondence between the two aspects (Fourier series F
S←→ G Dirichlet

series) [5, 15, 24, 26, 35, 39] · · · and the references therein.

In particular we quote from [24] the following

Theorem 4.5 Let ϕ ∈ L2(0, 1) having the following Fourier expansion

ϕ(t) = √
2
∑

n≥1

an sin(πnt),
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then the following are equivalent:

1. The sequence of dilates (ϕn)n≥1 of ϕ form a Riesz basis of L2 (0, 1).

2. The generating function Sϕ(s) =
∑

n≥1

an

ns
belongs to

H∞ = H∞({s ∈ C,�s > 0}) ∩D

as well as its reciprocal
1

Sϕ(s)
, D is the ring of convergent Dirichlet series on

the half plane {s ∈ C,�s > 0}.
In particular the dilates of ϕτ form a Riesz basis of L2(0, 1) if and only if �τ > 1.

In this case Sϕ(s) = ζ(s + τ ) =
∑

n≥1

1

ns+τ
and S−1(s) =

∑

n≥1

μ(n)

ns+τ
.

Furthermore

Lemma 4.6 The three rings C([[z]]),O(D) and O0 equipped with the binary com-
position ⊗ are commutative ring, with neutral element z. The ring of arithmetical
functions, equipped with Dirichlet convolution, is an integral domain, factorial,
local and isomorphic to the ring of Dirichlet series. The same is true of the ring D.

We recall that a convergent Dirichlet series is a series
∞∑

n=1

an

ns
having a finite

abscissa of convergence. This is equivalent to an = O(nk) for some real positive k.

Definition 4.7 Let H be a separable Hilbert space. A basis (xn) is a Riesz basis for
H if it is equivalent to some (and therefore every) orthonormal basis (yn) for H ,
that is if there exists a topological isomorphism L : H → H such that Lxn = yn
for all n.

The system {eint , n ∈ Z} is a Riesz basis for L2[−π, π] and a conditional
basis for Lp[−π, π] with 1 < p < ∞, p 	= 2. In evocation of the polylogarithm
function, we cite the following example of Babenko given in [2, 44] (p.428,
Example 14.4): The systems {|t|−|β|eint , n ∈ Z} and {|t||β|eint , n ∈ Z} with
0 < β < 1

2 are bounded conditional bases for L2[−π, π] that are not a Riesz basis.
Naturally all Riesz bases are equivalent, as do all orthonormal bases of Hilbert
spaces. The adjoint mapping L∗ : H → H is a Hilbert space epimorphism.
The sequence x∗n = L∗xn is the biorthogonal sequence of (xn)n≥1. We are going
to see that the sequence (Lτ (z

n) is a Riesz basis of H 2(D) for �τ > 1, and
the corresponding biorthogonal sequence is (ψn(z))n≥1 = (ψn,τ (z))n≥1 where

ψn(z) = 1

nτ

∑

d |n
μ n

d
dτ zd .
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We will use the following characterization of Riesz sequences, due to N.K. Bari
[3, 8, 24]:

Lemma 4.8 Let H be a Hilbert separable space and B = (xn)n≥1 be a sequence
in H . B is a Riesz basis in H if and only if

1. every x ∈ H can be expanded as x =
∑

n

anxn

2. There exist two constants 0 < c < C <∞ such that for every sequence (an)n≥1
with finite support we have:

c
∑

n≥1

|an|2 ≤ ‖
∑

n≥1

anxn‖2 ≤ C
∑

n≥1

|an|2.

The following lemma uses ideas from [48], see also [8, 24].

Lemma 4.9 We have the following equalities for �s > 1

1. (Ls(z
m)|Ls(z

n)) =
∑

k,l≥1
km=ln

1

ks ls
= (gcd(m, n))2s

(mn)s
ζ(2s).

2. (Ms(z
m)|Ls(z

n)) =
∑

k,l≥1
km=ln

μk

ks ls
= (gcd(m, n))2s

(mn)s
μδ(m,n)

∑

j≥1
(j,δ(m,n))=1

μj

js
.

with, if f (z) =
∞∑

n=0

anz
n, g(z) =

∞∑

n=0

bnz
n,

(f (z)|g(z)) =
∞∑

n=0

anb̄n.

Remark 4.10 The basic example is provided by the Hilbert space L2(0, π) and the

dilates (un) of the function u(x) =
∑

k≥1

sin kx

ks
, with

(um|un) = π

2

∑

k,l≥1
km=ln

1

ks ls
= π

2
ζ(2s)

(gcd(m, n))s

(mn)s
.

Lemma 4.11 Let (cn)n≥1 a sequence with finite support of complex numbers.
Then

1. ‖
∑

n≥1

cnLs(z
n)‖2 =

∑

m,n≥1

cmcn(Ls (z
m)|Ls(z

n)) = ζ(2s)
∑

m,n≥1

(gcd(m, n))2s

(mn)s
cmcn.
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2.

‖
∑

n≥1

cnMs (z
n)‖2 =

∑

m,n≥1

cmcn(Ls (z
m)|Ls (z

n))

=
∑

m,n≥1

(gcd(m, n))2s

(mn)s
cmcnμ n

lcm(m,n)

∑

j≥1
(j, δ(n,m))=1

μj

j2s
.

Remark 4.12 We thus see appearing the N ×N symmetric square matrices

Ms,N =
(
(gcd(m, n))2s)

(mn)s

)

1≤m,n≤N
.

It is possible to compute the determinant of the matrix Ms,N . We recall first that the
Smith determinant is defined to be

	N = det (gcd(m, n))1≤m, n≤N

and its value, in terms of the Euler’s totient function �, is [45]

	N = �(1)�(2) · · ·�(N).

The determinant 	(r)
N = det (gcd(m, n)r )1≤m, n≤N where r is a real number, was

also evaluated by Smith in [45]. To explain the value of 	(r)
N we introduce the

Jordan’s totient function Jk given by [1, 45, 47]

Jk(n) = nk
∏

p|n

(
1 − 1

pk

)
,

where p ranges through the prime divisors of n. We have J1(n) = �(n).
Furthermore

∑

d |n
Jk(d) = nk.

which may be written as convolution product as

Jk(n) � 1 = nk

and by a Möbius inversion

Jk(n) = μ(n) � nk.
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The Dirichlet generating function of series for Jk is

∑

n≥1

Jk(n)

ns
= ζ(s − k)

ζ(s)
.

Similarly to the case of 	 = 	(1), we have the formula

	
(r)
N = Jr(1)Jr(2) · · · Jr(N).

Since the determinant is a multilinear form we obtain

det Ms,N = 1

(N !)2s J2s(1)J2s(2) · · · J2s(N),

so the matrices Ms,N are invertible. These statements remain valid for every s ∈ C

by analytic continuation. The matrices Ms,N are also positive for s ∈ (1,+∞) and
according to [30, 48], the smallest eigenvalue of λN (s) and the largest eigenvalue
!N(s) of Ms,M satisfy

ζ(2s)

ζ(s)2
≤ λN(s) ≤ !N(s) ≤ ζ(s)2

ζ(2s)
. (4.4)

We deduce that for a sequence a = (an)n≥1 ∈ l2 we have [30]

ζ(2s)

(ζ(s))2

∑

1≤n≤N
|an|2 ≤

∑

1≤m,n≤N

(gcd(m, n))2s

(mn)s
aman ≤ (ζ(s))2

ζ(2s)

∑

1≤n≤N
|an|2.

This proves the following

Proposition 4.13 If s > 1, the sequence (Ls(z
n))n≥1 is a Riesz basis of H 2(D).

By direct computation we see that the associated biorthogonal basis is (ψn(z))n≥1
where

ψn(z) = ψn,s(z) = 1

ns

∑

d |n
μ n

d
dszd . (4.5)

The two extreme factors in (4.4) have interesting Dirichlet series expansion [32]
(p.227)

ζ 2(s)

ζ(2s)
=

∞∑

n=1

θ(n)

ns
,

ζ(2s)

ζ 2(s)
=

∞∑

n=1

λ(n)θ(n)

ns
.
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The function θ(n) is defined by

θ(n) = 2ω(n),

where ω(n) is the number of different prime factors of n. It is a multiplicative
function, also related to the Möbius function by θ(n) =

∑

d |n
|μ(d)|.

Remark 4.14 It is worth noting that the positivity of the matrix Ms,N can be
deduced from the Franel integral (2.2). If for a suitable real function f we have
two real s, s′ such that for every 1 ≤ m,n ≤ N

∫ 1

0
f (mx)f (nx)dx = gcd(m, n)s

ms ′ns ′

then for c1, · · · , cN ∈ C

∑

1≤m,n≤N

gcd(m, n)s

ms ′ns ′
cmc̄n =

∫
1

0

∣∣∣∣∣∣

p=N∑

p=1

f (px)cp

∣∣∣∣∣∣

2

dx ≥ 0

and

∑

1≤m,n≤N
gcd(m, n)scmc̄n =

∫
1

0

∣∣∣∣∣∣

p=N∑

p=1

ps
′
f (px)cp

∣∣∣∣∣∣

2

dx ≥ 0.

We have the definite positivity if the functions x → f (px), 1 ≤ p ≤ N are linearly
independent.

4.3 Multipliers

We consider new spaces of Dirichlet series.

1. The space H2 =
⎧
⎨

⎩
∑

n≥1

an

ns
, a = (an)n∈N∗ ∈ l2

⎫
⎬

⎭ corresponding to the spaces

L2(0, 1) et H 2(D).
2. The space H∞ = H∞({s ∈ C,�s > 0}) ∩ D equipped with the usual norm
‖ ‖∞, defined on the space of measurable and bounded functions defined on
{s ∈ C : �s > 0}.

It is easily shown that H∞ ⊂ H2 and that ‖f ‖2 ≤ ‖f ‖∞ for f ∈ H∞. The
set of multipliers of H2 can be identified with H∞. The norm of the multiplier,



Harmonic Analysis of Some Arithmetical Functions 117

as operator, Mϕ : H2 0 f −→ ϕf ∈ H2 is ‖Mϕ‖ = ‖ϕ‖∞. We also have
the following interesting property: Let ϕ ∈ H∞, the multiplier operator Mϕ is an
isomorphism of H2 if and only if ϕ−1 ∈ H∞. In this case ‖M−1

ϕ ‖ = ‖ϕ−1‖∞. In
the correspondence between power series and Dirichlet series the multiplier set of
H 2

0 (D) for ⊗ is identified with the set of power series ϕ(s) =
∑

n≥1

αnz
n such that

the function ϕ(s) =
∑

n≥1

αn

ns
belongs to H∞. An illustration of this fact is given by

the polylogarithm function: For �τ > 1 the series Lτ (z) and Mτ (z) are reciprocal
multipliers of H 2

0 (D) for the operation ⊗. Moreover the image of the multiplier

Ls (z) by the map S is the translate of the zeta function ζ(s + τ ) =
∑

n≥1

1

ns+τ
.

Example 4.15 We now give an example of the expansion of a given g ∈ H 2
0 (D)

in the Riesz basis (Ls(z
n))n≥1. We need to find a sequence (αn)n≥1 such that

g(z) =
∑

k≥1

αkLs(z
k). If f (z) is the formal power series f (z) = ∑

k≥1 αkz
k , then

g(z) should be g(z) = f (z) ⊗ Ls(z) or f (z) = g(z) ⊗Ms (z). According to the
Lemma 4.1 the convergence radius Rf of f satisfies 1 = min(1, RMs

, Rg) ≤ Rf
and

f (z) =
∑

n≥1

(∑

d |n

μ n
d

( n
d
)s
ad

)
zn =

∑

n≥1

1

ns

(∑

d |n
μ n

d
dsad

)
zn.

We thus see that in terms of the biorthogonal basis (4.5), αn = (g|ψn), naturally
enough.

4.4 On the Estermann’s Function

The Estermann zeta function E(s, a, z) is defined by the Dirichlet series

E(s, a, z) =
∑

n≥1

σa(n)

ns
zn �s > 1 +�a, |z| ≤ 1, (4.6)

where, as already denoted, σa(n) =
∑

d |n
da, a ∈ C. This Dirichlet series is

closely related to Ramanujan sums. This series (4.6) can be given in terms of the
polylogarithm function, or more precisely can be expanded with respect to the Riesz
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basis {Ls(z
n), n ≥ 1}. In fact if a > 0 then

E(s, a, z) =
∑

p≥1

1

ps−a
Ls (z

p), |z| ≤ 1, �s > max(1, 1+ a).

This can be shown either by observing that

(E|ψp) = 1

ps
(μ � σa)(p) = 1

ps−a

by using σa = I �ua with I (n) = 1 (the constant arithmetical function) and ua(n) =
na for every n ∈ N∗, or by showing that

E(s, a, •)⊗Ms = Ls−a.

Assume that a < 0 and recall first that for �(s + τ ) > 1 then (3.8)

ζ(s + τ )
∑

d |k
μ k

d
d1−s−τ =

∑

n≥1

ck(n)

ns+τ .

We deduce that for t > 0 we have

∑

n≥1

ck(n)

nτ
e−nt = 1

2iπ

∫ c+i∞

c−i∞
�(s)

∑

n≥1

ck(n)

ns+τ
ds

ts

= 1

2iπ

∫ c+i∞

c−i∞
�(s)

∑

n≥1

ζ(s + τ )
∑

d |k
μ k

d
d1−τ ds

(dt)s

=
∑

d |k
μ k

d
d1−τ ∑

n≥1

e−ndt

nτ
.

We obtain, by analytic continuation, that

∑

n≥1

ck(n)

nτ
zn =

∑

d |k
μ k

d
d1−τLτ (z

d).

Since a < 0, we get from (3.9)

σa(n) = ζ(1 − a)
∑

k≥1

ck(n)

k1−a .
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Thus

E(s, a, z) =
∑

n≥1

σa(n)

ns
zn

= ζ(1 − a)
∑

k≥1

1

k1−a

⎛

⎝
∑

n≥1

ck(n)

ns
zn

⎞

⎠

= ζ(1 − a)
∑

k≥1

1

k1−a

⎛

⎝
∑

d |k
μ k

d
d1−sLs(z

d )

⎞

⎠ .

5 A Link with Kubertt Identities

Let f (z) =
∑

n≥1

anz
n be a power series, convergent for |z| ≤ 1. The condition

∑

1≤h≤m
f (e2iπ h

m ) = 0

is equivalent to

∑

n≥1

an

⎛

⎝
∑

1≤h≤m
e2iπ nh

m

⎞

⎠ = m
∑

j≥1

ajm = 0.

Furthermore if we assume that

∑

1≤h≤m
f (e2iπ h

m ) = 0

for every m ∈ N∗, then for every m ∈ N∗

∑

j≥1

ajm = 0.

The function M1 satisfies this property. Furthermore according to [39] (p.294) if
a = (an)n∈N∗ is a non zero sequence satisfying this property, then a /∈ �1, the
space of sequences whose series is absolutely convergent. This last condition is also
satisfied by M1. In fact if |μ(n)| = μ2(n) is the characteristic function of squarefree
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integers, then [32] (p.227)

∞∑

n=1

|μ(n)|
ns

= ζ(s)

ζ(2s)

and lim
s→1

∞∑

n=1

|μ(n)|
ns

= ∞. Obviously this also results from (3.13).

One wonders for what f ∈ O0 the product f ⊗M1 will verify Kubert identity.
Naturally, quite strong convergence hypothesis on the sequence a = (ak)k≥1 will be
required. We recall that

f ∈ H 2(D)→ f ⊗Mτ ∈ H 2(D)

is an isomorphism. If f (z) = ∑
k≥1 akz

k with suitable convergence on the circle
U = {|z| = 1} we can write

∑

1≤h≤m
(f ⊗Mτ )(e

2iπ h
m ) =

∑

k≥1

ak

⎛

⎝
∑

1≤h≤m
Mτ (e

2iπ h
m )

⎞

⎠ = 1

mτ−1

∑

k≥1

ak
∑

j≥1

μjD(m,k)

j τ
.

We need two lemmas, the first is strongly inspired by Pollack [37].

Lemma 5.1 Let D ∈ N∗. For every 1 < τ < 3
2 we have

∣∣∣∣∣∣

∑

j≥1

μjD

jτ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
μ(D)

ζ(τ )

∏

p|D
(1 − p−τ )

∣∣∣∣∣∣
≤ e

τ − 1

ζ(τ )
.

Proof We introduce

PD(τ) =
∏

p|D
(1 − p−τ ), τ > 1

so we have

logPD(τ) = −
∑

p|D
log(1 − p−τ ) =

∑

p|D

1

pτ
+

∑

p|D

∑

k≥2

1

kpkτ
.

Now

∑

p|D

∑

k≥2

1

kpkτ
≤

∑

p|D

∑

k≥2

1

kpkτ
≤ 1

2

∑

p|D

∑

k≥2

1

pkτ

≤ 1

2

∑

p|D

∑

k≥2

1

pk
= 1

2

∑

p|D

1

p(p − 1)
≤ 1

2
.
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And

logPD(τ) = −
∑

p|D
log(1 − p−τ ) ≤

∑

p|D

1

pτ
+ 1

2
.

The same ideas give

0 < log ζ(τ )−
∑

p

1

pτ
<

1

2
τ > 1.

On the other hand it is easily seen that

1 < (τ − 1)ζ(τ ) < τ, τ > 1

and for τ < 3
2 ,

0 < log ζ(τ )+ log(τ − 1) < log τ < log
3

2
.

By putting together these results we arrive to

−1

2
<

∑

p

1

pτ
+ log(τ − 1) < log

3

2
<

1

2
.

Hence, for τ ∈]1, 3
2 [, we have

|
∑

p

1

pτ
+ log(τ − 1)| ≤ 1

2

or

∑

p

1

pτ
≤ 1

2
+ log(τ − 1), 1 < τ <

3

2
.

Finally, using logPD(τ) ≤
∑

p

1

ps
+ 1

2
, we find that

logPD(τ) ≤ 1 + log(τ − 1)

or

PD(τ) ≤ e(τ − 1), 1 < τ <
3

2
.

Hence the lemma. ��
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Before to state the following lemma we would like to make a comparative
remark. Let T = R/Z be the circle, and let f : T → C be an integrable function. If
the Fourier coefficients f̂ (n) satisfy

∑

n∈Z
|f̂ (n)|2 <∞,

then Carleson theorem [10] asserts that the sequence (Sn(x)n≥0, Sn(x) =∑

|k|≤n
f̂ (k)e2iπkx converges to f (x) for almost all x ∈ T. In particular for every

τ with �τ > 1
2 ,

∑

n≥1

μ(n)zn

nτ
converges for almost every z ∈ T. The next lemma

is a form of Jensen lemma adapted to the Dirichlet series
∑

n≥1

μ(n)zn

nτ
, |z| ≤ 1 and

�τ > 1. It differs considerably from what we got from Carleson’s theorem.

Lemma 5.2 For every τ, �τ > 1, the series
∑

n≥1

μ(n)

nτ
zn converges uniformly on

the angle

|z| ≤ 1, | arg(z− 1)| < π

2
− δ,

where δ ∈ (0, π2 ) is fixed

Proof Let an(z) = μ(n) zn be the coefficients of this Dirichlet series. By using
the fundamental estimate of Davenport (3.3) we can show that bp(z) =

∑

n≥p
an(z)

converges uniformly to zero on the unit circle, hence on the closed unit disc, by the
maximum principle. For every ε > 0 there exists pε ∈ N∗ such that p ≥ pε we
have |bp(z)| < ε. Let

SN = SN(z, s) =
∑

1≤n≤N

an(z)

ns
, |z| ≤ 1, �s > 0, | arg s| ≤ π

2
− δ.

For Q > P ≥ pε , we have by partial summation

SQ−SP−1 = bQ

Qs
+bQ−1

( 1

(Q− 1)s
− 1

Qs

)
+· · ·+bP

( 1

P s
− 1

(P + 1)s

)
− bP−1

P s
.

and

|SQ − SP−1| ≤ ε

(
1

|Qs| +
1

|P s | +
∣∣∣∣

1

(Q− 1)s
− 1

|Qs|
∣∣∣∣ = · · · +

∣∣∣∣
1

P s
− 1

|(P + 1)s |
∣∣∣∣

)
.



Harmonic Analysis of Some Arithmetical Functions 123

Now

1

(k + 1)s
− 1

ks
= s

∫ log(k+1)

log k
e−λsdλ,

so, with σ = �s
∣∣∣∣

1

(k + 1)s
− 1

ks

∣∣∣∣ ≤
|s|
σ

( 1

kσ
− 1

(k + 1)σ

)

and

|SQ − SP−1| ≤ 2ε(1 + 1

sin δ
),

hence the lemma. ��
As a consequence we find that lim

τ→1,τ>1
Mτ (z) = M1(z) uniformly with respect

to z in the closed unit disk. So, if the sequence a = (ak)k≥1 is reasonable we will
obtain that the function f ⊗M1, with f (z) = ∑

k≥1 akz
k , satisfies the property of

Besicovich. For example, if a ∈ l1 (which also ensures that f ∈ H 2(D)).

Theorem 5.3 If f (z) = ∑
k≥1 akz

k with a = (ak)k≥1 ∈ l1, then

∑

1≤h≤m
(f ⊗M1)(e

2iπ h
m ) = 0.

Proof The two lemmas above ensure the possibility of passing to the limit τ →
1, 1 < τ < 3

2 in the following relation:

∑

1≤h≤m
(f ⊗Mτ )(e

2iπ h
m ) =

∑

k≥1

ak

⎛

⎝
∑

1≤h≤m
Mτ (e

2iπ h
m )

⎞

⎠ = 1

mτ−1

∑

k≥1

ak
∑

j≥1

μjD(m,k)

j τ
.

��
Remark 5.4 Let f (z) = ∑

k≥2 akz
k be a power series of radius at least equal to

R > 0. For |z| < R and �s > 1
2 we have [27, 36]

∑

n≥1

f (
z

ns
) =

∑

k≥2

akζ(ks)z
k.

Proof For z ∈ D(0, R) we choose ε > 0 and α > 0 such that |z| < R − α <

R − ε < R. There is k0 ∈ N∗ such that, for k > k0 we have |ak||z|k < (R − α)k

(R − ε)k
,

which ensures the convergence of the series
∑

k≥2 |ak||z|k. Since �(ks) > 1 for
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�s > 1
2 and k ≥ 2, the series

∑

k≥2

|ak||z|k
∑

n≥1

1

nks
is summable. We can therefore

apply Fubini’s theorem to exchange the summations. ��
As an example we take a2n = (−1)n

1

2n! and a2n+1 = 0 for every n ≥ 1. This

gives

f (z) =
∑

k≥2

akz
k =

∑

k≥1

(−1)k

2k! z2k = cos z− 1

which converges for every z ∈ C and insure, with s = 1,

∑

j≥1

(
cos(

z

j
)− 1

) =
∑

k≥1

(−1)k
ζ(2k)

2k! z
2k. (5.1)

We investigated some functions related to the right side of (5.1) in [43].

6 Asymptotic Expansion

In this section we give the asymptotic expansion of the coefficients of the power

series in H 2
0 (D) corresponding to

∑

1≤ν≤N
cν{θν

x
},

∑

1≤ν≤N
cνθν = 0 as element of

L2(0, 1). This is given by the following result

Theorem 6.1 The n-th coefficient an of the power series belonging to H 2(D) and

corresponding to
∑

1≤ν≤N
cν{θν

x
} with

∑

1≤ν≤N
cνθν = 0 is given by

an =
√

2

πn

( ∑

1≤ν≤N
cν(nπθν)

σ0
)
oσ0(n)

with σ0 such that 2
3 < σ0 < 1 and

oσ0(n) =
1

2iπ

∫ +∞

−∞
�(−(σ0 + iτ ))ζ(σ0 + iτ ) cos(

π

2
(σ0 + iτ ))niτ dτ

tending to zero as n tends to +∞.
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Proof We look for an asymptotic expansion of the function f (x) =
∑

l≥1

(−1)l
ζ(2l)

2l! x2l

when x tends to +∞. For this we consider the line integral

IM,T (x) = 1

2iπ

∫

γM,T

�(−s)ζ(s) cos(
π

2
s)xsds,

where γM,T is the rectangular circuit which sides are parallel to the axis, and whose
vertices are the points σ0 ± iT and M + 1

2 ± iT for M ∈ N∗, T > 0. We recall
that

1. For every fixed σ ∈ R there exists Cσ > 0 such that |�(σ + iτ )| ≤
Cσ |τ |σ− 1

2 e−
π
2 |τ |.

2. For 0 ≤ σ ≤ 1 and ε > 0, there exists Dε > 0 such that |ζ(σ + iτ )| ≤
Dε|τ | 1−σ

2 +ε.
3. We have | cos

π

2
(σ + iτ )| ≤ e

π
2 |τ |.

Hence for s = σ0 + iτ with σ0 ∈ (
2

3
, 1) we have the estimate

∣∣∣�(−s)ζ(s) cos(
π

2
s)xs

∣∣∣ ≤ C−σ0Cε
xσ0

|τ |σ0+ σ0
2 −ε

,

with σ0 + σ0

2
− ε > 1 for ε > 0 small enough, since σ0 + σ0

2
>

2

3
+ 1

3
= 1. ��

6.1 The Integral on the Line �s = σ0

We recall that the function

R 0 τ → �(−(σ0 + iτ ))ζ(σ0 + iτ ) cos(
π

2
(σ0 + iτ ))xσ0 ∈ L1(R).

6.2 Integrals on �s = M + 1
2 and on Horizontal Lines

For every s ∈ C and M ∈ N∗ such that �s = M + 1

2
we have s − (−s) = 2�s =

2M + 1 and

�(−s) = �(−s + 2M + 1)

(−s)(1 − s) . . . (2M − s)
= �(s)

(−s)(1 − s) . . . (2M − s)
.
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According to the Stirling formula, for 0 ≤ |args| ≤ π
2

|�(s)| ≤ C|s|σ− 1
2 e−σ e−

π
2 |τ |.

Then, with �s = σ =M + 1
2 , we have |�(s)| ≤ C|s|Me−(M+ 1

2 )e− π
2 |τ |. Hence

|�(−s)| ≤ C|s|Me−(M+ 1
2 )e− π

2 |τ |

|s(s − 1) . . . (s − 2M)| .

This guarantees the integrability of the modulus of the function �(−s)ζ(s)
cos(π2 s)x

s on the line �s = M + 1
2 as |ζ(s)| ≤ 2, | cos(π2 s)| ≤ e

π
2 |τ | and so

the modulus of the integrand is less than

C|s|Me−(M+ 1
2 )xM+ 1

2

|s(s − 1) . . . (s − 2M)| ≤ CM
1

|τ |M+1 ,

CM being a positive constant, independent of M . In the same vein we can obtain an

upper bound of
|s|M

|s(s − 1) . . . (s − 2M)| on �s = M + 1
2 by grouping (s − 1) and

(s − 2M), (s − 2) and (s − (2M − 1)) . . ., (s −M) and (s − (M + 1)) to obtain

|s|M
|s(s − 1) . . . (s − 2M)| =

|s|M−1

(τ 2 + (M − 1)2) . . . (τ 2 + 1
4 )
≤ |τ |M−1

|τ |2M = 1

|τ |M+1
.

We thus obtain the absolute convergence of the integral on �s = M + 1
2 and, in the

same way, the limit to zero of the integrals on the horizontal segments by using a

majorization, uniform in σ ∈ [σ0,M + 1
2 ], of

|s|M
|s(s − 1) . . . (s − 2M)| .

6.3 Evaluation of the Residues

1. For n ≥ 2. The poles of �(−s) greater than σ0 are s = n, n ≥ 1 and

are of respective residues
(−1)n

n! . We find that if n is odd the residue of

�(−s)ζ(s) cos(π2 s)x
s at n vanishes, and if n = 2l is even, the residue is

−(−1)l
ζ(2l)

2l! x
2l .

2. For n = 1 we have a double pole and by computing

lim
s→1

d

ds

(
(s − 1)2�(−s)ζ(s) cos(

π

2
s)xs

)

we find that the residue at 1 is −πx.
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The intermediate result we obtained is the equality

−πx −
∑

1≤l≤M
(−1)l

ζ(2l)

2l! x
2l = 1

2iπ

∫ σ0+i∞

σ0−i∞
�(−s)ζ(s) cos(

π

2
s)xsds

− 1

2iπ

∫ M+ 1
2+i∞

M+ 1
2−i∞

�(−s)ζ(s) cos(
π

2
s)xsds.

We need to analyze IM(x) = 1

2iπ

∫ M+ 1
2+i∞

M+ 1
2−i∞

�(−s)ζ(s) cos(
π

2
s)xsds. We write

cos(
π

2
s) = (ei

π
2 )s + (e−i π2 )s

2
and making the legitimate interchange of summation

and integration we get

IM(x) = 1

2

∑

n≥1

(
1

2iπ

∫ M+ 1
2+∞

M+ 1
2−i∞

�(−s)
( ei π2 x

n

)s
ds + 1

2iπ

∫ M+ 1
2+∞

M+ 1
2−i∞

�(−s)
( e−i π2 x

n

)s
ds

)
,

or

IM(x) = 1

2

∑

n≥1

(
JM(

ix

n
)+ JM(

−ix
n

)

)

with

JM(z) = 1

2iπ

∫ M+ 1
2+∞

M+ 1
2−∞

�(−s)zsds = 1

2iπ

∫ −(M+ 1
2 )+∞

−(M+ 1
2 )−∞

�(s)z−sds.

According to [19] (7.3, p.348), the inverse Mellin transform of e−ias�(s), with the

conditions |�a| ≤ π
2 , −m < �s < 1 −m, m = 1, 2, . . ., is the function e−teia −

∑

0≤r≤m−1

(−teia)r
r! . For a = −π

2
+ i log

n

x
we have |�a| = π

2
, eia = −i x

n
and

JM(i
x

n
) =

∑

r≥M+1

(−i)r xr

nrr! , JM(−i x
n
) =

∑

r≥M+1

(i)r
xr

nrr! .

Thus

IM(x) =
∑

n≥1

⎛

⎝
∑

r≥M+1

(ir + (−i)r) x
r

nrr!

⎞

⎠ .
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Since

∑

n≥1

∑

r≥M+1

|x|r
nr r! ≤ e|x|

∑

n≥1

1

nM+1 = ζ(M + 1)e|x| < +∞

and lim
M→+∞

∑

r≥M+1

(ir + (−i)r) x
r

nrr! = 0 we get

lim
M→+∞ IM(x) = 0,

and finally

∑

l≥1

(−1)l
ζ(2l)

2l! x
2l = 1

2iπ

∫ σ0+i∞

σ0−i∞
�(−s)ζ(s) cos(

π

2
s)xsds + πx.

We also see from the properties of the Fourier transform of an integrable function

1

2iπ

∫ σ0+i∞
σ0−i∞

�(−s)ζ(s) cos(
π

2
s)xsds

= xσ0

2π

∫

R

�(−σ0 − iτ )ζ(σ0 + iτ ) cos(
π

2
(σ0 + iτ ))ei(log x)τ dτ

= xσ0oσ0(x)

If we replace x by πνθν, 1 ≤ ν ≤ N and summing over ν, the terms coming
from πx disappear, since

∑

1≤ν≤N
cνθν = 0. This therefore gives the statement of the

theorem.

7 Analytic Continuation of Ms Outside the Unit Disk

One of the purposes of this paragraph is to show that the unit circle is a natural
boundary for Ms for �s > 0. This can be easily done when s = k > 0 is an integer.
Since (μ(n))n≥1 = (μn)n≥1 is a non-periodic sequence taking values in the finite set
{−1, 0, 1} and the power series M0 is a non rational function then, by Polya-Carlson
theorem, the unit circle is a natural boundary. When k ≥ 1 we can write

(
z
d

dz

)k
Mk =M0,
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showing that M0 is analytic where Mk is analytic (compare with (3.1)). Hence the
unit circle is a natural boundary for Mk for every integer k. Alternatively we have

Mk(z) = 1

�k)

∫ ∞

0
M0(e

−t z)tk−1dt.

We introduce the operators Ts,�s > 0 defined on M0 by a Mellin’s integral

Ts(M0)(z) = 1

�(s)
M (

M0(e
−•z)

)
(s), |z| < 1.

One can verifies that

Ms(z) = 1

�(s)

∫ ∞

0

∑

n≥1

μn(e
−t z)nts−1dt, |z| < 1.

Let U ⊂ C be a star-shiped open set containing the origin. Let

O0(U) = {f holomorphicon U, f (0) = 0}

on which we define the family of operators

Ts(f )(z) = 1

�(s)
M (

f (e−•z)
)
(s), z ∈ U,

and show that it has a semi-group property (moreover holomorphic).

Proposition 7.1 The family of operators (Ts)�s>0 defined on O0(U) by

Ts(f )(z) = 1

�(s)

∫ ∞

0
f (e−t z)ts−1dt, z ∈ U,

verifies

Ts1+s2 = Ts1 ◦ Ts2 .

Note first that lim
t→+∞ f (e−t z) = f (0) = 0 which ensures, for f 	≡ 0, the

existence of a integer N ≥ 1 and a constant aN 	= 0 such that f (e−t z) =
e−Nt (aNzN + · · · ) for t large and guarantees the convergence of the integral. One
checks the holomorphicity of Ts(f ) in U as usual. To show the semi-group property
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we consider f ∈ O0(U), z ∈ U, s1, s2 ∈ C,�si > 0, i = 1, 2, then

Ts2(Ts1(f ))(z) =
1

�(s2)

∫ ∞

0
Ts1(f )(e

−t z)ts2−1dt

= 1

�(s2)

∫ ∞

0

(
1

�(s1

∫ ∞

0
f (e−ue−t z)us1−1du

)
ts2−1dt

= 1

�(s2)�(s1)

∫ ∫

[0,∞)2
f (e−(u+t )z)us1−1ts2−1du dt.

We set t + u = v, t − u = w and 	 = {(u, v) : v ≥ 0, |w| ≤ v} and obtain

Ts2(Ts1(f ))(z) =
1

2�(s2)�(s1)

∫ ∞

0

[
f (e−vz)

∫ v

−v

(v −w

2

)s1−1(v +w

2

)s2−1
dw

]
dv.

The integral

I =
∫ v

−v

(v − w

2

)s1−1(v +w

2

)s2−1
dw

is of Euler’s type. We set w = ρv with |ρ| ≤ 1 and obtain

I = vs1+s2−1

2s1+s2−2

∫ 1

−1
(1 − ρs1−1)(1 + ρ)s2−1dρ.

Now with x = 1 + ρ = 2y we have

∫ 1

−1
(1 − ρs1−1)(1 + ρ)s2−1dρ =

∫ 2

0
xs2−1(2 − x)s1−1dx

= 2s1+s2−1
∫ 1

0
ys2−1(1 − y)s1−1dy

= 2s1+s2−1�(s1)�(s2)

�(s1 + s2)
.

That is

I = 2
�(s1)�(s2)

�(s1 + s2)
vs1+s2−1

and

Ts2(Ts1(f ))(z) =
1

�(s1 + s2)

∫ ∞

0
f (e−vz)vs1+s2−1dv = Ts1+s2(f )(z).

The proposition is proved.
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It is worth noting that this proof is contained in essence in (3.5), a representation

of the Boole’s differential operator ϑ = z
d

dz
acting on the z-variable, by a

translation on the s-variable. As a simple but illustrative example we take U = D

(or D ⊂ U ), D being the unit disk. If f (z) =
∑

n≥1

anz
n, z ∈ D, then

Ts(f )(z) =
∑

n≥1

an

ns

and

Ts1+s2(f )(z) =
∑

n≥1

an

ns1+s2
zn

is also equal to

Ts2(Ts1(f ))(z) =
∑

n≥1

1

ns2

( an
ns1

)
zn = Ts1(Ts2(f ))(z).

We can now finish the proof that the unit circle is a natural boundary for Ms . If
k > �s is an integer, we write k = s + σ with �σ > 0. Assume that Ms extends
holomorphically to an open set U , containingD, strictly larger than D. Without any
loss of generality we can assume that U is star-shiped with respect to the origin,
then

Mk =Ms+σ = Ts+σ (M0) = Tσ (Ms )

extends to, which contradicts what have been said on the non holomorphic
extendability of Mk(z).

8 Conclusion

By way of conclusion we would like to come back to what was the motivation of
this work, namely the Besicovitch question, and to mention that in fact it results
from the identities of Kubert by means, in general, of a deep result of Number
Theory as, for example, the Prime Number Theorem. We have also mentioned, very
briefly, the occurrence of the Perron–Frobenius operator and the interpretation that
can be drawn from it on the identities of Kubert. Our aim of this section is to point
out the interest in combining Number Theory, Harmonic Analysis and Dynamical
Systems in the study of arithmetic functions. The two twin functions of Möbius
μ(n) and of Liouville λ(n) share so many of these properties. For example, with the
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function (2.1) we have, as showed by Davenport [14] and used in [20, 42]

∞∑

n=1

μ(n)

n
{nt} = − 1

π
sin 2πx,

∞∑

n=1

λ(n)

n
{nt} = − 1

π

∞∑

n=1

sin 2πn2x

n2 .

The second equality makes a link with what Riemann gave as an example of a
continuous non-differentiable function. It is natural to define, similarly to Ms(z),
the function

Ns(z) =
∑

n≥1

λ(n)

ns
zn.

One of the main ideas of this work can be formulated in the following theorem and
its corollary

Theorem 8.1 Let

mis(θ) =
∞∑

n=1

μ(n)

ns
e2iπnθ , nis(θ) =

∞∑

n=1

λ(n)

ns
e2iπnθ , θ ∈ R.

Then for every positive k we have

k∑

h=1

mis(h/k) = μ(k)

ks−1

∞∑

n=1

μ(n)

ns
,

k∑

h=1

nis(h/k) = λ(k)

ks−1

∞∑

n=1

λ(n)

ns
.

As we have seen this results from the following facts

mis(h/k) =
∞∑

n=1

μ(n)

ns

k∑

h=1

e2iphn/k = μ(k)

ks−1

∞∑

n=1,(n,k)=1

μ(n)

ns
.

and

∞∑

n=1, (n,k)=1

μ(n)

n
= lim

s→1+

∞∑

n=1, (n,k)

μ(n)

ns

= lim
s→1+

∏

p � k

(1 − p−s ) = lim
s→1+

⎧
⎨

⎩ζ(s)
∏

p|k
(1 − p−s )

⎫
⎬

⎭

−1

= 0.
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and, similarly for �s > 1

∞∑

n=1

λ(n)

ns
= ζ(2s)

ζ(s)
,

∞∑

n=1

λ(n)

n
= lim

s→1+
ζ(2s)

ζ(s)
= 0. (8.1)

Corollary 8.2 The functions �mis(θ),�nis(θ) are non-trivial real-valued contin-
uous functions f on the real line which have period unity, are even, and for every
positive integer k have the property

n∑

h=1

f (h/k) = 0.

Furthermore, one can prove directly that
∑

(−1)n
λ(n)

n
= 0. Indeed

∞∑

n=1

(−1)n
λ(n)

ns
+

∞∑

n=1

λ(n)

ns
= 2

∞∑

n=1

λ(2n)

(2n)s
.

Since λ(2) = −1 and λ is multiplicative we obtain

λ(2n)

(2n)s
= − 1

2s
λ(n)

ns

so that

∞∑

n=1

(−1)n
λ(n)

ns
= (−1 − 2

2s
)

∞∑

n=1

λ(n)

ns
,

or

∞∑

n=1

(−1)(n+1) λ(n)

ns
= (1 + 2

2s
)
ζ(2s)

ζ(s)
.

We conclude by taking the limit s → 1 as in (8.1).
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It is generally believed that the values of the Möbius and Liouville functions
enjoy various randomness properties. One manifestation of this principle is an
old conjecture of Chowla [13] asserting that for all l ∈ N and all distinct
n1, n2, · · · , nl ∈ N and for every ε1, ε2, · · · , εl ∈ {1, 2} we have

M∑

m=1

με1(m+ n1) · · ·μεl (m+ nl) = o(M)

M∑

m=1

λε1(m+ n1) · · ·λεl (m+ nl) = o(M).

According to P. Sarnak we say that a sequence a(n)n≥1 is deterministic if there
exists a topological dynamical system (X, T ) with zero topological entropy, a point
x ∈ X, and a continuous function f : X → C such that for all n ≥ 1, a(n) =
f (T n(x)). Sarnak’s conjecture states that for every deterministic sequence a(n)n≥1
we have

M∑

m=1

μ(n)a(n) = o(M).

The case of X is a point corresponds to the estimate
M∑

m=1

μ(n) = o(M), an

equivalent form of the Prime Number Theorem. When X = R/Z and T (x) =
x + α (modulo 1), Sarnak’s conjecture results from Davenports’s estimate. We refer
to [11] for an extended report on these innovative ideas.

We end this section by giving the graphs of the two remarkable functions

∞∑

n=1

μ(n)

n
cos(2πnt),

∞∑

n=1

λ(n)

n
cos(2πnt).

These graphs evoke a hidden fractal structure, which deserves to be studied in depth
(Figs. 1 and 2).
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Fig. 1 Graph of
∞∑
n=1

μ(n)
n

cos(2πnt)

Fig. 2 Graph of
∞∑
n=1

λ(n)
n

cos(2πnt)
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Symmetric Measures, Continuous
Networks, and Dynamics

Sergey Bezuglyi and Palle E. T. Jorgensen

Abstract With view to applications, we here give an explicit correspondence
between the following two: (i) the set of symmetric and positive measures ρ on
one hand, and (ii) a certain family of generalized Markov transition measures P ,
with their associated Markov random walk models, on the other. By a generalized
Markov transition measure we mean a measurable and measure-valued function P
on (V ,B), such that for every x ∈ V,P (x; ·) is a probability measure on (V ,B).
Hence, with the use of our correspondence (i)–(ii), we study generalized Markov
transitions P and path-space dynamics. Given P , we introduce an associated
operator, also denoted by P , and we analyze its spectral theoretic properties with
reference to a system of precise L2 spaces.

Our setting is more general than that of earlier treatments of reversible Markov
processes. In a potential theoretic analysis of our processes, we introduce and study
an associated energy Hilbert space HE , not directly linked to the initial L2-spaces.
Its properties are subtle, and our applications include a study of the P -harmonic
functions. They may be in HE , called finite-energy harmonic functions. A second
reason for HE is that it plays a key role in our introduction of a generalized Green
function. (The latter stands in relation to our present measure theoretic Laplace
operator in a way that parallels more traditional settings of Green functions from
classical potential theory.) A third reason for HE is its use in our analysis of path-
space dynamics for generalized Markov transition systems.

Keywords Markov operator · Standard measure space · Symmetric measure ·
Laplace operator · Markov chain · Harmonic function · Finite energy space

Mathematics Subject Classification (2000) 37L40, 60J20

S. Bezuglyi · P. E. T. Jorgensen (�)
Department of Mathematics, University of Iowa, Iowa, IA, USA
e-mail: sergii-bezuglyi@uiowa.edu; palle-jorgensen@uiowa.edu

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2021
D. Alpay et al. (eds.), New Directions in Function Theory: From Complex
to Hypercomplex to Non-Commutative, Operator Theory: Advances
and Applications 286, https://doi.org/10.1007/978-3-030-76473-9_6

139

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76473-9_6&domain=pdf
mailto:sergii-bezuglyi@uiowa.edu
mailto:palle-jorgensen@uiowa.edu
https://doi.org/10.1007/978-3-030-76473-9_6


140 S. Bezuglyi and P. E. T. Jorgensen

1 Introduction

In this paper, we continue our study of the graph Laplace and Markov operators,
initiated in [1], which was based on the key notion of a σ -finite symmetric measure
defined on the product space (V × V,B × B) for a standard Borel space (V ,B).

Our goal is to extend the basic definitions and results of the theory of weighted
networks (known also as electrical or resistance networks) to the case of measure
spaces. We briefly recall that, for a countable locally finite connected graph G =
(V ,E) without loops, one can identify the edge set E with a subset of the Cartesian
product V × V and assign some weight cxy for every point (x, y) in E where cxy
is a symmetric positive function. It gives us a symmetric atomic measure ρ on E

whose projections on V are the counting measure μ. Then, for a weighted network
(V ,E, c), one defines the Markov transition probability kernel P and the graph
Laplacian 	 = c(I − P) which are considered as operators acting either in L2

spaces with respect to the measures μ and ν = cμ or in the finite energy space
HE . Their spectral properties are of great interest as well as the study of harmonic
functions in the theory of weighted networks.

Our approach to the measurable theory of weighted networks is based on the
concept of a symmetric measure defined on the Cartesian product (V × V,B × B)
where (V ,B) is a standard Borel space. (To stress the existing parallels we use
the same notation as in discrete case.) In more detail, in the context of measurable
dynamics, the state space V is considered very generally; more specifically (V ,B)
is given, where B is a specified σ -algebra for V . From (V ,B), we then form the
corresponding product space, relative to the product σ -algebra on V × V . It is
important that our initial measure ρ is not assumed finite, but only σ -finite. Since ρ
is assumed symmetric, the respective two marginal measures coincide, here denoted
μ, and they will also not be finite; only σ -finite. The σ -finiteness will be a crucial
fact in our computations of a number of Radon-Nikodym derivatives and norms of
operators and vectors.

We establish an explicit correspondence between (i) symmetric and positive
measures ρ on one hand, and (ii) a certain set of generalized Markov transition
measures P on the other. More precisely, by a generalized Markov transition
measure we mean a measurable and measure-valued functionP on (V ,B), such that
for every x in V , P(x, ·) is a probability measure on (V ,B). From the generalized
Markov transition P , we introduce an associated operator, also denoted by P . Its
spectral theoretic properties refer to a certain L2 space, and they will be made
precise in Sect. 3.

In addition to the operator P , we shall also consider a natural transfer operator
R (the choice of the letter “R” is for David Ruelle who initiated a variant of our
analysis in the context of statistical mechanics); and a measure theoretic Laplacian,
or Laplace operator. In the special case when V is countably discrete, our Laplace
operator will be analogous to a family of more standard discretized classical Laplace
operators. For related results on transfer operators, see e.g. [2–13].
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Among the motivations for our present results are the following: A recent study
of a variety of graph limits. This research area has both a general flavor, and
an application-focus; see below. The latter includes recent papers on graphons; a
current and extremely active area. In addition, we are motivated by a number of
new operator-theoretic approaches to the study of graph limits, such as the notion of
action convergence (see the recent works by Backhausz and Szegedy, [14, 15] and
Pensky [16]). While we mention some of these connections inside our paper, our
present emphasis is the theoretic foundations for these related developments.

New Results It is important to note that our setting is not restricted to the case of
finite measures. In fact, in our discussion of Markov transition dynamics, important
examples simply will not allow finite covariant measures. We recall that the theory
of weighted networks can serve as a discrete analog of our measurable settings,
see [1] where this analogy was discussed in detail. The corresponding symmetric
measure on the edge set E is σ -finite as well as the counting measure μ on the set
of vertices V . Our definitions of the energy space HE , Markov operator P , and the
graph Laplace operator	 are direct translations of the corresponding definitions for
weighted networks.

To the best of our knowledge, such interpretations of these objects have not been
considered earlier. We stress that our approach to Markov processes generated by
σ -finite symmetric measures leads with necessity to the study of Markov transition
operators defined on infinite σ -finite measure spaces. The existing literature on
Markov processes is devoted mostly to the case of probability measure spaces, see,
e.g., [17–19].

The notion of Borel equivalence relation defined on a standard Borel space
illustrates our setting, and it can be viewed as a rich source of various examples.
We refer to the following books and articles: [20–27].

More applications of measurable setting for the study of Markov processes and
Laplacians are given in [1]. We mention here the theory of graphons, Dirichlet
forms, and the theory of determinantal measures.

With our starting point, a choice of a fixed symmetric and positive measure ρ on a
product space, we will then have four natural Hilbert spaces, three are justL2 spaces,
L2(ρ), and two L2 spaces referring to the marginal measure μ. The fourth Hilbert
space is different. We call it the finite energy Hilbert space HE . Its use is motivated
by potential theory, and it has a more subtle structure among the considered Hilbert
spaces. Given ρ, we introduce an associated energy Hilbert space, denoted HE , but
depending on the initially given ρ. This energy Hilbert space HE is not directly
linked to the initial L2 spaces, and its properties are quite different. Nonetheless,
the energy Hilbert space HE will play a key role in our analysis in the main body
of our paper. There are many reasons for this. For example, non-constant harmonic
functions will not be in L2; but, in important applications, they may be in HE ; we
refer to the latter as finite energy harmonic functions. A second reason for HE is
that it plays a crucial role in our introduction of a generalized Green’s function. The
latter stands in relation to our Laplace operator in a way that is parallel to more
classical settings of Green’s functions from potential theory. A third reason for HE
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is its use in our analysis of path-space dynamics for the Markov transition system,
mentioned above.

Organization Our main results are proved in Theorems 3.10, 4.7, 4.11, 5.3, 6.2,
6.11, and 7.2.

The paper is organized as follows. Section 2 contains our basic definitions and
preliminary results. We discuss here the concepts of standard Borel and standard
measure spaces, kernels, irreducible symmetric measures, and disintegration. The
transfer operator R, Markov operator P , and graph Laplacian 	 are defined in
Sect. 3. We collected a number of results about the spectral properties of these
operators that were proved in [1]. Also the reader will find the definition of the finite
energy Hilbert space HE , several results about the structure of the space HE and the
norm of functions from HE . We consider also the embedding operator J and prove
that J is an isometry. In Sect. 4, we consider the equivalence of Markov operators
and the Laplacians generated by equivalent symmetric measures ρ and ρ′. It turns
out that, for equivalent symmetric measures ρ and ρ′, there exists an isometry
for the corresponding energy Hilbert spaces HE(ρ) and HE(ρ

′). The notion of
reversible Markov processes is discussed in Sect. 5. We relate various properties
of the operator P (such as self-ajointness) to this notion and to the notion of a
symmetric measure. A number of results about Markov operators acting in the L2

spaces and energy space HE are proved in this section. Section 6 focuses on the case
of a transient Markov processes defined by a Markov operatorP . We define the path-
space measure P and Green’s function G(x,A), and we discuss their properties.
Section 7 is devoted to construction of a sequence of discrete weighted networks
which can be used to approximate the objects considered for the measurable setting.

In our article we discuss several key notions such as reversible Markov processes,
Green’s function, transient processes, limit theory (covering boundaries), potential
theory, general Dirichlet forms, graph Laplacians, etc. For the benefit of non-experts
in these areas, we included a number of general references in the corresponding
sections.

2 Basic Definitions and Symmetric Measures

In this section, we briefly describe our main setting and introduce the most important
notation. We also recall several results from [1] which will be used here.

2.1 Standard Borel and Measure Spaces

SupposeV is a Polish space, i.e., V is a separable completely metrizable topological
space. Let B denote the σ -algebra of Borel sets generated by open sets of V . Then
(V ,B) is called a standard Borel space. The theory of standard Borel spaces is
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discussed in many recent books, see e.g., [25, 26, 28, 29] and papers [30, 31].
We recall that all uncountable standard Borel spaces are Borel isomorphic, so that
one can use any convenient realization of the space V working in the category of
measurable spaces. If μ is a continuous (i.e., non-atomic) positive Borel measure
on (V ,B), then (V ,B, μ) is called a standard measure space. Given (V ,B, μ), we
will call μ a measure for brevity. As a rule, we will deal with non-atomic σ -finite
positive measures on (V ,B) (unless the opposite is clearly indicated) which take
values in the extended real line R. We use the name of standard measure space
for both finite and σ -finite measure spaces. Also the same notation, B, is applied
for the σ -algebras of Borel sets and measurable sets of a standard measure space.
It should be clear from the context what σ -algebra is considered. Working with a
measure space (V ,B, μ), we always assume that B is complete with respect to μ.
By F(V ,B). we denote the space of real-valued bounded Borel functions on (V ,B).
For f ∈ F(V ,B) and a Borel measure μ on (V ,B), we write

μ(f ) =
∫

V

f dμ.

All objects, considered in the context of measure spaces (such as sets, functions,
transformations, etc), are determined modulo sets of zero measure. In most cases,
we will implicitly use this mod 0 convention not mentioning the sets of zero measure
explicitly.

In what follows, we will use (in most cases implicitly) the notion of measurable
fields. Given a measure space (V ,B, μ), it is said that x $→ Ax ∈ B is a measurable
field of sets if the set

⋃

x∈V
{x} ×Ax ∈ B × B.

Similarly, one can define a measurable field of measures x → μx on (V ,B)
requiring x $→ μx(A) to be a measurable function for any A ∈ B.

Consider a σ -finite continuous measure μ on a standard Borel space (V ,B). We
denote by

Bfin = Bfin(μ) = {A ∈ B : μ(A) <∞} (2.1)

the algebra of Borel sets of finite measure μ. Clearly, any σ -finite measure μ is
uniquely determined by its values on Bfin(μ).

The linear space of simple function over sets from Bfin(μ) is denoted by

Dfin(μ) :=
{
∑

i∈I
aiχAi : Ai ∈ Bfin(μ), ai ∈ R, |I | <∞

}

= Span{χA : A ∈ Bfin(μ)},
(2.2)
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will play an important role in our work since simple functions from Dfin(μ) form a
norm dense subset in Lp(μ)-space, p ≥ 1.

2.2 Symmetric Measures, Kernels, and Disintegration

Definition 2.1 Let E be an uncountable Borel subset of the Cartesian product (V ×
V,B × B) such that:

(i) (x, y) ∈ E ⇐⇒ (y, x) ∈ E, i.e. θ(E) = E where θ(x, y) = (y, x) is the flip
automorphism;

(ii) Ex := {y ∈ V : (x, y) ∈ E} 	= ∅, ∀x ∈ X;
(iii) for every x ∈ V , (Ex,Bx) is a standard Borel space where Bx is the σ -algebra

of Borel sets induced on Ex from (V ,B).
We call E a symmetric set.

It follows from (ii) and (iii) that the projection of the symmetric set E on each
margin of the product space (V × V,B × B) is V .

We observe that conditions (ii) and (iii) are, strictly speaking, not related to the
symmetry property; they are included in Definition 2.1 for convenience, so that we
will not have to make additional assumptions. Condition (iii) assumes two cases: the
Borel space Ex can be countable or uncountable. We focus mostly on uncountable
Borel standard spaces.

There are several natural examples of symmetric sets related to dynamical
systems. We mention here the case of a Borel equivalence relation E on a standard
Borel space (V ,B). By definition,E is a Borel subset of V ×V such that (x, x) ∈ E

for all x ∈ V , (x, y) is in E iff (y, x) is in E, and (x, y) ∈ E, (y, z) ∈ E implies
that (x, z) ∈ E. Let Ex = {y ∈ V : (x, y) ∈ E}, then E is partitioned into “vertical
fibers” Ex . In particular, it can be the case when every Ex is countable. Then E is
called a countable Borel equivalence relation.

We say that a symmetric set E is decomposable if there exists an uncountable
Borel subset A ⊂ V such that

E ⊂ (A×A) ∪ (Ac ×Ac), (2.3)

where Ac = V \ A.
The meaning of this definition can be clarified for Borel equivalence relations: if

E satisfies (2.3), then the set A is E-invariant.
We recall several definitions and facts about kernels defined on a measurable

space, see e.g. [18, 19]. Given a standard measure space (V ,B), we define a σ -finite
kernel k as a function k : V × B → R+ (where R+ is the extended real line) such
that

(i) x $→ k(x,A) is measurable for every A ∈ B;
(ii) for any x ∈ V , k(x, ·) is a σ -finite measure on (V ,B).
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A kernel k(x,A) is called finite if k(x, ·) is a finite measure on (V ,B) for every
x. We will also use the notation k(x, dy) for the measure on (V ,B).

The definition of a finite kernel can be used to define new measures on the
measurable spaces (V ,B) and (V × V,B × B).

Given a σ -finite measure space (V ,B, μ) and a finite kernel k(x,A), we set

κ(A) =
∫

V

k(x,A) dμ(x).

Then κ is a σ -finite measure on (V ,B) (which is also called a random measure in
the literature).

For a kernel k as above, one can define inductively the sequence of kernels (kn :
n ≥ 1) by setting

kn(x,A) =
∫

V

kn−1(y,A) k(x, dy), n > 1. (2.4)

Following [18], we formulate definitions of main properties of a kernel k. We
say that a set A ∈ B is attainable from x ∈ V if there exists n ≥ 1 such that
kn(x,A) > 0, in symbols, we write x → A. A set A ∈ B is called closed for the
kernel k if k(x,Ac) = 0 for all x ∈ A. If A is closed, then it follows from (2.4) that
kn(x,Ac) = 0 for any n ∈ N and x ∈ A. Hence, A is closed if and only if x � Ac.

A kernel k = k(x,A) is called Borel indecomposable on (V ,B) if there do not
exist two disjoint non-empty closed subsets A1 and A2.

Let Fx ∈ B be the support of the measure k(x, ·), that is k(x, V \ Fx) = 0. By
F̃x , we denote the set {x} ×Kx ⊂ V × V . Then the formula

k(A× B) =
∫

A

k̃(x, B) dμ(x)

defines a σ -finite measure on (V × V,B × B) where k̃(x, ·) = (δx × k)(x, ·). The
support of k is the set

F :=
⋃

x∈V
F̃x .

We will use below slightly simplified notation identifying the sets Fx and F̃x and
the measures k(x,A) and k̃(x,A). It will be clear from the context what objects are
considered.

As mentioned in Introduction, our approach is based on the study of symmetric
measures defined on (V×V,B×B), see Definition 2.4. We show that every measure
ρ on (V × V,B × B) generates a kernel x → ρx(A),A ∈ B. This observation
is based on the concept of disintegration of the measure ρ. We recall here this
construction.
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Denote by π1 and π2 the projections from V × V onto the first and second
factor, respectively. Then {π−1

1 (x) : x ∈ V } and {π−1
2 (y) : y ∈ V } are the

measurable partitions of V × V into vertical and horizontal fibers, see [1, 22, 32]
for more information on properties of measurable partitions. The case of probability
measures was studied by Rokhlin in [32], whereas the disintegration of σ -finite
measures has been considered somewhat recently. We refer to a result from [33]
whose formulation is adapted to our needs.

Theorem 2.2 ([33]) For a σ -finite measure space (V ,B, μ), let ρ be a σ -finite
measure on (V × V,B × B) such that ρ ◦ π−1

1 2 μ. Then there exists a unique
system of conditional σ -finite measures (ρ̃x) such that

ρ(f ) =
∫

V

ρ̃x(f ) dμ(x), f ∈ F(V × V,B × B).

In the following remark we collect several facts that clarify the essence of the
defined objects.

Remark 2.3

(1) The condition of Theorem 2.2 assumes that a measure μ is prescribed on the
Borel space (V ,B). If one begins with a measure ρ on (V × V,B × B), then
the measure μ arises as the projection of ρ on (V ,B), ρ ◦ π−1

1 = μ.
(2) Let E be a Borel symmetric subset of (V × V,B × B), and let ρ be a measure

on (V × V,B × B) satisfying the condition of Theorem 2.2. Then E can be
partitioned into the fibers {x} × Ex . By Theorem 2.2, there exists a unique
system of conditional measures ρ̃x such that, for any ρ-integrable function
f (x, y), we have

∫∫

V×V
f (x, y) dρ(x, y) =

∫

V

ρ̃x(f ) dμ(x). (2.5)

It is obvious that, for μ-a.e. x ∈ V , supp(ρ̃x) = {x} × Ex (up to a set of zero
measure). To simplify the notation, we will write

∫

V

f dρx and
∫∫

V×V
f dρ

though the measures ρx and ρ have the supports Ex and E, respectively.
(3) It follows from Theorem 2.2 that the measure ρ determines the measurable field

of sets x $→ Ex ⊂ V and measurable field of σ -finite Borel measures x $→ ρx
on (V ,B), where the measures ρx are defined by the relation

ρ̃x = δx × ρx. (2.6)
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Hence, relation (2.5) can be also written in the following form, used in our
subsequent computations,

∫∫

V×V
f (x, y) dρ(x, y) =

∫

V

(∫

V

f (x, y) dρx(y)

)
dμ(x). (2.7)

In other words, we have a measurable family of measures (x $→ ρx), and it
defines a new measure ν on (V ,B) by setting

ν(A) :=
∫

V

ρx(A) dμ(x), A ∈ B. (2.8)

Remark that the measure ρx is defined on the subset Ex of (V ,B), x ∈ V .

Definition 2.4 Let (V ,B) be a standard Borel space. We say that a measure ρ on
(V × V,B × B) is symmetric if

ρ(A× B) = ρ(B ×A), ∀A,B ∈ B.

In other words, ρ is invariant with respect to the flip automorphism θ .

The following remark contains natural properties of symmetric measures. Some
of them were proved in [1], the others are rather obvious.

Remark 2.5

(1) If ρ is a symmetric measure on (V × V,B × B), then the support of ρ, the
set E = E(ρ), is symmetric mod 0. Here E(ρ) is defined up to a set of zero
measure by the relation ρ((V × V ) \E) = 0.

(2) We consider the symmetric measures whose supporting sets E satisfy Defini-
tion 2.1. In other words, we require that, for every x ∈ V , the set Ex ⊂ E

is uncountable and therefore is a standard Borel space. The case when Ex is
countable arises, in particular, whenE is a Borel countable equivalence relation
on (V ,B). The latter was considered in [1]. For countable sets Ex, x ∈ V , we
can take ρx as a finite measure which is equivalent to the counting measure, see,
e.g. [24, 34, 35] for details.

(3) In general, the notion of a symmetric measure is defined in the context of
standard Borel spaces (V ,B) and (V × V,B × B). But if a σ -finite measure
μ is given on (V ,B), then we need to include an additional relation between
the projections of ρ on V and the measure μ. Let π1 : V × V → V be the
projection on the first coordinate. We require that the symmetric measure must
satisfy the property ρ ◦ π−1

1 2 μ, see Theorem 2.2.
(4) The symmetry of the set E allows us to define a “mirror” image of the measure

ρ. Let Ey := {x ∈ V : (x, y) ∈ E}, and let (ρ̃y) be the system of conditional
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measures with respect to the partition of E into the sets Ey × {y}. Then, for the
measure

ρ̃ =
∫

V

ρ̃ydμ(y),

the relation ρ = ρ̃ holds.
(5) It is worth noting that, in general, when a measure μ is defined on (V ,B), the

set E(ρ) do not need to be a set of positive measure with respect to the product
measure μ × μ. In other words, we admit both cases: (a) ρ is equivalent to
μ× μ, (b) ρ and μ× μ are mutually singular.

Assumption 1 In this paper, we consider the class of symmetric measures ρ on
(V × V,B × B) which satisfy the following property:

0 < c(x) := ρx(V ) <∞, μ-a.e. x ∈ V, (2.9)

where x $→ ρx is the measurable field of measures arising in Theorem 2.2.
Moreover, in most statements, we will assume that c(x) ∈ L1

loc(μ), i.e.,

∫

A

c(x) dμ(x) <∞, ∀A ∈ Bfin(μ).

This property of the function c(x) is natural because it corresponds to local
finiteness of graphs in the theory of weighted (electric) networks. In several
statements, we will require that

(
∀A ∈ Bfin(μ),

∫

A

c2 dμ <∞
)
⇐⇒ c ∈ L2

loc(μ).

We observe also that the case when the function c is bounded leads to bounded
Laplace operators and is not interesting for us.

Relation (2.8) defines the measure ν such that the measures μ and ν are
equivalent. It is stated in Lemma 2.6 that c(x) is the Radon-Nikodym derivative
of ν with respect to μ. If we want to reverse the definition and use ν as a primary
measure, then we need to require that the function c(x)−1 is locally integrable with
respect to ν.

The following (important for us) fact follows from the definition of symmetric
measures. We emphasize that formula (2.10) will be used repeatedly in many proofs.

Lemma 2.6

(1) For a symmetric measure ρ and any bounded Borel function f on (V ×V,B×
B),

∫∫

V×V
f (x, y) dρ(x, y) =

∫∫

V×V
f (y, x) dρ(x, y). (2.10)
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Equality (2.10) is understood in the sense of the extended real line, i.e., the
infinite value of the integral is allowed.

(2) Let ν be defined as in (2.8). Then

dν(x) = c(x)dμ(x).

2.3 Irreducible Symmetric Measures

We now relate the notions of symmetric measures and kernels. It turns out that
one can associate a finite kernel K(ρ) = K to any symmetric measure ρ on (V ×
V,B × B). For this, we use the disintegration of ρ according to Theorem 2.2, ρ =∫
V
ρx dμ(x), and set x → K(x,A) = ρx(A).
The definition of sets attainable from x ∈ V and that of decomposable sets,

given above in the context of Borel spaces, can be translated to the case of measure
spaces. Below we define the notion of an irreducible symmetric measure which will
be extensively used in the paper.

Definition 2.7

(1) A kernel x → k(x, ·) is called irreducible with respect to a σ -finite measure
μ on (V ,B) (μ-irreducible) if, for any set A of positive measure μ and μ-a.e.
x ∈ V , there exists some n such that kn(x,A) > 0, i.e., any set A of positive
measure is attainable from μ-a.e. x, x → A.

(2) A symmetric measure ρ on (V × V,B × B) is called irreducible if the
corresponding kernel K(ρ) : x → ρx(·) is μ-irreducible where μ is the
projection of measure ρ.

(3) A symmetric measure ρ (or the kernel x → ρx(·)) is called μ-decomposable if
there exists a Borel subset A of V of positive measure μ such that

E ⊂ (A×A) ∪ (Ac ×Ac) (2.11)

where Ac = V \ A is also of positive measure. Otherwise, ρ is called
indecomposable.

Every kernel k, defined on (V ,B), generates the potential kernel

G(k)(x,A) :=
∞∑

n=0

kn(x,A)

where k0(x,A) = χA(x). In general, the kernel G may be degenerated admitting
only the values 0 and ∞. We will discuss below the role ofG in the case of transient
Markov processes.
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Lemma 2.8 Let ρ be a symmetric measure on (V × V,B × B) with the kernel
K(x,A) = ρx(A). Suppose that the support of ρ, the set E, satisfies relation (2.11)
where μ(A) > 0 and μ(Ac) > 0, i.e. the kernel x $→ ρx(A) is μ-decomposable.
Then the sets A and Ac are closed and x $→ ρx(A) is a μ-reducible kernel. The
converse statement also holds.

Proof The first result follows directly from the definitions given above in this
subsection. To see that the converse is true, it suffices to note that, for any set B
of positive measure, the compliment B̂c of the set

B̂ := B ∪ {x ∈ V : x → B}

is either of zero measure, or closed (recall that x → B means that there exists n
such that Kn(x, B) > 0). If ρ is reducible, then there exists a set A,μ(A) > 0, such
that the closed set μ(Âc) has positive measure. The existence of such a set implies
that the measure ρ is decomposable. ��

It is obvious from this lemma that a decomposable symmetric measure ρ cannot
be irreducible. It was proved in [1] that the definitions of an irreducible measure and
irreducible kernel agree, see Theorem 6.2 below.

By definition, the projection of the support of an irreducible measure ρ is the set
V . Irreducibiliity of symmetric measures means irreducibility of a corresponding
Markov process, see details in [1].

In the following statement, we give another approach to the notion of irreducible
symmetric measures. Let ρ be a symmetric measure on (V × V,B × B). We use
the support of the fiber measure ρx, x ∈ V , to characterize an irreducible measure
in different terms.

For any fixed x ∈ V , we define a sequence of subsets:A0(x) = {x},A1(x) = Ex,

An(x) =
⋃

y∈An−1(x)

Ey, n ≥ 2.

Recall that Ex is the support of the measure ρx , and Ex can be identified with the
vertical section of the symmetric set E. Note that all the sets An(x) are in B as
x → Ex is a measurable field of sets.

Lemma 2.9 Given (V ,B, μ), a symmetric measure ρ is irreducible if and only if
for μ-a.e. x ∈ V and any set B ∈ B of positive measure there exists n ≥ 1 such that

μ(An(x) ∩ B) > 0. (2.12)

Proof Indeed, the property formulated in (2.12) is another form of kn(x, B) > 0
where the kernel k is defined by x → ρx . ��

Various aspects of symmetric measures are also discussed in [36, 37]. In
particular, one can observe that if symmetric measures ρ and ρ are equivalent, then
they are simultaneously either irreducible or not.
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3 Linear Operators and Hilbert Spaces Associated to
Symmetric Measures

While the main structures of our paper (symmetric measures, transfer operators
R, Markov transition densities P , and associated Laplace operators 	) may be
naturally formulated in the general context of measurable functions, their spectral
theory, and their dynamic-systems properties, only take a precise form after suitable
Hilbert spaces are introduced. We will show that the initial structures, reversible
Markov processes, and associated Laplace operators, etc., in turn dictate their own
natural Hilbert space theoretic context. More precisely, in the section below, we
identify the particularL2 spaces, having the property that respective operatorsR,P ,
and 	 become self-adjoint. In addition to these L2 spaces, we also identify two
other Hilbert spaces (details below). They are motivated by parallels to classical
potential theory, and to the study of diffusion processes. Moreover, they have
discrete counterparts in the study of infinite networks, and of graph Laplacians.
But presently, we introduced these two Hilbert spaces in a general measure space
context. Continuing conventions from our earlier papers, we shall denote these
Hilbert spaces (i) the energy Hilbert space, and (ii) the dissipation Hilbert space.
The latter refers to a certain path-space construction, which in turn is built directly
from the initial structure, mentioned above, symmetric measure, transfer operator,
and Markov transition densities.

3.1 Symmetric Operator R, Markov Operator P ,
and Laplacian �

Suppose k : V × B → R+ is a finite kernel defined on a standard Borel space
(V ,B). Then it defines a linear positive (see Remark 3.3) operator P(k) which is
determined by the kernel k:

P(k)(f )(x) :=
∫

V

f (y) k(x, dy). (3.1)

It can be easily seen that, for the kernels kn (see (2.4)), the operator P(kn), defined
as in (3.1), satisfies the property:

P(kn) = P(k)n, n ∈ N.

We consider in this section the kernel K(ρ) generated by a symmetric measure
ρ, i.e., K(x,A) = ρx(A).

Let (V ,B, μ) be a σ -finite measure space, and ρ a symmetric measure on (V ×
V,B×B) supported by a symmetric set E. Let x $→ ρx be the measurable family of
measures on (V ,B) that disintegrates ρ. Recall that, by Assumption 1, the function
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c(x) = ρx(V ) is finite for μ-a.e. x. As discussed above in Sect. 2.2, the measure ρ
produces a finite kernel K(ρ) which we use to define the following operators.

Definition 3.1 For a symmetric measure ρ on (V×V,B×B), we define three linear
operators R,P and 	 acting on the space of bounded Borel functions F(V ,B).

(i) The symmetric operatorR:

R(f )(x) :=
∫

V

f (y) dρx(y) = ρx(f ). (3.2)

(ii) The Markov operator P :

P(f )(x) = 1

c(x)
R(f )(x)

or

P(f )(x) := 1

c(x)

∫

V

f (y) dρx(y) =
∫

V

f (y) P (x, dy) (3.3)

where P(x, dy) is the probability measure obtained by normalization of
dρx(y), i.e.

P(x, dy) := 1

c(x)
dρx(y).

In other words, the Markov operator P defines the measurable field x $→
P(x, ·) of transition probabilities on the space (V ,B), or a Markov process.

(iii) The graph Laplace operator 	:

	(f )(x) :=
∫

V

(f (x)− f (y)) dρx(y) (3.4)

or

	(f ) = c(I − P)(f ) = (cI − R)(f ). (3.5)

Using (2.9), we can write the operator 	 in more symmetric form:

	(f ) = R(1)f − R(f )

where 1 is a function identically equal to 1,

Remark 3.2 (R as a Transfer Operator) It is worth noting that the operatorR can
be treated as a transfer operator (see e.g. [38] and the literature cited there).

Let (V ,B, μ) be a standard measure space, and let σ be a surjective endomor-
phism of X. Consider the partition ξ of X into the orbits of σ : y ∈ Orbσ (x)
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if there are non-negative integers n,m such σn(y) = σm(x). Let the partition η

be the measurable hull of ξ . Take the system of conditional measures {μC}C∈ξ
corresponding to the partition η (see Theorem 2.2).

We define a transfer operator R on the standard measure space (V ,B, μ) by
setting

R(f )(x) :=
∫

Cx

f (y) dμCx (y) (3.6)

where Cx is the element of η containing x. The domain of R is L1(μ) in this
example.

As was shown in [38], the operator R : L1(μ) → L1(μ) defined by (3.6) is a
transfer operator, i.e., it satisfies the relation

R((f ◦ σ)g)(x) = f (x)(Rg)(x).

To see that our definition of the operator R given in (3.2) agrees with (3.6), it
suffices to take the measurable partition η of V × V into subsets {π−1

1 (x) : x ∈ V }
where π1 is the projection of V × V onto V .

Remark 3.3 In this remark we make several comments about the basic properties
of the operators R, P , and 	.

(1) The definition of each of the operators R, P , and 	 depends on a symmetric
measure ρ, and, strictly speaking, they must be denoted as R(ρ), P(ρ), and
	(ρ). Since most of our results are proved for a fixed measure ρ, we will drop
this variable. Below in this section, we discuss the relationships between P(ρ)
and P(ρ′) when ρ and ρ′ are equivalent symmetric measures.

(2) The operators R and P are positive in the sense that R(f ) ≥ 0 and P(f ) ≥ 0
whenever f ≥ 0. Moreover, if f = 1, then P(1) = 1 because every measure
P(x, ·) is probability. Hence, P is a Markov operator.

(3) The properties of the graph Laplace operator 	 are formulated in Proposi-
tion 3.7, which is given below. All statements from this theorem are proved in
[1] (see also [39, 40]). Other aspects of graph Laplace operators in the context
of measure spaces are discussed in [41, 42].

(4) Since every measure ρ on V ×V is uniquely determined by its values on a dense
subset of functions, it suffices to define ρ on the set of the so-called “cylinder
functions” (f ⊗ g)(x, y) := f (x)g(y). This observation will be used below
when we prove a relation for cylinder functions first.

(5) In general, a positive operator R in F(V ,B) is called symmetric if it satisfies
the relation:

∫

V

fR(g) dμ =
∫

V

R(f )g dμ, (3.7)
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for any f, g ∈ F(V,B). It turns out that any symmetric operator R defines a
symmetric measure ρ. Indeed, the functional

ρ : (f, g) $→
∫

V

f (x)R(g)(x) dμ(x), f, g ∈ F(V,B), (3.8)

determines a measure on (V ,B) such that

ρ(A× B) =
∫

V

χA(x)R(χB)(x) dμ(x).

As shown in [1], the operator R is symmetric if and only if the measure ρ,
defined in (3.8), is symmetric.

In Definition 3.1, we do not discuss domains of the operators R,P , and 	. It
depends on the space where an operator is considered. In the current paper, we work
with L2-Hilbert spaces defined by the measuresμ, ν, and ρ. But the most intriguing
is the case of the finite energy space Hilbert space hE . We discuss the properties of
this space as well as those of operators 	 and P acting in HE in the forthcoming
paper [43]. On the other hand, we have already proved a number of results about
these objects in [1]. We find it useful to give here the definitions and some formulas
which are used below.

We remark that the finite energy space HE , see Definition 3.4 can be viewed as a
generalization of the energy space considered for discrete weighted networks. They
have been extensively studied during last decades.

Definition 3.4 Let (V ,B, μ) be a standard measure space with σ -finite measure μ.
Suppose that ρ is a symmetric measure on the Cartesian product (V × V,B × B).
We say that a Borel function f : V → R belongs to the finite energy space HE =
HE(ρ) if

∫∫

V×V
(f (x)− f (y))2 dρ(x, y) <∞. (3.9)

Remark 3.5

(1) It follows from Definition 3.4 that HE is a vector space containing all constant
functions. We identify functions f1 and f2 such that f1 − f2 = const and,
with some abuse of notation, the quotient space is also denoted by HE . So that,
we will call elements f of HE functions assuming that a representative of the
equivalence class f is considered.

(2) Definition 3.4 assumes that a symmetric irreducible measure ρ is fixed on (V ×
V,B × B). This means that the space of functions f on (V ,B) satisfying (3.9)
depends on ρ, and, to stress this fact, we will use also the notation HE(ρ).
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Define the norm in HE by setting

||f ||2HE
:= 1

2

∫∫

V×V
(f (x)− f (y))2 dρ(x, y), f ∈ H, (3.10)

As proved in [1], HE is a Hilbert space with respect to the norm || · ||HE
.

The description of the structure of the Hilbert space HE is a very intriguing
problem. We give here a few results proved in [1].

Theorem 3.6 Let ρ be a symmetric measure on (V × V,B × B) such that μ =
ρ ◦ π−1

1 . Suppose c(x) = ρx(V ) is locally integrable with respect to μ.

(1) For the measure dν(x) = c(x)dμ(x), we have

Dfin(μ) ⊂ Dfin(ν) ⊂ HE.

Moreover, if A ∈ Bfin(ν), then

||χA||2HE
= ρ(A× Ac) ≤

∫

A

c(x) dμ(x) = ν(A), (3.11)

where Ac := V \A.
(2) For every A ∈ Bfin(μ), one has ‖χA‖HE

= ‖χAc‖HE
. The function χA is in

HE if and only if either μ(A) <∞ or μ(Ac) <∞.
(3) The finite energy space HE admits the decomposition into the orthogonal sum

H = Dfin(μ)⊕HarmE (3.12)

where the closure of Dfin(μ) is taken in the norm of the Hilbert space HE .

In the following statement we return to the L2-spaces, and following [1], we
formulate a number of properties of the operators, R,P , and 	 that clarify their
essence. Here, we focus on the properties of these operators related to L2-spaces.
In the next paper [43], we will mostly consider these operators acting in the finite
energy space HE .

Proposition 3.7 Let dν(x) = c(x)dμ(x) be the σ -finite measure on (V ,B) where
μ and c(x) = ρx(V ) are defined as above. Let the operatorsR,P , and	 be defined
as in Definition 3.1.

(1) Suppose that the function x $→ ρx(A) ∈ L2(μ) for any A ∈ Bfin. Then R is a
symmetric unbounded operator in L2(μ), i.e.,

〈g,R(f )〉L2(μ) = 〈R(g), f 〉L2(μ).
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If c ∈ L∞(μ), then R : L2(μ)→ L2(μ) is a bounded operator, and

||R||L2(μ)→L2(μ) ≤ ||c||∞.

(2) The operator R : L1(ν)→ L1(μ) is contractive, i.e.,

||R(f )||L1(μ) ≤ ||f ||L1(ν), f ∈ L1(ν).

Moreover, for any function f ∈ L1(ν), the formula

∫

V

R(f ) dμ(x) =
∫

V

f (x)c(x) dμ(x) (3.13)

holds. In other words, ν = μR, and

d(μR)

dμ
(x) = c(x).

(3) The bounded operator P : L2(ν) → L2(ν) is self-adjoint. Moreover, νP = ν

where dν(x) = c(x)dμ(x).
(4) The operator P considered in the spaces L2(ν) and L1(ν) is contractive, i.e.,

||P(f )||L2(ν) ≤ ||f ||L2(ν), ||P(f )||L1(ν) ≤ ||f ||L1(ν).

(5) Spectrum of P in L2(ν) is a subset of [−1, 1].
(6) The graph Laplace operator 	 : L2(μ) → L2(μ) is a positive definite

essentially self-adjoint operator with domain containing Dfin(μ). Moreover,

||f ||2HE
=

∫

V

f	(f ) dμ

when the integral in the right hand side exists.

Definition 3.8 A function f ∈ F(V ,B) is called harmonic, if Pf = f .
Equivalently, f is harmonic if 	f = 0 or R(f ) = cf . Similarly, h is harmonic
for a kernel x → k(x, ·) if

∫

V

h(y) k(x, dy) = h(x).

Question As was mentioned above, the definition of operators R(ρ), P (ρ), and
	(ρ) is based on a symmetric measure ρ defined on (V × V,B × B). Suppose that
another symmetric measure, ρ′, which is equivalent to ρ, is defined on (V ×V,B×
B). It would be interesting to find out what relations between (R(ρ), P (ρ),	(ρ))
and (R(ρ′), P (ρ′),	(ρ′)) exist. Possibly, this question can be made more precise
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if we require that both ρ and ρ′ are supported by the same symmetric set E and
disintegrated with respect to the same measure μ on (V ,B).
Remark 3.9 In our further results, the following sets of functions will play an
important role. Let (V ,B, μ) be a σ -measure space, and ρ a symmetric measure on
(V × V,B × B) satisfying Assumption 1. Then the measure dν(x) = c(x)dμ(x) is
defined on (V ,B) and is equivalent to μ where c(x) = R(1)(x). We define Dfin(μ)

as in (2.2), and, similarly, we set

Bfin(ν) := {A ∈ B : ν(A) <∞},

Dfin(ν) := Span{χA : A ∈ Bfin(ν)}.

It is straightforward to check that Assumption 1 implies

Dfin(μ) ⊂ Dfin(ν).

In general, the converse does not hold. But these two sets coincide if and only if
Assumption 1 is extended by adding the reverse implication

∫

A

c(x) dμ(x) 3⇒ μ(A) <∞.

3.2 Embedding Operator J

We define now a natural embedding J of bounded Borel functions over (V ,B) into
bounded Borel functions over (V × V,B × B). The operator J will be considered
later acting on the correspondingL2-spaces.

Let

(Jf )(x, y) = f (x), f ∈ F(V ,B). (3.14)

If (V ,B) is equipped with a σ -finite measure μ (or ν = cμ), we can specify J as an
operator with domain L2(μ) or L2(ν)).

Theorem 3.10 For given (V ,B, μ), let ρ be a symmetric measure ρ on (V×V,B×
B) and c(x) = ρx(V ). Then:

(1) the operator J : L2(ν)→ L2(ρ) is an isometry where dν(x) = c(x)dμ(x);
(2) the co-isometry J ∗ : L2(ρ)→ L2(ν) acts by the formula

(J ∗g)(x) =
∫

V

g(x, y) P (x, dy), g ∈ L2(ρ);
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(3) the operator J : L2(μ) → L2(ρ) is densely defined (in L2(μ)) and is, in
general, unbounded.

Proof

(1) This fact is proved by the following computation: for any f ∈ L2(ν), one has

||(Jf )||2
L2(ρ)

=
∫∫

V×V
(Jf )2(x, y) dρ(x, y)

=
∫∫

V×V
f 2(x) dρx(y)dμ(x)

=
∫

V

f 2(x)c(x) dμ(x)

=||f ||2
L2(ν)

.

(2) To find the co-isometry J ∗, we take arbitrary functions f ∈ L2(ν) and
g ∈ L2(ρ) and compute the inner product using the equality c(x)P (x, dy) =
dρx(y):

〈Jf, g〉L2(ρ) =
∫∫

V×V
(Jf )(x, y)g(x, y) dρ(x, y)

=
∫

V

f (x)

(∫

V

g(x, y) dρx(y)

)
dμ(x)

=
∫

V

f (x)

(∫

V

g(x, y) P (x, dy)

)
dν(x)

=〈f, J ∗g〉L2(ν),

where J ∗g = ∫
V g(x, y) P (x, dy). This proves (2).

(3) To show that (3) holds, we take a Borel function f ∈ L2(μ) and note that

||Jf ||2
L2(ρ)

=
∫∫

V×V
f 2(x) dρxdμ(x) =

∫

V

f 2(x)c(x) dμ(x). (3.15)

In particular, we have, for A ∈ Bfin,

||J (χA)||2L2(ρ)
=

∫

A

c(x) dμ(x),

that is, assuming that c is locally integrable, we see that J is well defined on a
dense subset of L2(μ). Formula (3.15) shows that, for general c, the operator
J : L2(μ)→ L2(ρ) is not bounded.

��
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4 Equivalence of Symmetric Measures

In this section we focus on the question about relations of Markov operators, and
Laplacians, arising from equivalent symmetric measures.

4.1 Equivalence of Markov Operators

Let ρ be a symmetric measure on (V × V,B × B) which is disintegrated by fiber
measures x $→ ρx over the measure μ = ρ ◦ π−1. As above, define transition
probabilities x $→ P(x, ·) by setting c(x)−1dρx(·) = P(x, ·) where c(x) = ρx(V ).
In other words, P(x,A) = P(χA)(x) where P is the Markov operator, see (3.3).

Having the operator P defined, one can construct a stationary Markov process.
Let � = V × V × V × · · · = V N0 . For ω = (ωn) ∈ �, set

Xn : �→ V : Xn(ω) = ωn, n ∈ N0.

These notions are studied in detail in Sect. 5. Here we mention only the notion of
reversibility, one of the most important properties of Markov operators (processes).

Definition 4.1

(1) A kernel x $→ k(x, ·) is called reversible with respect to a measure μ on (V ,B),
if for any bounded Borel function f (x, y),

∫∫

V×V
f (x, y)k(x, dy)dμ(x)=

∫∫

V×V
f (y, x)k(x, dy)dμ(x).

(2) Suppose that x $→ P(x, ·) is a measurable family of transition probabilities
on the space (V ,B, μ), and let P be the Markov operator determined by
x $→ P(x, ·). It is said that the corresponding Markov process is reversible with
respect to a measurable functions c : V → (0,∞) if, for any sets A,B ∈ B,
the following relation holds:

∫

B

c(x)P (x,A) dμ(x) =
∫

A

c(x)P (x, B) dμ(x). (4.1)

Denoting dν(x) = c(x)dμ(x), we can rewrite (4.1) in the form that will be
used below.

∫

V

χB(x)P (x,A) dν(x) =
∫

V

χA(x)P (x, B) dν(x).
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The following result clarifies relationship between symmetric measures ρ and
reversible Markov processes. This lemma is a part of more general statement, see
Theorem 5.3.

Lemma 4.2 Let ρ = ∫
V ρx dμ be a measure on (V × V,B × B) such that c(x) =

ρx(V ) < ∞ for all x. Suppose that the Markov operator P is defined according
to (3.3). Then the following are equivalent:

(i) ρ is symmetric;
(ii) (P, c) is reversible.

In what follows, we will focus on the following question: suppose that ρ and
ρ′ are two equivalent symmetric measures such that the corresponding Markov
processes (P, c) and (P ′, c′) are reversible. How are they related? More generally,
we can ask about relations between all objects whose definition was based on
a symmetric measure. They are the Laplacian 	, symmetric operator R, and
finite energy Hilbert space. Some partial answers are given in this and subsequent
sections.

Definition 4.3 Let (P, c) be a pair consisting of a positive measurable function c(x)
on (V ,B, μ) and a reversible Markov process P(x, ·) satisfying Definition 4.1. We
will say that two such pairs (P, c) and (P ′, c′) are equivalent if the corresponding
symmetric measures ρ and ρ′ are equivalent as measures on (V × V,B × B) (see
Theorem 5.3). The latter means that there exists a positive measurable function
r(x, y) such that

dρ′(x, y) = r(x, y)dρ(x, y).

If the equivalent measures ρ and ρ′ satisfy the propertyμ = ρ ◦π−1
1 = ρ′ ◦π−1

1 ,
then we call the pairs (P, c) and (P ′, c′) strongly equivalent. In this case, we also
call the measures ρ and ρ′ strongly equivalent.

Remark 4.4

(1) The symmetry of equivalent measures ρ and ρ′ implies that the function r(x, y)
is symmetric, r(x, y) = r(y, x).

(2) Let the measures ρ and ρ′ be strongly equivalent. Then these measures are
disintegrated as follows:

ρ′ =
∫

V

ρ′x dμ(x), ρ =
∫

V

ρx dμ(x).

It can be seen that the equivalence of ρ and ρ′ implies that the measures ρx and
ρ′x are equivalent μ-a.e. Moreover,

dρ′x
dρx

(y) = rx(y) (4.2)

where rx(·) is obtained from r(x, ·) by fixing the variable x.
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(3) Conversely, given two (strongly) equivalent measures ρ and ρ′, we can con-
struct (strongly) equivalent pairs (P, c) and (P ′, c′) according to the properties
formulated in Lemma 4.2 and Theorem 5.3. In other words, if (P, c) defines
a reversible Markov process with the symmetric measure ρ, then, for any
symmetric measure ρ′ equivalent to ρ, we can construct a reversible Markov
process (P ′, c′) which is equivalent to (P, c). Note that the functions c(x) =
ρx(V ) and c′(x) = ρ′x(V ) are determined by ρ and ρ′ uniquely.

One can prove a more general statement than that given in Remark 4.4 (2).

Lemma 4.5 Let ρ and ρ′ be two symmetric measures on (V ×V,B×B) such that
dρ′(x, y) = r(x, y)dρ(x, y). Suppose that

ρ′ =
∫

V

ρ′x dμ′(x), ρ =
∫

V

ρx dμ(x)

and the measures μ and μ′ on (V ,B) are equivalent, i.e., m(x)dμ′(x) = dμ(x) for
some positive Borel function m(x). Then the measures ρ′x and ρx are equivalent a.e.
on V , and

dρ′x
dρx

(y) = m(x)rx(y). (4.3)

Proof (Sketch) The result is deduced as follows:

ρ′(A× B) =
∫∫

A×B
r(x, y) dρ(x, y)

=
∫∫

A×B
r(x, y) dρx(y)dμ(x)

=
∫

A

(∫

B

m(x)r(x, y) dρx(y)

)
dμ′(x).

On the other hand,

ρ′(A× B) =
∫

A

ρ′x(B) dμ′(x).

Comparing the above formulas, we obtain that (4.3) holds.
��

Consider a particular case when the Radon-Nikodym derivative r(x, y) of two
equivalent measures ρ and ρ′ is the product p(x)q(y).

Lemma 4.6 Let ρ = ∫
ρx dμ(x) and ρ′ = ∫

ρ′x dμ′(x) be two measures on
(V × V,B × B) such that

dρ′

dρ
(x, y) = p(x)q(y)
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for some positive Borel functions p and q . Then, for μ-a.e. x ∈ V , the Radon-

Nikodym derivative
dρ′x(y)
dρx(y)

satisfies the relation

1

q(y)

dρ′x(y)
dρx(y)

= ϕ(x) (4.4)

where

ϕ(x) = p(x)
dμ

dμ′
(x).

Proof The result can be easily deduced from the formula

dρ′x(y)dμ′(x) = p(x)q(y)dρx(y)dμ(x).

We leave the details to the reader. ��
Relation (4.4) means that the Radon-Nikodym derivative

dρ′x
dρx

(y) is proportional

to the function q(y) where the coefficient of proportionality is given by ϕ(x). If ρ

and ρ′ are symmetric measures, then
dρ′

dρ
(x, y) = p(x)p(y).

Theorem 4.7 Let ρ and ρ′ be two strongly equivalent measures on (V × V,B ×
B) such that dρ′x = rx(y)dρx(y) for all x ∈ V . Then the corresponding Markov
processes (P, c) and (P ′, c′) are strongly equivalent and

P ′(f )(x) = P(f rx)(x)

P (rx)(x)
. (4.5)

Proof We first find P(rx):

P(rx)(x) =
∫

V

dρ′x
dρx

(y) P (x, dy)

= 1

c(x)

∫

V

dρ′x
dρx

(y) dρx(y)

= 1

c(x)

∫

V

dρ′x(y) (4.6)

= c′(x)
c(x)

.
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Next, we compute

P ′(f )(x) =
∫

V

f (y) P ′(x, dy)

= 1

c′(x)

∫

V

f (y) dρ′x(y)

= 1

c′(x)

∫

V

f (y)rx(y) dρx(y)

= c(x)

c′(x)

∫

V

f (y)rx(y) dP (x, dy)

= c(x)

c′(x)
P (f rx)(x)

Now, the result follows from (4.6). ��
Remark 4.8

(1) Let the symmetric measures ρ and ρ′ be strongly equivalent, dρ′x(y) =
rx(y)dρx(y). As in (4.6), we can obtain that

P ′
(

1

rx

)
(x) = c(x)

c′(x)
.

Therefore, the following property holds:

P(rx)(x)P
′
(

1

rx

)
(x) = 1

(2) Since the notion of equivalence of measures ρ and ρ′ is symmetric, we note that
the roles of P and P ′ can be interchanged and the following relation holds:

P(f )(x) =
P ′

(
f 1
rx

)
(x)

P ′
(

1
rx

)
(x)

.

(3) It follows from the strong equivalence of ρ and ρ′ that rx(y) is integrable with
respect to ρx and

c′(x) =
∫

V

rx(y) dρx(y).
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(4) Several useful formulas can be easily deduced from Theorem 4.7. Firstly,
formula (4.5) can be rewritten in the form

P(f rx)(x) = c′(x)P ′(f )(x)c(x)−1, (4.7)

and equivalently, the latter is represented as a relation between Markov kernels:

c′(x)P ′(x, dy) = c(x)rx(y)P (x, dy).

(5) The same proof as in Theorem 4.7 shows that

R′(f )(x) = R(f rx)(x).

(6) In more general setting, assuming that dρ′x(y) = m(x)rx(y)dρx(y) wherem(x)
is as in (4.3), we deduce that

P(f rx)(x)m(x) = c′(x)P ′(f )(x)c(x)−1.

Similarly, one can show that

R′(f )(x) = m(x)R(f rx)(x)

where the operator R′ is defined by x $→ ρ′x .
(7) Suppose that, for given pair (P, c), the operator P ′ is defined by (4.7), and let

dν′(x) = c′(x)dμ(x). Then we claim that ν′P ′ = ν′:
∫

V

P ′(f )(x) dν′(x) =
∫

V

c(x)P (f rx)(x)c
′(x)−1c′x) dμ(x)

=
∫

V

P (f rx)(x) dν(x)

=
∫

V

(∫

V

(f rx)(y)P (x, dy)

)
dν(x)

=
∫∫

V×V
f (y)

dρ′x
dρx

(y)c(x)−1dρx(y)c(x)dμ(x)

=
∫∫

V×V
f (y) dρ′x(y)dμ(x)

=
∫∫

V×V
f (x) dρ′(x, y)

=
∫

V

f (x)c′(x) dμ(x)

=
∫
f (x) dν′(x).
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4.2 On the Laplacians � and �′

In the remaining part of this section, we will discuss relations between the Laplace
operators 	 and 	′ acting in the finite energy Hilbert spaces HE(ρ) and HE(ρ

′)
respectively.

Let 	′(f ) be the Laplace operator defined by a symmetric measure ρ′ on (V ×
V,B × B). We can find out how 	′ and 	 are related.

Proposition 4.9 Let ρ and ρ′ be two equivalent symmetric measures on (V×V,B×
B) such that dρ′(x, y) = q(x)q(y)dρ(x, y). Then

	′(f ) = cqf (P (q)− q)+ q	(qf ).

In particular, when q is harmonic for P , then

	′(f ) = q	(qf ). (4.8)

Moreover,

	′(f ) = 0 ⇐⇒ P(qf ) = fP(q),

and assuming that P(q) = q , we have

f ∈ Harm(	′) ⇐⇒ qf ∈ Harm(	).

Proof

(1) By definition of the operator 	, we have

	′(f )(x) =
∫

V

(f (x)− f (y)) dρ ′x(y)

=
∫

V

(f (x)− f (y))q(x)q(y) dρx(y)

=
∫

V

(f (x)− f (y))c(x)q(x)q(y) dP (x, dy)

= c(x)q(x)f (x)

∫

V

q(y) P (x, dy)− c(x)q(x)

∫

V

q(y)f (y) P (x, dy)

= c(x)q(x) [f (x)P (q)(x) − P (qf )(x)] .
(4.9)
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Add and subtract cq2f to the right hand side of (4.9). Then, regrouping the
terms, we obtain

	′(f ) = cq[qf − P(qf )] + cqf (P (q)− q) = q	(qf )+ cqf (P (q)− q).

This means that, in case when P(q) = q , the Laplace operators 	 and 	′ are
related as in (4.8).

(2) Now we can apply (1) to prove the formulas given in (2). From the last
expression in (4.9), we see that f is harmonic with respect to 	′ if and only
if P(qf ) = fP(q). ��

Corollary 4.10 Let ρ be a symmetric measure on (V × V,B × B), and let q be a
harmonic function for the Markov operator P generated by ρ. Define the symmetric
measure ρ′ such that dρ′(x, y) = q(x)q(y)dρ(x, y). Let P ′ be the corresponding
Markov operator produced by ρ′. Then we have the map

Harm(P ′)×Harm(P) 0 (f, q) $→ f q ∈ Harm(P).

Proof It follows from the definition of the measure ρ′ that

c′(x) =
∫

V

dρ′x(y) =
∫

V

q(x)q(y) dρx(y) = q(x)R(q)(x).

Since q is harmonic, i.e., R(q) = cq , we obtain that

c′(x) = c(x)q2(x). (4.10)

Let f be any function harmonic with respect to the operator P ′. Then

f (x) =
∫

V

f (y) P ′(x, dy)

= 1

c′(x)

∫

V

f (y) dρ′x(y)

= q(x)

c′(x)

∫

V

f (y)q(y)dρx(y)

= q(x)

c′(x)

∫

V

f (y)q(y)c(x)P (x, dy)

= q(x)c(x)

c′(x)
P (qf )(x)

It follows from (4.10) that f = q−1P(qf ), and we are done. ��
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We remark that in the proved statement we temporarily extended the notion of
symmetric measures to the case of signed symmetric measures assuming that the
P -harmonic function q can be negative.

Theorem 4.11 Suppose that ρ′ and ρ are two symmetric measures such that
dρ′(x, y) = q(x)q(y)dρ(x, y). If q is harmonic for the Laplace operator 	, then
the operator

Q : HE(ρ
′)→ HE(ρ) : Q(f ) = qf

is an isometry.

Proof We need to show that, for any f ∈ HE(ρ
′),

||f ||HE(ρ
′) = ||qf ||HE(ρ).

In the computation given below, we use the following: the definition of the norm
in the finite energy space, the symmetry of the measures ρ and ρ′, and the relation
R(q) = cq that holds for harmonic functions because

	(q)(x) = c(x)q(x)− R(q)(x).

Then we compute

||f ||2HE(ρ
′) − ||qf ||2HE(ρ)

= 1

2

∫∫

V×V
(f (x)− f (y))2 dρ ′(x, y)

−
∫∫

V×V
(q(x)f (x) − q(y)f (y))2 dρ(x, y)

=
∫∫

V×V
[(f (x)− f (y))2q(x)q(y)

− (q(x)f (x)− q(y)f (y))2] dρ(x, y)

=
∫∫

V×V
[f 2(x)q(x)q(y) − q2(x)f 2(x)]

+ [f 2(y)q(x)q(y) − q2(y)f 2(y)] dρ(x, y)

= 2
∫∫

V×V
[f 2(x)q(x)q(y) − q2(x)f 2(x)] dρx(y)dμ(x)

= 2
∫

V

f 2(x)q(x)[R(q)(x) − c(x)q(x)] dμ(x)

= 0.

This computation shows that Q(f ) = qf ∈ HE(ρ) and Q preserves the norm. ��
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Continuing the above theme, consider the Laplace operator 	 acting in L2(μ).
We recall that 	 : L2(μ) → L2(μ) is a positive definite self-adjoint operator
according to Proposition 3.7.

Proposition 4.12 Suppose ρ is a symmetric measure on (V × V,B × B) and the
Laplacian 	 = 	(ρ) is defined by (3.4). Let q and f be functions on (V ,B, μ)
from the domain of 	 such that qf is also in the domain of 	. Then

∫

V

	(qf ) dμ =
∫

V

q	(f ) dμ−
∫

V

f	(q) dμ. (4.11)

If q and f are in L2(μ), then
∫
V 	(qf ) dμ = 0.

Proof By definition of 	, we have

	(qf ) =
∫

V

[(qf (x)− qf (y)] dρx(y)

=
∫

V

(q(x)f (x)− q(x)f (y)+ q(x)f (y)− q(y)f (y)) dρx(y)

= q(x)	(f )−
∫

V

f (y)(q(x)− q(y)) dρx(y)

Then
∫

V

	(qf )(x) dμ(x) =
∫

V

q	(f ) dμ(x)+
∫∫

V×V
f (y)(q(x) − q(y)) dρx(y)dμ(x)

=
∫

V

q	(f ) dμ(x)+
∫∫

V×V
f (x)(q(y) − q(x)) dρx(y)dμ(x)

=
∫

V

q	(f ) dμ(x)−
∫

V

f	(q) dμ(x)

and (4.11) is proved.
If the functions q and f are in L2(μ) (in particular, q and f can be taken from

the dense subset Dfin(μ)), then we can use the fact that 	 is essentially self-adjoint
and conclude that

∫

V

	(qf )(x) dμ(x) = 〈q,	(f )〉L2(μ) − 〈	(q), f 〉L2(μ) = 0.

��
We immediately deduce the following fact from Proposition 4.12.
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Corollary 4.13

(1) If functions f and f 2 are in the domain of 	, then

∫

V

	(f 2) dμ = 0.

(2) If f is a harmonic function for 	, then 	(f 2) = 0, and therefore f 2 is also
harmonic.

Proof

(1) is an obvious consequence of Proposition 4.12. To show that (2) holds, we use
that	(f ) = c(f −P(f )) and P is a positive operator. This means that P(f ) ≥
0 whenever f ≥ 0. By Schwarz’ inequality for positive operators, we have
P(f 2)(x) ≥ P(f )2(x), and therefore

	(f 2) = c(f 2 − P(f 2))

≤ c(f 2 − P(f )2)

= c(f − P(f ))(f + P(f ))

= 0.

The fact that f 2 is harmonic follows from (1) and the proved inequality
in (2).

��

5 Reversible Markov Process Generated by Symmetric
Measures

In this section, we consider Markov processes generated by a Markov operator
which is determined by a symmetric irreducible measure ρ on the standard Borel
space (V × V,B × B) such that the margin measure μ on (V ,B) is σ -finite. Our
first theme is reversible Markov processes. For the benefit of non-specialist readers,
we cite the following sources: [44–46]. We refer also to [47–49]. In the second
part of this section, we will assume that this Markov process is transient (see the
definition below). The reader can find vast literature on the theory of transient
Markov processes, we refer to [17–19, 50–57].
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5.1 Reversible Markov Processes

Let (V ,B, μ) be a σ -finite measure space, and let ρ be a symmetric measure
on (V × V,B × B) which is disintegrated with respect to (ρx, x ∈ V ) and μ

according to (2.5). By assumption, c(x) = ρx(V ) is locally integrable. We recall
(see Definition 3.1) that, in this setting, a Markov operator P is defined on F(V ,B)
by the probability kernel x $→ P(x, ·). This operator P acts by the formula

P(f )(x) =
∫

V

f (y) P (x, dy) (5.1)

where P(x, dy) = c(x)−1dρx(y). Then the operator P is positive and normalized,
i.e., P(1) = 1. As mentioned above in Proposition 3.7, the fact that ρ is symmetric
is equivalent to self-adjointness of P as an operator in L2(ν). It follows also
that P preserves the measure ν = cμ. Furthermore, we can use the kernel
x → P(x, ·) = P1(x, ·) to define the sequence of probability kernels (transition
probabilities) (Pn(x, ·) : n ∈ N) in accordance with (2.4). These kernels satisfy the
equality

Pn+m(x,A) =
∫

V

Pn(y,A)Pm(x, dy), n,m ∈ N.

Therefore one has

Pn(f )(x) =
∫

V

f (y) Pn(x, dy), n ∈ N,

and this relation defines the sequence of probability measures (Pn) by setting
P0(x,A) = δA(x) = χA(x) and

Pn(x,A) = Pn(χA) =
∫

V

χA(y) Pn(x, dy), A ∈ B, n ∈ N.

We use the notation P(x,A) for P1(x,A).
For the Markov operator P , one can define one more sequence of measures. We

use the formula

ρn(A× B) = 〈χA, Pn(χB)〉L2(ν), (5.2)

to define the measures ρn, n ∈ N, on the Borel space (V ×V,B×B) (here ρ1 = ρ).

Lemma 5.1

(1) Every measure ρn, n ∈ N, is symmetric on (V ×V,B×B), and ρn is equivalent
to ρ.

(2) ρ
(n)
x (V ) = c(x),∀n ∈ N.
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(3)

dρn(x, y) = c(x)Pn(x, dy)dμ(x) = Pn(x, dy)dν(x). (5.3)

(4)

ρn(A× B) = 〈χA,RPn−1(χB)〉L2(μ).

Proof The assertions of the lemma are rather obvious. We only mention two simple
facts: ρn(A×V ) = ρ(A×V ) for every n, and, since the operator Pn is self-adjoint
in L2(ν), the measure ρn is symmetric. ��
Definition 5.2 Suppose that x $→ P(x, ·) is a measurable family of transition
probabilities on the space (V ,B, μ), and let P be the Markov operator determined
by x $→ P(x, ·). It is said that the corresponding Markov process is reversible with
respect to a measurable function c : x → (0,∞) on (V ,B) if, for any setsA,B ∈ B,
the following relation holds:

∫

B

c(x)P (x,A) dμ(x) =
∫

A

c(x)P (x, B) dμ(x). (5.4)

As shown in [1], the reversibility for the Markov process (Pn) is equivalent
to the following properties (here we give an extended and more comprehensive
formulation):

Theorem 5.3 Let (V ,B, μ) be a standard σ -finite measure space, x $→ c(x) ∈
(0,∞) a measurable function, c ∈ L1

loc(μ). Suppose that x $→ P(x, ·) is a
probability kernel. The following are equivalent:

(i) x $→ P(x, ·) is reversible (i.e., it satisfies (5.4);
(ii) x → Pn(x, ·) is reversible for any n ≥ 1;

(iii) the Markov operator P defined by x → P(x, ·) is self-adjoint on L2(ν) and
νP = ν where dν(x) = c(x)dμ(x);

(iv)

c(x)P (x, dy)dμ(x) = c(y)P (y, dx)dμ(y);

(v) the operator R defined by the relation R(f )(x) = c(x)P (f )(x) is symmetric
(see Remark 3.3);

(vi) the measure ρ on (V × V,B × B) defined by

ρ(A× B) =
∫

V

χAR(χB) dμ =
∫

V

c(x)χAP(χB) dμ

is symmetric;
(vii) for every n ∈ N, the measure ρn defined by (5.2) is symmetric;
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(viii) for any Borel sets A1, . . . , An ∈ Bfin(μ),

∫

V

Px(X0 ∈ A0, . . . , Xn ∈ An) dν(x) =
∫

V

Px(X0 ∈ An, . . . , Xn ∈ A0) dν(x),

where the random variables X1, . . . , Xn are defined below in Remark 5.4 (5)
and the sets A0, A1, . . . , An are written in the reverse order in the right hand
side.

Proof We refer to [1] where most of these properties are discussed. We prove (viii)
here. Indeed, it can be seen that

∫

V
Px(X0 ∈ A0, . . . , Xn ∈ An) dν(x) =

∫

V
χA0P(χA1P(χA2 · · ·P(χAn) · · · ))(x) dν(x).

(5.5)

Since P is self-adjoint on L2(ν), we can repeatedly use the relation
∫
V f P(g)dν =∫

V P (f )gdν and rewrite (5.5) as follows:

∫

V

χA0P(χA1P(χA2 · · ·P(χAn) · · · ))(x) dν(x)

=
∫

V

χAnP (χAn−1P(χAn−2 · · ·P(χA0) · · · ))(x) dν(x)

=
∫

V

Px(X0 ∈ An, . . . , Xn ∈ A0) dν(x).

The fact that property (viii) implies that P is reversible is proved by using the
density of simple functions in L2(ν). ��

We discuss the notion of reversibility in the following Remark where we included
several direct consequences of Definition 4.1 and Theorem 5.3.

Remark 5.4

(1) Let x $→ P(x, ·) be a Borel field of probability measures over a standard
Borel space (V ,B). This field of transition probabilities generates the Markov
operatorP such that P(1) = 1. It follows from Theorem 5.3 that one can define
the notion of reversible Markov process x $→ P(x, ·) with respect to a σ -finite
measure ν: It is said that ((x $→ P(x, ·)), ν) is reversible if P is a self-adjoint
operator in L2(ν). This definition is equivalent to the property

∫

A

P(x,B) dν =
∫

B

P(x,A) dν.

Equally, one can consider the notion of reversibility for P(x, ·) with respect to a
symmetric measure ρ. Theorem 5.3 states the equivalence of these approaches.
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(2) Based on (1), the following question is raised naturally: Given x $→ P(x, ·) as
above, under what condition the set

S(P ) := {ν : P is self-adjoint in L2(ν)}

is non-empty?
(3) The following observation is a direct consequence of Theorem 5.3. Let

P(x,A) = P(χA)(x) be the probability kernel defined by a normalized
Markov operator P acting on Borel functions over (V ,B, μ). To answer the
question about the existence of a P -invariant measure ν ∼ μ such that (P, ν) is
reversible, it suffices to construct a locally integrable function c satisfying (5.4).
It can be done by pointing out a symmetric measure ρ such that ρx(V ) = c(x)

and the projection of ρ onto V is the measure μ.
(4) There exists a stronger version of reversible Markov processes. Let P be a

Markov operator acting on F(V ,B) such that, for any A,B ∈ Bfin(μ),

χAP(χB) = χBP(χA).

Then, for any positive Borel function c ∈ L1
loc(μ), the measure dν(x) =

c(x)dμ(x) belongs to S(P ). Indeed, it suffices to define the symmetric measure
ρ according to Theorem 5.3 (vi) and then apply statement (ii).

(5) We give here one more interpretation of the definition of reversible Markov
processes. For this, we use the notation to be introduced in Sect. 6. Let

� = V × V × V · · ·

be the path space of the Markov process (Pn), and let Xn : � → V be the
random variable defined by Xn(ω) = ωn. Given a measure ν on V , we can
reformulate the definition of reversible Markov operator as follows:

dist (X0 | X1 ∈ A) = dist (X1 | X0 ∈ A).

The meaning of the above formula is clarified in Proposition 6.4.
(6) Suppose now that a non-symmetric measure ρ is given on the space (V×V,B×

B), i.e, ρ(A× B) 	= ρ(B × A), in general. However, we will assume that ρ is
equivalent to ρ ◦ θ where θ(x, y) = (y, x). Then, using the same approach as
above, we can define the following objects: margin measuresμi := ρ◦π−1

i , i =
1, 2,, fiber measures dρx(·) and dρx(·) (see Remark 2.5), and functions c1(x) =
ρx(V ), c2(x) = ρx(V ).

Define now the symmetric measure ρ# generated by ρ as follows

ρ# := 1

2
(ρ + ρ ◦ θ).
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Then

ρ#(A× B) = 1

2
(ρ(A× B)+ ρ(B × A)).

Clearly, ρ# is equivalent to ρ.
Let E ⊂ V × V be the support of ρ. Then E# = E ∪ θ(E) is the support of

the symmetric measure ρ#. The disintegration of ρ = ∫
V ρx dμ1(x) with respect to

the partition {x} × Ex defines the disintegration of ρ#. For μ# := 1

2
(μ1 + μ2), we

obtain that

ρ# =
∫

V

(ρx + ρx) dμ#.

Having the symmetric measure ρ# defined on (V ×V,B×B), we can introduce
the operators R# and P # as in (3.2) and (3.3). It turns out that, for f ∈ F(V ,B),

R#(f )(x) = R1(f )(x)+ R2(f )(x)

where

R1(f ) =
∫

V

f (y) dρx(y), R2(f ) =
∫

V

f (y) dρx(y).

Similarly,

P #(f )(x) = 1

c#(x)
R#(f )(x)

where

c#(x) = ρx(V )+ ρx(V ).

Then we can define the measure dν#(x) = c#(x)dμ(x) such that the operator

P #(f )(x) =
∫

V

f (y)
1

c#(x)
dρ#

x(y)

is self-adjoint in L2(ν#). By Theorem 5.3, we obtain that the Markov process
generated by x $→ P #(x, ·) is reversible where P #(x,A) = P #(χA)(x).
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5.2 Properties of Markov Operators

In this subsection, we discuss some properties of the Markov operator P , which
is defined by relation (3.3). The operator P is considered acting in Hilbert spaces
L2(μ), L1(ν), and HE where dν(x) = c(x)dμ(x) and HE is the energy space.

We begin with the following simple observations whose proofs are obvious
and can be omitted. Remind that Bfin(μ) is the family of Borel subsets of finite
measureμ, and Dfin = Dfin(μ) is the linear subspace generated by the characteristic
functions χA, A ∈ Bfin.

Remark 5.5

(1) If c ∈ L1
loc(μ), then

Bfin(μ) ⊂ Bfin(ν).

The converse is not true.
(2) We observe that if both functions, c(x) and c(x)−1 are in L1

loc(μ), then

Bfin(μ) = Bfin(ν).

(3) The following property holds for c ∈ L1
loc(μ):

Dfin(μ) ⊂ L2(μ) ∩ L2(ν) ∩HE (5.6)

(this should be understood that functions from Dfin are representatives of
elements from HE).

(4) We recall that

‖χA‖2
HE

= ρ(A× Ac) (5.7)

where ρ is a symmetric measure used in the definition HE . This fact is proved
in [1].

Lemma 5.6 If c ∈ L1
loc(μ), then Dfin(μ) is dense in L1(ν) and L2(ν).

Proof (Sketch) We show the density of Dfin(μ) in L1(ν) only. It suffices to check
that, for every B ∈ Bfin(ν), the characteristic function χB can be approximated in
L1(ν) by simple functions from Dfin(μ), i.e., for every ε > 0, there exists some
s(x) ∈ Dfin(μ) such that ||χB − s||L1(ν) < ε. Without loss of generality, we can
assume that s(x) ≤ χB(x). Then

||χB − s||L1(ν) =
∫

V

(χB − s(x)) dν(x) =
∫

B

c(x)(1− s(x)) dμ(x).
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Since c is μ-integrable on B, one can take a subset B0 ⊂ B such that

∫

B

c dμ−
∫

B0

c dμ < ε.

The result follows. ��
Next, let ρ be a symmetric measure on (V ×V,B×B), and let P be the operator

acting on bounded Borel functions by the formula

P(f )(x) =
∫

V

f (y)P (x, dy)

where c(x)P (x, dy) = dρx(y).
In the next statement we collect several properties of the Markov operator P

considered in various spaces.

Proposition 5.7 Let (V ,B, μ), ν, and ρ be as above. Then, for any A ∈ Bfin,

(a) P(χA) ∈ L1(μ) ⇐⇒ ρx(A)

c(x)
∈ L1(μ) 3⇒ P(χA) ∈ L2(μ);

(b) if the function x $→ ∫
V
c(y)−1 dρx(y) is locally integrable, then P is a densely

defined operator in L2(μ);
(c) if c ∈ L1

loc(μ), then

P(χA) ∈ L1(ν) ∩ L2(ν);

(d) the measures μ and μP are equivalent if and only if the function c−1 is
integrable on (Ex, ρx) for μ-a.e. x ∈ V . The Radon-Nikodym derivative can
be found by the formula:

d(μP)

dμ
(x) =

∫

V

1

c(y)
dρx(y).

Proof (Sketch)

(a) The fact that P(χA) is inL2(μ) follows from the Schwarz inequality for positive
operators,

P(χA)
2 ≤ P(χ2

A) = P(χA).
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The criterion for integrability of the function P(χA) is proved as follows:
∫

V

P (χA)(x) dμ(x) =
∫∫

V×V
χA(y)P (x, dy) dμ(x)

=
∫∫

V×V
χA(y)

c(x)
dρx(y)dμ(x)

=
∫

V

ρx(A)

c(x)
dμ(x).

It follows from (a) that the same computation can be used to show that P(χA)
is in L2(μ) whenever

ρx(A)

c(x)
∈ L1(μ).

(b) To prove this result, we refer to the proof of (b) and use the symmetry of the
measure ρ:

P(χA) ∈ L2(μ) ⇐3 P(χA) ∈ L1(μ)

and
∫

V

P (χA)(x) dμ(x) =
∫∫

V×V
χA(y)

c(x)
dρx(y)dμ(x)

=
∫∫

V×V
χA(x)

c(y)
dρx(y)dμ(x)

=
∫

A

(∫

V

χA(x)

c(y)
dρx(y)

)
dμ(x).

It gives the desired statement.
(c) Suppose c(x) ∈ L1

loc(μ). Then, using the symmetry of the measure ρ and
relation (2.7), we obtain

∫

V

P (χA)(x) dν(x) =
∫

V

(∫

V

χA(y)
1

c(x)
dρx(y)

)
c(x)dμ(x)

=
∫∫

V×V
χA(x) dρx(y)dμ(x)

=
∫

V

χA(x)c(x) dμ(x)

=
∫

A

c(x) dμ(x) <∞,

i.e., P(χA) ∈ L1(ν). The fact that P(χA) ∈ L2(ν) is proved as in (a).



178 S. Bezuglyi and P. E. T. Jorgensen

(d) The statement will follow from the following chain of equalities:

(μP)(A) =
∫

V

χA d(μP)

=
∫

V

P (χA) dμ

=
∫

V

(∫

V

χA(y)P (x, dy)

)
dμ(x)

=
∫∫

V tV

χA(y)
1

c(x)
dρx(y)dμ(x)

=
∫

V

χA(x)

(∫

V

1

c(y)
dρx(y)

)
dμ(x)

=
∫

A

(∫

V

1

c(y)
dρx(y)

)
dμ(x)

=
∫

A

d(μP)

dμ
(x) dμ(x)

where

d(μP)

dμ
(x) =

∫

V

1

c(y)
dρx(y).

��
Clearly, Proposition 5.7 can be extended to functions from Dfin.

Lemma 5.8

(1) Let P be a self-adjoint Markov operator in L2(ν). Suppose that c ∈ L1
loc(μ).

Then, for A ∈ Bfin(μ),

||Pn(χA)||2L2(ν)
= ρ2n(A× A), n ∈ N, (5.8)

where measures ρn are defined in (5.2).
(2) Moreover, for all n ∈ N,

∫

A

c dμ = ||χA||2HE(ρ2n)
+ ||Pn(χA)||2L2(ν)

.
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Proof

(1) We recall that if P is a self-adjoint operator in the space L2(ν), then νP = ν.
Hence,

||Pn(χA)||2L2(ν)
=〈Pn(χA), P

n(χA)〉L2(ν)

=〈χA, P 2n(χA)〉L2(ν)

=ρ2n(A× A).

(2) Since ρ(n)x (V ) = c(x) for all n ∈ N, we can easily deduce from (1) the following
equality (we use here formula (5.7)):

||χA||2HE(ρn)
=ρn(A× Ac)

=ρn(A× V )− ρn(A×A)

=
∫

A

c dμ− ρn(A×A).

��
Remark 5.9 It is interesting to compare formula (5.8) with a similar result for
||Pn(χA)||2HE

proved in [1], see also (3.11) in Theorem 3.6.

‖Pn(χA)‖2
HE

= ρ2n(A×A)− ρ2n+1(A×A), n ∈ N.

Hence, it follows that

‖Pn(χA)‖2
HE

= ||Pn(χA)||2L2(ν)
− ρ2n+1(A× A).

5.3 More on the Embedding Operator J

In this subsection, we return to the study of the operator J defined in (3.14), see
Sect. 3.2. We recall that the operator J is an isometry if considered acting from
L2(ν) to L2(ρ), and it is an unbounded operator from L2(μ) to L2(ρ). Here we
focus on relations between J and other operators we study in the paper.

Lemma 5.10 For any A ∈ Bfin(μ), we have

||J (P (χA))||2L2(ρ)
≤ ||χA||2L2(ν)

.
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Proof Indeed, we use Schwarz’ inequality for P to show that

∫∫

V×V
J (P (χA))

2(x, y) dρ(x, y) =
∫

V

P (χA)
2(x) dρ(x, y)

≤
∫

V

P (χA)(x) dρ(x, y)

=
∫

V

c(x)P (χA)(x) dμ(x)

=
∫∫

V×V
χA(y) dρx(y)dμ(x)

=
∫∫

V×V
χA(x) dρx(y)dμ(x)

=
∫

A

c(x) dμ(x)

=||χA||2L2(ν)
.

��
As an illustration of properties of this embedding J , we note that the function

J (c−1)(x, y) is not integrable with respect to ρ but is locally integrable.
Another useful relation that compares norms of functions is contained in the

following inequality.

Lemma 5.11 Let f be a function from the finite energy space such that f and	(f )
belong to L2(μ). Then

||Jf ||2
L2(ρ)

≥ 1

2
||f ||2HE

.

Proof The proof follows from [1, Corollary 7.4] and Proposition 3.7 (6):

∫∫

V×V
(Jf )2(x, y) dρ(x, y) =

∫∫

V×V
f 2(x) dρx(y)dμ(x)

=
∫

V

f 2(x)c(x) dμ(x)

≥1

2
〈f,	f 〉L2(μ)

=1

2
||f ||2HE

.

��
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In the remaining part of this section, we consider the Markov operator P as an
operator acting on functions from the energy space HE .

Proposition 5.12 Assume that c ∈ L1
loc(μ). Then, for every A ∈ Bfin(μ), we have

(JP )(χA)(x, y) ∈ HE.

Proof We need to show that the energy norm of J (P (χA)) is finite. By Theo-
rem 3.6, we find that

||(JP )(χA)||2L2(ρ)
=1

2

∫∫

V×V
(P (χA)(x)− P(χA)(y))

2 dρ(x, y)

=
∫∫

V×V
(P (χA)

2(x)− P(χA)(x)P (χA)(y)) dρ(x, y).

To see that the last integral is finite, we first show that (JP )(χA) is in L2(ρ):

∫∫

V×V
P (χA)

2(x) dρ(x, y) ≤
∫∫

V×V
P (χA)(x) dρx(y)dμ(x)

=
∫

V

P (χA)(x)c(x) dμ(x)

=ν(A)

=
∫

A

c(x) dμ(x).

The latter is finite.
Similarly, one can check that

∫∫
V×V P (χA)(x)P (χA)(y) dρ(x, y) is also finite.

We leave the proof for the reader. ��
Consider a new operator, denoted by ∂ , which acts from the energy space HR to

L2(ρ):

(∂f )(x, y) = 1√
2
(f (x)− f (y)), f ∈ HE (5.9)

Remark that in the theory of electrical networks the analogous transformation is
called a voltage drop operator.

Lemma 5.13 The operator ∂ : HE → L2(ρ) defined by (5.9) is an isometry.

Proof The proof is obvious because

||f ||2HE
= 1

2

∫∫

V×V
(f (x)− f (y))2 dρ(x, y) = ||(∂f )||2

L2(ρ)
.

��
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Since J : L2(ν) → L2(ρ) is an isometry, then the co-isometry J ∗ sends L2(ρ)

to L2(ν) according to the formula

(J ∗g)(x) =
∫

V

g(x, ·) P (x, ·)

where g ∈ L2(ρ).
In the following proposition, we formulate a relation between operators P , J ∗,

and ∂ .

Proposition 5.14 The following diagram commutes:

HE
	̃−→ L2(ν)

↘∂ ↗J ∗

L2(ρ)

where 	̃ = (
√

2c)−1	 = (
√

2)−1(I − P).

Proof The proof is mainly based on Theorem 3.10 and the definition of ∂ . We have

(J ∗∂f )(x) = 1√
2
J ∗(f (x)− f (y))

= 1√
2

∫

V

(f (x)− f (y)) P (x, dy)

= 1√
2
(f (x)− P(f )(x))

= 1√
2
c(x)	(f )(x).

��
In the next statement, we present several properties of the operator I − P .

Corollary 5.15

(1)

(I − P)HE ⊂ L2(ν),

(2) The operator I − P acting from HE to L2(ν) is contractive.
(3) For the operator 	 = c(I − P), the following holds

	(HE) ⊂ cL2(ν).
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Proof Assertion (1) is a direct consequence of Proposition 5.14 (this result was
already mentioned in [1]).

To see that (2) holds, we recall the formula for the norm of a function in the finite
energy space HE :

‖f ‖2
HE

= 1

2

(
‖f − P(f )‖2

L2(ν)
+

∫

V

Varx(f ◦X1) dν

)
,

where the meaning of random variables Xn is explained in Sect. 6 below.
(3) is obvious. ��

6 Transient Markov Processes and Symmetric Measures

Transient Markov processes and Green’s functions are central themes in the theory
of Markov chains that have been studied in a numerous books and papers. For the
benefit of non-specialist readers, we cite the following sources [17, 58–60]. More
interesting results can be found in [61–63].

In this section we consider Green’s functions GA(x) of transient Markov
processes and relate the symmetric measures ρn to the norm of GA in the finite
energy space.

6.1 Path-space Measure

We denote by� the infinite Cartesian productV×V×· · · = V N0 . Let (Xn(ω) : n =
0, 1, . . .) be the sequence of random variables Xn : �→ V such that Xn(ω) = ωn.
We call � as the path space of the Markov process (Pn). Let �x, x ∈ V, be the set
of infinite paths beginning at x:

�x := {ω ∈ � : X0(ω) = x}.

Clearly, � = ∐
x∈V �x .

A subset {ω ∈ � : X0(ω) ∈ A0, . . . Xk(ω) ∈ Ak} is called a cylinder set defined
by Borel sets A0, A1, . . . , Ak taken from B, k ∈ N0. The collection of cylinder sets
generates the σ -algebra C of Borel subsets of �, and (�, C) is a standard Borel
space. Then the functions Xn : �→ V are Borel.

Define a probability measure Px on �x . For this, denote by F≤n the increasing
sequence of σ -subalgebras such that F≤n is the smallest subalgebra for which the
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functions X0,X1, . . . , Xn are Borel. For a cylinder set (A1, . . . , An) from F≤n we
set

Px(X1 ∈ A1, . . . , Xn ∈ An) =
∫

A1

· · ·
∫

An−1

P (yn−1, An)P (yn−2, dyn−1) · · ·P (x, dy1).

(6.1)

Then Px extends to the Borel sets on �x by the Kolmogorov extension theorem
[64].

The values of Px can be written as

Px(X1 ∈ A1, . . . , Xn ∈ An) = P(χA1P(χA2P( · · · P(χAn−1P(χAn)) · · · )))(x).
(6.2)

The joint distribution of the random variables Xi is given by

dPx(X1, . . . , Xn)
−1 = P(x, dy1)P (y1, dy2) · · ·P(yn−1, dyn). (6.3)

Lemma 6.1 The measure space (�x,Px) is a standard probability measure space
for μ-a.e. x ∈ V .

On the measurable space (�, C), define a σ -finite measure λ by

λ :=
∫

V

Px dν(x) (6.4)

(λ is infinite if and only if the measure ν is infinite).
By Fn, we denote the σ -subalgebraX−1

n (B). Since X−1
n (B) is a σ -subalgebra of

C, there exists a projection

En : L2(V , C, λ)→ L2(�,X−1
n (B), λ).

The projection En is called the conditional expectation with respect to X−1
n (B) and

satisfies the property:

En(f ◦Xn) = f ◦Xn. (6.5)

We proved in [1] that the Markov processPn is irreducible if the initial symmetric
measure is irreducible. More precisely, the statement is as follows.

Theorem 6.2 Let ρ be a symmetric measure on (V × V,B × B), and let A and B
be any two sets from Bfin(μ). Then

ρn(A× B) = 〈χA, Pn(χB)〉L2(ν) = λ(X0 ∈ A,Xn ∈ B), n ∈ N. (6.6)

The Markov process (Pn) is irreducible if and only if the measure ρ is irreducible.
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In other words, relation (6.6) can be interpreted in the following way: for the
Markov process (Pn), the “probability” to get in B for n steps starting somewhere
in A is exactly ρn(A× B) > 0.

To see that (6.6) holds, one uses the definition of the measure λ and formulas (6.1)
and (6.2).

Corollary 6.3 Let A0, A1, . . . , An be a finite sequence of subsets from Bfin. Then

Px(X1 ∈ A1, . . . , Xn ∈ An) | x ∈ A0) > 0 ⇐⇒ ρ(Ai−1 × Ai) > 0

for i = 1, . . . , n.

It is worth noting that the concept of reversible Markov processes can be
formulated in terms of the measure λ, roughly speaking λ must be a symmetric
distribution.

Proposition 6.4 Let the measure λ on � be defined by (6.4). The Markov operator
P is reversible if and only if, for any sets A0, . . . , An from Bfin(μ) and any n ∈ N,

λ(X0 ∈ A0, . . . , Xn ∈ An) = λ(X0 ∈ An, . . . , Xn ∈ A0).

Proof The proof uses Theorem 5.3 (viii). In the proof we assume for simplicity that
n = 2; the general case is proved similarly. We recall that P is reversible if and only
is the Markov operator P is self-adjoint in L2(ν). We compute applying (6.1):

λ(X0 ∈ A0 | X1 ∈ A1) =
∫

A0

Px(X1 ∈ A1) dν(x)

=
∫

V

χA0(x)P (χA1)(x) dν(x)

=
∫

V

χA1(x)P (χA0)(x) dν(x)

= λ(X0 ∈ A1 | X1 ∈ A0).

It proves the statement. ��
In the next statement we relate harmonic functions to martingales. Recall first the

definition of a martingale.
Let (Xn : n ∈ N) be the Markov chain on � with values in (V ,B) defined by

Xn(ω) = ωn. We recall that the space � is represented as the disjoint union of
subsets �x := {ω ∈ � : ω0 = x}, x ∈ V . Let (�n : n ∈ N0) be a sequence of real-
valued random variables defined on �. Then it generates a sequence of measurable
fields of random variables x → �n(x), x ∈ V, defined on the corresponding subset
�x . Let Cn be the σ -algebra of subsets of � generated by �−1

n (B), B ∈ B. Denote
by C≤n the smallest σ -subalgebra such that the functions �i, i = 1, . . . n, are Borel
measurable. These σ -algebras induce σ -algebras C≤n(x) on every �x .
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It is said that the sequence (�n) is a martingale if

Ex(�n+k(x) | C≤n(x)) = �n(x), ∀k.

Here Ex is the conditional expectation with respect to the probability path measure
Px , see (6.1).

Proposition 6.5 Let P be the Markov operator defined by a symmetric measure ρ.
For the objects defined above, the following are equivalent:

(i) a Borel function h on (V ,B) is harmonic with respect to the Markov operator
P ;

(ii) the sequence (h ◦Xn : n ∈ N0) is a martingale.

Proof It follows from the definition of the Markov chain (Xn), path space measure
Px , and [2, Proposition 2.24] that, for any Borel function f ,

Ex(f ◦Xn+m | C≤n(x)) = Ex(f ◦Xn+m | Cn(x)) = Pm(f ) ◦Xn.

Hence, we see that a function h is harmonic if and only if

Ex(h ◦Xn+m | C≤n(x)) = h ◦Xn,

i.e., (h ◦Xn) is a martingale. ��

6.2 Green’s Functions

In this section, we will work with transient Markov processes. We first define a
Green’s function G(x,A). Our main goal is to study Green’s functions as elements
of the energy space.

Definition 6.6 Let

G(x,A) =
∞∑

n=0

Pn(x,A), A ∈ Bfin(μ), x ∈ V.

The Markov process is called transient if, for every A ∈ Bfin, the function G(x,A)
is finite μ-a.e. on V .

In this subsection, we will always assume that the Markov process (Pn) is
transient.

Lemma 6.7 Let ρ be an irreducible symmetric measure. Suppose A ∈ Bfin be a set
such that G(x,A) is finite a.e. Then, for any B ∈ Bfin, the function G(x,B) is finite
for μ-a.e. x ∈ V .
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Proof The proof of this result is straightforward and mainly based on the definition
of irreducible measure, see also Lemma 2.9. ��
Lemma 6.8 Let A ∈ Bfin and let P be a Markov operator defined by a symmetric
measure ρ. Then the function x $→ Pn(x,A) = Pn(χA)(x) belongs to HE and

‖Pn(·, A)‖2
HE

= ρ2n(A×A)− ρ2n+1(A× A), n ∈ N.

Proof The proof is based on the facts that ν is P -invariant, ρ is symmetric, and
on the definition of the norm in the energy space which are used in the following
computation:

||Pn(x,A)||2HE
=

∫∫

V×V
Pn(x,A)(Pn(x,A)− Pn(y,A)) dρ(x, y)

=
∫∫

V×V
Pn(x,A)(Pn(x,A)− Pn(y,A))c(x)P (x, dy) dμ(x)

=
∫

V

[
Pn(x,A)

2 − Pn(x,A)

∫

V

Pn(y,A)P (x, dy)

]
dν(x)

=
∫

V

[
Pn(x,A)

2 − Pn(x,A)Pn+1(x,A)
]
dν(x)

=
∫

V

Pn(x,A)(Pn(x,A)− Pn+1(x,A)) dν(x)

=
∫

V

χA(x)P
n(Pn(χA)− Pn+1(χA))(x) dν(x)

=〈χA(x), P 2n(χA)(x)〉L2(ν) − 〈χA(x), P 2n+1(χA)(x)〉L2(ν)

=ρ2n(A×A)− ρ2n+1(A× A).

��
Remark 6.9 As a curious observation, we mention that, for any A ∈ Bfin,

ρ2n(A× A) > ρ2n+1(A× A).

It is worth noting that the above formula cannot be extended to direct products of
sets A and B from Bfin(μ). In particular, one can prove that the relation

ρ2(A× B) < ρ(A× B)

implies that P(χB − P(χB)) > 0 a.e. Therefore there would exist a harmonic
function in L2(ν) which is a contradiction.

Fix a set A ∈ Bfin, then we have the family of measurable functions GA(x) :=
G(x,A) indexed by sets of finite measure.
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Lemma 6.10 For a set A ∈ Bfin, the equality

c(x)(I − P)(GA)(x) = c(x)χA(x)

holds. Equivalently,

	GA(x) = c(x)χA(x).

Proof We compute using the definition of Green’s function and the fact that the
series

∑
n Pn(x,A) is convergent for all x and all A ∈ Bfin(μ):

c(x)(I − P)GA(x) = c(x)(I − P)

∞∑

n=0

Pn(x,A)

= c(x)

∞∑

n=0

Pn(x,A)− c(x)

∞∑

n=1

Pn(x,A)

= c(x)χA(x).

��
Theorem 6.11 For the objects defined above, we have the following properties.

(1) For any sets A,B ∈ Bfin, we have

〈GA,GB〉HE
=

∞∑

n=0

ρn(A× B); (6.7)

and, in particular,

‖GA(x)‖2
HE

=
∞∑

n=1

ρn(A× A). (6.8)

(2) For any f ∈ HE and A ∈ Bfin(μ),

〈f,GA〉HE
=

∫

A

f dν.

Furthermore, if

G := span{GA(·) : A ∈ Bfin}, (6.9)

then G is dense in the energy space HE .
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Proof

(1) We prove (6.8) here. Relation (6.7) is proved similarly. One has

‖GA(x)‖2
HE

=
∫∫

V×V
(GA(x)− PA(y))

2 dρ(x, y)

=
∫∫

V×V
GA(x)(GA(x)−GA(y)) dρ(x, y)

=
∫∫

V×V
GA(x)(GA(x)− PA(y))c(x)P (x, dy)dμ(x))

=
∫

V

GA(x)[GA(x)− P(GA)(x)]c(x) dμ(x))

=
∫

V

GA(x)[
∞∑

n=0

Pn(χA)(x)−
∞∑

n=0

Pn+1(χA)(x)c(x) dμ(x))

=
∫

V

∞∑

n=0

Pn(χA)(x)χA(x) dν(x)

=
∞∑

n=0

〈χA, Pn(χA〉L2(ν)

=
∞∑

n=0

ρn(A×A).

For (2),

〈f,GA〉HE
= 1

2

∫∫

V×V
(f (x) − f (y))(GA(x)−GA(y)) dρ(x, y)

=
∫∫

V×V
(f (x)GA(x) − f (x)GA(y)) dρ(x, y)

=
∫

V

[
f (x)GA(x)c(x) − f (x)

(∫

V

GA(y)P (x, dy)

)
c(x)

]
dμ(x)

=
∫

V

f (x)c(x)

[ ∞∑

n=o
P n(χA)(x) −

∞∑

n=o
P n+1(χA)(x)

]
dμ(x)

=
∫

V

f (x)χA(x)c(x) dμ(x)

=
∫

A

f dν.
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It follows from the proved relation that if 〈f,GA〉HE
= 0 for all A ∈ Bfin(μ),

then f = 0, and G is dense in HE . ��
Let Dfin(μ) ⊂ L2(μ) denote, as usual, the space spanned by characteristic

functions, and let G be as in (6.9). Then the following two operators, J and K ,
are densely defined

J : χA $→ χA : Dfin → HE, K : GA $→ c(I − P)(GA) : G → L2(μ)

(6.10)

where A ∈ Bfin(μ).

Proposition 6.12 The operators J and K form a symmetric pair, i.e.,

〈Jϕ, f 〉HE
= 〈ϕ,K(f )〉L2(μ) (6.11)

where ϕ ∈ Dfin and f ∈ G.

Proof To prove (6.11) it suffices to check that it holds for ϕ = χA and f = GB

where A,B ∈ Bfin(μ). For these functions, we show that the both inner products
are equal to ν(A ∩ B).

By Lemma 6.10, we have

〈χA,K(GB)〉L2(μ) = 〈χA, cχB〉L2(μ)

=
∫

V

χAcχB dμ

= ν(A ∩ B).

On the other hand, for the same functions ϕ and f , we compute the inner product in
the finite energy Hilbert space using the symmetry of ρ:

〈J (χA),GB〉HE
= 1

2

∫∫

V×V
(χA(x)− χA(y))(GB(x)−GB(y)) dρ(x, y)

=
∫∫

V×V
(χA(x)GB(x)− χA(x)GB(y)) dρ(x, y)

=
∫∫

V×V
[χA(x)

∞∑

n=0

Pn(χB)(x)

− χA(x)

∞∑

n=0

Pn(χB)(y)]c(x)P (x, dy)dμ(x)
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=
∫

V

[χA(x)
∞∑

n=0

Pn(χB)(x)

− χA(x)

∞∑

n=0

∫

V

Pn(χB)(y)P (x, dy)]c(x)dμ(x)

=
∫

V

[χA(x)
∞∑

n=0

Pn(χB)(x)− χA(x)

∞∑

n=1

Pn(χB)] dν(x)

=
∫

V

χA(x)χB(x) dν(x)

= ν(A ∩ B).
��

Corollary 6.13 The finite energy Hilbert space admits the orthogonal decomposi-
tion

HE = J (Dfin(μ))⊕Harm.

In particular, for every B ∈ Bfin(μ), we have GB = G1 ⊕ G2, where G1 ∈
J (Dfin(μ)) is always non-zero.

Proof Indeed, if one assumed that G1 = 0, then we would have that GB is
orthogonal to J (Dfin(μ)). This contradicts Theorem 6.11. ��

We conclude this section with the following result that was proved in [1]:

Theorem 6.14 Let (Pn) be a transient Markov process, and let G(x,A) be the
corresponding Green’s function. Then, for any f ∈ HE , we have the decomposition

f = G(ϕ)+ h

where h is a harmonic function and ϕ ∈ L2(ν).

7 Discretization of the Graph Bfin(μ)

In this section, we show that our basic setting (a symmetric measure on the Cartesian
product (V ,B)) can be realized as a limit of discrete graphs. This approach naturally
leads to the notion of graphons. The reader can find necessary information in the
following books [65–67] and articles [68–70].

Let (V ,B, μ) be a σ -finite measure space, and let ρ be a symmetric measure on
(V × V,B × B). We will associate with (V ,B, μ) and ρ a sequence of countably
infinite graphs Gn equipped with conductance functions cn such that the weighted
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graphs (Gn, cn) can be viewed as a discretization of of the uncountable graph Bfin
considered in [1].

We first recall a few facts from [1].

Lemma 7.1 Suppose that c(x) ∈ L1
loc(μ). Then, for any set A ∈ Bfin,

ρ(A×Ac) <∞ (7.1)

where Ac = V \ A. The converse is not true, in general.

We can view at the set Bfin = Bfin(μ) as an uncountable graph G whose vertices
are sets A from Bfin and edges are defined as follows. For a symmetric measure ρ
defined on (V × V,B × B), we say that two sets A and B from Bfin are connected
by an edge e if ρ(A× B) > 0.

This definition is extended to get finite paths in the graph G. It is said that there
exists a finite path in the graph G from A to B if there exists a sequence {Ai :
i = 0, . . . , n} of sets from Bfin (vertices of G) such that A0 = A,An = B and
ρ(Ai × Ai+1) > 0, i = 0, . . . n− 1.

Theorem 7.2 Let (V ,B, μ) be as above, and let ρ be a symmetric irreducible
measure on (V × V,B × B). Then any two sets A and B from the graph G are
connected by a finite path, i.e., the graph G is connected.

Proof We will show that there exists a finite sequence (Ai : 0 ≤ i ≤ n) of disjoint
subsets from Bfin such that A0 = A, ρ(Ai × Ai+1) > 0, and ρ(An × B) > 0,
i = 0, . . . , n− 1.

If ρ(A×B) > 0, then nothing to prove, so that we can assume that ρ(A×B) = 0.
Let ξ = (Ci : i ∈ N) be a partition of V into disjoint subsets of positive finite

measure such that Ci ∈ Bfin for all i. Without loss of generality, we can assume that
the sets A and B are included in ξ . Let for definiteness, A = C0.

Since ρ(A × Ac) > 0 (by Lemma 7.1), there exists a set Ci1 ∈ ξ such that
ρ(A× Ci1) > 0 and ρ(A× Cj) = 0 for all 0 < j < i1. Set

A1 :=
⋃

0<j≤i1
Cj .

It is clear that A1 ∈ Bfin and ρ(A0 ×A1) > 0. If ρ(A1 ×B) > 0, then we are done.
If not, we proceed as follows. Because of the property ρ(A1×Ac

1) > 0, there exists
some i2 > i1 such that ρ(A1 × Ci2) > 0 and ρ(A1 × Cj) = 0 for all i1 < j < i2.
Set

A2 :=
⋃

i1<j≤i2
Cj .



Symmetric Measures 193

Then ρ(A1 × A2) > 0, and we check whether ρ(A2 × B) > 0. If not, we continue
in the same manner by constructing consequently disjoint sets Ai satisfying the
property ρ(Ai ×Ai+1) > 0. Since B is an element of ξ , this process will terminate.
This means that there exists some n such that An ⊃ B. This argument proves the
proposition. ��

Given a σ -finite measure space (V ,B, μ), consider a sequence of measurable
partition {ξn}n∈N such that

(i) ξn = (An(i) : i ∈ N),
⊔

i An(i) = V, An(i) ∈ Bfin(μ);
(ii) ξn+1 refines ξn, i.e., every elementAn(i) of the partition ξn is the union of some

elements of ξn+1: An(i) = ⋃
j∈!n(i)

An+1(j) where !n(i) is a finite subset of
N;

(iii) the set {An(i) : i ∈ N, n ∈ N} generates the Borel σ -algebra B.

If for every i, the cardinality of the set !i is bigger than one, we say that ξn+1
refines ξn strictly.

It is well known, see e.g. [26], that, for any point x ∈ V , there exists a sequence
in(x) such that An+1(in+1(x)) ⊂ An((in)(x)) and

{x} =
⋂

n∈N
An(in(x)) (7.2)

Suppose ρ is a symmetric measure on (V × V,B × B). We define a sequence of
non-negative Borel functions c(n) on (V × V,B × B) by setting

c(n)xy := ρ(An(in(x))× An(in(y)))

for any x, y from V . Clearly, c(n)xy is a piecewise constant function.

Lemma 7.3 For a given sequence of strictly refining partitions (ξn), the sequence
of functions (c(n)xy ) is monotone decreasing.

Proof The proof is straightforward. For x, y ∈ V , let the sequences (An(in(x)))

and (An(jn(y))) shrink to the points x and y, respectively, according to (7.2). By
assumption of the lemma, An+1(in+1(x)) is a proper subset of An(in(x)). Hence,

c(n+1)
xy = ρ(An+1(in+1(x))× An+1(jn+1(y))

< ρ(An(in(x))×An(jn(y)))

= c(n)xy .

��
We now can define a sequence of discrete graphs (weighted networks) Gn =

(Vn,En,wn). The vertex set Vn is formed by the atoms of the partition ξn, i.e., by
the sets {An(i) : i ∈ N0}; therefore Vn can be identified with N0. The set of edges



194 S. Bezuglyi and P. E. T. Jorgensen

En consists of pairs (i, j) such that

(i, j) ∈ En ⇐⇒ ρ(An(i)× An(j)) > 0.

The weight function is wn(i, j) = ρ(An(i)×An(j)).

Lemma 7.4 Let ρ be a symmetric irreducible measures on (V × V,B × B). Then
the weighted graph Gn is connected for every n.

It follows from Lemma 7.3 that

cxy = lim
n→∞ c(n)xy

exists and is a Borel non-negative function. Since the measure ρ is symmetric, we
conclude that cxy = cyx .

Next, we define

c(n)(x) =
∑

j

ρ(An(in(x))× An(j)) =
∑

y∼nx

c(n)xy

where x ∼n y if and only if c(n)xy > 0. It can be seen that

c(n)(x) = ρ(An(in(x))× V ). (7.3)

Using the proved results, we can deduce the following statement.

Theorem 7.5 The sequence (c(n)(x)) is monotone decreasing for every x ∈ V and

c(x) := lim
n→∞ c(n)(x) = ρx(V ).

Proof Indeed, we see from (7.3) that

c(n+1)(x) = ρ(An+1(in+1(x))× V ) < ρ(An(in(x))× V ) = c(n)(x).

Hence, the Borel function c(x) is well defined for every x. Because
⋂

n An(in(x)) =
{x}, we obtain that c(x) = ρx(V ). ��

Acknowledgments The authors are thankful to colleagues and collaborators, especially the
members of the seminars in Mathematical Physics and Operator Theory at the University of Iowa,
where versions of this work have been presented. We acknowledge very helpful conversations
with among others Professors Paul Muhly, Wayne Polyzou; and conversations at distance with
Professors Daniel Alpay, and his colleagues at both Ben Gurion University, and Chapman
University. We wish to thank the referee for useful suggestions.



Symmetric Measures 195

References

1. S. Bezuglyi, P.E.T. Jorgensen, Graph Laplace and Markov operators on a measure space. ArXiv
e-prints (2018)

2. D. Alpay, P. Jorgensen, I. Lewkowicz, W -Markov measures, transfer operators, wavelets and
multiresolutions, in Frames and Harmonic Analysis. Contemporary Mathematics, vol. 706
(American Mathematical Society, Providence, 2018), pp. 293–343

3. L.W. Baggett, N.S. Larsen, K.D. Merrill, J.A. Packer, I. Raeburn, Generalized multiresolution
analyses with given multiplicity functions. J. Fourier Anal. Appl. 15(5), 616–633 (2009)

4. L.W. Baggett, K.D. Merrill, J.A. Packer, A.B. Ramsay, Probability measures on solenoids
corresponding to fractal wavelets. Trans. Am. Math. Soc. 364(5), 2723–2748 (2012)

5. O. Bratteli, P.E.T. Jorgensen, Convergence of the cascade algorithm at irregular scaling
functions, in The Functional and Harmonic Analysis of Wavelets and Frames (San Antonio,
TX, 1999). Contemporary Mathematics, vol. 247 (American Mathematical Society, Providence,
1999), pp. 93–130

6. L. Cioletti, M. Denker, A.O. Lopes, M. Stadlbauer, Spectral properties of the Ruelle operator
for product-type potentials on shift spaces. J. Lond. Math. Soc. (2) 95(2), 684–704 (2017)

7. D.E. Dutkay, P.E.T. Jorgensen, The role of transfer operators and shifts in the study of fractals:
encoding-models, analysis and geometry, commutative and non-commutative, in Geometry and
Analysis of Fractals. Springer Proceedings of the Mathematical Statistics, vol. 88 (Springer,
Heidelberg, 2014), pp. 65–95

8. Y. Jiang, Y.-L. Ye, Convergence speed of a Ruelle operator associated with a non-uniformly
expanding conformal dynamical system and a Dini potential. Discrete Contin. Dyn. Syst. 38(9),
4693–4713 (2018)

9. P. Jorgensen, F. Tian, Transfer operators, induced probability spaces, and random walk models.
Markov Process. Related Fields 23(2), 187–210 (2017)

10. P.E.T. Jorgensen, Ruelle operators: functions which are harmonic with respect to a transfer
operator. Mem. Am. Math. Soc. 152(720), viii+60 (2001)

11. P.E.T. Jorgensen, S. Pedersen, Dense analytic subspaces in fractal L2-spaces. J. Anal. Math.
75, 185–228 (1998)

12. D. Ruelle, The thermodynamic formalism for expanding maps. Commun. Math. Phys. 125(2),
239–262 (1989)

13. D. Ruelle, Spectral properties of a class of operators associated with conformal maps in two
dimensions. Commun. Math. Phys. 144(3), 537–556 (1992)

14. Á. Backhausz, B. Szegedy, On large-girth regular graphs and random processes on trees.
Random Struct. Algoritm. 53(3), 389–416 (2018)

15. Á. Backhausz, B. Szegedy, On the almost eigenvectors of random regular graphs. Ann. Probab.
47(3), 1677–1725 (2019)

16. M. Pensky, Dynamic network models and graphon estimation. Ann. Statist. 47(4), 2378–2403
(2019)

17. R. Lyons, Y. Peres, Probability on trees and networks, in Cambridge Series in Statistical and
Probabilistic Mathematics, vol. 42 (Cambridge University, New York, 2016)

18. E. Nummelin, General irreducible Markov chains and nonnegative operators, in Cambridge
Tracts in Mathematics, vol. 83 (Cambridge University, Cambridge, 1984)

19. D. Revuz, Markov chains, in North-Holland Mathematical Library, vol. 11, 2nd edn. (North-
Holland Publishing Co., Amsterdam, 1984)

20. C.T. Conley, B.D. Miller, A bound on measurable chromatic numbers of locally finite Borel
graphs. Math. Res. Lett. 23(6), 1633–1644 (2016)

21. C.T. Conley, B.D. Miller, Measurable perfect matchings for acyclic locally countable Borel
graphs. J. Symb. Log. 82(1), 258–271 (2017)

22. I.P. Cornfeld, S.V. Fomin, Y.G. Sinaı̆, Ergodic Theory. Grundlehren der Mathematischen
Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 245 (Springer, New
York, 1982). Translated from the Russian by A. B. Sosinskiı̆



196 S. Bezuglyi and P. E. T. Jorgensen

23. N.T. Do, P. Kuchment, B. Ong, On resonant spectral gaps in quantum graphs, in Functional
Analysis and Operator Theory for Quantum Physics. EMS Series Congress Report (European
Mathematical Society, Zürich, 2017), pp. 213–222

24. J. Feldman, C.C. Moore, Ergodic equivalence relations, cohomology, and von Neumann
algebras. I. Trans. Am. Math. Soc. 234(2), 289–324 (1977)

25. V. Kanovei, Borel equivalence relations, in University Lecture Series, vol. 44 (American
Mathematical Society, Providence, RI, 2008). Structure and classification

26. A.S. Kechris, Classical descriptive set theory, in Graduate Texts in Mathematics, vol. 156
(Springer, New York, 1995)

27. J. Lehn, Remark on measurable graph theorems. Proc. Am. Math. Soc. 63(1), 46–48 (1977)
28. S. Gao, Invariant descriptive set theory, in Pure and Applied Mathematics (Boca Raton), vol.

293 (CRC Press, Boca Raton, 2009)
29. A.S. Kechris, Global aspects of ergodic group actions, in Mathematical Surveys and Mono-

graphs, vol. 160 (American Mathematical Society, Providence, RI, 2010)
30. F. Chersi, An ergodic decomposition of invariant measures for discrete semiflows on standard

Borel spaces, in Advanced Topics in the Theory of Dynamical Systems (Trento, 1987). Notes
Reports Mathematical Science Engineering, vol. 6, pp. 75–87 (Academic Press, Boston, 1989)

31. P.A. Loeb, Conversion from nonstandard to standard measure spaces and applications in
probability theory. Trans. Am. Math. Soc. 211, 113–122 (1975)

32. V.A. Rohlin, On the fundamental ideas of measure theory. Mat. Sbornik N.S. 25(67), 107–150
(1949)

33. D. Simmons, Conditional measures and conditional expectation; Rohlin’s disintegration
theorem. Discrete Contin. Dyn. Syst. 32(7), 2565–2582 (2012)

34. J. Feldman, C.C. Moore, Ergodic equivalence relations, cohomology, and von Neumann
algebras. II. Trans. Am. Math. Soc. 234(2), 325–359 (1977)

35. A.S. Kechris, B.D. Miller, Topics in orbit equivalence, in Lecture Notes in Mathematics, vol.
1852 (Springer, Berlin, 2004)

36. Z.-Q. Chen, Y.-X. Ren, T. Yang, Law of large numbers for branching symmetric Hunt processes
with measure-valued branching rates. J. Theoret. Probab. 30(3), 898–931 (2017)

37. D.H. Alimorad, J.A. Fakharzadeh, A theoretical measure technique for determining 3D
symmetric nearly optimal shapes with a given center of mass. Comput. Math. Math. Phys.
57(7), 1225–1240 (2017)

38. S. Bezuglyi, P.E.T. Jorgensen, Transfer operators, endomorphisms, and measurable partitions.
Lecture Notes in Mathematics, vol. 2217 (Springer, Cham, 2018)

39. P.E.T. Jorgensen, E.P.J. Pearse, Continuum versus discrete networks, graph Laplacians, and
reproducing kernel Hilbert spaces. J. Math. Anal. Appl. 469(2), 765–807 (2019)

40. B. Landa, Y. Shkolnisky, The steerable graph Laplacian and its application to filtering image
datasets. SIAM J. Imaging Sci. 11(4), 2254–2304 (2018)

41. S. Smale, D.-X. Zhou, Learning theory estimates via integral operators and their approxima-
tions. Constr. Approx. 26(2), 153–172 (2007)

42. S. Smale, D.-X. Zhou, Geometry on probability spaces. Constr. Approx. 30(3), 311–323 (2009)
43. S. Bezuglyi, P.E.T. Jorgensen, Finite Energy Space, Graph Laplace Operator, and Symmetric

Measures
44. M.F. Chen, From Markov Chains to Nonequilibrium Particle Systems (World Scientific

Publishing Co. Inc., River Edge, 1992)
45. K. Lange, Applied probability, in Springer Texts in Statistics (Springer, New York, 2003)
46. T. Komorowski, C. Landim, S. Olla, Fluctuations in Markov processes. Grundlehren der

Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 345
(Springer, Heidelberg, 2012). Time symmetry and martingale approximation

47. Y. Chen, M.-P. Qian, J.-S. Xie, On characterization of reversible Markov processes by
monotonicity of the fluctuation spectral density. J. Math. Phys. 47(10), 103301, 9 (2006)

48. M. Longla, Remarks on limit theorems for reversible Markov processes and their applications.
J. Statist. Plann. Inference 187, 28–43 (2017)



Symmetric Measures 197

49. M. Peligrad, Asymptotic properties for linear processes of functionals of reversible or
normal Markov chains, in High Dimensional Probability VI. Program of Probability, vol. 66
(Birkhäuser/Springer, Basel, 2013), pp. 195–210

50. J.R. Artalejo, On the transient behavior of the maximum level length in structured Markov
chains, in Modern Mathematical Tools and Techniques in Capturing Complexity. Understand
Complex System (Springer, Berlin, 2011), pp. 379–390

51. V.T. Cyr, Transient Markov shifts (ProQuest LLC, Ann Arbor, MI, 2010). Thesis (Ph.D.)–The
Pennsylvania State University

52. D. Korshunov, The key renewal theorem for a transient Markov chain. J. Theoret. Probab.
21(1), 234–245 (2008)

53. S. Wei, R.J. Kryscio, Semi-Markov models for interval censored transient cognitive states with
back transitions and a competing risk. Stat. Methods Med. Res. 25(6), 2909–2924 (2016)

54. W. Woess, Denumerable Markov chains, in EMS Textbooks in Mathematics (European
Mathematical Society (EMS), Zürich, 2009). Generating functions, boundary theory, random
walks on trees

55. M.B. Marcus, J. Rosen, Necessary and sufficient conditions for the continuity of permanental
processes associated with transient Lévy processes. Electron. Commun. Probab. 20(57), 6
(2015)

56. J. Peterson, G. Samorodnitsky, Weak weak quenched limits for the path-valued processes
of hitting times and positions of a transient, one-dimensional random walk in a random
environment. ALEA Lat. Am. J. Probab. Math. Stat. 9(2), 531–569 (2012)

57. P. Lherminier, E. Sanchez-Palencia, Remarks and examples on transient processes and
attractors in biological evolution, in Proceedings of the 2014 Madrid Conference on Applied
Mathematics in Honor of Alfonso Casal. Electronic Journal of Differential Equations Confer-
ence, vol. 22 (Texas State University, San Marcos, 2015), pp. 63–77

58. A.N. Borodin, P. Salminen, Handbook of Brownian Motion—Facts and Formulae. Probability
and its Applications, 2nd edn. (Birkhäuser, Basel, 2002)

59. G.F. Lawler, V. Limic, Random walk: a modern introduction. Cambridge Studies in Advanced
Mathematics, vol. 123 (Cambridge University, Cambridge, 2010)

60. V.N. Kolokoltsov, Markov processes, semigroups and generators, in De Gruyter Studies in
Mathematics, vol. 38 (Walter de Gruyter and Co., Berlin, 2011)

61. A. Beveridge, A hitting time formula for the discrete Green’s function. Combin. Probab.
Comput. 25(3), 362–379 (2016)

62. Z.-Q. Chen, P. Kim, Green function estimate for censored stable processes. Probab. Theory
Related Fields 124(4), 595–610 (2002)

63. I.T. Dimov, T.V. Gurov, Estimates of the computational complexity of iterative Monte Carlo
algorithm based on Green’s function approach. Math. Comput. Simulation 47(2–5), 183–199
(1998). IMACS Seminar on Monte Carlo Methods (Brussels, 1997)

64. A.N. Kolmogorov, Foundations of the Theory of Probability (Chelsea Publishing Company,
New York, 1950)

65. L. Lovász, Large networks and graph limits, in American Mathematical Society Colloquium
Publications, vol. 60 (American Mathematical Society, Providence, 2012)

66. S. Chatterjee, Large deviations for random graphs, in Lecture Notes in Mathematics, vol. 2197
(Springer, Cham, 2017). Lecture notes from the 45th Probability Summer School held in Saint-
Flour, June 2015, École d’Été de Probabilités de Saint-Flour. [Saint-Flour Probability Summer
School]

67. S. Janson, Graphons, cut norm and distance, couplings and rearrangements, in New York
Journal of Mathematics. NYJM Monographs, vol. 4 (State University of New York, University
at Albany, Albany, NY, 2013)

68. H. Chuangpishit, M. Ghandehari, J. Janssen, Uniform linear embeddings of graphons. Euro-
pean J. Combin. 61, 47–68 (2017)

69. L. Lovász, B. Szegedy, The automorphism group of a graphon. J. Algebra 421, 136–166 (2015)
70. A. Shojaei-Fard, Graphons and renormalization of large Feynman diagrams. Opuscula Math.

38(3), 427–455 (2018)



Multi Variable Semicircular Processes
From ∗-Homomorphisms and Operators

Ilwoo Cho and Palle E. T. Jorgensen

Abstract In this paper, we (i) consider a Banach ∗-probability space L
(N)
Q gener-

ated by mutually free finitely, or countable-infinitely many semicircular elements,
induced by mutually orthogonal projections in a C∗-probability space, (ii) construct
certain ∗-homomorphisms acting on L

(N)
Q , determined by the shift processes acting

on the index set {1, . . . ,N} of semicircular elements, and the corresponding Banach-
space operators induced by them, and (iii) study how the ∗-homomorphisms and
Banach-space operators of (ii) deform the original free-distributional data on L

(N)
Q .

Keywords Free probability · Projections · (Weighted-)Semicircular elements ·
Banach ∗-Probability spaces · Integer shifts · Restricted integer shifts · Shift
operators
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1 Introduction

We shall use the term free probability in the customary sense, as an extension
of classical measure theory (including probability theory). Random variables in
measure theory are functions in commutative function systems; by contract, in free
theory, free random variables are operators in noncommutative ∗-algebras (e.g.,
C∗-algebras, or von Neumann algebras, or Banach ∗-algebras). Noncommutative
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probability was initiated by D. Voiculescu in response to questions in quantum
physics, and in operator algebra theory, notably, in the free group factor isomor-
phism problem (e.g., [20, 26] and [30]). In classical theories, independence is a key
feature, however, in free probability theory, there is a counterpart, the freeness, or
free independence (e.g., [3, 4, 23, 25] and [30]). Freeness parallels the more familiar
and classical independence, but it is much more subtle. Its use entails new tools
from multiple areas of mathematics (e.g., [8–11, 16, 17] and [18]). While in classical
probability, we know that, on account of the central limit theorem, the Gaussian law
(or the Gaussian distribution) is universal. In free probability, the counterpart is the
semicircular law.

A Banach ∗-algebra Y is a complete topological ∗-algebra equipped with the
norm topology. If there is a linear functional ψ on Y, then the pair (Y, ψ) is
called a Banach ∗-probability space. Then the free-distributional data on (Y, ψ) are
determined by joint free moments of operators of Y up to ψ. Here, we are interested
in ∗-homomorphisms on Y, preserving free-probabilistic information on (Y, ψ).

Since they are (multiplicative) linear transformations on Y, one can regard them as
operators in the operator space B(Y ) of all bounded linear transformations on Y, by
understanding the Banach ∗-algebra Y as a Banach space. Our main purpose is to
investigate how such Banach-space operators affect the free probability on (Y, ψ),
where Y is generated by multi semicircular elements.

1.1 Motivations

There are many ways to construct semicircular elements (e.g., [1, 5, 7, 9, 17, 20,
22, 27–30]) in topological ∗-probability spaces (e.g., C∗-probability spaces, or
W∗-probability spaces, or Banach ∗-probability spaces, etc.). Our construction of
semicircular elements is motivated by that of weighted-semicircular elements of
[11], from the analysis on the p-adic number fields Qp, for primes p (e.g., [13, 24]),
which is different from earlier works.

Like the (weighted-)semicircularity of [11], semicircular elements from mutually
orthogonal |Z|-many projections in a C∗-probability space, and the corresponding
semicircular law are considered here (See Sects. 3, 4, and 5 below; also, see
[8, 9]). Meanwhile, free distributions of free reduced words in mutually free, multi
semicircular elements are re-characterized, estimated, and asymptotically estimated
in terms of their joint free moments in [10] (See Sect. 6 below). By using the
techniques of [10], we study free probability on our structures, and consider how
certain Banach-space operators deform original free-distributional data.
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1.2 Overview

In Sect. 2, we briefly introduce free probability, free distributions of operators
characterized by free moments, or free cumulants. In Sects. 3, 4, and 5, we give
a new construction of (weighted-)semicircular elements. This is done with the use
of a new induction procedure from countable systems of projections. The focus of
Sect. 6 is a new tool, which we call semicircular free filterizations. It is used in
turn to give a new characterization of specific free (weighted-)semicircular families.
In Sects. 7 and 8, we study integer-shifts on semicircular free filterizations as ∗-
homomorphisms on them; and more generally, integer-shift operators, generated by
them. Section 9 deals with deformed free-distributional data under the actions of
integer-shifts, and associated shift operators.

2 Preliminaries

For free probability theory, see [23, 27] (and the cited papers therein). Free
probability is the noncommutative analogue of classical measure theory (including
probability theory) and statistical analysis. The classical independence is replaced
by so-called the freeness, by replacing measures on sets to linear functionals on
algebras. It is an important branch not only of operator theory (e.g., [4, 6, 7, 10, 17,
19, 20]), but also of applied mathematics (e.g., [8, 9, 11, 15, 18, 21, 29, 30]).

We use the combinatorial approaches [23] of free probability. Without detailed
introduction, Free moments and free cumulants of operators will be computed to
verify free distributions of them. Also, (free-probabilistic) free product (in the sense
of [23] and [27]) is used without definition.

Let B be a (noncommutative) topological ∗-algebra (a C∗-algebra, or a von
Neumann algebra, or a Banach ∗-algebra, etc.), and suppose ϕ is a linear functional
on B. Then the pair (B, ϕ) is said to be a topological (free) ∗-probability space (a
C∗-probability space, respectively, a W∗-probability space, respectively, a Banach
∗-probability space, etc.). If one regards an operator x ∈ B as an element of (B, ϕ),
it is called a free random variable.

For any arbitrarily chosen free random variables x1, . . . , xN ∈ (B, ϕ), the free
distribution of them is characterized by the joint free moments

∞∪
n=1

(
∪

(i1,...,in)∈{1,...,N}n

(
∪

(r1,...,rn)∈{1,∗}n
ϕ
(
x
r1
i1
x
r2
i2
. . . x

rn
in

)))
.

Equivalently, if k•(. . .) is the free cumulant on B in terms of ϕ (in the sense
of [23]), then the free distribution of x1, . . . , xN is characterized by the joint free
cumulants

∞∪
n=1

(
∪

(i1,...,in)∈{1,...,N}n

(
∪

(r1,...,rn)∈{1,∗}n
kn

(
x
r1
i1
, . . . , x

rn
in

)))
,
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via the Möbius inversion of [23]. For instance, if x ∈ (B, ϕ) is a self-adjoint free
random variable, equivalently, if x ∈ B is self-adjoint in the sense that: x∗ = x,

where x∗ is the adjoint of x in B (e.g., [14]), then the free distribution of x is fully
characterized by

the free moment sequence
(
ϕ(xn)

)∞
n=1 ,

or

the free cumulant sequence (kn(x, . . . , x))∞n=1 .

Recall that two free random variables x1 and x2 are free in (B, ϕ), if and only
if all “mixed” free cumulants of them vanish (See e.g., [23]), i.e., for any mixed
n-tuple (i1, . . . , in) ∈ {1, 2}n, for n > 1 in N,

kn

(
x
r1
i1
, . . . , xrnin

)
= 0,

for all (r1, . . . , rn) ∈ {1, ∗}n.

3 The Banach ∗-Algebra LQ

Let (B, ϕ) be an arbitrary topological ∗-probability space.
A self-adjoint free random variable a is weighted-semicircular in (B, ϕ) with its

weight t0 ∈ C× = C \ {0} (in short, t0-semicircular), if a satisfies the free cumulant
computations,

kn(a, . . . , a) =
{
k2(a, a) = t0 if n = 2
0 otherwise,

(3.1)

for all n ∈ N, where k•(. . .) is the free cumulant on B in terms of ϕ under the
Möbius inversion of [23].

If t0 = 1 in (3.1), the 1-semicircular element a is said to be semicircular in (B,
ϕ), i.e., a is semicircular in (B, ϕ), if a satisfies

kn(a, . . . , a) =
{

1 if n = 2
0 otherwise,

(3.2)

for all n ∈ N.
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By the Möbius inversion of [23], one can characterize the weighted-
semicircularity (3.1) as follows: a self-adjoint operator a is t0-semicircular in
(B, ϕ), if and only if

ϕ(an) = ωn

(
t
n
2

0 c n2

)
, (3.3)

where

ωn
def=

{
1 if n is even
0 if n is odd,

for all n ∈ N, and ck are the k-th Catalan numbers,

ck = 1

k + 1

(
2k
k

)
= 1

k + 1

(2k)!
k!(2k − k)! =

(2k)!
k!(k + 1)! ,

for all k ∈ N0 = N ∪ {0}.
Similarly, a free random variable a is semicircular in (B, ϕ), if and only if a is

1-semicircular in (B, ϕ), if and only if

ϕ(an) = ωncn
2
, (3.4)

by (3.3), for all n ∈ N, where ωn and c n
2

are in the sense of (3.3).
So, we use the t0-semicircularity (3.1) (or the semicircularity (3.2)) and its

characterization (3.3) (resp., (3.4)) alternatively from below.
Throughout this paper, we fix a C∗-probability space (A, ψ), containing |Z|-

many projections {qj }j∈Z in the C∗-algebra A, i.e., the operators qj satisfy

q∗j = qj = q2
j in A,

for all j ∈ Z. Note that there do exist such C∗ -probabilistic structures arising
naturally (e.g., [11, 14]), or artificially (e.g., [8, 9]).

Assume further that these projections {qj }j∈Z are mutually orthogonal in A, in
the sense that:

qiqj = δi,j qj in A, for all i, j ∈ Z, (3.5)

where δ is the Kronecker delta.
Now, we fix a family {qj }j∈Z of the projections (3.5),

Q = {qj of (3.5) : j ∈ Z} in A. (3.6)
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And let Q be the C∗-subalgebra of A generated by the family Q of (3.6),

Q
def= C∗ (Q) ⊆ A. (3.7)

Let Q be the C∗-subalgebra (3.7) of A. Then

Q
∗-iso= ⊕

j∈Z
(
C · qj

) ∗-iso= C⊕|Z|, (3.8)

in A, where ⊕ is the direct product of C∗-algebras.

Proof The proof of (3.8) is immediate from the mutual-orthogonality (3.5). ��
Define now linear functionals ψj on the C∗-algebra Q by

ψj (qi) = δijψ(qj ), for all i ∈ Z, (3.9)

for all j ∈ Z, where ψ is the linear functional of our fixed C∗-probability space (A,
ψ). The linear functionals {ψj }j∈Z of (3.9) are well-defined on Q by (3.8).

Assumption In the rest of this paper, we assume that

ψ(qj ) 	= 0 in C,∀qj ∈ Q. �

Then, as an independent C∗-algebra, the C∗-subalgebra Q of A forms C∗-
probability spaces (Q, ψj ), where ψj are the linear functionals (3.9).

Define now bounded linear transformations c and a acting on the C∗-algebra Q,
by linear morphisms satisfying

c
(
qj

) = qj+1, and a
(
qj

) = qj−1, (3.10)

for all j ∈ Z. Then c and a are well-defined bounded operators “on Q,” by (3.8).
They are Banach-space operators, contained in the operator space B(Q),

consisting of all bounded linear transformations on Q, if we regard Q as a Banach
space equipped with its C∗-norm (e.g., [12]). We call these Banach-space operators
c and a of (3.10), the creation, respectively, the annihilation on Q.

Define the radial operator l ∈ B(Q), by

l = c+ a on Q. (3.11)

And then, construct a subspace L of B(Q) by

L
def= C[{l}]‖.‖, (3.12)
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generated by the radial operator l of (3.11), under the operator norm ‖.‖ of B(Q),

where X
‖.‖

are the operator-norm closures of subsets X of B(Q) (e.g., [12]).
By (3.12), this subspace L forms a Banach algebra in B(Q).

On this Banach algebra L of (3.12), define a unary operation (∗) by

(∑∞
n=0

tnln
)∗ =

∑∞
n=0

tnln in L, (3.13)

where z are the conjugates of z ∈ C.

Then this operation (3.13) is a well-defined adjoint on L (See [8]), and hence,
every element of L is adjointable in B(Q) (e.g., [12]). So, the Banach algebra L
of (3.12) forms a Banach ∗-algebra in B(Q).

Construct now the tensor product Banach ∗-algebra LQ,

LQ = L⊗C Q, (3.14)

where ⊗C is the tensor product of Banach ∗-algebras.
We call the tensor product Banach ∗-algebra LQ of (3.14), the radial projection

(Banach ∗-)algebra on Q.

4 Weighted-Semicircular Elements Induced by Q

Let LQ be the radial projection algebra (3.14). Remark that, if

uj
def= l⊗ qj ∈ LQ, for all j ∈ Z, (4.1)

then

unj =
(
l ⊗ qj

)n = ln ⊗ qj , for all n ∈ N,

since qnj = qj , for all n ∈ N, for j ∈ Z. So, by (3.8), (3.12), and (3.14), such
operators {uj }j∈Z of (4.1) generate LQ.

Now, define linear morphisms

Ej,Q : LQ → LQ

by linear transformations satisfying

Ej,Q

(
uni

) def=

⎧
⎪⎪⎨

⎪⎪⎩

ψ(qj)
n−1

([ n2 ]+1)
unj if i = j

0LQ
, the zero element of LQ otherwise,

(4.2)
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for all n ∈N, i, j ∈ Z, where [ n2 ]means the minimal integer greater than or equal to
n
2 . The linear transformationsEj,Q of (4.13) are well-defined linear transformations
on LQ, by the cyclicity (3.12) of a tensor factor L of LQ, and the structure
theorem (3.8) of the other tensor factor Q of LQ.

Define now linear functionals τj on LQ by a linear morphism satisfying

τj
(
unk

) = τj (ln ⊗ qk)

= ψj
(
Ej,Q (ln(qk))

)
,

(4.3)

for all j, k ∈ Z, for all n ∈ N.

Fix j ∈ Z, and let uk = l ⊗ qk be the k-th generating operators of the Banach
∗-probability space (LQ, ϕj ) of (4.3), for all k ∈ Z. Then

τj

(
unj

)
= δk,jωnψ

(
qj

)n
c n

2
, (4.4)

where ωn and c n
2

are in the sense of (3.3) for all n ∈ N.

Proof By the definition (3.11) of the radial operator l on LQ, one has

ln =
n∑

k=0

(
n

k

)
ckan−konLQ,

with axiomatization:

l0 = c0 = a0 = 1LQ
, the identity operator on LQ,

where

(
n

k

)
= n!
k!(n− k)! , for all n, k ∈ N0,

because

cn1an2 = an2cn1 ,∀n1, n2 ∈ N0 = N ∪ {0},

So, one can verify that l2n−1 does not contain 1LQ
-terms, but l2n contains the

1LQ
-term,

(
2n
n

)
· 1LQ

.
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So, by the straightforward computation on (4.3), we obtain the formula (4.4),
since

ψ(qj ) = ψj (qj ) 	= 0, f orallj ∈ Z,

by (3.9) and (4.2). See [9] for more details. ��
The well-defined Banach ∗-probability spaces

LQ(j)
denote= (

LQ, τj
)

(4.5)

are called the j -th filter of LQ, for all j ∈ Z, where τj are as in (4.3).
The following theorem is proven by (4.4).
Let LQ(j) be the “j -th” filter of LQ, for j ∈ Z, and let uj be the “j -th”

generating operator (4.1) of LQ(j). Then uj is ψ(qj )
2-semicircular in LQ(j).

Meanwhile, if k 	= j in Z, then the k-th generating operators uk of LQ have the
zero free distribution in LQ(j).

Proof It is not hard to check the generating operator uk are self-adjoint in LQ.
So, by (4.4), a generating operator uk is ψ(qj )2-semicircular, if and only if k = j ;
otherwise, {uk}k 	=j follow the zero free distribution. ��

5 Semicircular Elements Induced by Q

As in Sect. 4, let LQ(j) be the j -th filter for j ∈ Z.

Let Uj = 1
ψ(qj )

uj be a free random variable LQ(j) for j ∈ Z, where uj is the
j -th generating operator of LQ. If

ψ(qj ) ∈ R× = R \ {0}inC×, (5.1)

then Uj is semicircular in LQ(j), for j ∈ Z.

Proof Since ψ(qj ) ∈ R×, the operator Uj is self-adjoint in LQ(j), by the self-
adjointness of uj ∈ LQ. So,

τj

(
Un
j

)
= 1

ψ(qj )n
τj

(
unj

)
= ωncn

2
,

for all n ∈ N, by the ψ(qj )
2-semicircularity (4.4) of uj in LQ(j). Therefore,

by (3.4), the free random variable Uj is semicircular in LQ(j), under the condition
(5.1). ��
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Assumption 2 From below, we automatically assume that

ψ(qj ) ∈ R×inC, for qj ∈ Q,

for all j ∈ Z. �

6 On the Free Filterization LQ(Z)

In this section, we construct the free product Banach ∗-probability space LQ(Z)
of the free filters {LQ(j)}j∈Z, and the corresponding sub-structure LQ = (LQ, τ)

generated by a free semicircular family {Uj ∈ LQ(j)}j∈Z of LQ(Z), and study
free-distributional data on LQ.

6.1 The Semicircular Filterization LQ

Let (A, ψ) be the fixed C∗-probability space containing a family Q = {qj }j∈Z of
mutually orthogonal projections with

ψ(qj ) ∈ R×, for all j ∈ Z,

and let LQ(j) be the j -th free filters of Q, for all j ∈ Z. For the system

{LQ(j) : j ∈ Z}

of Banach ∗-probability spaces, define the free product Banach ∗-probability space
LQ(Z) by

LQ(Z)
denote= (

LQ(Z), τ
)

def= �
j∈ZLQ(j) =

(
�

j∈ZLQ,j , �
j∈Z τj

)
,

(6.1.1)

with

LQ(Z) = �
j∈ZLQ,j , with LQ,j = LQ,∀j ∈ Z,

and

τ = �
j∈Z

τj on LQ(Z).

For more about free-probabilistic free products, see [23, 27].
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Let LQ(Z) be the free product Banach ∗-probability space (6.1.1) of the system
{LQ(j)}j∈Z of all free filters of LQ. Then it is said to be the free filterization of Q
⊂ (A, ψ).

Now, construct two subsets X and S of LQ(Z),

X = {uj ∈ LQ(j) : j ∈ Z}, (6.1.2)

and

S = {Uj ∈ LQ(j) : j ∈ Z}.

Recall that a subset Y of an arbitrary topological ∗-probability space (B, ϕ) is
said to be a free (weighted-)semicircular family in (B, ϕ), if all elements of Y are
not only mutually free from each other, but also (weighted-)semicircular in (B, ϕ).
(e.g., [10, 27]).

Let X and S be in the sense of (6.1.2) in LQ(Z).

(6.1.3) The family X is a free weighted-semicircular family in LQ(Z).
(6.1.4) The family S is a free semicircular family in LQ(Z).

Proof The proof of the statements (6.1.3) is done by (4.4) and (6.1.1). The
statement (6.1.4) is shown by Theorem 5.1 and (6.1.1). ��

By (4.4), the only “j -th” generating operators uj of the free blocks LQ(j)
provide non-vanishing free-distributional data on the free filterization LQ(Z). Thus,
we restrict our interests to the Banach ∗-subalgebra LQ of the free filterization
LQ(Z).

Let LQ(Z) be the free filterization of Q. Define a Banach ∗-subalgebra LQ of
LQ(Z) by

LQ
def= C [X ], (6.1.5)

where X is the free weighted-semicircular family (6.1.3) in LQ(Z), and Y are the
Banach-topology closures of the subsets Y of LQ(Z). Canonically, construct the
Banach ∗-probability space,

LQ
denote= (

LQ, τ = τ |LQ
)
, (6.1.6)

in LQ(Z) =
(
LQ(Z), τ

)
.

We call the Banach ∗-algebra LQ of (6.1.5), or the Banach ∗-probability space
LQ of (6.1.6), the semicircular (free-sub-)filterization of LQ(Z).

By (6.1.5) and (6.1.6), the operators of LQ are the free random variables of
LQ(Z), with possible non-zero free distributions.
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Let LQ be the semicircular filterization (6.1.5). Then

LQ = C[S] ∗-iso= �
j∈ZC[{uj }]

∗-iso= C

[
�

j∈Z{uj }
]
, (6.1.7)

in LQ(Z), where “
∗-iso= ” means “being Banach-∗-isomorphic,” and where (�) in the

first ∗-isomorphic relation of (6.1.7) means the free-probabilistic free product of
[23, 27], and (�) in the second ∗-isomorphic relation of (6.1.7) is the pure-algebraic
free product inducing noncommutative free words in X .
Proof The relation (6.1.7) is proven by (6.1.3) and (6.1.4). See [9] for details. ��

6.2 Free-Distributional Data Induced by Semicircular
Elements

Throughout this section, let (B, ϕ) be an arbitrary topological ∗-probability space,
and suppose there are mutually free, N-many semicircular elements x1, . . . , xN in
(B, ϕ), for N ∈ N \ {1}.

By the self-adjointness of these semicircular elements x1, . . . , xN ∈ (B, ϕ), the
free distribution, say

ρ
denote= ρx1,...,xN , (6.2.1)

of them are characterized by the joint free-moments

∞∪
n=1

(
∪

(i1,...,in)∈{1,...,N}n
{
ϕ
(
xi1xi2 . . . xin

)})
(6.2.1′)

(e.g., [23, 27]). More precisely, the free distribution ρ of (6.2.1), is characterized by
the free-moments

N∪
l=1

{
ϕ(xnl )

}∞
n=1 , (6.2.2)

and the “mixed” free-moments,

∞∪
s=2

⎧
⎨

⎩ϕ
(
x
n1
i1
x
n2
i2
. . . x

ns
is

)
∣∣∣∣∣∣

(i1, . . . , is) ∈ {1, . . . , N}s
are mixed in {1, . . . , N},

for all n1, . . . , ns ∈ N

⎫
⎬

⎭ , (6.2.3)

by (6.2.1)′. In this section, to characterize the free distribution ρ of (6.2.1), we
investigate the free-distributional data (6.2.2) and (6.2.3).
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The free-distributional data (6.2.2) of the free distribution ρ of (6.2.1) are
characterized by the semicircularity. i.e.,

ϕ
(
xnl

) = ωncn
2
, for all n ∈ N, (6.2.4)

for all l = 1, . . . , N.

Proof The formula (6.2.4) is proven by (3.4). ��
Now, we concentrate on studying the free-distributional data (6.2.3) of the free

distribution ρ of (6.2.1). For any s ∈ N \ {1}, we fix a mixed s-tuple Is ,

Is
denote= (i1, . . . , is) ∈ {1, . . . , N}s , (6.2.5)

in {1,. . . , N} in the sense that there exists at least one entry ik0 in Is such that ik0 	=
il, for some l 	= k0 in {1, . . . , s}. For example,

I8 = (1, 1, 3, 2, 3, 2, 2, 1),

in {1, 2, 3, 4, 5}8.
From the sequence Is of (6.2.5), define a set

Is ] = {i1, i2, . . . , is}, (6.2.6)

without considering repetitions on identical entries. For instance, if I8 is as above,

[I8] = {i1, i2, . . . , i8},

with i1 = i2 = i8 = 1, i4 = i6 = i7 = 2, and i3 = i5 = 3.
Then from the set [Is ] of (6.2.6), one can define a unique “noncrossing” partition

π(Is) of the lattice NC ([Is ]) of [23], such that (i) starting from the very first entry
i1, construct the largest block V1 of π(Is), satisfying

V1 =
(
ij1 = i1, ij2, . . . , ij|V1|

)
∈ π(Is), (6.2.7)

⇐⇒

ij1 = ij2 = . . . = ij|V1| = i1,

and do this process for the very next entry other than ij1, . . . , ij|V1| , step-by-step,
until they end; (ii) such a partition π(Is) of (i) has to be “maximal” in NC ([Is ]) ,
satisfying the processes of (i) (e.g., [23]). For example, if I8 and [I8] are as above,
then there exists a noncrossing partition

π(I8) = {(i1, i2, i8), (i3, i5), (i4), (i6, i7), (i5)}
= {(1, 1, 1), (3, 3), (2), (2, 2), (3)},
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in NC([I8]), satisfying the above conditions (i) and (ii). Note that, even though i4
= i6 = i7 = 2, we have to take the separated blocks (i4) and (i6, i7) (after taking
(i3, i5)), to avoid “crossing.”

Now, suppose π(Is) ∈ NC ([Is]) is the noncrossing partition (6.2.7) over the set
[Is] of (6.2.6), and let

π(Is) = {V1, . . . , Vt },

where t ≤ s and Vk ∈ π(Is) are the blocks of (ii), satisfying (i), for k = 1, . . . , t .
Then the partition π(Is) is regarded as the joint partition,

π(Is) = 1|V1| ∨ 1|V2| ∨ . . .∨ 1|Vt |, (6.2.8)

where 1|Vk | are the maximal elements of NC (Vk), for all k = 1, . . . , t, by regarding
blocks Vk as independent sets.

Let Is be in the sense of (6.2.5), and let xi1, . . . , xis be the corresponding
semicircular elements of (B, ϕ) induced by Is . Define a free random variable X[Is ]
by

X[Is ] def=
s

%
l=1

xil ∈ (B, ϕ). (6.2.9)

If X[Is ] is in the sense of (6.2.9), then

ϕ (X[Is ]) =
∑

π∈NC([Is ])
kπ

by the Möbius inversion, where

kπ = %
V∈πkV ,

with kV = k|V |
(
xjl1

, . . . , xjl|V |

)
, whenever V = (

jl1, . . . , jl|V |
)
, where k•(. . .) is

the free cumulant on B in terms of ϕ, and hence, it goes to

=
∑

π∈NC([Is ]), π≤π(Is)
kπ

by the mutual-freeness of x1, . . . , xN in (B, ϕ)

=
∑

(θ1,...,θt )∈NC(V1)×...×NC(Vt )
kθ1∨...∨θt
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by (6.2.8)

=
∑

(θ1,...,θt )∈NC2(V1)×...×NC2(Vt )

kθ1∨...∨θt (6.2.10)

by the semicircularity (3.2) of xi1, . . . , xis in (A, ϕ), where NC2(X) is the subset
of the noncrossing-partition lattice NC(X),

NC2(X) = {π ∈ NC(X) : ∀V ∈ π, |V | = 2}, (6.2.11)

over countable finite sets X.
By (6.2.10) and (6.2.11), if there is at least one k0 ∈ {1, . . . , t}, such that

∣∣Vk0

∣∣ is
odd in N, then

ϕ (X[Is ]) = 0,

by (3.2), where X[Is ] is the free random variable (6.2.9) of (B, ϕ).
So, the formula (6.2.10) is non-zero, only if

|Vk| ∈ 2N, for all k = 1, . . . , t, (6.2.12)

where 2N = {2n : n ∈ N}.
Moreover, if the condition (6.2.12) is satisfied, then the summands kθ1∨...∨θt

of (6.2.10) satisfy that

kθ1∨...∨θt = %
V∈θ1∨...∨θt

kV = %
V∈θ1∨...∨θt

(
t

%
i=1

1#(θi)
)
= 1, (6.2.13)

by the semicircularity (3.2), where #(θi) are the number of blocks of θi, for all i =
1, . . . , t . Therefore, if the condition (6.2.12) holds, then

ϕ (X[Is ]) = ∑
(θ1,...,θt )∈NC2([V1])×...×NC2([Vt ])

1

= |NC2 (V1)× . . .×NC2 (Vt )| ,
(6.2.14)

by (6.2.10) and (6.2.13), where |Y | are the cardinalities of sets Y.

Let Is be an s-tuple (6.2.5), and let X[Is ] =
s

%
l=1

xil be the corresponding free

random variable (6.2.9) of (B, ϕ). If

π(Is ) = 1|V1| ∨ . . . ∨ 1|Vt |,
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in the sense of (6.2.7) and (6.2.8), then

ϕ (X[Is ]) =

⎧
⎪⎪⎨

⎪⎪⎩

t

%
i=1

c |Vi |
2

if |Vk| ∈ 2N,
for all k = 1, . . . , t

0 otherwise.

(6.2.15)

Proof Under hypothesis, by (6.2.14)

ϕ (X[Is ])

=

⎧
⎪⎪⎨

⎪⎪⎩

|NC2 (V1)× . . .× NC2 (Vt )| if |Vk| ∈ 2N,
for all k = 1, . . . , t

0 otherwise.

Recall that, for every countable set X, with |X| ∈ 2N, the subset

NC2 (X) = {θ ∈ NC(X) : ∀V ∈ θ, |V | = 2}

is equipotent (or bijective) to the noncrossing-partition lattice NC
( |X|

2

)
over {1,

. . . , |X|2 } (e.g., [8] and [11]). i.e., if |Vk| ∈ 2N, then

|NC2 (Vk)| =
∣∣∣∣NC

( |Vk|
2

)∣∣∣∣ , (6.2.16)

for all k = 1, . . . , t . So, we have

ϕ (X[Is ])

=

⎧
⎪⎪⎨

⎪⎪⎩

∣∣∣NC
( |V1|

2

)
× . . .× NC

( |Vt |
2

)∣∣∣ if |Vk| ∈ 2N,
for all k = 1, . . . , t

0 otherwise,

=

⎧
⎪⎪⎨

⎪⎪⎩

t

%
l=1

c |Vl |
2

if |Vl| ∈ 2N,
for all l = 1, . . . , t

0 otherwise,

(6.2.17)

by (6.2.16), because |NC(X)| = c|X|, for all finite sets X (e.g., [10, 11, 19, 23]).
Therefore, the formula (6.2.15) holds by (6.2.17). ��
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6.3 Free-Distributional Data on LQ

Let LQ be our semicircular filterization (6.1.5) generated by the free semicircular
family S of (6.1.3). By the structure theorem (6.1.7), all free random variables of
LQ are the limits of linear combinations of free reduced words

W = N

%
l=1

U
nl
jl
, for Ujl ∈ S,∀l = 1, . . . , N, (6.3.1)

in S, for all N ∈ N, where n1, . . . , nN ∈ N, and the N-tuple (j1, . . . , jN) is an
alternating in Z in the sense that:

j1 	= j2, j2 	= j3, . . . , jN−1 	= jN.

Let W be a free reduced word (6.3.1) of LQ in S.
(6.3.2) If N = 1 in (6.3.1), then τ (W) is characterized by (6.2.4).
(6.3.3) If N > 1 in (6.3.1), then τ (W) is determined by (6.2.15).

Proof The statement (6.3.2) (or (6.3.3)) is proven by (6.2.4) (resp., (6.2.15)), by the
universality (3.4) (or (3.2)) of the semicircular law. ��

The above theorem fully characterizes the free-distributional data on the semicir-
cular filterization LQ, by (6.3.2) and (6.3.3).

7 Shifts on Z and Integer-Shifts on LQ

In this section, let (A, ψ) be the fixed C∗-probability space containing a family Q
= {qj }j∈Z of mutually-orthogonal projections qj ’s having

ψ(qj ) ∈ R×, for all j ∈ Z,

and let LQ be the semicircular filterization (6.1.6).

7.1 (±)-Shifts on Z

Define functions h+ and h− on Z by

h+(j) = j + 1, (7.1.1)
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and

h−(j) = j − 1,

for all j ∈ Z. By the definition (7.1.1), these two functions h± are well-defined
bijections, which are functional inverses from each other on Z.

For these bijections h± of (7.1.1), define the bijections h(n)± by

h
(n)
± = h± ◦ h± ◦ · · · ◦ h±︸ ︷︷ ︸

n-times

, on Z (7.1.2)

for all n ∈ N, with identities, h(1)± = h±. It is not difficult to check that

h
(n)
± (j) = j ± n, for all j ∈ Z,

for all n ∈ N. We call the bijections h(n)± , the n-(±)-shifts on Z.

7.2 Integer-Shifts on LQ

Let LQ be the semicircular filterization, and let h(n)± be n-(±)-shifts of (7.1.2) on Z,

for all n ∈ N. Define a “multiplicative” bounded linear transformations β± on LQ
by morphisms satisfying that:

β±
(
Uj

) = Uh±(j), (7.2.1)

for all Uj ∈ S, where S is the free semicircular family (6.1.4).

Let Y = N

%
l=1

U
nl
jl
∈ LQ, for Uj1 , . . . , UjN ∈ S, and n1, . . . , nN ∈ N, for N ∈ N.

Then

β± (Y ) =
N

%
l=1

U
nl
jl±1. (7.2.2)

Proof Let Y be given as above in LQ. Then, by the multiplicativity of the linear
transformations β± of (7.2.1), one has that

β±(Y ) =
N

%
l=1

β±
(
U
nl
jl

)
= N

%
l=1

(
β±

(
Ujl

))nl = N

%
l=1

U
nl
h±(jl ).

Therefore, the formula (7.2.2) holds. ��
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By (7.2.2), the free-reduced-word-ness on LQ in the generator set S is preserved
by the actions of β±. Indeed, if an arbitrary N-tuple (j1, . . . , jN) is alternating in
Z, then the N-tuples (h±(j1), . . . , h±(jN)) are alternating in Z, too, for all N ∈ N.

The linear morphisms β± of (7.2.1) are ∗-isomorphisms on LQ.

Proof By (6.1.7), all elements of the semicircular filterization LQ are the limits of
linear combinations of free reduced words in the free semicircular family S. So,
let’s focus on free reduced words of LQ in S.

Let (j1, . . . , jN) be an alternating N-tuple in Z for N ∈ N, and

Y = N

%
l=1

U
nl
jl
, for n1, . . . , nN ∈ N.

By the alternating-ness of (j1, . . . , jN), the above operator Y is a free reduced
word with its length-N in LQ by (6.1.7). So, by (7.2.2),

β±(Y ) =
N

%
l=1

U
nl
h±(jl), (7.2.3)

are free reduced words with their lengths-N in LQ too. i.e., these multiplicative
linear transformations β± of (7.2.1) are generator-preserving by (6.1.7), and hence,
they are bounded and bijective on LQ.

Consider now that if Y is as above, then

β±(Y ∗) = β±
(

N

%
l=1

U
nN−l+1
jN−l+1

)

by the self-adjointness of Uj1, . . . , UjN

= N

%
l=1

U
nN−l+1
h±(jN−l+1)

by (7.2.2)

=
(

N

%
l=1

U
nl
h±(jl)

)∗
= (β±(Y ))∗ . (7.2.4)

By (6.1.7) and (7.2.4),

β±(S∗) = (β±(S))∗ , for all S ∈ LQ.

Thus, the bijective bounded multiplicative linear transformations β± of (7.2.1)
are adjoint-preserving. i.e., they are well-defined ∗-isomorphisms on LQ. ��

The above lemma shows that the (±)-shifts h± of (7.1.1) on Z induce the
corresponding ∗-isomorphisms β± of (7.2.2) on LQ.
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The ∗-isomorphisms β± of (7.2.1) are called the (±)-integer-shifts on LQ.

Let β± be (±)-integer-shifts on LQ. Then one can define the iterated product (or
composition) βn± of them by

βn± = β±β±β± · · · β±︸ ︷︷ ︸
n-times

onLQ, (7.2.5)

for all n ∈ N0, with axiomatization:

β0± = 1LQ, the identity ∗ -isomorphism on LQ.

We call βn±, the n-(±)-integer-shifts on LQ, for all n ∈ N0. Since β± are ∗-
isomorphisms on LQ, the n-(±)-integer-shifts βn± of (7.2.5) are ∗-isomorphisms on
LQ too, for all n ∈ N0.

It is not difficult to check that

βn+βn− = 1LQ = βn−βn+onLQ, (7.2.6)

i.e.,

(
βne

)−1 = βn−e,

for all e ∈ {±}, and n ∈ N0, where f−1 mean the inverses of f, where

−e =
{− if e = +
+ if e = −.

If βn1
e1 , β

n2
e2 are in the sense of (7.2.5), for e1, e2 ∈ {±}, and n1, n2 ∈ N0, then

βn1
e1
βn2
e2
= β

|e1n1e2n2|
sgn(e1n1e2n2)

on LQ, (7.2.7)

where

en =
{+n if e = +
−n if e = −,

for all n ∈ N0, and where |.| is the absolute value on Z, and sgn is the sign map on
Z, defined by

sgn(j) =
{+ if j ≥ 0
− if j < 0,

for all j ∈ Z.
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By (7.2.7), one can check that

(
βn1
e1
βn2
e2

)
βn3
e3
= β

|e1n1e2n2|
sgn(e1n1e2n2)

βn3
e3

= β
|e1n1e2n2e3n3|
sgn(e1n1e2n2e3n3)

= βn1
e1
β
|e2n2e3n3|
sgn(e2n2e3n3)

= βn1
e1

(
βn2
e2
βn3
e3

)
, (7.2.8)

on LQ, for el ∈ {±}, and nl ∈ N0, for all l = 1, 2, 3.
Now, consider the set B of all n-(±)-shifts βn± on LQ, i.e.,

B = {βn±}n∈N0 . (7.2.9)

Let Aut(LQ) be the automorphism group of LQ,

Aut
(
LQ

) =
⎛

⎝

⎧
⎨

⎩α : LQ → LQ

∣∣∣∣∣∣

α are
∗-isomorphisms

on LQ

⎫
⎬

⎭ , ·
⎞

⎠ , (7.2.10)

consisting of all ∗-isomorphisms on LQ, where the operation (·) is the product (or
composition) of ∗-isomorphisms.

Let B be the subset (7.2.9) of the automorphism group Aut(LQ) of (7.2.10).
Then

B is a subgroup of Aut(LQ). (7.2.11)

Proof Let B be in the sense of (7.2.9). Then, by (7.2.7), the operation (·) is closed
on B. So, the algebraic pair B = (B, ·) is well-constructed as a sub-structure of
Aut(LQ). By (7.2.8), this operation is associative on B.

Since β0+ = 1LQ = β0− in B, and since

βne · 1LQ = βne = 1LQ · βne onLQ,

by (7.2.8), for all e ∈ {±}, and n ∈ N0, the set B contains its (·)-identity 1LQ .
Finally, by (7.2.6), all elements βn± ∈ B have their unique (·)-inverses βn∓ ∈ B.

So, the subset B forms a group in Aut(LQ). ��
By (7.2.11), the system B of (7.2.9) is a group.
Let B be the subgroup (7.2.9) of the automorphism group Aut(LQ). Then

B
Group= (Z,+), (7.2.12)

where “
Group= ” means “being group-isomorphic,” where (Z, +) is the infinite cyclic

abelian group.
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Proof Define now a function � : Z→B by

� : j ∈ Z $−→ β
|j |
sgn(j) ∈ B.− (7.2.13)

Then it is not difficult to check this function� of (7.2.13) is a group-isomorphism
from Z onto B. Therefore, the relation (7.2.12) holds. ��

The above theorem characterizes the group-structure of B by (7.2.12).
We call the group B, the integer-shift group on LQ.

7.3 Free Distributions on LQ Affected byB

Let B be the integer-shift group (7.2.9) acting on the semicircular filterization
LQ. In this section, we consider how our ∗-isomorphisms βn± ∈ B affect the free
probability on the semicircular filterization LQ.

Take an arbitrary free reduced word Y

Y = N

%
l=1

U
nl
jl
ofLQ (7.3.1)

in the free semicircular family S, for N ∈ N, where the N-tuple (j1, . . . , jN ) is
alternating in Z, and n1, . . . , nN ∈ N.

Let Y be a free reduced word (7.3.1) of LQ in S. Then

τ
(
βke (Y )

)
= τ (Y ), for all βke ∈ B. (7.3.2)

Proof First assume that N = 1, and hence, Y = U
n1
j1

in LQ. Then, by the
semicircularity of Uj1, Uj1ek ∈ S in LQ, one has that

τ
(
βke (Y )

)
= τ

(
U
n1
jek

)
= ωn1c n1

2
= τ

(
U
n1
j1

)
, (7.3.3)

for all βke ∈B. Therefore, the statement (7.3.2) holds.

Assume now that N > 1 in N. Then βke (Y ) =
N

%
l=1

U
nk
jlek

is a free reduced word

with the same length-N in LQ, for all βke ∈B. Now, let

Is =
⎛
⎜⎝j1, . . . , j1︸ ︷︷ ︸

n1-times

, j2, . . . , j2︸ ︷︷ ︸
n2-times

, . . . , jN, . . . , jN︸ ︷︷ ︸
nN -times

⎞
⎟⎠
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be the s-tuple in the sense of (6.2.5), satisfying

Y = X[Is ]inLQ, for some s ≥ N,

where X[Is ] is in the sense of (6.2.9).
Similarly, let

Is ′ =
⎛

⎜⎝j1ek, . . . , j1ek︸ ︷︷ ︸
n1-times

, j2ek, . . . , j2ek︸ ︷︷ ︸
n2-times

, . . . , jNek, . . . , jNek︸ ︷︷ ︸
nN -times

⎞

⎟⎠

be the s′-tuple of (6.2.5), satisfying

βke (Y ) = X[Is ′ ] in LQ,

for βke ∈B, where X[Is ′ ] is in the sense of (6.2.9).
Since Y and βke (Y ) are the free reduced words with same lengths-N , one has

s = s′inN, andπ(Is) = π(Is ′)inNC ([Is ]) ,
where π(Is) and π(Is ′) are the noncrossing partitions of (6.2.7).

By the semicircularity of Uj1, . . . , UjN , Uj1ek, . . . , UjNek ∈ S in LQ, we have

τ
(
βke (Y )

)
= τ (X[Is ′ ]) = τ (X[Is ]) = τ (Y ) ,

by (6.2.15), for all βke ∈B. So, the relation (7.3.2) holds. ��
The above theorem shows that B preserves the free probability on LQ. i.e.,

τ
(
βke (T )

)
= τ (T ) , for all T ∈ LQ,

by (6.1.7) and (6.3.2), for all βke ∈B.

8 Semicircular Elements Induced by Multi Projections

In this section, we show that if there are N-many, mutually orthogonal projections
in an arbitrary C∗-probability space, then there exists a corresponding free semicir-
cular family S(N) of mutually free, N-many semicircular elements, induced by the
projections in a certain Banach ∗-probability space L(N)Q , for any

N ∈ N∞>1 = (N \ {1}) ∪ {∞}.

We consider how the integer-shift group B acts on
{
L
(N)
Q

}

N∈N∞>1

.
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8.1 A Free Semicircular Family S(N) Induced by N -many
Projections

Let (Ao, ψo) be a C∗-probability space containing its N-many, mutually orthogonal
projections

Qo = {qo1 , . . . , qoN } (8.1.1)

for N ∈ N∞>1, and let

Qo = C∗ (Qo) ⊆ Ao (8.1.2)

be the C∗-subalgebra of A generated by the family Qo of (8.1.1).
Suppose

ψo
(
qok

) ∈ R× in C,∀k = 1, . . . , N. (8.1.3)

Let Qo be the C∗-subalgebra (8.1.2) of Ao. Then

Qo
∗-iso= N⊕

l=1

(
C · qol

) ∗-iso= C⊕N . (8.1.4)

Proof By the mutual orthogonality on the generator set Qo of Qo, the structure
theorem (8.1.4) is shown. ��

Suppose there is a C∗-probability space (A, ψ) containing the family Q =
{qj }j∈Z of mutually orthogonal |Z|-many projections qj ’s, satisfying

ψ
(
qj

) ∈ R×inC, for all j ∈ Z. (8.1.5)

Assume further that there exist projections qj1, . . . , qjN ∈ Q, such that

ψ
(
qjl

) = ψo
(
qol

)
inR×, (8.1.6)

for all l = 1, . . . , N, where ψo is the linear functional on the C∗-algebra Ao,

satisfying (8.1.3). For convenience, without loss of generality, we re-index the
subfamily

{qj1, . . . , qjN }ofQ (8.1.7)

by

{q1, . . . , qN } in Q.
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Let Qo be the C∗-subalgebra (8.1.2) of a fixed C∗-probability space (Ao, ψo). If
there exists a C∗-probability space (A, ψ), satisfying (8.1.6) under the re-indexing
process (8.1.7), then there exists a Banach ∗-subalgebra

L
(N)
Q

∗-iso= N
�
l=1

C[{Ul}]

of the semicircular filterization LQ of (6.1.5).

Proof Let Q = C∗(Q) be the C∗-subalgebra (3.7) of the C∗-probability space (A,
ψ) satisfying (8.1.6), under (8.1.7). First, define a linear morphism

� : Qo → Q

by

�

(
N∑

l=1

tlq
o
l

)
def=

N∑

l=1

tlql +
∑

j∈Z \ {1,...,N}
0 · qj .

Then it is a well-defined injective (embedding) ∗-homomorphism from Qo into
Q, by (3.8) and (8.1.4). So, one can have the semicircular elements

Ul = l⊗ ql = l ⊗�
(
qol

) ∈ LQ, (8.1.8)

in the free semicircular family S generating LQ, for all l = 1, . . . , N.
By (8.1.8), one can define Banach ∗-subalgebra of LQ by

L
(N)
Q

def= C[{U1, . . . , UN }]
∗-iso= C

[{l ⊗�(qol ) : l = 1, . . . , N}]
∗-iso= N

�
l=1

C[{l⊗�(qoj )}] ∗-iso= N
�
l=1

C[{Ul}]
(8.1.9)

So, the family Qo of (8.1.1) induces a Banach ∗-probability space,

L
(N)
Q

denote=
(
L
(N)
Q , τ = τ |

L
(N)
Q

)
,

generated by the free semicircular family

S(N) = {Ul = l⊗�(qol )}Nl=1, (8.1.10)

as a free-probabilistic sub-structure of LQ. ��
As we briefly discussed in [8], whenever such a family Qo of (8.1.1) in a C∗-

probability space (Ao, ψo) is fixed, in fact, there does exists a C∗-probability space



224 I. Cho, and P. E. T. Jorgensen

(A, ψ), having a family Q of mutually orthogonal |Z|-many projections, such that
the condition (8.1.6) holds artificially-or-naturally. i.e., whenever a family Qo of
(8.1.1) is fixed in a C∗-probability space (Ao, ψo), there does exist a family Q of
mutually orthogonal |Z|-many projections in a C∗-probability space (Q, ψ) (or (A,
ψ) with Q ⊆ A), such that Q automatically satisfies (8.1.6) (and (8.1.7)).

By the above lemma and remark, one obtains the following theorem.
Let (Ao, ψo) be an arbitrary C∗-probability space containing mutually orthog-

onal N-many projections q1, . . . , qN, satisfying (8.1.3), for N ∈ N∞>1. Then there
exists a free semicircular family S(N) induced by {qk}Nk=1, generating a Banach

∗-probability space L
(N)
Q , as a free-probabilistic sub-structure of our semicircular

filterization LQ.

Proof The proof is done by (8.1.8), (8.1.9), (8.1.10), and Remark 8.1. ��

8.2 Restricted Integer-Shifts On L
(N)

Q

For an arbitrarily fixed N ∈ N∞>1, let

L
(N)
Q = (L

(N)
Q , τ ), with τ = τ |

L
(N)
Q

,

be the Banach ∗-probability space (8.1.9) generated by the free semicircular family
S(N) of (8.1.10).

Since the integer-shift group B of (7.2.9) acts on LQ, one can restrict the action

on LQ to that on L
(N)
Q .

Let βke ∈ B be an integer-shift on LQ, and let Ul ∈ S(N) be a semicircular

element, generating L
(N)
Q , for l = 1, . . . , N. Denote the restriction βke |L(N)Q

simply

by βke . If N <∞ in N∞>1, then

βke (Ul) =
{
Ulek if 1 ≤ lek ≤ N

O otherwise,
(8.2.1)

in L
(N)
Q , where O is the zero element of L(N)Q . Meanwhile, if N =∞ in N∞>1, then

βke (Ul) =
⎧
⎨

⎩

Ul+k if e = +
Ul−k if e = −, and l > k

O if e = −, and l ≤ k,

(8.2.2)

in L
(N)
Q .
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Proof First, assume that N <∞ in N∞>1, and fix l ∈ {1, . . . , N} arbitrarily, and let

βke be the restriction βke |L(N)Q

on L
(N)
Q , for βke ∈B. Then, for a semicircular elements

Ul ∈ S(N), generating L
(N)
Q , one has that: if e = +, then

βke (Ul) =
{
Ul+k if l + k ≤ N

O if l + k > N ;
(8.2.3)

and if e = −, then

βke (Ul) =
{
Ul−k if l − k ≥ 1
O if l − k < 1,

(8.2.4)

in L
(N)
Q . By (8.2.3) and (8.2.4),

βke (Ul) =
{
Ulek if 1 ≤ lek ≤ N

O otherwise,
(8.2.5)

in L
(N)
Q . Therefore, the formula (8.2.1) holds by (8.2.5).

Now, assume that N =∞ in N∞>1. Then, the restriction βke on L
(N)
Q satisfies that:

if e = +, then

βke (Ul) = Ul+k; (8.2.6)

if e = −, then

βke (Ul) =
{
Ul−k if l − k ≥ 1
O if l − k < 1,

(8.2.7)

in L
(N)
Q . Therefore, the formula (8.2.2) is shown by (8.2.6) and (8.2.7). ��

The above lemma not only shows how the restricted action of the integer-shift
group B on L

(N)
Q acts on the free generator set S(N) of L(N)Q , but also demonstrates

that the restrictions are no longer ∗-isomorphisms on L
(N)
Q .

Let B be an arbitrary topological ∗-algebra. Then the (∗-)homomorphism
semigroup Hom(B) is defined to be the semigroup (under product)

Hom(B) = {f : f isa ∗ -homomorphism on B}.

Since the zero map on B is contained in Hom(B), it cannot be a group (under
product), however, it forms a well-defined semigroup (or a monoid containing its
identity, the identity map on B). Of course, Aut(B) is a subset of Hom(B).
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Notation From below, we denote the family of restricted integer-shifts on L
(N)
Q by

B(N), i.e.,

B(N) =
{
βke |L(N)Q

∣∣∣∣
βke ∈ B, with
e ∈ {±}, k ∈ N0

}
. (8.2.8)

Also, for convenience, we denote the restrictions βke |L(N)Q

∈B(N) by βke . �

Let B(N) be the set (8.2.8) of restricted integer-shifts on L
(N)
Q . Then

B(N) ⊆ Hom
(
L
(N)
Q

)
. (8.2.9)

Proof First, assume that N < 1 in N∞>1. If βke ∈B(N) satisfies

1ek < 1, orNek > N, (8.2.10)

then such a restricted integer-shift βke satisfies that

βke (Ul) = O in L
(N)
Q , for all l = 1, . . . , N.

So, if (8.2.10) holds, then βke is identified with the zero ∗-homomorphism 0(N)Q

on L
(N)
Q , i.e.,

βke (T ) = 0(N)Q (T ) = O in L
(N)
Q ,

for all T ∈ L
(N)
Q , by (8.1.9), (8.2.1), (8.2.8), and (8.2.10).

And hence, all elements βke of B(N) satisfying (8.2.10) satisfy

βke = 0(N)Q ∈ Hom
(
L
(N)
Q

)
. (8.2.11)

Suppose that βke ∈B(N) satisfies

1 ≤ lek ≤ N, for some l ∈ {1, . . . , N}. (8.2.12)

Then, by (8.2.1), the morphism βke is a well-defined non-zero ∗-homomorphism

on L
(N)
Q , i.e., if (8.2.12) holds, then

βke ∈ Hom(L
(N)
Q ). (8.2.13)



Multi Variable Semicircular Processes From ∗-Homomorphisms and Operators 227

So, if N <∞ in N∞>1, then

B(N) ⊆ Hom
(
L
(N)
Q

)
, (8.2.14)

by (8.2.11) and (8.2.13).
Assume now that N =∞ in N∞>1. If βk+ ∈B(N), then

βk+ ∈ Hom
(
L
(N)
Q

)
, (8.2.15)

by (8.2.2); if βk− ∈B(N), then

βk− ∈ Hom
(
L
(N)
Q

)
, (8.2.16)

again by (8.2.2). Therefore, if N =∞ in N∞>1, then

B(N) ⊆ Hom
(
L
(N)
Q

)
, (8.2.17)

by (8.2.15) and (8.2.16).
In conclusion, if B(N) is the family (8.2.8) of restricted integer-shifts on L

(N)
Q ,

then

B(N) ⊆ Hom
(
L
(N)
Q

)
,∀N ∈ N∞>1, (8.2.18)

by (8.2.14) and (8.2.17). i.e., the relation (8.2.9) holds, by (8.2.18). ��
The set-inclusion (8.2.9) shows that all restricted integer-shifts of B(N) are

well-defined ∗-homomorphisms on L
(N)
Q . However, by (8.2.11), they cannot be ∗-

isomorphisms on L
(N)
Q , in general.

By (8.2.11), if N < ∞ in N∞>1, then many restricted integer-shifts βke ∈ B(N)

become the zero ∗-homomorphism 0(N)Q of Hom(L
(N)
Q ). Consider the case where

N = ∞. If N = ∞, then all restricted integer-shifts βke ∈ B(∞) are non-zero in

Hom(L
(∞)
Q ). Indeed, since there are infinitely many generators U1, U2, U3, . . . of

L
(N)
Q , there always exists n ∈ N, such that βke (Un) 	= O in L

(N)
Q , by the Zorn’s

lemma. In conclusion,

0(N)Q ∈ B(N) ⇐⇒ N <∞inN∞>1.

We call B(N), the restricted(-integer)-shift family on L
(N)
Q .
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As we discussed above, the restricted-shift family B(N) is not a group in general.
Let B(N) be the restricted-shift family (8.2.8) on L

(N)
Q , for N ∈ N∞>1. Then

B(N) is a sub-semigroup of Hom
(
L
(N)
Q

)
. (8.2.19)

Proof Let βk1
e1 , β

k2
e2 ∈B(N). Then

βk1
e1
βk2
e2
=

{
β
|e1k1e2k2|
sgn(e1k1e2k2)

or

0(N)Q , (if N <∞)
(8.2.20)

in B(N). So, the pair
(
B(N), ·) forms a well-defined algebraic structure.

Observe that
(
βk1
e1
βk2
e2

)
βk3
e3
= β

|e1k1e2k2e3k3|
sgn(e1k1e2k2e3k3)

= βk1
e1

(
βk2
e2
βk3
e3

)
,

by (8.2.20), for all βkiei ∈ B(N), for all i = 1, 2, 3. Therefore, B(N) is a sub-

semigroup of Hom
(
L
(N)
Q

)
. ��

Since B(N) contains the identity map 1(N)Q ∈ Hom
(
L
(N)
Q

)
, it actually forms a

monoid by (8.2.19).

9 Restricted-Shift Families B(N) Acting on L
(N)

Q

In this section, we fix N ∈ N∞>1, and consider how the restricted-shift family B(N)

deform the original free-distributional data on the Banach ∗-probability space L
(N)
Q

of (8.1.9), for N ∈ N∞>1.
Let βke ∈B(N) be a restricted shift, and letUl ∈ S(N) be a generating semicircular

element of L(N)Q , for l ∈ {1, . . . , N}. Then the free random variable Wl = βke (Ul) ∈
L
(N)
Q is either a semicircular element in S(N), or the zero free random variable O of

L
(N)
Q .

Proof Under hypothesis,

Wl =
{
Ulek ∈ S(N) if 1 ≤ lek ≤ N

O, otherwise,

in L
(N)
Q , by (8.2.1) and (8.2.2). So, if Wl = Ulek ∈ S(N), then it is semicircular,

while, if Wl = O, then it follows the zero free distribution in L
(N)
Q . ��
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The above lemma characterizes how the semigroup-action of the restricted-shift
family B(N) affects the free probability on L

(N)
Q . Indeed, one has the following

theorem.
Let Ul1, . . . , Uls ∈ S(N) in L

(N)
Q , for

Is = (l1, . . . , ls ) ∈ {1, . . . , N}s ,

for s ∈ N, without considering repetition, and let βke ∈B(N). Define a free random
variable X[Is ] by

X[Is ] =
s

%
l=1

Uls ∈ L
(N)
Q . (9.0.1)

Then one has either

τ
(
βke (X[Is ])

)
= τ (X[Is ]) , satisfying (6.2.15) (9.0.2)

or

τ
(
βke (X[Is ])

)
= 0.

Proof Let X[Is ] ∈ L
(N)
Q be in the sense of (9.0.1). Then it is a free (reduced, or

non-reduced) word in S(N), by (8.1.9).
Assume first that there exists at least one entry lp in the s-tuple Is such that

βke
(
Ulp

) = Ulpek /∈ S(N),⇐⇒ βke
(
Ulp

) = OinL
(N)
Q .

Then βke (X[Is ]) = O, because it contains a factor βke
(
U
np
lp

)
, for some np ∈ N,

by (8.2.1), and hence,

τ
(
βke (X[Is ])

)
= 0.

Meanwhile, if 1 ≤ li + k ≤ N, for all i = 1, . . . , s, i.e., if

βke
(
Uli

) = Uli+k 	= OinS(N) ⊂ L
(N)
Q ,∀i = 1, . . . , s,

then

τ
(
βke (X[Is ])

)
= τ (X[Is ]) ,

by Lemma 9.1. So, the formula (9.0.2) holds. ��
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9.1 Banach-Space Operators on L
(N)

Q
Generated byB(N)

Let B(N) be the restricted-shift family on L
(N)
Q , for a fixed N ∈ N∞>1. Since all

restricted-shifts βke are ∗-homomorphisms on L
(N)
Q by (8.2.19), they are bounded

(multiplicative) linear transformations on L
(N)
Q , and hence, they are understood as

Banach-space operators on the Banach space L(N)Q . i.e.,

B(N) ⊂ Hom(L
(N)
Q ) ⊆ B(L

(N)
Q ), (9.1.1)

where B
(
L
(N)
Q

)
is the operator space of [12].

By (9.1.1), we now regard the restricted-shift family B(N) as a subset of the

operator space B
(
L
(N)
Q

)
. Define a (closed) subspace AN of B

(
L
(N)
Q

)
by the

topological vector space spanned by the semigroup B(N),

AN
def= spanC

(
B(N)

)‖.‖
, (9.1.2)

where Z
‖.‖

are the operator-norm closures of subsets Z of B
(
L
(N)
Q

)
.

Note that, since B(N) is a semigroup embedded in B
(
L
(N)
Q

)
, in fact, the subspace

AN of (9.1.2) is identified with

AN = C
[
B(N)

]‖.‖
,

in B
(
L
(N)
Q

)
. i.e., the subspace AN of (9.1.2) is a Banach algebra in B

(
L
(N)
Q

)
.

Define now a unary operation (∗) on AN by

⎛

⎝
∑

βke∈B(N)

tke β
k
e

⎞

⎠
∗
=

∑

βke∈B(N)

tke β
k−e, (9.1.3)

where

tke = tβke
∈ C, with their conjugates tke ,

for all e ∈ {±}, k ∈N0. Then it is not hard to check the operation (9.1.3) is an adjoint
on AN .

Every operator of AN is an adjointable operator in B
(
L
(N)
Q

)
.
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Proof Since the operation (∗) of (9.1.3) is an adjoint, the Banach algebra AN is

a Banach ∗-algebra in B
(
L
(N)
Q

)
. So, every Banach-space operator T ∈ AN is

adjointable (in the sense of [12]) with its adjoint T ∗ ∈ AN . ��
The Banach ∗-algebra AN of (9.1.2) is called the (restricted-)shift-operator

algebra on L
(N)
Q . All elements of AN are said to be (restricted-)shift operators on

L
(N)
Q .

9.2 The Shift Operators βk
e of AN

In this section, we concentrate on studying integer-shifts βke ∈ B(N), as shift

operators of AN acting on L
(N)
Q , for N ∈ L

(N)
Q .

9.2.1 Case where N < ∞

In this sub-section, we assume N < ∞ in N∞>1, and let AN be the shift-operator

algebra in B
(
L
(N)
Q

)
. Note that the shift operator βke ∈ AN satisfies

βk+ (Ul) ∈ {O,Ul,Ul+1, . . . , UN }, (9.2.1)

and

βk− (Ul) ∈ {O,U1, . . . , Ul−1, Ul},

in L
(N)
Q , by (8.2.1), for all k ∈ N0, and l = 1, . . . , N <∞.

By (9.2.1), if k > N in N0, then

βk+ (Ul) = O, for all l = 1, . . . , N,

and

βk− (Ul) = O, for all l = 1, . . . , N,

i.e., if k > N in N0, then

βke = 0(N)Q in B(N) ⊂ AN . (9.2.2)

as in (8.2.12).
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Let tβe ∈ AN be a shift operator for t ∈ C×, and e ∈ {±}. Then

(tβe)
k = 0(N)Q in AN ⇐⇒ k > NinN0. (9.2.3)

Proof (⇐) Let t ∈ C×, and tβe ∈ AN, a shift operator, where βe ∈B(N). Suppose
k > N in N0. Then, by (9.2.2)

(tβe)
k = tkβke = tk0(N)Q = 0(N)Q .

(⇒) Assume now that (tβe)k = 0(N)Q in AN, for any arbitrary t ∈ C×. Then

(tβe)
k = tkβke = 0(N)Q ⇐⇒ βke = 0(N)Q in B(N) ⊂ AN .

So, we focus on βke . If k ≤ N in N0, then

βke (Ul) 	= O,f orsomel ∈ {1, . . . , N},

by (9.2.1), implying that

βke 	= 0(N)Q ∈ B(N), in AN .

Therefore, if βke = 0(N)Q in AN, then k > N in N0. ��
The above theorem shows that, if N < ∞ in N∞>1, then the sequence (tβne )

∞
n=1

converges to 0(N)Q ∈ AN , under the operator-norm topology for AN (inherited from

that for B
(
L
(N)
Q

)
), as n→∞. i.e., the shift operators tβe ∈AN (for all t ∈ C×) act

like nilpotent operators (e.g., [14]), whenever N <∞.

9.2.2 Case where N = ∞

In this sub-section, let N = ∞ in N∞>1, and let A∞ be the shift-operator algebra

acting on L
(∞)
Q . One can get that

βk+ (Ul) ∈ {Ul,Ul+1, Ul+2, Ul+3, . . .}, (9.2.4)

and

βk−(Ul) ∈ {O,U1, . . . , Ul},

by (8.2.2), for all k ∈ N0, for all l ∈ N.
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Let N =∞ in N∞>1, and βe ∈ A∞, a shift operator for e ∈ {±}. Then

(βe)
n 	= 0(∞)

Q in A∞, (9.2.5)

for all n ∈ N0. Meanwhile, if e = −, then

lim
n→∞ (β−)n (Ul) = O in L

(∞)
Q ,

for Ul ∈ S(∞) in L
(∞)
Q , for all l ∈ N, where the limit “ lim

n→∞” is taken under the

operator-norm topology for A∞. i.e.,

(β−)n
strong−→ 0(∞)

Q inA∞, as n→∞, (9.2.6)

where “
strong−→” means “being strongly convergent to.”

Proof For all n ∈ N0, we have that

βne

(
S(∞)

)
� {O},

by (9.2.4), since there are infinitely many generating elements Ul ∈ S(∞) of A∞. It
implies that

βne 	= 0(∞)
Q inA∞, for all n ∈ N0,

because B(∞) generates A∞. Therefore, the relation (9.2.5) holds.
Now, fix l ∈ N, and take Ul ∈ S(∞) in L

(∞)
Q , and let β− ∈ A∞ be the (−)-

restricted-shift of B(∞). Then

lim
n→∞ (β−)n (Ul) = lim

n→∞β
n− (Ul)

= lim
n→∞Ul−n = O,

(9.2.7)

in L
(∞)
Q , by (9.2.4), where “ lim

n→∞” is taken under the operator-norm topology for

A∞. It implies that

lim
n→∞β

n−(W) = O in L
(∞)
Q , (9.2.8)
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for all free reduced words W of L
(∞)
Q in the generating free semicircular family

S(∞), by (9.2.7). So,

lim
n→∞β

n− (T ) = O in L
(∞)
Q ,∀T ∈ L

(∞)
Q , (9.2.9)

by (9.2.8). So, the strong-convergence (9.2.6) holds by (9.2.9). ��
The above theorem shows that the shift operators βne ∈B(∞) of A∞ satisfy

βne 	= 0(∞)
Q in A∞,∀e ∈ {±} and n ∈ N0,

but

βn−
strong−→ 0(∞)

Q in A∞, as n→∞,

by (9.2.5) and (9.2.6).
Let t ∈ D× in C, and take a shift operator tβe ∈ A∞, for e ∈ {±}, where

D× = {z ∈ C : 0 < |z| ≤ 1}.

Then

(tβe)
n 	= 0(∞)

Q in A∞, for all n ∈ N0, (9.2.10)

while

(tβ−)n
strong−→ 0(∞)

Q in A∞, as n→∞.

Proof The proof of (9.2.10) is done by (9.2.6). ��
Actually, the strong-convergence (9.2.10) is refined as follows; under the same

hypothesis with the above corollary,

(tβ−)n −→ 0(∞)
Q in A∞, as n→∞,

if t ∈ D× \ T in C, where T is the unit circle of C, and

(tβ−)n
strong−→ 0(∞)

Q in A∞, as n→∞,

if t ∈ T ⊂ D× in C, where “→” means “being convergent to, under operator-norm-
topology for A∞,” which imply (9.2.10), anyway.
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9.2.3 Free Probability on L
(N)

Q
Under the Action of βe

Here, we consider how the shift operators tβe ∈ AN, for t ∈ C, affect the free
probability on L

(N)
Q , for an arbitrarily fixed N ∈ N∞>1.

Let N <∞ in N∞>1, and let tβe ∈ AN be a shift operator for t ∈ C×, and βe ∈
B(N). Then

τ
((
(tβe)

k (Ul)

)n) =
{
ωnt

knc n
2

if 1 ≤ lek ≤ N

0 otherwise,
(9.2.11)

for all k ∈ N0, n ∈ N.

Proof By (9.2.3), (tβe)k = 0(N)Q in AN, whenever k > N in N0. So, if k > N, then

τ
((
tkβke (Ul)

)n) = τ
((

0(N)Q (Ul)
)n)

= τ (On) = 0,
(9.2.12)

for all n ∈ N.

Suppose now that: if k ≤ N in N0, then

τ
((
tkβke (Ul)

)n) = tknτ
((
βke (Ul)

)n)

=
{
tknτ

(
Un
lek

)
if 1 ≤ lek ≤ N

tknτ (On) otherwise

=
{
ωnt

knc n
2

if 1 ≤ lek ≤ N

0 otherwise,
(9.2.13)

for all n ∈ N. So, the formula (9.2.11) holds by (9.2.12) and (9.2.13). ��
By (9.2.11), the following corollary is obtained.
Under the same hypothesis with the above theorem, if

t ∈ R× and k ∈ N, and 1 ≤ lek ≤ N,

then the element (tβe)k (Ul) is t2k-semicircular in L
(N)
Q , for all l = 1, . . . , N.

Proof By assumption, if t ∈ R×, then

(tβe)
k (Ul) = tkUlek,
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and

(
(tβe)

k (Ul)
)∗ = tkU

∗
lek = tkUlek,

in L
(N)
Q . i.e., it is self-adjoint in L

(N)
Q .

So, (tβe)k (Ul) is t2k-semicircular in L
(N)
Q , by (3.3) and (9.2.11). ��

The above theorem and corollary illustrate that how the action of shift operators
tβe ∈ A N deform the semicircular law on L

(N)
Q , whenever N <∞ in N∞> .

Let N =∞, and tβe ∈ A∞, for t ∈ D× in C, and βe ∈B(∞). If Ul ∈ S(∞) is a
semicircular element of L(∞)

Q , then

τ
((
(tβe)

k(Ul)
)n) =

⎧
⎪⎨

⎪⎩

0 if e = − and l ≤ k

ωnt
knc n

2
otherwise,

(9.2.14)

for all n ∈ N. In particular, if

B−t,l
def=

{
(tβ−)k (Ul) ∈ L

(∞)
Q : k ∈ N

}
, (9.2.15)

in L
(∞)
Q , for t ∈ D× and l ∈ N, then the asymptotic free distribution of this family

B−t,l is the zero free distribution in L
(∞)
Q , as k→∞

Proof Under hypothesis, one has that

τ
((
(tβe)

k(Ul)
)n) = τ

(
(tkUlek)

n
)
= τ

(
tknUn

lek

)

=

⎧
⎪⎨

⎪⎩

ωnt
knc n

2
if e = +

ωnt
knc n

2
if e = − and l > k

0 if e = − and l ≤ k,

(9.2.16)

for all n ∈ N. So, the formula (9.2.14) holds by (9.2.16).
Recall that, under the same hypothesis,

(tβe)
k strong−→ 0(∞)

Q inA∞, as k →∞, (9.2.17)

by (9.2.10). Thus,

(tβ−)k (Ul)→ O in L
(∞)
Q , as k →∞,
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by (9.2.17), implying that, for all n ∈ N,

lim
k→∞τ

((
(tβ−)k (Ul)

)n) = τ

(
lim
k→∞

(
(tβ−)k (Ul)

)n)

= τ

(((
lim
k→∞ (tβ−)k

)
(Ul)

)n)
= τ

(
On

) = 0. (9.2.18)

It means that the family B−t,l of (9.2.15) has the asymptotic free distribution, the zero

free distribution in L
(∞)
Q , by (9.2.18). ��

The above theorem illustrates how our shift operators tβe ∈ A∞ deform the
semicircular law on L

(∞)
Q , for t ∈ D×.

9.3 The Shift Operators of AN

More general to Sect. 9.2, we now are interested in general forms of shift operators
T of AN,

T =
∑

βke∈B(N)

tke β
k
e , with tke = tβke

∈ C. (9.3.1)

9.3.1 Case where N < ∞

Assume first that N <∞ in N∞>1. Then, by (9.2.3), every shift operator T of (9.3.1)
can be re-expressed by

T =
N∑

s=1

t−sβs− + t01(N)Q +
N∑

k=1

tkβ
k+, (9.3.2)

for

t−N, . . . , t−1, t0, t1, . . . , tN ∈ C,

in the shift-operator algebra AN in B
(
L
(N)
Q

)
, where 1(N)Q = 1

L
(N)
Q

∈ AN, the

identity operator on L
(N)
Q .
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Then one can get that, for any Ul ∈ S(N) in L
(N)
Q , for l = 1, . . . , N,

T (Ul) =
N∑

s=1

t−sβs− (Ul)+ t0Ul +
N∑

k=1

tkβ
k+ (Ul)

=
N∑

s=1

t−sWl−s + t0Ul +
N∑

k=1

tkWl+k

satisfying

Wl+k =
{
Ul+k if 1 ≤ l + k ≤ N

O otherwise,

similarly,

Wl−s =
{
Us−l if 1 ≤ l − s ≤ N

O otherwise,

for all s, k = 1, . . . , N, for e ∈ {±}, and hence, it goes to

=
l−1∑

s=1

t−sUl−s + t0Ul +
N−l∑

k=1

tkUl+k. (9.3.3)

Let N <∞ in N∞>1, and let T ∈ AN be a shift operator (9.3.2). If Ul ∈ S(N) in

L
(N)
Q , for l ∈ {1, . . . , N}, then there exists a C-quantity zT ,l ∈ C, such that

T
(
Un
l

) = zT ,l

(
ωncn

2

)
,∀n ∈ N. (9.3.4)

In particular,

zT ,l =
l−1∑

s=1

ts− + t0+ +
N−l∑

k=1

tkinC. (9.3.5)

Proof Since N <∞ in N∞>1, for any semicircular element Ul ∈ S(N),

T
(
Un
l

) =
l−1∑

s=l
t−sUn

l−s + t0+Un
l +

N−l∑

k=1

tkU
n
l+k, (9.3.6)
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by (9.3.3), for all n ∈ N. Thus, one has that

τ
(
T
(
Un
l

)) =
l−1∑

s=l
t−sτ

(
Un
l−s

)+ t0+τ
(
Un
l

)+
N−l∑

k=1

tkτ
(
Un
l+k

)

=
l−1∑

s=1

t−s
(
ωncn

2

)
+ t0+

(
ωncn

2

)
+

N−l∑

k=1

tk

(
ωncn

2

)

by the semicircularity of Ul, Ul±k ∈ S(N) in L
(N)
Q

=
(
ωncn

2

)(
l−1∑

s=1

t−s + t0 +
N−l∑

k=1

tk

)
, (9.3.7)

for all n ∈ N. So, the formula (9.3.4) holds by (9.3.7). ��
The above theorem illustrates how shift operators T ∈ AN of (9.3.1) deform the

original free-distributional data on L
(N)
Q , whenever N <∞ in N∞>1, by (6.2.15).

9.3.2 Case where N = ∞

In this sub-section, let N = ∞ in N∞>1, and let T ∈ A∞ be a shift operator (9.3.1)

on L
(∞)
Q . Similar to (9.3.2),

T =
∞∑

s=1

t−sβs− + t01(∞)
Q +

∞∑

k=1

tkβ
k+, (9.3.8)

in A∞, for t−s , tk ∈ C, for all s, k ∈ N, by (9.2.4).
Fix a semicircular element Ul ∈ S(∞) of L(∞)

Q , for l ∈ N. Then

T (Ul) =
∞∑

s=1

t−sWl−s + t0Ul +
∞∑

k=1

tkUl+k

satisfying

Wl−s =
{
Ul−s if l − s ≥ 1
O otherwise,
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and hence, it goes to

=
l−1∑

s=1

t−sUl−s + t0Ul +
∞∑

k=1

tkUl+k, (9.3.9)

in L
(∞)
Q .

Let N =∞ in N∞>1, and T ∈ A∞, a shift operator (9.3.8) on L
(∞)
Q , and let Ul ∈

S(∞) in L
(∞)
Q , for l ∈ N. Then there exists zT ,l ∈ C, such that

τ
(
T
(
Un
l

)) = zT ,l

(
ωncn

2

)
,∀n ∈ N. (9.3.10)

In particular,

zT ,l =
l−1∑

s=1

ts− + t0+ +
∞∑

k=1

tk+, in C. (9.3.11)

Proof Under hypothesis, if Ul ∈ S(∞) in L
(∞)
Q , for l ∈ N, then

τ
(
T
(
Un
l

)) = τ

(
l−1∑

s=1

t−sUn
l−s + t0U

n
l +

∞∑

k=1

tkU
n
l+k

)

by (9.3.9)

=
l−1∑

s=1

t−s
(
ωncn

2

)
+ t0

(
ωncn

2

)
+

∞∑

k=1

tk

(
ωncn

2

)

by the semicircularity of Ul−s, Ul, Ul+k ∈ S(∞)

=
(
ωncn

2

)(
l−1∑

s=1

t−s + t0 +
∞∑

k=1

tk

)
, (9.3.12)

for all n ∈ N. So, the formula (9.3.10) holds by (9.3.12). ��
The above theorem illustrates how a shift operator T ∈ A∞ affects the free

probability on L
(∞)
Q , with help of (6.2.15).
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Representation Formulae
for the Determinant in a Neighborhood
of the Identity

Denis Constales and Alí Guzmán Adán

Abstract We prove an integral representation and a power series expansion for
the function det(A)−1 in a small neighborhood of the identity matrix. Both results
are closely linked to the formula for the change of coordinates of the Dirac delta
distribution in Rm.

Mathematics Subject Classification (2000) 15A15, 41A58, 30E20

Keywords Determinant · Taylor series · Complex analysis · Dirac distribution

1 Introduction

In this manuscript we prove two representation formulas for the function det(A)−1

in a small neighborhood of the identity matrix. Let us start by describing our results.
Let Ck×k the algebra of complex matrices M = {mr,�}r,�=1...,k of order (k × k)

with identity 1k . The Frobenius norm of M ∈ Ck×k is defined as

‖M‖ = (

k∑

r,�=1

|mr,�|2)1/2,

where | · | denotes the Euclidean norm in C. Associated to each row vector Mr =
(mr,1, . . . ,mr,k), we consider a multi-index αr = (αr,1, . . . , αr,k) ∈ Nk

0 where N0
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denotes the set of non-negative integers. As usual, we denote |αr | = αr,1+. . .+αr,k ,
αr ! = αr,1! · · ·αr,k! and M

αr
r = m

αr,1
r,1 · · ·mαr,k

r,k . We shall also consider the multi-
index sum α1 + . . . + αk = (

∑
r αr,1, . . . ,

∑
r αr,k). In general, for multi-indices

I = (i1, . . . , ik) and J = (j1, . . . , jk) we have I ± J = (i1 ± j1, . . . , ik ± jk). We
say that I ≤ J if ir ≤ jr for all r = 1, . . . , k.

The multi-indices αr give rise to the multi-index matrix α = {αr,�}r,�=1...,k ∈
Nk×k

0 . We thus denote |α| = |α1| + . . . + |αk|, α! = α1! · · ·αk ! and Mα =
M

α1
1 · · ·Mαk

k . We also introduce the differential operator

∂αM =
k∏

r,�=1

∂
αr,�
mr,�

,

which is the so-called Fischer dual of the monomial Mα.
With the above notation, the Taylor series of the function det(1k +M)−1 around

the point M = 0 can be written as

1

det(1k +M)
=

∑

α∈Nk×k
0

Mα

α! ∂αM

[
1

det(1k +M)

] ∣∣∣∣
M=0

. (1.1)

Our first goal is to explicitly write down the above formula, i.e. to compute the

derivatives ∂αM

[
1

det(1k+M)

] ∣∣∣
M=0

. In particular, we will prove the following result.

Theorem 1.1 Let M ∈ Ck×k be such that ‖M‖ ≤ 1/k. Then the Taylor series (1.1)
converges and has the form

1

det(1k +M)
=

∑

J∈Nk
0

(−1)|J |J !
∑

α1+...+αk=J|αr |=jr

M
α1
1 · · ·Mαk

k

α1! · · ·αk ! , (1.2)

where the above sum runs over all multi-indices J = (j1, . . . , jk) ∈ Nk
0 and all

multi-index matrices α such that α1,r + · · · + αk,r = |αr | = jr for all r = 1, . . . , k.
This is, α ∈ Nk×k

0 is such that the sum of its r-th row equals the sum of its r-th
column for all r = 1, . . . , k.

This constitutes a generalization to higher dimensions of the convergence of the
geometric series

∞∑

j=0

(−1)j zj = 1

1 + z
, when z ∈ C, |z| < 1.
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It also provides a detailed expression for the full expansion of the well-known
formula (see e.g. [2])

1

det(1k +M)
= exp (− ln (det(1k +M))) = exp

⎛

⎝
∞∑

j=0

(−1)j
tr(Mj )

j

⎞

⎠ ,

where tr(A) is the usual matrix trace of A. For a detailed account on this and other
matrix analysis results we refer the reader (without claiming completeness) to the
works [1, 4, 6].

Theorem 1.1 also yields that ∂αM

[
1

det(1k+M)

] ∣∣∣
M=0

is different from zero if and

only if the sum per row equals the sum per column in the multi-index matrix α,
namely:

∂αM

[
1

det(1k +M)

] ∣∣∣∣
M=0

=
⎧
⎨

⎩
(−1)|α| |α1|! · · · |αk|! if α1 + . . .+ αk = (|α1|, . . . , |αk|),
0 otherwise.

In addition, it allows to compute the inverse of the characteristic polynomial
det(M − λ1k) as a power series of λ. Indeed, if |λ| ≤ (k‖M‖)−1, one obtains
from (1.2) that

1

det(M − λ1k)
=

∞∑

j=0

cj λ
k−j ,

where

cj = (−1)j+k
∑

|J |=j
J !

∑

α1+...+αk=J|αr |=jr

M
α1
1 · · ·Mαk

k

α1! · · ·αk! .

The main motivation for formula (1.2) comes for the Taylor series expansion of
the Dirac distribution, see Sect. 2. However, in order to rigorously prove this result,
we will need the following integral representation for det(1k +M)−1.

Theorem 1.2 LetA ∈ Ck×k be a matrix such that ‖A−1k‖ < 1/k and consider the
linear transformation Az = w, where z = (z1, . . . , zk)

T and w = (w1, . . . , wk)
T

are vector variables in Ck. Then

1

det(A)
= 1

(2πi)k

∮

(∂D)k

1

w1 · · ·wk

dz1 · · · dzk, (1.3)
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where
∮
(∂D)k = ∮

∂D · · ·
∮
∂D and

∮
∂D denotes the contour integral along the

boundary ∂D = {z ∈ C : |z| = 1} of the unit disk.

Remark 1.1 As the statements in the Theorems 1.1 and 1.2 announce, the condition
‖A − 1k‖ < 1/k implies that det(A) 	= 0. Indeed, the power series A−1 =
(1k + (A− 1k))

−1 = ∑∞
�=0(−1)�(A − 1k)

� converges absolutely if k > 1.
Therefore, the inverse matrix A−1 exists. For k = 1, it is clear that ‖A − 1‖ < 1
implies A 	= 0.

The proximity of A = 1k +M to 1k is important for these results to hold. For
example, in the class of nilpotent matrices (that are somehow close to the origin)
formula (1.2) does not hold in general. Indeed, if M is nilpotent then 1k + M is
invertible, however the series (1.2) may not converge. See, for example, the case

where M =
(

0 1
0 0

)
.

The statement of Theorem 1.2 also announces that none of thewj ’s becomes zero
as z varies in the boundary (∂D)k of the unit polydisc. This is another reason why
the proximity of A to 1k is crucial. As a matter of fact, (∂D)k can be continuously
deformed into A(∂D)k without ever touching one of the axis zj = 0, see our
Lemma 5.2.

This paper is organized as follows. In Sect. 2, we informally discuss the main
motivations for Theorem 1.1. This result is closely connected to the formula for
the change of coordinates of the Dirac delta distribution. Most of the heuristic
and motivational reasoning in that section is not completely rigorous. In the
later sections, all of our results will be rigorously proved. Our strategy to prove
Theorem 1.1 is to show first that it is equivalent to Theorem 1.2 and then proceed
to prove the latter. In Sect. 3, we prove that the left-hand side expressions in (1.2)
and (1.3) coincide when A = 1k +M , completing in this way the first step of our
strategy. The second step is completed in Sect. 4, where we prove Theorem 1.2 by
means of the method of Gaussian elimination. Finally, in Sect. 5, we provide an
alternative proof by showing that the manifolds (∂D)k and A(∂D)k are in the same
homology class in the space (C \ {0})k and therefore, integrals of closed differential
k-forms over these manifolds remain invariant. At the end, we briefly discuss the
connection between Theorem 1.2 and the formula for the change of coordinates of
the delta distribution.

2 Motivations and Informal Discussion

In this section we sketch the main motivation behind formula (1.2). This does not
lead to a rigorous proof but it shows how this result is linked with the change of
coordinates of the Dirac delta distribution. In the next sections, we will rigorously
prove Theorems 1.1 and 1.2.
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Given the real vector variable x = (x1, . . . , xk)
T , we consider the Dirac

distribution δ(x) = δ(x1) . . . δ(xk) in the k-dimensional Euclidean space Rk . For
any non-singular real matrix 1k +M ∈ GL(k,R) it is known that (see e.g. [3])

δ(x +Mx) = δ
(
(1k +M)x

) = δ(x)

| det(1k +M)| . (2.1)

On the other hand, if we formally write down the Taylor series expansion of the
left-hand side, we get

δ(x +Mx) =
∑

J∈Nk
0

(
Mx

)J

J ! δ(J )(x),

where δ(J )(x) = δ(j1)(x1) . . . δ
(jk)(xk) for the multi-index J = (j1, . . . , jk). We

recall that
(
Mx

)J = (
Mx

)j1
1 . . .

(
Mx

)jk
k

where
(
Mx

)
r
= ∑k

�=1 mr,�x� is the r-th
component of the vector Mx. By the multinomial theorem we have

(
Mx

)jr
r

jr ! =
∑

|αr |=jr

M
αr
r xαr

αr ! , with xαr = x
αr,1
1 · · · xαr,kk ,

and therefore

δ(x +Mx) =
∑

J∈Nk
0

⎛

⎝
∑

|αr |=jr

M
α1
1 · · ·Mαk

k

α1! · · ·αk! xα1+...αk
⎞

⎠ δ(J )(x). (2.2)

Let us consider I = α1 + · · ·αk ∈ Nk
0, it is a known result that (see e.g. [3])

xI δJ =
{
(−1)I J !

(J−I )!δ
(J−I )(x), if I ≤ J,

0, otherwise.

But our multi-index I satisfies |I | = |J |. Thus, in this case, the condition I ≤ J

implies I = J . Therefore, formula (2.2) can be rewritten as

δ(x +Mx) =

⎛
⎜⎜⎝

∑

J∈Nk
0

(−1)|J |J !
∑

α1+...+αk=J|αr |=jr

M
α1
1 · · ·Mαk

k

α1! · · ·αk !

⎞
⎟⎟⎠ δ(x).
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Comparing this with (2.1), it follows that formula (1.2) should hold for some
suitable class of matrices M . The statement of Theorem 1.1 is stronger than this
guess. In fact, it explicitly describes a class of matrices for which this formula
holds and it states the result for complex matrices. In Sect. 5, we shall make the
link between the other representation formula (1.3) and the change of coordinates
in the Dirac distribution.

3 An Intermediate Step

Before rigorously proving Theorem 1.1, we will show that the statements in the
Theorems 1.1 and 1.2 are equivalent. Let M ∈ Ck×k be as in Theorem 1.1 and let
us denote the sum in the right-hand side of (1.2) by

R(M) =
∑

J∈Nk
0

(−1)|J |J !
∑

α1+...+αk=J|αr |=jr

M
α1
1 · · ·Mαk

k

α1! · · ·αk! .

Now consider the following “more relaxed” version of R(M)

S(M) =
∑

J∈Nk
0

(−1)|J |J !
∑

|αr |=jr

M
α1
1 · · ·Mαk

k

α1! · · ·αk! . (3.1)

While the sum S(M) runs over all multi-index matrices α ∈ Nk×k
0 , the sum R(M)

considers only those α ∈ Nk×k
0 for which the sum of its r-th row equals the sum of

its r-th column for all r = 1, . . . , k. Using the multinomial theorem, we can write
S(M) in terms of the following geometric series,

S(M) =
∑

J∈Nk
0

k∏

r=1

(
−

k∑

�=1

mr,�

)jr

=
k∏

r=1

⎛

⎝
∞∑

jr=0

(
−

k∑

�=1

mr,�

)jr
⎞

⎠

=
k∏

r=1

1

1 +∑k
�=1 mr,�

. (3.2)
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We recall that the power series
∑∞

jr=0

(
−∑k

�=1 mr,�

)jr
converges uniformly

to
(

1 +∑k
�=1 mr,�

)−1
since ‖M‖ ≤ 1

k
. Indeed,

∣∣∣
∑k

�=1 mr,�

∣∣∣ ≤ ∑k
�=1 |mr,�| <

k 1
k
= 1. This reasoning also shows that the series R(M) converges absolutely for

‖M‖ ≤ 1
k

.
Our strategy is to apply some transformations to the sum S(M) in order to recover

R(M). To that end we first consider the transformationM $→ D−1MD where D =
diag(z1, . . . , zk) is a diagonal matrix whose diagonal entries are in the unit circle,
i.e. z1, . . . , zk ∈ ∂D. The matrix D−1MD is the result of multiplying the r-th row
of M by z−1

r and the r-th column by zr , r = 1, . . . , k. Then for every entry this
transformation can be written as

mr,� $→ z−1
r z� mr,�, r, � = 1, . . . , k. (3.3)

Let us examine how the sum written in (3.1) reads after this transformation. Observe
that

Mαr
r = m

αr,1
r,1 · · ·mαr,k

r,k $→ z
−jr
r z

αr,1
1 · · · zαr,kk Mαr

r ,

which yields

M
α1
1 · · ·Mαk

k $→
(

k∏

r=1

z

∑
� α�,r−jr

r

)
M

α1
1 · · ·Mαk

k .

The only summands in (3.1) that remain independent of the zr ’s are those satisfying∑k
�=1 α�,r = jr for all r = 1, . . . , k, or equivalently, α1 + . . .+ αk = J . These are

exactly the terms that appear in R(M). Hence we can write

S(D−1MD) = R(M)+ T (D−1MD),

where T (D−1MD) is a sum of elements of the form zλ1
1 · · · zλkk c such that c is

independent of the zr ’s and at least one of the powers λr ∈ Z is different from zero.
Using Cauchy’s integral theorem we easily find that

1

(2πi)k

∮

(∂D)k

T (D−1MD)

z1 · · · zk dz1 · · · dzk = 0

and

1

(2πi)k

∮

(∂D)k

R(M)

z1 · · · zk dz1 · · · dzk = R(M)
1

(2πi)k

∮

(∂D)k

dz1 · · · dzk
z1 · · · zk = R(M).
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Thus

1

(2πi)k

∮

(∂D)k

S(D−1MD)

z1 · · · zk dz1 · · · dzk = R(M).

On the other hand, using formulas (3.2) and (3.3), we get

S(D−1MD) =
k∏

r=1

1

1 +∑k
�=1 z

−1
r z� mr,�

=
k∏

r=1

zr

zr +∑k
�=1 z� mr,�

= z1 · · · zk
w1 · · ·wk

.

Here the vectors z = (z1, . . . , zk)
T and w = (w1, . . . , wk)

T are as in Theorem 1.2,
i.e. Az = w with A = 1k +M . Finally, combining the last two formulas, we obtain

R(M) = 1

(2πi)k

∮

(∂D)k

1

w1 · · ·wk

dz1 · · · dzk,

which proves that the left-hand side expressions in (1.2) and (1.3) coincide when
A = 1k +M .

4 Proofs of the Main Theorems

We now proceed to prove Theorem 1.2. To that end, we first need the following
lemma.

Lemma 4.1 Let A = {ar,�}r,�=1,...,k be a matrix in Ck×k such that ‖A−1k‖ < 1/k
and consider the linear transformation Az = w, where z = (z1, . . . , zk)

T ∈ (∂D)k

and w = (w1, . . . , wk)
T . Then

1

2πi

∮

∂D

dz1

wr

=
⎧
⎨

⎩

1

a1,1
if r = 1,

0 if r = 2, . . . , k.

Proof Let us start by considering the case r = 2, . . . , k. If ar,1 = 0, then wr does
not depend on z1 and the integral is automatically zero. If ar,1 	= 0, we have

1

wr

= 1

ar,1

(
z1 +∑k

�=2
ar,�
ar,1

z�

) .
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This is a function of z1 with only one singularity, namely z1 = −∑k
�=2

ar,�
ar,1

z�,
which lies outside of the unit disk D = {z1 ∈ C : |z1| ≤ 1}. Indeed, by the
triangular inequality we obtain

∣∣∣∣∣

k∑

�=2

ar,�

ar,1
z�

∣∣∣∣∣ =
1

|ar,1|

∣∣∣∣∣

k∑

�=2

ar,�z�

∣∣∣∣∣

≥ 1

|ar,1|

⎛

⎝|ar,r | −
∣∣∣∣∣∣

∑

� 	=1,r

ar,�z�

∣∣∣∣∣∣

⎞

⎠

≥ 1

|ar,1|

⎛

⎝|ar,r | −
∑

� 	=1,r

∣∣ar,�
∣∣
⎞

⎠ .

Now we recall that |ar,� − δr,�| < 1
k

. In particular, this implies that 1
|ar,1| > k,

|ar,r | > k−1
k

and −|ar,�| > − 1
k

(� 	= r). We thus obtain

∣∣∣∣∣

k∑

�=2

ar,�

ar,1
z�

∣∣∣∣∣ > k

(
k − 1

k
− k − 2

k

)
= 1.

This means that 1
wr

is a holomorphic function inside the unit disk and therefore
1

2πi

∮
∂D

dz1
wr

= 0.
In the case where r = 1, it suffices to show that the isolated singularity z1 =

−∑k
�=2

a1,�
a1,1

z� of 1
w1

is inside of the unit disk. One easily observes that

∣∣∣∣∣

k∑

�=2

a1,�

a1,1
z�

∣∣∣∣∣ ≤
k∑

�=2

|a1,�|
|a1,1| <

k∑

�=2

1
k

1 − 1
k

= 1.

Then, by the residue theorem we obtain 1
2πi

∮
∂D

dz1
w1

= 1
a1,1

. ��
Proof of Theorem 1.2 We proceed by induction on k ∈ N. For k = 1 we have
w1 = a1,1z1 with |a1,1 − 1| < 1. It is then clear that 1

2πi

∮
∂D

dz1
a1,1z1

= 1
a1,1

= 1
det(A) .

Let us assume that formula (1.3) is true for k−1 ∈ N, and let us prove that it also
holds for k. To that end we first decompose the function 1

w1···wk as a sum of partial
fractions with respect to z1, i.e.

1

w1 · · ·wk

= λ1

w1
+ · · · + λk

wk
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where λ1, . . . , λk do not depend on z1. From Lemma 4.1 we obtain

1

2πi

∮

∂D

dz1

w1 · · ·wk

= λ1

a1,1
.

We recall that λ1 is the residue of the function a1,1
w1···wk at the singularity

z1 = −
k∑

�=2

a1,�

a1,1
z�.

Thus λ1 can be easily computed to be

λ1 = 1

w2 · · ·wk

∣∣∣∣
z1=−∑k

�=2
a1,�
a1,1

z�

= 1

w̃2 · · · w̃k

where w̃r is the value of wr when substituting z1 = −∑k
�=2

a1,�
a1,1

z�, r = 2, . . . , k.
Further computations yield

w̃r = − ar,1

a1,1

k∑

�=2

a1,�z�+
k∑

�=2

ar,�z� =
k∑

�=2

br,�z�, where br,� = ar,�− ar,1

a1,1
a1,�.

In this way we have obtained

1

(2πi)k

∮

(∂D)k

1

w1 · · ·wk

dz1 · · · dzk = 1

a1,1

1

(2πi)k−1

∮

(∂D)k−1

1

w̃2 · · · w̃k

dz2 · · · dzk,
(4.1)

where

⎛

⎜⎝
b2,2 . . . b2,k
...

. . .
...

bk,2 . . . bk,k

⎞

⎟⎠

⎛

⎜⎝
z2
...

zk

⎞

⎟⎠=
⎛

⎜⎝
w̃2
...

w̃k

⎞

⎟⎠ and the matrix B = {br,�}r,�=2,...,k satisfies

‖B − 1k−1‖ ≤ 1
k−1 . Indeed, the matrix B − 1k−1 has entries br,� − δr,� =

(ar,� − δr,�) − 1
a1,1

ar,1a1,� with r, � = 2, . . . , k. If we donote by C the matrix
{ar,1a1,�}r,�=2,...,k , we get

‖B − 1k−1‖ ≤ ‖A− 1k‖ + 1

|a1,1| ‖C‖.
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But ‖C‖ =
(∑k

r,�=2 |ar,1|2|a1,�|2
) 1

2 =
(∑k

r=2 |ar,1|2
) 1

2
(∑k

�=2 |a1,�|2
) 1

2
< 1

k2

which implies

‖B − 1k−1‖ ≤ 1

k
+ k

k − 1

1

k2 =
1

k − 1
.

Now, applying our induction hypothesis on (4.1), we obtain

1

(2πi)k

∮

(∂D)k

1

w1 · · ·wk
dz1 · · · dzk = 1

a1,1 det(B)
.

Thus it suffices to prove that a1,1 det(B) = det(A). This easily follows from the
Gaussian elimination process. Indeed, if we add to the r-th row in the matrix A the
first row multiplied by − ar,1

a1,1
(r = 2, . . . , k), we obtain the matrix

⎛

⎜⎜⎜⎝

a1,1 a1,2 . . . a1,k

0 b2,2 . . . b2,k
...

...
. . .

...

0 bk,2 . . . bk,k

⎞

⎟⎟⎟⎠ .

This matrix has the same determinant as A. We thus obtain that det(A) =
a1,1 det(B), which proves the result. ��

5 An Alternative Proof

We now provide an alternative proof for Theorem 1.2. In particular, we will prove
the following slightly generalized result.

Theorem 5.1 Consider Az = w as in Theorem 1.2 and let f (z) be a C-valued
holomorphic function in Ck . Then

f (0)

det(A)
= 1

(2πi)k

∮

(∂D)k

f (z)

w1 · · ·wk

dz1 · · · dzk. (5.1)

We first observe thatAz = w yields dw1 · · · dwk = det(A) dz1 · · · dzk . Effectuating
this change of variables in the right-hand side of (5.1) we obtain

1

(2πi)k

∮

(∂D)k

f (z)

w1 · · ·wk

dz1 · · · dzk = 1

det(A)

1

(2πi)k

∮

A(∂D)k

f (A−1w)

w1 · · ·wk

dw1 · · · dwk.

(5.2)
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Thus it suffices to prove that 1
(2πi)k

∮
A(∂D)k

f (A−1w)

w1···wk dw1 · · · dwk = f (0). The idea

of this proof is to note that f (A−1w)
w1···wk dw1 · · · dwk is a closed differential form on

(C\{0})k . Therefore, by Stoke’s theorem, the above integral remains invariant when
taken over any other manifold in the same homology class of (∂D)k in (C \ {0})k,
see e.g. [7]. This is summarized in the following two lemmas.

Lemma 5.2 Let A ∈ Ck×k be a matrix such that ‖A − 1k‖ < 1/k. Then (∂D)k

and A(∂D)k belong to the same homology class in (C \ {0})k, i.e. there exists a
continuous map A(t) : [0, 1] → Ck×k such that A(0) = 1k , A(1) = A and
A(t)(∂D)k ⊂ (C \ {0})k for every t ∈ [0, 1].
Proof Let us consider the map A(t) = 1k + t (A − 1k) and w(t) = A(t)z with
z ∈ (∂D)k arbitrary. We need to prove that w(t) ∈ (C \ {0})k for every t ∈ [0, 1],
or equivalently, that every entry wr(t) of w(t) (r = 1, . . . , k) is different from zero.

We recall that wr(t) = zr + t
∑k

j=1(ar,j − δr,j )zj . Then by the triangular
inequality we have

1 = |zr | =
∣∣∣∣∣∣
wr(t)− t

k∑

j=1

(ar,j − δr,j )zj

∣∣∣∣∣∣

≤ |wr(t)| + t

k∑

j=1

|ar,j − δr,j | < |wr(t)| + t

k∑

j=1

1

k
.

Thus |wr(t)| > 1 − t ≥ 0 and therefore wr(t) 	= 0. ��
Lemma 5.3 Let γ (w) be a C-valued holomorphic function in an open region � ⊂
Ck . Then the differential form γ dw1 · · · dwk is closed in �, i.e. d(γ dw1 · · · dwk) =
0 where d is the exterior derivative.

Proof It is easily seen that the exterior derivative can be written as d = ∂+∂ where
∂ = ∑n

j=1 ∂wj dwj and ∂ = ∑n
j=1 ∂wj

dwj are given in terms of the classical
Cauchy–Riemann operators ∂wj , ∂wj

and the complex differentials dwj , dwj . If we
write wj = xj + iyj (with xj , yj being real variables) then

∂wj
= 1

2
(∂xj − i∂yj ), dwj = dxj + idyj , ∂wj

= 1

2
(∂xj + i∂yj ), dwj = dxj − idyj .

It is clear that ∂(γ dw1 · · · dwk) = 0 and, since γ is holomorphic, we also
have that ∂(γ dw1 · · · dwk) = ∑n

j=1 ∂wj
[γ ]dwjdw1 · · · dwk = 0. Therefore

d(γ dw1 · · · dwk) = 0. ��
Using the previous lemma we easily observe that f (A

−1w)
w1···wk dw1 · · · dwk is a closed

differential form on (C \ {0})k. This means that its integrals over the homologous
manifolds (∂D)k and A(∂D)k are equal. Going back to formula (5.2), we finally
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obtain from Cauchy’s theorem that

1

(2πi)k

∮

(∂D)k

f (z)

w1 · · ·wk

dz1 · · · dzk = 1

det(A)

1

(2πi)k

∮

A(∂D)k

f (A−1w)

w1 · · ·wk

dw1 · · · dwk

= 1

det(A)

1

(2πi)k

∮

(∂D)k

f (A−1w)

w1 · · ·wk

dw1 · · · dwk

= f (0)

det(A)
.

5.1 Connection with the Dirac Distribution

Let us consider the 2k-dimensional real vector variables x = (x1, . . . , x2k)
T and

y = (y1, . . . , y2k)
T associated to the complex vector variables z and w in Ck by

means of

z = (x1 + ixk+1, . . . , xk + ix2k)
T , and w = (y1 + iyk+1, . . . , yk + iy2k)

T ,

respectively. Equivalently we may write z = Px and w = Py where P =
(1k|i1k) ∈ Ck×2k. Associated to any complex-linear transformation w = Az, one
finds a real-linear transformation y = �(A)x, where � : Ck×k → R2k×2k is an
algebra morphism given by

�(A1 + iA2) =
(
A1 −A2

A2 A1

)
, A1, A2 ∈ Rk×k.

The determinants of the matrices A and �(A) are linked by the relation

det(�(A)) = | det(A)|2. Indeed, if one considers the matrices D =
(
1k i1k
0 1k

)

and its inverse D−1 =
(
1k −i1k
0 1k

)
, one obtains

D�(A)D−1 =
(
A1 + iA2 0

A2 A1 − iA2

)
,

and therefore det(�(A)) = det(D�(A)D−1) = det(A1 + iA2) det(A1 − iA2) =
| det(A)|2.

Let us define δ(z) = δ(x) = δ(x1) . . . δ(x2k) and δ(w) = δ(y) =
δ(y1) . . . δ(y2k). Then (see e.g. [3])

δ(w) = δ(z)

det(�(A))
= δ(z)

| det(A)|2 . (5.3)
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In Sect. 2, we showed how this formula is linked with Theorem 1.1. In this section,
we shall make the relation between formula (5.3) and Theorem 5.1 explicit.

From Theorem 5.1, we have for every holomorphic function f (z) that

〈
δ(z)

det(A)
, f

〉
= f (0)

det(A)
= 1

det(A)

1

(2πi)k

∮

(∂D)k

f (z)

w1 · · ·wk

dw1 · · · dwk. (5.4)

We now recall that Green’s theorem can be written, in terms of the Cauchy–Riemann
∂z = 1

2 (∂x + i∂y) operator of the complex variable z = x + iy, as

∮

∂D

g dz = 2i
∫∫

D

∂z[g] dxdy,

where g is a differentiable function in a neighborhood of the unit disc D. Applying
Green’s theorem in each variable wj in (5.4), we obtain

〈
δ(z)

det(A)
, f

〉
= 1

πk det(A)

∫

Dk

∂w1 · · · ∂w2k

[
1

w1 · · ·wk

]
f (z) dy1 · · · dy2k.

Now, we recall that (πz)−1 is the fundamental solution of ∂z, see e.g. [5]. Then we

can substitute in the above formula ∂wj

[
1
wj

]
= π δ(wj ) = πδ(yj )δ(yk+j ). Finally,

we obtain
〈
δ(z)

det(A)
, f

〉
= 1

det(A)

∫

Dk

δ(w)f (z) dy1 · · · dy2k

= det(A)
∫

A−1Dk

δ(w)f (z) dx1 · · · dx2k

=
〈
det(A) δ(w), f

〉
,

which yields (5.3). In the second equality we have used the fact that dy1 · · · dy2k =
det(�(A)) dx1 · · · dx2k = det(A)det(A) dx1 · · · dx2k.
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Algorithm
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Abstract This paper contains a Schur analytic approach to a truncated matricial
moment problem of Hamburger type, which is studied in the most general case.
It is shown that a Schur type algorithm constructed by the authors for a related
moment problem can be suitably modified to obtain a full description of the solution
set with the aid of a linear fractional transformation with polynomial generating
matrix-valued function. The main feature of our Schur type algorithm consists of
an appropriate synthesis of two different versions of types of algorithms, namely on
the one side an algebraic one working for sequences of complex matrices and on the
other side a function theoretic one applied to special classes of holomorphic matrix
functions.
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Schur type algorithm
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1 Introduction

This paper is part of a systematic program of creating a Schur analytic approach
to matricial versions of truncated classical power moment problems, which was
developed by the authors in the last decade. The essential feature of our concept can
be described as a detailed study of the structure of sequences of moment matrices by
Schur type algorithms on the one side combined with the construction of concordant
Schur type algorithms for special classes of holomorphic matrix-valued functions
in several domains which are determined by the choice of the moment problem
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under consideration. For each of the generalized versions of the classical moment
problems (named after Hamburger, Stieltjes and Hausdorff) we were able to give a
parametrization of the set of solutions in the most general case. What concerns the
matricial versions of truncated Stieltjes type moment problems we refer to [16, 17,
20, 22] whereas the matricial version of the truncated Hausdorff moment problem
was investigated in [18, 21, 23, 24].

Our Schur analytic approach to the truncated matricial Hamburger moment
problem was begun in [15], where we treated the particular version of the truncated
problem which is connected with equality of all prescribed matricial moments.
There we handled simultaneously both the case of an even as well as the case
of an odd number of prescribed moments. In this paper we concentrate on the
last still remaining case, namely on the truncated matricial moment problem for
a given sequence (sj )

2n
j=0 of complex q × q matrices, where the matrix s2n is

required to satisfy an inequality in the sense of Löwner semi-ordering for Hermitian
matrices. In the so-called non-degenerate case this problem was already studied
by I. V. Kovalishina [27]. She used the FMI method due to V. P. Potapov who
interpreted Schur type algorithm from the view of multiplicative decomposition of
rational J -elementary factors as a finite product of rational J -elementary factors
with poles of order one. In this way, I. V. Kovalishina [27] treated Schur analytic
aspects of the moment problem under study. It should be mentioned that even
in the non-degenerate case our Schur type algorithm does not coincide with
that multiplicative decomposition of the resolvent matrix derived in [27]. The
considerations in [27] formed the starting point for the investigations of Chen/Hu [4]
where a function theoretic version of a Schur type algorithm was presented. This
algorithm uses the Drazin generalized inverse of matrices. The parameters in the
linear-fractional transformation description of the set of solutions are pairs of
meromorphic matrix functions. Against the background of a later computation of
the Weyl matrix balls associated with a truncated matricial Hamburger moment
problem in the most general case we strive for a parametrization of the solution
set which is based on pairs of holomorphic matrix-valued functions. The use of
the Moore–Penrose inverse is a key instrument in our construction of Schur type
algorithm. The elementary step of our algorithm is taken from [15].

2 Notation and Preliminaries

First we state some notation. Let C, R, N0, and N be the set of all complex numbers,
the set of all real numbers, the set of all non-negative integers, and the set of all
positive integers, respectively. Further, for every choice of α, β ∈ R ∪ {−∞,∞},
let Zα,β be the set of all integers k such that α ≤ k ≤ β. Throughout this paper, if
not explicitly mentioned otherwise, then let p, q, r ∈ N. If X is a non-empty set,
then X p×q represents the set of all p × q matrices each entry of which belongs to
X , and X p is short for X p×1. The notation C

q×q
H is used to denote the set of all
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Hermitian complex q × q matrices. We write C
q×q
≥ and C

q×q
> to designate the set

of all non-negative Hermitian complex q × q matrices and the set of all positive
Hermitian complex q × q matrices, respectively.

If (�,A) is a measurable space, then each countably additive mapping defined
on A with values in C

q×q
≥ is called a non-negative Hermitian q × q measure on

(�,A) and the notation Mq
≥(�,A) stands for the set of all non-negative Hermitian

q × q measures on (�,A). (Appendix B is aimed to state some basic results on
non-negative Hermitian measures.) If μ = (μjk)

q

j,k=1 is a non-negative Hermitian

q × q measure on a measurable space (�,A), then we use L1(�,A, μ;C) to denote
the set of all Borel-measurable functions f : � → C for which

∫
�|f |dνjk < ∞

holds true for every choice of j and k in Z1,q , where νjk is the variation of the
complex measure μjk (see also Lemma B.1). If f ∈ L1(�,A, μ;C), then let∫
� f dμ := (

∫
� f dμjk)

q

j,k=1 and we also write
∫
� f (ω)μ(dω) for this integral.

Let BR (resp. BC) be the σ -algebra of all Borel subsets of R (or C, respectively).
For all � ∈ BR \ {∅}, let B� be the σ -algebra of all Borel subsets of � and let
Mq

≥(�) be the set of all non-negative Hermitian q × q measures on (�,B), i. e.,
Mq

≥(�) is short for Mq
≥(�,B�). Furthermore, for all � ∈ BR \ {∅} and for all

κ ∈ N0∪{∞}, let Mq
≥,κ(�) be the set of all σ ∈ Mq

≥(�) such that, for all j ∈ Z0,κ ,
the function fj : �→ C defined by fj (ω) := ωj belongs to L1(�,B�, σ ;C).
Remark 2.1 Let � ∈ BR \ {∅}, let κ ∈ N0 ∪ {∞}, and let σ ∈ Mq

≥,κ (�). Then,

for each j ∈ Z0,κ , the integral s(σ )j
:= ∫

�
ωjσ(dω) is well defined. In view of [20,

Rem. B.2], one easily can check that (s(σ )j )∗ = s
(σ )
j holds true for all j ∈ Z0,κ .

Obviously, once more considering an arbitrary � ∈ BR \ {∅}, we have

Mq
≥,∞(�) ⊆Mq

≥,l(�) ⊆Mq
≥,k(�) ⊆Mq

≥,0(�) =Mq
≥(�)

for every choice of non-negative integers k and l with k ≤ l. If � is a bounded
set belonging to BR \ {∅}, then it is readily checked that Mq

≥,∞(�) = Mq
≥(�)

is valid. We will consider the following types of a so-called matricial Hamburger
power moment problems:

Problem (MP[R; (sj )mj=0,≤]) Let m ∈ N0 and let (sj )mj=0 be a sequence of

complex q × q matrices. Parametrize the set Mq
≥[R; (sj )mj=0,≤] of all σ ∈

Mq
≥,m(R) for which the matrix sm − s

(σ )
m is non-negative Hermitian and, in the

case m ≥ 1, for which additionally sj = s
(σ )
j is fulfilled for all j ∈ Z0,m−1.

Problem MP[R; (sj )mj=0,≤] is connected to a further type of truncated moment
problem considered (for particular cases of the set �), for example, in [4, 15]:

Problem (MP[R; (sj )κj=0,=]) Let κ ∈ N0 ∪ {∞} and let (sj )κj=0 be a sequence

of complex q × q matrices. Parametrize the set Mq
≥[R; (sj )κj=0,=] of all σ ∈

Mq
≥,κ(R) for which sj = s

(σ )
j is fulfilled for all j ∈ Z0,κ .
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To recall the criteria of solvability of the matricial Hamburger problem in detail
as well as for our further consideration, we introduce certain sets of sequences of
complex q × q matrices which are determined by properties of particular block
Hankel matrices built of them. If n ∈ N0 and if (sj )2nj=0 is a sequence of complex

q × q matrices, then (sj )2nj=0 is called R-non-negative definite (R-positive definite,
respectively) if the block Hankel matrix

Hn := (sj+k)nj,k=0 =

⎛
⎜⎜⎜⎝

s0 s1 . . . sn

s1 s2 . . . sn+1
...

... . .
. ...

sn sn+1 . . . s2n

⎞
⎟⎟⎟⎠ (2.1)

is non-negative Hermitian (positive Hermitian, respectively). For all n ∈ N0, we
will write H≥

q,2n (or H>
q,2n, respectively) for the set of all sequences (sj )2nj=0 of

complex q × q matrices which are R-non-negative definite (R-positive definite,
respectively). If n ∈ N0 and if (sj )2nj=0 ∈ H≥

q,2n (or (sj )2nj=0 ∈ H>
q,2n, respectively),

then, for each m ∈ Z0,n, the sequence (sj )
2m
j=0 obviously belongs to H≥

q,2m (or

H>
q,2m, respectively). Thus, let H≥

q,∞ (or H>
q,∞, respectively) be the set of all

sequences (sj )
∞
j=0 of complex q × q matrices such that, for all n ∈ N0, the

sequence (sj )2nj=0 belongs to H≥
q,2n (or H>

q,2n, respectively). A solvability criterion

for Problem MP[R; (sj )2nj=0,≤] is the following:

Theorem 2.2 Let n ∈ N0 and let (sj )2nj=0 be a sequence of complex q × q matrices.

Then Mq
≥[R; (sj )2nj=0,≤] 	= ∅ if and only if (sj )2nj=0 ∈ H≥

q,2n.

There are different proofs of Theorem 2.2, namely in [4, Thm. 3.2] and [10,
Thm. 4.16]. A parametrization of the solution set Mq

≥[R; (sj )2nj=0,≤] was given in

[27, Thm.H] for the non-degenerate case, i. e., if the sequence (sj )2nj=0 of prescribed
matricial moments is R-positive definite. In the general case of a given R-non-
negative definite sequence (sj )2nj=0, parametrizations of Mq

≥[R; (sj )2nj=0,≤] can be
found in [2, Thm. 4.6], [4, Thm. 4.5], and [33, Ch. 1].

For all n ∈ N0, let H≥,e
q,2n be the set of all sequences (sj )

2n
j=0 of complex

q × q matrices for which there exist complex q × q matrices s2n+1 and s2n+2 such
that (sj )

2(n+1)
j=0 belongs to H≥

q,2(n+1). Furthermore, for all n ∈ N0, we will use

H≥,e
q,2n+1 to denote the set of all sequences (sj )

2n+1
j=0 of complex q × q matrices for

which there exists a complex q × q matrix s2n+2 such that (sj )
2(n+1)
j=0 belongs to

H≥
q,2(n+1). For eachm ∈ N0, the elements of the set H≥,e

q,m are called R-non-negative

definite extendable sequences. For technical reasons, we set H≥,e
q,∞ := H≥

q,∞.

Remark 2.3 Let κ ∈ N0 ∪ {∞}. Then H>
q,2κ ⊆ H≥,e

q,2κ ⊆ H≥
q,2κ .
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If κ ∈ N0 ∪ {∞}, then H>
q,2κ 	= H≥,e

q,2κ . Furthermore, H≥,e
q,0 = H≥

q,0 whereas

H≥,e
q,2κ 	= H≥

q,2κ for all κ ∈ N ∪ {∞}. The following result is essential for a

parametrization of the set Mq
≥[R; (sj )2nj=0,≤]:

Theorem 2.4 Let n ∈ N0 and let (sj )2nj=0 ∈ H≥
q,2n. Then there exists a unique

sequence (s̃j )2nj=0 ∈ H≥,e
q,2n such that Mq

≥[R; (s̃j )2nj=0,≤] =Mq
≥[R; (sj )2nj=0,≤].

The existence of such a sequence (s̃j )2nj=0 was formulated first in [2, Lem. 2.12].
In [33, Satz 1.22], one can find a complete proof for the existence of such a sequence
(s̃j )

2n
j=0. A complete proof of Theorem 2.4 can be found in [10, Thm. 7.3]. A

general principle which stands behind the construction of the sequence (s̃j )
2n
j=0

was uncovered in [19]. This concept is connected with a special kind of Schur
complement. Furthermore, observe that necessary and sufficient conditions for
the case that Problem MP[R; (sj )2nj=0,≤] has a unique solution are given in [10,
Theorems 8.4 and 8.5]. The solvability of Problem MP[R; (sj )κj=0,=] can be
characterized as follows:

Theorem 2.5 Let κ ∈ N0 ∪ {∞} and let (sj )κj=0 be a sequence of complex

q × q matrices. Then Mq
≥[R; (sj )κj=0,=] is not empty if and only if (sj )κj=0 ∈

H≥,e
q,κ .

A proof of Theorem 2.5 can be found in [10, Thm. 4.17]. This proof modifies
an idea presented in [2, Lem. 2.10], where κ is an even non-negative integer. In
the case of an even non-negative integer κ , a proof is also given in [4, Thm. 3.1].
Moreover, if κ = ∞, a proof is given in [11, Thm. 6.6]. Furthermore, observe that
necessary and sufficient conditions for the case that Problem MP[R; (sj )mj=0,≤],
where m is an arbitrarily given non-negative integer, has a unique solution are given
in [10, Theorems 8.7 and 8.9].

In the so-called non-degenerate situation, a parametrization of the solution set
of Mq

≥[R; (sj )2nj=0,=], where n is an arbitrarily given positive integer, was worked

out by H. Dym in [9]. This was done for arbitrarily given sequences (sj )2nj=0 ∈
H>
q,2n by using the theory of Hilbert spaces with a reproducing kernel. Applying a

Schur type algorithm, in [4, Thm. 4] a parametrization of Mq
≥[R; (sj )2nj=0,=] was

shown for given sequences (sj )2nj=0 ∈ H≥,e
q,2n. Alternatively, a description of this

solution set was presented in [1, Thm. 4], using operator-theoretic methods. In the
case κ = 2n+1 with some non-negative integer n, a parametrization of the solution
set of M1≥[R; (sj )2n+1

j=0 ,=], i. e., in the scalar case, was found in [7, Sec. 3]. The

matricial case Mq
≥[R; (sj )2n+1

j=0 ,=]with an arbitrarily given positive integer q could
be handled by using a two-step Schur type algorithm in [15]. In the case κ = ∞,
only assuming additional conditions, a parametrization was found previously (cf.
[5, 27]).

At the end of this introductory section, we give some further notation. We will
write Iq to denote the identity matrix in Cq×q , whereas 0p×q is the null matrix
belonging to Cp×q . If the size of an identity matrix or a null matrix is obvious,
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then we also will omit the indices. For each A ∈ Cp×q , let R(A) be the column
space of A, let N (A) be the null space of A, and let rankA be the rank of A. For
each A ∈ Cq×q , we will use ImA to denote the imaginary part of A: ImA :=
1
2i (A − A∗). Furthermore, for each A ∈ Cp×q , let ‖A‖S be the operator norm of
A. A complex p × q matrix A is said to be contractive if ‖A‖S ≤ 1. If A ∈ Cq×q ,
then detA denotes the determinant of A. For each A ∈ Cq×p, let A+ be the Moore–
Penrose inverse of A. If p1, p2, q1, q2 ∈ N and if Aj ∈ Cpj×qj for every choice

of j ∈ {1, 2}, then let diag(A1, A2) :=
(

A1 0p1×q2
0p2×q1 A2

)
. Furthermore, within the

set Cq×q
H , we use the Löwner semi-ordering: If A and B are complex Hermitian

q × q matrices, then we will write A ≤ B (or B ≥ A) to indicate that B − A is a
non-negative Hermitian matrix.

For all x, y ∈ Cq , by 〈x, y〉E we denote the (left-hand side) Euclidean inner
product of x and y, i. e., we have 〈x, y〉E := y∗x. If M is a non-empty subset of Cq ,
then let M⊥ be the set of all vectors in Cq which are orthogonal to M (with respect
to the Euclidean inner product 〈., .〉E). If U and W are orthogonal subspaces of Cq ,
then we will say that U ⊕W is the orthogonal sum of U and W . If U is a subspace
of Cq , then let PU be the orthoprojection matrix onto U .

We consider the set

%+ := {z ∈ C : Im z ∈ (0,∞)}.

We will call a subset D of %+ a discrete subset of %+ if D does not have an
accumulation point in %+. If f is a meromorphic function defined on a non-empty
open subset of the complex plane, then we use Hf to denote the set of all points w
at which f is holomorphic.

3 Particular Classes of Holomorphic Matrix Functions

We will reformulate the matricial moment problems under consideration as equiv-
alent interpolation problems for particular classes of holomorphic matrix-valued
functions. For this reason, we introduce in this section the corresponding function
classes and summarize some of their essential properties needed in the sequel. Most
of this material is taken from [12, 15]. In this section, we consider some special
classes of holomorphic matrix-valued functions. First we turn our attention to a
(well-studied) class of matrix-valued functions.

A matrix-valued function S : %+ → Cq×q is called q × q Schur function in %+
if S is both holomorphic and contractive in %+, i. e., if S is holomorphic in %+ and
if ‖S(z)‖S ≤ 1 is fulfilled for each z ∈ %+. The set of all q × q Schur functions in
%+ will be denoted by Sq×q (%+).

The class Rq(%+) of all q × q Herglotz–Nevanlinna functions in the upper
half-plane %+ consists of all matrix-valued functions F : %+ → Cq×q which
are holomorphic in %+ and which satisfy ImF(z) ∈ C

q×q
≥ for all z ∈ %+.
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Detailed observations about matrix-valued Herglotz–Nevanlinna functions can be
found in [12, 25]. Especially, the functions belonging to Rq (%+) admit a well-
known integral representation. Before we formulate this version of a famous result
due to R. Nevanlinna, we observe that, for every choice of ν ∈ Mq

≥(R) and
z ∈ C \ R, from Lemma B.1 one easily can see that fz : R → C given by
fz(x) := (1 + xz)/(x − z) belongs to L1(R,BR, ν;C).
Theorem 3.1 (Nevanlinna)

(a) For each F ∈ Rq(%+), there exists a unique triple (α, β, ν) ∈ C
q×q
H ×C

q×q
≥ ×

Mq
≥(R) such that

F(z) = α + βz+
∫

R

1 + xz

x − z
ν(dx) for each z ∈ %+. (3.1)

(b) If α ∈ C
q×q
H , if β ∈ C

q×q
≥ , and if ν ∈ Mq

≥(R), then F : %+ → Cq×q defined
by (3.1) belongs to Rq(%+).

For each F ∈ Rq (%+), the unique triple (α, β, ν) ∈ C
q×q
H ×C

q×q
≥ ×Mq

≥(R) for
which the representation (3.1) holds true is called the Nevanlinna parametrization of
F and we also write (αF , βF , νF ) instead of (α, β, ν). In particular, νF is said to be
the Nevanlinna measure of F . For our following consideration, it seems to be useful
to state some further known results concerning Herglotz–Nevanlinna functions. We
start with the following result:

Lemma 3.2 Let D be a discrete subset of %+ and let F : %+ \ D → Cq×q be a
matrix-valued function holomorphic in %+ \ D such that ImF(z) ∈ C

q×q
≥ is valid

for all z ∈ %+ \ D. For each z ∈ D, then F has a removable singularity at z and
the extended matrix-valued function belongs to the class Rq(%+).

A proof of Lemma 3.2 easily can be obtained, e. g., using [8, Lem. 2.1.9]. If F
belongs to R1(%+), then σF : BR → [0,+∞] defined by

σF (B) :=
∫

B

(1 + x2)νF (dx) for all B ∈ BR (3.2)

describes a measure which is called the spectral measure of F . By R′
q (%+) we

denote the set of all F ∈ Rq (%+) for which g : R → R defined by g(x) := 1 + x2

belongs to L1(R,BR, νF ;R). Since the trace measure τ of νF fulfils τ (R) < ∞,
Lemma B.1 yields R′

q(%+) = {F ∈ Rq (%+) : νF ∈Mq

≥,2(R)}. If F belongs to

R′
q(%+), then σF : BR → C

q×q
≥ given by (3.2) is a well-defined non-negative

Hermitian q × q measure belonging to Mq
≥(R) which is said to be the matricial

spectral measure of F . Clearly, considering functions belonging to the class
R′

1(%+), the notations ‘spectral measure’ and ‘matricial spectral measure’ coincide.
Observe that [20, Rem. B.1] shows that, for each F ∈ R′

q(%+), the matricial

spectral measure σF of F fulfils σF (B) =
∫
B(
√

1 + x2Iq)νF (dx)(
√

1 + x2Iq)
∗
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for all B ∈ BR. Observe that a particular integral representation for functions
belonging to the class R′

q (%+) is given in [12, Thm. 4.3]. For our consideration,
the class R0,q(%+) given by

R0,q(%+) :=
{
F ∈ Rq(%+) : sup

y∈[1,∞)

y‖F(iy)‖S <∞
}
,

plays a key role. The class R0,q(%+) is a subclass of R′
q (%+) (see, e. g., [32,

Lem. 8.4]). Furthermore, the functions belonging to R0,q(%+) admit a special
integral representation. Before we formulate this result, let us observe that, for
every choice of μ ∈ Mq

≥(R) and z ∈ C \ R, one can easily see that the function
hz : R → C given by hz(x) := (x − z)−1 describes a bounded and continuous
function which, in particular, belongs to L1(R,BR, μ;C) (see also Lemma B.1).
Now we are able to formulate a well-known matricial generalization of a classical
result due to R. Nevanlinna [29].

Theorem 3.3

(a) For each F ∈ R0,q(%+), the matrix-valued function F belongs to R′
q (%+) and

there is a unique σ ∈ Mq
≥(R) such that

F(z) =
∫

R

1

x − z
σ(dx) for each z ∈ %+, (3.3)

namely, the matricial spectral measure σF of F .
(b) If F : %+ → Cq×q is a matrix-valued function for which there exists a non-

negative Hermitian measure σ ∈ Mq
≥(R) such that (3.3) holds true, then F

belongs to R0,q(%+).

Theorem 3.3 can be proved by using its well-known scalar version in the case
q = 1 as well as the fact that, for each F ∈ R0,q(%+) and each u ∈ Cq , the function
u∗Fu belongs to R0,1(%+), Lemma B.1, and [12, Lem. B.3]. If F ∈ R0,q(%+),
then the unique σ ∈ Mq

≥(R) for which (3.3) holds true is also called the R-Stieltjes
measure of F . Consequently, for each F ∈ R0,q(%+), the notions R-Stieltjes
measure and matricial spectral measure coincide. If σ ∈ Mq

≥(R) is given, then
F : %+ → Cq×q defined by (3.3) is said to be the R-Stieltjes transform of σ .

Remark 3.4 In view of Theorem 3.3, now one can reformulate Problems
MP[R; (sj )2nj=0,≤] and MP[R; (sj )κj=0,=] in the language of R-Stieltjes
transforms:

Problem (R[%+; (sj )2nj=0,≤]) Let n ∈ N0 and let (sj )2nj=0 be a sequence of

complex q × q matrices. Parametrize the set R0,q [%+; (sj )2nj=0,≤] of all matrix-
valued functions F ∈ R0,q(%+) the R-Stieltjes measure of which belongs to
Mq

≥[R; (sj )2nj=0,≤].
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Problem (R[%+; (sj )κj=0,=]) Let κ ∈ N0 ∪ {∞} and let (sj )κj=0 be a sequence of
complex q × q matrices. Parametrize the set R0,q [%+; (sj )κj=0,=] of all matrix-
valued functions F ∈ R0,q(%+) the R-Stieltjes measure of which belongs to
Mq

≥[R; (sj )κj=0,=].
The following result contains an important property of the class R0,q(%+).

Lemma 3.5 Let F ∈ R0,q(%+).Then, for each z ∈ %+, the equations R(F (z)) =
R(σF (R)) and N (F (z)) = N (σF (R)) hold true.

There is a proof of Lemma 3.5, e. g., in [12, Lem. 8.2 and Prop. 8.9]. In the
following, we introduce a variety of further subclasses of Rq(%+). We summarize
basic facts about these subclasses which mostly are characterized by growth
properties on the positive imaginary axis. Within our consideration, essentially we
refer to the representations in [12, Sections 4–8] and [15, Sections 3 and 4]. Let

R[−2]
q (%+) :=

{
F ∈ Rq(%+) : lim

y→∞

(
1

y
‖F(iy)‖S

)
= 0

}

and

R[−1]
q (%+) :=

{
F ∈ Rq(%+) :

∫

[1,∞)

1

y
‖ImF(iy)‖Sλ̃(dy) <∞

}
,

where λ̃ is used for the Lebesgue measure defined on B[1,∞).

Remark 3.6 ([12, Lem. 5.1 and Remarks 5.2 and 5.3]) Let F ∈ R[−1]
q (%+) with

Nevanlinna parametrization (αF , βF , νF ). Then βF = 0q×q , νF ∈ Mq

≥,1(R), and

h : R → R defined by h(x) := (x2 + 1)/(|x| + 1) belongs to L1(R,BR, νF ;R).
Let γF := αF − s

(νF )
1 and let μF : BR → Cq×q be given by

μF (B) :=
∫

B

x2 + 1

|x| + 1
νF (dx). (3.4)

Then γF ∈ C
q×q
H and μF ∈ Mq

≥(R). Furthermore, R(μF (R)) = R(νF (R)) and
N (μF (R)) = N (νF (R)).

We continue to use the notation γF and μF , explained in Remark 3.6. Let

R−1,q (%+) :=
{
F ∈ R[−1]

q (%+) : γF = 0q×q
}
. (3.5)

Proposition 3.7 ([12, Propositions 8.8 and 8.9]) The class R0,q(%+) admits the
representation R0,q(%+) = R−1,q(%+) ∩R′

q(%+).
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Lemma 3.8 Let F ∈ R0,q(%+). Then F ∈ R[−1]
q (%+) and N (μF (R)) =

N (σF (R)).

Proof From Proposition 3.7 we can infer F ∈ R−1,q(%+). According to (3.5),

then F ∈ R[−1]
q (%+). Let z0 ∈ %+. We can apply [12, Lem. 8.1] to obtain

N (F (z0)) = N (μF (R)). Since Lemma 3.5 yields N (F (z0)) = N (σF (R)),
consequently N (μF (R)) = N (σF (R)) follows. ��

From [12, Prop. 3.7] we know that, for an arbitrary function F ∈ Rq(%+),
the null space of F(z) is independent of the choice of z ∈ %+. Keeping this in
mind, we consider a special subclass of R−1,q(%+) which is characterized by the
interrelation between this constant null space and the null space of a prescribed
matrix A ∈ Cp×q . Indeed, for all A ∈ Cp×q , let

Podd
q [A] := {

F ∈ R−1,q(%+) : N (A) ⊆ N (μF (R))
}
, (3.6)

where μF : BR → Cq×q is given by (3.4). Observe that, for each A ∈ Cp×q ,
the matrix-valued function F : %+ → Cq×q defined by F(z) := 0q×q belongs to
Podd
q [A] (cf.[15, Example 4.2]). Moreover, if A ∈ Cp×q satisfies N (A) = {0q×1},

then Podd
q [A] = R−1,q(%+) (cf.[15, Rem. 4.1]).

4 Some Facts on Nevanlinna Pairs and their Interrelation
to Matricial Schur Functions

In this section, we state some results on certain pairs of matrix-valued functions
meromorphic in %+. These special pairs take over the role of the free parameters
within the parametrization of the set of solutions to the matricial power moment
problems. Before we recall the definition of this well-known class of so-called
Nevanlinna pairs, we observe the following well-known fact:

Remark 4.1 The matrix J̃q given by

J̃q :=
(

0q×q −iIq
iIq 0q×q

)
(4.1)

obviously is a 2q × 2q signature matrix, i. e., J̃ ∗q = J̃q and J̃ 2
q = I2q hold true.

Moreover,

(
A

B

)∗
(−J̃q)

(
A

B

)
=

(
A

B

)∗ (
0 iIq

−iIq 0

)(
A

B

)
= i(A∗B − B∗A) = 2 Im(B∗A)

for all A,B ∈ Cq×q . In particular,
(
A
Iq

)∗
(−J̃q)

(
A
Iq

) = 2 Im(A) for each A ∈ Cq×q .
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Definition 4.2 Let φ and ψ be q × q matrix-valued functions meromorphic in %+.
The pair [φ;ψ] is called q × q Nevanlinna pair in %+ if there is a discrete subset
D of %+ such that the following three conditions are fulfilled:

(i) φ and ψ are holomorphic in %+ \D.
(ii) rank

( φ(w)
ψ(w)

) = q for each w ∈ %+ \D.

(iii)
( φ(w)
ψ(w)

)∗
(−J̃q)

( φ(w)
ψ(w)

) ∈ C
q×q
≥ for each w ∈ %+ \D.

We denote the set of all q × q Nevanlinna pairs in %+ by PRq(%+).

Remark 4.3 Remark A.5 shows that condition (ii) of Definition 4.2 equivalently can
be replaced by the following condition (ii’):

(ii’) det[ψ(w) − iφ(w)] 	= 0 for all w ∈ %+ \D.

Remark 4.4 Let [φ;ψ] ∈ PRq(%+). For each q × q matrix-valued function
g meromorphic in %+ such that the function det g does not vanish identically,
one can easily see that the pair [φg;ψg] belongs to PRq(%+) as well. Two
q × q Nevanlinna pairs [φ1;ψ1] and [φ2;ψ2] in %+ are said to be equivalent if
there exist a q × q matrix-valued function g meromorphic in %+ and a discrete
subset D of %+ such that φ1, ψ1, φ2, ψ2, and g are holomorphic in %+ \ D and
that det g(w) 	= 0 as well as φ2(w) = φ1(w)g(w) and ψ2(w) = ψ1(w)g(w) hold
true for each w ∈ %+ \ D. Indeed, it is readily checked that this relation defines
an equivalence relation on PRq(%+). For each [φ;ψ] ∈ PRq(%+), let 〈[φ;ψ]〉
denote the equivalence class generated by [φ;ψ]. Furthermore, if M is a non-empty
subset of PRq(%+), then let 〈M〉 := {〈[φ;ψ]〉 : [φ;ψ] ∈ M}.
Remark 4.5 Let ψ0 : %+ → Cq×q be given by ψ0(w) := Iq . Then, for each F ∈
Rq(%+), the pair [F ;ψ0] belongs to PRq(%+).

Now we state a well-known interrelation between the classes PRq(%+) and
Sq×q (%+).

Lemma 4.6

(a) For each [φ;ψ] ∈ PRq(%+), the function det(ψ − iφ) does not vanish
identically and

S := (ψ + iφ)(ψ − iφ)−1

belongs to Sq×q (%+).
(b) For each S ∈ Sq×q(%+), the pair [φ;ψ] given by φ := i(Iq − S) and

ψ := Iq + S belongs to PRq(%+), where the matrix-valued functions φ

and ψ are holomorphic in %+ and fulfil, for all w ∈ %+ the inequality
det[ψ(w) − iφ(w)] 	= 0 and the equation

S(w) = [ψ(w) + iφ(w)] [ψ(w) − iφ(w)]−1 .
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(c) Let [φ1;ψ1], [φ2;ψ2] ∈ PRq(%+). Then 〈[φ1;ψ1]〉 = 〈[φ2;ψ2]〉 if and only if
(ψ1 + iφ1)(ψ1 − iφ1)

−1 = (ψ2 + iφ2)(ψ2 − iφ2)
−1.

In view of Remarks A.6 and A.7 as well as Riemann’s theorem on removable
singularities, a detailed proof of Lemma 4.6 is given, e. g., in [33, Lem. 1.7]. Now
we want to study special subclasses of the class PRq(%+).

Notation 4.7 Let M ∈ Cq×p . We denote by P[M] the set of all pairs [φ;ψ] ∈
PRq(%+) such that PR(M)φ = φ is fulfilled.

It should be mentioned that in our generic applications of Notation 4.7 the role
of the matrix M is taken by the matrix s0 in a sequence (sj )2nj=0 ∈ H≥,e

q,2n.

Example 4.8 Let M ∈ Cq×p . Remark 4.5 shows then that the pair [φ0;ψ0] given
by φ0(w) := 0q×q and ψ0(w) := Iq for all w ∈ %+ belongs to P[M].
Remark 4.9 Let M ∈ Cq×p be such that rankM = q . Then R(M) = Cq , PR(M) =
Iq , and, consequently, P[M] = PRq(%+).

Lemma 4.10 Let M ∈ Cq×p be such that r := rankM fulfils r ≥ 1. Let
u1, u2, . . . , ur be an orthonormal basis of R(M) and let U := (u1, u2, . . . , ur ).
Then γU : PRr (%+)→ P[M] given by

γU
([φ̃; ψ̃]) := [Uφ̃U∗;Uψ̃U∗ + P[R(M)]⊥] (4.2)

is well defined and injective.

Proof We are going to apply an idea which was used in the proof of [20, Lem. 13.4].
Obviously, we have

U∗U = Ir and R(U) = R(M). (4.3)

Proposition A.8 shows that

P2
[R(M)]⊥ = P[R(M)]⊥ and P∗[R(M)]⊥ = P[R(M)]⊥ (4.4)

hold true. Obviously, the equations

PR(M) = UU∗ and P[R(M)]⊥ = Iq − UU∗ (4.5)

are valid. Thus, (4.5) and (4.3) yield

P[R(M)]⊥U = 0q×r and U∗P[R(M)]⊥ = 0r×q . (4.6)
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Now we consider an arbitrary pair [φ̃; ψ̃] ∈ PRr (%+). According to Definition 4.2,
we know that φ̃ and ψ̃ are r × r matrix-valued functions meromorphic in %+ and
that there is a discrete subset D̃ of %+ such that %+ \ D̃ ⊆ Hφ̃ ∩Hψ̃ and that

rank

(
φ̃(w)

ψ̃(w)

)
= r and

(
φ̃(w)

ψ̃(w)

)∗
(−J̃r )

(
φ̃(w)

ψ̃(w)

)
∈ Cr×r≥ (4.7)

hold true for all w ∈ %+ \ D̃. Then the matrix-valued functions

φ := Uφ̃U∗ and ψ := Uψ̃U∗ + P[R(M)]⊥ (4.8)

are meromorphic in %+ and holomorphic in %+ \ D̃. We consider an arbitrary w ∈
%+ \ D̃. Then from (4.3), (4.8), (4.7), and Lemma A.16 we get rank

( φ(w)
ψ(w)

) = q .
Using (4.8), (4.4), (4.3), and (4.6), we conclude

[ψ(w)]∗φ(w) = U [ψ̃(w)]∗U∗Uφ̃(w)U∗ + P[R(M)]⊥Uφ̃(w)U∗

= U [ψ̃(w)]∗φ̃(w)U∗,

and then

Im
([ψ(w)]∗φ(w)) = Im

(
U [ψ̃(w)]∗φ̃(w)U∗) = U Im

([ψ̃(w)]∗φ̃(w))U∗.
(4.9)

Because of Remark 4.1, from (4.9) it follows

(
φ(w)

ψ(w)

)∗
(−J̃q)

(
φ(w)

ψ(w)

)
= U

[(
φ̃(w)

ψ̃(w)

)∗
(−J̃r )

(
φ̃(w)

ψ̃(w)

)]
U∗. (4.10)

Thus, (4.7) yields that the matrix on the left-hand side of (4.10) is non-negative
Hermitian. Consequently, in view of Definition 4.2, the pair [φ;ψ] belongs
to PRq(%+). Taking into account (4.3) and (4.8), also we get PR(M)φ =
PR(U)Uφ̃U

∗ = Uφ̃U∗ = φ. Thus, from Notation 4.7 we get [φ;ψ] ∈ P[M].
It remains to check that the mapping γU is injective. Let [φ̃1; ψ̃1], [φ̃2; ψ̃2] ∈

PRr (%+) be such that γU ([φ̃1; ψ̃1]) = γU ([φ̃2; ψ̃2]). Then Uφ̃1U
∗ = Uφ̃2U

∗ and
Uψ̃1U

∗ + P[R(M)]⊥ = Uψ̃2U
∗ + P[R(M)]⊥ are valid. Using (4.3), immediately

φ̃1 = φ̃2 and ψ̃1 = ψ̃2 follow. Consequently, γU is injective. ��
Lemma 4.11 Let M ∈ Cq×p and let r := rankM be such that r ≥ 1. Let
u1, u2, . . . , ur be an orthonormal basis of R(M) and let U := (u1, u2, . . . , ur ).
Further, let [φ;ψ] ∈ P[M]. According to Notation 4.7 and Definition 4.2, let D be
an arbitrary discrete subset of %+ such that the conditions (i)–(iii) in Definition 4.2
hold true. Then the matrix-valued function B := ψ − iφ is meromorphic in %+ and
holomorphic in %+ \D and fulfils detB(w) 	= 0 for all w ∈ %+ \D. Moreover, the
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pair [φ̃; ψ̃] given by

φ̃ := U∗φB−1U and ψ̃ := U∗ψB−1U (4.11)

belongs to PRr (%+). Furthermore, the following statements are valid:

(iv) φ̃ and ψ̃ are holomorphic in %+ \D.

(v) rank
(
φ̃(w)

ψ̃(w)

)
= r for all w ∈ %+ \D.

(vi)
(
φ̃(w)

ψ̃(w)

)∗
(−J̃r )

(
φ̃(w)

ψ̃(w)

)
∈ Cr×r≥ for all w ∈ %+ \D.

(vii) The matrix-valued functions

S := Uφ̃U∗ and T := Uψ̃U∗ + P[R(M)]⊥ (4.12)

are meromorphic in %+ as well as holomorphic in %+ \D and fulfil

S(w) = Uφ̃(w)U∗ and T (w) = Uψ̃(w)U∗ + P[R(M)]⊥ (4.13)

as well as

S(w) = φ(w)[B(w)]−1 and T (w) = ψ(w)[B(w)]−1 (4.14)

for all w ∈ %+ \D. In particular,

rank

(
S(w)

T (w)

)
= q (4.15)

and

det
([S(w)]∗S(w)+ [T (w)]∗T (w)) = det

([φ̃(w)]∗φ̃(w) + [ψ̃(w)]∗ψ̃(w))
(4.16)

hold true for all w ∈ %+ \D.
(viii) The pair [S; T ] belongs to P[M] and fulfils 〈[S; T ]〉 = 〈[φ;ψ]〉.
Proof From [φ;ψ] ∈ P[M] ⊆ PRq(%+) and Definition 4.2 we see that B is
meromorphic in%+ and holomorphic in%+\D. Consider an arbitraryw ∈ %+\D.
According to Definition 4.2(i), we have then w ∈ Hφ ∩Hψ . Hence,

B(w) = ψ(w) − iφ(w). (4.17)

From Definition 4.2(ii) we get

rank

(
φ(w)

ψ(w)

)
= q. (4.18)



Parametrization of the Solution Set of a Matricial Truncated Hamburger. . . 273

In view of Definition 4.2(iii), Remark 4.1 yields

Im
([ψ(w)]∗φ(w)) ∈ C

q×q
≥ . (4.19)

Regarding Notation 4.7, we see

R(φ(w)) ⊆ R(M). (4.20)

Taking into account (4.18), (4.19), (4.20), and (4.17), from Lemma A.17 we get that
detB(w) 	= 0. Since w ∈ %+ \ D is arbitrary and D is a discrete subset of %+,
we consequently can conclude that B−1 is a matrix-valued function meromorphic
in %+ and holomorphic in %+ \ D. By virtue of Definition 4.2(i), we then see that
the following statement holds true:

(ix) φ̃ and ψ̃ given by (4.11) are meromorphic in %+ and holomorphic in %+ \D.

In particular, (iv) is proved. Furthermore,

φ̃(w) = U∗φ(w)[B(w)]−1U and ψ̃(w) = U∗ψ(w)[B(w)]−1U. (4.21)

Because of (x) the matrix-valued functions S and T given by (4.12) are meromor-
phic in %+ and holomorphic in %+\D and both equations in (4.13) hold true. Once
more using (4.18), (4.19), (4.20), (4.17), (4.21), (4.13), and Lemma A.17, we obtain

rank
(
φ̃(w)

ψ̃(w)

)
= r and

[
ψ̃(w)

]∗
φ̃(w) =

(
[B(w)]−1 U

)∗
[ψ(w)]∗ φ(w)

(
[B(w)]−1 U

)
(4.22)

as well as (4.15), (4.16), and (4.14). Sincew ∈ %+\D is arbitrary andD is a discrete
subset of %+, in particular S = φB−1 and T = ψB−1 hold true and (v) and (vii)
are proved. Taking additionally into account [φ;ψ] ∈ PRq(%+) and Remark 4.4,
therefore the pair [S; T ] belongs to PRq(%+) and fulfils 〈[S; T ]〉 = 〈[φ;ψ]〉.
Regarding [φ;ψ] ∈ P[M], also we get PR(M)S = PR(M)φB

−1 = φB−1 = S.
Thus, from Notation 4.7 we see [S; T ] ∈ P[M]. Consequently, (viii) is proved. Now
we are going to check that the pair [φ̃; ψ̃] given by (4.11) belongs to PRr (%+). We
have already observed that (x) and (v) hold true. In view of (4.22) and (4.19), we
conclude

Im
([
ψ̃(w)

]∗
φ̃(w)

)
= Im

[(
[B(w)]−1 U

)∗
[ψ(w)]∗ φ(w)

(
[B(w)]−1 U

)]

=
(

[B(w)]−1 U
)∗

Im
(
[ψ(w)]∗ φ(w)

) (
[B(w)]−1 U

)
∈ Cr×r≥ .

Since w ∈ %+ \ D is arbitrary, by virtue of Remark 4.1 then (vi) follows. In view
of (x), (v), (vi), and Definition 4.2, we succeeded in proving that the pair [φ̃; ψ̃]
belongs to PRr (%+). ��
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Now we turn to the main result of this section. It will be used in the proof of
Theorem 9.3 which is one of the central results of this paper.

Proposition 4.12 Let M ∈ Cq×p and let r := rankM . Then:

(a) If r = 0, then 〈P[M]〉 = {〈[φ0;ψ0]〉}, where φ0, ψ0 : %+ → Cq×q are defined
by φ0(w) := 0q×q and ψ0(w) := Iq , respectively.

(b) Suppose r ≥ 1. Let u1, u2, . . . , ur be an orthonormal basis of R(M) and let
U := (u1, u2, . . . , ur ). Then the mapping �U : 〈PRr (%+)〉 → 〈P[M]〉 given
by

�U
(〈[φ̃; ψ̃]〉) := 〈[Uφ̃U∗;Uψ̃U∗ + P[R(M)]⊥]〉 (4.23)

is well defined and bijective.

Proof For our proof, we use the strategy used in [20, Lem. 13.7] and [28,
Lem. 10.1.4] for an analogous result.

(a) In order to prove part (a), now we suppose that r = 0. Then M = 0q×p and
hence PR(M) = 0q×q . Example 4.8 yields [φ0;ψ0] ∈ P[M]. In particular,
{〈[φ0;ψ0]〉} ⊆ 〈P[M]〉. Let [φ;ψ] be an arbitrary q × q Nevanlinna pair
belonging to P[M], i. e., to P[0q×p]. Taking into account Notation 4.7 and
PR(M) = 0q×q , then we have φ = PR(M)φ = φ0. Because of Definition 4.2,
there exists a discrete subset D of %+ such that %+ \ D ⊆ Hφ ∩ Hψ

and that rank
( φ(w)
ψ(w)

) = q for all w ∈ %+ \ D. Hence, Remark 4.3 yields
det[ψ(w)−iφ(w)] 	= 0 for allw ∈ %+\D. Thus, φ = φ0 implies detψ(w) 	= 0
for all w ∈ %+ \ D. Setting g := ψ , then we see that g is a matrix-valued
function meromorphic in %+ with %+ \ D ⊆ Hφ ∩ Hψ ∩ Hg such that
φ(w) = φ0(w) = 0q×q = 0q×q · g(w) = φ0(w)g(w) as well as ψ(w) =
Iq · ψ(w) = ψ0(w)g(w), and det g(w) = detψ(w) 	= 0 for all w ∈ %+ \ D.
Remark 4.4 then yields 〈[φ;ψ]〉 = 〈[φ0;ψ0]〉. Thus, 〈P[M]〉 ⊆ {〈[φ0;ψ0]〉}.
Consequently, 〈P[M]〉 = {〈[φ0;ψ0]〉}. Part (a) is proved.

(b) Suppose r ≥ 1. The proof of part (b) is divided into five parts.

(I) As in the proof of Lemma 4.10 we see that all the equations in (4.3),
(4.4), (4.5), and (4.6) hold true. Lemma 4.10 yields that the mapping
γU : PRr (%+)→ P[M] given by (4.2) is well defined and injective.

(II) Our next goal is to check that �U(〈[φ̃; ψ̃]〉) is independent of the choice
of the particular representative [φ̃; ψ̃] of the equivalence class 〈[φ̃; ψ̃]〉 ∈
〈PRr (%+)〉. For this reason, we consider arbitrary pairs [φ̃1; ψ̃1], [φ̃2; ψ̃2] ∈
PRr (%+) such that 〈[φ̃1; ψ̃1]〉 = 〈[φ̃2; ψ̃2]〉. In view of Remark 4.4, then
there are an r × r matrix-valued function g̃ meromorphic in %+ and a discrete
subset D̃ of %+ such that φ̃1, ψ̃1, φ̃2, ψ̃2, and g̃ are holomorphic in %+ \ D̃
and that det g̃(w) 	= 0 as well as

φ̃2(w) = φ̃1(w)g̃(w) and ψ̃2(w) = ψ̃1(w)g̃(w) (4.24)
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hold true for all w ∈ %+ \ D̃. For each j ∈ {1, 2}, we set

φj := Uφ̃jU
∗ and ψj := Uψ̃jU

∗ + P[R(M)]⊥ . (4.25)

According to (I), the pairs [φ1;ψ1] and [φ2;ψ2] belong to P[M] and thus
to PRq(%+). Furthermore, φ1, ψ1, φ2, and ψ2 are holomorphic in %+ \ D̃.
Obviously, the function g := Ug̃U∗ + P[R(M)]⊥ is meromorphic in %+ and
holomorphic in %+ \ D̃. Moreover, for each w ∈ %+ \ D̃, from (4.25), (4.3),
(4.6), (4.24), and once more, (4.25) we get

φ1(w)g(w) = Uφ̃1(w)U
∗ [Ug̃(w)U∗ + P[R(M)]⊥

]

= Uφ̃1(w)U
∗Ug̃(w)U∗ + Uφ̃1(w)U

∗P[R(M)]⊥

= Uφ̃1(w)g̃(w)U
∗ = Uφ̃2(w)U

∗ = φ2(w)

(4.26)

and, in view of (4.4), similarly

ψ1(w)g(w) =
[
Uψ̃1(w)U

∗ + P[R(M)]⊥
] [
Ug̃(w)U∗ + P[R(M)]⊥

]

= Uψ̃1(w)U
∗Ug̃(w)U∗ + Uψ̃1(w)U

∗P[R(M)]⊥

+ P[R(M)]⊥Ug̃(w)U∗ + P2
[R(M)]⊥

= Uψ̃1(w)g̃(w)U
∗ + P2

[R(M)]⊥

= Uψ̃2(w)U
∗ + P[R(M)]⊥ = ψ2(w).

(4.27)

Now we consider an arbitrary w ∈ %+ \ D̃. Then det g̃(w) 	= 0 and,
consequently, N (g̃(w)) = {0r×1}. In order to verify det g(w) 	= 0, it is
sufficient to prove that N (g(w)) ⊆ {0q×1}. We consider an arbitrary x ∈
N (g(w)). Set y := U∗x. Then

Ug̃(w)y + P[R(M)]⊥x =
[
Ug̃(w)U∗ + P[R(M)]⊥

]
x = g(w)x = 0q×1.

(4.28)

Because of (4.3) and (4.6), from (4.28) we conclude

g̃(w)y = U∗Ug̃(w)y = U∗Ug̃(w)y + U∗P[R(M)]⊥x

= U∗ [Ug(w)y + P[R(M)]⊥x
] = U∗ · 0q×1 = 0r×1,

i. e., y ∈ N (g̃(w)). Hence, y = 0r×1. Taking into account (4.28), then also
we obtain P[R(M)]⊥x = 0q×1. Using (4.5), we infer x = UU∗x = Uy =
U · 0r×1 = 0q×1. Consequently, N (g(w)) ⊆ {0q×1}, i. e., detg(w) 	= 0.
Thus, in view of (4.26) and (4.27), we conclude that 〈[φ1;ψ1]〉 = 〈[φ2;ψ2]〉.
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(III) Summarizing parts (I) and (II), the mapping �U is well defined.
(IV) Now we check that the mapping �U is injective. For this purpose, we consider

arbitrary pairs [φ̃1; ψ̃1], [φ̃2; ψ̃2] ∈ PRr (%+) such that

�U
(〈[φ̃1; ψ̃1]〉

) = �U
(〈[φ̃2; ψ̃2]〉

)
. (4.29)

Part (I) of the proof shows that the pairs [φ1;ψ1] and [φ2;ψ2] given by
(4.25) belong to P[M] and thus to PRq(%+), whereas (4.23) and (4.29)
imply 〈[φ1;ψ1]〉 = 〈[φ2;ψ2]〉. According to Remark 4.4, then there are a
q × q matrix-valued function g which is meromorphic in %+ and a discrete
subset D of %+ such that φ1, ψ1, φ2, ψ2, and g are holomorphic in %+ \ D
and det g(w) 	= 0 as well as φ2(w) = φ1(w)g(w) and ψ2(w) = ψ1(w)g(w)

hold true for all w ∈ %+ \D. By Definition 4.2 there exist discrete subsets D̃1
and D̃2 of %+ such that φ̃1 and ψ̃1 are holomorphic in %+ \ D̃1 and φ̃2 and ψ̃2
are holomorphic in %+ \ D̃2. Let g̃ := U∗gU and let D̃ := D∪ D̃1∪ D̃2. Then
g̃ is an r × r matrix-valued function which is meromorphic in %+ and D̃ is a
discrete subset of %+ such that φ1, ψ1, φ2, ψ2, and g as well as φ̃1, ψ̃1, φ̃2,
ψ̃2, and g̃ are holomorphic in%+ \D̃. Now consider an arbitraryw ∈ %+ \D̃.
Then det g(w) 	= 0 as well as

φ2(w) = φ1(w)g(w) and ψ2(w) = ψ1(w)g(w). (4.30)

Using (4.3), (4.25), (4.30), and, once more, (4.25) and (4.3), we have

φ̃1(w)g̃(w) = U∗Uφ̃1(w)U
∗g(w)U = U∗φ1(w)g(w)U

= U∗φ2(w)U = U∗Uφ̃2(w)U
∗U = φ̃2(w)

(4.31)

and, in view of (4.6), similarly

ψ̃1(w)g̃(w) = U∗Uψ̃1(w)U
∗g(w)U = U∗ [ψ1(w)− P[R(M)]⊥

]
g(w)U

= U∗ψ1(w)g(w)U − U∗P[R(M)]⊥g(w)U = U∗ψ2(w)U

= U∗ [Uψ̃2(w)U
∗ + P[R(M)]⊥

]
U = ψ̃2(w)+ U∗P[R(M)]⊥U = ψ̃2(w).

(4.32)

We consider an arbitrary y ∈ N (g̃(w)). Setting x := Uy, we get

U∗g(w)x = U∗g(w)Uy = g̃(w)y = 0r×1. (4.33)

Because of (4.25), (4.6), and (4.4), for each j ∈ {1, 2}, we conclude

P[R(M)]⊥ψj(w) = P[R(M)]⊥
[
Uψ̃j (w)U

∗ + P[R(M)]⊥
]

= P[R(M)]⊥Uψ̃j (w)U∗ + P2
[R(M)]⊥ = P[R(M)]⊥ .

(4.34)
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Taking into account (4.34), (4.30), once more (4.34), and (4.5), we get

P[R(M)]⊥ = P[R(M)]⊥ψ2(w) = P[R(M)]⊥ψ1(w)g(w)

= P[R(M)]⊥g(w) = (Iq − UU∗)g(w) = g(w) − UU∗g(w).
(4.35)

Since (4.6) implies P[R(M)]⊥x = P[R(M)]⊥Uy = 0q×r · y = 0q×1, from
(4.35) we infer g(w)x = P[R(M)]⊥x + UU∗g(w)x = UU∗g(w)x and, in
view of (4.33), consequently, g(w)x = 0q×1. By virtue of detg(w) 	= 0, then
x = 0q×1 follows. Thus, using (4.3), we see that y = U∗Uy = U∗x =
U∗ · 0q×1 = 0r×1 is valid. Hence, N (g̃(w)) ⊆ {0r×1}. Therefore, det g̃(w) 	=
0 holds true. Summarizing the last inequality, (4.31) and (4.32), we get that
〈[φ̃1; ψ̃1]〉 = 〈[φ̃2; ψ̃2]〉 is valid. Consequently, the mapping �U is injective.

(V) Now we are going to verify that the mapping �U is surjective. For this reason,
we consider an arbitrary pair [φ;ψ] ∈ P[M]. Let D be a discrete subset of%+
such that the conditions (i)–(iii) of Definition 4.2 are fulfilled. We are looking
for a pair [φ̃; ψ̃] ∈ PRr (%+) such that �U(〈[φ̃; ψ̃]〉) = 〈[φ;ψ]〉. According
to Lemma 4.11, the pair [φ̃; ψ̃] given by (4.11) belongs to PRr (%+), the pair
[S; T ] defined by (4.12) belongs to P[M], and 〈[S; T ]〉 = 〈[φ;ψ]〉 holds true.
Taking into account (4.12), part (III) of the proof of part (b), and (4.23), then
we conclude that �U(〈[φ̃; ψ̃]〉) = 〈[S; T ]〉. Consequently, �U(〈[φ̃; ψ̃]〉) =
〈[φ;ψ]〉 follows. Thus, the mapping �U is surjective.

��

5 Some Observations on Block Hankel Matrices

In this section, we present some useful identities concerning block Hankel matrices.
This material is mostly taken from [10]. We continue to use the notation introduced
in Sect. 2. In the following, we are going to state a particular parametrization of
special sequences of complex matrices. Therefore, for a given κ ∈ N0 ∪ {∞}, we
need particular Schur complements of the matrices formed by a given sequence
(sj )

κ
j=0 of complex p × q matrices. For this reason and our further consideration, it

seems to be useful to introduce some further notation.
Let κ ∈ N0 ∪ {∞} and let (sj )κj=0 be a sequence of complex p × q matrices. For

every choice of integers m and n fulfilling 0 ≤ m ≤ n ≤ κ , let

ym,n :=
⎛
⎜⎝
sm
...

sn

⎞
⎟⎠ and zm,n := (sm, . . . , sn).



278 B. Fritzsche et al.

Let

�0 := 0p×q and �n := zn,2n−1H
+
n−1yn,2n−1 (5.1)

for each n ∈ N such that 2n − 1 ≤ κ . During our consideration, for each n ∈ N0
fulfilling 2n ≤ κ , the Schur complement

Ln := s2n −�n

will be of essential importance. For all n ∈ N0 fulfilling 2n + 1 ≤ κ , we also
introduce the block Hankel matrix Kn := (sj+k+1)

n
j,k=0. For every choice of k ∈ N

fulfilling 2k − 1 ≤ κ , we set

&k := zk,2k−1H
+
k−1Kk−1H

+
k−1yk,2k−1.

For each k ∈ N fulfilling 2k ≤ κ , let

Mk := zk,2k−1H
+
k−1yk+1,2k and Nk := zk+1,2kH

+
k−1yk,2k−1.

Let

!0 := 0p×q and !k := Mk +Nk −&k (5.2)

for all k ∈ N fulfilling 2k ≤ κ

Now we turn our attention to sequences of complex q × q matrices which are
introduced in Sect. 2 and which are defined by certain properties of block Hankel
matrices built from the given sequence.

Remark 5.1 Let κ ∈ N0 ∪ {∞} and let (sj )2κj=0 ∈ H≥
q,2κ . Then from the definition

of the set H≥
q,2κ and (2.1) we see that s∗j = sj for each j ∈ Z0,2κ and s2k ∈ C

q×q
≥

for all k ∈ Z0,κ .

Remark 5.2 Let κ ∈ N0 ∪ {∞} and let (sj )
κ
j=0 be a sequence of complex

q × q matrices. It is easy to see that (sj )κj=0 ∈ H≥,e
q,κ is valid if and only if

(sj )
k
j=0 ∈ H≥,e

q,k holds true for each k ∈ Z0,κ .

Definition 5.3 ([10, Def. 2.2]) Let n ∈ N0. A sequence (sj )2nj=0 ∈ H≥
q,2n is called

completely degenerate if Ln = 0q×q . We will write H≥,cd
q,2n for the set of all

completely degenerate sequences (sj )2nj=0.

Remark 5.4 ([10, Cor. 2.14]) H≥,cd
q,2n ⊆ H≥,e

q,2n for all n ∈ N0.

The parameters which will be introduced in the following definition play a key
role in a detailed analysis of block Hankel matrices as well as in our following
consideration.
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Definition 5.5 Let κ ∈ N0 ∪ {∞} and let (sj )κj=0 be a sequence of complex
p × q matrices. For each k ∈ N0 fulfilling 2k ≤ κ , let h2k := s2k−�k , where �k is
given in (5.1), and, for each k ∈ N0 fulfilling 2k + 1 ≤ κ , let h2k+1 := s2k+1 −!k ,
where !k is given by (5.2). Then (hj )κj=0 is called the sequence of H-parameters
of (sj )κj=0.

Now we recall characterizations of sequences belonging to H≥
q,2n, H>

q,2n, and

H≥,cd
q,2n , respectively, by their sequences of H-parameters.

Proposition 5.6 ([10, Prop. 2.30]) Let n ∈ N0 and let (sj )2nj=0 be a sequence of

complex q × q matrices with sequence of H-parameters (hj )2nj=0. Then:

(a) The sequence (sj )
2n
j=0 belongs to H≥

q,2n if and only if the following three
conditions are fulfilled:

(i) h2k ∈ C
q×q
≥ for all k ∈ Z0,n.

(ii) If n ≥ 1, then both h∗2k−1 = h2k−1 as well as R(h2k−1) ⊆ R(h2k−2) hold
true for all k ∈ Z1,n.

(iii) If n ≥ 2, then R(h2k) ⊆ R(h2k−2) for all k ∈ Z1,n−1.

(b) The sequence (sj )
2n
j=0 belongs to H>

q,2n if and only if the following two
conditions are fulfilled:

(iv) h2k ∈ C
q×q
> for all k ∈ Z0,n.

(v) If n ≥ 1, then h∗2k−1 = h2k−1 for all k ∈ Z1,n.

(c) The sequence (sj )2nj=0 belongs to H≥,cd
q,2n if and only if all the conditions (i)–(iii)

as well as h2n = 0q×q are fulfilled.

Observe that, in view of both the definition of the set H≥
q,∞ as well as

Proposition 5.6(a), the class H≥
q,∞ can be characterized using H-parameters as

well. We omit the details. Now we characterize R-non-negative definite extendable
sequences of complex q × q matrices by their sequences of H-parameters.

Proposition 5.7 ([10, Prop. 2.30(c)]) Let κ ∈ N0 ∪ {∞} and let (sj )κj=0 be a
sequence of complex q × q matrices with sequence of H-parameters (hj )κj=0. Then

(sj )
κ
j=0 belongs to H≥,e

q,κ if and only if the following three conditions are fulfilled:

(vi) h2k ∈ C
q×q
≥ for all k ∈ N0 fulfilling 2k ≤ κ .

(vii) If κ ≥ 1, then h∗2k−1 = h2k−1 as well as R(h2k−1) ⊆ R(h2k−2) hold true for
all k ∈ N fulfilling 2k − 1 ≤ κ .

(viii) If κ ≥ 2, then R(h2k) ⊆ R(h2k−2) for all k ∈ N such that 2k ≤ κ .
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6 A Schur Type Algorithm for Sequences of Complex
p × q Matrices

In this section, we recall some essential facts and prove some special technical
results on a Schur type algorithm for sequences of complex p × q matrices which
was introduced in [4] and discussed in detail in an alternative setting in [13]. The
elementary step of this algorithm is based on the use of a certain reciprocal sequence
of a finite or infinite sequence of complex p × q matrices. This notion plays a key
role for our consideration in this section. For this reason, first we recall the definition
of the reciprocal sequence.

Let κ ∈ N0 ∪ {∞} and let (sj )κj=0 be a sequence of complex p × q matrices.

Then the sequence (s�j )
κ
j=0 of complex q × p matrices given by s�0 := s+0 and, for

all k ∈ Z1,κ , recursively by

s
�
k

:= −s+0
k−1∑

j=0

sk−j s�j , (6.1)

is called the reciprocal sequence corresponding to (sj )κj=0. A detailed discussion of
reciprocal sequences is given in [14]. Here first we explain the elementary step of
the Schur type algorithm under consideration. Let κ ∈ Z2,∞ ∪ {∞} and let (sj )κj=0

be a sequence of complex p × q matrices with reciprocal sequence (s�j )
κ
j=0. Then

the sequence (s(1)j )κ−2
j=0 defined, for all j ∈ Z0,κ−2, by

s
(1)
j

:= −s0s
�
j+2s0 (6.2)

is said to be the first Schur transform of (sj )κj=0.

Remark 6.1 ([13, Rem. 8.2]) Let κ ∈ Z2,∞ ∪ {∞} and let (sj )κj=0 be a sequence of

complex p × q matrices with first Schur transform (s
(1)
j )κ−2

j=0. Then from (6.2) and

(6.1) it is obvious that, for all m ∈ Z2,κ , the sequence (s(1)j )m−2
j=0 is the first Schur

transform of (sj )mj=0.

As considered in [13, Def. 9.1] already, the repeated application of the first Schur
transform in a natural way generates a corresponding algorithm for (finite or infinite)
sequences of complex p × q matrices:

Remark 6.2 Let κ ∈ N0 ∪ {∞} and let (sj )
κ
j=0 be a sequence of complex

p × q matrices. Then the sequence (s(0)j )κj=0 given by s(0)j
:= sj for all j ∈ Z0,κ ,

is called the 0th Schur transform of (sj )κj=0. If κ ≥ 2, then the kth Schur transform
is defined recursively: For all k ∈ N fulfilling 2k ≤ κ , the first Schur transform
(s
(k)
j )κ−2k

j=0 of (s(k−1)
j )

κ−2(k−1)
j=0 is called the kth Schur transform of (sj )κj=0.
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One of the central properties of the just introduced Schur type algorithm is that
it preserves the R-non-negative definite extendability of sequences of matrices.

Proposition 6.3 ([13, Propositions 9.4 and 9.5]) Let κ ∈ N0 ∪ {∞}, let (sj )κj=0 ∈
H≥,e
q,κ , and let k ∈ N0 fulfilling 2k ≤ κ . Then the kth Schur transform (s

(k)
j )κ−2k

j=0 of

(sj )
κ
j=0 belongs to H≥,e

q,κ−2k .

The Schur type algorithm considered in [13] is an essential tool for the
parametrization of the solution set of Problem MP[R; (sj )mj=0,=] given in [15].

In order to discuss Problem MP[R; (sj )2nj=0,≤] in a similar manner, we need
some further results concerning this Schur type algorithm. We start with a slight
modification of [13, Prop. 8.23].

Lemma 6.4 Let κ ∈ Z2,∞ and let (sj )κj=0 be a sequence of complex p × q matri-

ces. Then s(1)0 = s0s
+
0 (s2 − s1s

+
0 s1)s

+
0 s0 and, in the case κ ≥ 3, for all j ∈ Z1,κ−2,

moreover,

s
(1)
j = s0s

+
0

⎡

⎣(sj+2 − sj+1s
+
0 s1)s

+
0 s0 −

j−1∑

l=0

sj−ls+0 s
(1)
l

⎤

⎦ .

Lemma 6.5 Let m ∈ Z2,∞. Further, let (sj )mj=0 and (tj )
m
j=0 be sequences of

complex p × q matrices such that sj = tj for all j ∈ Z0,m−1. Then s(1)m−2 − t
(1)
m−2 =

s0s
+
0 (sm − tm)s

+
0 s0 and, in the case m ≥ 3, for each j ∈ Z0,m−3, moreover,

s
(1)
j = t

(1)
j .

Proof First suppose m ≥ 3. From Remark 6.1 we see immediately that s(1)j = t
(1)
j

holds true for all j ∈ Z0,m−3. Hence, applying Lemma 6.4, a straightforward
calculation yields s

(1)
m−2 − t

(1)
m−2 = s0s

+
0 (sm − tm)s

+
0 s0. If m = 2, then from

Lemma 6.4 immediately we conclude s(1)0 − t
(1)
0 = s0s

+
0 (s2 − t2)s

+
0 s0. ��

Lemma 6.6 Let m ∈ Z2,∞. Let (sj )mj=0 and (tj )
m
j=0 be sequences of Hermitian

complex q × q matrices such that sj = tj for all j ∈ Z0,m−1 and that tm ≤ sm.

Then (s
(1)
j )∗ = s

(1)
j and (t

(1)
j )∗ = t

(1)
j for all j ∈ Z0,m−2 and t

(1)
m−2 ≤ s

(1)
m−2.

Moreover, if m ≥ 3, then t(1)j = s
(1)
j for all j ∈ Z0,m−3.

Proof Using (6.2) and [14, Cor. 5.17], we get

(s
(1)
j )∗ = (−s0s

�
j+2s0)

∗ = −s∗0 (s�j+2)
∗s∗0 = −s0(s

�
j+2)

∗s0 = −s0s
�
j+2s0 = s

(1)
j

and, analogously, (t(1)j )∗ = t
(1)
j for all j ∈ Z0,m−2. Lemma 6.5 yields the equation

s
(1)
m−2 − t

(1)
m−2 = s0s

+
0 (sm − tm)s

+
0 s0 and, in the case m ≥ 3, moreover s(1)j =

t
(1)
j for all j ∈ Z0,m−3. We have (s0s

+
0 )

∗ = (s+0 )∗s∗0 = (s∗0 )+s∗0 = s+0 s0. Thus,



282 B. Fritzsche et al.

s
(1)
m−2 − t

(1)
m−2 = (s0s

+
0 )(sm − tm)(s0s

+
0 )

∗ and, because of the assumption tm ≤ sm,

then t(1)m−2 ≤ s
(1)
m−2 follows. ��

Definition 6.7 ([13, Def. 10.1]) Let κ ∈ N0 ∪ {∞}, let (tj )κj=0 be a sequence
of complex p × q matrices, and let A and B be complex p × q matrices. Define
t
(−1,A,B)
0 := A, t(−1,A,B)

1 := AA+BA+A, and recursively, for each m ∈ Z2,κ+2,
moreover,

t(−1,A,B)
m :=

m−2∑

j=0

AA+tm−j−2A
+t(−1,A,B)

j + AA+BA+t(−1,A,B)
m−1 .

Then the sequence (t
(−1,A,B)
j )κ+2

j=0 is called the first inverse Schur transform
corresponding to [(tj )κj=0, A,B].

It should be mentioned that in our generic application of the construction
introduced in Definition 6.7 the role of the matrices A and B is played by the
matrices s0 and s1 which are taken from a sequence (sj )2nj=0 ∈ H≥,e

q,2n.

Lemma 6.8 Let m ∈ N0, let (sj )
m
j=0 and (tj )

m
j=0 be sequences of complex

p × q matrices which, in the case m ≥ 1, fulfil sj = tj for all j ∈ Z0,m−1.

Furthermore, let A,B ∈ Cp×q . Then s
(−1,A,B)
j = t

(−1,A,B)
j for each j ∈ Z0,m+1

and

s
(−1,A,B)
m+2 − t

(−1,A,B)
m+2 = AA+(sm − tm)A

+A. (6.3)

Proof First we consider the case m = 0. Then s
(−1,A,B)
0 = A = t

(−1,A,B)
0

and s
(−1,A,B)
1 = AA+BA+A = t

(−1,A,B)
1 . Now we assume m ≥ 1. Then

from [13, Rem. 10.2] we know that s(−1,A,B)
j = t

(−1,A,B)
j holds true for all

j ∈ Z0,m+1. Consequently, taking into account Definition 6.7, a straightforward
calculation yields that the equations s(−1,A,B)

m+2 − t
(−1,A,B)
m+2 = AA+smA+s(−1,A,B)

0 −
AA+tmA+t(−1,A,B)

0 = AA+(sm − tm)A
+A hold true. ��

Lemma 6.9 Let m ∈ N0, let (sj )mj=0 and (tj )
m
j=0 be sequences of Hermitian

complex q × q matrices such that tm ≤ sm and, in the case m ≥ 1, such that sj = tj

is valid for all j ∈ Z0,m−1. Further, let A,B ∈ C
q×q
H . For each j ∈ Z0,m+2, then

s
(−1,A,B)
j and t

(−1,A,B)
j belong to C

q×q
H as well. Moreover, s(−1,A,B)

j = t
(−1,A,B)
j

for all j ∈ Z0,m+1 and t(−1,A,B)
m+2 ≤ s

(−1,A,B)
m+2 hold true.

Proof From [13, Lem. 10.5] we know that (s
(−1,A,B)
j )∗ = s

(−1,A,B)
j and

(t
(−1,A,B)
j )∗ = t

(−1,A,B)
j for all j ∈ Z0,m+2. Lemma 6.8 provides s(−1,A,B)

j =
t
(−1,A,B)
j for each j ∈ Z0,m+1 as well as (6.3). Since (AA+)∗ = (A+)∗A∗ =



Parametrization of the Solution Set of a Matricial Truncated Hamburger. . . 283

(A∗)+A∗ = A+A is valid, consequently, the assumption tm ≤ sm yields
t
(−1,A,B)
m+2 ≤ s

(−1,A,B)
m+2 . ��

In [13, Sec. 9] and [28, Sec. 2.2], for certain classes of sequences of complex
matrices, interrelations between sequences of H-parameters and Schur transforms
are worked out (see [13, Theorems 9.14 and 9.15] and [28, Satz 2.2.70 and
Folgerung 2.2.71]). In the particular case of R-non-negative definite extendable
sequences of complex q × q matrices, this connection can be simplified:

Theorem 6.10 ([13, Thm. 9.15]) Let κ ∈ N0 ∪ {∞} and let (sj )κj=0 ∈ H≥,e
q,κ

with sequence of H-parameters (hj )κj=0. For each k ∈ N0 such that 2k ≤ κ , let

(s
(k)
j )κ−2k

j=0 be the kth Schur transform of (sj )κj=0. Then h2k = s
(k)
0 for all k ∈ N0

such that 2k ≤ κ and h2k+1 = s
(k)
1 for all k ∈ N0 fulfilling 2k + 1 ≤ κ .

Note that Theorem 6.10 is of great importance within our consideration.

Proposition 6.11 Let n ∈ N0 and let (sj )
2n
j=0 ∈ H≥,e

q,2n with sequence of

H-parameters (hj )2nj=0 and nth Schur transform (s
(n)
j )0j=0. Then h2n = s

(n)
0 and

the following statements hold true:

(a) (sj )
2n
j=0 ∈ H>

q,2n if and only if rank s(n)0 = q .

(b) (sj )
2n
j=0 ∈ H≥,cd

q,2n if and only if rank s(n)0 = 0.

Proof From Theorem 6.10 we know that h2n = s
(n)
0 holds true. Furthermore,

Proposition 5.7 shows that h2k ∈ C
q×q
≥ for all k ∈ Z0,n and that, in the case

n ≥ 1, moreover, h∗2k−1 = h2k−1 and R(h2k−1) ⊆ R(h2k−2) as well as R(h2k) ⊆
R(h2k−2) hold true for all k ∈ Z1,n.

(a) If (sj )2nj=0 belongs to H>
q,2n, then h2n ∈ C

q×q
> follows from Proposition 5.6(b)

which implies rank s(n)0 = rank h2n = q . Conversely, suppose rank s(n)0 = q .
Hence, q = rank h2n ≤ rankh2n−2 ≤ · · · ≤ rank h0 and, consequently, h2k ∈
C
q×q
> for all k ∈ Z0,n. Thus, from Proposition 5.6(b), we obtain (sj )

2n
j=0 ∈

H>
q,2n.

(b) If (sj )2nj=0 belongs to H≥,cd
q,2n , then h2n = s

(n)
0 and Proposition 5.6(c) provide

rank s(n)0 = 0. Conversely, suppose that rankh2n = rank s(n)0 = 0. From

Proposition 5.6(c) we conclude that (sj )2nj=0 belongs to H≥,cd
q,2n .

��

7 Special Matrix Polynomials

In this section, we discuss special matrix polynomials, which have been used, e. g.,
in [4, formula (4.13)] and [15, Appendix C] already. Such matrix polynomials
will be used for the description of the solution set R0,q [%+; (sj )2nj=0,≤] of
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Problem R[%+; (sj )2nj=0,≤] which was recognized as an equivalent reformulation

of the Hamburger moment problem MP[R; (sj )2nj=0,≤]. More precisely, these
matrix polynomials act as generating matrix-valued functions of the linear fractional
transformations which establish the description of the set R0,q [%+; (sj )2nj=0,≤].
Notation 7.1 Let A,B ∈ Cp×q . Then let WA,B : C → C(p+q)×(p+q) and
VA,B : C→ C(p+q)×(p+q) be defined by

WA,B(z) :=
⎛

⎝ zIp − BA+ A

−A+ Iq − A+A

⎞

⎠ , VA,B(z) :=
(

0p×p −A
A+ zIq − A+B

)
.

(7.1)

We set WA := WA,0p×q and VA := VA,0p×q (see also [4, Ch. 4]).

Remark 7.2 ([15, Rem. C.1]) Let A,B ∈ Cp×q . Then easily one can see that
WA,B and VA,B given in Notation 7.1 are matrix polynomials and, in particular,
holomorphic in C. Moreover, for all z ∈ C, we have

VA,B(z)WA,B(z) = diag
(
AA+, A+

[
A− B(Iq − A+A)

]+ z(Iq − A+A)
)
,

WA,B(z)VA,B(z) =
(
AA+ BA+A− AA+B
0q×p A+A+ z(Iq − A+A)

)
,

and, in particular,

VA(z)WA(z) = diag
(
AA+, A+A+ z(Iq − A+A)

) = WA(z)VA(z).

Lemma 7.3 Let A ∈ C
q×q
H and let P := PR(A). For all z ∈ C, then the equations

VA(z)WA(z) = diag
(
P,P + z(Iq − P)

) = WA(z)VA(z), (7.2)

[VA(z)]
∗ (−J̃q)VA(z) =

[
diag(P, Iq )

]∗
(−J̃q) · diag(P, Iq )

+ 2 Im(z) · diag(0q×q,A),

and

[WA(z)]∗ (−J̃q)WA(z)

= [
diag

(
P + z(Iq − P), Iq

)]∗
(−J̃q) · diag

(
P + z(Iq − P), Iq

)

− 2 Im(z) · diag(A+, 0q×q )

hold true, where the matrix J̃q is given by (4.1).
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Proof In view of A∗ = A we see from Remark A.13 that P = AA+ and P =
A+A. Equation (7.2) then immediately follows from Remark 7.2. By virtue of the
assumption A∗ = A, we have (A+)∗ = (A∗)+ = A+. From Proposition A.8 we
know P 2 = P . Thus, we get

[VA(z)]
∗ (−J̃q)VA(z) =

(
0q×q A+
−A zIq

)(
iA+ izIq
0q×q iA

)

=
⎛

⎝ 0q×q iA+A
−iAA+ −i(z− z)A

⎞

⎠

= [
diag(P, Iq)

]∗
(−J̃q) · diag(P, Iq)+ 2 Im(z) · diag(0q×q,A)

for all z ∈ C. Analogously, additionally using AA+A = A, for every choice of
z ∈ C, also we have

[WA(z)]∗ (−J̃q)WA(z) =
⎛

⎝ zIq −A+
A Iq − AA+

⎞

⎠
(
−iA+ i(Iq − A+A)
−izIq −iA

)

=
(

i(z− z)A+ iP + iz(Iq − P)

−iz(Iq − P)− iP 0q×q

)

= [
diag

(
P + z(Iq − P), Iq

)]∗
(−J̃q) · diag

(
P + z(Iq − P), Iq

)

− 2 Im(z) · diag(A+, 0q×q).

��
For the following notation, we use Notation 7.1 and the definitions given in

Remark 6.2 in order to introduce matrix polynomials which also have been used
in [15, Sec. 11] already.

Notation 7.4 (see [15, p. 267]) Let κ ∈ N0 ∪ {∞} and let (sj )κj=0 be a sequence of

complex p × q matrices. For all m ∈ N0 such that 2m ≤ κ , let (s(m)j )κ−2m
j=0 be the

mth Schur transform of (sj )κj=0. In view of Notation 7.1, for all n ∈ N0 fulfilling
2n ≤ κ , let

V
((sj )

2n
j=0) :=

⎧
⎨

⎩
V
s
(0)
0
, if n = 0

V
s
(0)
0 ,s

(0)
1
V
s
(1)
0 ,s

(1)
1
· · ·V

s
(n−1)
0 ,s

(n−1)
1

V
s
(n)
0
, if n ≥ 1

(7.3)

and, for all n ∈ N0 fulfilling 2n+ 1 ≤ κ , let

V((sj )
2n+1
j=0 ) := V

s
(0)
0 ,s

(0)
1
V
s
(1)
0 ,s

(1)
1
· · ·V

s
(n)
0 ,s

(n)
1
. (7.4)
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Furthermore, for all m ∈ Z0,κ , let

V
((sj )

m
j=0) =

(
v
((sj )

m
j=0)

lk

)2

l,k=1
(7.5)

be the block representation of V((sj )
m
j=0) with q × q block v

((sj )
m
j=0)

11 .

Now we consider matrix polynomials which are used in [15, p. 268] already.

Notation 7.5 Let κ ∈ N0 ∪ {∞} and let (sj )κj=0 be a sequence of complex

p × q matrices. For all m ∈ N0 such that 2m ≤ κ , let (s(m)j )κ−2m
j=0 be the mth Schur

transform of (sj )κj=0. In view of Notation 7.1, for all n ∈ N0 fulfilling 2n ≤ κ , let

W
((sj )

2n
j=0) :=

⎧
⎨

⎩
W
s
(0)
0
, if n = 0

W
s
(n)
0
W
s
(n−1)
0 ,s

(n−1)
1

· · ·W
s
(1)
0 ,s

(1)
1
W
s
(0)
0 ,s

(0)
1
, if n ≥ 1

(7.6)

and, for all n ∈ N0 fulfilling 2n+ 1 ≤ κ , let

W
((sj )

2n+1
j=0 ) := W

s
(n)
0 ,s

(n)
1
· · ·W

s
(1)
0 ,s

(1)
1
W
s
(0)
0 ,s

(0)
1
. (7.7)

Recall that, for each subspace U of Cq , the notation PU refers to the orthopro-
jection matrix onto U . Let κ ∈ N0 ∪ {∞} and let (sj )κj=0 ∈ H≥,e

q,κ with sequence of
H-parameters (hj )κj=0. For each n ∈ N0 such that 2n ≤ κ , let

Pn,−1 := Iq , Pn,l := PR(h2l ) for each l ∈ Z0,n, and Pn,n+1 := 0q×q . (7.8)

Lemma 7.6 Let κ ∈ N ∪ {∞} and let (sj )κj=0 ∈ H≥,e
q,κ . For each n ∈ N0 such that

2n + 1 ≤ κ , then the matrix-valued functions V((sj )
2n+1
j=0 ) and W((sj )

2n+1
j=0 ) given by

Notations 7.4 and 7.5, respectively, fulfil, for all z ∈ C, the equation

W
((sj )

2n+1
j=0 )

(z)V
((sj )

2n+1
j=0 )

(z) = diag

(
Pn,n,

n+1∑

k=0

zk(Pn,n−k − Pn,n−k+1)

)
, (7.9)

where, for each l ∈ Z−1,n+1, the matrix Pn,l is given by (7.8).

Proof From Theorem 6.10 we obtain

h2l = s
(l)
0 and h2l+1 = s

(l)
1 for all l ∈ N0 with 2l + 1 ≤ κ. (7.10)

By virtue of Proposition 5.7 we infer

h∗j = hj for all j ∈ Z0,κ . (7.11)
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Thus, Remark A.2 yields

h+j hj = hjh
+
j for all j ∈ Z0,κ . (7.12)

In view of (7.8) and Remark A.13 we have

Pn,l = h2lh
+
2l for all n ∈ N0 with 2n ≤ κ and all l ∈ Z0,n. (7.13)

Proposition 5.7 shows furthermore R(h2l+1) ⊆ R(h2l ) for all l ∈ N0 with 2l+ 1 ≤
κ . Using (7.11) and Remark A.12, then N (h2l ) ⊆ N (h2l+1) follows for all l ∈ N0
with 2l + 1 ≤ κ . Hence, the application of Lemma A.14 yields

h2lh
+
2lh2l+1 = h2l+1 and h2l+1h

+
2lh2l = h2l+1 for all l ∈ N0 with 2l + 1 ≤ κ.

(7.14)

Consider an arbitrary z ∈ C. In view of (7.7), (7.4), (7.10), Remark 7.2, (7.14),
(7.12), (7.13), and (7.8), then we have

W
((sj )

1
j=0)(z)V

((sj )
1
j=0)(z) = W

s
(0)
0 ,s

(0)
1
(z)V

s
(0)
0 ,s

(0)
1
(z) = Wh0,h1(z)Vh0,h1(z)

=
⎛

⎝h0h
+
0 h1h

+
0 h0 − h0h

+
0 h1

0q×q h+0 h0 + z(Iq − h+0 h0)

⎞

⎠ = diag
(
h0h

+
0 , h0h

+
0 + z(Iq − h0h

+
0 )

)

= diag

(
P0,0,

0+1∑

k=0

zk(P0,0−k − P0,0−k+1)

)
.

In particular, the assertion is proved in the case κ ≤ 2. Now assume κ ≥ 3. Then
we have already shown that there is an m ∈ N fulfilling 2m + 1 ≤ κ such that
(7.9) holds true for each n ∈ Z0,m−1. We are going to prove that (7.9) is true in the
case n = m as well. Proposition 5.7 shows R(h2k) ⊆ R(h2k−2) for all k ∈ N with
2k ≤ κ . In particular, R(h2m) ⊆ R(h2l ) for all l ∈ Z0,m−1. In view of (7.11), we
furthermore obtain R(h+2m) = R(h∗2m) = R(h2m). Taking additionally into account
(7.8), we hence can infer

Pm−1,lh2m = h2m for each l ∈ Z−1,m−1 and Pm−1,mh2m = 0q×q . (7.15)

as well as Pm−1,lh
+
2m = h+2m for all l ∈ Z−1,m−1 and Pm−1,mh

+
2m = 0q×q . Thus, we

have
[

m∑

k=0

zk(Pm−1,m−1−k − Pm−1,m−k)
]
h+2m = h+2m. (7.16)
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From (7.15) we conclude

Pm−1,m−1(−h2m) = −h2m. (7.17)

Due to (7.16), we have

[
m∑

k=0

zk(Pm−1,m−1−k − Pm−1,m−k)
]
(zIq − h+2mh2m+1)

=
[

m∑

k=0

zk+1(Pm−1,m−1−k − Pm−1,m−k)
]
− h+2mh2m+1. (7.18)

Combining (7.16), (7.17), and (7.18) then yields

diag

(
Pm−1,m−1,

m∑

k=0

zk(Pm−1,m−1−k − Pm−1,m−k)
)

×
(

0q×q −h2m

h+2m zIq − h+2mh2m+1

)

=
(

0q×q −h2m

h+2m [∑m
k=0 z

k+1(Pm−1,m−1−k − Pm−1,m−k)] − h+2mh2m+1

)
. (7.19)

In view of (7.14), we get

(zIq−h2m+1h
+
2m)(−h2m) = −zh2m+h2m+1h

+
2mh2m = −zh2m+h2m+1. (7.20)

By virtue of (7.8) and Proposition A.8 we have P ∗
m−1,l = Pm−1,l for all l ∈ Z−1,m.

Taking additionally into account (7.11), we can infer from (7.15) then h2mPm−1,l =
h2m for all l ∈ Z−1,m−1 and h2mPm−1,m = 0q×q . Consequently, we obtain

h2m

m∑

k=0

zk+1(Pm−1,m−1−k − Pm−1,m−k) = zh2m. (7.21)

From (7.21) and (7.14) we get

h2m

([
m∑

k=0

zk+1(Pm−1,m−1−k − Pm−1,m−k)
]
− h+2mh2m+1

)
= zh2m − h2m+1.

(7.22)
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Moreover, the combination of (7.12), (7.13), and (7.8) provides

−h+2m(−h2m) = h2mh
+
2m = Pm,m = Pm,m − Pm,m+1

= z0(Pm,m−0 − Pm,m−0+1).
(7.23)

By virtue of (7.8) we see Pm−1,l = Pm,l for all l ∈ Z−1,m−1. Consequently,
additionally using (7.21), (7.11), (7.8), and (7.13), then

(Iq − h+2mh2m)

([
m∑

k=0

zk+1(Pm−1,m−1−k − Pm−1,m−k)
]
− h+2mh2m+1

)

=
m∑

k=0

zk+1(Pm−1,m−1−k − Pm−1,m−k)− zh+2mh2m

=
m+1∑

j=1

zj (Pm−1,m−j − Pm−1,m−j+1)− zh2mh
+
2m

= zPm,m−1 +
m+1∑

j=2

zj (Pm,m−j − Pm,m−j+1)− zPm,m−1+1

=
m+1∑

k=1

zk(Pm,m−k − Pm,m−k+1)

(7.24)

is true. Using (7.13), (7.20), (7.22), (7.23), and (7.24) delivers

⎛

⎝ zIq − h2m+1h
+
2m h2m

−h+2m Iq − h+2mh2m

⎞

⎠

×
(

0q×q −h2m

h+2m [∑m
k=0 z

k+1(Pm−1,m−1−k − Pm−1,m−k)] − h+2mh2m+1

)

= diag

(
Pm,m,

m+1∑

k=0

zk(Pm,m−k − Pm,m−k+1)

)
. (7.25)
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Finally, due to (7.7), (7.4), (7.10), Notation 7.1, (7.9) with n = m − 1 as well as
(7.19) and (7.25), then

W((sj )
2m+1
j=0 )

(z)V((sj )
2m+1
j=0 )

(z)

= W
s
(m)
0 ,s

(m)
1
(z)W

((sj )
2m−1
j=0 )

(z)V
((sj )

2m−1
j=0 )

(z)V
s
(m)
0 ,s

(m)
1
(z)

= Wh2m,h2m+1(z)W
((sj )

2m−1
j=0 )

(z)V
((sj )

2m−1
j=0 )

(z)Vh2m,h2m+1(z)

=
⎛

⎝ zIq − h2m+1h
+
2m h2m

−h+2m Iq − h+2mh2m

⎞

⎠

× diag

(
Pm−1,m−1,

m∑

k=0

zk(Pm−1,m−1−k − Pm−1,m−k)
)

×
(

0q×q −h2m

h+2m zIq − h+2mh2m+1

)

= diag

(
Pm,m,

m+1∑

k=0

zk(Pm,m−k − Pm,m−k+1)

)
,

which proves (7.9) in the case n = m. Consequently, the assertion is checked
inductively. ��

In order to prove a result analogous to Lemma 7.6, where an odd number of data
is given, in the case of an odd number of prescribed data, we recall the following:

Remark 7.7 Let n ∈ N0 and let (sj )2nj=0 ∈ H≥,e
q,2n. Furthermore, let s2n+1 :=

!n, where !n is given by (5.2). Regarding Definition 5.5, Proposition 5.7, and

Theorem 6.10 one can check that (sj )
2n+1
j=0 ∈ H≥,e

q,2n+1 and the equationsV((sj )
2n
j=0) =

V((sj )
2n+1
j=0 ) and W((sj )

2n
j=0) =W((sj )

2n+1
j=0 ) hold true.

Lemma 7.8 Let κ ∈ N0 ∪ {∞} and let (sj )κj=0 ∈ H≥,e
q,κ . For each n ∈ N0 such

that 2n ≤ κ , then the matrix-valued functions V((sj )
2n
j=0) and W

((sj )
2n
j=0) defined by

Notations 7.4 and 7.5, respectively, fulfil, for all z ∈ C, the equation

W((sj )
2n
j=0)(z)V((sj )

2n
j=0)(z) = diag

(
Pn,n,

n+1∑

k=0

zk(Pn,n−k − Pn,n−k+1)

)
, (7.26)

where, for each l ∈ Z−1,n+1, the matrix Pn,l is given by (7.8).

Proof Use Remark 7.7 and Lemma 7.6. ��
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8 An Essential Step to a Parametrization of the Solution Set
R0,q[�+; (sj )2n

j=0,≤] of the Truncated Matricial
Hamburger Moment Problem

In this section, we state some results which lead to a parametrization of the solution
set of the truncated matricial Hamburger moment problem MP[R; (sj )2nj=0,≤],
where the parameters still depend on the given data. This parametrization is done
by using a further special algorithm of Schur type. While doing so, we mainly refer
to the representations given in [13, 15]. Moreover, we draw the reader’s attention to
Theorems 2.2 and 2.4 as well as the reformulation of Problem MP[R; (sj )2nj=0,≤]
in Remark 3.4. In particular, we are going to use the results stated in Sect. 6.

Notation 8.1 ([15, Sec. 8]) Let G be a non-empty subset of C, let F : G → Cp×q
be a matrix-valued function, and let A and B be complex p × q matrices. Then let
F (+;A,B) : G → Cp×q and F (−;A,B) : G → Cp×q be defined by F (+;A,B)(z) :=
−A(zIq +[F(z)]+A)+B and F (−;A,B)(z) := −A(zIq +A+[F(z)−B])+, respec-
tively. The functions F (+;A,B) and F (−;A,B) are called the (A,B)-Schur transform
of F and the inverse (A,B)-Schur transform of F , respectively. Abbreviating, we
set F (+;A) := F (+;A,0p×q) and F (−;A) := F (−;A,0p×q).

Proposition 8.2 Let n ∈ N, let (sj )2nj=0 ∈ H≥
q,2n, and let F∈R0,q [%+; (sj )2nj=0,≤].

Then F (+;s0,s1) ∈ R0,q [%+; (s(1)j )
2(n−1)
j=0 ,≤], where (s(1)j )

2(n−1)
j=0 is the first Schur

transform of (sj )2nj=0.

Proof Since (sj )2nj=0 belongs to H≥
q,2n, from Remark 5.1 we know that s∗j = sj for

all j ∈ Z0,2n. Since F belongs to R0,q [%+; (sj )2nj=0,≤], the R-Stieltjes measure

σF of F belongs to Mq
≥[R; (sj )2nj=0,≤]. In particular, σF ∈ Mq

≥,2n(R). Setting

tj := ∫
R
xjσF (dx) for each j ∈ Z0,2n, then Remark 2.1 yields t∗j = tj for all j ∈

Z0,2n, and we have tj = sj for all j ∈ Z0,2n−1 and t2n ≤ s2n. Lemma 6.6 provides

t
(1)
2n−2 ≤ s

(1)
2n−2 and, in the case n ≥ 2, moreover, t(1)j = s

(1)
j for all j ∈ Z0,2n−3.

Since σF belongs to Mq
≥[R; (tj )2nj=0,=], Theorem 2.5 provides (tj )2nj=0 ∈ H≥,e

q,2n

and the definition of the set R0,q [%+; (tj )2nj=0,=] given in Remark 3.4 shows that F

belongs to R0,q[%+; (tj )2nj=0,=]. Thus, from [15, Thm. 9.7] we obtain F (+;s0,s1) ∈
R0,q [%+; (t(1)j )

2(n−1)
j=0 ,=]. Thus, F (+;s0,s1) ∈ R0,q [%+; (s(1)j )

2(n−1)
j=0 ,≤] follows.

��
Definition 8.3 (cf. [14, Def. 4.3]) Let κ ∈ N0 ∪ {∞} and let (sj )κj=0 be a sequence
of complex p × q matrices. Then one says that (sj )κj=0 is first term dominated, if⋃κ

j=0 R(sj ) ⊆ R(s0) and N (s0) ⊆ ⋂κ
j=0 N (sj ) are fulfilled. The set of all first

term dominated sequences (sj )κj=0 of complex p × q matrices will be denoted by
Dp×q,κ .

Proposition 8.4 ([13, Prop. 4.24]) H≥,e
q,κ ⊆ Dq×q,κ for all κ ∈ N0 ∪ {∞}.
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Proposition 8.5 Let n ∈ N, let (sj )2nj=0 ∈ H≥
q,2n ∩ Dq×q,2n, and let G ∈

R0,q [%+; (s(1)j )
2(n−1)
j=0 ,≤]. Then G(−;s0,s1) belongs to R0,q [%+; (sj )2nj=0,≤].

Proof Since (sj )2nj=0 belongs to H≥
q,2n, Remark 5.1 shows that

s2k ∈ C
q×q
≥ for all k ∈ Z0,n and s∗j = sj for all j ∈ Z0,2n. (8.1)

Since G belongs to R0,q [%+; (s(1)j )
2(n−1)
j=0 ,≤], we get that G ∈ R0,q(%+) and

that the R-Stieltjes measure σG of G belongs to Mq
≥[R; (s(1)j )

2(n−1)
j=0 ,≤] and, in

particular, to Mq
≥,2n−2(R). In view of Remark 2.1, for each j ∈ Z0,2n−2, the matrix

tj := ∫
R
xjσG(dx) is Hermitian. Then σG belongs to Mq

≥[R; (tj )2n−2
j=0 ,=] and,

moreover,

t2n−2 ≤ s
(1)
2n−2 and tj = s

(1)
j for each j ∈ Z0,2n−3. (8.2)

Because of Mq
≥[R; (tj )2n−2

j=0 ,=] 	= ∅, Theorem 2.5 yields (tj )
2n−2
j=0 ∈ H≥,e

q,2n−2.
Setting

rj := t
(−1,s0,s1)
j for all j ∈ Z0,2n, (8.3)

from (8.1) and [13, Cor. 10.8] we conclude (rj )2nj=0 ∈ H≥,e
q,2n. If n ≥ 2, then, for

every choice of j ∈ Z0,2n−3, from (8.2) and (6.2) we have

R(tj ) = R(s(1)j ) = R(−s0s
�
j+2s0) ⊆ R(s0) (8.4)

and

N (s0) ⊆ N (−s0s
�
j+2s0) = N (s

(1)
j ) = N (tj ). (8.5)

From (tj )
2n−2
j=0 ∈ H≥,e

q,2n−2 and Remarks 2.3 and 5.1 we obtain t2n−2 ∈ C
q×q
≥ . Thus,

together with (8.2) it follows 0q×q ≤ t2n−2 ≤ s
(1)
2n−2 which, in view of Remark A.1,

implies R(t2n−2) ⊆ R(s(1)2n−2) and N (s
(1)
2n−2) ⊆ N (t2n−2). Therefore, (6.2) yields

R(t2n−2) ⊆ R(−s0s
�
2ns0) ⊆ R(s0) and N (s0) ⊆ N (−s0s

�
2ns0) ⊆ N (t2n−2).

(8.6)

Using (8.3), (8.4), (8.5), (8.6), and [13, Lem. 10.6(b)], we get r
(1)
j =

(t
(−1,s0,s1)
j )(1) = tj for all j ∈ Z0,2n−2. Therefore, since σG belongs to

Mq
≥[R; (tj )2n−2

j=0 ,=], we see that G ∈ R0,q [%+; (r(1)j )
2(n−1)
j=0 ,=]. Consequently,

in view of (rj )
2n
j=0 ∈ H≥,e

q,2n and [15, Thm. 10.9], we get G(−;r0,r1) ∈
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R0,q [%+; (rj )2nj=0,=]. From (8.3), Definition 6.7, the assumption (sj )
2n
j=0 ∈

Dq×q,2n and Lemma A.14 we conclude r0 = t
(−1,s0,s1)
0 = s0 and r1 = t

(−1,s0,s1)
1 =

s0s
+
0 s1s

+
0 s0 = s1. Thus,

G(−;s0,s1) ∈ R0,q [%+; (rj )2nj=0,=]. (8.7)

For each j ∈ Z0,2n−2, let uj := s
(1)
j . Furthermore, let vj := u

(−1,s0,s1)
j for all

j ∈ Z0,2n. Since (sj )2nj=0 belongs to H≥
q,2n, the application of [13, Prop. 8.12] yields

(s
(1)
j )2n−2

j=0 ∈ H≥
q,2n−2. In particular, Remark 5.1 then provides u∗j = (s

(1)
j )∗ =

s
(1)
j = uj for all j ∈ Z0,2n−2. Taking into account (8.3) as well as u∗j = uj and
t∗j = tj for all j ∈ Z0,2n−2 as well as (8.2), the application of Lemma 6.9 to the

sequences (uj )
2n−2
j=0 and (tj )

2n−2
j=0 yields

r2n = t
(−1,s0,s1)
2n ≤ u

(−1,s0,s1)
2n = v2n (8.8)

and rj = t
(−1,s0,s1)
j = u

(−1,s0,s1)
j = vj for all j ∈ Z0,2n−1. Since (sj )2nj=0 belongs

to Dq×q,2n, from [13, Thm. 10.13], for every choice of j ∈ Z0,2n we conclude

vj = u
(−1,s0,s1)
j = (s

(1)
j )(−1,s0,s1) = sj . Thus, in view of (8.7) and (8.8), the proof is

complete. ��
Now we are going to study ProblemR[%+; (sj )2nj=0,≤] in the special case n = 0.

In order to realize this goal we need some preparation.

Lemma 8.6 Let s0 ∈ C
q×q
≥ and let F ∈ R0,q [%+; (sj )0j=0,≤]. For all z ∈ %+,

then 1
Im(z) ImF(z) ≥ [F(z)]∗s+0 F(z).

Proof We apply an idea used in [20, proof of Lem. 11.1]. Let z ∈ %+. Because of
F ∈ R0,q [%+; (sj )0j=0,≤], we have F ∈ R0,q(%+) and the R-Stieltjes measure

σF of F belongs to Mq
≥[R; (sj )0j=0,≤]. In particular, gz : R → C defined by

gz(x) := (x − z)−1 belongs to L1(R;BR, σF ;C) and F(z) = ∫
R
gzdσF holds

true. Using [12, Rem. B.4], we get Im gz ∈ L1(R;BR, σF ;C) and ImF(z) =∫
R

Im gzdσF . Obviously, Im gz(x) = Im(z)|gz(x)|2 is valid for all x ∈ R. Hence,
|gz|2 ∈ L1(R;BR, σF ;C) and ImF(z) = Im(z)

∫
R
|gz|2dσF . From Lemma B.1

and [20, Cor. B.6] then

(∫

R

gzdσF

)∗
[σF (R)]+

(∫

R

gzdσF

)
≤

∫

R

|gz|2dσF (8.9)

follows. Both the matrices B := σF (R) and s0 are non-negative Hermitian and, in
particular, Hermitian. Because of σF ∈ Mq

≥[R; (sj )0j=0,≤], we have s0 ≥ s
(σF )
0 =

B ≥ 0q×q . By virtue of [15, Lem. A.7], then

B+ ≥ B+Bs+0 BB
+ ≥ 0q×q (8.10)
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follows. Remark A.2 shows that B+B = BB+ = (BB+)∗. From Lemma 3.5 we
know that R(F (z)) = R(B). Thus, Lemma A.14(a) provides BB+F(z) = F(z).
Consequently, because of (8.9) and (8.10), then we have

1

Im(z)
ImF(z) =

∫

R

|gz|2dσF ≥
(∫

R

gzdσF

)∗
[σF (R)]+

(∫

R

gzdσF

)

= [F(z)]∗ B+F(z) ≥ [F(z)]∗ B+Bs+0 BB
+F(z)

= [
BB+F(z)

]∗
s+0 BB

+F(z) = [F(z)]∗ s+0 F(z).

��
The next two propositions deal with Problem R[%+; (sj )2nj=0,≤], described in

Sect. 3, for the special case n = 0.

Proposition 8.7 Let s0 ∈ C
q×q
≥ and let F ∈ R0,q [%+; (sj )0j=0,≤]. Let Ws0 : C→

C2q×2q be given by Notation 7.1. Then:

(a) The matrix-valued functions φ,ψ : %+ → Cq×q defined by

φ(z) := (Iq, 0q×q)Ws0(z)

(
F(z)

Iq

)
and ψ(z) := (0q×q, Iq )Ws0(z)

(
F(z)

Iq

)

(8.11)

are holomorphic in %+ and fulfil, for all z ∈ %+, the four conditions

rank

(
φ(z)

ψ(z)

)
= q, (8.12)

(
φ(z)

ψ(z)

)∗
(−J̃q)

(
φ(z)

ψ(z)

)
∈ C

q×q
≥ , (8.13)

R(φ(z)) ⊆ R(s0), and det[s+0 φ(z)+zψ(z)] 	= 0. In particular, [φ;ψ] ∈ P[s0].
(b) For each z ∈ %+, the matrix-valued function F admits the representation

F(z) = −s0ψ(z)
[
s+0 φ(z)+ zψ(z)

]−1
.

Proof Let P := PR(s0). Since the matrix s0 is Hermitian, we have P = PR(s∗0 ).

Because of F ∈ R0,q[%+; (sj )0j=0,≤], the matrix-valued function F belongs to

R0,q(%+) and the R-Stieltjes measure σF of F belongs to Mq
≥[R; (sj )0j=0,≤]. In

particular,

0q×q ≤ σF (R) =
∫

R

x0σF (dx) ≤ s0. (8.14)
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Since Ws0 is a matrix polynomial and because F belongs to R0,q(%+), the matrix-
valued functions φ and ψ are holomorphic in %+. Consider an arbitrary z ∈ %+.
By virtue of (8.11), we conclude

Ws0(z)

(
F(z)

Iq

)
=

(
φ(z)

ψ(z)

)
. (8.15)

According to Lemma 3.5, we have R(F (z)) = R(σF (R)) and N (F (z)) =
N (σF (R)). Consequently, additionally taking into account (8.14), from Remark A.1
we get

R(F (z)) ⊆ R(s0) and N (s0) ⊆ N (F (z)).

Hence, Lemma A.14 as well as P = PR(s∗0 ) and Remark A.13 yield

PF(z) = F(z) and F(z)P = F(z) (8.16)

and, consequently,

[
P + z(Iq − P)

]
F(z) = PF(z)+ z [F(z)− PF(z)] = F(z). (8.17)

Using P 2 = P , we conclude

[
P + z(Iq − P)

] [
P + 1

z
(Iq − P)

]

= P 2 + 1

z
(P − P 2)+ z(P − P 2)+ (Iq − P − P + P 2) = Iq .

Consequently, we have

det
[
P + z(Iq − P)

] 	= 0 and
[
P + z(Iq − P)

]−1 = P + 1

z
(Iq − P).

(8.18)

From Notation 7.1 and Lemma 7.3 also we obtain

(s+0 , zIq)Ws0(z) = (0q×q, Iq )Vs0(z)Ws0(z)

= (0q×q, Iq ) · diag
(
P,P + z(Iq − P)

)

= (
0q×q, P + z(Iq − P)

)
.

(8.19)
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Taking into account (8.18), (8.19), and (8.15), then

q = rank
(
P + z(Iq − P)

) = rank

((
0q×q, P + z(Iq − P)

) (F(z)
Iq

))

= rank

(
(s+0 , zIq)Ws0(z)

(
F(z)

Iq

))
= rank

(
(s+0 , zIq)

(
φ(z)

ψ(z)

))

≤ rank

(
φ(z)

ψ(z)

)
≤ q

and, consequently, (8.12) follow. Using (8.15), Lemma 7.3, (8.17), Remark 4.1, the
assumption Im(z) ∈ (0,∞), and Lemma 8.6, we infer

(
φ(z)

ψ(z)

)∗
(−J̃q )

(
φ(z)

ψ(z)

)
=

(
F(z)

Iq

)∗ [
Ws0(z)

]∗
(−J̃q )Ws0(z)

(
F(z)

Iq

)

=
(
F(z)

Iq

)∗ { [
diag

(
P + z(Iq − P), Iq

)]∗
(−J̃q ) · diag

(
P + z(Iq − P), Iq

)

− 2 Im(z) · diag(s+0 , 0q×q )
}(

F(z)

Iq

)

=
(
F(z)

Iq

)∗ [
diag

(
P + z(Iq − P), Iq

)]∗
(−J̃q ) diag

(
P + z(Iq − P), Iq

)
(
F(z)

Iq

)

− 2 Im(z)

(
F(z)

Iq

)∗
· diag(s+0 , 0q×q ) ·

(
F(z)

Iq

)

=
(
[P + z(Iq − P)]F(z)

Iq

)∗
(−J̃q )

(
[P + z(Iq − P)]F(z)

Iq

)

− 2 Im(z)

(
F(z)

Iq

)∗
diag(s+0 , 0q×q )

(
F(z)

Iq

)

=
(
F(z)

Iq

)∗
(−J̃q )

(
F(z)

Iq

)
− 2 Im(z) [F(z)]∗ s+0 F(z)

= 2 Im(z)
(

1

Im(z)
Im [F(z)]− [F(z)]∗ s+0 F(z)

)
∈ C

q×q
≥ .



Parametrization of the Solution Set of a Matricial Truncated Hamburger. . . 297

Hence, (8.13) is proved. Since z ∈ %+ was arbitrary, in particular, from Defini-
tion 4.2, (8.12), and (8.13) we see that the pair [φ;ψ] belongs to PRq(%+). From
(8.11) and Notation 7.1 we obtain that

φ(z) = (Iq , 0q×q)Ws0(z)

(
F(z)

Iq

)
= (zIq, s0)

(
F(z)

Iq

)
= zF (z)+ s0.

Since z ∈ %+ was arbitrary, because of (8.16), consequently, Pφ = φ. According
to Notation 4.7 then [φ;ψ] ∈ P[s0]. Using Notation 7.1, (8.15), Lemma 7.3, and
(8.16), we conclude

( −s0ψ(z)

s+0 φ(z)+ zψ(z)

)
=

(
0q×q −s0

s+0 zIq

)(
φ(z)

ψ(z)

)
= Vs0(z)

(
φ(z)

ψ(z)

)

= Vs0(z)Ws0(z)

(
F(z)

Iq

)
= diag

(
P,P + z(Iq − P)

) (F(z)
Iq

)

=
(

PF(z)

P + z(Iq − P)

)
=

(
F(z)

P + z(Iq − P)

)

and, in particular, −s0ψ(z) = F(z) as well as s+0 φ(z) + zψ(z) = P + z(Iq − P).
Thus, (8.18) implies det[s+0 φ(z) + zψ(z)] 	= 0 and [s+0 φ(z) + zψ(z)]−1 = P +
1
z
(Iq − P). In particular, the proof of (a) is complete. Consequently, in view of

−s0ψ(z) = F(z), (8.16), P 2 = P , and once more (8.16), we get

−s0ψ(z)
[
s+0 φ(z)+ zψ(z)

]−1 = F(z)

[
P + 1

z
(Iq − P)

]

= F(z)P

[
P + 1

z
(Iq − P)

]

= F(z)

[
P 2 + 1

z
(P − P 2)

]
= F(z)P = F(z).

The proof of (b) is complete. ��
Proposition 8.8 Let s0 ∈ C

q×q
≥ and let [φ;ψ] ∈ P[s0]. Regarding Notation 4.7

and Definition 4.2, let D be a discrete subset of %+ such that the conditions (i)–(iii)
in Definition 4.2 are fulfilled. Let Vs0 : C → C2q×2q be given by Notation 7.1 and
let V be the restriction of Vs0 onto %+. Furthermore, let

X := (Iq , 0q×q)V
(
φ

ψ

)
and Y := (0q×q, Iq )V

(
φ

ψ

)
. (8.20)
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Then the following four conditions hold true:

(i) The matrix-valued functions X and Y are meromorphic in %+ and holomor-
phic in %+ \D.

(ii) detY (z) 	= 0 for all z ∈ %+ \D.

(iii) rank
(
X(z)
Y (z)

)
= q for all z ∈ %+ \D.

(iv)
(
X(z)
Y (z)

)∗
(−J̃q)

(
X(z)
Y (z)

)
∈ C

q×q
≥ for all z ∈ %+ \D.

In particular, the pair [X; Y ] belongs to PRq(%+). Moreover, the matrix-valued
function F := XY−1 belongs to R0,q [%+; (sj )0j=0,≤].
Proof Let P := PR(s0). Since [φ;ψ] belongs to P[s0], from Notation 4.7
we see that [φ;ψ] ∈ PRq(%+) and Pφ = φ hold true. Thus, in view of
Definition 4.2, the matrix-valued functions φ and ψ are meromorphic in %+.
Regarding Definition 4.2(i), in particular

Pφ(z) = φ(z) for all z ∈ %+ \D. (8.21)

In view of (8.20), Remark 7.2 and Definition 4.2(i), we see that X and Y are well-
defined functions which are meromorphic in %+ and holomorphic in %+ \ D. We
consider an arbitrary z ∈ %+ \D. From (8.20) immediately we get

(
X(z)

Y (z)

)
= Vs0(z)

(
φ(z)

ψ(z)

)
. (8.22)

Taking into account (8.22) and Notation 7.1, then, for all z ∈ %+ \D, we obtain

X(z) = −s0ψ(z) and Y (z) = s+0 φ(z)+ zψ(z). (8.23)

Now we consider an arbitrary v ∈ N (Y (z)). From (8.23) then

s+0 φ(z)v + zψ(z)v = 0q×1 (8.24)

follows. Using (8.21) and Remark A.13, we get

φ(z)v + zs0ψ(z)v = s0s
+
0 φ(z)v + zs0ψ(z)v = s0

[
s+0 φ(z)+ zψ(z)

]
v = 0q×1

(8.25)

and, consequently,

v∗ [ψ(z)]∗ φ(z)v + zv∗ [ψ(z)]∗ s0ψ(z)v = v∗ [ψ(z)]∗ [φ(z)+ zs0ψ(z)] v = 0.
(8.26)
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Because of s0 ∈ C
q×q
≥ , we obtain v∗[ψ(z)]∗s0ψ(z)v ∈ [0,∞) ⊆ R and, hence,

Im
(
zv∗ [ψ(z)]∗ s0ψ(z)v

) = Im(z) · v∗ [ψ(z)]∗ s0ψ(z)v. (8.27)

Thus, (8.27) and (8.26) provide

v∗ Im
(
[ψ(z)]∗ φ(z)

)
v + Im(z) · v∗ [ψ(z)]∗ s0ψ(z)v

= v∗
[
Im

(
[ψ(z)]∗ φ(z)+ z [ψ(z)]∗ s0ψ(z)

)]
v

= Im
(
v∗ [ψ(z)]∗ φ(z)v + zv∗ [ψ(z)]∗ s0ψ(z)v

) = 0.

(8.28)

Because of Definition 4.2(iii) and Remark 4.1, we have Im([ψ(z)]∗φ(z)) ∈ C
q×q
≥

and, consequently, v∗[Im([ψ(z)]∗φ(z))]v ∈ [0,∞). Due to the assumption s0 ∈
C
q×q
≥ , from Im(z) ∈ (0,∞) also we know that Im(z)[ψ(z)]∗s0ψ(z) ∈ C

q×q
≥ and

therefore Im(z) · v∗[ψ(z)]∗s0ψ(z)v ∈ [0,∞) is valid. Hence, by virtue of (8.28),
we get v∗ Im([ψ(z)]∗φ(z))v = 0 and Im(z) ·v∗[ψ(z)]∗s0ψ(z)v = 0. Consequently,

[√
s0ψ(z)v

]∗ [√
s0ψ(z)v

] = 1

Im(z)
Im(z) · v∗ [ψ(z)]∗ s0ψ(z)v = 0,

which implies s0ψ(z)v = √
s0
√
s0ψ(z)v = 0q×1. Then (8.25) shows that φ(z)v =

0q×1 is fulfilled. Therefore, from (8.24) and z 	= 0, moreover, ψ(z)v = 0q×1

follows. Thus, v belongs to N (φ(z)) ∩ N (ψ(z)), i. e., to N (
( φ(z)
ψ(z)

)
). Because of

Definition 4.2(ii), we can conclude that v = 0q×1. This means that N (Y (z)) ⊆
{0q×1} holds true. Consequently, detY (z) 	= 0. In particular, rank

(
X(z)
Y (z)

) = q

and F is well defined. Using (8.22), Lemma 7.3, (8.21), Definition 4.2(iii), and
Im(z)[ψ(z)]∗s0ψ(z) ∈ C

q×q
≥ , we conclude

(
X(z)

Y (z)

)∗
(−J̃q)

(
X(z)

Y (z)

)
=

(
φ(z)

ψ(z)

)∗ [
Vs0(z)

]∗
(−J̃q)Vs0(z)

(
φ(z)

ψ(z)

)

=
(
φ(z)

ψ(z)

)∗ { [
diag(P, Iq )

]∗
(−J̃q) · diag(P, Iq )

+ 2 Im(z) · diag(0q×q, s0)

}(
φ(z)

ψ(z)

)

= (
[φ(z)]∗ P ∗, [ψ(z)]∗

)
(−J̃q)

(
Pφ(z)

ψ(z)

)
+ 2 Im(z) [ψ(z)]∗ s0ψ(z)

=
(
φ(z)

ψ(z)

)∗
(−J̃q)

(
φ(z)

ψ(z)

)
+ 2 Im(z) [ψ(z)]∗ s0ψ(z) ∈ C

q×q
≥ .
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Thus, the pair [X; Y ] belongs to PRq(%+). According to (i) and (ii), the matrix-
valued functionF is meromorphic in%+ and holomorphic in%+\D. Using (i), (ii),
Remark 4.1 as well as (8.22), Lemma 7.3, and (8.21), we get

ImF(z) = Im
(
X(z) [Y (z)]−1

)
= Im

(
[Y (z)]−∗ [Y (z)]∗X(z) [Y (z)]−1

)

= [Y (z)]−∗ Im
(
[Y (z)]∗X(z)

)
[Y (z)]−1

= [Y (z)]−∗
(

1

2

(
X(z)

Y (z)

)∗
(−J̃q)

(
X(z)

Y (z)

))
[Y (z)]−1

= 1

2
[Y (z)]−∗

(
φ(z)

ψ(z)

)∗ [
Vs0(z)

]∗
(−J̃q)Vs0(z)

(
φ(z)

ψ(z)

)
[Y (z)]−1

= 1

2
[Y (z)]−∗

(
φ(z)

ψ(z)

)∗ { [
diag(P, Iq)

]∗
(−J̃q) · diag(P, Iq )

+ 2 Im(z) · diag(0q×q, s0)

}(
φ(z)

ψ(z)

)
[Y (z)]−1

= 1

2
[Y (z)]−∗

(
φ(z)

ψ(z)

)∗ [
diag(P, Iq )

]∗
(−J̃q) · diag(P, Iq )

(
φ(z)

ψ(z)

)
[Y (z)]−1

+ Im(z) [Y (z)]−∗
(
φ(z)

ψ(z)

)∗
· diag(0q×q, s0)

(
φ(z)

ψ(z)

)
[Y (z)]−1

= [Y (z)]−∗
[

1

2

(
Pφ(z)

ψ(z)

)∗
(−J̃q)

(
Pφ(z)

ψ(z)

)
+ Im(z) [ψ(z)]∗ s0ψ(z)

]
[Y (z)]−1

= [Y (z)]−∗
[

1

2

(
φ(z)

ψ(z)

)∗
(−J̃q)

(
φ(z)

ψ(z)

)
+ Im(z) [ψ(z)]∗ s0ψ(z)

]
[Y (z)]−1 .

(8.29)

Thus, from Definition 4.2(iii) and Im(z)[ψ(z)]∗s0ψ(z) ∈ C
q×q
≥ , we see that the

matrix on the right-hand side of (8.29) is non-negative Hermitian. Consequently,
(8.29) yields ImF(z) ∈ C

q×q
≥ . Taking into account that F is meromorphic in %+

and holomorphic in %+ \D, that D is a discrete subset of %+, and that ImF(z) ∈
C
q×q
≥ is fulfilled for all z ∈ %+ \ D, then, in view of Lemma 3.2, we see that F

belongs to Rq(%+). In particular, F is holomorphic in %+. Since the matrix s0 is
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Hermitian, we have s∗0 s
+
0 s0 = s0s

+
0 s0 = s0. From (8.23) we then conclude

[Y (z)]−∗ [ψ(z)]∗ s0ψ(z) [Y (z)]−1 = [Y (z)]−∗ [ψ(z)]∗ s∗0 s
+
0 s0ψ(z) [Y (z)]−1

= [Y (z)]−∗ [−s0ψ(z)]∗ s+0 [−s0ψ(z)] [Y (z)]−1

= [Y (z)]−∗ [X(z)]∗ s+0 X(z) [Y (z)]−1 =
(
X(z) [Y (z)]−1

)∗
s+0 X(z) [Y (z)]−1

= [F(z)]∗ s+0 F(z).
(8.30)

By virtue of (8.29) and (8.30), we get

F(z)− [F(z)]∗
z − z

− [F(z)]∗ s+0 F(z) =
1

Im(z)
ImF(z)− [F(z)]∗ s+0 F(z)

= 1

Im(z)
[Y(z)]−∗

[
1

2

(
φ(z)

ψ(z)

)∗
(−J̃q )

(
φ(z)

ψ(z)

)
+ Im(z) [ψ(z)]∗ s0ψ(z)

]
[Y(z)]−1

− [Y(z)]−∗ [ψ(z)]∗ s0ψ(z) [Y(z)]−1

= 1

2 Im(z)
[Y(z)]−∗

(
φ(z)

ψ(z)

)∗
(−J̃q )

(
φ(z)

ψ(z)

)
[Y(z)]−1 .

(8.31)

Because of Im(z) ∈ (0,∞) and Definition 4.2(iii), we see that the matrix on the
right-hand side of (8.31) is non-negative Hermitian. Consequently, (8.31) implies

F(z)− [F(z)]∗
z− z

− [F(z)]∗ s+0 F(z) ∈ C
q×q
≥ . (8.32)

In view of (8.23) we have

R(F (z)) = R(X(z) [Y (z)]−1) ⊆ R(X(z)) = R(−s0ψ(z)) ⊆ R(s0). (8.33)

Because of the assumption s0 ∈ C
q×q
≥ , (8.33), and (8.32), the application of

Lemma A.3 shows that the block matrix
(

s0 F(z)

[F(z)]∗ F(z)−[F(z)]∗
z−z

)
(8.34)

is non-negative Hermitian. Due to F ∈ Rq (%+), the matrix-valued function F

is holomorphic in %+. Thus, using continuity arguments, we see that the block
matrix given in (8.34) is non-negative Hermitian for all z ∈ %+. Thus, [6, Lem. 8.9]
shows that F belongs to R0,q(%+) and that the R-Stieltjes measure σF of F fulfils
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∫
R
x0σF (dx) = σF (R) ≤ s0. Therefore, F ∈ R0,q [%+; (sj )0j=0,≤] is proved as

well. ��
After having handled the case of a sequence (sj )0j=0 from C

q×q
≥ = H≥,e

q,2·0 we

turn our attention to the case of a sequence from H≥,e
q,2n with arbitrary n ∈ N.

Proposition 8.9 Let n ∈ N0 and let (sj )2nj=0 ∈ H≥,e
q,2n with nth Schur transform

(s
(n)
j )0j=0. Further, let V((sj )

2n
j=0) be given by (7.3), let V(s)

n be the restriction of

V
((sj )

2n
j=0) onto %+, and let

V(s)
n =

(
v
(s)
11;n v

(s)
12;n

v(s)21;n v(s)22;n

)
(8.35)

be the q × q block representation of V(s)
n . Let [φ;ψ] ∈ P[s(n)0 ]. Then there exists a

discrete subset D of %+ such that the conditions (i)–(iii) in Definition 4.2 hold true
and that

det
[
v(s)21;n(z)φ(z)+ v(s)22;n(z)ψ(z)

]
	= 0

is fulfilled for all z ∈ %+ \D. Furthermore, the matrix-valued function

(v(s)11;nφ + v(s)12;nψ)(v
(s)
21;nφ + v(s)22;nψ)

−1

belongs to R0,q [%+; (sj )2nj=0,≤].
Proof Our proof works inductively. First we consider the case n = 0. Since (sj )2nj=0

belongs to H≥,e
q,2n, from Remarks 2.3 and 5.1 we get s0 ∈ C

q×q
≥ . In view of s(0)0 = s0,

we see that the pair [φ;ψ] belongs to P[s0] and, in view of (7.3), that V((sj )
0
j=0) =

V
s
(0)
0
= Vs0 . Consequently, taking into account (8.35), the matrix-valued functions

X and Y defined by (8.20) fulfil

X = v
(s)
11;0φ + v

(s)
12;0ψ and Y = v

(s)
21;0φ + v

(s)
22;0ψ.

Regarding Notation 4.7 and Definition 4.2, there exists a discrete subset D of %+
such that the conditions (i)–(iii) in Definition 4.2 are fulfilled for [φ;ψ]. Applying
Proposition 8.8, the proof is complete in the case n = 0.

We may now assume that there is an m ∈ N such that Proposition 8.9 is
proved for all n ∈ Z0,m−1. We study the case n = m. Let tj := s

(1)
j for all

j ∈ Z0,2m−2. Using the assumption (sj )
2m
j=0 ∈ H≥,e

q,2m and Proposition 6.3, we

obtain (tj )
2(m−1)
j=0 ∈ H≥,e

q,2(m−1). In particular, also we have t(m−1)
0 = s

(m)
0 = s

(n)
0 .

Thus, [φ;ψ] ∈ P[t(m−1)
0 ]. Since we have assumed that Proposition 8.9 is true for
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n = m − 1, we obtain that there exists a discrete subset D of %+ such that the
conditions (i)–(iii) in Definition 4.2 as well as

det
[
v(t)21;m−1(z)φ(z)+ v(t)22;m−1(z)ψ(z)

]
	= 0 (8.36)

for all z ∈ %+ \D are valid and that

G := (v(t)11;m−1φ + v(t)12;m−1ψ)(v
(t)
21;m−1φ + v(t)22;m−1ψ)

−1 (8.37)

is a well-defined matrix-valued function such that

G ∈ R0,q [%+; (tj )2(m−1)
j=0 ,≤]. (8.38)

In particular, we get G ∈ R0,q(%+) and the R-Stieltjes measure σG of G fulfils

0q×q ≤ σG(R) =
∫

R

x0σG(dx) ≤ t0 (8.39)

and, by virtue of Remark A.1, consequently, N (t0) ⊆ N (σG(R)). Because
of Proposition 3.7, we have R0,q(%+) ⊆ R−1,q(%+). Thus, G belongs to

R−1,q(%+). Lemma 3.8 yields G ∈ R[−1]
q (%+) and N (μG(R)) = N (σG(R)),

where μG is given via Remark 3.6. Consequently, additionally using (6.2) and
N (t0) ⊆ N (σG(R)), we conclude

N (s0) ⊆ N (−s0s
�
2s0) = N (s

(1)
0 ) = N (t0) ⊆ N (σG(R)) = N (μG(R)).

(8.40)

Thus, in view of (3.6), we proved that G belongs to Podd
q [s0]. In view of the

assumption (sj )
2m
j=0 ∈ H≥,e

q,2m and Remark 5.2, we know that (sj )1j=0 ∈ H≥,e
q,1 is

valid. We consider an arbitrary z ∈ %+ \D. Using [15, Lem. 8.12], then we obtain
G(z) ∈ Q[s+0 ,zIq−s+0 s1], i. e.

det
[
s+0 G(z)+ zIq − s+0 s1

] 	= 0, (8.41)

and furthermore

G(−;s0,s1)(z) = S(q,q)Vs0 ,s1 (z)
(G(z)) . (8.42)

In particular, Remark C.1 yields

rank(s+0 , zIq − s+0 s1) = q. (8.43)
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Furthermore, applying Remark C.1, from (8.36) also we get that

rank
(
v(t)21;m−1(z), v

(t)
22;m−1(z)

)
= q (8.44)

holds true. Regarding (8.36) and (8.35), from (8.37) we obtain

G(z) = S̃(q,q)
V

(t)
m−1(z)

([φ(z), ψ(z)]) . (8.45)

From Remark 6.2 and (7.3) (see also [15, Rem. 11.16]) we know that V((sj )
2m
j=0) =

Vs0,s1V
((tj )

2(m−1)
j=0 ). Consequently

V(s)
m (z) = Vs0,s1(z)V

(t)
m−1(z). (8.46)

In view of (8.35), (7.1), (8.46), (8.44), (8.43), (8.36), (8.45), (8.41), and Proposi-
tion C.3, we conclude det[v(s)21;m(z)φ(z)+ v

(s)
22;m(z)ψ(z)] 	= 0 and, moreover,

S̃(q,q)
V

(s)
m (z)

([φ(z), ψ(z)]) = S(q,q)Vs0,s1 (z)
(G(z)) . (8.47)

Since (sj )
2m
j=0 ∈ H≥,e

q,2m is assumed, from Proposition 8.4 we see that (sj )2mj=0

belongs to Dq×q,2m as well. Furthermore, Remark 2.3 yields (sj )
2m
j=0 ∈

H≥
q,2m. Because of (8.38) and Proposition 8.5, then we get G(−;s0,s1) ∈

R0,q [%+; (sj )2mj=0,≤]. Since from (8.42), (8.47), (8.35), and Notation C.2 we
obtain that

G(−;s0,s1)(z) = S(q,q)Vs0 ,s1 (z)
(G(z)) = S̃(q,q)

V
(s)
m (z)

([φ(z), ψ(z)])

=
[
v(s)11;m(z)φ(z)+ v(s)12;m(z)ψ(z)

] [
v(s)21;m(z)φ(z)+ v(s)22;m(z)ψ(z)

]−1

and since z ∈ %+ \D is arbitrary and D is a discrete subset of %+, we can conclude
that F := (v

(s)
11;mφ + v

(s)
12;mψ)(v

(s)
21;nφ + v

(s)
22;nψ)−1 coincides with G(−;s0,s1). In

particular, F ∈ R0,q[%+; (sj )2mj=0,≤]. Thus, Proposition 8.9 is proved inductively.
��

Proposition 8.10 Let n ∈ N0, let (sj )2nj=0 ∈ H≥,e
q,2n with nth Schur transform

(s
(n)
j )0j=0, let V((sj )

2n
j=0) be given by (7.3), and let (7.5) be the q × q block

representation of V
((sj )

2n
j=0). Furthermore, let F ∈ R0,q [%+; (sj )2nj=0,≤]. Then
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there exists a pair [φ;ψ] ∈ P[s(n)0 ] such that the following five conditions are
fulfilled:

(i) φ and ψ both are holomorphic in %+.

(ii) rank
(
φ(z)
ψ(z)

)
= q for all z ∈ %+.

(iii)
(
φ(z)
ψ(z)

)∗
(−J̃q)

(
φ(z)
ψ(z)

)
∈ C

q×q
≥ for all z ∈ %+.

(iv) The inequality

det

[
v
((sj )

2n
j=0)

21 (z)φ(z)+ v
((sj )

2n
j=0)

22 (z)ψ(z)

]
	= 0 (8.48)

holds true for all z ∈ %+.
(v) The matrix-valued function F admits, for all z ∈ %+, the representation

F(z) =
[
v
((sj )

2n
j=0)

11 (z)φ(z)+ v
((sj )

2n
j=0)

12 (z)ψ(z)

]

×
[
v
((sj )

2n
j=0)

21 (z)φ(z)+ v
((sj )

2n
j=0)

22 (z)ψ(z)

]−1

. (8.49)

Proof Our proof works inductively. From the assumption (sj )
2n
j=0 ∈ H≥,e

q,2n and

Remarks 2.3 and 5.1, we get s0 ∈ C
q×q
≥ . In view of s

(0)
0 = s0, (7.3), and

Notation 7.1, then Proposition 8.7 immediately proves the assertion in the case
n = 0. Thus, we may suppose that there is an m ∈ N such that Proposition 8.10
is proved for all n ∈ Z0,m−1.

We consider now the case n = m. Let tj := s
(1)
j for each j ∈ Z0,2m−2. According

to Remark 6.2 and (7.3) (see also [15, Rem. 11.16]), we obtain

V
((sj )

2m
j=0) = Vs0,s1V

((tj )
2(m−1)
j=0 )

. (8.50)

Using Proposition 6.3, we obtain (tj )
2(m−1)
j=0 ∈ H≥,e

q,2(m−1). Remark 2.3 yields

(sj )
2m
j=0 ∈ H≥

q,2m. Because of the assumption F ∈ R0,q [%+; (sj )2mj=0,≤], from

Proposition 8.2 we then see that the functionG := F (+;s0,s1) fulfils (8.38). Since we
have assumed that Proposition 8.10 already has been proved for n = m−1, then we
see that there exists a pair [φ;ψ] ∈ P[t(m−1)

0 ] such that (i)–(iii) as well as

det

[
v
((tj )

2(m−1)
j=0 )

21 (z)φ(z)+ v
((tj )

2(m−1)
j=0 )

22 (z)ψ(z)

]
	= 0 (8.51)
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and G(z) = [v((tj )
2(m−1)
j=0 )

11 (z)φ(z) + v
((tj )

2(m−1)
j=0 )

12 (z)ψ(z)][v((tj )
2(m−1)
j=0 )

21 (z)φ(z) +
v
((tj )

2(m−1)
j=0 )

22 (z)ψ(z)]−1, i. e.,

G(z) = S̃(q,q)
V

((tj )
2(m−1)
j=0 )

(z)

([φ(z), ψ(z)]) , (8.52)

hold true for all z ∈ %+. We now consider an arbitrary z ∈ %+. By virtue of
Remark 6.2, we have t(m−1)

0 = s
(m)
0 which implies [φ;ψ] ∈ P[s(m)0 ]. Because of

(8.51) and Remark C.1, the equation

rank

(
v
((tj )

2(m−1)
j=0 )

21 (z), v
((tj )

2(m−1)
j=0 )

22 (z)

)
= q (8.53)

is valid. From (8.38), in particular, we get G ∈ R0,q(%+) which together with
Proposition 3.7 yields G ∈ R−1,q(%+). Moreover, (8.38) also provides that the
R-Stieltjes measure σG ofG fulfils (8.39) and, in view of Remark A.1, consequently,
N (t0) ⊆ N (σG(R)). Lemma 3.8 yields G ∈ R[−1]

q (%+) and N (μG(R)) =
N (σG(R)). In view of (6.2), then it follows (8.40). Consequently, since G belongs
to R−1,q(%+), we see from (3.6) that G belongs to Podd

q [s0] as well. Since (sj )2mj=0

belongs to H≥,e
q,2m, Remark 5.2 provides (sj )1j=0 ∈ H≥,e

q,1 . Using [15, Lem. 8.12],
then we get (8.41) and (8.42). By virtue of (8.41) and Remark C.1, in particular
we conclude (8.43). Regarding (7.5), (7.1), (8.50), (8.53), (8.43), (8.51), (8.52), and
(8.41), the application of Proposition C.3 yields (8.48) for n = m and

S̃(q,q)
V

((sj )
2m
j=0)(z)

([φ(z), ψ(z)]) = S(q,q)Vs0,s1(z)
(G(z)) . (8.54)

Because of the assumption F ∈ R0,q[%+; (sj )2mj=0,≤] and m ≥ 1, we have F ∈
R0,q [%+; (sj )1j=0,=]. Thus, from (sj )

1
j=0 ∈ H≥,e

q,1 and [15, Cor. 8.18(b)] we get

G(−;s0,s1) = F . Consequently, from (8.41), (8.42), and (8.54), it follows

F(z) = G(−;s0,s1)(z) = S(q,q)Vs0,s1(z)
(G(z)) = S̃(q,q)

V
((sj )

2m
j=0)(z)

([φ(z), ψ(z)])

and, in view of Notation C.2 and (7.5), then (8.49) for n = m. Proposition 8.10,
thus, is proved inductively. ��

Now we state the main result of this section. It is an immediate consequence
of combining the Propositions 8.9 and 8.10 and gives a first parametrization of the
solution set R0,q [%+; (sj )2nj=0,≤] of Problem R[%+; (sj )2nj=0,≤], where, however,
the parameters depend on the given data. Nevertheless, the following result can be
considered as an important intermediate step on the way to the final result.
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Theorem 8.11 Let n ∈ N0 and let (sj )2nj=0 ∈ H≥,e
q,2n with nth Schur transform

(s
(n)
j )0j=0. Further, let V((sj )

2n
j=0) be given by (7.3), let V(s)

n be the restriction of

V
((sj )

2n
j=0) onto%+, and let (8.35) be the q × q block representation ofV(s)

n . Then:

(a) For each pair [φ;ψ] ∈ P[s(n)0 ], the function det(v(s)21;nφ + v(s)22;nψ) does not
vanish identically and the matrix-valued function

(v
(s)
11;nφ + v

(s)
12;nψ)(v

(s)
21;nφ + v

(s)
22;nψ)

−1 (8.55)

belongs to R0,q [%+; (sj )2nj=0,≤].
(c) For each F ∈ R0,q [%+; (sj )2nj=0,≤], there exists a pair [φ;ψ] ∈ P[s(n)0 ] such

that both φ andψ are holomorphic in %+, that (8.48) holds true for all z ∈ %+,
and that F admits the representation (8.49) for all z ∈ %+.

(c) Let [φ1;ψ1], [φ2;ψ2] ∈ P[s(n)0 ]. Then the following statements are equiva-
lent:

(i) (v(s)11;nφ1 + v(s)12;nψ1)(v
(s)
21;nφ1 + v(s)22;nψ1)

−1

= (v(s)11;nφ2 + v(s)12;nψ2)(v
(s)
21;nφ2 + v(s)22;nψ2)

−1.
(ii) 〈[φ1;ψ1]〉 = 〈[φ2;ψ2]〉.

Proof

(a) Part (a) immediately follows from Proposition 8.9.
(b) Apply Proposition 8.10.
(c) For each j ∈ {1, 2}, let

Xj := (Iq, 0q×q )V(s)
n

(
φj

ψj

)
and Yj := (0q×q, Iq )V(s)

n

(
φj

ψj

)
. (8.56)

Obviously, for each j ∈ {1, 2}, the matrix-valued functions φj , ψj , Xj , and Yj are
meromorphic in %+. In view of (8.35), part (a) then yields that the functions detY1
and detY2 do not vanish identically and that F1 := X1Y

−1
1 as well as F2 := X2Y

−1
2

and g := Y−1
2 Y1 are well-defined matrix-valued functions meromorphic in %+.

Moreover, detg does not vanish identically. For each j ∈ {1, 2}, from (8.56) we get

V(s)
n

(
φj

ψj

)
Y−1
j =

(
Xj

Yj

)
Y−1
j =

(
XjY

−1
j

YjY
−1
j

)
=

(
Fj

Iq

)
. (8.57)

Taking into account the q × q block representation (8.35) of V(s)
n , from (8.57) we

see that

(v
(s)
11;nφj + v

(s)
12;nψj )Y

−1
j = Fj and (v

(s)
21;nφj + v

(s)
22;nψj )Y

−1
j = Iq
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and, consequently,

(v(s)11;nφj + v(s)12;nψj )(v
(s)
21;nφj + v(s)22;nψj )

−1

= (v
(s)
11;nφj + v

(s)
12;nψj )Y

−1
j

[
(v
(s)
21;nφj + v

(s)
22;nψj )Y

−1
j

]−1 = Fj I
−1
q = Fj

(8.58)

for each j ∈ {1, 2}. Let (hj )2nj=0 be the sequence of H-parameters of (sj )2nj=0.
Further, for each l ∈ Z−1,n+1, let Pn,l be given by (7.8). Then Lemma 7.8 yields

(7.26) for all z ∈ %+, where W((sj )
2n
j=0) is given by (7.6). From the assumptions that

(sj )
2n
j=0 ∈ H≥,e

q,2n and that [φ1;ψ1] and [φ2;ψ2] belong to P[s(n)0 ] and Theorem 6.10
we get [φ1;ψ1], [φ2;ψ2] ∈ P[h2n]. Thus, regarding Notation 4.7 and Definition 4.2
we see that φ1 and φ2 are matrix-valued functions which are meromorphic in %+
and which fulfil

Pn,nφ1 = PR(h2n)φ1 = φ1 and Pn,nφ2 = PR(h2n)φ2 = φ2. (8.59)

(i)⇒(ii) Let W(s)
n be the restriction of W

((sj )
2n
j=0) onto %+ and let Q : %+ →

Cq×q be defined by

Q(z) :=
n+1∑

k=0

zk(Pn,n−k − Pn,n−k+1). (8.60)

From (7.26), then

W(s)
n V(s)

n = diag(Pn,n,Q) (8.61)

follows. Because of (i) and (8.58), we conclude F1 = F2. Thus, additionally
using (8.57), we obtain

W(s)
n V(s)

n

(
φ1

ψ1

)
Y−1

1 =W(s)
n

(
F1

Iq

)
=W(s)

n

(
F2

Iq

)
=W(s)

n V(s)
n

(
φ2

ψ2

)
Y−1

2

and, hence,

W(s)
n V(s)

n

(
φ1

ψ1

)
=W(s)

n V(s)
n

(
φ2

ψ2

)
g. (8.62)
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By virtue of (8.61) and (8.62), then

(
Pn,nφ1

Qψ1

)
= diag(Pn,n,Q)

(
φ1

ψ1

)
=W(s)

n V(s)
n

(
φ1

ψ1

)

=W(s)
n V(s)

n

(
φ2

ψ2

)
g = diag(Pn,n,Q)

(
φ2

ψ2

)
g =

(
Pn,nφ2g

Qψ2g

)
(8.63)

follows. Using (8.59), from (8.63) we conclude

φ1 = Pn,nφ1 = Pn,nφ2g = φ2g and Qψ1 = Qψ2g. (8.64)

Let V0 := {0q×1}, Vn+2 := Cq , and, for all l ∈ Z1,n+1, furthermore Vl :=
R(h2(n+1−l)). By the assumption (sj )2nj=0 ∈ H≥,e

q,2n and by Proposition 5.7, then
we infer

{0q×1} = V0 ⊆ V1 ⊆ · · · ⊆ Vn ⊆ Vn+1 ⊆ Vn+2 = Cq . (8.65)

In view of (7.8), we have Pn,l = PVn+1−l for all l ∈ Z−1,n+1 and, because of
(8.60), consequently,

Q(z) =
n+1∑

k=0

zk(PVk+1 − PVk ) (8.66)

for all z ∈ %+. Obviously, zk 	= 0 for every choice of k ∈ N0 and z ∈ %+. Thus,
taking into account (8.65) and (8.66), from Lemma A.10 we get detQ(z) 	= 0 for
all z ∈ %+. Hence, by virtue of (8.64), we get ψ1 = ψ2g. Taking additionally
into account the first identity in (8.64) and the fact that detg does not vanish
identically, from Remark 4.4 we can conclude that (ii) holds true.

(i)⇒(ii) Since (ii) is assumed, Remark 4.4 shows that there is a matrix-valued
function g meromorphic in %+ such that det g does not vanish identically and
that

( φ1
ψ1

) = ( φ2
ψ2

)
g is fulfilled. Thus, in view of (8.56), we obtain

(
X1

Y1

)
= V(s)

n

(
φ1

ψ1

)
= V(s)

n

(
φ2

ψ2

)
g =

(
X2

Y2

)
g =

(
X2g

Y2g

)
.

Consequently, since the functions det Y1 and detY2 do not vanish identically, then

F2 = X2Y
−1
2 = X2gg

−1Y−1
2 = X2g(Y2g)

−1 = X1Y
−1
1 = F1

follows which, in view of (8.58), implies (i).
��
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Corollary 8.12 Let n ∈ N0 and let (sj )2nj=0 ∈ H≥,e
q,2n with nth Schur transform

(s
(n)
j )0j=0. Further, let V((sj )

2n
j=0) be given by (7.3), let V(s)

n be the restriction of

V
((sj )

2n
j=0) onto %+, and let (8.35) be the q × q block representation of V(s)

n . Then
T : 〈P[s(n)0 ]〉 → R0,q [%+; (sj )2nj=0,≤] given by

T (〈[φ;ψ]〉) := (v(s)11;nφ + v(s)12;nψ)(v
(s)
21;nφ + v(s)22;nψ)

−1 (8.67)

is a well-defined bijective mapping.

Proof In view of parts (a) and (c) of Theorem 8.11, the mapping T is well
defined. Theorem 8.11(b) shows that T is surjective and Theorem 8.11(c) yields
the injectivity of T . ��

9 Parametrization of the Class R0,q[�+; (sj )2n
j=0,≤]

From Theorem 2.2 we know that the solution set Mq
≥[R; (sj )2nj=0,≤] of the

Hamburger moment problem MP[R; (sj )2nj=0,≤] is non-empty if and only

if the sequence (sj )
2n
j=0 belongs to the class H≥

q,2n. Theorem 2.4 shows
that we can restrict our consideration to the case that the given sequence
(sj )

2n
j=0 of complex q × q matrices belongs to the subclass H≥,e

q,2n of H≥
q,2n

(see also Remark 2.3). Remark 3.4 shows that Problem MP[R; (sj )2nj=0,≤]
equivalently can be reformulated into Problem R[%+; (sj )2nj=0,≤] with solution

set R0,q [%+; (sj )2nj=0,≤]. In the non-degenerate case, where the given sequence

(sj )
2n
j=0 belongs to H>

q,2n, I. V. Kovalishina [27, Thm.H] obtained a parametrization

of the set R0,q [%+; (sj )2nj=0,≤]. In the general case, where the given sequence

(sj )
2n
j=0 belongs to H≥,e

q,2n, V. A. Bolotnikov [2, Thm. 4.6] presents a parametrization

of R0,q [%+; (sj )2nj=0,≤], though, the argumentation there contains a certain
misstatement (see [3]). Both Kovalishina and Bolotnikov utilize the method of
fundamental matrix inequalities due to V. P. Potapov. Using an approach via a
Schur type algorithm, Chen and Hu [4, Thm. 3.4] achieved a parametrization of
the set R0,q [%+; (sj )2nj=0,≤] for a given sequence (sj )2nj=0 ∈ H≥,e

q,2n. Nevertheless,
they solely give a reference for a respective proof which includes a parametrization
of the set R0,q [%+; (sj )2nj=0,=]. The authors of this text, nevertheless, consider a
thorough explanation of the use of [4, Cor. 3.3] as necessary. (The respective detailed
analysis is performed within the former sections of this text.) Moreover, it should be
pointed out that the approach chosen by this time, contrasting the results in [2, 4],
guarantees a representation of the set R0,q [%+; (sj )2nj=0,≤] which provides, for
each matrix-valued function belonging to the solution set, a representation holding
for each z ∈ %+.
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Now we are going to prove a parametrization of the set R0,q [%+; (sj )2nj=0,≤]
with parameters which are independent of the given data. As sets of independent
data we work with the set of Nevanlinna pairs in %+ as well as (in an alternative
setting) with the set of all matricial Schur functions in %+.

In our following discussion, we distinguish three cases all in which (s
(n)
j )0j=0

denotes the nth Schur transform of the given sequence (sj )2nj=0 ∈ H≥,e
q,2n:

(I) rank s(n)0 = q .

(II) 1 ≤ rank s(n)0 ≤ q − 1.

(III) rank s(n)0 = 0.

Observe that from Proposition 6.11 we know that case (I) exactly is the case that
the given sequence (sj )2nj=0 belongs to H>

q,2n and that case (III) holds true if and

only if (sj )2nj=0 ∈ H≥,cd
q,2n . Now we first turn our attention to the case (I).

Theorem 9.1 Let n ∈ N0 and let (sj )2nj=0 ∈ H>
q,2n. Further, let V((sj )

2n
j=0) be given

by (7.3), let V(s)
n be the restriction of V((sj )

2n
j=0) onto %+, and let (8.35) be the

q × q block representation of V(s)
n . Then:

(a) For each pair [φ;ψ] ∈ PRq(%+), the function det(v(s)21;nφ + v(s)22;nψ) does
not vanish identically and the matrix-valued function given in (8.55) belongs to
R0,q [%+; (sj )2nj=0,≤].

(b) For each F ∈ R0,q [%+; (sj )2nj=0,≤], there exists a pair [φ;ψ] ∈ PRq(%+)
such that φ and ψ both are holomorphic in %+, that (8.48) holds true for all
z ∈ %+, and that F admits the representation (8.49) for all z ∈ %+.

(c) Let [φ1;ψ1], [φ2;ψ2] ∈ PRq(%+). Then

(v(s)11;nφ1 + v(s)12;nψ1)(v
(s)
21;nφ1 + v(s)22;nψ1)

−1

= (v(s)11;nφ2 + v(s)12;nψ2)(v
(s)
21;nφ2 + v(s)22;nψ2)

−1

if and only if 〈[φ1;ψ1]〉 = 〈[φ2;ψ2]〉.
Proof Because of the assumption that (sj )2nj=0 belongs to H>

q,2n, Remark 2.3 yields

(sj )
2n
j=0 ∈ H≥,e

q,2n, and from Proposition 6.11(a) we get rank s(n)0 = q , where

(s
(n)
j )0j=0 is the nth Schur transform of (sj )2nj=0. Consequently, the combination of

Theorem 8.11 and Remark 4.9 yields the assertion. ��
Now we give a parametrization of the set R0,q[%+; (sj )2nj=0,≤] by aid of

matricial Schur functions.
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Corollary 9.2 Let n ∈ N0 and let (sj )2nj=0 ∈ H>
q,2n. Let V((sj )

2n
j=0) be given by (7.3),

let

Cq := 1√
2

(−iIq iIq
Iq Iq

)
, (9.1)

let U((sj )
2n
j=0) := V

((sj )
2n
j=0)Cq , let U(s)n be the restriction of U((sj )

2n
j=0) onto %+, and

let

U
((sj )

2n
j=0) =

⎛

⎝u
((sj )

2n
j=0)

11 u
((sj )

2n
j=0)

12

u
((sj )

2n
j=0)

21 u
((sj )

2n
j=0)

22

⎞

⎠ and U(s)n =
(
u(s)11;n u(s)12;n
u
(s)
21;n u

(s)
22;n

)
(9.2)

be the q × q block representations of U((sj )
2n
j=0) and U(s)n , resp. Then:

(a) For each S ∈ Sq×q(%+), the function det(u(s)21;nS + u(s)22;n) does not vanish
identically and the matrix-valued function

(u(s)11;nS + u(s)12;n)(u
(s)
21;nS + u(s)22;n)

−1

belongs to R0,q [%+; (sj )2nj=0,≤].
(b) For each F ∈ R0,q [%+; (sj )2nj=0,≤], there exists a unique S ∈ Sq×q (%+) such

that the function det(u(s)21;nS + u(s)22;n) does not vanish identically and that F
admits the representation

F = (u(s)11;nS + u(s)12;n)(u
(s)
21;nS + u(s)22;n)

−1.

Moreover,

det

[
u
((sj )

2n
j=0)

21 (z)S(z)+ u
((sj )

2n
j=0)

22 (z)

]
	= 0

and

F(z) =
[
u
((sj )

2n
j=0)

11 (z)S(z)+ u
((sj )

2n
j=0)

12 (z)

][
u
((sj )

2n
j=0)

21 (z)S(z)+ u
((sj )

2n
j=0)

22 (z)

]−1

are fulfilled for all z ∈ %+.
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Proof Combine Theorem 9.1 with Lemma 4.6. ��
Now (mainly) we turn our attention to the case (II), i. e., that 1 ≤ rank s(n)0 ≤

q − 1, where (s(n)j )0j=0 is the nth Schur transform of the given sequence (sj )2nj=0 ∈
H≥,e
q,2n. The first result concerning this situation additionally includes the case r = q .

Once more, we start with a parametrization using Nevanlinna pairs as parameters.

Theorem 9.3 Let n ∈ N0 and let (sj )2nj=0 ∈ H≥,e
q,2n with nth Schur transform

(s
(n)
j )0j=0. Further, let V((sj )

2n
j=0) be given by (7.3), let V(s)

n be the restriction of

V
((sj )

2n
j=0) onto %+, and let (8.35) be the q × q block representation of V

(s)
n .

Suppose that r := rank s(n)0 fulfils r ≥ 1. Let u1, u2, . . . , ur be an orthonormal

basis of R(s(n)0 ) and let U := (u1, u2, . . . , ur ). Then, for each [φ̃; ψ̃] ∈ PRr (%+),
the function det[v(s)21;nUφ̃U∗ +v

(s)
22;n(Uψ̃U∗ +PN (s

(n)
0 )

)] does not vanish identically

and the mapping & : 〈PRr (%+)〉 → R0,q [%+; (sj )2nj=0,≤] defined by

&
(〈[φ̃; ψ̃]〉) :=

[
v
(s)
11;nUφ̃U

∗ + v
(s)
12;n(Uψ̃U

∗ + PN (s
(n)
0 )

)
]

×
[
v(s)21;nUφ̃U

∗ + v(s)22;n(Uψ̃U
∗ + PN (s

(n)
0 )

)
]−1

(9.3)

is well defined and bijective.

Proof Because of the assumption (sj )
2n
j=0 ∈ H≥,e

q,2n, from Proposition 6.3 we get

(s
(n)
j )0j=0 ∈ H≥,e

q,0 . By virtue of Remarks 2.3 and 5.1, then (s
(n)
0 )∗ = s

(n)
0 follows.

Consequently, Remark A.12 shows that

[
R(s(n)0 )

]⊥ = N (s
(n)
0 ). (9.4)

Thus, Proposition 4.12(b) shows that �U : 〈PRr (%+)〉 → 〈P[s(n)0 ]〉 given by

�U
(〈[φ̃; ψ̃]〉) := 〈[Uφ̃U∗;Uψ̃U∗ + PN (s

(n)
0 )
]〉 (9.5)

is a well-defined bijective mapping. From Lemma 4.10, (9.4), and Theorem 8.11(a)
we see that, for each [φ̃; ψ̃] ∈ PRr (%+), the function det[v(s)21;nUφ̃U

∗ +
v(s)22;n(Uψ̃U

∗ + PN (s
(n)
0 )

)] does not vanish identically. According to Corollary 8.12,

the mapping T : 〈P[s(n)0 ]〉 → R0,q [%+; (sj )2nj=0,≤] defined by (8.67) also is well
defined and bijective. Consequently, the composition T ◦ �U of the mappings �U
and T is well defined and bijective as well. Taking into account (9.5), (8.67), and
(9.3), easily we see that & = T ◦ �U holds true. ��
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Now we are going to emphasize several aspects of Theorem 9.3. Guided by
Theorem 9.1, first we turn our attention to the analogue of Theorem 9.1(a) in the
case (II), i. e., the case 1 ≤ rank s(n)0 ≤ q − 1.

Corollary 9.4 Let n ∈ N0 and let (sj )2nj=0 ∈ H≥,e
q,2n with nth Schur transform

(s
(n)
j )0j=0. Further, let V((sj )

2n
j=0) be given by (7.3), let V(s)

n be the restriction of

V
((sj )

2n
j=0) onto %+, and let (8.35) be the q × q block representation of V

(s)
n .

Suppose that r := rank s(n)0 fulfils 1 ≤ r ≤ q − 1. Let d := q − r , let u1, u2, . . . , uq

be an orthonormal basis of Cq such that u1, u2, . . . , ur is a basis of R(s(n)0 ),
and let W := (u1, u2, . . . , uq). Then, for each [φ̃; ψ̃] ∈ PRr (%+), the function

det[v(s)21;nW · diag(φ̃, 0d×d) + v(s)22;nW · diag(ψ̃, Id )] does not vanish identically

and & : 〈PRr (%+)〉 → R0,q [%+; (sj )2nj=0,≤] given by (9.3) admits, for each

〈[φ̃; ψ̃]〉 ∈ 〈PRr (%+)〉, the representation &(〈[φ̃; ψ̃]〉) = F , where

F :=
[
v
(s)
11;nW · diag(φ̃, 0d×d)+ v

(s)
12;nW · diag(ψ̃, Id )

]

×
[
v(s)21;nW · diag(φ̃, 0d×d)+ v(s)22;nW · diag(ψ̃, Id )

]−1
.

In particular, for each [φ̃; ψ̃] ∈ PRr (%+), the matrix-valued function F belongs
to R0,q [%+; (sj )2nj=0,≤].
Proof Similar to the proof of Theorem 9.3 we see that (9.4) holds true. Let
U := (u1, u2, . . . , ur ). We consider an arbitrary pair [φ̃; ψ̃] ∈ PRr (%+). From
Remark A.15 and (9.4) we can conclude that Uφ̃U∗ = W · diag(φ̃, 0d×d) ·W∗ and

Uψ̃U∗ + PN (s
(n)
0 )

= Uψ̃U∗ + P[R(s
(n)
0 )]⊥ = W · diag(ψ̃, Id ) ·W∗

hold true. Consequently, for each j ∈ {1, 2}, we have

v
(s)
j1;nUφ̃U

∗ + v
(s)
j2;n(Uψ̃U

∗ + PN (s
(n)
0 )

)

= v
(s)
j1;nW · diag(φ̃, 0d×d) ·W∗ + v

(s)
j2;nW · diag(ψ̃, Id ) ·W∗

=
[
v
(s)
j1;nW · diag(φ̃, 0d×d)+ v

(s)
j2;nW · diag(ψ̃, Id )

]
W∗.

(9.6)
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Since W∗W = Iq holds true, from Theorem 9.3, (9.6), and (9.3) we see that

the function det[v(s)21;nW · diag(φ̃, 0d×d) + v
(s)
22;nW · diag(ψ̃, Id )] does not vanish

identically and that

&
(〈[φ̃; ψ̃]〉) =

[
v(s)11;nUφ̃U

∗ + v(s)12;n(Uψ̃U
∗ + PN (s

(n)
0 )

)
]

×
[
v(s)21;nUφ̃U

∗ + v(s)22;n(Uψ̃U
∗ + PN (s

(n)
0 )

)
]−1

=
[
v
(s)
11;nW · diag(φ̃, 0d×d)+ v

(s)
12;nW · diag(ψ̃, Id )

]

×
[
v
(s)
21;nW · diag(φ̃, 0d×d)+ v

(s)
22;nW · diag(ψ̃, Id )

]−1

holds true. The proof is complete. ��
In the case (II), the following theorem emphasizes a certain further aspect

of Theorem 9.3, namely the analogue of Theorem 9.1(b). We point out that the
representation (9.8) below will be proved for each z ∈ %+ (in contrast to an existing
exceptional discrete subset of %+).

Theorem 9.5 Let n ∈ N0 and let (sj )2nj=0 ∈ H≥,e
q,2n with nth Schur transform

(s
(n)
j )0j=0. Further, let V((sj )

2n
j=0) be given by (7.3) and let (7.5) be the q × q block

representation of V((sj )
2n
j=0). Suppose that r := rank s(n)0 fulfils 1 ≤ r ≤ q − 1.

Let d := q − r , let u1, u2, . . . , uq be an orthonormal basis of Cq such that

u1, u2, . . . , ur is a basis of R(s(n)0 ), and let W := (u1, u2, . . . , uq). For each
F ∈ R0,q [%+; (sj )2nj=0,≤], then there exists a pair [φ̃; ψ̃] ∈ PRr (%+) such that

φ̃ and ψ̃ are holomorphic in %+, that

det

[
v
((sj )

2n
j=0)

21 (z)Wφ�(z)+ v
((sj )

2n
j=0)

22 (z)Wψ�(z)
]
	= 0 (9.7)

holds true for all z ∈ %+, and that F can be represented, for all z ∈ %+, via

F(z) =
[
v
((sj )

2n
j=0)

11 (z)Wφ�(z)+ v
((sj )

2n
j=0)

12 (z)Wψ�(z)
]

×
[
v
((sj )

2n
j=0)

21 (z)Wφ�(z)+ v
((sj )

2n
j=0)

22 (z)Wψ�(z)
]−1

, (9.8)

where φ� := diag(φ̃, 0d×d) and ψ� := diag(ψ̃, Id ).
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Proof We consider an arbitrary F ∈ R0,q [%+; (sj )2nj=0,≤]. By virtue of Proposi-

tion 8.10, then there is a pair [φ;ψ] ∈ P[s(n)0 ] such that all the conditions (i)–(v)
in Proposition 8.10 are fulfilled. In particular, with D = ∅ conditions (i)–(iii) in
Definition 4.2 are fulfilled, Hφ = Hψ = %+, the inequality (8.48) is valid for all
z ∈ %+, and F admits the representation (8.49) for all z ∈ %+. Using Lemma 4.11
(with D = ∅), we see that the matrix-valued function B := ψ − iφ is holomorphic
in %+ and fulfils

detB(z) 	= 0 (9.9)

for all z ∈ %+. Let U := (u1, u2, . . . , ur ). Moreover, Lemma 4.11 then shows that
there exists a pair [φ̃; ψ̃] ∈ PRr (%+) such that φ̃ and ψ̃ are holomorphic in %+
and that the matrix-valued functions S := Uφ̃U∗ and T := Uψ̃U∗ +P[R(s

(n)
0 )]⊥ are

holomorphic in %+ and admit, for all z ∈ %+, the representations

S(z) = Uφ̃(z)U∗ and T (z) = Uψ̃(z)U∗ + P[R(s
(n)
0 )]⊥ (9.10)

as well as

S(z) = φ(z) [B(z)]−1 and T (z) = ψ(z) [B(z)]−1 . (9.11)

We now consider an arbitrary z ∈ %+. By virtue of Remark A.15, from (9.10)
we get S(z) = Wφ�(z)W∗ and T (z) = Wψ�(z)W∗. Taking into account (9.11),
then φ(z)[B(z)]−1 = Wφ�(z)W∗ and ψ(z)[B(z)]−1 = Wψ�(z)W∗ follow.
Consequently, φ(z) = Wφ�(z)W∗B(z) and ψ(z) = Wψ�(z)W∗B(z). Hence, we
conclude

v
((sj )

2n
j=0)

j1 (z)φ(z)+ v
((sj )

2n
j=0)

j2 (z)ψ(z)

= v
((sj )

2n
j=0)

j1 (z)Wφ�(z)W∗B(z)+ v
((sj )

2n
j=0)

j2 (z)Wψ�(z)W∗B(z)

=
[
v
((sj )

2n
j=0)

j1 (z)Wφ�(z)+ v
((sj )

2n
j=0)

j2 (z)Wψ�(z)
]
W∗B(z)

(9.12)

for each j ∈ {1, 2}. Taking into account (8.48), then from (9.12), W∗W = Iq , and
(9.9) we get the inequality (9.7) and, moreover,

[
v
((sj )

2n
j=0)

21 (z)φ(z)+ v
((sj )

2n
j=0)

22 (z)ψ(z)

]−1

= [B(z)]−1 W

[
v
((sj )

2n
j=0)

21 (z)Wφ�(z)+ v
((sj )

2n
j=0)

22 (z)Wψ�(z)
]−1

. (9.13)
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Combining (8.48), (8.49), (9.12), (9.7), (9.13), and W∗W = Iq , we conclude that

F(z) =
[
v
((sj )

2n
j=0)

11 (z)φ(z)+ v
((sj )

2n
j=0)

12 (z)ψ(z)

]

×
[
v
((sj )

2n
j=0)

21 (z)φ(z)+ v
((sj )

2n
j=0)

22 (z)ψ(z)

]−1

=
[
v
((sj )

2n
j=0)

11 (z)Wφ�(z)+ v
((sj )

2n
j=0)

12 Wψ�(z)
]
W∗B(z)

× [B(z)]−1 W

[
v
((sj )

2n
j=0)

21 (z)Wφ�(z)+ v
((sj )

2n
j=0)

22 (z)Wψ�(z)
]−1

=
[
v
((sj )

2n
j=0)

11 (z)Wφ�(z)+ v
((sj )

2n
j=0)

12 (z)Wψ�(z)
]

×
[
v
((sj )

2n
j=0)

21 (z)Wφ�(z)+ v
((sj )

2n
j=0)

22 (z)Wψ�(z)
]−1

.

��
Observe that the analogue of Theorem 9.1(c) in case (II) already has been

discussed in Theorem 9.3, already. Now, once more we choose matricial Schur
functions in %+ as parameters.

Corollary 9.6 Let n ∈ N0 and let (sj )2nj=0 ∈ H≥,e
q,2n with nth Schur transform

(s
(n)
j )0j=0. Further, let V((sj )

2n
j=0) be given by (7.3). Suppose that r := rank s(n)0 fulfils

1 ≤ r ≤ q − 1. Let d := q − r , let u1, u2, . . . , uq be an orthonormal basis of

Cq such that u1, u2, . . . , ur is a basis of R(s(n)0 ), and let W := (u1, u2, . . . , uq).

Furthermore, let U((sj )
2n
j=0) := V

((sj )
2n
j=0)Cq , where Cq is given by (9.1), let U(s)n be

the restriction of U((sj )
2n
j=0) onto %+, and let (9.2) be the q × q block representation

of U((sj )
2n
j=0) and U

(s)
n , resp. Then:

(a) For each S̃ ∈ Sr×r (%+), the function det[u(s)21;nW · diag(S̃, Id )+ u
(s)
22;nW ] does

not vanish identically and the matrix-valued function

F :=
[
u(s)11;nW · diag(S̃, Id )+ u(s)12;nW

] [
u(s)21;nW · diag(S̃, Id )+ u(s)22;nW

]−1

belongs to R0,q [%+; (sj )2nj=0,≤].
(b) For each F ∈ R0,q [%+; (sj )2nj=0,≤], there exists a unique S̃ ∈ Sr×r (%+) such

that the function det[u(s)21;nW · diag(S̃, Id )+ u
(s)
22;nW ] does not vanish identically

and that F can be represented via

F =
[
u
(s)
11;nW · diag(S̃, Id )+ u

(s)
12;nW

] [
u
(s)
21;nW · diag(S̃, Id )+ u

(s)
22;nW

]−1
.
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Moreover, then

det

[
u
((sj )

2n
j=0)

21 (z)W · diag
(
S̃(z), Id

)+ u
((sj )

2n
j=0)

22 (z)W

]
	= 0

and

F(z) =
[
u
((sj )

2n
j=0)

11 (z)W · diag
(
S̃(z), Id

)+ u
((sj )

2n
j=0)

12 (z)W

]

×
[
u
((sj )

2n
j=0)

21 (z)W · diag
(
S̃(z), Id

)+ u
((sj )

2n
j=0)

22 (z)W

]−1

hold true for all z ∈ %+.

Proof The matrices Cq and W := diag(W,W) are unitary and fulfil WCq = CqW.

In particular, U((sj )
2n
j=0)W = V

((sj )
2n
j=0)WCq . By virtue of Lemma 4.6(b), for all

S̃ ∈ Sr×r (%+), we have

√
2Cq

⎛

⎜⎜⎜⎜⎝

S̃ 0r×d
0d×r Id

Ir 0r×d
0d×r Id

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

i(Ir − S̃) 0r×d
0d×r 0d×d
Ir + S̃ 0r×d
0d×r 2Id

⎞

⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎝

φ̃ 0r×d
0d×r 0d×d
ψ̃ 0r×d

0d×r Id

⎞

⎟⎟⎟⎟⎠

(
Ir 0r×d

0d×r 2Id

)
,

where the pair [φ̃; ψ̃] given by φ̃ := i(Iq−S̃) and ψ̃ := Iq+S̃ belongs to PRr (%+).
Regarding Lemma 4.6(a), for all [φ̃; ψ̃] ∈ PRr (%+), we have

√
2C∗q

⎛

⎜⎜⎜⎜⎝

φ̃ 0r×d
0d×r 0d×d
ψ̃ 0r×d

0d×r Id

⎞

⎟⎟⎟⎟⎠
=

⎛

⎜⎜⎜⎜⎝

ψ̃ + iφ̃ 0r×d
0d×r Id

ψ̃ − iφ̃ 0r×d
0d×r Id

⎞

⎟⎟⎟⎟⎠

=

⎛

⎜⎜⎜⎜⎝

S̃ 0r×d
0d×r Id

Ir 0r×d
0d×r Id

⎞

⎟⎟⎟⎟⎠

(
ψ̃ − iφ̃ 0r×d
0d×r Id

)
,
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where S̃ := (ψ̃ + iφ̃)(ψ̃ − iφ̃)−1 belongs to Sr×r (%+). Using these relations and
Lemma 4.6, the assertion follows from Corollary 9.4 and Theorem 9.5. We omit the
details. ��

Now we consider the case (III), i. e., that the given sequence (sj )2nj=0 belongs

to H≥,cd
q,2n . We will see that in this case, Problem R[%+; (sj )2nj=0,≤] has a unique

solution which can be described explicitly. Once more, observe that necessary and
sufficient conditions for the case that Problem MP[R; (sj )2nj=0,≤] has a unique
solution are given in [10, Theorems 8.4 and 8.5]. According to Remark 3.4, this
corresponds to the case that Problem R[%+; (sj )2nj=0,≤] obtains a unique solution.
Furthermore, we note that, in view of Definition 5.3, Theorem 2.4, and [10, Def. 7.4
and Thm. 8.4], if n ∈ N and (sj )2nj=0 ∈ H≥,e

q,2n are given, then the case (III) coincides

with the situation that Problem MP[R; (sj )2nj=0,≤] has a unique solution.

Theorem 9.7 Let n ∈ N0 and let (sj )2nj=0 ∈ H≥,cd
q,2n . Further, let V((sj )

2n
j=0) be given

by (7.3), let V(s)
n be the restriction of V((sj )

2n
j=0) onto %+, and let (8.35) be the

q × q block representation of V(s)
n . Then the function det v(s)22;n does not vanish

identically and R0,q [%+; (sj )2nj=0,≤] = {v(s)12;n(v
(s)
22;n)−1}.

Proof According to Example 4.8, the pair [φ0;ψ0] given by φ0(z) := 0q×q and

ψ0(z) := Iq for all z ∈ %+ belongs to P[s(n)0 ]. In view of the assumption (sj )2nj=0 ∈
H≥,cd
q,2n , Remark 5.4 yields (sj )2nj=0 ∈ H≥,e

q,2n, whereas Proposition 6.11(b) provides

rank s(n)0 = 0. Thus, Proposition 4.12(a) yields 〈P[s(n)0 ]〉 = {〈[φ0;ψ0]〉}. Applying
Theorem 8.11 then completes the proof. ��

Appendix A Some Particular Facts on Matrix Theory

Remark A.1 Let A ∈ C
q×q
≥ and let B ∈ C

q×q
H be such that B − A ∈ C

q×q
≥ . Then

R(A) ⊆ R(B) and N (B) ⊆ N (A).

For each A ∈ Cp×q , there exists a unique matrix X such that the four equations
AXA = A, XAX = X, (AX)∗ = AX, and (XA)∗ = XA hold true. This particular
matrix X is said to be the Moore–Penrose inverse of A and one writes A+ for this
matrix X. In particular, if A is a non-singular complex q × q matrix, then A+ =
A−1. It seems to be useful stating some basic results on Moore–Penrose inverses of
complex matrices.

Remark A.2 If A ∈ C
q×q
H , then AA+ = A+A.

Lemma A.3 (see e. g. [8, Lem. 1.1.9]) Let E ∈ C(p+q)×(p+q) and let

E =
(
a b

c d

)
(A.1)
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be the block representation of E with p × p block a. Then the matrix E is non-
negative Hermitian if and only if the four conditions a ∈ C

p×p
≥ , R(b) ⊆ R(a),

c = b∗, and d − ca+b ∈ C
q×q
≥ are fulfilled.

A complex p × q matrix K is called contractive in case ‖K‖S ≤ 1.

Remark A.4 Let K ∈ Cp×q . Using Lemma A.3 (see also, e. g., [8, Thm. 1.1.2]),
easily one can see that the matrixK is contractive if and only if the matrix Iq−K∗K
is non-negative Hermitian.

Remark A.5 Let J̃q be given by (4.1). Let P,Q ∈ Cq×q be such that

(
P

Q

)∗
(−J̃q)

(
P

Q

)
∈ C

q×q
≥ . (A.2)

In view of

(Q− iP)∗(Q− iP) =
(
P

Q

)∗ (
P

Q

)
+

(
P

Q

)∗
(−J̃q)

(
P

Q

)
≥

(
P

Q

)∗ (
P

Q

)
∈ C

q×q
≥ ,

then N (
(
P
Q

)
) = N (Q − iP). In particular, rank

(
P
Q

) = q if and only if
det (Q− iP) 	= 0.

Remark A.6 Let P,Q ∈ Cq×q be such that (A.2) and rank
(
P
Q

) = q hold true.
In view of Remark A.5, then det(Q − iP) 	= 0. Because of Iq − C∗C = 2(Q −
iP)−∗

(
P
Q

)∗
(−J̃q)

(
P
Q

)
(Q − iP)−1 and Remark A.4, moreover, the matrix C :=

(Q+ iP)(Q − iP)−1 is contractive.

Remark A.7 Let C be a contractive complex q × q matrix. Let P := i(Iq − C) and
Q := Iq + C. Because of

P ∗P +Q∗Q = (Iq − C)∗(Iq − C)+ (Iq + C)∗(Iq + C) = 2(Iq + C∗C)

≥ 2Iq ∈ C
q×q
> ,

then rank
(
P
Q

) = rank(P ∗P + Q∗Q) = q . Regarding Remark 4.1 and that C is
contractive, furthermore

(
P

Q

)∗
(−J̃q)

(
P

Q

)
= i(P ∗Q−Q∗P)

= i
[−i(Iq − C)∗(Iq + C)− i(Iq + C)∗(Iq − C)

]

= 2(Iq − C∗C) ∈ C
q×q
≥ .

Clearly, (Q+ iP)(Q − iP)−1 = (2C)(2Iq)−1 = C.
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We will write 〈., .〉E for the (left) Euclidean inner product in Cq , i. e., for all
x, y ∈ Cq , let 〈x, y〉E := y∗x. If M is a non-empty subset of Cq , then the set M⊥ of
all x ∈ Cq which fulfil 〈x, y〉E = 0 for all y ∈ M is a subspace of Cq and is called
(left) orthogonal complement of M. If U and W are subspaces of Cq such that
〈u,w〉E = 0 for every choice of u in U andw inW , thenU∩W = {0q×1} and U⊕W
is said to be the orthogonal sum of U and W . If U is a subspace of Cq , then there
exists exactly one matrix PU ∈ Cq×q such that both PUx ∈ U and x − PUx ∈ U⊥
are fulfilled for each x ∈ Cq . This matrix PU is called the orthoprojection matrix
onto U . In particular, PUu = u for all u ∈ U . A complex q × q matrix P is said
to be an orthogonal projection matrix, if there exists a subspace U of Cq such that
P = PU .

Proposition A.8 Let P ∈ Cq×q . Then P is an orthogonal projection matrix if and
only if P 2 = P and P ∗ = P hold true.

For a detailed proof of Proposition A.8, see, e. g., [34, Satz 2.54].

Remark A.9 If U is a subspace of Cq , then PU + PU⊥ = Iq .

Lemma A.10 Let m ∈ N and let (Vj )mj=0 be a sequence of linear subspaces of Cq

such that

{0q×1} = V0 ⊆ V1 ⊆ · · · ⊆ Vm−1 ⊆ Vm = Cq (A.3)

holds true. For all l ∈ Z0,m, let Pl := PVl and let η1, η2, . . . , ηm ∈ C \ {0}. Then

[
m∑

l=1

ηl(Pl − Pl−1)

][
m∑

l=1

1

ηl
(Pl − Pl−1)

]
= Iq .

Proof From (A.3) and a well-known result on orthoprojection matrices (see, e. g.,
[34, Satz 4.31]) we get that PjPk = Pmin{j,k} holds true for all j, k ∈ Z0,m.
Moreover, (A.3) and a further well-known result on orthoprojection matrices (see,
e. g., [34, Satz 4.30(c)]) deliver the equations Pj − Pj−1 = PVj�Vj−1 for all j ∈
Z1,m and the representation Cq = ⊕m

j=1(Vj �Vj−1) as orthogonal sum. Therefore,
using the Kronecker delta δjk , it is readily checked that (Pj −Pj−1)(Pk −Pk−1) =
δjk(Pj − Pj−1) for all j, k ∈ Z1,m and, consequently,

[
m∑

l=1

ηl(Pl − Pl−1)

][
m∑

l=1

1

ηl
(Pl − Pl−1)

]

=
m∑

j=1

m∑

k=1

ηj
1

ηk
(Pj − Pj−1)(Pk − Pk−1) =

m∑

j=1

m∑

k=1

ηj
1

ηk
δjk(Pj − Pj−1)

=
m∑

l=1

ηl
1

ηl
(Pl − Pl−1) =

m∑

l=1

(Pl − Pl−1) = Pm − P0 = Iq − 0q×q = Iq .

��
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Remark A.11 Let U be a subspace of Cq with dimension d := dimU ≥ 1. Let
u1, u2, . . . , ud be an orthonormal basis of U and let U := (u1, u2, . . . , ud). Then
PU = UU∗.

Remark A.12 For each A ∈ Cp×q , the equations R(A)⊥ = N (A∗) as well as
N (A)⊥ = R(A∗) hold true.

Remark A.13 If A ∈ Cp×q , then AA+ = PR(A) and A+A = PR(A∗).

Lemma A.14 Let A ∈ Cp×q . Then:

(a) Let B ∈ Cp×r . Then R(A) ⊆ R(B) if and only if BB+A = A.
(b) Let B ∈ Cr×q . Then N (B) ⊆ N (A) if and only if AB+B = A.

Remark A.15 Let M ∈ Cq×p be such that r := rankM fulfils 1 ≤ r ≤ q − 1.
Let u1, u2, . . . , uq be an orthonormal basis of Cq such that u1, u2, . . . , ur is a basis
of R(M), let U := (u1, u2, . . . , ur ), and let W := (u1, u2, . . . , uq). For every
choice of A ∈ Cr×r , then UAU∗ = W · diag(A, 0(q−r)×(q−r)) ·W∗ and UAU∗ +
P[R(M)]⊥ = W · diag(A, Iq−r ) ·W∗.

Lemma A.16 Let r ∈ Z1,q , let U ∈ Cq×r be such that U∗U = Ir , and let Ã, B̃ ∈
Cr×r . Then the matrices A := UÃU∗ and B := UB̃U∗ + P[R(U)]⊥ fulfil R(A) ⊆
R(U) and det (A∗A+ B∗B) = det(Ã∗Ã+ B̃∗B̃) as well as B∗A = UB̃∗ÃU∗. In

particular, rank
(
A
B

) = q if and only if rank
(
Ã
B̃

)
= r .

Proof Clearly, R(A) = R(UÃU∗) ⊆ R(U). Moreover, we have A∗A =
UÃ∗U∗UÃU∗ = UÃ∗ÃU∗. Obviously, P[R(U)]⊥U = 0q×r . Taking additionally
into account Proposition A.8, we consequently obtain

B∗B = UB̃∗U∗UB̃U∗ + UB̃∗U∗P[R(U)]⊥

+ P∗[R(U)]⊥UB̃U
∗ + P∗[R(U)]⊥P[R(U)]⊥

= UB̃∗B̃U∗ + UB̃∗(P[R(U)]⊥U)∗ + P[R(U)]⊥UB̃U∗ + P[R(U)]⊥

= UB̃∗B̃U∗ + P[R(U)]⊥

(A.4)

as well as

B∗A = UB̃∗U∗UÃU∗ + P∗[R(U)]⊥UÃU
∗

= UB̃∗ÃU∗ + P[R(U)]⊥UÃU∗ = UB̃∗ÃU∗.

It remains to show that det(A∗A + B∗B) = det(Ã∗Ã + B̃∗B̃) is fulfilled. In view
of (A.4), we have

A∗A+ B∗B = U(Ã∗Ã+ B̃∗B̃)U∗ + P[R(U)]⊥ . (A.5)
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If r = q , then U is unitary and, therefore, P[R(U)]⊥ = 0q×q and the assertion
follows from (A.5). Let r < q and d := q − r . Then there is V ∈ Cq×d such that
W := (U, V ) is a unitary q × q matrix. In particular,

(
U∗U U∗V
V ∗U V ∗V

)
= W∗W =

(
Ir 0r×d

0d×r Id

)
and UU∗ + V V ∗ = WW∗ = Iq

(A.6)

hold true. Using U∗U = Ir and Remarks A.11 and A.9, then UU∗ = PR(U) and
VV ∗ = Iq − UU∗ = P[R(U)]⊥ follow. Additionally using (A.5) and (A.6), we
obtain

W∗(A∗A+ B∗B)W =
(
U∗
V ∗

) [
U(Ã∗Ã+ B̃∗B̃)U∗ + V V ∗] (U, V )

=
(
Ã∗Ã+ B̃∗B̃ 0r×d

0d×r Id

)
.

��
Lemma A.17 Let M ∈ Cq×p be such that r := rankM fulfils r ≥ 1. Let
u1, u2, . . . , ur be an orthonormal basis of R(M) and let U := (u1, u2, . . . , ur ).
Furthermore, let P and Q be complex q × q matrices such that rank

(
P
Q

) = q

as well as Im(Q∗P) ∈ C
q×q
≥ and R(P ) ⊆ R(M) hold true. Then the matrix

B := Q − iP is non-singular and the matrices φ := U∗PB−1U and ψ :=
U∗QB−1U fulfil rank

( φ
ψ

) = r andψ∗φ = (B−1U)∗(Q∗P)(B−1U). Furthermore,
the matrices S := UφU∗ and T := UψU∗ + P[R(M)]⊥ fulfil the following
statements:

(a) rank
(
S
T

) = q and det(S∗S + T ∗T ) = det(φ∗φ + ψ∗ψ).
(b) T ∗S = B−∗(Q∗P)B−1.
(c) S = PB−1 and T = QB−1 as well as R(( PQ

)
) = R(( ST

)
).

Proof The idea of the proof is taken from [2, Lem. 4.3]. We only consider the
case r < q . Let d := q − r . Then there is V ∈ Cq×d such that W := (U, V ) is
a unitary q × q matrix. In particular, (A.6) holds true. Using Remark 4.1, we get(
P
Q

)∗
(−J̃q)

(
P
Q

) ∈ C
q×q
≥ . Set A := Q + iP , then Remark A.6 shows that detB 	=

0 and that C := AB−1 is contractive. Since W is unitary, then the matrix K :=
W∗CW is contractive as well. Moreover, we have

K =
(
U∗
V ∗

)
C(U,V ) =

(
U∗CU U∗CV
V ∗CU V ∗CV

)
.
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Obviously, B − A = −2iP and B + A = 2Q are true and, consequently,

i

2
(Iq − C) = PB−1 and

1

2
(Iq + C) = QB−1 (A.7)

follow. According to Remark A.11, we have PR(M) = UU∗. Thus, R(P ) ⊆
R(M) yields UU∗P = P . Therefore, (A.7) and (A.6) imply V ∗(Iq − C) =
−2iV ∗PB−1 = −2iV ∗UU∗PB−1 = 0d×q , i. e., V ∗C = V ∗. Considering (A.6),
then the lower blocks of K read V ∗CU = V ∗U = 0d×r and V ∗CV = V ∗V = Id
which is, in particular, unitary. Consequently, K admits the block representation

K =
(
U∗CU 0r×d
0d×r Id

)
. (A.8)

Using (A.6) and (A.8), we get

Iq = UU∗ + V V ∗ = UU∗UU∗ + VV ∗,

C = WKW∗ = (U, V )K

(
U∗
V ∗

)
= UU∗CUU∗ + V V ∗,

and, therefore,

Iq − C = UU∗(Iq − C)UU∗ and Iq + C = UU∗(Iq + C)UU∗ + 2VV ∗.

Due to (A.7), we infer

PB−1 = UU∗PB−1UU∗ = UφU∗

and

QB−1 = UU∗QB−1UU∗ + V V ∗ = UψU∗ + V V ∗.

In view of (A.6) and PR(M) = UU∗ and using Remark A.9, we have V V ∗ =
Iq −UU∗ = P[R(M)]⊥ . Consequently, PB−1 = S and QB−1 = T hold true which
proves (c) and rank

(
S
T

) = q . Assertion (b) immediately follows from (c). Using
U∗U = Ir and R(U) = R(M), the application of Lemma A.16 yields det(S∗S +
T ∗T ) = det(φ∗φ + ψ∗ψ) and rank

( φ
ψ

) = r . Moreover, considering that T ∗S =
U(ψ∗φ)U∗ holds true, finally we obtain

ψ∗φ = U∗U(ψ∗φ)U∗U = U∗T ∗SU

= U∗(QB−1)∗(PB−1)U = (B−1U)∗(Q∗P)(B−1U)

which completes the proof. ��
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Appendix B Some Facts on the Integration Theory
of Non-negative Hermitian Measures

In this section, we present basic facts regarding the integration theory with respect
to non-negative Hermitian measures. Throughout the section, let K ∈ {R,C}. We
write BK denoting the σ -algebra of all Borel subsets of K. Let � be a non-empty
set and let A be a σ -algebra on �. Consider a measure ν on the measurable space
(�,A). We use L1(�,A, ν;K) to denote the set of all A-BK-measurable functions
f : � → K such that

∫
�
|f |dν < ∞. We will write Bp×q for the σ -algebra of all

Borel subsets of Cp×q . An A-Bp×q -measurable function F : �→ Cp×q is said to
be integrable with respect to ν if F = (fjk)j=1,...,p

k=1,...,q
belongs to [L1(�,A, ν;C)]p×q ,

i. e. all entries fjk belong to the class L1(�,A, ν;C). In this case, let

∫

�

Fdν :=
(∫

�

fjkdν

)

j=1,...,p
k=1,...,q

.

A matrix-valued functionμ the domain of which is A and the values of which belong
to the set Cq×q

≥ of all non-negative Hermitian complex q × q matrices is called non-
negative Hermitian q × q measure on (�,A) if it is σ -additive, i. e., if μ fulfils
μ(

⋃∞
k=1 Ak) = ∑∞

k=1 μ(Ak) for each sequence (Ak)
∞
k=1 of pairwise disjoint sets

belonging to A. By Mq
≥(�,A) we denote the set of all non-negative Hermitian

q × q measures on (�,A), i. e., the set of all σ -additive mappings μ : A → C
q×q
≥ .

Let μ = (μjk)
q

j,k=1 ∈ Mq
≥(�,A). For each j ∈ Z1,q and for each k ∈ Z1,q , the

function μjk describes a complex measure on (�,A) and the variation νjk of μjk
is a finite measure on (�,A). Especially, μ11, μ22, . . . , μqq and the so-called trace
measure τ := ∑q

j=1 μjj of μ are finite measures on (�,A). For each function f

belonging to L1(�,A, μ;K) := ⋂q

j,k=1 L1(�,A, νjk;K) we use the notation

∫

�

f dμ :=
(∫

�

f dμjk

)q

j,k=1
.

For this integral, we write
∫
�
f (ω)μ(dω) as well.

Lemma B.1 Let (�,A) be a measurable space, let μ = (μjk)
q

j,k=1 ∈Mq
≥(�,A),

and let f : � → K be an A-BK-measurable mapping. Using standard arguments
of measure and integration theory, easily one can see that the following statements
are equivalent:

(i) f ∈ L1(�,A, μ;K).
(ii) f ∈⋂q

j=1 L1(�,A, μjj ;K).
(iii) f ∈ L1(�,A, τ ;K), where τ is the trace measure of μ.
(iv) f ∈ L1(�,A, u∗μu;K) for each u ∈ Cq .
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Now we turn our attention to an other integral based on investigations by
I. S. Kats [26] and M. Rosenberg [31]. Let (�,A) be a measurable space and let
μ = (μjk)

q
j,k=1 ∈ Mq

≥(�,A). Then, for every choice of j and k in Z1,q , the
complex measure μjk is absolutely continuous with respect to the trace measure τ
of μ. If ν describes an arbitrary measure on (�,A) such that, for all j, k ∈ Z1,q ,
the complex measure μjk is absolutely continuous with respect to ν, we say
that μ is absolutely continuous with respect to ν and the matrix-valued function

μ′ν = (
dμjk

dν )
q

j,k=1 built by the corresponding Radon–Nikodym derivatives of μjk
with respect to ν is said to be a version of the Radon–Nikodym derivative of μ
with respect to ν and is well defined up to sets of zero ν-measure. An ordered
pair [�,�] consisting of an A-Bp×q -measurable function � : � → Cp×q and
an A-Br×q -measurable function � : � → Cr×q is said to be left-integrable with
respect to μ if �μ′τ�∗ belongs to [L1(�,A, τ ;C)]p×r . In this case the integral

∫

�

�dμ�∗ :=
∫

�

�μτ
′�∗dτ

is (well) defined and we also write
∫
� �(ω)μ(dω)[�(ω)]∗ for this integral.

Appendix C Linear Fractional Transformations of Matrices

In this appendix we summarize some basic facts on linear fractional transformations
of matrices. Our considerations modify results due to V. P. Potapov [30], stated in
[20].

Remark C.1 Let c ∈ Cq×p and d ∈ Cq×q . Then easily one can check that the
following statements are equivalent (see, e. g., [20, Lem. D.2]):

(i) The set Q[c,d] := {x ∈ Cp×q : det(cx + d) 	= 0} is non-empty.
(ii) The set Q̃[c,d] := {[x, y] ∈ Cp×q × Cq×q : det(cx + dy) 	= 0} is non-empty.

(iii) rank(c, d) = q .

Notation C.2 Let E ∈ C(p+q)×(p+q) and let (A.1) be the block representation of
E with p × p block a. If rank(c, d) = q , then the linear fractional transformations
S(p,q)E : Q[c,d] → Cp×q and S̃(p,q)E : Q̃[c,d] → Cp×q are defined by

S(p,q)
E (x) := (ax + b)(cx + d)−1 and S̃(p,q)

E ([x, y]) := (ax + by)(cx + dy)−1.

Proposition C.3 Let E1, E2 ∈ C(p+q)×(p+q) and let

E1 :=
(
a1 b1

c1 d1

)
and E2 :=

(
a2 b2

c2 d2

)

be the block representations of E1 and E2 with p × p blocks a1 and a2. Let
E := E2E1 and let (A.1) be the block representation of E with p × p block
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a. Suppose that rank(c1, d1) = q and rank(c2, d2) = q hold true. Let Q̃ :=
{[x, y] ∈ Q̃[c1,d1] : S̃(p,q)E1

([x, y]) ∈ Q[c2,d2]}. Then Q̃[c,d] ∩ Q̃[c1,d1] = Q̃. Further-

more, if Q̃[c,d] ∩ Q̃[c1,d1] 	= ∅, then S(p,q)E2
(S̃(p,q)E1

([x, y])) = S̃(p,q)E ([x, y]) for all

[x, y] ∈ Q̃[c,d] ∩ Q̃[c1,d1].

A detailed proof of Proposition C.3 is given, e. g., in [20, Prop. D.4]. Note that
the conditions Q̃[c1,d1] 	= ∅ and Q[c2,d2] 	= ∅ do not imply Q̃[c,d] ∩ Q̃[c1,d1] 	= ∅ (see
[20, Example D.6]).
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The Wiener Algebra and Singular
Integrals

E. Liflyand

Abstract Salem type conditions for trigonometric series are extended to functions
from the Wiener algebra. While in the earlier one-dimensional generalization the
conditions are given in terms of the Hilbert transform, for the multivariate setting
all reasonable singular integrals are equally involved.

Keywords Wiener algebra · Fourier transform · Hilbert transform · Singular
integral · Riesz transform · Hardy space
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42A50, 42B30

1 Introduction

Wiener’s algebra has proved to be very important in various areas of analysis; for
a detailed survey, see [9]. For n = 1, 2, . . . ., we say that f belongs to W0(R

n),

written f ∈ W0(R
n), if

f (x) =
∫

Rn

g(t)ei(x,t)dt, g ∈ L1(Rn), (1.1)

where (x, t) = x1t1 + . . .+ xntn, with ‖f ‖W0 = ‖g‖L1(Rn). The space W0(R
n) is a

Banach algebra with point-wise multiplication.
In dimension one, a new necessary condition for belonging to the Wiener algebra

has recently been obtained in [6]. It was represented as a non-periodic analog of
Salem’s necessary conditions for a trigonometric series to be the Fourier series of
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an integrable function (see [10] and Chapter II, §9 of [1], where one can find a nice
discussion on this issue). Along with the proven in [8] fact that the Hilbert transform
of a function from Wiener’s algebra exists at every point, such necessary conditions
can be given as

Theorem 1.1 If f ∈ W0(R), then its Hilbert transform Hf (x) exists at every x ∈
R, is uniformly bounded and lim|x|→∞Hf (x) = 0.

Here the Hilbert transform Hf is defined by

Hf (x) := 1

π
(P.V.)

∫

R

f (x − u)
du

u
= 1

π
(P.V.)

∫

R

f (u)

x − u
du

= 1

π
lim
δ↓0

∫ ∞

δ

{f (x − u)− f (x + u)}du
u
, x ∈ R.

As is well known, for f ∈ Lp(R), 1 ≤ p < ∞, this limit exists for almost all x in
R. A function in Wiener’s algebra need not be in any of these Lp, just continuous
and vanishing at infinity, however its Hilbert transform necessarily possesses such
nice properties.

In this paper, we are going to generalize Theorem 1.1 to the multivariate case.
The main feature of this work is that the corresponding properties hold true not for
one specific singular integral as in dimension one but for a variety of such integrals.
The detailed study of singular integrals in [11, Ch.II] demonstrates that they possess
the key property needed for our study. More precisely, the uniform boundedness of
the truncated Fourier transform of the kernel is one of the basic features of every
singular integral.

The outline of the paper is as follows. In the next section we study one
specific family of singular integrals that unites the one-dimensional case and the
multidimensional one. In Sect. 3, we present our approach in full generality. In the
section before the last, we discuss what properties guarantee for a singular integral
to be involved in this study. Finally, in the last section we present an application to
radial functions.

2 Multidimensional Hilbert Transform

Among various generalizations of the Hilbert transform to the multivariate case (for
example, the whole second volume of [5] is devoted to this), the closest to the one-
dimensional prototype proved to be superpositions of the Hilbert transform applied
to single variables. This is by no means artificial, since corresponds to one of the so
called product Hardy spaces (many details are given in [7, Ch.5]).
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This case will further take its place in the general scheme. However, the use of
the Hilbert transform makes it, in formulation and in proof, very similar to the one-
dimensional case. To show this, it is worth giving first a short proof of Theorem 1.1,
moreover, in [6] it was longer and for the more restrictive in this case so-called
modified Hilbert transform rather than for the usual one.

Thus, expressing f in the Hilbert transform formula by means of (1.1), we wish
to justify the change of the order of integration. For each δ > 0, we have

∫

|x−t |>δ
1

x − t

∫

R

g(u)eitudu dt =
∫

R

g(u)

∫

|x−t |>δ
eitu

1

x − t
dt du.

In order to insert the limit as δ ↓ 0 under the sign of integration, we apply the
Lebesgue dominated convergence test. For this, we prove that the integrand in u is
dominated by a single integrable function independent of δ. Since g is integrable, it
suffices to show that the integrals

∫

|x−t |>δ
eitu

1

x − t
dt

are uniformly bounded. This is obviously the case while integrating over |x−t| ≥ 1.
Substituting x − t = s, we then see that the rest is equal to

∫

δ<|x−t |<1

eitu

x − t
dt = −ieixu

∫

δ<|s|<1

sin su

s
ds. (2.1)

It is well known that the integral on the right is uniformly bounded. This proves the
existence everywhere of the Hilbert transform. Further, by King [5, Vol. 2, Table 1.3
(3.1)],

Heiu·(x) = −i signu eiux, (2.2)

and the corresponding Fourier integral tends to zero by the Riemann-Lebesgue
lemma, which completes the proof of Theorem 1.1.

To present the multidimensional result in question, we need additional notation.
Let η = (η1, . . . , ηn) be an n-dimensional vector with the entries either 0 or 1
only. Correspondingly, |η| = η1 + . . .+ ηn. If only the j -th entry is one, while the
rest are zeros, a natural notation for such an η is ej . Additionally, we have special
notations 0 = (0, 0, . . . , 0) and 1 = (1, 1, . . . , 1). The inequality of vectors is meant
coordinate wise. By xη and dxη we denote the |η|-tuple consisting only of xj such
that ηj = 1 and

∏
j :ηj=1

dxj , respectively. Correspondingly, by Rη we denote the |η|-
dimensional Euclidean space with respect to the variables xj such that ηj = 1. We
shall need the cases where H is applied to some of the variables, the cases where the
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Hilbert transform is applied to only one variable as well as to each of the n variables
are among these. This will be denoted by Hη in general, which means applying H
repeatedly to the j -th variables for which ηj = 1. In the case where H acts only at
the j -th variable, we can replace Hej by the simpler Hj notation. If we apply H to
each variable repeatedly, the notation H1 automatically comes to mind.

Theorem 2.1 If f ∈ W0(R
n), then Hηf (x) exists at every x ∈ Rn and

lim|x|→∞Hηf (x) = 0, for all η 	= 0.

Proof For simplicity, it suffices to prove this for the case

η = ( 1, . . . , 1︸ ︷︷ ︸
k times

, 0, . . . , 0) = e1 + . . .+ ek.

Just this η will be used during the following proof. The mentioned similarity to the
one-dimensional case will come from the fact that the proof goes not only along
the same lines applied to the indicated variable but also that we still deal with the
Hilbert transform. Expressing f in Hηf by means of (1.1), we get

Hηf (x) = (P.V.)
1

πk

∫

Rk

k∏

j=1

1

xj − tj
dtj

∫

Rn

g(u)ei(t1u1+...+tkuk+xk+1uk+1+...+xnun) du

=
∫

Rn

g(u)ei(xk+1uk+1+...+xnun)

(P.V.)
1

πk

∫

Rk

k∏

j=1

eitj uj
1

xj − tj
dtj du. (2.3)

We must justify the change of the order of integration on the right-hand side.
However, the one-dimensional argument works here in the same manner.

Let us now estimate all the summands on the right-hand side of (2.3). If
we consider the product of all k Hilbert transform summands and take into
account (2.2), we arrive at

(−i)k
∫

Rn

⎡

⎣g(u)
k∏

j=1

signuj

⎤

⎦ ei(u,x) du,

which tends to zero as |x| → ∞, by the Riemann-Lebesgue lemma. This completes
the proof. ��
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3 General Results

Proceeding to the general situation, we start with defining a general singular
integral on basis of [11, Ch.II, §3.2, Th.2], where fundamental properties of singular
integrals are proved. It is of the form

Sf (x) =
∫

Rn

f (x − y)K(y) dy, (3.1)

where the integral is understood as the limit, as ε → 0, in that or another sense of
the integrals

Sεf (x) =
∫

|y|>ε
f (x − y)K(y) dy, (3.2)

provided that the kernel K satisfies the conditions

|K(x)| ≤ C|x|−n, |x| > 0; (3.3)

∫

|x|≥2|y|
|K(x − y)−K(x)| dx ≤ C, |y| > 0; (3.4)

and
∫

M1<|x|<M2

K(x) dx = 0, 0 < M1 < M2 <∞. (3.5)

In [11], the mentioned limit is understood in some Lp norm, with 1 < p < ∞.
However, we will see that it exists at every point provided f ∈ W0. We have the
following multidimensional extension of Theorem 1.1.

Theorem 3.1 Let f ∈ W0(R
n). Then Sf (x) exists at every x ∈ Rn and

lim|x|→∞ Sf (x) = 0.

Proof In the multivariate case, our strategy will be essentially the same as that in
dimension one in the previous section but applied to different singular integrals,
mostly purely multidimensional. The uniform boundedness of integrals mirroring
the last integral in (2.1) is the key ingredient. In fact, that integral is the truncated
(sine) Fourier transform of the kernel of the Hilbert transform. The same property
for general kernels is delivered by the lemma in [11, Ch.II, §3.3]; it says that if K
satisfies (3.3)–(3.5) and

Kδ(x) =
{
K(x), |x| ≥ δ,

0, otherwise,
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then

sup
δ

|K̂δ(x)| ≤ C,

where the constant C depends only on dimension n. The proof now goes along the
same lines as above, where the mentioned lemma allows us to apply the Lebesgue
dominated convergence theorem at an appropriate moment. ��

The main important singular integrals are the Riesz transforms. In dimension n,
there are n transforms. For j = 1, 2, . . . , n, the j -th Riesz transform Rjf (x) is
defined as

Rjf (x) = lim
ε→0

cn

∫

|y|>ε
yj

|y|n+1 f (x − y) dy,

with

cn = �(n+1
2 )

π
n+1

2

.

By this, Rj is a singular integral defined by the kernel

Kj(y) = yj

|y|n+1 =
�j(y)

|y|n ,

with �j(y) = yj
|y| .

It follows from Theorem 3.1 that for any j = 1, 2, . . . , n, we have for f ∈
W0(R

n) that Rjf (x) exists for every x ∈ Rn and lim|x|→∞Rjf (x) = 0.

It is worth mentioning that while the repeated Hilbert transforms are used for
defining the so-called product Hardy space H 1(R× . . .× R), the Riesz transforms
are “responsible” for defining the real Hardy space H 1(Rn) (their integrability, in
fact, is needed) and other related spaces. More or less detailed discussion on these
can be found in [7, Ch.5]; in particular, H 1(R× . . .× R) ⊂ H 1(Rn).

4 Certain Singular Integrals

Among general singular integrals considered in Sects. 2 and 3, some play a special
role in analysis. They are also studied in [11, Ch.II]. More precisely, in [11, Ch.II,
§2.2, Th.1] a wider class of singular integrals is considered, for which the uniform
boundedness of the Fourier transform of the L2 kernel is assumed by definition.
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However, [11, Ch.II, §3.2] is not only devoted to the proof of Theorem 2 in [11,
Ch.II, §3.2] but begins with nice discussion why that wide class is unsatisfactory.
More precisely, it is desirable that the class should be defined in such a way that even
belonging to L2 to be derived from the defining properties. For this, the formally
smaller class of singular integrals, the one we deal with in Sect. 3, is introduced by
assuming the properties (3.3)–(3.5). Then not only the belonging to L2 is proved
but the property of the Fourier transform of the kernel we are interested in is derived
from the definition.

However, further restriction of the class has proved to be desirable for applica-
tions. One of the reasons is the need to deal with operators which commute not only
with translations like those above but also with dilations. For this, the class which is
perfectly appropriate is the one with the kernels of type

K(x) = �(x)

|x|n ,

with � homogeneous of degree 0, that is, �(ax) = �(x) for any a > 0. By
this, being constant on the rays going from zero, � is completely determined by
its restriction to the unit sphere Sn−1. Also, something should be assumed in terms
of � in order to satisfy conditions of [11, Ch.II, §3.2, Th.2]. By (3.3) and (3.4), �
must be bounded and thus integrable on Sn−1. Further, (3.5) reduces to

∫

Sn−1
�(x) dσ = 0,

where dσ is the induced measure on Sn−1. However, the conditions (3.3) and (3.4)
are difficult to be reformulated in terms of �. One of the natural ways to guarantee
them is to pose a Dini type condition on �. It can be formulated as follows. Defining
one of the possible moduli of continuity of & in the spherical mode as

ω(t) = sup
|x−y|≤t,
|x|=|y|=1

|�(x)−�(y)|,

we assume the Dini type condition

∫ 1

0

ω(t)

t
dt <∞.

Needless to say that the concrete singular integrals considered in Sects. 2 and 3 are
of that last type.

It is proved in [3] that to guarantee the uniform boundedness of the Fourier
transform (in the improper sense, as needed) of the kernel K , the following
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assumptions can be taken instead of (3.3)–(3.5):

∫

|x|≥M
|K(x)| dx ≤ CM, 0 < M <∞; (4.1)

∫

|x|≥2|y|
|K(x − y)−K(x)| dx ≤ C, |y| > 0; (4.2)

and
∣∣∣∣
∫

M1<|x|<M2

K(x) dx

∣∣∣∣ ≤ C, 0 < M1 < M2 <∞. (4.3)

All these give enough machinery for applying the obtained necessary conditions
and, correspondingly, eliminate functions not belonging to the Wiener algebra.

5 Application to Radial Functions

In [1, Ch. II, §9], Salem’s condition is applied to the series
∑

an cosnt . What is
derived is the assertion that for this series with {an} tending to zero monotonously
to be a Fourier series, it is necessary that lim

n→∞(an − an+1) lnn = 0. In [6], a one-

dimensional non-periodic analog of this result is the following

Theorem 5.1 If f0 ∈ W0(R is even and monotone on the half-axis, then

lim
x→∞ lim

δ→0+(f0(x − δ)− f0(x + δ)) ln
x

δ
= 0. (5.1)

We mention that indeed the repeated limits are taken exactly in this order.
A natural setting for a multidimensional result of such kind is radial functions.

First of all, we recall the following relation.

Lemma 5.2 For F0(|x|) ∈ W0(R
n), n ≥ 2, it is necessary and sufficient that f0 ∈

W0(R) exist such that for t ≥ 0, there holds

F0(t) =
∫ 1

0
f0(ut)(1 − u2)

n−3
2 du. (5.2)

Proof In its precise form, this result is due to Trigub: the functions f0 and F0
are assigned unambiguously by differentiation: usual for n odd and half-integer
fractional for n even; see [13, 6.3.6] and [12]. However, without indicating f0
explicitly, the result can be proved in the following simpler way.
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If f0 ∈ W0(R) in the way

f0(u) =
∫ ∞

0
g(s) cosus ds,

with g ∈ R, then substituting the last integral for f in (5.2), we obtain

∫ 1

0
(1 − u2)

n−3
2

∫ ∞

0
g(s) cosuts ds du

=
∫ ∞

0
g(s)

∫ 1

0
(1 − u2)

n−3
2 cosuts du ds

= 2
n
2−2√π�

(n− 1

2

) ∫ ∞

0
g(s) (st)−

n
2+1Jn−2

2
(st) ds, (5.3)

where Jν is the Bessel function of first kind and the passage to the right-hand side
is [2, Ch.I, 1.3(8)], with appropriate parameters. But this coincides, up to a constant
multiple, with

(2π)
n
2

∫ ∞

0

g(s)

sn−1 (st)
− n

2+1Jn−2
2
(st)sn−1 ds. (5.4)

Since g is integrable on R+, we haveG(|x|) = g(|x|)
|x|n−1 ∈ L1(Rn), and (5.4) is exactly

the multidimensional Fourier transform of G(| · |) (see [4, Ch.IX, §43, Thm.56];
in Remark 109 of that book, this formula is referred to Cauchy and Poisson for
n = 2, 3, and claimed not to be new in the 50-s, the time of writing [4], for arbitrary
n). Hence F0 ∈ W0(R

n).
Conversely, let F0 ∈ W0(R

n). Then, by definition and radiality, it is equal to

(2π)
n
2

∫ ∞

0
G(s) (st)−

n
2+1Jn−2

2
(st)sn−1 ds,

with some G(| · |) ∈ L1(Rn) and t = |x|. Furthermore, by (5.3), it is equal, again
up to a constant multiple, to

∫ 1

0
(1 − u2)

n−3
2

∫ ∞

0
G(s)sn−1 cosuts ds du.

Since G(s)sn−1 ∈ L1(R+), denoting the inner integral by f0(ut), we arrive at the
needed representation, with f0 ∈ W0(R). This completes the proof. ��

We are now in a position to prove the following result.
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Theorem 5.3 Let F0(| · |) ∈ W0(R
n), n ≥ 2, and let (5.2) hold with f0 monotone

on the half-axis. Then

lim|x|→∞ lim
δ→0+(F0(|x| − δ)− F0(|x| + δ)) ln

|x|
δ
= 0. (5.5)

Proof By (5.2), denoting |x| = t , we get

[F0(t − δ)− F0(t + δ)] ln
t

δ

=
∫ 1

0
[f0(ut − uδ)− f0(ut + uδ)] ln

tu

uδ
(1 − u2)

n−3
2 du.

Since F0 is radial, f0 can be considered as even. It is also bounded and vanishing

at infinity by belonging to W0(R). While integrating on the right over
(

1√
t
, 1

)
, we

derive from (5.1) that lim
t→∞ lim

δ→0+ of this integral tends to zero. It remains to estimate

∫ 1√
t

0
[f0(ut − uδ)− f0(ut + uδ)] ln

tu

uδ
(1 − u2)

n−3
2 du. (5.6)

Since lim
δ→0+ comes from the definition of the Hilbert transform in the principal value

sense and, as we know, for a function from the Wiener algebra, it exists at every
point and is uniformly bounded, we derive from the estimate

∫ 1√
t

0
(1 − u2)

n−3
2 du = O

( 1√
t

)

that (5.6) tends to zero as lim
δ→0+ and then lim

t→∞. This completes the proof. ��
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Techniques to Derive Estimates
for Integral Means and Other Geometric
Quantities Related to Conformal
Mappings

Ronen Peretz

Abstract We will describe few methods to derive estimates for integral means
and for other asymptotic expressions related to conformal mappings. One method
will start from classical inequalities for conformal mappings such as the Goluzin
inequalities and the exponential Goluzin inequalities. Then the simple idea of
approximating integrals with the aid of their Riemann sums will serve us to obtain
such estimates. A second method is to start from a certain elementary identity
proved by Hardy in 1915 and use it combined with distortion theorems in S to obtain
more integrals estimates. Finally, the main result in the author’s Masters thesis
which in fact was already known to Bendixon will give us a method to estimate
the geometric distance from a point in the image of a conformal mapping to the
boundary of this image. The estimate will be in terms of a rather arbitrary sequence
in the domain of the definition that converges to the pre-image of the point in the
image from which the distance is measured.

Keywords Conformal mappings · Schlicht functions · Goluzin inequalities ·
Integral means · Distance to the boundary of the image
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1 Introduction

For an f ∈ H(U) (U = {z ∈ C | |z| < 1}, and H(U) is the family of the functions
that are holomorphic in U ) we will use the following standard notation for the p-
integral mean of f on the circle |z| = r for a fixed r in 0 ≤ r < 1:

Mp(f, r) =
{

1

2π

∫ 2π

0
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}1/p
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The parameter p will usually be confined to the open positive half line, 0 < p <∞.
We also write M∞(f, r) = max0≤θ<2π |f (reiθ )|. We also may write:

log (M0(f, r)) = 1

2π

∫ 2π

0
log |f (reiθ )|dθ,

provided that the last integral converges. The motivation for the last definition comes
from the following heuristics: M0(f, r) = limp→0+ Mp(f, r), and

log (M0(f, r)) = lim
p→0+

1

p
log

{
1

2π

∫ 2π

0
|f (reiθ )|p

}
=

= lim
p→0+

d

dp

{
log

{
1

2π

∫ 2π

0
|f (reiθ )|p

}}
= 1

2π

∫ 2π

0
log |f (reiθ )|dθ.

We note that M0(f, r) is the parallel of the geometric mean of a finite sequence of
numbers. We recall results of Al Baernstein II from his deep paper, [1]. A continuous
function � : R→ R is said to be convex if ∀ x, y ∈ R, �( 1

2 (x + y)) ≤ 1
2 (�(x)+

�(y)). It is said to be strictly convex if strict inequality holds unless x = y.

Theorem (Baernstein’s Theorem, [1]) Let �(x) be a convex non-decreasing
function R→ R. Then for each f ∈ S,

∫ 2π

0
�(log |f (reiθ )|)dθ ≤

∫ 2π

0
�(log |k(reiθ )|)dθ, 0 < r < 1.

Here S = {f ∈ H(U) | f is injective f (0) = f ′(0) − 1 = 0} and k(z) is the
Koebe function k(z) = z/(1 − z)2. If � is strictly convex, then equality holds for
some r only if f is a rotation of k.

The choice �(x) = epx , 0 < p <∞, gives the following conclusion:

Corollary (Al Baernstein, [1]) For 0 < p <∞ and f ∈ S, Mp(f, r) ≤ Mp(k, r),
0 < r < 1, with equality only if f is a rotation of k.

The proof of Baernstein’s Theorem involves a certain maximal function he
invented, the Baernstein star-function. Let u(z) be a real-valued function defined
on the annulus r1 < |z| < r2. For each r , r1 < r < r2, we suppose that
u(reiθ ) ∈ L1(0, 2π). The Baernstein star-function of u is:

u∗(reiθ ) = sup
|E|=2θ

∫

E

u(reit )dt, 0 < θ < π.

Here |E| denotes the Lebesgue measure of the measurable set E ⊆ [−π, π]. In [1],
Baernstein showed that the star-function has the following remarkable property.
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Lemma 1 ([1]) If u is continuous and sub-harmonic in the annulus r1 < |z| < r2,
then u∗ is continuous in the semi-annulus {reiθ } | r1 < r < r2, 0 ≤ θ ≤ π}, and
sub-harmonic in the interior.

In this paper we will show how one can start from the inequalities on S, that
involve finite sequence of parameters, such as the Grunsky inequalities, Goluzin
and Lebedev inequalities etc. . . and by approximating various integral means using
Riemann sums get new integral inequalities on functions of S that involve also their
derivatives and other operators such as the divided quotient operator. We will use as
one basic reference the book [2] of Peter Duren. Especially Chap. 4, pp 118–140 (for
Grunsky inequalities, and the Goluzin Lebedev inequalities), Chap. 5, pages 142–
187 (exponentiation of the Grunsky inequalities), and Chap. 7 on integral means,
pages 214–231.

The natural problem of estimating sharply the integral means of derivatives
of functions in S, along lines similar to the classical result of Baernstein for the
functions themselves turns out to be involved. See [2, section 7.5, pages 229–231].
The first case might be to inquire if Mp(f

′, r) ≤ Mp(k
′, r) for all f ∈ S. For

0 < p < 1
3 , this is certainely false, for by a direct calculation k′ ∈ Hp(U) for all

0 < p < 1
3 , so that Mp(k

′, r) remains bounded as r → 1−. On the other hand,
there exist functions f ∈ S whose derivatives have radial limits on no set of positive
measure, see [4]. In this paper it is shown that in fact f ′ can have much worse
behavior. In particular f ′ 	∈ Hp(U)for any p > 0. For such a function f , and for
each 0 < p < 1

3 , the inequality Mp(f
′, r) ≤ Mp(k

′, r) must fail for r near 1.
Here is a quotation from [2]: “In general, the sharp bound of Mp(f

′, r), f ∈ S is
unknown. For p > 1

3 it seems a reasonable conjecture that Mp(f
′, r) ≤ Mp(k

′, r).”
Duren gives in his book [2], on page 229 two kinds of evidence to support the
last conjecture. First, it is asymptotically correct, at least for p > 2

5 . Feng and
MacGregor have shown that for each p > 2

5 , and each positive integer n ∈ Z+,
Mp(f

(n), r) = O(Mp(k
(n), r), r → 1−, for all f ∈ S. In particular, for p > 2

5 ,
Mp(f

′, r) = O((1− r)1/p−3), r → 1−. See [3].
Second, the conjecture is true for certain sub-classes of S. It is so for the sub-class

K of close-to-convex functions.

Theorem (See [2] page 229) For 0 < p <∞,Mp(f
′, r) ≤ Mp(k

′, r), 0 < r < 1,
for all f ∈ K .

Before proceeding to the applications of Grunsky inequalities and other inequal-
ities to the estimates of integral means in S, let us note what do the elementary
theorems on S give us in that regard.

Here are some of these theorems:
A distortion theorem:

(1) For each f ∈ S,

1 − r

(1 + r)3
≤ |f ′(z)| ≤ 1 + r

(1 − r)3
, |z| = r < 1.
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For each z ∈ U , z 	= 0, equality occurs if and only if f is a suitable rotation of
the Koebe function.
A growth theorem:

(2) for each f ∈ S,

r

(1 + r)2
≤ |f (z)| ≤ r

(1 − r)2
, |z| = r < 1.

For each z ∈ U , z 	= 0, equality occurs if and only if f is a suitable rotation of
the Koebe function.
A rotation theorem:

(3) For each f ∈ S,

| arg f ′(z)| ≤
⎧
⎨

⎩
4 sin−1 r, r ≤ 1√

2
,

π + log
(

r2

1−r2

)
, r ≥ 1√

2
.

One more estimate:
(4) For each f ∈ S,

1 − r

1 + r
≤

∣∣∣∣
zf ′(z)
f (z)

∣∣∣∣ ≤
1 + r

1 − r
, |z| = r < 1.

Let us use (2) above in order to give a crude estimate of Mp(f, r):

Mp(f, r) =
{

1

2π

∫ 2π

0
|f (reiθ )|pdθ

}1/p

≤ r

(1 − r)2
.

Similarly by (1):

Mp(f
′, r) ≤ 1 + r

(1 − r)3
. (0 < p <∞)

These are relatively poor estimates. Already in 1925 Littlewood could do much
better for f ∈ S and p = 1. His argument was a clever geometric argument.

Theorem (Littlewood, 1925) For each function f ∈ S,

M1(f, r) ≤ r

1 − r
, 0 ≤ r < 1.

Proof Consider the square-root transform of f , h(z) = √
f (z2) = ∑∞

n=1 cnz
n. The

growth theorem (2) gives us:

|h(z)| ≤ z

1 − r2 , |z| = r < 1.
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So h maps the disk |z| < r conformally onto a domain Dr which lies in the disk
|w| < r

1−r2 . The area Ar of Dr is therefore no greater than the area of the last disk:

Ar ≤ πr2

(1 − r2)2
.

But a calculation gives:

Ar =
∫ 2π

0

∫ r

0
|h′(ρeiθ )|2ρdρdθ = π

∞∑

n=1

n|cn|2r2n.

Consequently,

∞∑

n=1

n|cn|2r2n−1 ≤ r

(1 − r2)2
, 0 ≤ r < 1.

Integration from 0 to r gives:

∞∑

n=1

|cn|2r2n ≤ r2

1 − r2 , or

1

2π

∫ 2π

0
|h(reiθ )|2dθ ≤ r2

1 − r2 ,

which is equivalent to:

M1(f, r) ≤ r

1 − r
, 0 ≤ r < 1.

One might suspect that the estimate in Littlewood’s Theorem above could be
improved if we use theN’th root transform h(z) = f (zN)1/N = ∑∞

n=1 cnz
n instead

of the square-root transform. The result is: ��
Theorem (The N’th Root Version of Littlewood’s Theorem) For each function
f ∈ S and each integer N ≥ 2,

M1(f, r) ≤
(

N

N − 4

)
× 1 − (1 − r)1−4/N

r1−2/N , 0 ≤ r < 1.

It turns out that for N = 2 (as Littlewood adviced us) the upper bound is the best.
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2 Inequalities on S and �

We recall few basic inequalities on families of conformal mappings.

(1) The Goluzin inequalities.

(a) On &. Let g ∈ & and ξν ∈ 	 = {ξ ∈ C | |ξ | > 1}, γν ∈ C where
ν = 1, . . . , n, n = 1, 2, . . .. Then

∣∣∣∣∣∣

n∑

μ=1

n∑

ν=1

γμγν log

(
g(ξμ)− g(ξν)

ξμ − ξν

)∣∣∣∣∣∣
≤

n∑

μ=1

n∑

ν=1

γμγ ν log

(
1

1 − (ξμξν)
−1

)
.

(b) On S. Let f ∈ S and zν ∈ U , γν ∈ C where ν = 1, . . . , n, n = 1, 2, . . ..
Then
∣∣∣∣∣∣

n∑

μ=1

n∑

ν=1

γμγν log

(
zμzν

f (zμ)f (zν)
· f (zμ)− f (zν)

zμ − zν

)∣∣∣∣∣∣
≤

n∑

μ=1

n∑

ν=1

γμγ ν log

(
1

1 − zμzν

)
.

(2) Exponentiation of the Goluzin inequalities.
The idea is to replace the inequalities in (1)(b) by similar inequalities with

the logarithms removed. We refer to [2] pages 180-183. The procedure in
the book is based on a theorem of Schur on the Hadamard product of two
positive semi-definite matrices. We will review that but see how to obtain a
slightly more general result. A real symmetric matrix A = (ajk) is said to
be positive semi-definite (denoted by A ≥ 0) if its associated quadratic form∑n

j=1
∑n

k=1 ajkxjxk is non-negative for all real numbers x1, . . . , xn. This will
be the case if and only if all of the (real) eigenvalues of A are non-negative. The
Hadamard product of two n × n matrices A = (ajk) and B = (bjk) is defined
as the n × n matrix (ajkbjk). We will denote the Hadamard product of A and
B by A ∗ B (so that it will not be confused with ordinary matrix product). This
operation is commutative, i.e. A ∗ B = B ∗ A. Also if A and B are symmetric
so is A ∗B. for any function f on R to R we denote by ∗f (A) the n× n matrix
(f (ajk)). In particular ∗Am = (amjk), m = 1, 2, . . . .

Theorem (Schur’s Theorem) If A ≥ 0 and B ≥ 0, then A ∗ B ≥ 0.

Corollary to Schur’s Theorem If A ≥ 0 and φ(z) = ∑∞
ν=0 cνz

ν is an entire
function with non-negative coefficients cν , then ∗φ(A) ≥ 0.

We also have the following

Lemma (On Hermitian Forms) If the real symmetric matrix A = (ajk) is positive
semi-definite, then the Hermitian form

∑n
j=1

∑n
k=1 ξj ξk ≥ 0, for all complex

numbers ξ1, . . . , ξn.

After those algebraic preparations, the book [2] on page 182 returns to the
Goluzin inequalities on S, (1)(b). Choosing the parameters γν to be real numbers and
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using the fact that for any complex number α we have −�{α} ≤ |α| we conclude
that the symmetric matrix with elements:

ajk =
∣∣∣∣log

(
zj zk

f (zj )f (zk)
· f (zj )− f (zk)

zj − zk

)∣∣∣∣

is positive semi-definite. Applying the Corollary to Schur’s theorem with the entire
function φ(z) = e2z − 1 (which clearly has positive coefficients), we deduce that
the matrix C = (cjk) = (e2ajk − 1) is positive semi-definite. By the Lemma
(on Hermitian forms) we get,

∑n
μ=1

∑n
ν=1 cμνγμγ ν ≥ 0 for all complex numbers

γ1, . . . , γn. In other words,

∣∣∣∣∣∣

n∑

μ=1

γμ

∣∣∣∣∣∣

2

≤
n∑

μ=1

n∑

ν=1

∣∣∣∣
zμzν

f (zμ)f (zν)
· f (zμ)− f (zν)

zμ − zν
· 1

1− zμzν

∣∣∣∣
2

γμγ ν.

If the numbers γμ are expressed as follows:

γμ = λμ

∣∣∣∣
f (zμ)

zμ

∣∣∣∣
2

, μ = 1, . . . , n,

these inequalities become:

∣∣∣∣∣∣

n∑

μ=1

λμ

∣∣∣∣
f (zμ)

zμ

∣∣∣∣
2
∣∣∣∣∣∣

2

≤
n∑

μ=1

n∑

ν=1

λμλν

∣∣∣∣
f (zμ)− f (zν)

(zμ − zν)(1 − zμzν)

∣∣∣∣
2

for all complex numbers λ1, . . . , λn. These last inequalities are the exponentiation
of the Goluzin inequalities.

(3) A generalization of the exponentiation of the Goluzin inequalities. The
most significant thing we do, is to apply the Corollary to Schur’s Theorem with the
function φ(z) = eqz−1 with any 0 < q (instead of just q = 2 as was the case in (2)
above).Clearly the entire function eqz−1 = ∑∞

m=1
qm

m! ·zm has positive coefficients,
as requested by the assumptions of the corollary. The result is that for 0 < q < ∞
we have,

∣∣∣∣∣∣

n∑

μ=1

γμ

∣∣∣∣∣∣

2

≤
n∑

μ=1

n∑

ν=1

∣∣∣∣
zμzν

f (zμ)f (zν)
· f (zμ)− f (zν)

zμ − zν
· 1

1 − zμzν

∣∣∣∣
q

γμγ ν.

If the numbers γμ are expressed as follows:

γμ = λμ

∣∣∣∣
f (zμ)

zμ

∣∣∣∣
q

, μ = 1, . . . , n,
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these inequalities become:

∣∣∣∣∣∣

n∑

μ=1

λμ

∣∣∣∣
f (zμ)

zμ

∣∣∣∣
q

∣∣∣∣∣∣

2

≤
n∑

μ=1

n∑

ν=1

λμλν

∣∣∣∣
f (zμ)− f (zν)

(zμ − zν)(1 − zμzν)

∣∣∣∣
q

for all complex numbers λ1, . . . , λn.

3 Generating Integral Inequalities

The very simple idea is to turn the inequalities on S we had in Sect. 2 into
inequalities between Riemann sums. We will demonstrate in the current section an
example of this technique. Before stating and proving our results on integral means
we will need one more inequality for a function in S that will be tailored for our
needs. A major difference between this new inequality and the standard inequalities
in Sect. 2 is that in the coming inequality only the left hand side contains the function
f (very similar to the various exponentiation of Goluzin inequalities). The right
hand side is a concrete function of the parameters.

Theorem 3.1 Let n ∈ Z+, z1, . . . , zn ∈ U , α1, . . . , αn ∈ C, q ∈ R+ and f ∈ S.
Then

∣∣∣∣∣∣

n∑

μ=1

αμ
1

|f ′(zμ)|q/2

∣∣∣∣
f (zμ)

zμ

∣∣∣∣
q

∣∣∣∣∣∣

2

≤
n∑

μ=1

n∑

ν=1

αμαν
(1 − |zμ|2)q/2(1 − |zν |2)q/2

(|1 − zμzν | − |zμ − zν |)2q .

Proof We start with the following elementary, ��
Lemma 3.2 If f ∈ S, z,w ∈ U , then,

1

|f ′(z)| ·
|f (w)− f (z)|
|w − z||1 − zw| ≤

1 − |z|2
(|1 − zw| − |z−w|)2 .

A proof of Lemma 3.2 For the variable ξ ∈ U and for a fixed z ∈ U we have,

h(ξ) =
f
(
ξ+z

1+zξ
)
− f (z)

(1 − |z|2)f ′(z) ∈ S.

Hence

h(ξ) ≤ |ξ |
(1 − |ξ |)2 .
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Let us denote w = ξ+z
1+zξ . Then ξ = w−z

1−zw and hence,

|ξ |
(1 − |ξ |)2 =

|w − z||1− zw|
(|1 − zw| − |z−w|)2 .

By the above 3 equations and inequalities,

f (w)− f (z)

(1 − |z|2)f ′(z) ≤
|w − z||1− zw|

(|1− zw| − |z−w|)2 .

This completes the proof of Lemma 3.2.
Let us now express each λμ in the last inequality of Sect. 2 as follows,

λμ = αμ
1

|f ′(zμ)|q/2 , μ = 1, . . . , n.

Then,

∣∣∣∣∣∣

n∑

μ=1

αμ
1

|f ′(zμ)|q/2

∣∣∣∣
f (zμ)

zμ

∣∣∣∣
q

∣∣∣∣∣∣

2

≤
n∑

μ=1

n∑

ν=1

αμαν

(
1

|f ′(zμ)|
1

|f ′(zν)|
)q/2

×

×
∣∣∣∣

f (zμ)− f (zν)

(zμ − zν)(1 − zμzν)

∣∣∣∣
q

=

=
n∑

μ=1

n∑

ν=1

αμαν

∣∣∣∣
1

f ′(zμ)
· f (zμ)− f (zν)

zμ − zν
· 1

1 − zμzν

∣∣∣∣
q/2

×

×
∣∣∣∣

1

f ′(zν)
· f (zν)− f (zμ)

zν − zμ
· 1

1 − zνzμ

∣∣∣∣
q/2

≤

≤
n∑

μ=1

n∑

ν=1

αμαν
(1 − |zμ|2)q/2(1 − |zν |2)q/2

(|1− zμzν | − |zμ − zν |)2q ,

where in the last step we used twice Lemma 3.2. ��
Corollary 3.3 Let f ∈ S and q ∈ R+. Then:

(1)

(
1

2π

∫ 2π

0

|f (reiθ )|q
|f ′(reiθ )|q/2

dθ

)2

≤ r2q (1 − r2)q

(2π)2

∫ 2π

0

∫ 2π

0

dtds

(|1 − r2ei(s−t)| − r|eit − eis |)2q ,

0 ≤ r < 1.
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(2)

(
1

2π

∫ 2π

0
|f (reiθ )|qdθ

)2

≤ rq

(2π)2

∫ 2π

0

∫ 2π

0

∣∣∣∣∣
f (reis )− f (reit )

(eis − eit )(1 − r2ei(s−t ))

∣∣∣∣∣

q

dsdt =

= 1

2π

∫ 2π

0

∣∣∣∣∣
r2eis

1 − r2eis

∣∣∣∣∣

q (
1

2π

∫ 2π

0

∣∣∣∣∣
f (rei(s+t ))− f (reit )

rei(s+t ) − reit

∣∣∣∣∣

q

dt

)
ds,

0 ≤ r < 1.

Proof

(1) In Theorem 3.1 let us take αμ = 1
n

, μ = 1, . . . , n, zμ = re2πiμ/n. Then using
the corresponding Riemann sum with equal distances μ 2π

n
, μ = 1, . . . , n, we

get,

∣∣∣∣∣∣

n∑

μ=1

αμ
1

|f ′(re2πiμ/n)|q/2
·
∣∣∣∣
f (re2πiμ/n)

re2πiμ/n

∣∣∣∣
q
∣∣∣∣∣∣

2

→n→∞

(
1

2π

∫ 2π

0

|f (reiθ )|q
|f ′(reiθ )|q/2

dθ

rq

)2

= 1

r2q

(
1

2π

∫ 2π

0

|f (reiθ )|q
|f ′(reiθ )|q/2

dθ

)2

.

A similar argument applied to the right hand side gives for n → ∞ the
following,

(
1

2π

)2 ∫ 2π

0

∫ 2π

0

(1 − r2)qdsdt

(|1 − r2ei(s−t )| − |reis − reit |)2q .

(2) We take the data, and apply the same Riemann sums argument to the inequality
at the end of Sect. 2 (A generalization of the exponentiation of Goluzin
inequalities).

��
In order to express the next corollary we use the following two notations. Let

f (z), g(z,w) be continuous functions defined on |z| = r and on |z| = |w| = r

respectively. Then:

M∞(f (z), r) = max|z|=r |f (z)|, M∞(g(z,w), r) = max|z|=|w|=r |g(z,w)|.
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Corollary 3.4 Let f ∈ S. Then:

(1)

M∞
(
f (z)2

f ′(z) , r
)
≤ M∞

(
1

(|1− zw| − |w − z|)4 , r
)
× r4(1 − r2)2.

(2)

M∞(f (z)2, r) ≤ M∞
(

f (z)− f (w)

(z−w)(1 − wz)
, r

)
× r4.

Proof We raise the two inequalities of Corollary 3.3 to the power 2
q

and take the
limits of the inequalities as q →∞. ��

One can use the above technique to derive many different integral inequalities on
various expressions that involve f, f ′, f (2), f (3), . . . for arbitrary f ∈ S.

4 Using a Lemma of Hardy from 1915

Lemma (Hardy, 1915) Let �(t) be a real, twice differentiable function defined on
0 ≤ t <∞. Let

�(t) = t
d

dt

{
t�′(t)

}
, 0 ≤ t <∞.

Let f ∈ H(U) and let us denote: M�(f, r) = 1
2π

∫ 2π
0 �

(|f (reiθ )|) dθ . If f (z) 	=
0 for |z| = r then:

r
d

dr

{
rM ′

�(f, r)
} = r2

2π

∫ 2π

0
�(|f (reiθ )|)

∣∣∣∣
f ′(reiθ )
f (reiθ )

∣∣∣∣
2

dθ.

Here M ′
�(f, r) = d

dr
{M�(f, r)}.

Proof (Hardy) Using the following 2 identities:

r
∂

∂r

∣∣∣f (reiθ )
∣∣∣ =

∣∣∣f (reiθ )
∣∣∣�

{
(reiθ )

f ′(reiθ )
f (reiθ )

}
,

∂

∂θ

∣∣∣f (reiθ )
∣∣∣ = −

∣∣∣f (reiθ )
∣∣∣ 

{
(reiθ )

f ′(reiθ )
f (reiθ )

}
,
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we obtain (here z = reiθ ):

(
r
∂

∂r

)2

�(|f (z)|)+
(
∂

∂θ

)2

�(|f (z)|) = �(|f (z)|)
∣∣∣∣z
f ′(z)
f (z)

∣∣∣∣
2

.

We integrate
∫ 2π

0 . . . dθ the last identity. The second element is 0. This gives the
consequence. ��

We recall that Mλ(f, r)
λ = 1

2π

∫ 2π
0 |f (reiθ )|λdθ . Let us take in Hardy’s Lemma

the following data: �(t) = tλ, 0 ≤ t < ∞, for λ ≥ 2. A computation gives:
�(t) = t d

dt
{tλtλ−1} = λ2tλ and we obtain the following integral identity:

r
d

dr

{
r(Mλ(f, r)

λ
} = λ2r2

2π

∫ 2π

0
|f (reiθ )|λ−2|f ′(reiθ )|2dθ.

Integrating
∫ r

0 . . . dr gives us an identity that includes an area integral:

r(Mλ(f, r)
λ)′ = λ2

2π

∫∫

|z|≤r
|f (z)|λ−2|f ′(z)|2dσz.

Theorem 4.1 Let f ∈ S, λ ≥ 2, then:

λ2
∫ r

0

{
1

2πr

∫∫

|z|≤r
|f (z)|λ−2|f ′(z)|2dσz

}
dr ≤ rλ

2π

∫ 2π

0
|1−reiθ |−2λdθ, 0 ≤ r < 1.

Equality sign holds only if f (z) is a rotation of the Koebe function k(z) = z(1−z)−2.

Proof Using the result above of Hardy with �(t) = tλ we obtain

λ2
∫ r

0

{
1

2πr

∫∫

|z|≤r
|f (z)|λ−2|f ′(z)|2dσz

}
dr = Mλ(f, r)

λ.

Using the celebrated theorem of Al Baernstein from [1], we have:

Mλ(f, r)
λ ≤ rλ

2π

∫ 2π

0
|1 − reiθ |−2λdθ,

with equality only if f is a rotation of the Koebe function, k(z). ��
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5 Estimating the Distance from f (z0) to ∂f (U) Using
Sequences that Converge to z0

Theorem 5.1 Let f ∈ H(U) be an injective mapping on U . Then for any sequence
{zν}∞1 of distinct points in U such that z0 = lim zν ∈ U we have the following
estimates:

lim sup
n→∞

∣∣∣∣∣

n∑

ν=1

f (zν)∏
ω 	=ν (zω − zν)

∣∣∣∣∣

1/n

≤ 1

1 − |z0| .

lim sup
n→∞

∣∣∣∣∣∣

n∑

μ=1

zμ∏
ω 	=μ(f (zω)− f (zμ))

∣∣∣∣∣∣

1/n

≤ 1

dz0

.

Here dz0 = min{|f (z0)−w| |w ∈ ∂f (U)} the distance from f (z0) to the boundary
of the image ∂f (U). In particular we have an upper bound for that distance:

dz0 ≤ lim inf
n→∞

∣∣∣∣∣∣

n∑

μ=1

zμ∏
ω 	=μ(f (zω)− f (zμ))

∣∣∣∣∣∣

−1/n

.

Proof We will use a theorem from the author’s Masters thesis, [5]. It follows also
from a result of Ivar Otto Bendixon. According to this theorem, if g(z) is an analytic
function in a neighborhood of z0, and if {zμ}∞1 is a sequence in that neighborhood
and lim zμ = z0, then the radius of convergence of the power series of g centered at
z0, R, is given by the following formula:

1

R
= lim sup

n→∞

∣∣∣∣∣∣

n∑

μ=1

g(zμ)∏
ω 	=μ(zω − zμ)

∣∣∣∣∣∣

1/n

.

In our case f is analytic in a neighborhood of z0 with the radius of convergence
about z0, at least 1 − |z0|. This gives the first estimate in our theorem. Also f−1 is
analytic in a neighborhood of f (z0) and its radius of convergence about f (z0) is at
least dz0 . This gives the second (and hence the third) estimate. ��
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Complex Ternary Analysis
and Applications

M. B. Vajiac

Abstract In this paper the author is presenting a theory of functions on complex
ternary algebras. The theory developed here is a particular case of the more general
case discussed in a volume the author is preparing in collaboration with A. Vajiac
and a continuation of the real ternary case developed in Alpay et al. (Adv Appl
Clifford Algebr 28:1–16, 2018). The complex ternary algebra has a dual nature:
on one side, it is a one–dimensional (one ternary variable) theory generated by an
element that cubes to ±1, on the other it behaves as a theory of one bicomplex
variable and one complex variable entangled by algebra relations.
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1 Introduction

In recent years the theory of hypercomplex analysis has taken new directions
towards more exotic examples such as the ternary case, in part due to possible
applications in signal processing, physics, etc. Hypercomplex numbers over Q

have been studied by E. Artin et al. [6] in the context of analytic number theory,
and recently (over R) by physicists such as Catoni et al. [8] in the study of
Minkowski space–time geometry and physics. The study of hypercomplex numbers
is traced back the nineteenth century, when it formed the basis of modern group
representation theory.

In this paper the author is presenting a theory of functions on complex ternary
algebras, a generalization of structures that were first brought to light in [1, 14, 16].
In general, the interest in ternary algebras (as well as n−ary algebras) has
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been rekindled in recent years through the work of Rausch de Traubenberg and
Kerner [1, 14, 16] and some interesting applications in physics [12, 13]. For more
generalization from an algebraic point of view, one could see [18].

The theory developed here is a particular case of the more general case discussed
in a volume the author is preparing in collaboration with A. Vajiac and a contin-
uation of the real ternary case developed in [5]. The author is also collaborating
on a Clifford ternary analysis project that would allow a cubic factorization of
the Laplacian and one can obtain a Dirac-type operator in this case. Historically,
Clifford analysis has been used to factor the n−dimensional Laplacian via the
regular Dirac operator, however, new structures are needed for factorizations of
different degrees. This work can be found in [9, 10].

The complex ternary algebra has a dual nature: on one side, it is a one–
dimensional (one ternary variable) theory generated by an element that cubes to
±1, on the other it behaves as a theory of one bicomplex variable and one complex
variable entangled by algebra relations. In the general case, these types of algebras
have known a resurgence in importance. The ternary algebras are also related to
certain symmetries in high energy physics allowing one to explain, for example,
the three color and three family problems of the Standard Model. Moreover, ternary
algebras are known to be a strong candidate for the algebraic confinement model for
the problem of observability of three quarks/anti–quarks in Quantum Field Theory.

The paper is structured as follows: in Sect. 2 we define the ternary complex
algebra structure, then we describe the various types of norms in this case in Sect. 3.
In Sect. 4 we describe the analytic function theory in this case, while in Sect. 5
we describe several applications to Cauchy–Kowalevskaya type Theorem in several
cases. We conclude with a small Sect. 6 of conclusions and future planned work.

2 Complex Ternary Algebra

The ternary algebra is a particular case of a hypercomplex algebra HF3 of
dimension three (see [6]), initially constructed from a generic unit (i.e. not in the
field F ) that cubes to ±1 and extended linearly over a field F (in our case F = R or
F = C), as follows. Consider three units

e1 = 1, e2, e3 = e2
2, (2.1)

where e3
2 = 1, having the commutative multiplication table:

· 1 e2 e3

1 1 e2 e3

e2 e2 e3 1
e3 e3 1 e2

(2.2)
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The case when e3
2 = −1 is very similar and has been introduced in [5].

Following [6], the structure constants matrices are:

�1 = (��1j )�j = I3 =
⎡

⎣
1 0 0
0 1 0
0 0 1

⎤

⎦ , �2 = (��2j )�j =
⎡

⎣
0 0 1
1 0 0
0 1 0

⎤

⎦ ,

�3 = (��3j )�j =
⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦ . (2.3)

Notice that ��km = ��mk , equivalent to the fact that HF3 is a commutative algebra.
Moreover, �2 = (�3)

t . A ternary number is written as

z = z11 + z2e2 + z3e3, (2.4)

where z� ∈ F. Following [6], the associated matrix of the ternary number is given
by the circulant matrix S(z):

S(z) =
⎡

⎣
z1 z3 z2

z2 z1 z3

z3 z2 z1

⎤

⎦ ∈M3(F). (2.5)

Remark 2.1 In this case the transpose of the structure matrix is given by:

S(z)t =
⎡

⎣
z1 z2 z3

z3 z1 z2

z2 z3 z1

⎤

⎦ , (2.6)

which corresponds to the ternary number zt = z11 + z3e2 + z2e3, and we have:

zzt = (z11 + z2e2 + z3e3)(z11 + z3e2 + z2e3)

= (z2
1 + z2

2 + z2
3)1 + (z1z2 + z2z3 + z3z1)e2 + (z1z2 + z2z3 + z3z1)e3.

Note also that et2 = e3, thus et3 = e2, and e2et2 = e3et3 = 1.

Remark 2.2 In the case of the mirror ternary algebra given by e3
2 = −1 one obtains,

as expected:

S(z) =
⎡

⎣
z1 z3 z2

−z2 z1 z3

−z3 −z2 z1

⎤

⎦ ∈M3(F). (2.7)

Here the matrix is called anticirculant, as studied in [20].
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In this paper we study the case when the scalar field F = C and we denote the
complex ternary algebra by TC. We now prove a primary decomposition theorem
in this case:

Theorem 2.3 The algebra TC decomposes as a direct sum of three ideals:

TC = 〈ε1〉 ⊕ 〈ε2〉 ⊕ 〈ε3〉,

where {ε1, ε2, ε3} is an idempotent basis of TC, given by:

ε1 = 1

3
(1 + e2 + e3), ε2 = 1

3
(1 + ψe2 + ψ2e3), ε3 = 1

3
(1 + ψ2e2 + ψe3),

(2.8)

where ψ is the complex primary root of unity, with the usual properties. Therefore,
any complex ternary number z ∈ TC has the following idempotent representation:

z = λ1(z)ε1 + λ2(z)ε2 + λ3(z)ε3, (2.9)

where λ�(z) ∈ C are the idempotent coordinates of z.

Proof As the complex ternary algebra TC is commutative, for simplicity we
compute the eigenvalues and eigenvectors of the matrix associated to the units
e2, then e3 and then we use linearity for determining the eigenvalues of a general
complex ternary number z. We have:

S(e2) =
⎡

⎣
0 0 1
1 0 0
0 1 0

⎤

⎦ , S(e3) =
⎡

⎣
0 1 0
0 0 1
1 0 0

⎤

⎦ . (2.10)

The two characteristic polynomials are the same:

σe2(λ) = σe3(λ) = det(λI − S(e2)) = det(λI − S(e3))

= λ3 − 1 = (λ− 1)(λ2 + λ+ 1),

thus there are three simple complex eigenvalues in each case. For � = 2, we denote:

λ1(e2) = 1, λ2(e2) = ψ = 1

2
(−1 −√

3i) ∈ C, λ3(e2) = ψ = 1

2
(−1 +√

3i) ∈ C,

where ψ,ψ ∈ C are the usual non–trivial complex roots of 1. Since e3 = e2
2, and

e2 has simple eigenvalues and obviously commutes with e3, we obtain: λk(e3) =
λk(e2)

2, for 1 ≤ k ≤ 3, and we have the corresponding eigenvalues for e3:

λ1(e3) = 1, λ2(e3) = ψ
2 = ψ, λ3(e3) = ψ2 = ψ.
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Three corresponding linear independent eigenvectors of S(e2) and S(e3) are:

−→
u1 =

⎡

⎣
1
1
1

⎤

⎦ ,
−→
u2 =

⎡

⎣
1
ψ

ψ2

⎤

⎦ ,
−→
u3 =

⎡

⎣
1
ψ2

ψ

⎤

⎦ ,

thus their corresponding complex ternary numbers are:

u1 = 1 + e2 + e3, u2 = 1 + ψe2 + ψ2e3, u3 = 1 + ψ2e2 + ψe3.

Therefore, for a generic z =
3∑

k=1

zkek ∈ TC, the eigenvalue problem of S(z) yields

the following expressions for the eigenvalues of a generic complex ternary number:

λ1(z) = z1 + z2λ1(e2)+ z3λ1(e3) = z1 + z2 + z3,

λ2(z) = z1 + z2λ2(e2)+ z3λ2(e3) = z1 + ψ2z2 + ψz3,

λ3(z) = z1 + z2λ3(e2)+ z3λ3(e3) = z1 + ψz2 + ψ2z3.

The characteristic polynomial of z is given by:

σz(X) = X3 − 3z1X
2 + (3z2

1 − 3z1z2z3)X − detS(z),

where

λ1(z)+ λ2(z)+ λ3(z) = trace(S(z)) = 3z1,

λ1(z)λ2(z)+ λ1(z)λ2(z)+ λ2(z)λ3(z) = 3z2
1 − 3z1z2z3,

λ1(z)λ2(z)λ3(z) = det(S(z)) = z3
1 + z3

2 + z3
3 − 3z1z2z3.

It follows that any complex ternary number z =
3∑

�=1

z�e� ∈ TC is written in both

idempotent and standard bases as:

z = λ1(z)ε1 + λ2(z)ε2 + λ3(z)ε3

= 1

3
(λ1(z)+ λ2(z)+ λ3(z)) 1 + 1

3
(λ1(z)+ ψλ2(z)+ ψ2λ3(z))e2

+ 1

3
(λ1(z)+ ψ2λ2(z)+ ψλ3(z))e3.
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This gives the inverse formulas for the change of basis:

z1 = 1

3
(λ1(z)+ λ2(z)+ λ3(z)) ,

z2 = 1

3
(λ1(z)+ ψλ2(z)+ ψ2λ3(z)),

z3 = 1

3
(λ1(z)+ ψ2λ2(z)+ ψλ3(z)),

and the decomposition of TC follows immediately. ��
Remark 2.4 We chose to include the computational details of the previous theorem,
as it gives a solid foundation to the seemingly “magical” choices found in literature
in [1, 14].

2.1 Conjugates and the Idempotent Representation

As in the other commutative theory of bicomplex and multicomplex algebras [17,
19], using the idempotent representation we can build two associated conjugates to
each ternary number:

Definition 2.5 For the ternary number z = ∑3
k=1 λk(z)εk we define:

z† =
3∑

k=1

λ[k+1](z)εk,

z∗ =
3∑

k=1

λ[k+2](z)εk,

where the square brackets represent permutations of the λ’s. (E.g. λ[2+2] = λ1.)

Example For the ternary number e2, written in this idempotent representation as
e2 = ∑3

k=1 λk(e2)εk = ε1 + ψ2ε2 + ψε3, we have these two conjugates:

e†
2 =

3∑

k=1

λ[k+1](e2)εk = ψε1 + ε2 + ψ2ε3 = ψe2,

e∗2 =
3∑

k=1

λ[k+2](e2)εk = ψ2ε1 + ψε2 + ε3 = ψ2e2.
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Similarly, since e3 = (e2)
2, we have:

e3 = ε1 + ψε2 + ψ2ε3,

e†
3 = ψ2ε1 + ε2 + ψε3 = ψ2e3,

e∗3 = ψε1 + ψ2ε2 + ε3 = ψe3.

Note that

e2e†
2 = ψe2

2 = ψe3, e2e∗2 = ψ2e2
2 = ψ2e3, e†

2e∗2 = e2
2 = e3,

and we have the following:

Remark 2.6 A simple consequence of the fact that the characteristic polynomial e2
is equal to S(e2) = λ3 − 1 is:

e2 + e†
2 + e∗2 = e2e†

2 + e2e∗2 + e†
2e∗2 = 0

e2e†
2e∗2 = 1 = det(S(e2)).

Remark 2.7 The two conjugations are not involutive, as:

ε
†
1 = ε2, ε

†
2 = ε3, ε

†
3 = ε1,

and

ε∗1 = ε3, ε∗2 = ε1, ε∗3 = ε2.

Lemma 2.8 For a generic z =
3∑

k=1

zkek = z11 + z2e2 + z3e3,∈ TC, the two

conjugates of z are given by:

z† = z11 + ψz2e2 + ψ2z3e3,

z∗ = z11 + ψ2z2e2 + ψz3e3.

Proof To show the intricacies of the conjugations, we write the following compu-
tation which yields the proof:

z† = (λ1(z)ε1 + λ2(z)ε2 + λ3(z)ε3)
† = λ3(z)ε1 + λ1(z)ε2 + λ2(z)ε3

= 1

3
(λ1(z)+ λ2(z)+ λ3(z))1 + 1

3
ψ(λ1(z)+ ψλ2(z)+ ψ2λ3(z))e2

+ 1

3
ψ2(λ1(z)+ ψ2λ2(z)+ ψλ3(z))e3

= z11 + ψz2e2 + ψ2z3e3,
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and

z∗ = (λ1(z)ε1 + λ2(z)ε2 + λ3(z)ε3)
∗

= λ2(z)ε1 + λ3(z)ε2 + λ1(z)ε3

= 1

3
(λ1(z)+ λ2(z)+ λ3(z))1 + 1

3
ψ2(λ1(z)+ ψλ2(z)+ ψ2λ3(z))e2

+ 1

3
ψ(λ1(z)+ ψ2λ2(z)+ ψλ3(z))e3

= z11 + ψ2z2e2 + ψz3e3.

��
It is also true that both conjugations are linear operators, so they can be computed

directly from the conjugations of the standard basis elements:

z† = z11 + z2e†
2 + z3e†

3,

z∗ = z11 + z2e∗2 + z3e∗3.

Remark 2.9 We have the following useful relations:

z+ z† + z∗ = λ1(z)+ λ2(z)+ λ3(z) = 3z11,

zz†z∗ = λ1(z)λ2(z)λ3(z) · 1 = det(S(z))1 = (z3
1 + z3

2 + z3
3 − 3z1z2z3)1,

(z†)† = z∗, (z†)∗ = z, (z∗)∗ = z†.

Since neither of these conjugates is an involution, we will give them the moniker of
simple conjugates instead.

Definition 2.10 We define the total conjugate of z to be the product of the simple
ones, i.e. z := (z†)(z∗).

Remark 2.11 This conjugate is also not involutive, however, since zz = det(S(z))1
we can use it to define an inverse for the ternary complex number.

2.2 An Alternative Basis

In an algebra of this type there are important elements that help define additional
analytic structures; these are obtained from the usual basis through a linear trans-
formation. We now mention a useful alternative basis that simplifies calculations
and relates the ternary complex algebra with other known examples. This new basis
turns out to be very useful also in the study of the real ternary algebra TR.
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Definition 2.12 The symmetric basis for TC is defined as follows:

κ1 := ε1 = 1

3
(1 + e2 + e3), κ2 := ε2 + ε3 = 1

3
(2 − e2 − e3),

κ3 := −i(ε2 − ε3) = 1√
3
(e2 − e3).

It is obvious that {κ1, κ2, κ3} is a basis of TC and we have the following properties
for the symmetric basis elements:

(κ1)
2 = ε2

1 = ε1 = κ1, (κ2)
2 = ε2

2 + ε2
3 = ε2 + ε3 = κ2,

(κ3)
2 = −(ε2

2 + ε2
3) = −(ε2 + ε3) = −κ2,

κ2κ3 = −i(ε2
2 − ε2

3) = −i(ε2 − ε3) = κ3, κ1κ2 = κ1κ3 = 0, κ1 + κ2 = 1.
(2.11)

The inverse change of base formulae from the symmetric to the idempotent ones
are given by:

ε1 = κ1, ε2 = 1

2
(κ2 + iκ3), ε3 = 1

2
(κ2 − iκ3).

Considering an arbitrary complex ternary number z, we can now write it in all three
standard, idempotent and symmetric bases as follows:

z =
3∑

�=1

z�e� =
3∑

k=1

λk(z)εk =
3∑

j=1

wj(z)κj ,

where the symmetric coordinates wj (z) are given by:

z = λ1(z)κ1 + 1

2
(λ2(z)+ λ3(z))κ2 + i

2
(λ2(z)− λ3(z))κ3

= (z1 + z2 + z3)κ1 + 1

2
(2z1 − z2 − z3)κ2 +

√
3

2
(z2 − z3)κ3

=: w1(z)κ1 +w2(z)κ2 +w3(z)κ3. (2.12)

For simplicity of notation we will omit (z) from now on, in all coordinates
corresponding to the three types of basis.
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The simple conjugations of the symmetric basis elements in TC are as follows:

κ
†
1 = ε

†
1 = ε2 = 1

2
(κ2 + iκ3),

κ
†
2 = ε

†
2 + ε

†
3 = ε3 + ε1 = κ1 + 1

2
(κ2 − iκ3),

κ
†
3 = −i(ε†

2 − ε
†
3) = i(ε1 − ε3) = iκ1 − i

2
(κ2 − iκ3).

For an arbitrary ternary number z = w1κ1 +w2κ2 +w3κ3 ∈ TC, we obtain:

z† = w1κ
†
1 +w2κ

†
2 +w3κ

†
3

= (w2 + iw3)κ1 + 1

2
(w1 +w2 − iw3)κ2 + i

2
(w1 −w2 + iw3)κ3 (2.13)

Similarly, the ∗–conjugates of κ� are:

κ∗1 = ε∗1 = ε3 = 1

2
(κ2 − iκ3),

κ∗2 = ε∗2 + ε∗3 = ε1 + ε2 = κ1 + 1

2
(κ2 + iκ3),

κ∗3 = −i(ε∗2 − ε∗3 ) = −i(ε1 − ε2) = −iκ1 + i
2
(κ2 + iκ3),

therefore we have:

z∗ = w1κ
∗
1 +w2κ

∗
2 +w3κ

∗
3

= (w2 − iw3)κ1 + 1

2
(w1 +w2 + iw3)κ2 + i

2
(−w1 +w2 + iw3)κ3. (2.14)

The total conjugate is given by:

z = z†z∗ = (z2
1 − z2z3)1 + (z2

3 − z1z2)e2 + (z2
2 − z1z3)e3

= λ2(z)λ3(z)ε1 + λ1(z)λ3(z)ε2 + λ1(z)λ2(z)ε3

= (w2
2 +w2

3)κ1 + (w1w2)κ2 − (w1w3)κ3,

and the determinant of S(z) is given by:

det(S(z)) = zz†z∗ = w1(w
2
2 + w2

3) ∈ C.
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2.3 The Real Ternary Algebra

An interesting application of the complex case becomes the real ternary case,
as studies in [5] In this section we restrict a complex ternary number to real

coordinates, i.e. z =: x =
3∑

�=1

x�e�, with x� ∈ R. We denote the real ternary algebra

by TR.

Remark 2.13 The matrix S(x) has the same form (2.5) only that it has real entries.
However, its eigenvalues and eigenvectors take C(i)–complex valued coefficients:

λ1(x) = x1 + x2 + x3, λ2(x) = x1 + ψ2x2 + ψx3, λ3(x) = x1 +ψx2 + ψ2x3.

Nevertheless, the sum and difference of λ2(x) and λ3(x) have either real or purely
imaginary coefficients, which will allow the coefficients of x in the symmetric base
to remain real:

λ2(x)+ λ3(x) = 2x1 + (ψ2 + ψ)x2 + (ψ + ψ2)x3 = 2x1 − x2 − x3,

λ2(x)− λ3(x) = (ψ2 − ψ)x2 + (ψ − ψ2)x3 = −√3i(x2 − x3).

In this view, the symmetric basis comes to the rescue, as it becomes the only valuable
way to intrinsically describe TR. We noticed that the elements of the complex
symmetric basis {κ1, κ2, κ3} are already in TR. Adapting the writings (2.12) for
a real ternary number x, we obtain:

x = λ1(x)κ1 + 1

2
(λ2(x)+ λ3(x))κ2 + i

2
(λ2(x)− λ3(x))κ3

= (x1 + x2 + x3)κ1 + 1

2
(2x1 − x2 − x3)κ2 +

√
3

2
(x2 − x3)κ3

= w1(x)κ1 + w2(x)κ2 +w3(x)κ3, (2.15)

with w�(x) ∈ R. The change of base formulas from the standard basis to the real
symmetric basis are:

w1(x) = x1 + x2 + x3, w2(x) = 1

2
(2x1 − x2 − x3), w3(x) =

√
3

2
(x2 − x3),

x1 = 1

3
(w1(x)+ 2w2(x)), x2 = 1

3
(w1(x)−w2(x)+

√
3w3(x)),

x3 = 1

3
(w1(x)−w2(x)−

√
3w3(x)).
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Remark 2.14 A real ternary number can be viewed, roughly, as a split in a real
number w1(x) ∈ R and a complex–type number ζ(x) ∈ C[κ2; κ3], as κ2

3 = −κ2:

x = w1(x)κ1 + ζ(x)κ2 := w1(x)κ1 + (w2(x)κ2 +w3(x)κ3) κ2, (2.16)

with κ1 and κ2 being a partition of the unity: κ1 + κ2 = 1.

This fact does not imply that TR is merely a product C×R, the same as R× R

is not the same as C. The algebra allowing multiplication of “vectors” in TR plays
a very important role, as it does in the traditional complex case.

Multiplication in the writing (2.16) is realized component–wise, as κ1κ2 = 0:

xy = w1(x)w1(y)κ1 + ζ(x)ζ(y)κ2,

where ζ(x)ζ(y) is the complex product in C[κ2; κ3].
For x ∈ TR, its conjugates x† and x∗ are not in TR, this would happen only

when x2 = x3 = 0, i.e. x ∈ R. Nevertheless, the total conjugate of a non–singular
real ternary number x stays in TR (omitting (x) from notation):

x = x†x∗ = (x2
1 − x2x3)1 + (x2

3 − x1x2)e2 + (x2
2 − x1x3)e3

= (w2
2 +w2

3)κ1 + (w1w2)κ2 − (w1w3)κ3 ∈ TR.

We denote by ζ̃ (x) := w2(x)κ2−w3(x)κ3 the C[κ2; κ3]–complex conjugate of ζ(x)
and its C[κ2; κ3]–complex norm by

|ζ(x)|2κ2 := ζ(x)ζ̃ (x) =
(
w2(x)2 +w3(x)2

)
κ2,

so |ζ(x)|2 := w2(x)2 +w3(x)2 ∈ R+. Then the total conjugate of x becomes:

x = |ζ(x)|2κ1 + ζ̃ (x)w1(x)κ2.

The determinant of S(x) is a real number:

det(S(x)) = xx = w1(x)(w2(x)2 + w3(x)2) = w1(x)|ζ(x)|2 ∈ R.

Note that, as expected:

det(S(x)) = (w2
2 + w2

3)((w1w2)
2 + (w1w3)

2) = w2
1(w

2
2 +w2

3)
2 = det(S(x))2.

Moreover, computing

x = x†x∗ = (x†x∗)†(x†x∗)∗

= x∗x2x† = det(S(x))x,
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we obtain that the total conjugation is not an involution, but a dilation with a factor
of det(S(x)). When x is a zero–divisor, i.e. det(S(x)) = 0, then x = 0. A real ternary
number x is a zero–divisor if and only if:

w1(w
2
2 + w2

3) = 0 ⇐⇒ w1 = 0 or {w2 = w3 = 0}.

Using the notation (2.16), x is a zero–divisor if and only if w1(x) = 0 or ζ(x) = 0.
In case x is invertible in TR, its inverse is:

1

x
= x

det(S(x))
= 1

w1
κ1 + w2

(w2
2 +w2

3)
κ2 − w3

(w2
2 +w2

3)
κ3

= 1

w1(x)
κ1 + ζ̃ (x)

|ζ(x)|2 κ2.

2.4 From Complex Ternary to Bicomplex Algebras

Using relations (2.11) among the basis ternary complex numbers κ�, we write a
generic complex ternary number z as follows:

z = w1(z)κ1 + (w2(z)κ2 + w3(z)κ3) κ2 =: w1(z)κ1 + Z(z)κ2, (2.17)

where Z(z) = w2(z)κ2 + w3(z)κ3 is a bicomplex number in the algebra over the
scalar field C(i) generated by the “imaginary” unit κ3. This is a two–dimensional
unital hypercomplex algebra, with multiplicative unit κ2 and relation κ2

3 = −κ2.

Remark 2.15 This bicomplex algebra is a subalgebra of TC, but not a unital one,
as its multiplicative unit, κ2, is not equal to the ternary multiplicative unit 1 ∈ TC.
This fact implies that there are three bicomplex–type subalgebras of TC, thus the
complex ternary numbers inherit many of the properties of bicomplex numbers. This
is in fact part of a general fact of hypercomplex algebras which have elements with
simple (complex) eigenvalues.

Note though that this is not a unital subalgebra of TC, κ2 is still part of a partition
of 1 = κ1 + κ2. Moreover, note that

λ2(z)κ2 = (w2(z)− iw3(z))κ2, λ3(z)κ2 = (w2(z)+ iw3(z))κ2

are the bicomplex C(i)–idempotent coordinates of Z(z) (see [15]), over idempotent
basis generated by:

ε2 = 1

2
(κ2 + iκ3), ε3 = 1

2
(κ2 − iκ3),
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having the properties:

ε2ε3 = 0, ε2 + ε3 = κ2, (ε2)
2 = ε2, (ε3)

2 = ε3.

Definition 2.16 We denote this bicomplex algebra by BC2[κ2; κ3], which is a
hypercomplex algebra over the field C(i) generated by units κ2 and κ3.

Remark 2.17 In this notation, over the field C(i), we view the κ2 before the semi-
colon as the main unit, and κ3 commuting with i.

Multiplication of complex ternary numbers can also be achieved using the bicom-
plex algebra multiplication and the fact that κ1κ2 = 0:

zw = w1(z)w1(w)κ1 + Z(z)Z(w)κ2.

A complex ternary number z is a zero–divisor if and only if det(S(z)) = 0,
equivalent to:

w1(w
2
2 + w2

3) = 0 ⇐⇒ w1 = 0 or {w2 = w3 = 0}.

Using the notation (2.17), z is a zero–divisor if and only if w1(z) = 0 or Z(z) is a
bicomplex zero–divisor. In case z is invertible in TC, its inverse is:

1

z
:= z

zz
= z

det(S(z))
= w2

2 +w2
3

w1(w
2
2 +w2

3)
κ1 + w1w2

w1(w
2
2 + w2

3)
κ2 − w1w3

w1(w
2
2 + w2

3)
κ3

= 1

w1
κ1 + w2

(w2
2 +w2

3)
κ2 − w3

(w2
2 +w2

3)
κ3

= 1

w1(z)
κ1 + Z†(z)

|Z(z)|2i
κ2.

Note that in the writing (2.17), bicomplex conjugations do not have any input into
ternary simple conjugations. This is because the latter ones are permuting all three
idempotent variables, not conserving the bicomplex writing. The (second order)
total conjugation can be written in bicomplex terms, involving the C(i)–complex
modulus and the †–conjugation (see [15] for details):

z = |Z(z)|i κ1 +w1(z)Z†(z)κ2.
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3 Ternary Norms

There are several norms of interest for the algebra of ternary numbers. The first one
worth mentioning is the analog of a field norm (which is not the usual notion of a
vector space norm):

Definition 3.1 The field–type norm of a ternary number is defined by:

N(z) := zz = det(S(z)) = z3
1 + z3

2 + z3
3 − 3z1z2z3

= λ1(z)λ2(z)λ3(z) = w1(w
2
2 +w2

3).

We defer the study of this field–type norm for the moment. The most useful norm
for the analysis of ternary numbers is the following ternary–valued norm (see [4]
for a similar theory of hyperbolic–valued norms).

Definition 3.2 The complex–valued ternary norm is defined by:

‖z‖TC := |λ1(z)|ε1 + |λ2(z)|ε2 + |λ3(z)|ε3

= |λ1(z)|κ1 + 1

2
(|λ2(z)| + |λ3(z)|)κ2 + i

2
(|λ2(z)| − |λ3(z)|)κ3.

As ε2 and ε3 do not have real coefficients, note that ‖z‖TC ∈ TC. Equivalently, in
the symmetric basis, the coefficient in front of κ3 is purely imaginary in i. Moreover,
as mentioned above,

ε2 = 1

2
(κ2 + iκ3), ε3 = 1

2
(κ2 − iκ3),

form the idempotent basis of BC[κ2; i, κ3]. Note that k := iκ3 is an element that
squares to κ2, the multiplicative unit of BC[κ2; i, κ3], therefore it is a hyperbolic–
type unit. We write:

‖z‖TC = |λ1(z)|κ1 + |Z(z)|k κ2,

where

|Z(z)|k := |λ2(z)|ε2 + |λ3(z)|ε3

is a non–negative hyperbolic–type number (see [4] for more details).
Next, we define a (partial) order relation on the set TC

∣∣
R

(which is not the same
as TR described later here) that will lead to subadditivity of the complex–valued
ternary norm:

Definition 3.3 A complex ternary number with real idempotent coefficients is
non–negative, denoted by z � 0, if and only if λ�(z) ∈ R+. Moreover, two ternary
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numbers z,w ∈ TC
∣∣
R

are related, z & w if and only if w − z � 0, i.e. their (real)
idempotent coordinates satisfy λ�(z) ≤ λ�(w), for all � = 1..3.

Using the bicomplex description for z ∈ TC
∣∣
R

, note that Z(z) is a hyperbolic–
type number, therefore

z = w1(z)κ1 + Z(z)κ2 � 0

if and only if w1(z) ≥ 0, and Z(z) is a non–negative hyperbolic-type number. It is
easy to check that the relation above is indeed a partial order relation on TC

∣∣
R

.
Note that indeed ‖z‖TC and has the usual properties of a norm, including being

multiplicative:

‖z‖TC = 0 ⇐⇒ z = 0

‖μz‖TC = |μ|‖z‖TC, ∀μ ∈ C(i),

‖z ·w‖TC = ‖z‖TC · ‖w‖TC,

and because of the subadditivity of the usual complex norm, we get:

‖z+ w‖TC = |λ1(z) + λ1(w)|ε1 + |λ2(z) + λ1(w)|ε2 + |λ3(z) + λ1(w)|ε3

& (|λ1(z)| + |λ1(w)|)ε1 + (|λ2(z)| + |λ1(w)|)ε2 + (|λ3(z)| + |λ1(w)|)ε3

& ‖z‖TC + ‖w‖TC.

For z = x ∈ TR, we note that:

|λ2(x)|2 = |x1 + ψ2x2 + ψx3|2 =
∣∣∣∣∣x1 + 1

2
(−x2 − x3)−

√
3i

2
(x2 − x3)

∣∣∣∣∣

2

= (x1 + 1

2
(−x2 − x3))

2 − 3

4
(x2 − x3)

2

|λ3(x)|2 = |x1 + ψx2 + ψ2x3|2 =
∣∣∣∣∣x1 + 1

2
(−x2 − x3)+

√
3i

2
(x2 − x3)

∣∣∣∣∣

2

= (x1 + 1

2
(−x2 − x3))

2 − 3

4
(x2 − x3)

2 = |λ2(x)|2,

therefore |λ2(x)| = |λ3(x)|. It follows that the ternary–valued norm for real ternary
numbers is a real–ternary number:

‖x‖TC = |λ1(x)|κ1 + |λ3(x)|κ2 = |w1(x)|κ1 + |w2(x)+ iw3(x)|κ2

= |w1(x)|κ1 + |ζ(x)|κ2, (3.1)
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where we note that

|ζ(x)| = |w2(x)+ iw3(x)| = |w2(x)κ2 +w3(x)κ3| =
√
w2(x)2 +w3(x)2 ∈ R+.

Next, for a real ternary number x ∈ TR, λ1(x) is always real, but λ2(x) and λ3(x)
are real if and only if x2 = x3, equivalent to λ2(x) = λ3(x) and to w3(x) = 0.
Moreover, in this case w2(x) = λ2(x) = x1 − x2. Therefore, for a real ternary
number:

x � 0 ⇐⇒ w1(x) ≥ 0, w2(x) ≥ 0, w3(x) = 0. (3.2)

In conclusion, a non–negative real ternary number is of the form:

x = x11 + x2e2 + x2e3

= λ1(x)ε1 + λ2(x)ε2 + λ2(x)ε3

= w1(x)κ1 +w2(x)κ2,

where λ�(x) ≥ 0, w�(x) ≥ 0, for � = 1, 2, equivalent to x1 + 2x2 ≥ 0 and x1 ≥ x2.
This implies that x1 ≥ 0, and if x2 ≥ 0 then x1 ≥ x2 ≥ 0, or if x2 ≤ 0 then
x1 ≥ −2x2.

The next valuable norm on TC is the Euclidean–type, still real ternary–valued:

Definition 3.4 The Euclidean–type ternary–valued norm of a complex ternary
number z ∈ TC is defined by:

‖z‖E := |λ1(z)|κ1 +
∣∣∣∣
1

2
(|λ2(z)| + |λ3(z)|)κ2 + i

2
(|λ2(z)| − |λ3(z)|)κ3

∣∣∣∣ κ2

= |λ1(z)|κ1 + 1

2

√
(|λ2(z)| + |λ3(z)|)2 + (|λ2(z)| − |λ3(z)|)2κ2

= |λ1(z)|κ1 + 1√
2

√
|λ2(z)|2 + |λ3(z)|2κ2

= |w1(z)|κ1 + |Z(z)|κ2, (3.3)

where | · | denotes the usual norm of complex numbers, with the exception of |Z(z)|
which is the Euclidean norm of the bicomplex numberZ(z)written in its idempotent
representation.

It follows easily that ‖z‖E � 0 and, using the subadditivity of the Euclidean
norms, the ternary–valued norm is also subadditive but not multiplicative, as the
bicomplex Euclidean norm is not.

Using the complex ternary–valued norm, we define ternary disks and domains as
follows.
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Definition 3.5 A ternary open disk D(z0, ρ) centered in z0 =
3∑

�=1

λ�(z0)ε� and

radius ρ ∈ TC
∣∣
R

, ρ � 0, is defined by ‖z− z0‖TC ≺ ρ, i.e. the relations:

|λ�(z)− λ�(z0)| < λ�(ρ), � = 1..3.

In case we replace ≺ by & above, we obtain a ternary closed disk.

Definition 3.6 A complex ternary domain is an connected open subset � ⊆ TC,
i.e. for each point z0 ∈ � there is a ternary open disk D(z0, ρ) ⊂ �. If written in
the projection form:

� = � · ε1 +� · ε2 +� · ε3,

the projection sets � · ε� are one–variable complex domains (disks) in C(i), for
� = 1..3.

In the symmetric basis, a ternary domain � decomposes as follows:

� = � · κ1 +
(
� · 1

2
(κ2 + iκ3)+� · 1

2
(κ2 − iκ3)

)
κ2 = � · κ1 +� · κ2,

where we have used the bicomplex domain decomposition in the bicomplex

idempotents
1

2
(κ2 ± iκ3) (see [15] for details):

� · κ2 =
(
� · 1

2
(κ2 + iκ3)2 +� · 1

2
(κ2 − iκ3)

)
κ2

When necessary, we work also with Euclidean–type ternary disks, defined in a
similarly way:

Definition 3.7 An Euclidean ternary open disk centered in z0 = |w1(z0)|κ1 +
|Z(z0)|κ2 and radius γ ∈ TR+, γ � 0, is defined by ‖z − z0‖E ≺ γ , i.e. the
relations:

|w1(z)− w1(z0)| < w1(γ ), |Z(z)− Z(z0)| < |Z(γ )|.

4 Complex Ternary Regularity

Consider a complex ternary number written in all three standard, idempotent and
symmetric bases:

z =
3∑

k=1

zkek =
3∑

k=1

λk(z)εk =
3∑

�=1

w�(z)κ� = w1(z)κ1 + Z(z)κ2. (4.1)
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Following the same set-up, a complex ternary function F : � ⊆ TC→ TC can also
be written in three ways:

F(z) =
3∑

k=1

fk(z)ek =
3∑

k=1

ϕk(z)εk =
3∑

�=1

W�(z)κ� = W1(z)κ1 +G(z)κ2, ,

(4.2)

where � ⊆ TC is a complex ternary domain and:

1. fk : � ⊂ C(i)3 → C(i), f (z) = fk(z1, z2, z3) are C(i)–valued functions of
three complex variables zk ,

2. ϕk :
3∏

�=1

� ·ε� ⊂ C(i)3 → C(i), ϕk(z) = ϕk(λ1(z), λ2(z), λ3(z)) are C(i)–valued

functions of three complex variables λk(z),

3. Wk :
3∏

�=1

� · κ� ⊂ C(i)3 → C(i), Wk(z) = Wk(w1(z),w2(z),w3(z)) are C(i)–

valued functions of three complex variables wk(z).
4. In this context, the function

G : � · κ1 × � · κ2 ⊂ C(i)× BC(κ2; κ3)→ BC(κ2; κ3), (4.3)

where G(z) = G(w1(z), Z(z)), becomes a bicomplex–valued function of one
complex variable w1(z) and one bicomplex variable Z(z).

The relations among the coordinate functions for F are:

ϕ1(z) = f1(z)+ f2(z)+ f3(z), ϕ2(z) = f1(z)+ ψ2f2(z)+ ψf3(z),

ϕ3(z) = f1(z)+ ψf2(z)+ ψ2f3(z), (4.4)

and the inverse transformations are:

f1(z) = 1

3
(ϕ1(z)+ ϕ2(z)+ ϕ3(z)) , f2(z) = 1

3
(ϕ1(z)+ ψϕ2(z)+ ψ2ϕ3(z)),

f3(z) = 1

3
(ϕ1(z)+ ψ2ϕ2(z)+ ψϕ3(z)). (4.5)

In the symmetric basis, we have:

W1(z) = ϕ1(z) = f1(z)+ f2(z)+ f3(z),

W2(z) = 1

2
(ϕ2(z)+ ϕ3(z)) = 1

2
(2f1(z)− f2(z)− f3(z))

W3(z) = i
2
(ϕ2(z)− ϕ3(z)) =

√
3

2
(f2(z)− f3(z)), (4.6)
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and the inverse transformations:

ϕ1(z) = W1(z), ϕ2(z) = W2(z)− iW3(z), ϕ3(z) = W2(z)+ iW3(z),
(4.7)

and

f1(z) = 1

3
(W1(z)+ 2W2(z)), f2(z) = 1

3
(W1(z)−W2(z)+

√
3W3(z)),

f3(z) = −1

3
(−W1(z)+W2(z)+

√
3W3(z)). (4.8)

Note that all relations among the functions fk(z), ϕk(z),Wk(z) and G(z) are linear
transformations.

Definition 4.1 A ternary function F : � ⊆ TC → TC is complex differentiable
if the coordinate functions fk(z) (and implicitly ϕk(z), Wk(z) and G(z)) have
continous partial derivatives

∂fk

∂z�
,

∂ϕk

∂λ�(z)
,

∂Wk

∂w�(z)
,

∂G

∂w2(z)
,

∂G

∂w3(z)
,

for all k, � = 1..3, i.e. the coordinate functions are C(i)–complex holomorphic
functions in variables z� (respectively λ�(z) and w�(z)).

From now on we will omit (z) from the notation of λk(z) et al. In terms of the

usual complex conjugate differential operators
∂

∂z�
in C(i)3, a function F is complex

differentiable if it is in the kernel of all three operators:

∂fk

∂z1
= ∂fk

∂z2
= ∂fk

∂z3
= 0, k = 1..3.

Equivalently, in the idempotent and symmetric bases:

∂ϕk

∂λ1
= ∂ϕk

∂λ2
= ∂ϕk

∂λ3
= 0 ⇐⇒ ∂Wk

∂w1
= ∂Wk

∂w2
= ∂Wk

∂w3
= 0.

In terms of the bicomplex function G(z), we have the equivalent description of
complex differentiability of ternary functions:

∂G

∂w1
= ∂G

∂Z
= ∂F

∂Z∗
= 0.

In the last equality,Z and Z∗ denote the bicomplex conjugates (see [15] for details).
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Definition 4.2 The ternary conjugate operators acting on complex differentiable
ternary functions F(z) are defined in terms of the idempotent representation:

d

dz† :=
∂

∂λ3
ε1 + ∂

∂λ1
ε2 + ∂

∂λ2
ε3,

d

dz∗
:= ∂

∂λ2
ε1 + ∂

∂λ3
ε2 + ∂

∂λ1
ε3.

Because εj εk = 0 for j 	= k and ε2
k = εk , for all k, � = 1..3 we obtain:

∂F
∂λ�

εk =
∂

⎛

⎝
3∑

j=1

ϕj · εj
⎞

⎠

∂λ�
εk = ∂ϕk

∂λ�
εk.

Then the explicit action of the conjugate operators is given by:

dF
dz† =

∂F
∂λ3

ε1 + ∂F
∂λ1

ε2 + ∂F
∂λ2

ε3 = ∂ϕ1

∂λ3
ε1 + ∂ϕ2

∂λ1
ε2 + ∂ϕ3

∂λ2
ε3,

and similarly

dF
dz∗

= ∂ϕ1

∂λ2
ε1 + ∂ϕ2

∂λ3
ε2 + ∂ϕ3

∂λ1
ε3.

In terms of the ternary conjugate differential operators, we define the notion of
regularity as follows:

Definition 4.3 A complex differentiable ternary function F : � → TC is ternary
regular on � if and only if F is in the kernel of the two ternary conjugate operators:

dF
dz† (z) =

dF
dz∗

(z) = 0,

for all z ∈ �.

The following theorem characterizes ternary complex regular functions in the
idempotent writing.

Theorem 4.4 A complex differentiable ternary function F is regular on � if and
only if the functions ϕk(z) = ϕk(λk(z)), i.e. they depend only on one variable,
thus are C(i)–holomorphic functions in the variable λk(z), for k = 1..3, on their
projection complex domains � · εk .

Proof The proof is very similar to the proof in the bicomplex case [15] and a direct
implication from the differential operators above. ��
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In the symmetric basis we obtain the equivalent statement:

Theorem 4.5 A complex differentiable ternary functions F is regular on � if and
only if both of the following hold:

1. the function W1(z) = W1(w1), i.e. it depends only on one symmetric variable w1
and thus it is C(i)–holomorphic on � · κ1,

2. the function G(z) = G(Z), i.e. it depends only on the bicomplex variable Z and
it is bicomplex holomorphic on � · κ2.

Proof This is a consequence of the theorem above and the equivalence with
bicomplex derivability. ��
Remark 4.6 Coming from general commutative hypercomplex theory, one can
define the notion of derivability for ternary functions, i.e. in terms of limits of
the ternary rate of change quotients. It turns out that a complex ternary function
F : �→ TC is derivable on � if and only if it is ternary regular on �. In terms of
the ternary derivative operator, defined by:

d

dz
=

3∑

k=1

∂

∂λk(z)
εk,

if F is derivable then its derivative is given by:

F′(z) = dF
dz

= ϕ′1(λ1(z))ε1 + ϕ′2(λ2(z))ε2 + ϕ′3(λ3(z))ε3.

In symmetric coordinates, the derivative of F is given by:

F′(z) = W ′
1(w1(z))κ1 +G′(Z(z))κ2.

The Generalized Cauchy–Riemann (GCR) conditions give an equivalent descrip-
tion of ternary regularity. Starting with a ternary function F : � → TC which is
holormophic as a function of three complex variables, the GCR system is:

∂F
∂zk

e� = ∂F
∂z�

ek, k, � = 1..3.

Explicit computations yield the following system:

∂f3

∂z1
1 + ∂f1

∂z1
e2 + ∂f2

∂z1
e3 = ∂f1

∂z2
1 + ∂f2

∂z2
e2 + ∂f3

∂z2
e3,

∂f2

∂z2
1 + ∂f3

∂z2
e2 + ∂f1

∂z2
e3 = ∂f3

∂z3
1 + ∂f1

∂z3
e2 + ∂f2

∂z3
e3,

∂f1

∂z3
1 + ∂f2

∂z3
e2 + ∂f3

∂z3
e3 = ∂f2

∂z1
1 + ∂f3

∂z1
e2 + ∂f1

∂z1
e3.
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which is equivalent to the following system of differential equations in terms of the
partial derivatives in standard coordinates z�:

∂f1

∂z1
= ∂f2

∂z2
= ∂f3

∂z3
,

∂f1

∂z2
= ∂f2

∂z3
= ∂f3

∂z1
,

∂f1

∂z3
= ∂f2

∂z1
= ∂f3

∂z2
. (4.9)

In the symmetric basis the GCR system is equivalent to the following:

∂W1

∂w1
= ∂f1

∂z1
+ ∂f1

∂z2
+ ∂f1

∂z3
,

a complex Cauchy–Riemann system:

∂W2

∂w2
= ∂W3

∂w3
= 1

2

(
2
∂f1

∂z1
− ∂f1

∂z2
− ∂f1

∂z3

)
,

∂W2

∂w3
= −∂W3

∂w2
=
√

3

2

(
∂f1

∂z2
− ∂f1

∂z3

)
,

which is equivalent to
∂G

∂Z† = 0, and the projector system:

∂W2

∂w1
= ∂W3

∂w1
= 0,

∂W1

∂w2
= ∂W1

∂w3
= 0.

5 Applications of Complex Ternary Regularity

5.1 Ternary Power Series and Cauchy–Kovalevskaya
Extensions

A complex ternary regular function F : �→ TC inherits a power series expansion
from its complex holomorphic idempotent coordinate functions:

F(z) := ϕ1(λ1(z))ε1 + ϕ2(λ2(z))ε2 + ϕ3(λ3(z))ε3.
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Omitting (z) from notation, consider the following power series expansions of ϕ�
on complex disks D�(λ�0) ⊆ � · ε�

ϕ�(λ�) :=
∞∑

n=0

a�n(λ� − λ�0)
n, � = 1..3.

Then

F(z) :=
∞∑

n=0

a1n(λ1 − λ10)
nε1 +

∞∑

n=0

a2n(λ2 − λ20)
nε2 +

∞∑

n=0

a3n(λ3 − λ30)
nε3

=
∞∑

n=0

(a1nε1 + a2nε2 + a3nε3) ·
(
(λ1 − λ10)

nε1 + (λ2 − λ20)
nε2 + (λ3 − λ30)

nε3
)

=
∞∑

n=0

(a1nε1 + a2nε2 + a3nε3) · ((λ1 − λ10)ε1 + (λ2 − λ20)ε2 + (λ3 − λ30)ε3)
n

=:
∞∑

n=0

An(z − z0)
n,

whereAn = a1nε1+a2nε2+a3nε3 are ternary coefficients. This proves the theorem:

Theorem 5.1 A complex ternary function F : � → TC of class C1(�) is
holomorphic on � if and only if it is derivable on �.

Just like in the bicomplex case [11], we obtain a first Cauchy-Kovalevskaya
Theorem for complex ternary functions:

Theorem 5.2 A real analytic function f : U ⊆ R→ TC

f (x) = f1(x)1+ f2(x)e2 + f3(x)e3

= ϕ1(x)ε1 + ϕ2(x)ε2 + ϕ3(x)ε3

(equivalent to f�(x) are real analytic on U ), extends uniquely to a complex ternary
regular function F : � ⊆ TC → TC, where � is an open neighborhood of U in
TC.

Proof Recall that

ϕ1(x) = f1(x)+ f2(x)+ f3(x),

ϕ2(x) = f1(x)+ ψ2f2(x)+ ψf3(x),

ϕ3(x) = f1(x)+ ψf2(x)+ ψ2f3(x).
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First we extend f to a holomorphic function on Ũ ⊆ C, where Ũ is a neighborhood
of U in C by f (z) := f1(z)1+f2(z)e2+f3(z)e3, for z = x+ iy. This is equivalent
to use the regular CK extension for the real analytics functions f�(x) to holomorphic
f�(z), for � = 1..3. It follows that the extensions ϕ�(z) are complex holomorphic,
as they are C(i)–linear combinations of f�(z).

Now consider the ternary variable

z = z11 + z2e2 + z3e3 = λ1(z)ε1 + λ2(z)ε2 + λ3(z)ε3

and define

F(z) := ϕ1(λ1(z))ε1 + ϕ2(λ2(z))ε2 + ϕ3(λ3(z))ε3.

Note that F
∣∣
R
= f and F is ternary regular. The uniqueness of F follows from the

uniqueness of the extensions f�(x) to f�(z). ��

5.2 Analysis of Real Ternary Functions

A real ternary number x ∈ TR has the following representations:

x =
3∑

k=1

xkek =
3∑

k=1

λk(x)ek =
3∑

�=1

w�(x)κ� = w1(x)κ1 + ζ(x)κ2,

where λ1(x) ∈ R, xk,wk(x) ∈ R for k = 1..3, λ2(x), λ3(x) ∈ C(i), and ζ(x) ∈
C(κ2; κ3).

A real ternary function F : �→ TR is also written in the following ways:

F(x) =
3∑

k=1

fk(x)ek =
3∑

k=1

ϕk(x)ek =
3∑

�=1

W�(x)κ� = W1(x)κ1 +G(x)κ2,

where � ⊆ TR is a real ternary domain and the coordinate functions are as in the
complex case, with a few exceptions:

1. fk : � ⊂ R3 → R, f (x) = fk(x1, x2, x3) are real–valued functions of three real
variables xk.

2. ϕk :
3∏

�=1

� · ε� ⊂ C(i)3 → R, ϕk(z) = ϕ1(λ1(z), λ2(z), λ3(z)) are functions of

one real variable λ1(z) and two complex variables λ2(z) and λ3(z), i.e. � · ε1 ⊂
R3, while � · εk ⊂ C(i)3 for k = 2, 3. The difference is that ϕ1 is real–valued
while ϕ2 and ϕ3 are complex–valued functions.
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3. Wk :
3∏

�=1

� · κ� ⊂ C(i)3 → C(i), Wk(z) = Wk(w1(z),w2(z),w3(z)) are C(i)–

valued functions of three complex variables wk(z). The functionG : � ·κ1× � ·
κ2 ⊂ BC(κ2; i, κ3), G(z) = G(w1(z), Z(z)) is a bicomplex–valued function of
one complex variable w1(z) and one bicomplex variable Z(z).

Theorem 5.3 F is regular on � if and only if:

1. The real functionW1(x) = W1(w1(x)), i.e. it depends only on one real symmetric
variable, and the complex function g(x) = g(ζ(x)), i.e. it depends only on one
complex variable.

2. The real function W1(w1(x)) is of class C1 (� · κ1) and the complex function
G(ζ(x)) is complex derivable (i.e. holomorphic) in the complex holomorphic on
� · κ2.

Moreover, if the derivative of F exists, it is given by:

F ′(x) = dF

dx
= W ′

1(w1(x))κ1 + g′(ζ(x))κ2.

The equivalent description is the GCR system (4.9), replacing the variables z� by
x�. In the symmetric basis, we get the similar formulation of real ternary regularity
in terms of differential operators:

∂W1

∂w1
= ∂f1

∂x1
+ ∂f1

∂x2
+ ∂f1

∂x3
,

a CR system:

∂W2

∂w2
= ∂W3

∂w3
= 1

2

(
2
∂f1

∂x1
− ∂f1

∂x2
− ∂f1

∂x3

)
,

∂W2

∂w3
= −∂W3

∂w2
=
√

3

2

(
∂f1

∂x2
− ∂f1

∂x3

)
,

which is equivalent to
∂g

∂ζ
= 0, and the projection properties:

∂W2

∂w1
= ∂W3

∂w1
= 0,

∂W1

∂w2
= ∂W1

∂w3
= 0.

The derivative real ternary differential operator is given by:

∂

∂x
= ∂

∂w1
κ1 + ∂

∂w2
κ2 + ∂

∂w3
κ3

= 1

3

(
∂

∂x1
+ ∂

∂x2
+ ∂

∂x3

)
κ1 + 1

3

(
2
∂

∂x1
− ∂

∂x2
− ∂

∂x3

)
κ2 + 1√

3

(
∂

∂x2
− ∂

∂x3

)
κ3.
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5.3 Cauchy-Kovalevskaya Theorem for Real Ternary Regular
Functions

In the same way as the previous case, we have the following Cauchy-Kovalevskaya
theorem for real ternary regular functions:

Theorem 5.4 Consider a real ternary regular function F : � ⊆ TR→ TC

F(x) = W1(w1(x))κ1 +G(ζ(x))κ2

with the additional condition that W1(x) is real analytic on � · κ�. Then F extends
uniquely to a complex ternary regular function F̃ : �̃ ⊆ TC → TC, where �̃ is an
open neighborhood of � in TC.

Proof Recall that F is ternary regular implies thatG(ζ(x)) is holomorphic in ζ(x) =
w2(x)κ2+w3(x)κ3 on � ·κ2. First we extend W1(w1(x)) to a holomorphic function
on Ũ1 ⊆ C, where Ũ1 is a neighborhood of U in C by:

W1(z) := U1(z)+ iV1(z)

for z1 = w1(x) + iy1. Now we extend the complex holomorphic function G(ζ(x))
from C(κ3) to a bicomplex holomorphic function G(Z) on BC[κ2; κ3].

Now consider the ternary variable

z = w1(z)κ1 + Z(z)κ3

and define

F̃(z) := W1(w1(z))κ1 +G(Z(z))κ2

Note that F̃
∣∣
TR

= F and ˜vF is complex ternary holomorphic. The uniqueness
of F follows from the uniqueness of the complex and respectively bicomplex
extensions. ��

5.4 Other Applications, Extensions to the Tri-complex Space
BC3

We will first write a generalization of the tri-complex space BC3, i.e. given by three
commuting complex units as in [17, 19], as follows:

Remark 5.5 Consider the tricomplex space BC3[1; i2, i3] (where before the semi-
colon we have the main unit and i2, i3 commute with i, i.e. this is a commutative
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algebra over C(i)) written in both standard and idempotent representations:

Z3 = Z21 + i3Z22 = (Z21 − i2Z22)e23 + (Z21 + i2Z22)e
†
23

where Z21 and Z22 are bicomplex numbers in BC2[1; i2], and:

γ1 := e23 := 1

2
(1 + i2i3) γ2 := e†

23 :=
1

2
(1 − i2i3),

γ4 := i2e23 = −i3e23, γ3 := i2e†
23 = i3e†

23 (5.1)

γ 2
4 = (i2e23)

2 = (−i3e23)
2 = −e23 = −γ1, γ 2

3 = (i2e†
23)

2 = (i3e†
23)

2 = −e†
23 = −γ2.

Using the properties of tricomplex numbers, we can write Z3 also as follows:

Z3 = (Z21 − i2Z22)e23 + (Z21 + i2Z22)e
†
23

= (Z21e23 − (i2e23)Z22) e23 +
(
Z21e†

23 + (i2e†
23)Z22

)
e†

23

= (Z21e23 + (i3e23)Z22) e23 +
(
Z21e†

23 + (i3e†
23)Z22

)
e†

23

= (Z21γ1 + Z22γ4) γ1 + (Z21γ2 + Z22γ3) γ2

=: Z1γ1 + Z2γ2,

where, up to isomorphism of bicomplex algebras, Z1 ∈ BC2[γ1; γ4] and Z2 ∈
BC2[γ2; γ3] are treated as independent bicomplex variables. We denote the tricom-
plex algebra also by BC3[1; γ1, γ4; γ2, γ3]

Relations (5.1) among the elements γ1, γ2 and γ3 (note also that γ1 + γ2 = 1)
allow us to identify a complex ternary number of the form

z = w1(z)γ1 + Z(z)γ2 = (w1(z)γ1 + 0γ4)γ1 + Z(z)γ2

is also an element of the tricomplex algebra above, as the ternary symmetric
basis elements κ1, κ2 and κ3 have the same properties (see (2.11)). All these
identifications are obtained by algebra isomorphisms, which are easier to understand
from the context rather than complicating the notations further.

Using a similar proof as in the two theorems above, one can prove the following:

Theorem 5.6 Consider a complex ternary regular function F : � ⊆ TC →
BC3[1; κ1, κ4; κ2, κ3] (denoted simply by BC3)

F(z) = W1(w1(z))κ1 +G(Z(z))κ2,

i.e. W1(w1(z)) is holomorphic in � · κ1 ∈ C(i) · κ1 and G(Z(z)) bicomplex
holomorphic in � · κ2 ∈ BC2[κ2; i, κ3]. Then F extends uniquely to a tricomplex
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holomorphic function F̃ : �̃ ⊆ BC3 → BC3, where �̃ is an open neighborhood of
� in BC3.

We leave the proof to the reader.

6 Comparison, Conclusions, and Future Work

The analysis of spaces of regular functions have been studied in [5] where the
authors solved the Gleason’s problem in the ternary case, using the method
described in [2] for several complex variables and in [3] for the quaternionic case.
In this work, in a way parallel to the quaternionic case, in solving the Gleason’s
problem, the authors obtained Fueter–type variables (as discussed, for example,
in [7]), as the primary ternary variable is not regular in a usual sense. These Fueter–
type variables are commutative and this allowed to define the counterpart of the
Arveson space and solve the Gleason’s problem defined in the ternary case. The
Fueter variables themselves behave as a complex variable and a “light–cone”–type
one which reduce to a two real variable theory when restricted to a plane. The fact
that these variables only show up in a non–commutative case before is interesting in
itself as well. This paper outlines a comparison between complex ternary analysis
and the real ternary one, clarifying the notions found in [5]. For [5] we have used the
theory generated by an element that cubes to −1, however all results translate with
small and careful changes of sign. The analytic theory also carries over smoothly.

The author is now working on a collaborative project on solving the Gleason
problem in the complex ternary case, using one of the ternary norms described in
Sect. 3.
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