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Abstract. In recent years, there has been an increasing interest in the
extended reality training systems (XRTSs), including an expanding inte-
gration of such systems in actual training programs of industry and edu-
cational institutions. Despite pedagogists had developed multiple didac-
tic models with the aim of ameliorating the effectiveness of knowledge
transfer, the vast majority of XRTSs are sticking to the practice of adapt-
ing the traditional model approach. Besides, other approaches are started
to be considered, like the Learning by Teaching (LBT), but for other
kinds of intelligent training systems like those involving service robots.
In the presented work, a mixed-reality robotic training system (MRRTS)
devised with the capability of supporting the LBT is presented. A study
involving electronic engineering students with the aim of evaluating the
effectiveness of the LBT pedagogical model when applied to a MRRTS
by comparing it with a consolidated approach is performed. Results indi-
cated that while both approaches granted a good knowledge transfer, the
LBT was far superior in terms of long-term retention of the information
at the cost of a higher time spent in training.

Keywords: Mixed-reality robotic training system · Learning by
teaching · Human-Robot Interaction · Robotic teachable agent

1 Introduction and Background

The advancements experienced by the eXtended Reality (XR) related technolo-
gies over the last decade is unprecedented for this family of media. The availabil-
ity of cost-effective hardware solutions is promoting its diffusion at the consumer-
level. Thus both industry and academy are dedicating significant effort to help
XR mediums attain maturity in a variety of contexts and in fields as diverse as
engineering, arts, design, architecture, medicine, education, and many more [5].

This work has been partially supported by the VR@POLITO initiative.
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Since the first days, for both Virtual Reality (VR) and Mixed Reality (MR),
one application field suddenly attracting a great amount of interest was train-
ing. This is even more true nowadays were XRTSs are moving from the labo-
ratories to the industries, being more and more frequently integrated into the
companies training programs [8], especially for the practical and manual task
that could benefit from a learning-by-doing setting. Despite the growing body
of literature in the field, and the potential of the medium, the vast majority
of studies and applications stick to the traditional learning (TL) approach. In
traditional learning, a lecturer teaches something to one or more students, pos-
sibly using also additional materials such as books, blackboards, or slides. In a
common XRTS, the teacher is replaced by the piece of software (not necessar-
ily by a teacher avatar) that guides the trainee in the experience, for instance
by providing step-by-step instructions [16]. Even tough the intrinsic engaging
nature of VR and MR already boost the training effectiveness through embodi-
ment, there is so much more that can be done. Since the 50’, pedagogists have
endowed significant effort in developing didactical models to help students climb
the learning pyramids [15] effectively. On the opposite side of traditional learning
w.r.t the didactic model spectrum, there is the so-called learning by teaching.
It grounds on the näıve practice of peer-tutoring, in which students tutor other
students by teaching each other self-learned domain knowledge from traditional
(or not) sources. In spite of the fact that in normal conditions (humans teaches
humans) LBT has proven to be much more effective compared to TL [6,14],
especially for long-term retention of the acquired knowledge, it also suffers from
some drawbacks. Besides of being more inefficient (time-consuming) w.r.t TL,
the training effectiveness depends on the role taken by the student in a given
moment (teacher or tutee) and the two roles are dependable of different kinds of
feedbacks and stimuli [10,18]. The need to replace the tutee peer has led to the
rise of the so-called teachable agents (TA). These are (computer) agents that
learners can teach about a subject domain, and while doing so, gain a deeper
understanding of the subject matter [3]. In other words, the ultimate goal is
not to actually program the agent, but exploiting it to stimulate the mental
process involved in the LBT approach, letting the learner gain a better under-
stating of the topic through the process of teaching to someone else. Considering
that empathy and other several social factors [6] are crucial in the LBT, one
of the most promising implementations of teachable agents takes advantage of
service robots [20]. Robotic Teachable Agents (RTA) have been investigated by
several studies and proved to be equally or even more effective than the TL
(still employing robots) [17], and capable of activating the required mental pro-
cesses needed for an effective LBT experience [17]. Nevertheless, an intelligent
training system (ITS) using just a robotic teachable agent is usually limited in
terms of modality, being voice explanation from the learner the main (and often
only) form of Human-Robot Interaction (HRI) involved in the experience [9]. To
extend the potential of the RTA-based learning by teaching intelligent training
systems, some researchers begun to use an MR environment together with the
RTA. To now, there is a handful of studies on the topic. In a first study [11] a
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Fig. 1. Anki Cozmo

mobile robot along with a spatial MR setup was employed to teach a geometry
related topic. In the study was found that learners reacted differently based on
the social attribution feedback (positive or negative connotation, and different
subject) from the robot, suggesting that the MR environment doesn’t affected
significantly the social interaction. However, no direct comparison with a TL
version was investigated. In a second study [19] employing the same MR robotic
training platform, was studied if the physical RTA constitutes a real advantage
in terms of learning effectiveness compared to a digital replica of it (just MR)
and to a desktop-like application (no MR, no robot). This reflects a key challenge
in designing MR robotic experiences, in which the augmented content could take
over at the point that having a physical robot may be useless [13]. No significant
differences were reported among the three versions of the experience from the
learning gains point-of-view, thus indicating the announced problem could have
affected the MR intelligent training system.

With the aim of better clarifying if the MR addition could be detrimental
to the robot’s features that enable the LBT approach, and by seizing the call to
action from the research community [2,20], in this paper is presented a prelimi-
nary study to evaluate the training effectiveness of a MRRTS implementing the
learning by teaching paradigm compared to a traditional learning version.

2 Materials and Methods

The MRRTS was implemented by adopting a table-top projected spatial MR
setup together with a commercial off-the-shelf programmable toy robot.

2.1 Technologies

More specifically the Anki Cosmo1 robot was selected among others, due to its
popularity and because it has several anthropomorphic features that strengths
1 Anki Cozmo: https://anki.com/en-us/cozmo.html.

https://anki.com/en-us/cozmo.html
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its emotional connotation and supporting social behaviours (Fig. 1). The man-
ufacturer provides an official SDK2 for programming it in Python. Cozmo is a
non-holonomic robot with a minimum size of 6 × 7 × 11 cm and includes two
moving parts (in addition to wheels). A first moving part, which can be consid-
ered as the “head” of Cozmo, has one rotational degree of freedom (DOF), and
can rotate by 20◦ downward and 45◦ upward. The head of Cozmo is completed
by a “face” implemented through a 2 × 2 cm LED matrix display, which shows
a simplified anthropomorphic facial expression using eye-like animations (which
can be selected from a pre-defined list using the SDK). Beneath the display, there
is a 60◦ wide field of view 640 × 480 pixels RGB camera (although the image
accessible through the SDK is limited to a 320×240 grayscale image). A feature
of the SDK allow to use this camera to let Cozmo automatically follow the user
face (by orienting the robot and the “head” of the robot) simulating a look-at
behavior. The second moving part is a front lifter (one positional DOF, likewise
controllable through the SDK), which is primarily designed to interact with the
bundled tangible objects (interactive cubes not used in this project) but beside
of that can also be used in custom ways if programmed, for instance to simulate
a robot interaction with the projected environment [13] (tap-like animation).
Cozmo is also equipped with WiFi capabilities and a built-in speaker that could
benefit from the Text-To-Speech (TTS) functionality included in the SDK. The
SDK is designed using an event-driven approach and is rich in features (for the
sake of brevity, in this review only the subset of features that were actually used
for the implementation were mentioned).
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Fig. 2. Architecture of the MRRTS.

2 Cozmo’s SDK: http://cozmosdk.anki.com/docs/index.html.

http://cozmosdk.anki.com/docs/index.html
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Fig. 3. Setup of the MRRTs.

The whole high-level architecture of the MRRTS system exploited in this
work is illustrated in Fig. 2, and includes: Cozmo, a RGB-D camera, a projec-
tor, an Android smartphone and a PC. As said, the MR selected for the system is
a spatial MR setup, and the augmented digital contents are table-top projected.
Since this setup, depicted in Fig. 3, was selected as one of the most used one in
the literature [13], and is exploited also by already referred previous works on
the topic of LBT with RTA [11,19], just a brief description of our implemen-
tation is given in the following. The projector was mounted near the ceiling in
order to project the image on the table from the top. To improve the quality
of the projected image, the table was covered using a black cardboard of size
85 × 65 cm, which is also the size of the projected surface. Because of the fact
that was decided to provide the user with the ability to interact with the MR
environment using natural gestures [13], in the immediate nearby of the pro-
jector it was mounted a Microsoft Kinect v2. For this specific setup, both the
1920 × 1080 pixels, 30 fps RGB camera and the depth sensing 512 × 424 pix-
els camera were used. The first is used by the Wizard-of-Oz (WOZ) interface
that will described in Sect. 2.2, while the second for hand gesture recognition to
enable a touch-based interaction with the projected surface. The depth image
is processed using well-known computer vision techniques (background subtrac-
tion, depth level thresholding, opening, contour detection). The module is imple-
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mented using the OpenCV (v3.2) library and can detect the position of the hand
as well as its configuration (i.e. open or closed), and is able to distinguish three
touch gestures, i.e. tap, slide and drag.

Since the accuracy of Cozmo’s built-in estimated odometry isn’t sufficient for
the devised application scenario, mostly because suffering of drift related issues,
a depth image processing similar to the one used for the hand-gestures is per-
formed to endow the system with the capability of tracking the robot position
in a outside-in fashion. On average, the tracking capability of this algorithm is
Err = 0.81 ± 0.62 cm. A calibration phase (performed before the game starts)
was required to synchronize the Cozmo’s internal coordinate system with the
coordinate system used by the external tracking and by the projection, comput-
ing the required transformation matrices. Voice feedback was provided (when
requested) using the TTS capabilities of the SDK in English language. The
lecture logic and graphics were implemented using the well-known Unity game
engine (v2018.3), and were deployed to a Windows application running on the
PC. The gesture detection module and the robot control logic were instead imple-
mented in another Python application, accessing the functionalities provided by
the Cozmo’s SDK. The WOZ interface was developed using a webpage served by
Flask and written in HTML5 and Javscript language. The inter-process commu-
nication (IPC) among the modules was implemented through ZeroMQ sockets.
The Android phone is required for the SDK to work since run its runtime. The
smartphone, which has to be connected to the PC running the applications
through USB cable, communicates with Cozmo by using a WiFi network hosted
by the robot itself.

2.2 Experience Design and Implemented Variants

As said, the aim of this work is to compare the learning effectiveness of TL
and LBT didactic models in a MRRTS. To this aim, a new training experience
named MireLab was designed and implemented in two variants.

Topic. The chosen training topic for MireLab is the Thèvenin Theorem, from
the electronic engineering domain. Due to the fact that the selected target audi-
ence was undergraduate students from electronic engineering, it was necessary
to select a topic not too basic in order to keep the engagement of the partici-
pants, but also not excessively complicated such that the learners have the right
level of previous knowledge on the domain thus not being overwhelmed. In par-
ticular, are given for granted as background knowledge at least the ohm’s laws
and the Kirchhoff’s Circuit Laws. MireLab was designed by getting inspiration
from a possible lecture that could take place in an electronic laboratory thus
additional lecture material, in that case, would have been slides, paper sheet for
notes/calculation, and of course a test bench with components to assemble a
circuit and testing the acquiring knowledge.
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Common Foundation. In order to minimize the differences, both variants
exploit a common foundation about the projected environment (interface) and
robot features exploited. MireLab was designed taking into account state-of-the-
art guidelines for MR-based robotic experiences [13]. The main interface (Fig.
4a) is made of 3 areas. The first (top-left), occupying the main space of the
screen, is constituted by a whiteboard space where the circuits are created and
other information can be introduced (equation, pictures, etc.). On the right,
there is a components area, where both the robot and the user can select the
desired components for the circuit. The selection is performed using a coherent
gesture: a finger-tap for the user and a tap-animation (using the lever) for the
robot. When a component is selected, it appears on a buffer space (bottom-right)
where it can be valorized, using the dropdown list which shows coherent values.
A few additional option are available in the bottom-left button panel, such as
the possibility to erase the whiteboard or orienting the component in the buffer.
The component can be then placed in the whiteboard space by a drag-and-drop
gesture (as before coherently for both the user and the robot). Finally, when all
desired elements are on the panel, they can be connected (wiring) by clicking the
cable button and later selecting the adequate terminals of the components. There
is also a pop-up input tool that can be used as calculator or as an input tool in the
LBT variant. As already announced the robot can move all-over the projected
environment and interaction are meant to emulate the counterpart performed
by the user. Also, the robot is constantly fed with micro-choreography inputs
thus fostering the sense of a living being. The robot can communicate to the
user using the TTS features, or by showing elements on the shared projection.

Traditional Learning. In this variant, the user assumes the role of the tutee
while the robot acts as the teacher. Well established practices are implemented
in that case. The robot is controlled by the software based on an FSM logic. The
delegation pattern I-do, We-check, You-practice, is adopted from the robot as
teaching style, managing the lecture pace through milestone advancement and
feedbacks to the tutee. Hence, Cozmo explains the concept, shows and solve
example while speaking to carefully make it clear for the tutee. Moreover, it also
asks the tutee for collaboration at some points like choosing the values of the
components or removing certain elements suggested by the robot. These little
interactions are introduced in order to keep the tutee’s attention high during the
explanation resulting in a more engaging experience and active learning.

Learning by Teaching. As said, in LBT the learner (user) acts as a teacher
lecturing the RTA. To design this variant, we kept in mind that, according to the
literature, there are 4 key steps that the learner must undergo and were proved
to be effective to maximize learning gains [7]:

1. Preparing to teach (expectation to teach)
2. Explaining to others/RTA (teaching)
3. Interacting with others/RTA (Q&A, feedback to RTA)
4. Observing the RTA spending the acquired knowledge (recursive feedback)[12]
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In MireLab, for the first step, a one-sheet long paper is provided to the learner
[11,19] that has to study it on its own and prepare the lecture. The cheat
sheet, available for download3, contains a synthetic explanation of the topic
that matches the contents that are provided by the robot in the TL variant.
Its structure has been designed to suggest the learner a specific order to use
later when teaching, however some points bring a certain level of freedom so the
learner can lead the lecture in their own way. All the equations, circuits, and
images contained are referred with a numerical code. This code can be used by
the learner to rapidly add to the whiteboard these snippet elements during the
lecture, using the input tool feature.

Afterwhile, the learner uses the MireLab interface to take the lecture and
while doing so interacting with the RTA (steps 2 and 3). Hereby, the learner
uses the whiteboard to clearly explain the topic and interacts with the robot
through the voice and the MR environment. On the other hand, the robot will
follow the lesson asking questions and performing the tasks that the learner
command in order to increase its inclusion grade on the experience and not
being unnoticed [13].

Finally, a prerecorded video of the robot, solving an exercise on the lecture
topic while interacting on its own with the MireLab interface, is shown to the
learner (step 4). It was decided to use the same prerecorded video for all the
participants of the study to minimize bias.

In this LBT variant the robot is no more acting autonomously but its behav-
ior is controlled using a WOZ approach. This was decided because of the complex
interaction that the RTA is asked for, considering the fact that none to little AI
are already available for that specific purpose, and building such an AI is out of
the scope of the presented study.

Wizard of Oz: As can be seen in Fig. 4b, the WOZ interface implementation
provide the wizard with the ability to perform exactly the same actions the robot
was capable of when relying on the AI (in the TL) and, therefore, act in a compa-
rable manner. Moreover, the control of the robot is not entirely manual, but some
assisted features are provided to the wizard to both facilitate it and minimize
the interaction discrepancies w.r.t. the TL robot behavior. By remotely observ-
ing the MR environment, through the Kinect RGB camera feed, the wizard can
teleoperate the robot with keyboard and mouse input, directly controlling it or
by clicking at a point of the camera feed (in that case, the robot will automat-
ically reach the point by the shortest path). Particular efforts were devoted to
standardizing some possible frequent questions and answers that the RTA could
be in the situation to speak to the learner. The list is included in the interface
and once selected the item, its text can be edited, or multiple items combined
together, before sending the final phrase to the robot’s TTS engine. Further-
more, several predefined animations encoding different emotions and reactions

3 Input tool manual and Thèvenin’s theorem cheat-sheet http://tiny.cc/s8utsz.

http://tiny.cc/s8utsz
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can be triggered by the wizard. Finally, there has been included some buttons to
trigger specific events to the application. This capability is essential to simulate
the feeling that the robot is actually interacting with the MR environment. For
example, if the robot is asked to remove a component from a circuit it will have
to touch it performing the required gesture (double-tap) and then the wizard
trigger this event to let the system act accordingly (remove or short circuit such
component).

Fig. 4. a) The devised projected interface of MireLab and b) the WOZ interface as
seen from the Wizard point of view
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3 Experimental Results

This section presents an discusses the results of a preliminary user study that
was carried out by using the devised system to compare the training effectiveness
of the TL and LBT approach in a MRRTS scenario.

3.1 Experiment Design

The selected population of the study was the one of electronic engineering stu-
dents that met the requirements of having sufficient background knowledge but
scant about the topic (Thévenin Theorem). Therefore, volunteers were provided
with a multiple-choice screening test, that includes both theoretical questions
and practical exercise about the two aforementioned knowledge areas (10 ques-
tions on background knowledge and 5 on the topic). Only the volunteers that
scored coherently, i.e. scored greater or equal to 6/10 on background knowledge
and less than 6/10 on the topic, were accepted as participants of the study. The
so-made sample included 6 participants (all males) aged between 22 and 25 y.o.
(μ = 23.83, σ = 1.07). Due to the (desirable) learning effects, a between-subjects
design was adopted for the experiments, by randomly assigning each participant
to two equal-sized groups (TL and LBT).

Prior of being exposed to the training, all the participants were asked to
respond to a before-training questionnaire (BTQ) designed to investigate: their
previous knowledge and expertise with technologies related to those used in
MireLab; their study habits; their behavior while learning in a class; and how
familiar they are with teaching other people.

After that, the participant received a tutorial given by a confederate about
the interface and feature of the system, with tiny differences between the two
groups (mostly pertaining to the use of the snippets input tool for the LBT).

Following, participants underwent the training. In the LBT participant were
allowed to take notes on the cheatsheet while studying it and preparing the
lecture. It was given them the possibility to consult the notes while lecturing
the robot, however, they were recommended to leave it on the table (aside the
projected area) hand to have just a few quick look at it, otherwise, they could
have used the sheet as a communication barrier (by holding it in one hand)
between them and the robot, which could have been a negative impact on HRI.
In addition, they were allowed to check the notes for a maximum of 5 times, thus
preventing to superficially prepare the lecture/study. Finally, the video showing
the robot spending the taught knowledge was viewed in another room away from
the MRRTS and the robot.

Instead, for the TL no particular expedients were adopted. The time required
to complete each step was recorded for each participant of both groups.

After the training was administered a post-experience questionnaire (PEQ),
containing: all the items of the System Usability Scale tool [4]; the godspeed
questionnaire [1], to analyze the learner perception of the robot, complemented
by custom additional statement pertaining the specificities of the experiment;
and few self-efficacy items to investigate the perceived learning gains. Objective
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learning gains were evaluated later by administering a post-training test (PTT),
which is an extended version of the screening test (13 questions, including the
5 of the screening test). After that, was administered a final questionnaire (FQ)
to investigate the perceived quality of the training and the satisfaction with it.

Since one of the key advantages acknowledged by the literature to the LBT
w.r.t. TL is the enhanced long-term retention of the acquired information, a
retention test (RT) was considered in the study. Participants were asked to
answer the same quiz of the PTT after one week, during this time they were
not exposed to any information related to the topic. All the devised tests and
questionnaires are available for download4.

3.2 Results and Discussion

Collected data were analyzed using MS Excel with the Real-Statistics add-on
(v7.1). Comparative analyses were performed on the two groups using the two-
tailed Mann-Whitney U-test and, considering the limited sample size, the sig-
nificance threshold was set as p ≤ 0.10. Regarding the BTQ, no significant
differences were found between the two groups for the analyzed aspect. More
in-depth, on average participants were used to play videogames occasionally and
were very accustomed to touch screen interfaces. On the contrary, they were
little to none familiar with neither service nor toy robots. Also, 5 participants
reported teaching other people at least once a month while 1 never or rarely
(belonging to the LBT group).

About the PEQ, no significant difference was spotted about the 5 dimensions
of the godspeed questionnaire (anthropomorphism p = 0.70, animacy p = 1.00,
likeability p = 1.00, perceived intelligence p = 0.70, perceived safety p = 0.40),
suggesting that the robot behavior was perceived similarly in both groups. This
fact also seems to support the statement that the implementation adopted for
the WOZ in the LBT didn’t biased the comparison. Regarding overall usabil-
ity, according to SUS results both variants were rated as barely acceptable TL
(M = 68.3, SD = 14.6), LBT (M = 61.7, SD = 7.2), however, no significant dif-
ference was reported (p = 0.70). According to the open-feedback collected, these
relatively low scores were mainly due to the sluggish feeling of the touch surface
compared to what they were accustomed to (tablet and smartphone devices).

About the self-efficacy, it was significantly higher in the LBT (M =
4.0, SD = 0.00) w.r.t. TL (M = 3.11, SD = 0.38), as well as the partici-
pant confidence about “successfully pass a test on a thévenin’s theorem without
further training”, LBT (M = 4.0, SD = 0.00) vs. TL (M = 2.33, SD = 0.58).
Whereas, no significant differences were reported for the FQ items, suggesting
comparable satisfaction levels and perceived quality of the training.

Objective Learning Gains: Fig. 5 illustrates the objective results about learning
gains (score normalized at 10). All participants were able to successfully pass the
test after been trained by the MRRTS, independently of the group. In particular,

4 Questionnaires and Tests: http://tiny.cc/p9utsz.

http://tiny.cc/p9utsz
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Fig. 5. Objective results of the study. All scores are normalized to 10 and significant
comparisons (p-values ≤ 0.1) are marked with *

by comparing common items of the screening test and PTT (Fig. 5a) were found
significant and marked learning gains (pre-post training scores) for both groups,
meaning that both variants were effective. Also, even if the score of the full PTT
is higher for the LBT, the difference w.r.t TL was not significant (Fig. 5b). This
fact seems to encourage that the intrinsically interactive nature of MRTTS, and
a good implementation of the best practice are able to minimize the differences
between the two approaches w.r.t what happen with other mediums. However,
this result is probably influenced by the limited sample size. Nevertheless, a
significant difference is observable in the retention test (PTT scores, immediately
after training and after one week from the exposure). In that case (Fig. 5b), the
loss of information was lower in the LBT group, also, all participants from LBT
group were able to successfully pass the test after the retention period with a
minimum score of 7.7, whereas for the TL this was the maximum score obtained
and one of the participants did not reach a sufficient mark (5.4). This confirms
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that LBT is a superior approach in terms of granting long-term retention. Being
this results in agreement with previous studies on LBT, this suggests also that
the MRRTS was able to stimulate the required mental process, and that the
addition of MR was not too detrimental in that way. The Scheirer–Ray–Hare
Test applied to the retention test results highlighted that this difference can be
attributable mainly to the training approach. In fact, not significant interaction
effects were reported between the approach and the exposure time (p = 0.80),
and is improbable that this difference is only affected by the exposure time (p =
0.46), instead a striking significance was found for the training kind (p = 0.003).
Lastly, considering the efficiency of the training, our results are similar to those
obtained in previous works (Fig. 5c), being the LBT significantly more time
consuming (almost 4 times) than TL. This is for sure due to the time invested
in studying the cheat-sheet, but also largely ascribable to the higher time spent
interacting with the robot (teaching).

4 Conclusions and Future Work

In this paper was presented a study with the goal of evaluating the effectiveness
of the LBT pedagogical model when applied to a MRRTS by comparing it with
a consolidated model (TL). The select topic of the training was the Thévenin
Theorem from the electronic domain and the population of the study was one
of the electronic engineering students.

Obtained results outlined that both approaches were able to provide sufficient
knowledge transfer to the learner. In spite of the limited sample size of the
presented preliminary study, it was observed that, at the cost of a higher time
consumed in the process, students that underwent the LBT training were able
to retain the acquired information better than those trained with TL. This poses
LBT as a promising model also in MRRTS scenarios that worth the attention
of the community. That considered, future works should focus on validating the
preliminary findings with a larger sample size by encompassing also different
target populations (K-12, High School, etc.), on developing tools and AI to
autonomously control the RTA with believable and emphatic behavior, and by
investing in the direction of natural HRI which is key to improve the efficiency
and the effectiveness of this particular kind of MRRTS.
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9. Lamberti, F., Pratticò, F.G., Calandra, D., Piumatti, G., Bazzano, F., Villani,
T.R.: Robotic gaming and user interaction: impact of autonomous behaviors
and emotional features. In: 2018 IEEE Games, Entertainment, Media Conference
(GEM), pp. 1–9. IEEE (2018)

10. Moreno, R.: Decreasing cognitive load for novice students: effects of explanatory
versus corrective feedback in discovery-based multimedia. Instr. Sci. 32(1–2), 99–
113 (2004). https://doi.org/10.1023/B:TRUC.0000021811.66966.1d

11. Muldner, K., Girotto, V., Lozano, C., Burleson, W., Walker, E.A.: The impact of a
social robot’s attributions for success and failure in a teachable agent framework.
International Society of the Learning Sciences, Boulder, CO (2014)

12. Okita, S.Y., Schwartz, D.L.: Learning by teaching human pupils and teachable
agents: the importance of recursive feedback. J. Learn. Sci. 22(3), 375–412 (2013)
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