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Abstract. Tactile Internet promises a widespread adoption of haptic
communication over the Internet. However, as haptic technologies are
becoming more diversified and available than ever, the need has arisen for
a plug-and-play (PnP) haptic communication over a computer network.
This paper presents a system for enabling PnP communication of het-
erogeneous haptic interfaces. The system is based on three key features:
(i) a haptic metadata to make haptic interfaces self-descriptive, (ii) a
handshake protocol to automatically exchange haptic metadata between
two communicating devices, and (iii) a multimodal (haptic-audio-visual)
media communication protocol. Implemented using WebRTC, the PnP
communication is evaluated using a Tele-Writing application with two
heterogeneous haptic interfaces, namely Geomagic Touch and Novint Fal-
con. Our findings demonstrate the potential of the system to be employed
in any Tactile Internet scenario.

Keywords: Tactile Internet (TI) · Haptic-Audio-Visual (HAV)
handshake · TI Metadata (TIM) · WebRTC · Request/response

1 Introduction

Tactile Internet (TI) [16] – deemed as the Internet of Skills [12] – is antici-
pated to redefine the nature of human interactions with remote environments.
TI extends the human capability to effectively control and manipulate remote
environments by providing haptic (touch) experience in an ultra-responsive and
ultra-reliable fashion [6]. This enables humans to experience remote environ-
ments as if they are located there. This has opened up a world of new opportu-
nities with potential to impact every aspect of human lives [18]. Some examples
include telesurgery [7], remote disaster management, online shopping [31], gam-
ing and entertainment, and long-distance inter-personal communication.

The inclusion of haptic media as an integral element of TI presents several
challenging communication requirements that are unique to TI, and hence need
to be separately addressed. For example, design of schemes for robust control
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and communication, inter-media (haptic, audio, and video) as well as intra-
media (haptic sensors and actuators) synchronization, and so on. To address
these challenges, IEEE established the IEEE P1918.1 TI standards Working
Group (WG) [18] for defining a standard framework encompassing a generic TI
reference model and architecture. It also aims to standardize the interconnections
between multitude of interfaces featured in the framework. Further, in order to
identify and standardize the TI modules specific to haptic communication, a
sub-WG – P1918.1.1 – has been created. This has spawned a string of activities
with specific focus on design and development of:

1. haptic codecs for perception-based haptic signal compression
2. plug-and-play (PnP) communication for interoperability under heterogeneous

environment settings.

While the former has witnessed significant progress, the latter is still in its
nascent stages of development.

Design Challenges: Designing a PnP communication system for TI comes with
several challenges. We list the most important ones here.

1. Application-level heterogeneity: TI applications manifest a diverse range
of requirements. For instance, while in a haptic-based VR game a single point
device with 3 Degrees of Freedom (DoF) suffices, complex interactions, such
as a telesurgery, require several sensors and actuators possibly with heteroge-
neous Quality of Service (QoS) requirements. A PnP communication system
should be capable of detecting these interfaces and start communication on
the fly with zero or minimal configurations.

2. Interoperability: PnP communication system for TI should be cross-
platform and work without requiring installation of any software/firmware.

3. Quality of Service: TI applications demand extremely stringent QoS
requirements, such as a round trip time (RTT) 10 ms [16]. PnP communi-
cation system should be capable of strictly complying to such requirements.

In this work, we attempt to fuel this direction of advancement in TI by
proposing a WebRTC-based system for enabling PnP haptic communication for
TI interactions. Our contributions in this paper are the following:

1. We propose a system for haptic interaction between multiple TI nodes in a
PnP fashion. Our system is robust to the characteristics of applications and
the haptic interfaces used.

2. We present the design details of our PnP communication system developed
using WebRTC API. The efficacy of our design lies in the fact that we achieve
haptic communication by leveraging only the built-in features of WebRTC,
thereby posing no demands for modifications to the standard WebRTC struc-
ture.

3. We test the proof-of-concept of the proposed system through a tele-writing
application using both homogeneous and heterogeneous haptic interfaces con-
nected via a real-network. The latency measurements of our system demon-
strate its potential to be employed in any TI scenario.
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The remainder of the paper is organized as follows. In Section 2, we present a
review of the related literature. In Sects. 3, 4, we present an overview of our
PnP system and discuss its implementation details, respectively. We present our
experimental results and discussions in Sect. 5. Finally, we state our conclusions
in Sect. 6.

2 Related Literature

Standardizing haptic communication interfaces has been a pervasive challenge
in the haptic research community. This primarily requires (i) comprehensive def-
inition of haptic metadata format, (ii) exchanging and negotiation of metadata,
and (iii) exchange of media payload.

Several works exist in the literature that have looked at definition and
exchange of haptic metadata. In order to systematically describe various
attributes of a haptic interface, researchers have proposed a structured data for-
mat. Early studies proposed an XML-based approach to represent generic haptic
applications [8]. Cha et al. extended MPEG-4 Binary Format for Scenes (BIFS)
[29] to support the synchronization and communication of haptic-audio-visual
(HAV) media streams [9]. Others [14] have proposed HAML, a haptic applica-
tions metadata language, to describe haptic-related information, including haptic
interfaces, haptic development APIs, and quality of experience requirements. A
HAML-based authoring tool has also been developed [13] to facilitate the devel-
opment of haptic applications for various haptic interfaces for non-programmer
developers or artists. The work in [24] explored the use of Session Initiation Pro-
tocol (SIP), used commonly in VoIP sessions, for establishing haptic interactive
sessions.

Only a handful of works have addressed the latter challenge of exchanging
media payload using standardized protocols/tools. An example is the work in
[24] that considered Real-time Transport protocol (RTP), which forms the cor-
nerstone of VoIP applications, for haptic interactions.

A recent work in [20], presents Tactile Internet Metadata (TIM) and a haptic
handshake protocol, the implementations of which were realized using WebRTC.
This study is a continuation of our previous work where we evaluate the PnP
system with heterogeneous haptic devices in a realistic tele-haptic application
(Tele-writing). This design choice of using a browser-based API enabled the
authors to develop the protocol in a cross-platform manner. In this work, we
make significant enhancements to the work in [20] to come up with a PnP com-
munication system for TI that we present in the following section.

3 Proposed PnP Communication System

In this section, we provide an overview of the proposed PnP communication sys-
tem. The system consists of three tightly coupled components: Tactile Internet
Metadata (TIM) scheme, haptic handshake protocol, and a real-time haptic-
audio-video communication protocol to support network applications. While a
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preliminary implementation of these components was done in the recent work
[20], we have enhanced it significantly in order to make the communication sys-
tem plug-and-play. Nevertheless, we will provide a holistic view of the proposed
system here.

3.1 HAV Handshake

We propose a three-way handshake protocol for the exchange of haptic-audio-
video (HAV) metadata between TI nodes, as shown in Fig. 1. The TI node
initiating the TI session (node A) advertises all of its capabilities/requirements
to the other participant (node B) through the request message. For example,
node A could be capable of supporting a set of haptic codec types and certain
maximum haptic refresh rate. In response, node B chooses a feasible option out of
the advertised specifications. For example, only a subset of the advertised codecs
and a lower refresh rate could be supported. Node B transmits the response
message carrying the chosen parameters. Upon reception of the response signal,
node A transmits ACK message indicating that the consensus on metadata is
reached. The packet structures of these messages are discussed in Sect. 3.2.

The reception of ACK marks the completion of HAV handshake phase where
the advertisement and negotiation of metadata happens. This is then followed
by the media communication phase in which the exchange of media and control
data corresponding to the live TI interaction is carried out. We discuss further
details on this in Sect. 3.3.

Fig. 1. Schematic of the proposed HAV handshake. HAV synchronization involves a
simple 3-way handshake consisting of request, response, and acknowledgment.
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3.2 Tactile Internet Metadata (TIM)

TIM is designed to provide a technology-neutral description of the various char-
acteristics and requirements of TI systems in terms of session attributes. As
shown in Fig. 2, the session attributes are organized into two broad categories:
Quality of Experience (QoE) and haptic. QoE captures the essential parameters
that are crucial for an immersive perception of the remote haptic interaction
by the human operator. This category is further sub-divided into Quality of
Experience (QoS) and user experience. QoS specifies the end-to-end network
requirements for guaranteeing transparency between the TI nodes. For example,
latency and jitter fields specify the maximum tolerable end-to-end delay and
jitter, respectively. User experience specifies the perceptual attributes that will
be used to describe the current quality of human perception, such as the quality
of user immersion or telepresence.

On the other hand, the haptic category represents the haptic modality in
terms of the properties of the media (data) and the haptic interface attributes.
While the former describes the attributes for source coding and communication
of the haptic data, the latter describes the capabilities of the haptic interface
being employed in the TI session. These include the number of degrees of free-
dom, ranges of displayable force and torque, and position resolution, among
others.

Fig. 2. Haptic session attributes as defined in TIM.

The TIM structure is adapted for various types of haptic handshake and com-
munication messages, including the schema for the request/response messages
and the data/control messages.
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As for the haptic handshake, two types of messages are defined, namely
the request and the response (Fig. 3 (a)). The message header consists of a
packetType identifier for indicating the type of handshake message – request,
response, or ACK. The header also include a packet sequence number for unique
identification of the packet. The request/response message payload carries the
metadata advertised/selected by the transmitting TI node. In order to support
evolving requirements, CustomHapticAttributes field is provided in which several
user-defined attributes may be added. The payload of the message is formatted
in accordance with the TIM definition (Fig. 1).

(a)

(b)

Fig. 3. Schematic representation of TIM packet format for (a) request/response,
(b) data.

As seen in Fig. 3 (a), the attributes in the interface options of the
request/response packet cater to the capabilities of the tactile device by keeping
the attributes in the data packet within the lower/upper bounds of the specifi-
cations of the device. For instance, the TIM communicates the maximum force
attribute during the handshake (via request/response packets) and a value for
maximum force is set. If the payload of the data packet is force, it will stay
within the bound of maximum force set during the handshake throughout the
operation phase. Similarly, the attribute “immersion” could be set to “true” or
“false” depending on the application.

3.3 HAV Media Communication

The media communication phase starts once the haptic handshake phase com-
pletes. In Fig. 1, this is shown as the operation state, consisting of haptic, audio-
visual, and control channels. In the phase, two types of messages are exchanged:
data message shown in Fig. 3 and (b) control message which is a combination of
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fields in Fig. 3 (a). The data message simply carries a header and a payload. The
header defines the media type (haptic, audio, video, or combination), the packet
sequence number, and the haptic timestamp (utilized for intra- and inter-media
synchronization). The payload comprises the corresponding haptic media data
(such as position, force, torque or velocity for kinesthetic haptic interaction or
vibration frequency, location, intensity for tactile feedback, etc.). On the other
hand, the control messages are used to deal with dynamic control parameter
adjustments during the data communication, such as change in network charac-
teristics, addition of a new media type or user.

In this work, while we implement the handshake and media communication
of haptic-related messages, for communicating AV-related messages, we simply
invoke the de-facto standards – Real-time Transport Protocol (RTP) and Session
Description Protocol (SDP) for data and control, respectively.

4 Implementation on WebRTC

In this section, we will provide the implementation details of our PnP commu-
nication system using Web Real Time Communication (WebRTC) – an open-
source peer-to-peer cross-platform and cross-browser communication API [23].

4.1 TIM

A sample request packet of TIM is shown in Fig. 4. As can be seen it contains
several attributes and their corresponding values. This particular example con-
figures the deadband parameter for velocity signals (“VelocityDeadbandParam-
eter”) to 0.1, the manufacturer of the haptic device used (“manufacturerName”)
as “3D Systems”, and the device model (“modelName”) as “Geomagic Touch”.
Note that this excerpt of response packet is being taken from a real TI experiment
of tele-writing that we discuss in detail in Sect. 4.4. Here, we used the kines-
thetic codec [19] to smoothly interface haptic devices to the TI nodes. Other
attributes related to QoS, media, and interface fields are specified in detail. The
fields are arranged in JSON format. TIM is extensible and the exact attributes
can be easily defined by the developers depending on their application needs.
This can include any attributes related to handshake/data/control packets. For
AV metadata, we simply leverage the SDP implementation of WebRTC.

4.2 HAV Handshake

Haptic handshake and communication requires open source protocols for acces-
sibility, flexibility, and maintenance. For these reasons, commercial and propri-
etary services such as Skype and Google Hangout are challenging to adopt,
although their texting features can certainly be re-purposed for haptic hand-
shake. Due to these reasons, we resort to WebRTC for realizing our proposed
system.
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Fig. 4. Sample TIM Request generated when TI node is connected to Geomagic Touch
Device.

WebRTC handles AV data through Secure Real-Time Transport Proto-
col (SRTP) and non-AV data, which can be re-purposed for haptic data,
through UDP-based, DTLS-encapsulated SCTP [RFC4960]. Supported by major
browsers, it is being standardized through the World Wide Web Consortium
(W3C) and the Internet Engineering Task Force (IETF) [23,25]. These features
make WebRTC the most versatile solution among other open source options such
as easyRTC [26], Jitsi [21], Linphone [2], Jami [1], Riot [4], and Retroshare [3].

AV Handshake: We leverage the standard AV handshake handled by
WebRTC’s MediaStream for handling AV handshake and communication.
Figure 5 outlines the AV handshake. First, each TI node involved in the TI
interaction creates a PeerConnection for the AV channel. These nodes then con-
nect with each other through signaling messages. The request/response/ACK
generations are automated, and the SDP exchange process between the nodes
can be implemented using any third-party services such as emails, SMS, and
external servers. After these steps are executed, the PeerConnection objects of
the interacting nodes get attached to each other and the AV communication
starts between the nodes.

Haptic Handshake: WebRTC provides a generic object RTCDataChannel
that can be employed for any non-AV data communication. We make use of this
for haptic data. Figure 6 outlines the haptic handshake. First, both TI nodes
obtain TIM described earlier in Sect. 4.1. This is then encapsulated in SDP pack-
ets that are exchanged through the haptic handshake RTCDataChannel. Note
that the haptic handshake leverages the PeerConnection that was established
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Fig. 5. Schematic of AV handshake carried out by WebRTC.

during the AV handshake. Hence, there are no more processes to be executed
before the SDP exchanges can begin.

Fig. 6. Schematic of haptic handshake after completion of AV handshake.

AV and haptic media are intentionally handled in separate channels so that
third party developers can use different AV codecs based on their own application
needs. Note that the haptic metadata exchange happens separately from the AV
metadata, however, haptic media communication may or may not happen with
RTP.
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4.3 HAV Media Communication

After the handshake, the RTCDataChannel that was used for haptic handshake
is reused for control communication, and a second RTCDataChannel is opened
to be used for haptic media communication, thus triggering the comprehensive
HAV media communication.

RTCDataChannel objects exist in WebRTC to address communication needs
of various data, not only limited to haptic data. Hence, although not exactly TCP
or UDP, they can be configured to protocols within those two ends of transport
layer spectrum. The configurable options are listed below in Fig. 7:

Fig. 7. Different configuration options offered by the general RTCDataChannel object.

When the parameter Ordered is set to true (default), it means choosing a
reliable method of communication (leaning towards TCP). For UDP, it is set
to false and MaxRetransmits is set to 0. Additionally, RTCDataChannel can
control MaxRetransmits or MaxPacketLifeTime attributes but not both. RTC-
DataChannel is by default negotiated in-band between two nodes. This means
that the local node calls createDataChannel(), and the remote node connects
to the ondatachannel EventHandler. This enables a dynamic creation of RTC-
DataChannel where the number of channels is not predetermined. Alternatively,
they can be negotiated out of-band, where both sides call createDataChannel()
with a predetermined ID to create data channels statically. This method opens
the channels with lower latency and has higher stability as the creation of the
channels is symmetric.

Based on the above descriptions, for the purpose of our experiments, we
configured the RTCDataChannel objects used for haptic handshake, media, and
control are to be UDP-like as shown below. Of course, there is flexibility to set
the handshake and control channels to be more reliable (Fig. 8).

4.4 Tele-Writing Demonstration

To evaluate the performance of the proposed PnP communication system, we
developed a tele-writing application where a human can write something phys-
ically on a piece of paper present in a remote location. For this demonstration,
we attached a pen to the remote haptic device (Node A). The human user con-
trols it through another device in his/her location (Node B). The two nodes are
connected to each other through a star connection of category-5e RJ45 ethernet
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Fig. 8. Setting of the RTCDataChannel objects that are used for haptic signaling in
the proposed communication system.

cables and gigabit desktop switch. The interface for the haptic device was pro-
grammed in C++ language. A schematic diagram of the complete tele-writing
setup is shown in Fig. 9. The implementation of the tele-writing setup is divided
into two programs at each node: a C++ program interfacing with the haptic
device and a WebRTC simulation written in HTML, CSS, and JavaScript. Node
A can be connected to either Geomagic Touch or Novint Falcon for controlling
the Node B device, which uses a pen-mounted Novint Falcon. This allows demon-
strations of the PnP system for both homogeneous and heterogeneous TI nodes.
It should be noted that for the sake of simplicity we mount the pen to only
one type of haptic device. However, the tele-writing application can be directly
extended to any other haptic device as well.

Fig. 9. Schematic diagram of PnP communication system for tele-writing application.

As noted in Fig. 9, the HAV WebRTC simulator was built by combining
HTML, CSS, and JavaScript files from WebRTC’s Munge SDP sample pro-
gram with those from C++ WebSocket Server Demo’s client project [5,28]. The
client project consists of jQuery and simple-websocket [15,30]. jQuery simplifies
traditionally verbose JavaScript expressions while simple-websocket is used to
receive WebSocket data. The C++ haptic interfacing programs consist of C++
WebSocket Server Demo project and a simplified version of kinesthetic codec
provided by the works in [17,19,28]. The WebSocket server projects consist of
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WebSocket++ [27], Asio [10], and Jsoncpp [11]. The layout of the nodes are iden-
tical. The only difference is in how the signaling process is handled on each node.
Node A first generates its own TIM, and based on this, Node B generates its
own TIM. Node A, upon receiving this information, sends an acknowledgement
to Node B and begins data communication.

Kinesthetic Codec Reference Software. We use the kinesthetic codec ref-
erence software, proposed by IEEE Haptic Codecs Work Group, to interface
the C++ programs with the haptic devices, particularly in a well-controlled,
stable manner [19]. It uses Chai3D engine to sense and actuate the haptic inter-
face, queue-based haptic packet management for smooth communication, and
Winsock’s UDP mode to communicate between localhost-simulated TI nodes.
To reduce congestion, it uses the perceptual deadband haptic data reduction.

Since UDP is not supported on browsers due to security issues, this was
replaced with the WebSocket functionalities. Thus, the Chai3D-obtained haptic
data are converted into stringified JSON via Jsoncpp and WebSocket++, and
are then sent to the WebRTC simulator.

It is worth mentioning that the communication involved Node A sending
timestamped velocity data to Node B. Based on this data, Node B device’s force
data is calculated through Algorithm 1 and sent back to Node A along with its
own timestamp.

Algorithm 1: Slave force calculation algorithm.
Data: Newly read position p. Received velocity v. Previously stored error ep and

input force fp. Coefficients A, B, and C.
e ← 0.001 · v − p;
f ← A · e − B · ep − C · fp;
ep ← e;
fp ← f ;

Constants A, B, C are based on z-domain PD control and low pass filter
applied to this system. They were calculated using Tustin’s approximation prior
to the media communication phase. The s-domain parameters used were K =
1000, Ke = 5, T = 0.001 s, and τ = 0.0016 s. The s-domain transfer function
was:

F =
Ke + Keė

τs + 1
where, K, Ke, and τ respectively were Proportional Gain, Derivative Gain, and
Low pass filter parameter. The resulting z-domain functions were:

A =
2Ke + KT

2τ + T
, B = −−2Ke + T

2τ + T
, C =

−2τ + T

2τ + T

The coefficients above can be modified to support applications with different
control needs. These parameters can be included in the TIM packets if needed.
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Figure 10 shows both homogeneous and heterogeneous modes of the tele-writing
application along with C++ console for displaying the contents of request and
response packets.

Figure 10 (a), Novint Falcon was used for controlling Node B, whereas in
Fig. 10 (b), was used Geomagic Touch. In Fig. 10 (c), the C++ console log and
web GUI from the Node A is shown, which, content-wise, was identical to Node
B. Figure 10 (C). The C++ console log displaying packet communication rates,
and the web GUI from Node A displaying SDP request and response from Node
A and B, as well as their video data. The setup allowed the user to choose the
audio, video, and haptic source devices before setting up the session. In this
case, the AV data was provided from webcams connected to the nodes. Once the
user began the WebRTC signaling process, the HAV communication commenced
automatically.

Fig. 10. Two heterogeneous nodes experimental setup. (a) Novint Falcon to Novint
Falcon. (b) Geomagic Touch to Novint Falcon. (c) C++ console log displaying packet
communication rates, and web GUI from Node A displaying SDP request and response
from Node A and B, as well as their video data. Its content is identical to the other
node.
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5 Experimental Results

In this section, we present the latency findings of the tele-writing experiment.
The mean and the standard deviation of the handshake latency is measured to
be 47.25 ms and 23.38 ms, respectively. The performance of the bidirectional
HAV communication was assessed through its mean roundtrip time (RTT) mea-
sured over the tele-writing experiment with a duration of 10 s. The standard
packet rate of 1000 (consequence of 1 kHz sampling rate), leads to measuring
RTT of 10000 packets. It was observed that the mean and standard deviation of
RTT were 3.57 ms and 1.81 ms, respectively. The breakdown of the mean RTT
is shown in Fig. 11. We observed a high level of consistency in these RTT mea-
surements over several runs of the application.

Fig. 11. Breakdown of 3.57 ms RTT 10000 packets were sampled in 10 s, at 1000 packets
per second. Note that the C++ segments are only sample applications complimenting
the handshake implementation and do not represent the performance of the handshake
protocol.

Discussion: The average and standard deviation of RTT measured in our exper-
iments indicate that the proposed system can provide stable bidirectional com-
munication under both heterogeneous or homogeneous haptic interfaces. Around
1 ms of the total RTT, is the propagation delay between the TI nodes. Another
1 ms came from delays within the TI node browsers. This is attributed to
WebRTC-related protocol handling. This is expected since the browsers are in
high-level JavaScript-based implementation. Around 0.6 ms additional latency
came from interfacing the C++ programs with the browsers through WebSocket-
based communication. The remaining 1 ms latency came from the C++ pro-
grams, which is discussed later in detail.

Latency for some of these segments could potentially be eliminated. For
example, switching from JavaScript Web API to native C++ implementation
would address synchronization of AV data with haptic data. It will also allow
the haptic interface setup to be integrated with WebRTC. This will eliminate any
unnecessary cross-language latency. HAV handshake and communication latency
between TI nodes will further reduce once WebRTC extends RTCDataChannel
transport configuration option to pure UDP.

It should be noted that the latency for each of these segments are heav-
ily dependent on the size of the haptic information being communicated. The
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C++ programs are designed to send a set of timestamp and velocity/force
data upon significant haptic device movement, with processing delays as low
as around 1μs. When they are wrapped in JSON formatting and converted to
strings for communication, their sizes are typically around 120 bytes in length.
If other types of data such as rotation, gripper movement, and button press
also need to be communicated, the data size would further increase. The pro-
cessing delay may then increase, thereby congesting the system. The commu-
nicated data should therefore be minimized by using compression mechanisms.
Xu et al. effectively addresses such issues by demonstrating a combination of
the perceptual-deadband haptic data reduction approach and the time domain
passivity approach (TDPA) [32]. The size of the programs also affect the pro-
cessing delay. As the C++ programs run multiple threads within themselves and
the browser programs are executed asynchronously, adding more features could
increase RTT proportionally more than when they are run on a single thread or
run through a synchronous language. In addition to this, using browsers other
than Chrome is known to increase the processing delays [22].

Lastly, the hardware-level performance of TI nodes might have contributed
to the RTT as well. To our surprise, the latency in Node B’s C++ program was
twice as much as that of Node A, as seen in Fig. 11. These programs were devel-
oped to exchange different form of data, namely force or velocity, and while Node
A requires calculation of force data based on the received velocity data, Node B
has to simply actuate the received force data. Hence, the latency difference was
most likely due to the fact that the Node A and B’s haptic loop frequency were
around 2 and 0.5 MHz respectively, as measured by Chai3D’s frequency counter.
This made Node A four times more responsive than Node B at handling possi-
ble congestions. To address this limitation, faster running programs or hardware
should be used.

Taking these into account, the RTT is specific to the software and hardware
environment it was implemented in. It is therefore recommended that for more
complex TI applications, more efficient applications and hardware should be
used. In addition, more types of haptic devices and applications can be tested
to ensure that the PnP system is agnostic to multitude of scenarios. The above
discussion suggests that as long as these recommendations are met, the system
can be used to construct practical TI applications. These application will meet
the sub-10 ms requirement for safe haptic control, and will be near the 1 ms
average human haptic reaction time [16]. To our knowledge, this implementation
is the only openly available WebRTC-based HAV communication system, and
will therefore serve as an integral part of future TI application development.

6 Conclusions

In this paper, we presented the design of a WebRTC-based PnP communication
system for TI interactions encompassing haptic feedback. We described in detail
the TI Metadata (TIM) devised for conveying the haptic metadata of various TI
nodes, the handshake protocol, and communication protocol for HAV interac-
tion. Through implementation of the proposed PnP system on a WebRTC-based
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platform and heterogeneous haptic interfaces, we provided a proof of concept of
its operation. Further, the average and standard deviation of RTT were 3.57 ms
and 1.81 ms, respectively. This paves way for sub-10 ms RTT crucial for TI inter-
actions. As the system substantiates its usefulness for TI applications, it has
been made open-source for further TI application development. The system will
thus serve to form the foundation of TI application development. Such progress
will drive innovation in global products and services, changing societies for the
better. As for future work, we would like to evaluate the PnP system with a
wider range of haptic interfaces, such as interfaces with multi-points of haptic
interaction.

The proposed PnP communication system is aimed to be used by a broad
set of audience. Hence, in future, we plan to make the project resources publicly
available to fuel the explosive growth of TI.
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