
Neuroevolution vs Reinforcement
Learning for Training Non Player

Characters in Games: The Case of a Self
Driving Car

Kristián Kovalský(B) and George Palamas

Aalborg University, A. C. Meyers Vænge 15, 2450 Copenhagen, Denmark
aau@aau.dk

https://www.cph.aau.dk

Abstract. The aim of this project is to compare two popular machine
learning methods, a non-gradient-based algorithm such as neuro-
evolution with a gradient-based reinforcement learning on an irregular
task of training a car to self-drive around 3D circuits with varying com-
plexity. A series of 3D circuits with a physics based car model were
modeled using the Unity game engine. The data collected during eval-
uation show that neuro-evolution converges faster to a solution when
compared to the reinforcement learning approach. However, when the
reinforcement learning approach is allowed to train for long enough, it
outperforms the neuro-evolution in terms of car speed and lap times
achieved by the trained model of the car.

Keywords: Neuroevolution · Reinforcement learning · Neural
network · Evolutionary algorithm · Autonomous systems · Self driving
car · Unity · Games · Non player character · NPC

1 Introduction

Autonomous systems are capable of observing and evaluating a situation on a
complex and unstructured environment [3] and suggest the most optimal path
for the driver or in self driving cars that use image recognition and decision
making in order to function [2]. In the field of entertainment, machine learning
(ML) is capable of defining game logic and mimicking the actions and behaviour
of real players. Artificial intelligence (AI) plays an integral part of video games
where it is used for controlling non-player characters (NPCs). These can be very
simple such as ghosts in Pac-Man acting according to a certain pattern at various
stages of the game [30] to a more complex examples such as neural network (NN)
controlled drivatars in the racing series of Forza games [18]. However, some of
the most powerful AI bots such as AlphaGo developed by DeepMind require
several days of training on an extremely powerful hardware [23].
c© ICST Institute for Computer Sciences, Social Informatics and Telecommunications Engineering 2021

Published by Springer Nature Switzerland AG 2021. All Rights Reserved

N. Shaghaghi et al. (Eds.): INTETAIN 2020, LNICST 377, pp. 191–206, 2021.

https://doi.org/10.1007/978-3-030-76426-5_13

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-76426-5_13&domain=pdf
https://doi.org/10.1007/978-3-030-76426-5_13

192 K. Kovalský and G. Palamas

The issue with traditional ML algorithms that use gradient-based learning
such as back-propagation is that they only work well when presented with big
enough training data and sufficient computing resources [13,16,21]. The solu-
tion to this might be a global optimizer such as the evolutionary algorithm.
Neuroevolution (NE) is an evolutionary approach that uses a genetic algorithm
(GA) for optimizing a set of weights describing a NN instead of using stochastic
gradient descent methods to train these weights. Several studies have shown that
there are cases in which NE can outperform traditional ML algorithms such as
reinforcement learning (RL) [9,17,24].

This assumption is going to be investigated in this paper by testing the
performance of a NE algorithm against a traditional RL algorithm. A simulation
is going to be performed on a series of 3D racing circuits, in Unity3D game engine,
with a task of training a car to autonomously drive around these circuits. Their
performance will be compared in terms of training time, average and maximum
speed the car reaches on these circuits and average and shortest lap time.

2 Background

2.1 Reinforcement Learning

There are three main components of every reinforcement learning algorithm:
agent, environment and reward. The agents are placed in an environment and
they can interact with it by observing the current state, taking an action and
getting a reward (positive or negative) for their action. After the reward is given
to the agent, it is again presented with the new state of the environment and it
needs to decide on its next action. After certain time, the agent starts to develop
a certain set of rules according which it acts. This strategy that is constantly
being updated is called the policy [27].

Agent always needs to consider the most immediate reward it will receive
and also what is the next state it will go into. RL agents are usually aiming to
achieve the highest long-term reward possible. This means that the agent must
sometime decide to take an action with smaller immediate reward in order to
try to survive for longer periods [5].

The process of calculation of the future rewards is done by summing up the
rewards that the agent acquired when it took a similar action at some point
before. This sum is multiplied by a variable called discount factor that is prede-
fined by the developer (between 0 and 1). This dilemma of whether immediate
or future reward should be the main focus of the agent is called the credit assign-
ment problem [5].

One way to solve this problem are value functions. The main two value func-
tions are: state-value function and action-value function. The state-value func-
tion only looks at the current state of the agent within the environment when
calculating the expected return whereas the action-value function needs to con-
sider the action as well. The policy π which could be explained as probability
π(a|s) of the agent deciding to take a certain action a when being in a state s is

Neuroevolution Against Reinforcement Learning 193

taken into consideration as well [27].

Vπ(s) = Eπ

[∞∑
k=0

γ + Rt+k+1|St = s

]
(1)

The above equation describes a state-value function, where Eπ[] represents
the expected return value the agent would receive if it would act according to
policy π.

Another problem associated with RL is the one of exploration versus exploita-
tion dilemma [31]. Since the RL algorithm only sees state vectors and based on
those it outputs certain action vectors that yield a reward, it sometimes might
lead to the algorithm finding solutions which are far from what is desired. How-
ever, since the agent is getting rewarded, it keeps doing the same actions. This
means that the agent is getting stuck in a local optimum. There have been several
approaches attempting to solve this issue, however, none of them are performing
consistently on every possible task [4].

Last but not least, RL algorithms have to also deal with the problem of over-
fitting. This problem occurs when the agent performs at sufficient level during
the training process, however it fails to generalize properly and fails to perform
when introduced to a new environment. The main causes of over-fitting are either
that the data used for training are not sufficient to train the agent properly, or
the agent is too complex for the given task and finds patterns in the training
data that might be just noise [5].

2.2 Neuro-Evolution

When dealing with a problem where the optimal topology of the NN is unknown
or when there is no training data available to train it with the traditional method
of back-propagation, evolutionary algorithms can be used instead as an alterna-
tive. This way, the entire topology and weights of a NN can be evolved simulta-
neously without needing to know what specific setup to use beforehand [12,24].
Neuro-evolution algorithm follows the basic steps of the genetic algorithm as
seen on the Fig. 1 where the genomes are weights of a NN [29].

Because of the nature of NE, searching for the right behaviour instead of a
value function, it tends to be more suitable for problems where state space is
continuous and high-dimensional [6,7].

Genetic Algorithms. Genetic algorithms are a part of bigger group referred to
as evolutionary algorithms that belong to the class of evolutionary computation.
The original genetic algorithm was first introduced by John Holland in 1960s
[10]. At the beginning of every GA, a random set of possible solutions with high
variability, called initial population, is generated. The algorithm then assigns a
fitness value to each member of the population based on how well it is suited as
an optimal solution to the current problem. Reproduction promotes the survival
of the fittest through a selection mechanism which favours solutions with higher

194 K. Kovalský and G. Palamas

Fig. 1. The basic neuro-evolution loop. The GA is used to evolve both neural network
topologies and weights [29].

fitness values [15]. A mutation operation ensures that the offsprings will be
significantly different from their parents, thus avoiding local minima stemming
from a premature convergence to a solution.

2.3 State of the Art

Deep Neuro-Evolution. In their paper, Such et al. [26] describe how a non-
gradient-based evolutionary algorithm can replace already established gradient-
based learning algorithms during the training phase of Deep artificial neural
networks (DNNs). Their GA was used to evolve weights of a DNN. The evalu-
ation of the approach was performed by comparing the performance of the GA
to other contemporary algorithms such as Q-learning, random search (RS) or
novelty search applied to deep RL, against a set of Atari games. The GA was
performing very well when compared to DQN, A3C and ES. There were some
games in which the GA performed significantly worse which only goes to prove
how some families of algorithms are more suitable to be used in deep RL for cer-
tain tasks. What is interesting is that the GA was able to find a better solution
to many games than DQN much quicker. Afterwards, the GA was tested against
RS to confirm that the GA is doing something more than just plain random
search. The results showed that GA outperformed RS in every single game [26].

Neuroevolution of Augmented Topologies (NEAT). This was first pre-
sented by Stanley and Miikkulainen in 2002 [25]. The idea behind NEAT is to
evolve not just weights of NNs but also their topology at the same time. This
enables NEAT to perform exceptionally well when faced with problems with
limited domain knowledge and it also makes NEAT very good at generalizing.
The process of optimizing NN with NEAT starts by producing a population of
networks with no hidden layers and weights and connections that are chosen
randomly. As the algorithm progresses, hidden layers are added through the
mutation and crossover processes of the GA [25].

Evaluation of NEAT was performed on two different tasks: simple building
of an XOR network and more complex task of balancing two poles on a cart.
In terms of the first task, NEAT produced very satisfactory results without

Neuroevolution Against Reinforcement Learning 195

any trouble. The networks produced very minimal topology. The second task
showed more noticeable advantage of NEAT. NE methods have proved to be
able to outperform standard RL methods applied to the double pole balancing
problem [17,25].

Neuroevolution as Game Mechanics. A notable example of a practical
application of NEAT is the game called EvoCommander developed by Jallov et
al. [12]. In EvoCommander, NE is used to evolve NNs, however, these trained
networks are then not used for controlling NPCs, but they are given to the
players and they can use these networks to take control of their character. There
are several behaviours that players need to train their agent to do first, such
as ranged attacks, melee attacks, fleeing, etc. [12]. This approach, called “brain
switching”, showed that the players found the game mechanics engaging in both
single-player and multi-player game modes [12].

Reinforcement Policy Learning. One of the finest examples of RL is the
bot trained to play the game of Go [22]. The game has been notoriously difficult
for AI to master. However, by combining supervised learning and reinforcement
learning, AlphaGo has been able to reach win-rate of 99,8% by winning 494 of
495 games played against other computer Go programs that were considered
as one of the strongest at that time [22]. Jaderberg et al. [11] used 3D game
Quake III Arena to concurrently train multiple independent RL agents. They
demonstrate how a RL agent can achieve human-level performance by training
on pixels and game score as inputs. Pan et al. [20] proposed a novel method
for transitioning from virtual space to real space when it comes to developing
driving policy learning with RL, and show promising results of the RL adapting
to real world driving. A project by Haarnoja et al. [8] also aimed to address
the issue with transitioning from digital simulation space to real world space.
Their approach was able to train a real-world Minitaur robot to learn a pattern
of steps in order to be able to walk and generalize without issues. Moreover,
different NE controllers, based on the concept of pro-prioception, have been
compared for efficiency in balancing 3D biped characters in the complex and
dynamic environment of a game [1].

All of the above indicate that GA tends to perform better in spaces that are
irregular and poorly characterized. On the other hand, RL algorithms feel more
comfortable at dealing with tasks that can be solved by creating a grid which
maps states to actions.

3 Experimental Setup

The entire project was created using Unity3D game engine. The circuits were
created by using the Bézier Path Creator asset from Unity Assets Store. A small
green rectangle was put at the same position as the starting position of the car
in order to determine the start/finish line. The model consists of a simple 3D car
with four wheel colliders that are used for controlling the speed and steering.

196 K. Kovalský and G. Palamas

The problem of exploitation over exploration also appeared in this project
where the agent ended up finding parts of the circuit that were wide enough
for the car to turn around and drive back to the start where it would turn
around again and head back, thus creating a policy that kept driving in a small
loop. This problem was solved by adding checkpoints to the circuits used for the
training of the RL algorithm. Adding a sequence of sub-goals has been an efficient
method for global optimization problems such as autonomous navigation [19].
By decreasing the reward for the distance traveled and instead giving the agent
a reward for driving through checkpoints, the agent learned that in order to get
higher long term reward, it needs to keep driving forward and keep collecting
rewards from checkpoints instead of driving around in the same place of the
circuit indefinitely (Fig. 2).

Fig. 2. The car placed on a circuit with its five ray-casts displayed for debugging
purposes. Bright green line in front of the car is the start/finish line (Color figure
online)

The first circuit (Circuit 1) is the simplest of the three. The surface is com-
pletely flat with no elevations and the shape of it is a plain circle. The second
circuit (Circuit 2) is also flat but it consists of multiple turns that were freely
drawn by hand. The turns vary between left and right turns as well as long and
fast corners to slow and almost 180◦ hairpins (Fig. 3).

The third and last circuit (Circuit 3) is the most complex. There are only
four turns but the first part of the circuit has a variety of successive hills with a
steep inclines and declines (Fig. 4).

3.1 Neuroevolution of an Autonomous Car Controller

For this simulation, a standard NE algorithm was used instead of more complex
such as the NEAT. The reason behind this was the fact that the aim of this

Neuroevolution Against Reinforcement Learning 197

Fig. 3. The first (left) and second (right) circuits used for the evaluation. Checkpoints
used for RL algorithm are visible as hollow rectangles with green outline only for
visualization purposes. Bright green line marks the start/finish line (Color figure online)

Fig. 4. The third circuit used for the evaluation. Checkpoints used for the RL algorithm
are visible as hollow rectangles with green outline only for visualization purposes. Bright
green line marks the start/finish line. The right image shows various levels of elevation
(Color figure online)

project was to compare training approaches. Both NE and RL use different
methods for optimizing the weights of a NN. By using NEAT, the topology of
the NN would be changed during the process as well, possibly creating unwanted
biases.

The car controller contains methods for resetting the car and its properties
when it collides with a wall, method for applying forces to the car’s wheel col-
liders in order to control the acceleration and steering of the car, method for
placing the ray-casts on the car and lastly a method for calculating the fitness
of the car.

The fitness function is based on 3 variables: the distance traveled by the
car, average speed of the car and distance readings from the ray-casts. Each of
these variables has also their own multiplier that makes it possible to assign
higher or lower importance to certain variables. Once the car collides with a
wall, properties of that particular genome are saved, it is subsequently killed
and new genome is spawned. The script for the NN builds a functioning neural
network from scratch. The output of the NN are values for actions that the car

198 K. Kovalský and G. Palamas

makes: acceleration and steering. The acceleration value is constrained to values
between 0 and 1 and steering value is constrained between −1 and 1. The acti-
vation functions used are sigmoid for acceleration and tanh for steering. Lastly,
the script for GA contains methods for creating an initial random population,
creating new population of children, sorting and picking the best members of a
population, crossover, mutation and method for when a genome dies and calls
the reset method of the car controller script. Training settings of the NE can be
seen in Table 1.

Table 1. Training settings of the NE algorithm

Initial population 50

Mutation rate 0.055

Best agents for crossover 8

Worst agents for crossover 3

Number to crossover 39

Distance multiplier 1

Average speed multiplier 0.5

Raycast multiplier 0.1

Number of raycasts 5

Number of hidden layers 3

Number of hidden neurons 15

3.2 Reinforcement Learning of an Autonomous Car Controller

The Unity Machine Learning Agents Toolkit ML-Agents, developed by Unity
Technologies, was used for this implementation [28]. The car is presented with
information about its immediate velocity on all three axes X, Y and Z, its local
position and immediate angle of its front wheels. It also receives observations
from five ray-casts that are cast from the middle of the car forward and to
the sides at 30◦ angle steps. There are two actions that the agent can perform:
acceleration and steering. The form of actions is continuous, meaning that the
action is presented to the agent in an array of floating point numbers between 0
(no acceleration) and 1 (full acceleration) for acceleration and between -1 (left)
and 1 (right) for steering. The final acceleration force applied is calculated by
multiplying the output of the acceleration action with the motor torque of the
wheels. The steering angle is calculated by multiplying the output of the steering
action with a maximum steering angle allowed for the wheels which is −45◦ to
the left and +45◦ to the right.

The agent is awarded 0.2 points every time it collides with any of the 15
checkpoints evenly distributed around each circuit. Positive reward is also given

Neuroevolution Against Reinforcement Learning 199

to the agent based on its immediate velocity on Z axis (forward and backward)
divided by 2000. A tiny negative reward is given to the agent at each step in
order to motivate it to move forward and seek higher reward. A big negative
reward of -1 point is given to the agent when it collides with any of the walls.
Hitting walls also ends the current episode, resets the agent to its initial starting
location, reward is set back to zero and new episode is started. At the start of
each episode, the agent is placed on the same position coordinates, however the
rotation of the agent is picked randomly from a range of 0 to 60◦ from its initial
rotation in order to support exploration and introduce some variation. Training
settings of the RL can be seen in Table 2.

Table 2. Training settings of the RL algorithm

Vector space size 8

Action space type Continuous

Action space size 2

Number of raycasts 5

Trainer PPO

Number of hidden layers 2

Number of hidden neurons 128

Learning rate 0.0003

Maximum steps 9.0e6

3.3 Data Collection

Training times and rewards/fitness scores were collected at the end of training
session. The trained models were then used to drive around the same circuit in
order to collect additional measurements. During this secondary data collection,
the car was first let to complete one full lap in order to acquire some speed. At
the start of the second lap, data about the car’s speed and elapsed time started
being recorded. The car was then let to drive for three more laps.

4 Results

First of all, it should be mentioned that neither NE nor RL algorithms were able
to complete the Circuit 3. Therefore, only the results from Circuits 1 and 2 are
going to be presented. The average training time of the NE algorithm on Circuit
1 was 43.42 s. The condition for successful training was met on average during
generation 7. The left graph in Fig. 5 displays the progression of the fitness
function during one of the fastest runs that performed well already during the
second generation. The average training time of the NE algorithm on Circuit 2

200 K. Kovalský and G. Palamas

was 1 min and 21 s. The condition for successful training was met on average also
during generation 7. The right graph in Fig. 5 displays run that found the right
solution quite soon during generation 4. When it came to training with the RL
algorithm, the criteria for successful training on Circuit 1 was met after 8 h and
25 min. The model went through 3950000 steps in order to reach the solution.
The top graph in Fig. 6 displays how the entropy of the model was changing. It
can be seen that the randomness of the choices was generally decreasing during
the training. The bottom graph displays the increasing rewards achieved by
the agent at certain steps. Training the model with the RL algorithm on the
more complex Circuit 2 took 15 h and 10 min. The model completed 7050000
steps until the right policy was found. The top graph in Fig. 7 shows slightly
unstable entropy in the first half of the training, however it starts to decrease
more stably in the second half. The bottom graph shows the overall increase of
the accumulated rewards of the agent, mainly in the second half of the training
period.

Fig. 5. Fitness scores across genomes during training of the NE on the first (left) and
second (right) circuit

Trained Model Results. Data collected from the trained models show that the
NE algorithm on Circuit 1 reached the best lap time of 17.52 s. The average time
after three laps was 20.16 s. Additionally, as it can be seen on Fig. 8 (top), the
maximum speed reached on Circuit 1 was 27.57 and the average speed was 20.83.
When the model trained with RL algorithm was tested on Circuit 1 it achieved
the best lap time of 15.66 s and the average lap time of 17.15 s. Moreover, the
top speed on Circuit 1 was measured at 30.57 with the average speed over all
frames being 25.66 (see Fig. 8 bottom).

The NE model trained on Circuit 2 achieved the best lap time of 31.18 s
and the average lap time after three laps was 33.63 s. The top speed reached
on Circuit 2 was 15.35 and the average speed during three laps was 12.47 (see
Fig. 9 top). The RL trained model on Circuit 2 achieved the best lap time of
32.01 s and the average lap time over three laps was 32.82 s. The maximum speed
the car reached on Circuit 2 was 18.29 with the average being 12.52 (see Fig. 9
bottom). Now that all the raw data were presented, it allows for their discussion
and reasoning of why certain algorithms behaved the way they did.

Neuroevolution Against Reinforcement Learning 201

Fig. 6. Top graph shows the change in entropy during training of the RL model on the
first circuit while bottom graph shows the change in accumulated reward

Fig. 7. Top graph shows the change in entropy during training of the RL model on the
second circuit while bottom graph shows the change in accumulated reward

202 K. Kovalský and G. Palamas

Fig. 8. Speed of the NE (top) and RL (bottom) trained car models at each frame
during three laps in play mode on the first circuit

Fig. 9. Speed of the NE (top) and RL (bottom) trained car models at each frame
during three laps in play mode on the second circuit

Neuroevolution Against Reinforcement Learning 203

5 Discussion

The difference in training times is quite obvious. The GA and in turn NE was
expected to perform better than the RL, however the difference is very sub-
stantial and noticeable. Training of the NE on Circuit 1 took 43.42 s on average
compared to 8 h and 25 min of the RL. Training of the NE on Circuit 2 took
1 min 21 s on average compared to 15 h 10 min of the RL. The NE algorithm,
through complete accident, happened to find a network that managed to drive
several laps around a circuit on its first attempt. This only goes to support the
claims and findings stated in the Background section (see Sect. 2) that NE is
more suitable for problems that are irregular and not so clearly defined. On the
other hand, comparing the lap times and speed achieved by the agents show that
the RL trained model was able to outperform the NE model in all four measured
examples. On Circuit 1, the NE model took on average 20.16 s to complete a lap
compared to 17.15 s of the RL model. Average speed on Circuit 1 was also around
20% higher for the RL model at 25.66 compared to 20.83 of the NE model. On
Circuit 2, the differences between the two models were not as noticeable. The
average lap time of the NE model was 33.63 s and the average lap time of the
RL model was 32.82 s, making the difference between them less than 1 s. The
difference is even smaller for average speed, where NE model reached value of
12.47 and RL model reached value of 12.52.

5.1 Biases

There are several factors that might have affected the way the results turned out
for both training and play parts of the algorithms. The difference in topologies
of the NNs used in both algorithms could have caused an unfair advantage of
one over the other. The NN used in NE algorithm consisted of 3 hidden layers
and 15 hidden neurons, whereas the NN used in the RL algorithm consisted of
2 hidden layers and 128 hidden neurons. Experimenting with finding a middle
ground between the two setups could have resulted in different performance
of either of the two algorithms. Additionally, the mutation rate and crossover
rate of the NE have a great impact on the ability of the NE to find optimal
solutions. Figure 5 shows how unstable the outputs of the NE algorithm are
during the training. Lowering the mutation rate or increasing the number of
better performing individuals to be used for crossover could potentially improve
the stability of the NE algorithm.

Another difference between the two algorithms is the way they are awarded
for their actions. In case of the NE algorithm, the agent is awarded the fitness
score based on the sum of various weighted variables: distance traveled, average
speed and ray-cast readings. On the other hand, the RL agents gets higher
positive reward the faster it is moving forward and passing through checkpoints.
The checkpoints were added to the RL algorithm to fight the well known issue
of RL algorithms called exploitation. However, adding them on the NE circuits
or adding rewards to the RL algorithm based on the same way as they are given
to the NE algorithm would make the comparison more fair.

204 K. Kovalský and G. Palamas

Lastly, the acceleration action of both algorithms was constrained to be
always within the realm of positive numbers. This means that the agents were
basically told that moving forward is the right and the only direction they should
be moving. If the agents would be able to reverse, the results would almost def-
initely look different. However, the problem of exploitation of the RL algorithm
becomes more prominent again. The lack of braking force also contributed to
the fact that neither of the two algorithms managed to successfully train on
Circuit 3.

6 Conclusion

The aim of this project was to see whether a neuro-evolution algorithm can out-
perform a traditional reinforcement learning algorithm when applied on a task
of training a car to drive around various circuits in terms of training time, maxi-
mum and average speed reached as well as their lap times. The results of different
metrics collected both during training and after the training during play mode
showed that while the neuro-evolution is capable of finding the optimal solution
much faster than reinforcement learning, the solution found by reinforcement
learning performs better during play mode. The speeds that were reached by
the model trained with the reinforcement algorithm as well as the lap times
were consistently better than the ones reached by the model trained with the
neuro-evolution algorithm.

Due to some inconsistencies in the implementation, neither of the two algo-
rithms managed to solve the most complex circuit that was presented to them.
Potential solutions to this problem as well as biases caused by differences in the
topologies of the neural networks and the way algorithms were awarding their
agents are going to be presented in the following section. There is definitely room
for improving both algorithms either by doing minor adjustments to the param-
eters of the algorithm or by introducing more complex and robust techniques
such as NEAT or recurrent neural networks.

7 Future Works

The very first step at improving the performance of the algorithms would be to
introduce braking to the agents. This could possibly extend the training times,
but it would most definitely benefit the agents in the long run and help in con-
quering Circuit 3. Next step would be to introduce a recurrent neural networks.
Recurrent neural networks are capable of remembering several past observations
and therefore they can deal better with temporal series of events [14]. Another
property that should be evaluated is how well the trained models adapt to new
environments. Generalization is greatly essential for a network when faced with
completely new and unknown environments. Models that fail to generalize prop-
erly very often suffer from over-fitting [5]. Last but not least, a more complex
version of the NE algorithm such as NEAT could be implemented [25].

Neuroevolution Against Reinforcement Learning 205

References

1. Carlsen, C.S., Palamas, G.: Evolving balancing controllers for biped characters in
games. In: Rojas, I., Joya, G., Catala, A. (eds.) IWANN 2019. LNCS, vol. 11507, pp.
869–880. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-20518-8 72

2. Chen, S., Zhang, S., Shang, J., Chen, B., Zheng, N.: Brain-inspired cognitive model
with attention for self-driving cars. IEEE Trans. Cogn. Dev. Syst. 11(1), 13–25
(2017)

3. Cui, Y., Ge, S.S.: Autonomous vehicle positioning with GPS in urban canyon
environments. IEEE Trans. Robot. Autom. 19(1), 15–25 (2003)

4. Duff, M.O.: Q-learning for bandit problems. In: Machine Learning Proceedings
1995, pp. 209–217. Elsevier (1995)

5. Géron, A.: Hands-On Machine Learning with Scikit-Learn, Keras, and TensorFlow:
Concepts, Tools, and Techniques to Build Intelligent Systems. O’Reilly Media,
Sebastopol (2019)

6. Gomez, F., Miikkulainen, R.: Learning robust nonlinear control with neuroevo-
lution. Technical report, Technical Report AI01-292, Department of Computer
Sciences, The University (2001)

7. Gomez, F.J., Miikkulainen, R.: Solving non-Markovian control tasks with neu-
roevolution. In: IJCAI, vol. 99, pp. 1356–1361 (1999)

8. Haarnoja, T., Ha, S., Zhou, A., Tan, J., Tucker, G., Levine, S.: Learning to walk
via deep reinforcement learning. arXiv preprint arXiv:1812.11103 (2018)

9. Hausknecht, M., Lehman, J., Miikkulainen, R., Stone, P.: A neuroevolution app-
roach to general atari game playing. IEEE Trans. Comput. Intell. AI Games 6(4),
355–366 (2014)

10. Holland, J.H.: Genetic algorithms: computer programs that “evolve” in ways that
resemble natural selection can solve complex problems even their creators do not
fully understand. Sci. Am. 267, 1992 (2005)

11. Jaderberg, M., et al.: Human-level performance in 3D multiplayer games with
population-based reinforcement learning. Science 364(6443), 859–865 (2019)

12. Jallov, D., Risi, S., Togelius, J.: EvoCommander: a novel game based on evolving
and switching between artificial brains. IEEE Trans. Comput. Intell. AI in Games
9(2), 181–191 (2017)

13. Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097–1105 (2012)

14. Mikolov, T., Karafiát, M., Burget, L., Černockỳ, J., Khudanpur, S.: Recurrent neu-
ral network based language model. In: Eleventh Annual Conference of the Inter-
national Speech Communication Association (2010)

15. Mitchell, M.: An Introduction to Genetic Algorithms. MIT Press, Cambridge
(1998)

16. Mnih, V.: Human-level control through deep reinforcement learning. Nature
518(7540), 529–533 (2015)

17. Moriarty, D.E., Mikkulainen, R.: Efficient reinforcement learning through symbi-
otic evolution. Mach. Learn. 22(1–3), 11–32 (1996). https://doi.org/10.1023/A:
1018004120707

18. Muñoz, J., Gutierrez, G., Sanchis, A.: A human-like TORCS controller for the
simulated car racing championship. In: Proceedings of the 2010 IEEE Conference
on Computational Intelligence and Games, pp. 473–480. IEEE (2010)

https://doi.org/10.1007/978-3-030-20518-8_72
http://arxiv.org/abs/1812.11103
https://doi.org/10.1023/A:1018004120707
https://doi.org/10.1023/A:1018004120707

206 K. Kovalský and G. Palamas

19. Palamas, G., Ware, J.A.: Sub-goal based robot visual navigation through sensorial
space tesselation. Int. J. Adv. Res. Artif. Intell. 2(11), (2013)

20. Pan, X., You, Y., Wang, Z., Lu, C.: Virtual to real reinforcement learning for
autonomous driving. arXiv preprint arXiv:1704.03952 (2017)

21. Seide, F., Li, G., Yu, D.: Conversational speech transcription using context-
dependent deep neural networks. In: Twelfth Annual Conference of the Interna-
tional Speech Communication Association (2011)

22. Silver, D., et al.: Mastering the game of go with deep neural networks and tree
search. Nature 529(7587), 484 (2016)

23. Silver, D., et al.: Mastering the game of go without human knowledge. Nature
550(7676), 354–359 (2017)

24. Stanley, K.O., Clune, J., Lehman, J., Miikkulainen, R.: Designing neural networks
through neuroevolution. Nat. Mach. Intell. 1(1), 24–35 (2019)

25. Stanley, K.O., Miikkulainen, R.: Evolving neural networks through augmenting
topologies. Evol. Comput. 10(2), 99–127 (2002)

26. Such, F.P., Madhavan, V., Conti, E., Lehman, J., Stanley, K.O., Clune, J.: Deep
neuroevolution: genetic algorithms are a competitive alternative for training deep
neural networks for reinforcement learning. arXiv preprint arXiv:1712.06567 (2017)

27. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction. MIT Press,
Cambridge (2018)

28. Unity Technologies: Unity ML-Agents Toolkit (2020). https://github.com/Unity-
Technologies/ml-agents. Accessed 25 May 2020

29. Whiteson, S.: Evolutionary computation for reinforcement learning. In: Wiering,
M., van Otterlo, M. (eds.) Reinforcement Learning, vol. 12, pp. 325–355. Springer,
Heidelberg (2012). https://doi.org/10.1007/978-3-642-27645-3 10

30. Wittkamp, M., Barone, L., Hingston, P.: Using neat for continuous adaptation and
teamwork formation in pacman. In: 2008 IEEE Symposium On Computational
Intelligence and Games, pp. 234–242. IEEE (2008)

31. Yogeswaran, M., Ponnambalam, S.: Reinforcement learning: exploration-
exploitation dilemma in multi-agent foraging task. Opsearch 49(3), 223–236 (2012).
https://doi.org/10.1007/s12597-012-0077-2

http://arxiv.org/abs/1704.03952
http://arxiv.org/abs/1712.06567
https://github.com/Unity-Technologies/ml-agents
https://github.com/Unity-Technologies/ml-agents
https://doi.org/10.1007/978-3-642-27645-3_10
https://doi.org/10.1007/s12597-012-0077-2

	Neuroevolution vs Reinforcement Learning for Training Non Player Characters in Games: The Case of a Self Driving Car
	1 Introduction
	2 Background
	2.1 Reinforcement Learning
	2.2 Neuro-Evolution
	2.3 State of the Art

	3 Experimental Setup
	3.1 Neuroevolution of an Autonomous Car Controller
	3.2 Reinforcement Learning of an Autonomous Car Controller
	3.3 Data Collection

	4 Results
	5 Discussion
	5.1 Biases

	6 Conclusion
	7 Future Works
	References

